Supporting Information

Strengthened Perovskite/Fullerene Interface Enhances the Inverted Planar Perovskite Solar Cells Regarding Efficiency and Stability via Tetrafluoroterephthalic Acid Interlayer

Minhua Zou¹, Xuefeng Xia¹, Yihua Jiang¹, Jiayi Peng¹, Zhenrong Jia², Xiaofeng Wang¹, Fan Li^{*1}

¹Department of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

² National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
*Corresponding author. E-mail address: <u>lfan@ncu.edu.cn</u> (F. Li)

Characterization

The X-ray diffraction (XRD) spectrum of the MAPbI₃ and MAPbI₃/TFTPA films were characterized by an X-ray diffractometer (Bruker D8 DISCOVER) at a scanning rate of 1° min⁻¹ in the Bragg-Brentano mode, using Cu K_a radiation (1.540598 Å). Spectra were acquired with a linear silicon strip "LynxEye" detector from $2\theta = 4^{\circ}$ -45° at a step width of 0.02° in a source slit width of 1 mm. The surface morphological observations of MAPbI₃, MAPbI₃/TFTPA and MAPbI₃/TFTPA/PC₆₁BM films were made by field-emission scanning electron microscopy (SEM, QuanTA-200F) with gold vapor deposition and atomic force microscopy (AFM, Digital Instrument Nanoscope 31). Ultraviolet-visible (UV-vis) absorption were measured by a UV-vis spectrophotometer (PerkinElmer LAMBDA 750). Fourier Transform infrared spectroscopy (FT-IR) was recorded using a Nicolet iS50. Contact-angle measurements were conducted on Kruss DSA-100, the photographs were taken 1 s after water dripping. Elemental analysis was characterized by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). Ultraviolet photoelectron spectroscopy (UPS) was measured with XPS measurements using an AXIS-ULTRA DLD spectrometer (Kratos Analytical Ltd.). For UPS measurement, the photon energy of the He I lamp was 21.21 eV and the spectra were collected in a pass energy of 5 eV. Time-resolved Fluorescence for photoluminescence (TRPL) decays were measured with a Horiba FluoreCube spectrofluorometer system by using a UV diode laser (NanoLED λ =465nm) for excitation. Steady Fluorescence measurements for photoluminescence (PL) of the samples were carried on a Horiba FluoroMax-4 luminescence spectrofluorophotometer. The excitation wavelength was 465 nm and emission wavelength was 767 nm for MAPbI₃ films. The J-V curves measured by Keithley model 2400 source measuring unit with 0.01 V s⁻¹ scan rate, the decay time is 10 ms and without pretreatments under the simulated AM 1.5 G one illumination of 100 mW cm⁻². A Newport Air Mass 1.5 Global (AM1.5G) full-spectrum solar simulator was applied as the light source. The EQE spectrum was obtained using a solar cell spectral response measurement system (Enlitech, Taiwan). Electron-only devices (FTO/TiO₂/MAPbI₃/PC₆₁BM/Ag or FTO/TiO₂/MAPbI₃/TFTPA/PC₆₁BM/Ag) were used to measure the dark J-V by an Agilent (B2901A) precision source for the SCLC analysis. The mobility was extracted by fitting the J-V curves by the Mott-Gurney equation. The trap state density was determined by the trap-filled limit voltage using equation. Capacitance-voltage (C-V) measurements were characterized using an AutoLab potentiostat (model PGSTAT30) equipped with a frequency analyzer module at normal atmosphere (25 °C), in which a small voltage perturbation (20 mV rms) was applied at 10 kHz at a scan rate of 0.02 V s⁻¹. The electrochemical impedance spectroscopy (EIS) measured by Electrochemical workstation (VersaSTAT3, AMETEK) with the frequency range from 1 Hz to 1 MHz in the dark at room temperature. The applied voltage is close to the V_{oc} of each device and the AC amplitude is 10 mV.

Scheme S1. Chemical structure of TFTPA molecule.

Figure S1. Top-view SEM images of the MAPbI₃ films rinsed with ethyl acetate at different times.

Figure S2. Contact angles with PC₆₁BM drops on (a) the MAPbI₃ film, (b) the MAPbI₃ film rinsed with ethyl acetate and (c) the MAPbI₃/TFTPA film.

Figure S3. Cross-sectional SEM image of Glass/ITO/NiO_x/MAPbI₃/PC₆₁BM.

	$V_{oc}\left(\mathrm{V} ight)$ J	T_{sc} (mA cm ⁻²)	FF	PCE (%)
Control device	1.05 ± 0.04	18.1 ± 1.2	0.727 ± 0.031	13.8 ± 2.3
TFTPA device	1.12 ± 0.01	20.4 ± 0.7	0.786 ± 0.021	18.0 ± 1.4

Table S1. Performance of PSCs fabricated with TFTPA and without TFTPA under standard AM 1.5 illumination (100 mW cm⁻²) at active layer area (0.10 cm²).^a

^aThe statistics is determined from 30 devices.

Figure S4. XRD patterns of the MAPbI $_3$ film and MAPbI $_3$ /TFTPA film.

Figure S5. UV–vis absorption spectra of the MAPbI $_3$ film and MAPbI $_3$ /TFTPA film.

Figure S6. XPS spectra of (a) the MAPbI₃ film and (b) MAPbI₃/TFTPA film.

Figure S7. High-resolution C 1s XPS spectra of (a) the MAPbI₃ film and (b) MAPbI₃/TFTPA film.

Figure S8. FTIR spectra of TFTPA, MAPbI₃ film and MAPbI₃/TFTPA film.

Figure S9. Vertical atomic concentration distribution of F and Pb in the MAPbI₃/TFTPA film.

Figure S10. High-resolution Pb 4f XPS spectra of the MAPbI₃/TFTPA film after etching different time.

Figure S11. High-resolution F 1s XPS spectra of the MAPbI₃/TFTPA film after etching different time.

Sample	τ_1 (ns)	$ au_2$ (ns)	<i>A</i> ₁ (%)	$A_2(\%)$	$ au_{ave}(ns)$
MAPbI ₃	0.84	3.36	8.77	91.23	3.14
MAPbI ₃ /TFTPA	1.58	6.31	7.74	92.26	5.83
MAPbI ₃ /PC ₆₁ BM	2.07	2.62	43.28	56.72	2.38
MAPbI ₃ /TFTPA/PC ₆₁ B	0.62	2.47	49.71	50.29	1.55
М					

Table S2. Time-resolved photoluminescence (TRPL) decay fitting parameters of the MAPbI₃, MAPbI₃/TFTPA, MAPbI₃/PC₆₁BM and MAPbI₃/TFTPA/PC₆₁BM films.

Substrate	$E_{cutoff}(eV)$	E _{onset} (eV)	HOMO (eV) ^a	LUMO (eV) ^b
MAPbI ₃	16.58	0.78	5.42	3.83
MAPbI ₃ /TFTP	16.50	0.76	5.48	3.89
А				

Table S3. Energy levels of the pristine MAPbI₃ and MAPbI₃/TFTPA films.

^aThe HOMO level is acquired from the UPS spectrum.

^bThe LUMO level is acquired by adding the bandgap obtained from the UV-vis absorption spectrum to the HOMO level.

Table 54. L15 parameters for the 1505 homeded with 11 1177 and without 11 1177.					
Devices	$R_{s}\left(\Omega ight)$	$R_{tr}\left(\Omega ight))$	$R_{rec} (\Omega)$	CPE_{tr} - T (F)	CPE_{rec} - T (F)
w/o TFTPA	1.35	38.42	824.56	1.31×10^{-9}	6.08×10^{-9}
With TFTPA	1.07	27.56	1180.38	1.07×10^{-9}	1.79 × 10 ⁻⁸

Table S4. EIS parameters for the PSCs fabricated with TFTPA and without TFTPA.