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Figure S1: Fit of lines through origin for measured voltage over nominally applied voltage
(green) for measurement with an oscilloscope and measurement of coupling to the NVs
(blue). The grey area gives the part of data which was used for the fit.
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Calculation of the coupling constant R2E

For the application of an AC voltage signal to the plate capacitor, a Rigol AWG DG1022 was

used. The signal from the signal generator was then amplified via an Op-Amp (LT1633CS)

with a slew rate of 45 V/µs. For this setup, the actually applied voltage Vr is not equal

to the nominally applied voltage Vn and this relation was measured via a Rigol DS1102E

oscilloscope as seen in fig. S1. The factor between Vr and Vn of p1 = 0.966 and the factor

p2 = 0.3045 kHz/V for the relation between Vn and frequency shift fn of the NVs gives the

desired factor cm between Vr and fr, using the following relations:

p1 =
∆Vr
∆Vn

, p2 =
∆fn
∆Vn

(S1)

and thus

cm =
∆fr
∆Vr

=
p2
p1

= 0.315 kHz/V. (S2)

This gives the relation between the frequency shift of the NVs and the voltage applied to

the structure. To get the desired coupling constant R2E, the distance between the capacitor

plates d has to be known, as the electric field is

E =
Vr
d
. (S3)

The coupling constant R2E is also dependent on the angle of the transversal magnetic field

φB as well as on the residual longitudinal magnetic field Bz, leading to a reduction of the fre-

quency shift by a factor cz, which can be calculated numerically from the measured magnetic

field. Thus, the measured shift is given byS1

∆fr = R2E ·∆E · cz cos (2φB + φE) (S4)
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and therefore the coupling constant is given by

R2E =
∆fr · d

cz · cos (2φB + φE)
, (S5)

where φE is the angle of the E-field within the xy-plane. With the values for φB, φE and cz,

calculated from the measurement of a full ODMR spectrum, gives the coupling constant as

R2E =
d · 0.315 kHz/V

0.9614 · 0.9874
≈ 165 kHz/V/µm. (S6)

The determined coupling constant is within the margin of error of the coupling constant

R2E = 175± 30 kHz/V/µm given by Van Oort.S2

Figure S2: Diamond within plate capacitor. The dimensions of the diamond are known, thus
the distance between the capacitor plates can be determined as d = 490± 20 µm.
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Figure S3: NV filter function and accumulated phase depending on the starting phase φ0.

Calculation of the amplitudes measured via a Qdyne-

measurement

Collected Phase

For the accumulated phase Φ in dependence of the starting phase φ0 of a sinusoidal signal

we take

Φ = A1 − A2 (S7)

=

∫ τ

0

2πa cos (φ0 + 2πft)dt−
∫ 2τ

τ

2πa cos (φ0 + 2πft)dt (S8)

= 2πa

(
−
[

1

2πf
sin (φ0 + 2πft)

]τ
0

+

[
1

2πf
sin (φ0 + 2πft)

]2τ
τ

)
(S9)

=
2πa

2πf
(sin (φ0 + 2πft)− sin (φ0) + sin (φ0 + 2πfτ)− sin (φ0 + 4πfτ)) (S10)

=
a

f
(2 sin (2πfτ + φ0)− sin (4πfτ + φ0)− sin (φ0)) . (S11)

Here, f is the signal frequency, which is known. a is the amplitude of the coupling between

NV and field in units of frequency. The 2π factor is necessary, as we need to integrate over

an angular frequency to get a phase. The time τ is here the time between a π/2 and the
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π-pulse of the Hahn-Echo measurement and is aligned to the signal frequency f by

τ =
1

2f
. (S12)

This relation can now be used to further calculate eq. S11:

Φ =
a

f
(2 sin (π + φ0)− sin (2π + φ0)− sin (φ0)) (S13)

=
2a

f
(sin (φ0 + π)− sin (φ0)) (S14)

= −4a

f
sin (φ0). (S15)

This gives the phase collected by the NV superposition state within one Hahn-Echo mea-

surement in dependence of the starting phase of the signal. As the phase of the NV is

transferred onto the spin state populations using a final π/2-pulse with the same phase as

the first π/2-pulse, the cosine of the collected phase is measured as the signal s:

s = cos

(
4a

f
sin (φ0)

)
. (S16)

Bessel function representation

Eq. S16 can be rewritten using Bessel functions, as given in the following relation:

cos (β sin (θ)) = J0 (β) + 2
∞∑
n=1

J2n (β) cos (2nθ). (S17)

Transforming eq. S16 using eq. S17 leads to

s = J0

(
4a

f

)
+ 2

∞∑
n=1

J2n

(
4a

f

)
cos (2nφ0). (S18)

The starting phase of the Hahn-Echo measurement is shifted between measurements by a

fixed time difference δt, added to each measurement sequence. The length of the measure-
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ment sequence itself is chosen as a multiple of the signal period, so that we can simply, for the

sake of this calculation, set it to zero. This is justifyable as long as the signal coherence time

far exceeds the total measurement time. Thus, the starting phase for the i-th measurement

is given by

φ0,i = 2πfi∆t. (S19)

So, it can be seen as continuous with ∆t as the distance between measurement points,

meaning φ(i)→ φ(t) with t(i) = i∆t. The signal then is

s(t) = J0

(
4a

f

)
+ 2

∞∑
n=1

J2n

(
4a

f

)
cos (4πnft), (S20)

which is a Fourier series for the frequency 2f , giving the amplitudes of the different orders

n through the Bessel functions. The DC term, J0 (4a/f) can be neglected here, as the DC

component carries the most noise in nearly all measurements. For the true measurement

signal, the contrast c, the difference between the dark and bright state, has to be taken into

account, yet, this contrast can change significantly with changes in the laser power, or slight

detunings for the microwave pulses. Therefore, an alternative figure of merit is the ratio

between the amplitudes at different frequencies, as this ratio will only depend on the Bessel

functions J2n and is independent of contrast, number of measurement points and similar

parameters.

Measurement of small signals

For this work, the measurement of the cosine of the accumulated phase is necessary, as the

sign of the frequency shift is reversed for half the NVs, making the measurement of the sine of

the phase impossible. Yet, if this were not the case, it would be possible to measure smaller

signals, as cos Φ ≈ 1 but sin Φ ≈ Φ for small phases. In the Hahn-Echo measurement, this

can be achieved via a 90◦ phase-shifted last π/2-pulse. This sine function can be represented
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using Bessel functions as

sin (β sin (θ)) = 2
∞∑
n=0

J2n+1 (β) sin ((2n+ 1) θ). (S21)

The Bessel functions in series representation are as follows:

Jn (β) =
βn

2nΓ (n+ 1)

(
1− β2

2 (2n+ 2)
+

β4

8 (2n+ 2) (2n+ 4)
− . . .

)
, (S22)

leaving J1 as the only relevant Bessel function in eq. S21 for small β, as all others are at

least O(β2). In first order, for small β, J1 also goes linearly with β:

2J1 (β) ≈ 2
β

2 · Γ (2)
= β, (S23)

leading to the whole eq. S21 being reduced to

sin (β sin (θ)) = β sin (θ), (S24)

which is the simple approximation sin x ≈ x for small angles. So, for very small signals,

measured through a sine, the amplitude of the signal will be proportional to the signal

amplitude and the coupling.

Electric field measurements

As previously defined, a is the amplitude of the coupling between NV and field in units of

frequency, so in the case of a transversal electric field signal a = k⊥ · E⊥, where k⊥ is the

coupling constant. If a transversal magnetic field is used, a factor cos (2φB + φE), dependent

on the electric field angle φE and the magnetic field angle φB, has to be taken into account

for the coupling strength. If the applied field is also not perfectly aligned, the coupling

strength is also reduced by a factor cz, depending on the magnetic field Bz along the NV
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axis. Taking everything into account, we are left for the amplitudes An of the different orders

n of frequencies occuring in the measurement as

An = cmiscJ2n (4cz cos (2φB + φE)k⊥E⊥) /f. (S25)

The factor cmisc entails all components effecting the measurement contrast and also measure-

ment effects which effect all frequency components equally, e.g. the factor 2 in eq. S20.

E-Field and B-Field inhomogeneities

By measuring on an NV-ensemble, there are always field gradients over the sample volume,

leading to different NVs seeing slightly different fields. To calculate the effect of field inho-

mogeneities on the qdyne measurements presented in this paper, a gaussian field distribution

where the width is assumed to scale linearly with the field strength. This leads to the signal

from an ensemble

s = e−
Φ
2σ cos Φ (S26)

and by substituting the accumulated phase as in eq. S16, the signal is

s = e−( c sinφ
2σ ) cos (c sinφ) (S27)

and with a series expansion up to second order of the exponential function:

s =

(
1− c2 sin2 (φ)

4σ2

)∑
J2n (c) cos 2φ (S28)

and, using sin2 x = (1− cos(2x))/2:

s = s0 −
∑(

c2

8σ2
J2n(c) cos (2nφ) +

1

2
cos (2φ (n− 1)) +

1

2
cos (2φ (n+ 1))

)
(S29)

=
∑

J2n(c) +
c2

16σ2

(
J2(n+1) + J2(n−1) − 2J2n

)
, (S30)

S-9



s0 being the signal from a homogeneous field. In comparison to the measurement signal in

homogeneous fields as shown in eq. 20, it can be seen here that inhomogeneous fields lead

to a mixing of neighboring Fourier components.

Samples and structures

Figure S4: Used capacitor structures. (a) Four brass rods of 0.4 mm diameter can be used to
rotate the electric field. The field from the rods is inhomogeneous and thus not well defined,
but it was still possible to measure the direction dependence. The diamond is glued to a
parabolic lens. (b) Two brass slabs of 500 µm height and 3 mm width. The diamond is again
glued to a parabolic lens. The field is much more homogeneous than in the previous case,
yet the limitation of the capacitor in one dimension to the height of the diamond makes the
field weaker than expected for a plate capacitor. (c) Two brass rods with approx. 3 mm
diameter. This structure allows for a well-defined field, as the capacitor plates are much
larger than the sample volume at which the field is measured. It is also sufficiently close
to an infinite plate capacitor, making it possible to use E = V/d for the electric field. The
diamond can not be glued to a lens, as in the cases before, thus the fluorescence detection
has to be done via an air objective with a high working distance, limiting the achievable
precision.

For all measurements presented here, two diamond cubes with ≈ 500 µm edge lengths

were used. Both stones were cut from the same diamond and exhibit the same characteristics

such as density of NVs and coherence times of NVs. One of those stones was etched on the

four non-111 surfaces, to eliminate any effects from a possible graphite surface layer. We

conducted electric field measurements using both samples and observed no difference. For

the application of an electric field, three different capacitor structures were used, which are
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shown in fig. S4. The first structure consists of four rods with a diameter of 400 µm, slightly

below the side length of the diamond cubes. With this structure, the measurement of the

angular dependence of the Stark shift could be verified for an ensemble of NVs. The high

inhomogeneity of the field, especially a large distribution of the direction of the field, leads

to the angle dependence being slightly averaged out. The measured shift over the applied

electric field angle is shown in fig. S5. The second structure, fig. S4(b), consists of two

brass slabs, which are as thin as the diamond sample, 500 µm. This allows for the diamond

being glued to a parabolic lens, resulting in a high collection efficiency. So, this structure can

be used for high precision measurement, even though the electric field from the electrodes

do not make a homogeneous field, as they are very limited in one dimension. The third

structure consists of two brass rods with a diameter of 3 mm. This allows for a well-defined

electric field over the sample volume in the center of the structure. This structure was used

for the measurement of the coupling constant R2E, as described in the first section. As the

capacitor is larger than the sample, the collection cannot be done with a parabolic lens and

has to be done over an air objective with a large working distance. For this, an objective

Mitotoyo M Plan Apo 100x Infinity Corrected Long WD objective was used.

Figure S5: (a) T1 measurement. The longitudinal coherence time is T1 ≈ 6 ms, measured
via the difference of the fluorescence of the NV ensemble after time τ with and without a
π-pulse, thus eliminating effects of charge state. (b) Angular dependence of shift caused by
an electric field in kHz. The shift does not go to zero at 2φB +φE = π/2, as the electric field
does not have the same angle for all NVs.
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Measurement of R15

The complete Stark-shift Hamiltonian for the NV is determined by the C3V symmetry and

is given as

ĤStark =R15 (Ex (SxSz + SzSx) + Ey (SySz + SzSy))

−R2E

(
Ex
(
S2
x − S2

y

)
+ Ey (SxSy + SySx)

)
+R3DEz

(
S2
z −

1

3
S (S + 1)

)
. (S31)

Here, R2E is the coupling constant to transversal electric fields, as discussed in previous

chapters. The coupling constant to axial electric fields, R3D, could not be measured during

our experiments, as it is assumed to be 50 times smaller than the coupling constant R2E.

The remaining term of the Hamiltonian leads to a mix between the states ms = 0 and

ms = ±1, which is therefore suppressed under normal conditions due to the dominant zero-

field splitting. Yet, if the magnetic field is close to the ground state level anti-crossing (gs

LAC), at Bz ≈ 1025 G, this part of the Stark shift is not suppressed and it should be possible

to measure the coupling constant R15. A small additional transversal magnetic field has to

be applied to enable the frequency shift. There are two competing mechanisms influencing

the measurement. First, the electric field shift is suppressed by the magnetic field in axial

direction in dependence on its distance from the gs LAC, and secondly the spin dependent

fluorescence contrast becomes smaller the closer the magnetic field is to the gs LAC. So, a

compromise has to be found for a magnetic field where there is still a significant R15 Stark

shift and also sufficient ODMR contrast. We calculated that a ∆Bz = |Bz,LAC −Bz| = 2.3 G

and a transversal magnetic field Bx ≈ ∆Bz leads to an expected shift about half (0.97E⊥R15)

of the maximum possible shift (2E⊥R15) and still exhibits enough contrast for measurement.

ODMR measurements for these magnetic field parameters are shown in fig. S6. The magnetic

field was applied using two permanent magnets placed on actuator stages on either side of

the diamond. As the transitions measured under these conditions are not protected from
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Figure S6: ODMR measurement at Bz = Bz,LAC + 2.3 G. (a) Simulation and (b) Measure-
ment. Small differences arise from the unknown microwave polarisation, a not precise Bz

field and a possible magnetic field change in transversal direction as the magnet position was
changed using a micrometer stage where the axis is not perfectly aligned.

Figure S7: Measurement at the gs LAC. (a) Schematic of setup. Two permanent magnets
are placed on stages on opposite sides of the diamond such that the magnetic field adds up to
around 1025 G in 111-direction. The electric field is applied perpendicular to this magnetic
field. (b) Hahn-Echo measurement with and without an applied magnetic field. With an
applied electric field of 10 kHz, a dip should be visible at τ = 100 µs.
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magnetic field fluctuations, the coherence times are lower and thus we applied an electric

field with 10 kHz. In a Hahn-Echo measurement, similar to the measurement presented in

fig. 2 of the main text, no features of the applied electric field are visible, as can be seen

in fig 7. Hence, the coupling constant R15 can not be measured, but an upper limit can be

given. This limit is calculated as follows. The measured Hahn-Echo has a signal-to-noise

ratio of S/N ≈ 62. The phase Φ accumulated during a Hahn-Echo measurement with τ set

for the highest sensitivity (so, for a 10 kHz signal to 100 µs) has thus the upper limit with

S/N = 1 of

1− cos Φ ≤ 1/62⇒ Φ ≤ 10.31◦. (S32)

The accumulated phase during a Hahn-Echo measurement is given by

Φ =
a

f
(2 cos (πfτ)− cos (2πfτ)− 1) , (S33)

where a is the amplitude of the frequency shift and f the signal frequency. This leads to the

upper limit for a of

a ≤ 0.45 kHz. (S34)

The shift of the transition used is

∆f ≈ 0.97aR15. (S35)

The amplitude of the shift a is known from the measurement at low magnetic fields for the

other part of the Hamiltonian with R2E. Here, the shift measured at the highest applied

voltage was a ≈ 10 kHz. Thus, the minimal measurable frequency shift is

∆f = 0.97 · 10 kHz · R15

R2E

≤ 0.45. (S36)
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This means for the ratio of the coupling constants

R15

R2E

≤ 0.45

0.97 · 10
= 0.0464 (S37)

and therefore our measurement shows an upper limit for the R15 constant of

R15 ≤ 0.0464R2E = 7.66 kHz/(V/µm). (S38)

Data Analysis

Before the laser beam is directed onto the diamond, a part of the beam is splitted off and

directed towards a second photo detector (both photodetectors are Thorlabs PDA100A)

for reference of the laser power. The reference beam is dimmed as to match the detected

fluorescence. Both photo detectors are read out simultaneously. The signal is divided by

the reference to suppress the effect of laser power fluctuations. For the analysis, the thusly

acquired signal over the duration of a laser pulse is divided into three equally long parts.

The second part is discarded, while the first part is summed up and divided by the sum over

the last part. This references out low frequency changes in the ratio of the measured light

power between the two photo detectors. This results in a single value close to 1 for every

pulse in a pulsed measurement sequence and which entails the spin state information.

Allan deviations

For the Allan deviations shown in Fig. 2(d) and Fig. 4(d) (here again shown in Fig. S8(c))(only

green curve) of the main paper, a train of measurement sequences were conducted without

an applied electric field. The measured noise could be recalculated into an electric field noise

by separately measuring the signal over different applied electric field amplitudes.

For Fig. 2 d), this calculation is straight forward. The signal over the electric field ampli-

tude forms a cosine as the cosine of the collected phase Φacc is measured. Here, the electric
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field amplitude for which this measurement is most sensitive is at a voltage amplitude of

about 4.8 V. We measured a train of Hahn-Echo measurements without applied electric field

and from this, calculated the expected sensitivity by using the linear dependence between

measurement signal and applied electric field at 4.8 V.

Figure S8: Calculation of Allan deviation shown in fig. 4 d) of the main paper. a) For
this, a voltage amplitude is chosen where the Fourier components of 2f (blue) and 4f (red)
are similar (dashed line). b) Fourier components over repeated measurements. The two
components show a similar drift, which can be contributed to changes in the contrast, either
due to a change in the transition frequency caused by magnetic field or temperature shifts
or due to fluctuations in the laser power, which are not completely cancelled out by the
referencing described above. c) Resulting Allan deviation for the sensitivity calculated using
only one Fourier component (blue), the ratio between two Fourier components (purple) and
the sensitivity without an applied electric field signal.

For the blue and purple lines in Fig. 4 d), we chose to perform the measurement at

a voltage amplitude of about 6.7 V, corresponding to a maximum frequency shift for the
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NV spin transition of 2.1 kHz and indicated by the dashed line in fig. S8(a). At that

point, the Fourier component at 2f and at 4f are similar and both change linearly over

the voltage amplitude in first order. Thus, the noise in the 2f Fourier component can be

recalculated into an electric field noise and the Allan deviation for this is given by the blue

line. As can be seen in fig. S8(b), the Fourier components for 2f and 4f drift and jump

over time simultaneously. This is not a change in the electric field, which would result in

an opposite movement of the two components. Rather, this can be attributed to a change

in the contrast of the measurement, as the components are proportional to the contrast. A

change in contrast can arise by a change of the NV spin transition frequencies, either by a

change in temperature or a change in magnetic field. To overcome the contrast shift, we

calculate the sensitivity also by using the ratio between the 2f and 4f Fourier components.

This ratio is independent of the contrast and also linear to the electric field amplitude in

first order. The achieved sensitivity using this ratio is shown in fig. 4(d) of the main paper

and fig. S8(c) here as the purple line. It can be seen, that this sensitivity scales slightly

longer with 1/
√

Hz as the blue line, which uses only one component.

For the green line in fig. 4(d) (here fig. S8(c)), the same measurement as used for fig.

2(d) was evaluated, analogous to the evaluation of the purple line described above. For this,

the averaged Fourier components at 2f and 4f of the measurement with an applied signal

was added to the noise of the measurement without signal at those two frequencies.

Analysis of the Fourier components

For fig. 4(b) in the main paper, the measurement was conducted over a range of applied

electric field amplitudes. For each measurement, the averaged Fourier components at mul-

tiples of 2f are calculated. Using the first 5 components, the maximum shift caused by the

electric field, a, and the contrast are fitted for each measurement point. The measurement

points are then normed using the fitted contrast, to account for shifts in the contrast over

the different measurements. A plot entailing the first five components is shown in fig. S9.
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Figure S9: The first five Fourier components (2f -10f) over the calculated frequency shift
amplitude a.

Double Quantum Transition

For the measurements presented in fig. 2 and 4 of the main paper, the measurement was

conducted with the electron spin being in a superposition state between |0〉 and the |±〉

states. These states are defined in eq. 5 and eq. 6 of the main paper. As those two states

shift with opposite sign due to an electric field, a measurement utilizing the superposition

between |+〉 and |−〉, leads to a phase evolution two times faster than the phase evolution

of the single quantum transition. The scheme for a Hahn-Echo measurement with a double

quantum transition is shown in fig. S10(a).

Pulse errors lead to a part of the population remaining in a superposition between |0〉

and |±〉. This part of the population collects half the phase during the free evolution time

τ . We assume that the fidelity of the pulses does not change over the applied electric field

strength. In fig. S11, the simulation is shown for different fractions of the population in

the SQT. As the phase evolution is exactly double for the DQT compared to the SQT, this

can be simulated by adding (1 − c) · s(t, 2a) + c · s(t, a) (for s(t) see eq. S18) with c being

the fraction of the population in a superposition between |0〉 and |±〉 during the Hahn-Echo

evolution time τ (SQT). Fig. S10(c) shows an Allan deviation measured at 6.4 kHz frequency

shift amplitude. A comparison to the Allan deviations shown in fig. S8(c) shows, that the

sensitivity is much lower. This may be attributed to a higher noise level due to the higher

S-18



Figure S10: a) Double quantum transition measurement scheme. Two different microwave
frequencies (MW1 for |0〉 ↔ |+〉 and MW2 for |0〉 ↔ |−〉) are employed to create a superpo-
sition state between |+〉 and |−〉. b) The five first Fourier components for a double quantum
transition measurement over the amplitude of the frequency shift caused by the applied elec-
tric field on the single quantum transition. The phase collected during the free evolution time
τ is doubled for the double quantum transition in relation to the single quantum transition.
c) Allan deviation of this measurement using the first two Fourier components (blue and red
in b)). The measurement was conducted with an electric field corresponding to a frequency
shift amplitude of 6.4 kHz.
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complexity of the measurement scheme.

Figure S11: Effect of percentage of SQT in the DQT simulation. From left to right: 20%,
30% and 40% of the measured signal orignates from a SQT. This percentage was assumed
to be constant over the measurements.
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