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Background

 Mathematical models of cellular physiology are
rapidly increasing in biophysical detail:
— electrophysiology and mechanics;
— + calcium dynamics;
— + mitochondrial energetics;
— + signalling cascades;
— +

* Models routinely now consist of large systems of
differential & algebraic equations and many
parameters.

 Modelling studies typically require multiple models,
each with many parameterizations.
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The Problem

 How do model authors:
— describe such complex models?
— share them with colleagues and the scientific community?
— reuse bits and pieces of existing models?
— publish them?

« Several (almost) independent sub-problems:
— the mathematical model(s);
— parameterizations of the mathematical model(s);

— instantiation of the models as specific and reproducible
computational simulations;

— extraction of specific “simulation observations” from
simulation datasets.

 Machine vs human interpretation and -
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Our solution
« Annotated CellML modaeils....

http://www.cellml.org
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Model repositories

model database * Freely available & online model

B B repositories.
o - Contain models described in

D DD standard formats.

D D  Curated to various levels of
‘“correctness”.

« Examples:
— http://www.cellml.org/models/
— http://www.biomodels.net/biomodels/
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New models and model components

model  Answering novel questions
generally requires the development
of new models in combination with
existing models:

— reparameterizing existing models;
— combining existing models;

— altering the dynamics of certain
components of the model;

— extending models to include new
behaviour.
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Model parameterization

parameterizations  Each mathematical model may be
parameterized for many different
scenarios.

« Specializing generic mathematical
model for specific purpose.
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Description of numerical simulations

simulation « Each parameterized model
descriptions instantiated into one or more
simulation.
« Simulation metadata:
— numerical methods;
— associated parameters;

— links to required model and
variable(s);

— general annotations.
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Description of simulation outputs

graph  Want to extract specific
descriptions observations from simulation

results.
 Graphing metadata:

— reference specific 'x' and 'y' variables
from specified simulations;

— range of interest;

— graphical properties (colours, glyphs,
line width, etc.).
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Human usage

* Model descriptions typically consist of many XML
documents — works well for software interchange, not
so well for human scientists.

* Different people prefer to look at and interact with
models in different ways.

« Different applications may be well suited to specific
methods of data display.

‘ Customisable “views” of
the model description.
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