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WARNING: this is work in progress

1 Introduction

1.1 Philosophy

This document was writing with my students in mind, i.e. 3rd and 4th year Geology/Geophysics students
at Utrecht University. I have chosen to use as little jargon as possible unless it is a term that is commonly
found in the geodynamics literature (methods paper as well as application papers). There is no mathe-
matical proof of any theorem or statement I make. These are to be found in generic Numerical Analysic,
Finite Element and Linear Algebra books. If you find that this books lacks references to Sobolev spaces,
Hilbert spaces, and other spaces, this book is just not for you.

The codes I provide here are by no means optimised as I value code readability over code efficiency. I
have also chosen to avoid resorting to multiple code files or even functions to favour a sequential reading of
the codes. These codes are not designed to form the basis of a real life application: Existing open source
highly optimised codes shoud be preferred, such as ASPECT [584, 468], CITCOM, LAMEM, PTATIN,
PYLITH, ...

All kinds of feedback is welcome on the text (grammar, typos, ...) or on the code(s). You will have
my eternal gratitude if you wish to contribute an example, a benchmark, a cookbook.

All the python scripts and this document are freely available at

https://github.com/cedrict/fieldstone

1.2 ambition & motivation

In no particular order, provide the community with:

• an enormous bibliography data base - simply search the pdf for keywords

• a go-to document for anybody who wants to know more about a particular topic in computational
geodynamics.

• a useful teaching tool for researchers, teachers, students and PhD students alike

• small, readable, educative codes

1.3 Acknowledgements

I have benefitted from many discussions, lectures, tutorials, coffee machine discussions, debugging ses-
sions, conference poster sessions, etc ... over the years. I wish to name these instrumental people in
particular and in alphabetic order: Wolfgang Bangerth, Jean Braun, Rens Elbertsen, Philippe Fullsack,
Menno Fraters, Anne Glerum, Timo Heister, Dave May, Robert Myhill, John Naliboff, E. Gerry Puckett,
Melchior Schuh-Senlis, Michael Tetley, Lukas van de Wiel, Arie van den Berg, Eric van den Hoogen, Tom
Weir, and the whole ASPECT family/team.

1.4 About the author

I have BSc in mathematics, and an MSc diploma in physics (with a specialization in musical acoustics
[276]). I did my PhD at the university of Groningen (The Netherlands) title Thermodynamically consis-
tent fluid particle modelling of phase separating mixtures1. Although half of the thesis deals with the
re-derivation of the Navier-Stokes equations for such systems[323], the second half is concerned with the
implementation of these equations with the Smoothed Particle Hydrodynamics method [893, 894, 892].

I then taught physics and programming at the University of Rennes (France) for a year, after which I
did a 2-year post-doc with Prof. J. Braun2 in the Geosciences department. I then did a 4-year post-doc

1http://cedricthieulot.net/thesis.html
2https://www.gfz-potsdam.de/en/staff/jean-braun/
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with prof. R. Huismans3 at the University of Bergen (Norway), followed by a 3-year post-doc with profs.
T. Torsvik and W. Spakman at the Utrecht University (The Netherlands). Since June 2015 I am assistant
professor there in the geophysics group.

1.5 Essential/relevant literature

• Numerical modeling of Earth Systems by Thorsten W. Becker and Boris J. P. Kaus,
http://www-udc.ig.utexas.edu/external/becker/teaching-557.html

• Myths & Methods in Modeling by M. Spiegelman,
https://www.ldeo.columbia.edu/~mspieg/mmm/

• Computational Science I by Matthew G. Knepley,
https://cse.buffalo.edu/~knepley/classes/caam519/Syllabus.html

• Introduction to Numerical Methods for Variational Problems by Hans Petter Langtangen and Kent-
Andre Mardal,
https://hplgit.github.io/fem-book/doc/pub/book/pdf/fem-book-4print.pdf

1.6 Installation

If numpy, scipy or matplotlib are not installed on your machine, here is how you can install them:

python3.6 -m pip install --user numpy scipy matplotlib

To install the umfpack solver:

pip install --upgrade scikit-umfpack --user

1.7 What is a fieldstone?

Simply put, it is stone collected from the surface of fields where it occurs naturally. It also stands for the
bad acronym: finite element deformation of stones which echoes the primary application of these codes:
geodynamic modelling.

1.8 Why the Finite Element method?

The Finite Element Method (FEM) is by no means the only method to solve PDEs in geodynamics, nor
is it necessarily the best one. Other methods are employed very succesfully, such as the Finite Difference
Method (FDM), the Finite Volume Method (FVM), and to a lesser extent the Discrete Element Method
(DEM) [874, 306, 307, 358], or the Element Free Galerkin Method (EFGM) [449]. I have been using FEM
since 2008 and I do not have real experience to speak of in FVM or FDM so I concentrate in this book
on what I know best.

The first papers I could find showcasing the FEM in geodynamics are listed hereafter: [363], [25] [316]
[61][882] [317] [1055] [1056] [116] [978] [138] [139] [142] [1014] [291].

3https://folk.uib.no/huismans/
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1.9 Notations

Scalars such as temperature, density, pressure, etc ... are simply obtained in LATEX by using the math
mode, e.g. T , ρ, p. Although it is common to lump vectors and matrices/tensors together by using bold
fonts, I have decided in the interest of clarity to distinguish between those: vectors are denoted by an
arrow atop the quantity, e.g. ~ν, ~g, while matrices and tensors are in bold M , σ, etc ...

Also I use the · notation between two vectors to denote a dot product ~u · ~v = uivi or a matrix-vector
multiplication M · ~a = Mijaj . If there is no · between vectors, it means that the result ~a~b = aibj is a

matrix (it is a dyadic product4. Case in point, ~∇ · ~ν is the velocity divergence while ~∇~ν is the velocity
gradient tensor.

1.10 Colour maps for visualisation

In an attempt to homogenise the figures obtained with ParaView, I have decided to use a fixed colour
scale for each field throughout this document. These colour scales were obtained from this link and are
Perceptually Uniform Colour Maps [581].

Field colour code

Velocity/displacement CET-D1A

Pressure CET-L17

Velocity divergence CET-L1

Density CET-D3

Strain rate CET-R2

Viscosity CET-R3

Temperature CET-D9

4https://en.wikipedia.org/wiki/Dyadics
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1 Q1 × P0 penalty analytical benchmark MMS1 †
2 Q1 × P0 penalty Stokes sphere
3 Q1 × P0 penalty Blankenbach et al., 1989 † †
4 Q1 × P0 penalty Lid driven cavity
5 Q1 × P0 penalty SolCx benchmark
6 Q1 × P0 penalty SolKz benchmark
7 Q1 × P0 penalty SolVi benchmark
8 Q1 × P0 penalty Indentor †
9 Q1 × P0 penalty annulus benchmark
10 Q1 × P0 penalty Stokes sphere †
11 Q1 × P0 full matrix mixed Stokes sphere †
12 Q1 × P0 penalty analytical benchmark

+ consistent press recovery
13 Q1 × P0 penalty Stokes sphere

+ markers averaging
14 Q1 × P0 full matrix mixed analytical benchmark
15 Q1 × P0 Schur comp. CG mixed analytical benchmark
16 Q1 × P0 Schur comp. PCG mixed Stokes sphere
17 Q2 ×Q1 full matrix mixed Burstedde benchmark †
18 Q2 ×Q1 full matrix mixed analytical benchmark
19 Q3 ×Q2 full matrix mixed analytical benchmark
20 Q1 × P0 penalty Busse et al., 1993 † † †
21 Q1×P0 R-T penalty analytical benchmark
22 Q1 × Q1-

stab
full matrix mixed analytical benchmark

23 Q1 × P0 mixed analytical benchmark †
24 Q1 × P0 mixed convection box † † †
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25 Q1 × P0 full matrix mixed Rayleigh-Taylor instability
26 Q1 × P0 full matrix mixed Slab detachment †
27 Q1 × P0 full matrix mixed CBF benchmarks † †
28 Q1 × P0 full matrix mixed Tosi et al, 2015 † † † †
29 Q1 × P0 full matrix mixed Open Boundary conditions †
30 Q1, Q2 X X Cons. Vel. Interp (cvi) † †
31 Q1, Q2 X X Cons. Vel. Interp (cvi) † † †
32 Q1 × P0 full matrix mixed analytical benchmark †
33 Q1 × P0 penalty convection in annulus † † †
34 Q1 elastic Cartesian aquarium † † †
35
36 Q1 elastic annulus aquarium † † †
37 Q1, Q2 X X population control, bmw test † †
38 Critical Rayleigh number
39 Q2 ×Q1 full matrix mixed
40 Inst. Rayleigh-Taylor insta-

bility
41
42 1D diffusion
43 Rotating cone

44 P+
2 × P−1 mixed flat slab Melanie

45 P2 Slab temp corner [938]

46 P+
2 × P−1 analytical benchmark MMS1

47
48 Q1P0,

Q2Q1,
Q3Q2
on
MMS1

XX
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Analytical benchmark means that an analytical solution exists while numerical benchmark means that a comparison with other code(s) has been carried
out.
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3 The physical equations

Symbol meaning unit

t Time s
x, y, z Cartesian coordinates m
r, θ Polar coordinates m,-
r, θ, z Cylindrical coordinates m,-,m
r, θ, φ Spherical coordinates m,-,-
~ν velocity vector m· s−1

ρ mass density kg/m3

η dynamic viscosity Pa· s
λ penalty parameter Pa· s
T temperature K
~∇ gradient operator m−1

~∇· divergence operator m−1

p pressure Pa
ε̇(~ν) strain rate tensor s−1

α thermal expansion coefficient K−1

k thermal conductivity W/(m · K)
Cp Heat capacity J/K
H intrinsic specific heat production W/kg
βT isothermal compressibility Pa−1

τ deviatoric stress tensor Pa
σ full stress tensor Pa

3.1 Strain rate and spin tensor

The velocity gradient is given in Cartesian coordinates by:

~∇~ν =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 (1)

It can be decomposed into its symmetric and skew-symmetric parts according to:

~∇~ν = ~∇s~ν + ~∇w~ν (2)

The symmetric part is called the strain rate (or rate of deformation):

ε̇(~ν) =
1

2

(
~∇~ν + ~∇~νT

)
(3)

The skew-symmetric tensor is called spin tensor (or vorticity tensor):

Ṙ(~ν) =
1

2

(
~∇~ν− ~∇~νT

)
(4)

3.2 The heat transport equation - energy conservation equation

Let us start from the heat transport equation as shown in Schubert, Turcotte and Olson [826]:

ρCp
DT

Dt
− αT Dp

Dt
= ~∇ · k~∇T + Φ + ρH (5)

with D/Dt being the total derivatives so that

DT

Dt
=
∂T

∂t
+ ~ν · ~∇T Dp

Dt
=
∂p

∂t
+ ~ν · ~∇p (6)

Solving for temperature, this equation is often rewritten as follows:
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ρCp
DT

Dt
− ~∇ · k~∇T = αT

Dp

Dt
+ Φ + ρH (7)

where Φ is the shear heating [769, p287]. In many publications, Φ is given by Φ = τij∂jui = τ : ~∇~ν.

Φ = τij∂jui

= 2ηε̇dij∂jui

= 2η
1

2

(
ε̇dij∂jui + ε̇dji∂iuj

)
= 2η

1

2

(
ε̇dij∂jui + ε̇dij∂iuj

)
= 2ηε̇dij

1

2
(∂jui + ∂iuj)

= 2ηε̇dij ε̇ij

= 2ηε̇d : ε̇

= 2ηε̇d :

(
ε̇d +

1

3
(~∇ · ~ν)1

)
= 2ηε̇d : ε̇d + 2ηε̇d : 1(~∇ · ~ν)

= 2ηε̇d : ε̇d (8)

Finally
Φ = τ : ~∇~ν = 2ηε̇d : ε̇d = 2η

(
(ε̇dxx)2 + (ε̇dyy)2 + 2(ε̇dxy)2

)
3.3 The momentum conservation equations

Because the Prandlt number is virtually zero in Earth science applications the Navier Stokes equations
reduce to the Stokes equation:

~∇ · σ + ρ~g = 0 (9)

Since
σ = −p1 + τ (10)

it also writes
− ~∇p+ ~∇ · τ + ρ~g = 0 (11)

Using the relationship τ = 2ηε̇d we arrive at

− ~∇p+ ~∇ · (2ηε̇d) + ρ~g = 0 (12)

3.4 The mass conservation equations

The mass conservation equation is given by

Dρ

Dt
+ ρ~∇ · ~ν = 0

or,

∂ρ

∂t
+ ~∇ · (ρ~ν) = 0

In the case of an incompressible flow, then ∂ρ/∂t = 0 and ~∇ρ = 0, i.e. Dρ/Dt = 0 and the remaining
equation is simply:

~∇ · ~ν = 0
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3.5 The equations in ASPECT manual

The following is lifted off the ASPECT manual. We focus on the system of equations in a d = 2- or
d = 3-dimensional domain Ω that describes the motion of a highly viscous fluid driven by differences in
the gravitational force due to a density that depends on the temperature. In the following, we largely
follow the exposition of this material in Schubert, Turcotte and Olson [826].

Specifically, we consider the following set of equations for velocity u, pressure p and temperature T :

−~∇ ·
[
2η

(
ε̇(~ν)− 1

3
(~∇ · ~ν)1

)]
+ ~∇p = ρ~g in Ω, (13)

~∇ · (ρ~v) = 0 in Ω, (14)

ρCp

(
∂T

∂t
+ ~ν · ~∇T

)
− ~∇ · k~∇T = ρH

+ 2η

(
ε̇(v)− 1

3
(~∇ · ~ν)1

)
:

(
ε̇(v)− 1

3
(~∇ · ~ν)1

)
(15)

+ αT
(
v · ~∇p

)
in Ω,

where ε̇(~ν) = 1
2 (~∇~ν + ~∇~νT ) is the symmetric gradient of the velocity (often called the strain rate).

In this set of equations, (550) and (551) represent the compressible Stokes equations in which v =
v(x, t) is the velocity field and p = p(x, t) the pressure field. Both fields depend on space x and time
t. Fluid flow is driven by the gravity force that acts on the fluid and that is proportional to both the
density of the fluid and the strength of the gravitational pull.

Coupled to this Stokes system is equation (552) for the temperature field T = T (x, t) that contains
heat conduction terms as well as advection with the flow velocity v. The right hand side terms of this
equation correspond to

• internal heat production for example due to radioactive decay;

• friction (shear) heating;

• adiabatic compression of material;

In order to arrive at the set of equations that ASPECT solves, we need to

• neglect the ∂p/∂t. WHY?

• neglect the ∂ρ/∂t . WHY?

from equations above.
—————————————-
Also, their definition of the shear heating term Φ is:

Φ = kB(∇ · v)2 + 2ηε̇d : ε̇d

For many fluids the bulk viscosity kB is very small and is often taken to be zero, an assumption known
as the Stokes assumption: kB = λ + 2η/3 = 0. Note that η is the dynamic viscosity and λ the second
viscosity. Also,

τ = 2ηε̇+ λ(∇ · v)1

but since kB = λ+ 2η/3 = 0, then λ = −2η/3 so

τ = 2ηε̇− 2

3
η(∇ · v)1 = 2ηε̇d
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3.6 The Boussinesq approximation: an Incompressible flow

[from Aspect manual] The Boussinesq approximation assumes that the density can be considered con-
stant in all occurrences in the equations with the exception of the buoyancy term on the right hand side
of (550). The primary result of this assumption is that the continuity equation (551) will now read

∇ · v = 0

This implies that the strain rate tensor is deviatoric. Under the Boussinesq approximation, the equations
are much simplified:

−∇ · [2ηε̇(v)] +∇p = ρg in Ω, (16)

∇ · (ρv) = 0 in Ω, (17)

ρ0Cp

(
∂T

∂t
+ v · ∇T

)
−∇ · k∇T = ρH in Ω (18)

Note that all terms on the rhs of the temperature equations have disappeared, with the exception of the
source term.
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3.7 Stokes equation for elastic medium

What follows is mostly borrowed from Becker & Kaus lecture notes.
The strong form of the PDE that governs force balance in a medium is given by

∇ · σ + f = 0

where σ is the stress tensor and f is a body force.
The stress tensor is related to the strain tensor through the generalised Hooke’s law:

σij =
∑
kl

Cijklεkl (19)

where C is the fourth-order elastic tensor. In the case of an isotropic material, this relationship simplifies
to

σij = λεkkδij + 2µεij or, σ = λ(∇ · u)1 + 2µε (20)

where λ is the Lamé parameter and µ is the shear modulus5. The term ∇ · u is the isotropic dilation.
The strain tensor is related to the displacement as follows:

ε =
1

2
(∇u+ ∇uT )

The incompressibility (bulk modulus), K, is defined as p = −K∇ · u where p is the pressure with

p = −1

3
Tr(σ)

= −1

3
[λ(∇ · u)Tr[1] + 2µTr[ε]]

= −1

3
[λ(∇ · u)3 + 2µ(∇ · u)]

= −[λ+
2

3
µ](∇ · u) (21)

so that K = λ+ 2
3µ.

Remark. Eq. (19) and (20) are analogous to the ones that one has to solve in the context of viscous
flow using the penalty method. In this case λ is the penalty coefficient, u is the velocity, and µ is then
the dynamic viscosity.

The Lamé parameter and the shear modulus are also linked to ν the poisson ratio, and E, Young’s
modulus:

λ = µ
2ν

1− 2ν
=

νE

(1 + ν)(1− 2ν)
with E = 2µ(1 + ν)

The shear modulus, expressed often in GPa, describes the material’s response to shear stress. The poisson
ratio describes the response in the direction orthogonal to uniaxial stress. The Young modulus, expressed
in GPa, describes the material’s strain response to uniaxial stress in the direction of this stress.

5It is also sometimes written G
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3.8 The strain rate tensor in all coordinate systems

The strain rate tensor ε̇ is given by

ε̇ =
1

2
(~∇~ν + ~∇~νT ) (22)

3.8.1 Cartesian coordinates

ε̇xx =
∂u

∂x
(23)

ε̇yy =
∂v

∂y
(24)

ε̇zz =
∂w

∂z
(25)

ε̇yx = ε̇xy =
1

2

(
∂u

∂y
+
∂v

∂x

)
(26)

ε̇zx = ε̇xz =
1

2

(
∂u

∂z
+
∂w

∂x

)
(27)

ε̇zy = ε̇yz =
1

2

(
∂v

∂z
+
∂w

∂y

)
(28)

3.8.2 Polar coordinates

ε̇rr =
∂vr
∂r

(29)

ε̇θθ =
vr
r

+
1

r

∂vθ
∂θ

(30)

ε̇θr = ε̇rθ =
1

2

(
∂vθ
∂r
− vθ

r
+

1

r

∂vr
∂θ

)
(31)

3.8.3 Cylindrical coordinates

http://eml.ou.edu/equation/FLUIDS/STRAIN/STRAIN.HTM

3.8.4 Spherical coordinates

ε̇rr =
∂vr
∂r

(32)

ε̇θθ =
vr
r

+
1

r

∂vθ
∂θ

(33)

ε̇φφ =
1

r sin θ

∂vφ
∂φ

(34)

ε̇θr = ε̇rθ =
1

2

(
r
∂

∂r
(
vθ
r

) +
1

r

∂vr
∂θ

)
(35)

ε̇φr = ε̇rφ =
1

2

(
1

r sin θ

∂vr
∂φ

+ r
∂

∂r
(
vφ
r

)

)
(36)

ε̇φθ = ε̇θφ =
1

2

(
sin θ

r

∂

∂θ
(
vφ

sin θ
) +

1

r sin θ

∂vθ
∂φ

)
(37)
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3.9 Boundary conditions

In mathematics, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named
after Peter Gustav Lejeune Dirichlet. When imposed on an ODE or PDE, it specifies the values that a
solution needs to take on along the boundary of the domain. Note that a Dirichlet boundary condition
may also be referred to as a fixed boundary condition.

The Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl
Neumann. When imposed on an ordinary or a partial differential equation, the condition specifies the
values in which the derivative of a solution is applied within the boundary of the domain.

It is possible to describe the problem using other boundary conditions: a Dirichlet boundary condition
specifies the values of the solution itself (as opposed to its derivative) on the boundary, whereas the Cauchy
boundary condition, mixed boundary condition and Robin boundary condition are all different types of
combinations of the Neumann and Dirichlet boundary conditions.

3.9.1 The Stokes equations

You may find the following terms in the computational geodynamics literature:

• free surface: this means that no force is acting on the surface, i.e. σ · ~n = ~0. It is usually used on
the top boundary of the domain and allows for topography evolution.

• free slip: ~ν · ~n = 0 and (σ · ~n) × ~n = ~0. This condition ensures a frictionless flow parallel to the
boundary where it is prescribed.

• no slip: this means that the velocity (or displacement) is exactly zero on the boundary, i.e. ~ν = ~0.

• prescribed velocity: ~ν = ~νbc

• stress b.c.:

• open .b.c.: see fieldstone 29.

3.9.2 The heat transport equation

There are two types of boundary conditions for this equation: temperature boundary conditions (Dirichlet
boundary conditions) and heat flux boundary conditions (Neumann boundary conditions).

21



3.10 Meaningful physical quantities

• Velocity ~ν(m/s): This is a vector quantity and both magnitude and direction are needed to define
it. It is the rate of change of position with respect to a frame of reference.

• Root mean square velocity νrms(m/s):

νrms =

(∫
Ω
|~ν|2 dΩ∫
Ω
dΩ

)1/2

=

(
1

VΩ

∫
Ω

|~ν|2 dΩ

)1/2

(38)

Remark. VΩ is usually computed numerically at the same time νvrms is computed.

In Cartesian coordinates, for a cuboid domain of size Lx× Ly × Lz, the νrms is simply given by:

νrms =

(
1

LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0

(u2 + v2 + w2)dxdydz

)1/2

(39)

In the case of an annulus domain, although calculations are carried out in Cartesian coordinates,
it makes sense to look at the radial velocity component νr and the tangential velocity component
νθ, and their respective root mean square averages:

νr|rms =

(
1

VΩ

∫
Ω

v2
r dΩ

)1/2

(40)

νθ|rms =

(
1

VΩ

∫
Ω

v2
θ dΩ

)1/2

(41)

• Pressure p(Pa):

• Stress tensor σ (Pa):

• Strain tensor ε (dimensionless):

• Strain rate tensor ε̇(s−1):

• Rayleigh number Ra (X):

• Prandtl number Pr (X): It is named after the German physicist Ludwig Prandtl and is defined as
the ratio of momentum diffusivity to thermal diffusivity. It is given as:

Pr =
momentum diffusivity

thermal diffusivity
=

η/ρ

k/(ρCp)
=
ηCp
k

For Earth materials, we have Pr ∼ (10211000)/3 >> 1, which means that momentum diffusivity
dominates.

• Nusselt number Nu (X): the Nusselt number (Nu) is the ratio of convective to conductive heat
transfer across (normal to) the boundary. The conductive component is measured under the same
conditions as the heat convection but with a (hypothetically) stagnant (or motionless) fluid.

In practice the Nusselt number Nu of a layer (typically the mantle of a planet) is defined as follows:

Nu =
q

qc
(42)

where q is the heat transferred by convection while qc = k∆T/D is the amount of heat that would
be conducted through a layer of thickness D with a temperature difference ∆T across it with k
being the thermal conductivity.

For 2D Cartesian systems of size (Lx,Ly) the Nu is computed [106]

Nu =

1
Lx

∫ Lx
0

k ∂T∂y (x, y = Ly)dx

− 1
Lx

∫ Lx
0

kT (x, y = 0)/Lydx
= −Ly

∫ Lx
0

∂T
∂y (x, y = Ly)dx∫ Lx

0
T (x, y = 0)dx
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i.e. it is the mean surface temperature gradient over the mean bottom temperature.

finish. not happy with definition. Look at literature

Note that in the case when no convection takes place then the measured heat flux at the top is the
one obtained from a purely conductive profile which yields Nu=1.

Note that a relationship Ra ∝ Nuα exists between the Rayleigh number Ra and the Nusselt number
Nu in convective systems, see [993] and references therein.

Turning now to cylindrical geometries with inner radius R1 and outer radius R2, we define f =
R1/R2. A small value of f corresponds to a high degree of curvature. We assume now that
R2 −R1 = 1, so that R2 = 1/(1− f) and R1 = f/(1− f). Following [542], the Nusselt number at
the inner and outer boundaries are:

Nuinner =
f ln f

1− f
1

2π

∫ 2π

0

(
∂T

∂r

)
r=R1

dθ (43)

Nuouter =
ln f

1− f
1

2π

∫ 2π

0

(
∂T

∂r

)
r=R2

dθ (44)

Note that a conductive geotherm in such an annulus between temperatures T1 and T2 is given by

Tc(r) =
ln(r/R2)

ln(R1/R2)
=

ln(r(1− f))

ln f

so that
∂Tc
∂r

=
1

r

1

ln f

We then find:

Nuinner =
f ln f

1− f
1

2π

∫ 2π

0

(
∂Tc
∂r

)
r=R1

dθ =
f ln f

1− f
1

R1

1

ln f
= 1 (45)

Nuouter =
ln f

1− f
1

2π

∫ 2π

0

(
∂Tc
∂r

)
r=R2

dθ =
ln f

1− f
1

R2

1

ln f
= 1 (46)

As expected, the recovered Nusselt number at both boundaries is exactly 1 when the temperature
field is given by a steady state conductive geotherm.

derive formula for Earth size R1 and R2

• Temperature (K):

• Viscosity (Pa.s):

• Density (kg/m3):

• Heat capacity Cp (J.K−1.kg−1): It is the measure of the heat energy required to increase the
temperature of a unit quantity of a substance by unit degree.

• Heat conductivity, or thermal conductivity k (W.m−1.K−1). It is the property of a material that
indicates its ability to conduct heat. It appears primarily in Fourier’s Law for heat conduction.

• Heat diffusivity: κ = k/(ρCp) (m2.s−1). Substances with high thermal diffusivity rapidly adjust
their temperature to that of their surroundings, because they conduct heat quickly in comparison
to their volumetric heat capacity or ’thermal bulk’.

• thermal expansion α (K−1): it is the tendency of a matter to change in volume in response to a
change in temperature.

check aspect manual The 2D cylindrical shell benchmarks by Davies et al. 5.4.12
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3.11 The need for numerical modelling

The gouverning equations we have seen in this chapter require the use of numerical solution techniques
for three main reasons:

• the advection term in the energy equation couples velocity and temperature;

• the constitutive law (the relationship between stress and strain rate) often depends on velocity (or
rather, strain rate), temperature, pressure, ...

• Even when the coefficients of the PDE’s are linear, often their spatial variability, coupled to poten-
tially complex domain geometries prevent arriving at the analytical solution.

3.12 Rheology in geodynamics

For now what follows only deals with viscous behavior.

3.12.1 Linear viscous aka Newtonian

Simply put, a Newtonian fluid is a fluid in which the viscous stresses at every point are linearly pro-
portional to the local strain rate. Mathematically speaking, this means that the fourth-order tensor C
relating the viscous stress tensor to the strain rate tensor does not depend on the stress state and velocity
of the flow.

s = C · ε̇

One very often make sthe assumption that the fluid is isotropic, i.e. its mechanical properties are
the same along any direction. As a consequence the fourth order viscosity tensor C is symmetric and
will have only two independent real parameters: a bulk viscosity coefficient, that defines the resistance
of the medium to gradual uniform compression; and a dynamic viscosity coefficient η that expresses its
resistance to gradual shearing, (we here neglect the so-called rotational viscosity coefficient which results
from a coupling between the fluid flow and the rotation of the individual particles).

Rather logically we denote by non-Newtonian fluids with are not Newtonian, i.e. their viscosity
(tensor) depends on stress. Such fluids are part of our daily life, e.g. honey, toothpaste, paint, blood,
and shampoo.

3.12.2 Power-law model

One of the simplest non-Newtonian viscosity model is the power-law model:

η = Kε̇
(n−1)/2
II (47)

where ε̇II is the second invariant of the strain rate tensor as defined in Section 7.9.1, and n and K are
parameters. n is called the power-law index.

Note that a Newtonian viscosity is recovered when n = 1. Also n and K may depend on temperature
[769, p339].

3.12.3 Carreau model

3.12.4 Bingham model

3.12.5 Herschel-Bulkley visco-plastic model

The Herschel-Bulkley model is effectively a combination of the power-law model and a simple plastic
model:

s = 2
(
Kε̇n−1 +

τ0
ε̇

)
ε̇ if sII > τ0 (48)

ε̇ = 0 sII ≤ τ0 (49)

(50)
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in which ε̇ =
√
ε̇II , τ0 is the yield stress, K the consistency, and n is the flow index [267]. The flow index

measures the degree to which the fluid is shear-thinning (n < 1) or shear-thickening (n > 1). If n = 1
and τ0 = 0 the model reduces to the Newtonian model.

The term between parenthesis above is the nonlinear effective viscosity. Concretely, the implementa-
tion goes as follows6:

ηeff =

{
η0 ε̇ ≤ ε̇0

Kε̇n−1 + τ0
ε̇ ε̇ ≥ ε̇0

The limiting viscosity η0 is chosen such that η0 = Kε̇n−1
0 + τ0

ε̇0
A large limiting viscosity means that the fluid will only flow in response to a large applied force. This

feature captures the Bingham-type behaviour of the fluid. Note that when strain rates are large, the
power-law behavior dominates.

As we have seen for Bingham fluids, the equations above are not easily amenable to implementation
so that one usually resorts to regularisation, which is a modification of the equations by introducing a
new material parameter which controls the exponential growth of stress. This way the equation is valid
for both yielded and unyielded areas [105, 722]:

ηeff = Kε̇n−1 +
τ0
ε̇

[1− exp(−mε̇)]

When the strain rate becomes (very) small a Taylor expansion of the regularisation term yields 1 −
exp(−mε̇) ∼ mε̇ so that ηeff → mτ0.
Channel flow of wikipedia with analytical solution!

3.12.6 Dislocation creep

3.12.7 Diffusion creep

3.12.8 Peierls creep

6https://en.wikipedia.org/wiki/Herschel-Bulkley_fluid
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4 The building blocks of the Finite Element Method

4.1 Numerical integration

As we will see later, using the Finite Element method to solve problems involves computing integrals
which are more often than not too complex to be computed analytically/exactly. We will then need to
compute them numerically.

[wiki] In essence, the basic problem in numerical integration is to compute an approximate solution
to a definite integral ∫ b

a

f(x)dx

to a given degree of accuracy. This problem has been widely studied and we know that if f(x) is a
smooth function, and the domain of integration is bounded, there are many methods for approximating
the integral to the desired precision.

There are several reasons for carrying out numerical integration.

• The integrand f(x) may be known only at certain points, such as obtained by sampling. Some
embedded systems and other computer applications may need numerical integration for this reason.

• A formula for the integrand may be known, but it may be difficult or impossible to find an an-
tiderivative that is an elementary function. An example of such an integrand is f(x) = exp(−x2),
the antiderivative of which (the error function, times a constant) cannot be written in elementary
form.

• It may be possible to find an antiderivative symbolically, but it may be easier to compute a numerical
approximation than to compute the antiderivative. That may be the case if the antiderivative is
given as an infinite series or product, or if its evaluation requires a special function that is not
available.

4.1.1 in 1D - theory

The simplest method of this type is to let the interpolating function be a constant function (a polynomial
of degree zero) that passes through the point ((a+ b)/2, f((a+ b)/2)).

This is called the midpoint rule or rectangle rule.∫ b

a

f(x)dx ' (b− a)f(
a+ b

2
)

insert here figure

The interpolating function may be a straight line (an affine function, i.e. a polynomial of degree 1)
passing through the points (a, f(a)) and (b, f(b)).

This is called the trapezoidal rule.∫ b

a

f(x)dx ' (b− a)
f(a) + f(b)

2

insert here figure

For either one of these rules, we can make a more accurate approximation by breaking up the interval
[a, b] into some number n of subintervals, computing an approximation for each subinterval, then adding
up all the results. This is called a composite rule, extended rule, or iterated rule. For example, the
composite trapezoidal rule can be stated as∫ b

a

f(x)dx ' b− a
n

(
f(a)

2
+

n−1∑
k=1

f(a+ k
b− a
n

) +
f(b)

2

)
where the subintervals have the form [kh, (k + 1)h], with h = (b− a)/n and k = 0, 1, 2, . . . , n− 1.
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a) b)
The interval [−2, 2] is broken into 16 sub-intervals. The blue lines correspond to the approximation of

the red curve by means of a) the midpoint rule, b) the trapezoidal rule.

There are several algorithms for numerical integration (also commonly called ’numerical quadrature’,
or simply ’quadrature’) . Interpolation with polynomials evaluated at equally spaced points in [a, b] yields
the NewtonCotes formulas, of which the rectangle rule and the trapezoidal rule are examples. If we allow
the intervals between interpolation points to vary, we find another group of quadrature formulas, such
as the Gauss(ian) quadrature formulas. A Gaussian quadrature rule is typically more accurate than a
NewtonCotes rule, which requires the same number of function evaluations, if the integrand is smooth
(i.e., if it is sufficiently differentiable).

An n−point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule con-
structed to yield an exact result for polynomials of degree 2n−1 or less by a suitable choice of the points
xi and weights wi for i = 1, . . . , n.

The domain of integration for such a rule is conventionally taken as [−1, 1], so the rule is stated as∫ +1

−1

f(x)dx =
n∑

iq=1

wiqf(xiq )

In this formula the xiq coordinate is the i-th root of the Legendre polynomial Pn(x).
It is important to note that a Gaussian quadrature will only produce good results if the function f(x)

is well approximated by a polynomial function within the range [−1, 1]. As a consequence, the method
is not, for example, suitable for functions with singularities.

Gauss-Legendre points and their weights.
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n xiq wiq xiq (approx) wiq (approx)

1 0 2 0 2

2 ±
√

1/3 1 ±0.577 350 269 189 626 1
3 0 8/9 0 0.888 888 888 888 888

±
√

3/5 5/9 ±0.774 596 669 241 483 0.555 555 555 555 555

4 ±
√

3
7 −

2
7

√
6/5 18+

√
30

36 ±0.339 981 043 584 856 0.652 145 154 862 546

±
√

3
7 + 2

7

√
6/5 18−

√
30

36 ±0.861 136 311 594 953 0.347 854 845 137 454

5 0 128/225 0 0.568 888 888 888 889

± 1
3

√
5− 2

√
10
7

322+13
√

70
900 ±0.538 469 310 105 683 0.478 628 670 499 366

± 1
3

√
5 + 2

√
10
7

322−13
√

70
900 ±0.906 179 845 938 664 0.236 926 885 056 189

6 ? ? ±0.238 619 186 083 197 0.467 913 934 572 691
±0.661 209 386 466 265 0.360 761 573 048 139
±0.932 469 514 203 152 0.171 324 492 379 170

7 ±0.946 107 912 342 759 0.129 484 966 168 870
±0.741 531 185 599 394 0.279 705 391 489 277
±0.405 845 151 377 397 0.381 830 050 505 119

0.000 000 000 000 000 0.417 959 183 673 469
8 ±0.960 289 856 497 536 0.101 228 536 290 376

±0.796 666 477 413 627 0.222 381 034 453 374
±0.525 532 409 916 329 0.313 706 645 877 887
±0.183 434 642 495 650 0.362 683 783 378 362

9 ±0.968 160 239 507 626 0.081 274 388 361 574
±0.836 031 107 326 636 0.180 648 160 694 857
±0.613 371 432 700 590 0.260 610 696 402 935
±0.324 253 423 403 809 0.312 347 077 040 003

0.000 000 000 000 000 0.330 239 355 001 260
10 ±0.973 906 528 517 172 0.066 671 344 308 688

±0.865 063 366 688 985 0.149 451 349 150 581
±0.679 409 568 299 024 0.219 086 362 515 982
±0.433 395 394 129 247 0.269 266 719 309 996
±0.148 874 338 981 631 0.295 524 224 714 753

Abscissae and weights for Gauss quadratures up to n = 10. See [615, p89]

As shown in the above table, it can be shown that the weight values must fulfill the following condition:∑
iq

wiq = 2 (51)

and it is worth noting that all quadrature point coordinates are symmetrical around the origin.
Since most quadrature formula are only valid on a specific interval, we now must address the problem

of their use outside of such intervals. The solution turns out to be quite simple: one must carry out a
change of variables from the interval [a, b] to [−1, 1].

We then consider the reduced coordinate r ∈ [−1, 1] such that

r =
2

b− a
(x− a)− 1

This relationship can be reversed such that when r is known, its equivalent coordinate x ∈ [a, b] can be
computed:

x =
b− a

2
(1 + r) + a

From this it follows that

dx =
b− a

2
dr
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and then ∫ b

a

f(x)dx =
b− a

2

∫ +1

−1

f(r)dr ' b− a
2

n∑
iq=1

wiqf(riq )

4.1.2 in 1D - examples

example 1 Since we know how to carry out any required change of variables, we choose for simplicity
a = −1, b = +1. Let us take for example f(x) = π. Then we can compute the integral of this function
over the interval [a, b] exactly:

I =

∫ +1

−1

f(x)dx = π

∫ +1

−1

dx = 2π

We can now use a Gauss-Legendre formula to compute this same integral:

Igq =

∫ +1

−1

f(x)dx =

nq∑
iq=1

wiqf(xiq ) =

nq∑
iq=1

wiqπ = π

nq∑
iq=1

wiq︸ ︷︷ ︸
=2

= 2π

where we have used the property of the weight values of Eq.(51). Since the actual number of points was
never specified, this result is valid for all quadrature rules.

example 2 Let us now take f(x) = mx+ p and repeat the same exercise:

I =

∫ +1

−1

f(x)dx =

∫ +1

−1

(mx+ p)dx = [
1

2
mx2 + px]+1

−1 = 2p

Igq =

∫ +1

−1

f(x)dx=

nq∑
iq=1

wiqf(xiq )=

nq∑
iq=1

wiq (mxiq + p)= m

nq∑
iq=1

wiqxiq︸ ︷︷ ︸
=0

+p

nq∑
iq=1

wiq︸ ︷︷ ︸
=2

= 2p

since the quadrature points are symmetric w.r.t. to zero on the x-axis. Once again the quadrature is able
to compute the exact value of this integral: this makes sense since an n-point rule exactly integrates a
2n − 1 order polynomial such that a 1 point quadrature exactly integrates a first order polynomial like
the one above.

example 3 Let us now take f(x) = x2. We have

I =

∫ +1

−1

f(x)dx =

∫ +1

−1

x2dx = [
1

3
x3]+1
−1 =

2

3

and

Igq =

∫ +1

−1

f(x)dx=

nq∑
iq=1

wiqf(xiq )=

nq∑
iq=1

wiqx
2
iq

• nq = 1: x
(1)
iq = 0, wiq = 2. Igq = 0

• nq = 2: x
(1)
q = −1/

√
3, x

(2)
q = 1/

√
3, w

(1)
q = w

(2)
q = 1. Igq = 2

3

• It also works ∀nq > 2 !

4.1.3 in 2D/3D - theory

Let us now turn to a two-dimensional integral of the form

I =

∫ +1

−1

∫ +1

−1

f(x, y)dxdy

The equivalent Gaussian quadrature writes:

Igq '
nq∑
iq=1

nq∑
jq

f(xiq , yjq )wiqwjq
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4.1.4 quadrature on triangles

Quadrature rules for triangles can be found in Dunavant, 1985 [290]. The following ones are identical to
those in the ip triangle.m file of the MILAMIN code [252].

rq sq wq

iq = 1 1/3 1/3 1/2

iq = 1 1/6 1/6 1/6
iq = 2 2/3 1/6 1/6
iq = 3 1/6 2/3 1/6

iq = 1 1/3 1/3 −27/96
iq = 2 0.6 0.2 25/96
iq = 3 0.2 0.6 25/96
iq = 4 0.2 0.2 25/96

iq = 1 1 − 2g1 g1 w1/2 0.108103018168070 0.44594849091596
iq = 2 g1 1 − 2g1 w1/2 0.445948490915965 0.108103018168070
iq = 3 g1 g1 w1/2 0.445948490915965 0.445948490915965
iq = 4 1 − 2g2 g2 w2/2 0.816847572980459 0.091576213509771
iq = 5 g2 1 − 2g2 w2/2 0.091576213509771 0.816847572980459
iq = 6 g2 g2 w2/2 0.091576213509771 0.091576213509771

iq = 1 0.091576213509771 0.091576213509771 0.109951743655322/2.0
iq = 2 0.816847572980459 0.091576213509771 0.109951743655322/2.0
iq = 3 0.091576213509771 0.816847572980459 0.109951743655322/2.0
iq = 4 0.445948490915965 0.445948490915965 0.223381589678011/2.0
iq = 5 0.108103018168070 0.445948490915965 0.223381589678011/2.0
iq = 6 0.445948490915965 0.108103018168070 0.223381589678011/2.0

iq = 1 0.1012865073235 0.1012865073235 0.0629695902724
iq = 2 0.7974269853531 0.1012865073235 0.0629695902724
iq = 3 0.1012865073235 0.7974269853531 0.0629695902724
iq = 4 0.4701420641051 0.0597158717898 0.0661970763942
iq = 5 0.4701420641051 0.4701420641051 0.0661970763942
iq = 6 0.0597158717898 0.4701420641051 0.0661970763942
iq = 7 0.3333333333333 0.3333333333333 0.1125000000000

iq = 1 5.01426509658179E − 01 2.49286745170910E − 01 5.83931378631895E − 02
iq = 2 2.49286745170910E − 01 5.01426509658179E − 01 5.83931378631895E − 02
iq = 3 2.49286745170910E − 01 2.49286745170910E − 01 5.83931378631895E − 02
iq = 4 8.73821971016996E − 01 6.30890144915020E − 02 2.54224531851035E − 02
iq = 5 6.30890144915020E − 02 8.73821971016996E − 01 2.54224531851035E − 02
iq = 6 6.30890144915020E − 02 6.30890144915020E − 02 2.54224531851035E − 02
iq = 7 5.31450498448170E − 02 3.10352451033784E − 01 4.14255378091870E − 02
iq = 8 6.36502499121399E − 01 5.31450498448170E − 02 4.14255378091870E − 02
iq = 9 3.10352451033784E − 01 6.36502499121399E − 01 4.14255378091870E − 02
iq = 10 5.31450498448170E − 02 6.36502499121399E − 01 4.14255378091870E − 02
iq = 11 6.36502499121399E − 01 3.10352451033784E − 01 4.14255378091870E − 02
iq = 12 3.10352451033784E − 01 5.31450498448170E − 02 4.14255378091870E − 02

where

g1 =

(
8−
√

10 +

√
38− 44

√
2/5

)
/18 g2 =

(
8−
√

10−
√

38− 44
√

2/5

)
/18

w1 =

(
620 +

√
213125− 53320

√
10

)
/3720 w2 =

(
620−

√
213125− 53320

√
10

)
/3720

4.1.5 quadrature on tetrahedra

Remark. In what follows the coefficients in the tables are not the reduced coordinates of the quadratue
points but the coefficients corresponding to the 4 nodes.
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Quadrature rules on tetrahedra take the form:∫ ∫ ∫
el

f(x, y, z)dxdydz = Vel

nqel∑
iq=1

wiqf(ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 )

or, that is to say: ∫ ∫ ∫
el

f(x, y, z)dxdydz =

nqel∑
iq=1

(wiqVel)f(ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 )

with in our case Vel = 1/6.
In the literature it can be found that a one point quadrature is characterised by

wiq = 1 ξiq1 = ξiq2 = ξiq3 = ξiq4 = 0.25

i.e, the coordinates of the single point are given by:

xiq =

4∑
i=1

ξiqi xi =
1

4
(x1 + x2 + x3 + x4)

Same for y and z coordinates.
A four-point quadrature rule is characterised by wiq = Vel ∗ 0.25 = 1/24 ' 04166666666666667 and

ξ1 ξ2 ξ3 ξ4
iq=1 0.585410196624969 0.138196601125011 0.138196601125011 0.138196601125011
iq=2 0.138196601125011 0.585410196624969 0.138196601125011 0.138196601125011
iq=3 0.138196601125011 0.138196601125011 0.585410196624969 0.138196601125011
iq=4 0.138196601125011 0.138196601125011 0.138196601125011 0.585410196624969

We then have:

riq =

4∑
i=1

ξiqi xi = (ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 ) · (r1, r2, r3, r4) = (ξiq1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 ) · (0, 1, 0, 0) = ξiq2

siq =

4∑
i=1

ξiqi yi = (ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 ) · (s1, s2, s3, s4) = (ξiq1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 ) · (0, 0, 1, 0) = ξiq3

tiq =

4∑
i=1

ξiqi zi = (ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 ) · (t1, t2, t3, t4) = (ξiq1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 ) · (0, 0, 0, 1) = ξiq4

Finally:

rq sq tq wq
iq = 1 0.138196601125011 0.138196601125011 0.138196601125011 0.04166666666666667
iq = 2 0.585410196624969 0.138196601125011 0.138196601125011 0.04166666666666667
iq = 3 0.138196601125011 0.585410196624969 0.138196601125011 0.04166666666666667
iq = 4 0.138196601125011 0.138196601125011 0.585410196624969 0.04166666666666667

4.1.6 The Gauss-Lobatto approach

All what we have seen above falls under the Gauss-Legendre quadrature method. There is however another
somewhat common quadrature method: the Gauss-Lobatto quadrature. . It is similar to Gaussian
quadrature with the following important differences: 1) There are integration points in the interval but
they also always include the end points of the integration interval; 2) It is accurate for polynomials up
to degree 2n− 3, where n is the number of integration points.

In 1D, it reads: ∫ +1

−1

f(x)dx =
2

n(n− 1)
[f(−1) + f(1)] +

n−1∑
i=2

wif(xi)

The locations and weights of the integration points are as follows:
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n xiq wiq xiq (approx) wiq (approx)

3 0 4/3
±1 1/3

4 ±
√

1
5 5/6

±1 1/6
5 0 32/45

±
√

3
7 49/90

±1 1/10

6 ±
√

1
3 −

2
√

7
21

14+
√

7
30

±
√

1
3 + 2

√
7

21
14−
√

7
30

±1 1/15

4.2 The mesh

4.3 A bit of FE terminology

We introduce here some terminology for efficient element descriptions [425]:

• For triangles/tetrahedra, the designation Pm × Pn means that each component of the velocity is
approximated by continuous piecewise complete Polynomials of degreem and pressure by continuous
piecewise complete Polynomials of degree n. For example P2 × P1 means

u ∼ a1 + a2x+ a3y + a4xy + a5x
2 + a6y

2

with similar approximations for v, and

p ∼ b1 + b2x+ b3y

Both velocity and pressure are continuous across element boundaries, and each triangular element
contains 6 velocity nodes and three pressure nodes.

• For the same families, Pm × P−n is as above, except that pressure is approximated via piecewise
discontinuous polynomials of degree n. For instance, P2 × P−1 is the same as P2P1 except that
pressure is now an independent linear function in each element and therefore discontinuous at
element boundaries.

• For quadrilaterals/hexahedra, the designation Qm×Qn means that each component of the velocity
is approximated by a continuous piecewise polynomial of degree m in each direction on the quadri-
lateral and likewise for pressure, except that the polynomial is of degree n. For instance, Q2 ×Q1

means
u ∼ a1 + a2x+ a3y + a4xy + a5x

2 + a6y
2 + a7x

2y + a8xy
2 + a9x

2y2

and
p ∼ b1 + b2x+ b3y + b4xy

• For these same families, Qm × Q−n is as above, except that the pressure approximation is not
continuous at element boundaries.

• Again for the same families, Qm × P−n indicates the same velocity approximation with a pressure
approximation that is a discontinuous complete piecewise polynomial of degree n (not of degree n
in each direction !)

• The designation P+
m or Q+

m means that some sort of bubble function was added to the polynomial
approximation for the velocity. You may also find the term ’enriched element’ in the literature.

• Finally, for n = 0, we have piecewise-constant pressure, and we omit the minus sign for simplicity.
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Another point which needs to be clarified is the use of so-called ’conforming elements’ (or ’non-
conforming elements’). Following again [425], conforming velocity elements are those for which the
basis functions for a subset of H1 for the continuous problem (the first derivatives and their squares are
integrable in Ω). For instance, the rotated Q1 × P0 element of Rannacher and Turek (see section ??) is
such that the velocity is discontinous across element edges, so that the derivative does not exist there.
Another typical example of non-conforming element is the Crouzeix-Raviart element [247].

4.4 Elements and basis functions in 1D

4.4.1 Linear basis functions (Q1)

Let f(r) be a C1 function on the interval [−1 : 1] with f(−1) = f1 and f(1) = f2.

Let us assume that the function f(r) is to be approximated on [−1, 1] by the first order polynomial

f(r) = a+ br (52)

Then it must fulfill

f(r = −1) = a− b = f1

f(r = +1) = a+ b = f2

This leads to

a =
1

2
(f1 + f2) b =

1

2
(−f1 + f2)

and then replacing a, b in Eq. (52) by the above values on gets

f(r) =

[
1

2
(1− r)

]
f1 +

[
1

2
(1 + r)

]
f2

or

f(r) =

2∑
i=1

Ni(r)f1

with

N1(r) =
1

2
(1− r)

N2(r) =
1

2
(1 + r) (53)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

r

N1(r)
N2(r)
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4.4.2 Quadratic basis functions (Q2)

Let f(r) be a C1 function on the interval [−1 : 1] with f(−1) = f1, f(0) = f2 and f(1) = f3.

Let us assume that the function f(r) is to be approximated on [−1, 1] by the second order polynomial

f(r) = a+ br + cr2 (54)

Then it must fulfill

f(r = −1) = a− b+ c = f1

f(r = 0) = a = f2

f(r = +1) = a+ b+ c = f3

This leads to

a = f2 b =
1

2
(−f1 + f3) c =

1

2
(f1 + f3 − 2f2)

and then replacing a, b, c in Eq. (54) by the above values on gets

f(r) =

[
1

2
r(r − 1)

]
f1 + (1− r2)f2 +

[
1

2
r(r + 1)

]
f3

or,

f(r) =

3∑
i=1

Ni(r)fi

with

N1(r) =
1

2
r(r − 1)

N2(r) = (1− r2)

N3(r) =
1

2
r(r + 1) (55)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

r

N1(r)
N2(r)
N3(r)

4.4.3 Cubic basis functions (Q3)

The 1D basis polynomial is given by

f(r) = a+ br + cr2 + dr3

with the nodes at position -1,-1/3, +1/3 and +1.
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f(−1) = a− b+ c− d = f1

f(−1/3) = a− b

3
+
c

9
− d

27
= f2

f(+1/3) = a− b

3
+
c

9
− d

27
= f3

f(+1) = a+ b+ c+ d = f4

Adding the first and fourth equation and the second and third, one arrives at

f1 + f4 = 2a+ 2c f2 + f3 = 2a+
2c

9

and finally:

a =
1

16
(−f1 + 9f2 + 9f3 − f4)

c =
9

16
(f1 − f2 − f3 + f4)

Combining the original 4 equations in a different way yields

2b+ 2d = f4 − f1
2b

3
+

2d

27
= f3 − f2

so that

b =
1

16
(f1 − 27f2 + 27f3 − f4)

d =
9

16
(−f1 + 3f2 − 3f3 + f4)

Finally,

f(r) = a+ b+ cr2 + dr3

=
1

16
(−1 + r + 9r2 − 9r3)f1

+
1

16
(9− 27r − 9r2 + 27r3)f2

+
1

16
(9 + 27r − 9r2 − 27r3)f3

+
1

16
(−1− r + 9r2 + 9r3)f4

=

4∑
i=1

Ni(r)fi

where

N1 =
1

16
(−1 + r + 9r2 − 9r3)

N2 =
1

16
(9− 27r − 9r2 + 27r3)

N3 =
1

16
(9 + 27r − 9r2 − 27r3)

N4 =
1

16
(−1− r + 9r2 + 9r3)
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-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

r

N1(r)
N2(r)
N3(r)
N4(r)

These are identical to [615, p49]
Verification:

• Let us assume f(r) = C, then

f̂(r) =
∑

Ni(r)fi =
∑
i

NiC = C
∑
i

Ni = C

so that a constant function is exactly reproduced, as expected.

• Let us assume f(r) = r, then f1 = −1, f2 = −1/3, f3 = 1/3 and f4 = +1. We then have

f̂(r) =
∑

Ni(r)fi

= −N1(r)− 1

3
N2(r) +

1

3
N3(r) +N4(r)

= [−(−1 + r + 9r2 − 9r3)

−1

3
(9− 27r − 9r2 − 27r3)

+
1

3
(9 + 27r − 9r2 + 27r3)

+(−1− r + 9r2 + 9r3)]/16

= [−r + 9r + 9r − r]/16 + ...0...

= r (56)

The basis functions derivative are given by

∂N1

∂r
=

1

16
(1 + 18r − 27r2)

∂N2

∂r
=

1

16
(−27− 18r + 81r2)

∂N3

∂r
=

1

16
(+27− 18r − 81r2)

∂N4

∂r
=

1

16
(−1 + 18r + 27r2)

Verification:
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• Let us assume f(r) = C, then

∂f̂

∂r
=

∑
i

∂Ni
∂r

fi

= C
∑
i

∂Ni
∂r

=
C

16
[(1 + 18r − 27r2)

+(−27− 18r + 81r2)

+(+27− 18r − 81r2)

+(−1 + 18r + 27r2)]

= 0

• Let us assume f(r) = r, then f1 = −1, f2 = −1/3, f3 = 1/3 and f4 = +1. We then have

∂f̂

∂r
=

∑
i

∂Ni
∂r

fi

=
1

16
[−(1 + 18r − 27r2)

−1

3
(−27− 18r + 81r2)

+
1

3
(+27− 18r − 81r2)

+(−1 + 18r + 27r2)]

=
1

16
[−2 + 18 + 54r2 − 54r2]

= 1

4.4.4 Quartic basis functions (Q4)

The 1D basis polynomial is given by

f(r) = a+ br + cr2 + dr3 + er4

with the nodes at position -1,-1/2, 0, +1/2 and +1.

f(−1) = a− b+ c− d+ e = f1

f(−1/2) = a− b

2
+
c

4
− d

8
+

e

16
= f2

f(0) = a = f3

f(+1/2) = a− b

2
+
c

4
− d

8
+

e

16
= f4

f(+1) = a+ b+ c+ d+ e = f5

or, 
1 −1 1 −1 1
1 −1/2 1/4 −1/8 1/16
1 0 0 0 0
1 1/2 1/4 1/8 1/16
1 1 1 1 1




a
b
c
d
e

 =


f1

f2

f3

f4

f5

 (57)
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The third line gives a = f3 so that
−1 1 −1 1
−1/2 1/4 −1/8 1/16
1/2 1/4 1/8 1/16
1 1 1 1


︸ ︷︷ ︸

A


b
c
d
e

 =


f1 − f3

f2 − f3

f4 − f3

f5 − f3

 (58)

The inverse of the matrix A is:

A−1 =
1

6


1 −8 8 −1
−1 16 16 −1
−4 8 −8 4
4 −16 −16 4


so that 

b
c
d
e

 =
1

6


1 −8 8 −1
−1 16 16 −1
−4 8 −8 4
4 −16 −16 4

 ·


f1 − f3

f2 − f3

f4 − f3

f5 − f3


and then

b =
1

6
(f1 − 8f2 + 8f4 − f5) (59)

c =
1

6
(−f1 + 16f2 − 30f3 + 16f4 − f5) (60)

d =
1

6
(−4f1 + 8f2 − 8f4 + 4f5) (61)

e =
1

6
(4f1 − 16f2 + 24f3 − 16f4 + 4f5) (62)

f(r) = a+ br + cr2 + dr3 + er4 (63)

= f3 +
1

6
(f1 − 8f2 + 8f4 − f5) r +

1

6
(−f1 + 16f2 − 30f3 + 16f4 − f5) r2 + (64)

1

6
(−4f1 + 8f2 − 8f4 + 4f5) r3 +

1

6
(4f1 − 16f2 + 24f3 − 16f4 + 4f5) r4 (65)

=
1

6

(
r − r2 − 4r3 + 4r4

)
f1 (66)

+
1

6

(
−8r + 16r2 + 8r3 − 16r4

)
f2 (67)

+
(
1− 5r2 + 4r4

)
f3 (68)

+
1

6

(
8r + 16r2 − 8r3 − 16r4

)
f4 (69)

+
1

6

(
−r − r2 + 4r3 + 4r4

)
f5 (70)

Finally
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N1(r) =
1

6

(
r − r2 − 4r3 + 4r4

)
(71)

N2(r) =
1

6

(
−8r + 16r2 + 8r3 − 16r4

)
(72)

N3(r) =
(
1− 5r2 + 4r4

)
(73)

N4(r) =
1

6

(
8r + 16r2 − 8r3 − 16r4

)
(74)

N5(r) =
1

6

(
−r − r2 + 4r3 + 4r4

)
(75)

-0.6

-0.4
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 0
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 0.4

 0.6

 0.8

 1

 1.2
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r

N1(r)
N2(r)
N3(r)
N4(r)
N5(r)

The basis functions derivative are given by

∂N1

∂r
=

1

6
(1− 2r − 12r2 + 16r3) (76)

∂N2

∂r
=

1

6
(−8 + 32r + 24r2 − 64r3) (77)

∂N3

∂r
= −10r + 16r3 (78)

∂N4

∂r
=

1

6
(8 + 32r − 24r2 − 64r3) (79)

∂N5

∂r
=

1

6
(−1− 2r + 12r2 + 16r3) (80)

4.5 Elements and basis functions in 2D

Let us for a moment consider a single quadrilateral element in the xy-plane, as shown on the following
figure:

Let us assume that we know the values of a given field u at the vertices. For a given point M inside
the element in the plane, what is the value of the field u at this point? It makes sense to postulate that
uM = u(xM , yM ) will be given by

uM = φ(u1, u2, u3, u4, xM , yM )
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where φ is a function to be determined. Although φ is not unique, we can decide to express the value
uM as a weighed sum of the values at the vertices ui. One option could be to assign all four vertices the
same weight, say 1/4 so that uM = (u1 +u2 +u3 +u4)/4, i.e. uM is simply given by the arithmetic mean
of the vertices values. This approach suffers from a major drawback as it does not use the location of
point M inside the element. For instance, when (xM , yM )→ (x2, y2) we expect uM → u2.

In light of this, we could now assume that the weights would depend on the position of M in a
continuous fashion:

u(xM , yM ) =

4∑
i=1

Ni(xM , yM ) ui

where the Ni are continous (”well behaved”) functions which have the property:

Ni(xj , yj) = δij

or, in other words:

N3(x1, y1) = 0 (81)

N3(x2, y2) = 0 (82)

N3(x3, y3) = 1 (83)

N3(x4, y4) = 0 (84)

The functions Ni are commonly called basis functions.
Omitting the M subscripts for any point inside the element, the velocity components u and v are

given by:

û(x, y) =

4∑
i=1

Ni(x, y) ui (85)

v̂(x, y) =

4∑
i=1

Ni(x, y) vi (86)

Rather interestingly, one can now easily compute velocity gradients (and therefore the strain rate tensor)
since we have assumed the basis functions to be ”well behaved” (in this case differentiable):

ε̇xx(x, y) =
∂u

∂x
=

4∑
i=1

∂Ni
∂x

ui (87)

ε̇yy(x, y) =
∂v

∂y
=

4∑
i=1

∂Ni
∂y

vi (88)

ε̇xy(x, y) =
1

2

∂u

∂y
+

1

2

∂v

∂x
=

1

2

4∑
i=1

∂Ni
∂y

ui +
1

2

4∑
i=1

∂Ni
∂x

vi (89)

How we actually obtain the exact form of the basis functions is explained in the coming section.

4.5.1 Bilinear basis functions in 2D (Q1)

In this section, we place ourselves in the most favorables case, i.e. the element is a square defined by
−1 < r < 1, −1 < s < 1 in the Cartesian coordinates system (r, s):

3===========2

| | (r_0,s_0)=(-1,-1)

| | (r_1,s_1)=(+1,-1)

| | (r_2,s_2)=(+1,+1)

| | (r_3,s_3)=(-1,+1)

| |

0===========1
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This element is commonly called the reference element. How we go from the (x, y) coordinate system
to the (r, s) once and vice versa will be dealt later on. For now, the basis functions in the above reference
element and in the reduced coordinates system (r, s) are given by:

N1(r, s) = 0.25(1− r)(1− s)
N2(r, s) = 0.25(1 + r)(1− s)
N3(r, s) = 0.25(1 + r)(1 + s)

N4(r, s) = 0.25(1− r)(1 + s)

The partial derivatives of these functions with respect to r ans s automatically follow:

∂N1

∂r
(r, s) = −0.25(1− s) ∂N1

∂s
(r, s) = −0.25(1− r)

∂N2

∂r
(r, s) = +0.25(1− s) ∂N2

∂s
(r, s) = −0.25(1 + r)

∂N3

∂r
(r, s) = +0.25(1 + s)

∂N3

∂s
(r, s) = +0.25(1 + r)

∂N4

∂r
(r, s) = −0.25(1 + s)

∂N4

∂s
(r, s) = +0.25(1− r)

Let us go back to Eq.(86). And let us assume that the function v(r, s) = C so that vi = C for
i = 1, 2, 3, 4. It then follows that

v̂(r, s) =

4∑
i=1

Ni(r, s) vi = C

4∑
i=1

Ni(r, s) = C[N1(r, s) +N2(r, s) +N3(r, s) +N4(r, s)] = C

This is a very important property: if the v function used to assign values at the vertices is constant, then
the value of v̂ anywhere in the element is exactly C. If we now turn to the derivatives of v with respect
to r and s:

∂v̂

∂r
(r, s) =

4∑
i=1

∂Ni
∂r

(r, s) vi = C

4∑
i=1

∂Ni
∂r

(r, s) = C [−0.25(1− s) + 0.25(1− s) + 0.25(1 + s)− 0.25(1 + s)] = 0

∂v̂

∂s
(r, s) =

4∑
i=1

∂Ni
∂s

(r, s) vi = C

4∑
i=1

∂Ni
∂s

(r, s) = C [−0.25(1− r)− 0.25(1 + r) + 0.25(1 + r) + 0.25(1− r)] = 0

We reassuringly find that the derivative of a constant field anywhere in the element is exactly zero.
If we now choose v(r, s) = ar + bs with a and b two constant scalars, we find:

v̂(r, s) =

4∑
i=1

Ni(r, s) vi (90)

=

4∑
i=1

Ni(r, s)(ari + bsi) (91)

= a

4∑
i=1

Ni(r, s)ri︸ ︷︷ ︸
r

+b

4∑
i=1

Ni(r, s)si︸ ︷︷ ︸
s

(92)

= a [0.25(1− r)(1− s)(−1) + 0.25(1 + r)(1− s)(+1) + 0.25(1 + r)(1 + s)(+1) + 0.25(1− r)(1 + s)(−1)]

+ b [0.25(1− r)(1− s)(−1) + 0.25(1 + r)(1− s)(−1) + 0.25(1 + r)(1 + s)(+1) + 0.25(1− r)(1 + s)(+1)]

= a [−0.25(1− r)(1− s) + 0.25(1 + r)(1− s) + 0.25(1 + r)(1 + s)− 0.25(1− r)(1 + s)]

+ b [−0.25(1− r)(1− s)− 0.25(1 + r)(1− s) + 0.25(1 + r)(1 + s) + 0.25(1− r)(1 + s)]

= ar + bs (93)
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verify above eq. This set of bilinear shape functions is therefore capable of exactly representing a bilinear
field. The derivatives are:

∂v̂

∂r
(r, s) =

4∑
i=1

∂Ni
∂r

(r, s) vi (94)

= a

4∑
i=1

∂Ni
∂r

(r, s)ri + b

4∑
i=1

∂Ni
∂r

(r, s)si (95)

= a [−0.25(1− s)(−1) + 0.25(1− s)(+1) + 0.25(1 + s)(+1)− 0.25(1 + s)(−1)]

+ b [−0.25(1− s)(−1) + 0.25(1− s)(−1) + 0.25(1 + s)(+1)− 0.25(1 + s)(+1)]

=
a

4
[(1− s) + (1− s) + (1 + s) + (1 + s)]

+
b

4
[(1− s)− (1− s) + (1 + s)− (1 + s)]

= a (96)

Here again, we find that the derivative of the bilinear field inside the element is exact: ∂v̂
∂r = ∂v

∂r .
However, following the same methodology as above, one can easily prove that this is no more true

for polynomials of degree strivtly higher than 1. This fact has serious consequences: if the solution to
the problem at hand is for instance a parabola, the Q1 shape functions cannot represent the solution
properly, but only by approximating the parabola in each element by a line. As we will see later, Q2

basis functions can remedy this problem by containing themselves quadratic terms.

4.5.2 Biquadratic basis functions in 2D (Q2)

This element is part of the so-called LAgrange family.
citation needed

Inside an element the local numbering of the nodes is as follows:

3=====6=====2

| | | (r_0,s_0)=(-1,-1) (r_4,s_4)=( 0,-1)

| | | (r_1,s_1)=(+1,-1) (r_5,s_5)=(+1, 0)

7=====8=====5 (r_2,s_2)=(+1,+1) (r_6,s_6)=( 0,+1)

| | | (r_3,s_3)=(-1,+1) (r_7,s_7)=(-1, 0)

| | | (r_8,s_8)=( 0, 0)

0=====4=====1

Note that this numering is also employed in [615, 56]. The basis polynomial is then

f(r, s) = a+ br + cs+ drs+ er2 + fs2 + gr2s+ hrs2 + ir2s2

The velocity shape functions are given by:
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N0(r, s) =
1

2
r(r − 1)

1

2
s(s− 1)

N1(r, s) =
1

2
r(r + 1)

1

2
s(s− 1)

N2(r, s) =
1

2
r(r + 1)

1

2
s(s+ 1)

N3(r, s) =
1

2
r(r − 1)

1

2
s(s+ 1)

N4(r, s) = (1− r2)
1

2
s(s− 1)

N5(r, s) =
1

2
r(r + 1)(1− s2)

N6(r, s) = (1− r2)
1

2
s(s+ 1)

N7(r, s) =
1

2
r(r − 1)(1− s2)

N8(r, s) = (1− r2)(1− s2)

These are identical to [615, p57]. Their derivatives are given by:

∂N0

∂r
=

1

2
(2r − 1)

1

2
s(s− 1)

∂N0

∂s
=

1

2
r(r − 1)

1

2
(2s− 1)

∂N1

∂r
=

1

2
(2r + 1)

1

2
s(s− 1)

∂N1

∂s
=

1

2
r(r + 1)

1

2
(2s− 1)

∂N2

∂r
=

1

2
(2r + 1)

1

2
s(s+ 1)

∂N2

∂s
=

1

2
r(r + 1)

1

2
(2s+ 1)

∂N3

∂r
=

1

2
(2r − 1)

1

2
s(s+ 1)

∂N3

∂s
=

1

2
r(r − 1)

1

2
(2s+ 1)

∂N4

∂r
= (−2r)

1

2
s(s− 1)

∂N4

∂s
= (1− r2)

1

2
(2s− 1)

∂N5

∂r
=

1

2
(2r + 1)(1− s2)

∂N5

∂s
=

1

2
r(r + 1)(−2s)

∂N6

∂r
= (−2r)

1

2
s(s+ 1)

∂N6

∂s
= (1− r2)

1

2
(2s+ 1)

∂N7

∂r
=

1

2
(2r − 1)(1− s2)

∂N7

∂s
=

1

2
r(r − 1)(−2s)

∂N8

∂r
= (−2r)(1− s2)

∂N8

∂s
= (1− r2)(−2s)

4.5.3 Eight node serendipity basis functions in 2D (Q
(8)
2 )

The serendipity elements are those rectangular elements which have no interior nodes [769, p65].
Inside an element the local numbering of the nodes is as follows:

3=====6=====2

| | | (r_0,s_0)=(-1,-1) (r_4,s_4)=( 0,-1)

| | | (r_1,s_1)=(+1,-1) (r_5,s_5)=(+1, 0)

7=====+=====5 (r_2,s_2)=(+1,+1) (r_6,s_6)=( 0,+1)

| | | (r_3,s_3)=(-1,+1) (r_7,s_7)=(-1, 0)

| | |

0=====4=====1

The main difference with the Q2 element resides in the fact that there is no node in the middle of the
element The basis polynomial is then

f(r, s) = a+ br + cs+ drs+ er2 + fs2 + gr2s+ hrs2
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Note that absence of the r2s2 term which was previously associated to the center node. We find that

N0(r, s) =
1

4
(1− r)(1− s)(−r − s− 1) (97)

N1(r, s) =
1

4
(1 + r)(1− s)(r − s− 1) (98)

N2(r, s) =
1

4
(1 + r)(1 + s)(r + s− 1) (99)

N3(r, s) =
1

4
(1− r)(1 + s)(−r + s− 1) (100)

N4(r, s) =
1

2
(1− r2)(1− s) (101)

N5(r, s) =
1

2
(1 + r)(1− s2) (102)

N6(r, s) =
1

2
(1− r2)(1 + s) (103)

N7(r, s) =
1

2
(1− r)(1− s2) (104)

The shape functions at the mid side nodes are products of a second order polynomial parallel to side
and a linear function perpendicular to the side while shape functions for corner nodes are modifications
of the bilinear quadrilateral element.

∂N0

∂r
(r, s) = −1

4
(s− 1)(2r + s) (105)

∂N1

∂r
(r, s) = −1

4
(s− 1)(2r − s) (106)

∂N2

∂r
(r, s) =

1

4
(s+ 1)(2r + s) (107)

∂N3

∂r
(r, s) =

1

4
(s+ 1)(2r − s) (108)

∂N4

∂r
(r, s) = r(s− 1) (109)

∂N5

∂r
(r, s) =

1

2
(1− s2) (110)

∂N6

∂r
(r, s) = −r(s+ 1) (111)

∂N7

∂r
(r, s) = −1

2
(1− s2) (112)
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∂N0

∂s
(r, s) = −1

4
(r − 1)(r + 2s) (113)

∂N1

∂s
(r, s) = −1

4
(r + 1)(r − 2s) (114)

∂N2

∂s
(r, s) =

1

4
(r + 1)(r + 2s) (115)

∂N3

∂s
(r, s) =

1

4
(r − 1)(r − 2s) (116)

∂N4

∂s
(r, s) = −1

2
(1− r2) (117)

∂N5

∂s
(r, s) = −(r + 1)s (118)

∂N6

∂s
(r, s) =

1

2
(1− r2) (119)

∂N7

∂s
(r, s) = (r − 1)s (120)

4.5.4 Bicubic basis functions in 2D (Q3)

Inside an element the local numbering of the nodes is as follows:

12===13===14===15 (r,s)_{00}=(-1,-1) (r,s)_{08}=(-1,+1/3)

|| || || || (r,s)_{01}=(-1/3,-1) (r,s)_{09}=(-1/3,+1/3)

08===09===10===11 (r,s)_{02}=(+1/3,-1) (r,s)_{10}=(+1/3,+1/3)

|| || || || (r,s)_{03}=(+1,-1) (r,s)_{11}=(+1,+1/3)

04===05===06===07 (r,s)_{04}=(-1,-1/3) (r,s)_{12}=(-1,+1)

|| || || || (r,s)_{05}=(-1/3,-1/3) (r,s)_{13}=(-1/3,+1)

00===01===02===03 (r,s)_{06}=(+1/3,-1/3) (r,s)_{14}=(+1/3,+1)

(r,s)_{07}=(+1,-1/3) (r,s)_{15}=(+1,+1)

The velocity shape functions are given by:

N1(r) = (−1 + r + 9r2 − 9r3)/16 N1(t) = (−1 + t+ 9t2 − 9t3)/16

N2(r) = (+9− 27r − 9r2 + 27r3)/16 N2(t) = (+9− 27t− 9t2 + 27t3)/16

N3(r) = (+9 + 27r − 9r2 − 27r3)/16 N3(t) = (+9 + 27t− 9t2 − 27t3)/16

N4(r) = (−1− r + 9r2 + 9r3)/16 N4(t) = (−1− t+ 9t2 + 9t3)/16
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N01(r, s) = N1(r)N1(s) = (−1 + r + 9r2 − 9r3)/16 ∗ (−1 + t+ 9s2 − 9s3)/16

N02(r, s) = N2(r)N1(s) = (+9− 27r − 9r2 + 27r3)/16 ∗ (−1 + t+ 9s2 − 9s3)/16

N03(r, s) = N3(r)N1(s) = (+9 + 27r − 9r2 − 27r3)/16 ∗ (−1 + t+ 9s2 − 9s3)/16

N04(r, s) = N4(r)N1(s) = (−1− r + 9r2 + 9r3)/16 ∗ (−1 + t+ 9s2 − 9s3)/16

N05(r, s) = N1(r)N2(s) = (−1 + r + 9r2 − 9r3)/16 ∗ (9− 27s− 9s2 + 27s3)/16

N06(r, s) = N2(r)N2(s) = (+9− 27r − 9r2 + 27r3)/16 ∗ (9− 27s− 9s2 + 27s3)/16

N07(r, s) = N3(r)N2(s) = (+9 + 27r − 9r2 − 27r3)/16 ∗ (9− 27s− 9s2 + 27s3)/16

N08(r, s) = N4(r)N2(s) = (−1− r + 9r2 + 9r3)/16 ∗ (9− 27s− 9s2 + 27s3)/16

N09(r, s) = N1(r)N3(s) = (121)

N10(r, s) = N2(r)N3(s) = (122)

N11(r, s) = N3(r)N3(s) = (123)

N12(r, s) = N4(r)N3(s) = (124)

N13(r, s) = N1(r)N4(s) = (125)

N14(r, s) = N2(r)N4(s) = (126)

N15(r, s) = N3(r)N4(s) = (127)

N16(r, s) = N4(r)N4(s) = (128)

4.5.5 Biquartic basis functions in 2D (Q4)

Inside an element the local numbering of the nodes is as follows:

20===21===22===23===24

|| || || || ||

15===16===17===18===19

|| || || || ||

10===11===12===13===14

|| || || || ||

05===06===07===08===09

|| || || || ||

00===01===02===03===04

4.5.6 Linear basis functions for triangles in 2D (P1)

2

|\

| \ (r_0,s_0)=(0,0)

| \ (r_1,s_1)=(1,0)

| \ (r_2,s_2)=(0,2)

0=======1

The basis polynomial is then
f(r, s) = a+ br + cs

and the shape functions:

N0(r, s) = 1− r − s (129)

N1(r, s) = r (130)

N2(r, s) = s (131)

4.5.7 Linear basis functions for quadrilaterals in 2D (P1)

.=====.=====.
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| | |

| 3 | (r_1,s_1)=(0,0)

| | | (r_2,s_2)=(1/2,0)

.=====1==2==. (r_3,s_3)=(0,1/2)

| | |

| | |

| | |

.=====.=====.

Let us assume that the function f(r, s) is to be approximated on [−1, 1]× [−1, 1] by

f(r, s) = a+ br + cs

The function f then must fulfil:

f(r1, s1) = a = f1

f(r2, s2) = a+
b

2
= f2

f(r3, s3) = a+
c

2
= f3 (132)

This leads to :
a = f1 b = 2(f2 − f1) c = 2(f3 − f1)

Then
f(r, s) = f1 + 2(f2 − f1)r + 2(f3 − f1)s

or,

f(r) =

3∑
i=1

Ni(r, s)fi

with

N1(r) = 1− 2(r + s)

N2(r) = 2r

N3(r) = 2s (133)

4.5.8 Enriched linear basis functions in triangles (P+
1 )

As we will see in Section 6.2.7 the above P1 can be enriched with a so-called bubble function. The bubble
function of the MINI element is described in [33] as being λ1λ2λ3 where λi are the so-called barycentric
coordinates7.

λ1 =
(y2− y3)(x− x3) + (x3− x2)(y − y3)

(y2− y3)(x1− x3) + (x3− x2)(y1− y3)

λ2 =
(y3− y1)(x− x3) + (x1− x3)(y − y3)

(y2− y3)(x1− x3) + (x3− x2)(y1− y3)

λ3 = 1− λ1 − λ2

7https://en.wikipedia.org/wiki/Barycentric_coordinate_system
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representation of the element in the real coordinate system (x, y) and in the reduced coordinate system (r, s)

Barycentric coordinates (λ1, λ2, λ3) on an equilateral triangle and on a right triangle.

In the reference triangle, the barycentric coordinates write

λ1 =
(s2 − s3)(r − r3) + (r3 − r2)(s− s3)

(s2 − s3)(r1 − r3) + (r3 − r2)(s1 − s3)
=

(−1)(r) + (−1)(s− 1)

(−1)(0) + (−1)(−1)
= −r − s+ 1

λ2 =
(s3− s1)(r − r3) + (r1− r3)(s− s3)

(s2− s3)(r1− r3) + (r3− r2)(s1− s3)
=

(1)(r) + (0)(s− 1)

(−1)(0) + (−1)(−1)
= r

λ3 = 1− λ1 − λ2 = 1− (−r − s+ 1)− r = s

As we have seen before the bubble function is given by λ1λ2λ3 = (1− r − s)rs and the polynomial form
for the shape functions is given by:

f(r, s) = a+ br + cs+ d(1− r − s)rs

Setting the location of the bubble at r = s = 1/3, i.e. λ1λ2λ3 = 1/3, we then have

f(r1, s1) = f1 = a+ br1 + cs1 + d(1− r1 − s1)r1s1 = a

f(r2, s2) = f2 = a+ br2 + cs2 + d(1− r2 − s2)r2s2 = a+ b

f(r3, s3) = f3 = a+ br3 + cs3 + d(1− r3 − s3)r3s3 = a+ c

f(r4, s4) = f4 = a+ br4 + cs4 + d(1− r4 − s4)r4s4 = a+
b

3
+
c

3
+

1

27

where point 4 is the location of the bubble. This yields

a = f1 b = f2 − a = f2 − f1 c = f3 − a = f3 − f1
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and

d = 27(f4 − a−
b

3
− c

3
) = 27(f4 − f1 −

f2 − f1

3
− f3 − f1

3
) = 27(f4 −

f1

3
− f2

3
− f3

3
)

Finally

f(r, s) = a+ br + cs+ d(1− r − s)rs

= f1 + (f2 − f1)r + (f3 − f1)s+ 27(f4 −
f1

3
− f2

3
− f3

3
)(1− r − s)rs

= [1− r − s− 9(1− r − s)rs]f1 + [r − 9(1− r − s)rs]f2 + [s− 9(1− r − s)rs]f3 + [27(1− r − s)rs]f4

so that

f(r, s) =

4∑
i=1

Ni(r, s)fi

with

N1(r, s) = 1− r − s− 9(1− r − s)rs
N2(r, s) = r − 9(1− r − s)rs
N3(r, s) = s− 9(1− r − s)rs
N4(r, s) = 27(1− r − s)rs

It is trivial to verify that
∑
iNi = 1 for all values of r, s and the gradients of the shape functions are:

∂N1

∂r
(r, s) = −1− 9(1− 2r − s)s (134)

∂N2

∂r
(r, s) = +1− 9(1− 2r − s)s (135)

∂N3

∂r
(r, s) = −9(1− 2r − s)s (136)

∂N4

∂r
(r, s) = 27(1− 2r − s)s (137)

(138)

∂N1

∂s
(r, s) = −1− 9(1− r − 2s)r (139)

∂N2

∂s
(r, s) = −9(1− r − 2s)r (140)

∂N3

∂s
(r, s) = +1− 9(1− r − 2s)r (141)

∂N4

∂s
(r, s) = 27(1− r − 2s)r (142)

We have two coordinate systems for the element: the global coordinates (x, y) and the natural coor-
dinates (r, s). Inside the element, the relation between the two is given by

x = N1x1 +N2x2 +N3x3 +N4x4 =
∑
i

Ni(r, s)xi

y = N1y1 +N2y2 +N3y3 +N4y4 =
∑
i

Ni(r, s)yi (143)
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or,

x = [1− r − s− 9(1− r − s)rs]x1 + [r − 9(1− r − s)rs]x2 + [s− 9(1− r − s)rs]x3 + [27(1− r − s)rs]x4

= x1 − r(x1 − x2)− s(x1 − x3) + (1− r − s)rs(−9x1 − 9x2 − 9x3 + 27x4)

= x1 − r(x1 − x2)− s(x1 − x3) + (1− r − s)rs(−9x1 − 9x2 − 9x3 + 27(x1 + x2 + x3)/3)

= x1 − r(x1 − x2)− s(x1 − x3)

= x1 − rx12 − sx13

y = [1− r − s− 9(1− r − s)rs]y1 + [r − 9(1− r − s)rs]y2 + [s− 9(1− r − s)rs]y3 + [27(1− r − s)rs]y4

= y1 − r(y1 − y2)− s(y1 − y3) + (1− r − s)rs(−9y1 − 9y2 − 9y3 + 27y4)

= y1 − r(y1 − y2)− s(y1 − y3) + (1− r − s)rs(−9y1 − 9y2 − 9y3 + 27(y1 + y2 + y3)/3)

= y1 − r(y1 − y2)− s(y1 − y3)

= y1 − ry12 − sy13

4.5.9 Quadratic basis functions for triangles in 2D (P2)

2

|\

| \ (r_0,s_0)=(0,0) (r_3,s_3)=(1/2,0)

5 4 (r_1,s_1)=(1,0) (r_4,s_4)=(1/2,1/2)

| \ (r_2,s_2)=(0,1) (r_5,s_5)=(0,1/2)

| \

0===3===1

The basis polynomial is then

f(r, s) = c1 + c2r + c3s+ c4r
2 + c5rs+ c6s

2

We have

f1 = f(r1, s1) = c1

f2 = f(r2, s2) = c1 + c2 + c4

f3 = f(r3, s3) = c1 + c3 + c6

f4 = f(r4, s4) = c1 + c2/2 + c4/4

f5 = f(r5, s5) = c1 + c2/2 + c3/2

+ c4/4 + c5/4 + c6/4

f6 = f(r6, s6) = c1 + c3/2 + c6/4

This can be cast as f = A · c where A is a 6x6 matrix:

A =


1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 1/2 0 1/4 0 0
1 1/2 1/2 1/4 1/4 1/4
1 0 1/2 0 0 1/4


It is rather trivial to compute the inverse of this matrix:

A−1 =


1 0 0 0 0 0
−3 −1 0 4 0 0
−3 0 −1 0 0 4
2 2 0 −4 0 0
4 0 0 −4 4 −4
2 0 2 0 0 −4
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In the end, one obtains:

f(r, s) = f1 + (−3f1 − f2 + 4f4)r + (−3f1 − f3 + 4f6)s

+(2f1 + 2f2 − 4f4)r2 + (4f1 − 4f4 + 4f5 − 4f6)rs

+(2f1 + 2f3 − 4f6)s2

=

6∑
i=1

Ni(r, s)fi (144)

with

N1(r, s) = 1− 3r − 3s+ 2r2 + 4rs+ 2s2

N2(r, s) = −r + 2r2

N3(r, s) = −s+ 2s2

N4(r, s) = 4r − 4r2 − 4rs

N5(r, s) = 4rs

N6(r, s) = 4s− 4rs− 4s2

4.5.10 Enriched quadratic basis functions in triangles (P+
2 )

This is used by the Crouzeix-Raviart element, see Section 6.2.9.

03 (r_1,s_1)=(0,0)

||\\ (r_2,s_2)=(1,0)

|| \\ (r_3,s_3)=(0,1)

|| \\ (r_4,s_4)=(1/2,0)

06 05 (r_5,s_5)=(1/2,1/2)

|| 07 \\ (r_6,s_6)=(0,1/2)

|| \\ (r_7,s_7)=(1/3,1/3)

01==04==02

The shape functions are given by:
find reference

N1(r, s) = (1− r − s)(1− 2r − 2s+ 3rs) (145)

N2(r, s) = r(2r − 1 + 3s− 3rs− 3s2) (146)

N3(r, s) = s(2s− 1 + 3r − 3r2 − 3rs) (147)

N4(r, s) = 4(1− r − s)r(1− 3s) (148)

N5(r, s) = 4rs[−2 + 3r + 3s] (149)

N6(r, s) = 4(1− r − s)s(1− 3r) (150)

N7(r, s) = 27(1− r − s)rs (151)

It is then easy to verify that for all shape functions we have Ni(rj , sj) = δij where j denotes one of the
seven nodes.
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The derivatives are as follows:

∂N1

∂r
(r, s) = r(4− 6s)− 3s2 + 7s− 3 (152)

∂N2

∂r
(r, s) = r(4− 6s)− 3s2 + 3s− 1 (153)

∂N3

∂r
(r, s) = −3s(2r + s− 1) (154)

∂N4

∂r
(r, s) = 4(3s− 1)(2r + s− 1) (155)

∂N5

∂r
(r, s) = 4s(6r + 3s− 2) (156)

∂N6

∂r
(r, s) = 4s(6r + 3s− 4) (157)

∂N7

∂r
(r, s) = −27s(2r + s− 1) (158)

∂N1

∂s
(r, s) = −3r2 + r(7− 6s) + 4s− 3 (159)

∂N2

∂s
(r, s) = −3r(r + 2s− 1) (160)

∂N3

∂s
(r, s) = −3r2 + r(3− 6s) + 4s− 1 (161)

∂N4

∂s
(r, s) = 4r(3r + 6s− 4) (162)

∂N5

∂s
(r, s) = 4r(3r + 6s− 2) (163)

∂N6

∂s
(r, s) = 4(3r − 1)(r + 2s− 1) (164)

∂N7

∂s
(r, s) = −27r(r + 2s− 1) (165)

Note that the shape functions can also be expressed as a function of the barycentric coordinates, as
in the MILAMIN code [252] or in Cuvelier et al, 1986 [251]8

03

||\\

|| \\

|| \\

05 04

|| 07 \\

|| \\

01==06==02

N1(λ1, λ2, λ3) = η1(2η1 − 1) + 3η1η2η3 (166)

N2(λ1, λ2, λ3) = η2(2η2 − 1) + 3η1η2η3 (167)

N3(λ1, λ2, λ3) = η3(2η3 − 1) + 3η1η2η3 (168)

N4(λ1, λ2, λ3) = 4η2η3 − 12η1η2η3 (169)

N5(λ1, λ2, λ3) = 4η1η3 − 12η1η2η3 (170)

N6(λ1, λ2, λ3) = 4η1η2 − 12η1η2η3 (171)

N7(λ1, λ2, λ3) = 27η1η2η3 (172)

VERIFY that when η1 = 1 − r − s, η2 = r and η3 = s we find the above r, s shape functions

8Note that the numbering of the nodes in the book is different with respect to the one above.
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4.5.11 Cubic basis functions for triangles (P3)

2

|\ (r_0,s_0)=(0,0) (r_5,s_5)=(2/3,1/3)

| \ (r_1,s_1)=(1,0) (r_6,s_6)=(1/3,2/3)

7 6 (r_2,s_2)=(0,1) (r_7,s_7)=(0,2/3)

| \ (r_3,s_3)=(1/3,0) (r_8,s_8)=(0,1/3)

8 9 5 (r_4,s_4)=(2/3,0) (r_9,s_9)=(1/3,1/3)

| \

0==3==4==1

The basis polynomial is then

f(r, s) = c1 + c2r + c3s+ c4r
2 + c5rs+ c6s

2 + c7r
3 + c8r

2s+ c9rs
2 + c10s

3

N0(r, s) =
9

2
(1− r − s)(1/3− r − s)(2/3− r − s) (173)

N1(r, s) =
9

2
r(r − 1/3)(r − 2/3) (174)

N2(r, s) =
9

2
s(s− 1/3)(s− 2/3) (175)

N3(r, s) =
27

2
(1− r − s)r(2/3− r − s) (176)

N4(r, s) =
27

2
(1− r − s)r(r − 1/3) (177)

N5(r, s) =
27

2
rs(r − 1/3) (178)

N6(r, s) =
27

2
rs(r − 2/3) (179)

N7(r, s) =
27

2
(1− r − s)s(s− 1/3) (180)

N8(r, s) =
27

2
(1− r − s)s(2/3− r − s) (181)

N9(r, s) = 27rs(1− r − s) (182)

verify those

4.6 Elements and basis functions in 3D

4.6.1 Linear basis functions in tetrahedra (P1)

(r_0,s_0) = (0,0,0)

(r_1,s_1) = (1,0,0)

(r_2,s_2) = (0,2,0)

(r_3,s_3) = (0,0,1)

The basis polynomial is given by

f(r, s, t) = c0 + c1r + c2s+ c3t

f1 = f(r1, s1, t1) = c0 (183)

f2 = f(r2, s2, t2) = c0 + c1 (184)

f3 = f(r3, s3, t3) = c0 + c2 (185)

f4 = f(r4, s4, t4) = c0 + c3 (186)
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which yields:
c0 = f1 c1 = f2 − f1 c2 = f3 − f1 c3 = f4 − f1

f(r, s, t) = c0 + c1r + c2s+ c3t

= f1 + (f2 − f1)r + (f3 − f1)s+ (f4 − f1)t

= f1(1− r − s− t) + f2r + f3s+ f4t

=
∑
i

Ni(r, s, t)fi

Finally,

N1(r, s, t) = 1− r − s− t
N2(r, s, t) = r

N3(r, s, t) = s

N4(r, s, t) = t

4.6.2 Enriched linear in tetrahedra(P+
1 )

These shape functions would be used in the MINI element, see Section 6.2.7.
In 3D the buble function lools like rst(1− r − s− t) so that

f(r, s, t) = a+ b r + c s+ d t+ e rst(1− r − s− t)

We have node 1 at location (r, s, t) = (0, 0, 0), node 2 at (r, s, t) = (1, 0, 0), node 3 at (r, s, t) = (0, 1, 0) ,
node4 at (r, s, t) = (0, 0, 1) and we set the location of the bubble (node 5) at r = s = t = 1/4 so that

f(r1, s1, t1) = f1 = a+ b r1 + c s1 + d t1 + e r1s1t1(1− r1 − s1 − t1) (187)

f(r2, s2, t2) = f2 = a+ b r2 + c s2 + d t2 + e r2s2t2(1− r2 − s2 − t2) (188)

f(r3, s3, t3) = f3 = a+ b r3 + c s3 + d t3 + e r3s3t3(1− r3 − s3 − t3) (189)

f(r4, s4, t4) = f4 = a+ b r4 + c s4 + d t4 + e r4s4t4(1− r4 − s4 − t4) (190)

f(r5, s5, t5) = f5 = a+ b r5 + c s5 + d t5 + e r5s5t5(1− r5 − s5 − t5) (191)

i.e.,

f1 = a (192)

f2 = a+ b (193)

f3 = a+ c (194)

f4 = a+ d (195)

f5 = a+ b/4 + c/4 + d/4 + e/64(1− 1/4− 1/4− 1/4) (196)

= a+ b/4 + c/4 + d/4 + e/256 (197)

Then

a = f1 (198)

b = f2 − f1 (199)

c = f3 − f1 (200)

d = f4 − f1 (201)

e = 256(f5 − a− b/4− c/4− d/4) (202)

= 256(f5 − f1 − (f2 − f1)/4− (f3 − f1)/4− (f4 − f1)/4) (203)

= 256(−f1/4− f2/4− f3/4− f4/4 + f5) (204)

= 64(−f1 − f2 − f3 − f4 + 4f5) (205)
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Finally:

f(r, s, t) = a+ br + cs+ dt+ erst(1− r − s− t)
= f1 + (f2 − f1)r + (f3 − f1)s+ (f4 − f1)t+ 64(−f1 − f2 − f3 − f4 + 4f5)rst(1− r − s− t)
= f1[1− r − s− t− 64rst(1− r − s− t)]
+ f2[r − 64rst(1− r − s− t)]
+ f3[s− 64rst(1− r − s− t)]
+ f4[t− 64rst(1− r − s− t)]
+ f5[256rst(1− r − s− t)]

=

5∑
i=1

Ni(r, s, t)fi (206)

with

N1(r, s, t) = 1− r − s− t− 64rst(1− r − s− t) (207)

N2(r, s, t) = r − 64rst(1− r − s− t) (208)

N3(r, s, t) = s− 64rst(1− r − s− t) (209)

N4(r, s, t) = t− 64rst(1− r − s− t) (210)

N5(r, s, t) = +256rst(1− r − s− t) (211)

The derivatives are given by:

∂N1

∂r
(r, s, t) = −1− 64st(1− 2r − s− t)

∂N2

∂r
(r, s, t) = +1− 64st(1− 2r − s− t)

∂N3

∂r
(r, s, t) = −64st(1− 2r − s− t)

∂N4

∂r
(r, s, t) = −64st(1− 2r − s− t)

∂N5

∂r
(r, s, t) = 256st(1− 2r − s− t)

∂N1

∂s
(r, s, t) = −1− 64rt(1− r − 2s− t)

∂N2

∂s
(r, s, t) = −64rt(1− r − 2s− t)

∂N3

∂s
(r, s, t) = +1− 64rt(1− r − 2s− t)

∂N4

∂s
(r, s, t) = −64rt(1− r − 2s− t)

∂N5

∂s
(r, s, t) = 256rt(1− r − 2s− t)

∂N1

∂t
(r, s, t) = −1− 64rs(1− r − s− 2t)

∂N2

∂t
(r, s, t) = −64rs(1− r − s− 2t)

∂N3

∂t
(r, s, t) = −64rs(1− r − s− 2t)

∂N4

∂t
(r, s, t) = +1− 64rs(1− r − s− 2t)

∂N5

∂t
(r, s, t) = 256rs(1− r − s− 2t)
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4.6.3 Triquadratic basis functions in 3D (Q2)

t

|

.--s

/

r

05=====16=====08

| | |

| | |

13=====26=====15 17=====25=====20

| | | | | |

| | | | | |

06=====14=====07 22=====27=====24 01=====12=====04 @ r=-1

| | | | | |

| | | | | |

18=====23=====14 09=====21=====11 @ r=0

| | |

| | |

02=====10=====03 @ r=+1

N1 = 0.5r(r − 1) 0.5s(s− 1) 0.5t(t− 1)

N2 = 0.5r(r + 1) 0.5s(s− 1) 0.5t(t− 1)

N3 = 0.5r(r + 1) 0.5s(s+ 1) 0.5t(t− 1)

N4 = 0.5r(r − 1) 0.5s(s+ 1) 0.5t(t− 1)

N5 = 0.5r(r − 1) 0.5s(s− 1) 0.5t(t+ 1)

N6 = 0.5r(r + 1) 0.5s(s− 1) 0.5t(t+ 1)

N7 = 0.5r(r + 1) 0.5s(s+ 1) 0.5t(t+ 1)

N8 = 0.5r(r − 1) 0.5s(s+ 1) 0.5t(t+ 1)

N9 = (1− r2) 0.5s(s− 1) 0.5t(t− 1)

N10 = 0.5r(r + 1) (1− s2) 0.5t(t− 1)

N11 = (1− r2) 0.5s(s+ 1) 0.5t(t− 1)

N12 = 0.5r(r − 1) (1− s2) 0.5t(t− 1)

N13 = (1− r2) 0.5s(s− 1) 0.5t(t+ 1)

N14 = 0.5r(r + 1) (1− s2) 0.5t(t+ 1)

N15 = (1− r2) 0.5s(s+ 1) 0.5t(t+ 1)

N16 = 0.5r(r − 1) (1− s2) 0.5t(t+ 1)

N17 = 0.5r(r − 1) 0.5s(s− 1) (1− t2)

N18 = 0.5r(r + 1) 0.5s(s− 1) (1− t2)

N19 = 0.5r(r + 1) 0.5s(s+ 1) (1− t2)

N20 = 0.5r(r − 1) 0.5s(s+ 1) (1− t2)

N21 = (1− r2) (1− s2) 0.5t(t− 1)

N22 = (1− r2) 0.5s(s− 1) (1− t2)

N23 = 0.5r(r + 1) (1− s2) (1− t2)

N24 = (1− r2) 0.5s(s+ 1) (1− t2)

N25 = 0.5r(r − 1) (1− s2) (1− t2)

N26 = (1− r2) (1− s2) 0.5t(t+ 1)

N27 = (1− r2) (1− s2) (1− t2)

56



4.6.4 Enriched quadratic basis functions in tetrahedra (P+
2 )

The velocity shape functions are:

φi = λi(2λi − 1) + 3(λiλjλk + λiλjλl + λiλkλl)− 4λiλjλkλl (212)

φij = 4λiλj − 12(λiλjλk + λiλjλl) + 32λiλjλkλl (213)

φijk = 27λiλjλk − 108λiλjλkλl (214)

φc = 256λiλjλkλl (215)

REFS ??? better definition of functions !

4.6.5 Linear basis functions for tetrahedra (P1)

This is essentially in the Q2 × P−1 element.
I choose the reduced coordinates of the pressure support points to be :

point r s t
1 1/2 -1/2 -1/2
2 -1/2 1/2 -1/2
3 -1/2 -1/2 1/2
4 1/2 1/2 1/2

Inside the element the pressure is given as a linear function of the reduced coordinates r, s, t:

p(r, s, t) = a+ br + cs+ dt

This expression must exactly interpolate the pressure at all four pressure nodes:

p1 = p(r1, s1, t1) = a+ br1 + cs1 + dt1 = a+ b/2− c/2− d/2
p2 = p(r2, s2, t2) = a+ br2 + cs2 + dt2 = a− b/2 + c/2− d/2
p3 = p(r3, s3, t3) = a+ br3 + cs3 + dt3 = a− b/2− c/2 + d/2

p4 = p(r4, s4, t4) = a+ br4 + cs4 + dt4 = a+ b/2 + c/2 + d/2

or, 
1 1/2 −1/2 −1/2
1 −1/2 +1/2 −1/2
1 −1/2 −1/2 +1/2
1 1/2 +1/2 +1/2




a
b
c
d

 =


p1

p2

p3

p4


The matrix is invertible and we get:

a
b
c
d

 =


1/4 1/4 1/4 1/4
1/2 −1/2 −1/2 1/2
−1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2




p1

p2

p3

p4
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so

p(r, s, t) = a+ br + cs+ dt

=
1

4
(p1 + p2 + p3 + p4) +

1

2
(p1 − p2 − p3 + p4)r +

1

2
(−p1 + p2 − p3 + p4)s+

1

2
(−p1 − p2 + p3 + p4)t

=
1

4
(1 + 2r − 2s− 2t)p1 +

1

4
(1− 2r + 2s− 2t)p2 +

1

4
(1− 2r − 2s+ 2t)p3 +

1

4
(1 + 2r + 2s+ 2t)p4

=

4∑
i=1

Ni(r, s, t)pi (216)

with

N1(r, s, t) =
1

4
(1 + 2r − 2s− 2t)

N2(r, s, t) =
1

4
(1− 2r + 2s− 2t)

N3(r, s, t) =
1

4
(1− 2r − 2s+ 2t)

N4(r, s, t) =
1

4
(1 + 2r + 2s+ 2t)

4.6.6 20-node serendipity basis functions in 3D (Q
(20)
2 )

The serendipity elements are those rectangular elements which have no interior nodes [769, p91].

t

|

.--s

/

r

05=====20=====08

| |

| |

17 - - - - - -19 13 16

. . | |

. . | |

06=====18=====07 . . 01=====12=====04 @ r=-1

| | . .

| | . .

14 15 09 - - - - - -11 @ r=0

| |

| |

02=====10=====03 @ r=+1

find/build shape functions!
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5 Solving the heat transport equation with linear Finite Ele-
ments

5.1 The diffusion equation in 1D

Let us consider the following one-dimensional grid:

Its spans the domain Ω of length Lx. It is discretised by means of nnx nodes and nelx = nnx − 1
elements. Zooming in on element which is bounded by two nodes k and k + 1, its size (also sometimes
called diameter) is hx = xk+1 − xk, and the temperature field we wish to compute is located on those
nodes so that they are logically called Tk and Tk+1:

We focus here on the 1D diffusion equation (no advection, no heat sources):

ρCp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(217)

This is the strong form of the ODE to solve. I can multiply this equation by a function9 f(x) and
integrate it over Ω: ∫

Ω

f(x)ρCp
∂T

∂t
dx =

∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx (218)

Looking at the right hand side, it is of the form
∫
uv′ so that I naturally integrate it by parts:∫

Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx =

[
f(x)k

∂T

∂x

]
∂Ω

−
∫

Ω

∂f

∂x
k
∂T

∂x
dx (219)

Assuming there is no heat flux prescribed on the boundary (i.e. qx = −k∂T/∂x = 0 ),
NOT happy with this statement!!

then: ∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx = −

∫
Ω

∂f

∂x
k
∂T

∂x
dx (220)

We then obtain the weak form of the diffusion equation in 1D:∫
Ω

f(x)ρCp
∂T

∂t
dx+

∫
Ω

∂f

∂x
k
∂T

∂x
dx = 0 (221)

9This function should be well-behaved with special properties, but we here assume it is a polynomial function.
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We then use the additive property of the integral
∫

Ω
· · · =

∑
elts

∫
Ωe
. . . so that

∑
elts


∫

Ωe

f(x)ρCp
∂T

∂t
dx︸ ︷︷ ︸

Λef

+

∫
Ωe

∂f

∂x
k
∂T

∂x
dx︸ ︷︷ ︸

Υef

 = 0 (222)

In order to compute these integrals (analytically or by means of a numerical quadrature), we will need
to evaluate T inside the element. However, inside the element, the temperature is not known: all we
have is the temperature at the nodes. For x ∈ [xk, xk+1] we need to come up with a way to compute the
temperature at this location. It makes sense to think that T (x) will then be a function of the temperature
at the nodes, i.e. T (x) = αTk+βTk+1 where α and β are coefficients. One over-simplified approach would
be to assign T (x) = (Tk + Tk+1)/2 but this would make the temperature discontinuous from element to
element. The rather logical solution to this problem is a linear temperature field between Tk and Tk+1:

T (x) =
xk+1 − x

hx︸ ︷︷ ︸
Nθk (x)

Tk +
x− xk
hx︸ ︷︷ ︸

Nθk+1(x)

Tk+1

where Nθ
k (x) is the (temperature) shape function associated to node k and Nθ

k+1(x) is the shape function
associated to node k + 1.

Rather reassuringly, we have:

• x = xk yields T (x) = Tk

• x = xk+1 yields T (x) = Tk+1

• x = (xk + xk+1)/2 yields T (x) = (Tk + Tk+1)/2

In what follows we abbreviate ∂T/∂x by Ṫ . Let us compute Λef and Υe
f separately.

Λef =

∫ xk+1

xk

f(x)ρCpṪ (x)dx

=

∫ xk+1

xk

f(x)ρCp [Nθ
k (x)Ṫk +Nθ

k+1(x)Ṫk+1] dx

=

∫ xk+1

xk

f(x)ρCpN
θ
k (x)Ṫkdx+

∫ xk+1

xk

f(x)ρCpN
θ
k+1(x)Ṫk+1dx

=

(∫ xk+1

xk

f(x)ρCpN
θ
k (x)dx

)
Ṫk +

(∫ xk+1

xk

f(x)ρCpN
θ
k+1(x)dx

)
Ṫk+1

Taking f(x) = Nθ
k (x) and omitting ’(x)’ in the rhs:

ΛeNθk
=

(∫ xk+1

xk

ρCpN
θ
kN

θ
kdx

)
Ṫk +

(∫ xk+1

xk

ρCpN
θ
kN

θ
k+1dx

)
Ṫk+1

Taking f(x) = Nθ
k+1(x) and omitting ’(x)’ in the rhs:

ΛeNθk+1
=

(∫ xk+1

xk

ρCpN
θ
k+1N

θ
kdx

)
Ṫk +

(∫ xk+1

xk

ρCpN
θ
k+1N

θ
k+1dx

)
Ṫk+1

We can rearrange these last two equations as follows: Λe
Nθk

Λe
Nθk+1

 =


∫ xk+1

xk
Nθ
kρCpN

θ
kdx

∫ xk+1

xk
Nθ
kρCpN

θ
k+1dx∫ xk+1

xk
Nθ
k+1ρCpN

θ
kdx

∫ xk+1

xk
Nθ
k+1ρCpN

θ
k+1dx

 ·
 Ṫk

Ṫk+1
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and we can take the integrals outside of the matrix: Λe
Nθk

Λe
Nθk+1

 =

∫ xk+1

xk

ρCp

 Nθ
kN

θ
k Nθ

kN
θ
k+1

Nθ
k+1N

θ
k Nθ

k+1N
θ
k+1

 dx

 ·
 Ṫk

Ṫk+1


Finally, we can define the vectors

~NT =

 Nθ
k (x)

Nθ
k+1(x)


and

~T e =

 Tk

Tk+1

 ~̇T e =

 Ṫk

Ṫk+1


so that  Λe

Nθk

Λe
Nθk+1

 =

(∫ xk+1

xk

~NT ρCp ~Ndx

)
· ~̇T e

Back to the diffusion term:

Υe
f =

∫ xk+1

xk

∂f

∂x
k
∂T

∂x
dx

=

∫ xk+1

xk

∂f

∂x
k
∂(Nθ

k (x)Tk +Nθ
k+1(x)Tk+1)

∂x
dx

=

(∫ xk+1

xk

∂f

∂x
k
∂Nθ

k

∂x
dx

)
Tk +

(∫ xk+1

xk

∂f

∂x
k
∂Nθ

k+1

∂x
dx

)
Tk+1

Taking f(x) = Nθ
k (x)

Υe
Nθk

=

(∫ xk+1

xk

k
∂Nθ

k

∂x

∂Nθ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂Nθ

k

∂x

∂Nθ
k+1

∂x
dx

)
Tk+1

Taking f(x) = Nθ
k+1(x)

Υe
Nθk+1

=

(∫ xk+1

xk

k
∂Nθ

k+1

∂x

∂Nθ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂Nθ

k+1

∂x

∂Nθ
k+1

∂x
dx

)
Tk+1

 Υe
Nθk

Υe
Nθk+1

 =


∫ xk+1

xk

∂Nθk
∂x k

∂Nθk
∂x dx

∫ xk+1

xk

∂Nθk
∂x k

∂Nθk+1

∂x dx

∫ xk+1

xk

∂Nθk+1

∂x k
∂Nθk
∂x dx

∫ xk+1

xk

∂Nθk+1

∂x k
∂Nθk+1

∂x dx

 ·
 Tk

Tk+1


or,  Υe

Nθk

Υe
Nθk+1

 =

∫ xk+1

xk

k

 ∂Nθk
∂x

∂Nθk
∂x

∂Nθk
∂x

∂Nθk+1

∂x

∂Nθk+1

∂x
∂Nθk
∂x

∂Nθk+1

∂x

∂Nθk+1

∂x

 dx

 ·
 Tk

Tk+1


Finally, we can define the vector

~BT =

 ∂Nθk
∂x

∂Nθk+1

∂x
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so that  Υe
Nθk

Υe
Nθk+1

 =

(∫ xk+1

xk

~BT k ~Bdx

)
· ~T e

The weak form discretised over 1 element becomes(∫ xk+1

xk

~NT ρCp ~Ndx

)
︸ ︷︷ ︸

Me

· ~̇T e +

(∫ xk+1

xk

~BT k ~Bdx

)
︸ ︷︷ ︸

Ke
d

·~T e = 0

or,

M e · ~̇T e +Ke
d · ~T e = 0

or,

M e · ∂
~T e

∂t
+Ke

d · ~T e = 0

M e is commonly called the mass matrix, or capacitance matrix [769, p103].
Using a backward first order in time discretisation for the time derivative:

~̇T =
∂ ~T

∂t
=
~Tnew − ~T old

δt

we get

M e ·
~Tnew − ~T old

δt
+Ke

d · ~Tnew = 0

or,

(M e +Ke
dδt) · ~Tnew = M e · ~T old

with

M e =

∫ xk+1

xk

~NT ρCp ~Ndx Ke
d =

∫ xk+1

xk

~BT k ~Bdx

Let us compute M for an element:

M e =

∫ xk+1

xk

~NT ρCp ~Ndx

with

~NT =

 Nk(x)

Nk+1(x)

 =

 xk+1−x
hx

x−xk
hx


Then

M e =

(
M11 M12

M21 M22

)
=


∫ xk+1

xk
ρCpN

θ
kN

θ
kdx

∫ xk+1

xk
ρCpN

θ
kN

θ
k+1dx∫ xk+1

xk
ρCpN

θ
k+1N

θ
kdx

∫ xk+1

xk
ρCpN

θ
k+1N

θ
k+1dx


I only need to compute 3 integrals since M12 = M21. Let us start with M11:

M11 =

∫ xk+1

xk

ρCpN
θ
k (x)Nθ

k (x)dx =

∫ xk+1

xk

ρCp
xk+1 − x

hx

xk+1 − x
hx

dx

It is then customary to carry out the change of variable x→ r where r ∈ [−1 : 1] as shown hereunder:
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The relationships between x and r are:

r =
2

hx
(x− xk)− 1 x =

hx
2

(1 + r) + xk

In what follows we assume for simplicity that ρ and Cp are constant within each element.

M11 = ρCp

∫ xk+1

xk

xk+1 − x
hx

xk+1 − x
hx

dx =
ρCphx

8

∫ +1

−1

(1− r)(1− r)dr =
hx
3
ρCp

Similarly we arrive at

M12 = ρCp

∫ xk+1

xk

xk+1 − x
hx

x− xk
hx

dx =
ρCphx

8

∫ +1

−1

(1− r)(1 + r)dr =
hx
6
ρCp

and

M22 = ρCp

∫ xk+1

xk

x− xk
hx

x− xk
hx

dx =
ρCphx

8

∫ +1

−1

(1 + r)(1 + r)dr =
hx
3
ρCp

Finally

M e =
hx
3
ρCp

(
1 1/2

1/2 1

)
In the new coordinate system, the shape functions

Nθ
k (x) =

xk+1 − x
hx

Nθ
k+1(x) =

x− xk
hx

become

Nθ
k (r) =

1

2
(1− r) Nθ

k+1(r) =
1

2
(1 + r)

Also,
∂Nθ

k

∂x
= − 1

hx

∂Nθ
k+1

∂x
=

1

hx

so that

~BT =

 ∂Nθk
∂x

∂Nθk+1

∂x

 =

 − 1
hx

1
hx


We here also assume that k is constant within the element:

Kd =

∫ xk+1

xk

~BT k ~Bdx = k

∫ xk+1

xk

~BT ~Bdx

simply becomes

Kd = k

∫ xk+1

xk

1

h2
x

(
1 −1
−1 1

)
dx

and then

Kd =
k

hx

(
1 −1
−1 1

)
Let us consider this very simple grid consisting of 4 elements/5 nodes:
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For each element we have
(M e +Ke

d δt)︸ ︷︷ ︸
Ae

·~Tnew = M e · ~T old︸ ︷︷ ︸
~be

We can write this equation very explictely for each element:

• element 1

A1 ·
(
T1

T2

)
= ~b1{

A1
11T1 +A1

12T2 = b1x
A1

21T1 +A1
22T2 = b1y

• element 2

A2 ·
(
T2

T3

)
= ~b2{

A2
11T2 +A2

12T3 = b21
A2

21T2 +A2
22T3 = b22

• element 3

A3 ·
(
T3

T4

)
= ~b3{

A3
11T3 +A3

12T4 = b31
A3

21T3 +A3
22T4 = b32

• element 4

A4 ·
(
T4

T5

)
= ~b4{

A4
11T4 +A4

12T5 = b41
A4

21T4 +A4
22T5 = b42

All equations can be cast into a single linear system: this is the assembly phase. The process can also
be visualised as shown hereunder. Because nodes 2,3,4 belong to two elements elemental contributions
will be summed in the matrix and the rhs:
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The assembled matrix and rhs are then:

A1
11 A1

12 0 0 0

A1
21 A1

22+A2
11 A2

12 0 0

0 A2
21 A2

22+A3
11 A3

12 0

0 0 A3
21 A3

22+A4
11 A4

12

0 0 0 A4
21 A4

22





T1

T2

T3

T4

T5


=



b11

b12 + b21

b22 + b31

b32 + b41

b42


Ultimately the assembled matrix system also takes the form

A11 A12 0 0 0

A21 A22 A23 0 0

0 A32 A33 A34 0

0 0 A43 A44 A45

0 0 0 A54 A55





T1

T2

T3

T4

T5


=



b1

b2

b3

b4

b5


and we see that it is sparse. Its sparsity structure is easy to derive: each row corresponds to a dof, and
since nodes 1 and 2 ’see’ each other (they belong to the same element) there will be non-zero entries in
the first and second column. Likewise, node 2 ’sees’ node 1 (in other words, there is an edge linking nodes
1 and 2), itself, and node 3, so that there are non-zero entries in the second row at columns 1, 2, and 3.

Before we solve the system, we need to take care of boundary conditions. Let us assume that we wish
to fix the temperature at node 2, or in other words we wish to set

T2 = T bc

This equation can be cast as

(
0 1 0 0 0

)


T1

T2

T3

T4

T5

 =


0
T bc

0
0
0


This replaces the second line in the previous matrix equation:

A11 A12 0 0 0

0 1 0 0 0

0 A32 A33 A34 0

0 0 A43 A44 A45

0 0 0 A54 A55





T1

T2

T3

T4

T5


=



b1

T bc

b3

b4

b5


That’s it, we have a linear system of equations which can be solved!

65



5.2 The advection-diffusion equation in 1D

We start with the 1D advection-diffusion equation

ρCp

(
∂T

∂t
+ u

∂T

∂x

)
=

∂

∂x

(
k
∂T

∂x

)
+H (223)

This is the strong form of the ODE to solve. As in the previous section, I multiply this equation by a
function f(x) and integrate it over the domain Ω:∫

Ω

f(x)ρCp
∂T

∂t
dx+

∫
Ω

f(x)ρCpu
∂T

∂x
dx=

∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx+

∫
Ω

f(x)Hdx

As in the previous section I integrate the r.h.s. by parts:∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx =

[
f(x)k

∂T

∂x

]
∂Ω

−
∫

Ω

∂f

∂x
k
∂T

∂x
dx

Disregarding the boundary term for now, we then obtain the weak form of the diffusion equation in 1D:∫
Ω

f(x)ρCp
∂T

∂t
dx+

∫
Ω

f(x)ρCpu
∂T

∂x
dx+

∫
Ω

∂f

∂x
k
∂T

∂x
dx =

∫
Ω

f(x)Hdx

We then use the additive property of the integral
∫

Ω
· · · =

∑
elts

∫
Ωe
. . .

∑
elts


∫

Ωe

f(x)ρCp
∂T

∂t
dx︸ ︷︷ ︸

Λef

+

∫
Ωe

f(x)ρCpu
∂T

∂x
dx︸ ︷︷ ︸

Σef

+

∫
Ωe

∂f

∂x
k
∂T

∂x
dx︸ ︷︷ ︸

Υef

−
∫

Ωe

f(x)Hdx︸ ︷︷ ︸
Ωef

 = 0

In the element, we have seen that the temperature can be written:

T (x) = Nθ
k (x)Tk +Nθ

k+1(x)Tk+1

In the previous presentation we have computed Λef and Υe
f . Let us now turn to Σef and Ωef .

Σef =

∫ xk+1

xk

f(x)ρCpu
∂T

∂x
dx

=

∫ xk+1

xk

f(x)ρCpu
∂[Nθ

k (x)Tk +Nθ
k+1(x)Tk+1]

∂x
dx

=

∫ xk+1

xk

f(x)ρCpu
∂Nθ

k

∂x
Tkdx+

∫ xk+1

xk

f(x)ρCpu
∂Nθ

k+1

∂x
Tk+1dx

=

(∫ xk+1

xk

f(x)ρCpu
∂Nθ

k

∂x
dx

)
Tk +

(∫ xk+1

xk

f(x)ρCpu
∂Nθ

k+1

∂x
dx

)
Tk+1

Taking f(x) = Nθ
k (x) and omitting ’(x)’ in the rhs:

ΣeNθk
=

(∫ xk+1

xk

ρCpuN
θ
k

∂Nθ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

ρCpuN
θ
k

∂Nθ
k+1

∂x
dx

)
Tk+1

Taking f(x) = Nθ
k+1(x) and omitting ’(x)’ in the rhs:

ΣeNθk+1
=

(∫ xk+1

xk

ρCpuN
θ
k+1

∂Nθ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

ρCpuN
θ
k+1

∂Nθ
k+1

∂x
dx

)
Tk+1
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 ΣNθk

ΣNθk+1

=


∫ xk+1

xk
ρCpuN

θ
k
∂Nθk
∂x dx

∫ xk+1

xk
ρCpuN

θ
k

∂Nθk+1

∂x dx

∫ xk+1

xk
ρCpuN

θ
k+1

∂Nθk
∂x dx

∫ xk+1

xk
ρCpuN

θ
k+1

∂Nθk+1

∂x dx

·
 Tk

Tk+1


or,  ΣNθk

ΣNθk+1

=

∫ xk+1

xk

ρCpu

 Nθ
k
∂Nθk
∂x Nθ

k

∂Nθk+1

∂x

Nθ
k+1

∂Nθk
∂x Nθ

k+1

∂Nθk+1

∂x

 dx

 ·
 Tk

Tk+1


Finally, we have already defined the vectors

~NT =

 Nθ
k (x)

Nθ
k+1(x)

 ~BT =

 ∂Nθk
∂x

∂Nθk+1

∂x

 ~T e =

 Tk

Tk+1


so that  ΣNθk

ΣNθk+1

 =

(∫ xk+1

xk

~NT ρCpu~Bdx

)
· ~T e = Ka · ~T e

One can easily show that

Ke
a = ρCpu

 −1/2 1/2

−1/2 1/2


Note that the matrix Ke

a is not symmetric.
Let us now look at the source term:

Ωef =

∫ xk+1

xk

f(x)H(x)dx

Taking f(x) = Nθ
k (x):

ΩNθk =

∫ xk+1

xk

Nθ
k (x)H(x)dx

Taking f(x) = Nθ
k+1(x):

ΩNθk+1
=

∫ xk+1

xk

Nθ
k+1(x)H(x)dx

We can rearrange both equations as follows: ΩNθk

ΩNθk+1

 =


∫ xk+1

xk
Nθ
k (x)H(x)dx

∫ xk+1

xk
Nθ
k+1(x)H(x)dx


or,  ΩNθk

ΩNθk+1

 =

∫ xk+1

xk

 Nθ
k (x)H(x)

Nθ
k+1(x)H(x)

 dx


so that  ΩNθk

ΩNθk+1

 =

(∫ xk+1

xk

~NTH(x)dx

)
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The weak form discretised over 1 element becomes(∫ xk+1

xk

~NT ρCpNdx

)
︸ ︷︷ ︸

Me

· ~̇T e +

(∫ xk+1

xk

~NT ρCpuBdx

)
︸ ︷︷ ︸

Ke
a

·~T e +

(∫ xk+1

xk

~BT kBdx

)
︸ ︷︷ ︸

Ke
d

·~T e =

(∫ xk+1

xk

~NTH(x)dx

)
︸ ︷︷ ︸

~F e

or,

M e · ~̇T e + (Ke
d +Ke

a) · ~T e = ~F e

or,

M e · ∂
~T e

∂t
+ (Ke

a +Ke
d) · ~T e = ~F e

5.3 The advection-diffusion equation in 2D

We start from the ’bare-bones’ heat transport equation (source terms are omitted):

ρCp

(
∂T

∂t
+ ~ν · ~∇T

)
= ~∇ · k~∇T (224)

In what follows we assume that the velocity vield ~ν is known so that temperature is the only unknwon.
Let Nθ be the temperature basis functions so that the temperature inside an element is given by10:

Th(~r) =

mT∑
i=1

Nθ(~r)Ti = ~Nθ · ~T (225)

where ~T is a vector of length mT The weak form is then∫
Ω

Nθ
i

[
ρCp

(
∂T

∂t
+ ~ν · ~∇T

)]
dΩ =

∫
Ω

Nθ
i
~∇ · k~∇TdΩ (226)

∫
Ω

Nθ
i ρCp

∂T

∂t
dΩ︸ ︷︷ ︸

I

+

∫
Ω

Nθ
i ρCp~ν · ~∇TdΩ︸ ︷︷ ︸

II

=

∫
Ω

Nθ
i
~∇ · k~∇TdΩ︸ ︷︷ ︸
III

i = 1,mT

Looking at the first term: ∫
Ω

Nθ
i ρCp

∂T

∂t
dΩ =

∫
Ω

Nθ
i ρCp ~N

θ · ~̇TdΩ (227)

(228)

so that when we assemble all contributions for i = 1,mT we get:

I =

∫
Ω

~NθρCp ~N
θ · ~̇TdΩ =

(∫
Ω

ρCp ~N
θ ~NθdΩ

)
· ~̇T = MT · ~̇T

where MT is the mass matrix of the system of size (mT ×mT ) with

MT
ij =

∫
Ω

ρCpN
θ
i N

θ
j dΩ

Turning now to the second term:∫
Ω

Nθ
i ρCp~ν · ~∇TdΩ =

∫
Ω

Nθ
i ρCp(u

∂T

∂x
+ v

∂T

∂y
)dΩ (229)

=

∫
Ω

Nθ
i ρCp(u

∂ ~Nθ

∂x
+ v

∂ ~Nθ

∂y
) · ~TdΩ (230)

(231)

10the θ superscript has been chosen to denote temperature so as to avoid confusion with the transpose operator
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so that when we assemble all contributions for i = 1,mT we get:

II =

(∫
Ω

ρCp ~N
θ(u

∂ ~Nθ

∂x
+ v

∂ ~Nθ

∂y
)dΩ

)
· ~T = Ka · ~T

where Ka is the advection term matrix of size (mT ×mT ) with

(Ka)ij =

∫
Ω

ρCpN
θ
i

(
u
∂Nθ

j

∂x
+ v

∂Nθ
j

∂y

)
dΩ

Now looking at the third term, we carry out an integration by part and neglect the surface term for now,
so that ∫

Ω

Nθ
i
~∇ · k~∇TdΩ = −

∫
Ω

k~∇Nθ
i · ~∇TdΩ (232)

= −
∫

Ω

k~∇Nθ
i · ~∇( ~Nθ · ~T )dΩ (233)

(234)

with

~∇ ~Nθ =

 ∂xN
θ
1 ∂xN

θ
2 . . . ∂xN

θ
mT

∂yN
θ
1 ∂yN

θ
2 . . . ∂yN

θ
mT


so that finally:

III = −
(∫

Ω

k(~∇ ~Nθ)T · ~∇ ~NθdΩ

)
· ~T = −Kd · ~T

where Kd is the diffusion term matrix:

Kd =

∫
Ω

k(~∇ ~Nθ)T · ~∇ ~NθdΩ

Ultimately terms I, II, III together yield:

Mθ · ~̇T + (Ka +Kd) · ~T = ~0

add source term!!

5.3.1 Dealing with the time discretisation

Essentially we have to solve a PDE of the type:

∂T

∂t
= F(~ν, T, ~∇T,∆T )

with F = 1
ρCp

(−~ν · ~∇T + ~∇ · k~∇T ).

The (explicit) forward Euler method is:

Tn+1 − Tn

δt
= Fn(T, ~∇T,∆T )

The (implicit) backward Euler method is:

Tn+1 − Tn

δt
= Fn+1(T, ~∇T,∆T )

and the (implicit) Crank-Nicolson algorithm is:

Tn+1 − Tn

δt
=

1

2

[
Fn(T, ~∇T,∆T ) + Fn+1(T, ~∇T,∆T )

]
where the superscript n indicates the time step. The Crank-Nicolson is obviously based on the trapezoidal
rule, with second-order convergence in time.

In what follows, I omit the superscript on the mass matrix to simplify notations: Mθ = M . In terms
of Finite Elements, these become:
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• Explicit Forward euler:

1

δt
(Mn+1 · ~Tn+1 −Mn · ~Tn) = −(Kn

a +Kn
d ) · ~Tn

or,

Mn+1 · ~Tn+1 = (Mn + (Kn
a +Kn

d )δt) · ~Tn

• Implicit Backward euler:

1

δt
(Mn+1 · ~Tn+1 −Mn · ~Tn) = −(Kn+1

a +Kn+1
d ) · ~Tn+1

or, (
Mn+1 + (Kn+1

a +Kn+1
d )δt

)
· ~Tn+1 = Mn · ~Tn

• Crank-Nicolson

1

δt

(
Mn+1 · ~Tn+1 −Mn · ~Tn

)
=

1

2

[
−(Kn+1

a +Kn+1
d ) · ~Tn+1 − (Kn

a +Kn
d ) · ~Tn

]
or, (

Mn+1 + (Kn+1
a +Kn+1

d )
δt

2

)
· ~Tn+1 =

(
Mn + (Kn

a +Kn
d )
δt

2

)
· ~Tn

Note that in benchmarks where the domain/grid does not deform, the coefficients do not change
in space and the velocity field is constant in time, or in practice out of convenience, the K and M
matrices do not change and the r.h.s. can be constructed with the same matrices as the FE matrix.

The Backward differentiation formula (see for instance [441] or Wikipedia11. The second-order
BDF (or BDF-2) as shown in [584] is as follows: it is a finite-difference quadratic interpolation approxi-
mation of the ∂T/∂t term which involves tn, tn−1 and tn−2:

∂T

∂t
(tn) =

1

τn

(
2τn + τn−1

τn + τn−1
T (tn)− τn + τn−1

τn−1
T (tn−1) +

τ2
n

τn−1(τn + τn−1)
T (tn−2)

)
(235)

where τn = tn − tn−1. Starting again from Mθ · ~̇T + (Ka +Kd) · ~T = ~0, we write

Mθ · 1

τn

(
2τn + τn−1

τn + τn−1

~Tn − τn + τn−1

τn−1

~Tn−1 +
τ2
n

τn−1(τn + τn−1)
~Tn−2

)
+ (Ka +Kd) · ~Tn = ~0

and finally:[
2τn + τn−1

τn + τn−1
Mθ + τn(Ka +Kd)

]
· ~Tn =

τn + τn−1

τn−1
Mθ · ~Tn−1 − τ2

n

τn−1(τn + τn−1)
Mθ · ~Tn−2

Note that if all timesteps are equal, i.e. τn = τn−1 = δt, this equation becomes:[
3

2
Mθ + δt(Ka +Kd)

]
· ~Tn = Mθ ·

(
2~Tn−1 − 1

2
~Tn−2

)
or, [

Mθ +
2

3
δt(Ka +Kd)

]
· ~Tn = Mθ ·

(
4

3
~Tn−1 − 1

3
~Tn−2

)
As mentioned before the backward differenciation formula (BDF) is a family of implicit methods for

the integration of ODEs. Each BDF-s method achieves order s. The BDF-1 is simply the backward
Euler method as seen above:

Tn+1 − Tn = δtFn+1

11https://en.wikipedia.org/wiki/Backward_differentiation_formula
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The BDF-2 is given by

Tn+2 − 4

3
Tn+1 +

1

3
Tn =

2

3
δtFn+2

The BDF-3 is given by

Tn+3 − 18

11
Tn+2 +

9

11
Tn+1 − 2

11
Tn =

6

11
δtFn+3

The BDF-4 is given by

Tn+4 − 48

25
Tn+1 +

36

25
Tn+1 − 16

25
Tn+1 +

3

25
Tn =

12

25
δtFn+4

5.3.2 On steady states

It is said that a system is in a steady state if the (state) variables which define the behavior of the system
are unchanging in time. In continuous time, this means that the partial derivative with respect to time
is zero and remains so:

∂

∂t
= 0 ∀t

This is irrelevant for the Stokes equations which do not contain an explicit time dependence but the
heat transport equation can reach a steady state. Note that if one is only interested in the steady state
solution (and not how the system gets there in time) then the heat transport equation should be solved
with ∂T/∂t set to zero.

5.3.3 Anisotropic heat conduction

It is most often assumed that the heat conductivity is isotropic so that one speaks of heat conductivity
as a scalar k. However many materials are orthotropic and in that case the heat conductivity is a tensor
k which (in 2D) writes [769, p121]:

k =

(
kxx kxy
kyx kyy

)
=

(
cos θ sin θ
− sin θ cos θ

)
·
(
k1 0
0 k2

)
·
(

cos θ − sin θ
sin θ cos θ

)
where k1 and k2 are the conductivities in the principal axes system and θ is the local orientation. In that
case the diffusion term in the heat trasport equation becomes ~∇ · (k · ~∇T ).
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6 Solving the flow equations with the FEM

In the case of an incompressible flow, we have seen that the continuity (mass conservation) equation takes

the simple form ~∇ · ~v = 0. In other word flow takes place under the constraint that the divergence of its
velocity field is exactly zero eveywhere (solenoidal constraint), i.e. it is divergence free.

We see that the pressure in the momentum equation is then a degree of freedom which is needed to
satisfy the incompressibilty constraint (and it is not related to any constitutive equation) [283]. In other
words the pressure is acting as a Lagrange multiplier of the incompressibility constraint.

Various approaches have been proposed in the literature to deal with the incompressibility constraint
but we will only focus on the penalty method (section 6.3) and the so-called mixed finite element method
6.4.

6.1 Strong and weak forms

The strong form consists of the governing equation and the boundary conditions, i.e. the mass, momentum
and energy conservation equations supplemented with Dirichlet and/or Neumann boundary conditions
on (parts of) the boundary.

To develop the finite element formulation, the partial differential equations must be restated in an
integral form called the weak form. In essence the PDEs are first multiplied by an arbitrary function and
integrated over the domain.

6.2 Which velocity-pressure pair for Stokes?

The success of a mixed finite element formulation crucially depends on a proper choice of the local
interpolations of the velocity and the pressure.

6.2.1 The compatibility condition (or LBB condition)

’LBB stable’ elements assure the existence of a unique solution and assure convergence at the optimal
rate.

6.2.2 Families

The family of Taylor-Hood finite element spaces on triangular/tetrahedral grids is given by Pk × Pk−1

with k ≥ 2, and on quadrilateral/hexahedral grids by Qk × Qk−1 with k ≥ 2. This means that the
pressure is then approximated by continuous functions.

These finite elements are very popular, in particular the pairs for k = 2, i.e. Q2 × Q1 and P2 × P1.
The reason why k ≥ 2 comes from the fact that the Q1 ×Q0 (i.e. Q1 × P0) and P2 × P1 are not stable
elements (they are not inf-sup stable).

Remark. Note that a similar element to Q2×Q1 has been proposed and used succesfully used [877, 488]:

it is denoted by Q
(8)
2 ×Q1 since the center node (’x2y2’) and its associated degrees of freedom have been

removed. It has also been proved to be LBB stable.

The Raviart-Thomas familyon triangles and quadrilaterals. find literaturefind literature
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6.2.3 The bi/tri-linear velocity - constant pressure element (Q1 × P0)

0
1

23

~ν p

4 vel. nodes, 1 press. nodes

~ν p

8 vel. nodes, 1 press. nodes

discussed in example 3.71 of [545]
However simple it may look, the element is one of the hardest elements to analyze and many questions

are still open about its properties. The element does not satisfy the inf-sup condition [500]p211. In [425]
it is qualified as follows: slightly unstable but highly usable.

The Q1 × P0 mixed approximation is the lowest order conforming approximation method defined on
a rectangular grid. It also happens to be the most famous example of an unstable mixed approximation
method. [314, p235].

This element is discussed in [342], [343] and in [734] in the context of multigrid use.
This element is plagued by so-called pressure checkerboard modes which have been thoroughly anal-

ysed [427], [217], [816, 817]. These can be filtered out [217]. Smoothing techniques are also discussed in
[602].

6.2.4 The bi/tri-quadratic velocity - discontinuous linear pressure element (Q2 × P−1)

This element is crowned ”probably the most accurate 2D element” in [425].
Piecewise Biquadratic velocities, piecewise linear discontinuous polynomial pressure. The element

satisfies the inf-sup condition [500]p211. It is used in [924]. See [109] over the two possible choices for
the definition of the pressure space.. It is mentioned in [558], [109], [725].

Note that the serendipity version of this pair, i.e. Q
(20)
2 × P−1 is also LBB stable [769, p180].

6.2.5 The bi/tri-quadratic velocity - bi/tri-linear pressure element (Q2 ×Q1)

0
1

23

4

5

6

7 8

~ν p

27 vel. nodes, 8 press. nodes

~ν p

27 vel. nodes, 8 press. nodes

In [425] Gresho & Sani write that in their opinion div(~v) = 0 is not strong enough.
This element, implemented in penalised form, is discussed in [86] and the follow-up paper [87]. CHECK
Biquadratic velocities, bilinear pressure. See Hood and Taylor. The element satisfies the inf-sup

condition [500]p215.
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6.2.6 The stabilised bi/tri-linear velocity - bi/tri-linear pressure element (Q1 ×Q1-stab)

0
1

23

~ν p

4 vel. nodes, 4 press. nodes

~ν p

8 vel. nodes, 8 press. nodes

See [708] for a fourier analysis of the normal and stablised (a la [502]) Q1 −Q1 element.
Stabilisation carried out in [281, 107].
See also [423]

6.2.7 The MINI triangular element (P+
1 × P1) in 2D

The MINI element was first introduced in Arnold et al, 1984 [33]. It is also discussed in section 3.6.1 of
[545]. It is schematically represented hereunder:

Figure taken from Donea and Huerta [283]

Remark. Note that [344] propose an equal-order-linear-continuous velocity-pressure variables which is
enriched with velocity and pressure bubble functions to model the Stokes problem. They show by static
condensation that these bubble functions give rise to a stabilized method involving least-squares forms of
the momentum and of the continuity equations. In some cases their approach recovers the MINI element.
Also check [359].

Remark. According to Braess[127], since the support of the bubble is restricted to the element, the associ-
ated variable (dofs living on the bubble) can be eliminated from the resulting system of linear equations by
static condensation. Also, the MINI element is cheaper than the Taylor-Hood element but it is commonly
accepted that it yields a poorer approximation of the pressure.
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The 3D MINI element is not very common but it is used for instance in [731]. It is also said to be
LBB stable in [769, p180].

Velocity and pressure nodes for the 3D MINI element, taken from [731]

6.2.8 The quadratic velocity - linear pressure triangle (P2 × P1)

From [827]: “Taylor-Hood elements [877] are characterized by the fact that the pressure is continuous in
the region Ω. A typical example is the quadratic triangle (P2P1 element). In this element the velocity
is approximated by a quadratic polynomial and the pressure by a linear polynomial. One can easily
verify that both approximations are continuous over the element boundaries.” It can be shown, Segal
(1979), that this element is admissible if at least 3 elements are used. The quadrilateral counterpart of
this triangle is the Q2×Q1 element. Reddy and Gartling [769, p179] also report this element to be LBB
stable.

6.2.9 The Crouzeix-Raviart triangle (P+
2 × P−1)

Since the P2 × P−1 pair is not LBB stable [769, p179], it is enhanced by a cubic bubble and is therefore
called P+

2 × P−1.
This element was first introduced in [247]. It is the element used in the MILAMIN code [252]. It

is a seven-node triangle with quadratic velocity shape functions enhanced by a cubic bubble function
and discontinuous linear interpolation for the pressure field [251]. This element is LBB stable and no
additional stabilization techniques are required[314]. The ’+’ in its name stands for the bubble while the
’-’ stands for the discontinuous character of the pressure field: once again, it is P1 over the element, but
discontinuous across element edges.

Remark. Cuvelier et al, 1986 [251] recommend a 6-point or 7-point quadrature rule for this element.

Remark. Segal [827] explains for output purposes (printing, plotting etc.) the discontinuous pressures
are averaged in vertices for all the adjoining elements. See also Fig. 7.3 of [251].

Remark. The simplest Crouzeix-Raviart element is the non-conforming linear triangle with constant
pressure (P1 × P0) [251].

It is worth noting that this element has more degrees of freedom than the Taylor-Hood element for
the same order of accuracy. However, since the bubble can be eliminated, one can design a modified
version of this element.
Check Cuvelier book chapter 8 for modified element

Remark. I have once asked the (main) author of MILAMIN why he chose this element, for example over
the P2×P1. His answer is as follows: ”Elements with continuous pressure are incapable of converging in
the Linf norm for mechanical problems exhibiting pressure jumps such as the inclusion-host setup. During
my MSc and PhD I was focusing on sharp heterogeneities, so this is why I decided to choose P+

2 × P−1.
You will see that it is also easy to invert the pressure mass matrix for such elements, which is really useful
(both for the augmentation and preconditioning).”
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6.2.10 The Rannacher-Turek element - rotated Q1 × P0

p. 722 of [545]

6.2.11 Other elements

• P1P0 example 3.70 in [545]

• P1P1

• Q2P0: Quadratic velocities, constant pressure. The element satisfies the inf-sup condition, but the
constant pressure assumption may require fine discretisation.

• Q2Q2: This element is never used, probably because a) it is unstable, b) it is very costly. There is
one reference to it in [502].

• P2P2

• the MINI quadrilateral element Q+
1 ×Q1.

• Q1P-1 Bilinear velocities, piecewise linear discontinuous polynomial pressure.

6.2.12 A note about incompressibility and standard mixed methods

What follows is nicely explained and demonstrated in John et al [546]. In their example 1.1 they look at
the velocity error of benchmark VJ2 (see Section 7.4.9) which analytical solution is a zero velocity field.
They show that for the MINI, Taylor-Hood and Crouzeix-Raviart triangular elements the velocity error
grows with the magnitude of the rhs. They also make this statement: “ there are important applications,
e.g., natural convection problems, where the pressure is larger than the velocity by orders of magnitude.
In such situations, one cannot expect to compute accurate velocity fields with classical mixed methods,
at least for low order methods. ”

6.3 The penalty approach for viscous flow

In order to impose the incompressibility constraint, two widely used procedures are available, namely the
Lagrange multiplier method and the penalty method [56, 500]. The latter is implemented in elefant,
which allows for the elimination of the pressure variable from the momentum equation (resulting in a
reduction of the matrix size).

Mathematical details on the origin and validity of the penalty approach applied to the Stokes problem
can for instance be found in [251], [768] or [432].

The penalty formulation of the mass conservation equation is based on a relaxation of the incompress-
ibility constraint and writes

~∇ · ~ν +
p

λ
= 0 (236)

where λ is the penalty parameter, that can be interpreted (and has the same dimension) as a bulk
viscosity. It is equivalent to say that the material is weakly compressible. It can be shown that if one
chooses λ to be a sufficiently large number, the continuity equation ~∇ · ~ν = 0 will be approximately
satisfied in the finite element solution. The value of λ is often recommended to be 6 to 7 orders of
magnitude larger than the shear viscosity [283, 503].

Equation (236) can be used to eliminate the pressure in the momentum equation so that the mass
and momentum conservation equations fuse to become :

~∇ · (2ηε̇(~ν)) + λ~∇(~∇ · ~ν) = ρg = 0 (237)

[654] have established the equivalence for incompressible problems between the reduced integration of
the penalty term and a mixed Finite Element approach if the pressure nodes coincide with the integration
points of the reduced rule.

In the end, the elimination of the pressure unknown in the Stokes equations replaces the original
saddle-point Stokes problem [83] by an elliptical problem, which leads to a symmetric positive definite
(SPD) FEM matrix. This is the major benefit of the penalized approach over the full indefinite solver
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with the velocity-pressure variables. Indeed, the SPD character of the matrix lends itself to efficient
solving stragegies and is less memory-demanding since it is sufficient to store only the upper half of the
matrix including the diagonal [409] .
list codes which use this approach

Since the penalty formulation is only valid for incompressible flows, then ε̇ = ε̇d so that the d super-
script is ommitted in what follows. Because the stress tensor is symmetric one can also rewrite it the
following vector format:

σxx
σyy
σzz
σxy
σxz
σyz

 =


−p
−p
−p
0
0
0

+ 2η


ε̇xx
ε̇yy
ε̇zz
ε̇xy
ε̇xz
ε̇yz



= λ


ε̇xx + ε̇yy + ε̇zz
ε̇xx + ε̇yy + ε̇zz
ε̇xx + ε̇yy + ε̇zz

0
0
0

+ 2η


ε̇xx
ε̇yy
ε̇zz
ε̇xy
ε̇xz
ε̇yz



=


λ


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

K

+η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

C


·



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y + ∂v

∂x

∂u
∂z + ∂w

∂x

∂v
∂z + ∂w

∂y


Remember that

∂u

∂x
=

4∑
i=1

∂Ni
∂x

ui
∂v

∂y
=

4∑
i=1

∂Ni
∂y

vi
∂w

∂z
=

4∑
i=1

∂Ni
∂z

wi

and

∂u

∂y
+
∂v

∂x
=

4∑
i=1

∂Ni
∂y

ui +

4∑
i=1

∂Ni
∂x

vi

∂u

∂z
+
∂w

∂x
=

4∑
i=1

∂Ni
∂z

ui +

4∑
i=1

∂Ni
∂x

wi

∂v

∂z
+
∂w

∂y
=

4∑
i=1

∂Ni
∂z

vi +

4∑
i=1

∂Ni
∂y

wi
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so that



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y + ∂v

∂x

∂u
∂z + ∂w

∂x

∂v
∂z + ∂w

∂y



=



∂N1

∂x 0 0 ∂N2

∂x 0 0 ∂N3

∂x 0 0 . . . ∂N4

∂x 0 0

0 ∂N1

∂y 0 0 ∂N2

∂y 0 0 ∂N3

∂y 0 . . . 0 ∂N4

∂y 0

0 0 ∂N1

∂z 0 0 ∂N2

∂z 0 0 ∂N3

∂z . . . 0 0 ∂N4

∂z

∂N1

∂y
∂N1

∂x 0 ∂N2

∂y
∂N2

∂x 0 ∂N3

∂y
∂N3

∂x 0 . . . ∂N4

∂y
∂N4

∂x 0

∂N1

∂z 0 ∂N1

∂x
∂N2

∂z 0 ∂N2

∂x
∂N3

∂z 0 ∂N3

∂x . . . ∂N4

∂z 0 ∂N4

∂x

0 ∂N1

∂z
∂N1

∂y 0 ∂N2

∂z
∂N2

∂y 0 ∂N3

∂z
∂N3

∂y . . . 0 ∂N4

∂z
∂N4

∂y


︸ ︷︷ ︸

B(6×24)

·



u1
v1
w1
u2
v2
w2
u3
v3
w3
. . .
u8
v8
w8


︸ ︷︷ ︸
~V (24×1)

Finally,

~σ =


σxx
σyy
σzz
σxy
σxz
σyz

 = (λK + ηC) ·B · ~V

We will now establish the weak form of the momentum conservation equation. We start again from

~∇ · σ +~b = ~0

For the Ni’s ’regular enough’, we can write:∫
Ωe

Ni~∇ · σdΩ +

∫
Ωe

Ni~b dΩ = 0

We can integrate by parts and drop the surface term12:∫
Ωe

~∇Ni · σ dΩ =

∫
Ωe

Ni~b dΩ

or,

∫
Ωe


∂Ni
∂x 0 0 ∂Ni

∂y
∂Ni
∂z 0

0 ∂Ni
∂y 0 ∂Ni

∂x 0 ∂Ni
∂z

0 0 ∂Ni
∂z 0 ∂Ni

∂x
∂Ni
∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

Ni~b dΩ

12We will come back to this at a later stage
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Let i = 1, 2, 3, 4, . . . 8 and stack the resulting eight equations on top of one another.

∫
Ωe


∂Ni
∂x 0 0 ∂Ni

∂y
∂Ni
∂z 0

0 ∂Ni
∂y 0 ∂Ni

∂x 0 ∂Ni
∂z

0 0 ∂Ni
∂z 0 ∂Ni

∂x
∂Ni
∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

N1

 bx
by
bz

 dΩ

∫
Ωe


∂Ni
∂x 0 0 ∂Ni

∂y
∂Ni
∂z 0

0 ∂Ni
∂y 0 ∂Ni

∂x 0 ∂Ni
∂z

0 0 ∂Ni
∂z 0 ∂Ni

∂x
∂Ni
∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

N2

 bx
by
bz

 dΩ

. . .

∫
Ωe


∂N8

∂x 0 0 ∂N8

∂y
∂N8

∂z 0

0 ∂N8

∂y 0 ∂N8

∂x 0 ∂N8

∂z

0 0 ∂N8

∂z 0 ∂N8

∂x
∂N8

∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

N8

 bx
by
bz

 dΩ (238)

We easily recognize BT inside the integrals! Let us define

~NT
b = (N1bx, N1by, N1bz...N8bx, N8by, N8bz)

then we can write

∫
Ωe

BT ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

~NbdΩ

and finally: ∫
Ωe

BT · [λK + ηC] ·B · ~V dΩ =

∫
Ωe

~NbdΩ

Since ~V contains is the vector of unknowns (i.e. the velocities at the corners), it does not depend on the
x or y coordinates so it can be taking outside of the integral:(∫

Ωe

BT · [λK + ηC] ·B dΩ

)
︸ ︷︷ ︸

Ael(24×24)

· ~V︸︷︷︸
(24×1)

=

∫
Ωe

~NbdΩ︸ ︷︷ ︸
~Bel(24×1)

or, 
(∫

Ωe

λBT ·K ·B dΩ

)
︸ ︷︷ ︸

Aλ
el(24×24)

+

(∫
Ωe

ηBT ·C ·B dΩ

)
︸ ︷︷ ︸

Aη
el(24×24)

 · ~V︸︷︷︸
(24×1)

=

∫
Ωe

~NbdΩ︸ ︷︷ ︸
~Bel(24×1)

reduced integration

reduced integration [503]
write about 3D to 2D
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6.4 The mixed FEM for viscous flow

6.4.1 in three dimensions

In what follows the flow is assumed to be incompressible, isoviscous and isothermal.
The methodology to derive the discretised equations of the mixed system is quite similar to the one

we have used in the case of the penalty formulation. The big difference comes from the fact that we are
now solving for both velocity and pressure at the same time, and that we therefore must solve the mass
and momentum conservation equations together. As before, velocity inside an element is given by

~νh(~r) =

mv∑
i=1

Nν
i (~r) ~νi (239)

where Nv
i are the polynomial basis functions for the velocity, and the summation runs over the mv nodes

composing the element. A similar expression is used for pressure:

ph(~r) =

mp∑
i=1

Np
i (~r) pi (240)

Note that the velocity is a vector of size while pressure (and temperature) is a scalar. There are then ndofv
velocity degrees of freedom per node and ndofp pressure degrees of freedom. It is also very important
to remember that the numbers of velocity nodes and pressure nodes for a given element are more often
than not different and that velocity and pressure nodes need not be colocated. Indeed, unless co-called
’stabilised elements’ are used, we have mv > mp, which means that the polynomial order of the velocity
field is higher than the polynomial order of the pressure field (usually by value 1).
insert here link(s) to manual and literature

Other notations are sometimes used for Eqs.(239) and (240):

uh(~r) = ~Nν · ~u vh(~r) = ~Nν · ~v wh(~r) = ~Nν · ~w ph(~r) = ~Np · ~p (241)

where ~ν = (u, v, w) and ~Nν is the vector containing all basis functions evaluated at location ~r:

~Nv =
(
Nν

1 (~r), Nν
2 (~r), Nν

3 (~r), . . . Nν
mv (~r)

)
(242)

~Np =
(
Np

1 (~r), Np
2 (~r), Np

3 (~r), . . . Np
mp(~r)

)
(243)

and with

~u = (u1, u2, u3, . . . umv ) (244)

~v = (v1, v2, v3, . . . vmv ) (245)

~w = (w1, w2, w3, . . . wmv ) (246)

~p =
(
p1, p2, p3, . . . pmp

)
(247)

We will now establish the weak form of the momentum conservation equation. We start again from

~∇ · σ +~b = ~0 (248)

~∇ · ~v = 0 (249)

For the Nν
i ’s and Np

i ’regular enough’, we can write:∫
Ωe

Nν
i
~∇ · σdΩ +

∫
Ωe

Nν
i
~b dΩ = ~0 (250)∫

Ωe

Np
i
~∇ · ~vdΩ = 0 (251)

We can integrate by parts and drop the surface term13:∫
Ωe

~∇Nν
i · σdΩ =

∫
Ωe

Nν
i
~bdΩ (252)∫

Ωe

Np
i
~∇ · ~vdΩ = 0 (253)

13We will come back to this at a later stage
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or,

∫
Ωe


∂Nν

i

∂x 0 0
∂Nν

i

∂y
∂Nν

i

∂z 0

0
∂Nν

i

∂y 0
∂Nν

i

∂x 0
∂Nν

i

∂z

0 0
∂Nν

i

∂z 0
∂Nν

i

∂x
∂Nν

i

∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

Nν
i
~b dΩ (254)

The above equation can ultimately be written:

∫
Ωe

BT ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

~NbdΩ (255)

We have previously established that the strain rate vector ~̇ε is:

~̇ε =



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y + ∂v

∂x

∂u
∂z + ∂w

∂x

∂v
∂z + ∂w

∂y



=



∑
i

∂Nν
i

∂x ui

∑
i

∂Nν
i

∂y vi

∑
i

∂Nν
i

∂z wi

∑
i

(
∂Nν

i

∂y ui+
∂Nν

i

∂x vi)

∑
i

(
∂Nν

i

∂z ui+
∂Nν

i

∂x wi)

∑
i

(
∂Nν

i

∂z vi+
∂Nν

i

∂y wi)



=



∂Nν
1

∂x 0 0 · · · ∂Nν
mv

∂x 0 0

0
∂Nν

1

∂y 0 · · · 0
∂Nν

mv

∂y 0

0 0
∂Nν

1

∂z · · · 0 0
∂Nν

mv

∂z

∂Nν
1

∂y
∂Nν

1

∂x 0 · · · ∂Nν
mv

∂x

∂Nν
mv

∂x 0

∂Nν
1

∂z 0
∂Nν

1

∂x · · · ∂Nν
mv

∂z 0
∂Nν

mv

∂x

0
∂Nν

1

∂z
∂Nν

1

∂y · · · 0
∂Nν

mv

∂z

∂Nν
mv

∂y


︸ ︷︷ ︸

B

·



u1

v1

w1

u2

v2

w2

u3

v3

. . .
umv
vmv
wmv


︸ ︷︷ ︸

~V

(256)

or, ~̇ε = B · ~V where B is the gradient matrix and ~V is the vector of all vector degrees of freedom for the
element. The matrix B is then of size 3×mv × ndim and the vector ~V is mv ∗ ndof long. we have

σxx = −p+ 2ηε̇dxx (257)

σyy = −p+ 2ηε̇dyy (258)

σzz = −p+ 2ηε̇dzz (259)

σxy = 2ηε̇dxy (260)

σxz = 2ηε̇dxz (261)

σyz = 2ηε̇dyz (262)

Since we here only consider incompressible flow, we have ε̇d = ε̇ so

~σ = −


1
1
1
0
0
0

 p+C · ~̇ε = −


1
1
1
0
0
0

 ~Np · ~P +C ·B · ~V (263)
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with

C = η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ~̇ε =


ε̇xx
ε̇yy
ε̇zz

2ε̇xy
2ε̇xz
2ε̇yz

 (264)

Let us define matrix Np of size 6×mp:

Np =


1
1
1
0
0
0

 ~Np =



~Np

~Np

~Np

0
0
0

 (265)

so that
~σ = −Np · ~P +C ·B · ~V (266)

finally ∫
Ωe

BT · [−Np · ~P +C ·B · ~V ] dΩ =

∫
Ωe

Nb dΩ (267)

or, (
−
∫

Ωe

BT ·Np dΩ

)
︸ ︷︷ ︸

G

·~P +

(∫
Ωe

BT ·C ·B dΩ

)
︸ ︷︷ ︸

K

·~V =

∫
Ωe

~Nb dΩ︸ ︷︷ ︸
~f

(268)

where the matrix K is of size (mv ∗ndofv×mv ∗ndofv), and matrix G is of size (mv ∗ndofv×mp ∗ndofp).
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Turning now to the mass conservation equation:

~0 =

∫
Ωe

~Np~∇ · ~v dΩ

=

∫
Ωe

~Np
mv∑
i=1

(
∂Nν

i

∂x
ui +

∂Nν
i

∂y
vi +

∂Nν
i

∂z
wi

)
dΩ

=

∫
Ωe



Np
1

(
mv∑
i=1

∂Nν
i

∂x ui +
mv∑
i=1

∂Nν
i

∂y vi +
mv∑
i=1

∂Nν
i

∂z wi

)
Np

2

(
mv∑
i=1

∂Nν
i

∂x ui +
mv∑
i=1

∂Nν
i

∂y vi +
mv∑
i=1

∂Nν
i

∂z wi

)
Np

3

(
mv∑
i=1

∂Nν
i

∂x ui +
mv∑
i=1

∂Nν
i

∂y vi +
mv∑
i=1

∂Nν
i

∂z wi

)
. . .

Np
mp

(
mv∑
i=1

∂Nν
i

∂x ui +
mv∑
i=1

∂Nν
i

∂y vi +
mv∑
i=1

∂Nν
i

∂z wi

)


dΩ

=

∫
Ωe



Np
1 Np

1 Np
1 0 0 0

Np
2 Np

2 Np
2 0 0 0

Np
3 Np

3 Np
3 0 0 0

...
...

...
...

...
...

Np
mp Np

mp Np
mp 0 0 0


·



∑
i

∂Nν
i

∂x ui

∑
i

∂Nν
i

∂y vi

∑
i

∂Nν
i

∂z wi

∑
i

(
∂Nν

i

∂y ui+
∂Nν

i

∂x vi)

∑
i

(
∂Nν

i

∂z ui+
∂Nν

i

∂x wi)

∑
i

(
∂Nν

i

∂z vi+
∂Nν

i

∂y wi)



dΩ

=

∫
Ωe


Np

1 Np
1 Np

1 0 0 0
Np

2 Np
2 Np

2 0 0 0
Np

3 Np
3 Np

3 0 0 0
...

...
...

...
...

...
Np
mp Np

mp Np
mp 0 0 0


︸ ︷︷ ︸

Np

·~̇ε dΩ

=

(∫
Np ·B dΩ

)
· ~V

= −GTe · ~V (269)

Note that it is common to actually start from −~∇ · ~v = 0 (see Eq.(3) in [670]) so as to arrive at

GTe · ~V = ~0
Ultimately we obtain the following system for each element:(

Ke Ge
−GTe 0

)
·
(

~V
~P

)
=

(
~fe
0

)
Such a matrix is then generated for each element and then must me assembled into the global F.E. matrix.
Note that in this case the elemental Stokes matrix is antisymmetric. One can also define the following
symmetric modified Stokes matrix:(

Ke Ge
GTe 0

)
·
(

~V
~P

)
=

(
~fe
0

)
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This matrix is symmetric, but indefinite. It is non-singular if ker(GT ) = 0, which is the case if the
compatibility condition holds.

CHECK: Matrix K is the viscosity matrix. Its size is (ndofv ∗ Nv) × (ndofv ∗ Nv) where ndofv is
the number of velocity degrees of freedom per node (typically 1,2 or 3) and Nv is the number of velocity
nodes. The size of matrix G is (ndofv ∗Nv)× (ndofp ∗Np) where ndofp(= 1) is the number of velocity
degrees of freedom per node and Np is the number of pressure nodes. Conversely, the size of matrix GT
is (ndofp ∗Np)× (ndofv ∗Nv). The size of the global FE matrix is N = ndofv ∗Nv + ndofp ∗Np Note
that matrix K is analogous to a discrete Laplacian operator, matrix G to a discrete gradient operator,
and matrix GT to a discrete divergence operator.

On the physical dimensions of the Stokes matrix blocks We start from the Stokes equations:

−~∇p+ ~∇ · (2ηε̇) + ρg = 0 (270)

~∇ · ~ν = 0 (271)

The dimensions of the terms in the first equation are: ML−2T−2. The blocks K and G stem from
the weak form which obtained by multiplying the strong form equations by the (dimensionless) basis
functions and integrating over the domain, so that it follows that

[K · ~V ] = [G · ~P ] = [~f ] = ML−2T−2L3 = MLT−2

We can then easily deduce:
[K] = MT−1 [G] = L2

On elemental level mass balance. Note that in what is above no assumption has been made about
whether the pressure basis functions are continuous or discontinuous from one element to another.

Indeed, as mentioned in [425], since the weak formulation of the momentum equation involves inte-

gration by parts of ~∇p, the resulting weak form contains no derivatives of pressure. This introduces the
possibility of approximating it by functions (piecewise polynomials, of course) that are not C0-continuous,
and indeed this has been done and is quite popular/useful.

It is then worth noting that only discontinuous pressure elements assure an element-level mass balance
[425]: if for instance Np

i is piecewise-constant on element e (of value 1), the elemental weak form of the
mass conservervation equation is∫

Ωe

Np
i
~∇ · ~ν =

∫
Ωe

~∇ · ~ν =

∫
Γe

~n · ~ν = 0

One potentially unwelcome consequence of using discontinuous pressure elements is that they do not
possess uniquely defined pressure on the element boundaries; they are dual valued there, and often
multi-valued at certain velocity nodes.

On the C matrix The relationship between deviatoric stress and deviatoric strain rate tensor is

τ = 2ηε̇d (272)

= 2η

(
ε̇− 1

3
(~∇ · ~v)1

)
(273)

= 2η

 ε̇xx ε̇xy ε̇xz
ε̇yx ε̇yy ε̇yz
ε̇zx ε̇zy ε̇zz

− 1

3
(ε̇xx + ε̇yy + ε̇zz)

 1 0 0
0 1 0
0 0 1

 (274)

=
2

3
η

 2ε̇xx − ε̇yy − ε̇zz 3ε̇xy 3ε̇xz
3ε̇yx −ε̇yy + 2ε̇yy − ε̇yy 3ε̇yz
3ε̇zx 3ε̇zy −ε̇xx − ε̇yy2ε̇zz

 (275)
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so that

~τ =
2

3
η


2ε̇xx − ε̇yy − ε̇zz
−ε̇yy + 2ε̇yy − ε̇yy
−ε̇xx − ε̇yy + 2ε̇zz

3ε̇xy
3ε̇xz
3ε̇yz

 =
η

3


4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


︸ ︷︷ ︸

Cd

·


ε̇xx
ε̇yy
ε̇zz

2ε̇xy
2ε̇xz
2ε̇yz

 = Cd · ~̇ε (276)

In two dimensions, we have

~τ =
1

3
η

 4 −2 0
−2 4 0
0 0 3


︸ ︷︷ ︸

Cd

·

In the case where we assume incompressible flow from the beginning, i.e. ε̇ = ε̇d, then

~τ = η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

C

·


ε̇xx
ε̇yy
ε̇zz

2ε̇xy
2ε̇xz
2ε̇yz

 = C · ~̇ε (277)

Two slightly different formulations The momentum conservation equation can be written as follows:

~∇ · (2η~̇ε)− ~∇p+~b = ~0

When the viscosity η is constant this equation becomes

η∆~v − ~∇p+~b = ~0

In this case the matrix B takes a different form [283, Eq. 6.24] and this can have consequences for the
Neumann boundary conditions.

On the ’forgotten’ surface terms

6.4.2 Going from 3D to 2D

The world is three-dimensional. However, for many different reasons one may wish to solve problems
which are two-dimensional.

Following ASPECT manual, we will think of two-dimensional models in the following way:

• We assume that the domain we want to solve on is a two-dimensional cross section (in the x − y
plane) that extends infinitely far in both negative and positive z direction.

• We assume that the velocity is zero in the z direction and that all variables have no variation in
the z direction.

As a consequence, two-dimensional models are three-dimensional ones in which the z component of the
velocity is zero and so are all z derivatives. This allows to reduce the momentum conservation equations
from 3 equations to 2 equations. However, contrarily to what is often seen, the 3D definition of the
deviatoric strain rate remains, i.e. in other words:

ε̇d = ε̇− 1

3
(~∇ · ~v)1 (278)
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and not 1/2. In light of all this, the full strain rate tensor and the deviatoric strain rate tensor in 2D are
given by:

ε =

 ε̇xx ε̇xy ε̇xz
ε̇yx ε̇yy ε̇yz
ε̇zx ε̇zy ε̇zz

 =


∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
0

1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y 0

0 0 0

 (279)

ε̇d =
1

3


2∂u∂x −

∂v
∂y

1
2

(
∂u
∂y + ∂v

∂x

)
0

1
2

(
∂u
∂y + ∂v

∂x

)
−∂u∂x + 2∂v∂y 0

0 0 −∂u∂x −
∂v
∂y

 (280)

Although the bottom right term may be surprising, it is of no consequence when this expression of the
deviatoric strain rate is used in the Stokes equation:

~∇ · 2ηε̇d =

FINISH!
In two dimensions the velocity is then ~ν = (u, v) and the FEM building blocks and matrices are

simply:

~̇ε =


ε̇xx

ε̇yy

2ε̇xy

 =


∂u
∂x

∂v
∂y

∂u
∂y + ∂v

∂x

 =



∂Nν
1

∂x 0
∂Nν

2

∂x 0
∂Nν

3

∂x 0 . . .
∂Nν

mv

∂x 0

0
∂Nν

1

∂y 0
∂Nν

2

∂y 0
∂Nν

3

∂y . . . 0
∂Nν

mv

∂x

∂Nν
1

∂y
∂Nν

1

∂x
∂Nν

2

∂y
∂Nν

2

∂x
∂Nν

3

∂y
∂Nν

3

∂x . . .
∂Nν

mv

∂y

∂Nν
mv

∂x


︸ ︷︷ ︸

B

·



u1

v1

u2

v2

u3

v3

. . .
umv
vmv


︸ ︷︷ ︸

~V

(281)
we have

σxx = −p+ 2ηε̇xx (282)

σyy = −p+ 2ηε̇yy (283)

σxy = +2ηε̇xy (284)

so

~σ = −

 1
1
0

 p+C · ~̇ε = −

 1
1
0

 ~Np · ~P +C ·B · ~V (285)

with

C = η

 2 0 0
0 2 0
0 0 1

 or C =
η

3

 4 −2 0
−2 4 0
0 0 3

 (286)

check the right C
Finally the matrix Np is of size 3×mp:

Np =

 1
1
0

 ~Np =

 ~Np

~Np

0

 (287)
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6.5 Solving the elastic equations

6.6 A quick tour of similar literature

• Treatise on Geophysics, Volume 7, Edited by D. Bercovici and G. Schubert: ”Numerical Methods
for Mantle Convection”, by S.J. Zhong, D.A. Yuen, L.N. Moresi and M.G. Knepley. Note that it
is a revision of the previous edition chapter by S.J. Zhong, D.A. Yuen and L.N. Moresi, Volume 7,
pp. 227-252, 2007.

• Computational Science I, Lecture Notes for CAAM 519, M.G. Knepley, 2017. https://cse.

buffalo.edu/~knepley/classes/caam519/

• Numerical Modeling of Earth Systems - An introduction to computational methods with focus on-
solid Earth applications of continuum mechanics, Th.W. Becker and B.J.P. Kaus, 2018. http:

//www-udc.ig.utexas.edu/external/becker/Geodynamics557.pdf

• Myths and Methods in Modeling, M. Spiegelman, 2000. https://earth.usc.edu/~becker/teaching/
557/reading/spiegelman_mmm.pdf

6.7 The case against the Q1 × P0 element

What follows was written by Dave May and sent to me by email in May 2014. It captures so well the
problem at hand that I have decided to reproduce it hereunder.

In the case of the incompressible Stokes equations, we would like to solve(
K G
GT 0

)(
~V
~P

)
=

(
~f
0

)
with an iterative method which is algorithmically scalable and optimal. Scalable here would mean that
the number of iterations doesn’t grow as the mesh is refined. Optimal means the solution time varies
linearly with the total number of unknowns. When using a stable element, If we right precondition the
above system with

P =

(
K G
0 −S

)
then convergence will occur in 2 iterations, however this requires an exact solve on K and on S =
GT · K−1 · G (S is the pressure schur complement). In practice, people relax the ideal ”two iteration”

scenario by first replacing S via S∗ =
∫
η−1 ~NT ~N dv (e.g. the pressure mass matrix scaled by the local

inverse of viscosity).

P ∗ =

(
K G
0 −S∗

)
Using P ∗, we obtain iteration counts which are larger than 2, but likely less than 10 - however, the

number of iterations is independent of the mesh size. Replacing the exact K solve in P ∗ again increases
the iterations required to solve Stokes, but it’s still independent of the number of elements. When you
have this behaviour, we say the preconditioner (P ∗) is spectrally equivalent to the operator (which here
is Stokes)

The problem with Q1 × P0 is that there are no approximations for S which can be generated that
ensure a spectrally equivalent P ∗. Thus, as you refine the mesh using Q1 × P0 elements, the iteration
count ALWAYS grows. I worked on this problem during my thesis, making some improvements to the
situation - however the problem still remains, it cannot be completely fixed and stems entirely from using
unstable elements.

Citcom solvers works like this:

1. Solve S · P = ~f ′ for pressure

2. Solve K · V = ~f −G · P for velocity
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To obtain a scalable method, we need the number of iterations performed in (1) and (2) to be independent
of the mesh. This means we need a spectrally equivalent preconditioner for S and K. Thus, we have the
same issue as when you iterate on the full stokes system.

When we don’t have a scalable method, it means increasing the resolution requires more cpu time
in a manner which cannot be predicted. The increase in iteration counts as the mesh is refined can be
dramatic.

If we can bound the number of iterations, AND ensure that the cost per iteration is linearly related
to the number of unknowns, then we have a good method which can run on any mesh resolution with a
predictable cpu time. Obtaining scalable and optimal preconditioners for K is somewhat easier. Multi-
grid will provide us with this.

The reason citcom doesn’t run with 4003 elements is exactly due to this issue. I’ve added petsc
support in citcom (when i was young and naive) - but the root cause of the non-scalable solve is directly
caused by the element choice. Note that many of the high resolution citcom jobs are single time step
calculations— there is a reason for that.

For many lithosphere dynamics problems, we need a reasonable resolution (at least 2003 and realisti-
cally 4003 to 8003). Given the increase in cost which occurs when using Q1P0, this is not achievable, as
the citcom code has demonstrated. Note that citcom is 20 years old now and for its time, it was great,
but we know much more now and we know how to improve on it. As a result of this realization, I dumped
all my old Q1P0 codes (and Q1Q1 codes, but for other reasons) in the trash and started from scratch.
The only way to make something like 8003 tractable is via iterative, scalable and optimal methods and
that mandates stable elements. I can actually run at something like 10003 (nodal points) these days
because of such design choices.
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7 Additional techniques and features

7.1 Dealing with a free surface

TODO

7.2 Convergence criterion for nonlinear iterations

TODO
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7.3 The SUPG formulation for the energy equation

As abondantly documented in the literature advection needs to be stabilised as it otherwise showcases
non-negligible under- and overshoots. A standard approach is the Streamline Upwind Petrov Galerkin
(SUPG) method.

[148]

7.3.1 Linear elements

When using linear elements, its implementation is rather trivial, as shown in the DOUAR paper [135] or
the FANTOM paper [886]. The advection matrix is simply modified and computed as follows:

(Ke
a)SUPG =

∫ xk+1

xk

(N?)T ρCp~ν ·Bdx with N? = N + τ~ν ·B

Note that we can also write

(Ke
a)SUPG =

∫ xk+1

xk

NT ρCp~ν ·Bdx+

∫ xk+1

xk

τ(~ν ·B)T ρCp(~ν ·B)dx

and we see that the SUPG method introduces and additional term that is akin to a diffusion term in the
direction of the flow. This can be seen by looking at the advection matrix a regular grid of 1D elements
of size h:

(Ke
a)SUPG = Ke

a + ρCp
τu2

h

 1 −1

−1 1


The additional matrix has the same structure as the 1D diffusion matrix matrix in 5.1.

The parameter τ is chosen as follows:

τ = γ
h

ν
(288)

where γ is a user chosen parameter (see Appendix A of [886]).
A typical test case for testing a advection scheme is the step advection benchmark ( see for instance

[283]). At t = 0, a field T (x) is prescribed in a 1D domain of unit length. For x ≤ 1/4 we have T (x) = 1
and T (x) = 0 everywhere else as shown on the following figure:

The prescribed velocity is ν = 1, 50 elements are used and 250 time steps are carried out with δt =
0.1h/ν = 0.002. As discussed in [886], using Equation 288, one arrives to γ = 0.045, which leads to a
desired removal of the oscillations through a small amount of numerical diffusion. Braun [132] argues for
a constant γ = 1/

√
15 = 0.258 (after [501]), which effect is also shown in the figure above. This value is

arguably too large and introduces indesirable diffusion.
Another classic example of advection testing is a 2D problem where (for example) a cylinder, a

Gaussian and a cone are prescribed and advected with a velocity field (see for instance [283]).
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After a 2π rotation and in the absence of stabilisation we see that the temperature field showcases clearly visible

ripples.

Remark. Note that Aspect originally did not rely on the SUPG formulation to stabilise the advection(-
diffusion) equations[584]. It instead relied on the Entropy Viscosity formulation [430]. It is only during
the 6th Hackathon in May 2019 that the SUPG was introduced on the code. Note that the Aspect
implementation is based on the deal.II step 6314.

14https://www.dealii.org/developer/doxygen/deal.II/step_63.html
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7.4 The method of manufactured solutions

The method of manufactured solutions is a relatively simple way of carrying out code verification. In
essence, one postulates a solution for the PDE at hand (as well as the proper boundary conditions),
inserts it in the PDE and computes the corresponding source term. The same source term and boundary
conditions will then be used in a numerical simulation so that the computed solution can be compared
with the (postulated) true analytical solution.

Examples of this approach are to be found in [283, 195, 107].

7.4.1 Analytical benchmark I - ”DH”

Taken from [283]. We consider a two-dimensional problem in the square domain Ω = [0, 1] × [0, 1],
which possesses a closed-form analytical solution. The problem consists of determining the velocity field
~ν = (u, v) and the pressure p such that

η∆~ν− ~∇p+~b = ~0 in Ω (289)

~∇ · ~v = 0 in Ω (290)

~v = ~0 on ΓD (291)

where the fluid viscosity is taken as η = 1. The components of the body force ~b are prescribed as

bx = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2

+(−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3

by = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2

+(4− 24y + 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4

With this prescribed body force, the exact solution is

u(x, y) = x2(1− x)2(2y − 6y2 + 4y3)

v(x, y) = −y2(1− y)2(2x− 6x2 + 4x3)

p(x, y) = x(1− x)− 1/6

Note that the pressure obeys
∫

Ω
p dΩ = 0. One can turn to the spatial derivatives of the fields:

ε̇xx =
∂u

∂x
= (2x− 6x2 + 4x3)(2y − 6y2 + 4y3) (292)

ε̇yy =
∂v

∂y
= −(2x− 6x2 + 4x3)(2y − 6y2 + 4y3) (293)

ε̇xy =
1

2

(
∂u

∂y
+
∂v

∂x

)
= =

1

2

(
x2(1− x)2(2− 12y + 12y2)− y2(1− y)2(2− 12x+ 12x2)

)
(294)

with of course ~∇ · ~ν = 0 and

∂p

∂x
= 1− 2x (295)

∂p

∂y
= 0 (296)

The velocity and pressure fields look like:

http://ww2.lacan.upc.edu/huerta/exercises/Incompressible/Incompressible Ex1.htm
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As shown in [283], If the LBB condition is not satisfied, spurious oscillations spoil the pressure
approximation. Figures below show results obtained with a mesh of 20x20 Q1P0 (left) and P1P1 (right)
elements:

]]
http://ww2.lacan.upc.edu/huerta/exercises/Incompressible/Incompressible Ex1.htm

Taking into account that the proposed problem has got analytical solution, it is easy to analyze
convergence of the different pairs of elements:

http://ww2.lacan.upc.edu/huerta/exercises/Incompressible/Incompressible Ex1.htm

One can also compute the stress components:

σxx = 2x2(2x− 2)(4y3 − 6y2 + 2y) + 4x(−x+ 1)2 ∗ (4y3 − 6y2 + 2y)− x(−x+ 1) + 1/6 (297)

σxy = x2(−x+ 1)2 ∗ (12y2 − 12y + 2)− y2(−y + 1)2 ∗ (12x2 − 12x+ 2) (298)

σyy = −x(−x+ 1)− 2y2(2y − 2)(4x3 − 6x2 + 2x)− 4y(−y + 1)2(4x3 − 6x2 + 2x) + 1/6 (299)

All the necessary functions to do this benchmark are in mms/dh.py:

# func t i ons f o r the Donea & Huerta benchmark ( dh )

de f u th (x , y ) :
r e turn x∗∗2∗(1.−x ) ∗∗2∗(2∗y−6∗y∗∗2+4∗y∗∗3)

de f v th (x , y ) :
r e turn −y∗∗2∗(1.−y ) ∗∗2∗(2∗x−6∗x∗∗2+4∗x∗∗3)

de f p th (x , y ) :
r e turn x∗(1−x ) −1./6.

de f dpdx th (x , y ) :
r e turn 1.−2.∗x
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de f dpdy th (x , y ) :
r e turn 0 .

de f exx th (x , y ) :
r e turn x∗∗2∗(2∗x−2)∗(4∗y∗∗3−6∗y∗∗2+2∗y )+2∗x∗(−x+1)∗∗2∗(4∗y∗∗3−6∗y∗∗2+2∗y )

de f exy th (x , y ) :
r e turn ( x∗∗2∗(−x+1)∗∗2∗(12∗y∗∗2−12∗y+2)−y∗∗2∗(−y+1)∗∗2∗(12∗x∗∗2−12∗x+2) ) /2

de f eyy th (x , y ) :
r e turn −exx th (x , y )

de f bx (x , y ) :
r e turn ((12 .−24.∗y ) ∗x∗∗4+(−24.+48.∗y ) ∗x∗x∗x +

(−48.∗y+72.∗y∗y−48.∗y∗y∗y+12.)∗x∗x +
(−2.+24.∗y−72.∗y∗y+48.∗y∗y∗y ) ∗x +
1.−4.∗y+12.∗y∗y−8.∗y∗y∗y )

de f by (x , y ) :
r e turn ((8 . −48 .∗y+48.∗y∗y ) ∗x∗x∗x+

(−12.+72.∗y−72.∗y∗y ) ∗x∗x+
(4.−24.∗y+48.∗y∗y−48.∗y∗y∗y+24.∗y∗∗4) ∗x −
12 .∗ y∗y+24.∗y∗y∗y−12.∗y∗∗4)

7.4.2 Analytical benchmark II - ”DB2D”

Taken from [281, 107]. It is for a unit square with ν = µ/ρ = 1 and the smooth exact solution is

u(x, y) = x+ x2 − 2xy + x3 − 3xy2 + x2y (300)

v(x, y) = −y − 2xy + y2 − 3x2y + y3 − xy2 (301)

p(x, y) = xy + x+ y + x3y2 − 4/3 (302)

Note that the pressure obeys
∫

Ω
p dΩ = 0

bx = −(1 + y − 3x2y2) (303)

by = −(1− 3x− 2x3y) (304)

7.4.3 Analytical benchmark III - ”DB3D”

This benchmark begins by postulating a polynomial solution to the 3D Stokes equation [281]:

v =

 x+ x2 + xy + x3y
y + xy + y2 + x2y2

−2z − 3xz − 3yz − 5x2yz

 (305)

and
p = xyz + x3y3z − 5/32 (306)

While it is then trivial to verify that this velocity field is divergence-free, the corresponding body force
of the Stokes equation can be computed by inserting this solution into the momentum equation with a
given viscosity µ (constant or position/velocity/strain rate dependent). The domain is a unit cube and
velocity boundary conditions simply use Eq. (523). Note that the pressure fulfills∫

Ω

p(~r)dΩ = 0.
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Constant viscosity In this case, the right hand side writes:

f = −∇p+ µ

 2 + 6xy
2 + 2x2 + 2y2

−10yz


= −

 yz + 3x2y3z
xz + 3x3y2z
xy + x3y3

+ µ

 2 + 6xy
2 + 2x2 + 2y2

−10yz


We can compute the components of the strainrate tensor:

ε̇xx = 1 + 2x+ y + 3x2y (307)

ε̇yy = 1 + x+ 2y + 2x2y (308)

ε̇zz = −2− 3x− 3y − 5x2y (309)

ε̇xy =
1

2
(x+ y + 2xy2 + x3) (310)

ε̇xz =
1

2
(−3z − 10xyz) (311)

ε̇yz =
1

2
(−3z − 5x2z) (312)

Note that we of course have ε̇xx + ε̇yy + ε̇zz = 0.

Variable viscosity In this case, the right hand side is obtained through

f = −∇p+ µ

 2 + 6xy
2 + 2x2 + 2y2

−10yz


+

 2ε̇xx
2ε̇xy
2ε̇xz

 ∂µ

∂x
+

 2ε̇xy
2ε̇yy
2ε̇yz

 ∂µ

∂y
+

 2ε̇xz
2ε̇yz
2ε̇zz

 ∂µ

∂z
(313)

The viscosity can be chosen to be a smooth varying function:

µ = exp(1− β(x(1− x) + y(1− y) + z(1− z))) (314)

Choosing β = 0 yields a constant velocity µ = e1 (and greatly simplifies the right-hand side). One can
easily show that the ratio of viscosities µ? in the system follows µ? = exp(−3β/4) so that choosing β = 10
yields µ? ' 1808 and β = 20 yields µ? ' 3.269× 106. In this case

∂µ

∂x
= −4β(1− 2x)µ(x, y, z) (315)

∂µ

∂y
= −4β(1− 2y)µ(x, y, z) (316)

∂µ

∂z
= −4β(1− 2z)µ(x, y, z) (317)

[195] has carried out this benchmark for β = 4, i.e.:

µ(x, y, z) = exp(1− 4(x(1− x) + y(1− y) + z(1− z)))

In a unit cube, this yields a variable viscosity such that 0.1353 < µ < 2.7182, i.e. a ratio of approx. 20
within the domain. We then have:

∂µ

∂x
= −4(1− 2x)µ(x, y, z) (318)

∂µ

∂y
= −4(1− 2y)µ(x, y, z) (319)

∂µ

∂z
= −4(1− 2z)µ(x, y, z) (320)

sort out mess wrt Eq 26 of busa13
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7.4.4 Analytical benchmark IV - ”Bercovier & Engelman”

From [86]. The two-dimensional domain is a unit square. The body forces are:

fx = 128[x2(x− 1)212(2y − 1) + 2(y − 1)(2y − 1)y(12x2 − 12x+ 2)]

fy = 128[y2(y − 1)212(2x− 1) + 2(x− 1)(2x− 1)y(12y2 − 12y + 2)]

(321)

The solution is

u = −256x2(x− 1)2y(y − 1)(2y − 1)

v = 256x2(y − 1)2x(x− 1)(2x− 1)

p = 0 (322)

Another choice:

fx = 128[x2(x− 1)212(2y − 1) + 2(y − 1)(2y − 1)y(12x2 − 12x+ 2)] + y − 1/2

fy = 128[y2(y − 1)212(2x− 1) + 2(x− 1)(2x− 1)y(12y2 − 12y + 2)] + x− 1/2

(323)

The solution is

u = −256x2(x− 1)2y(y − 1)(2y − 1)

v = 256x2(y − 1)2x(x− 1)(2x− 1)

p = (x− 1/2)(y − 1/2) (324)

7.4.5 Analytical benchmark V - ”VJ1”

This is taken from Appendix D1 of [545].
The domain Ω is a unit square. We consider the stream function

φ(x, y) = 1000x2(1− x)4y3(1− y)2

The velocity field is defined by

u(x, y) = ∂yφ = 1000(x2(1− x)4y2(1− y)(3− 5y)) (325)

v(x, y) = −∂xφ = 1000(−2x(1− x)3(1− 3x)y3(1− y)2) (326)

and it is easy to verify that ~∇ · ~v = 0.
The pressure is given by:

p(x, y) = π2(xy3 cos(2πx2y)− x2y sin(2πxy)) +
1

8

Taken from [545].
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7.4.6 Analytical benchmark VI - ”Ilinca & Pelletier”

This is taken from [516].
Let us consider the Poiseuille flow of a Newtonian fluid. The channel has isothermal flat walls located

at y = ±h. The velocity distribution is parabolic:

u = u0

(
1− y2

h2

)
v = 0

where u0 is the maximum velocity. The (steady state) temperature field is the solution of the advection-
diffusion equation:

ρCp~v · ~∇T = k∆T + Φ

where Φ is the dissipation function given by

Φ = η

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2
]

= η

(
∂u

∂y

)2

= 4η
u2

0y
2

h4

We logically assume that T = T (y) so that ∂T/∂x = 0 and ~v · ~∇T = 0. We then have to solve:

k
∂2T

∂y2
+ 4η

u2
0y

2

h4
= 0

We can integrate twice and use the boundary conditions T (y = ±h) = T0 to arrive at:

T (y) = T0 +
1

3

ηu2
0

k

[
1−

(y
h

)4
]

with a maximum temperature

TM = T (y = 0) = T0 +
1

3

ηu2
0

k

7.4.7 Analytical benchmark VII - ”grooves”

This benchmark was designed by Dave May. The velocity and pressure fields are given by

u(x, y) = x3y + x2 + xy + x

v(x, y) = −3

2
x2y2 − 2xy − 1

2
y2 − y

p(x, y) = x2y2 + xy + 5 + p0 (327)

where p0 is a constant to be determined based on the type of pressure normalisation. The viscosity is
chosen to be

η(x, y) = − sin(p) + 1 + ε = − sin(x2y2 + xy + 5) + 1 + ε (328)

where ε actually controls the viscosity contrast. Note that inserting the polynomial expression of the
pressure inside the viscosity expression makes the problem linear. We have

ε̇xx =
∂u

∂x
= 3x2y + 2x+ y + 1

ε̇yy =
∂v

∂y
= −3x2y − 2x− y − 1

ε̇xy =
1

2

(
∂u

∂y
+
∂v

∂x

)
=

1

2

(
x3 + x− 3xy2 − 2y

)
(329)

and we can verify that the velocity field is incompressible since ~∇ · ~ν = ε̇xx + ε̇yy = 0. The pressure
gradient is given by

∂p

∂x
= 2xy2 + y

∂p

∂y
= 2x2y + x
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The right hand side term of the Stokes equation is such that

−∂p
∂x

+
∂sxx
∂x

+
∂syx
∂y

+ fx = 0

−∂p
∂y

+
∂sxy
∂x

+
∂syy
∂y

+ fy = 0 (330)

with

∂sxx
∂x

=
∂(2ηε̇xx)

∂x
= 2η

∂ε̇xx
∂x

+ 2
∂η

∂x
ε̇xx

∂szx
∂z

=
∂(2ηε̇zx)

∂z
= 2η

∂ε̇zx
∂z

+ 2
∂η

∂z
ε̇zx

∂sxz
∂x

=
∂(2ηε̇xz)

∂x
= 2η

∂ε̇xz
∂x

+ 2
∂η

∂x
ε̇xz

∂szz
∂z

=
∂(2ηε̇zz)

∂z
= 2η

∂ε̇zz
∂z

+ 2
∂η

∂z
ε̇zz

∂η

∂x
= −z(2xz + 1) cos(x2z2 + xz + 5)

∂η

∂z
= −x(2xz + 1) cos(x2z2 + xz + 5)

∂ε̇xx
∂x

= 6xz + 2

∂ε̇zx
∂z

= −3xz − 1

∂ε̇xz
∂x

=
1

2
(3x2 + 1− 3z2)

∂ε̇zz
∂z

= −3x2 − 1

Velocity boundary conditions are prescribed on all four boundaries so that the pressure is known up
to a constant (the pressure solution has a nullspace), and the p0 constant can be determined by requiring
that∫ L

0

∫ L

0

p(x, y) dxdy =

∫ L

0

∫ L

0

(x2y2+xy+5)dxdy+

∫ L

0

∫ L

0

p0 dxdy =

∫ L

0

∫ L

0

(x2y2+xy+5)dxdy+p0L
2 = 0

where L is the size of the square domain. Then

p0 = − 1

L2

∫ L

0

∫ L

0

(x2y2 + xy + 5)dxdy = −L
4

9
− L2

4
− 5

As seen in the following figure, the value of ε controls the viscosity field amplitude. This is simply
explained by the fact that when the sin term of the viscosity takes value 1, the viscosity is then equal to
ε.
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Domain size 2x2 with ε = 0.1, 0.01, 0.001

Another interesting aspect of this benchmark is the fact that increasing the domain size adds complex-
ity to it as it increases the number of low viscosity zones and the spacing between them also decreases:

Three different domain sizes (1x1, 2x2, 3x3) with ε = 0.001.

Finally, because the analytical expression for both components of the velocity is a polynomial, we can
also compute the root mean square velocity exactly. For instance, for a 2x2 domain:

and we end up with (for L = 2)

vrms =

√
1

L2

861752

1575
=

√
215438

1575
' 11.6955560683
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7.4.8 Analytical benchmark VIII - ”Kovasznay”

This flow was published by L.I.G. Kovasznay in 1948 [580]. This paper presents an exact two-dimensional
solution of the Navier-Stokes equations with a periodicity in the vertical direction, gives an analytical
solution to the steady-state Navier-Stokes equations that is similar which is a flow-field behind a periodic
array of cylinders.

u(x, y) = 1− exp(λx) cos(2πy) v(x, y) =
λ

2π
exp(λx) sin(2πy) λ =

Re

2
−
√
Re2

4
+ 4π2

Following step-55 of deal.II 15 we have to ’cheat’ here since we are not solving the non-linear Navier-
Stokes equations, but the linear Stokes system without convective term. Therefore, to recreate the exact
same solution we move the convective term into the right-hand side.

The analytical solution is prescribed left and right, while free/no (??) slip is prescribed at top and
bottom.

Solution as implemented in step-55:

const double pi2 = pi*pi;

u = -exp(x*(-sqrt(25.0 + 4*pi2) + 5.0))*cos(2*y*pi) + 1;

v = (1.0L/2.0L)*(-sqrt(25.0 + 4*pi2) + 5.0)*exp(x*(-sqrt(25.0 + 4*pi2) + 5.0))*sin(2*y*pi)/pi;

p = -1.0L/2.0L*exp(x*(-2*sqrt(25.0 + 4*pi2) + 10.0))

- 2.0*(-6538034.74494422 + 0.0134758939981709*exp(4*sqrt(25.0 + 4*pi2)))/(-80.0*exp(3*sqrt(25.0 + 4*pi2))

+ 16.0*sqrt(25.0 + 4*pi2)*exp(3*sqrt(25.0 + 4*pi2)))

- 1634508.68623606*exp(-3.0*sqrt(25.0 + 4*pi2))/(-10.0 + 2.0*sqrt(25.0 + 4*pi2))

+ (-0.00673794699908547*exp(sqrt(25.0 + 4*pi2))

+ 3269017.37247211*exp(-3*sqrt(25.0 + 4*pi2)))/(-8*sqrt(25.0 + 4*pi2) + 40.0)

+ 0.00336897349954273*exp(1.0*sqrt(25.0 + 4*pi2))/(-10.0 + 2.0*sqrt(25.0 + 4*pi2));

7.4.9 Analytical benchmark IX - ”VJ2”

It is presented in [546] and meant to be a peculiar case where the velocity solution is exactly zero. The
viscosity is 1, the domain is a unit square, no-slip boundary conditions are prescribed everywhere. The
buoyancy force is given by~b = (0, Ra(1−y+3y2)) where Ra > 0 is a parameter. The flow is incompressible
and the analytical pressure solution is given by p = Ra(y3 − y2/2 + y − 7/12).

7.4.10 Analytical benchmark X - ”VJ3”

This benchmark comes from John et al. [546]. The domain is once again the unit square. The velocity
field has the form of a large vortex.

u(x, y) = 200x2(1− x)2y(1− y)(1− 2y) (331)

v(x, y) = −200x(1− x)(1− 2x)y2(1− y)2 (332)

p(x, y) = 10
[
(x− 1/2)3y2 + (1− x)3(y − 1/2)3

]
(333)

 0
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 0.6
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 0.6
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-0.5
 0

 0.5
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15https://www.dealii.org/current/doxygen/deal.II/step_55.html
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ε̇xx =
∂u

∂x
= −400(1− x)x(2x− 1)(y − 1)y(2y − 1) (334)

∂u

∂y
= 200(1− x)2x2(6y2 − 6y + 1) (335)

∂v

∂x
= −200(6x2 − 6x+ 1)(1− y)2y2 (336)

ε̇yy =
∂v

∂y
= 400(x− 1)x(2x− 1)(1− y)y(2y − 1) (337)

so that

ε̇xy =
1

2

[
200(1− x)2x2(6y2 − 6y + 1)− 200(6x2 − 6x+ 1)(1− y)2y2

]
= 100(1− x)2x2(6y2 − 6y + 1)− 100(6x2 − 6x+ 1)(1− y)2y2 (338)

Also

∂ε̇xx
∂x

= 400(6x2 − 6x+ 1)y(2y2 − 3y + 1)

∂ε̇xy
∂x

= 200(−2x2(1− x)(6y2 − 6y + 1) + 2x(1− x)2(6y2 − 6y + 1)− 6(2x− 1)(1− y)2y2)

= 100(−2x2(1− x)(6y2 − 6y + 1) + 2x(1− x)2(6y2 − 6y + 1)− 6(2x− 1)(1− y)2y2)

∂ε̇xy
∂y

= 400(6x2 − 6x+ 1)(1− y)y2 + 200(1− x)2x2(12y − 6)− 400(6x2 − 6x+ 1)(1− y)2y

∂ε̇yy
∂y

= −400x(2x2 − 3x+ 1)(6y2 − 6y + 1) (339)

∂p

∂x
= 30(x− 1/2)2y2 − 30(1− x)2(y − 1/2)3 (340)

∂p

∂y
= 20(x− 1/2)3y + 30(1− x)3(y − 1/2)2 (341)

From ~∇ · σ +~b = ~0 we can obtain the rhs as follows:

~b = −~∇ · σ
= ~∇p− ~∇ · s
= ~∇p− ~∇ · (2ηε̇) (342)

Assuming η = 1 we arrive at:

bx =
∂p

∂x
− 2

∂ε̇xx
∂x
− 2

∂ε̇xy
∂y

(343)

by =
∂p

∂y
− 2

∂ε̇xy
∂x
− 2

∂ε̇yy
∂y

(344)

All the necessary functions to do this benchmark are in mms/vj3.py:

# func t i ons f o r the Volker John I I I benchmark ( v j3 )

de f u th (x , y ) :
r e turn 200∗x∗∗2∗(1−x ) ∗∗2∗y∗(1−y ) ∗(1−2∗y )

de f v th (x , y ) :
r e turn −200∗x∗(1−x ) ∗(1−2∗x ) ∗y∗∗2∗(1−y ) ∗∗2

de f p th (x , y ) :
r e turn 10∗( (x−1 ./2 . ) ∗∗3∗y∗∗2+(1−x ) ∗∗3∗(y−1 ./2 . ) ∗∗3 )

101



de f dpdx th (x , y ) :
r e turn 30∗(x−1 ./2 . ) ∗∗2∗y∗∗2−30∗(1−x ) ∗∗2∗(y−1 ./2 . ) ∗∗3

de f dpdy th (x , y ) :
r e turn 20∗(x−1 ./2 . ) ∗∗3∗y + 30∗(1−x ) ∗∗3∗(y−1 ./2 . ) ∗∗2

de f exx th (x , y ) :
r e turn −400∗(1−x ) ∗x∗(2∗x−1)∗(y−1)∗y∗(2∗y−1)

de f exy th (x , y ) :
r e turn 100∗(1−x ) ∗∗2∗x∗∗2∗(6∗y∗∗2−6∗y+1)−100∗(6∗x∗∗2−6∗x+1)∗(1−y ) ∗∗2∗y∗∗2

de f eyy th (x , y ) :
r e turn 400∗(x−1)∗x∗(2∗x−1)∗(1−y ) ∗y∗(2∗y−1)

de f dexxdx (x , y ) :
r e turn 400∗(6∗x∗∗2−6∗x+1)∗y∗(2∗y∗∗2−3∗y+1)

de f dexydx (x , y ) :
r e turn 100∗(−2∗x∗∗2∗(1−x ) ∗(6∗y∗∗2−6∗y+1) + 2∗x∗(1−x ) ∗∗2∗(6∗y∗∗2−6∗y+1) −6∗(2∗x−1)∗(1−
y ) ∗∗2∗y∗∗2)

de f dexydy (x , y ) :
r e turn 200∗(6∗x∗∗2−6∗x+1)∗(1−y ) ∗y∗∗2 + 100∗(1−x ) ∗∗2∗x∗∗2∗(12∗y−6) −200∗(6∗x∗∗2−6∗x+1)
∗(1−y ) ∗∗2∗y

de f deyydy (x , y ) :
r e turn −400∗x∗(2∗x∗∗2−3∗x+1)∗(6∗y∗∗2−6∗y+1)

de f bx (x , y ) :
r e turn dpdx th (x , y )−2∗dexxdx (x , y )−2∗dexydy (x , y )

de f by (x , y ) :
r e turn dpdy th (x , y )−2∗dexydx (x , y )−2∗deyydy (x , y )
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7.5 Geodynamical benchmarks

Some published numerical experiments have over time become benchmarks for other codes, while some
others showcased comparisons between codes. Here is a short list of ’famous’ benchmarks’ in the compu-
tational geodynamics community.

• the plastic brick [604, 558, 757]

• 2D Rayleigh-Benard convection (Blankenbach) [106, 913, 221, 565, 610, 958, 910]

• 2D Rayleigh-Taylor convection/instability [740, 910, 840, 43, 867, 120, 59, 757, 814, 610, 958, 940,
120]

• subduction problems [823, 938]

• numerical sandbox [162, 168]

• the Stokes sphere [587]

• 2D compressible Stokes flow problem [608]

• 3D convection at infinite Prandtl number (Busse) [200, 913]

• Free surface evolution [245]

• Love’s problem [70]

• Lid driven Cavity [115]

go through my papers and add relevant ones here
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7.6 Assigning values to quadrature points

As we have seen in Section 6, the building of the elemental matrix and rhs requires (at least) to assign
a density and viscosity value to each quadrature point inside the element. Depending on the type of
modelling, this task can prove more complex than one might expect and have large consequences on the
solution accuracy.

Here are several options:

• The simplest way (which is often used for benchmarks) consists in computing the ’real’ coordinates
(xq, yq, zq) of a given quadrature point based on its reduced coordinates (rq, sq, tq), and passing these
coordinates to a function which returns density and/or viscosity at this location. For instance, for
the Stokes sphere:

def rho(x,y):

if (x-.5)**2+(y-0.5)**2<0.123**2:

val=2.

else:

val=1.

return val

def mu(x,y):

if (x-.5)**2+(y-0.5)**2<0.123**2:

val=1.e2

else:

val=1.

return val

This is very simple, but it has been shown to potentially be problematic. In essence, it can introduce
very large contrasts inside a single element and perturb the quadrature. Please read section 3.3
of [468] and/or have a look at the section titled ”Averaging material properties” in the ASPECT
manual.

• another similar approach consists in assigning a density and viscosity value to the nodes of the FE
mesh first, and then using these nodal values to assign values to the quadrature points. Very often
,and quite logically, the shape functions are used to this effect. Indeed we have seen before that for
any point (r, s, t) inside an element we have

fh(r, s, t) =

m∑
i

fiNi(r, s, t)

where the fi are the nodal values and the Ni the corresponding basis functions.

In the case of linear elements (Q1 basis functions), this is straightforward. In fact, the basis functions
Ni can be seen as moving weights: the closer the point is to a node, the higher the weight (basis
function value).

However, this is quite another story for quadratic elements (Q2 basis functions). In order to
illustrate the problem, let us consider a 1D problem. The basis functions are

N1(r) =
1

2
r(r − 1) N2(r) = 1− r2 N3(r) =

1

2
r(r + 1)

Let us further assign: ρ1 = ρ2 = 0 and ρ3 = 1. Then

ρh(r) =

m∑
i

ρiNi(r) = N3(r)

There lies the core of the problem: the N3(r) basis function is negative for r ∈ [−1, 0]. This means
that the quadrature point in this interval will be assigned a negative density, which is nonsensical
and numerically problematic!

use 2X Q1. write about it !
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The above methods work fine as long as the domain contains a single material. As soon as there are
multiple fluids in the domain a special technique is needed to track either the fluids themselves or their
interfaces. Let us start with markers. We are then confronted to the infernal trio (a menage a trois?)
which is present for each element, composed of its nodes, its markers and its quadrature points.

Each marker carries the material information (density and viscosity). This information must ul-
timately be projected onto the quadrature points. Two main options are possible: an algorithm is
designed and projects the marker-based fields onto the quadrature points directly or the marker fields
are first projected onto the FE nodes and then onto the quadrature points using the techniques above.

————————–
At a given time, every element e contains ne markers. During the FE matrix building process, viscosity

and density values are needed at the quadrature points. One therefore needs to project the values carried
by the markers at these locations. Several approaches are currently in use in the community and the
topic has been investigated by [278] and [296] for instance.

elefant adopts a simple approach: viscosity and density are considered to be elemental values, i.e.
all the markers within a given element contribute to assign a unique constant density and viscosity value
to the element by means of an averaging scheme.

While it is common in the literature to treat the so-called arithmetic, geometric and harmonic means
as separate averagings, I hereby wish to introduce the notion of generalised mean, which is a family of
functions for aggregating sets of numbers that include as special cases the arithmetic, geometric and
harmonic means.

If p is a non-zero real number, we can define the generalised mean (or power mean) with exponent p
of the positive real numbers a1, ... an as:

Mp(a1, ...an) =

(
1

n

n∑
i=1

api

)1/p

(345)

and it is trivial to verify that we then have the special cases:

M−∞ = lim
p→−∞

Mp = min(a1, ...an) (minimum) (346)

M−1 =
n

1
a1

+ 1
a2

+ · · ·+ 1
an

(harm. avrg.) (347)

M0 = lim
p→0

Mp =

( n∏
i=1

ai

)1/n

(geom. avrg.) (348)

M+1 =
1

n

n∑
i=1

ai (arithm. avrg.) (349)

M+2 =

√√√√ 1

n

n∑
i=1

a2
i (root mean square) (350)

M+∞ = lim
p→+∞

Mp = max(a1, ...an) (maximum) (351)

Note that the proofs of the limit convergence are given in [172].
An interesting property of the generalised mean is as follows: for two real values p and q, if p < q

then Mp ≤Mq. This property has for instance been illustrated in Fig. 20 of [823].
One can then for instance look at the generalised mean of a randomly generated set of 1000 viscosity

values within 1018Pa.s and 1023Pa.s for −5 ≤ p ≤ 5. Results are shown in the figure hereunder and the
arithmetic, geometric and harmonic values are indicated too. The function Mp assumes an arctangent-
like shape: very low values of p will ultimately yield the minimum viscosity in the array while very high
values will yield its maximum. In between, the transition is smooth and occurs essentially for |p| ≤ 5.
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7.7 Matrix (Sparse) storage

The FE matrix is the result of the assembly process of all elemental matrices. Its size can become quite
large when the resolution is being increased (from thousands of lines/columns to tens of millions).

One important property of the matrix is its sparsity. Typically less than 1% of the matrix terms is
not zero and this means that the matrix storage can and should be optimised. Clever storage formats
were designed early on since the amount of RAM memory in computers was the limiting factor 3 or 4
decades ago. [812]

There are several standard formats:

• compressed sparse row (CSR) format

• compressed sparse column format (CSC)

• the Coordinate Format (COO)

• Skyline Storage Format

• ...

I focus on the CSR format in what follows.

7.7.1 2D domain - One degree of freedom per node

Let us consider again the 3× 2 element grid which counts 12 nodes.

8=======9======10======11

| | | |

| (3) | (4) | (5) |

| | | |

4=======5=======6=======7

| | | |

| (0) | (1) | (2) |

| | | |

0=======1=======2=======3

In the case there is only a single degree of freedom per node, the assembled FEM matrix will look
like this: 

X X X X
X X X X X X

X X X X X X
X X X X

X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X

X X X X
X X X X X X

X X X X X X
X X X X


where the X stand for non-zero terms. This matrix structure stems from the fact that

• node 0 sees nodes 0,1,4,5

• node 1 sees nodes 0,1,2,4,5,6

• node 2 sees nodes 1,2,3,5,6,7

• ...
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• node 5 sees nodes 0,1,2,4,5,6,8,9,10

• ...

• node 10 sees nodes 5,6,7,9,10,11

• node 11 sees nodes 6,7,10,11

In light thereof, we have

• 4 corner nodes which have 4 neighbours (counting themselves)

• 2(nnx-2) nodes which have 6 neighbours

• 2(nny-2) nodes which have 6 neighbours

• (nnx-2)×(nny-2) nodes which have 9 neighbours

In total, the number of non-zero terms in the matrix is then:

NZ = 4× 4 + 4× 6 + 2× 6 + 2× 9 = 70

In general, we would then have:

NZ = 4× 4 + [2(nnx− 2) + 2(nny − 2)]× 6 + (nnx− 2)(nny − 2)× 9

Let us temporarily assume nnx = nny = n. Then the matrix size (total number of unknowns) is
N = n2 and

NZ = 16 + 24(n− 2) + 9(n− 2)2

A full matrix array would contain N2 = n4 terms. The ratio of NZ (the actual number of reals to store)
to the full matrix size (the number of reals a full matrix contains) is then

R =
16 + 24(n− 2) + 9(n− 2)2

n4

It is then obvious that when n is large enough R ∼ 1/n2.
CSR stores the nonzeros of the matrix row by row, in a single indexed array A of double precision

numbers. Another array COLIND contains the column index of each corresponding entry in the A array.
A third integer array RWPTR contains pointers to the beginning of each row, which an additional pointer
to the first index following the nonzeros of the matrix A. A and COLIND have length NZ and RWPTR
has length N+1.

In the case of the here-above matrix, the arrays COLIND and RWPTR will look like:

COLIND = (0, 1, 4, 5, 0, 1, 2, 4, 5, 6, 1, 2, 3, 5, 6, 7, ..., 6, 7, 10, 11)

RWPTR = (0, 4, 10, 16, ...)

7.7.2 2D domain - Two degrees of freedom per node

When there are now two degrees of freedom per node, such as in the case of the Stokes equation in
two-dimensions, the size of the K matrix is given by

NfemV=nnp∗ndofV

In the case of the small grid above, we have NfemV=24. Elemental matrices are now 8× 8 in size.
We still have

• 4 corner nodes which have 4 neighbours

• 2(nnx-2) nodes which have 6 neighbours

• 2(nny-2) nodes which have 6 neighbours
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• (nnx-2)x(nny-2) nodes which have 9 neighbours,

but now each degree of freedom from a node sees the other two degrees of freedom of another node too.
In that case, the number of nonzeros has been multiplied by four and the assembled FEM matrix looks
like:

X X X X X X X X
X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X

X X X X X X X X X X X X
X X X X X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X
X X X X X X X X X X X X

X X X X X X X X
X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X

X X X X X X X X X X X X
X X X X X X X X X X X X

X X X X X X X X
X X X X X X X X


Note that the degrees of freedom are organised as follows:

(u0, v0, u1, v1, u2, v2, ...u11, v11)

In general, we would then have:

NZ = 4 [4× 4 + [2(nnx− 2) + 2(nny − 2)]× 6 + (nnx− 2)(nny − 2)× 9]

and in the case of the small grid, the number of non-zero terms in the matrix is then:

NZ = 4 [4× 4 + 4× 6 + 2× 6 + 2× 9] = 280

In the case of the here-above matrix, the arrays COLIND and RWPTR will look like:

COLIND = (0, 1, 2, 3, 8, 9, 10, 11, 0, 1, 2, 3, 8, 9, 10, 11, ...)

RWPTR = (0, 8, 16, 28, ...)

7.7.3 in fieldstone

The majority of the codes have the FE matrix being a full array

a mat = np . z e r o s ( ( Nfem , Nfem) , dtype=np . f l o a t 6 4 )

and it is converted to CSR format on the fly in the solve phase:

s o l = sps . l i n a l g . sp so l v e ( sps . c s r mat r i x ( a mat ) , rhs )

Note that linked list storages can be used (lil matrix). Substantial memory savings but much longer
compute times.
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7.8 Mesh generation

Before basis functions can be defined and PDEs can be discretised and solved we must first tesselate the
domain with polygons, e.g. triangles and quadrilaterals in 2D, tetrahedra, prisms and hexahedra in 3D.

When the domain is itself simple (e.g. a rectangle, a sphere, ...) the mesh (or grid) can be (more or
less) easily produced and the connectivity array filled with straightforward algorithms [888]. However,
real life applications can involve extremely complex geometries (e.g. a bridge, a human spine, a car
chassis and body, etc ...) and dedicated algorithms/softwares must be used (see [896, 350, 1001]).

We usually distinguish between two broad classes of grids: structured grids (with a regular connec-
tivity) and unstructured grids (with an irregular connectivity).

Remark. Various families of so-called meshless methods exist and are commonly employed in Com-
putational Fluid Dynamics [632, 620, 631, 633]. They are however very rarely used in Computational
geodynamics, with a noticeable exception [449].

7.8.1 Quadrilateral-based meshes

Let us now focus on the case of a rectangular computational domain of size Lx × Ly with a regular mesh
composed of nelx×nely=nel quadrilaterals. There are then nnx×nny=nnp grid points. The elements
are of size hx×hy with hx=Lx/nelx.

We have no reason to come up with an irregular/illogical node numbering so we can number nodes
row by row or column by column as shown on the example hereunder of a 3×2 grid:

8=======9======10======11 2=======5=======8======11

| | | | | | | |

| (3) | (4) | (5) | | (1) | (3) | (5) |

| | | | | | | |

4=======5=======6=======7 1=======4=======7======10

| | | | | | | |

| (0) | (1) | (2) | | (0) | (2) | (4) |

| | | | | | | |

0=======1=======2=======3 0=======3=======6=======9

"row by row" "column by column"

The numbering of the elements themselves could be done in a somewhat chaotic way but we follow
the numbering of the nodes for simplicity. The row by row option is the adopted one in fieldstone and
the coordinates of the points are computed as follows:

x = np . empty (nnp , dtype=np . f l o a t 6 4 )
y = np . empty (nnp , dtype=np . f l o a t 6 4 )
counter = 0
f o r j in range (0 , nny ) :

f o r i in range (0 , nnx ) :
x [ counter ]= i ∗hx
y [ counter ]= j ∗hy
counter += 1

The inner loop has i ranging from 0 to nnx-1 first for j=0, 1, ... up to nny-1 which indeed corresponds
to the row by row numbering.
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We now turn to the connectivity. As mentioned before, this is a structured mesh so that the so-called
connectivity array, named icon in our case, can be filled easily. For each element we need to store the
node identities of its vertices. Since there are nel elements and m=4 corners, this is a m×nel array. The
algorithm goes as follows:

i con =np . z e r o s ( (m, ne l ) , dtype=np . in t16 )
counter = 0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
i con [ 0 , counter ] = i + j ∗ nnx
icon [ 1 , counter ] = i + 1 + j ∗ nnx
icon [ 2 , counter ] = i + 1 + ( j + 1) ∗ nnx
icon [ 3 , counter ] = i + ( j + 1) ∗ nnx
counter += 1

In the case of the 3×2 mesh, the icon is filled as follows:

element id→ 0 1 2 3 4 5
node id↓

0 0 1 2 4 5 6
1 1 2 3 5 6 7
2 5 6 7 9 10 11
3 4 5 6 8 9 10

It is to be understood as follows: element #4 is composed of nodes 5, 6, 10 and 9. Note that nodes are
always stored in a counter clockwise manner, starting at the bottom left. This is very important since
the corresponding basis functions and their derivatives will be labelled accordingly.

In three dimensions things are very similar. The mesh now counts nelx×nely×nelz=nel elements
which represent a cuboid of size Lx×Ly×Lz. The position of the nodes is obtained as follows:

x = np . empty (nnp , dtype=np . f l o a t 6 4 )
y = np . empty (nnp , dtype=np . f l o a t 6 4 )
z = np . empty (nnp , dtype=np . f l o a t 6 4 )
counter=0
f o r i in range (0 , nnx ) :

f o r j in range (0 , nny ) :
f o r k in range (0 , nnz ) :

x [ counter ]= i ∗hx
y [ counter ]= j ∗hy
z [ counter ]=k∗hz
counter += 1

The connectivity array is now of size m×nel with m=8:

i con =np . z e r o s ( (m, ne l ) , dtype=np . in t16 )
counter = 0
f o r i in range (0 , ne lx ) :

f o r j in range (0 , ne ly ) :
f o r k in range (0 , ne l z ) :

i con [ 0 , counter ]=nny∗nnz ∗( i )+nnz ∗( j )+k
icon [ 1 , counter ]=nny∗nnz ∗( i +1)+nnz ∗( j )+k
icon [ 2 , counter ]=nny∗nnz ∗( i +1)+nnz ∗( j +1)+k
icon [ 3 , counter ]=nny∗nnz ∗( i )+nnz ∗( j +1)+k
icon [ 4 , counter ]=nny∗nnz ∗( i )+nnz ∗( j )+k+1
icon [ 5 , counter ]=nny∗nnz ∗( i +1)+nnz ∗( j )+k+1
icon [ 6 , counter ]=nny∗nnz ∗( i +1)+nnz ∗( j +1)+k+1
icon [ 7 , counter ]=nny∗nnz ∗( i )+nnz ∗( j +1)+k+1
counter += 1

produce drawing of node numbering

7.8.2 Delaunay triangulation and Voronoi cells, and triangle-based meshes

Triangle-based meshes are obviously better suited for simulations of complex geometries:
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A very practical 2D triangle mesher is the code Triangle16 written by J.R. Shewchuk [836]. Triangle
is specialized for creating two-dimensional finite element meshes, but can also perform simpler related
tasks such as forming Delaunay triangulations under various assumptions.
write about gmesh

7.8.3 Tetrahedra

Example of 3D mesh [1008]

7.8.4 Hexahedra

A hexahedron is a convex polytope isomorphic to the cube [0, 1]3. Edges are line segments, facets are
strictly planar convex polygons.

7.8.5 Adaptive Mesh Refinement

Relevant literature: [197][72]
16https://www.cs.cmu.edu/~quake/triangle.html
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# l0 # l1 # l2 # l3 # l4 # l5 # l6 # l7 # l8

max level= 0 1
max level= 1 0 4
max level= 2 0 3 4
max level= 3 0 2 7 4
max level= 4 0 2 5 10 8
max level= 5 0 1 8 12 11 20
max level= 6 0 1 8 11 13 20 32
max level= 7 0 0 11 14 15 23 37 60
max level= 8 0 0 11 13 17 27 43 72 116
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x3

In the particular case presented here, even though the inclusion in a short two-dimensional line, the
total number of elements grows faster than the third power of the refinement level. While of course the
total number of elements remains much smaller than the constant resolution counterpart, this observation
tells us that authorising a unit increase of the maximum refinement level can have a substantial effect on
the total number of elements.
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7.9 Visco-Plasticity

7.9.1 Tensor invariants

Before we dive into the world of nonlinear rheologies it is necessary to introduce the concept of tensor
invariants since they are needed further on. Unfortunately there are many different notations used in the
literature and these can prove to be confusing. Note that we only consider symmetric tensors in what
follows.

Given a tensor T , one can compute its (moment) invariants as follows [769, p.339]:

• first invariant:

TI |2D = Tr[T ] = Txx + Tyy

TI |3D = Tr[T ] = Txx + Tyy + Tzz

• second invariant:

TII |2D =
1

2
Tr[T 2] =

1

2

∑
ij

TijTji =
1

2
(T 2
xx + T 2

yy) + T 2
xy

TII |3D =
1

2
Tr[T 2] =

1

2

∑
ij

TijTji =
1

2
(T 2
xx + T 2

yy + T 2
yy) + T 2

xy + T 2
xz + T 2

yz

• third invariant:

TIII =
1

3
Tr[T 3] =

1

3

∑
i

∑
j

∑
k

TijTjkTki

The implementation of the plasticity criterions relies essentially on the second invariants of the (de-
viatoric) stress τ and the (deviatoric) strainrate tensors ε̇:

τII |2D =
1

2
(τ2
xx + τ2

yy) + τ2
xy

=
1

4
(σxx − σyy)2 + σ2

xy

=
1

4
(σ1 − σ2)2

τII |3D =
1

2
(τ2
xx + τ2

yy + τ2
zz) + τ2

xy + τ2
xz + τ2

yz

=
1

6

[
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2

]
+ σ2

xy + σ2
xz + σ2

yz

=
1

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
εII |2D =

1

2

[
(ε̇dxx)2 + (ε̇dyy)2

]
+ (ε̇dxy)2

=
1

2

[
1

4
(ε̇xx − ε̇yy)2 +

1

4
(ε̇yy − ε̇xx)2

]
+ ε̇2

xy

=
1

4
(ε̇xx − ε̇yy)2 + ε̇2

xy

εII |3D =
1

2

[
(ε̇dxx)2 + (ε̇dyy)2 + (ε̇dzz)

2
]

+ (ε̇dxy)2 + (ε̇dxz)
2 + (ε̇dyz)

2

=
1

6

[
(ε̇xx − ε̇yy)2 + (ε̇yy − ε̇zz)2 + (ε̇xx − ε̇zz)2

]
+ ε̇2xy + ε̇2xz + ε̇2yz

Note that these (second) invariants are almost always used under a square root so we define:
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τ II =
√
τII ε̇II =

√
ε̇II

Note that these quantities have the same dimensions as their tensor counterparts, i.e. Pa for stresses and
s−1 for strain rates.

7.9.2 Scalar viscoplasticity

This formulation is quite easy to implement. It is widely used, e.g. [982, 890, 844], and relies on the
assumption that a scalar quantity ηp (the ’effective plastic viscosity’) exists such that the deviatoric stress
tensor

τ = 2ηpε̇ (352)

is bounded by some yield stress value Y . From Eq. (352) it follows that τ II = 2ηpε̇II = Y which yields

ηp =
Y

2ε̇II

This approach has also been coined the Viscosity Rescaling Method (VRM) [552].
insert here the rederivation 2.1.1 of spmw16

It is at this stage important to realise that (i) in areas where the strainrate is low, the resulting effective
viscosity will be large, and (ii) in areas where the strainrate is high, the resulting effective viscosity will be
low. This is not without consequences since (effective) viscosity contrasts up to 8-10 orders of magnitude
have been observed/obtained with this formulation and it makes the FE matrix very stiff, leading to
(iterative) solver convergence issues. In order to contain these viscosity contrasts one usually resorts to
viscosity limiters ηmin and ηmax such that

ηmin ≤ ηp ≤ ηmax

Caution must be taken when choosing both values as they may influence the final results.

. python codes/fieldstone indentor

7.9.3 About the yield stress value Y

In geodynamics the yield stress value is often given as a simple function. It can be constant (in space
and time) and in this case we are dealing with a von Mises plasticity yield criterion. . We simply assume
YvM = C where C is a constant cohesion independent of pressure, strainrate, deformation history, etc ...

Another model is often used: the Drucker-Prager plasticity model. A friction angle φ is then intro-
duced and the yield value Y takes the form

YDP = p sinφ+ C cosφ

and therefore depends on the pressure p. Because φ is with the range [0◦, 45◦], Y is found to increase
with depth (since the lithostatic pressure often dominates the overpressure).

Note that a slightly modified verion of this plasticity model has been used: the total pressure p is
then replaced by the lithostatic pressure plith.
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7.10 Pressure smoothing

It has been widely documented that the use of the Q1×P0 element is not without problems. Aside from
the consequences it has on the FE matrix properties, we will here focus on another unavoidable side
effect: the spurious pressure checkerboard modes.

These modes have been thoroughly analysed [427, 217, 816, 817]. They can be filtered out [217] or
simply smoothed [602].

On the following figure (a,b), pressure fields for the lid driven cavity experiment are presented for
both an even and un-even number of elements. We see that the amplitude of the modes can sometimes
be so large that the ’real’ pressure is not visible and that something as simple as the number of elements
in the domain can trigger those or not at all.

a) b)

c)
a) element pressure for a 32x32 grid and for a 33x33 grid;

b) image from [283, p307] for a manufactured solution;

c) elemental pressure and smoothed pressure for the punch experiment [890]

The easiest post-processing step that can be used (especially when a regular grid is used) is explained in
[890]: ”The element-to-node interpolation is performed by averaging the elemental values from elements
common to each node; the node-to-element interpolation is performed by averaging the nodal values
element-by-element. This method is not only very efficient but produces a smoothing of the pressure that
is adapted to the local density of the octree. Note that these two steps can be repeated until a satisfying
level of smoothness (and diffusion) of the pressure field is attained.”

In the codes which rely on the Q1 × P0 element, the (elemental) pressure is simply defined as

p=np . z e r o s ( nel , dtype=np . f l o a t 6 4 )

while the nodal pressure is then defined as

q=np . z e r o s (nnp , dtype=np . f l o a t 6 4 )

The element-to-node algorithm is then simply (in 2D):

count=np . z e r o s (nnp , dtype=np . in t16 )
f o r i e l in range (0 , ne l ) :

q [ i con [ 0 , i e l ]]+=p [ i e l ]
q [ i con [ 1 , i e l ]]+=p [ i e l ]
q [ i con [ 2 , i e l ]]+=p [ i e l ]
q [ i con [ 3 , i e l ]]+=p [ i e l ]
count [ i con [ 0 , i e l ]]+=1
count [ i con [ 1 , i e l ]]+=1
count [ i con [ 2 , i e l ]]+=1
count [ i con [ 3 , i e l ]]+=1

q=q/ count
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Pressure smoothing is further discussed in [503].
produce figure to explain this

link to proto paper

link to least square and nodal derivatives
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7.11 Pressure scaling

As perfectly explained in the step 32 of deal.ii17, we often need to scale the G term since it is many orders
of magnitude smaller than K, which introduces large inaccuracies in the solving process to the point that
the solution is nonsensical. This scaling coefficient is η/L where η and L are representative viscosities
and lengths. We start from (

K G
GT −C

)
·
(

~V
~P

)
=

(
~f
~h

)
and introduce the scaling coefficient as follows (which in fact does not alter the solution at all):(

K η
LG

η
LG

T − η2

L2C

)
·

(
~V
L
η
~P

)
=

(
~f
η
L
~h

)

We then end up with the modified Stokes system:(
K G
GT C

)
·
(

~V
~P

)
=

(
~f
~h

)

where

G =
η

L
G ~P =

L

η
~P C =

η2

L2
C ~h =

η

L
~h

After the solve phase, we recover the real pressure with ~P = η
L
~P.

17https://www.dealii.org/9.0.0/doxygen/deal.II/step 32.html
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7.12 Pressure normalisation

7.12.1 Basic idea and naive implementation

When Dirichlet boundary conditions are imposed everywhere on the boundary, pressure is only present
by its gradient in the equations. It is thus determined up to an arbitrary constant (one speaks then of
a nullspace of size 1). In such a case, one commonly impose the average of the pressure over the whole
domain or on a subset of the boundary to have a zero average, i.e.∫

Ω

pdV = 0 (353)

Another possibility is to impose the pressure value at a single node.
Let us assume for example that we are using Q1 × P0 elements. Then the pressure is constant inside

each element. The integral above becomes:∫
Ω

pdV =
∑
e

∫
Ωe

pdV =
∑
e

pe

∫
Ωe

dV =
∑
e

peAe = 0 (354)

where the sum runs over all elements e of area Ae. This can be rewritten

LT · ~P = 0

and it is a constraint on the pressure solution which couples all pressure dofs. We can associate to it a
Lagrange multiplier λ so that we must solve the modified Stokes system: K G 0

GT 0 L
0 LT 0

 ·
 ~V

~P
λ

 =

 ~f
~h
0


When higher order spaces are used for pressure (continuous or discontinuous) one must then carry out
the above integration numerically by means of (usually) a Gauss-Legendre quadrature.

Although valid, this approach has one main disadvantage: it makes the Stokes matrix larger (although
marginally so – only one row and column are added), but more importantly it prevents the use of some
of the solving strategies of Section 7.13.

7.12.2 Implementation – the real deal

The idea is actually quite simple and requires two steps:

1. remove the null space by prescribing the pressure at one location and solve the system;

2. post-process the pressure so as to arrive at a pressure field which fulfills the required normalisation
(surface, volume, ...)

The reason why it works is as follows: a constant pressure value lies in the null space, so that one can
add or delete any value to the pressure field without consequence. As such I can choose said constant
such that the pressure at a given node/element is zero. All other computed pressures are then relative to
that one. The post-processing step will redistribute a constant value to all pressures (it will shift them
up or down) so that the normalising condition is respected.
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7.13 Solving the Stokes system

Let us start again from the (full) Stokes system:(
K G
GT −C

)
·
(

~V
~P

)
=

(
~f
~h

)
(355)

We need to solve this system in order to obtain the solution, i.e. the ~V and ~P vectors. But how?
Unfortunately, this question is not simple to answer and the appropriate method depends on many
parameters, but mainly on how big the matrix blocks are and what the condition number of the matrix
K is.

In what follow I cover:

• solving when the penalty approach is used

• the Schur complement approach

• the FGMRES approach

• the Augmented Lagrangian approach

7.13.1 when using the penalty formulation

In this case we are only solving for velocity since pressure is recovered in a post-processing step:

(Kη + Kλ) · ~V = ~f

We also know that the penalty factor is many orders of magnitude higher than the viscosity and in
combination with the use of the Q1 × P0 element the resulting matrix condition number is very high
so that the use of iterative solvers is precluded. Indeed codes such as SOPALE [357], DOUAR [135],
or FANTOM [886] relying on the penalty formulation all use direct solvers. The most popular are
BLKFCT18, MUMPS19 [21, 23, 22, 24], WSMP20 [433, 434], UMFPACK and CHOLMOD21 , SuperLU,
PARDISO22 [269, 951, 579], or those inside PETSc ??.

Braun et al [135] list the following features of such solvers:

• Robust

• Black-box operation

• Difficult to parallelize

• Memory consumption

• Limited scalability

The main advantage of direct solvers is used in this case: They can solve ill-conditioned matrices.
However memory requirements for the storage of number of nonzeros in the Cholesky matrix grow very fast
as the number of equations/grid size increases, especially in 3D, to the point that even modern computers
with tens of Gb of RAM cannot deal with a 1003 element mesh. This explains why direct solvers are often
used for 2D problems and rarely in 3D with noticeable exceptions [890, 1005, 137, 641, 18, 19, 20, 976, 700].

18http://dm.unife.it/blkfclt/
19http://mumps.enseeiht.fr/
20http://www.research.ibm.com/projects/wsmp
21http://faculty.cse.tamu.edu/davis/suitesparse.html
22https://www.pardiso-project.org/
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7.13.2 Conjugate gradient and the Schur complement approach

Let us write the above system as two equations:

K · ~V + G · ~P = ~f (356)

GT · ~V = ~h (357)

The first line can be re-written ~V = K−1 · (~f −G · ~P) and can be inserted in the second:

GT · ~V = GT · [K−1 · (~f −G · ~P)] = ~h (358)

or,

(GT ·K−1 ·G) · ~P = GT ·K−1 · ~f − ~h (359)

The matrix S = GT · K−1 · G is called the Schur complement. It is Symmetric (since K is symmetric)
and Positive-Definite23 (SPD) if Ker(G) = 0. look in donea-huerta book for details Having solved this

equation (we have obtained ~P), the velocity can be recovered by solving K · ~V = ~f −G · ~P.

For now, let us assume that we have built the S matrix and the right hand side ~f = GT ·K−1 · ~f −~h.

We must solve S · ~P = ~f .
One can resort to so-called Richardson iterations, defined as follows (e.g., see [949], p141): in solving

the matrix equation A · ~X = ~b, the Richardson iterative method is defined by:

~Xk+1 = ~Xk + αk(−A · ~Xk +~b) m ≥ 0 (360)

where the αk’s are real scalars. It is easy to see that when the method converges then ~Xk+1 ' ~Xk and

then A · ~X = ~b is satisfied. In our case, it writes:

~Pk+1 = ~Pk + αk(−S · ~Pk + ~f)

= ~Pk + αk(−GT ·K−1 ·G · ~Pk + GT ·K−1 · ~f − ~h)

= ~Pk + αk

[
GT ·K−1 · (−G · ~Pk + ~f)− ~h

]
= ~Pk + αk

[
GT ·K−1 · (K · ~Vk)− ~h

]
= ~Pk + αk

(
GT · ~Vk − ~h

)
(361)

The above iterations are then carried out and for each new pressure field the associated velocity field is
computed. The method of using Richardson iterations applied to the Schur complement is commonly
called the Uzawa algorithm [127, p221].

Uzawa algorithm (1):

solve K · ~Vk = ~f −G · ~Pk−1 (362)

Pk = Pk−1 + α(GT · ~Vk − ~h) k = 1, 2, ... (363)

This method is rather simple to implement, although what makes an appropriate set of αk values
is not straightforward, which is why the conjugate gradient is often preferred, as detailed in the next
subsection.

It is known that such iterations will converge for 0 < α < ρ(S) = λmax(S) where ρ(S) is the spectral
radius of the matrix S which is essentially the largest, in absolute value, eigenvalue of S (neither of which
can be computed easily). It can also be proven that the rate of convergence depends on the condition
number of the matrix.

Richardson iterations are part of the family of stationary iterative methods, since it can be rewritten

~Xk+1 = (I − αkA) · ~Xk + αk~b (364)

23M positive definite ⇐⇒ xTMx > 0 ∀ x ∈ Rn \ 0
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which is the definition of a stationary method.
Since the α parameter is the key to a succesful Uzawa algorithm, this issue has of course been looked

into. What follows is presented in [127, p221]. For the analysis of the Uzawa algorithm, we define the
residue

~Rk = ~h−GT · ~Vk
In addition, suppose the solution of the saddle point problem is denoted by (V?,P?). Now substituting
the iteration formula for Vk, we get

Rk = GT · ~V? −GT ·K−1(~f −G · Pk−1) (365)

= GT · ~V? −GT ·K−1(K · ~V? + G · ~P? −G · Pk−1) (366)

= GT ·K−1 ·G · (~Pk−1 − ~P?) (367)

From Eq. 363 it follows that:

Pk − Pk−1 = α(GT · ~Vk − ~h) (368)

= −α ~Rk (369)

= −αGT ·K−1 ·G · (~Pk−1 − ~P?) (370)

= αGT ·K−1 ·G · (~P? − ~Pk−1) (371)

Thus the Uzawa algorithm is equivalent to applying the gradient method to the reduced equation using
a fixed step size. In particular, the iteration converges for α < 2||GT ·K−1 ·G||−1 and one can show that
the good step size αk is given by

αk =
Rk · Rk

(Gqk) · (K−1Gqk)
(372)

However, if we were to use this rule formally, we would need an additional multiplication by K−1 in every
step of the iteration. This can be avoided by storing an auxiliary vector.

Note that in [407] it is stated: the convergence of this algorithm is proved for α ∈ (0, 2µ/d) (where d
is the number of dimensions).
check this, and report page number

Note that this algorithm is presented in [1052] in the context of viscosplastic flow.
As mentioned above, there is a way to rework the original Uzawa algorithm to include Eq. (372). It

is yields a modified Uzawa algorithm [127, p221]:

Uzawa algorithm (2): Solve K · ~V1 = ~f −G · ~P0. For k = 1, 2, ..., compute

~qk = ~h−GT · ~Vk (373)

~pk = G · qk (374)

~Hk = K−1 · ~pk (375)

αk =
~qk · ~qk
~pk · ~Hk

(376)

~Pk = ~Pk−1 − αk~qk (377)

~Vk+1 = ~Vk + αk ~Hk (378)

7.13.3 Conjugate gradient and the Schur complement approach

Since S is SPD, the Conjugate Gradient (CG) method is very appropriate to solve this system. Indeed,
looking at the definition of Wikipedia: ”In mathematics, the conjugate gradient method is an algorithm for
the numerical solution of particular systems of linear equations, namely those whose matrix is symmetric
and positive-definite. The conjugate gradient method is often implemented as an iterative algorithm,
applicable to sparse systems that are too large to be handled by a direct implementation or other direct
methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving
partial differential equations or optimization problems.”

A simple Google search tells us that the Conjugate Gradient algorithm is as follows:
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Algorithm as obtained from Wikipedia 24

This algorithm is of course explained in detail in many textbooks such as [812]
add biblio

.
Let us look at this algorithm up close. The parts which may prove to be somewhat tricky are those

involving the matrix inverse (in our case the Schur complement). We start the iterations with a guess

pressure ~P0 ( and an initial guess velocity which could be obtained by solving K · ~V0 = ~f −G · ~P0).

~r0 = ~f − S · ~P0 (379)

= GT ·K−1 · ~f − ~h− (GT ·K−1 ·G) · ~P0 (380)

= GT ·K−1 · (~f −G · ~P0)− ~h (381)

= GT ·K−1 ·K · ~V0 − ~h (382)

= GT · ~V0 − ~h (383)

(384)

We now turn to the αk coefficient:

αk =
~rTk · ~rk
~pk · S · ~pk

=
~rTk · ~rk

~pk ·GT ·K−1 ·G · ~pk
=

~rTk · ~rk
(G · ~pk)T ·K−1 · (G · ~pk)

We then define ~̃pk = G · ~pk, so that αk can be computed as follows:

1. compute ~̃pk = G · ~pk

2. solve K · ~dk = ~̃pk

3. compute αk = (~rTk · ~rk)/(~̃pTk · ~dk)

Then we need to look at the term S · ~pk:

S · ~pk = GT ·K−1 ·G · ~pk = GT ·K−1 · ~̃pk = GT · ~dk

We can then rewrite the CG algorithm as follows [1041]:

• ~r0 = GT · ~V0 − ~h

• if ~r0 is sufficiently small, then return (~V0, ~P0) as the result

• ~p0 = ~r0

24https://en.wikipedia.org/wiki/Conjugate_gradient_method
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• k = 0

• repeat

– compute ~̃pk = G · ~pk
– solve K · ~dk = ~̃pk

– compute αk = (~rTk · ~rk)/(~̃pTk · ~dk)

– ~Pk+1 = ~Pk + αk~pk

– ~rk+1 = ~rk − αkGT · ~dk
– if ~rk+1 is sufficiently small, then exit loop

– βk = (~rTk+1 · ~rk+1)/(~rTk · ~rk)

– ~pk+1 = ~rk+1 + βk~pk

– k = k + 1

• return ~Pk+1 as result

We see that we have managed to solve the Schur complement equation with the Conjugate Gradient
method without ever building the matrix S. Having obtained the pressure solution, we can easily recover
the corresponding velocity with K · ~Vk+1 = ~f −G · ~Pk+1. However, this is rather unfortunate because it
requires yet another solve with the K matrix. As it turns out, we can slightly alter the above algorithm
to have it update the velocity as well so that this last solve is unnecessary.

We have

~Vk+1 = K−1 · (f −G · ~Pp+1) (385)

= K−1 · (f −G · (~Pk + αk~pk)) (386)

= K−1 · (f −G · ~Pk)− αkK−1 ·G · ~pk (387)

= ~Vk − αkK−1 · ~̃pk (388)

= ~Vk − αk ~dk (389)

and we can insert this minor extra calculation inside the algorithm and get the velocity solution nearly
for free. The final CG algorithm is then

solver cg:

• compute ~V0 = K−1 · (~f −G · ~P0)

• ~r0 = GT · ~V0 − ~h

• if ~r0 is sufficiently small, then return (~V0, ~P0) as the result

• ~p0 = ~r0

• k = 0

• repeat

– compute ~̃pk = G · ~pk
– solve K · ~dk = p̃k

– compute αk = (~rTk · ~rk)/(~̃pTk · ~dk)

– ~Pk+1 = ~Pk + αk~pk

– ~Vk+1 = ~Vk − αk ~dk
– ~rk+1 = ~rk − αkGT · ~dk
– if ~rk+1 is sufficiently small (||~rk+1||2/||~r0||2 < tol), then exit loop

– βk = (rTk+1rk+1)/(rTk rk)
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– ~pk+1 = ~rk+1 + βk~pk

– k = k + 1

• return ~Pk+1 as result

This iterative algorithm will converge to the solution with a rate which depends on the condition
number of the S matrix, which is not easy to compute since S is never built. However, it has been
established that large viscosity contrasts in the domain will have a negative impact on the convergence.

Remark. This algorithm requires one solve with matrix K per iteration but says nothing about the method
employed to do so (direct solver, iterative solver, ...)

One thing we know improves the convergence of any iterative solver is the use of a preconditioner
matrix and therefore now focus on the Preconditioned Conjugate Gradient (PCG) method. Once again
a quick Google search yields:

Algorithm obtained from Wikipedia25.

Note that in the algorithm above the preconditioner matrix M has to be symmetric positive-definite
and fixed, i.e., cannot change from iteration to iteration. We see that this algorithm introduces an
additional vector ~z and a solve with the matrix M at each iteration, which means that M must be such
that solving M · ~x = ~f where ~f is a given rhs vector must be cheap. Ultimately, the PCG algorithm
applied to the Schur complement equation takes the form:

solver pcg:

• compute V0 = K−1(f −GP0)

• r0 = GTV0 − h

• if ~r0 is sufficiently small, then return (~V0, ~P0) as the result

• ~z0 = M−1 · ~r0

• ~p0 = ~z0

• k = 0

• repeat

– compute ~̃pk = G · ~pk

25https://en.wikipedia.org/wiki/Conjugate_gradient_method
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– solve K · ~dk = ~̃pk

– compute αk = (~rTk · ~zk)/(~̃pTk · ~dk)

– ~Pk+1 = Pk + αk~pk

– ~Vk+1 = Vk − αk ~dk
– ~rk+1 = ~rk − αkGT · ~dk
– if rk+1 is sufficiently small (||rk+1||2/||r0||2 < tol), then exit loop

– ~zk+1 = M−1 · rk+1

– βk = (~zTk+1 · ~rk+1)/(~zTk · ~rk)

– ~pk+1 = ~zk+1 + βk~pk

– k = k + 1

• return ~Pk+1 as result

Following [1041] one can define the following matrix as preconditioner:

M = diag
[
GT (diag[K])−1G

]
which is the preconditioner used for the Citcom codes (see appendix ??). It can be constructed while the
FEM matrix is being built/assembled and it is trivial to invert.
how to compute M for the Schur complement ?

7.13.4 The Augmented Lagrangian approach

see LaCoDe paper.
We start from the saddle point Stokes system:(

K G
GT 0

)
·
(

~V
~P

)
=

(
~f
~h

)
(390)

The AL method consists of subtracting λ−1Mp · ~P from the left and right-side of the mass conservation
equation (where Mp is the pressure mass matrix) and introducing the following iterative scheme:(

K G
GT −λ−1Mp

)
·
(

~Vk+1

~Pk+1

)
=

(
~f

~h− λ−1Mp · ~Pk

)
(391)

where k is the iteration counter and λ is an artificial compressibility term which has the dimensions of
dynamic viscosity. The choice of λ can be difficult as too low or too high a value yields either erroneous
results and/or terribly ill-conditioned matrices. LaCoDe paper (!!) use such a method and report that

λ = maxΩ(η) works well. Note that at convergence we have ||~Pk+1− ~Pk|| < ε and then Eq.(391) converges
to Eq.(390) and the velocity and pressure fields are solution of the unmodified system Eq.(390).

The introduction of this term serves one purpose: allowing us to solve the system in a segregated
manner (i.e. computing successive iterates of the velocity and pressure fields until convergence is reached).
The second line of Eq. (391) is

GT · ~Vk+1 − λ−1Mp · ~Pk+1 = ~h− λ−1Mp · ~Pk

and can therefore be rewritten

~Pk+1 = ~Pk + λM−1
p · (GT · ~Vk+1 − ~h)
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We can then substitute this expression of ~Pk+1 in the first equation. This yields:

K · ~Vk+1 = ~f −G · Pk+1) (392)

K · ~Vk+1 = ~f −G · (~Pk + λM−1
p · (GT · ~Vk+1 − ~h)) (393)

K · ~Vk+1 + λG ·M−1
p ·GT · ~Vk+1 = ~f −G · (~Pk − λM−1

p
~h)) (394)(

K + λG ·M−1
p ·GT

)︸ ︷︷ ︸
K̃

·~Vk+1 = ~f −G · (~Pk − λM−1
p
~h))︸ ︷︷ ︸

~fk+1

(395)

(396)

The iterative algorithm goes as follows:

1. if it is the first timestep, set ~P0 = 0 , otherwise set it to the pressure of the previous timestep.

2. calculate K̃

3. calculate ~fk+1

4. solve K̃ · ~Vk+1 = ~fk+1

5. update pressure with ~Pk+1 = ~Pk + λM−1
p · (GT · ~Vk+1 − ~h)

Remark. If discontinuous pressures are used, the pressure mass matrix can be inverted element by
element which is cheaper than inverting Mp as a whole.

Remark. This method has obvious ties with the penalty method.

Remark. If λ >> maxΩ η then the matrix K̃ is ill-conditioned and an iterative solver must be used.

7.13.5 The GMRES approach

The Generalized Minimal Residual method [813] is an extension of MINRES (which is only applicable to
symmetric systems) to unsymmetric systems. Like MINRES, it generates a sequence of orthogonal vectors
and combines these through a least-squares solve and update. However, in the absence of symmetry this
can no longer be done with short recurrences. As a consequence, all previously computed vectors in the
orthogonal sequence have to be retained and for this reason ”restarted” versions of the method are used.

It must be said that the (preconditioned) GMRES method is actually much more difficult to implement
than the (preconditioned) Conjugate Gradient method. However, since it can deal with unsymmetric
matrices, it means that it can be applied directly to the Stokes system matrix (as opposed to the CG
method which is used on the Schur complement equation).

Resources: [309, p208] [812] [54]
finish GMRES algo description. not sure what to do, hard to explain, not easy to code.
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7.14 The consistent boundary flux (CBF)

The Consistent Boundary Flux technique was devised to alleviate the problem of the accuracy of primary
variables derivatives (mainly velocity and temperature) on boundaries. These derivatives are important
since they are needed to compute the heat flux (and therefore the Nusselt number) or dynamic topography
and geoid.

The idea was first introduced in [676] and later used in geodynamics [1033]. It was finally implemented
in the CitcomS code [1035] and more recently in the ASPECT code (dynamic topography postprocessor).
Note that the CBF should be seen as a post-processor step as it does not alter the primary variables
values.

The CBF method is implemented and used in Stone ??. It is also discussed but not explicitely named
in [769, p309]. Also see [588, 424, 664].

7.14.1 The CBF applied to the Stokes equation

We start from the strong form:

~∇ · σ +~b = ~0 (397)

and then write the weak form on an element e:∫
Ωe

Nν
i
~∇ · σdΩ +

∫
Ωe

Nν
i
~b dΩ = ~0 (398)

We then use the two equations:

∇ · (Nσ) = N∇ · σ + ∇N · σ (chain rule)∫
Ω

(∇ · σ) dV =

∫
Γ

σ · n dS (divergence theorem)

and integrate by parts in order to obtain:∫
Γ

Nν
i σ · ndS −

∫
Ωe

~∇Nν
i · σdΩ +

∫
Ωe

Nν
i
~bdΩ = ~0 (399)

and since the traction vector ~t is given by ~t = σ · n we have:∫
Γe

Nν
i tdS =

∫
Ωe

~∇Nν
i · σ dΩ−

∫
Ωe

Nν
i
~b dΩ (400)

The core idea of the method lies in considering the traction vector as an unknown living on the nodes on
the boundary, and assuming we have already solved the Stokes equation and therefore have obtained the
velocity and pressure.

Finally, since the traction vector can be expressed as a function of the velocity shape functions on the
edgem i.e.

~t =

m∑
i=1

Nν
i
~ti

the left hand term yields an edge (1D) mass matrix M ′ (see Section I).

Remark. In Stone ?? an alternative to equation 400 is used. Although somewhat inefficient, the elemen-
tal matrices K and G and the corresponding body force rhs are built and the rhs of the traction equation
is computed as follows:

M ′ · T = −KV −GP + f

where T is the vector of assembled tractions which we want to compute and V and T are the solutions of
the Stokes problem.

Remark. The assembled mass matrix is tri-diagonal and can be easily solved with a Conjugate Gradient
method.

Remark. With a trapezoidal integration rule (i.e. Gauss-Lobatto - see Section 4.1.6) the matrix can even
be diagonalised and the resulting matrix is simply diagonal, which results in a very cheap solve [1033].
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7.14.2 The CBF applied to the heat transport equation

We start from the strong form of the heat transfer equation (without the source terms for simplicity):

ρCp

(
∂T

∂t
+ ~v · ~∇T

)
= ~∇ · k ~∇T

The weak form then writes:∫
Ω

NθρCp
∂T

∂t
dV + ρCp

∫
Ω

Nθ~v · ~∇TdV =

∫
Ω

Nθ ~∇ · k~∇TdV

Using once again integration by parts and divergence theorem:∫
Ω

NρCp
∂T

∂t
dV + ρCp

∫
Ω

Nv ·∇TdV =

∫
Γ

Nk∇T · ndΓ−
∫

Ω

∇N · k∇TdV

On the boundary we are interested in the heat flux q = −k∇T∫
Ω

NρCp
∂T

∂t
dV + ρCp

∫
Ω

Nv ·∇TdV = −
∫

Γ

Nq · ndΓ−
∫

Ω

∇N · k∇TdV

or, ∫
Γ

Nq · ndΓ = −
∫

Ω

NρCp
∂T

∂t
dV − ρCp

∫
Ω

Nv ·∇TdV −
∫

Ω

∇N · k∇TdV

Considering the normal heat flux qn = q · n as an unknown living on the nodes on the boundary,

qn =

2∑
i=1

qn|iNi

so that the left hand term becomes a mass matrix for the shape functions living on the boundary. We
have already covered the right hand side terms when building the FE system to solve the heat transport
equation, so that in the end

M ′ · Qn = −M · ∂T
∂t
−Ka · T −Kd · T

where Qn is the assembled vector of normal heat flux components. Note that in all terms the assembly
only takes place over the elements along the boundary.

Note that the resulting matrix is symmetric.

7.14.3 Some implementation details for the Stokes equation

What follows is relevant for Stone ?? which relies on Q1 shape functions for the velocity. Let us start
with a small example, a 3x2 element FE grid:

0 1 2

3 4 5

0 1 2 3

4 5 6 7

8 9 10 11

01 23 45 67

89 1011 1213 1415

16 17 18 19 20 21 22 23

Red color corresponds to the dofs in the x direction, blue color indicates a dof in the y direction.

We have nnp=12, nel=6, NfemV=24. Let us assume that free slip boundary conditions are applied.
The boundary conditions fix bc array is then:
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bc fix=[T T T T T T T T T T T T T T T T T T T T T T T T ]

Note that since corners belong to two edges, we effectively prescribed no-slip boundary conditions on
those.
why does array contain only T??

We wish to compute the tractions on the boundaries, and more precisely for the dofs for which a
Dirichlet velocity boundary condition has been prescribed. The number of (traction) unknowns NfemTr
is then the number of T in the bc fix array. In our specific case, we wave NfemTr= . This means that we finishfinish

need for each targeted dof to be able to find its identity/number between 0 and NfemTr-1. We therefore
create the array bc nb which is filled as follows:

bc nb=[T T T T T T T T T T T T T T T T T T T T T T T T ]

This translates as follows in the code:

NfemTr=np . sum( b c f i x )
bc nb=np . z e r o s (NfemV, dtype=np . in t32 )
counter=0
f o r i in range (0 ,NfemV) :

i f ( b c f i x [ i ] ) :
bc nb [ i ]= counter
counter+=1

The algorithm is then as follows

A Prepare two arrays to store the matrix Mcbf and its right hand side rhscbf

B Loop over all elements

C For each element touching a boundary, compute the residual vector Rel = −fel + KelVel + GelPel

D Loop over the four edges of the element using the connectivity array

E For each edge loop over the number of degrees of freedom (2 in 2D)

F For each edge assess whether the dofs on both ends are target dofs.

G If so, compute the mass matrix Medge for this edge

H extract the 2 values off the element residual vector and assemble these in rhscbf

I Assemble Medge into NfemTrxNfemTr matrix using bc nb

M cbf = np . z e r o s ( ( NfemTr , NfemTr) ,np . f l o a t 6 4 ) # A
r h s c b f = np . z e r o s (NfemTr , np . f l o a t 6 4 )

f o r i e l in range (0 , ne l ) : # B

. . . compute e l ementa l r e s i d u a l . . . # C

#boundary 0−1 # D
f o r i in range (0 , ndofV ) : # E

i d o f 0 =2∗ i con [ 0 , i e l ]+ i
i d o f 1 =2∗ i con [ 1 , i e l ]+ i
i f ( b c f i x [ i d o f 0 ] and b c f i x [ i d o f 1 ] ) : # F

ido fTr0=bc nb [ i d o f 0 ]
ido fTr1=bc nb [ i d o f 1 ]
r h s c b f [ ido fTr0]+= r e s e l [0+ i ] # H
r h s c b f [ ido fTr1]+= r e s e l [2+ i ]
M cbf [ idofTr0 , ido fTr0]+=M edge [ 0 , 0 ] #
M cbf [ idofTr0 , ido fTr1]+=M edge [ 0 , 1 ] # I
M cbf [ idofTr1 , ido fTr0]+=M edge [ 1 , 0 ] #
M cbf [ idofTr1 , ido fTr1]+=M edge [ 1 , 1 ] #

#boundary 1−2 #[D]
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. . .

#boundary 2−3 #[D]

. . .

#boundary 3−0 #[D]

. . .
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7.15 The value of the timestep

The chosen time step dt used for time integration is chosen to comply with the Courant-Friedrichs-Lewy
condition [27].

δt = C min

(
h

max |v|
,
h2

κ

)
(401)

where h is a measure of the element size, κ = k/ρCp is the thermal diffusivity and C is the so-called CFL
number chosen in [0, 1[.

In essence the CFL condition arises when solving hyperbolic PDEs . It limits the time step in many
explicit time-marching computer simulations so that the simulation does not produce incorrect results.

This condition is not needed when solving the Stokes equation but it is mandatory when solving
the heat transport equation or any kind of advection-diffusion equation. Note that any increase of grid
resolution (i.e. h becomes smaller) yields an automatic decrease of the time step value.
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7.16 Mappings

The name isoparametric derives from the fact that the same (’iso’) functions are used as basis functions
and for the mapping to the reference element.

More generally, if ne denotes the number of nodes of an element and ng denotes the number of nodes
describing the geometry of the element, then the element is termed subparametric when ng < ne and
superparametric when ng > ne.

7.16.1 Linear mapping on a triangle

2

|\ s

| \ |_r

| \

3===1

Let us assume that the coordinates of the vertices are (x1, y1), (x2, y2), and (x3, y3). The coordinates
inside the reference element are (r, s). We then simply have the following relationship, i.e. any point of
the reference element can be mapped to the physical triangle as follows:

x = rx1 + sx2 + (1− r − s)x3 (402)

y = ry1 + sy2 + (1− r − s)y3 (403)

There is also an inverse map, which is easily computed:

r =
(y2 − y3)(x− x3)− (x2 − x3)(y − y3)

(x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3)
(404)

s =
−(y1 − y3)(x− x3) + (x1 − x3)(y − y3)

(x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3)
(405)

Remark. The denominator will not vanish, because it is a multiple of the area of the triangle.

7.16.2 Bilinear mapping on a linear quadrilateral

The is in the (r, s) space. It is a square of size 2 × 2 centered around the origin. We wish to map it to
the quadrilateral in the (x, y) space:

The coordinates of the vertices are (x1, y1), (x2, y2), (x3, y3) and (x4, y4). We then simply have the
following relationship, i.e. any point of the reference element can be mapped to the physical quadrilateral
as follows:

x = N1(r, s)x1 +N2(r, s)x2 +N3(r, s)x3 +N4(r, s)x4 (406)

y = N1(r, s)y1 +N2(r, s)y2 +N3(r, s)y3 +N4(r, s)y4 (407)

where the shape functions Ni(r, s) are defined in section 4.4.
In the following example the program randomly generates 10000 points inside the reference element

and computes their mapping into the (x, y) space.
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x1=−1 ; y1=−2
x2=3 ; y2=−1
x3=2 ; y3=2
x4=−3 ; y4=1

npts =10000
r=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
s=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
x=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
y=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )

f o r i in range (0 , npts ) :
# compute random r , s coord ina te s
r [ i ]=random . uniform (−1. ,+1)
s [ i ]=random . uniform (−1. ,+1)
# compute ba s i s func t i on va lue s at r , s
N1=0.25∗(1− r [ i ] ) ∗(1− s [ i ] )
N2=0.25∗(1+ r [ i ] ) ∗(1− s [ i ] )
N3=0.25∗(1+ r [ i ] ) ∗(1+ s [ i ] )
N4=0.25∗(1− r [ i ] ) ∗(1+ s [ i ] )
# compute x , y coord ina te s
x [ i ]=N1∗x1+N2∗x2+N3∗x3+N4∗x4
y [ i ]=N1∗y1+N2∗y2+N3∗y3+N4∗y4

np . save txt ( ’ r s . a s c i i ’ , np . array ( [ r , s ] ) .T)
np . save txt ( ’ xy . a s c i i ’ , np . array ( [ x , y ] ) .T)
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There is also an inverse map, which is not so easily computed (see section 7.19). However, if the
quadrilateral in the (x, y) space is a rectangle of size (hx, hy), the inverse mapping is trivial:

r =
x− x1

x2 − x1
(408)

s =
y − y1

y4 − y1
(409)

Also in this case the shape functions can easily be written as functions of (x, y):

N1(x, y) =

(
x3 − x
hx

)(
y3 − y
hy

)
N2(x, y) =

(
x− x1

hx

)(
y3 − y
hy

)
N3(x, y) =

(
x− x1

hx

)(
y − y1

hy

)
N4(x, y) =

(
x3 − x
hx

)(
y − y1

hy

)
On the one hand, any variable defined on the element can be approximated using the shape functions:

fh(r, s) =
∑
i

Ni(r, s)fi. (410)
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If we treat the coordinate variables x and y themselves as functions, then the shape functions can be
used to construct the mapping:

x(r, s) =
∑
i

Ni(r, s)xi y(r, s) =
∑
i

Ni(r, s)yi, (411)

leading to write

∂x

∂r
=

∑
i

∂Ni
∂r

xi (412)

∂x

∂s
=

∑
i

∂Ni
∂s

xi (413)

∂y

∂r
=

∑
i

∂Ni
∂r

yi (414)

∂y

∂s
=

∑
i

∂Ni
∂s

yi (415)

On the other hand we also have

∂f

∂r
=

∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
(416)

∂f

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
(417)

or in matrix form:  ∂f
∂r

∂f
∂s

 =

 ∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s


︸ ︷︷ ︸

J

·

 ∂f
∂x

∂f
∂y



where J is called the Jacobian of the transformation By inverting the Jacobian matrix, the desired
derivatives with respect to x and y can be obtained:

We have:  ∂f
∂x

∂f
∂y

 = J−1 ·

 ∂f
∂r

∂f
∂s


The inverse of the Jacobian matrix can be simply obtained in 2D (Kramer’s rule for 2× 2 matrices):

J−1 =
1

|J |

 ∂y
∂s −∂y∂r

−∂x∂s
∂x
∂r


The presence of the determinant in the denominator implies that it cannot be zero anywhere, or in other
words: the mapping is not valid if |J | is zero anywhere over the element.

Let us look at this by means of a simple example and let us consider the following element:
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Then a Q1 mapping yields:

x(r, s) =
∑
i

Ni(r, s)xi = N2 + 2N3 =
1

4
(3 + 3r + s+ rt) (418)

y(r, s) =
∑
i

Ni(r, s)yi = 2N3 +N4 =
1

4
(3 + r + 3s+ rt) (419)

The Jacobian matrix is then

J =

 ∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

 =
1

4

(
3 + s 1 + s
1 + r 3 + r

)

and its determinant is

|J | = 1

4
[(3 + s)(3 + r)− (1 + s)(1 + r)] =

1

2
+

1

8
r +

1

8
s (420)

It is clear that |J | > 0 for −1 ≤ r ≤ +1 and −1 ≤ s ≤ +1.
Let us now consider another example, the following element:

It follows that

x(r, s) =
∑
i

Ni(r, s)xi =
1

4
(1 + r)(7 + 5s) (421)

y(r, s) =
∑
i

Ni(r, s)yi =
1

4
(17 + 5r + 7s− 5rs) (422)

and the determinant:

|J | = 3

2
− 15r

4
+

15s

4

is zero for r − s = 2/5. This mapping is invalid!

Remark. Problems also arise when the Jacobian matrix is nearly singular due to round-off errors. To
avoid problems linked to badly shaped elements, it is recommended that the inside angles of an element
are larger than 15◦ and less than 165◦.

From Eq. 411, we can also write:

dx =
∂x

∂r
dr +

∂x

∂s
ds (423)

dy =
∂y

∂r
dr +

∂y

∂s
ds (424)

, or, (
dx
dy

)
= J ·

(
dr
ds

)
(425)

This means that ∫ ∫
...dxdy =

∫ ∫
...|J |drds
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7.16.3 biquadratic mapping of a straight-line face Q2 element

The reference element now contains 9 nodes: 1,3,7,9 are the corners, nodes 2,4,6,8 are the mid-face
points and node 5 is in the middle. The mapping from the (r, s) space to the (x, y) space is then as
follows:

(
x(r, s)
y(r, s)

)
= N1(r, s)

(
x1

y1

)
+N2(r, s)

(
x2

y2

)
+N3(r, s)

(
x3

y3

)
+N4(r, s)

(
x4

y4

)
+ N5(r, s)

(
x5

y5

)
+N6(r, s)

(
x6

y6

)
+N7(r, s)

(
x7

y7

)
+N8(r, s)

(
x4

y8

)
+ N9(r, s)

(
x9

y9

)
where

N1(r, t) = 0.5r(r − 1)0.5t(t− 1)

N2(r, t) = (1− r2)0.5t(t− 1)

N3(r, t) = 0.5r(r + 1)0.5t(t− 1)

N4(r, t) = 0.5r(r − 1)(1− t2)

N5(r, t) = (1− r2)(1− t2)

N6(r, t) = 0.5r(r + 1)(1− t2)

N7(r, t) = 0.5r(r − 1)0.5t(t+ 1)

N8(r, t) = (1− r2)0.5t(t+ 1)

N9(r, t) = 0.5r(r + 1)0.5t(t+ 1)

x1=−1 ; y1=−2
x3=3 ; y3=−1
x9=2 ; y9=2
x7=−3 ; y7=1
x2 =0.5∗( x1+x3 ) ; y2 =0.5∗( y1+y3 )
x4 =0.5∗( x1+x7 ) ; y4 =0.5∗( y1+y7 )
x6 =0.5∗( x3+x9 ) ; y6 =0.5∗( y3+y9 )
x8 =0.5∗( x7+x9 ) ; y8 =0.5∗( y7+y9 )
x5 =0.25∗( x1+x3+x7+x9 ) ; y5 =0.25∗( y1+y3+y7+y9 )

npts =10000
r=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
s=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
xQ1=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
yQ1=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
xQ2=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )
yQ2=np . z e r o s ( npts , dtype=np . f l o a t 6 4 )

f o r i in range (0 , npts ) :
# compute random r , s coord ina te s
r [ i ]=random . uniform (−1. ,+1)
s [ i ]=random . uniform (−1. ,+1)
# compute Q2 ba s i s func t i on va lue s at r , s
N1= 0.5∗ r [ i ] ∗ ( r [ i ]−1.) ∗ 0 .5∗ s [ i ] ∗ ( s [ i ]−1.)

139



N2= (1.− r [ i ]∗∗2 ) ∗ 0 .5∗ s [ i ] ∗ ( s [ i ]−1.)
N3= 0.5∗ r [ i ] ∗ ( r [ i ]+1 . ) ∗ 0 .5∗ s [ i ] ∗ ( s [ i ]−1.)
N4= 0.5∗ r [ i ] ∗ ( r [ i ]−1.) ∗ (1.− s [ i ]∗∗2 )
N5= (1.− r [ i ]∗∗2 ) ∗ (1.− s [ i ]∗∗2 )
N6= 0.5∗ r [ i ] ∗ ( r [ i ]+1 . ) ∗ (1.− s [ i ]∗∗2 )
N7= 0.5∗ r [ i ] ∗ ( r [ i ]−1.) ∗ 0 .5∗ s [ i ] ∗ ( s [ i ]+1 . )
N8= (1.− r [ i ]∗∗2 ) ∗ 0 .5∗ s [ i ] ∗ ( s [ i ]+1 . )
N9= 0.5∗ r [ i ] ∗ ( r [ i ]+1 . ) ∗ 0 .5∗ s [ i ] ∗ ( s [ i ]+1 . )
# compute x , y coord ina te s
xQ2 [ i ]=N1∗x1+N2∗x2+N3∗x3+N4∗x4+N5∗x5+N6∗x6+N7∗x7+N8∗x8+N9∗x9
yQ2 [ i ]=N1∗y1+N2∗y2+N3∗y3+N4∗y4+N5∗y5+N6∗y6+N7∗y7+N8∗y8+N9∗y9
# compute Q1 ba s i s func t i on va lue s at r , s
N1=0.25∗(1− r [ i ] ) ∗(1− s [ i ] )
N2=0.25∗(1+ r [ i ] ) ∗(1− s [ i ] )
N3=0.25∗(1+ r [ i ] ) ∗(1+ s [ i ] )
N4=0.25∗(1− r [ i ] ) ∗(1+ s [ i ] )
# compute x , y coord ina te s
xQ1 [ i ]=N1∗x1+N2∗x3+N3∗x9+N4∗x7
yQ1 [ i ]=N1∗y1+N2∗y3+N3∗y9+N4∗y7

np . save txt ( ’ r s . a s c i i ’ , np . array ( [ r , s ] ) .T)
np . save txt ( ’xyQ1 . a s c i i ’ , np . array ( [ xQ1 , yQ1 ] ) .T)
np . save txt ( ’xyQ2 . a s c i i ’ , np . array ( [ xQ2 , yQ2 ] ) .T)
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a) 10,000 random points in the reference element; b,c) image of these points by means of a bilinear and

biquadratic mapping respectively. When the sides of the element are straight we see that a Q1 mapping is

sufficient.

7.16.4 biquadratic mapping of a not-so straight-line face Q2 element

We now carry out the same exercise as before but nodes 2 and 8 are no more in the middle of nodes 1-3
and 7-9 respectively.
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a) 10,000 random points in the reference element; b,c) image of these points by means of a bilinear and

biquadratic mapping respectively. In this case we see that the Q2 mapping manages to capture the ’real’ shape

of the element.

7.16.5 bilinear, biquadratic and bicubic mapping in an annulus

In the light of what precedes, we can now ask ourselves how this translates to a real geodynamic cas.
Let us then consider the case of an annular domain, a cross section of a hollow sphere. When using
quadrilateral elements, the mesh will look similar to this:
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We here focus on Q1, Q2 and Q3 mappings. We single out an element, and arbitrarily define it as
follows in polar coordinates:

theta1 =23./180.∗np . p i
theta2 =52./180.∗np . p i
R1=1.
R2=1.5

The Q1 mapping requires four points, the Q2 nine points and the Q3 sixteen points. These are placed
equidistantly in the r, θ coordinate system, as shown hereunder:
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Left to right: position of the nodes for the Q1, Q2 and Q3 mappings.

As before, we randomly shoot 10,000 points inside the reference element and map these out in the
x, y space. Resulting swarms of points are shown in the following figures:
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right: position of the mapped points for the Q1, Q2 and Q3 mappings.

The image of a square with a Q1 mapping is obviously a quadrilateral so that it looks like quite a few
points land outside of the domain R1 ≤ r ≤ R2. Note that points are well within 23◦ ≤ θ ≤ 52◦, which
can simply be explained by the fact that the faces of the element are straight lines.

However, it looks like the biquadratic and bicubic mappings are doing a much better job at mapping
the region of space R1 ≤ r ≤ R2. In order to characterise this better, we now place 10,000 points on the
bottom face of the reference element (i.e. s = −1) and once again compute their coordinates in the the
x, y space:

a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

y

x b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

y

x c)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

y

x Left to

right: position of the mapped points for the Q1, Q2 and Q3 mappings.
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For each point i we now compute ist distance ri to the origin, which, if the mapping was perfect,
whoudl be exactly equal to R1 = 1. On the following plots are shown the error ri− 1 for all points, from
r = −1 to r = +1.
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right: radius error of the mapped points for the Q1, Q2 and Q3 mappings.

We see that the amplitude of the error decreases with the order of the mapping used, which is why
for instance ASPECT uses a Q4 mapping by default. Actually, in this particular case, the equation
which describes the cicrle is not a polynomial so that no high-order mapping will ever be able to exactly
represent the curved boundary of the element!

Another interesting point to keep in mind is that the location of the quadrature points in the x, y space
is also determined by the mapping used, which can have consequences on the accuracy of the integration
and it will be reflected (for instance) on the error convergence rate.

Finally, the coordinates of the nodes of the element in the x, y are uniquely determined when they
are on the convex hull of the element ( for instance nodes 0-7 for Q2) but we need to choose the position
of the last nodes which are inside the element. Unfortunately, this choice is not neutral.
re ask Wolfgang about this - correlate with deal.ii
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7.17 Exporting data to vtk format

This format seems to be the universally accepted format for 2D and 3D visualisation in Computational
Geodynamics. Such files can be opened with free softwares such as Paraview 26, MayaVi 27 or Visit 28.

Unfortunately it is my experience that no simple tutorial exists about how to build such files. There
is an official document which describes the vtk format29 but it delivers the information in a convoluted
way. I therefore describe hereafter how fieldstone builds the vtk files.

I hereunder show vtk file corresponding to the 3x2 grid presented earlier 7.8. In this particular example
there are:

• 12 nodes and 6 elements

• 1 elemental field: the pressure p)

• 2 nodal fields: 1 scalar (the smoothed pressure q), 1 vector (the velocity field u,v,0)

Note that vtk files are inherently 3D so that even in the case of a 2D simulation the z-coordinate of the
points and for instance their z-velocity component must be provided. The file, usually called solution.vtu
starts with a header:

<VTKFile type=’ UnstructuredGrid ’ v e r s i o n=’ 0 .1 ’ byte o rde r=’ BigEndian ’>
<UnstructuredGrid>
<Piece NumberOfPoints=’ 12 ’ NumberOfCells=’ 6 ’>

We then proceed to write the node coordinates as follows:

<Points>
<DataArray type=’ Float32 ’ NumberOfComponents=’ 3 ’ Format=’ a s c i i ’>
0.000000 e+00 0.000000 e+00 0.000000 e+00
3.333333 e−01 0.000000 e+00 0.000000 e+00
6.666667 e−01 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 5.000000 e−01 0.000000 e+00
3.333333 e−01 5.000000 e−01 0.000000 e+00
6.666667 e−01 5.000000 e−01 0.000000 e+00
1.000000 e+00 5.000000 e−01 0.000000 e+00
0.000000 e+00 1.000000 e+00 0.000000 e+00
3.333333 e−01 1.000000 e+00 0.000000 e+00
6.666667 e−01 1.000000 e+00 0.000000 e+00
1.000000 e+00 1.000000 e+00 0.000000 e+00
</DataArray>
</Points>

These are followed by the elemental field(s):

<CellData S c a l a r s=’ s c a l a r s ’>
<DataArray type=’ Float32 ’ Name=’p ’ Format=’ a s c i i ’>
−1.333333 e+00
−3.104414e−10
1.333333 e+00
−1.333333 e+00
8.278417 e−17
1.333333 e+00
</DataArray>
</CellData>

Nodal quantities are written next:

<PointData S c a l a r s=’ s c a l a r s ’>
<DataArray type=’ Float32 ’ NumberOfComponents=’ 3 ’ Name=’ v e l o c i t y ’ Format=’ a s c i i ’>
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00

26https://www.paraview.org/
27https://docs.enthought.com/mayavi/mayavi/
28https://wci.llnl.gov/simulation/computer-codes/visit/
29https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf

143



0.000000 e+00 0.000000 e+00 0.000000 e+00
8.888885 e−08 −8.278405e−24 0.000000 e+00
8.888885 e−08 1.655682 e−23 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
</DataArray>
<DataArray type=’ Float32 ’ NumberOfComponents=’ 1 ’ Name=’ q ’ Format=’ a s c i i ’>
−1.333333 e+00
−6.666664e−01
6.666664 e−01
1.333333 e+00
−1.333333 e+00
−6.666664e−01
6.666664 e−01
1.333333 e+00
−1.333333 e+00
−6.666664e−01
6.666664 e−01
1.333333 e+00
</DataArray>
</PointData>

To these informations we must append 3 more datasets. The first one is the connectivity, the second
one is the offsets and the third one is the type. The first one is trivial since said connectivity is needed
for the Finite Elements. The second must be understood as follows: when reading the connectivity
information in a linear manner the offset values indicate the beginning of each element (omitting the zero
value). The third simply is the type of element as given in the vtk format document (9 corresponds to a
generic quadrilateral with an internal numbering consistent with ours).

<Cel l s>
<DataArray type=’ Int32 ’ Name=’ c o n n e c t i v i t y ’ Format=’ a s c i i ’>
0 1 5 4
1 2 6 5
2 3 7 6
4 5 9 8
5 6 10 9
6 7 11 10
</DataArray>
<DataArray type=’ Int32 ’ Name=’ o f f s e t s ’ Format=’ a s c i i ’>
4
8
12
16
20
24
</DataArray>
<DataArray type=’ Int32 ’ Name=’ types ’ Format=’ a s c i i ’>
9
9
9
9
9
9
</DataArray>
</Ce l l s>

The file is then closed with

</Piece>
</UnstructuredGrid>
</VTKFile>

The solution.vtu file can then be opened with ParaView, MayaVi or Visit and the reader is advised
to find tutorials online on how to install and use these softwares.
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7.18 Runge-Kutta methods

These methods were developed around 1900 by the German mathematicians Carl Runge and Martin
Kutta. The RK methods are methods for the numerical integration of ODEs30. These methods are well
documented in any numerical analysis textbook and the reader is referred to [383, 521]. Any Runge-Kutta
method is uniquely identified by its Butcher tableau (REF?) which contains all necessary coefficients to
build the algorithm.

The simplest RungeKutta method is the (forward) Euler method. Its tableau is:
0

1
The standard second-order RK method method (also called midpoint method) is:

0
1/2 1/2

0 1

Another second-order RK method, called Heun’s method31 is follows:
0
1 1

1/2 1/2
A third-order RK method is as follows:

0
1/2 1/2
1 -1 2

1/6 4/6 1/6
The RK4 method falls in this framework. Its tableau is:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/6 1/3 1/6
A slight variation of the standard RK4 method is also due to Kutta in 1901 and is called the 3/8-rule.

Almost all of the error coefficients are smaller than in the standard method but it requires slightly more
FLOPs per time step. Its Butcher tableau is

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8
The following method is called the Runge-Kutta-Fehlberg method and is commonly abbreviated

RKF4532 . Its Butcher tableau is as follows:
0

1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 0

The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the
second row gives the fourth-order accurate method.

7.18.1 Using RK methods to advect particles/markers

In the context of geodynamical modelling, one is usually confronted to the following problem: now that
I have a velocity field on my FE mesh, how can I use it to advect the Lagrangian markers?

30https://en.wikipedia.org/wiki/Runge-Kutta_methods
31https://en.wikipedia.org/wiki/Heun’s_method
32https://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
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Runge-Kutta methods are used to this effect but only their spatial component is used: the velocity
solution is not recomputed at the intermediate fractional timesteps, i.e. only the coefficients of the right
hand side of the tableaus is used.

The RK1 method is simple. Carry out a loop over markers and

1. interpolate velocity ~νm onto each marker m

2. compute new position as follows: ~rm(t+ δt) = ~rm(t) + ~νmδt

The RK2 method is also simple but requires a bit more work. Carry out a loop over markers and

1. interpolate velocity ~νm onto each marker m at position ~rm

2. compute new intermediate position as follows: ~r
(1)
m (t+ δt) = ~rm(t) + ~νmδt/2

3. compute velocity ~ν
(1)
m at position ~r

(1)
m

4. compute new position: ~rm(t+ δt) = ~rm(t) + ~ν
(1)
m δt

Note that the intermediate positions could be in a different element of the mesh so extra care must be
taken when computing intermediate velocities.

The RK3 method introduces two intermediate steps. Carry out a loop over markers and

1. interpolate velocity ~νm onto each marker m at position ~rm

2. compute new intermediate position as follows: ~r
(1)
m (t+ δt) = ~rm(t) + ~νmδt/2

3. compute velocity ~ν
(1)
m at position ~r

(1)
m

4. compute new intermediate position as follows: ~r
(2)
m (t+ δt) = ~rm(t) + (2~ν

(1)
m − ~νm)δt/2

5. compute velocity ~ν
(2)
m at position ~r

(2)
m

6. compute new position: ~rm(t+ δt) = ~rm(t) + (~νm + 4~ν
(1)
m + ~ν

(2)
m )δt/6
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7.19 Am I in or not? - finding reduced coordinates

It is quite common that at some point one must answer the question: ”Given a mesh and its connectivity
on the one hand, and the coordinates of a point on the other, how do I accurately and quickly determine
in which element the point resides?”

One typical occurence of such a problem is linked to the use of the Particle-In-Cell technique: particles
are advected and move through the mesh, and need to be localised at every time step. This question could
arise in the context of a benchmark where certain quantities need to be measured at specific locations
inside the domain.

7.19.1 Two-dimensional space

We shall first focus on quadrilaterals. There are many kinds of quadrilaterals as shown hereunder:

I wish to arrive at a single algorithm which is applicable to all quadrilaterals and therefore choose an
irregular quadrilateral. For simplicity, let us consider a Q1 element, with a single node at each corner.

0
1

23

M

Several rather simple options exist:

• we could subdivide the quadrilateral into two triangles and check whether point M is inside any of
them (as it turns out, this problem is rather straightforward for triangles. Simply google it.)

• We could check that point M is always on the left side of segments 0→ 1, 1→ 2, 2→ 3, 3→ 0.

• ...

Any of these approaches will work although some might be faster than others. In three-dimensions
all will however become cumbersome to implement and might not even work at all. Fortunately, there is
an elegant way to answer the question, as detailed in the following subsection.

7.19.2 Three-dimensional space

If point M is inside the quadrilateral, there exist a set of reduced coordinates r, s, t ∈ [−1 : 1]3 such that

4∑
i=1

Ni(rM , s, t)xi = xM

4∑
i=1

Ni(rM , s, t)yi = yM

4∑
i=1

Ni(rM , s, t)zi = zM
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This can be cast as a system of three equations and three unknowns. Unfortunately, each shape function
Ni contains a term rst (as well as rs, rt, and st) so that it is not a linear system and standard techniques
are not applicable. We must then use an iterative technique: the algorithm starts with a guess for values
r, s, t and improves on their value iteration after iteration.

The classical way of solving nonlinear systems of equations is Newton’s method. We can rewrite the
equations above as F (r, s, t) = 0:

8∑
i=1

Ni(r, s, t)xi − xM = 0

8∑
i=1

Ni(r, s, t)yi − yM = 0

8∑
i=1

Ni(r, s, t)zi − zM = 0 (426)

or,

Fr(r, s, t) = 0

Fs(r, s, t) = 0

Ft(r, s, t) = 0

so that we now have to find the zeroes of continuously differentiable functions F : R → R. The
recursion is simply:  rk+1

sk+1

tk+1

 =

 rk
sk
tk

− JF (rk, sk, tk)−1

 Fr(rk, sk, tk)
Fs(rk, sk, tk)
Ft(rk, sk, tk)


where J the Jacobian matrix:

JF (rk, sk, tk) =


∂Fr
∂r (rk, sk, tk) ∂Fr

∂s (rk, sk, tk) ∂Fr
∂t (rk, sk, tk)

∂Fs
∂r (rk, sk, tk) ∂Fs

∂s (rk, sk, tk) ∂Fs
∂t (rk, sk, tk)

∂Ft
∂r (rk, sk, tk) ∂Ft

∂s (rk, sk, tk) ∂Ft
∂t (rk, sk, tk)



=



8∑
i=1

∂Ni
∂r (rk, sk, tk)xi

8∑
i=1

∂Ni
∂s (rk, sk, tk)xi

8∑
i=1

∂Ni
∂t (rk, sk, tk)xi

8∑
i=1

∂Ni
∂r (rk, sk, tk)yi

8∑
i=1

∂Ni
∂s (rk, sk, tk)yi

8∑
i=1

∂Ni
∂t (rk, sk, tk)yi

8∑
i=1

∂Ni
∂r (rk, sk, tk)zi

8∑
i=1

∂Ni
∂s (rk, sk, tk)zi

8∑
i=1

∂Ni
∂t (rk, sk, tk)zi


In practice, we solve the following system:

JF (rk, sk, tk)

 rk+1

sk+1

tk+1

−
 rk

sk
tk

 = −

 Fr(rk, sk, tk)
Fs(rk, sk, tk)
Ft(rk, sk, tk)


Finally, the algorithm goes as follows:

• set guess values for r, s, t (typically 0)

• loop over k=0,...

• Compute rhs= −F (rk, sk, tk)

• Compute matrix JF (rk, sk, tk)
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• solve system for (drk, dsk, dtk)

• update rk+1 = rk + drk, sk+1 = sk + dsk, tk+1 = tk + dtk

• stop iterations when (drk, dsk, dtk) is small

• if rk, sk, tk ∈ [−1, 1]3 then M is inside.

This method converges quickly but involves iterations, and multiple solves of 3× 3 systems which, when
carried out for each marker and at each time step can prove to be expensive. A simple modification can
be added to the above algorithm: iterations should be carried out only when the point M is inside of a
cuboid of size [min

i
xi : max

i
xi]× [min

i
yi : max

i
yi]× [min

i
zi : max

i
zi] where the sums run over the vertices

of the element. In 2D this translates as follows: only carry out Newton iterations when M is inside the
red rectangle!

0
1

23

M

Note that the algorithm above extends to high degree elements such as Q2 and higher, even with
curved sides.
write about case when element is rectangle/cuboid
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7.20 Error measurements and convergence rates

What follows is written in the case of a two-dimensional model. Generalisation to 3D is trivial. What
follows is mostly borrowed from [885].

When measuring the order of accuracy of the primitive variables ~v and p, it is standard to report
errors in both the L1 and the L2 norm. For a scalar quantity Ψ, the L1 and L2 norms are computed as

‖Ψ‖1 =

∫
V

|Ψ|dV ‖Ψ‖2 =

√∫
V

Ψ2dV (427)

For a vector quantity ~k = (kx, ky) in a two-dimensional space, the L1 and L2 norms are defined as:

∥∥∥~k∥∥∥
1

=

∫
V

(|kx|+ |ky|)dV
∥∥∥~k∥∥∥

2
=

√∫
V

(k2
x + k2

y)dV (428)

To compute the respective norms the integrals in the above norms can be approximated by splitting
them into their element-wise contributions. The element volume integral can then be easily computed by
numerical integration using Gauss-Legendre quadrature.

The respective L1 and L2 norms for the pressure error can be evaluated via

ehp |1 =

ne∑
i=1

nq∑
q=1

|ehp(~rq)|wq|Jq| ehp |2 =

√√√√ ne∑
i=1

nq∑
q=1

|ehp(~rq)|2wq|Jq| (429)

where ehp(~rq) = ph(~rq)− p(~rq) is the pressure error evaluated at the q-th quadrature associated with the
ith element. ne and nq refer to the number of elements and the number of quadrature points per element.
wq and Jq are the quadrature weight and the Jacobian associated with point q.

The velocity error eh~v is evaluated using the following two norms

eh~v |1 =

ne∑
i=1

nq∑
q=1

[|ehu(~rq)|+ |ehv (~rq)|]wq|Jq| eh~v |2 =

√√√√ ne∑
i=1

nq∑
q=1

[|ehu(rq)|2 + ehv (rq)|2]wq|Jq| (430)

where ehu(~rq) = uh(~rq)− u(~rq) and ehv (~rq) = vh(~rq)− v(~rq).
Another norm is very rarely used in the geodynamics literature but is preferred in the Finite Element

literature: the H1 norm. The mathematical basis for this norm and the nature of the H1(Ω) Hilbert
space is to be found in many FE books [283, 545, 500]. This norm is expressed as follows for a function
f such that f, |∇f | ∈ L2(Ω) 33

‖f‖H1 =

(∫
Ω

(|f |2 + |∇f |2)dΩ

)1/2

(431)

We then have

eh~v |H1 =
∥∥~vh − ~v∥∥

H1 =

√√√√ d∑
i=1

∫
Ω

[
(vhi − vi)2 + ~∇(vhi − vi) · ~∇(vhi − vi)

]
dΩ (432)

where d is the number of dimensions. Note that sometimes the following semi-norm is used [281, 107]:

eh~v |H1 =
∥∥~vh − ~v∥∥

H1 =

√√√√ d∑
i=1

∫
Ω

[
~∇(vhi − vi) · ~∇(vhi − vi)

]
dΩ (433)

When computing the different error norms for ep and e~v for a set of numerical experiments with
varying resolution h we expect the error norms to follow the following relationships:

eh~v |1 = ChrvL1 eh~v |2 = ChrvL2 eh~v |H1 = ChrvH
1

(434)

33https://en.wikipedia.org/wiki/Sobolev_space
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ehp |1 = ChrpL1 ehp |2 = ChrpL2 (435)

where C is a resolution-independent constant and rpXX and rvXX are the convergence rates for pressure
and velocity in various norms, respectively. Using linear regression on the logarithm of the respective
error norm and the resolution h, one can compute the convergence rates of the numerical solutions.

As mentioned in [281], when finite element solutions converge at the same rates as the interpolants
we say that the method is optimal, i.e.:

eh~v |L2 = O(h3) eh~v |H1 = O(h2) ehp |L2
= O(h2) (436)

We note that when using discontinuous pressure space (e.g., P0, P−1), these bounds remain valid even
when the viscosity is discontinuous provided that the element boundaries conform to the discontinuity.

7.20.1 About extrapolation

Section contributed by W. Bangerth and part of Thieulot & Bangerth [in prep.]
In a number of numerical benchmarks we want to estimate the error Xh−X∗ between a quantity Xh

computed from the numerical solution ~uh, ph and the corresponding value X computed from the exact
solution ~u, p. Examples of such quantities X are the root mean square velocity vrms, but it could also be
a mass flux across a boundary, an average horizontal velocity at the top boundary, or any other scalar
quantity.

If the exact solution is known, then one can of course compute X from it. On the other hand, we would
of course like to assess convergence also in cases where the exact solution is not known. In that case, one
can compute an estimate X∗ for X by way of extrapolation. To this end, we make the assumption that
asymptotically, Xh converges to X at a fixed (but unknown) rate r, so that

eh = |Xh −X| ≈ Chr. (437)

Here, X, C and r are all unknown constants to be determined, although we are not really interested in
C. We can evaluate Xh from the numerical solution on successively refined meshes with mesh sizes h,
h/2, and h/4. Then, in addition to (437) we also have

eh/2 = |Xh/2 −X| ≈ C
(
h

2

)r
, (438)

eh/4 = |Xh/4 −X| ≈ C
(
h

4

)r
. (439)

Taking ratios of equations (437)–(439), and replacing the unknown X by an estimate X∗, we then arrive
at the following equation:

|Xh −X?|
|Xh/2 −X?|

=
|Xh/2 −X?|
|Xh/4 −X?|

= 2r.

If one assumes that Xh converges to X uniformly either from above or below (rather than oscillate around
X), then this equation allows us to solve for X∗ and r:

X? =
XhXh/2 −X2

h/2

Xh − 2Xh/2 +Xh/4
, r = log2

Xh/2 −X?

Xh/4 −X?
.

In the determination of r, we could also have used Xh and Xh/2, but using Xh/2 and Xh/4 is generally
more reliable because the higher order terms we have omitted in (437) are less visible on finer meshes.
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7.21 The initial temperature field

7.21.1 Single layer with imposed temperature b.c.

Let us take a single layer of material characterised by a heat capacity Cp, a heat conductivity k and a
heat production term H.

The Heat transport equation writes

ρCp(
∂T

∂t
+ ~v · ~∇T ) = ~∇ · (k~∇T ) + ρH

At steady state and in the absence of a velocity field, assuming that the material properties to be
independent of time and space, and assuming that there is no heat production (H = 0), this equation
simplifies to

∆T = 0

Assuming the layer to be parallel to the x-axis, the temperature is

T (x, y) = T (y) = αT + β

In order to specify the constants α and β, we need two constraints.
At the bottom of the layer y = yb a temperature Tb is prescribed while a temperature Tt is prescribed

at the top with y = yt. This ultimately yields a temperature field in the layer given by

T (y) =
Tt − Tb
yt − yb

(y − yb) + Tb

If now the heat production coefficient is not zero, the differential equation reads

k∆T +H = 0

The temperature field is then expected to be of the form

T (y) = −H
2k
y2 + αy + β

Supplied again with the same boundary conditions, this leads to

β = Tb +
H

2k
y2
b − αyb

ie,

T (y) = −H
2k

(y2 − y2
b ) + α(y − yb) + Tb

and finally

α =
Tt − Tb
yt − yb

+
H

2k
(yb + yt)

or,

T (y) = −H
2k

(y2 − y2
b ) +

(
Tt − Tb
yt − yb

+
H

2k
(yb + yt)

)
(y − yb) + Tb

Taking H = 0 in this equation obviously yields the temperature field obtained previously. Taking
k = 2.25, Tt = 0C, Tb = 550C, yt = 660km, yb = 630km yields the following temperature profiles and
heat fluxes when the heat production H varies:
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Looking at the values at the top, which are somewhat estimated to be about 55− 65mW/m2 [543, table
8.6], one sees that value H = 0.8e−6 yields a very acceptable heat flux. Looking at the bottom, the heat
flux is then about 0.03W/m2 which is somewhat problematic since the heat flux at the Moho is reported
to be somewhere between 10 and 20 mW/m2 in [543, table 7.1].

7.21.2 Single layer with imposed heat flux b.c.

Let us now assume that heat fluxes are imposed at the top and bottom of the layer:

We start again from the ODE
k∆T +H = 0

but only integrate it once:

k
dT

dy
+Hy + α = 0

At the bottom q = k(dT/dy)|y=yb = qb and at the top q = k(dT/dy)|y=yt = qt so that
to finish

7.21.3 Single layer with imposed heat flux and temperature b.c.

to finish

7.21.4 Half cooling space

7.21.5 Plate model

7.21.6 McKenzie slab

When doing thermo-mechanical modelling, the initial temperature field in the domain is of prime impor-
tance. This is especially true for the temperature in the slab for subduction modelling as its rheological
behaviour is strongly temperature-dependent. One could easily design a simple geometrical initial field
but it is unlikely to be close to the field of a slowly subducting slab at an angle in a hot mantle.

McKenzie [672] derived such approximate initial field from the steady-state energy equation in two
dimensions:

ρCp~v · ~∇T = k~∇2T
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We denote by Tl the temperature at the base of the lithosphere and l its thickness (i.e. the thickness of
the slab).

Assuming ~v = (vx, 0) yields

ρCpvx
∂T

∂x
= k

∂2T

∂x2

and substitution of T ′ = T/Tl, x
′ = x/l and z′ = z/l ∈ [0, 1] in this equation leads to

ρCpvx
Tl
l

∂T ′

∂x′
= k

Tl
l2

(
∂2T ′

∂x′2
+
∂2T ′

∂z′2

)
or

ρCpvxl

k

∂T ′

∂x′
=
∂2T ′

∂x′2
+
∂2T ′

∂z′2

and finally (see Eq. 2.3 of [672]):
∂2T ′

∂x′2
− 2R

∂T ′

∂x′
+
∂2T ′

∂z′2
= 0

where R is the thermal Reynolds number

R =
ρCpvxl

2k

The general solution to this PDE with T ′ = 1 on the top, left and right boundary is

T ′(x′, z′) = 1 +
∑
n

Cn exp
[(
R− (R2 + n2π2)1/2

)
x′
]

sin(nπz′)

We now must make an assumption about the temperature on the left boundary (x′ = 0), which is the
temperature of the lithosphere. For simplicity McKenzie assumes that T ′(x′ = 0, z′) = 1 − z′ so that
Cn = 2(−1)n/nπ and finally

T ′(x′, z′) = 1 + 2
∑
n

(−1)n

nπ
exp

[(
R− (R2 + n2π2)1/2

)
x′
]

sin(nπz′) (440)

Let us build a simple temperature model for a 250km× 50km slab, with ρ = 3000, Cp = 1250, k = 3.
The python code is available in images/mckenzie/mckenzie1.py.
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Left to right: Dimensionless temperature T ′ in a 250km × 50km slab for vx = 0.5, 1, 2cm/year

We logically recover the fact that the slower the slab penetrates the mantle the more temperature
diffusion dominates over temperature advection. For v = 0.5cm/year we see that that the slab assumes
a constant temperature T ′ = 1 at all depthes 0 ≤ z′ ≤ 1 for x′ ≥ 125km.

Note that this field is a steady-state field, valid for a constant density, heat conductivity and heat
capacity, zero heat production, that it implies that the velocity is constant and that the lithosphere
temperature is linear.

One can also embed the slab in a more realistic context, a subduction zone, involving a subducting
lithosphere, an over-riding plate and a mantle. The domain is 1000km×250km. The mantle temperature
is set to 1300◦. The slab dip can be varied and so can the velocity. The python code is available in
images/mckenzie/mckenzie2.py.
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Left to right: temperature T for vx = 0.5, 1, 2cm/year and φ = 30◦.
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Left to right: temperature T for vx = 1cm/year and φ = 15, 30, 45◦.
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7.22 Kinematic boundary conditions

Boundary conditions come in two basic flavors: essential and natural.

• Essential bcs directly affect DOFs, and are imposed on the FEM matrix.

• Natural bcs do not directly affect DOFs and are imposed on the right-hand side vector.

7.22.1 In-out flux boundary conditions for lithospheric models

The velocity on the side is given by

u(y) = vext y < L1

u(y) =
vin − vext
y2 − y1

(y − y1) + vext y1 < y < y2

u(y) = vin y > y2

The requirement for volume conservation is:

Φ =

∫ Ly

0

u(y)dy = 0

Having chosen vin (the velocity of the plate), one can then compute vext as a function of y1 and y2.

Φ =

∫ y1

0

u(y)dy +

∫ y2

y1

u(y)dy +

∫ Ly

y2

u(y)dy

= vexty1 +
1

2
(vin + vext)(y2 − y1) + (Ly − y2)vin

= vext[y1 +
1

2
(y2 − y1)] + vin[

1

2
(y2 − y1) + (Ly − y2)]

= vext
1

2
(y1 + y2) + vin[Ly −

1

2
(y1 + y1)]

and finally

vext = −vin
Ly − 1

2 (y1 + y1)
1
2 (y1 + y2)
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7.23 Computing gradients - the recovery process

write about recovering accurate strain rate components and heat flux components on the nodes.
Let ~g(~r) be the desired nodal field which we want to be the continuous Q1 representation of the

field ~∇fh. Since the derivative of the shape function does not exist on the nodes we need to design an
algorithm do do so. This problem is well known and has been investigated
refs!

. The main standard techniques are listed hereafter.

7.23.1 Global recovery

The global recovery approach is rather simple: we wish to find ~gh such that it satisfies∫
Ω

φ~gh dΩ =

∫
Ω

φ~∇fh dΩ ∀φ

We will then successively replace φ by all the shape functions Ni and since we have gh =
∑
j Nigi we

then obtain ∑
j

∫
NiNjdΩgi =

∫
Ni~∇fh dΩ

or,
M · ~G = ~f

7.23.2 Local recovery - centroid average over patch

7.23.3 Local recovery - nodal average over patch

Let j be the node at which we want to compute ~g. Then

~gj = ~g(~rj) =

∑
e adj. to j

|Ωe|(~∇f)e(~rj)∑
|Ωe|

where |Ωe| is the volume of the element and (~∇fh)e(~rj) is the gradient of f as obtained with the shape
functions inside element e and computed at location ~rj .

7.23.4 Local recovery - least squares over patch

7.23.5 Link to pressure smoothing

When the penalty method is used to solve the Stokes equation, the pressure is then given by p = −λ~∇·~v.
As explained in section 6.3, the velocity is first obtained and the pressure is recovered by using this
equation as a postprocessing step. Since the divergence cannot be computed easily at the nodes, the
pressure is traditionally computed in the middle of the elements, yielding an elemental pressure field
(remember, we are talking about Q1P0 elements here – bi/tri-linear velocity, discontinuous constant
pressure)
tie to fieldstone 12
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7.24 Tracking materials and/or interfaces

Unless using a fully Lagrangian formulation, one needs an additional numerical method to represent/track
the various materials present in an undeformable (Eulerian) mesh. The figure below (by B. Hillebrand)
illustrates the three main methods used in geodynamics.

Note that what follows is applicable to FEM, FDM, etc ...

7.24.1 The Particle-in-cell technique

Remark. The terms ’particle’ and ’marker’ are commonly (and unfortunately) interchangeably used in
the literature in the context of the particle-in-cell technique. However, one should be aware that the
marker-and-cell (MAC) technique is something different: it was invented in the early 60’s at the Los
Alamos Laboratories by Harlow and Welch [458]. For more information on MAC see the review paper by
McKee et al [671].

The Particle-in-cell method is by far the most widely used in computational geodynamics. In its most
basic form it is a rather simple method to implement and this probably owes to its success and early
adoption [738] in non-parallel codes such as SOPALE [357], I2VIS [392] or CITCOM [673] (Appendix B).
It has been implemented in ASPECT [365] and the inherent load balancing issues arising from the parallel
implementation as well as from the use of Adaptive Mesh Refinement are discussed. It has also been
implemented in the MILAMIN code [252] to study LLSVPs [688].

The basic methodology goes as follows:

1. distribute particles in the domain

2. assign a material identity (and/or any other quantity) to each of them

3. project particle quantities of the Eulerian nodes of the mesh

4. solve the Stokes equations for a new velocity field

5. interpolate the velocity onto the particles

6. move the particles with their respective velocities

7. go back to step 3

As it turns out each step above needs to be carefully executed and is more difficult than it first looks.

158



Distributing particles in the domain . Let us assume we wish to distribute Np particles in the
domain. How large must Np be? To simplify, one end member could be ’as many particles as possible
that fit in memory’ while the other end member could be ’one per element/cell on average’. While the
former does not necessarily guarantee a desired accuracy while being CPU and memory intensive, the
latter will certainly lead to zones in the domain void of particles which will be problematic since the
projection onto the mesh might yield zero values or very inaccurate values. How many particles (per
element/cell) will be enough? Also, should the particles be randomly distributed in the domain or on
some kind of regular grid? See fieldstone 13 (Section 8).

Averaging and projection . This is a very critical step. Unfortunately, there is no community-wide
agreed-upon method. The problem at hand boils down to: at a given location (~r) in space I need a
quantity which is carried by the particles. The first step is to find the particle(s) close to this point. If
done naively, this is a very costly affair, and begs the question what ’close’ means. Finding all particles
within a radius R of point ~r can be done very efficiently (e.g. with linked lists, Verlet lists, ...) but the
choice of R proves to be critical: if too small, there may not be any particle inside the circle, and if too
large there may be many particles inside the circle and the averaging over so many particles in space
will prove to be over diffusive. In practice, the FD or FE mesh is used to provide an indication of R.
In FDM, the four cells (or quarter cells) around a node represent the volume of space containing the
particles whose properties are to be averaged [296] as illustrated in the following figure:

Taken from [296]. The ”4-cell” and ”1-cell” schemes for projecting properties defined on the markers (denoted

by stars) onto a node (denoted by the solid circle). (A) The 4-cell scheme. The support of the interpolating

function Ni associated with node i is indicated by the shaded region. Only markers within the support of node i

contribute to the projection operation used to define the nodal value at i. The shape of the bilinear

interpolation function for node i is indicated in the lower frame. (B) The 1-cell scheme. The thick lines in the

lower frame indicate the grid used to discretize the Stokes equations, while the thin lines indicate the grid onto

which marker properties are projected. The 1-cell scheme utilizes a compact support of size ∆x× ∆y. The

support for nodes r, s, t are indicated by the shaded regions. Only markers within the nodal support contribute

to the projection operation for that node.

Given that the FEM requires to compute integrals over each element, only the particles inside the
element will contribute to the average values assigned to the quadrature points. However, one could also
decide to first average the properties onto the nodes before using these nodal values to assign values to
the quadrature points. In this case the FDM approach applies.

Finally, in both FDM and FEM bi/trilinear shape functions are used for the interpolation as they can
be interpreted as weighing functions. Higher order shape functions could also be used but the standard
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Q2 shape functions (Section 4.5) are 2-nd order polynomials which can take negative values (as opposed
to the Q1 shape functions which are strictly positive) and this can pose problems: in some cases, although
all values to be averaged are positive, their weighed average can be negative. Q1 projection PUCKETT
it would be nice to have a Q1 and Q2 drawing of a 1D element and show that indeed negative values arise

Assuming that we have established a list of particles, all tracking a field f(~r) and that each particle has
an associated weight Ni (function of the location where the average is to be computed or not), we must
now compute their average value < f >. The simplest approach which comes to mind is the (weighed)
arithmetic mean (am):

〈f〉am =

n∑
i=1

Nifi

n∑
i=1

Ni

In the case where f is the (mass) density ρ, it is indeed what should be used. However, turning now
to viscosity η, we know that its value can vary by many orders of magnitude over very short distances.
It is then likely that the average runs over values spanning values between 1018Pa s and 1025Pa s. As
explained in [823] the arithmetic averaging tends to ’favour’ large values: if the sum runs over 10 particles,
9 carrying the value 1025 and 1 carrying the value 1019, the average value (assuming Ni = 1 for simplicity)
is then

〈η〉 =
9 · 1025 + 1 · 1019

10
' 0.9 · 1025

which is much much closer to 1025 than to 1019. Other averagings are then commonly used, namely the
geometric mean (gm) and the harmonic mean (hm), defined as follows:

〈f〉gm =

(∏
i

fNii

)1/
∑
i
Ni

or, log10〈f〉gm =

∑
iNi log10 fi∑

i

Ni

and

〈f〉hm =

(∑n
i=1Ni

1
fi∑

iNi

)−1

or,
1

〈f〉hm
=

∑n
i=1Ni

1
fi∑

iNi

The geometric mean can be seen as a form of arithmetic mean of log10 values, while the harmonic mean
can be seen as a form of arithmetic mean of the inverse values.

Looking back at the above example, the geometric mean of the viscosities is given by

log〈η〉gm =
9 · 25 + 1 · 19

10
= 24.4 or, 〈η〉gm ' 2.5 · 1024

and the harmonic mean:

〈η〉hm '
(

1

10 · 1019

)−1

= 1020

We see that the harmonic mean tends to favour the small values. Also we recover the known property:

〈f〉am ≥ 〈f〉gm ≥ 〈f〉hm (441)

When all fi are equal to f0 their computed average should also be equal to f0. As a consequence

the weights Ni should fulfill the condition
n∑
i=1

Ni = 1. If all weights are equal, then Ni = 1/n and the

averagings become:

〈f〉am =
1

n

n∑
i=1

fi 〈f〉gm =
∏
i

f
1/n
i 〈f〉hm =

(
1

n

n∑
i

1

φi

)−1

(442)

There are many papers which have looked at particle averagings and projections. I will for now simply
point to the following ones: [823] [278] [296] [682] [739] [885] [365].
write more about particle averaging and projection
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Interpolation of the velocity onto particles .
Once the particle i has been localised inside a given element (Section 7.19) and its reduced coordinates

(r, s, t) determined, the velocity at this location can be computed through the shape functions:

~νi =

m∑
k=1

Ni(r, s, t)~νk

This approach is not without problem: while the nodal velocities ~νk are such that34 ~∇ · ~ν = 0 (in the
weak sense), the computed velocity ~νi is not necessarily divergence-free! In order to remedy this, a
Conservative Velocity Interpolation (CVI) has been proposed in [959].

Moving the particles This is discussed in the context of the Runge-Kutta Methods, see Section 7.18.1.

7.24.2 The level set function technique

This method was developed in the 80’s by Stanley Osher and James Sethian []
The Level-set Method (LSM), as it is commonly used in Computational Fluid Dynamics – and espe-

cially in Computational Geodynamics – represents a close curve Γ (say, in our case, the interface between
two fluids or layers) by means of a function φ (called the level-set function, or LSF). Γ is then the zero
level-set of φ:

Γ = {(x, y) | φ(x, y) = 0} (443)

The convention is that φ > 0 inside the region delimited by Γ and φ < 0 outside. The function value
indicates on which side of the interface a point is located (negative or positive) and this is used to identify
materials.

Furthermore, if the curve Γ moves with a velocity ~ν, then it satisfies the following equation:

∂φ

∂t
+ ~ν · ~∇φ = 0 (444)

The level set function is generally chosen to be a signed distance function, i.e. |~∇φ| = 1 everywhere
and its value is also the distance to the interface.

As explained in [477], the level-set function φ is advected with the velocity ~ν which is obtained by
solving the Stokes equations. This velocity does not guarantee that after an advection step the signed
distance quality of the LSF is preserved. The LSF then needs to be corrected, which is also called
reinitialisation. Finally, solving the advection equation must be done in an accurate manner both in time
and space, so that so-called ENO (essentially non-oscillatory) schemes are often employed for the space
derivative [718, 814].

The level set method has not often been used in the geodynamics community with some notable
exceptions [120, 121, 442, 429, 1053, 443, 854, 853, 477] An overview of the method and applications can
be found in [717].

7.24.3 The field/composition technique

This is the approach taken by the ASPECT developers [584, 468]. Each material i is represented by a
compositional field ci, which takes values between 0 and 1. The value at a point (Finite element node or
quadrature point) is 1 if it is in the domain covered by the material i, and 0 otherwise. In one dimension,
each compositional field is a Heavyside function. This approach is somewhat similar to the LSM but the
field is essentially discontinuous across the interface, which makes it very difficult to advect. On the plus
side, compositional fields need not be reinitialised, as opposed to LSF’s.

Accurate numerical advection is a notoriously difficult problem. Unless very specialised techniques are
used it often yields undershoot (ci < 0) and overshoot (ci > 0), which ultimately yields mass conservation
issues. Also, unless special care is taken, compositional fields tend to become more and more diffuse over
time: the SUPG method (Section 7.3) and the entropy viscosity method add small amounts of diffusion
to dampen the under- and overshoots. This means that at a given point two or more compositions may

34for incompressible flows, of course
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have values, which require some form of averaging. If under- and overshoots are present, these averagings
can become very problematic and even yield meaningless quantities (e.g. negative viscosities).
write about DG approach

7.24.4 The Volume-of-Fluid method

[479]

7.24.5 The method of characteristics

ask Arie to write something

[272]

7.24.6 Hybrid methods

In Braun et al. [135] a level set method is presented which is based on a 3-D set of triangulated points,
which makes it a hybrid between tracers and level set functions: in the DOUAR code (Appendix B) the
interface is then explicitely tracked by means of the tracers while the LSF is computed on the FE nodes.
Although very promising in theory, this method proved to be difficult to use in practice since it requires
a) a triangulation of the interfaces at t = 0 which is not trivial if the geometries are complex (think about
a slab in 3D); b) the addition or removal of tracers because of the interface deformation and the patching
of the triangulation; c) the calculation of the distance to the interfaces for each FE node based on the
triangle normal vectors. This probably explains why the Particle-In-Cell method was later implemented
in this code (pers. comm.). Note that another very similar approach is used in [814].
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7.25 Static condensation

The idea behind is quite simple: in some cases, there are dofs belonging to an element which only belong
to that element. For instance, the so-called MINI element (P+

1 × P1) showcases a bubble function in the

middle (see section ??). In the following, ~V ? corresponds to the list of such dofs inside an element. The
discretised Stokes equations on any element looks like: K L G

LT K? H
GT HT 0


e

 ~V
~V?
~P


e

=

 ~f
~f?

~h


e

(445)

This is only a re-writing of the elemental Stokes matrix where the matrix K has been split in four parts.
Note that the matrix K? is diagonal. checkcheck

This can also be re-written in non-matrix form:

K · ~V + L · ~V? + G · ~P = ~f (446)

LTV +K? · ~V? +H · ~P = ~f? (447)

GT · ~V +HT ~V? = ~h (448)

The V ? in the second equation can be isolated:

~V? = K−? · (~f? − LT · ~V −H · ~P)

and inserted in the first and third equations:

K · ~V + L
[
K−?(~f? − LT · ~V −H · ~P)

]
+ G · ~P = ~f (449)

GT · ~V +HT
[
K−?(~f? − LT · ~V −H · ~P)

]
= ~h (450)

or,

(K− L ·K−? · LT ) · ~V + (G− L ·K−? ·H) · ~P = ~f − L ·K−? · ~f? (451)

(GT −HT ·K−? · LT ) · ~V − (HT ·K−? ·H) · ~P = ~h−HT ·K−? · ~f? (452)

i.e.

K · ~V + G · ~P = ~f (453)

GT · ~V − C · ~P = ~h (454)

with

K = K − L ·K−? · LT (455)

G = G− L ·K−? ·H (456)

C = HT ·K−? ·H (457)

~f = ~f − L ·K−? · ~f? (458)

~h = ~h−HT ·K−? · ~f? (459)

Note that K is symmetric, and so is the Stokes matrix.
For instance, in the case of the MINI element, the dofs corresponding to the bubble could be eliminated

at the elemental level, which would make the Stokes matrix smaller. However, it is then important to
note that static condensation introduces a pressure-pressure term which was not there in the original
formulation.
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7.26 Measuring incompressibility

The velocity divergence error integrated over the whole element is given by

ediv =

∫
Ω

(~∇ · ~vh − ~∇ · ~v︸ ︷︷ ︸
=0

) dΩ =

∫
Ω

(~∇ · ~vh) dΩ (460)

where Γe is the boundary of element e and ~n is the unit outward normal of Γe.
Furthermore, one can show that [281]:

ediv =

∫
Γe

~vh · ~n dΓ

The reason is as follows and is called the divergence theorem35: suppose a volume V subset of Rd which
is compact and has a piecewise smooth boundary S, and if ~F is a continuously differentiable vector field
then ∫

V

(~∇ · ~F ) dV =

∫
S

(~F · ~n) dS

The left side is a volume integral while the right side is a surface integral. Note that sometimes the
notation d~S = ~n dS is used so that ~F · ~n dS = ~F · d~S.

The average velocity divergence over an element can be defined as

< ~∇ · ~v >e=
1

Ve

∫
Ωe

(~∇ · ~v) dΩ =
1

Ve

∫
Γe

~v · ~n dΓ

Note that for elements using discontinuous pressures we shall recover a zero divergence element per ele-
ment (local mass conservation) while for continuous pressure elements the mass conservation is guaranteed
only globally (i.e. over the whole domain), see section 3.13.2 of [425].

Note that one could instead compute < |~∇·~v| >e. Either volume or surface integral can be computed
by means of an appropriate Gauss-Legendre quadrature algorithm.
implement and report

35https://en.wikipedia.org/wiki/Divergence_theorem
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7.27 Periodic boundary conditions

This type of boundary conditions can be handy in some specific cases such as infinite domains. The idea
is simple: when material leaves the domain through a boundary it comes back in through the opposite
boundary (which of course presupposes a certain topology of the domain).

For instance, if one wants to model a gas at the molecular level and wishes to avoid interactions of the
molecules with the walls of the container, such boundary conditions can be used, mimicking an infinite
domain in all directions.

Let us consider the small mesh depicted hereunder:
missing picture

We wish to implement horizontal boundary conditions so that

u5 = u1 u10 = u6 u15 = u11 u20 = u16

One could of course rewrite these conditions as constraints and extend the Stokes matrix but this approach
turns out to be not practical at all.

Instead, the method is rather simple: replace in the connectivity array the dofs on the right side
(nodes 5, 10, 15, 20) by the dofs on the left side. In essence, we wrap the system upon itself in the
horizontal direction so that elements 4, 8 and 12 ’see’ and are ’made of’ the nodes 1, 6, 11 and 16. In
fact, this is only necessary during the assembly. Everywhere in the loops nodes 5, 10, 15 and 20 appear
one must replace them by their left pendants 1, 6, 11 and 16. This autmatically generates a matrix with
lines and columns corresponding to the u5, u10, u15 and u20 being exactly zero. The Stokes matrix is the
same size, the blocks are the same size and the symmetric character of the matrix is respected. However,
there remains a problem. There are zeros on the diagonal of the above mentioned lines and columns.
One must then place there 1 or a more appropriate value.

Another way of seeing this is as follows: let us assume we have built and assembled the Stokes matrix,
and we want to impose periodic b.c. so that dof j and i are the same. The algorithm is composed of four
steps:

1. add col j to col i

2. add row j to row i (including rhs)

3. zero out row j, col j

4. put average diagonal value on diagonal (j, j)

Remark. Unfortunately the non-zero pattern of the matrix with periodic b.c. is not the same as the
matrix without periodic b.c.
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7.28 Removing rotational nullspace

August 1, 2019 - C.T.

When free slip boundary conditions are prescribed in an annulus or hollow sphere geometry there
exists a rotational nullspace, or in other words there exists a tangential velocity field (’pure rotation’)
which, if added or subtracted to the solution, genrates a solution which is still the solution of the PDEs.

As in the pressure normalisation case (see section 7.12), the solution is simple:

1. fix the tangential velocity at one node on a boundary, and solve the sytem (the nullspace has been
removed)

2. post-process the solution to have the velocity field fulfill the required conditions, i.e. either a zero
net angular momentum or a zero net angular velocity of the domain.

Remark. In Aspect this is available under the option ”Remove nullspace = angular momentum” and
”Remove nullspace = net rotation”. The ”angular momentum” option removes a rotation such that the
net angular momentum is zero. The ”net rotation” option removes the net rotation of the domain.

Angular momentum approach In order to remove the angular momentum, we search for a rotation
vector ~ω such that ∫

Ω

ρ[~r × (~v − ~ω × ~r)] dV = ~0 (461)

The angular momentum of a rigid body can be obtained from the sum of the angular momentums of
the particles forming the body36:

~H =
∑
i

~Li (462)

=
∑
i

~ri ×mi~vi (463)

=
∑
i

~ri ×mi(~ωi × ~ri) (464)

=
∑
i

mi

 ∑
imi(y

2
i + z2

i ) −
∑
imixiyi −

∑
imixizi

−
∑
imixiyi

∑
imi(x

2
i + z2

i ) −
∑
imiyizi

−
∑
imixizi −

∑
imiyizi

∑
imi(x

2
i + y2

i )

 ·
 ωx

ωy
ωz

 (465)

In the continuum limit, we have:

~H =

∫
Ω

ρ(~r)~r × ~v dV (466)

and the 3× 3 moment of inertia tensor I (also called inertia tensor) is given by37

I =

∫
Ω

ρ(~r)[~r · ~r 1− ~r × ~r]dV (467)

so that the above equation writes: ~H = I · ~ω and then ~ω = I−1 · ~H.
Ultimately, at each velocity node a rotation about the rotation vector ~ω is then subtracted from the

velocity solution [1035, eq. 26]:
~vnew = ~vold − ~ω × ~r (468)

Angular velocity approach The angular velocity38 vector is given by ~ω = ~r×~v
r2 so that the volume-

averaged angular velocity of the cylindrical shell is:

~ω =
1

|Ω|

∫
Ω

~r × ~v
r2

dV (469)

36http://www.kwon3d.com/theory/moi/iten.html
37https://en.wikipedia.org/wiki/Moment_of_inertia
38https://en.wikipedia.org/wiki/Angular_velocity
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7.28.1 Three dimensions

The angular momentum vector is given by:

~H =

∫
Ω

ρ(~r)

 yw − zv
zu− xw
xv − yu

 d~r =

 ∫
Ω
ρ(~r)(yw − zv)d~r∫

Ω
ρ(~r)(zu− xw)d~r∫

Ω
ρ(~r)(xv − yu)d~r

 =

 Hx

Hy

Hz

 (470)

while the inertia tensor for a continuous body is given by

I =

∫
Ω

ρ(~r)[~r · ~r 1− ~r × ~r]d~r (471)

=

∫
Ω

ρ(~r)

 x2 + y2 + z2 0 0
0 x2 + y2 + z2 0
0 0 x2 + y2 + z2

−
 xx xy xz

yx yy yz
zx zy zz

 d~r (472)

=

∫
Ω

ρ(~r)

 y2 + z2 −xy −xz
−yx x2 + z2 −yz
−zx −zy x2 + y2

 d~r (473)

=


∫

Ω
ρ(~r)(y2 + z2)d~r −

∫
Ω
ρ(~r)xyd~r −

∫
Ω
ρ(~r)xzd~r

−
∫

Ω
ρ(~r)yxd~r

∫
Ω
ρ(~r)(x2 + z2)d~r −

∫
Ω
ρ(~r)yzd~r

−
∫

Ω
ρ(~r)zxd~r −

∫
Ω
ρ(~r)zyd~r

∫
Ω
ρ(~r)(x2 + y2)d~r

 (474)

=

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (475)

7.28.2 Two dimensions

In two dimensions, flow is taking place in the (x, y) plane. This means that ~r = (x, y, 0) and ~v = (u, v, 0)
are coplanar, and therefore that ~ω is perpendicular to the plane. We have then

~H =

∫
Ω

ρ(~r)

 0
0

xv − yu

 d~r =

 0
0∫

Ω
ρ(~r)(xv − yu)d~r

 (476)

and

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

 Ixx Ixy 0
Iyx Iyy 0
0 0 Izz

 (477)

since Ixz = Iyz = 0 as z = 0, and with Ixx =
∫

Ω
ρ(~r)y2d~r and Iyy =

∫
Ω
ρ(~r)x2d~r. The solution to

I · ~ω = ~H can be easily obtained (see Appendix G.2):

ωx =
1

det(I)

∣∣∣∣∣∣
0 Ixy 0
0 Iyy 0
H3 0 Izz

∣∣∣∣∣∣ = 0 (478)

ωy =
1

det(I)

∣∣∣∣∣∣
Ixx 0 0
Iyx 0 0
0 Hz Izz

∣∣∣∣∣∣ = 0 (479)

ωz =
1

det(I)

∣∣∣∣∣∣
Ixx Ixy 0
Iyx Iyy 0
0 0 Hz

∣∣∣∣∣∣ (480)

=
1

det(I)
(IxxIyyHz − IyxIxyHz) (481)

=
1

det(I)
(IxxIyy − IyxIxy)Hz (482)
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with det(I) = IxxIyyIzz − IyxIxyIzz. Concretely, this means that in 2D one does not need to solve the

system I · ~ω = ~H since only ωz is not zero.
Likewise, the volume-averaged angular velocity is then simply:

ωz =
1

|Ω|

∫
Ω

xv − yu
r2

d~r (483)
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7.29 Picard and Newton
explain why our eqs are nonlinear

7.29.1 Picard iterations

Let us consider the following system of nonlinear algebraic equations:

A( ~X) · ~X = ~b( ~X)

Both matrix and right hand side depend on the solution vector ~X.
For many mildly nonlinear problems, a simple successive substitution iteration scheme (also called

Picard method) will converge to the solution and it is given by the simple relationship:

A( ~Xn) · ~Xn+1 = ~b( ~Xn)

where n is the iteration number. It is easy to implement:

1. guess ~X0 or use the solution from previous time step

2. compute A and ~b with current solution vector ~Xold

3. solve system, obtain Tnew

4. check for convergence (are ~Xold and ~Xnew close enough?)

5. ~Xold ← ~Xnew

6. go back to 2.

There are various ways to test whether iterations have converged. The simplest one is to look at∥∥∥ ~Xold − ~Xnew
∥∥∥ (in the L1, L2 or maximum norm) and assess whether this term is smaller than a given

tolerance ε. However this approach poses a problem: in geodynamics, if two consecutively obtained
temperatures do not change by more than a thousandth of a Kelvin (say ε = 10−3K ) we could consider
that iterations have converged but looking now at velocities which are of the order of a cm/year (i.e.
∼ 3·10−11m/s) we would need a tolerance probably less than 10−13m/s. We see that using absolute values
for a convergence criterion is a potentially dangerous affair, which is why one uses a relative formulation
(thereby making ε a dimensionless parameter):∥∥∥ ~Xold − ~Xnew

∥∥∥∥∥∥ ~Xnew
∥∥∥ < ε

Another convergence criterion is proposed by Reddy (section 3.7.2) [769]:(
( ~Xold − ~Xnew) · ( ~Xold − ~Xnew)

Xnew ·Xnew

)1/2

< ε

Yet another convergence criterion is used in [886]: the means < ~Xold >, < ~Xnew > as well as the
variances σold and σnew are computed, followed by the correlation factor R:

R =
< ( ~Xold− < ~Xold >) · ( ~Xnew− < ~Xnew >) >√

σoldσnew

Since the correlation is normalised, it takes values between 0 (very dissimilar velocity fields) and 1 (very
similar fields). The following convergence criterion is then used: 1−R < ε.
write about nonlinear residual

Note that in some instances and improvement in convergence rate can be obtained by use of a relax-
ation formula where one first solves

A( ~Xn) · ~X? = ~b( ~Xn)

and then updates ~Xn as follows:

~Xn = γ ~Xn + (1− γ) ~X? 0 < γ ≤ 1

When γ = 1 we recover the standard Picard iterations formula above.
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7.30 Defect correction formulation

Work in progress.
We start from the system to solve:

A( ~X) · ~X = ~b( ~X)

with the associated residual vector ~F

~F ( ~X) = A( ~X) · ~X −~b( ~X)

The Newton-Raphson algorithm consists of two steps:

1. solve Jk · δ ~Xk = −~F ( ~Xk), or in the case of the incompressible Stokes equation FEM system:(
JVVk JVPk
JPVk 0

)
·
(
δ~Vk
δ ~Pk

)
=

(
−~FVk
−~FPk

)

2. update ~Xk+1 = ~Xk + αkδ ~Xk

The defect correction Picard approach consists of neglecting the derivative terms present in the J terms
(Eqs. 16,17,18 of [348]) so that

JVVk ' Kk JVPk ' G JPVk ' GT

and step 1 of the above iterations become:(
Kk G
GT 0

)
·
(
δ~Vk
δ ~Pk

)
=

(
−~FVk
−~FPk

)
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7.31 Parallel or not?

Let us assume that we want ro run a simulation of the whole Earth mantle with a constant resolution of
5km. The volume of the mantle is

Vmantle =
4

3
π(R3

out −R3
in) ' 1012km3

while the volume of an element is Ve = 125km3 (this is only an average since the tesselation of a hollow
sphere with hexahedra yields elements which are not all similar [888]). Consequently, the number of cells
needed to discretise the mantle is

Nel =
Vmantle
Ve

' 8× 109

We know that the matrix size is approx. 4 times the number of elements in 3D:

N ' 25× 109

Using between 9 and 125 particles per element (a very conservative number), the total number of particles
is then

Nparticles ≥ 1010

The unescapable conclusion is that high-resolution 3D calculations have a very large memory footprint
and require extremely long computational times.

The only way to overcome this problem is by resorting to using supercomputers with many processors
and large memory capacities.

The idea behind parallel programming is to have each processor carry out only a subset of the total
number of operations required. In order to reduce the memory footprint on each processor, only a subset
of the computational mesh is known by each: one speaks then of domain decomposition.

An example of such a large parallel calculation of 3D convection with domain decomposition in a
spherical shell can be found in [584]:

a) b)
a)Isocontours of the temperature field; b) Partitioning of the domain onto 512 proc. The mesh counts 1,424,176

cells. The solution has approximately 54 million unknowns (39 million vel., 1.7 million press., and 13 million

temp.)
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7.32 Stream function

7.32.1 In Cartesian coordinates

The Stream function (commonly denoted by Φ or Ψ) approach is a useful approach in fluid dynamics
as it can provide relatively quick solutions to 2D incompressible flow problems. Lines of constant Φ are
called stream lines and give a useful representation of the flow. The definition of the stream function is
such that

u = −∂Φ

∂y
(484)

v =
∂Φ

∂x
(485)

It then follows that the velocity field based on the above equations automatically fulfills the continuity
equation:

~∇ · ~ν =
∂u

∂x
+
∂v

∂y
= − ∂2Φ

∂x∂y
+

∂2Φ

∂x∂y
= 0

The stream function can also be substituted into the (constant viscosity) Stokes equation −~∇p+η∆~ν = ~0:

−∂p
∂x
− η

(
∂3Φ

∂2x∂y
+
∂3Φ

∂3y

)
= 0 (486)

−∂p
∂y
− η

(
∂3Φ

∂3x
+

∂3Φ

∂x∂2y

)
= 0 (487)

We can now eliminate the pressure term by taking the partial derivative of the first equation with respect
to y and the partial derivative of the second one with respect to x, and substracting both. We get:

∂4Φ

∂x4
+

∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
= 0 (488)

or, (
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
Φ = 0 (489)

or,
~∇2~∇2Φ = ~∇4Φ = 0

which is known as the Biharmonic operator.

7.32.2 In Cylindrical coordinates

TODO
VERIFY THOSE! minus signs ?

νr =
1

r

∂Φ

∂θ

νθ = −∂Φ

∂r
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7.33 Corner flow

The mantle wedge comprised between the downgoing slab and the overriding plate has been extensively
studied since very important geodynamical processes take place in it or right above it (slab dehydration
and water transport, melting, over-riding plate deformation, vulcanism, ...).

To first approximation one can approach the problem and simplify it greatly by assuming that both
plates kinematic behaviour are independent of what happens in the wedge, that the wedge geometry does
not change over time, that the problem is essentially 2D, and that the mantle extends very far away from
the actual wedge (plates are infinite).

Under such assumptions, it is possible to derive an analytical solution for incompressible Stokes flow
in the wedge as documented at p. 224 in Batchelor [55].
FIND refs. check new version of Vol7 theortical geophys

A corner flow setup is shown hereunder:

The solution to this problem is arrived at by means of the stream function Φ, defined as u = −∂Φ/∂y

and v = ∂Φ/partialx, so that we automatically have ~∇ · ~ν = 0. As shown in Section 7.32, the stream
function Φ is then the solution to the biharmonic equation

~∇2~∇2Φ = ~∇4Φ = 0

Considering the geometry of the problem has plates of infinite extent with constant relative velocity,
the solution for velocity everywhere is expected to be independent of r. This means the equation is
separable and we will use a solution of the form

Φ(r, θ) = R(r)f(θ)

However, given the infinite extent of the domain, the velocity is expected to be independent of r, so we
postulate R(r) = r (look at the relationship between velocity components and stream function), or:

Φ(r, θ) = rf(θ)

and we then have to solve

∆

(
1

r
(f + f ′′)

)
=

1

r3
(f + 2f ′′ + f ′′′′) = 0.

The solution of this equation for f is:

f(θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ

f ′(θ) = A cos θ −B sin θ + C(sin θ + θ cos θ) +D(cos θ − θ sin θ)

with

νr =
1

r

∂Φ

∂θ
= f ′(θ)

νθ = −∂Φ

∂r
= −f(θ)
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A, B, C and D are four constants to be determined by means of the boundary conditions which are as
follows:

νr(θ = 0) = 0

νθ(θ = 0) = 0

νr(θ = θ0) = −U0

νθ(θ = θ0) = 0

or,

f ′(0) = A+D = 0 (490)

f(0) = B = 0 (491)

f ′(θ0) = −U0 (492)

f(θ0) = 0 (493)

From the second equation it is trivial to see that B = 0, so that:

f(θ) = A sin θ + Cθ sin θ +Dθ cos θ

f ′(θ) = A cos θ + C(sin θ + θ cos θ) +D(cos θ − θ sin θ)

From the first one we obtain D = −A so that

f(θ) = A(sin θ − θ cos θ) + Cθ sin θ

f ′(θ) = A(θ sin θ) + C(sin θ + θ cos θ)

The last two boundary conditions yield:

0 = A(sin θ0 − θ0 cos θ0) + Cθ0 sin θ0

−U0 = A(θ0 sin θ0) + C(sin θ0 + θ0 cos θ0)

or,

A = −U0
θ0 sin θ0

θ2
0 − sin2 θ0

C = U0
sin θ0 − θ0 cos θ0

θ2
0 − sin2 θ0

Finally:

(A,B,C,D) = (−θ0 sin θ0, 0, sin θ0 − θ0 cos θ0, θ0 sin θ0)
U0

θ2
0 − sin2 θ0

We have

er = cos θex + sin θey (494)

eθ = − sin θex + cos θey (495)

so that the velocity field can be expressed in cartesian coordinates:

ν = νrer + νθeθ

= νr(cos θux + sin θey) + νθ(− sin θux + cos θey)

= (νr cos θ − νθ sin θ)ex + (νr sin θ + νθ cos θ)ey (496)
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8 Gravity and co

WORK in PROGRESS. DUH.
We start from the Poisson equation for the gravity potential:

∆U = 4πρG (497)

As a consequence, inside a domain where ρ = 0, the equation becomes ∆U = 0.
Let us assume that the spherical coordinates are appropriate for the problem at hand, and that the

potential can be decomposed as follows:

U(r, θ, φ) = Ur(r)U⊥(θ, φ)

The full Laplacian operator in spherical coordinates is given by39:

∆U =
1

r2

∂

∂r

(
r2 ∂U

∂r

)
︸ ︷︷ ︸

∆r

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1

r2 sin2 θ

∂2U

∂φ2︸ ︷︷ ︸
∆⊥

we then have:
(∆r + ∆⊥)(UrU⊥) = 0

i.e.,
U⊥∆rUr + Ur∆⊥U⊥ = 0

Assuming U⊥ =
∑
l

∑
m UlmYlm, knowing that spherical harmonics functions verify

r2∆⊥Y
m
l (θ, φ) = −l(l + 1)Y ml (θ, φ)

and assuming for now that the problem at hand is 1st degree (l=1), then

∆⊥Y
m
l (θ, φ) = − 2

r2
Y ml (θ, φ)

and then

∆rUr − Ur
2

r2
= 0

make a link with my 2018 paper.

39https://en.wikipedia.org/wiki/Laplace_operator
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Stone 01: simple analytical solution (D&H)

This fieldstone was developed in collaboration with Job Mos.
This benchmark is taken from [283] and is described fully in section 7.4. In order to illustrate the

behavior of selected mixed finite elements in the solution of stationary Stokes flow, we consider a two-
dimensional problem in the square domain Ω = [0, 1] × [0, 1], which possesses a closed-form analytical
solution. The problem consists of determining the velocity field v = (u, v) and the pressure p such that

η∆~v − ~∇p+~b = ~0 in Ω

~∇ · ~v = 0 in Ω

~v = ~0 on ΓD

where the fluid viscosity is taken as η = 1.

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (no-slip)

• direct solver

• isothermal

• isoviscous

• analytical solution
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Quadratic convergence for velocity error, linear convergence for pressure error, as expected.
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Stone 02: Stokes sphere

Viscosity and density directly computed at the quadrature points.

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (free-slip)

• isothermal

• non-isoviscous

• buoyancy-driven flow

• Stokes sphere
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Stone 03: Convection in a 2D box

This benchmark deals with the 2-D thermal convection of a fluid of infinite Prandtl number in a rect-
angular closed cell. In what follows, I carry out the case 1a, 1b, and 1c experiments as shown in [106]:
steady convection with constant viscosity in a square box.

The temperature is fixed to zero on top and to ∆T at the bottom, with reflecting symmetry at the
sidewalls (i.e. ∂xT = 0) and there are no internal heat sources. Free-slip conditions are implemented on
all boundaries.

The Rayleigh number is given by

Ra =
αgy∆Th3

κν
=
αgy∆Th3ρ2cp

kµ
(498)

In what follows, I use the following parameter values: Lx = Ly = 1,ρ0 = cP = k = µ = 1, T0 = 0,
α = 10−2, g = 102Ra and I run the model with Ra = 104, 105 and 106.

The initial temperature field is given by

T (x, y) = (1− y)− 0.01 cos(πx) sin(πy) (499)

The perturbation in the initial temperature fields leads to a perturbation of the density field and sets the
fluid in motion.

Depending on the initial Rayleigh number, the system ultimately reaches a steady state after some
time.

The Nusselt number (i.e. the mean surface temperature gradient over mean bottom temperature) is
computed as follows [106]:

Nu = Ly

∫
∂T
∂y (y = Ly)dx∫
T (y = 0)dx

(500)

Note that in our case the denominator is equal to 1 since Lx = 1 and the temperature at the bottom is
prescribed to be 1.

Finally, the steady state root mean square velocity and Nusselt number measurements are indicated
in Table ?? alongside those of [106] and [857]. (Note that this benchmark was also carried out and
published in other publications [913, 11, 383, 262, 610] but since they did not provide a complete set of
measurement values, they are not included in the table.)

Blankenbach et al Tackley [857]

Ra = 104 Vrms 42.864947± 0.000020 42.775
Nu 4.884409± 0.000010 4.878

Ra = 105 Vrms 193.21454± 0.00010 193.11
Nu 10.534095± 0.000010 10.531

Ra = 106 Vrms 833.98977± 0.00020 833.55
Nu 21.972465± 0.000020 21.998

Steady state Nusselt number Nu and Vrms measurements as reported in the literature.
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features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (free-slip)

• Boussinesq approximation

• direct solver

• non-isothermal

• buoyancy-driven flow

• isoviscous

• CFL-condition
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ToDo:
implement steady state criterion
reach steady state
do Ra=1e4, 1e5, 1e6
plot against blankenbach paper and aspect
look at critical Ra number
This benchmark has been carried out in many scientific papers [90].
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Stone 04: The lid driven cavity

The lid driven cavity is a famous Computational Fluid Dynamics test case [561, 399, 721, 115, 155, 426,
833] and has been studied in countless publications with a wealth of numerical techniques (see [322] for
a succinct review) and also in the laboratory [578].

It models a plane flow of an isothermal isoviscous fluid in a rectangular (usually square) lid-driven
cavity. The boundary conditions are indicated in the Fig. ??a. The gravity is set to zero.

the lid driven cavity problem (ldc=0)

In the standard case, the upper side of the cavity moves in its own plane at unit speed, while the other
sides are fixed. This thereby introduces a discontinuity in the boundary conditions at the two upper
corners of the cavity and yields an uncertainty as to which boundary (side or top) the corner points
belong to. In this version of the code the top corner nodes are considered to be part of the lid. If these
are excluded the recovered pressure showcases an extremely large checkboard pattern.

This benchmark is usually dicussed in the context of low to very high Reynolds number with the full
Navier-Stokes equations being solved (with the noticeable exception of [816, 817, 217, 308] which focus
on the Stokes equation). In the case of the incompressible Stokes flow, the absence of inertia renders this
problem instantaneous so that only one time step is needed.

the lid driven cavity problem - regularisation I (ldc=1)

We avoid the top corner nodes issue altogether by prescribing the horizontal velocity of the lid as follows:

u(x) = x2(1− x)2. (501)

In this case the velocity and its first derivative is continuous at the corners. This is the so-called regularised
lid-driven cavity problem [732].

the lid driven cavity problem - regularisation II (ldc=2)

Another regularisation was presented in [270]. Also in Appendix D.4 of [545]. Here, a regularized lid
driven cavity is studied which is consistent in the sense that ∇ · v = 0 holds also at the corners of the
domain. There are no-slip conditions at the boundaries x = 0, x = 1, and y = 0.

The velocity at y = 1 is given by

u(x) = 1− 1

4

(
1− cos(

x1 − x
x1

π)

)2

x ∈ [0, x1]

u(x) = 1 x ∈ [x1, 1− x1]

u(x) = 1− 1

4

(
1− cos(

x− (1− x1)

x1
π)

)2

x ∈ [1− x1, 1] (502)

Results are obtained with x1 = 0.1.

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• isothermal

• isoviscous
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A 100x100 element grid is used. No-slip boundary conditions are prescribed on sides and bottom. A
zero vertical velocity is prescribed at the top and the exact form of the prescribed horizontal velocity is
controlled by the ldc parameter.
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Stone 05: SolCx benchmark

The SolCx benchmark is intended to test the accuracy of the solution to a problem that has a large jump
in the viscosity along a line through the domain. Such situations are common in geophysics: for example,
the viscosity in a cold, subducting slab is much larger than in the surrounding, relatively hot mantle
material.

The SolCx benchmark computes the Stokes flow field of a fluid driven by spatial density variations,
subject to a spatially variable viscosity. Specifically, the domain is Ω = [0, 1]2, gravity is g = (0,−1)T

and the density is given by
ρ(x, y) = sin(πy) cos(πx) (503)

Boundary conditions are free slip on all of the sides of the domain and the temperature plays no role in
this benchmark. The viscosity is prescribed as follows:

µ(x, y) =

{
1 for x < 0.5
106 for x > 0.5

(504)

Note the strongly discontinuous viscosity field yields a stagnant flow in the right half of the domain and
thereby yields a pressure discontinuity along the interface.

The SolCx benchmark was previously used in [296] (references to earlier uses of the benchmark are
available there) and its analytic solution is given in [1040]. It has been carried out in [584] and [387].
Note that the source code which evaluates the velocity and pressure fields for both SolCx and SolKz is
distributed as part of the open source package Underworld ([683], http://underworldproject.org).

In this particular example, the viscosity is computed analytically at the quadrature points (i.e. tracers
are not used to attribute a viscosity to the element). If the number of elements is even in any direction,
all elements (and their associated quadrature points) have a constant viscosity(1 or 106). If it is odd, then
the elements situated at the viscosity jump have half their integration points with µ = 1 and half with
µ = 106 (which is a pathological case since the used quadrature rule inside elements cannot represent
accurately such a jump).

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (free-slip)

• direct solver

• isothermal

• non-isoviscous

• analytical solution
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Stone 06: SolKz benchmark

The SolKz benchmark [783] is similar to the SolCx benchmark. but the viscosity is now a function of the
space coordinates:

µ(y) = exp(By) with B = 13.8155 (505)

It is however not a discontinuous function but grows exponentially with the vertical coordinate so that
its overall variation is again 106. The forcing is again chosen by imposing a spatially variable density
variation as follows:

ρ(x, y) = sin(2y) cos(3πx) (506)

Free slip boundary conditions are imposed on all sides of the domain. This benchmark is presented in
[1040] as well and is studied in [296] and [387].
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Stone 07: SolVi benchmark

Following SolCx and SolKz, the SolVi inclusion benchmark solves a problem with a discontinuous viscosity
field, but in this case the viscosity field is chosen in such a way that the discontinuity is along a circle.
Given the regular nature of the grid used by a majority of codes and the present one, this ensures that the
discontinuity in the viscosity never aligns to cell boundaries. This in turns leads to almost discontinuous
pressures along the interface which are difficult to represent accurately. [824] derived a simple analytic
solution for the pressure and velocity fields for a circular inclusion under simple shear and it was used in
[278], [854], [296], [584] and [387].

Because of the symmetry of the problem, we only have to solve over the top right quarter of the
domain (see Fig. ??a).

The analytical solution requires a strain rate boundary condition (e.g., pure shear) to be applied far
away from the inclusion. In order to avoid using very large domains and/or dealing with this type of
boundary condition altogether, the analytical solution is evaluated and imposed on the boundaries of
the domain. By doing so, the truncation error introduced while discretizing the strain rate boundary
condition is removed.

A characteristic of the analytic solution is that the pressure is zero inside the inclusion, while outside
it follows the relation

pm = 4ε̇
µm(µi − µm)

µi + µm

r2
i

r2
cos(2θ) (507)

where µi = 103 is the viscosity of the inclusion and µm = 1 is the viscosity of the background media,
θ = tan−1(y/x), and ε̇ = 1 is the applied strain rate.

[278] thoroughly investigated this problem with various numerical methods (FEM, FDM), with and
without tracers, and conclusively showed how various averagings lead to different results. [296] obtained
a first order convergence for both pressure and velocity, while [584] and [387] showed that the use of
adaptive mesh refinement in respectively the FEM and FDM yields convergence rates which depend on
refinement strategies.
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Stone 08: the indentor benchmark

The punch benchmark is one of the few boundary value problems involving plastic solids for which there
exists an exact solution. Such solutions are usually either for highly simplified geometries (spherical or
axial symmetry, for instance) or simplified material models (such as rigid plastic solids) [552].

In this experiment, a rigid punch indents a rigid plastic half space; the slip line field theory gives exact
solutions as shown in Fig. ??a. The plane strain formulation of the equations and the detailed solution
to the problem were derived in the Appendix of [890] and are also presented in [377].

The two dimensional punch problem has been extensively studied numerically for the past 40 years
[1051, 1050, 226, 225, 504, 1015, 161, 759] and has been used to draw a parallel with the tectonics of
eastern China in the context of the India-Eurasia collision [875, 677]. It is also worth noting that it
has been carried out in one form or another in series of analogue modelling articles concerning the same
region, with a rigid indenter colliding with a rheologically stratified lithosphere [726, 266, 548].

Numerically, the one-time step punch experiment is performed on a two-dimensional domain of purely
plastic von Mises material. Given that the von Mises rheology yield criterion does not depend on pressure,
the density of the material and/or the gravity vector is set to zero. Sides are set to free slip boundary
conditions, the bottom to no slip, while a vertical velocity (0,−vp) is prescribed at the top boundary for
nodes whose x coordinate is within [Lx/2− δ/2, Lx/2 + δ/2].

The following parameters are used: Lx = 1, Ly = 0.5, µmin = 10−3, µmax = 103, vp = 1, δ =
0.123456789 and the yield value of the material is set to k = 1.

The analytical solution predicts that the angle of the shear bands stemming from the sides of the
punch is π/4, that the pressure right under the punch is 1 + π, and that the velocity of the rigid blocks
on each side of the punch is vp/

√
2 (this is simply explained by invoking conservation of mass).
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ToDo: smooth punch

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (no-slip)

• isothermal

• non-isoviscous

• nonlinear rheology
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Stone 09: the annulus benchmark

keywords: annulus, Q1 × P0, penalty, manufactured solution, incompressible flow, Dirichlet boundary con-
ditions, direct solver, isothermal, isoviscous

This fieldstone was developed in collaboration with Prof. E.G.P. Puckett.
This benchmark is based on Thieulot & Puckett [Subm.] in which an analytical solution to the

isoviscous incompressible Stokes equations is derived in an annulus geometry. The velocity and pressure
fields are as follows:

vr(r, θ) = g(r)k sin(kθ), (508)

vθ(r, θ) = f(r) cos(kθ), (509)

p(r, θ) = kh(r) sin(kθ), (510)

ρ(r, θ) = ℵ(r)k sin(kθ), (511)

with

f(r) = Ar +B/r, (512)

g(r) =
A

2
r +

B

r
ln r +

C

r
, (513)

h(r) =
2g(r)− f(r)

r
, (514)

ℵ(r) = g′′ − g′

r
− g

r2
(k2 − 1) +

f

r2
+
f ′

r
, (515)

A = −C 2(lnR1 − lnR2)

R2
2 lnR1 −R2

1 lnR2
, (516)

B = −C R2
2 −R2

1

R2
2 lnR1 −R2

1 lnR2
. (517)

The parameters A and B are chosen so that vr(R1) = vr(R2) = 0, i.e. the velocity is tangential to
both inner and outer surfaces. The gravity vector is radial and of unit length. In the present case, we
set R1 = 1, R2 = 2 and C = −1.

Left to right: velocity norm, r component, θ component

Left: density field; right: pressure field.
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Left: ψ field; right: ψ isolines with velocity arrows.
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Stone 10: Stokes sphere (3D) - penalty

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (free-slip)

• direct solver

• isothermal

• non-isoviscous

• 3D

• elemental b.c.

• buoyancy driven

resolution is 24x24x24
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Stone 11: stokes sphere (3D) - mixed formulation

This is the same setup as Section 8.

features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• Dirichlet boundary conditions (free-slip)

• direct solver

• isothermal

• non-isoviscous

• 3D

• elemental b.c.

• buoyancy driven
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Stone 12: consistent pressure recovery

What follows is presented in [1049]. The second part of their paper wishes to establish a simple and
effective numerical method to calculate variables eliminated by the penalisation process. The method
involves an additional finite element solution for the nodal pressures using the same finite element basis
and numerical quadrature as used for the velocity.

Let us start with:
p = −λ∇ · v

which lead to
(q, p) = −λ(q,∇ · v)

and then (∫
NNdΩ

)
· P = −

(
λ

∫
N∇NdΩ

)
· V

or,
M · P = −D · V

and finally
P = −M−1 ·D · V

with M of size (np × np), D of size (np ∗ ndof × np ∗ ndof) and V of size (np ∗ ndof). The vector P
contains the np nodal pressure values directly, with no need for a smoothing scheme. The mass matrix
M is to be evaluated at the full integration points, while the constraint part (the right hand side of the
equation) is to be evaluated at the reduced integration point.

As noted by [1049], it is interesting to note that when linear elements are used and the lumped
matrices are used for the M the resulting algebraic equation is identical to the smoothing scheme based
on the averaging method only if the uniform square finite element mesh is used. In this respect this
method is expected to yield different results when elements are not square or even rectangular.

——-
q1 is smoothed pressure obtained with the center-to-node approach.
q2 is recovered pressure obtained with [1049].
All three fulfill the zero average condition:

∫
pdΩ = 0.
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In terms of pressure error, q2 is better than q1 which is better than elemental.
QUESTION: why are the averages exactly zero ?!
TODO:

• add randomness to internal node positions.

• look at elefant algorithms
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Stone 13: the Particle in Cell technique (1) - the effect of aver-
aging

This fieldstone is being developed in collaboration with BSc student Eric Hoogen.

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (no-slip)

• isothermal

• non-isoviscous

• particle-in-cell

After the initial setup of the grid, markers can then be generated and placed in the domain. One
could simply randomly generate the marker positions in the whole domain but unless a very large number
of markers is used, the chance that an element does not contain any marker exists and this will prove
problematic. In order to get a better control over the markers spatial distribution, one usually generates
the marker per element, so that the total number of markers in the domain is the product of the number
of elements times the user-chosen initial number of markers per element.

Our next concern is how to actually place the markers inside an element. Two methods come to mind:
on a regular grid, or in a random manner, as shown on the following figure:

In both cases we make use of the basis shape functions: we generate the positions of the markers
(random or regular) in the reference element first (rim, sim), and then map those out to the real element
as follows:

xim =

m∑
i

Ni(rim, sim)xi yim =

m∑
i

Ni(rim, sim)yi (518)

where xi, yi are the coordinates of the vertices of the element.
A third option consists in the use of the so-called Poisson-disc sampling which produces points that

are tightly-packed, but no closer to each other than a specified minimum distance, resulting in a more
natural pattern 40. Note that the Poisson-disc algorithm fills the whole domain at once, not element after
element.

say smthg about avrg dist
insert here theory and link about Poisson disc

40https://en.wikipedia.org/wiki/Supersampling
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Left: regular distribution, middle: random, right: Poisson disc.

16384 markers (32x32 grid, 16 markers per element).

When using active markers, one is faced with the problem of transferring the properties they carry to
the mesh on which the PDEs are to be solved. As we have seen, building the FE matrix involves a loop
over all elements, so one simple approach consists of assigning each element a single property computed as
the average of the values carried by the markers in that element. Often in colloquial language ”average”
refers to the arithmetic mean:

〈φ〉am =
1

n

n∑
k

φi (519)

where < φ >am is the arithmetic average of the n numbers φi. However, in mathematics other means
are commonly used, such as the geometric mean:

〈φ〉gm =

(
n∏
i

φi

)
(520)

PROBLEM with this formula!!!! and the harmonic mean:

〈φ〉hm =

(
1

n

n∑
i

1

φi

)−1

(521)

Furthermore, there is a well known inequality for any set of positive numbers,

〈φ〉am ≥ 〈φ〉gm ≥ 〈φ〉hm (522)

which will prove to be important later on.
Let us now turn to a simple concrete example: the 2D Stokes sphere. There are two materials

in the domain, so that markers carry the label ”mat=1” or ”mat=2”. For each element an average
density and viscosity need to be computed. The majority of elements contains markers with a single
material label so that the choice of averaging does not matter (it is trivial to verify that if φi = φ0 then
〈φ〉am = 〈φ〉gm = 〈φ〉hm = φ0. Remain the elements crossed by the interface between the two materials:
they contain markers of both materials and the average density and viscosity inside those depends on 1)
the total number of markers inside the element, 2) the ratio of markers 1 to markers 2, 3) the type of
averaging.

This averaging problem has been studied and documented in the literature [823, 278, 885, 743]

Nodal projection. Left: all markers inside elements to which the green node belongs to are taken into account.

Right: only the markers closest to the green node count.
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Let k be the green node of the figures above. Let (r, s) denote the coordinates of a marker inside its
element. For clarity, we define the follow three nodal averaging schemes:

• nodal type A:

fk =
sum of values carried by markers in 4 neighbour elements

number of markers in 4 neighbour elements

• nodal type B:

fk =
sum of values carried by markers inside dashed line

number of markers in area delimited by the dashed line

• nodal type C

fk =
sum of values carried by markers in 4 neighbour elements ∗Np(r, s)

sum of Np(r, s)

where Np is the Q1 basis function corresponding to node p defined on each element. Since these
functions are 1 on node k and then linearly decrease and become zero on the neighbouring nodes,
this effectively gives more weight to those markers closest to node k.

This strategy is adopted in [670, 669] (although it is used to interpolate onto the nodes of Q2P−1

elements. It is formulated as follows:
”We assume that an arbitrary material point property f , is discretized via f(x) ' δ(x−xp)fp. We
then utilize an approximate local L2 projection of fp onto a continuous Q1 finite element space.
The corner vertices of each Q2 finite element define the mesh fp is projected onto. The local
reconstruction for a node i is defined by

f̂i =

∫
Ωi
Ni(x)f(x)∫
Ωi
Ni(x)

'
∑
pNi(xp)fp∑
pNi(xp)

where the summation over p includes all material points contained within the support Ωi of the
trilinear interpolant Ni”.

The setup is identical to the Stokes sphere experiment. The bash script script runall runs the code
for many resolutions, both initial marker distribution and all four averaging types. The viscosity of the
sphere has been set to 103 while the viscosity of the surrounding fluid is 1. The average density is always
computed with an arithmetic mean.

Conclusions:

• With increasing resolution (h→ 0) vrms values seem to converge towards a single value, irrespective
of the number of markers.

• At low resolution, say 32x32 (i.e. h=0.03125), vrms values for the three averagings differ by about
10%. At higher resolution, say 128x128, vrms values are still not converged.

• The number of markers per element plays a role at low resolution, but less and less with increasing
resolution.

• Results for random and regular marker distributions are not identical but follow a similar trend
and seem to converge to the same value.

• elemental values yield better results (espcecially at low resolutions)

• harmonic mean yields overal the best results
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Root mean square velocity results are shown hereunder:
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Left column: random markers, middle column: Poisson disc, right column: regular markers. First row: elemental

projection, second row: nodal 1 projection, third row: nodal 2 projection, fourth row: nodal 3 projection.
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Left to right: arithmetic, geometric, harmonic averaging for viscosity.
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Stone 14: solving the full saddle point problem

The details of the numerical setup are presented in Section ??.
The main difference is that we no longer use the penalty formulation and therefore keep both velocity

and pressure as unknowns. Therefore we end up having to solve the following system:(
K G
GT 0

)
·
(
V
P

)
=

(
f
h

)
or, A ·X = rhs

Each block K, G and vector f , h are built separately in the code and assembled into the matrix A
and vector rhs afterwards. A and rhs are then passed to the solver. We will see later that there are
alternatives to solve this approach which do not require to build the full Stokes matrix A.

Each element has m = 4 vertices so in total ndofV × m = 8 velocity dofs and a single pressure
dof, commonly situated in the center of the element. The total number of velocity dofs is therefore
NfemV = nnp× ndofV while the total number of pressure dofs is NfemP = nel. The total number of
dofs is then Nfem = NfemV +NfemP .

As a consequence, matrix K has size NfemV,NfemV and matrix G has size NfemV,NfemP . Vector
f is of size NfemV and vector h is of size NfemP .

features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• Dirichlet boundary conditions (no-slip)

• direct solver (?)

• isothermal

• isoviscous

• analytical solution

• pressure smoothing

201



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

vx

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

vy

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

p

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

q

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

xx

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

yy

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

xy

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

vx tth
x

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

vy tth
y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

p pth

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

q pth

0.010

0.005

0.000

0.005

0.010

0.010

0.005

0.000

0.005

0.010

4

3

2

1

0

1

2

3

4

4

3

2

1

0

1

2

3

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.02

0.00

0.02

0.04

0.01

0.02

0.03

0.04

0.05

0.000010

0.000005

0.000000

0.000005

0.000010

0.000010

0.000005

0.000000

0.000005

0.000010

3

2

1

0

1

2

3

3

2

1

0

1

2

3

Unlike the results obtained with the penalty formulation (see Section ??), the pressure showcases a
very strong checkerboard pattern, similar to the one in [283].

Left: pressure solution as shown in [283]; Right: pressure solution obtained with fieldstone.

Rather interestingly, the nodal pressure (obtained with a simple center-to-node algorithm) fails to
recover a correct pressure at the four corners.
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Note that the umfpack solver complains a lot about the matrix condition number, even at (very) low
resolutions. I believe it does not like the zeros on the (2,2) block of the assembled Stokes matrix.
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Stone 15: saddle point problem with Schur complement ap-
proach - benchmark

The details of the numerical setup are presented in Section ??. The main difference resides in the Schur
complement approach to solve the Stokes system, as presented in Section ?? (see solver cg). This
iterative solver is very easy to implement once the blocks K and G, as well as the rhs vectors f and h
have been built.
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Rather interestingly the pressure checkerboard modes are not nearly as present as in Section ?? which
uses a full matrix approach.

Looking at the discretisation errors for velocity and pressure, we of course recover the same rates and
values as in the full matrix case.
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Finally, for each experiment the normalised residual (see solver cg) was recorded. We see that all
things equal the resolution has a strong influence on the number of iterations the solver must perform to
reach the required tolerance. This is one of the manifestations of the fact that the Q1 × P0 element is
not a stable element: the condition number of the matrix increases with resolution. We will see that this
is not the case of stable elements such as Q2 ×Q1.
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features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• Schur complement approach

• isothermal

• isoviscous

• analytical solution

build S and have python compute its smallest and largest eigenvalues as a function of resolution?
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Stone 16: saddle point problem with Schur complement ap-
proach - Stokes sphere

We are revisiting the 2D Stokes sphere problem, but this time we use the Schur complement approach
to solve the Stokes system, Because there are viscosity contrasts in the domain, it is advisable to use the
Preconditioned Conjugate Gradient as presented in Section ?? (see solver pcg).
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The normalised residual (see solver pcg) was recorded. We see that all things equal the resolution
has a strong influence on the number of iterations the solver must perform to reach the required tolerance.
However, we see that the use of the preconditioner can substantially reduce the number of iterations inside
the Stokes solver. At resolution 128x128, this number is halved.
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features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• Schur complement approach

• isothermal

• non-isoviscous

• Stokes sphere
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Stone 17: solving the full saddle point problem in 3D

When using Q1 × P0 elements, this benchmark fails because of the Dirichlet b.c. on all 6 sides and all
three components. However, as we will see, it does work well with Q2 ×Q1 elements. .

This benchmark begins by postulating a polynomial solution to the 3D Stokes equation [281]:

v =

 x+ x2 + xy + x3y
y + xy + y2 + x2y2

−2z − 3xz − 3yz − 5x2yz

 (523)

and
p = xyz + x3y3z − 5/32 (524)

While it is then trivial to verify that this velocity field is divergence-free, the corresponding body force
of the Stokes equation can be computed by inserting this solution into the momentum equation with a
given viscosity µ (constant or position/velocity/strain rate dependent). The domain is a unit cube and
velocity boundary conditions simply use Eq. (523). Following [195], the viscosity is given by the smoothly
varying function

µ = exp(1− β(x(1− x) + y(1− y) + z(1− z))) (525)

One can easily show that the ratio of viscosities µ? in the system follows µ? = exp(−3β/4) so that
choosing β = 10 yields µ? ' 1808 and β = 20 yields µ? ' 3.269× 106.

We start from the momentum conservation equation:

−∇p+ ∇ · (2µε̇) = f

The x-component of this equation writes

fx = −∂p
∂x

+
∂

∂x
(2µε̇xx) +

∂

∂y
(2µε̇xy) +

∂

∂z
(2µε̇xz) (526)

= −∂p
∂x

+ 2µ
∂

∂x
ε̇xx + 2µ

∂

∂y
ε̇xy + 2µ

∂

∂z
ε̇xz + 2

∂µ

∂x
ε̇xx + 2

∂µ

∂y
ε̇xy + 2

∂µ

∂z
ε̇xz (527)

Let us compute all the block separately:

ε̇xx = 1 + 2x+ y + 3x2y

ε̇yy = 1 + x+ 2y + 2x2y

ε̇zz = −2− 3x− 3y − 5x2y

2ε̇xy = (x+ x3) + (y + 2xy2) = x+ y + 2xy2 + x3

2ε̇xz = (0) + (−3z − 10xyz) = −3z − 10xyz

2ε̇yz = (0) + (−3z − 5x2z) = −3z − 5x2z
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In passing, one can verify that ε̇xx + ε̇yy + ε̇zz = 0. We further have

∂

∂x
2ε̇xx = 2(2 + 6xy)

∂

∂y
2ε̇xy = 1 + 4xy

∂

∂z
2ε̇xz = −3− 10xy

∂

∂x
2ε̇xy = 1 + 2y2 + 3x2

∂

∂y
2ε̇yy = 2(2 + 2x2)

∂

∂z
2ε̇yz = −3− 5x2

∂

∂x
2ε̇xz = −10yz

∂

∂y
2ε̇yz = 0

∂

∂z
2ε̇zz = 2(0)

∂p

∂x
= yz + 3x2y3z (528)

∂p

∂y
= xz + 3x3y2z (529)

∂p

∂z
= xy + x3y3 (530)

Pressure normalisation Here again, because Dirichlet boundary conditions are prescribed on all
sides the pressure is known up to an arbitrary constant. This constant can be determined by (arbitrarily)
choosing to normalised the pressure field as follows:∫

Ω

p dΩ = 0 (531)

This is a single constraint associated to a single Lagrange multiplier λ and the global Stokes system takes
the form  K G 0

GT 0 C
0 CT 0

 V
P
λ


In this particular case the constraint matrix C is a vector and it only acts on the pressure degrees of
freedom because of Eq.(531). Its exact expression is as follows:∫

Ω

p dΩ =
∑
e

∫
Ωe

p dΩ =
∑
e

∫
Ωe

∑
i

Np
i pi dΩ =

∑
e

∑
i

(∫
Ωe

Np
i dΩ

)
pi =

∑
e

Ce · pe

where pe is the list of pressure dofs of element e. The elemental constraint vector contains the correspond-
ing pressure basis functions integrated over the element. These elemental constraints are then assembled
into the vector C.
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Constant viscosity

Choosing β = 0 yields a constant velocity µ(x, y, z) = exp(1) ' 2.718 (and greatly simplifies the right-
hand side) so that

∂

∂x
µ(x, y, z) = 0 (532)

∂

∂y
µ(x, y, z) = 0 (533)

∂

∂z
µ(x, y, z) = 0 (534)

and

fx = −∂p
∂x

+ 2µ
∂

∂x
ε̇xx + 2µ

∂

∂y
ε̇xy + 2µ

∂

∂z
ε̇xz

= −(yz + 3x2y3z) + 2(2 + 6xy) + (1 + 4xy) + (−3− 10xy)

= −(yz + 3x2y3z) + µ(2 + 6xy)

fy = −∂p
∂y

+ 2µ
∂

∂x
ε̇xy + 2µ

∂

∂y
ε̇yy + 2µ

∂

∂z
ε̇yz

= −(xz + 3x3y2z) + µ(1 + 2y2 + 3x2) + µ2(2 + 2x2) + µ(−3− 5x2)

= −(xz + 3x3y2z) + µ(2 + 2x2 + 2y2)

fz = −∂p
∂z

+ 2µ
∂

∂x
ε̇xz + 2µ

∂

∂y
ε̇yz + 2µ

∂

∂z
ε̇zz

= −(xy + x3y3) + µ(−10yz) + 0 + 0

= −(xy + x3y3) + µ(−10yz)

Finally

f = −

 yz + 3x2y3z
xz + 3x3y2z
xy + x3y3

+ µ

 2 + 6xy
2 + 2x2 + 2y2

−10yz


Note that there seems to be a sign problem with Eq.(26) in [195].
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Variable viscosity

The spatial derivatives of the viscosity are then given by

∂

∂x
µ(x, y, z) = −(1− 2x)βµ(x, y, z)

∂

∂y
µ(x, y, z) = −(1− 2y)βµ(x, y, z)

∂

∂z
µ(x, y, z) = −(1− 2z)βµ(x, y, z)
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and thr right-hand side by

f = −

 yz + 3x2y3z
xz + 3x3y2z
xy + x3y3

+ µ

 2 + 6xy
2 + 2x2 + 2y2

−10yz

 (535)

−(1− 2x)βµ(x, y, z)

 2ε̇xx
2ε̇xy
2ε̇xz

− (1− 2y)βµ(x, y, z)

 2ε̇xy
2ε̇yy
2ε̇yz

− (1− 2z)βµ(x, y, z)

 2ε̇xz
2ε̇yz
2ε̇zz


= −

 yz + 3x2y3z
xz + 3x3y2z
xy + x3y3

+ µ

 2 + 6xy
2 + 2x2 + 2y2

−10yz


− (1− 2x)βµ

 2 + 4x+ 2y + 6x2y
x+ y + 2xy2 + x3

−3z − 10xyz

− (1− 2y)βµ

 x+ y + 2xy2 + x3

2 + 2x+ 4y + 4x2y
−3z − 5x2z

− (1− 2z)βµ

 −3z − 10xyz
−3z − 5x2z

−4− 6x− 6y − 10x2y


Note that at (x, y, z) = (0, 0, 0), µ = exp(1), and at (x, y, z) = (0.5, 0.5, 0.5), µ = exp(1 − 3β/4) so

that the maximum viscosity ratio is given by

µ? =
exp(1− 3β/4)

exp(1)
= exp(−3β/4)

By varying β between 1 and 22 we can get up to 7 orders of magnitude viscosity difference.

features

• Q1 × P0 element

• incompressible flow

• saddle point system

• Dirichlet boundary conditions (free-slip)

• direct solver

• isothermal

• non-isoviscous

• 3D

• elemental b.c.

• analytical solution
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Stone 18: solving the full saddle point problem with Q2 × Q1

elements

The details of the numerical setup are presented in Section ??.
Each element has mV = 9 vertices so in total ndofV ×mV = 18 velocity dofs and ndofP ∗mP = 4

pressure dofs. The total number of velocity dofs is therefore NfemV = nnp × ndofV while the total
number of pressure dofs is NfemP = nel. The total number of dofs is then Nfem = NfemV +NfemP .

As a consequence, matrix K has size NfemV,NfemV and matrix G has size NfemV,NfemP . Vector
f is of size NfemV and vector h is of size NfemP .

renumber all nodes to start at zero!! Also internal numbering does not work here

features

• Q2 ×Q1 element

• incompressible flow

• mixed formulation

• Dirichlet boundary conditions (no-slip)

• isothermal

• isoviscous

• analytical solution
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Stone 19: solving the full saddle point problem with Q3 × Q2

elements

The details of the numerical setup are presented in Section ??.
Each element has mV = 16 vertices so in total ndofV ×mV = 32 velocity dofs and ndofP ∗mP = 9

pressure dofs. The total number of velocity dofs is therefore NfemV = nnp × ndofV while the total
number of pressure dofs is NfemP = nel. The total number of dofs is then Nfem = NfemV +NfemP .

As a consequence, matrix K has size NfemV,NfemV and matrix G has size NfemV,NfemP . Vector
f is of size NfemV and vector h is of size NfemP .

60===61===62===63===64===65===66===67===68===70

|| || || ||

50 51 52 53 54 55 56 57 58 59

|| || || ||

40 41 42 43 44 45 46 47 48 49

|| || || ||

30===31===32===33===34===35===36===37===38===39

|| || || ||

20 21 22 23 24 25 26 27 28 29

|| || || ||

10 11 12 13 14 15 16 17 18 19

|| || || ||

00===01===02===03===04===05===06===07===08===09

Example of 3x2 mesh. nnx=10, nny=7, nnp=70, nelx=3, nely=2, nel=6

12===13===14===15 06=====07=====08

|| || || || || || ||

08===09===10===11 || || ||

|| || || || 03=====04=====05

04===05===06===07 || || ||

|| || || || || || ||

00===01===02===03 00=====01=====02

Velocity (Q3) Pressure (Q2)

(r,s)_{00}=(-1,-1) (r,s)_{00}=(-1,-1)

(r,s)_{01}=(-1/3,-1) (r,s)_{01}=(0,-1)

(r,s)_{02}=(+1/3,-1) (r,s)_{02}=(+1,-1)

(r,s)_{03}=(+1,-1) (r,s)_{03}=(-1,0)

(r,s)_{04}=(-1,-1/3) (r,s)_{04}=(0,0)

(r,s)_{05}=(-1/3,-1/3) (r,s)_{05}=(+1,0)

(r,s)_{06}=(+1/3,-1/3) (r,s)_{06}=(-1,+1)

(r,s)_{07}=(+1,-1/3) (r,s)_{07}=(0,+1)

(r,s)_{08}=(-1,+1/3) (r,s)_{08}=(+1,+1)

(r,s)_{09}=(-1/3,+1/3)

(r,s)_{10}=(+1/3,+1/3)

(r,s)_{11}=(+1,+1/3)

(r,s)_{12}=(-1,+1)

(r,s)_{13}=(-1/3,+1)

(r,s)_{14}=(+1/3,+1)

(r,s)_{15}=(+1,+1)

Write about 4 point quadrature.
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features

• Q3 ×Q2 element

• incompressible flow

• mixed formulation

• isothermal

• isoviscous

• analytical solution

 1x10-10

 1x10-9

 1x10-8

 1x10-7

 1x10-6

 1x10-5

 0.0001

 0.1

e
rr

o
r

h

velocity
pressure

x4

x3

velocity error rate is cubic, pressure superconvergent since the pressure field is quadratic and therefore
lies into the Q2 space.
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Stone 20: the Busse benchmark

This three-dimensional benchmark was first proposed by [200]. It has been subsequently presented in
[857, 913, 11, 714, 262, 584]. We here focus on Case 1 of [200]: an isoviscous bimodal convection
experiment at Ra = 3× 105.

The domain is of size a × b × h with a = 1.0079h, b = 0.6283h with h = 2700km. It is filled
with a Newtonian fluid characterised by ρ0 = 3300kg.m−3, α = 10−5K−1, µ = 8.0198 × 1023Pa.s,
k = 3.564W.m−1.K−1, cp = 1080J.K−1.kg−1. The gravity vector is set to g = (0, 0,−10)T . The
temperature is imposed at the bottom (T = 3700◦C) and at the top (T = 0◦C).

The various measurements presented in [200] are listed hereafter:

• The Nusselt number Nu computed at the top surface following Eq. (500):

Nu = Lz

∫ ∫
z=Lz

∂T
∂y dxdy∫ ∫

z=0
Tdxdy

• the root mean square velocity vrms and the temperature mean square velocity Trms

• The vertical velocity w and temperature T at points x1 = (0, 0, Lz/2), x2 = (Lx, 0, Lz/2), x3 =
(0, Ly, Lz/2) and x4 = (Lx, Ly, Lz/2);

• the vertical component of the heat flux Q at the top surface at all four corners.

The values plotted hereunder are adimensionalised by means of a reference temperature (3700K), a
reference lengthscale 2700km, and a reference time L2

z/κ.
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features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• Dirichlet boundary conditions (free-slip)

• direct solver

• isothermal

• non-isoviscous

• 3D

• elemental b.c.

• buoyancy driven

ToDo: look at energy conservation. run to steady state and make sure the expected values are
retrieved.
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Stone 21: The non-conforming Q1 × P0 element

features

• Non-conforming Q1 × P0 element

• incompressible flow

• mixed formulation

• isothermal

• non-isoviscous

• analytical solution

• pressure smoothing

try Q1 mapping instead of isoparametric.
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Stone 22: The stabilised Q1 ×Q1 element

The details of the numerical setup are presented in Section 7.4.
We wish to use Q1 × Q1 element, which, unless stabilised, violates the LBB stability condition and

therefore is unusable. Stabilisation can be of two types: least-squares [283, 881, 563, 108], or by means of
an additional term in the weak form as first introduced in [281, 107], which is appealing since there is no
explicit satabilisation parameter. It is further analysed in [708, 618, 502, 825, 423]. Note that an equal-
order velocity-pressure formulation that does not exhibit spurious pressure modes (without stabilisaion)
has been presented in [786].

This element corresponds to bilinear velocities, bilinear pressure (equal order interpolation for both
velocity and pressure) which is very convenient in terms of data structures since all dofs are colocated.

In geodynamics, it is used in the Rhea code [845, 195] and in Gale [35]. It is also used in [610] in its
stabilised form, in conjunction with AMR. This element is quickly discussed at page 217 of Volker John’s
book [545].

The stabilisation term C enters the Stokes matrix in the (2,2) position:(
K G
GT −C

)
·
(
V
P

)
=

(
f
h

)
The purpose of the C term is to stabilise the linear system. It is given by:

C(p, q) =
∑
e

∫
Ωe

1

η
(p−Πp)(q −Πq)dΩ

where Π is the L2-projection onto the space of element-wise constant functions:

Πp =
1

|Ωe|

∫
Ωe

pdΩ

Because of the stabilisation matrix C, the numerical solution satisfies the incompressibility condition
only approximately. Local mesh refinement helps to control these unwanted effects [194, 195]. Since K
and C are symmetric matrices, the Stokes system is then an indefinite symmetric system. The Schur
complement matrix S is then given by

S = GT ·K−1 ·G + C

One can further expand the above expression for the C term:

C(p, q) =
∑
e

∫
Ωe

1

η
(p−Πp)(q −Πq)dΩ

=
∑
e

∫
Ωe

1

η
[pq − (Πp)q − (Πq)p+ (Πp)(Πq)]dΩ

=
∑
e

1

ηe

[∫
Ωe

pqdΩ−
∫

Ωe

(Πp)qdΩ−
∫

Ωe

(Πq)pdΩ +

∫
Ωe

(Πp)(Πq)dΩ

]
=

∑
e

1

ηe

[∫
Ωe

pqdΩ− (Πp)

∫
Ωe

qdΩ− (Πq)

∫
Ωe

pdΩ + (Πp)(Πq)

∫
Ωe

dΩ

]
=

∑
e

1

ηe

[∫
Ωe

pqdΩ− (Πp)|Ωe|(Πq)− (Πq)|Ωe|(Πp) + (Πp)(Πq)|Ωe|
]

=
∑
e

1

ηe

[∫
Ωe

pqdΩ− |Ωe|(Πp)(Πq)
]

(536)

where we have used the fact that on each element Πph is constant. The left term will obviously yield a
Q1 mass matrix (scaled by the elemental viscosities). Note that this approach is not used in practice as
we’ll see hereafter.
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The pressure inside an element is given by

ph(~x) =
∑
k

Np
k (~x)pk

so that

Πph =
1

|Ωe|

∫
Ωe

∑
k

Np
kpkdΩ =

∑
k

 1

|Ωe|

∫
Ωe

Np
kdΩ︸ ︷︷ ︸

Ñpk

 pk (537)

and then
ph −Πph =

∑
k

Np
k (~x)pk −

∑
k

Ñp
kpk =

∑
k

(Np
k (~x)− Ñp

k )pk

The algorithm is straighforward and as follows: In the loop over elements, a) Compute the average of
each shape function Np

k (~x) over the element; b) Substract this average to the shape function; c) Build
mass matrix with modified/offset shape functions (taking in account the viscosity).

In the case of rectangular elements of size (hx, hy), Ñp
k simplifies even more:

Ñp
k =

1

|Ωe|

∫
Ωe

Np
k (~x)dΩ =

1

hxhy

hxhy
4

∫ +1

−1

∫ +1

−1

Np
k (r, s)drds =

1

4

∫ +1

−1

∫ +1

−1

Np
k (r, s)drds (538)

It is easy to show that the average of the Q1 shape functions of over the reference element is 1, so that
Ñp
k = 1/4. This explains why in the code we have:

Navrg = np . z e r o s (m, dtype=np . f l o a t 6 4 )
Navrg [0 ]=0 .25
Navrg [1 ]=0 .25
Navrg [2 ]=0 .25
Navrg [3 ]=0 .25

This also means that Πph = (p1 + p2 + p3 + p4)/4, i.e. the projected pressure is the mean of the vertex
values. It follows, as shown on p.244 of [314] that the elemental C matrix is (omitting the viscosity term)

Cel = Mel − ~qT ~q|Ωe| ~q =

(
1

4
,

1

4
,

1

4
,

1

4

)
The nullspace of C consists of constant vectors, i.e. ~1 ∈ null(C) which means that the assembled stabili-
sation operator is consistent.

The elemental Cel matrix is then computed like a mass matrix, although with modified shape function
vectors. Inside the loop over quadrature points, we do:

Nvect [ 0 , 0 :m]=N[ 0 :m]−Navrg [ 0 :m]
C e l+=Nvect .T. dot ( Nvect ) ∗ j cob ∗weightq / v i s c o s i t y ( xq , yq , case )

It is then assembled inside the big FEM matrix

f o r k1 in range (0 ,m) :
f o r k2 in range (0 ,m) :

C mat [ i con [ k1 , i e l ] , i con [ k2 , i e l ]]+= C el [ k1 , k2 ]

Non-zero pattern of the G matrix: Let us take a simple example: a 3x2 element grid.

0 1 2

3 4 5

0 1 2 3

4 5 6 7

8 9 10 11

0,1 2,3 4,5 6,7

8,9 10,11 12,13 14,15

16,17 18,19 20,21 22,23
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The K matrix is of size NfemV × NfemV with NfemV = ndofV × nnp = 2 × 12 = 24. The G
matrix is of size NfemV × NfemP with NfemP = ndofP × nnp = 1 × 12 = 12. The C matrix is of
size NfemP ×NfemP .

A corner pdof sees 4 vdofs, a side pdof sees 12 vdofs and an inside pdof sees 18 vdofs, so that the
total number of nonzeros in G can be computed as follows:

NZG = 4︸︷︷︸
corners

+ 2(nnx− 2) ∗ 12︸ ︷︷ ︸
2hor.sides

+ 2(nny − 2) ∗ 12︸ ︷︷ ︸
2vert.sides

+ (nnx− 2)(nny − 2) ∗ 18︸ ︷︷ ︸
insidenodes

Concretely,

• pdof #0 sees vdofs 0,1,2,3,8,9,10,11

• pdof #1 sees vdofs 0,1,2,3,4,5,8,9,10,11,12,13

• pdof #5 sees vdofs 0,1,2,3,4,5,8,9,10,11,12,13,16,17,18,19,20,21

so that the GT matrix non-zero structure then is as follows:

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Non-zero pattern of the C matrix: Let us take a simple example: a 3x2 element grid.
finish structure of C matrix for q1q1

We impose
∫
pdV = 0 which means that the following constraint is added to the Stokes matrix: K G 0

GT C L
0 LT 0

 ·
 VP

λ

 =

 f
h
0


The Donea & Huerta benchmark

As in [283] we solve the benchmark problem presented in section 7.4.1.

223



0.00001

0.00010

0.00100

0.01000

0.10000

 0.1

e
rr

o
r

h

velocity
pressure

x2

x1.5

The Dohrmann & Bochev benchmark

As in [281] we solve the benchmark problem presented in section 7.4.2.
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compare my rates with original paper!

The falling block experiment

The setup is desscribed in [889].
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Stone 23: compressible flow (1) - analytical benchmark

This work is part of the MSc thesis of T. Weir (2018).

We first start with an isothermal Stokes flow, so that we disregard the heat transport equation and
the equations we wish to solve are simply:

−∇ ·
[
2η

(
ε̇(v)− 1

3
(∇ · v)1

)]
+∇p = ρg in Ω, (539)

∇ · (ρv) = 0 in Ω (540)

The second equation can be rewritten ∇ · (ρv) = ρ∇ · v + v ·∇ρ = 0 or,

∇ · v +
1

ρ
v ·∇ρ = 0

Note that this presupposes that the density is not zero anywhere in the domain.
We use a mixed formulation and therefore keep both velocity and pressure as unknowns. We end up

having to solve the following system:(
K G

GT + Z 0

)
·
(
V
P

)
=

(
f
h

)
or, A ·X = rhs

Where K is the stiffness matrix, G is the discrete gradient operator, GT is the discrete divergence operator,
V the velocity vector, P the pressure vector. Note that the term ZV derives from term v ·∇ρ in the
continuity equation.

Each block K, G , Z and vectors f and h are built separately in the code and assembled into the
matrix A and vector rhs afterwards. A and rhs are then passed to the solver. We will see later that
there are alternatives to solve this approach which do not require to build the full Stokes matrix A.

Remark: the term ZV is often put in the rhs (i.e. added to h) so that the matrix A retains the same
structure as in the incompressible case. This is indeed how it is implemented in ASPECT. This however
requires more work since the rhs depends on the solution and some form of iterations is needed.

In the case of a compressible flow the strain rate tensor and the deviatoric strain rate tensor are no
more equal (since ∇ · v 6= 0). The deviatoric strainrate tensor is given by41

ε̇d(v) = ε̇(v)− 1

3
Tr(ε̇)1 = ε̇(v)− 1

3
(∇ · v)1

In that case:

ε̇dxx =
∂u

∂x
− 1

3

(
∂u

∂x
+
∂v

∂y

)
=

2

3

∂u

∂x
− 1

3

∂v

∂y
(541)

ε̇dyy =
∂v

∂y
− 1

3

(
∂u

∂x
+
∂v

∂y

)
= −1

3

∂u

∂x
+

2

3

∂v

∂y
(542)

2ε̇dxy =
∂u

∂y
+
∂v

∂x
(543)

and then

ε̇d(v) =

 2
3
∂u
∂x −

1
3
∂v
∂y

1
2
∂u
∂y + 1

2
∂v
∂x

1
2
∂u
∂y + 1

2
∂v
∂x − 1

3
∂u
∂x + 2

3
∂v
∂y


From ~τ = 2η~εd we arrive at: τxx
τyy
τxy

 = 2η

 ε̇dxx
ε̇dyy
ε̇dxy

 = 2η

 2/3 −1/3 0
−1/3 2/3 0

0 0 1/2

·
 ∂u

∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 = η

 4/3 −2/3 0
−2/3 4/3 0

0 0 1

·
 ∂u

∂x
∂v
∂y

∂u
∂y + ∂v

∂x


or,

~τ = CηBV

41See the ASPECT manual for a justification of the 3 value in the denominator in 2D and 3D.
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In order to test our implementation we have created a few manufactured solutions:

• benchmark #1 (ibench=1)): Starting from a density profile of:

ρ(x, y) = xy (544)

We derive a velocity given by:

vx(x, y) =
Cx
x
, vy(x, y) =

Cy
y

(545)

With gx(x, y) = 1
x and gy(x, y) = 1

y , this leads us to a pressure profile:

p = −η
(

4Cx
3x2

+
4Cy
3y2

)
+ xy + C0 (546)

This gives us a strain rate:

ε̇xx =
−Cx
x2

ε̇yy =
−Cy
y2

ε̇xy = 0

In what follows, we choose η = 1 and Cx = Cy = 1 and for a unit square domain [1 : 2]× [1 : 2] we
compute C0 so that the pressure is normalised to zero over the whole domain and obtain C0 = −1.

• benchmark #2 (ibench=2): Starting from a density profile of:

ρ = cos(x) cos(y) (547)

We derive a velocity given by:

vx =
Cx

cos(x)
, vy =

Cy
cos(y)

(548)

With gx = 1
cos(y) and gy = 1

cos(x) , this leads us to a pressure profile:

p = η

(
4Cx sin(x)

3 cos2(x)
+

4Cy sin(y)

3 cos2(y)

)
+ (sin(x) + sin(y)) + C0 (549)

ε̇xx = Cx
sin(x)

cos2(x)
ε̇yy = Cy

sin(y)

cos2(y)
ε̇xy = 0

We choose η = 1 and Cx = Cy = 1. The domain is the unit square [0 : 1]× [0 : 1] and we obtain C0

as before and obtain

C0 = 2− 2 cos(1) + 8/3(
1

cos(1)
− 1) ' 3.18823730

(thank you WolframAlpha)

• benchmark #3 (ibench=3)

• benchmark #4 (ibench=4)

• benchmark #5 (ibench=5)

features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• Dirichlet boundary conditions (no-slip)

• isothermal

• isoviscous

• analytical solution

• pressure smoothing
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ToDo:

• pbs with odd vs even number of elements

• q is ’fine’ everywhere except in the corners - revisit pressure smoothing paper?

• redo A v d Berg benchmark (see Tom Weir thesis)
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Stone 24: compressible flow (2) - convection box

This work is part of the MSc thesis of T. Weir (2018).

The physics

Let us start with some thermodynamics. Every material has an equation of state. The equilibrium
thermodynamic state of any material can be constrained if any two state variables are specified. Examples
of state variables include the pressure p and specific volume ν = 1/ρ, as well as the temperature T .

After linearisation, the density depends on temperature and pressure as follows:

ρ(T, p) = ρ0 ((1− α(T − T0) + βT p)

where α is the coefficient of thermal expansion, also called thermal expansivity:

α = −1

ρ

(
∂ρ

∂T

)
p

α is the percentage increase in volume of a material per degree of temperature increase; the subscript p
means that the pressure is held fixed.

βT is the isothermal compressibility of the fluid, which is given by

βT =
1

K
=

1

ρ

(
∂ρ

∂P

)
T

with K the bulk modulus. Values of βT = 10−12 − 10−11 Pa−1 are reasonable for Earth’s mantle, with
values decreasing by about a factor of 5 between the shallow lithosphere and core-mantle boundary. This
is the percentage increase in density per unit change in pressure at constant temperature. Both the
coefficient of thermal expansion and the isothermal compressibility can be obtained from the equation of
state.

The full set of equations we wish to solve is given by

−∇ ·
[
2ηε̇d(v)

]
+∇p = ρ0 ((1− α(T − T0) + βT p) g in Ω (550)

∇ · v +
1

ρ
v ·∇ρ = 0 in Ω (551)

ρCp

(
∂T

∂t
+ v · ∇T

)
−∇ · k∇T = ρH + 2ηε̇d : ε̇d + αT

(
∂p

∂t
+ v · ∇p

)
in Ω, (552)

Note that this presupposes that the density is not zero anywhere in the domain.

The numerics

We use a mixed formulation and therefore keep both velocity and pressure as unknowns. We end up
having to solve the following system:(

K G + W
GT + Z 0

)
·
(
V
P

)
=

(
f
h

)
or, A ·X = rhs

Where K is the stiffness matrix, G is the discrete gradient operator, GT is the discrete divergence operator,
V the velocity vector, P the pressure vector. Note that the term ZV derives from term v ·∇ρ in the
continuity equation.

As perfectly explained in the step 32 of deal.ii42, we need to scale the G term since it is many orders
of magnitude smaller than K, which introduces large inaccuracies in the solving process to the point that
the solution is nonsensical. This scaling coefficient is η/L. After building the G block, it is then scaled
as follows: G′ = η

LG so that we now solve

42https://www.dealii.org/9.0.0/doxygen/deal.II/step 32.html
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(
K G′ + W

G′T + Z 0

)
·
(
V
P ′
)

=

(
f
h

)
After the solve phase, we recover the real pressure with P = η

LP
′.

adapt notes since I should scale W and Z too. h should be caled too !!!!!!!!!!!!!!!
Each block K, G , Z and vectors f and h are built separately in the code and assembled into the

matrix A and vector rhs afterwards. A and rhs are then passed to the solver. We will see later that
there are alternatives to solve this approach which do not require to build the full Stokes matrix A.

Remark 1: the terms ZV and WP are often put in the rhs (i.e. added to h) so that the matrix
A retains the same structure as in the incompressible case. This is indeed how it is implemented in
ASPECT, see also appendix A of [608]. This however requires more work since the rhs depends on the
solution and some form of iterations is needed.

Remark 2: Very often the adiabatic heating term αT (v · ∇p) is simplified as follows: If you assume
the vertical component of the gradient of the dynamic pressure to be small compared to the gradient of
the total pressure (in other words, the gradient is dominated by the gradient of the hydrostatic pressure),
then −ρg '∇p and then αT (v · ∇p) ' −αρTv · g. We will however not be using this approximation in
what follows.

We have already established that
~τ = CηBV

The following measurements are carried out:

• The root mean square velocity (vrms):

vrms =

√
1

V

∫
V

v2dV

• The average temperature (Tavrg):

< T >=
1

V

∫
V

TdV

• The total mass (mass):

M =

∫
V

ρdV

• The Nusselt number (Nu):

Nu = − 1

Lx

1

∆T

∫ Lx

0

∂T (x, y = Ly)

∂y
dx

• The kinetic energy (EK):

EK =

∫
V

1

2
ρv2dV

• The work done against gravity

< W >= −
∫
V

ρgyvydV

• The total viscous dissipation (visc diss)

< Φ >=

∫
ΦdV =

1

V

∫
2ηε̇ : ε̇dV

• The gravitational potential energy (EG)

EG =

∫
V

ρgy(Ly − y)dV
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• The internal thermal energy (ET)

ET =

∫
V

ρ(0)CpTdV

Remark 3: Measuring the total mass can be misleading: indeed because ρ = ρ0(1 − αT ), then
measuring the total mass amounts to measuring a constant minus the volume-integrated tempera-
ture, and there is no reason why the latter should be zero, so that there is no reason why the total
mass should be zero...!

The experimental setup

The setup is as follows: the domain is Lx = Ly = 3000km. Free slip boundary conditions are imposed
on all four sides. The initial temperature is given by:

T (x, y) =

(
Ly − y
Ly

− 0.01 cos(
πx

Lx
) sin(

πy

Ly
)

)
∆T + Tsurf

with ∆T = 4000K, Tsurf = T0 = 273.15K. The temperature is set to ∆T + Tsurf at the bottom and
Tsurf at the top. We also set k = 3, Cp = 1250, |g| = 10, ρ0 = 3000 and we keep the Rayleigh number
Ra and dissipation number Di as input parameters:

Ra =
αg∆TL3ρ2

0Cp
ηk

Di =
αgL

Cp

From the second equation we get α =
DiCp
gL , which we can insert in the first one:

Ra =
DiC2

p∆TL2ρ2
0

ηk
or, η =

DiC2
p∆TL2ρ2

0

Ra k

For instance, for Ra = 104 and Di = 0.75, we obtain α ' 3 ·10−5 and η ' 1025 which are quite reasonable
values.

Scaling

Following [564], we non-dimensionalize the equations using the reference values for density ρr, thermal
expansivity αr, temperature contrast ∆Tr (refTemp), thermal conductivity kr, heat capacity Cp, depth
of the fluid layer L and viscosity ηr. The non-dimensionalization for velocity, ur , pressure pr and time,
tr become

ur =
kr

ρrCpL
(refvel)

pr =
ηrkr

ρrCpL2
(refpress)

tr =
ρrCpL

2

kr
(reftime)

In the case of the setup described hereabove, and when choosing Ra = 104 and Di = 0.5, we get:

alphaT 2.083333e-05

eta 8.437500e+24

reftime 1.125000e+19

refvel 2.666667e-13

refPress 7.500000e+05
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Conservation of energy 1

under BA and EBA approximations

Following [608], we take the dot product of the momentum equation with the velocity v and integrate
over the whole volume43: ∫

V

[−∇ · τ + ∇p] · vdV =

∫
V

ρg · vdV

or,

−
∫
V

(∇ · τ ) · vdV +

∫
V

∇p · vdV =

∫
V

ρg · vdV

Let us look at each block separately:

−
∫
V

(∇ · τ ) · vdV = −
∫
S

τ v · n︸︷︷︸
=0 (b.c.)

dS +

∫
V

τ : ∇vdV =

∫
V

τ : ε̇dV =

∫
V

ΦdV

which is the volume integral of the shear heating. Then,∫
V

∇p · vdV =

∫
S

p v · n︸︷︷︸
=0 (b.c.)

dS −
∫
V

∇ · v︸ ︷︷ ︸
=0 (incomp.)

pdV = 0

which is then zero in the case of an incompressible flow. And finally∫
V

ρg · vdV = W

which is the work against gravity.
Conclusion for an incompressible fluid: we should have∫

V

ΦdV =

∫
V

ρg · vdV (553)

This formula is hugely problematic: indeed, the term ρ in the rhs is the full density. We know that to the
value of ρ0 corresponds a lithostatic pressure gradient pL = ρ0gy. In this case one can write ρ = ρ0 + ρ′

and p = pL + p′ so that we also have∫
V

[−∇ · τ + ∇p′] · vdV =

∫
V

ρ′g · vdV

which will ultimately yield ∫
V

ΦdV =

∫
V

ρ′g · vdV =

∫
V

(ρ− ρ0)g · vdV (554)

Obviously Eqs.(553) and (554) cannot be true at the same time. The problem comes from the nature
of the (E)BA approximation: ρ = ρ0 in the mass conservation equation but it is not constant in the
momentum conservation equation, which is of course inconsistent. Since the mass conservation equation
is ∇ · v = 0 under this approximation then the term

∫
V
∇p · vdV is always zero for any pressure (full

pressure p, or overpressure p− pL), hence the paradox. This paradox will be lifted when a consistent set
of equations will be used (compressible formulation). On a practical note, Eqs.(553) is not verified by
the code, while (554) is.

In the end: ∫
V

ΦdV︸ ︷︷ ︸
visc diss

=

∫
V

(ρ− ρ0)g · vdV︸ ︷︷ ︸
work grav

(555)

43Check: this is akin to looking at the power, force*velocity, says Arie
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under no approximation at all∫
V

∇p · vdV =

∫
S

p v · n︸︷︷︸
=0 (b.c.)

dS −
∫
V

∇ · v pdV = 0 (556)

=

∫
V

1

ρ
v ·∇ρ pdV = 0 (557)

(558)

ToDo:see section 3 of [608] where this is carried out with the Adams-Williamson eos.

Conservation of energy 2

Also, following the Reynold’s transport theorem [655],p210, we have for a property A (per unit mass)

d

dt

∫
V

AρdV =

∫
V

∂

∂t
(Aρ)dV +

∫
S

Aρv · ndS

Let us apply to this to A = CpT and compute the time derivative of the internal energy:

d

dt

∫
V

ρCpTdV =

∫
V

∂

∂t
(ρCpT )dV +

∫
S

Aρ v · n︸︷︷︸
=0 (b.c.)

dS =

∫
V

CpT
∂ρ

∂t
dV︸ ︷︷ ︸

I

+

∫
V

ρCp
∂T

∂t
dV︸ ︷︷ ︸

II

(559)

In order to expand I, the mass conservation equation will be used, while the heat transport equation
will be used for II:

I =

∫
V

CpT
∂ρ

∂t
dV = −

∫
V

CpT∇ · (ρv)dV = −
∫
V

CpTρ v · n︸︷︷︸
=0 (b.c.)

dS +

∫
V

ρCp∇T · vdV (560)

II =

∫
V

ρCp
∂T

∂t
dV =

∫
V

[
−ρCpv ·∇T + ∇ · k∇T + ρH + Φ + αT

(
∂p

∂t
+ v ·∇p

)]
dV (561)

=

∫
V

[
−ρCpv ·∇T + ρH + Φ + αT

(
∂p

∂t
+ v ·∇p

)]
dV +

∫
V

∇ · k∇TdV(562)

=

∫
V

[
−ρCpv ·∇T + ρH + Φ + αT

(
∂p

∂t
+ v ·∇p

)]
dV +

∫
S

k∇T · ndS(563)

=

∫
V

[
−ρCpv ·∇T + ρH + Φ + αT

(
∂p

∂t
+ v ·∇p

)]
dV −

∫
S

q · ndS (564)

Finally:

I + II =
d

dt

∫
V

ρCpTdV︸ ︷︷ ︸
ET

=

∫
V

[
ρH + Φ + αT

(
∂p

∂t
+ v ·∇p

)]
dV −

∫
S

q · ndS (565)

=

∫
V

ρHdV +

∫
V

ΦdV︸ ︷︷ ︸
visc diss

+

∫
V

αT
∂p

∂t
dV︸ ︷︷ ︸

extra

+

∫
V

αTv ·∇pdV︸ ︷︷ ︸
adiab heating

−
∫
S

q · ndS︸ ︷︷ ︸
heatflux boundary

(566)

This was of course needlessly complicated as the term ∂ρ/∂t is always taken to be zero, so that I = 0
automatically. The mass conservation equation is then simply ∇ · (ρv) = 0. Then it follows that

0 =

∫
V

CpT∇ · (ρv)dV = −
∫
V

CpTρ v · n︸︷︷︸
=0 (b.c.)

dS +

∫
V

ρCp∇T · vdV (567)

=

∫
V

ρCp∇T · vdV (568)

so that the same term in Eq.(564) vanishes too, and then Eq.(566) is always valid, although one should
be careful when computing ET in the BA and EBA cases as it should use ρ0 and not ρ.
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The problem of the onset of convection

[wiki] In geophysics, the Rayleigh number is of fundamental importance: it indicates the presence and
strength of convection within a fluid body such as the Earth’s mantle. The mantle is a solid that behaves
as a fluid over geological time scales.

The Rayleigh number essentially is an indicator of the type of heat transport mechanism. At low
Rayleigh numbers conduction processes dominate over convection ones. At high Rayleigh numbers it is
the other way around. There is a so-called critical value of the number with delineates the transition
from one regime to the other.

This problem has been studied and approached both theoretically and numerically [920, e.g.] and it
was found that the critical Rayleigh number Rac is

Rac = (27/4)π4 ' 657.5

in setups similar to ours.

VERY BIG PROBLEM
The temperature setup is built as follows: Tsurf is prescribed at the top, Tsurf + ∆T is prescribed

at the bottom. The initial temperature profile is linear between these two values. In the case of BA, the
actual value of Tsurf is of no consequence. However, for the EBA the full temperature is present in the
adiabatic heating term on the rhs of the hte, and the value of Tsurf will therefore influence the solution
greatly. This is very problematic as there is no real way to arrive at the surface temperature from the
King paper. On top of this, the density uses a reference temperature T0 which too will influence the
solution without being present in the controlling Ra and Di numbers!!

In light thereof, it will be very difficult to recover the values of King et al for EBA!

features

• Q1 × P0 element

• compressible flow

• mixed formulation

• Dirichlet boundary conditions (no-slip)

• isoviscous

• analytical solution

• pressure smoothing

Relevant literature: [84, 522, 871, 608, 564, 610, 637, 468]
ToDo:

• heat flux is at the moment elemental, so Nusselt and heat flux on boundaries measurements not as
accurate as could be.
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• implement steady state detection

• do Ra = 105 and Ra = 106

• velocity average at surface

• non dimensional heat flux at corners [106]

• depth-dependent viscosity (case 2 of [106])
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results - BA - Ra = 104

These results were obtained with a 64x64 resolution, and CFL number of 1. Steady state was reached
after about 1250 timesteps.
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AH: adiabatic heating, VD: viscous dissipation, HF: heat flux, WG: work against gravity

Eq.(566) is verified by (l) and Eq.(555) is verified by (m).
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results - BA - Ra = 105

These results were obtained with a 64x64 resolution, and CFL number of 1. Steady state was reached
after about 1250 timesteps.
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AH: adiabatic heating, VD: viscous dissipation, HF: heat flux, WG: work against gravity

Eq.(566) is verified by (l) and Eq.(555) is verified by (m).
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results - BA - Ra = 106
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results - EBA - Ra = 104

These results were obtained with a 64x64 resolution, and CFL number of 1. Steady state was reached
after about 2500 timesteps
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AH: adiabatic heating, VD: viscous dissipation, HF: heat flux, WG: work against gravity

Eq.(566) is verified by (l) and Eq.(555) is verified by (m).
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results - EBA - Ra = 105

These results were obtained with a 64x64 resolution, and CFL number of 1. Simulation was stopped after
about 4300 timesteps.
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Onset of convection

The code can be run for values of Ra between 500 and 1000, at various resolutions for the BA formulation.
The value vrms(t) − vrms(0) is plotted as a function of Ra and for the 10 first timesteps. If the vrms is
found to decrease, then the Rayleigh number is not high enough to allow for convection and the initial
temperature perturbation relaxes by diffusion (and then vrms(t) − vrms(0) < 0. If the vrms is found to
increase, then vrms(t) − vrms(0) > 0 and the system is going to showcase convection. The zero value of
vrms(t)− vrms(0) gives us the critical Rayleigh number, which is found between 775 and 790.
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Appendix: Looking for the right combination of parameters for the King benchmark.
I run a quadruple do loop over L, ∆T , ρ0 and η0 between plausible values (see code targets.py) and

write in a file only the combination which yields the required Rayleigh and Dissipation number values
(down to 1% accuracy).

alpha=3e−5
g=10
hcapa=1250
hcond=3
DTmin=1000 ; DTmax=4000 ; DTnpts=251
Lmin=1e6 ; Lmax=3e6 ; Lnpts=251
rhomin=3000 ; rhomax=3500 ; rhonpts=41
etamin=19 ; etamax=25 ; etanpts =100

On the following plots the ’winning’ combinations of these four parameters are shown:
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We see that:

• the parameter L (being to the 3rd power in the Ra number) cannot vary too much. Although it is
varied between 1000 and 3000km there seems to be a ’right’ value at about 1040 km. (why?)

• viscosities are within 1023 and 1024 which are plausible values (although a bit high?).

• densities can be chosen freely between 3000 and 3500

• ∆T seems to be the most problematic value since it can range from 1000 to 4000K ...

243



Stone 25: Rayleigh-Taylor instability (1) - instantaneous

This numerical experiment was first presented in [940]. It consists of an isothermal Rayleigh-Taylor
instability in a two-dimensional box of size Lx = 0.9142 and Ly = 1. Two Newtonian fluids are present
in the system: the buoyant layer is placed at the bottom of the box and the interface between both fluids

is given by y(x) = 0.2 + 0.02 cos
(
πx
Lx

)
The bottom fluid is parametrised by its mass density ρ1 and its

viscosity µ1, while the layer above is parametrised by ρ2 and µ2.
No-slip boundary conditions are applied at the bottom and at the top of the box while free-slip

boundary conditions are applied on the sides.
In the original benchmark the system is run over 2000 units of dimensionless time and the timing

and position of various upwellings/downwellings is monitored. In this present experiment only the root
mean square velocity is measured at t = 0: the code is indeed not yet foreseen of any algorithm capable
of tracking deformation.

Another approach than the ones presented in the extensive literature which showcases results of this
benchmark is taken. The mesh is initially fitted to the fluids interface and the resolution is progressively
increased. This results in the following figure:
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The green line indicates results obtained with my code ELEFANT with grids up to 2000x2000 with the
exact same methodology.
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features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• isothermal

• numerical benchmark
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Stone 26: Slab detachment benchmark (1) - instantaneous

As in [821], the computational domain is 1000km × 660km. No-slip boundary conditions are imposed
on the sides of the system while free-slip boundary conditions are imposed at the top and bottom. Two
materials are present in the domain: the lithosphere (mat.1) and the mantle (mat.2). The overriding
plate (mat.1) is 80km thick and is placed at the top of the domain. An already subducted slab (mat.1)
of 250km length hangs vertically under this plate. The mantle occupies the rest of the domain.

The mantle has a constant viscosity η0 = 1021Pa.s and a density ρ = 3150kg/m3. The slab has a
density ρ = 3300kg/m3 and is characterised by a power-law flow law so that its effective viscosity depends
on the second invariant of the strainrate I2 as follows:

ηeff =
1

2
A−1/nsI

1/ns−1
2 =

1

2
[(2× 4.75×1011)−ns ]−1/nsI

1/ns−1
2 = 4.75×1011I

1/ns−1
2 = η0I

1/ns−1
2 (569)

with ns = 4 and A = (2× 4.75×1011)−ns , or η0 = 4.75× 1011.

Fields at convergence for 151x99 grid.
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features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• isothermal

• nonlinear rheology

• nonlinear residual

Todo: nonlinear mantle, pressure normalisation
Also check Bellas et al, 2018 [79].
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Stone 27: Consistent Boundary Flux

In what follows we will be re-doing the numerical experiments presented in Zhong et al. [1033].
The first benchmark showcases a unit square domain with free slip boundary conditions prescribed

on all sides. The resolution is fixed to 64× 64 Q1×P0 elements. The flow is isoviscous and the buoyancy
force f is given by

fx = 0

fy = ρ0αT (x, y)

with the temperature field given by

T (x, y) = cos(kx)δ(y − y0)

where k = 2π/λ and λ is a wavelength, and y0 represents the location of the buoyancy strip. We set
gy = −1 and prescribe ρ(x, y) = ρ0α cos(kx)δ(y − y0) on the nodes of the mesh.

One can prove ([1033] and refs. therein) that there is an analytic solution for the surface stress σzz
44

σyy
ραgh

=
cos(kx)

sinh2(k)
[k(1− y0) sinh(k) cosh(ky0)− k sinh(k(1− y0)) + sinh(k) sinh(ky0)]

We choose ρ0α = 64, η = 1 (note that in this case the normalising coefficient of the stress is exactly
1 (since h = Lx/nelx = 1/64) so it is not implemented in the code). λ = 1 is set to 1 and we explore
y0 = 63

64 ,
62
64 ,

59
64 and y0 = 32/64. Under these assumptions the density field for y0 = 59/64 is:

We can recover the stress at the boundary by computing the yy component of the stress tensor in the
top row of elements:

σyy = −p+ 2ηε̇yy

Note that pressure is by definition elemental, and that strain rate components are then also computed in
the middle of each element.

These elemental quantities can be projected onto the nodes (see section ??) by means of the C→N
algorithm or a least square algorithm (LS).
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44Note that in the paper the authors use ραg which does not have the dimensions of a stress
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The consistent boundary flux (CBF) method allows us to compute traction vectors t = σ · n on the
boundary of the domain. On the top boundary, n = (0, 1) so that t = (σxy, σyy)T and ty is the quantity
we need to consider and compare to other results.

In the following table are shown the results presented in [1033] alongside the results obtained with
Fieldstone:

Method y0 = 63/64 y0 = 62/64 y0 = 59/64 45 y0 = 32/64

Analytic solution 0.995476 0.983053 0.912506 0.178136
Pressure smoothing [1033] 1.15974 1.06498 0.911109 n.a.
CBF [1033] 0.994236 0.982116 0.912157 n.a.

fieldstone: elemental 0.824554 (-17.17 %) 0.978744 (-0.44%) 0.909574 (-0.32 %) 0.177771 (-0.20 %)
fieldstone: nodal (C→N) 0.824554 (-17.17 %) 0.978744 (-0.44%) 0.909574 (-0.32 %) 0.177771 (-0.20 %)
fieldstone: LS 1.165321 ( 17.06 %) 1.070105 ( 8.86%) 0.915496 ( 0.33 %) 0.178182 ( 0.03 %)
fieldstone: CBF 0.994236 ( -0.13 %) 0.982116 (-0.10%) 0.912157 (-0.04 %) 0.177998 (-0.08 %)

We see that we recover the published results with the same exact accuracy, thereby validating our
implementation. Also rather fascinating is the fact that the original paper carries out the whole study
without showing any image of the 2D domain ever.

On the following figures are shown the velocity, pressure and traction fields for two cases y0 = 32/64
and y0 = 63/64.
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Here lies the superiority of our approach over the one presented in the original article: our code
computes all traction vectors on all boundaries at once.
explain how Medge is arrived at!

compare with ASPECT ??!

pressure average on surface instead of volume ?

Remark. The original article on the CBF [1033] uses a penalty-based formulation (see Section 6.3) so
that they do not have to worry about pressure normalisation. However, since constant pressure fields lie
in the nullspace of G the pressure normalisation constant does not play a role.

As shown in Appendix I, the Q1 mass matrix for the reference cell/element is given by:

M e =
1

3

(
2 1
1 2

)
This matrix needs to be multiplied by h/2 for an element of size h. Following the methodology presented
in [1033], one can also use the Gauss-Lobatto quadrature method to arrive at the mass matrix, and in
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this case the simple trapezoidal integration rule variant thereof (see Section 4.1.1). We then have:

Me =

∫
Ωe

~NT ~NdV =

∫ +1

−1

~NT ~Ndr (570)

on the reference element, with

~NT =

(
N1(r)
N2(r)

)
=

1

2

(
1− r
1 + r

)
We know compute the following integrals with the trapezoidal rule:∫ +1

−1

N1(r)N1(r)dr = (1−−1)
N1(−1)N1(−1) +N1(+1)N1(+1)

2
= 1 (571)∫ +1

−1

N1(r)N2(r)dr = (1−−1)
N1(−1)N2(−1) +N1(+1)N2(+1)

2
= 0 (572)∫ +1

−1

N2(r)N2(r)dr = (1−−1)
N2(−1)N2(−1) +N2(+1)N2(+1)

2
= 1 (573)

and finally

M e =

(
1 0
0 1

)
The resulting matrix is diagonal and it is simply the lumped version of the exact mass matrix.

features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• isothermal

• isoviscous

• analytical solution

• pressure smoothing

• consistent boundary flux
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Stone 28: convection 2D box - Tosi et al, 2015

This fieldstone was developed in collaboration with Rens Elbertsen.
The viscosity field µ is calculated as the harmonic average between a linear part µlin that depends

on temperature only or on temperature and depth d , and a non-linear, plastic part µplast dependent on
the strain rate:

µ(T, z, ε̇) = 2

(
1

µlin(T, z)
+

1

µplast(ε̇)

)−1

. (574)

The linear part is given by the linearized Arrhenius law (the so-called Frank-Kamenetskii approxima-
tion [347]):

µlin(T, z) = exp(−γTT + γzz), (575)

where γT = ln(∆µT ) and γz = ln(∆µz) are parameters controlling the total viscosity contrast due to
temperature (∆µT ) and pressure (∆µz). The non-linear part is given by [913, 912]:

µplast(ε̇) = µ∗ +
σY√
ε̇ : ε̇

, (576)

where µ∗ is a constant representing the effective viscosity at high stresses [849] and σY is the yield
stress, also assumed to be constant. In 2-D, the denominator in the second term of equation (576) is
given explicitly by

√
ε̇ : ε̇ =

√
ε̇ij ε̇ij =

√(
∂ux
∂x

)2

+
1

2

(
∂ux
∂y

+
∂uy
∂x

)2

+

(
∂uy
∂y

)2

. (577)

The viscoplastic flow law (equation 574) leads to linear viscous deformation at low stresses (equation
(575)) and to plastic deformation for stresses that exceed σY (equation (576)), with the decrease in
viscosity limited by the choice of µ∗ [849].

In all cases that we present, the domain is a two-dimensional square box. The mechanical boundary
conditions are for all boundaries free-slip with no flux across, i.e. τxy = τyx = 0 and u · n = 0, where
n denotes the outward normal to the boundary. Concerning the energy equation, the bottom and top
boundaries are isothermal, with the temperature T set to 1 and 0, respectively, while side-walls are
assumed to be insulating, i.e. ∂T/∂x = 0. The initial distribution of the temperature field is prescribed
as follows:

T (x, y) = (1− y) +A cos(πx) sin(πy), (578)

where A = 0.01 is the amplitude of the initial perturbation.
In the following Table ??, we list the benchmark cases according to the parameters used.

Case Ra ∆µT ∆µy µ∗ σY Convective regime
1 102 105 1 – – Stagnant lid
2 102 105 1 10−3 1 Mobile lid
3 102 105 10 – – Stagnant lid
4 102 105 10 10−3 1 Mobile lid
5a 102 105 10 10−3 4 Periodic
5b 102 105 10 10−3 3 – 5 Mobile lid – Periodic – Stagnant lid

Benchmark cases and corresponding parameters.

In Cases 1 and 3 the viscosity is directly calculated from equation (575), while for Cases 2, 4, 5a, and
5b, we used equation (574). For a given mesh resolution, Case 5b requires running simulations with yield
stress varying between 3 and 5

In all tests, the reference Rayleigh number is set at the surface (y = 1) to 102, and the viscosity
contrast due to temperature ∆µT is 105, implying therefore a maximum effective Rayleigh number of
107 for T = 1. Cases 3, 4, 5a, and 5b employ in addition a depth-dependent rheology with viscosity
contrast ∆µz = 10. Cases 1 and 3 assume a linear viscous rheology that leads to a stagnant lid regime.
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Cases 2 and 4 assume a viscoplastic rheology that leads instead to a mobile lid regime. Case 5a also
assumes a viscoplastic rheology but a higher yield stress, which ultimately causes the emergence of a
strictly periodic regime. The setup of Case 5b is identical to that of Case 5a but the test consists in
running several simulations using different yield stresses. Specifically, we varied σY between 3 and 5 in
increments of 0.1 in order to identify the values of the yield stress corresponding to the transition from
mobile to periodic and from periodic to stagnant lid regime.

Case 0: Newtonian case, a la Blankenbach et al., 1989
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Case 1

In this case µ? = 0 and σY = 0 so that µplast can be discarded. The CFL number is set to 0.5 and the
viscosity is given by µ(T, z, ε̇) = µlin(T, z). And since ∆µz = 1 then γz = 0 so that µlin(T, z) = exp(−γTT )
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Case 2
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Case 3
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Case 4
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Case 5
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Stone 29: open boundary conditions

In what follows we will investigate the use of the so-called open boundary conditions in the very simple
context of a 2D Stokes sphere experiment.

We start with a domain without the sphere. Essentially, it is what people would call an aquarium.
Free slip boundary conditions are prescribed on the sides and no-slip conditions at the bottom. The top
surface is left free. The fluid has a density ρ0 = 1 and a viscosity η0 = 1. In the absence of any density
difference in the domain there is no active buoyancy force so that we expect a zero velocity field and a
lithostatic pressure field. This is indeed what we recover:

If we now implement a sphere parametrised by its density ρs = ρ0 + 1, its viscosity ηs = 103 and
its radius Rs = 0.123 in the middle of the domain, we see clear velocity field which logically shows the
sphere falling downward and a symmetric return flow of the fluid on each side:

Unfortunately it has been widely documented that the presence of free-slip boundary conditions
affects the evolution of subduction [219], even when these are placed rather far from the subduction zone.
A proposed solution to this problem is the use of ’open boundary conditions’ which are in fact stress
boundary conditions. The main idea is to prescribe a stress on the lateral boundaries (instead of free
slip) so that it balances out exactly the existing lithostatic pressure inside the domain along the side
walls. Only pressure deviations with respect to the lithostatic are responsible for flow and such boundary
conditions allow flow across the boundaries.

We need the lithostatic pressure and compute it before hand (which is trivial in our case but can
prove to be a bit more tedious in real life situations when for instance density varies in the domain as a
function of temperature and/or pressure).

p l i t h = np . z e r o s (nnp , dtype=np . f l o a t 6 4 )
f o r i in range (0 , nnp ) :

p l i t h [ i ]=(Ly−y [ i ] ) ∗ rho0∗abs ( gy )

Let us start with a somewhat pathological case: even in the absence of the sphere, what happens when
no boundary conditions are prescribed on the sides? The answer is simple: think about an aquarium
without side walls, or a broken dam. The velocity field indeed shows a complete collapse of the fluid left
and right of the bottom.
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Let us then continue (still with no sphere) but let us now switch on the open boundary conditions.
Since the side boundary conditions match the lithostatic pressure we expect no flow at all in the absence
of any density perturbation in the system. This is indeed what is recovered:

Finally, let us reintroduce the sphere. This time flow is allowed through the left and right side
boundaries:

Finally, although horizontal velocity Dirichlet boundary conditions and open boundary conditions
are not compatible, the same is not true for the vertical component of the velocity: the open b.c.
implementation acts on the horizontal velocity dofs only, so that one can fix the vertical component to
zero, as is shown hereunder:

We indeed see that the in/outflow on the sides is perpendicular to the boundaries.
Turning now to the actual implementation, we see that it is quite trivial, since all element edges are

vertical, and all have the same vertical dimension hx. Since we use a Q0 approximation for the pressure
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we need to prescribe a single pressure value in the middle of the element. Finally because of the sign of
the normal vector projection onto the x-axis, we obtain:

i f o p e n b c l e f t and x [ i con [ 0 , i e l ] ]< eps : # l e f t s i d e
pmid=0.5∗( p l i t h [ i con [ 0 , i e l ] ]+ p l i t h [ i con [ 3 , i e l ] ] )
f e l [0]+=0.5∗hy∗pmid
f e l [6]+=0.5∗hy∗pmid

i f open bc r i gh t and x [ i con [ 1 , i e l ] ]>Lx−eps : # r i g h t s i d e
pmid=0.5∗( p l i t h [ i con [ 1 , i e l ] ]+ p l i t h [ i con [ 2 , i e l ] ] )
f e l [2]−=0.5∗hy∗pmid
f e l [4]−=0.5∗hy∗pmid

These few lines of code are added after the elemental matrices and rhs are built, and before the
application of other Dirichlet boundary conditions, and assembly.

features

• Q1 × P0 element

• incompressible flow

• mixed formulation

• open boundary conditions

• isoviscous
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Stone 30: conservative velocity interpolation

In this the Stokes equations are not solved. It is a 2D implementation of the cvi algorithm as introduced
in [959] which deals with the advection of markers. Q1 and Q2 basis functions are used and in both cases
the cvi algorithm can be toggled on/off. Markers can be distributed regularly or randomly at startup.

Three velocity fields are prescribed on the mesh:

• the so-called Couette flow of [959]

• the SolCx solution

• a flow created by means of a stream line function (see fieldstone 32)

Couette flow

SolCx

Streamline flow
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In this case RK order seems to be more important that cvi.
Explore why ?!

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions (free-slip)

• direct solver

• isothermal

• non-isoviscous

• analytical solution
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Stone 31: conservative velocity interpolation 3D
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Stone 32: 2D analytical sol. from stream function

Background theory

The stream function is a function of coordinates and time of an inviscid liquid. It allows to determine
the components of velocity by differentiating the stream function with respect to the space coordinates.
A family of curves Ψ = const represent streamlines, i.e. the stream function remains constant along a
streamline. Although also valid in 3D, this approach is mostly used in 2D because of its relative simplicity
REFERENCES.

In two dimensions the velocity is obtained as follows:

v =

(
∂Ψ

∂y
,−∂Ψ

∂x

)
(579)

Provided the function Ψ is a smooth enough function, this automatically insures that the flow is incom-
pressible:

∇ · v =
∂u

∂x
+
∂v

∂y
=
∂2Ψ

∂xy
− ∂2Ψ

∂xy
= 0 (580)

Assuming constant viscosity, the Stokes equation writes:

−∇p+ µ∆v = ρg (581)

Let us introduce the vector W for convenience such that in each dimension:

Wx = −∂p
∂x

+ µ

(
∂2u

∂x2
+
∂2u

∂xy

)
= ρgx (582)

Wy = −∂p
∂y

+ µ

(
∂2v

∂x2
+
∂2v

∂xy

)
= ρgy (583)

Taking the curl of the vector W and only considering the component perpendicular to the xy-plane:

∂Vy
∂x
− ∂Vx

∂y
=
∂ρgy
∂x
− ∂ρgx

∂y
(584)

The advantage of this approach is that the pressure terms cancel out (the curl of a gradient is always
zero), so that:

∂

∂x
µ

(
(
∂2v

∂x2
+
∂2v

∂xy

)
− ∂

∂y
µ

(
∂2u

∂x2
+
∂2u

∂xy

)
=
∂ρgy
∂x
− ∂ρgx

∂y
(585)

and then replacing u, v by the their stream function derivatives yields (for a constant viscosity):

µ

(
∂4Ψ

∂x4
+
∂4Ψ

∂y4
+ 2

∂4Ψ

∂x2y2

)
=
∂ρgy
∂x
− ∂ρgx

∂y
(586)

or,

∇4Ψ =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
Ψ =

∂ρgy
∂x
− ∂ρgx

∂y
(587)

These equations are also to be found in the geodynamics literature, eee Eq. 1.43 of Tackley book, p 70-71
of Gerya book.

A simple application

I wish to arrive at an analytical formulation for a 2D incompressible flow in the square domain [−1 :
1]× [−1 : 1] The fluid has constant viscosity µ = 1 and is subject to free slip boundary conditions on all
sides. For reasons that will become clear in what follows I postulate the following stream function:

Ψ(x, y) = sin(mπx) sin(nπy) (588)
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We have the velocity being defined as:

v = (u, v) =

(
∂Ψ

∂y
,−∂Ψ

∂x

)
= (nπ sin(mπx) cos(nπy),−mπ cos(mπx) sin(nπy)) (589)

The strain rate components are then:

ε̇xx =
∂u

∂x
= mnπ2 cos(mπx) cos(nπy) (590)

ε̇yy =
∂v

∂y
= −mnπ2 cos(mπx) cos(nπy) (591)

2ε̇xy =
∂u

∂y
+
∂v

∂x
(592)

=
∂2Ψ

∂y2
− ∂2Ψ

∂x2
(593)

= −n2π2Ψ +m2π2Ψ (594)

= (m2 − n2)π2 sin(mπx) sin(nπy) (595)

Note that if m = n the last term is identically zero, which is not desirable (flow is too ’simple’) so in
what follows we will prefer m 6= n.

It is also easy to verify that u = 0 on the sides and v = 0 at the top and bottom and that the term
ε̇xy is nul on all four sides, thereby garanteeing free slip.

Our choice of stream function yields:

∇4Ψ =
∂4Ψ

∂x4
+
∂4Ψ

∂y4
+ 2

∂2Ψ

∂x2y2
= π4(m4Ψ + n4Ψ + 2m2n2Ψ) = (m4 + n4 + 2m2n2)π4Ψ

We assume gx = 0 and gy = −1 so that we simply have

(m4 + n4 + 2m2n2)π4Ψ = −∂ρ
∂x

(596)

so that (assuming the integration constant to be zero):

ρ(x, y) =
m4 + n4 + 2m2n2

m
π3 cos(mπx) sin(nπy)

The x-component of the momentum equation is

−∂p
∂x

+
∂2u

∂x2
+
∂2u

∂y2
= −∂p

∂x
−m2nπ3 sin(mπx) cos(nπy)− n3π3 sin(mπx) cos(nπy) = 0

so
∂p

∂x
= −(m2n+ n3)π3 sin(mπx) cos(nπy)

and the pressure field is then (once again neglecting the integration constant):

p(x, y) =
m2n+ n3

m
π2 cos(πx) cos(πy)

Note that in this case
∫
pdV = 0 so that volume normalisation of the pressure is turned on (when free

slip boundary conditions are prescribed on all sides the pressure is known up to a constant and this
undeterminacy can be lifted by adding an additional constraint to the pressure field).
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Top to bottom: Velocity components u and v, pressure p, density ρ and strain rate ε̇xy. From left to right:

(m,n) = (1, 1), (m,n) = (1, 2), (m,n) = (2, 1), (m,n) = (2, 2)
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Stone 33: Convection in an annulus

This fieldstone was developed in collaboration with Rens Elbertsen.
This is based on the community benchmark for viscoplastic thermal convection in a 2D square box

[904] as already carried out in ??.
In this experiment the geometry is an annulus of inner radius R1 = 1.22 and outer radius R2 = 2.22.

The rheology and buoyancy forces are identical to those of the box experiment. The initial temperature
is now given by:

T (r, θ) = Tc(r) +A s(1− s) cos(N0θ) s =
R2 − r
R2 −R1

∈ [0, 1]

where s in the normalised depth, A is the amplitude of the perturbation and N0 the number of lobes. In
this equation Tc(r) stands for the steady state purely conductive temperature solution which is obtained
by solving the Laplace’s equation in polar coordinates (all terms in θ are dropped because of radial
symmetry) supplemented with two boundary conditions:

∆Tc =
1

r

∂

∂r

(
r
∂T

∂r

)
= 0 T (r = R1) = T1 = 1 T (r = R2) = T2 = 0

We obtain

Tc(r) =
log(r/R2)

log(R1/R2)

Note that this profile differs from the straight line that is used in [904] and in section 8.

Examples of initial temperature fields for N0 = 3, 5, 11

Boundary conditions can be either no-slip or free-slip on both inner and outer boundary. However,
when free-slip is used on both a velocity null space exists and must be filtered out. In other words, the
solver may be able to come up with a solution to the Stokes operator, but that solution plus an arbitrary
rotation is also an equally valid solution. This additional velocity field can be problematic since it is used
for advecting temperature (and/or compositions) and it also essentially determines the time step value
for a chosen mesh size (CFL condition).

For these reasons the nullspace must be removed from the obtained solution after every timestep.
There are two types of nullspace removal: removing net angular momentum, and removing net rotations.

We calculate the following output parameters:

• the average temperature < T >

〈T 〉 =

∫
Ω
TdΩ∫

Ω
dΩ

=
1

VΩ

∫
Ω

TdΩ (597)

• the root mean square velocity vrms as given by equation (38).

• the root mean square of the radial and tangential velocity components as given by equations (40)
and (41).
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• the heat transfer through both boundaries Q:

Qinner,outer =

∫
Γi,o

q · n dΓ (598)

• the Nusselt number at both boundaries Nu as given by equations (43) and (44).

• the power spectrum of the temperature field:

PSn(T ) =

∣∣∣∣∫
Ω

T (r, θ)einθdΩ

∣∣∣∣2 . (599)

features

• Q1 × P0 element

• incompressible flow

• penalty formulation

• Dirichlet boundary conditions

• non-isothermal

• non-isoviscous

• annulus geometry
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Stone 34: the Cartesian geometry elastic aquarium

This fieldstone was developed in collaboration with Lukas van de Wiel.
The setup is as follows: a 2D square of elastic material of size L is subjected to the following boundary

conditions: free slip on the sides, no slip at the bottom and free at the top. It has a density ρ and is
placed is a gravity field g = −gey. For an isotropic elastic medium the stress tensor is given by:

σ = λ(∇ · u)1 + 2µε

where λ is the Lamé parameter and µ is the shear modulus. The displacement field is u = (0, uy(y))
because of symmetry reasons (we do not expect any of the dynamic quantities to depend on the x
coordinate and also expect the horizontal displacement to be exactly zero). The velocity divergence is
then ∇ · u = ∂uy/∂y and the strain tensor:

ε =

(
0 0

0
∂uy
∂y

)

so that the stress tensor is:

σ =

(
λ
∂uy
∂y 0

0 (λ+ 2µ)
∂uy
∂y

)

∇ · σ = (∂x ∂y) ·

(
λ
∂uy
∂y 0

0 (λ+ 2µ)
∂uy
∂y

)
=

(
0

(λ+ 2µ)
∂2uy
∂y2

)
=

(
0
ρg

)
so that the vertical displacement is then given by:

uy(y) =
1

2

ρg

λ+ 2µ
y2 + αy + β

where α and β are two integration constants. We need now to use the two boundary conditions: the
first one states that the displacement is zero at the bottom, i.e. uy(y = 0) = 0 which immediately
implies β = 0. The second states that the stress at the top is zero (free surface), which implies that
∂uy/∂y(y = L) = 0 which allows us to compute α. Finally:

uy(y) =
ρg

λ+ 2µ
(
y2

2
− Ly)

The pressure is given by

p = −(λ+
2

3
µ)∇ · u = (λ+

2

3
µ)

ρg

λ+ 2µ
(L− y) =

λ+ 2
3µ

λ+ 2µ
ρg(L− y) =

1 + 2µ
3λ

1 + 2µ/λ
ρg(L− y)

In the incompressible limit, the poisson ratio is ν ∼ 0.5. Materials are characterised by a finite Young’s
modulus E, which is related to ν and λ:

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)

It is then clear that for incompressible parameters λ becomes infinite while µ remains finite. In that case
the pressure then logically converges to the well known formula:

p = ρg(L− y)
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In what follows we set L = 1000m, ρ = 2800, ν = 0.25, E = 6 · 1010, g = 9.81.
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Stone 35: 2D analytical sol. in annulus from stream function

We seek an exact solution to the incompressible Stokes equations for an isoviscous, isothermal fluid in
an annulus.Given the geometry of the problem, we work in polar coordinates. We denote the orthonormal
basis vectors by er and eθ, the inner radius of the annulus by R1 and the outer radius by R2. Further,
we assume that the viscosity µ is constant, which we set to µ = 1 we set the gravity vector to g = −gr er
with gr = 1.

Given these assumptions, the incompressible Stokes equations in the annulus are [826]

Ar =
∂2vr
∂r2

+
1

r

∂vr
∂r

+
1

r2

∂2vr
∂θ2

− vr
r2
− 2

r2

∂uθ
∂θ
− ∂p

∂r
= ρgr (600)

Aθ =
∂2vθ
∂r2

+
1

r

∂vθ
∂r

+
1

r2

∂2vθ
∂θ2

+
2

r2

∂vr
∂θ
− vθ
r2
− 1

r

∂p

∂θ
= 0 (601)

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

= 0 (602)

Equations (600) and (601) are the momentum equations in polar coordinates while Equation (602) is the
incompressibility constraint. The components of the velocity are obtained from the stream function as
follows:

vr =
1

r

∂Ψ

∂θ
vθ = −∂Ψ

∂r

where vr is the radial component and vθ is the tangential component of the velocity vector.
The stream function is defined for incompressible (divergence-free) flows in 2D (as well as in 3D with

axisymmetry). The stream function can be used to plot streamlines, which represent the trajectories of
particles in a steady flow. From calculus it is known that the gradient vector ∇Ψ is normal to the curve
Ψ = C. It can be shown that everywhere u · ∇Ψ = 0 using the formula for u in terms of Ψ which proves
that level curves of Ψ are streamlines:

u · ∇Ψ = vr
∂Ψ

∂r
+ vθ

1

r

∂Ψ

∂θ
=

1

r

∂Ψ

∂θ

∂Ψ

∂r
− ∂Ψ

∂r

1

r

∂Ψ

∂θ
= 0

In polar coordinates the curl of a vector A is:

∇×A =
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
Taking the curl of vector A yields:

1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
=

1

r

(
−∂(ρgr)

∂θ

)
Multiplying on each side by r

∂(rAθ)

∂r
− ∂Ar

∂θ
= −∂ρgr

∂θ

If we now replace Ar and Aθ by their expressions as a function of velocity and pressure, we see that the
pressure terms cancel out and assuming the viscosity and the gravity vector to be constant we get: Let

us assume the following separation of variables Ψ(r, θ) = φ(r)ξ(θ) . Then

vr =
1

r

∂Ψ

∂θ
=
φξ′

r
vθ = −∂Ψ

∂r
= −φ′ξ
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Let us first express Ar and Aθ as functions of Ψ and

Ar =
∂2vr
∂r2

+
1

r

∂vr
∂r

+
1

r2

∂2vr
∂θ2

− vr
r2
− 2

r2

∂uθ
∂θ

(603)

=
∂2

∂r2
(
φξ′

r
) +

1

r

∂

∂r
(
φξ′

r
) +

1

r2

∂2

∂θ2
(
φξ′

r
)− 1

r2
(
φξ′

r
)− 2

r2

∂

∂θ
(−φ′ξ) (604)

= (
φ′′

r
− 2

φ′

r2
+ 2

φ

r3
)ξ′ + (

φ′

r2
− φ

r3
)ξ′ +

φ

r3
ξ′′′ − φξ′

r3
+

2

r2
φ′ξ′ (605)

=
φ′′ξ′

r
+
φ′ξ′

r2
+
φξ′′′

r3
(606)

∂Ar
∂θ

=
φ′′ξ′′

r
+
φ′ξ′′

r2
+
φξ′′′′

r3
(607)

(608)

Aθ =
∂2vθ
∂r2

+
1

r

∂vθ
∂r

+
1

r2

∂2vθ
∂θ2

+
2

r2

∂vr
∂θ
− vθ
r2

(609)

=
∂2

∂r2
(−φ′ξ) +

1

r

∂

∂r
(−φ′ξ) +

1

r2

∂2

∂θ2
(−φ′ξ) +

2

r2

∂

∂θ
(
φξ′

r
)− 1

r2
(−φ′ξ) (610)

= −φ′′′ξ − φ′′ξ

r
− φ′ξ′′

r2
+

2φξ′′

r2
+
φ′ξ

r2
(611)

∂(rAθ)

∂r
= (612)
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WRONG:

∂(r∆v)

∂r
=

∂

∂r

(
∂

∂r

(
r
∂v

∂r

)
+

1

r

∂2v

∂θ2

)
(613)

=
∂2

∂r2

(
r
∂v

∂r

)
+

∂

∂r

(
1

r

∂2v

∂θ2

)
(614)

=
∂2

∂r2

(
r
∂

∂r
(−∂Ψ

∂r
)

)
+

∂

∂r

(
1

r

∂2

∂θ2
(−∂Ψ

∂r
)

)
(615)

= − ∂2

∂r2

(
r
∂2Ψ

∂r2

)
− ∂

∂r

(
1

r

∂3Ψ

∂θ2∂r

)
(616)

= −2
∂3Ψ

∂r3
− r ∂

4Ψ

∂r4
+

1

r2

∂3Ψ

∂θ2∂r
− 1

r

∂4Ψ

∂θ2∂r2
(617)

∂∆u

∂θ
=

∂

∂θ

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

)
(618)

=
∂

∂θ

(
1

r

∂

∂r

(
r
∂u

∂r

))
+

1

r2

∂3u

∂θ3
(619)

=
∂

∂θ

(
1

r

∂

∂r

(
r
∂

∂r
(
1

r

∂Ψ

∂θ
)

))
+

1

r2

∂3

∂θ3
(
1

r

∂Ψ

∂θ
) (620)

=
1

r3

∂2Ψ

∂θ2
− 1

r2

∂3Ψ

∂r∂θ2
+

1

r

∂4Ψ

∂r2∂θ2
+

1

r3

∂4Ψ

∂θ4
(621)

Assuming the following separation of variables Ψ(r, θ) = φ(r)ξ(θ) :

∂(r∆v)

∂r
= −2φ′′′ξ − rφ′′′′ξ +

1

r2
φ′ξ′′ − 1

r
φ′′ξ′′ (622)

∂∆u

∂θ
=

1

r3
φξ′′ − 1

r2
φ′ξ′′ +

1

r
φ′′ξ′′ +

1

r3
φξ′′′′ (623)

so that

∂(r∆v)

∂r
− ∂∆u

∂θ
= −2φ′′′ξ − rφ′′′′ξ +

1

r2
φ′ξ′′ − 1

r
φ′′ξ′′ − 1

r3
φξ′′ +

1

r2
φ′ξ′′ − 1

r
φ′′ξ′′ − 1

r3
φξ′′′′

Further assuming ξ(θ) = cos(kθ) , then ξ′′ = −k2ξ and ξ′′′′ = k4ξ then

∂(r∆v)

∂r
− ∂∆u

∂θ
= −2φ′′′ξ − rφ′′′′ξ − k2 1

r2
φ′ξ + k2 1

r
φ′′ξ + k2 1

r3
φξ − k2 1

r2
φ′ξ + k2 1

r
φ′′ξ − k4 1

r3
φξ

By choosing ρ such that ρ = λ(r)Υ(θ) and such that ∂θΥ = ξ = cos(kθ) then we have

−2φ′′′ξ − rφ′′′′ξ − k2 1

r2
φ′ξ + k2 1

r
φ′′ξ + k2 1

r3
φξ − k2 1

r2
φ′ξ + k2 1

r
φ′′ξ − k4 1

r3
φξ = −1

η
λξgr

and then dividing by ξ: (IS THIS OK ?)

−2φ′′′ − rφ′′′′ − k2 1

r2
φ′ + k2 1

r
φ′′ + k2 1

r3
φ− k2 1

r2
φ′ + k2 1

r
φ′′ − k4 1

r3
φ = −1

η
λgr

−2φ′′′ − rφ′′′′ − 2k2 1

r2
φ′ + 2k2 1

r
φ′′ + (k2 − k4)

1

r3
φ = −1

η
λgr

so

λ(r) =
η

gr

(
2φ′′′ + rφ′′′′ + 2k2 1

r2
φ′ − 2k2 1

r
φ′′ − (k2 − k4)

1

r3
φ

)
Also not forget Υ = 1

k sin(kθ)
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Linking with our paper

We have

φ(r) = −rg(r) (624)

φ′(r) = −g(r)− rg′(r) = −f(r) (625)

φ′′(r) = −f ′(r) (626)

φ′′′(r) = −f ′′(r) (627)

φ′′′′(r) = −f ′′′(r) (628)

f(r) =
η0

g0

(
2f ′′(r) + rf ′′′(r) + 2k2 1

r2
f(r)− 2k2 1

r
f ′(r) + (k2 − k4)

1

r2
g(r)

)
No slip boundary conditions

No-slip boundary conditions inside and outside impose that all components of the velocity must be zero
on both boundaries, i.e.

v(r = R1) = v(r = R2) = 0

Due to the separation of variables, and since ξ(θ) = cos(kθ) we have

u(r, θ) =
1

r

∂Ψ

∂θ
=

1

r
φξ′ = −1

r
φ(r)k sin(kθ) v(r, θ) = −∂Ψ

∂r
= −φ′(r)ξ = −φ′(r) cos(kθ)

It is obvious that the only way to insure no-slip boundary conditions is to have

φ(R1) = φ(R2) = φ′(R1) = φ′(R2) = 0

We could then choose

φ(r) = (r −R1)2(r −R2)2F(r) (629)

φ′(r) = 2(r −R1)(r −R2)2F(r) + 2(r −R1)2(r −R2)F(r) + (r −R1)2(r −R2)2F ′(r) (630)

which are indeed identically zero on both boundaries. Here F(r) is any (smooth enough) function of r.
We would then have

Ψ(r, θ) = (r −R1)2(r −R2)2F(r) cos(kθ)

In what follows we will take F(r) = 1 for simplicity.
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COMPUTE f from φ and then the pressure.

Free slip boundary conditions

Before postulating the form of φ(r), let us now turn to the boundary conditions that the flow must fulfill,
i.e. free-slip on both boundaries. Two conditions must be met:

• v · n = 0 (no flow through the boundaries) which yields u(r = R1) = 0 and u(r = R2) = 0, :

1

r

∂Ψ

∂θ
(r = R1, R2) = 0 ∀θ
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which gives us the first constraint since Ψ(r, θ) = φ(r)ξ(θ):

φ(r = R1) = φ(r = R2) = 0

• (σ · n)× n = 0 (the tangential stress at the boundary is zero) which imposes: σθr = 0, with

σθr = 2η · 1

2

(
∂v

∂r
− v

r
+

1

r

∂u

∂θ

)
= η

(
∂

∂r
(−∂Ψ

∂r
)− 1

r
(−∂Ψ

∂r
) +

1

r

∂

∂θ
(
1

r

∂Ψ

∂θ
)

)
Finally Ψ must fulfill (on the boundaries!):

−∂
2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂θ2
= 0

−φ′′ξ +
1

r
φ′ξ +

1

r2
φξ′′ = 0

or,

−φ′′ + 1

r
φ′ − k2 1

r2
φ = 0

Note that this equation is a so-called Euler Differential Equation46. Since we are looking for a
solution φ such that φ(R1) = φ(R2) = 0 then the 3rd term of the equation above is by definition
zero on the boundaries. We have to ensure the following equality on the boundary:

−φ′′ + 1

r
φ′ = 0 for r = R1, R2

The solution of this ODE is of the form φ(r) = ar2 + b and it becomes evident that it cannot satisfy
φ(r = R1) = φ(r = R2) = 0.

Separation of variables leads to solutions which cannot fulfill the free slip boundary conditions

46http://mathworld.wolfram.com/EulerDifferentialEquation.html
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Stone 36: the annulus geometry elastic aquarium

This fieldstone was developed in collaboration with Lukas van de Wiel.
The domain is an annulus with inner radius R1 and outer radius R2. It is filled with a single elastic

material characterised by a Young’s modulus E and a Poisson ratio ν, a density ρ0. The gravity g = −g0er
is pointing towards the center of the domain.

The problem at hand is axisymmetric so that the tangential component of the displacement vector vθ
is assumed to be zero as well as all terms containing ∂θ. The components of the strain tensor are

εrr =
∂vr
∂r

(631)

εθθ =
vr
r

+
1

r

∂vθ
∂θ

=
vr
r

(632)

εrθ =
1

2

(
∂vθ
∂r
− vθ

r
+

1

r

∂vr
∂θ

)
= 0 (633)

so that the tensor simply is

ε =

(
εrr εrθ
εrθ εθθ

)
=

(
∂vr
∂r 0
0 vr

r

)
(634)

The pressure is

p = −λ∇ · v = −λ
(

1

r

∂(rvr)

∂r

)
(635)

and finally the stress tensor:

σ = −p1 + 2µε =

(
λ 1
r
∂(rvr)
∂r + 2µ∂vr∂r 0

0 λ 1
r
∂(rvr)
∂r + 2µ vrr

)
(636)

The divergence of the stress tensor is given by [826]:

∇ · σ =

 ∂σrr
∂r + σrr−σθθ

r + 1
r
∂σθr
∂θ

∂σrθ
∂r + 1

r
σθθ
∂θ + σrθ+σθr

r

 (637)

Given the diagonal nature of the stress tensor this simplifies to (also remember that ∂θ = 0):

∇ · σ =

 ∂σrr
∂r + σrr−σθθ

r

0

 (638)

Focusing on the r-component of the stress divergence:

(∇ · σ)r =
∂σrr
∂r

+
σrr − σθθ

r
(639)

=
∂

∂r

[
λ

1

r

∂(rvr)

∂r
+ 2µ

∂vr
∂r

]
+

1

r

[
λ

1

r

∂(rvr)

∂r
+ 2µ

∂vr
∂r
− λ1

r

∂(rvr)

∂r
− 2µ

vr
r

]
(640)

= λ
∂

∂r

1

r

∂(rvr)

∂r
+ 2µ

∂2vr
∂r2

+ λ
1

r2

∂(rvr)

∂r
+

2µ

r

∂vr
∂r
− λ 1

r2

∂(rvr)

∂r
− 2µvr

r2
(641)

= λ(−vr
r2

+
1

r

∂vr
∂r

+
∂2vr
∂r2

) + 2µ
∂2vr
∂r2

+
2µ

r

∂vr
∂r
− 2µvr

r2
(642)

= −(2µ+ λ)
vr
r2

+ (2µ+ λ)
1

r

∂vr
∂r

+ (2µ+ λ)
∂2vr
∂r2

(643)

So the momentum conservation in the r direction is

(∇ · σ + ρ0g)r = −(2µ+ λ)
vr
r2

+ (2µ+ λ)
1

r

∂vr
∂r

+ (2µ+ λ)
∂2vr
∂r2

− ρ0g0 = 0 (644)
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or,

∂2vr
∂r2

+
1

r

∂vr
∂r
− vr
r2

=
ρ0g0

λ+ 2µ
(645)

We now look at the boundary conditions. On the inner boundary we prescribe vr(r = R1) = 0 while free
surface boundary conditions are prescribed on the outer boundary, i.e. σ · n = 0 (i.e. there is no force
applied on the surface).

The general form of the solution can then be obtained:

vr(r) = C1r
2 + C2r +

C3

r
(646)

with

C1 =
ρ0g0

3(λ+ 2µ)
C2 = −C1R1 −

C3

R2
1

C3 =
k1 + k2

(R2
1 +R2

2)(2µ+ λ) + (R2
2 −R2

1)λ
(647)

and
k1 = (2µ+ λ)C1(2R2

1R
3
2 −R3

1R
2
2) k2 = λC1(R2

1R
3
2 −R3

1R
2
2) (648)

Pressure can then be computed as follows:

p = −λ∇ · v = −λ
(

1

r

∂(rvr)

∂r

)
= −λ

(
1

r
(3C1r

2 + 2C2r)

)
= −λ(3C1r + 2C2) (649)

We choose R1 = 2890km, R2 = 6371km, g0 = 9.81ms−2, ρ0 = 3300, E = 6 · 1010, ν = 0.49.
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Stone 37: marker advection and population control

The domain is a unit square. The Stokes equations are not solved, the velocity is prescribed everywhere
in the domain as follows:

u = −(z − 0.5) (650)

v = 0 (651)

w = (x− 0.5) (652)

At the moment, velocity is computed on the marker itself (rk0 algorithm). When markers are advected
outside, they are arbitrarily placed at location (-0.0123,-0.0123).

in construction.
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Stone 38: Critical Rayleigh number

This fieldstone was developed in collaboration with Arie van den Berg.
The system is a layer of fluid between y = 0 and y = 1, with boundary conditions T (x, y = 0) = 1

and T (x, y = 1) = 0, characterized by ρ, cp, k, η0. The Rayleigh number of the system is

Ra =
ρ0g0α∆Th3

η0κ

We have ∆T = 1, h = 1 and choose κ = 1 so that the Rayleigh number simplifies to Ra = ρ0g0α/η0.

The Stokes equation is ~∇ · σ +~b = ~0 with ~b = ρ~g. Then the components of the this equation on the
x- and y−axis are:

(~∇ · σ)x = −ρ~g · ~ex = 0 (653)

(~∇ · σ)y = −ρ~g · ~ey = ρg0 (654)

since ~g and ~ey are in opposite directions (~g = −g0~ey, with g0 > 0). The stream function formulation of
the incompressible isoviscous Stokes equation is then

∇4Ψ =
g0

η0

∂ρ

∂x

Assuming a linearised density field with regards to temperature ρ(T ) = ρ0(1− αT ) we have

∂ρ

∂x
= −ρ0α

∂T

∂x

and then

∇4Ψ = −ρ0g0α

η0
g
∂T

∂x
= −Ra∂T

∂x
(655)

For small perturbations of the conductive state T0(y) = 1 − y we define the temperature perturbation
T1(x, y) such that

T (x, y) = T0(y) + T1(x, y)

The temperature perturbation T1 satisfies the homogeneous boundary conditions T1(x, y = 0) = 0 and
T1(x, y = 1) = 0. The temperature equation is

ρcp
DT

Dt
= ρcp

(
∂T

∂t
+ ~ν · ~∇T

)
= ρcp

(
∂T0 + T1

∂t
+ ~ν · ~∇(T0 + T1)

)
= k∆(T0 + T1)

and can be simplified as follows:

ρcp

(
∂T1

∂t
+ ~ν · ~∇T0

)
= k∆T1

since T0 does not depend on time, ∆T0 = 0 and we assume the nonlinear term ~ν · ~∇T1 to be second
order (temperature perturbations and coupled velocity changes are assumed to be small). Using the
relationship between velocity and stream function vy = −∂xΨ we have v ·∇T0 = −vy = ∂xΨ and since
κ = k/ρcp = 1 we get

∂T1

∂t
− κ∆T1 = −∂Ψ

∂x
(656)

Looking at these equations, we immediately think about a separation of variables approach to solve these
equations. Both equations showcase the Laplace operator ∆, and the eigenfunctions of the biharmonic
operator and the Laplace operator are the same. We then pose that Ψ and T1 can be written:

Ψ(x, y, t) = AΨ exp(pt) exp(±ikxx) exp(±ikyy) = AΨEψ(x, y, t) (657)

T1(x, y, t) = AT exp(pt) exp(±ikxx) exp(±ikyy) = ATET (x, y, t) (658)

where kx and ky are the horizontal and vertical wave number respectively. Note that we then have

∇2Ψ = −(k2
x + k2

y)Ψ ∇2T1 = −(k2
x + k2

y)T1
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The boundary conditions on T1, coupled with a choice of a real function for the x dependence yields:

ET (x, y, t) = exp(pt) cos(kxx) sin(nπy).

from here onwards check for minus signs!
The velocity boundary conditions are vy(x, y = 0) = 0 and vy(x, y = 1) = 0 which imposes conditions

on ∂Ψ/∂x and we find that we can use the same y dependence as for T1. Choosing again for a real
function for the x dependence yields:

EΨ(x, y, t) = exp(pt) sin(kxx) sin(nπz)

We then have

Ψ(x, y, t) = AΨ exp(pt) sin(kxx) sin(nπz) = AΨEψ(x, y, t) (659)

T1(x, y, t) = AT exp(pt) cos(kxx) sin(nπz) = ATET (x, y, t) (660)

In what follows we simplify notations: k = kx. Then the two PDEs become:

pT1 + κ(k2 + n2π2)− kAΨ exp(pt) cos(kxx) sin(nπz) = kAΨEθ (661)

−RaAT cos(kx) sin(nπz) + κ(k2 + n2π2)2AΨ = −RaATEΨ + κ(k2 + n2π2)2AΨ = 0 (662)

These equations must then be verified for all ... which leads to write:(
p+ (k2 + n2π2) −k
−Ra k (k2 + n2π2)2

)(
Aθ
AΨ

)
=

(
0
0

)
The determinant of such system must be nul otherwise there is only a trivial solution to the problem, i.e.
Aθ = 0 and AΨ = 0 which is not helpful. CHECK/REPHRASE

D = [p+ (k2 + n2π2)](k2 + n2π2)2 −Ra k2 = 0

or,

p =
Ra k2 − (k2 + n2π2)3

(k2 + n2π2)2

The coefficient p determines the stability of the system: if it is negative, the system is stable and both
Ψ and T1 will decay to zero (return to conductive state). If p = 0, then the system is meta-stable, and if
p > 0 then the system is unstable and the perturbations will grow. The threshold is then p = 0 and the
solution of the above system is
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Stone 39: chpe15

The Drucker-Prager yield function is given by the function f :

f = p sinφ+ c cosφ− τ

where τ is the square root of the second invariant of the deviatoric stress. We have

p =
1

2
(σ1 + σ3)

and

τ =
1

2
(σ1 − σ3)

Inserting these into f yields:

f =
1

2
(σ1 + σ3) sinφ+ c cosφ− 1

2
(σ1 − σ3)

The yield condition f = 0 can be reworked as follows:

σ1 −
1 + sinφ

1− sinφ
σ3 − 2

cosφ

1− sinφ
c = 0

The third term can further be modified as follows:

cosφ

1− sinφ
=

√
1− sin2 φ√

(1− sinφ)2
=

√
(1− sinφ)(1 + sinφ)√

(1− sinφ)2
=

√
1 + sinφ

1− sinφ

Finally, we define Nφ as follows

Nφ =
1 + sinφ

1− sinφ

so that the yield condition becomes:

σ1 −Nφσ3 − 2
√
Nφc = 0

which is Eq. 3 of the article by Choi & Petersen [222].
This paper offers a solution to the problem of the angle of shear bands in geodynamic models. The

underlying idea is based on simple modifications brought to existing incompressible flow codes. Note that
the codes featured in that paper also implemented elastic behaviour but this can be easily switched off
by setting Z = 1 in their equations.

Their plasticity implementation starts with a modification of the continuity equation:

~∇ · ~ν = R = 2 sinψ ε̇p

where R is the dilation rate, Ψ is the dilation angle and ε̇p is the square root of the second invariant of
the plastic strain rate.

Under this assumption, the deviatoric strain rate tensor is given by

ε̇d(~ν) = ε̇(~ν)− 1

3
Tr[ε̇(~ν)]1 = ε̇(~ν)− 1

3
~∇ · ~ν 1 = ε̇(~ν)− 1

3
R 1

Turning now to the momentum conservation equation:

−~∇p+ ~∇ · τ = −~∇p+ ~∇ · (2ηε̇d(~ν))

= −~∇p+ ~∇ ·
[
2η

(
ε̇(~ν)− 1

3
R 1

)]
= −~∇p+ ~∇ · (2ηε̇(~ν))− 2

3
~∇(ηR) (663)
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The last term is then an addition to the right hand side of the momentum equation and its weak form is
as follows:

~f ′ =

∫
Ω

Nv
2

3
~∇(ηR)dV =

4

3
sin Ψ

∫
Ω

Nv ~∇(ηε̇p)dV

This formulation proves to be problematic since in order to compute the gradient, we would need the
viscosity and the plastic strain rate on the mesh nodes and both these quantities are effectively computed
on the quadrature points. One option could be to project those quadrature values onto the nodes, which
may introduce interpolation errors/artefacts and/or smoothing. Another option is to resort to integration
by parts: ∫

Ω

Nv ~∇(ηε̇p)dV = [Nvηε̇p]Γ −
∫

Ω

~∇Nv(ηε̇p)dV

The last term is now trivial to compute since the shape function derivatives, the viscosity and the plastic
strain rate are known at the quadrature points. Remains the surface term. We will neglect it for now to
simplify our implementation and note that a) it will not directly affect what happens inside the domain,
b) it could be somewhat important when shear bands intersect with the free surface.

~f ′ = −4

3
sinψ

∫
Ω

~∇Nv(ηε̇p)dV = −2

3

∫
Ω

~∇Nv(ηR)dV

Although the authors do indicate that they add a term in each rhs, it is not very clear how they deal
with the implementation issue above. We then propose an alternative: instead of explicitely removing the
deviatoric part of the strain rate as in Eq. 663 and replace the trace of the tensor by R, one could leave
the term inside the matrix, thereby using a compressible form of the viscous block of the Stokes matrix.
We will recover the same converged solution as before, but the path to convergence will be different that
the first approach. In what follows, we denote the original approach by Choi & Petersen ’method 1’ and
the latter ’method 2’.

Finally, we need to define what the plastic strain rate tensor is. When using a rigid plastic rheology,
the only deformation mechanism is plasticity so that the plastic strain rate is the strain rate. When using
a visco-plastic rheology, the plastic strain rate is the strain rate of the zones above/at yield (the shear
bands, where the vrm is active).

The setup is similar to the one in [558]. It is a 2D Cartesian domain filled with a single rigid-plastic
material characterised by a cohesion c = 10MPa, an angle of friction φ, a dilation angle ψ and a density
ρ = 2800kg/m

3
. Extensional boundary conditions are as follows:

• left boundary: u = −vbc;

• right boundary: u = +vbc;

• bottom boundary: v = 0, u = −vbc for x < Lx/2, u = +vbc for x > Lx/2, and u = 0 if x = Lx/2;

• top boundary: zero traction.

For compressional boundary conditions the signs of all horizontal velocities should be reversed. The
nonlinear tolerance is set to tol = 10−6. Nonlinear iterations stop when maximum of the normalised
nonlinear residual reaches the desired tolerance.

Following Choi & Petersen [222], we run the experiment with an associative (φ = ψ) plasticity and a
non associative one (ψ = 0, i.e. R = 0). This second approach is essentially what many codes do.

The velocity, pressure, strain rate, dilation rate, and velocity divergence are shown hereunder both in
extension and compression.
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Extension. 1st row: Non-associative plasticity; 2nd and 3rd row: associative plasticity (ψ = φ) with method 1

for two resolutions 120x12 and 240; 4th and 5th row: associative plasticity (ψ = φ) with method 2 for two re

solutions 120x12 and 240
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Compression. 1st row: Non-associative plasticity; 2nd and 3rd row: associative plasticity (ψ = φ) with method 1

for two resolutions 120x12 and 240; 4th and 5th row: associative plasticity (ψ = φ) with method 2 for two re

solutions 120x12 and 240
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One can also run the extension model for φ = ψ = 0, 5, 10, 15, 20, 25, 30◦
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Three angles are mechanically stable (e.g. [558]):

θ =
π

4
± ψ

2
Roscoe angle

θ =
π

4
± φ

2
Coulomb angle

θ =
π

4
± φ+ φ

4
Arthur angle

In the case of associative plasticity, φ = ψ, so that all three angles are the same. Per row of elements,
and per half of the domain (left and right) we find the element with the highest strain-rate and record
their center coordinates on the figure hereunder. These elements are shown for φ = ψ = {0, 10, 20, 30}◦
alongside a line corresponding to the expected analytical shear band angle value.
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Results obtained on a 240x24 grid, max 50 nl iterations.

Note that benchmarking this in not easy. One solution Timo and I found was to add a velocity field
~ν = (x, y, z) (with ~∇ · ~ν = 3) to an existing analytical problem, e.g. the Burstedde benchamrk.
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Stone 40: Rayleigh-Taylor instability

This benchmark is carried out in [278, 383, 886] and is based on the analytical solution by Ramberg
(1968). It consists of a two-layer system driven by gravity. Free slip are imposed on the sides while
no-slip boundary conditions are imposed on the top and the bottom of the box.

Fluid 1 (ρ1, η1) of thickness h1 overlays fluid 2 (ρ2, η2) of thickness h2 (with h1 + h2 = Ly). An
initial sinusoidal disturbance of the interface between these layers is introduced and is characterised by
an amplitude ∆ and a wavelength λ = Lx/2 as shown in Figure ??.

a) b)
a) Setup of the experiment, taken from [886]; b) grid setup.

Under this condition, the velocity of the diapiric growth vy is given by the relation

vy
∆

= −Kρ1 − ρ2

2η2
h2g

with the dimensionless growth factor K being

K =
−d12

c11j22 − d12i21

and

c11 =
η12φ2

1

η2(cosh 2φ1 − 1− 2φ2
1)
− 2φ2

2

cosh 2φ2 − 1− 2φ2
2

(664)

d12 =
η1(sinh 2φ1 − 2φ1)

η2(cosh 2φ1 − 1− 2φ2
1)

+
sinh 2φ2 − 2φ2

cosh 2φ2 − 1− 2φ2
2

(665)

i21 =
η1φ2(sinh 2φ1 + 2φ1)

η2(cosh 2φ1 − 1− 2φ2
1)

+
φ2(sinh 2φ2 + 2φ2)

cosh 2φ2 − 1− 2φ2
2

(666)

j22 =
η12φ2

1φ2

η2(cosh 2φ1 − 1− 2φ2
1)
− 2φ3

2

cosh 2φ2 − 1− 2φ2
2

(667)

φ1 =
2πh1

λ
(668)

φ2 =
2πh2

λ
(669)
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Note that in [886] I fixed λ = Lx/2 and varied Lx. Here I keep Lx fixed and vary λ = Lx/2, Lx, 4, Lx/8. Each

line corresponds to a different value of the viscosity η2.
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Stone 42: 1D diffusion

This is the simplest case for a FE code: a 1D (temperature) diffusion problem. It puts into practice what
is presented in section 5.1. The initial temperature profile is as follows:

T (x, t = 0) = 200 x < Lx/2 T (x, t = 0) = 100 x ≥ Lx/2

The properties of the material are as follows: ρ = 3000, k = 3, Cp = 1000 and the domain size is
Lx = 100km. Boundary conditions are T (t, x = 0) = 200◦C and T (t, x = Lx) = 100◦C. There are nelx

elements and nnx nodes. All elements are hx long. The code will carry out nstep timesteps of length dt

or will stop before that when steady state is reached. The code structure is summarised hereunder:
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Stone 43: the rotating cone

This benchmark originates in [283]. It is also carried out in [90]. It considers the advection of a product-
cosine hill in a prescribed velocity field. The initial temperature is:

T0(x, y) =

{
1
4

(
1 + cosπ x−xcσ

) (
1 + cosπ y−ycσ

)
if (x− xc)2 + (y − yc)2 ≤ σ2

0 otherwise
(670)

The boundary conditions are T (x, y) = 0 on all four sides of the unit square domain. In what follows we
set xc = yc = 1/6 and σ = 0.2. The velocity field is analytically prescribed: ~ν = (−(y − yc),+(x− xc)).

In what follows we test the time integration scheme by setting αT = 1 (fully implicit formulation),
α = 0 (fully explicit formulation) and αT = 1/2 (Crank-Nicolson). The timestep is set to δt = 2π/200.
The density and heat capacity values are set to 1. We monitor the minimum and maximum value of the
temperature field, as well as the total thermal energy ET in the system during the 200 time steps (2π
rotation of the cone):

ET =

∫
Ω

ρ0cpTdV =

∫
Ω

TdV = |Ω|〈T 〉 where 〈T 〉 =
1

|Ω|

∫
Ω

TdV

The time evolution of the temperature with the Crank-Nicolson algorithm is shown hereunder:

a) b) c)

d) e) f)
a) Velocity field and initial temperature; b,c,d,e,f) Temperature field at timesteps 0,50,100,150,199.

Turning now to the statistics, we plot min(T ), max(T ) and ET as a function of time:
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Time evolution of the min and max temperature and the total energy

The conclusions are clear: the explicit method diverges quickly and is unusable. The fully implicit and
Crank-Nicolson method yield similar energy conservation but the fully-implicit showcases a clear loss in
maximum temperature as shown in the following figure:
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Temperature field after a full rotation with isocontours every 0.1 value.

Left: Fully-implicit; Right: Crank-Nicolson

Finally we can run the experiment (still a 2π rotation) with three different time steps (δt = 2π/30, 2π/60, 2π/120)
and we recover very similar results to those presented in [283]:

From top to bottom: δt = 2π/120, 2π/60, 2π/30 with Crank-Nicolson. Left panel is taken from donea & Huerta

[283]
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Stone 44: the flat slab

WORK in PROGRESS
I need a list of nodes on the boundary I need a GCOORD.txt file with more decimals I need an even

lower resolution grid I need the scaling factors for rho,eta, ...
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Stone 45: the corner flow

This experiment is based on the benchmark paper by van Keken et al, 2008 [938]. It shares similarities
with the time dehydration processes in subduction zones work by Magni et al., 2014 [651] and the 3D
corner flow study of Plunder et al, 2018[736]. See also Cerpa et al, 2017 [215] for a study of fluid migration
in the mantle wedge.

The domain is 660km × 600km. Note that in the original paper the origin of the coordinate system
is at the top left while it is at le lower left corner in our code.

As shown in the figure above, the inflow boundaries (at both wedge and trench sides) and top of the
model have prescribed temperature. The wedge is assumed to be an incompressible fluid that is driven
only by the kinematic forcing of the slab. The wedge is confined by the top of the slab and the base
of the rigid overriding plate (located at a depth of 50km). The boundary conditions for the wedge are
no-slip below the overriding plate and constant velocity along the top of the slab. The velocity boundary
conditions for the boundaries of the wedge are either provided by the Batchelor cornerflow solution (cases
1a and 1b) or based on free inflow/outflow boundaries. The velocity field is discontinuous between the
slab and the overriding plate. The velocity in the slab is constant (5cm/yr) and it dips at a 45◦ angle
There is no radiogenic of shear heating.

The flow is assumed to be incompressible and buoyancy effects are neglected. All the experiments
shown in the paper are at steady state , i.e. the temperature field satisfies:

ρCp~ν · ~∇T = ~∇ · (k~∇T ) (671)

In the paper a simplified diffusion creep formulation is adopted and the effective diffusion creep viscosity
is computed as follows:

ηdiff = Adiff exp
Qdiff

RT

The dislocation creep effective viscosity is given by

ηdisl = Adislε̇
(1−n)/n exp

Qdisl

nRT

Note that in both the activation volume has been set to zero, which decouples pressure from the effective
viscosities. Both effective viscosities are limited with a maximum viscosity as follows:

η?diff =

(
1

ηdiff
+

1

ηmax

)
η?disl =

(
1

ηdisl
+

1

ηmax

)
The top boundary condition is Ttop = T (y = Ly) = 273K. At the inflow boundary of the wedge

(i.e. where u < 0)47 temperature is fixed at T0 = 1573K and a linear geotherm is used at the left hand

47Think about it: it makes little sense to prescribe a temperature where the fluid is leaving the domain
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boundary of the overriding plate from 0 to 50 km depth. The temperature at the slab inflow boundary
is described by an error-function solution for half-space cooling for 50 Myr:

T (x = 0, y) = Ttop + (T0 − Ttop)erf
Ly − y
2
√
κt50

where t50 is the age of the slab.
At the slab and wedge outflow boundaries we prescribe the natural boundary condition (zero curva-

ture) for the heat equation.
the original paper considers multiple cases:

• Case 1a: analytical cornerflow model. The wedge flow is prescribed by the analytical expression for
cornerflow [55], so that we do not need to solve for the Stokes equations, only the energy equation.

• Case 1b: dynamical flow in isoviscous wedge I This case is the same as 1a, except that the solution
for the wedge flow is determined by solving the Stokes equations while the Batchelor solution is
imposed on the inflow and outflow boundaries. This case tests the ability of the numerical method
to accurately reproduce the corner flow solution.

• Case 1c: dynamical flow in isoviscous wedge II. Same as case 1b, but with stress-free boundary
conditions on the mantle wedge.

• Case 2a: dynamical flow with diffusion creep

• Case 2b: dynamical flow with dislocation creep

The temperature field as discreted values Tij on an equidistant grid with 6km spacing, which is a
111×101 matrix stored row-wise starting in the top left corner. From this grid the following measurements
are extracted for direct comparison:

1. the temperature T11,11 which is at coordinates (60, 60km) and just down-stream from the corner
point. This provides therefore one of the most critical tests of accuracy of the numerical codes;

2. the L2 norm of the slab-wedge interface temperature between 0 and 210 km depth defined by

Tslab =

√√√√ 1

36

36∑
i=1

T 2
ii

3. the L2 norm of the temperature in the triangular part of the tip of the wedge, between 54 and 120
km depth:

Twedge =

√√√√ 1

78

21∑
i=10

i∑
j=10

T 2
ij
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Results for case 1a

(a) Temperature prediction for case 1a. The bold lines indicate the top of the slab and base of the overriding

plate. (b) Close up of the top left part of the model. Figures taken from [938].
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Results obtained on mesh 660x600(x2) elements. Black lines on lower right figure correspond to a visible range
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The average temperature

〈T 〉 =
1

|Ω|

∫
Ω

T dV

is plotted in the following figure:
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Average temperature in the domain.

We see that this measurement is not appropriate to assert whether the resolution is sufficient so that
results converge to a single value, as opposed to the point wise temperature measurement presented
above. The average temperature changes by about 0.4 for an average value of about 1397, which is not
much for a factor 12 increase in resolution (from 55x50 to 660x600).
carry out other two measurements (need interpolation onto other grid for this

Results for case 1b

TODO

Results for case 1c

TODO
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Stone 46: MMS1 with Crouzeix-Raviart (P+
2 × P−1) elements

This stone showcases the Crouzeix-Raviart element (see Section 6.2.9) used to solve the analytical problem
”Donea & Huerta” (see Section 7.4.1).

Out of convenience the pressure is set to zero at location (x, y) = (1, 1), so that the analytical solution
is now p(x, y) = x(1− x).
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Stone 47: MMS1 with MINI (P+
1 × P1) elements

The grid is composed of triangles but for simplicity these are obtained by splitting rectangles in two, as
shown hereunder:

Not shown are the nodes for the bubbles in the middle of each triangle.

This stone showcases the MINI element (see Section 6.2.7) used to solve the analytical problem ”Donea
& Huerta” (see Section 7.4.1). Out of convenience the pressure is set to zero at location (x, y) = (1, 1),
so that the analytical solution is now p(x, y) = x(1− x).

As an experiment I have run convergence tests for two cases: using nqel=3 quadrature points and using
nqel=6 quadrature points. We find that the velocity and pressure errors converge depend on this crucial
parameter. For nqel=3 the velocity and pressure errors converge quadratically and linearly respectively
but for nqel=6 they converge as h2 and h1.5 respectively:
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It is worth noticing that although the element is stable, and the error converges at a respectable rate,
the pressure solution is not ’clean’: as shown on the following figure, there is still some under/overshoot
with respect to the analytical solution.
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Let us now explore the case where the nodes inside the domain are randomly perturbed, i.e. a random
value (δx, δy) ∈ [−hx/5, hx/5]× [−hy/5, hy/5] is added to their position (while preserving the position of
the bubble as the barycenter of each triangle), as shown hereunder:

Looking again at the convergence rates of the errors, we see that the velocity errors are virtually
unchanged but we observe that the pressure errors no more align on a single line and that the rates are
only maintained on average.
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Stone 48: D&H with Q1×P0, Q2×Q1, Q3×Q2 and Q4×Q3 elements

In this experiment we consider 4 different finite elements. The idea behind this stone is to build a code
which code(the FEM build and assembly) is common to all. The setup is the Donea & HUerta benchmark
(Section 7.4.1), which has been modified so that the pressure is zero at the top right corner.

Q4xQ3 Q3xQ2 Q2xQ1 Q1Q0

20===21===22===23===24 12====13====14====15 06======07=======08 02===============03

| | | | | | | | | | |

| | | | | | | | | | |

20===21===22===23===24 | | | | | | | | |

| | 08====09====10====11 | | | | |

| | | | | | | | | | |

20===21===22===23===24 | | | | 03======04=======05 | |

| | | | | | | | | | |

| | 04====05====06====07 | | | | |

20===21===22===23===24 | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

20===21===22===23===24 00====01====02====03 00======01=======02 00===============01

12====13=====14=====15 06=======07=======08 02===============03 .=================.

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

08====09=====10=====11 | | | | | | |

| | | | | | | | | | |

| | | | 03=======04=======05 | | | 00 |

| | | | | | | | | | |

04====05=====06=====07 | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

00====01=====02=====03 00=======01=======02 00===============01 .=================.

mV=25, mP=16 mV=16, mP=9 mV=9, mP=4 mV=4, mP=1

In the code the ’order’ parameter can take values 1,2,3 and 4 which correspond to the polynomial
order of the velocity approximation (Q1, Q2, Q3 and Q4).

When both nelx and nely values have been chosen, the total number of element for a regular 2D grid
is simply:

ne l=ne lx ∗ ne ly

The number of nodes in each direction is then easily computed:

nnx=order ∗ ne lx+1
nny=order ∗ ne ly+1

and so is then the total number of velocity nodes:

NV=nnx∗nny

The total number of pressure nodes is as follows:
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i f o rder==1:
NP=nelx ∗ ne ly

i f order==2:
NP=(ne lx +1)∗( ne ly +1)

i f order==3:
NP=(2∗ne lx +1)∗(2∗ ne ly +1)

i f order==4:
NP=(3∗ne lx +1)∗(3∗ ne ly +1)

Each velocity node has 2 dofs (ndofV=2) while pressure nodes have one dof (ndofP=1) so that the
size of the blocks and the assembled FE matrix are given by:

NfemV=NV∗ndofV
NfemP=NP∗ndofP
Nfem=NfemV+NfemP

For the linear element, 2 quadrature points per dimension are enough (nqperdim=2), while 3 are
necessary for the quadratic element (nqperdim=3) and 4 are used for the cubic element (nqperdim=4),
and 5 for the quartic element, which can be conveniently implemented as follows:

nqperdim=order+1

The quadrature points location and weight is document in Section 4.1.
Because we wish to use a regular grid, the layout of the points for all three elements can be implemented

easily:

counter=0
f o r j in range (0 , nny ) :

f o r i in range (0 , nnx ) :
xV [ counter ]= i ∗hx/ order
yV [ counter ]= j ∗hy/ order
counter+=1

The position of the pressure nodes follows a similar logic.
When it comes to the connectivity array, I first started by building it for each element as follows:

i f o rder==1:
counter=0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
iconV [ 0 , counter ]=( i )∗1+0+( j ) ∗1∗nnx+nnx∗0
iconV [ 1 , counter ]=( i )∗1+1+( j ) ∗1∗nnx+nnx∗0
iconV [ 2 , counter ]=( i )∗1+0+( j ) ∗1∗nnx+nnx∗1
iconV [ 3 , counter ]=( i )∗1+1+( j ) ∗1∗nnx+nnx∗1
counter += 1

i f order==2:
counter = 0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
iconV [ 0 , counter ]=( i )∗2+0+( j ) ∗2∗nnx+nnx∗0
iconV [ 1 , counter ]=( i )∗2+1+( j ) ∗2∗nnx+nnx∗0
iconV [ 2 , counter ]=( i )∗2+2+( j ) ∗2∗nnx+nnx∗0
iconV [ 3 , counter ]=( i )∗2+0+( j ) ∗2∗nnx+nnx∗1
iconV [ 4 , counter ]=( i )∗2+1+( j ) ∗2∗nnx+nnx∗1
iconV [ 5 , counter ]=( i )∗2+2+( j ) ∗2∗nnx+nnx∗1
iconV [ 6 , counter ]=( i )∗2+0+( j ) ∗2∗nnx+nnx∗2
iconV [ 7 , counter ]=( i )∗2+1+( j ) ∗2∗nnx+nnx∗2
iconV [ 8 , counter ]=( i )∗2+2+( j ) ∗2∗nnx+nnx∗2
counter += 1

i f order==3:
counter = 0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
iconV [ 0 , counter ]=( i )∗3+0+( j ) ∗3∗nnx+0∗nnx
iconV [ 1 , counter ]=( i )∗3+1+( j ) ∗3∗nnx+0∗nnx
iconV [ 2 , counter ]=( i )∗3+2+( j ) ∗3∗nnx+0∗nnx
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. . .
iconV [ 1 3 , counter ]=( i )∗3+1+( j ) ∗3∗nnx+3∗nnx
iconV [ 1 4 , counter ]=( i )∗3+2+( j ) ∗3∗nnx+3∗nnx
iconV [ 1 5 , counter ]=( i )∗3+3+( j ) ∗3∗nnx+3∗nnx
counter += 1

Having done so, it becomes quickly apparent that the connectivity array can be computed for all elements
as follows:

counter=0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
counter2=0
f o r k in range (0 , order +1) :

f o r l in range (0 , order +1) :
iconV [ counter2 , counter ]= i ∗ order+l+j ∗ order ∗nnx+nnx∗k
counter2+=1

counter += 1

The same approach is taken to build the pressure connectivity array, although the Q1×P0 element requires
special attention since the pressure is elemental and attributed to a single node inside the element.

For the other elements I started from:

i f o rder==2:
counter=0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
iconP [ 0 , counter ]=( i )∗1+0+( j ) ∗1∗( ne lx +1)+(ne lx +1)∗0
iconP [ 1 , counter ]=( i )∗1+1+( j ) ∗1∗( ne lx +1)+(ne lx +1)∗0
iconP [ 2 , counter ]=( i )∗1+0+( j ) ∗1∗( ne lx +1)+(ne lx +1)∗1
iconP [ 3 , counter ]=( i )∗1+1+( j ) ∗1∗( ne lx +1)+(ne lx +1)∗1
counter += 1

i f order==3:
counter=0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
iconP [ 0 , counter ]=( i )∗2+0+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗0
iconP [ 1 , counter ]=( i )∗2+1+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗0
iconP [ 2 , counter ]=( i )∗2+2+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗0
iconP [ 3 , counter ]=( i )∗2+0+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗1
iconP [ 4 , counter ]=( i )∗2+1+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗1
iconP [ 5 , counter ]=( i )∗2+2+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗1
iconP [ 6 , counter ]=( i )∗2+0+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗2
iconP [ 7 , counter ]=( i )∗2+1+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗2
iconP [ 8 , counter ]=( i )∗2+2+( j ) ∗2∗(2∗ ne lx +1)+(2∗ne lx +1)∗2
counter += 1

i f order==4:
e t c . . .

and quickly arrived at the following compact form:

i f order >1:
om1=order−1
counter=0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
counter2=0
f o r k in range (0 , order ) :

f o r l in range (0 , order ) :
iconP [ counter2 , counter ]= i ∗om1+l+j ∗om1∗(om1∗ ne lx +1)+(om1∗ ne lx +1)∗k
counter2+=1

counter += 1

The core of the code is rather similar if not identical to other stones (i.e. the loop over elements, the
calculation of the elemental matrices, their assembly, and the solve).

What is here somewhat elegant is the projection of the pressure field onto the velocity grid nodes
(mostly for plotting purposes). For each element I loop over each velocity node, and evaluate the pressure
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shape function at this location, compute the pressure with it and add it in the array q while keeping
count of how many contributions there are in total per velocity node.

f o r i e l in range (0 , ne l ) :
f o r i in range (0 ,mV) :

NNNP[ 0 :mP]=NNP( rVnodes [ i ] , sVnodes [ i ] , o rder )
q [ iconV [ i , i e l ]]+=np . dot (p [ iconP [ 0 :mP, i e l ] ] ,NNNP[ 0 :mP] )
c [ iconV [ i , i e l ] ]+=1.

q=q/c

Finally, since the vtu format does not support higher order elements, I here chose to only extract the
corner values for each element, which translates as follows:

v t u f i l e . wr i t e ( ”<DataArray type=’ Int32 ’ Name=’ c o n n e c t i v i t y ’ Format=’ a s c i i ’> \n” )
i f order==1:

f o r i e l in range (0 , ne l ) :
v t u f i l e . wr i t e ( ”%d%d%d%d\n” %(iconV [ 0 , i e l ] , iconV [ 1 , i e l ] , iconV [ 3 , i e l ] , iconV [ 2 , i e l ] ) )

i f order==2:
f o r i e l in range (0 , ne l ) :

v t u f i l e . wr i t e ( ”%d%d%d%d\n” %(iconV [ 0 , i e l ] , iconV [ 2 , i e l ] , iconV [ 8 , i e l ] , iconV [ 6 , i e l ] ) )
i f order==3:

f o r i e l in range (0 , ne l ) :
v t u f i l e . wr i t e ( ”%d%d%d%d\n” %(iconV [ 0 , i e l ] , iconV [ 3 , i e l ] , iconV [ 1 5 , i e l ] , iconV [ 1 2 , i e l

] ) )
i f order==4:

f o r i e l in range (0 , ne l ) :
v t u f i l e . wr i t e ( ”%d%d%d%d\n” %(iconV [ 0 , i e l ] , iconV [ 4 , i e l ] , iconV [ 2 4 , i e l ] , iconV [ 2 0 , i e l

] ) )
v t u f i l e . wr i t e ( ”</DataArray>\n” )

The following results are obtained by running one of the four scripts script errorsX where X=1,2,3,4.
The gnuplot script is to be found in the images folder.

The stone implementes two ways of building the FE matrix. When the flag sparse is false, the K
and G matrices are built as full arrays, later assembled in a larger full array, and then only converted to
Compressed Sparse Row before it is passed to the solver. When the flag is true, the global FE matrix
is defined as a lil matrix (a List of Lists) and it grows in size/memory every time a new term is added
to it. As shown on the following plot, it is about twice as slow compared to the first option, but it uses
only a fraction of the memory that the first one does.
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Q4Q3 - sparse
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Also not very surprising: the cost of building the FE matrix increases with the order of the used
elements. A matrix corresponding to 100 Q1×P0 elements can be built in about 1s, while it will take 7s
when Q4 ×Q3 elements are used.
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Results with Q1 × P0 element
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We see that we recover a second order convergence rate for velocity (as expected) but because of
the checkerboard pattern the pressure convergence is simply random. The smoothed pressure q shows
virtually no checkerboard pattern, except on the boundaries. This is a perfect example for the use of
more accurate/clever smoothing procedure, see Section 7.10.

Results with Q2 ×Q1 element

We recover the cubic convergence for the velocity error and the quadratic convergence for the pressure:
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Results with Q3 ×Q2 element

The analytical solution is a second order polynomial, which means that the pressure shape functions can
adequately represent the solution. We recover a fourth-order convergence for the velocity error and a
superconvergent (fifth order) pressure error (but why is it 5th order ?).
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Results with Q4 ×Q3 element

Rather interestingly, now both velocity and pressure analytical solutions can be represented exactly by
their respective polynomial spaces, so that the errors are at machine precision.
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Stone 49: Consistent Boundary Flux method on D&H bench-
mark with 4 elements

Looking at the four different elements

Looking at the influence of the mas matrix lumping
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Stone 50: Lithosphere extension
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Stone 51: Triangular domain benchmark with MINI element

This fieldstone was developed in collaboration with L. van de Wiel.
The following problem is studied in [546]. The equations that they solve are the thermo-mechanically

coupled steady state equations:

−~∇p+ ∆~ν +RaT~ey = 0 (672)

~∇ · ~ν = 0 (673)

−∆T + ~ν · ∇T = 0 (674)

In our case the code is based on the MINI element (a.k.a. P+
1 ×P1), see Section 6.2.7 and we set Ra = 106.

The domain is chosen to be the right triangle with vertices (0, 0), (1, 0), and (0, 1). The boundary is
considered to be solid walls (no-slip). For the temperature, a sinusoidal heat source is enforced on the
bottom boundary with a Dirichlet condition (T (x) = 2(1 − cos(2πx))), the left wall is set to a constant
temperature of zero, and the hypotenuse wall is perfectly insulated so that a Neumann boundary condition
is appropriate.

The steady state velocity pressure and temperature fields as shown in [546] are as follows:

a) b) c)
Steady state fields: a) velocity, b) pressure, c) temperature.

Although it is not mentioned in the original article it appears that the pressure field has been nor-
malised so that 〈p〉 =

∫
Ω
pdV = 0.

As opposed to the mesh presented in [546] I build a regular mesh. An example of such a mesh is
shown hereunder (a) for n = 5 (the number of nodes per side of the triangular domain). In order to
generate a mesh which is more isotropic some edges between triangles can be flipped (b). Note that this
mesh can also be modified in such a way that the position of nodes inside the domain is perturbed by a
small random value (c). In what follows I denote by h the distance between nodes on the horizontal (or
vertical) boundaries, i.e. h = Lx/(n− 1) = Ly/(n− 1).

a) b) c)
a) regular mesh for n=5. b) flipped edges mesh. c) randomized+flipped edges mesh.

Since I am solving for the steady-state solution I set the mass matrix in the heat transport part of
the code to zero. However, since I am solving the stokes equations and the heat transport equation
alternatively until convergence is reached, it is well known that this approach does not converge fast (if
at all). I then implement a simple relaxation scheme. After I have solved for velocity (using the most
recent temperature field in the rhs), I do:

~vk = γ~vk + (1− γ)~vk−1
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and after having solved for temperature having used the most recent velocity field, I do the same for
temperature:

T k = γT k + (1− γ)T k−1

where the relaxation parameter γ is between 0 and 1.
Additionally I measure:

• the Nusselt number defined by

Nu =

∫
y=0

~∇T · ~ndS = −
∫ x=1

x=0

∂T

∂y
dx

It is reported to be 24.535 in [546].

• the temperature on the hypotenuse.

• the root mean square velocity

• the mean temperature 〈T 〉 = |Ω|−1
∫

Ω
T dV

On the importance of the relaxation parameter γ

In what follows the internal node coordinate randomness is switched off. I have run the model for various
values of γ for n = 25, and results are shown on the following figures. We see that all simulations seem
to converge to the same steady state, which is very reassuring. However, it looks like too small a value
of γ delays greatly the convergence and too large a value also seems detrimental. In light of this, I have
chosen γ = 0.2 for all what follows.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1  10  100

v
rm

s

step

γ=0.01, n=25
γ=0.05, n=25
γ=0.10, n=25
γ=0.20, n=25
γ=0.30, n=25
γ=0.40, n=25
γ=0.50, n=25

 15

 20

 25

 30

 35

 40

 45

 50

 1  10  100

N
u

step

γ=0.01, n=25
γ=0.05, n=25
γ=0.10, n=25
γ=0.20, n=25
γ=0.30, n=25
γ=0.40, n=25
γ=0.50, n=25

24.535

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  10  100

<
T
>

step

γ=0.01, n=25
γ=0.05, n=25
γ=0.10, n=25
γ=0.20, n=25
γ=0.30, n=25
γ=0.40, n=25
γ=0.50, n=25

Left to right: Root mean square velocity, Nusselt number and average temperature as a function of the iteration

counter.

On the influence of mesh resolution

I now explore the influence of the mesh resolution on the results and run steady state calculations for
n = 25, 50, 75, 100.
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resolution (n) vrms Nu 〈T 〉
25 154.35406 19.51906 1.22759
50 157.46000 22.80683 1.23024
75 158.01207 23.67889 1.23038
100 158.13157 24.00510 1.22991

The following two plots show the temperature along the hypotenuse (as a function of x for simplicity)
at steady-state and the heat flux measured at the bottom.
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Finally, here are the fields for n = 100 at steady state:

a) b) c)
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d) e) f)

g) h) i)
Steady state fields: a) grid (n=100), b,c) velocity, d) pressure, e) temperature, f) heat flux, g) ε̇xx, h) ε̇xy, i)

velocity divergence measured in the middle of the element.
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Stone 52: Serendipity element in 2D

In order to test the grid point and connectivity algorithms, we use this simple 4× 3 element mesh:

Q_2 X Q1 (serendipity) Q_2 X Q_1 (regular)

15--47--16--48--17--49--18--50--19 54--55--56--57--58--59--60--61--62

| | | | | | : | : | : | : |

42 43 44 45 46 45..46..47..48..49..50..51..52..53

| | | | | | : | : | : | : |

10--38--11--39--12--40--13--41--14 36--37--38--39--40--41--42--43--44

| | | | | | : | : | : | : |

33 34 35 36 37 27..28..29..30..31..32..33..34..35

| | | | | | : | : | : | : |

05--29--06--30--07--31--08--32--09 18--19--20--21--22--23--24--25--26

| | | | | | : | : | : | : |

24 25 26 27 28 09..10..11..12..13..14..15..16..17

| | | | | | : | : | : | : |

00--20--01--21--02--22--03--23--04 00--01--02--03--04--05--06--07--08

iel= 0: iel= 0

node 0 : 0 at pos. 0.0 0.0 node 0 : 0 at pos. 0.0 0.0

node 1 : 1 at pos. 1.0 0.0 node 1 : 2 at pos. 1.0 0.0

node 2 : 6 at pos. 1.0 1.0 node 2 : 20 at pos. 1.0 1.0

node 3 : 5 at pos. 0.0 1.0 node 3 : 18 at pos. 0.0 1.0

node 4 : 20 at pos. 0.5 0.0 node 4 : 1 at pos. 0.5 0.0

node 5 : 25 at pos. 1.0 0.5 node 5 : 11 at pos. 1.0 0.5

node 6 : 29 at pos. 0.5 1.0 node 6 : 19 at pos. 0.5 1.0

node 7 : 24 at pos. 0.0 0.5 node 7 : 9 at pos. 0.0 0.5

node 8 : 10 at pos. 0.5 0.5

We see that the serendipity element-based mesh counts only 51 nodes, as opposed to 63 for its
counterpart.

Setting nelx = nely, we can look at the number of velocity nodes for each as a function of nelx, as
shown hereunder:
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Looking at the ratio between both, we see that ultimately at high resolution, a mesh composed of
serendipity elements will count 25% less nodes than a mesh with Taylor-Hood elements. Since there is
not free lunch, what is the price paid in terms of accuracy when using the cheaper serendipity?

The shape functions and their derivatives are in Section 4.5.3.
Although the vtk format does not understand the Q2 element in 2D or 3D, it surprisingly does

understand the serendipity element in 2D (type=23) and 3D (type=25).
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It looks like the serendipity element yields the same errors and error convergence rates as its Taylor-
Hood counterpart. Since it is cheaper in terms of dofs, one could think that it should be preferred.
However, most modern codes use an iterative solver approach to solve the discretised Stokes problem,
and often the K matrix (which is SPD) is ’solved’ with a conjugate gradient solver. The convergence of
this type of solver depends on the condition number of the matrix itself, i.e. the ratio of the largest and
smallest eigenvalues. Note that this is rather trivial with Python:

pr in t ( ’ c ond i t i on number : ’ , nel , l i n a l g . cond (K mat) )

However, since I was also curious about the values of the eigenvalues, I implemented it as follows:

e i g v a l s , e i g v e c s = l i n a l g . e i g (K mat)
p r i n t ( ’ e i g e n v a l u e s : ’ , nel , e i g v a l s . min ( ) , e i g v a l s . max( ) )

 0.001

 0.01

 0.1

 1

 10

 100

 0.1

e
rr

o
r

h

TH, min
TH, max

S, min
S, max

 100

 1000

 10000

 0.1

e
rr

o
r

h

TH
S

Left: min and max eigenvalues for both types of elements as a function of h; Right: condition number

As it turns out, the condition number is twice as high for the serendipity element, which means that the
CG would have to iterate more to arrive at the solution, thereby offsetting the benefit of less dofs.
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Stone 53: the sinking block benchmark

This simple benchmark provides challenging numerical experiments dealing with large viscosity variations
within the simulation domain. It appears in [383] and consists of a bulk of fluid 1 (ρ1, η1) in which a
block of fluid 2 (ρ2, η2) falls under its own weight. The domain is a square of size Lx = Ly = 512km and
the block is initially centred at point (x =256 km, y = 384 km) with size 128× 128 km:

Left: setup. Right: velocity field for ρ2 = 3208, η1 = 1021 and η2 = 1022.

The simulation is carried out on 32 × 32, 48 × 48 and 64 × 64 grids. Free slip boundary conditions
are imposed on all sides of the domain. In all experiments the density of the surrounding fluid is
ρ1 = 3200kg/m3. The velocity vb of the falling block is measured in its centre (note that due to symmetry
the horizontal component should be zero).

As explained in [886], following physical intuition, one expects the velocity vb of the block to (a)
decrease when the viscosity of the surrounding medium η1 increases; (b) increase with the density contrast
ρ2 − ρ1. The quantity vbη1/(ρ2 − ρ1) is therefore monitored and shown hereunder as a function of the
viscosity ratio.
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Series of experiments have been conducted with ρ2 = 3208, 3232, 3328, log10(η1) = 20, 21, 22 and

log10(η2) = 18, 18.5, 19, ...22.5, 23, 23.5, 24, all with 3 mesh resolutions.

All experimental points line up on a single curve which further indicates that the code can deal with
gravity driven simulations in the presence of large viscosity contrasts. These results have been succesfully
compared with those obtained with ASPECT with the same setup.
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9 fieldstone: Gravity: buried sphere

Before you proceed further, please read :
http://en.wikipedia.org/wiki/Gravity_anomaly

http://en.wikipedia.org/wiki/Gravimeter

Let us consider a vertical domain Lx × Ly where Lx = 1000km and Ly = 500km. This domain
is discretised by means of a grid which counts nnp = nnx × nny nodes. This grid then counts nel =
nelx× nely = (nnx− 1)× (nny − 1) cells. The horizontal spacing between nodes is hx and the vertical
spacing is hy.

Assume that this domain is filled with a rock type which mass density is given by ρmedium =
3000kg/m3, and that there is a circular inclusion of another rock type (ρsphere = 3200kg/m3) at lo-
cation (xsphere, ysphere) of radius rsphere. The density in the system is then given by

ρ(x, y) =

{
ρsphere inside the circle
ρmedium outside the circle

Let us now assume that we place nsurf gravimeters at the surface of the model. These are placed
equidistantly between coordinates x = 0 and coordinates x = Lx. We will use the arrays xsurf and ysurf
to store the coordinates of these locations. The spacing between the gravimeters is δx = Lx/(nsurf −1).

At any given point (xi, yi) in a 2D space, one can show that the gravity anomaly due to the presence
of a circular inclusion can be computed as follows:

g(xi, yi) = 2πG(ρsphere − ρ0)R2 yi − ysphere
(xi − xsphere)2 + (yi − ysphere)2

(675)

where rsphere is the radius of the inclusion, (xsphere, ysphere) are the coordinates of the center of the
inclusion, and ρ0 is a reference density.

However, the general formula to compute the gravity anomaly at a given point (xi, yi) in space due
to a density anomaly of any shape is given by:

g(xi, yi) = 2G
∫ ∫

Ω

∆ρ(x, y)(y − yi)
(x− xi)2 + (y − yi)2

dxdy (676)

where Ω is the area of the domain on which the integration is to be carried out. Furthermore the density
anomaly can be written : ∆ρ(x, y) = ρ(x, y) − ρ0. We can then carry out the integration for each cell
and sum their contributions:

g(xi, yi) = 2G
nel∑
ic=1

∫ ∫
Ωe

(ρ(x, y)− ρ0)(y − yi)
(x− xi)2 + (y − yi)2

dxdy (677)

where Ωe is now the area of a single cell. Finally, one can assume the density to be constant within each
cell so that ρ(x, y)→ ρ(ic) and

∫ ∫
Ωe
dxdy → hx× hy and then

g(xi, yi) = 2G
nel∑
ic=1

(ρ(ic)− ρ0)(y(ic)− yi)
(x(ic)− xi)2 + (y(ic)− yi)2

sxsy (678)

We will then use the array gsurf to store the value of the gravity anomaly measured at each gravimeter
at the surface.
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To go further

• explore the effect of the size of the inclusion on the gravity profile.

• explore the effect of the ρ0 value.

• explore the effect of the grid resolution.

• measure the time that is required to compute the gravity. How does this time vary with nsurf ?
how does it vary when the grid resolution is doubled ?

• Assume now that ρ2 < ρ1. What does the gravity profile look like ?

• what happens when the gravimeters are no more at the surface of the Earth but in a satellite ?

• if you feel brave, redo the whole exercise in 3D...
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10 Problems, to do list and projects for students

• Bsc thesis

– Darcy flow. redo WAFLE (see http://cedricthieulot.net/wafle.html)

– nonlinear poiseuille

– Fehlberg RK advection

– implement mms5 7.4.5, mms7 7.4.7

– chunk grid

• MSc guided research/thesis

– Newton solver

– surface tension see [769]p28-29 - see ibuprofem

– elasticity with markers

– navier-stokes ? (LUKAS) use dohu matlab code

– lev hager 2008 RT instability with anisotropic visc

– discontinuous galerkin

– free surface [299]

– redo benchmarks convection of [910]

– pure shear deformation of inclusions [911]

– anisotropic heat conduction[769, p121], [769, p143], section5.3.3

– sinking sphere in bingham or herschel-bulkley fluid [267]

– redo Buck and Sokoutis benchmark for continental convergence [158]

• Miscellaneous /to do

– write about impose bc on el matrix

– free-slip bc on annulus and sphere . See for example p540 Gresho and Sani book. find book
[277]. also check [315] !!

– mention Lattice-Boltzmann in geosciences [497]

– constraints [2]

– formatting of code style

– Finish nonlinear cavity case5.

– write about stream functions

– create stone for layeredflow (see folder one up)

– in the context of mesh generation on sphere cite [685]

– about CMR: [284],[573]

– symmetric vs gradient formulation of Stokes

– add [272, 261] to list of papers doing vankeken bench

– illustrate early boundary fitted static meshes with [882, 116, 978]

– visco-elastic flow past a cylinder in a channel [90]

– [90] spell out the derivation of Jaumann derivative in appendix

– look at strain-rate softening in [78]

• carry out critical Rayleigh experiments for various geometries/aspect ratios. Use Arie’s notes.

• Indentor/punch with stress b.c. ?

• read in crust 1.0 in 2D on chunk
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• compute gravity based on tetrahedra

• NS a la http://ww2.lacan.upc.edu/huerta/exercises/Incompressible/Incompressible Ex2.htm

• zaleski disk advection

• write Scott about matching compressible2 setup with his paper

• compositions, marker chain

• non-linear rheologies (two layer brick spmw16, tosn15)

• including phase changes (w. R. Myhill)

• GEO1442 indenter setup in plane ?

• redo puth17 2 layer experiment

• SIMPLE a la p667 [545]

• implement/monitor div v

• shape fct, trial fct, basis fct vs test fct doc

• Delaunay triangulation, Voronoi, stripack

• write/draw the whole FEM process for a 4x3 grid for compgeo

• lukas’ 2D and 3D benchmark

• ROTATING disc

• cylindrical footing on (elasto)-viscous medium - analytical solution, Haskell, etc ...

• check the BASIL code by Houseman et al http://homepages.see.leeds.ac.uk/~eargah/basil/
on which the ELLE code is based http://elle.ws/

• try Anderson acceleration for Uzawa [482] with m=1

• Q+
1 × P0 Look at fort81 , rota87b and vadv03

• check [196] for RT0 element use

• deformation around rigid particles [515]

¡Cells¿ ¡DataArray type=Int32 Name=connectivity .../¿ ¡DataArray type=Int32 Name=offsets .../¿
¡DataArray type=UInt8 Name=types .../¿ ¡/Cells¿

Why do I have to promise where I am going while I am not there yet?
You can’t google something you don’t know exists.
You can be correct or you can get stuff done
open questions: what does it mean to have a negative pressure ? should we threshold it when

computing yield strength ?
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A Three-dimensional applications

In the following table I list many papers which showcase high-resolution models of geodynamical processes
(subduction, rifting, mantle flow, plume transport, ...). Given the yearly output of our community and
the long list of journal in which research can be disseminated, this list can not be exhaustive.

Ref. topic resolution

[111] Effect of margin curvature on plate deformation in a 3D subduction zones
[50] Small-scale sublithospheric convection in the Pacific 448 × 56 × 64
[848] Migration and morphology of subducted slabs in the upper mantle 50 × 50 × 25
[750] Subduction scissor across the South Island of New Zealand 17 × 9 × 9
[666] Influence of a buoyant oceanic plateau on subduction zones 80 × 40 × 80
[208] Subduction dynamics, origin of Andean orogeny and the Bolivian orocline 96 × 96 × 64
[313] Feedback between rifting and diapirism, ultrahigh-pressure rocks exhumation 100 × 64 × 20
[18] Numerical modeling of upper crustal extensional systems 160 × 160 × 12
[19] Rift interaction in brittle-ductile coupled systems 160 × 160 × 23
[596] Kinematic interpretation of the 3D shapes of metamorphic core complexes 67 × 67 × 33
[529] Role of rheology and slab shape on rapid mantle flow: the Alaska slab edge 960 × 648 × 160
[207] Complex mantle flow around heterogeneous subducting oceanic plates 96 × 96 × 64
[153] Oblique rifting and continental break-up 150 × 50 × 30
[89] Influence of mantle plume head on dynamics of a retreating subduction zone 80 × 40 × 80
[152] Rift to break-up evolution of the Gulf of Aden 83 × 83 × 40
[154] Thermo-mechanical impact of plume arrival on continental break-up 100 × 70 × 20
[209] Subduction and slab breakoff controls on Asian indentation tectonics 96 × 96 × 64
[325] Modeling of upper mantle deformation and SKS splitting calculations 96 × 64 × 96
[819] Backarc extension/shortening, slab induced toroidal/poloidal mantle flow 352 × 80 × 64
[652] Sediment transports in the context of oblique subduction modelling 500 × 164 × 100
[1045] Crustal growth at active continental margins 404 × 164 × 100
[599] Dynamics of India-Asia collision 257 × 257 × 33
[976] Strain-partitioning in the Himalaya 256 × 256 × 40
[621] Collision of continental corner from 3-D numerical modeling 500 × 340 × 164
[744] Dependence of mid-ocean ridge morphology on spreading rate 196 × 196 × 100
[324] Mid mantle seismic anisotropy around subduction zones 197 × 197 × 53
[467] Oblique rifting of the Equatorial Atlantic 120 × 80 × 20
[681] Dynamics of continental accretion 256 × 96 × 96
[805] Thrust wedges: infl. of decollement strength on transfer zones 309 × 85 × 149
[187] Asymmetric three-dimensional topography over mantle plumes 500 × 500 × 217
[891] modelled crustal systems undergoing orogeny and subjected to surface processes 96 × 32 × 14
[625] Thermo-mechanical modeling ontinental rifting and seafloor spreading 197 × 197 × 197
[88] Geodynamics of oceanic plateau and plume head accretion 256 × 96 × 96
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B Codes in geodynamics

In what follows I make a quick inventory of the main codes of computational geodynamics, for crust,
lithosphere and/or mantle modelling.

in order to find all CIG-codes citations go to: https://geodynamics.org/cig/news/publications-refbase/

• ABAQUS [375] [585] [658] [696] [728]

• ADELI [462] [952] [110] [111] [373] [404] [964] [213] [214]

• ASPECT

This code is hosted by CIG at https://geodynamics.org/cig/software/aspect/

[52] [584] [39] [904] [255] [364] [1027] [466] [253] [468] [801] [802] [38] [887] [147] [713] [868] [1023]
[254] [715] [406] [469] [365] [727] [741] [146] [62] [850] [244] [636]

• BASIL/ELLE http://elle.ws/ [112] [639]

• CHIC [707]

• CitcomS and CITCOMCU

These codes are hosted by CIG at https://geodynamics.org/cig/software/citcomcu/ and
https://geodynamics.org/cig/software/citcoms/.

[843] [684] [1034] [937] [1037] [436] [96] [872] [936] [241] [97] [841] [98] [74] [733] [870] [77] [242] [99]
[1036] [656] [51] [791] [687] [240] [405] [362] [1035] [483] [624] [32] [1025] [28] [340] [181] [71] [609]
[171] [947] [50] [182] [1024] [94] [528] [75] [606] [933] [611] [634] [34] [529] [100] [117] [511] [1041] [842]
[478] [531] [48] [124] [125] [530] [754] [710] [35] [243] [339] [170] [553] [36] [961] [829] [9] [651] [1046]
[49] [123] [118] [832] [256] [934] [966] [960] [959] [461] [876] [612] [975] [974] [527] [8] [650] [349] [465]
[474] [566] [554] [667] [351] [649] [647]

cross check with CIG database

• CONMAN This code is hosted by CIG at https://geodynamics.org/cig/software/conman/

[570] [522] [567] [568] [523] [76] [695] [261] [569]

• CONVRS [1012] [1011]

• DOUAR

[135] [890] [1005] [137] [641] [689] [976] [700] [577]

• DYNEARTHSOL [223]

• M-DOODS [1006] [1004]

• FENICS [15]

• GAIA

[513]

• GALE

This code is hosted by CIG at https://geodynamics.org/cig/software/gale/

[331] [91] [248] [596] [35]

ADD:

Cruz, L.; Malinski, J.; Hernandez, M.; Take, A.; Hilley, G. Erosional control of the kinematics of the
Aconcagua fold-and-thrust belt from numerical simulations and physical experiments 2011 Geology

Goyette, S.; Takatsuka, M.; Clark, S.; Mller, R.D.; Rey, P.; Stegman, D.R. Increasing the usability
and accessibility of geodynamic modelling tools to the geoscience community: UnderworldGUI 2008
Visual Geosciences

Li, Y.; Qi, J. Salt-related Contractional Structure and Its Main Controlling Factors of Kelasu
Structural Zone in Kuqa Depression: Insights from Physical and Numerical Experiments 2012
Procedia Engineering
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• GTECTON [414] [415] [165] [166] [416] [345] [638] [44] [45] [659]

• ELEFANT

[904] [648] [168] [591] [887] [736] [991]

• ELLIPSIS

[682] [714] [683] [301] [716] [750] [611] [607]

• FANTOM

[886] [18] [19] [20] [321] [891] [319] [320]

FDCON [318] [353] [352]

• FLUIDITY [262] [361]

• geoFLAC (based on PARAVOZ) [534]

• IFISS: Incompressible Flow Iterative Solution Solver is a MATLAB package that is a very useful
tool for people interested in learning about solving PDEs. IFISS includes built-in software for 2D
versions of: the Poisson equation, the convection-diffusion equation, the Stokes equations and the
Navier-Stokes equations.
https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/

• the I2(3)E(L)VIS code

[392][393][391] [394][395][389] [177] [162][381][411][385] [382][410] [823][384][921][326][1044] [386] [379][705]
[294][296][622][380][388] [245][293][1019] [621][693][652][930][929][1045][302][387][663] [295][744][805][956][47][626][852][657]
[187][412][47][931] [292][922][806][390][806] [1][653][338] [576][623]

• I3MG [324]

• LAMEM [823] [559] [598] [668] [599] [238] [60] [334] [333] [742] [335] [237] [560]

• LAPEX2D [838] [162] [42] [823] [839]

• LITMOD [5] [4] [354] [355]

• MARC [699] [698]

• MILAMIN [252] [1007] [370] [547] [644][371][884] [535][662]

• PARAVOZ/FLAMAR [737] [189][183] [43][230] [444][376] [435][378][908][898] [188] [1002][190] [1003][899]
[374][1005] [30][373][431][372][327] [346][360][186] [999][665][368][279]

• PINK3D [957]

• PLASTI [356]

• PTATIN [729] [670] [669] [597] [551] [550]

• RHEA [193] [845] [14] [195]

• SAMOVAR [310]

• SEPRAN [925] [954] [227] [935] [943] [944] [945] [946] [828] [627] [628] [942] [129] [128] [735] [950]
[926] [855] [939] [927] [82] [219] [29] [220] [686] [928] [1031]

• SISTER

[709]

• SLIM3D

[739] [758] [153] [154] [152] [151] [467] [575] [229]
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• SLOMO [557]

SNAC [224]

• SOPALE

[985] [64] [357] [311] [68] [983] [981] [747] [69] [66] [508] [748] [506] [948] [987] [752] [67] [749] [746]
[312] [367] [366] [510] [745] [831] [509] [250] [680] [830] [968] [969] [562] [65] [167] [418] [837] [13] [12]
[419] [751] [249] [204] [505] [420] [421] [574] [417] [532] [202] [218] [336] [337] [413] [422] [572] [706]
[533] [408] [16] [203] [471] [635] [201]

• STAGYY [799] [1010] [246]

• SUBMAR [661] [660] [792]

• SULEC SULEC is a finite element code that solves the incompressible Navier-Stokes equations for
slow creeping flows. The code is developed by Susan Ellis (GNS Sciences, NZ) and Susanne Buiter
(NGU).

[755] [313] [164] [878] [245] [428] [396] [397] [756] [692] [1057] [879]

• TERRA [174] [173] [730] [993] [992] [260] [932]

• TerraFERMA [990] [989] [844] [215] [216]

• YACC [904] [902]

• UNDERWORLD 1&2 [847] [683] [818] [604] [719] [210] [666] [848] [846] [330] [208] [207] [89] [819]
[325] [329] [753] [88] [820] [834] [835] [720] [571] [674] [815] [1009]

• VEMAN [90]
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C Matrix properties

C.1 Symmetric matrices

Any symmetric matrix has only real eigenvalues, is always diagonalizable, and has orthogonal eigenvectors.
A symmetric N ×N real matrix M is said to be

• positive definite if ~x ·M ·~x > 0 for every non-zero vector ~x of n real numbers. All the eigenvalues
of a Symmetric Positive Definite (SPD) matrix are positive. If A and B are positive definite, then
so is A+B. The matrix inverse of a positive definite matrix is also positive definite. An SPD matrix
has a unique Cholesky decomposition. In other words the matrix M is positive definite if and only
if there exists a unique lower triangular matrix L, with real and strictly positive diagonal elements,
such that M = LLT (the product of a lower triangular matrix and its conjugate transpose). This
factorization is called the Cholesky decomposition of M .

• positive semi-definite if ~x ·M · ~x ≥ 0

• negative definite if ~x ·M · ~x < 0

• negative semi-definite if ~x ·M · ~x ≤ 0

The Stokes linear system (
K G
GT 0

)
·
(
v
p

)
=

(
f
g

)
is indefinite (i.e. it has positive as well as negative eigenvalues).

A square matrix that is not invertible is called singular or degenerate. A square matrix is singular if
and only if its determinant is 0. Singular matrices are rare in the sense that if you pick a random square
matrix, it will almost surely not be singular.

C.2 Schur complement

From wiki. In linear algebra and the theory of matrices, the Schur complement of a matrix block (i.e.,
a submatrix within a larger matrix) is defined as follows. Suppose A, B, C, D are respectively p × p,
p× q, q × p and q × q matrices, and D is invertible. Let

M =

(
A B
C D

)
so that M is a (p+ q)× (p+ q) matrix. Then the Schur complement of the block D of the matrix M is
the p× p matrix

S = A−B ·D−1 ·C
Application to solving linear equations: The Schur complement arises naturally in solving a system of
linear equations such as

A · ~x+B · ~y = ~f

C · ~x+D · ~y = ~g

where ~x, ~f are p-dimensional vectors, ~y, ~g are q-dimensional vectors, and A, B, C, D are as above.
Multiplying the bottom equation by B ·D−1 and then subtracting from the top equation one obtains

(A−B ·D−1 ·C) · ~x = ~f −B ·D−1 · ~g

Thus if one can invert D as well as the Schur complement of D, one can solve for ~x, and then by using the
equation C ·~x+D·~y = ~g one can solve for y. This reduces the problem of inverting a (p+q)×(p+q) matrix
to that of inverting a p× p matrix and a q× q matrix. In practice one needs D to be well-conditioned in
order for this algorithm to be numerically accurate.

Considering now the Stokes system:(
K G
GT −C

)
·
(
~v
~p

)
=

(
~f
~g

)
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Factorising for ~p we end up with a velocity-Schur complement. Solving for ~p in the second equation
and inserting the expression for ~p into the first equation we have

Sv · ~v = ~f with Sv = K + G · C−1 ·GT

Factorising for ~v we get a pressure-Schur complement.

Sp · ~p = GT ·K−1 · ~f with Sp = GT ·K−1 ·G + C
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D Dont be a hero - unless you have to

What follows was published online on July 17th, 2017 at https://blogs.egu.eu/divisions/gd/2017/
07/19/dont-be-a-hero-unless-you-have-to/ It was written by me and edited by Iris van Zelst, at
the time PhD student at ETH Zürich.

In December 2013, I was invited to give a talk about the ASPECT code [1] at the American Geological
Union conference in San Francisco. Right after my talk, Prof. Louis Moresi took the stage and gave a
talk entitled: Underworld: What we set out to do, How far did we get, What did we Learn?

The abstract went as follows:
”Underworld was conceived as a tool for modelling 3D lithospheric deformation coupled with the

underlying / surrounding mantle flow. The challenges involved were to find a method capable of repre-
senting the complicated, non-linear, history dependent rheology of the near surface as well as being able
to model mantle convection, and, simultaneously, to be able to solve the numerical system efficiently. []
The elegance of the method is that it can be completely described in a couple of sentences. However,
there are some limitations: it is not obvious how to retain this elegance for unstructured or adaptive
meshes, arbitrary element types are not sufficiently well integrated by the simple quadrature approach,
and swarms of particles representing volumes are usually an inefficient representation of surfaces.”

Aside from the standard numerical modelling jargon, Louis used a term during his talk which I thought
at the time had a nice ring to it: hero codes. In short, I believe he meant the codes written essentially
by one or two people who at some point in time spent great effort into writing a code (usually choosing
a range of applications, a geometry, a number of dimensions, a particular numerical method to solve the
relevant PDEs(1), and a tracking method for the various fields of interest).

In the long list of Hero codes, one could cite (in alphabetical order) CITCOM [1], DOUAR [8],
FANTOM [2], IELVIS [5], LaMEM [3], pTatin [4], SLIM3D [10], SOPALE [7], StaggYY [6], SULEC [11],
Underworld [9], and I apologise to all other heroes out there whom I may have overlooked. And who
does not want to be a hero? The Spiderman of geodynamics, the Superwoman of modelling?

Louis’ talk echoed my thoughts on two key choices we (computational geodynamicists) are facing:
Hero or not, and if yes, what type?

Hero or not?

Speaking from experience, it is an intense source of satisfaction when peer-reviewed published results
are obtained with the very code one has painstakingly put together over months, if not years. But is it
worth it?

On the one hand, writing one owns code is a source of deep learning, a way to ensure that one
understands the tool and knows its limitations, and a way to ensure that the code has the appropriate
combination of features which are necessary to answer the research question at hand. On the other hand,
it is akin to a journey; a rather long term commitment; a sometimes frustrating endeavour, with no
guarantee of success. Let us not deny it many a student has started with one code only to switch to
plan B sooner or later. Ultimately, this yiels a satisfactory tool with often little to no perennial survival
over the 5 year mark, a scarce if at all existent documentation, and almost always not compliant with
the growing trend of long term repeatability. Furthermore, the resulting code will probably bear the
marks of its not-all-knowing creator in its DNA and is likely not to be optimal nor efficient by modern
computational standards.

This brings me to the second choice: elegance & modularity or taylored code & raw performance?
Should one develop a code in a very broad framework using as much external libraries as possible or is
there still space for true heroism?

It is my opinion that the answer to this question is: both. The current form of heroism no more lies
in writing ones own FEM(2)/FDM(3) packages, meshers, or solvers from scratch, but in cleverly taking
advantage of state-of-the-art packages such as for example p4est [15] for Adaptive Mesh Refinement,
PetSc [13] or Trilinos [14] for solvers, Saint Germain [17] for particle tracking, deal.ii [12] or Fenics [16]
for FEM, and sharing their codes through platforms such as svn, bitbucket or github.

In reality, the many different ways of approaching the development or usage of a (new) code is linked
to the diversity of individual projects, but ultimately anyone who dares to touch a code (let alone write
one) is a hero in his/her own right: although (super-)heroes can be awesome on their own, they often
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complete each other, team up and join forces for maximum efficiency. Let us all be heroes, then, and join
efforts to serve Science to the best of our abilities.

Abbreviations
(1) PDE: Partial Differential Equation
(2) FEM: Finite Element Method
(3) FDM: Finite Difference Method
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E A FANTOM, an ELEFANT and a GHOST

While a post-doctoral researcher at Bergen University I developed the FANTOM code. Here is what
other people and I have published with it:

• FANTOM : two- and three-dimensional numerical modelling of creeping flows for the solution of
geological problems, C. Thieulot, Physics of the Earth and Planetary Interiors, 188, 2011.

• Three-dimensional numerical modeling of upper crustal extensional systems, V. Allken, R.S. Huis-
mans and C. Thieulot, JGR 116, 2011. https://doi:10.1029/2011JB008319

• Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical
study, V. Allken, R.S. Huismans and C. Thieulot, Geochem. Geophys. Geosyst. 13(5), 2012.
https://doi:10.1029/2012GC004077

• 3D numerical modelling of graben interaction and linkage: a case study of the Canyonlands grabens,
Utah, V. Allken, R.S. Huismans, Haakon Fossen and C. Thieulot, Basin Research, 25, 1-14, 2013.
https://doi:10.1111/bre.12010
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• Three-dimensional numerical simulations of crustal systems undergoing orogeny and subjected to
surface processes, C. Thieulot, P. Steer and R.S. Huismans, Geochem. Geophys. Geosyst., 15,
2014. doi:10.1002/2014GC005490

• Extensional inheritance and surface processes as controlling factors of mountain belt structure, Z.
Erdös, R.S. Huismans, P. van der Beek, and C. Thieulot, J. Geophys. Res. Solid Earth, 119, 2014.
doi:10.1002/2014JB011408

• First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts, Z.
Erdös, R.S. Huismans, P. van der Beek, J. Geophys. Res. Solid Earth, 120, 5362-5377, 2015.
doi:10.1002/2014JB011785

• Control of increased sedimentation on orogenic fold-and-thrust belt structure - insights into the
evolution of the Western Alps, Z. Erdös, R.S. Huismans and P. van der Beek, Solid Earth, 10,
391-404, 2019. https://doi.org/10.5194/se-10-391-2019

• Mountain building or backarc extension in ocean-continent subduction systems - a function of
backarc lithospheric strength and absolute plate velocities, S.G. Wolf and R.S. Huismans, JGR,
2019. https://doi.org/10.1029/2018JB017171

Upon my arrival at Utrecht University in 2012 I started working an a more flexible code, called
ELEFANT, which has since very much diverged from FANTOM.

• The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling,
A. Plunder, C. Thieulot and D.J.J. van Hinsbergen, Solid Earth 9, 759-776, 2018. https://doi.

org/10.5194/se-9-759-2018
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• Analytical solution for viscous incompressible Stokes flow in a spherical shell, C. Thieulot, Solid
Earth 8, 1181-1191, 2017. https://doi.org/10.5194/se-8-1181-2017

• Lithosphere erosion and continental breakup: interaction of extension, plume upwelling and melting,
A. Lavecchia, C. Thieulot, F. Beekman, S. Cloetingh and S. Clark, E.P.S.L. 467, p89-98, 2017.

• Benchmarking numerical models of brittle thrust wedges, Susanne J.H. Buiter, Guido Schreurs,
Markus Albertz, Taras V. Gerya, Boris Kaus, Walter Landry, Laetitia le Pourhiet, Yury Mishin,
David L. Egholm, Michele Cooke, Bertrand Maillot, Cedric Thieulot, Tony Crook, Dave May,
Pauline Souloumiac, Christopher Beaumont Journal of Structural Geology 92, p140-177, 2016.
https://doi:10.1016/j.jsg.2016.03.003

• A community benchmark for viscoplastic thermal convection in a 2-D square box, N. Tosi, C. Stein,
L. Noack, C. Huettig, P. Maierova, H. Samuel, D.R. Davies, C.R. Wilson, S.C. Kramer, C. Thieulot,
A. Glerum, M. Fraters, W. Spakman, A. Rozel, P.J. Tackley, Geochem. Geophys. Geosyst. 16,
doi:10.1002/2015GC005807, 2015.
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• Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the
formation of supra-subduction zone ophiolites, M. Maffione, C. Thieulot, D.J.J. van Hinsbergen, A.
Morris, O. Pluemper and W. Spakman, Geochem. Geophys. Geosyst. 16, p1753-1770, 2015.

• The Geodynamic World Builder: a solution for complex initial conditions in numerical modelling,
M. Fraters, C. Thieulot, A. van den Berg and W. Spakman, Solid Earth, https://doi.org/10.
5194/se-2019-24, 2019.

• GHOST: Geoscientific Hollow Sphere Tessellation, C. Thieulot, Solid Earth, 9, 11691177, 2018.
https://doi.org/10.5194/se-9-1169-2018
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F Some useful Python commands

F.1 Sparse matrices

So far, the best way I have found to deal with sparse matrices is to declare the matrix as a ’lil matrix’
(linked list).

from sc ipy . spa r s e import cs r matr ix , l i l m a t r i x
A mat = l i l m a t r i x ( ( Nfem , Nfem) , dtype=np . f l o a t 6 4 )

One then adds terms to it as if it was a full/dense matrix. Once the assembly is done, the conversion
to CSR format is trivial:

A mat=A mat . t o c s r ( )

Finally the solver can be called:

s o l=sps . l i n a l g . sp so l v e (A mat , rhs )

F.2 condition number

if the matrix has been declared as lil matrix, first convert it to a dense matrix:

A mat=A mat . dense ( )

The condition number of the matrix is simply obtained as follows:

from numpy import l i n a l g as LA
pr in t (LA. cond (A mat ) )
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G Some useful maths

G.1 Inverse of a 3x3 matrix

Let us assume we wish to solve the system A · ~X = ~b, with ~X = (x, y). Then the solution is given by
The solution is given by

x =
1

det(A)

∣∣∣∣ b1 a21

b2 a22

∣∣∣∣ y =
1

det(A)

∣∣∣∣ a11 b1
a21 b2

∣∣∣∣
G.2 Inverse of a 3x3 matrix

Let us consider the 3x3 matrix M

M =

 Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


1. Find det(M), the determinant of the Matrix M . The determinant will usually show up in the

denominator of the inverse. If the determinant is zero, the matrix won’t have an inverse.

2. Find MT , the transpose of the matrix. Transposing means reflecting the matrix about the main
diagonal.

MT =

 Mxx Myx Mzx

Mxy Myy Mzy

Mxz Myz Mzz


3. Find the determinant of each of the 2x2 minor matrices. For instance M̃xx = MyyMzz −MyzMzy,

or M̃xz = MxyMyz −MxzMyy.

4. assemble the M̃ matrix:

M̃ =

 +M̃xx −M̃xy +M̃xz

−M̃yx +M̃yy −M̃yz

+M̃zx −M̃zy +M̃zz


5. the inverse of M is then given by

M1 =
1

det(M)
M̃

Another approach which of course is equivalent to the above is Cramer’s rule. Let us assume we wish
to solve the system A · ~X = ~b, with ~X = (x, y, z). Then the solution is given by

x =
1

det(M)

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣ y =
1

det(M)

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣ z =
1

det(M)

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
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H Topics in (computational) geodynamics

This is a very rough attempt at classifying my somewhat extensive bibliography per theme/topic. It goes
without saying that this cannot be extensive and that since I started computational geodynamics myself
around 2006 these lists are biaised towards the last 2 decades or so. In retrospect, the categories I have
chosen could have been subdivided into narrower fields. I understand that having 100+ references for
’subduction’ or ’mantle convection’ is not particularly useful, but it means that all these papers show up
in the bibliography section of this book, and the titles of said papers are then searchable per keyword.

Big review papers - very good for students

• Advances and challenges in geotectonic modelling [192]

Benchmark, analytical solutions, code comparisons, methodology, numerical
methods, theory

1984: [1018]
1990: [910]
1994: [143]
1995: [144]
1996: [1040]
1997: [790]
1999: [629]
2003: [867]
2007: [903]
2008: [1035][278][915]
2011: [296][923]
2014: [885]
2015: [603][804]
2016: [299]
2017: [801][989]
2019: [228]

Core dynamics, CMB

[456] [594]

Dataset - gravity, goce, grace, tomography, gps, heat flow

1981: [303]
1998: [93]
2003: [583]
2012: [464][780][464]
2013: [781][305][265]
2014: [723][304][582]
2015: [119]

Computational Structural geology

[3] [911]

Core complexes

[596]
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Discontinuous Galerkin

[556][703][233][332][555][369] [231][212][211][232][234][235] [678][514][702][741][466][704] [236][679][603]

(Geodynamics+) surface processes, erosion, topography evolution

1992: [63]
1994: [495]
1996: [41]
1997: [134]
1998: [275]
1999: [983][176][58]
2001: [1021][919][145][183]
2002: [986]
2003: [132]
2005: [590][988]
2006: [797][133]
2007: [190]
2008: [17][798]
2009: [977]
2010: [984][918][141][140][137]
2011: [796]
2013: [953][136]

Geotechnics

[1043]

Glacier dynamics, ice sheets

[37] [1022] [613] [517]

Gravity, moment of inertia

[800] [1042]

(use of) inverse methods, inversion, adjoint methods

[175] [962] [998][489] [965] [398] [616]

Large scale mantle-plate interaction

[14]

Crust/Lithosphere modelling, plate motion, plate stress

1988: [266]
1993: [701][138]
1994: [158]
1995: [80][142]
1997: [895][57][184]
1998: [101][614]
1999: [981][102]
2000: [452][593]
2001: [493][73]
2002: [592][239][43]
2003: [987][970]
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2004: [898]
2005: [445][979]
2006: [638][163]
2007: [5]
2008: [4][899][460][178]
2010: [463]
2011: [782]
2012: [967][941][164]
2013: [971]
2014: [553][298][805][961][976][822]
2015: [960][884]
2017: [807]
2019: [577]

Delamination

[53]

lithospheric stress, intraplate stress

1975: [341]
1976: [787]
1979: [789]
1989: [116]
1991: [995]
1992: [788][1000][1054]
2001: [851]
2004: [630]
2005: [897]
2008: [103][401]
2009: [403][694]
2010: [90]
2012: [696][402]
2013: [400]

Folding

[761] [762] [763] [766] [767]

LLSVP

[619] [170]

Magma transport / Melting

[1006] [642]

Methodology, algorithms

[605]

Mantle convection

1975: [473]
1978: [664]
1979: [646][198]
1980: [711][538]

348



1981: [199]
1982: [539][492]
1983: [494][491]
1984: [712][540][453][459][263][113]
1985: [541][61]
1986: [264]
1987: [1017]
1993: [1026][542][858][200]
1994: [455]
1995: [1032]
1996: [1029][485][810][811][863][916][104]
1997: [486][524]
1998: [26][525][273][864][860][912][913]
1999: [289]
2000: [11][454][271][859][1037]
2002: [856]
2003: [446]
2005: [862][205]
2007: [695]
2008: [865]
2009: [993]
2010: [171]
2011: [643][799][992]
2012: [92] 2013: [484][260][906]
2014: [36][470]
2015: [884]

Mantle rheology, phase transitions, stratification

[1016] [1030] [861] [1028] [724] [526] [866]

Mantle wedge

[909] [96] [601] [792] [955]

Obduction, ophiolites

[437] [438] [6]

Plate motion and mantle

[1048] [1034] [624] [512] [1013]

Plume dynamics

[691][457] [589] [520] [905][873][180] [259] [256] [258]

Plume-Lithosphere interaction

[785] [188] [187]

Regenauer-Lieb

[773] [774] [779] [776][772] [778] [777] [771]
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Rheology

1951: [285][440] 1952: [286] 1968: [206] 1969: [448] 1980: [126]
1981: [274] 1984: [765] 1990: [980] 1992: [46] 1996: [963] 2000: [808][764] 2001: [640] 2002: [481] 2003:
[480] 2005: [280][287] 2006: [809][191] 2007: [476] 2008: [604][179] 2011: [600] 2012: [784] 2013: [595]

Rifting, seafloor spreading, pull-apart basins, extension

1985: [114]
1986: [490]
1988: [157]
1991: [914][159]
1992: [1047]
1996: [291][81]
1998: [760]
1999: [149][160]
2001: [507]
2002: [508][450][257]
2003: [506][451]
2004: [475]
2005: [510]
2006: [901]
2007: [499]
2009: [7]
2010: [40]
2011: [18]
2012: [19][153]
2013: [20][152]
2014: [467][626][151]
2015: [692]
2016: [709][544]
2017: [597]
2019: [617]

Salt tectonics

1991: [869] 1992: [1020] 1993: [697] 2004: [519] 2007: [498] 2011: [150] 2014: [60]

Subduction

1985: [882]
1986: [536]
1989: [116]
1990: [496]
1992: [1038][978]
1993: [549][300]
1994: [1039][985][972][973]
1997: [462]
1998: [523][169][156]
1999: [447][76]
2000: [880][131]
2001: [189]
2003: [770]
2004: [908][122]
2005: [537][586]
2006: [345][803]
2007: [31][1002]
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2008: [1003][719][405][968][969][111][110][42]
2009: [1005][95][328]
2010: [443][641]
2011: [622][634][204][45]
2012: [30][532][529][531][1019][621][794][878][883][117]
2013: [693][439][29][690][1011][1045][530][518][645][288][900][202]
2014: [793][487][795]
2015: [88][118] 2016: [902]

Subduction - slab detachment

1992: [996]
1995: [1014]
1997: [994]
1998: [268]
2000: [997]
2002: [166]
2009: [28][181]
2010: [182]
2011: [294]
2012: [293][297]
2014: [295][85]

Subduction initiation

1998: [907]
2001: [282][775][130]
2003: [444]
2005: [98]
2010: [705][185]
2011: [44]
2013: [302]

Tectonics, small deformation, rock mechanics

[515] [472] [607]

Wilson cycle, supercontinent cycles

[917] [1036] [1025]
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I Elemental mass matrices for simple geometries

In what follows I compute the mass matrix for a variety of reference elements. If you wish to use these
in a code, do not forget to take the jacobian of the transformation/mapping into account.

I.1 1D segments

I.1.1 Linear basis functions

Let us start with the mass matrix (which we encountered in Section 5.1 – although we leave the ρCp term
out):

Me =

∫
Ωe

~NT ~NdV =

∫ +1

−1

~NT ~Ndr (679)

on the reference element, with

~NT =

(
N1(r)
N2(r)

)
=

1

2

(
1− r
1 + r

)
We have ∫ +1

−1

N1(r)N1(r)dr = 2/3 (680)∫ +1

−1

N1(r)N2(r)dr = 1/3 (681)∫ +1

−1

N2(r)N2(r)dr = 2/3 (682)

Following the procedure in Section 5.1 we arrive at

M e =
1

3

(
2 1
1 2

)
The lumped mass matrix is then

M̄ e =
1

3

(
2 + 1 0

0 1 + 2

)
=

(
1 0
0 1

)
(683)

Remark. The sum of all the terms in the mass matrix must be equal to 2. Indeed:

∑
ij

Mij =
∑
ij

∫ +1

−1

NiNjdr

=

∫ +1

−1

(N1N1 +N1N2 +N2N1 +N2N2)dr

=

∫ +1

−1

[N1(N1 +N2) +N2(N1 +N2)]dr

=

∫ +1

−1

(N1 +N2)dr

= 2

I.1.2 Quadratic basis functions

There are now three nodes in the segment so that the mass matrix is now a 3× 3 matrix. We have (see
Section 4.4.1)

~NT (r) =

 N1(r)
N2(r)
N3(r)

 =

 1
2r(r − 1)

1− r2

1
2r(r + 1)

 (684)
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We then have to compute ∫ +1

−1

N1(r)N1(r)dr =
8

30
= 0.26666∫ +1

−1

N1(r)N2(r)dr =
4

30
= 0.13333∫ +1

−1

N1(r)N3(r)dr = − 2

30
= −0.06666...∫ +1

−1

N2(r)N2(r)dr =
16

15
= 1.06666∫ +1

−1

N2(r)N3(r)dr =
4

30
= 0.13333∫ +1

−1

N3(r)N3(r)dr =
8

30
= 0.26666

and finally

M e =
1

30

 8 4 −2
4 32 4
−2 4 8

 (685)

The lumped mass matrix is then

M̄ e =
1

30

 8 + 4− 2 0 0
0 4 + 32 + 4
0 0 −2 + 4 + 8


=

1

30

 10 0 0
0 40 0
0 0 10


=

1

3

 1 0 0
0 4 0
0 0 1

 (686)

We can easily verify that ∑
ij

Mij = 2
∑
ij

M̄ij = 2

I.1.3 Cubic basis functions

There are now four nodes in the segment so that the mass matrix is now a 4 × 4 matrix. We have (see
Section 4.4.3)

~NT (r) =


N1(r)
N2(r)
N3(r)
N4(r)

 =
1

16


−1 + r + 9r2 − 9r3

9− 27r − 9r2 + 27r3

9 + 27r − 9r2 − 27r3

−1− r + 9r2 + 9r3

 (687)
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∫ +1

−1

N1(r)N1(r)dr =
1

256

4096

105∫ +1

−1

N1(r)N2(r)dr =
1

256

1056

35∫ +1

−1

N1(r)N3(r)dr = − 1

256

384

35∫ +1

−1

N1(r)N4(r)dr =
1

256

608

105∫ +1

−1

N2(r)N2(r)dr =
1

256

6912

35∫ +1

−1

N2(r)N3(r)dr = − 1

256

864

35∫ +1

−1

N2(r)N4(r)dr = − 1

256

384

35∫ +1

−1

N3(r)N3(r)dr =
1

256

6912

35∫ +1

−1

N3(r)N4(r)dr =
1

256

1056

35∫ +1

−1

N4(r)N4(r)dr =
1

256

4096

105

and finally

M e =
1

16

1

105


256 198 −72 38
198 1296 −162 −72
−72 −162 1296 198
38 −72 198 256

 (688)

The lumped mass matrix is then

M̄ e =
1

16

1

105


256 + 198− 72 + 38 0 0 0

0 198 + 1296− 162− 72 0 0
0 0 −72− 162 + 1296 + 198 0
0 0 0 38− 72 + 198 + 256



=
1

16

1

105


420 0 0 0
0 1260 0 0
0 0 1260 0
0 0 0 420



=
1

4


1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1


We can easily verify that ∑

ij

Mij = 2
∑
ij

M̄ij = 2
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I.1.4 Quartic basis functions

There are now five nodes in the segment so that the mass matrix is now a 5 × 5 matrix. We have (see
Section 4.4.4)

~NT (r) =


N1(r)
N2(r)
N3(r)
N4(r)
N5(r)

 =
1

6


r − r2 − 4r3 + 4r4

−8r + 16r2 + 8r3 − 16r4

6− 30r2 + 24r4

8r + 16r2 − 8r3 − 16r4

−r − r2 + 4r3 + 4r4

 (689)

∫ +1

−1

N1(r)N1(r)dr =
1

36

1168

315∫ +1

−1

N1(r)N2(r)dr =
1

36

1184

315∫ +1

−1

N1(r)N3(r)dr = − 1

36

232

105∫ +1

−1

N1(r)N4(r)dr =
1

36

32

45∫ +1

−1

N1(r)N5(r)dr = − 1

36

116

315∫ +1

−1

N2(r)N2(r)dr =
1

36

1024

45∫ +1

−1

N2(r)N3(r)dr = − 1

36

512

105∫ +1

−1

N2(r)N4(r)dr =
1

36

1024

315∫ +1

−1

N2(r)N5(r)dr =
1

36

32

45∫ +1

−1

N3(r)N3(r)dr =
1

36

832

35∫ +1

−1

N3(r)N4(r)dr = − 1

36

512

105∫ +1

−1

N3(r)N5(r)dr = − 1

36

232

105∫ +1

−1

N4(r)N4(r)dr =
1

36

1024

45∫ +1

−1

N4(r)N5(r)dr =
1

36

1184

315∫ +1

−1

N5(r)N5(r)dr =
1

36

1168

315
(690)

M e =
1

36

1

315


1168 1184 −696 224 −116
1184 7168 −1536 1024 224
−696 −1536 7488 −1536 −696
224 1024 −1536 7168 1184
−116 224 −696 1184 1168

 (691)
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The lumped mass matrix is then

M̄ e = =
1

36

1

315


1764 0 0 0 0

0 8064 0 0 0
0 0 3024 0 0
0 0 0 8064 0
0 0 0 0 1764

 =
1

45


7 0 0 0 0
0 32 0 0 0
0 0 12 0 0
0 0 0 32 0
0 0 0 0 7

 (692)

We can once again easily verify that∑
ij

Mij = 2
∑
ij

M̄ij = 2

Note that all the integrals above were done very conveniently with the WolframAlpha software/web-
site48. Example:

I.2 Quadrilaterals: rectangular elements

We here assume that each element is a rectangle of size hx × hy.

I.3 Hexahedra: cuboid elements

We here assume that each element is a cuboid49 of size hx × hy × hz.

48https://www.wolframalpha.com/
49https://en.wikipedia.org/wiki/Cuboid
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J Finite element terminology in various languages

English French Dutch
Finite Element Method Méthode des éléments finis Eindige-elementenmethode
Finite Difference Method Méthode des différences finies Eindige-differentiemethode
Finite Volume Method Méthode des volumes finis
Matrix Matrice
Heat transport eq. Equation de transport de la chaleur Warmtetransport vergelijking
Momentum conservation eq. équation de conservation du moment Wet van behoud van impuls
Mass conservation / continuity eq. Continüıteitsvergelijking
Iterative solver solveur itératif
Elemental matrix
Boundary conditions conditions aux limites randvoorwaarden
(In)compressible (in)compressible
Surface processes processus de surface
an element un élément
Computational geodynamics géodynamique numérique
Assembly assemblage
Strong form
Weak form formulation variationnelle / formulation faible
Basis function
Shape function
Partial differential eq. (PDE) équation aux dérivées partielles (EDP) partiële differentiaalvergelijking
Node noeud knooppunt
Grid, mesh (la) maille / (le) maillage rooster
Stiffness matrix matrice de raideur stijfheidsmatrix
Displacement vector vecteur déplacement verplaatsingsvector
Tessellation pavage Betegeling
Mass matrix matrice de masse
Classical mechanics mécanique Newtonienne (de) klassieke mechanica
Momentum (le) moment (de) impuls
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K Fun modelling

Because sometimes numerical modelling is fun ...

Clothes washing simulations [10]

Pressures produced when penguins poohcalculations on avian defaecation [675]
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or” crème brûlée”? GSA today, 16(1):4, 2006.

[192] Evgene Burov, Thomas François, Philippe Yamato, and Sylvie Wolf. Advances and challenges in
geotectonic modelling. Bulletin de la Société Géologique de France, 185(3):147–168, 2014.
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[232] B. Cockburn, G. Kanschat, and D. Schötzau. The local discontinuous Galerkin method for lin-
earized incompressible fluid flow: a review. Computers and Fluids, 34:491–506, 2005.
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crust-mantle interactionsâimplications for generation of granite-migmatite belts. Tectonics, 2018.

[555] G. Kanschat. Divergence-free discontinuous Galerkin schemes for the Stokes equations and the
MAC scheme. Int. J. Num. Meth. Fluids, 56:941–950, 2008.

[556] Peter Kaufmann. Discontinuous Galerkin FEM in Computer Graphics. PhD thesis, ETH Zurich,
2012.

[557] B. Kaus. Modelling approaches to geodynamic processes, PhD thesis. PhD thesis, ETH Zurich,
2005.

[558] B.J.P. Kaus. Factors that control the angle of shear bands in geodynamic numerical models of
brittle deformation. Tectonophysics, 484:36–47, 2010.
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[734] J. Pitkäranta and T. Saarinen. A Multigrid Version of a Simple Finite Element Method for the
Stokes Problem. Mathematics of Computation, 45(171):1–14, 1985.

[735] T. Plank and P.E. van Keken. The ups and downs of sediments. Nature Geoscience, 1:17, 2008.

[736] A. Plunder, C. Thieulot, and D.J.J. van Hinsbergen. The effect of obliquity on temperature in
subduction zones: insights from 3D numerical modeling. Solid Earth, 9:759–776, 2018.

[737] A. Poliakov, P. Cundall, P. Podlachikov, and V. Lyakhovsky. An explicit inertial method for the
simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three-
layers models. In Flow and creep in the solar system: Observations, Modeling and theory, pages
175–195. Kluwer Academic Publishers, 1993.

[738] A. Poliakov and Y. Podlachikov. Diapirism and topography. Geophy. J. Int., 109:553–564, 1992.

[739] A.A. Popov and S.V. Sobolev. SLIM3D: a tool for three-dimensional thermomechanical mod-
elling of lithospheric deformation with elasto-visco-plastic rheology. Phys. Earth. Planet. Inter.,
171(1):55–75, 2008.

[740] A. Prosperetti. Motion of two superposed viscous fluids. Phys. Fluids, 24(7):1217–1223, 1981.

[741] E.G. Puckett, D.L. Turcotte, Y. He, H. Lokavarapu, J.M. Robey, and L.H. Kellogg. New nu-
merical approaches for modeling thermochemical convection in a compositionally stratified fluid.
Phys. Earth. Planet. Inter., 276:10–35, 2018.

[742] A.E. Pusok and B.J.P. Kaus. Development of topography in 3D continental collision models.
Geochem. Geophys. Geosyst., page doi:10.1002/2015GC005732, 2015.

[743] A.E. Pusok, B.J.P. Kaus, and A.A. Popov. On the Quality of Velocity Interpolation
Schemes for Marker-in-Cell Method and Staggered Grids. Pure and Applied Geophysics, pages
doi:10.1007/s00024–016–1431–8, 2016.
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