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PACS 05.45.Yv – Solitons

Abstract – We undertake a detailed comparison of the results of direct numerical simulations
of the soliton gas dynamics for the Korteweg – de Vries equation with the analytical predictions
inferred from the exact solutions of the relevant kinetic equation for solitons. Two model problems
are considered: (i) the propagation of a ‘trial’ soliton through a one-component ‘cold’ soliton gas
consisting of randomly distributed solitons of approximately the same amplitude; and (ii) the
collision of two cold soliton gases of different amplitudes (the soliton gas shock tube problem)
leading to the formation of an expanding incoherent dispersive shock wave. In both cases excellent
agreement is observed between the analytical predictions of the soliton gas kinetics and the direct
numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a
quantitatively accurate model for macroscopic non-equilibrium dynamics of incoherent soliton
ensembles.

Introduction. – Dynamics of incoherent nonlinear
dispersive waves have been the subject of very active re-
search in nonlinear physics for several decades, most no-
tably in the contexts of ocean wave dynamics and nonlin-
ear optics (see e.g. [1–3]). Two major areas where statis-
tical properties of random ensembles of nonlinear waves
play essential role are wave turbulence and rogue wave
studies (see [4, 5] and references therein). A very recent
direction in the statistical theory of nonlinear dispersive
waves introduced by V.E. Zakharov is turbulence in in-
tegrable systems [6]. It was suggested in [6] that many
questions pertinent to a classical turbulent motion can be
meaningfully formulated in the framework of completely
integrable systems. The physical relevance of integrable
turbulence theory has been supported by recent fibre op-
tics experiments [7].

Solitons play the key role in the characterisation of non-
linear wave fields in dispersive media, therefore the theory
of soliton gases in integrable systems comprises an impor-
tant part of the general theory of integrable turbulence
[6]. The very recent observations of dense statistical en-
sembles of solitons in shallow water wind waves in the
ocean [8] well modelled by the KdV equation provide fur-
ther physical motivation for the development of the theory

of soliton turbulence in integrable systems. In this paper
we shall be using the KdV soliton gas as a simplest an-
alytically accessible model yielding a major insight into
general properties of soliton gases in integrable systems.

Macroscopic dynamics of a KdV soliton gas are de-
termined by the fundamental ‘microscopic’ properties of
two-soliton interactions [9]: (i) soliton collisions are elas-
tic, i.e. the interaction does not change the soliton ampli-
tudes (or, more precisely, the discrete spectrum levels in
the associated linear spectral problem for the quantum-
mechanical Schrödinger operator); (ii) after the interac-
tion, each soliton acquires an additional phase shift; (iii)
the total phase shift of a ‘trial’ soliton acquired during a
certain time interval can be calculated as a sum of the
‘elementary’ phase shifts in pairwise collisions of this soli-
ton with other solitons during this time interval. These
fundamental properties of two-soliton interactions enabled
Zakharov in 1971 to introduce the kinetic equation for a
rarefied gas of KdV solitons [19]. The generalisation of Za-
kharov’s equation to finite densities derived in [10] has re-
quired the consideration of the thermodynamic-type limit
for finite-gap potentials and the associated Whitham mod-
ulation equations [11]. A straightforward, physical deriva-
tion of the kinetic equation was made in [12]. The effect
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of two-soliton collisions on the properties of the statistical
moments of nonlinear wave field associated with soliton
gas — the soliton turbulence — was studied in [14]. An
effective method for the numerical computation of soliton
gas was developed in [15] and was applied to the modelling
of soliton gases in the KdV and the KdV-BBM (Benjamin–
Bona–Mahoni) equations in [16].

The kinetic equation for solitons derived in [10,12] was
shown in [17, 18] to possess some remarkable mathemat-
ical properties. In particular, it was shown that it has
an infinite number of integrable hydrodynamic reductions
which is a strong indication of integrability of the full ki-
netic equation. Integrability of hydrodynamic reductions
opens a broad perspective for obtaining various exact so-
lutions to the kinetic equation. However, the quantitative
confirmation of the relevance of the predictions of the soli-
ton kinetic theory to the actual macroscopic dynamics of
soliton gases still remains an open problem. Indeed, as
was already mentioned, the formal derivation of the ki-
netic equation for solitons involves certain singular lim-
iting transition of the thermodynamic type. The mathe-
matical conditions required for this transition are not nec-
essarily applicable to physically (or even numerically) ac-
cessible soliton systems. This is why it is vitally important
to have a direct numerical confirmation of the validity of
the kinetic equation. The main goal of the present paper is
thus to test the relevance of the soliton gas kinetics to the
unapproximated ‘particle dynamics’ of incoherent soliton
ensembles. With this aim in view we compare some model
exact solutions of the kinetic equation with the results of
the high accuracy direct numerical simulations of the KdV
soliton gas.

Kinetic equation for a soliton gas. – We consider
the KdV equation in the canonical form

ut + 6uux + uxxx = 0 . (1)

We introduce soliton gas as an infinite collection of KdV
solitons randomly distributed on the line with non-zero
density. This intuitive definition lacks precision but it is
sufficient for the purposes of this paper. A mathematically
consistent definition of a soliton gas involves the thermo-
dynamic limit of finite-gap potentials (see [13] for details).

Let each soliton in the gas be ‘labelled’ by the spectral
parameter ηi ≥ 0 so that λi = −η2

i is the corresponding
discrete eigenvalue in the spectral problem for the linear
Scrödinger operator associated with (1) in the inverse scat-
tering transform (IST) formalism. We assume that the
discrete values ηi are distributed with certain density on
some finite interval, say [0, 1], and replace ηi by the con-
tinuous variable η ∈ [0, 1] (see the details in [10, 13, 17]).
As is well known (see e.g. [9]) the amplitude of an isolated
KdV soliton with the spectral parameter η is a = 2η2 and
its speed is S = 4η2. It is clear that in the soliton gas,
the mean speed of the soliton with the same parameter
η will differ from 4η2. Indeed, due to the pairwise colli-
sions with other solitons (each leading to a ‘phase-shift’)

the distance covered by this ‘trial’ soliton over some time
interval ∆t � 1 will be different from 4η2∆t. This intu-
itive reasoning was used in the original Zakharov paper
[19] for the derivation of the approximate kinetic equation
describing macroscopic dynamics of a rarefied soliton gas.

The full, non-perturbative equation for a ‘dense’ gas of
KdV solitons was derived in [10] by considering a singular,
thermodynamic type limiting transition for the modula-
tion Whitham equations describing slow evolution of the
multiphase solutions of the KdV equation [11]. The result
of this limiting transition is the integro-differential kinetic
equation [10,12]

ft + (sf)x = 0 , (2)

s(η) = 4η2 +
1

η

1∫
0

ln

∣∣∣∣η + µ

η − µ

∣∣∣∣ f(µ)[s(η)− s(µ)] dµ (3)

for the spectral distribution function f(η) ≡ f(η;x, t) so
that f(η0;x, t)dηdx is the number of solitons with the
spectral parameter η ∈ (η0, η0 + dη) and located in the
spatial interval (x, x+dx) at the moment t. The quantity
s(η) ≡ s(η;x, t) is the soliton gas velocity (or the velocity
of a “trial” soliton with the spectral parameter η placed
in the soliton gas characterised by the distribution func-
tion f(µ)). It is important to stress that the typical scales
of variations of x and t in the kinetic equation (2) are
much larger than in the KdV equation (1), governing the
‘microscopic’ dynamics with ∆x, ∆t = O(1).

The integral

κ(x, t) =

∫ 1

0

f(η, x, t)dη (4)

is the total physical (as opposed to spectral) density of the
soliton gas, i.e. the number of solitons per unit length. Za-
kharov’s approximate kinetic equation for a rarified soliton
gas [19] is obtained from (2), (3) by assuming κ � 1 and
retaining only the first order correction in (3).

In the kinetic description (2), (3) of a soliton gas the
solitons are viewed as particles moving with certain speeds
and interacting with each other according to the nonocal
closure equation (3). On the other hand, one is also inter-
ested in the nonlinear wave field u(x, t) of integrable turbu-
lence associated with the soliton gas dynamics. As is well
known (see e.g. [4]) a turbulent wave field is usually char-
acterised by the moments 〈un〉 over the statistical ensem-
ble, which, due to ergodicity of soliton turbulence [13], can

be computed as spatial averages un = 1
∆

∫∆

0
un(x̃, t)dx̃,

over a sufficiently large interval 1 � ∆ � L, where L is
the typical scale for x-variations in (2).

It was shown in [10, 13, 20] that the two first moments
in the KdV soliton turbulence are calculated in terms of
the spectral distribution function f(η;x, t) as

u(x, t) = 4

∫ 1

0

ηf(η;x, t) dη ,

u2(x, t) =
16

3

∫ 1

0

η3f(η;x, t) dη .

(5)
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The fundamental restriction imposed on the distribution
function f(η) follows from non-negativity of the variance

A2 = u2 − u2 > 0. (6)

The consequences of this restriction have been explored
in [20]. Here it will inform the choice of the soliton gas
parameters for the numerical modelling.

Hydrodynamic reductions and exact solutions. –
The get a better insight into the properties of the soliton
gas dynamics we consider the hydrodynamic reductions of
the kinetic equation (2), (3). Such hydrodynamic reduc-
tions enable one to derive some simple, physically relevant
exact solutions which could then be compared with the re-
sults of direct numerical modelling of the KdV equation.

The family of the simplest N -component ‘cold gas’ re-
ductions is selected by the multiflow delta-function ansatz
[12]

f(η;x, t) =

N∑
i=1

fi(x, t) δ(η − ηi) . (7)

Physically, the i-th complonent of the soliton gas described
by the distribution (7) consists of an infinite sequence of
nearly identical solitons having the spectral parameter η
distributed in a narrow ε-vicinitty of η = ηi such that
ε/ηi � 1, and distributed by Poisson on x ∈ (−∞,∞)
with the density fi(x, t) which can slowly vary in space
in time [18], [20]. The hydrodynamic reductions obtained
by (7) for arbitrary N have been thoroughly analysed in
[17, 18]. Here we shall be mostly looking at the case of a
two-component gas yielding the simplest nontrivial results
that can be verified numerically. We consider two model
problems: (i) the propagation of a ‘trial’ soliton through
a one-component ‘cold’ soliton gas and (ii) collision of two
one-component soliton gases — the shock tube problem.

Propagation of a trial soliton through one-component
soliton gas. We consider a ‘trial’ soliton with the spec-
tral parameter η = η1 moving through a one-component
soliton gas with the distribution function

f(η;x, t) = f0(x, t)δ(η − η0), (8)

where the density f0(x, t) is found by the substitution of
the distribution (8) into Eqs. (2), (3), yielding the linear
transport equation ∂tf0 + 4η2

0∂xf0 = 0, describing a triv-
ial translation of the initial distribution function with the
constant speed s(η0) = 4η2

0 , i.e. f0(x, t) = F (x − 4η2
0t),

where F (x) ≡ f0(x, 0) is the initial distribution. Substi-
tuting the distribution function (8) into the expressions
(5) for the moments we obtain from (6) the restriction
f0 ≤ η0/3 for the soliton gas density [20].

The mean velocity of the trial soliton s(η1;x, t) can then
be found from formula (3),

s1(x, t) = 4η2
1 +

1

η1
ln

∣∣∣∣η1 + η0

η1 − η0

∣∣∣∣ f0(x, t)[ s1(x, t)− 4η2
0 ] ,

(9)

where s1(x, t) ≡ s(η1;x, t)). Expressing s1 from (9) we
obtain

s1 = 4
η2

1 − αη2
0f0(x, t)

1 − αf0(x, t)
, αf0(x, t) 6= 1. (10)

Here

α =
1

η1
ln

∣∣∣∣η1 + η0

η1 − η0

∣∣∣∣ > 0 (11)

is the classical expression for a phase-shift in a two-soliton
collision [9].

Soliton gas shock tube problem. We now consider a
two-component soliton gas by introducing the distribution
function in the form

f(η;x, t) = f1(x, t)δ(η − η1) + f2(x, t)δ(η − η2) , (12)

where
η1,2 > 0 , η1 6= η2 , f1,2 > 0 . (13)

Substitution of (12) into (2), (3) leads to the system of
two conservation laws

∂tf1 + ∂x(f1s1) = 0 , ∂tf2 + ∂x(f2s2) = 0, (14)

s1 = 4η2
1 +α1(s1−s2)f2 , s2 = 4η2

2 +α2(s2−s1)f1 ,
(15)

where s1,2 ≡ s(η1,2;x, t), and

α1,2 =
1

η1,2
log

∣∣∣∣η1 + η2

η1 − η2

∣∣∣∣ > 0 . (16)

It follows from (13), (15) and (16) that if s1 > 4η2
1 then

s1 > s2 and s2 < 4η2
2 . Similarly, if s1 < 4η2

1 then s1 < s2

and s2 > 4η2
2 .

We note that, in the degenerate case η1 = η2 ≡ η0 the
ansatz (12) reduces to the one-component distribution (8)
with f0 = f1 + f2 as expected. Expressing s1,2 in terms of
f1,2 from (15) we obtain

s1 = 4η2
1 +

4(η2
1 − η2

2)α2f2

1− α1f1 − α2f2
, s2 = 4η2

2−
4(η2

1 − η2
2)α1f1

1− α1f1 − α2f2

(17)
provided f1α1 + f2α2 6= 1. Note that by setting f1 ≡ 0 we
recover the expression (10) for the speed of the trial soliton
s1 (to establish the correspondence with (10) the index ‘2’
in the first expression (17) should be replaced with 0, also
α2 becomes α). The density of the two-component soliton
gas (4) is κ = f1 + f2. It is not difficult to show that Eqs.
(14), (15) assume the diagonal form in variables s1, s2 [12],

∂ts1 + s2∂xs1 = 0 , ∂ts2 + s1∂xs2 = 0 . (18)

System (18) is linearly degenerate which implies (see [17]
for the relevant account of the properties of linearly de-
generate hydrodynamic type systems): (i) the absence of
the nonlinear wave-breaking effects in a two-component
soliton gas and (ii) unavailability of simple-wave solutions
(indeed one can easily see that the ansatz s2(s1) implies
that s1,2 are constants).
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We now consider the Riemann problem for the two-
component soliton gas characterised by the spectral dis-
tribution function (12) corresponding to the shock tube
problem: an initial contact discontinuity separating gases
of different density{

f1(x, 0) = f10, f2(x, 0) = 0 , x < 0,

f2(x, 0) = f20, f1(x, 0) = 0, x > 0,
(19)

where f10, f20 > 0 are some constants satisfying fi0 6
ηi/3. We also assume that η1 > η2. Note that, unlike
in the classical gas-dynamics shock tube problem, the ini-
tial velocity of the soliton gases is not zero but is fully
determined, via Eq. (17), by the density distribution (19).

Since the governing Eqs. (18) are quasilinear the solu-
tion of the Riemann problem must depend on x/t alone.
Due to linear degeneracy system (18) does not have non-
constant simple wave solutions so one has to look for a
weak solutions of the original conservation laws (14). The
required solution represents a combination of three con-
stant states separated by two contact discontinuities (see
[12]). For the total density κ = f1 +f2 we have (see Fig. 3,
middle panel, below)

κ(x, t) =


f10, x < c−t,

f1c + f2c, c−t < x < c+t,

f20, x > c+t.

(20)

The values f1c and f2c of the component densities in the
middle region where an interaction of soliton gases occurs,
as well as the velocities c± of the contact discontinuities
are found from the Rankine–Hugoniot jump conditions,

−c−(f10 − f1c) + (f10s10 − f1cs1c) = 0 ,
−c−(0− f2c) + (0− f2cs2c) = 0 ;

(21)

−c+(f1c − 0) + (f1cs1c − 0) = 0 ,
−c+(f2c − f20) + (f2cs2c − f20s20) = 0 .

(22)

Here c− and c+ are the velocities of the left and right
discontinuity respectively, and f1c, f2c and s1c, s2c are
the densities and velocities of the soliton gas components
in the interaction region x ∈ [c−t, c+t]. The velocities s1c

and s2c are expressed in terms of f1c, f2c by relations (17).
Solving (21) and (22) we obtain:

f1c =
f10(1− α2f20)

1− α1α2f10f20
, f2c =

f20(1− α1f10)

1− α1α2f10f20
. (23)

The speeds c± of the boundaries of the interaction region
are given by

c− = 4η2
2 −

4(η2
1 − η2

2)η1f1c

1− α1f1c − α2f2c
,

c+ = 4η2
1 +

4(η2
1 − η2

2)α2f2c

1− α1f1c − α2f2c
.

(24)

The expanding interaction region in the soliton gas
shock tube problem can be viewed as a stochastic coun-
terpart of the traditional, coherent dispersive shock wave

(DSW) forming due to a dispersive regularisation of the
Riemann initial data in the KdV equation [21] (we need
to make a clear distinction between the studied here inco-
herent DSWs occurring in physical space, and the incoher-
ent DSWs recently observed in the Fourier spectra evolu-
tion of random waves [22]). In contrast with the coherent
DSWs, the incoherent DSW generated in the collision of
two soliton gases does not have a distinctive structure of
a slowly modulated wavetrain but is characterised by the
uniformly increased itensity of fluctuations A2 (6) com-
pared to the values of A2 in the colliding soliton gases at
t = 0. It is not difficult to show that the density of the
two-component soliton gas in the incoherent DSW region,
κc = f1c + f2c > f10, f20 but κc < f10 + f20.

Numerical experiments. – In this section we per-
form direct numerical simulations of the KdV soliton gas
and compare the numerical solutions with the correspond-
ing exact solutions of the kinetic equation obtained in the
previous section.

In order to solve numerically the KdV equation we
employ the standard pseudo-spectral Fourier collocation
technique [23, 24]. This method is briefly explained be-
low. Denote by û(k, t) = F{u} the Fourier transform of
u(x, t) in x, where k is the wavenumber. Then, by Fourier-

transforming Eq. (1) yields ût − ik3û = −3ik(̂u2). The
most computationally efficient way consists in computing
the spatial derivatives in spectral space while the nonlinear
product is computed in real space and dealised using the
classical 3/2th rule. In order to improve the time-stepping
we will use the so-called integrating factor technique. This
consists of the exact integration of the linear terms [24].
This allows to increase substantially the accuracy and the
stability region of the time marching scheme [23]. Finally,
the resulting system is discretized in time by the Verner’s
embedded adaptive 9(8) Runge–Kutta scheme [25]. The
time step is adapted automatically according to the H211b
digital filter approach [26].

Test 1: Propagation of a trial soliton through a one-
component gas. We now present the results of the nu-
merical simulation of the propagation of a trial soliton
with given spectral parameter η = η1 through the one-
component soliton gas with η = η0 to compare with the
theoretical results. The value for the comparison is the
mean (i.e. averaged over a large interval) velocity of the
trial soliton given by formula (10) in which f0 = const.

In the simulations, the initial condition for the one-
component KdV soliton gas is composed of finite but suf-
fuciently large number M of solitons (in our experiments
M = 200) with the random amplitude a = 2η2 chosen
from the normal distribution of the spectrum η with mean
η0 and fixed standard deviation σ = 2 × 10−2, separated
by a space lag ∆0 whose value is directly related to the
gas density:

w(x, 0) =

M∑
i=1

2η2
i sech2

(
ηi[x− (`+ i∆0 + εi) ]

)
. (25)
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Fig. 1: Comparison for the propagation of a free soliton with
η1 = 0.65 in a void (black dashed line) with the propagation
of the trial soliton with the same spectral parameter (red solid
line) through a soliton gas with the dominant spectral compo-
nent η0 = 0.3 and density f0 = 0.048. One can see that the
trial soliton gets accelerated due to the interactions with smaller
solitons in the gas.

The parameters ` and εi are respectively the starting
point of the random lattice and a random (uniform) per-
tubation to the i-th soliton position, taken in the interval
εi ∈ (−1, 1). So that, in order to increase (or decrease)
the density κ0, it is only required to change the value of
∆0.

With an added trial η1-soliton the initial-boundary con-
ditions for the KdV equation (1) assume the form

u(x, 0) = 2η2
1sech2(η1x) + w(x, 0),

u(x+ 2L, t) = u(x, t).
(26)

The snapshots of the trial soliton evolution are shown in
Fig. 1. One can see that the trial soliton undergoes a
noticeable acceleration as predicted by the theory. The
quantitative comparisons of the numerically found values
for the averaged speed of the trial soliton with the formula
(9) are shown in Fig. 2(a, b) for two different sets of pa-
rameters of the soliton gas. The comparisons in Fig. 2(a,
b) show excellent agreement between the results of direct
numerical simulations and the predictions of the kinetic
theory. In all simulations the condition (6) restricting the
soliton gas density (see [20]) is satisfied.

Test 2: Soliton gas shock tube problem. Following the
strategy proposed in the previous section, we build the
initial condition as a superposition of two distinct popu-
lations of solitons separated at t = 0 by an empty gap, so
that u(x, 0) = w1(x, 0) + w2(x, 0). As in the pevious case
the amplitudes 2η2 of the two gas components (w1(x, 0)
and w2(x, 0)) are specified by the Gaussian random values
distributed with the means η1 and η2 and standard devi-
ations σ1 = 10−4 and σ2 = 2 × 10−2 respectively. Again,
the respective densities f10 and f20 can be easily changed
by tuning the parameters ∆1 and ∆2. The numerical so-
lution of the KdV equation with this initial condition is
presented in Fig. 3. We now perform the comparison of
the parameters of this numerical solution with the weak
analytical solution (20) of the soliton gas shock tube prob-
lem. Specifically, we are interested in comparing the total
density of solitons κc = f1c + f2c in the interaction (in-
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Fig. 2: Comparison of the kinetic theory prediction (9) for the
average speed of a large trial soliton propagating through a one-
component soliton gas with the results of direct numerical sim-
ulations of the KdV soliton gas) panels (a,b); panels (c, d):
Comparisons for the shock tube problem: the speeds c± of the
edges of the interaction region.

coherent DSW) region and in the speeds c± of its edges.

The comparisons for the velocities of the edges of the
interaction region (incoherent DSW) is presented in Fig. 2
(c,d) and demonstrate excellent agreement between the
analytical and numerical results.

The comparisons for the total density as the function of
time in the interaction region is presented in Fig. 4(a,b).
One can see three distinct regions in these plots. The value
of the total density is initially equal to the sum f10 + f20

of the component densities and then decreases through
the equilibration process to the stationary value κc (high-
lighted in all threee plots) which is in excellent agreement
with the predictions of the theory based on the weak so-
lution (20). The subsequent decrease of the density seen
in the numerical plots is due to an inherent restriction of
the numerical experiment involving finite number of soli-
tons so the interaction region is sustained only for a finite
interval of time.

We shall now compare the values of the two first mo-
ments (5), which for the interaction region assume the
form, on using the ansatz (12),

(u)c = 4(η1f1c + η2f2c); (u2)c =
16

3
(η3

1f1c + η3
2f2c) ,

where f1c and f2c are determined in terms of the initial
data by formulae (23). The results of the comparison are
presented in Fig. 4(d). Again, the excellent agreement is
observed. One can also see that the condition (6), A2

c =
(u2)c − (u)2

c > 0, is satisfied.
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Fig. 3: Soliton gas shock tube problem: numerical solution of
the KdV equation. The expanding incoherent DSW region due
to the interaction of two cold soliton gases is shown in blue.

Conclusions. – We have undertaken a detailed com-
parison of the macroscopic dynamics of the KdV soliton
gas predicted by the kinetic equation for solitons with the
results of direct numerical simulations of the KdV equa-
tion. The simulations involved 200 solitons enabling an
accurate determination of macroscopic parameters of the
soliton gas. Two test problems have been considered: the
propagation of a trial soliton through a one-component
‘cold’ soliton gas and the shock tube problem involving
the interaction of two cold gases with different parame-
ters leading to the formation of an incoherent dispersive
shock wave. In both cases an excellent agreement between
the asymptotic analytical predictions of the kinetic equa-
tion and the direct KdV ‘molecular dynamics’ numerical
simulations has been observed. This confirms validity of
the kinetic equation for solitons as a quantitatively accu-
rate model for the description of non-equilibrium dynam-
ics of soliton gases in integrable systems. The challenging
problem is now to study the structure and evolution of
the definitive statistical characteristics of integrable soli-
ton turbulence (PDF, power spectrum density etc.). This
will be the subject of future work.
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