
Accelerating real-world stencil computations using temporal blocking: handling sparse sources and

receivers
George Bisbas 1 Fabio Luporini 1(advisor) Mathias Louboutin 2(advisor) Gerard Gorman 1 (advisor) Paul H.J. Kelly 1(advisor)

1Imperial College London, UK 2Georgia Institute of Technology, Atlanta, USA

Background
• Temporal blocking, also known as time-tiling is a well-known

technique for accelerating stencil based computations by
enhancing data locality.

• Solving partial differential equations with the finite difference
method yields stencil codes that can be very complex for real
world problems.

• Devito [1] is a tool for generating stencil codes from a
high-level symbolic abstraction aiming at real-world
applications targetting mostly seismic imaging.

• Seismic inversion related operators contain imperfect loops
and include a mix of affine/non-affine operators due to sparse
ones such as source injection and receiver interpolation as well
as complex boundary conditions.

Motivation: temporal blocking for real-world ap-
plications
• Temporal blocking has proven efficient for imperfect loop

nests while extensions to polyhedral tools claim to be able to
handle non-affine loop nest transformations.

• Integration of such tools is limited to benchmarking purposes
and not used in production code.

• Using time-tiling in production-level seismic imaging operators
is challenging. One reason is the presence of non-trivial
operators which elude finite differences (i.e., they are not
classic stencils), including interpolation and non-trivial
boundary conditions. Further, time-tiling should support
distributed-memory parallelism. Optimizations to extend our
work to high-order finite-difference will be investigated in
future work.

Contributions:
• An inspector/executor scheme with low inspection cost in

computation time and memory footprint for precomputing the
effect of sparse operators (sources and receivers).

• Performance evaluation showing profitable results for low
order stencils and competitive for higher order (that is under
investigation).

A seismic imaging survey where sources injection and receiver interpolation take

place. Source: Open Learn

(a) Step 0: Sources are injected

on a field.

(b) Step 1: Identify area affected

from sources.

(a) Step 2: Binary mask with 1s

on affected points.

(b) Step 3: A unique ID for each

affected unique point.

(a) Step 4: Store efficiently all the

precomputed source injection.

Temporal blocking parallelism levels.

The algorithm:
Our inspector/executor scheme for this loop nest transformation consists of
the following 4 steps:

1. Inspection: Iterate over the sources (Fig:1a) for all timesteps to identify
the unique points that are affected (Fig:1b) and then allocate space for a
2d array of size unique pts affected × timesteps .

2. Inspection: Two copies of our grid act as a binary mask of affected points
(Fig:2a) and as an id mask (Fig:2b) for our points.

3. Execution: Iterate again over the sources, applying their effect (Fig:3a) to
our allocated structure described in step 1

4. Execution: Transform the perfect loop nest for temporal blocking and
adding the effect of the corresponding source using the binary mask
created in step 1

Inspector/ Executor Code:

Inspector

for (ti = 0; ti < timesteps; ti++)

for (p_src = 0; p_src < p_src_M; p_src ++)

xx = src_coords[p_src][0]

yy = src_coords[p_src][1]

zz = src_coords[p_src][2]

if (source_id[xx][yy][zz] == 0)

source_id[xx][yy][zz] = id++

source_mask[xx][yy][zz] = 1

double ** save_src;

malloc2d (&save_src , id , timesteps);

Executor

for (ti = 0; ti < timesteps; ti++)

for (p_src = 0; p_src < p_src_M; p_src ++)

xx = src_coords[p_src][0]

yy = src_coords[p_src][1]

zz = src_coords[p_src][2]

this_id = source_mask[xx][yy][zz]

save_src[this_id][ti] += src[ti][p_src]

for (x_blk = x_m; x_blk < ; += x_blk_size)

for (y_blk = ; y_blk < , ; += y_blk_size)

for (t = ; t < ; t += sf)

for (z_blk = ; z_blk < ; z_blk += z_blk_size)

#pragma omp parallel for collapse (2)

for (xi = ; xi < ; xi++)

for (yi = ; yi < ; yi++)

#pragma omp simd

for (zi = ; zi < ; zi++)

grid[t1][xi - t][yi - t][zi] = PDE_stencil

for (zi = ; zi < ; zi++)

if(source_mask[xi-t][yi -t][zi])

{grid[t1][xi-t][yi-t][zi]

+= source_mask[xi-t][yi -t][zi]

*save_src [(source_id[xi -t][yi-t][zi])][tw]}

Future work: automate temporal blocking in Devito

Devito allows to:
• Generate stencil code on-the-fly, allowing various types of. performance

optimization to be performed during code generation.
• Use MPI/OpenMP parallelism and SIMD vectorization.
• Sophisticated loop transformations (e.g., blocking and auto-tuning).
• Domain-specific symbolic optimizations.

Our work aims to enhance this framework with temporal blocking optimizations that
will be optimally tuned for increasing the performance of generated code, targetting real
world applications.

Results

Experiments were executed for 7p, 13p and 25p Jacobis (Space orders 2, 4 and 8
respectively) on a 512**3 grid with 5 sources injecting for the whole time-domain of the
experiment and block sizes of 32 x 32 x 256. Temporal blocking speedups over space
blocking tend to decrease as the space order increases. The resolution of this issue is
under investigation.

Execution time for different number of timesteps. Comparing speed-ups for every method.

Execution time for a 256-step experiment for varying

space order.

Comparing speed-ups for a 256-step experiment for

varying space order.

References
• Luporini, Fabio, et al. ”Architecture and performance of Devito, a system for

automated stencil computation.” arXiv preprint arXiv:1807.03032 (2018).
• Sim, Nicholas. ”Optimising finite-difference methods for PDEs through

parameterised time-tiling in Devito.” arXiv preprint arXiv:1806.08299 (2018).
• Louboutin, Mathias et al. “Devito (v3.1.0): an embedded domain-specific

language for finite differences and geophysical exploration.” (2018).

Links:
www.devitoproject.org
https://github.com/opesci/devito
https://twitter.com/opesciproject

1

www.devitoproject.org
https://github.com/opesci/devito
https://twitter.com/opesciproject

