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Abstract  

Kindergarteners can conduct basic computations with large nonsymbolic (e.g. dots, 

objects) and symbolic (i.e. Arabic numbers) numerosities in an approximate manner. These 

abilities are related to individual differences in mathematics achievement. At the same time, 

these individual differences are also determined by Working Memory (WM). The 

interrelationship between approximation, WM and math achievement has been largely 

unexplored. Also, the differential role of nonsymbolic and symbolic approximation in 

explaining math competencies is yet unclear. We examined an integrative theoretical model 

on the association of approximation (addition and comparison) and WM in 444 

kindergarteners. As expected, approximation entailed two distinct abilities (nonsymbolic and 

symbolic). Both abilities correlated with mathematics achievement (i.e. counting and exact 

arithmetic), even when WM was taken into account. The association between nonsymbolic 

approximation and math achievement was completely mediated by symbolic approximation 

skills. These findings add to our understanding of the cognitive architecture underlying 

kindergarten math achievement. 

 

 

Keywords: Numerical cognition; Nonsymbolic Approximation; Symbolic Approximation; 

Working Memory; Math Achievement.  
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1. Introduction 

From the girl, who realizes she was given less candies than her older sister, to the adult 

at the counter, who estimates his change, math is everywhere. There are large differences 

between individuals in the way they develop mathematical competencies (Geary, 2011). 

Research so far has been very fruitful in identifying math-specific (neuro)cognitive precursors 

for mathematical achievement at the early stages of development (see Dehaene, 2011; 

Feigenson, Dehaene, & Spelke, 2004; Piazza, 2010). Crucial roles have been attributed to 

children’s abilities to conduct simple computations in an approximate manner with large 

nonsymbolic (e.g. objects, dots, sounds), and symbolic (i.e., Arabic numbers) numerosities 

(e.g. Barth, La Mont, Lipton, Dehaene, Kanwisher, & Spelke, 2006; Gilmore, McCarthy, & 

Spelke, 2007; 2010; Libertus, Feigenson, & Halberda, 2011). However, the differential role 

that nonsymbolic and symbolic approximate magnitude skills play in the early development 

of children’s math proficiency and deficiency is an ongoing discussion in the literature (e.g. 

Gilmore, et al., 2010; Holloway & Ansari, 2009; Mundy & Gilmore, 2009; Noël & Rouselle, 

2011).  

Previous research in the domain has mostly been conducted with small populations 

limiting the generalizability of their results. Also, few have focused on the kindergarten age, 

i.e. before the start of formal primary education, or have used multiple measures of 

approximation skills. Finally, the effect of the domain-general capacity of Working Memory 

(WM), which has been demonstrated to affect approximation processing (Caviola, 

Mammarella, Cornoldi, & Lucangeli, 2012; Xenidou-Dervou, Van Lieshout, & Van der 

Schoot, in press) has not yet been accounted for in related research.  

The present study tried to address these issues by investigating how nonsymbolic and 

symbolic approximation skills were related to kindergarten math achievement when taking 
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into account WM capacity. We conducted a large-scale correlational study that allowed us to 

examine the factorial structure and interrelation of the aforementioned cognitive skills. With 

this design, we were able to address the issue of which specific role nonsymbolic and 

symbolic approximation skills (addition and comparison) could play in explaining individual 

differences in math achievement at the kindergarten age.  

1.1 Nonsymbolic and symbolic approximation skills 

Learning addition in the form of a + b = c, is a strenuous process and its mastery may 

take years within primary school instruction (Ashcraft & Fierman, 1982; Haman & Ashcraft, 

1985). Nonetheless, kindergarteners appear to perform easily above chance level in addition 

tasks that call for an approximate response (Barth, La Mont, et al., 2006; Gilmore et al., 2007; 

2010). The literature assumes the existence of an evolutionary ancient system, the so-called 

Approximate Number System (ANS), with which humans and animals are enriched in order 

to estimate stimuli in nature (see Brannon, Jordan, & Jones, 2010; Feigenson et al., 2004; 

Piazza, 2010). Preschool children, before having acquired formal school instruction, have 

been consistently demonstrated to be able to successfully compare and add approximately 

large quantities of nonsymbolic stimuli (Barth, et al., 2006; Gilmore, et al., 2010; Libertus,et 

al., 2011; Mazzocco, Feigenson, & Halberda, 2011; Xenidou-Dervou, et al., in press). They 

can do so even when these quantities are presented in different modalities and formats (Barth, 

Beckmann, & Spelke, 2008; McNeil, Wagner Fuhs, Keultjes, & Gibson, 2011). Performance 

in tasks assessing these skills is characterized by the so-called ratio effect. The more the ratio 

difference between two target numerosities approaches 1, the harder it is to compare them 

(Barth et al., 2006; Izard & Dehaene, 2008). Additionally, research has shown that 

nonsymbolic approximate addition is as accurate as nonsymbolic approximate comparison, 

which calls only for the comparison of two numerosities (Barth et al., 2006). The 

aforementioned skills are referred to here as nonsymbolic approximation skills.  
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Five-year old children are able to solve corresponding approximate comparison and 

addition problems even with symbolic stimuli when they have not actually been formally 

taught large-numerosity symbolic arithmetic (Gilmore, et al., 2007; McNeil et al., 2011). 

These abilities are referred to as symbolic approximation skills and they are subject to the 

same characteristic effects as nonsymbolic approximation (Gilmore et al., 2007). This shared 

cognitive profile suggested that children recruit their ANS representations when engaging in 

symbolic approximation. In other words, it is assumed that symbolic approximate 

representations are mapped onto and are fostered by one’s preexisting nonsymbolic 

representations. More precise mapping representations between nonsymbolic and symbolic 

numerosities have been associated with better mathematical achievement in young children 

(Mundy & Gilmore, 2009). In this respect, the approximation system is sometimes viewed as 

a single system.  

The precise role that nonsymbolic approximation plays in the process of acquiring 

formal mathematical knowledge and skills is yet unclear. Some assume that it comprises the 

foundation for learning symbolic arithmetic, i.e. as taught in school (Barth et al., 2006; 

Gilmore et al., 2007; Halberda et al., 2008; Halberda & Feigenson, 2008; Libertus, et al., 

2011; Mazzocco, et al., 2011; Mundy & Gilmore, 2009). In line with this view, Gilmore et al. 

(2010) found preschoolers’ nonsymbolic approximation skills to be predictive of their 

counting and mathematical skills. This occurred irrespective of the children’s verbal 

intelligence and reading skills.  

Others, however, support that nonsymbolic approximation skills are not determinant 

for early mathematics achievement (LeCorre & Carrey, 2007; Noël & Rouselle, 2011). It is 

assumed that the skills in question become important only after the age of eight years (Noël & 

Rouselle, 2011). This assumption is supported by findings, where nonsymbolic task 

performance failed to account for individual differences in early age math achievement (e.g. 
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De Smedt & Gilmore, 2011; Mundy & Gilmore, 2009; Holloway & Ansari, 2009). Instead, 

nonsymbolic abilities played an important role for children of older ages (Piazza et al., 2010; 

Mazzocco et al., 2011). As outlined by Noël and Rouselle, (2011), the age factor is crucial. 

The aforementioned studies comprised children from six years of age and older. The critical 

age of kindergarten, however, has received less attention. Also, few studies have made use of 

multiple approximation measures. Sasanguie, De Smedt, Defever, and Reynvoet’s (2011) 

cross-sectional study, tested kindergarteners in nonsymbolic and symbolic comparison and 

number line tasks. They found a strong association between symbolic but not nonsymbolic 

magnitude comparison with kindergarteners’ math achievement. The small population sample 

used in this study, however, restricts the generalizability of the results. Furthermore, one may 

wonder as to how validly number line tasks measure numerical representation because: 

“Number line estimation tasks assess only one aspect of children’s numerical representations, 

namely, the linearity of children’s symbolic representations. Tasks involving more general 

nonsymbolic representations are necessary to fully investigate the role of this system in 

mathematics learning.” (Mundy & Gilmore, 2009; pp. 492). Inspired by Barth and colleagues’ 

(2005; 2006) and Gilmore and colleagues’ (2007) measures, the present correlational study 

assessed nonsymbolic and symbolic approximation skills in comparison as well as in addition, 

in a large population sample of kindergarteners. This design permitted the usage of structural 

equation modeling techniques that could determine the latent structure and interrelation of the 

targeted cognitive systems; namely, approximation skills, WM and math achievement.  

1.2 The role of WM 

WM refers to the cognitive system that is dedicated to the short-term storage, 

regulation and manipulation of information in an online manner (Baddeley, 2003). Baddeley’s 

multicomponent model of WM (Baddeley, 1986; 2003) incorporates a master system, the 

central executive (CE), which controls, monitors and regulates the processes of two auxiliary 
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systems; the phonological loop (PL) and the visuospatial sketchpad (VSSP). These “slave” 

subsystems are responsible for the temporary storage of phonological and visuospatial 

information respectively. All WM components have been shown to play a role in math 

performance. The extent of involvement of each component is dependent upon the different 

requirements of a given task (Noël, 2009; Rasmussen & Bisanz, 2005; Simons, Willis, & 

Adams, 2012; for a review see DeStefano & LeFevre, 2004).  

In general, there is compelling evidence surrounding the importance of WM in 

explaining individual differences in mathematical achievement (Bull, Espy, & Wiebe, 2008; 

De Smedt et al., 2009a; DeStefano & LeFevre, 2004; LeFevre, DeStefano, Coleman, & 

Shanahan, 2005; Passolunghi, Vercelloni, & Schadee, 2007; Raghubar, Barnes, & Hecht, 

2010). More specifically, it has been strongly related to both counting (Geary, Hoard, Byrd-

Craven, & DeSoto, 2004) as well as mental arithmetic (for a review see DeStefano & 

LeFevre, 2004). Recent findings addressed the association between children’s approximation 

skills and WM. With a dual-task study, Xenidou-Dervou, et al. (in press) demonstrated that 

the CE is necessary for nonsymbolic approximate addition processing in kindergarten. On the 

other hand, Caviola et al. (2012) showed that children’s symbolic approximate addition called 

for PL or VSSP resources according to the demands and constraints of a task. Thus, various 

WM components are necessary for processing different approximation problems. In essence, 

these findings suggest that individual differences in approximation skills can be explained by 

individual differences in WM capacity. To our knowledge, however, the effect of this 

interrelationship on kindergarteners’ math achievement has been unexplored. 

1.3 The present study 

In kindergarten, math achievement involves children learning how to count and 

beginning to understand the basic principles underlying addition (e.g. Geary, 2011). At this 
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developmental stage counting skills form children’s basis for learning how to conduct their 

first simple additions and constitute a measure of their math achievement (Geary, 2011; 

Geary, et al., 2004). We addressed the question: How are kindergarteners’ approximation and 

WM skills associated with these mathematical competencies? To the best of our knowledge, 

this study is the first to take into accumulating account the aforementioned skills in the 

process of math learning.  

Amassing the findings presented in the previous sections, we formulated a 

comprehensive model on the integrative relationship of approximation, WM and math 

achievement in kindergarten age. As illustrated in Figure 1, we hypothesized that: (1) 

Nonsymbolic and symbolic approximation skills would comprise two distinct abilities 

(Holloway & Ansari, 2009); (2) WM, as a domain-general cognitive ability, would predict 

math achievement beyond the effect of the domain-specific cognitive abilities (DeStefano & 

LeFevre, 2004; Geary, 2011; LeFevre et al., 2005; Raghubar, Barnes, & Hecht, 2010); (3) 

WM would influence performance in both nonsymbolic (Xenidou-Dervou et al., in press) and 

symbolic approximation (Caviola et al., 2012); (4) Nonsymbolic approximation would predict 

symbolic approximation since the latter is assumed to recruit nonsymbolic approximate 

representations (Gilmore et al., 2007), and lastly that (5) Nonsymbolic (Gilmore, et al., 2010) 

and symbolic approximation (De Smedt & Gilmore, 2011) would predict kindergarteners’ 

mathematical achievement.  

 

- Insert Figure 1 – 

 

Hypotheses 4 and 5 suggested that symbolic approximation partially mediates the 

relationship between nonsymbolic approximation and mathematical achievement (Figure 1). 
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Because the role of approximation skills in the process of learning mathematics remains 

elusive (Gilmore et al., 2010; Mundy & Gilmore, 2009; Noël & Rouselle, 2011), we tested 

two additional models. Beyond the partial mediation pattern, we examined whether a model 

with only the direct effects of nonsymbolic and symbolic approximation on math 

achievement, or a model where the effect of nonsymbolic approximation is completely 

mediated by symbolic approximation would best fit the data. 

 

2. Method 

2.1 Participants 

Participants were 444 kindergarten children (199 girls and 245 boys) with mean age 

5.59, SD = 0.35, years. Six children did not undertake the complete set of tasks: One child 

changed schools and the other five were unavailable on a testing day due to illness (see Table 

1). The data described in this paper were collected as part of an interlinked project entitled the 

“XXXX1” (see www.XXXX). We contacted regular schools from all around the Netherlands 

and recruited kindergarteners from 25 of these schools. Written informed consent forms were 

acquired from all children’s legal guardians. The number of participating children from each 

school ranged from 3 up to 59. We included kindergarteners from the whole ability range. 

95.3 % of the children had Dutch nationality. All children spoke Dutch and, according to 

teacher reports, 5.8% of the children spoke a second language. Participants were from middle- 

to high-class SES community environments. More than 40% of the children’s parents had 

completed higher levels of education (in the Dutch educational system: HBO and higher 

levels; fathers: 44.4 %, mothers: 41.3%). 

 
																																																													
1	This information has been omitted for the blind-review process	
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2.2 Procedure 

Children were tested individually in a quiet room within the school facilities during 

regular school hours by trained experimenters. The data reported regard a subset of tasks that 

were collected as part of the XXXX1. Testing for the measurement wave began in November 

and ended in January of the same academic year. It included three testing sessions with each 

child. The tasks reported were included within the first and the second session, each lasting 

approximately 30 minutes. Consecutive sessions took place within a maximum time-span of 

two weeks and a minimum of one day. Participants received stickers after each session in 

order to sustain their interest and motivation.  

2.3 Materials 

All tasks used in this study were computerized and presented with E-Prime, version 

1.2 (Psychological Software Tools, Pittsburgh, PA, USA). HP Probook 6550b type laptops 

were utilized with the screen resolution set to 600 x 480 pixels.    

2.3.1 Nonsymbolic and symbolic approximation.  Four tasks were used to assess 

children’s nonsymbolic and symbolic approximation skills: two addition tasks (nonsymbolic 

and symbolic) and two comparison tasks (nonsymbolic and symbolic).  

2.3.1.1 Nonsymbolic approximate addition.  We used an adapted version of the dot-

task described in Xenidou-Dervou et al. (in press; adapted from Barth et al. 2005; 2006). 

Images of a boy on the far top left side of the screen (Peter) and a girl on the far top right side 

of the screen (Sarah) were added. Thus, a small story was integrated in the task description 

about Peter and Sarah receiving an amount of marbles (dots). In each trial, the child was 

asked to indicate whether Sarah or Peter received the most marbles. This task entailed 6 

practice and 24 testing trials. A trial entailed four sequential steps: 1) a set of blue dots 

(marbles) dropped down on the left side of the screen, 2) these dots were covered up by a grey 



KINDERGARTEN MATH ACHIEVEMENT 11     11                

	

box, 3) another set of blue dots dropped into the box, 4) on the right top side of the screen, a 

set of red dots popped out and then dropped down. The duration of each of these animated 

steps was 1300ms and between each step there was an interval of 1200ms. This fast 

interchange of events prevented children from counting the dots. Children could respond from 

the moment the red dots popped up on the right upper side of the screen. Then, they had a 

maximum of 7000 ms to respond. There was a 300ms interval before the next trial started.	

Numerosities in this task ranged from 6 to 70. The sum of the blue arrays differed from the 

comparison red set by three ratios 4:7, 4:6, 4:5 (easy, middle and difficult ratio level; 8 trials 

each). In half of the trials the sum of the blue sets was larger than the red comparison set. In 

the other half, the comparison target was larger. Testing trials were designed in a manner that 

allowed post-hoc examination of whether children made use of any strategies alternative to 

approximation (see Appendix, Table A1). We controlled for responses being reliant on the 

physical features of the dot-sets (continuous quantity variables) by controlling for dot size, 

total surface area, total contour length and density (Barth et al., 2006; Gilmore et al., 2010). 

All dot-stimuli were developed with MATLAB 7.5 R2007b. 

Children were instructed to respond as correctly and as fast as possible. They 

responded by pressing the corresponding response button in front of them (blue or red). 

Instructions were given verbally during practice. No feedback was provided during the testing 

trials except for verbal encouragement to sustain engagement with the task. Before initiating 

the task, the experimenter would ask the child to point out on the screen the set of blue and 

the set of red dots in order to identify possible difficulties related to colorblindness. None of 

the children in our study indicated any difficulties with distinguishing the two colors. 

2.3.1.2 Nonsymbolic approximate comparison.  This task was similar to the previous 

one with the key difference of not having two blue sets of dots dropping in the grey box but 
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only one set: the sum of the original two (see Appendix, Table A1). Children were now asked 

to compare this blue array of dots with the subsequently presented red array. 

2.3.1.3 Symbolic approximate addition.  This task was also based on the nonsymbolic 

approximate addition task. In this condition, dot-sets were replaced with blue or red boxes 

that carried the Arabic numeral of the corresponding numerosity.  

2.3.1.4 Symbolic approximate comparison.  This task was the same as the 

nonsymbolic version except that Arabic numbers instead of dots had to be compared.  

2.3.2 WM.  The Dutch version of four tasks (Toll, Van der Ven, Kroesbergen & Van 

Luit, 2011; Messer, Leseman, Boom, & Mayo, 2010) from the Automated WM Assessment 

test battery (AWMA; Alloway, 2007) were used to assess children’s capacity on the three 

components of WM. These tasks have been widely used and have been shown to have high 

reliability (Alloway et al., 2006). Each task started with a short practice session. Instructions 

were read aloud by the experimenters.  

2.3.2.1 Phonological Loop (PL).  The Word recall forward task was used to tap 

children’s PL capacity. In this task, the child heard a sequence of letters and had to repeat 

them in the presented order. A correct response necessitated that the child would repeat the 

words correctly and in the right order. Task difficulty ranged from one up to five words. If the 

children gave four consecutive correct responses they moved to the next difficulty level. If 

they gave three consecutive incorrect answers, the task was automatically terminated.  

2.3.2.2 Visuospatial sketchpad (VSSP).  The Cross Matrix was used to assess 

children’s VSSP capacity. This task corresponds to the Dot Matrix task of the AWMA 

battery. In this version, crosses were presented instead of dots in order to avoid confounding 

aspects with our nonsymbolic tasks. The child saw an empty 4 x 4 matrix and was asked to 

point to the box where the cross had appeared earlier. Across trials, the level of difficulty 

ranged from the presentation of one cross up until a sequence of five crosses appearing in the 
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matrix. When a child responded correctly on four consecutive trials within a block, he/she 

was automatically upgraded to the next difficulty block. Three consecutive incorrect 

responses lead to the termination of the task. A response was automatically registered as 

incorrect: a) when one of the boxes was not indicated, b) when the sequence of the boxes the 

child pointed out was wrong, and lastly c) when a box was recalled incorrectly. 

2.3.2.3 Central Executive (CE).  Repovš and Baddeley (2006) highlighted the 

fractionation of the CE into a phonological and a visuospatial subsystem based on the type of 

information that is being manipulated. Therefore, we used a phonological (Word recall 

backwards) and a visuospatial (Odd One Out) CE task.  

2.3.2.3.1 Word Recall Backwards. The procedure was similar to that of the word recall 

forward apart with the difference that the child was now required to recall the words 

backwards. Difficulty ranged from a series of two up to six words. Correctness of responses 

was based on whether the child repeated correctly the words in the right sequence.  

2.3.2.3.2 Odd One Out. The child saw a set of three boxes one next to each other. Each 

box contained a shape and one shape was different from the other two. The child had to point 

at the odd shape. Then a new set of shapes was presented. More difficult trials contained more 

sets of shapes. This task entailed five levels of difficulty. At the end of each trial, three empty 

boxes were presented, where the child had to point to the locations of the previously shown 

odd shapes in the correct order. A response was correct when both the locations and the order 

were recalled correctly. When a child responded correctly to three consecutive trials of the 

same length, the sequence increased by one. After two consecutive incorrect responses, the 

task was terminated.   

2.3.3 Math Achievement.   
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2.3.3.1 Counting.  Children’s counting skills were measured with the relevant 

subscales from the Early Numeracy Test - Revised (ENT-R; Van Luit & Van de Rijt, 2009). 

The ENT-R is a test used for the assessment of children’s (aged 4 – 7 years) preparatory 

mathematical abilities. The original ENT-R consists of nine subscales, each with five items. 

Two analogous versions of this test exist (A and B). For this study, we used the four subscales 

of the A version (20 items), which assessed children’s counting skills and their ability to 

apply their knowledge of the counting system, namely: 1) Using number words, i.e., counting 

forwards and backwards up to maximum twenty; 2) Structured counting, i.e., counting while 

pointing to objects; 3) Resultative counting, i.e., counting without pointing to objects; 4) 

General understanding of numbers and using the counting system in everyday life. On a given 

item, a correct response was scored with one point and an incorrect with zero. The counting 

items of the ENT-R demonstrated high reliability: Cronbach’s alpha = .82.   

2.3.3.2 Exact Symbolic Addition. An adapted version of the Jenks, De Moor and Van 

Lieshout (2009) addition task was used. It entailed 15 problems in the form of a + b = c, 

where “a” and “b” were not equal and both larger than 1. After one practice trial, the child 

received 10 items with simple (c < 10) and 5 items with harder addition problems (10 < c < 

16). Each item appeared on the monitor and remained until the child gave a verbal response. 

Children were instructed to respond as correctly and as fast as possible. The experimenter 

pressed the space bar the moment the child responded recording his/her response time (RT). 

Because accuracy on this task was, as expected, low and many children (78/444) scored 0, 

RTs were not used in this study. The items of this task’s adapted version demonstrated a high 

level of internal consistency, Cronbach’s alpha = .91.  

 

2.4 Analyses 
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Our results section entails four parts. In the first part, we report preliminary analyses, 

where we examined the effectiveness of the nonsymbolic and symbolic approximation tasks. 

The second part entails descriptive statistics on all the measures assessed and includes 

evaluation of their appropriateness for the subsequent Confirmatory Factor Analyses (CFA) 

and Structural Equation Modeling (SEM). Thirdly, we report the results of two CFA analyses 

(measurement models), which determined the factor structure of our measures as 

representatives of three (CFA1: WM, approximation, math achievement) or four latent 

variables (CFA2: WM, nonsymbolic approximation, symbolic approximation, math 

achievement). Children’s scores on the Cross Matrix, Odd One Out, Word Recall Forward 

and Word Recall Backwards were set as indicators of the exogenous latent variable WM. 

Participants’ performance on counting and exact symbolic addition were set as indicators of 

the math achievement latent variable.  In CFA1 the four approximation measures indicated a 

single approximation latent variable. In CFA2 nonsymbolic approximate addition and 

comparison indicated the nonsymbolic approximation latent variable. Similarly, symbolic 

approximate addition and comparison indicated the symbolic approximation variable. In the 

fourth part of our results, SEM analyses were conducted to examine the structural model 

associations between the latent variables.  

CFA and SEM analyses were conducted using the Mplus analytic software, version 

6.11 (Muthén & Muthén, 1998-2011). SEM allows for the statistical evaluation of adequacy 

of a set of assumed regression (single-headed arrows) or correlation (double-headed) 

equations between the latent variables based on the correlation matrix of the observed 

variables (Hoyle, 1995). Among other advantages, SEM modeling is distinct from path or 

simple regression modeling because it distinguishes and controls for two different types of 

measurement errors: errors on the level of the observed variables and errors on the level of the 

structural equations (paths). Maximum-likelihood estimation procedures (MLE) were used. 



KINDERGARTEN MATH ACHIEVEMENT 16     16                

	

Graphical model representations depict the standardized solutions of the corresponding 

models. 

We tested five models: a) a measurement model with 3 factors, b) a measurement 

model with 4 factors, c) a model that assumes a partial mediation effect of symbolic 

approximation on the relationship between nonsymbolic approximation and math 

achievement (Partial Mediation model), d) a model where only the direct effects of 

nonsymbolic and symbolic approximation on math achievement were assumed (Direct Effects 

model) and e) a model where the effect of nonsymbolic approximation on mathematics 

achievement is fully mediated by symbolic approximation (Complete Mediation model).  

Model fit was assessed according to commonly accepted cutoff criteria (Hu & Bentler, 

2009; Schermelleh-Engel & Moosbrugger, 2003). These include the Comparative Fit Index 

(CFI) and the Tucker-Lewis Index (TLI) being close to .95 or greater, the Root Mean Square 

Error of Approximation (RMSEA) and the Standardized Root Mean Residual (SRMR) being 

close to .05 or smaller. The χ2 fit statistic test was not directly evaluated due to its known 

drawbacks with large sample sizes. Instead, incremental fit was assessed with the  χ2/df fit 

value (Schermelleh-Engel & Moosbrugger, 2003), in which values close to 2 or smaller 

indicate good model fit.  

The aforementioned absolute goodness of fit measures were used to compare the two 

measurement models (CFA1 vs CFA2). In the case of the SEM models, the full model (Partial 

Mediation) was compared with the fit of the Direct Effects and the Complete Mediation 

model by conducting chi-square difference tests (Satorra & Bentler, 2001). To facilitate 

model comparison, goodness-of-fit values, fit indexes and their corresponding acceptable and 

good fit criteria are summarized in Table 3.  
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2.5 Results 

2.5.1 Preliminary Analyses 

To examine whether the targeted prediction pattern of math achievement was 

influenced by the school factor, we calculated intra class correlations (ICCs) for all observed 

predictor variables. Our results showed that in 6 out of the 8 observed variables, the ICC 

results were very small and thus negligible: nonsymbolic approximate addition: 0.005, 

nonsymbolic approximate comparison: 0.010, symbolic approximate addition: 0.021, 

symbolic approximate comparison: 0.089, word recall forward: 0.034, word recall backwards: 

0.047. The Dot Matrix demonstrated a medium ICC (0.105) and only performance in the Odd 

One Out task demonstrated a high ICC (0.264). The Odd One Out task comprises only one of 

the four measures used to assess the WM construct. Additionally, there was no plausible 

reason to suppose that the school factor would influence performance on this task. Therefore, 

for model parsimony, the school factor was not included in our models.  

To establish the validity of our nonsymbolic and symbolic approximate tasks, we 

examined whether children scored above chance level and showed the expected ratio effect. 

T-test analyses showed that participants performed above chance level (50%) in all four 

approximation tasks: nonsymbolic addition (M = 63.04%, t(438) = 25.13, p < .001), 

nonsymbolic comparison (M = 64.32%, t(438) = 22.50, p < .001), symbolic addition (M = 

56.53%, t(438) = 11.62, p < .001), and symbolic comparison (M = 60.02%, t(438) = 13.79, p 

< .001). Supplementary analyses indicated that children solved the tasks without resorting to 

any guessing or comparison strategies alternative to approximate computations (Appendix, 

Table A2). Furthermore, they did not base their responses on the physical features of the dots 

in the case of the nonsymbolic versions (Appendix, Table A3). 
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The characteristic ratio effect was evident in children’s performance in the 

nonsymbolic approximate comparison, F(2, 880) = 88.49, p <.001, and addition task F(1.96, 

862.47) = 113.71, p <.001 (Figure 2). We also observed it for the symbolic approximate 

comparison task, F(1.94, 851.18) = 13.69, p <.001, but not for the symbolic approximate 

addition task, F(1.96, 860.16) = 1.56, p =.211 (Figure 2).  

 

- Insert Figure 2 –  

2.5.2 Descriptive Statistics 

Descriptive statistics of the administered measures are presented in Table 1. 

Probability distribution descriptors	indicated that all measures were within the acceptable 

limits of skewness less than 3 and kurtosis less than 4 (Kline, 2011). Table 2 entails the 

correlations amongst the observed variables. 

 

- Insert Table 1 – 

 

- Insert Table 2 – 

 

2.5.3 Measurement Models  

CFA analyses were conducted to determine the latent factor structure of the skills 

assessed. The CFA1 (with a single system of approximation) demonstrated a poor fit to the 

data and was rejected on the basis of the absolute goodness of fit indices, CFI, TLI and 
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RMSEA (Table 3). In contrast, the CFA2, where, as hypothesized, nonsymbolic and symbolic 

approximation comprised two separate abilities, demonstrated a good fit to the data, χ2/df = 

1.99, CFI = .969, TLI = .951, RMSEA = .047, SRMR = .033. As shown in Figure 3, in the 

CFA2 all observed variables loaded on the respective latent variables and all factor loadings 

were significant (p ≤ .001), with moderate to high effects ranging from .40 to .84.  

 

- Insert Figure 3 – 

 

2.5.4 SEM analyses 

With the CFA2 as the best fitting measurement model, we moved to examine the 

structural associations of the latent variables and the hypotheses regarding the role of 

nonsymbolic and symbolic approximation in kindergarteners’ math achievement. Three SEM 

analyses were conducted. First, we tested the Partial Mediation model, which assumes that 

symbolic approximation partially mediates the effect of nonsymbolic approximation on 

children’s math achievement. This model demonstrated a good fit to our data, χ2/df = 1.99, 

CFI = .969, TLI = .951, RMSEA = .047, SRMR = .033. All structural path coefficients were 

significant (p ≤ .001; βs ranging from .28 to .70), with the exception of the non-significant 

path between nonsymbolic approximation and math achievement (β = .13, p = .071).  

Next, the Direct Effects model was tested, where direct effects of nonsymbolic 

approximation and symbolic approximation on math achievement were specified. This model 

demonstrated a somewhat poorer fit, χ2/df = 2.47, CFI = .952, TLI = .927, RMSEA = .058, 

SRMR = .046. Again, all structural paths were significant (p ≤ .001) with βs ranging from .25 
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to .74 apart from the direct path between nonsymbolic approximation and math achievement 

(β = .11, p = .115).  

In the Complete Mediation model symbolic approximation skills completely mediated 

the effect of nonsymbolic approximation skills on math achievement (Figure 4). This model 

demonstrated good fit, χ2/df = 2.02, CFI = .966, TLI = .950, RMSEA = .048, SRMR = .034. All 

structural paths were statistically significant in the hypothesized directions (p ≤ .001). 

 

- Insert Figure 4 - 

 

Chi-square difference tests for nested models were conducted to compare the Partial 

Mediation model (full model) with the Direct Effects and the Complete Mediation model. The 

Partial Mediation model fit the data significantly better than the Direct Effect model, Δχ2(1) = 

74.24, p = .001, but not compared to the Complete Mediation model, Δχ2(1) = 3.07,  p = .08. 

These results suggested that, the more parsimonious, Complete Mediation model was the final 

model. Thus, symbolic approximation skills were shown to completely mediate the effect of 

nonsymbolic approximation skills on math achievement when controlling for WM effects. As 

shown in Figure 4, the expected associations between WM capacity, approximation skills and 

math achievement were demonstrated. Individual differences in WM capacity explained 

performance variation in both nonsymbolic and symbolic kindergarten approximation. 

Furthermore, WM capacity highly predicted individual differences in math achievement 

beyond the effect of approximation. Path coefficients of structural parameters in this final 

model (Figure 4), ranged from .30 to .74 representing medium to large effects (Cohen, 1992) 
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in the expected directions. With this model structure, 87.2 %  (SE = .064, p < .001) of the 

variance of kindergarteners’ math achievement was explained.  

 

- Insert Table 3 – 

 

2.6 Discussion 

 This large-scale study took an integrative look into the associations between 

approximation, WM and kindergarteners’ math skills. Results confirmed the expected 

factorial structure of the integrative theoretical model. Approximation was comprised of two 

distinct cognitive systems: nonsymbolic and symbolic approximation. Both systems 

correlated with kindergarteners’ counting and exact addition skills beyond the effect of WM 

capacity. We showed that the predictive relation between nonsymbolic approximation and 

math achievement is indirect. It was completely mediated by symbolic approximation. As 

expected, WM gave rise to individual differences in both nonsymbolic and symbolic 

approximation skills. Lastly, as expected, individual differences in WM highly predicted 

individual differences in math achievement beyond the effects of approximation skills. The 

final model (Complete Mediation), which entailed these integrative effects, demonstrated a 

very good fit to the data and explained 87.2% of the variance of kindergarteners’ counting and 

exact addition skills. In the following section, we discuss our findings more elaborately and 

propose future research directions. 

Our preliminary analyses replicated findings regarding kindergarteners’ nonsymbolic 

and symbolic approximation skills. Children performed above chance level in all 

approximation tasks (addition and comparison) without resorting to any guessing or 
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comparison strategies alternative to approximation (Barth et al., 2006; Gilmore et al., 2010; 

Xenidou-Dervou et al., in press). Moreover, we observed the characteristic ratio effect for 

both nonsymbolic approximate tasks (Barth et al., 2006; Gilmore et al., 2010; Xenidou-

Dervou et al., in press). The ratio effect was also evident for the direct comparison symbolic 

condition (Gilmore et al., 2007) but not for the condition that asked for the symbolic 

approximate addition of two quantities. While all numerical tasks had good reliability and 

loaded highly on their corresponding latent factors, the differences between the current data 

and those of Gilmore et al. (2007) may be due to task administration or sample characteristic 

differences.  

Results regarding the measurement models highlighted the distinct but also integrative 

relation between nonsymbolic and symbolic representations of quantity. The ability of 

representing nonsymbolic numerosities was distinct to that of representing symbolic numerals 

(Holloway & Ansari, 2009). The measurement model with the two approximation abilities 

(nonsymbolic and symbolic) demonstrated the best fit to our data. In this model, we observed 

the expected correlations amongst the four different latent constructs (WM, nonsymbolic and 

symbolic approximation, and math achievement). WM correlated with mathematical 

achievement (DeStefano & LeFevre, 2004), as well as nonsymbolic (Xenidou-Dervou et al., 

in press) and symbolic approximate skills (Caviola et al., 2012). Very few studies have made 

use of multiple approximation measures. Using both addition and comparison approximation 

measures, we were able to demonstrate the interrelationship of the two approximation skills in 

the acquisition process of early mathematical knowledge. Nonsymbolic approximation 

correlated with symbolic approximation (Gilmore et al., 2007; 2010; Libertus, et al., 2011) 

and both correlated with mathematical achievement in kindergarten (Gilmore et al., 2010; 

Halberda, Mazzocco, & Feigenson, 2008; Libertus, et al., 2011). The latter finding suggests 

that both skills are possibly operative in the early steps of symbolic arithmetic learning. 
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But what differential roles do nonsymbolic and symbolic approximation play in the 

early process of math learning? This topic has been an ongoing issue of debate in the 

literature (e.g. Gilmore et al., 2010; Mazzocco et al., 2011; Noël & Rouselle, 2011; Sasanguie 

et al., 2011). Consistent with earlier assumptions (Gilmore et al., 2007; 2010; Mundy & 

Gilmore, 2009), our final model showed that individual differences in nonsymbolic 

approximation predicted individual differences in symbolic approximation. In other words, 

symbolic approximate numerical representation skills were indicated to map onto preexisting 

nonsymbolic representations. Moreover, both nonsymbolic and symbolic approximation skills 

correlated with kindergarteners’ math learning beyond the effect of WM. The predictive path 

of the first, however, was an indirect one. The role of nonsymbolic approximation was 

completely mediated by symbolic approximation.  

This finding could explain certain incongruent assumptions within the literature. 

Research focusing solely on the role of nonsymbolic approximate magnitude representation 

has shown it to account for individuals’ differences in early math performance (e.g. Gilmore 

et al., 2010; Libertus et al., 2011; Mazzocco et al., 2011). This lead to the assumption that the 

ANS is an important stepping-stone for the development of mathematical skills. On the other 

hand, studies targeting symbolic approximate magnitude representation (e.g. De Smedt, 

Verschaffel, & Ghesquière, 2009b) or addressing it in conjunction with nonsymbolic mental 

representation (e.g. De Smedt & Gilmore, 2010; Holloway & Ansari, 2009; Sasanguie, et al., 

2011) highlighted the first as the best early precursor of math achievement. Our findings 

suggest that the two abilities should not be viewed as two competing predictors. It is not one 

or the other per se that is the best predictor. Both nonsymbolic and symbolic approximate 

representation skills correlated with kindergarten math achievement and it was these skills’ 

mediating relationship that best explained kindergarteners’ individual differences. We showed 
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that in kindergarten, nonsymbolic approximation predicts counting and exact symbolic 

addition indirectly.  

The aforementioned view contrasts the assumption that nonsymbolic approximate 

magnitude skills do not play an important role in early arithmetic (e.g. LeCorre & Carrey, 

2007; Noël & Rouselle, 2011). Of course, as highlighted by Noël and Rouselle, (2011), the 

incongruence in conclusions regarding the role of nonsymbolic skills is also due to differences 

in the age of children tested in the various studies. In their critical overview of research in 

atypical mathematics development, Noël and Rouselle, (2011) highlight that the effect of 

nonsymbolic numerical skills becomes pronounced in later ages. The authors propose a 

bidirectional model of effects between nonsymbolic approximate number representation and 

exact symbolic representation.  ANS acuity increases with age (Halberda & Feigenson, 2008) 

and as educated humans we develop the ability for higher-order mathematics utilizing 

symbolic stimuli. Based on our findings, we suggest that future research should focus on the 

integrative associations of nonsymbolic and symbolic approximation and WM. How does the 

pattern of predictive relations change with age?  

Consistent with previous research (Bull et al., 2008; De Smedt et al., 2009a; 

Passolungi et al., 2007; Swanson & Kim, 2007), WM was confirmed to be a significant 

independent predictor of individual differences in kindergarten math achievement. Our results 

extend previous findings by showing that WM significantly predicts symbolic arithmetic 

learning beyond domain-specific skills, such as approximation skills. Additionally, individual 

differences in WM gave rise to individual differences in both nonsymbolic and symbolic 

approximation (Caviola et al., 2012; Xenidou-Dervou et al., in press). Consequently, WM 

appears as an independent predictor that sets the foundations from which approximation 

abilities are influenced by in kindergarten. Future research should look into the developmental 

trajectories of these relationships and the role of the different WM components. It is known 
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that the role of WM capacity used in given tasks changes with age as children eventually start 

employing different, more sophisticated problem solving strategies (e.g., Imbo & 

Vandierendonck, 2007; McKenzie, Bull & Gray, 2003;	Rasmussen & Bisanz, 2005).  

Limitations of this study should be addressed in future research. Because we only 

tested the children on one PL measure and one VSSP measure, it was not optimal to address 

the different WM components as separate latent constructs. Future studies could enhance the 

integrative model by including the roles of the separate WM components and their effects on 

approximation and early math skills. Furthermore, as the present study was based on data 

collected at one time-point, future research should address the integrative model’s 

assumptions longitudinally.  

In summary, we examined the cognitive architectural system that explains individual 

performance variation in kindergarten mathematics achievement by taking an integrative look 

into the associations between nonsymbolic approximation, symbolic approximation and WM 

capacity. Our final model explained a very high percentage of kindergarteners’ differences in 

learning counting and exact addition. It is important for future research to further elaborate on 

the relationship between approximation skills and WM as interactive building blocks with the 

scope of facilitating early math proficiency and deficiency prediction. Recognizing not only 

the predictors but also their interrelations will draw a clearer picture on how educational 

practice can help children build a solid cognitive foundation for learning math.  
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Appendix 

Our (non)symbolic approximate tasks were designed on the basis of the nonsymbolic 

approximate addition task used in Xenidou-Dervou et al. (in press). In order to further verify 

the validity of the newly developed tasks, it was important to examine whether 

kindergarteners in our study made use of any alternative response strategies, such as for 

example pressing systematically only the blue button. Furthermore, we examined whether the 

children’s responses in the nonsymbolic conditions (addition and comparison) were based on 

continuous quantity characteristics of the stimuli, in other words, the physical features of the 

dots. As in previous studies (Barth et al., 2006; Gilmore et al., 2010; Xenidou-Dervou et al., 

in press) the effect of these biases were controlled for in the trial construction level of these 

tasks.  

Alternative Strategy use 

Table A1 adduces the 24 testing trials that were presented during each of the four 

approximate tasks: nonsymbolic approximate addition, nonsymbolic approximate 

comparison, symbolic approximate addition and symbolic approximate comparison. In this 

table, trials are listed with a 1 or -1 under certain systematic response strategies. A trial listed 

as 1 signified that the use of the corresponding strategy would lead to a correct response on 

this specific trial. A trial listed as -1 signified that the use of this strategy would lead to an 

incorrect response. Performance on trials instigating the use of a possible systematic strategy 

were compared to chance level performance (50%). Table A2 summarizes these results.  

For the nonsymbolic approximate addition task, we examined the use of five different 

possible systematic response strategies. If children had shown a response bias such as 

pressing always the blue or the red button (Blue and Red systematic strategies), then they 

would have performed at chance level. Results showed that such strategies were not used; 
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Table A1. Testing Trials of the Nonsymbolic and Symbolic Approximate Tasks from Xenidou-Dervou et al. (in press) 
 
 

  

 

 

 

 

 

 

 

 

 

 

 
a These columns present information for the given trials with regard to the usage of possible systematic response strategies: Near/far = response based on the ratio distance between the larger 
blue addend and the red; Blue = only the blue response is chosen; Red = only the red response is chosen; B2 vs Rstr = only the second blue addend is compared;  B1vsRstr only the first blue 
addend is compared,  
 b 1 = predicts correct answer for that trial, -1: predicts a false answer for that trial, 0 = does not provide a clear prediction 
 c Continuous quantity conditions:  A = dot size, total dot surface area, total dot contour length and density positively correlated with number while array size negatively correlated with number; 

B = dot size, total dot surface area, total dot contour length and density negatively correlated with number while array size positively correlated with number

 
 

Ratio First blue array (B1) Second blue array (B2) Sum of blue Red array (R) Correct Response 
Systematic strategies a Continuous 

Quantity c Near/far  Blue  Red B2 vs R  B1 vs R  
1 4:7 6 6 12 21 Red Far (0.29)   -1 b 1  1  1  B 
2 4:7 8 12 20 35 Red Medium (0.34) -1 1 1 1 A 
3 4:7 15 13 28 49 Red Far (0.31) -1 1 1 1 B 
4 4:7 16 20 36 63 Red Far (0.32) -1 1 1 1 A 
5 7:4 20 8 28 16 Sum Blue Near (0.80) 1 -1 -1 0 B 
6 7:4 30 12 42 24 Sum Blue Near (0.80) 1 -1 -1 0 A 
7 7:4 6 50 56 32 Sum Blue Medium (0.64) 1 -1 1 -1 B 
8 7:4 7 63 70 40 Sum Blue Medium (0.63) 1 -1 1 -1 A 
9 4:6 8 8 16 24 Red Far (0.33) -1 1 1 1 B 

10 4:6 16 8 24 36 Red Medium (0.44) -1 1 1 1 A 
11 4:6 12 20 32 48 Red Medium (0.42) -1 1 1 1 B 
12 4:6 20 20 40 60 Red Far (0.33) -1 1 1 1 A 
13 6:4 11 7 18 12 Sum Blue Near (0.92) 1 -1 -1 0 B 
14 6:4 33 7 42 28 Sum Blue Near (0.85) 1 -1 -1 0 A 
15 6:4 25 35 60 40 Sum Blue Near (0.88) 1 -1 0 -1 B 
16 6:4 10 26 36 24 Sum Blue Near (0.92) 1 -1 0 -1 A 
17 4:5 7 9 16 20 Red Medium (0.45) -1 1 1 1 B 
18 4:5 12 12 24 30 Red Medium (0.40) -1 1 1 1 A 
19 4:5 24 8 32 40 Red Medium (0.60) -1 1 1 1 B 
20 4:5 34 6 40 50 Red Near (0.68) -1 1 1 1 A 
21 5:4 6 14 20 16 Sum Blue Near (0.88) 1 -1 0 -1 B 
22 5:4 15 50 65 52 Sum Blue Near (0.96) 1 -1 0 -1 A 
23 5:4 32 8 40 32 Sum Blue Near (1.00) 1 -1 -1 0 B 
24 5:4 40 10 50 40 Sum Blue Near (1.00) 1 -1 -1 0 A 
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kindergarteners performed significantly above chance in both cases. In the addition tasks, 

where two blue quantities were presented, there was the possibility that children based their 

answer only on the relative quantitative distance of the larger of the blue addends and the red 

addend (Near/far strategy). If this distance was small (near) than the child could chose in 

favor of the blue addends, if it was large (red), then he/she would opt for the red array being 

the correct answer. Therefore, trials with this distance level being of medium size were 

compared to chance level performance. Our findings did not indicate the use of this strategy. 

Another strategy regarded the possibility of children preferring to compare only one of the 

two blue addends with the red, instead of mentally adding the two blue and then comparing 

them to the target. This was not the case; children did not show a preference for comparing 

the first blue array with the red (B1vsR strategy) or the second blue array with the red (B2vsR 

strategy).  

Table A2 

Assessing the Use of Systematic Response Preferences in our Nonsymbolic and Symbolic Approximate tasks.  

Task  
Strategy 

Number of 
Trials 

Mean Accuracy 
% p - value > Chance 

(50%) 
Nonsymbolic approximate 
addition 

Blue 12 59.56  .000 yes 
Red 12 66.42  .000 yes 

Near/Far 8 61.36  .000 yes 
B1vsR 6 69.46  .000 yes 
B2vsR 6 63.38  .000 yes 

Symbolic approximate addition Blue 12 57.39  .000 yes 
Red 12 55.62  .000 yes 

Near/Far 8 56.93  .000 yes 
B1vsR 6 58.71  .000 yes 
B2vsR 6 52.54 .064 no 

Nonsymbolic approximate 
comparison 

Blue 12 63.30 .000 yes 

Red 12 65.27 .000 yes 
Symbolic approximate 
comparison 

Blue 12 65.42  .000 yes 
Red 12 54.58  .000 yes 

 

 The possible use of the same systematic strategies was also examined for the case of 

the symbolic approximate addition task. Similarly, children performed above chance level in 
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all response bias (Blue and Red strategy) and non-addition strategies (Near/far, B1vsR) apart 

from the case of the B2vsR strategy (see Table A2). In this case, their performance was not 

significantly above chance level; it was also, though, not significantly below chance level 

indicating that this non-addition strategy was also not employed.  

 In the nonsymbolic and symbolic approximate comparison tasks there was only one 

blue quantity and one red quantity. Therefore, only the response bias for opting to choose 

either the red or the blue button was examined. As seen in Table A2 in both tasks no such 

systematic response preference was utilized.  

Continuous quantity strategies 

In nonsymbolic tasks it is possible for children to rely their responses on the features 

of the dots such as their size or the total size of a dot-array. Similar to the tasks used by 

Gilmore and colleagues (2010), in our nonsymbolic tasks we controlled for physical feature 

related variables by presenting the stimuli in two distinct conditions. In condition A, dot size, 

total dot surface area, total dot contour length and density of the dots was positively correlated 

with the respective numerosity of the stimulus. Condition B had the reverse relations. As 

shown in Table A3, in the approximate addition task children performed above  

Table A3 

Continuous Quantity Strategy Analyses 

Task Continuous 
Quantity c 

Number of 
Trials 

Mean 
Accuracy % p - value > Chance 

(50%) 
Nonsymbolic approximate 

addition 
A 12 52.34 .027 yes 
B 12 73.64  .000 yes 

Nonsymbolic approximate 
comparison 

A 12 52.53 .067 no 
B 12 76.04  .000 yes 

 

c Continuous quantity conditions:  A = dot size, total dot surface area, total dot contour length and density 
positively correlated with number while array size negatively correlated with number; B = dot size, total dot 
surface area, total dot contour length and density negatively correlated with number while array size positively 
correlated with number. 
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chance level in both conditions. In the case of the comparison task, they performed above 

chance in condition B. In condition A this was not the case, however, children did not 

perform significantly below chance level and therefore we cannot assume that their responses 

were reliant on this condition’s continuous quantity variables. 
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Figure 1. The integrative theoretical model association between Working Memory (WM), nonsymbolic, 

symbolic approximation skills and  mathematics achievement in kindergarten.  
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Figure 2. Ratio effects in children’s accuracy on the nonsymbolic approximate addition, the nonsymbolic 

approximate comparison, the symbolic approximate addition and the symbolic approximate comparison task. 

The ratio effect was significant in each task, except for the symbolic addition task.  
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Figure 3. The CFA2 measurement model of WM, nonsymbolic and symbolic approximation and math 

achievement. Note: WB – word recall backwards, WF – word recall forward, OOO – odd one out, DM – cross 

matrix.  *** p < .001 
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Figure 4. The Complete Mediation model of effects of nonsymbolic and symbolic approximation on math 

achievement. This was the most parsimonious and best fitting model. In the depicted model, 87.2 %  (SE = .064, 

p < .001) of the variance of kindergarteners’ math achievement was explained. Note: WB – word recall 

backwards, WF – word recall forward, OOO – odd one out, DM – cross matrix. *** p < .001. The mediation 

term does not regard the WM latent variable, only the relationship between nonsymbolic, symbolic 

approximation and math achievement. 
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Table 1 

Descriptive and Probability Distribution Statistics on our Measures  

Variables N M SD Min Max Th.Max Skewness Kurtosis 

Working Memory         
Word recall forward 444 12.89 2.63 3 20 20 - 0.05 1.92 

Cross Matrix 443 9.87 2.8 0 16 20 - 0.31 0.14 
Word recall backward 443 4.40 1.90 0 10 20 - 0.17 0.99 

Odd one out 444 8.39 2.88 1 15 20 0.08 - 0.85 

         
Nonsymbolic approximation         

Addition 441 15.12 2.61 7 23 24 0.08 0.33 
Comparison 441 15.43 3.20 8 23 24 0.22 - 0.59 

         
Symbolic approximation         

Addition 440 13.56 2.83 4 23 24 0.61 .67 
Comparison 440 14.40 3.65 6 24 24 0.49 -.02 

         
Math Achievement         

Counting 443 10.77 4.49 0 20 20 - 0.20 - 0.76 
Exact Symbolic Addition 443 5.45 4.51 0 15 15 0.29 - 1.13 

 

Note. Th.Max = Theoretical maximum score. In our analyses missing data was handled in a 
pairwise manner. 
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Table 2. 

Correlations Between Performance in the Math Achievement (1-2), WM (3-6), Nonsymbolic (7-8) and Symbolic (9-10) Approximation Tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

*** p ≤ .001, ** p ≤ .01 

		 1	 2	 3	 4	 5	 6	 7	 8	 9	

1.			Counting	

	 	 	 	 	 	 	 	 	2.			Exact	Addition	 .60***	

	 	 	 	 	 	 	 	3.			Cross	Matrix	 .39***	 .36***	

	 	 	 	 	 	 	4.			Odd	One	Out	 .32***	 .18***	 .24***	

	 	 	 	 	 	5.			Word	Recall	Forward	 .37***	 .26***	 .20***	 			.13**	

	 	 	 	 	6.			Word	Recall	Backwards	 .46***	 .36***	 .28***	 .25***	 .39***	

	 	 	 	7.			Nonsymbolic	Approximate	Addition	 .26***	 .25***	 			.04	 			.06	 			.13**	 			.13**	

	 	 	8.			Nonsymbolic	Approximate	Comparison	 .26***	 .26***	 			.15**	 			.08	 .16***	 			.13**	 .42***	

	 	9.			Symbolic	Approximate	Addition	 .32***	 .33***	 .19***	 			.05	 .16***	 .17***	 .26***	 .24***	

	10.	Symbolic	Approximate	Comparison	 .39***	 .39***	 .23***	 .15***	 			.09	 .19***	 			.14**	 .20***	 .48***	
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Fit Statistics on the Structural Equation Models and the Corresponding Fit Criteria.  

Model	 Fit	Indices	
Measurement	 χ2	 df	 χ2/df	 CFI	 TLI	 RMSEA	 									SRMR	
CFA	1	 114.69	 32	 3.58	 0.910	 0.873	 0.076	 									0.048	
CFA	2	 57.605	 29	 1.99	 0.969	 0.951	 0.047	 									0.033	
SEM	 		 		 		 		 		 		 		 Δχ2	
Partial	Mediation	 57.605	 29	 1.99	 0.969	 0.951	 0.047	 0.033	 -	
Direct	Effects	 74.244	 30	 2.47	 0.952	 0.927	 0.058	 0.034	 16.64***	
Complete	
Mediation	 60.674	 30	 2.02	 0.966	 0.950	 0.048	 0.046	 p	=	.08	

Acceptable	fit		 		 		 ≤	5.0	 ≥.90	 ≥.90	 <.08	 ≤.10	 		 		
Good	fit	 		 0	≤	χ2/df	≤	2	 ≥.95	 ≥.95	 <.05	 .00	≤	SRMR	≤	.05	 		

 

Note. χ2 = chi-square value; df = degrees of freedom; χ2/df  = chi-square by degrees of freedom ratio; CFI =  Comparative Fir Index; TLI = 

Tucker-Lewis Index; RMSEA = Root Mean Square Error Approximation; SRMR = Standardized Root Mean Square Residual; AIC = Akaike 

Information Criterion; BIC = Bayesian Information Criterion; SABIC = Sample-size Adjusted BIC; Δχ2 = chi-square difference test: The Partial 

Mediation model was compared to the Direct Effects and the Complete Mediation model (1 degree of freedom for all comparisons). The 

mediation terms in the SEM models do not regard the WM latent variable, only the relationship between nonsymbolic, symbolic approximation 

and math achievement. 

*** p < .001	

 


