Supporting Information

High-performance Li-ion Batteries using Nickel-rich Lithium Nickel Cobalt Aluminium Oxide-Nanocarbon Core-Shell Cathode: *In operando* X-ray diffraction

Selvamani Vadivel,^{†,‡} Nutthaphon Phattharasupakun,^{†,‡} Juthaporn Wutthiprom,^{†,‡} Salatan duangdangchote,^{†,‡} and Montree Sawangphruk,^{*,†,‡}

[†]Centre of Excellence for Energy Storage Technology (CEST),

Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.

[‡]Department of Chemical and Biomolecular Engineering,

Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.

*Corresponding author. Email: montree.s@vistec.ac.th

Figure. S1 HR-TEM images of (a) Conductive super P, (b) Loosely bounded super P on NCA obtained by physically blending (PNCA) and (c) Intact carbon coating by mechano-fusion (NCACS).

Figure. S2 XPS spectra of (a) wide scan and (b) narrow scan of Ni orbital (after ion-beam etching of surface carbon).

Figure. S3 Deconvoluted XPS spectra of Ni 2p, Co 2p, O 1s and C 1s orbitals of NCACS (a-d), PNCA (e-h) and NCA (i-k) respectively.

Figure. S4 Thermo-gravimetric curves of neat NCA, carbon coating obtained by physical blending (PNCA) and mechanical force reinforced mechano-fusion (NCACS) in an oxygen atmosphere.

Figure. S5 Selected region diffraction pattern for the evolution of new peak observed in *operando* XRD concerning to lithium ion concentration of NCACS and PNCA ($LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$) during the first cycle at 0.5 C.

Figure. S6 Galvanostatic cycling curves for the first and second cycles of NCACS and PNCA vs. Li^+ / Li at 0.1 C.

Figure. S7 Differential Specific capacity as a function of voltage $(dQ/dV \text{ vs } V \text{ g}^{-1})$ for (a) NCACS and (b) PNCA calculated at 0.1 C, respectively.

Figure. S8 First ten cycles of galvanostatic cycling profile for (a) NCACS and (b) PNCA at 0.5 C (inset: differential specific capacity as a function of voltage (dQ/dV vs V g⁻¹)).

Figure. S9 Galvanostatic cycling profile at various C rates for (a) NCACS and (b) PNCA.

Figure. S10 Electrochemical impedance spectra and fitted results for (a) NCACS and (b) PNCA before and after cycling (inset: generated Randle's equivalent circuit).

References

- 1. Chen, Y.; Li, P.; Zhao, S.; Zhuang, Y.; Zhao, S.; Zhou, Q.; Zheng, J. Influence of integrated microstructure on the performance of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ as a cathodic material for lithium ion batteries. *RSC Adv.* **2017**, *7*(46), 29233–29239.
- Gao, P.; Jiang, Y.; Zhu, Y.; Hu; H. Improved Cycle Performance of Nitrogen and Phosphorus codoped Carbon Coatings on Lithium Nickel Cobalt Aluminum Oxide Battery Material. *J. Mater. Sci.* 2018, 53(13), 9662–9673.
- Hou, P.; Zhang, H.; Deng, X.; Xu, X.; Zhang, L. Stabilizing the Electrode/Electrolyte Interface of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries. ACS App. Mater. Interfaces 2017, 9(35), 29643– 29653.
- 4. Liu, B. S.; Wang, Z. B.; Yu, F. Da; Xue, Y.; Wang, G. J.; Zhang, Y.; Zhou, Y. X. Facile Strategy of NCA Cation Mixing Regulation and its Effect on Electrochemical Performance. *RSC Adv.* **2016**, *6*(110), 108558–108565.
- 5. Qi, H.; Liang, K.; Guo, W.; Tian, L.; Wen, X.; Shi, K.; Zheng, J. Facile Fabrication and Low-cost Coating of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ with Enhanced Electrochemical Performance as Cathode Materials for Lithium-ion Batteries. *Int. J. Electrochem. Sci.* **2017**, *12*(7), 5836–5844.

S.No	Material	Specific discharge	Rate	Remarks
		capacity (mAh g ⁻¹)		
1.	Concentration gradiant	165	1 C	[1]
	NCA			
2.	Na-doped NCA	160	1 C	[2]
3.	N/P doped NCA	170	1 C	[3]
4.	LiAlO ₂ coated NCA	170	1 C	[4]
5.	Spherical precursor- NCA	180	0.5 C	[5]
6.	LBO-coated NCA	163	1 C	[6]
7.	Cation mixing regulated	163	1 C	[7]
	NCA			
8.	NCA microrods	181	0.5 C	[8]
9.	NCACS	186	0.5 C	
		178	1 C	
	PNCA	161	0.5 C	Present study
		146	1 C	-

 Song, C.; Wang, W.; Peng, H.; Wang, Y.; Zhao, C.; Zhang, H.; Tang, Q.; Lv, J.; Du, X.; Dou, Y. Improving the Electrochemical Performance of LiNi_{0.80}Co_{0.15}Al_{0.05}O₂ in Lithium Ion Batteries by LiAlO₂ Surface Modification. *App. Sci.* **2018**, *8*(3), 378.

- Wang, Y.; Sun, Y.; Liu, S.; Li, G.; Gao, X.-P. Na-Doped LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ with Excellent Stability of Both Capacity and Potential as Cathode Materials for Li-Ion Batteries. *ACS App. Energy Mater.* 2018, 1(8), 3881–3889.
- Wu, N.; Wu, H.; Yuan, W.; Liu, S.; Liao, J.; Zhang, Y. Facile Synthesis of One-dimensional LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ Microrods as Advanced Cathode Materials for Lithium Ion Batteries. *J. Mater. Chem. A* **2015**, *3*(26), 13648–13652.