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The problem of viscous incompressible flow in a periodic cell with a porous

body is solved. The Stokes flow model is adopted to describe the flow outside

the body and the Brinkman equation is applied to find the filtration velocity

field inside the porous domain. The conditions on the boundary between the

free fluid and the porous medium for the porous body of arbitrary shape are

obtained. The boundary value problem for the joint solution of the biharmonic

and Brinkman equations for the stream functions outside and inside the porous

body are then solved using a boundary element method. Good agreement of

the numerical and analytical models for the Kuwabara circular cell model is

shown for the fluid flow through a porous circular cylinder. The fluid flow past

a circular, square, triangular cylinders and a circular body of uneven surface (an

idealized model of a viral capsid) in a rectangular periodic cell are calculated.

Comparison of the results obtained with the numerical solution from a CFD

ANSYS/FLUENT model shows good accuracy of the developed mathematical

model.
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Nomenclature

D12 components of strain rate tensor

Eψ, Evx,

Evy, Eω absolute errors

f arbitrary function

h radius of circular cell

G1, G2,

G3, G4 Green functions

h1, h2 height and half width of rectangular cell

H1, H2 Lame coefficients

I0, I1 modified Bessel function of the first kind of zero and first order

K0,K1 modified Bessel function of the second kind of zero and first order

n,m number of linear elements on boundaries Γe and Γi

mb number of bumps of capsid model

p pressure

q curvilinear coordinate

Q coefficient of fluid capture

(r, θ) polar coordinates

Rc typical size of porous body

s boundary arc

S dimensionless parameter

U velocity scale

v velocity

(x, y) Cartesian coordinates

(xck, yck) coordinates of segment centers

Greek symbols

α solidity

β interior angle at point on boundary

γ amplitude ratio of a bump
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Γ boundary

ε porosity

εψ, εvx,

εvy, εω relative errors

η negative vorticity

θ the angle of the tangent to the current integration linear segment

κ permeability

µ fluid viscosity

ρ distance between current point and boundary point

τ shear stress

ψ stream function

ω vorticity

Ω domain

Subscripts

a analytical

r radial

θ tangential

x cartesian x – component

y cartesian y – component

1, 2 coordinate components

Superscripts

e exterior

i interior

′ derivative with respect to normal
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1. Introduction

The solution of the problem of fluid flow through porous bodies is used to

describe many hydrodynamical processes in environmental and medical science.

For example, such flows are found in aerosol filters and respirators and for5

particle shaped viruses in biofluids. In the case of aerosol filters porous bodies

can be used as elements to increase the efficiency of the deposition of aerosol

particles [1, 2]. In order to calculate the two-phase flows of dusty air for such

filters it is important to develop efficient mathematical models of fluid flow past

porous bodies in periodic cells [3].10

The fluid flow through a circular porous cylinder assuming potential flow of

an incompressible fluid was modelled in work [4].

One of the problems with modelling fluid flow in domains containing porous

medium is connected with the formulation of the boundary conditions on

the interface between the free space and porous medium. The choice of the15

conditions depends on the mathematical model adopted. Various boundary

conditions are studied in the works of Beavers and Joseph [5], Saffman [6],

Neale and Nader [7], Haber and Mauri [8], Vafai and Thiyagaraja [9], Sahraoui

and Kaviany [10], Ochoa-Tapia and Whitaker [11, 12].

The analytical solution of the problem of the fluid flow past an isolated20

porous cylinder and a system of porous cylinders using a cell model was firstly

obtained by Stechkina [13]. The cell model used was based on the widely

adopted Kuwabara cell model [14] and included the Stokes flow model [15]

outside and the Brinkman equation [16] inside the porous cylinder. The cell

model with Kuwabara boundary conditions was also used by Deo et al. [17] and25

Kirsh [1] to determine the velocity field of the flow over and through a porous

cylinder in the case of small Reynolds number flow using the analytical solution

and the collocation method.

A review of analytical investigations of fluid flow past porous cylinders and

spheres is given in the works of Deo et al. [18] and Vasin and Filippov [19].30

Generally, the cell model is an approximate model of fluid flow and its accuracy

4



depends on the porosity of the porous medium. To obtain an accurate fluid

flow velocity field numerical models using the real array geometry should be

adopted.

Viscous flow models for flows through porous bodies usually adopt the35

combination of the Stokes model in the free space and the Darcy or Brinkman

model in the porous medium. Such models were used to study the viscous flow

through isolated porous cylinders and spheres by Masliyah and Polikar [20],

Nandakumar and Masliyah [21], Noymer et al [22], Vanni [23], Vainshtein et al

[24, 25].40

The Navier-Stokes equations with Darcy and Forchmeier terms were solved

numerically to simulate the fluid flow past a porous cylinder in Beckermann and

Viskanta [26], Vafai and Kim [27], Basu and Khalili [28], Bhattacharyya et al

[29].

Using the Boundary Element Method (BEM) for solving the problem of45

fluid flow through porous bodies has advantages compared with the finite

volume (FVM) or finite differences (FDM) methods due to its reduction of

the dimension of the boundary value problem. Additionally adopting the BEM

enables boundary value problems to be solved for porous bodies of any shape.

Whilst the FVM and FDM have difficulties with the numerical solution of the50

fluid flow through porous bodies of complex shape. The majority of previous

work in the area is devoted to the study of fluid flow through circular or

rectangular bodies [3, 30]. But there are applications where it is necessary

to study the fluid flow through porous bodies of arbitrary shape (for example,

the flow through aerosol fibrous filters containing deposit or the fluid through55

a viral capsid). Presently these problems remains unsolved. In this paper a

mathematical model of fluid flow through arbitrary shaped porous bodies is

developed using the BEM approach.

The fluid flow past a periodic row past of arbitrary shaped porous bodies,

is considered under the assumption of viscous incompressible flow. The60

approximate periodic circular [14] and rectangular cell models are used to

formulate the fluid flow problem. The Stokes flow model is adopted outside
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the body in the cell and the Brinkman model inside the porous body to

describe the flow velocity. The resulting boundary value problem for the

stream function in the two domains with boundary conditions on the interface65

between the free space and the porous medium is formulated. The boundary

conditions include the stream function and vorticity as variables and can be

used for arbitrary curvilinear boundaries. The boundary element method

(BEM) is then used to solve the boundary value problems. The numerical

solution obtained is compared with the analytical solution in the circular70

cell case and good agreement of the two solutions is shown. The fluid flow

past circular, square, triangular cylinders and a circular body with an uneven

surface (an idealized model of a viral capsid) in a rectangular periodic cell

is also calculated. Comparison of the numerical results with corresponding

data obtained using CFD ANSYS/FLUENT (www.ansys.com) shows good75

correlation of the developed BEM model and FVM solution.

2. The problem statement

The two-dimensional flow of an incompressible fluid with speed U in a

periodic cell with a porous body at a small Reynolds numbers is considered.

The permeability κ of the porous medium is assumed to be constant. Due to80

the fluid flow symmetry we select as a calculation domain the upper part of the

periodic cell that consists of Ω = Ωe
⋃

Ωi where Ωe is the free fluid space and

Ωi the porous body domain (Fig. 1). The line AD is the symmetry axis. All

quantities in the domains Ωe and Ωi are denoted by indexes e and i.

The fluid flow in the domain Ωe limited by the boundary Γe is described by85

the Stokes model given by equation (1)

∇pe = −µe rotωe, (1)

where pe is the pressure of outer flow, µe is the fluid viscosity, ωe = (0, 0, ωe)

is the flow vorticity vector. The fluid flow in the porous domain Ωi limited by
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Figure 1: Fluid flow domain

the boundary Γi is described by the Brinkman model

∇pi = −µ
e

κ
v
i − µi rotωi, (2)

where pi is the pressure, ωi = (0, 0, ωi) is the vorticity, vi is the average filtration90

velocity and µi is the fluid viscosity in the porous domain. The fluid viscosity

in the free space and the porous body µe and µi differs due to the additional

fluid drag in the porous medium.

Considering the curvilinear coordinate system (q1, q2) (Fig. 1). For

convenience the coordinate system is selected such that on the boundary95

Γ = Γe
⋂

Γi between the free space and the porous medium condition (3) is

satisfied

q1 ≡ q01 = const . (3)

The continuity equations for both domains are written in the form

∂(H2v
e
1
)

∂q1
+
∂(H1v

e
2
)

∂q2
= 0,

∂(H2v
i
1
)

∂q1
+
∂(H1v

i
2
)

∂q2
= 0, (4)

where H1, H2 are the Lame coefficients for the curvilinear coordinate system,

ve
1
, ve

2
, vi

1
, vi

2
are the projections of the velocity vectors on the coordinate axes100

q1 and q2. The form of equations (4) enables the introduction of the stream
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functions ψe and ψi as

H2v
e
1 =

∂ψe

∂q2
, H1v

e
2 = −∂ψ

e

∂q1
, H2v

i
1 =

∂ψi

∂q2
, H1v

i
2 = −∂ψ

i

∂q1
. (5)

The components ωe and ωi of the vorticity vectors in the coordinate system

considered are written in the form

ωe =
1

H1H2

(

∂(H2v
e
2)

∂q1
− ∂(H1v

e
1)

∂q2

)

, ωi =
1

H1H2

(

∂(H2v
i
2)

∂q1
− ∂(H1v

i
1)

∂q2

)

.

(6)

Substituting (5) into (6) and taking into account the fact that the Laplace105

operator for the arbitrary function f in the curvilinear coordinate system (q1, q2)

has the form

∆f =
1

H1H2

(

∂

∂q1

(

H2

H1

∂f

∂q1

)

+
∂

∂q2

(

H1

H2

∂f

∂q2

))

, (7)

we obtain

∆ψe = −ωe, ∆ψi = −ωi. (8)

Equations (1) and (2) can be written in scalar form

1

H1

∂pe

∂q1
= −µe 1

H2

∂ωe

∂q2
,

1

H2

∂pe

∂q2
= µe

1

H1

∂ωe

∂q1
, (9)

110

1

H1

∂pi

∂q1
= −µ

e

κ
vi1 − µi

1

H2

∂ωi

∂q2
,

1

H2

∂pi

∂q2
= −µ

e

κ
vi2 + µi

1

H1

∂ωi

∂q1
. (10)

Eliminating the pressure in (9) and (10) and using (7) the fluid flow equations

can be written in the form that includes the stream functions ψe and ψi

∆2ψe = 0, (11)

∆2ψi − 1

κ
∆ψi = 0. (12)

The conditions on the boundary Γe depend on the periodic cell model

adopted [17]. The symmetry conditions are taken on the line AD.115

To complete the boundary value problem for the fluid flow equations (11),

(12) that are partial differential equations of fourth order it is necessary to

take four conditions on the interface Γi between the free space and the porous
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medium. The condition of velocity equality v
e = v

i on the boundary can be

written in the form120

ve1 = vi1, ve2 = vi2. (13)

Taking into account (5) the relations (13) can be rewritten as

ψe = ψi,
∂ψe

∂q1
=
∂ψi

∂q1
. (14)

From (3) it follows that the condition of pressure equality on the boundary

pe = pi can be presented in the form

∂pe

∂q2
=
∂pi

∂q2
. (15)

Taking into account (5), (9) and (10) the last relation can be written in the

form125

∂ωe

∂q1
=

∂

∂q1

(

1

κ
ψi +

µi

µe
ωi
)

. (16)

The shear stresses equality τe = τ i [17] can be written as

2µeDe
12

= 2µiDi
12
. (17)

The components De
12

and Di
12

of the strain rate tensor in the curvilinear

coordinate system are written as:

2De
12

=
H1

H2

∂

∂q2

(

ve
1

H1

)

+
H2

H1

∂

∂q1

(

ve
2

H2

)

, (18)

2Di
12

=
H1

H2

∂

∂q2

(

vi
1

H1

)

+
H2

H1

∂

∂q1

(

vi
2

H2

)

. (19)

Substituting the relationships from (5) in the formulas above and taking into130

account (6)–(8) gives the equality

2(De
12

−Di
12
) = ωe − ωi. (20)

Using the assumption that µe = µi [17] the condition of shear stresses equality

(17) is written in the form

ωe = ωi. (21)

From (6), (13), (21) it follows that the velocity and its derivative is continuous

at the interface between the free space and the porous medium.135
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3. Statement of the mathematical problem

The typical size of the porous body, Rc and the fluid velocity U are used

as length and velocity scales. The equations of the model described above are

written in terms of the dimensionless quantities

q̃ =
q

Rc
, ṽ =

v

U
, ψ̃ =

ψ

URc
, ω̃ =

ωRc
U

, p̃ =
pRc
µeU

. (22)

For simplicity for the rest of the document all quantities are dimensionless and140

the superscript “∼” has been omitted.

Considering a periodic circular cell with radius h (Fig. 2, a) (Kuwabara

model) and a rectangular cell with height h1 and width 2h2 (Fig. 2, b). Within

the Kuwabara model it is possible to obtain an analytical solution of the

Stokes-Brinkman problem. The rectangular cell model is a more accurate145

representation of the fluid flow field but in this case it is only possible to obtain

a numerical solution. The solidity α of the periodic cell can be expressed as

the ratio of the porous body area to the total cell area. The porosity ε of the

periodic cell is determined as

ε = 1− α. (23)

Equation (11) for the stream function ψe(x, y) in the outer domain Ωe in150

dimensionless form is written

∆2ψe = 0, (24)

The boundary value problem for equation (24) includes the conditions on the

boundary Γe. In the circular cell case the conditions on the outer boundary AD

are

ψe = y, ωe = 0. (25)

For the rectangular cell the periodic conditions on the sides AE and DF are155

given by

ψe(h2, y) = ψe(−h2, y), ψe′(h2, y) = −ψe′(−h2, y),
ωe(h2, y) = ωe(−h2, y), ωe′(h2, y) = −ωe′(−h2, y),

(26)
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Ωe
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Figure 2: Fluid flow domain for circular (a) and rectangular (b) cells

where prime denotes the derivative with respect to the outer normal ∂/∂n. The

symmetry conditions on the line EF are

ψe = h1, ωe = 0. (27)

The symmetry conditions on the lines AB and CD are

ψe = 0, ωe = 0. (28)
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In the porous domain Ωi the flow stream function ψi(x, y) satisfies equation160

(12) that follows from the Brinkman equation

∆2ψi − S2∆ψi = 0, (29)

where S = Rc/
√
κ is a dimensionless parameter. The symmetry conditions on

the line BOC are

ψi = 0, ωi = 0. (30)

The boundary conditions (14), (16), (21) on the interface of the free flow

and porous domains are written in the dimensionless form165

ψe = ψi, ψe′ = −ψi′, −ωe′ = S2ψi
′

+ ωi
′

, ωe = ωi. (31)

The introduced curvilinear coordinate system (q1, q2) is orthogonal. From the

relation (3) it follows that the derivative with respect to the coordinate q1 on

the boundary Γ can be replaced by the derivative with respect to the normal to

domain boundary. Hence
1

H1

∂

∂q1
= − ∂

∂n
(32)

for the domain Ωe and170

1

H1

∂

∂q1
=

∂

∂n
(33)

for the domain Ωi.

The problem is to determine the stream function ψ(x, y), the components

of the flow velocity vector vx(x, y) and vy(x, y) and the vorticity ω(x, y) in the

entire flow domain Ω.

4. Solution175

To solve the boundary value problem (24)–(28), (31) in the domain Ωe

equation (24) of fourth order is written as two equations of second order [3, 31]

∆ψe = ηe, (34)

∆ηe = 0. (35)
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where ηe = −ωe. The equivalent pair of coupled integral equations [32] is

obtained using the Rayleigh–Green biharmonic boundary formula (see [33]) and180

Green’s second identity,

χ(x, y)ψe(x, y) =

∫

Γe

(

ψe(s)G′

1
(x, y, s)− ψe′(s)G1(x, y, s) +

+ ηe(s)G′

2(x, y, s)− ηe′(s)G2(x, y, s)
)

ds, (36)

χ(x, y)ηe(x, y) =

∫

Γe

(

ηe(s)G′

1
(x, y, s)− ηe′(s)G1(x, y, s)

)

ds, (37)

where χ(x, y) = 2π for the interior points (x, y) ∈ Ωe, χ(x, y) = βe for

the boundary points (x, y) ∈ Γe (βe is the interior angle at a point on the

boundary Γe), s is the boundary arc. The corresponding Greens functions are

written as185

G1 = ln ρ, G2 =
ρ2

4
(ln ρ− 1), (38)

where

ρ(x, y, s) =
√

(x1(s)− x)2 + (y1(s)− y)2 (39)

and (x1, y1) is the coordinate of the boundary point with arc abscissa s.

The boundary Γe =
⋃n

j=1
Γej is approximated as a number of linear

elements Γej (linear segments). The functions ψe(s), ψe′(s), ηe(s), ηe′(s) are

approximated by piece-wise constant functions with values ψej , ψ
e
j
′, ηej , η

e
j
′ on190

the single element Γej . Eq. (36), (37) can be rewritten in the discrete form

χ(x, y)ψe(x, y) =

n
∑

j=1











ψej

∫

Γe
j

G′

1
(x, y, s)ds− ψej

′

∫

Γe
j

G1(x, y, s)ds+

+ ηej

∫

Γe
j

G′

2(x, y, s)ds− ηej
′

∫

Γe
j

G2(x, y, s)ds











,(40)

χ(x, y)ηe(x, y) =

n
∑

j=1











ηej

∫

Γe
j

G′

1(x, y, s)ds− ηej
′

∫

Γe
j

G1(x, y, s)ds











. (41)
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Applying the expressions (40), (41) at the centers (xeck, y
e
ck) of the elements

Γek gives
n
∑

j=1

{

ψejA
e
kj + ψej

′Bekj + ηejC
e
kj + ηej

′De
kj

}

= 0,

n
∑

j=1

{

ηejA
e
kj + ηej

′Bekj
}

= 0,

(42)

where

Aekj =

∫

Γe
j

G′

1(x
e
ck, y

e
ck, s)ds− βekδkj , Bekj = −

∫

Γe
j

G1(x
e
ck, y

e
ck, s)ds,

Cekj =

∫

Γe
j

G′

2
(xeck, y

e
ck, s)ds, De

kj = −
∫

Γe
j

G2(x
e
ck, y

e
ck, s)ds,

(43)

βek = βe(xeck, y
e
ck) and δkj is the Kronecker delta.195

To solve the boundary value problem (29)–(31) equation (29) is rewritten as

two equations of second order

∆ψi = ηi, (44)

∆ηi − S2ηi = 0. (45)

where ηi = −ωi. The functions ψi and ηi satisfy the integral relations shown in

equations (46), (47) see [34]200

χ(x, y)ψi(x, y) =

∫

Γi

(

ψi(s)G′

1(x, y, s)− ψi
′

(s)G1(x, y, s)+

+ηi(s)G′

4(x, y, s)− ηi
′

(s)G4(x, y, s)
)

ds, (46)

χ(x, y)ηi(x, y) =

∫

Γi

(

ηi(s)G′

3(x, y, s)− ηi
′

(s)G3(x, y, s)
)

ds. (47)

Where the Greens function G1 is defined by (38), (39) and G3 and G4 are given

by

G3 = −K0(Sρ), G4 =
1

S2
(G3 −G1), (48)

where K0 is the modified Bessel function of the second kind of zero order [35].

The boundary Γi =
⋃m

j=1
Γij is approximated as the sum of linear segments

Γij . The functions ψ
i(s), ψi

′

(s), ηi(s), ηi
′

(s) are approximated by the piecewise205
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constant functions with the values ψij , ψij
′

, ηij , ηij
′

on the segments Γij

respectively. Then the equations (46), (47) are rewritten in the form

χ(x, y)ψi(x, y) =

m
∑

j=1











ψij

∫

Γi
j

G′

1(x, y, s)ds− ψij
′

∫

Γi
j

G1(x, y, s)ds+

+ ηij

∫

Γi
j

G′

4
(x, y, s)ds− ηij

′

∫

Γi
j

G4(x, y, s)ds











,(49)

χ(x, y)ηi(x, y) =

m
∑

j=1











ηij

∫

Γi
j

G′

3(x, y, s)ds− ηij
′

∫

Γi
j

G3(x, y, s)ds











. (50)

Substituting the centers (xick, y
i
ck) of the segments Γik into the relations (49),

(50) gives
m
∑

j=1

{

ψijA
i
kj + ψij

′

Bikj + ηijC
i
kj + ηij

′

Di
kj

}

= 0,

m
∑

j=1

{

ηijE
i
kj + ηij

′

F ikj

}

= 0,

(51)

where210

Aikj =

∫

Γi
j

G′

1
(xick, y

i
ck, s)ds− βikδkj , Bikj = −

∫

Γi
j

G1(x
i
ck, y

i
ck, s)ds,

Cikj =

∫

Γi
j

G′

4
(xick, y

i
ck, s)ds, Di

kj = −
∫

Γi
j

G4(x
i
ck, y

i
ck, s)ds,

Eikj =

∫

Γi
j

G′

3(x
i
ck, y

i
ck, s)ds− βikδkj , F ikj = −

∫

Γi
j

G3(x
i
ck, y

i
ck, s)ds,

(52)

βik = β(xick, y
i
ck).

To close the obtained system (42), (51) of linear algebraic equations (SLAE)

the relations from the boundary conditions are used. The conditions (25), (26)

are written in the form

ψej = yecj, ηj = 0 on AD,

ψej = ψek, ψej
′ = −ψek′, ηej = ηek, ηej

′ = −ηek on AE and DF ,
(53)

where j and k are the indexes of the corresponded linear segments on the sides215
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AE and DF . The symmetry conditions (27), (28), (30) are presented as

ψej = h1, ηej = 0 on EF ,

ψej = 0, ηej = 0 on AB and CD,

ψij = 0, ηij = 0 on BOC.

(54)

The conditions (31) on the boundary BC of the porous medium and free space

interface are written in the form

ψej = ψik, ψej
′ = −ψik

′

, ηej
′ = S2ψik

′ − ηik
′

, ηej = ηik, (55)

where j and k are the indexes of the matching linear segments Γej and Γik on

BC.220

The SLAE obtained is then solved numerically to find the unknown

quantities ψej , ψ
e
j
′, ηej , η

e
j
′, j = 1, n; ψij , ψ

i
j

′

, ηij , η
i
j

′

, j = 1,m. The functions

ψe(x, y), ωe(x, y), ψi(x, y), ωi(x, y) at the general point (x, y) can then be

calculated from the formulas (40), (41), (49), (50). The formulas for the velocity

components are written as225

χ(x, y)vex(x, y) =

n
∑

j=1











ψej

∫

Γe
j

∂G′

1
(x, y, s)

∂y
ds− ψej

′

∫

Γe
j

∂G1(x, y, s)

∂y
ds+

+ ηej

∫

Γe
j

∂G′

2(x, y, s)

∂y
ds− ηej

′

∫

Γe
j

∂G2(x, y, s)

∂y
ds











, (56)

χ(x, y)vey(x, y) = −
n
∑

j=1











ψej

∫

Γe
j

∂G′

1
(x, y, s)

∂x
ds− ψej

′

∫

Γe
j

∂G1(x, y, s)

∂x
ds+

+ηej

∫

Γe
j

∂G′

2
(x, y, s)

∂x
ds− ηej

′

∫

Γe
j

∂G2(x, y, s)

∂x
ds











, (57)

χ(x, y)vix(x, y) =

m
∑

j=1











ψij

∫

Γi
j

∂G′

1(x, y, s)

∂y
ds− ψij

′

∫

Γi
j

∂G1(x, y, s)

∂y
ds+

+ ηij

∫

Γi
j

∂G′

4
(x, y, s)

∂y
ds− ηij

′

∫

Γi
j

∂G4(x, y, s)

∂y
ds











, (58)
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χ(x, y)viy(x, y) = −
m
∑

j=1











ψij

∫

Γi
j

∂G′

1
(x, y, s)

∂x
ds− ψij

′

∫

Γi
j

∂G1(x, y, s)

∂x
ds+

+ηij

∫

Γi
j

∂G′

4(x, y, s)

∂x
ds− ηij

′

∫

Γi
j

∂G4(x, y, s)

∂x
ds











. (59)

The main numerical difficulties of the BEM described above are connected

with the calculation of the integrals
∫

Gkds,

∫

G′

kds,

∫

∂Gk
dx

ds,
∫

∂G′

k

dy
ds,

∫

∂Gk
dy

ds,

∫

∂G′

k

dy
ds

(60)

on the linear segments Γej and Γij , where k = 1, 4. The analytical formulas for

the integrals (60) for k = 1, 2 are given in [31]. For k = 3 the integrals are

determined numerically and for k = 4 the integrals are found by combining230

the integrals for k = 1, 3 using (48). To calculate the integrals involving the

derivative of Greens function for k = 3 the following formulas with equation

(39) are used:

dG3

dx
= −SK1(Sρ)(x1 − x)

ρ
,

dG3

dy
= −SK1(Sρ)(y1 − y)

ρ
, (61)

dG′

3

dx
=

S

ρ

[(

SK0(Sρ) +
2K1(Sρ)

ρ

)

(x1 − x)

ρ
×

×
(

(x1 − x) sin θ − (y1 − y) cos θ
)

−K1(Sρ) sin θ

]

, (62)

235

dG′

3

dy
=

S

ρ

[(

SK0(Sρ) +
2K1(Sρ)

ρ

)

(y1 − y)

ρ
×

×
(

(x1 − x) sin θ − (y1 − y) cos θ
)

+K1(Sρ) cos θ

]

, (63)

where θ is the angle of the tangent to the current integration linear segment

and K1 is the modified Bessel function of the second kind of first order.

5. Analytical solution

For the circular porous cylinder in a circular cell with Kuwabara conditions

the analytical solution was obtained in [13]. For the free space flow the stream240
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function can be written in the form

ψea(r, θ) =

(

A1

r
+B1r + C1r ln r +D1r

3

)

sin θ, (64)

For the porous domain the stream function can be written as

ψia(r, θ) =
(

B2r + C2I1(Sr)
)

sin θ, (65)

where I1 is the modified Bessel function of the first kind of first order. The

functions (64) and (65) take into account the boundary conditions (28), (30).

The unknown coefficients in (64) and (65) are found from the SLAE obtained245

from the boundary conditions (25), (31). The resulting relationships are shown

below:

αA1 +B1 −
lnα

2
C1 +

1

α
D1 = 1,

αC1 + 4D1 = 0,

A1 +B1 +D1 −B2 − I1(S)C2 = 0, (66)

−A1 +B1 + C1 + 3D1 −B2 +
(

I1(S)− SI0(S)
)

C2 = 0,

2C1 − 8D1 − S2B2 = 0,

2C1 + 8D1 − S2I1(S)C2 = 0,

where I0 is the modified Bessel function of the first kind of zero order and the

solidity α is given by α = h−2. The velocity components and vorticity in polar

coordinates are found from the following formulae250

vera(r, θ) =
1

r

∂ψea
∂θ

=

(

A1

r2
+B1 + C1 ln r +D1r

2

)

cos θ, (67)

vira(r, θ) =
1

r

∂ψia
∂θ

=

(

B2 + C2

I1(Sr)

r

)

cos θ, (68)

veθa(r, θ) = −∂ψ
e
a

∂r
= −

(

−A1

r2
+B1 + C1(ln r + 1) + 3D1r

2

)

sin θ, (69)

viθa(r, θ) = −∂ψ
i
a

∂r
= −

(

B2 + C2

(

I0(S)−
I1(S)

Sr

))

sin θ, (70)

ωea(r, θ) = −
(

1

r

∂

∂r

(

r
∂ψea
∂r

)

+
1

r2
∂2ψea
∂θ2

)

= −2

(

C1

r
+ 4D1r

)

sin θ,(71)

ωia(r, θ) = −
(

1

r

∂

∂r

(

r
∂ψia
∂r

)

+
1

r2
∂2ψia
∂θ2

)

= −S2C2I1(Sr) sin θ. (72)
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6. Numerical results

The fluid flow through a porous circular cylinder in a circular Kuwabara cell

with porosity ε = 0.96 (h = 5) was studied to test the model developed. The

number of linear elements on the boundaries Γe and Γi is taken to be n = 161

and m = 50 respectively. The integration step for calculating the integrals (60)255

at k = 3, 4 is taking to be 10−4.

To estimate the accuracy of the developed method the absolute Eψ(x, y),

Evx(x, y), Evy(x, y), Eω(x, y) and relative εψ, εvx, εvy, εω errors were calculated

for the functions ψ(x, y), vx(x, y), vy(x, y), ω(x, y) respectively, where:

Eψ(x, y) = |ψ(x, y)− ψa(x, y)|, Evx(x, y) = |vx(x, y)− vxa(x, y)|, (73)

Evy(x, y) = |vy(x, y)− vya(x, y)|, Eω(x, y) = |ω(x, y)− ωa(x, y)|, (74)

εψ =
maxEψ(x, y)

max |ψa(x, y)|
, εvx =

maxEvx(x, y)

max
√

v2xa(x, y) + v2ya(x, y)
, (75)

εvy =
maxEvy(x, y)

max
√

v2xa(x, y) + v2ya(x, y)
, εω =

maxEω(x, y)

max |ωa(x, y)|
. (76)

The streamlines and vorticity distributions at S = 3 and 6 are shown in260

Fig. 3. It is seen from the figure that the flow rate through the porous cylinder

decreases with the growth of S (decreasing the permeability of the porous

medium). For larger S the vorticity near the cylinder boundary is larger. The

distributions of Eψ(x, y), Evx(x, y), Evy(x, y), Eω(x, y) for S = 3 are shown in

Fig. 4. The values of the relative errors εψ, εvx, εvy, εω for S = 1, 3, 6, 10 are265

given in Table 1. It is seen from the figure and table that the method developed

provides good accuracy with a relatively small number of linear elements on

the flow boundary. It can also be observed that smaller values of absolute and

relative errors are obtained for the stream function. The corresponding values

for the velocity components and vorticity are higher due to additional numerical270

differentiation. Larger values of the errors are observed in the center of the

domain Ωe for the stream function and at the interface between the free space

and the porous medium for for the velocity components and vorticity (Fig. 4).
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Figure 3: Streamlines and vorticity distributions in circular cell for S = 3 (a), S = 6 (b)
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Figure 4: The distributions Eψ(x, y), Evx(x, y), Evy(x, y), Eω(x, y) in circular cell for S = 3

Table 1: Relative errors εψ , εvx, εvy, εω

S εψ × 104 εvx × 103 εvy × 103 εω × 103

1 3.519 3.304 5.216 2.317

3 1.951 1.464 1.461 2.039

6 2.173 1.043 0.370 3.183

10 2.177 1.085 0.367 3.470
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a b

Figure 5: Fluid flow streamlines in rectangular cell with porosity ε = 0.96 for S = 3 (a) and

S = 6 (b). The solid and dotted lines correspond to the BEM and FVM models respectively.

The mathematical model was also applied to the fluid flow through a porous

cylinder in a rectangular cell. Such a model is a more accurate fluid flow275

description but it is not possible to obtain an analytical solution for comparison.

The periodic boundary conditions (26) on the outer left and right sides of

the cell and the symmetry conditions (27), (28) on the top and bottom sides

are applied. The results obtained are compared with the results obtained by

ANSYS/FLUENT where the boundary value problem was solved for the Navier-280

Stokes-Brinkman approach using the FVM [36]. The fluid flow streamlines for

the rectangular cell with porosity ε = 0.96 for two values of S are given in Fig. 5.

For this porosity as defined by (23) the cell dimensions are h1 = h2 = 4.43

(α = π/4h1h2). The density of the streamlines is higher near the symmetry

axis. As can be seen in the figures there is no significant difference between the285

streamlines from the two approaches.

The coefficient of fluid capture Q = ψ(0, 1) as a function of S for various

values of ε has been calculated. In Fig. 6, a and in Table 2 the dependencies

Q(S) found by the BEM and the FVM are shown. Good agreement between

the two models is observed. A comparison of the dependencies Q(S) obtained290

numerically by the BEM in a rectangular cell and from the analytical solution

(64), (65) for a circular cell is shown in Fig. 6, b and in Table 2. In this case the

dependencies Q(S) for the rectangular and circular periodic cells agree well for

larger values of the porosity ε = 0.9, 0.96, 0.99. The values presented in Table 2
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Figure 6: The coefficient of fluid capture Q(S) for the rectangular cell calculated using BEM

(solid lines – ε = 0.9, dashed lines – ε = 0.96, dot-dashed lines – ε = 0.99). The symbols

correspond to FVM calculation(a) and analytical solution for circular cell (b): square symbols

– ε = 0.9, triangles – ε = 0.96, circles – ε = 0.99). The dotted line and rhombus symbols (b)

corresponds to ε = 0.6 for numerical solution in rectangular and analytical solution in circular

cells respectively.

Table 2: The coefficient Q(S) for circular cylinder in circular and rectangular cells

S ε = 0.9 ε = 0.96 ε = 0.99

formulas

(64),(65)

FVM BEM formulas

(64),(65)

FVM BEM formulas

(64),(65)

FVM BEM

1 0.8523 0.8543 0.8515 0.7812 0.7839 0.7794 0.6899 0.692 0.6880

3 0.4053 0.4190 0.4092 0.2928 0.2961 0.2930 0.2027 0.2056 0.2021

6 0.1559 0.1647 0.1615 0.0986 0.1015 0.0997 0.0618 0.0631 0.0617

10 0.0658 0.0708 0.0698 0.0393 0.0404 0.0402 0.0237 0.0245 0.0238
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show that the fluid capture coefficient for the rectangular cell found numerically295

by the BEM and the FVM agree well with the values from the analytical solution

for circular cell. Considerable difference between the two geometries is apparent

for the smaller porosity ε = 0.6 (h = 1.58).

To test the interface conditions (31) for an arbitrary curvilinear boundary

of a porous body, the fluid flow past a circular body with an uneven surface300

(the idealized model of a viral capsid proposed in [37]) in a rectangular periodic

cell has been modelled. This fluid flow study has been motivated by the capsid

structure of particle shaped viruses in biofluids. The boundary of the simplified

bumpy circle is given by the formula

r(θ) = 1 + γ cos(mbθ). (77)

where γ is the amplitude ratio of a bump, mb is the total number of bumps305

along the circumference. The streamlines for S = 10 at γ = 0.1, mb = 12 (outer

flow size and notations are the same as in Fig. 5) for the rectangular cell with

dimensions h1 = h2 = 4.43 are shown in Fig. 7, a. The streamlines pattern close

to and inside the capsid for S = 10, S = 50 and S = 200 are given in Fig. 7, b,

c, d respectively. For the values of the parameter S = 50 and S = 200 the fluid310

flow pattern becomes very complex inside the porous body. At S = 200 vortices

appear on the body surface as was shown for the solid capsid model in [37]. The

fluid flow problem was also solved using CFD ANSYS/FLUENT. It can be seen

that there is good agreement of the fluid flow streamlines for the two methods.

To further test the accuracy and adaptability of the developed method the315

problems of fluid flow through the porous square and triangular cylinders in a

rectangular periodic cell have been considered. The cell dimensions are h1 =

h2 = 4.43. The square and triangular domains can be defined as Ω1 : {−1 <

x < 1, 0 < y < 1}, Ω2 : {−1 < x < 1, y > 0, y < 0.5(x + 1)} respectively.

The periodic boundary conditions (26) on the outer left and right sides of the320

cell and the symmetry conditions (27), (28) on the top and bottom sides are

applied. The fluid flow streamlines for S = 10, 200 from the cell model are given

in Fig. 8. It is seen that BEM and FVM approaches give very similar results.
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a b

c d

Figure 7: Fluid flow through “idealized capsid” streamlines for the rectangular cell with

h1 = h2 = 4.43 at S = 10(a, b), 50(c), 200(d). The solid and dotted lines correspond to the

BEM and FVM models respectively.

The absolute Enψ(x, y) and relative εnψ differences between the functions

ψ1(x, y) and ψ2(x, y) obtained from the BEM and FVM solutions respectively325

were calculated from the formulae

Enψ(x, y) = |ψ1(x, y)− ψ2(x, y)|, εnψ =
maxEnψ(x, y)

max |ψ2(x, y)|
. (78)

The calculated values of the relative differences between the BEM and FVM

solutions εnψ for S = 10, 200 are presented in Table 3. It is seen that both

methods give very similar results.

The coefficient of fluid capture Q = ψ(x∗, y∗) (x∗ = 0, y∗ = 1.1 – capsid330

model, x∗ = −1, y∗ = 1 – square cylinder, x∗ = 1, y∗ = 1 – triangular cylinder)

for S = 10, 200 has been calculated. The corresponding values of Q for the fluid

flow are given in Table 4. It is seen from the table that good correlation between

the BEM and FVM is obtained for all three bodies.
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a d

b e

c f

Figure 8: Fluid flow through square (a,b,c) and triangular (d,e,f) cylinders streamlines for the

rectangular cell with h1 = h2 = 4.43 at S = 10 (a,b,d,e) and S = 200 (c,f). The solid and

dotted lines correspond to the BEM and FVM models respectively.

Table 3: Relative difference εn
ψ

between BEM and FVM solutions

S capsid square cylinder triangular cylinder

10 0.002448 0.002973 0.002075

200 0.001692 0.003262 0.002014
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Table 4: The coefficient of fluid capture Q(S) for capsid, square and triangular cylinders in

rectangular cell

S capsid square cylinder triangular cylinder

FVM BEM FVM BEM FVM BEM

10 0.0611 0.06133 0.06728 0.06885 0.1175 0.1139

200 0.00036 0.0003229 0.0007547 0.0007420 0.001499 0.001445

7. Conclusion335

A mathematical model of viscous incompressible flow around and through

a porous body of arbitrary shape in a periodic cell has been developed. The

fluid flow outside and inside the porous body is described by the Stokes flow

equations and the Brinkman equations respectively. A new formulation for the

conditions on the boundary of the porous body of arbitrary shape has been340

proposed. The boundary element method (BEM) has been applied to solve the

coupled boundary value problem obtained.

For the case of fluid flow around a circular porous cylinder, the numerical

results have been compared to the analytical solution in the Kuwabara circular

cell model. High accuracy of the model developed is shown. For the cases345

of fluid flow around a circular, square and triangular porous cylinders and

a idealized model of a viral capsid, the numerical results obtained using

the developed model are compared to the predictions of the finite volume

method (ANSYS/FLUENT). Good agreement of the two numerical approaches

is demonstrated.350
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