Supporting Information for

Rh(III)-Catalyzed Coupling of *N*-Chloroimines with α-Diazo-α-Phosphonoacetates for the Synthesis of 2*H*-Isoindoles

Bing Qi, Lei Li, Qi Wang, Wenjing Zhang, Lili Fang, and Jin Zhu*

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National, Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China *Corresponding author. Email: jinz@nju.edu.cn; Phone: +86-25-89686291; Fax: +86-25-83317761

Table of Contents

Experimental Procedures	2
General Information	2
Synthesis and Characterization of Substrates	3
Synthesis and Characterization of Products	9
Synthesis of 3aa on a 1 mmol Scale	20
Results and Discussion	21
Optimization of Reaction Conditions	21
Hydrogen-Deuterium Scrambling Experiments	22
Competition Experiment	23
Kinetic Isotope Effect Experiments	25
Synthesis and Characterization of Rh(III) Intermediates	27
Mechanism Experiments	34
Proposed Reaction Pathway of Isoquinolin-3(2H)-ones	41
Deesterification of 3wd and Exploitation of Reactivity of C3 and N2 R	ing Atoms for
Attachment of Structurally Distinct Appendages	
References	46
NMR Spectra of Products	46

Experimental Procedures

General Information

All reactions were carried out under dry nitrogen atmosphere. All commercial reagents were used without additional purification, unless otherwise stated. Anhydrous solvent was purchased from commercial sources and transferred under N₂ atmosphere. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm) or iodine. NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz or 500 MHz for ¹H NMR, 101 MHz or 126 MHz for ¹³C NMR and 202 MHz for ³¹P NMR in CDCl₃, DMSO-*d*₆, CD₃CN, CD₃OCD₃ or CD₂Cl₂ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet; br, broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectrometric data were obtained using Bruker Apex IV RTMS. Column conditions are reported in the experimental section below.

Synthesis and Characterization of Substrates

General procedure for the synthesis of N-chloroimines substrates (1a-1o):^{1,2}

The corresponding ketone (20 mmol, 1.0 equiv) and CH₃OH (20 mL) were added to a 250 mL Schlenk tube containing [RhCp*Cl₂]₂ (61.8 mg, 100 µmol, 0.5 mmol %) and HCO₂NH₄ (6.4 g, 100 mmol, 5.0 equiv). The brown mixture was frozen, and the whole system was evacuated. The system was closed and then stirred at 70 °C for 7 h. After the dark green resulting solution was cooled to room temperature, 1 M aqueous HCl solution (38.4 mL) was added, and the mixture was washed twice with CH₂Cl₂ (5 mL) to remove the neutral compounds. After addition of a cold 12 M aqueous NaOH solution (3.6 mL) to the aqueous layer, the mixture was extracted six times with CH₂Cl₂ (12 mL). The combined organic layers were dried over anhydrous Na₂SO₄. Filtration and evaporation under reduced pressure gave crude amine, which was used without purification. All the crude corresponding amine was dissolved in dichloromethane (50 mL), and TCCA (trichloroisocyanuric acid) (3.2 g, 14 mmol) was added in a 250 mL round-bottom flask at 0°C. Then, the mixture was stirred at ambient temperature during 1 h. Triethylamine (6.0 g) dissolved in dichloromethane (50 mL) was added, and the resulting mixture was washed with water (200 mL) and hydrochloric acid (1 M, 200 mL) successively. The organic layer was dried over anhydrous sodium sulfate. After concentration under reduced pressure, purification by column chromatography on silica gel (nhexane/EtOAc = 40/1) afforded pure product.

N-Chloro-1-(4-ethylphenyl)ethan-1-imine (1c):

The title compound was obtained as transparent liquid in 61% yield (2.2 g). ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.62 (m, 2H), 7.27 (d, J = 8.3 Hz, 2H), 2.72 (q, J = 7.6 Hz, 2H), 2.61 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.90, 147.45, 134.65, 128.15, 127.02, 28.76, 20.55, 15.36. HRMS (EI) calcd. for C₁₀H₁₂ClN: [M]⁺, 181.0658. Found: m/z 181.0657.

N-Chloro-1-(4-pentylphenyl)ethan-1-imine (1d):

The title compound was obtained as transparent liquid in 76% yield (3.4 g). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 2.68 – 2.63 (m, 2H), 2.61 (s, 3H), 1.65 (dt, J = 15.0, 7.6 Hz, 2H), 1.41 – 1.28 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.93, 146.20, 134.61, 128.67, 126.90, 35.75, 31.44, 30.90, 22.53, 20.57, 14.04. HRMS (EI) calcd. for C₁₃H₁₈ClN: [M]⁺, 223.1128. Found: m/z 223.1135.

1-([1,1'-biphenyl]-4-yl)-N-chloroethan-1-imine (1e):

The title compound was obtained as white solid in 72% yield (3.3 g). **Melting point**: 110-111 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.82 – 7.76 (m, 2H), 7.66 – 7.59 (m, 4H), 7.49 – 7.43 (m, 2H), 7.41 – 7.35 (m, 1H), 2.63 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 176.66, 143.58, 140.00, 135.96, 128.92, 127.96, 127.43, 127.25, 127.13, 20.54. **HRMS (EI)** calcd. for C₁₄H₁₂ClN: [M]⁺, 229.0658. Found: m/z 229.0662.

N-Chloro-1-(4-chlorophenyl)ethan-1-imine (1h):

The title compound was obtained as white crystal in 71% yield (2.6 g). Melting point: 31-33 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.63 (m, 2H), 7.42 – 7.35 (m, 2H), 2.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.96, 137.11, 135.52, 128.89, 128.27, 20.44. HRMS (EI) calcd. for C₈H₇Cl₂N: [M]⁺, 186.9956. Found: m/z 186.9952.

1-(4-Bromophenyl)-N-chloroethan-1-imine (1i):

The title compound was obtained as white crystal in 84% yield (3.9 g). **Melting point**: 35-37 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.64 – 7.49 (m, 4H), 2.57 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 176.07, 135.96, 131.86, 128.48, 125.54, 20.40. **HRMS (EI)** calcd. for C₈H₇BrClN: [M]⁺, 230.9450. Found: m/z 230.9445.

N-Chloro-1-(4-iodophenyl)ethan-1-imine (1j):

The title compound was obtained as brown crystal in 54% yield (3.0 g). **Melting point**: 42-44 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 2H), 7.48 – 7.38 (m, 2H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.25, 137.83, 136.56, 128.49, 97.68, 20.32. HRMS (EI) calcd. for C₈H₇ICIN: [M]⁺, 278.9312. Found: m/z 278.9320.

N-Chloro-1-(4-(trifluoromethyl)phenyl)ethan-1-imine (1k):

The title compound was obtained as white crystal in 34% yield (1.5 g). **Melting point**: 30-32 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.04, 140.31, 132.50 (q, J = 32.8 Hz), 125.62 (q, J = 3.8 Hz), 123.75 (q, J = 272.5 Hz), 20.58. HRMS (EI) calcd. for C₉H₇BrClF₃N: [M]⁺, 221.0219. Found: m/z 221.0221.

4-(1-(Chloroimino)ethyl)benzonitrile (11):

The title compound was obtained as white crystal in 59% yield (2.1 g). **Melting point**: 82-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.75 – 7.69 (m, 2H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.62, 140.93, 132.42, 127.57, 118.11, 114.41, 20.40. HRMS (EI) calcd. for C₉H₇ClN₂: [M]⁺, 178.0298. Found: m/z 178.0296.

N-Chloro-1-(m-tolyl)ethan-1-imine (1m):

The title compound was obtained as transparent liquid in 57% yield (1.9 g). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.47 (d, *J* = 7.1 Hz, 1H), 7.32 – 7.23 (m, 2H), 2.58 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.32, 138.41, 137.20, 131.58, 128.50, 127.55, 124.12, 21.40, 20.75. HRMS (ESI) calcd. for C₉H₁₁ClN: [M+H]⁺, 168.0575. Found: m/z 168.0574.

N-chloro-1-(3-methoxyphenyl)ethan-1-imine (1n):

The title compound was obtained as transparent liquid in 49% yield (1.8 g). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 3H), 7.00 (ddd, J = 8.1, 2.6, 1.1 Hz, 1H), 3.83 (s, 3H), 2.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.96, 159.67, 138.44, 129.57, 119.47, 116.99, 111.87, 55.39, 20.72. HRMS (EI) calcd. for C₉H₁₀ClNO: [M]⁺, 183.0451. Found: m/z 183.0450.

N-chloro-1-(3-fluorophenyl)ethan-1-imine (10):

The title compound was obtained as transparent liquid in 67% yield (2.3 g). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.33 (m, 3H), 7.15 (tdd, J = 8.3, 2.6, 1.0 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.93 (d, J = 2.5 Hz), 162.70 (d, J = 247.0 Hz), 139.11 (d, J = 7.5 Hz), 130.19 (d, J = 8.1 Hz), 122.70 (d, J = 3.1 Hz), 117.78 (d, J = 21.2 Hz), 113.90, 20.50. HRMS (EI) calcd. for C₈H₇CIFN: [M]⁺, 171.0251. Found: m/z 171.0253.

N-Chloro-1-(3-Chlorophenyl)ethan-1-imine (1p):

The title compound was obtained as transparent liquid in 54% yield (2.0 g). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, J = 1.9 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.42 (ddd, J = 8.0, 2.0, 1.1 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.88, 138.72, 134.75, 130.81, 129.88, 127.12, 125.09, 20.49. HRMS (EI) calcd. for C₈H₇Cl₂N: [M]⁺, 186.9956. Found: m/z 186.9953.

1-(3-Bromophenyl)-N-chloroethan-1-imine (1q):

The title compound was obtained as transparent liquid in 47% yield (2.2 g). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.60 (dd, J = 16.5, 7.9 Hz, 2H), 7.29 (d, J = 7.9 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.79, 138.94, 133.74, 130.14, 130.01, 125.54, 122.82, 20.50. HRMS (EI) calcd. for C₈H₇BrClN: [M]⁺, 230.9450. Found: m/z 230.9455.

N-chloro-1-(3-(trifluoromethyl)phenyl)ethan-1-imine (1r):

The title compound was obtained as transparent liquid in 56% yield (2.5 g). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.04, 140.31, 140.31, 132.50 (q, J = 32.8 Hz), 127.35, 126.45, 125.62 (q, J = 3.8 Hz), 123.75 (q, J = 272.5 Hz), 20.58. HRMS (EI) calcd. for C₉H₇BrClF₃N: [M]⁺, 221.0219. Found: m/z 221.0223.

N-Chloro-1-(2-fluorophenyl)ethan-1-imine (1s):

The title compound was obtained as transparent liquid in 35% yield (1.2 g). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (td, J = 7.6, 1.8 Hz, 1H), 7.45 (dddd, J = 8.3, 7.2, 5.2, 1.8 Hz, 1H), 7.21 (td, J = 7.6, 1.1 Hz, 1H), 7.14 (ddd, J = 10.9, 8.3, 0.9 Hz, 1H), 2.61 (d, J = 2.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.18, 159.83 (d, J = 251.4 Hz), 132.19 (d, J = 8.6 Hz), 129.79 (d, J = 2.8 Hz), 126.18 (d, J = 12.6 Hz), 124.43 (d, J = 3.5 Hz), 116.28 (d, J = 21.8 Hz), 23.10 (d, J = 5.3 Hz). HRMS (EI) calcd. for C₈H₇CIFN: [M]⁺, 171.0251. Found: m/z 171.0249.

N-Chloro-1-(2,4-difluorophenyl)ethan-1-imine (1t):

The title compound was obtained as transparent liquid in 37% yield (1.4 g). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (td, J = 8.5, 6.4 Hz, 1H), 6.98 – 6.86 (m, 2H), 2.59 (d, J = 3.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.16 (d, J = 1.7 Hz), 164.29 (dd, J = 253.6, 12.1 Hz), 160.29 (dd, J = 254.3, 12.3 Hz), 131.09 (dd, J = 10.0, 4.4 Hz), 122.53 (d, J = 12.8 Hz), 111.91 (dd, J = 21.4, 3.5 Hz), 104.68 (t, J = 25.7 Hz), 22.93 (d, J = 5.5 Hz). HRMS (EI) calcd. for C₁₀H₁₂ClN: [M]⁺, 189.0157. Found: m/z 189.0162.

N-Chloro-1-phenylpropan-1-imine (1u):

The title compound was obtained as transparent liquid in 63% yield (2.1 g). ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.46 (ddd, J = 13.1, 7.9, 6.4 Hz, 3H), 3.09 (q, J = 7.7 Hz, 2H), 1.26 (t, J = 7.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 181.31, 136.10, 130.77, 128.70, 127.12, 27.41, 10.51. HRMS (EI) calcd. for C₉H₁₀ClN: [M]⁺, 167.0502. Found: m/z 167.0496.

N-Chloro-1-phenylbutan-1-imine (1v):

The title compound was obtained as transparent liquid in 63% yield (2.3 g). ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.67 (m, 2H), 7.52 – 7.40 (m, 3H), 3.08 – 3.03 (m, 2H), 1.73 – 1.64 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 180.45, 136.45, 130.72, 128.68, 127.13, 35.77, 19.71, 14.08. HRMS (EI) calcd. for C₁₀H₁₂ClN: [M]⁺, 181.0658. Found: m/z 181.0657.

N-Chloro-1,1-diphenylmethanimine (1w):

The title compound was obtained as transparent liquid in 30% yield (1.3 g). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.40 (m, 6H), 7.38 – 7.26 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 178.64, 137.01, 136.30, 131.31, 129.70, 128.89, 128.49, 127.78. HRMS (EI) calcd. for C₁₀H₁₂ClN: [M]⁺, 215.0502. Found: m/z 215.0498.

General procedure for the synthesis of a-diazo-a-phosphonoacetate substrates³

To a cooled solution (0 °C) of *p*-acetamidobenzolsulfonyl azide (2.6 g, 10.8 mmol) and substituted 2-(diethoxyphosphoryl)acetate (10.3 mmol) in acetonitrile (42 mL) was slowly added NEt₃ (4.3 mL, 30.9 mmol). Thereafter the mixture was warmed to room temperature and stirred overnight. The solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 1:1). The α -diazo- α -phosphonoacetate substrates was obtained as a yellow liquid.

Phenyl 2-diazo-2-(diethoxyphosphoryl)acetate (2d):

 $PhO_2C \xrightarrow{N_2} PO(OEt)_2$

The title compound was obtained as yellow oil in 81% yield (2.5 g). ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.22 (s, 1H), 7.14 – 7.09 (m, 2H), 4.30 – 4.17 (m, 4H), 1.37 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.91 (d, *J* = 12.7 Hz), 150.06, 129.48, 126.18, 121.39, 63.98, 63.93, 16.19, 16.14. ³¹P NMR (202 MHz, CDCl₃) δ 8.92. HRMS (EI) calcd. for C₁₂H₁₆N₂O₅P: [M+H]⁺, 299.0791. Found: m/z 299.0791.

Synthesis and Characterization of Products

Synthesis of 2H-isoindoles

To a 13×150 mm test tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1. equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1a-1x** (0.2 mmol, 1 equiv) and **2a-2d** (0.3 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1).

Ethyl 3-methyl-2*H*-isoindole-1-carboxylate (3aa):

The title compound was obtained as off-white solid in 91% yield (37.1 mg). **Melting point**: 162-163 °C. ¹H NMR (500 MHz, DMSO) δ 13.05 (s, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.24 – 7.17 (m, 1H), 7.03 – 6.96 (m, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.10, 128.13, 127.97, 125.62, 123.96, 121.07, 120.73, 120.45, 108.20, 59.34, 15.16, 11.24. HRMS (ESI) calcd. for C₁₂H₁₄NO₂: [M+H]⁺, 204.1019. Found: m/z 204.1020.

Ethyl 3,6-dimethyl-2*H*-isoindole-1-carboxylate (3ba):

The title compound was obtained as off-white solid in 98% yield (42.6 mg). **Melting point**: 166-167 °C. ¹**H NMR (500 MHz, DMSO)** δ 12.86 (s, 1H), 7.68 (s, 1H), 7.55 (d, J = 8.5 Hz, 1H), 6.84 (d, J = 8.6 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.55 (s, 3H), 2.38 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 161.08, 134.72, 128.75, 127.96, 123.40, 122.66, 120.83, 119.08, 107.53, 59.20, 22.43, 15.21, 11.25. **HRMS (ESI)** calcd. for C₁₃H₁₆NO₂: [M+H]⁺, 218.1176. Found: m/z 218.1176.

Ethyl 6-ethyl-3-methyl-2*H*-isoindole-1-carboxylate (3ca):

The title compound was obtained as white solid in 52% yield (24.0 mg). **Melting point**: 168-170 °C. ¹**H NMR (500 MHz, DMSO)** δ 12.86 (s, 1H), 7.69 (s, 1H), 7.57 (d, J = 8.6 Hz, 1H), 6.88 (dd, J = 8.6, 1.3 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.67 (q, J = 7.5 Hz, 2H), 2.55 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 161.05, 141.15, 128.76, 127.90, 122.84, 122.41, 120.96, 117.74, 107.72, 59.21, 29.43, 16.10, 15.20, 11.27. **HRMS (ESI)** calcd. for C₁₄H₁₈NO₂: [M+H]⁺, 232.1332. Found: m/z 232.1334.

Ethyl 3-methyl-6-pentyl-2H-isoindole-1-carboxylate (3da):

The title compound was obtained as white solid in 83% yield (45.4 mg). **Melting point**: 135-137 °C. ¹**H NMR (500 MHz, DMSO)** δ 12.86 (s, 1H), 7.68 (s, 1H), 7.55 (d, J = 8.5 Hz, 1H), 6.85 (dd, J = 8.6, 1.3 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.62 (t, J = 7.6 Hz, 2H), 2.55 (s, 3H), 1.64 – 1.56 (m, 2H), 1.36 (d, J = 7.1 Hz, 3H), 1.28 (ddt, J = 12.8, 8.3, 6.2 Hz, 4H), 0.86 (t, J = 7.0 Hz, 3H). ¹³C **NMR (126 MHz, DMSO)** δ 161.03, 139.65, 128.78, 127.86, 122.85, 122.68, 120.85, 118.51, 107.65, 59.17, 36.37, 31.38, 31.07, 22.48, 15.18, 14.38, 11.24. **HRMS (ESI)** calcd. for C₁₄H₁₈NO₂: [M+H]⁺, 247.1802. Found: m/z 247.1804.

Ethyl 3-methyl-6-phenyl-2*H*-isoindole-1-carboxylate (3ea):

The title compound was obtained as white solid in 95% yield (53.1 mg). **Melting point**: 236-238 °C. ¹H NMR (500 MHz, DMSO) δ 13.09 (s, 1H), 8.14 (s, 1H), 7.76 (d, J = 0.7 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.49 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.32 (dd, J = 8.7, 1.5 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.01, 141.79, 137.67, 129.42, 128.58, 128.06, 127.60, 127.28, 123.25, 121.86, 120.72, 118.04, 108.86, 59.43, 15.20, 11.31. HRMS (ESI) calcd. for C₁₃H₁₆NO₂: [M+H]⁺, 280.1332. Found: m/z 280.1332.

Ethyl 6-methoxy-3-methyl-2*H*-isoindole-1-carboxylate (3fa):

The title compound was obtained as white solid in 56% yield (26.1 mg). **Melting point**: 186-187 °C. ¹H NMR (500 MHz, DMSO) δ 12.70 (s, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.22 (s, 1H), 6.66 (dd, J = 9.0, 2.3 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 2.53 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.96, 158.28, 129.56, 128.57, 122.55, 119.96, 114.80, 107.65, 98.00, 59.13, 55.19, 15.18, 11.29. HRMS (ESI) calcd. for C₁₃H₁₆NO₃: [M+H]⁺, 234.1125. Found: m/z 24.1125.

Ethyl 6-fluoro-3-methyl-2H-isoindole-1-carboxylate (3ga):

The title compound was obtained as white solid in 95% yield (42.0 mg). **Melting point**: 169-170 °C. ¹H NMR (500 MHz, DMSO) δ 13.13 (s, 1H), 7.74 (dd, J = 9.1, 5.3 Hz, 1H), 7.48 (dd, J = 10.7, 1.8 Hz, 1H), 6.88 (td, J = 9.2, 2.3 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.58 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.31 (d, J = 240.2 Hz), 160.93, 129.05, 127.91, 124.02 (d, J = 10.6 Hz), 121.36, 111.54 (d, J = 27.7 Hz), 108.57 (d, J = 7.1 Hz), 103.21 (d, J = 24.0 Hz), 59.47, 15.09, 11.26. HRMS (ESI) calcd. for C₁₂H₁₃FNO₂: [M+H]⁺, 222.0925. Found: m/z 222.0925. CCDC# at the Cambridge Crystallographic Data Center: 1858032.

Ethyl 6-chloro-3-methyl-2*H*-isoindole-1-carboxylate (3ha):

The title compound was obtained as white solid in 84% yield (39.9 mg). **Melting point**: 186-188 °C. ¹H NMR (500 MHz, DMSO) δ 13.24 (s, 1H), 7.86 (d, J = 1.2 Hz, 1H), 7.73 (dd, J = 8.8, 0.5 Hz, 1H), 6.97 (dd, J = 8.9, 1.9 Hz, 1H), 4.32 (q, J = 7.1 Hz, 1H), 2.58 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.80, 130.74, 128.90, 128.06, 123.49, 122.24, 121.43, 119.00, 108.19, 59.64, 15.12, 11.23. HRMS (ESI) calcd. for C₁₂H₁₃ClNO₂: [M+H]⁺, 238.0629. Found: m/z 238.0630.

Ethyl 6-bromo-3-methyl-2*H*-isoindole-1-carboxylate (3ia):

The title compound was obtained as white solid in 87% yield (49.1 mg). **Melting point**: 188-190 °C. ¹H NMR (500 MHz, DMSO) δ 13.24 (s, 1H), 8.04 (s, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.08 (dd, J = 8.8, 1.7 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.58 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.78, 128.89, 128.67, 123.74, 123.58, 122.31, 122.29, 119.53, 108.06, 59.65, 15.12, 11.20. HRMS (ESI) calcd. for C₁₂H₁₃BrNO₂: [M+H]⁺, 282.0124. Found: m/z 282.0125.

Ethyl 6-iodo-3-methyl-2*H*-isoindole-1-carboxylate (3ja):

The title compound was obtained as brown solid in 86% yield (56.6 mg). **Melting point**: 216-217 °C. ¹H NMR (500 MHz, DMSO) δ 13.18 (s, 1H), 8.30 (s, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.23 (dd, J = 8.7, 1.4 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.75, 129.52, 129.00, 128.80, 125.63, 123.45, 122.38, 107.55, 92.50, 59.63, 15.13, 11.18. HRMS (ESI) calcd. for C₁₂H₁₃INO₂: [M+H]⁺, 329.9985. Found: m/z 329.9984.

Ethyl 3-methyl-6-(trifluoromethyl)-2*H*-isoindole-1-carboxylate (3ka):

The title compound was obtained as white solid in 76% yield (41.2 mg). **Melting point**: 225-227 °C. ¹H NMR (500 MHz, DMSO) δ 13.54 (s, 1H), 8.25 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 8.8, 1.4 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.62 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.65, 128.51, 126.53, 125.81, 125.80 (q, J = 30.7 Hz), 124.39, 122.98, 118.47 (q, J = 5.0 Hz), 115.82 (d, J = 2.9 Hz), 110.19, 59.88, 15.00, 11.19. HRMS (ESI) calcd. for C₁₃H₁₄F₃NO₂: [M+H]⁺, 272.0893. Found: m/z 272.0895.

Ethyl 6-cyano-3-methyl-2H-isoindole-1-carboxylate (3la):

The title compound was obtained as white solid in 68% yield (31.0 mg). **Melting point**: 231-233 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.68 (s, 1H), 8.35 (s, 1H), 7.89 (dd, J = 8.6, 0.8 Hz, 1H), 7.20 (dd, J = 8.7, 1.3 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.57, 128.85, 127.59, 125.70, 123.99, 123.12, 120.75, 120.63, 110.22, 107.61, 60.09, 15.04, 11.14. HRMS (ESI) calcd. for C₁₃H₁₃N₂O₂: [M+H]⁺, 229.0972. Found: m/z 229.0972.

Ethyl 3,5-dimethyl-2*H*-isoindole-1-carboxylate (3ma):

The title compound was obtained as white solid in 85% yield (36.9 mg). **Melting point**: 164-166 °C. ¹**H NMR (500 MHz, DMSO)** δ 12.90 (s, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.41 (s, 1H), 7.05 (dd, J = 8.7, 1.2 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.54 (s, 3H), 2.35 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 160.97, 129.37, 128.29, 126.94, 126.83, 124.29, 120.32, 119.38, 108.10, 59.27, 21.80, 15.18, 11.19. **HRMS (ESI)** calcd. for C₁₃H₁₆NO₂: [M+H]⁺, 218.1176. Found: m/z 218.1176.

Ethyl 5-methoxy-3-methyl-2*H*-isoindole-1-carboxylate (3naI), Ethyl 7-methoxy-3-methyl-2*H*-isoindole-1-carboxylate (3naII):

The title compounds were not separated (1:0.44) obtained as white solid in 86% yield (40.2 mg). **Melting point**: 149-151 °C. ¹**H NMR (500 MHz, DMSO)** δ 12.82 (s, 1Hx1), 12.76 (s, 1Hx0.44), 7.79 (d, J = 9.1 Hz, 1Hx0.44), 7.18 (d, J = 8.2 Hz, 1Hx1), 6.98 (d, J = 2.0 Hz, 1Hx0.44), 6.93 – 6.84 (m, 1Hx1+1Hx0.44), 6.55 (d, J = 7.3 Hz, 1H), 4.29 (q, J = 7.1 Hz, 3Hx0.44), 4.24 (q, J = 7.1 Hz, 3H), 3.81 (s, 3Hx1), 3.78 (s, 3Hx0.44), 2.54 (s, 3Hx1+3Hx0.44), 1.34 (dt, J = 13.1, 6.5 Hz, 3Hx1+3Hx0.44). ¹³C NMR (126 MHz, DMSO) δ 160.68, 154.38, 153.17, 126.76, 126.38, 123.98, 121.78, 121.45, 119.75, 119.35, 113.07, 108.78, 103.80, 98.27, 59.49, 59.32, 55.36, 15.15, 15.00, 11.27, 11.18. HRMS (ESI) calcd. for C₁₃H₁₆NO₃: [M+H]⁺, 234.1125. Found: m/z 24.1125.

Ethyl 5-fluoro-3-methyl-2*H*-isoindole-1-carboxylate (3oaI), Ethyl 7-fluoro-3-methyl-2*H*-isoindole-1-carboxylate (3oaII):

The title compounds were not separated (1:0.1) obtained as white solid in 68% yield (30.1 mg). **Melting point**: 166-168 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.20 (s, 1Hx1+1Hx0.1), 7.93 (dd, *J* = 9.2, 5.2 Hz, 1Hx0.1), 7.48 (d, *J* = 8.1 Hz, 1Hx1), 7.42 (dd, *J* = 10.2, 2.1 Hz, 1Hx0.1), 7.10 (td, *J* = 9.2, 2.3 Hz, 1Hx0.1), 6.97 – 6.87 (m, 2Hx1), 4.30 (dq, *J* = 14.2, 7.1 Hz, 2Hx1+2Hx0.1)), 2.59 (s, 3Hx1), 2.55 (s, 3Hx0.1), 1.34 (dt, *J* = 14.2, 7.1 Hz, 3Hx1+3Hx0.1)). ¹³**C NMR (126 MHz, DMSO)** δ 160.83, 160.33, 157.78 (d, *J* = 236.0 Hz), 155.19 (d, *J* = 253.3 Hz), 128.19 (d, *J* = 1.8 Hz), 127.48 (d, *J* = 7.8 Hz), 125.26, 123.11 (d, *J* = 10.2 Hz), 122.80 (d, *J* = 9.3 Hz), 120.74 (d, *J* = 6.3 Hz), 117.19 (d, *J* = 4.4 Hz), 116.95 (d, *J* = 18.5 Hz), 116.29 (d, *J* = 27.4 Hz), 109.38 (d, *J* = 20.2 Hz), 108.87, 107.37 (d, *J* = 4.9 Hz), 103.69 (d, *J* = 22.2 Hz), 59.74, 59.53, 15.03, 14.89, 11.12. **HRMS (ESI)** calcd. for C₁₂H₁₃FNO₂: [M+H]⁺, 222.0925. Found: m/z 222.0925.

Ethyl 5-chloro-3-methyl-2H-isoindole-1-carboxylate (3pa):

The title compound was obtained as white solid in 51% yield (24.3 mg). **Melting point**: 167-168 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.24 (s, 1H), 7.90 (d, *J* = 9.0 Hz, 1H), 7.78 (d, *J* = 1.4 Hz, 1H), 7.17 (dd, *J* = 9.0, 1.9 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.56 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 160.81, 127.71, 126.17, 126.05, 125.36, 124.17, 122.46, 120.04, 108.93, 59.65, 15.10, 11.17. **HRMS (ESI)** calcd. for C₁₂H₁₃CINO₂: [M+H]⁺, 238.0629. Found: m/z 238.0629.

Ethyl 5-bromo-3-methyl-2H-isoindole-1-carboxylate (3qa):

The title compound was obtained as white solid in78% yield (44.0 mg). **Melting point**: 171-173 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.24 (s, 1H), 7.94 (d, J = 1.2 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.27 (dd, J = 9.0, 1.7 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.56 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 160.81, 128.44, 127.68, 126.11, 124.94, 123.36, 122.66, 113.57, 108.93, 59.66, 15.10, 11.17. **HRMS (ESI)** calcd. for C₁₂H₁₁BrNO₂: [M-H]⁻, 279.9979. Found: m/z 279.9977.

Ethyl 3-methyl-5-(trifluoromethyl)-2*H*-isoindole-1-carboxylate (3ra):

The title compound was obtained as white solid in 28% yield (15.2 mg). **Melting point**: 203-205 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.49 (s, 1H), 8.16 (s, 1H), 8.06 (d, J = 8.9 Hz, 1H), 7.38 (dd, J = 8.9, 1.3 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.65 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.86, 130.63, 128.47 – 128.01 (m), 128.23, 125.61 (q, J = 271.3 Hz), 122.14, 121.78, 121.22 (q, J = 31.1 Hz), 120.71 (d, J = 2.9 Hz), 120.12 (q, J = 4.8 Hz), 59.79, 15.06, 11.22. HRMS (ESI) calcd. for C₁₃H₁₄F₃NO₂: [M+H]⁺, 272.0893. Found: m/z 272.0894.

Ethyl 4-fluoro-3-methyl-2*H*-isoindole-1-carboxylate (3sa):

The title compound was obtained as white solid in 71% yield (31.4 mg). **Melting point**: 187-189 °C. ¹H NMR (500 MHz, DMSO) δ 13.23 (s, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.17 – 7.08 (m, 1H), 6.69 (dd, J = 12.0, 7.4 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.68 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.95, 157.92 (d, J = 250.4 Hz), 130.72, 126.07 (d, J = 3.6 Hz), 125.95 (d, J = 7.2 Hz), 116.85 (d, J = 4.0 Hz), 114.02 (d, J = 17.7 Hz), 109.44, 104.01 (d, J = 17.6 Hz), 59.70, 15.07, 13.11 (d, J = 2.3 Hz).**HRMS (ESI)** calcd. for C₁₂H₁₃FNO₂: [M+H]⁺, 222.0925. Found: m/z 222.0925.

Ethyl 4,6-difluoro-3-methyl-2*H*-isoindole-1-carboxylate (3ta):

The title compound was obtained as white solid in 46% yield (21.8 mg). **Melting point**: 208-209 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.32 (s, 1H), 7.32 (dd, J = 10.1, 1.9 Hz, 1H), 6.79 (ddd, J = 11.6, 9.8, 1.9 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.65 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 160.83, 160.24 (dd, J = 241.4, 11.1 Hz), 158.23 (dd, J = 254.4, 15.3 Hz), 128.73, 127.19, 111.46 (d, J = 17.2 Hz), 110.18, 99.77 (dd, J = 24.1, 4.6 Hz), 96.74 (dd, J = 32.1, 22.4 Hz), 59.82, 15.02, 12.98 (d, J = 2.2 Hz). **HRMS (ESI)** calcd. for C₁₂H₁₂F₂NO₂: [M+H]⁺, 240.0831. Found: m/z 240.0833.

Ethyl 3-ethyl-2*H*-isoindole-1-carboxylate (3ua):

The title compound was obtained as white solid in 74% yield (32.2 mg). **Melting point**: 110-111 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.03 (s, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.20 (ddd, *J* = 8.4, 6.6, 0.7 Hz, 1H), 7.03 – 6.97 (m, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.01 (q, *J* = 7.6 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.12, 133.92, 128.17, 125.58, 123.07, 121.03, 120.81, 120.55, 108.24, 59.48, 19.22, 15.24, 15.18. HRMS (ESI) calcd. for C₁₃H₁₆NO₂: [M+H]⁺, 218.1176. Found: m/z 218.1176.

Ethyl 3-propyl-2*H*-isoindole-1-carboxylate (3va):

The title compound was obtained as white solid in 53% yield (24.5 mg). **Melting point**: 113-114 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.03 (s, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.23 – 7.16 (m, 1H), 7.02 – 6.95 (m, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.97 (t, *J* = 7.4 Hz, 2H), 1.75 – 1.65 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 0.86 (t, *J* = 7.4 Hz, 3H). ¹³C **NMR (126 MHz, DMSO)** δ 161.12, 132.46, 128.09, 125.54, 123.71, 121.09, 120.82, 120.55, 108.36, 59.38, 27.59, 23.54, 15.17, 14.10. **HRMS (ESI)** calcd. for C₁₄H₁₈NO₂: [M+H]⁺, 232.1332. Found: m/z 232.1334.

Ethyl 3-phenyl-2*H*-isoindole-1-carboxylate (3wa):

The title compound was obtained as white crystal in 72% yield (38.2 mg). **Melting point**: 136-138 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.46 (s, 1H), 8.07 (d, *J* = 8.6 Hz, 1H), 7.93 (d, *J* = 8.6 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.33 – 7.25 (m, 1H), 7.15 (ddd, *J* = 8.3, 6.6, 0.7 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, DMSO)** δ 161.21, 131.42, 129.35, 129.28, 128.57, 128.48, 128.17, 125.74, 123.09, 123.01, 121.24, 121.07, 59.88, 15.10. **HRMS (ESI)** calcd. for C₁₇H₁₆NO₂: [M+H]⁺, 266.1176. Found: m/z 266.1175.

Ethyl 1,6,7,8-tetrahydrobenzo[*cd*]indole-2-carboxylate (3xa):

The title compound was obtained as white solid in 44% yield (20.2 mg). **Melting point**: 143-144 °C. ¹**H NMR (500 MHz, DMSO)** δ 12.88 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.12 (dd, J = 8.4, 6.6 Hz, 1H), 6.67 (d, J = 6.5 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.97 (t, J = 6.0 Hz, 2H), 2.86 (t, J = 5.8 Hz, 2H), 2.13 – 2.01 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.38, 134.39, 131.53, 127.23, 126.12, 124.01, 117.44, 115.97, 108.27, 59.21, 26.88, 24.21, 22.95, 15.18. HRMS (ESI) calcd. for C₁₄H₁₆NO₂: [M+H]⁺, 230.1176. Found: m/z 230.1176.

Methyl 3-methyl-2*H*-isoindole-1-carboxylate (3ab):

The title compound was obtained as white solid in 82% yield (31.1 mg). **Melting point**: 180-182 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.10 (s, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.27 – 7.17 (m, 1H), 7.04 – 6.95 (m, 1H), 3.84 (s, 3H), 2.58 (s, 2H). ¹³**C NMR (126 MHz, DMSO)** δ 161.38, 128.26, 128.14, 125.69, 123.97, 121.11, 120.77, 120.36, 107.92, 51.01, 11.25. **HRMS (ESI)** calcd. for C₁₁H₁₂NO₂: [M+H]⁺, 190.0836. Found: m/z 190.0836.

Tert-butyl 3-methyl-2*H*-isoindole-1-carboxylate (3ac):

The title compound was obtained as brown solid in 63% yield (29.2 mg). **Melting point**: 161-162 °C. ¹H **NMR (500 MHz, DMSO)** δ 12.85 (s, 1H), 7.84 (t, *J* = 11.5 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.21 – 7.13 (m, 1H), 7.01 – 6.93 (m, 1H), 2.58 (s, 3H), 1.59 (s, 9H). ¹³C **NMR (126 MHz, DMSO)** δ 160.88, 127.55, 127.03, 125.32, 123.81, 120.98, 120.55, 109.59, 79.33, 28.83, 11.08. **HRMS (ESI)** calcd. for C₁₄H₁₈NO₂: [M+H]⁺, 232.1332. Found: m/z 232.1333.

Phenyl 3-methyl-2*H*-isoindole-1-carboxylate (3ad):

The title compound was obtained as brown solid in 78% yield (39.2 mg). **Melting point**: 165-167 °C. ¹H NMR (500 MHz, DMSO) δ 13.38 (s, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.36 – 7.22 (m, 4H), 7.12 – 7.00 (m, 1H), 2.65 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 158.78, 151.29, 129.86, 126.46, 125.70, 124.53, 122.70, 121.40, 121.24, 120.39, 11.40. HRMS (ESI) calcd. for C₁₆H₁₄NO₂: [M+H]⁺, 252.1019. Found: m/z 252.1018.

phenyl 3-phenyl-2H-isoindole-1-carboxylate (3wd):

The title compound was obtained as brown solid in 66% yield (41.4 mg). **Melting point**: 110-112 °C. ¹**H NMR (500 MHz, DMSO)** δ 13.75 (s, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.93 – 7.89 (m, 2H), 7.57 (t, *J* = 7.7 Hz, 2H), 7.53 – 7.44 (m, 3H), 7.39 – 7.29 (m, 4H), 7.25 – 7.20 (m, 1H). ¹³**C NMR (126 MHz, DMSO)** δ 159.16, 151.15, 131.16, 131.13, 129.93, 129.80, 129.35, 128.71, 128.60, 126.51, 125.93, 123.50, 123.37, 122.68, 121.56, 120.95, 110.23. **HRMS (ESI)** calcd. for C₂₁H₁₇NO₂: [M+H]⁺, 314.1176. Found: m/z 314.1173.

Synthesis of isoquinolin-3(2H)-ones

To a 13×150 mm test tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (2.5 mg, 2 mol %), AgBF₄ (3.2 mg, 8 mol %) and HOAc (12.0 mg, 0.2 mmol,1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** or **1h** (0.2 mmol, 1 equiv) and **2a** (75.0 mg, 0.3 mmol, 3 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80°C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 1/1).

Diethyl (6-fluoro-1-methyl-3-oxo-2,3-dihydroisoquinolin-4-yl)phosphonate(3ga'):

The title compound was obtained as yellow solid in 51% yield (32.0 mg). **Melting point**: 83-85 °C. ¹H **NMR (500 MHz, DMSO)** δ 12.41 (s, 1H), 8.22 (t, J = 6.5 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 4.12 – 4.04 (m, 2H), 4.03 – 3.94 (m, 1H), 2.84 (s, 3H), 1.21 (t, J = 7.0 Hz, 6H). ¹³C **NMR (126 MHz, CDCl₃)** δ 175.26 (d, J = 4.9 Hz), 166.23, 165.73 (d, J = 10.5 Hz), 164.52 (d, J = 253.5 Hz), 140.37 (dd, J = 11.6, 7.1 Hz), 129.77 (d, J = 10.6 Hz), 120.51 (d, J = 9.0 Hz), 114.55, 114.35, 108.84 (dd, J = 23.6, 4.7 Hz), 63.00 (d, J = 4.7 Hz), 22.82, 16.14 (d, J = 6.7 Hz). ³¹P **NMR (202 MHz, CDCl₃)** δ 23.17. **HRMS (ESI)** calcd. for C₁₄H₁₈FNO₄P: [M+H]⁺, 314.0952. Found: m/z 314.0951.

Diethyl (6-chloro-1-methyl-3-oxo-2,3-dihydroisoquinolin-4-yl)phosphonate (3ha'):

The title compound was obtained as yellow solid in 52% yield (34.3 mg). **Melting point**: 108-110 °C. ¹**H NMR (400 MHz, DMSO)** δ 12.43 (s, 1H), 8.56 (s, 1H), 8.15 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 4.15 – 4.05 (m, 2H), 4.05 – 3.95 (m, 2H), 2.85 (s, 3H), 1.21 (t, J = 7.0 Hz, 6H). ¹³C **NMR (101 MHz, DMSO)** δ 164.90, 163.38, 142.14, 138.33, 130.25, 124.09, 123.18, 123.15, 119.63, 62.53, 62.48, 21.49, 16.60, 16.54. ³¹P NMR (202 MHz, DMSO) δ 20.18. HRMS (ESI) calcd. for C₁₄H₁₈ClNO₄P: [M+H]⁺, 330.0656. Found: m/z 330.0654.

Synthesis of 3aa on a 1 mmol Scale

To a 50 mL pressure tube equipped with magnetic stir bar were added $[Cp*RhCl_2]_2$ (6.2 mg, 1 mol %), AgBF₄ (7.8 mg, 4 mol %) and NaOAc (82.0 mg, 1 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1a** (153.6 mg, 1 mmol, 1 equiv) and **2a** (375.0 mg, 3 mmol, 1.5 equiv) in DCE (10 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1). Off-white solid was obtained **3aa** (184.9 mg, 91%)

Results and Discussion

Optimization of Reaction Conditions

Table S1. Optimization of Reaction Conditions^{*a,b*} Me Me N_2 Rh(III) additive NCL PO(OEt)₂ + EtO₂C NΗ solvent, 80 °C, 12 h CO₂Et 3aa 1a 2a Rh (III) (mol %) Ag Salt (mol %)/ yield (%) entr solvent additive (equiv) у 1 [RhCp*Cl₂]₂ (2) AgSbF₆ (8) /HOAc (1) DCE 0 AgSbF₆ (8) /NaOAc (1) 2 DCE 64 [RhCp*Cl₂]₂ (2) 3 0 [RhCp*Cl₂]₂ (2) AgSbF₆ (8) /AgOAc (1) DCE 4 0 [RhCp*Cl₂]₂ (2) NaOAc (1) DCE 5 [RhCp*Cl₂]₂ (2) AgSbF₆ (8) DCE trace 6 [RhCp*Cl₂]₂ (2) AgSbF₆ (8) /NaOAc (0.5) DCE trace [RhCp*Cl₂]₂ (2) 7 AgSbF₆ (8) /NaOAc (2) DCE 39 [RhCp*Cl₂]₂ (2) 8 AgSbF₆ (8) /LiOAc (1) DCE trace 9 AgSbF₆ (8) /CsOAc (1) [RhCp*Cl₂]₂ (2) DCE trace 10 [RhCp*Cl₂]₂ (2) $AgSbF_{6}(8)/KOAc(1)$ DCE 20 11 AgSbF₆ (8) /NaOAc (1) MeOH 0 [RhCp*Cl₂]₂ (2) 12 0 [RhCp*Cl₂]₂ (2) $AgSbF_{6}(8)$ /NaOAc (1) MeCN 13 [RhCp*Cl₂]₂ (2) AgSbF₆ (8) /NaOAc (1) THF 34 14 [RhCp*Cl₂]₂ (2) TFE AgSbF₆ (8) /NaOAc (1) trace 15 [RhCp*Cl₂]₂ (2) AgSbF₆ (8) /NaOAc (1) 1,4-dioxane 0 [RhCp*Cl₂]₂ (2) 16 AgBF₄ (8) /NaOAc (1) DCE 84 17 [RhCp*Cl₂]₂ (2) AgO₂CCF₃ (8) /NaOAc (1) DCE 0 18 [RhCp*(OAc)₂]₂ (2) NaOAc (1) DCE 0 19 [RhCp*(MeCN)3](SbF6)2 (4) NaOAc (1) DCE 79 20 AgBF₄ (8) /NaOAc (1) DCE 0 21 [RhCp*Cl₂]₂ (1) AgBF₄ (4) /NaOAc (1) DCE 91 22 [RhCp*Cl₂]₂ (0.5) AgBF₄ (2) /NaOAc (1) DCE 71

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), solvent (2 mL).

[b] Isolated yields.

Hydrogen-Deuterium Scrambling Experiments

To a 13×150 mm test tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1a** (31.7 mg, 0.2 mmol, 1 equiv) and CD₃CO₂D (37.2 mg, 0.6 mmol, 3 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was cooled to room temperature and isolated on silica gel (*n*-hexane/EtOAc = 40/1) to give **1a** as transparent liquid (25.9 mg, 82%).

Figure S1.¹H NMR (500 MHz, CDCl₃) spectrum for the products of equation above.

Competition Experiment

To a 13×150 mm test tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1b** (33.5 mg, 0.2 mmol, 1 equiv), **1g** (34.3 mg, 0.2 mmol, 1 equiv) and **2a** (50.0 mg, 0.2 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1). The mixture product was subjected to ¹H NMR.

Figure S2. ¹H NMR (500 MHz, DMSO) spectrum for the mixture products of the equation above.

To a 13×150 mm test tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1f** (36.7 mg, 0.2 mmol, 1 equiv), **1g** (34.3 mg, 0.2 mmol, 1 equiv) and **2a** (50.0 mg, 0.2 mmol, 1 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1). The mixture product was subjected to ¹H NMR.

Figure S3. ¹H NMR (500 MHz, DMSO) spectrum for the mixture products of the equation above.

Kinetic Isotope Effect Experiments

Preparation of 1-(phenyl-d₅)ethan-1-one substrate:

1-(phenyl- d_5 **)ethan-1-one:** The title compound was synthesized according to a literature-reported procedure.⁴ A solution of anhydrous CS₂ (10 mL) containing [D]₆-Benzene (2.4 ml, 25.6 mmol) and AlCl₃ (4.3 g, 32 mmol) were added to a 50 mL flask under N₂ atmosphere. To the mixture was dropwise added a solution of acetyl chloride (2.5 g, 32 mmol) in anhydrous

CS₂ (10 mL) at 0 °C. The resulting mixture was allowed to warm up to ambient temperature and was stirred for 5 h. Then the mixture was heated to 50 °C for 3 h. After cooling to ambient temperature, the resulting mixture was poured into ice water and extracted with CH₂Cl₂ (10 × 30 mL). The organic layer was washed with saturated aqueous Na₂CO₃ (60 mL) and brine (40 mL), and then dried over Na₂SO₄. After concentration under reduced pressure, purification by column chromatography on silica gel (*n*-hexane/EtOAc = 20/1) afforded 1-(phenyl-*d*₅)ethan-1-one (2.5 g, 78%) as colorless oil.

N-chloro-1-(phenyl-*d*₅)ethan-1-imine (1a-*d*₅): The title compound was synthesized according to a literature-reported procedure. ^{1,2} Acetophenone (2.5 g, 20 mmol) and CH₃OH (20 mL) were added to a 250 mL Schlenk tube containing [RhCp*Cl₂]₂ (61.8 mg, 100 μ mol) and HCO₂NH₄ (6.4 g, 100 mmol). The brown mixture was frozen, and the whole system was evacuated.

The system was closed and then stirred at 70 °C for 7 h. After the dark green resulting solution was cooled to room temperature, 1 M aqueous HCl solution (38.4 mL) was added, and the mixture was washed twice with CH₂Cl₂ (5 mL) to remove the neutral compounds. After addition of a cold 12 M aqueous NaOH solution (3.6 mL) to the aqueous layer, the mixture was extracted six times with CH₂Cl₂ (12 mL). The combined organic layers were dried over anhydrous Na₂SO₄. Filtration and evaporation under reduced pressure gave crude 1-(phenyl-*d5*)ethan-1-amine, which was used without purification. All the crude 1-(phenyl-*d5*)ethan-1-amine was dissolved in dichloromethane (50 mL), and TCCA (trichloroisocyanuric acid) (3.2 g, 14 mmol) was added in a 250 mL round-bottom flask at 0°C. Then, the mixture was stirred at ambient temperature during 1 h. Triethylamine (6.0 g, 0.06 mol) dissolved in dichloromethane (50 mL) was added, and the resulting mixture was washed with water (200 mL) and hydrochloric acid (1 M, 200 mL) successively. The organic layer was dried over anhydrous sodium sulfate. After concentration under reduced pressure, purification by column chromatography on silica gel (*n*-hexane/EtOAc: 40/1) afforded **1a**-*d*₅ (2.5g, 79%) as transparent liquid. ¹H NMR (500 MHz, CDCl₃) δ 2.63 (s, 1H). ¹³C NMR (**126 MHz, CDCl₃**) δ

177.11, 137.04, 130.39 (dd, *J* = 43.4, 18.3 Hz), 128.20 (dd, *J* = 42.6, 18.2 Hz), 126.62 (dd, *J* = 42.3, 17.8 Hz), 20.68. HRMS (EI) calcd. for C₈H₃D₅ClN: [M]⁺, 158.0659. Found: m/z 158.0657.

Me Н NCI H/D Me н [RhCp*Cl₂]₂ (1 mol %) N_2 H/D AgBF₄ (4 mol %) Ĥ PO(OEt)₂ EtO₂C 1a NaOAc (1 equiv) H/D 2a DCE, 80 °C, 12 h Me D H/D D NCI

ΝH

CO₂Et

 $k_{\rm H}/k_{\rm D}$ =3.0

1a-d₅

D

To a 13×150 mm test tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of 1a (30.7 mg, 0.2 mmol, 1 equiv), 1a-d₅ (31.7 mg, 0.2 mmol, 1 equiv) and 2a (50.0 mg, 0.2 mmol, 1 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, nhexane/EtOAc = 5/1). The mixture product was subjected to ¹H NMR.

Figure S4. ¹H NMR (500 MHz, DMSO) spectrum for the mixture products of the equation above.

Synthesis and Characterization of Rh(III) Intermediates

Synthesis of 1g-Rh-Cl:

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. Then the reaction mixture was isolated on silica gel to give **1g-Rh-Cl** as yellow solid (38.9 mg, 44%).

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in DCM (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. Then the reaction mixture was isolated on silica gel to give **1g-Rh-Cl** as yellow solid (39.6 mg, 45%).

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in CHCl₃ (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. Then the reaction mixture was isolated on silica gel to give **1g-Rh-Cl** as yellow solid (39.8 mg, 45%).

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in CDCl₃ (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. Then the reaction mixture was isolated on silica gel to give **1g-Rh-Cl** as yellow solid (40.2 mg, 45%).

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in BrCH₂CH₂Br (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. There was no **1g-Rh-Cl** observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in MeOH (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. Then to the test tube containing the reaction mixture was added with NaCl (11.7 mg, 0.2 mmol, 1 equiv). The reaction mixture was stirred for additional 5 min. Then the reaction mixture was isolated on silica gel to give **1g-Rh-Cl** as yellow solid (24.7 mg, 28%).

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF₆)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in THF (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. Then to the test tube containing the reaction mixture was added with NaCl (11.7 mg, 0.2 mmol, 1 equiv). The reaction mixture was stirred for additional 5 min. Then the reaction mixture was isolated on silica gel to give **1g-Rh-Cl** as yellow solid (33.6 mg, 38%).

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*(CH₃CN)₃](SbF6)₂ (166.4 mg, 0.2 mmol, 1 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (34.3 mg, 0.2 mmol, 1 equiv) in MeOH (2 mL) and equivalent DCE (19.8 mg, 0.2 mmol, 1 equiv) was injected into the test tube via syringe. The reaction mixture was placed at ambient temperature for 12 h. There was no **1g-Rh-Cl** observed.

¹H NMR (500 MHz, CDCl₃) δ 7.49 (dd, J = 8.6, 2.5 Hz, 1H), 7.45 (dd, J = 8.5, 5.3 Hz, 1H), 6.80 – 6.74 (m, 1H), 2.64 (s, 3H), 1.71 (s, 15H). ¹³C NMR (126 MHz, CDCl₃) δ 185.61 (dd, J = 33.1, 5.0 Hz), 184.14 (d, J = 2.6 Hz), 163.51 (dd, J = 258.4, 1.6 Hz), 138.11, 129.17 (d, J = 9.2 Hz), 122.34 (d, J = 18.1 Hz), 110.21 (d, J = 23.4 Hz), 97.17 (d, J = 6.4 Hz),

18.68, 9.28. **HRMS (MALDI-TOF, positive)** calcd. for C₁₈H₂₁ClFNRh: [M-Cl]⁺, 408.0380. Found: m/z 408.0490.

Figure S6¹³C NMR spectrum for 1g-Rh-Cl.

Figure S7 ORTEP drawing of **1g-Rh-Cl** showing 30% probability thermal ellipsoids. The hydrogen atoms are omitted for clarity. CCDC# at the Cambridge Crystallographic Data Center: 1858042.

Synthesis of 1h-Rh-Cl:

To a 13×150 mm test tube equipped with magnetic stir bar were added [RhCp*Cl₂]₂ (61.8 mg, 0.1 mmol, 0.5 equiv), and NaOAc (41.0 mg, 0.5 mmol, 2.5 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1h** (37.6 mg, 0.2 mmol, 1 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed at 45 °C for 12 h. Then the reaction mixture was isolated on silica gel (EtOAc) to give **1h'-Rh-Cl** as yellow solid (21.2 mg, 25%). The breaking of N-Cl bond is likely due to the presence of Rh-bound Cl⁻ ligand in [RhCp*Cl₂]₂.

Me $^{\text{H}}$ MR (500 MHz, CDCl₃) δ 8.99 (s, 1H), 7.74 (s, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.00 (dd, J = 8.1, 1.8 Hz, 1H), 2.46 (s, 3H), 1.68 (s, 15H). 13 C NMR (126 MHz, CDCl₃) δ 185.63, 185.37, 183.83, 144.25, 136.92, 135.91, 128.42, 122.65, 95.80, 95.75, 22.53 (d, J = 1.9 Hz), 9.33. HRMS (MALDI-TOF, positive) calcd. for C₁₈H₂₂ClNRh: [M-Cl]⁺, 390.0500.

1.679

8.987

Figure S8 ¹H NMR (500 MHz, CDCl₃) spectrum for 1h'-Rh-Cl.

Figure S10 ORTEP drawing of **1h'-Rh-Cl** showing 30% probability thermal ellipsoids. The hydrogen atoms are omitted for clarity. CCDC# at the Cambridge Crystallographic Data Center: 1858398.

Mechanism Experiments

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (4.1 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Only minimal amounts of **3ga** was observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (4.1 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Added HOAc (6.0 mg, 0.1 mmol, 2 equiv) into the test tube, the mixture was stirred at 80 °C for 6 h. Only minimal amounts of **3ga** was observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (4.1 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Added **1g** (8.6 mg, 0.05 mmol, 1 equiv) into the test tube, the mixture was stirred at 80 °C for 12 h. Only minimal amounts of **3ga** was observed

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g** (34.3 mg, 0.2 mmol, 1 equiv), **1g-Rh-Cl** (1.8 mg, 2 mol %), AgBF₄ (0.8 mg, 2 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (75.0 mg, 0.3 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) to give the **3ga** (29 mg) in 54% as white solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1a** (31.7 mg, 0.2 mmol, 1 equiv), **1g-Rh-Cl** (1.8 mg, 2 mol %), AgBF₄ (0.8 mg, 2 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (75.0 mg, 0.3 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) to give the products **3aa** (32.1 mg) in 79% as white solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (8.2 mg, 0.1 mmol, 2 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (8.6 mg, 0.05 mmol, 1 equiv) and **2a** (37.5 mg, 0.15 mmol, 3.0 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) to give the products (**3ga**, 8.0 mg) in 72% as white solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (8.2 mg, 0.1 mmol,2 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1a** (7.9 mg,0.05 mmol, 1 equiv) and **2a** (37.5 mg, 0.15 mmol, 3.0 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) to give the products (**3aa**, 4.0 mg; **3ga**, 3.1 mg) in 39% and 27% as white solid, respectively.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1y** (27.0 mg, 0.2 mmol, 1 equiv), [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mmol,1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (75.0 mg, 0.30 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. There is no reaction between **1y** and **2a** under the conditions.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1y** (6.8 mg, 0.05 mmol, 1 equiv), **1g-Rh-Cl** (22.1 mg, 0.055 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.55 mmol, 1.1 equiv) and NaOAc (8.2 mg, 0.1 mmol, 2 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (37.5 mg, 0.15 mmol, 3.0 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene
chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) to give the products (**3ga**, 5.3 mg) in 47% as white solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g** (34.3 mg, 0.2 mmol, 1 equiv), **1g-Rh-Cl** (1.8 mg, 2 mol %) and AgBF₄ (0.8 mg, 2 mol %). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (75.0 mg, 0.3 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a preheated oil bath (80 °C) for 12 h. There was no **3ga** observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv) and AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **1g** (8.6 mg, 0.05 mmol, 1 equiv) and **2a** (37.5 mg, 0.15 mmol, 3.0 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. There was no **3ga** observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and HOAc (3.0 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 1/1) to give the products (**3ga'**, 7.2 mg) in 45% as white solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv), NaOAc (4.1 mg, 0.05 mmol, 1 equiv) and HOAc (3.0 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 1/1) to give the products (**3ga'**, 5.1 mg) in 32% as yellow solid and only minimal amounts of **3ga** was observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1g-Rh-Cl** (22.1 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv), NaOAc (16.4 mg, 0.2 mmol, 4 equiv) and HOAc (3.0 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) to give the **3ga** (2.0 mg) in 18% as white solid and (silica gel, *n*-hexane/EtOAc = 1/1) to give the **3ga**' (2.0 mg) in 13% as yellow solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1h'-Rh-Cl** (21.2 mg, 0.05mmol), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (4.1 mg, 0.05 mmol,1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of and **2a** (18.7 mg, 0.30 mmol, 1 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. There was no **3ha** observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1h** (37.6 mg, 0.2 mmol, 1 equiv), **1h'-Rh-Cl** (1.6 mg, 2 mol %), AgBF₄ (0.8 mg, 2 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (75.0 mg, 0.3 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. There was no **3ha** observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1h** (9.4 mg, 0.05 mmol, 1 equiv), **1h'-Rh-Cl** (21.2 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv) and NaOAc (8.2 mg, 0.1 mmol, 2 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (37.5 mg, 0.15 mmol, 3.0 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. There was no **3ha** observed.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1h'-Rh-Cl** (21.2 mg, 0.05 mmol, 1 equiv), AgBF₄ (10.7 mg, 0.055 mmol, 1.1 equiv), and HOAc (3.0 mg, 0.05 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (18.7 mg, 0.075 mmol, 1.5 equiv) in DCE (1 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 1/1) to give the **3ha'** (14.8 mg) in 90% as yellow solid.

To a 13×150 mm test tube equipped with magnetic stir bar were added **1h** (37.6 mg, 0.2 mmol, 1 equiv), **1h'-Rh-Cl** (1.6 mg, 4 mol %), AgBF₄ (0.8 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1 equiv). The test tube was sealed with a rubber septum and removed from the glove-box. The solution of **2a** (75.0 mg, 0.3 mmol, 1.5 equiv) in DCE (2 mL) was injected into the test tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 1/1) to give the **3ha'** (22.9 mg) in 35% as yellow solid

To three 13×150 mm test tubes, every tube equipped with magnetic stir bar were added [Cp*RhCl₂]₂ (1.2 mg, 1 mol %), AgBF₄ (1.6 mg, 4 mol %) and NaOAc (16.4 mg, 0.2 mmol, 1 equiv). The test tubes were sealed with rubber septums and removed from the glove-box. The H₂O (3.6 mg, 0.2 mmol, 1 equiv), (1.8 mg, 0.1 mmol, 0.5 equiv) and (0.9 mg, 0.05 mmol, 0.25 equiv) was injected into the three test tubes via microsyringe, respectively. The solution of **1a** (31.7 mg, 0.2 mmol, 1 equiv), **2a** (75.0 mg, 0.30 mmol, 1.5 equiv) in DCE (2 mL) was injected into every test

tube via syringe. The reaction mixture was placed in a pre-heated oil bath (80 °C) for 12 h. Then the reaction mixture was concentrated in vacuo, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 5/1) offered **3aa** (6.8 mg, 17%), (2.8 mg, 7%), (2.7 mg, 7%), respectively.

Proposed Reaction Pathway of Isoquinolin-3(2H)-ones

First, the reactive cationic Rh(III) species **I'** is generated with the assistance of AgBF₄. Subsequently, Rh(III) species **I'** coordinates to substrate **1h**, and C-H bond cleavage forms **II'**. Then proton of HOAc replace the Cl⁺ to give the **III'**. The reaction with the diazo compound might then occur to give the metal–carbene intermediate **IV'** by extrusion of N₂. After migratory insertion to provide **V'**, rearrangement and nucleophilic addition to the ester carbonyl group occurs in the presence of Lewis acidic Rh(III) to give **VI'**. Finally, elimination of the ethyoxyl group from **VI'** and proton transfer gives the **3ha'** with regeneration of the catalyst.

Deesterification of 3wd and Exploitation of Reactivity of C3 and N2 Ring Atoms for Attachment of Structurally Distinct Appendages

Synthesis of N,N-Dimethyl-1-(3-phenyl-1H-isoindol-1-ylidene)methanamine^{5,6}

To a 25 mL Schleck tube equipped with magnetic stir bar were added **3wd** (125.3 mg, 0.4 mmol, 1 equiv), Ni(OAc)₂·4H₂O (9.6 mg, 10 mol %), dcype (33.8 mg, 20 mol %), Ph₃SiH (208.3 mg, 0.8 mmol, 2 equiv) and exchanged with N₂ three times, then toluene (2 ml) was added. The reaction mixture was placed in a pre-heated oil bath (170 °C) for 16 h. Then the reaction mixture was evacuated by oil pump and gave the **4** of crude product, the residue was dissolved in dimethylformamide (1 mL). Phosphoryl chloride (100 mg) was added to dimethylformamide (0.5 ml) with stirring (-5 to -10 °C; N₂). The **4** of crude product in dimethylformamide (1 ml) was added dropwise, and the mixture was stirred at -5 °C for 1 h, then at room temperature for 5 h. The mixture was poured into saturated sodium hydrogencarbonate (25 ml) with stirring, washed with water and extracted three times with ethyl acetate (20 mL). The combined organic layers were dried over anhydrous Na₂SO₄. Filtration and evaporation under reduced pressure, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 3/1) to give **5** in 63% yield (62.6 mg) as yellow solid.

N,N-Dimethyl-1-(3-phenyl-1H-isoindol-1-ylidene)methanamine (5):6

The title compound was obtained as yellow solid in 63% yield (62.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 8.07 (d, J = 7.9 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.54 (dd, J = 10.7, 4.7 Hz, 2H), 7.42 (t, J = 7.4 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.31 – 7.25 (m, 1H), 3.88 (s, 3H), 3.17 (S, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.97, 142.49, 139.23, 137.13, 131.48, 128.52, 127.92, 127.79, 125.66, 124.81, 122.80, 121.23, 116.25, 46.74, 40.87.

Synthesis of 3-Phenyl-2H-isoindole-1-carbaldehyde⁶

5 (49.7 mg, 0.2 mmol), ethanol (4 mL), and sodium hydroxide (0.3 mL of a 4% aqueous solution) were added into flask and refluxed under N₂ for 3.25 h. The solvent was removed under reduced pressure, the residue being dissolved in dichloromethane (10 mL) and washed with water (2 x 15 mL), the washings being back extracted with dichloromethane. The combined organic solutions were dried Na₂SO₄), and evaporated. The residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 3/1) to give **6** in 70% yield (31.2 mg) as yellow crystal.

3-Phenyl-2H-isoindole-1-carbaldehyde (6):6

The title compound was obtained as yellow crystal in 70% yield (31.2 mg). ¹H NMR (500 MHz, DMSO) δ 13.81 (s, 1H), 9.96 (s, 1H), 8.21 (s, 1H), 8.02 (d, J = 7.1 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.58 (t, J = 7.0 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.26 (s, 1H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 173.75, 134.29, 132.38, 130.58, 129.24, 129.03, 127.89, 127.28, 123.88, 123.77, 122.11, 121.82, 117.47.

Synthesis of 2-Methyl-3-phenyl-2H-Isoindole-1-Carbaldehyde

To a 15 mL Schleck tube equipped with magnetic stir bar were **6** (44.3 mg, 0.2 mmol, 1 equiv), NaH (60% dispersion in mineral oil) (0.6 mmol, 3 equiv), and exchanged with N₂ three times, then dimethylformamide (2 mL) was added. The reaction mixture was placed at 0 °C for 0.5 h, then added CH₃I (141.9 mg, 1 mmol, 5 equiv) at room temperature for 4 h. The mixture was poured into water (50 mL) and extracted three times with ethyl acetate (20 mLx3). The combined organic layers were dried over anhydrous Na₂SO₄. Filtration and evaporation under reduced pressure, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 3/1) to give 7 in 99% yield (46.7 mg) as yellow solid.

2-Methyl-3-phenyl-2H-isoindole-1-carbaldehyde (7):

The title compound was obtained as yellow oil in 68% yield (46.7 mg). **Melting point**: 161-163 °C. ¹**H NMR (500 MHz, CD₃CN)** δ 10.09 (s, 1H), 8.07 (s, 1H), 7.74 – 7.45 (m, 7H), 7.38 – 7.33 (m, 1H), 7.19 – 7.12 (m, 1H), 4.13 (s, 3H). ¹**H NMR (400 MHz, DMSO)** δ 10.11 (s, 1H), 8.18 (s, 1H), 7.68 – 7.57 (m, 5H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.18 (ddd, *J* = 8.2, 6.7, 0.8 Hz, 1H), 4.17 (s, 3H). ¹³**C NMR (101 MHz, CD₂Cl₂)** δ 174.43, 136.64, 132.78, 130.34, 129.26, 129.17, 128.95, 128.60, 126.76, 124.27, 123.05, 120.79, 116.32, 35.65. **HRMS (ESI)** calcd. for C₁₆H₁₄ON: [M+H]⁺, 236.1070. Found: m/z 236.10660.

To a 25 mL Schleck tube equipped with magnetic stir bar were added **3wd** (125.3 mg, 0.4 mmol, 1 equiv), Ni(OAc)₂·4H₂O (9.6 mg, 10 mol %), dcype (33.8 mg, 20 mol %), Ph₃SiH (208.3 mg, 0.8 mmol, 2 equiv) and exchanged with N₂ three times, then toluene (2 mL) was added. The reaction mixture was placed in a pre-heated oil bath (170 °C) for 16 h. Then the reaction mixture was evacuated by oil pump and gave the **4** of crude product, the crude product was dissolved in ethanol (0.75 mL). *p*-Toluidine (61 mg) was diazotised in the normal way [concentrated HCI (0.25 mL), water (1 mL), NaNO₂ of aqueous solution (50 mg in 0.1 mL), 0 °C]. The **4** of crude product in ethanol (0.75 mL) was added to the stirred solution under N₂ for 5 minutes. Then a dark purple precipitate formed. The precipitate was removed by filtration and dissolved in ether (20 mL), the solution being washed with dilute hydrochloric acid (15 mL), then with aqueous sodium hydroxide (2 × 20 mL, solution goes orange), and finally with water. The ethereal solution was dried (Na₂SO₄) and taken to dryness, the oily orange residue dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 20/1) to give **8** in 68% yield (84.7 mg) as orange solid.

1-Phenyl-3-(p-tolyldiazenyl)-2H-isoindole (8):7

The title compound was obtained as orange solid in 68% yield (84.7 mg). ¹H NMR (500 MHz, Acetone) δ 10.99 (s, 1H), 8.29 – 8.24 (m, 2H), 8.08 (d, J = 7.8 Hz, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.65 – 7.61 (m, 3H), 7.58 – 7.54 (m, 1H), 7.49 (t, J = 8.1 Hz, 3H), 7.21 (d, J = 8.2 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (126 MHz, Acetone) δ 141.29, 138.74, 136.49, 134.58, 131.27, 130.78, 129.74, 129.12, 129.05, 129.01, 128.95, 128.80, 127.20, 122.88, 119.78, 114.15, 19.92.

To a 15 mL Schleck tube equipped with magnetic stir bar were **8** (62.3mg, 0.2 mmol, 1 equiv), K_2CO_3 (110.6 mg, 0.8 mmol, 4 equiv), and exchanged with N_2 three times, then CH₃I (141.9 mg, 1 mmol, 5 equiv) and dimethylformamide (2 mL) was added. The reaction mixture was placed at 90 °C for 12 h. The mixture was poured into water (50 mL) and extracted three times with ethyl acetate (20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 . Filtration and evaporation under reduced pressure, the residue was dissolved in methylene chloride and purified by column chromatography (silica gel, *n*-hexane/EtOAc = 20/1) to give **9** in 51% yield (33.1 mg) as orange solid.

2-Methyl-1-phenyl-3-(p-tolyldiazenyl)-2H-isoindole (9):

The title compound was obtained as orange solid in 51% yield (33.1 mg). **Melting point**: 59-60 °C. ¹**H NMR (500 MHz, CD₃CN)** δ 8.21 (dd, J = 8.0, 1.6 Hz, 2H), 8.05 – 7.99 (m, 2H), 7.61 – 7.55 (m, 5H), 7.50 (dd, J = 7.5, 0.9 Hz, 1H), 7.46 (dd, J = 7.6, 1.1 Hz, 1H), 7.24 (d, J = 8.2 Hz, 2H), 4.31 (s, 3H), 2.35 (s, 3H). ¹³**C NMR (126 MHz, CD₃CN)** δ 164.78, 147.04, 145.78, 142.49, 136.03, 135.36, 133.98, 131.22, 130.54, 129.77, 129.48, 129.10, 127.89, 122.91, 121.12, 117.90, 42.18, 20.67. **HRMS (ESI)** calcd. for C₂₂H₂₀N₃: [M+H]⁺, 326.1652. Found: m/z 326.1645.

References

- (1) Kitamura, M.; Lee, D.; Hayashi, S.; Tanaka, S.; Yoshimura, M. J. Org. Chem. 2002, 67, 8685.
- (2) Xiong, X.; Xu, X.; Zhou, Y.; Weng, C. Russ. J. Gen. Chem. 2013, 83, 2402.
- (3) Müller, S.; Sasse, F.; Maier, M. E.; Eur. J. Org. Chem. 2014, 1025.
- (4) Liu, W.; Zell, D.; John, M.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 4092.
- (5) Yue, H.; Guo, L.; Lee, S.-C.; Liu, X.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 3972.
- (6) Bonnett, R. M.; Hursthouse, B.; North, S. A.; Trotter, J. J. Chem. Soc., Perkin Trans. II 1984, 833.
- (7) Bonnett, R. North, S. A.; Newton, R. F.; Scopes, D. I. C. Tetrahedron 1983, 39, 1401.

NMR Spectra of Products

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 δ (ppm)

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ (ppm)

0.093	.068	.622	.610	.608	.605	.599	.593	.590	.586	.579	.576	.572	.569	.563	.561	.557	.555	.546	.542	.372	.357	.342	.169	.154	.139	.135
-10	ö	2	2	2	7	7	2	~	2.	~	7	2	~	~	7	7	7	7	7	2	2	~	7.	7.	2	4

¹H NMR (500 MHz, Acetone)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(δ (ppm)