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In this paper we report a study designed to investigate the impact of logical reasoning ability on 
proof comprehension. Undergraduates beginning their study of proof-based mathematics were 
asked to complete a conditional reasoning task that involved deciding whether a stated 
conclusion follows necessarily from a statement of the form “if p then q”; they were then asked 
to read a previously unseen proof and to complete an associated comprehension test.  To 
investigate the broader impact of their conditional reasoning skills, we also constructed a 
composite measure of the participants’ performance in their mathematics courses.  Analyses 
revealed that the ability to reject invalid denial-of-the-antecedent and affirmation-of-the-
consequent inferences predicted both proof comprehension and course performance, but the 
ability to endorse valid modus tollens inferences did not.  This result adds to a growing body of 
research indicating that success in advanced mathematics does not require a normatively correct 
material interpretation of conditional statements. 
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Introduction 
Mathematics and logical reasoning are seen as closely related.  It is widely believed that 

study of mathematics develops general logical reasoning skills (e.g., NCTM, 2000), and that 
correct logical reasoning is important for study of advanced mathematics: transition-to-proof 
textbooks commonly deal with the topic explicitly.  But is this really the case?  Recent research 
has revealed that mathematics and logical reasoning are related, but that this relationship is not 
straightforward: it is not the case that experienced mathematicians uniformly conform to 
normatively correct interpretations of conditional statements (e.g., Inglis & Simpson, 2006).  
This raises questions about what we need to teach and about which failures of reasoning should 
worry us.  In this paper we take up this discussion, arguing that mathematics education does not 
lead students to normatively correct reasoning, but does nevertheless develop the logical 
reasoning skills that students need for advanced mathematics.  We begin by reviewing arguments 
and evidence on expert and novice reasoning with conditional statements of the form “if p then 
q.”   
 

Reasoning with Conditional Statements 
Consider a conditional statement about an imaginary letter-number pair:  

“If the letter is X then the number is 1.” 
Researchers have investigated patterns of responses to four possible inferences from this 
statement plus a related assertion; these inferences are listed in Table 1. 
 

	
   	
  



Assertion Inference Inference type 
The letter is X (p) The number is 1 Modus ponens 
The letter is not X (not-p) The number is not 1 Denial of the antecedent 
The number is 1 (q) The letter is X Affirmation of the consequent 
The number is not 1 (not-q) The letter is not X Modus tollens 

Table 1: Four possible inferences from the conditional statement plus a related assertion. 
 

In formal logic, where conditional statements are interpreted as material conditionals, 
modus ponens (MP) and modus tollens (MT) inferences are defined to be valid, and denial-of-
the-antecedent (DA) and affirmation-of-the-consequent (AC) inferences are defined to be 
invalid.  This is the interpretation taught in textbooks and in transition-to-proof-courses.  It is not, 
however, the interpretation commonly made by people without formal training.  In everyday life, 
it has been argued that a defective conditional interpretation is more common (e.g., Quine, 1966).  
Under this interpretation, the conditional statement is seen as stating only that the consequent 
follows given that the antecedent is true, meaning that the statement is irrelevant in cases in 
which the antecedent is not true.  The picture is further complicated by the common everyday 
interpretation of a conditional statement “if p then q” as the biconditional statement “p if and 
only if q” (e.g., Epp, 2003). These three interpretations are compared in Table 2.  
 

p q if p then q (biconditional) if p then q (defective) if p then q (material)  
T T T T T 
T F F F F 
F T F irrelevant T 
F F T irrelevant T 

Table 2: Comparison of biconditional, defective conditional and material conditional 
interpretations (T – true; F – false). 
 

The corresponding responses to the four inference types are given in Table 3.  Under a 
biconditional interpretation, p and q are seen as simply “going together,” so that either both are 
true or both are false.  This corresponds to endorsement of all four inferences.  Under a defective 
interpretation, only modus ponens is endorsed, since the other three inferences involve assertions 
for which the conditional statement is seen as irrelevant.  The material interpretation corresponds 
to the normatively correct responses as listed above. 
 

Inference type biconditional defective material  
Modus ponens endorse endorse endorse 
Denial of the antecedent endorse reject reject 
Affirmation of the consequent endorse reject reject 
Modus tollens endorse reject endorse 

Table 3: Comparison of biconditional, defective conditional and material conditional 
interpretations. 
 

It might be natural, then, to see the material interpretation as the most sophisticated, and to 
believe that mathematics educators should help students develop toward this interpretation and 
should be concerned if it is not attained.  But is it true that a material interpretation is important 
for mathematical success? 



 
Evidence on Mathematical Education and Logical Reasoning 

It has been argued that a material interpretation is needed for advanced mathematics; that 
certain forms of indirect reasoning are not accessible without it (Durand-Guerrier, 2003).  
However, it has also been argued that at lower educational levels a defective interpretation is 
more appropriate, “since in school mathematics, students have to appreciate the consequence of 
an implication when the antecedent is taken to be true” (Hoyles & Küchemann, 2002, p. 196).  
Indeed, evidence indicates that mathematical study develops conditional reasoning skill, but 
develops it toward a defective rather than a material interpretation.  In a sample of students in the 
UK, where compulsory education ends at 16, those studying mathematics in the first non-
compulsory year were found to change in their responses to a conditional reasoning task more 
than did an equivalent population studying English literature (and not mathematics).  The 
mathematics students became more likely to reject AC inferences and DA inferences, but also 
more likely to reject MT inferences (Attridge & Inglis, 2013).  Might this mean that their 
education did a disservice to those who went on to study undergraduate mathematics?  Does pre-
proof mathematical education teach students a better but still inadequate interpretation of the 
conditional, and does this cause problems when they come to study proof?  

Surprisingly, evidence from work with professional mathematicians suggests that it might 
not, because mathematicians do not reliably make the material interpretation either.  In a study of 
mathematicians’ responses to the Wason Selection Task, Inglis and Simpson (2006) showed that 
professional mathematicians behave differently from members of a general educated population: 
they are not tempted by AC and DA inferences, but neither do they reliably consider a relevant 
MT inference.  Perhaps, then, a defective interpretation is perfectly adequate for success even in 
proof-based mathematics.  Our data supports this suggestion, as described below. 

 
Methods 

Participants in our study were 112 students in a first year, second semester undergraduate 
mathematics class on problem solving and proving (the equivalent of a transition-to-proof 
course). All had taken a linear algebra course in the previous semester (this included theorems 
and proofs but treated these quite lightly) and were concurrently enrolled on a course in calculus 
(this included some proofs and some calculations involving limits, but epsilon-delta techniques 
appeared only briefly).  All were spending 50% of their total time over the year in these 
mathematics classes, and for almost all this was a compulsory component of a degree 
programme with “mathematics” in the title.  In workshop sessions in week 8 of the 11-week 
problem solving and proofs course, participants were asked to complete a conditional reasoning 
test, and to read and answer comprehension questions on a previously unseen proof.  They 
completed both tasks individually and in silence. 

The conditional reasoning test (adapted from Evans, Clibbens & Rood, 1995) comprised 16 
items of the form shown in Figure 1. There were four items for each type of inference (MP, AC, 
DA and MT), and instructions asked participants to decide whether the conclusion necessarily 
follows and to indicate their answer by placing a check mark in the appropriate circle.  
Participants were given ten minutes to complete the task, and the order of the items was 
randomised for each participant.  For analysis purposes, a count out of four was constructed for 
each inference type, where each point indicated an instance in which the participant agreed with 
an inference of the relevant type. 

 



If the letter is J then the number is not 2. 
The number is 7. 
Conclusion: The letter is J. 
¢ YES. 
¢ NO. 

Figure 1: A conditional reasoning test item (an AC item).  
 
The proof comprehension task involved a proof that the product of two primes is not 

abundant (i.e., that the product is not less than the sum of its proper factors).  Participants were 
asked to study the proof carefully and then to answer a proof comprehension test based on the 
model developed by Mejía-Ramos, Fuller, Weber, Rhoads and Samkoff (2012).  This test 
comprised ten multiple-choice items, each of which had two distractors and one correct answer 
(the proof and test are too long to reproduce here, but full copies will be provided at the talk if 
this paper is accepted).  Participants were allowed 15 minutes for this task. 

Finally, we obtained the participants’ examination scores in their calculus, linear algebra and 
problem solving and proofs courses (all three courses had some coursework together with a final 
individual summative examination worth 85% of the course grade).  The average of these scores 
was used as a measure for performance in core mathematics courses. 

 
Results 

Table 4 presents the descriptive statistics for all six measures, showing the minimum and 
maximum number of inferences of each type endorsed, as well as the associated means and 
standard deviations.  
 

Measure (theoretical max) Min Max Mean Std. Dev.  
MP inferences endorsed (4) 2 4 3.68 0.541 
DA inferences endorsed (4) 0 4 1.06 1.085 
AC inferences endorsed (4) 0 4 1.42 1.271 
MT inferences endorsed (4) 0 4 2.68 1.050 
Proof Comprehension (10) 3 10 7.29 0.182 
Math Course (100) 22 95 61.86 16.426 

Table 4: Descriptive statistics. 
 
We note that the MP counts were close to ceiling.  This is to be expected, but it renders this 
measure inappropriate for use in regression models, so we omit it in the following analyses.  The 
counts for the remaining conditional reasoning measures show considerable variability – 
participants on average endorsed more than one of each of the invalid DA and AC inferences, 
and rejected more than one valid MT inference.  The proof comprehension scores were generally 
high, and the range and average of the mathematics performance scores were typical in the 
national context in which the study took place. 

Table 5 presents regression models with the DA, AC and MT counts as independent 
variables and with (a) proof comprehension score and (b) mathematics performance score as the 
dependent variables.  Figure 3 shows the means of the proof comprehension and mathematics 
performance scores for participants with different DA, AC and MT counts, together with lines of 
best fit for cases in which the count is a significant predictor. 
  



 
(a) 

R2 Predictors β p 
.171*** DA -.234 .029 
 AC -.234 .031 
 MT .003 .969 

 
(b) 

R2 Predictors β p 
.261*** DA -.209 .041 
 AC -.342 .001 
 MT .084 .321 

Table 5: Regression models predicting (a) proof comprehension score and (b) mathematics 
performance; ***p<.001. 
.  
 

 
Figure 2: Proof Comprehension test and Math Course score means and correlation coefficients 
for participants endorsing different numbers of DA, AC and MT inferences; error bars show ±1 
SE of the mean, *** p < .001. 
 

In both models, the DA and AC counts were significant predictors with negative 
coefficients: participants who rejected more DA and more AC inferences performed better both 
on the proof comprehension test and in their mathematics courses.  In both models, the MT score 
was not a significant predictor: endorsement of MT inferences, which are valid under the 
normatively correct material interpretation of the conditional, did not have a systematic effect on 
either outcome measure. 
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Discussion 
The material interpretation of the conditional is normatively correct and is taught in standard 

undergraduate mathematics.  However, this study adds to a growing set of results suggesting that 
full conformity with its entailments is not necessary for mathematical success.  While the ability 
to reject invalid DA and AC inferences does appear to predict success in proof comprehension 
and in undergraduate-level courses, the ability to reliably endorse valid MT inferences does not.   

One obvious limitation of this study is that it involved a comprehension test for only a single 
proof.  Concern about this should be mitigated by the second regression model in which 
performance across three core mathematics modules showed a similar pattern; if a lack of ability 
to endorse MT inferences were a serious problem, we would expect it to appear as a significant 
predictor in this model.  However, these results leave open the possibility that a defective 
interpretation of the conditional is a disadvantage under some specific circumstances.  Perhaps, 
for instance, students with this interpretation are less able to understand contradiction or 
contraposition arguments.  All such arguments relative to a statement of the form “if p then q” 
involve a step at which one establishes not-q and uses this to conclude not-p.  Thus, we might 
expect them to be less well understood by students who do not readily endorse MT inferences.  
This could be investigated, although we suggest that such work should be done in parallel with 
further investigation of how expert mathematicians process such arguments.  Recall that 
mathematicians do not reliably consider relevant MT inferences under all circumstances, so there 
might not be a straightforward link between reasoning about single abstract conditional 
statements and understanding this structure as it is used in proofs.  Indeed, Inglis and Simpson 
(2009) suggest that the equivalent of an MT inference can be constructed given a defective 
interpretation of the conditional statement “if p then q” and the assertion not-q: they might 
suppose p, conclude q by MP, note that this contradicts the assertion, and conclude that their 
supposition of p was incorrect.  This is a somewhat long chain of reasoning, but that very fact 
might account for all of the results: if this is the mechanism typically used, we would expect that 
neither mathematicians nor students would endorse all straightforward MT inferences by simple 
recognition, but that experienced mathematicians and more successful students would be better 
able to reach correct conclusions by correctly reasoning through the whole chain. 

Prior to such investigations, we do not suggest that we should stop teaching mathematics 
students the material interpretation of the conditional.  However, we do suggest that we should 
not be too concerned if undergraduate students do not develop to a point at which they reliably 
endorse MT inferences, because it appears that they may not need to. 
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