README.md 8/23/2019

Race detection tool

This is a data race detection result from the paper: Efficient, context-sensitive and guarded data race detection.
Experiment results.
[t consists of two parts: tool comparison results and race detection results for real-world programs.

Tool comparison.

Checking results are packed at directory "comparison”.

Reported races.

Due to the double-blind requirement, we only show the screenshot of bug reports.

1/13

README.md 8/23/2019

Axel (link, confirmed). Its report is at Reports/axel.bc-bugs.txt
Our bug scanner has reported a data race issue at text.c#L237,

in function main, search_sortlist sorts threads created by search_getspeeds,

j = search_getspeeds(search, i);
search_sortlist(search, i);

search_getspeeds returns O if pthread_create failed,
would it create a part of speedtest threads, then hit one pthread_create failure and returns to main
function? Could it result a situation that the created threads still running and search_sortlist writes

to variables used by threads in the same time?

int search_getspeeds(search_t *results, int count)

while(done < count)

{
for(i = 0; i < count; i ++)
{
if(running < results->conf->search_threads && !results[i].speed)
{
results[i]l.speed = SPEED_ACTIVE;
results[i]l.speed_start_time = gettime();
if(pthread_create(results[i].speed_thread,
NULL, search_speedtest, &results[i]) == 0)
{
running ++;
break;
}
else
{
return(@); // hit one pthread_create failu
}
}

2/13

https://github.com/axel-download-accelerator/axel/tree/65fef5df6422e02aa349ed921b78eeeb66603ed4

README.md 8/23/2019

Lunchbox (link, confirmed). Its report is at Reports/Lunchbox-threadPool.bc-bug.txt

Our bug scanner has reported a data race issue at thread.cpp#L131 and thread.cpp#L202.

Followings are code snippets.

void Thread::_runChild()

{
setName(boost::lexical_cast<std::string>(_impl->index));
_impl->id._impl->pthread = pthread_self();

and

bool Thread::start()
{

// avoid memleak, we don't use pthread_join
pthread_detach(_impl->id._impl-=>pthread);

The race occurs when _impl->id._impl->pthread = pthread_self(); and pthread_detach(_impl->id._impl-
>pthread); are executed simultaneously.

3/13

https://github.com/Eyescale/Lunchbox/tree/1a9647853805a310dfa4d92598a21ea6cc0d72e2

README.md 8/23/2019

rsyslog (link, confirmed). Its report is at Reports/rsyslog-imudp.so.bc-bug.txt
Hi all,

Our bug scanner has reported a data race issue from imudp.c#L429 to imudp.c#L430

Followings are code snippets.

static rsRetVal
processPacket(...)

{
if (bDoACLCheck) {
socklen = sizeof(struct sockaddr_storage);
if(net.CmpHost(frominet, frominetPrev, socklen) != @) {
if(*pbIsPermitted == @) {
DBGPRINTF("msg is not from an allowed sender\n");
if(glbl.GetOption_DisallowWarning) {
time_t tt;
datetime.GetTime(&tt);
if(tt > ttLastDiscard + 60) {
ttLastDiscard = tt;
errmsg.LogError(@, NO_ERRCODE,
"UDP message from disallowed sender discarded");
}
}
}
}
}
}

ttLastDiscard is a static variable and the function processPacket could be executed parallelly.
Therefore, when two threads reach the if(tt > ttLastDiscard + 60) simultaneously, they may be all
true and then begin to assign the variable ttLastDiscard . However, they could corrupt the
ttLastDiscard , leading to confused information.

A possible call trace could be as follows:

BEGINrunInput creates threads that execute function wrkr . Then wrkr calls rcvMainLoop(pWrkr) .
At the last loop of rcvMainLoop, it calls processSocket(pWrkr, currEvt[i].data.ptr, &frominetPrev,
&bIsPermitted); .

4/13

https://github.com/rsyslog/rsyslog/tree/6b8a54de970f49239f9e357375df80b3d981f6cc

README.md

s3fs-fuse (link, confirmed). Its report is at Reports/s3fs.bc-bug.txt

Hi all,

Our bug scanner has reported a race condition issue from curl.cpp#L1486 to curl.cpp#L1495

Followings are code snippets.

bool S3fsCurl::AddUserAgent(CURL* hCurl)

{

static bool

if(linit){

strua
strua
strua
strua
strua
strua
strua

+=

init = false;

"s3fs/";
VERSION;
" (commit hash ";
COMMIT_HASH_VAL;

s3fs_crypt_lib_name();
||)||;

init = true;

Note that init is a static variable and the function AddUserAgent could be executed parallelly.

8/23/2019

Therefore, when two threads reach the if(!init) simultaneously, they are all true and then begin to
construct the string strua . However, they could corrupt the strua , leading to confused information.

A possible call trace could be as follows:

S3fsMultiCurl::MultiPerform creates two or more threads that execute
S3fsMultiCurl: :RequestPerformWrapper . Then S3fsMultiCurl::RequestPerformWrapper calls
S3fsCurl::RequestPerform . At the end of S3fsCurl::RequestPerform, it calls

S3fsCurl::AddUserAgent (hCurl) .

5/13

https://github.com/s3fs-fuse/s3fs-fuse/tree/fa8c4175260ffd15a5bcf4bb006d075c1d56f296

README.md 8/23/2019

sofa-pbrpc (link, confirmed). Its report is at Reports/sofa-pbrpc-client.bc-bug.txt

static voidx thread_run(void* param)

{
ThreadParamx thread_param = reinterpret_cast<ThreadParamx>(param);
// init
if (thread_param—>init_func && !'thread_param->init_func—>Run())
{

thread_param—>init_fail = true;
}

thread_param—>init_done = true;
and

bool start()
{

for (int i = @; 1 < _thread_num; ++1i)

{

int ret = pthread_create(&_threads[i], NULL, &ThreadGroupImpl::thread_run, & th

if (_thread_params([i].init_done)

{
if (_thread_params[i].init_fail)
{
init_fail = true;
break;
}

6/13

https://github.com/baidu/sofa-pbrpc/tree/daaa35bf12ae615fefe81ea913b17f56eabc69f6

README.md 8/23/2019

Finedb (link, confirmed). Its report is at Reports/FineDB-libimdb.so.bc-bug.txt

Our bug scanner has reported a data race issue at mutex.c#L71 and global.c#L241.

Followings are code snippets.

void nn_mutex_lock (struct nn_mutex xself)

{
int rc;
rc = pthread_mutex_lock (&self->mutex);
errnum_assert (rc == @, rc);
}
and

static void nn_global_term (void)

{

#if defined NN_HAVE_WINDOWS
int rc;

#endif
struct nn_list_item *xit;
struct nn_transport xtp;

/* If there are no sockets remaining, uninitialise the global context. */
nn_assert (self.socks);

The race occurs when the two asserts failed, causing two threads accessing stderr simultaneously.

here is one possible call trace:
global.c:321->global.c:229->pool.c:30->worker_posix.inc:109->thread_posix.c:55->thread_posix.c:44-

>worker_posix.inc:194->mutex.c:71; global.c:325->global.c:241

7/13

https://github.com/Amaury/FineDB/tree/70239aebc42e0ba47d4c12008814e47361f52106

README.md 8/23/2019

transmission (link, confirmed). Its report is at Reports/transmission-2.92-bugs.txt
In platform.c#L127

pthread_create (&t->thread, NULL, (void* (*)(void*))ThreadFunc, t);
pthread_detach (t—>thread);

and the implementation of ThreadFunc

ThreadFunc (void x _t)
{
tr_thread x t = _t;

t—>func (t-=arg);

tr_free (t);

Could t be freed in ThreadFunc before t passedinto pthread_detach ? (don't sure it is possible in
reality)

8/13

https://github.com/transmission/transmission/releases/tag/2.92

README.md 8/23/2019

leveldb (link, confirmed). Its report is at Reports/leveldb-db_test.bc-bug.txt
Our bug scanner has reported a data race issue at env_posix.cc#L551

Followings are code snippets.

void PosixEnv::Schedule(void (xfunction)(voidx*), voidx arg) {

if (!started_bgthread_) {
started_bgthread_ = true;
PthreadCall(
"create thread",
pthread_create(&bgthread_, NULL, &PosixEnv::BGThreadWrapper, this));
}

PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}

void BGThread();
static voidx BGThreadWrapper(void* arg) {
reinterpret_cast<PosixEnvx>(arg)->BGThread();
return NULL;
}

void PosixEnv::BGThread() {
while (true) {

PthreadCall("unlock", pthread_mutex_unlock(&mu_));

}
}

void PthreadCall(const charx label, int result) {
if (result !'= 0) {
fprintf(stderr, “pthread %s: %s\n", label, strerror(result));

The call trace is as follows:

PosixEnv: :Schedule—>PthreadCall

and

PosixEnv::Schedule->BGThreadWrapper—>PosixEnv: :BGThread->PthreadCall

The race may be rarely triggered, but it would corrupt the log when occured.

9/13

https://github.com/google/leveldb/tree/8415f00eeedd96934d3578572d3802900e61a556

README.md 8/23/2019

zfs (this, no response). Its report is at Reports/zfs-zfs.bc-bug.txt
Hi all,

Our bug scanner has reported a data race issue at libzfs_diff.c#L461 (or libzfs_diff.c#L446) and
libzfs_diff.c#L806.

Followings are code snippets.

static void x
differ(void *arg)

{
if (rv <@ || (rv == 0 & len != sizeof (dr))) {
di->zerr = EPIPE;
break;
}
default:
di->zerr = EPIPE;
break;
and
int

zfs_show_diffs(zfs_handle_t *zhp, int outfd, const char xfromsnap,
const char xtosnap, int flags)

{

iocerr = ioctl(zhp->zfs_hdl->1libzfs_fd, ZFS_IOC_DIFF, &zc);
if (iocerr != 0) {

if (errno == EPERM) {
} else if (errno == EXDEV) {
} else if (errno != EPIPE || di.zerr == @) {

zfs_error_aux(zhp->zfs_hdl, strerror(errno));
}

The call trace is as follows:
zfs_show_diffs->pthread_create(&tid, NULL, differ, &di)->di->zerr = EPIPE;
and

zfs_show_diffs->errno != EPIPE || di.zerr == 0;

10/13

https://github.com/zfsonlinux/zfs/tree/e3bdcb8ad88e7a90726193c9afe96a713729c928

README.md 8/23/2019

lwan (this, no response). Its report is at Reports/lwan.bc-bug.txt

Our bug scanner has reported several data race issues. One is at Iwan-status.c#L52 and lwan-
status.c#L220

Followings are code snippets.

void

lwan_status_##fn_name_## debug(const char xfile,
const int line, const char xfunc,
const char *fmt, ...)

{

if (lquiet) {

va_list values;
va_start(values, fmt);

P R A

and

void
lwan_status_init(struct lwan x1)
{
#ifdef NDEBUG
quiet = l->config.quiet;

#else
quiet = false;
(void) 1;

The possible call trace is as follows:

lwan_init_with_config->lwan_job_thread_init()->pthread_create(&self, NULL, job_thread, NULL)-
>|wan_status_critical("Could not lock job wait mutex");

and
lwan_init_with_config->Iwan_status_init(l);

Additionally, the global variable use_colors is used at four positions: status_out_msg,
get_color_start_for_type, get_color_end_for_type and lwan_status_init. The last access is write, which
may result in three data races whose traces are similar to the memtioned possible call trace.

We also found a benign data race at lwan_job_thread_shutdown and job_thread, which may be
intentional.

11/13

https://github.com/lpereira/lwan/tree/2686a55194180f585e9d37d152663ddb8a429a8d

README.md 8/23/2019

zfs-fuse (this, no response). Its report is at Reports/zfs-fuse-umem_test.bc-bug.txt
Hi all,

Our bug scanner has reported a data race issue at umem.c#L2379 and umem_update_thread.c#L76.

Followings are code snippets.

void

umem_reap(void)

{
i;.(umem_ready != UMEM_READY || umem_reaping '!'= UMEM_REAP_DONE ||
gethrtime() < umem_reap_next)
return;
(void) mutex_lock(&umem_update_lock);
and

static THR_RETURN
THR_API umem_update_thread(void *arg)
{

(void) mutex_lock(&umem_update_lock);

case UMEM_REAP_ACTIVE:
umem_reap_next = gethrtime() +
(hrtime_t)umem_reap_interval * NANOSEC;
umem_reaping = UMEM_REAP_DONE;

break;

Although the two functions are in the same function umem_reap and the thread is created after the
access of shared variable umem_reaping, | found the following call traces:
vmem_populate->vmem_reap->umem_reap, vmem_mmap_alloc->vmem_reap->umem_reap and
vmem_xalloc->vmem_reap->umem_reap. These call traces denotes that the function umem_reap may
call serveral times and result in data race.

Additionally, some parts of the two functions (umem_reap and umem_update_thread) are protected by
mutex_lock(&umem_update_lock); , which also indicated that the two lines are may-happens-in-
parallel.

12/13

https://github.com/gordan-bobic/zfs-fuse/tree/5f140cec349a795ce56075053492eb450871de14

README.md 8/23/2019

RedAlert (this, no response). Its report is at Reports/RedAlert-RAServer-bugs.txt

Hi

r

Our code scanner has reported a data race at workLoop method of HeartbeatClient

bool HeartbeatClient::start() {
int err = pthread_create(&_ thread, NULL, &HeartbeatClient::workLoop, this);

if (err 1= @) {
LOG(ERROR) << "Cannot start thread for heartbeat client":

return false;

}
_running = true;
LOG(INFO) << "Start sending heartbeats to '" << _remoteHost << ":" << _remotePort << "'

return true;

}

_running initialized with false,
Could there is a chance that HeartbeatClient::workLoop access the _running before the main thread
has assigned true into, the heart beat thread might just stopped before the main thread has updated

the value of _running.

May be we could move the assignment into thread body to avoid this issue.

void* HeartbeatClient::workLoop(void *arg) {

// client—>_running = true; // <====== move here instead
while (client->_running) {

13/13

https://github.com/alibaba/RedAlert/tree/fce1954550941891dde6b0471953ec95c918bb2a

