Supporting Information: Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space

Daniel Graf, Matthias Beuerle, and Christian Ochsenfeld*

Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany

E-mail: christian.ochsenfeld@uni-muenchen.de

1 Eigenvalue Spectra of the Approximated Hamiltonians

and the RPA Hamiltonian

Table 1: Mean absolute deviations in Hartree of the eigenvalue spectra of the three approximated Hamiltonians from the ones of the RPA Hamiltonian for 44 molecules.

molecule	$\mathrm{scRPA}[\tilde{\mathbf{H}}^{\mathrm{PBE}}]$	$\mathrm{scRPA}[\tilde{\mathbf{H}}^{\mathrm{PBE0}}]$	$\mathrm{scRPA}[\tilde{\mathbf{H}}^{\mathrm{HF}}]$
BH_2Cl	0.410626	0.314479	0.009522
BH_2F	0.44629	0.34254	0.00965
$BHCl_2$	0.450631	0.343705	0.014459
BHF_2	0.517411	0.395838	0.014028
CH_3Cl	0.428917	0.328835	0.008865
CH_3F	0.463563	0.355809	0.008685
CH_3OH	0.43177	0.332265	0.007307
CICN	0.48826	0.372891	0.013544
ClF	0.578205	0.439101	0.023271
CO	0.495106	0.37877	0.012769
\mathbf{CS}	0.442126	0.337223	0.014945
FCN	0.533763	0.407841	0.011937
H_2O-H_2O	0.45783	0.351073	0.009956
H_2O-NH_3	0.436086	0.335705	0.008134
H_2O	0.457004	0.351073	0.009801
$\rm H_2S{-}H_2S$	0.415645	0.318268	0.010752
H_2S-HCl	0.436209	0.333374	0.012517
HCCF	0.483387	0.370564	0.009641
HCl-HCl	0.463429	0.353341	0.014874
HCl	0.461788	0.351914	0.015092
HCN	0.443651	0.340674	0.006957
$\rm HF-HF$	0.539533	0.412479	0.014623
$_{ m HF}$	0.537048	0.41037	0.014948
HOOH	0.497001	0.380374	0.01107
${ m LiBH}_4$	0.315028	0.243353	0.003591
LiCl	0.325303	0.247803	0.013301
LiCN	0.350942	0.269983	0.00714

|--|

molecule	$\mathrm{scRPA}[\tilde{\mathbf{H}}^{\mathrm{PBE}}]$	$\mathrm{scRPA}[\tilde{\mathbf{H}}^{\mathrm{PBE0}}]$	$\mathrm{scRPA}[\tilde{\mathbf{H}}^{\mathrm{HF}}]$
${ m LiF}$	0.374755	0.287507	0.015355
${ m LiH}$	0.215769	0.168318	0.002967
LiOH	0.341812	0.264857	0.011317
N_2H_4	0.434003	0.334158	0.007403
NaCl	0.335281	0.254466	0.017267
NaCN	0.357377	0.274389	0.010052
NaF	0.373639	0.292038	0.019897
NaH	0.225461	0.179105	0.00859
NaLi	0.165358	0.130699	0.006611
NaOH	0.346033	0.269366	0.014772
$\rm NH_3-BH_3$	0.392471	0.302738	0.005272
$\rm NH_3-\rm NH_3$	0.4179	0.322133	0.006786
$\rm NH_3$	0.417724	0.32184	0.006566
PH_3	0.390945	0.299887	0.008593
SF_2	0.583451	0.444077	0.023029
$\rm SiH_3Cl$	0.412585	0.315366	0.011744
SiH_3F	0.443665	0.339619	0.011847
Mean	0.421245	0.323187	0.011351

2 Dipole Moments

$\mathrm{scRPA}[ilde{\mathbf{H}}^{\mathrm{HF}}]$	0.5317	0.7950	0.5437	0.9195	1.7750	1.8155	1.7203	2.8976	0.9748	0.1775	2.1233	2.1176	2.7322	3.5070	1.8750	0.9004	2.1008	0.7425	1.7359	1.0830	2.9828	3.3808	1.7989	1.5762	6.1561	7.0107	6.9600
$\mathrm{scRPA}[ilde{\mathbf{H}}^{\mathrm{PBE0}}]$	0.3955	0.6985	0.4649	0.8399	1.7004	1.7643	1.6867	2.8293	0.9678	0.2109	2.0652	2.1005	2.6853	3.4519	1.8261	0.8852	2.0577	0.6716	1.6911	1.0471	2.9161	3.3120	1.7511	1.5294	6.1043	6.8516	6.8516
$\mathrm{scRPA}[ilde{\mathbf{H}}^{\mathrm{PBE}}]$	0.3391	0.6560	0.4429	0.8045	1.6656	1.7456	1.6761	2.8171	1.0021	0.1928	1.9877	2.1171	2.6638	3.4256	1.8040	0.8768	2.0358	0.6408	1.6708	1.0326	2.9089	3.2814	1.7296	1.5065	6.0713	6.8220	6.7647
PBE0	0.5899	0.7445	0.5976	0.8867	1.8911	1.7421	1.6680	2.9889	0.8507	0.0995	1.9280	2.3054	2.7896	3.5757	1.8945	1.0279	2.3038	0.6053	1.8770	1.1492	3.0364	3.4377	1.8192	1.5958	6.0288	6.9737	6.9174
PBE	0.4342	0.6061	0.4828	0.7705	1.8211	1.6432	1.6004	2.9592	0.7530	0.2209	1.9971	2.3245	2.7624	3.5410	1.8422	1.0690	2.3368	0.4541	1.8744	1.1133	2.9397	3.3836	1.7685	1.5511	5.9477	6.8193	6.8077
HF	0.9247	1.0129	0.8699	1.1157	2.0524	1.9607	1.8101	3.1102	1.1347	-0.2666	1.6194	2.3383	2.8540	3.6342	2.0025	0.9298	2.1976	0.8830	1.8705	1.2060	3.2911	3.5736	1.9319	1.6931	6.2089	7.2569	7.1007
CCSD(T)	0.6838	0.8269	0.6684	0.9578	1.8981	1.8083	1.7091	2.8496	0.8802	0.1172	1.9692	2.1756	2.7303	3.5004	1.8601	0.9181	2.1328	0.7452	1.7766	1.1055	3.0065	3.3991	1.8059	1.5732	6.1281	7.0960	6.9851
molecule	$\mathrm{BH}_2\mathrm{Cl}$	${ m BH}_2{ m F}$	$BHCl_2$	BHF_2	CH_3CI	$\mathrm{CH}_3\mathrm{F}$	CH_3OH	CICN	CIF	CO	\mathbf{CS}	FCN	H_2O-H_2O	H_2O-NH_3	$\rm H_2O$	H_2S-H_2S	H_2S-HCI	HCCF	HCI-HCI	HCI	HCN	HF-HF	HF	НООН	${ m LiBH}_4$	LiCl	LiCN

molecule	CCSD(T)	HF	PBE	PBE0	${ m scRPA}[ilde{{f H}}^{ m PBE}]$	$\mathrm{scRPA}[ilde{\mathbf{H}}^{\mathrm{PBE0}}]$	$\mathrm{scRPA}[ilde{\mathbf{H}}^{\mathrm{HF}}]$
LiF	6.2879	6.4490	6.0670	6.2011	6.0250	6.1048	6.2184
LiH	5.8286	5.9984	5.6100	5.7480	5.4698	5.6789	5.8495
LiOH	4.5664	4.6570	4.3182	4.4464	4.2973	4.3862	4.4897
$\mathrm{N_2H_4}$	2.7179	2.8404	2.6585	2.7242	2.6273	2.6547	2.7138
NaCl	9.0066	9.2513	8.4834	8.7977	8.6244	8.7658	8.9326
NaCN	8.8903	9.0933	8.5817	8.7930	8.6043	8.7429	8.898
NaF	8.1339	8.3700	7.7178	8.0147	7.5291	7.8596	8.0701
NaH	6.3966	7.0082	5.7572	6.2135	5.5441	5.9263	6.4434
NaLi	0.4837	0.6662	0.2059	0.3720	0.6701	0.3058	0.1906
NaOH	6.7690	6.8628	6.5010	6.6530	6.4933	6.6126	6.7199
$\rm NH_3-BH_3$	5.2810	5.3729	5.2678	5.3029	5.1943	5.2160	5.2556
$\rm NH_3-NH_3$	2.1345	2.2186	2.1642	2.1826	2.0670	2.0867	2.1256
NH_3	1.5289	1.6259	1.4932	1.5408	1.4590	1.4811	1.5242
PH_3	0.6069	0.6581	0.6369	0.6631	0.4723	0.4882	0.5214
SF_2	1.0555	1.3294	0.8414	0.9939	1.0988	1.0875	1.1403
SiH_3Cl	1.3645	1.4541	1.2187	1.3032	1.2116	1.2324	1.2869
SiH_3F	1.3123	1.4177	1.1785	1.2728	1.2344	1.2577	1.3133
MAD		0.1678	0.1616	0.0761	0.1650	0.1147	0.0504

Table 2 Continued.

References

 Hait, D.; Head-Gordon, M. How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. J. Chem. Theory Comput. 2018, 14, 1969–1981.