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S1. R, R’-NHC coupling reaction conditions
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Table S1. Mass-spectrometric study of reversibility of R-NHC coupling.

Intens. [NHC-Ph]*/[NHC-Me]*®

[Pd]

Entry leq. No base / Et:N No base Et:N

0h® 24h 24h

1 Pd(OAc), nd high trace
2 Pd(OAc)2 + 2 eq. PPhs nd average nd
3 Pd(acac), nd average nd
4 Pd.dbas-CHCIs nd nd nd
S PdCL(PPhs). nd trace nd
6 PdClL, nd nd nd
7 PdL, nd trace nd
8 No [Pd] nd nd nd

@ ESI-MS, I = Inwucehj+/Invicmegs: 0.1 < 1< 0.3 —small, 0.3 <1< 0.5 - average, I > 1 - high; nd — not detected with reasonable intensity;

®) after mixing before heating; ) after 24 h of heating.

Table S2. "H NMR-spectroscopic study of reversibility of R-NHC coupling.

Entry 1 eq. [Pd] Conversion, % Yield, %
1 Pd(OAc), 72 31
2 Pd(OAC), + 2 eq. PPh, 66 24
3 Pd(acac), 36 13
4 No [Pd] 7 0

Table S3. Observation of the reversibility of R-NHC coupling under various conditions.

ESI-MS® 'H NMR
. Intens.® Intens.©
Ent Variable parameter i f Yiel
i P [NHC-Ph]*/ [NHC-Ph]*/ C°nlv(ecfs(’;n © of zli)dy
[NHC-Me]* [NHC-Me]* 7 7
1 (p-OMe)CsH.I nd high 60 44
2 ALK (pNO2)CeHadl nd small 44 12
3 PhBr trace high 60 16
4 PhCl trace trace 37 0
S lato Phl 1:1 nd high 60 43
6 ratio 1:2 trace high 72 31
7 Smol % nd trace 10 <1
8 Pd(Ofﬁc)z 10 mol % nd trace 12 1
loading
9 50 mol % nd average 35 20
10 1b nd average 56 56
Azolium salt
11 1c nd average 34 34

@ESI-MS, I = Iivucph)+/Inmcmegs: 0.1 < 1< 0.3 —small, 0.3 <1< 0.5 - average, I > 1 — high; nd — not detected with reasonable intensity;

® after mixing before heating; © after 24 h of heating.
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Table S4. Observation of the reversibility of R-NHC coupling in the presence of different metals.

y ESI-M(S) 'HNMR
Entry o [NHC-IDIEi[Elr[IIS\jHC-Me]+ Yield of 29, %
1 eq. 0 h® 24 h©

1 CuOAcC nd high 80

2 CuOAc + 2 eq. PPh; nd high 74

3 Cu(acac), nd high 33

4 Ni(OAc),4H,0 nd nd nd®

5 Ni(OAc),4H,0 + 2 eq. PPh; nd trace nd®

6 Ni(acac), nd average 10

7 Ni(NO3),"6H,0 nd small 3

8 Co(OACc), nd nd -

9 Co(OAC);, + 2 eq. PPh; nd nd -

10 Co(acac); nd nd -

11 Co(NOs3),"6H,0 nd nd -

12 Without a metal (control experiment) nd nd -

@ ESI-MS, I = Innc-p)+/Iintcmels, where 0.1 < I < 0.3 — small, 0.3 < I < 0.5 — average, I > 1 — high; nd — not detected with reasonable intensity;
® after mixing before heating; () after 24 h heating; ¥ broad signals in the 'H NMR spectrum.
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Figure S1. '"H NMR spectrum of 1a (DMSO-ds, 300 MHz).
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Figure S2. *C{'H} NMR spectrum of la (DMSO-ds, 75 MHz).
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Figure $3. '"H NMR spectrum of 2a (DMSO-ds, 300 MHz).
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Figure S4. *C{'H} NMR spectrum of 2a (DMSO-d, 75 MHz).
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Figure SS. '"H NMR spectrum of 1,3-dimethyl-1 A-benzimidazol-3-ium iodide (DMSO-ds, 300 MHz).
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Figure S6. *C{'H} NMR spectrum of 1,3-dimethyl-1 Z-benzimidazol-3-ium iodide (DMSO-ds, 75 MHz).
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Figure 87. '"H NMR spectrum of 1b (DMF-d, 300 MHz).
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Figure S8. *C{'H} NMR spectrum of 1b (DMF-&, 75 MHz).
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Figure $9. '"H NMR spectrum of 1¢ (DMF-d;, 300 MHz); it is likely that compound 1c¢ has a minor spatial isomer present as evident from the spec-
tra, the compound was confirmed by ESI-MS and elemental analysis.
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Figure S10. *C{'"H} NMR spectrum of 1c (DMF-d, 75 MHz).
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Figure S11. Comparison of signals in 'H NMR spectra: () Reaction mixture after heating in DMSO-d: 0.1 mmol 1a, 0.2 mmol Phl, 0.1 mmol

Pd(OAc),, DMF, 140 °C; ® Compound 1a in DMSO-ds; ) Compound 2a in DMSO-ds.
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S3. Mass spectra
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Figure S12. ESI-(+)MS spectrum of 1a in CH3CN solution expanded to the [M - I]* region.
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Figure S13. ESI-(+)MS spectrum of 2a in CH;CN solution expanded to the [M - I]* region.

S13



Intens.
[%]4 Experimental:
100 147.0916 A=0.7ppm
/
®
Cx
0
60- \
40
201 148.0945
0
[%]4 147 0917 Calculated:
100- ‘ [CBHHNQT-
80+
60-
40+
20+
148.0950
1465 | 1470 1475 148.0 148.5 150.0 1505  miz

Figure S14. ESI-(+)MS spectrum of 1,3-dimethyl-1#-benzo[d]imidazol-3-ium iodide in CH3CN solution expanded to the [M - I]* region.
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Figure S15. ESI-(+)MS spectrum of 1b in CH3CN solution expanded to the [M - I]* region.
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Figure S16. ESI-(+)MS spectrum of 1c in CH3CN solution expanded to the [M - I]* region.
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Figure S17. ESI-(+)MS spectrum of 2-(4-methoxyphenyl)-1,3-dimethyl-1 H-benzimidazol-3-ium iodide in CH3CN solution expanded to the [M —

I region.
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Figure S18. ESI-(+)MS spectrum of 1,3-dimethyl-2-(4-nitrophenyl)-1 H-benzimidazol-3-ium iodide in CH3CN solution expanded to the [M - I]*

region.
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Figure S19. ESI-(+)MS spectrum of 2b in CH3CN solution expanded to the [M — I]* region.
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Figure $20. ESI-(+)MS spectrum of 2¢ in CH3CN solution expanded to the [M — I]* region.
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Figure S21. Comparison of signals in ESI-(+)MS spectra: ) Reaction mixture after 24 h in CHsCN solution expanded to the [M - I]* region: 0.1
mmol 1a, 0.2 mmol PhI, 0.1 mmol Pd(OAc),, DMF, 140 °C; * Compound 1a in CH;CN solution expanded to the [M —I]* region; ) Com-
pound 2a in CH3CN solution expanded to the [M —I]* region.
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Figure $22. Comparison of signals in ESI-(+)MS spectra: (a) Reaction mixture after 24 h in CHsCN solution expanded to the [M - I]* region: 0.1
mmol la, 0.2 mmol Phl, Pd NPs preparation from 0.1 mmol Pd(OAc),, DMF, 140 °C; (b) Compound la in CH3CN solution expanded to

the [M - I]* region; (c) Compound 2a in CH;CN solution expanded to the [M - I]* region.
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Figure $23. Collision-induced dissociation ESI-(+) MS? spectrum of [ (CoH10N2)(CioH1:N2) LPd(CH3CN)]* at collision energy of 20 eV.
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S4. TEM experiments
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1. Pd NPs formation under in DMF at various temperatures

The possibility of palladium nanoparticles formation at lower temperature in DMF was studied according to the following procedure:
Pd(OAc): (2 mg, 0.009 mmol) in 4 ml of DMF was heated for 1 hour at the corresponding temperature. Then, the samples for TEM analy-
sis were prepared. According to TEM study, Pd NPs are not formed in noticeable amounts at room temperature (Figure S24, A) and only
traces may be expected at 50°C (Figure S24, B). Pd NPs were already formed at 75 °C (Figure $24, C) and at 100°C (Figure S24, D), where
the particles are clearly visible as both agglomerates and individual nanoparticles.

R

g

Figure $24. TEM images of Pd NPs formed from Pd(OAc). in DMF at different temperatures: A — at 25 °C, scale bar 50 nm; B — at 50 °C, scale bar
20 nm; C - at 75 °C, scale bar 50 nm; D - at 100 °C, scale bar 50 nm.
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2. Preparation of Pd NPs for R,R’-coupling reaction

Pd(OAc): (22.5 mg, 0.1 mmol) in 7 ml of DMF was heated for S min at 140 °C. Then the resulting cloudy colloidal solution was centri-
fuged at 6000 RPM. After that, the solution above the precipitated nanoparticles was separated and again held for 5 min at 140 ° C, followed
by centrifugation to separate new portion of nanoparticles. The operation was repeated 5 times until the solution stopped becoming cloudy
during the heating process. The combined fractions of nanoparticles were washed with DMF and used in the reaction without further drying
(to minimize agglomeration during drying process). Electron microscopy characterization is shown on Figure $25.

Figure $25. TEM images for Pd NPs formed from Pd(OAc). in DMF at 140 °C, scale bar for left column 100 nm, scale bar for right column is 50

nm.
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SS. Theoretical calculations
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1. Plausible routes leading to product 2

The reaction may proceed by several routes (Scheme S 1). Under the action of DMF, palladium acetate is reduced yielding zero-valent
palladium 4, which participates in the oxidative addition step either with organic halide 17, or with the starting azolium salt 1, forming com-
plexes 18 and 8 respectively (via intermediate 5). Enter the second oxidative addition with the starting azolium salt 1 (in the case of complex
18) and organic halide 17 (in the case of complex 8) resulting in formation of Pd(IV) complex 10. Subsequently undergoes reductive elimi-
nation yielding the target product 2 stepwise via intermediates 12 and 14. At the same time, the possible interaction between complexes 18
and 8 may result in formation of dimeric palladium complex 19, which should be considered as well since conversion of 19 to complex 21

leads to formation of the target product 2.

Scheme S1. Plausible routes leading to product 2
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2. Reaction of Ph—-NHC coupling involving Pd(IV) complex formed through the sequential addition of
[NHC-Me]I and Ph-I
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Figure $26. Reaction of Ph—-NHC coupling involving Pd(IV) complex formed through the sequential addition of [NHC-Me]I and Ph-1.
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Figure $27. Optimized molecular structures of 4-16. The imaginary frequencies and atomic displacements corresponding to imaginary vibration are
represented for each transition state; PBE1IPBE/6-311G(d)&def2TZVP D3B]J.
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3. Ph-NHC coupling involving Pd(II) dimer
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Figure $28. Reaction Ph-NHC coupling involving the Pd(II) dimer. See Figure S30 for conformational analysis of complexes 18 and 24.
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Figure S29. Profile of change in total energy during Ph~-NHC coupling reaction, involving Pd(II) dimer; PBE1PBE/6-311G(d)&def2TZVP D3B]J.
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Figure S30. Optimized molecular structures for Figure S28. The imaginary frequencies and atomic displacements corresponding to imaginary vibra-
tion are represented for each transition state; PBE1PBE/6-311G(d)&def2TZVP D3B]J.
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4. Ph-NHC coupling involving Pd(IV) complex formed by oxidative addition of Me-NHC to Pd(1I)
complex
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Figure S31. Reaction of Me-NHC addition/Ph-NHC coupling flowing through Pd(IV) complex. See Figure S35 for conformational analysis of
complex 10.
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Figure S32. Potential energy surface of Me-NHC addition/Ph-NHC coupling reactions flowing through the Pd(IV) complex, PBE1PBE/6-
311G(d)&def2TZVP D3BJ.
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Figure S33. Optimized molecular structures for Figure S31. The imaginary frequencies and atomic displacements corresponding to imaginary vibra-
tion are represented for each transition state; PBE1PBE/6-311G(d)&def2TZVP D3B]J.
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AE=-5.4

Figure $34. Molecular structures of isomers of complex 18 and 24 their relative energies (kcal/mol), PBEIPBE/6-311G(d)&def2TZVP D3B]J.
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Figure $35. Molecular structures of isomers of complex 10 and their relative energies (kcal/mol), PBE1PBE/6-311G(d)&def2TZVP D3BJ.
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5. Reductive elimination of Mel
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Figure S36. Reaction of reductive elimination of Mel.
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Figure S37. Profile of total energy changes during Mel elimination reaction.
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Figure S38. Optimized molecular structures for Figure S36. The imaginary frequencies and atomic displacements corresponding to imaginary vibra-
tion are represented for each transition state; PBE1PBE/6-311G(d)&def2TZVP D3B]J.
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6. Proposed structure of [ (CyH1oN.)(C1H3N;),Pd(CH;CN)]*

Experimental ESI-MS study detected Pd-containing positively charged ion with m/z 707.93 and the following formula can be proposed:
[(BIMe)(Me-BIMe)L,Pd(CH;CN)]* (see Figure 2 for the structure of BIMe ligand).

According to DFT calculations, the complex may adopt square configuration. In the calculated structural arrangement BIMe ligand is
bound to the metal and [Me-BIMe]* fragment tends to connect predominantly via electrostatic interactions to one of the iodide ligands.
Considerable binding energy of 21.2 kcal/mol was calculated for the [Me-BIMe]" fragment (Figure $39). Calculated structure is in good
agreement with observed dissociation pathways in CID MS” experiment (Figure $23).

Alternative arrangement of the [Me-BIMe]" fragment may involve binding of Me- and BIMe as ligands to the metal center and formation

of [(BIMe)2(Me)LL,Pd(CH3;CN)]* octahedral complex. However, it is less likely due to substantial energy of such transition of 65.0 kcal/mol
(Figure S39).

AE=21.2

AE =65.0

Figure $39. Molecular structures of possible isomers for the m/z 707.93 ion calculated at PBE1PBE/6-31 1G(d)&def2TZVP D3B]J level. Dissociat-
ed fragments and octahedral [ (BIMe).(Me)L,Pd(CH3sCN)]* complex are higher in energy by 21.2 and 65.0 kcal/mol, respectively.
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