
MOfJASH UNIVERSITY
THESIS ACCEPTED !N SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ON h.

K' Sec. Ph.D. ana Scholarships Committee

Under tho Copyright Act 19G8, this thesis must be
used only under the normal conditions of scholn-ly
toir dealing for the purposes of research, criticism
or review. In particular no results or conclusions
should bT extracted from it, nor should it be copied
c closF.Jy paraphrased in whole or in nn;t vi t^out
t!io written consont of the ai't^or. Prop:^ vri'.tr.n
ct-knowloH^cment should he mado for any assistance £
obtained from this thesis. i



THE DESIGN AND IMPLEMENTATION OF A
PARALLEL RELATIVE DEBUGGER

by

Gregory R Watson

Bachelor of Computer Science (Honours)

A thesis submitted in fulfilment of the requirements
for trie degree of Doctor of Philosophy

Mcnash University

October 2000



s
c

This thesis was produced with Microsoft® Word 20001. The main text was typeset using

Garamond 12 point font and 1.5-line spacing. Program code and commands use the

Courier New font. Diagrams were produced with the Microsoft Word Picture Editor and

equations with Microsoft Equation 3.0. The production copies were printed on an HP

DeskJet 1120C printer.

1 1 don't claim it was easy.



DECLARATION

This thesis contains no material that has been accepted for the award of any other degree in

any other university. To the best of my knowledge, this thesis contains no material

previously published or written by another person, except where due reference is made in the

text of the thesis.

Gregory R Watson



ACKNOWLEDGMENTS

The author wishes to acknowledge the support of a number of people, without whom this

thesis would not exist. First and foremost is the wonderful Libby Chaplin, who has been my

constant companion and soul mate throughout this entire process and beyond, and who's

support made this thesis possible. Next is my supervisor, Prof. David Abramson, for the

remarkable effort that he has made to provide all the resources and encouragement that any

PhD candidate could possibly hope for. I would also like to thank rr.y family for their

enthusiasm and understanding when, as is always the case, things don't quite go to plan.

Thanks too, go to my very best friends Abigail and Su who, as partners in crime, understand

what it is all about. Finally, the time I have spent walking with Jarrah, during those crisp

winter mornings and balmy summer evenings, has enabled me to keep a clear head and a

constant focus when I needed it most.

This thesis is dedicated to the memory of US Navy Rear Admiral Grace Brewster Hopper

(9 Jan 1906 -1 Jan 1992) who is credited with having coined the term "debug", and the adage

"it is always easier to ask forgiveness than it is to get permission", which has been the guiding

principle in system administrator decisions ever since.



ABSTRACT

As the complexity of critical software systems increases, there is a correspondingly greater

risk of software errors occurring. The trend towards global reliance on critical and complex

technologies that has been apparent for many years means that the risk of serious economic

or environmental damage due to software failures is also increasing. Such issues must now

be considered an important factor in the life cycle of these critical systems. Program

debugging is a key component of this software life cycle. While a large amount of research

has been undertaken into developing debugging techniques to assist the software

development process, little, if any, work has been directed specifically at the software

evolution process.

This thesis presents a novel and interesting technique, known as relative debugging which

exploits the ability to utilise information from previous program releases as an aid in the

debugging process. Relative debugging is a powerful paradigm that enables a programmer to

locate and identify errors by comparing key data structures in a suspect program against that

in a reference program. By observing the divergence of the data as the programs are

executing, the programmer is able to make informed decisions as to the likely cause of the

errors. Relative debugging is effective in these situations because the user can concentrate on

where two related codes are producing different results, rather than being concerned with the

actual values. The efficiency of the technique has been well established, and various case

studies reporting the results of using relative debugging have been published.

The development of the latest version of the relative debugger, known as GUARD-2000, has

required a number of significant advances in the field of debugger research. This includes a

special internal data format that is independent of any particular architecture, the use of

dataflow technology to control the comparison of data from executing programs and the

ability to make comparisons in situations where significant transformations to data structures

have occurred. This technology is built on top of a client/server architecture that supports a

wide range of parallel and sequential architectures, and includes the ability to choose alternate

network protocols for communication between the client and servers, and to deploy different

low-level debug engines on the servers.



'1?

TABLE OF CONTENTS

Chapter 1: Introduction 1 -1

Chapter 2: Existing Debugging Technology 2-1

What is Debugging? 2-1

Sequential Debuggers 2-2

Static Analysis 2-2

Event-Based 2-3

Interactive 2-3

Post-Mortem 2-4

The Parallel Problem 2-4

Parallel/Distributed Debugging 2-5

Extension of Traditional Techniques 2-5

Event-Based Debugging 2-5

Static Analysis Techniques 2-6

Other Developments 2-6

Debugger Implementation 2-7

Software Development v. Software Evolution 2-8

Relative Debugging 2-9

Chapter 3: Re/atiiv Debugging 3-1

Relative Debugging 3-2

-Imperative Comparison 3-3

Declarative Comparison 3-4

Comparison Tolerance 3-5

Reporting Differences 3-5

Parallel Relative Debugging 3-7

Software Engineering and Relative Debuggmg 3-9

Data Parallel Decomposition 3-11

Variable Promotion 3-12

Loop Fusion 3-12

Shape Transformation 3-13

Index Permutation 3-14

vu



Array Slicing 3-15

Debugger Design Jssuss 3-15

Process Control 3-16

Heterogeneity 3-17

Control Logic 3-18

Conclusion 3-19

Chapter 4: The Architecture of a Parallel Relative Debugger, 4-1

Dataflow Compiler & Engine 4-2

Architecture Independent Data Format 4-5

Data and Code TransforrnatLn Support 4-7

Data Decomposition 4-8

Shape Transformation 4-9

Index Permutation 4-11

Array Slicing 4-12

Temporal Displacement 4-13

Client/Server Architecture 4-15

Conclusion 4-18

ChapterS: Data Transformation Algebra 5-1

Definition of Notation 5-2

Array Representation 5-2

Process Representation 5-3

Data Decomposition 5-4

Array Shape Transformation 5-6

Index Permutation 5-10

Array Slicing 5-11

Conclusion 5-12

Chapter 6: Implementation Details 6-1

Debug Client 6-2

User Interface 6-3

Dataflow Compiler 6-4

Internal Graph Representation 6-11

Dataflow Engine 6-12

Debug Server 6-14

vm



Server Startup 6-14

Client/Server Operation 6-18

Network Protocol Selection 6-19

Debug Backend Selection 6-20

Client/Server Debug API 6-20

Client Debug Interface 6-20

Server Debug Interface 6-23

Architecture Independent Format 6-24

Data and Code Transformations 6-27

Data Parallel Decomposition and Index Permutation 6-27

Shape Transformation 6-28

Variable Promotion and Loop Fusion 6-29

Visualisation of Differences 6-29

Data Parallel Language Support 6-30

Conclusion 6-33

Chapter 7: Case Studies in Relative Debugging 7-1

Case Study 1: Data Parallel Code 7-1

Code Description 7-3

Serial/Parallel ZPL Comparison 7-5

ZPL and C Comparison 7-6

Error 1: Extra Term In An Expression 7-6

Error 2: Incorrectly Specified Constant 7-8

Error 3: Invalid Boundary Conditions 7-9

Error 4: Wrong Sign 7-10

Serial ZPL and C Comparison 7-10

Case Study 2: Distributed Memory Code 7-11

Code Description 7-11

Error 1: Incorrect Index Value 7-15

Error 2: Wrong Array Element 7-17

Error 3: Wrong Sign 7-18

Case Study 3: Shared Memory 7-20

Error 1: Loop Bound Error 7-22

Conclusion 7-24

IX



Chapter 8: Futurv Directions <& Conclusion 8-1

Integrated Development Environment (IDE) 8-1

Maps/Transformations 8-2

Assertions 8-2

Visualisation 8-3

Complex Data Types 8-4

Conclusion 8-4

Appendix A: GUARD Users Manual A-1

Appendix B: Debug Client API B-1

Appendix C: Debug Client API Data Types C-1

Appendix D: Debug Server API D-1

AppendixE: ArchitectureIndependent'FormatAPI E-1

Appendix F: Survey of Debuggers F-1

Appendix G: CD-ROM Contents G-1

References H-1

Glossary 7-7



LIST OF FIGURES

Figure 3.1: Relative Debugging 3-2

Figure 3.2: Example Pixel Maps 3-6

Figure 3.3: Visualisation of Differences in 3-D Data Set 3-7

Figure 3.4: Parallel Relative Debugging 3-8

Figure 3.5: Duplication of Data Distribution 3-11

Figure 3.6: Variable Promotion Example 3-12

Figure 3.7: Example of Loop Fusion ;-13

Figure 3.8: Shape Transformation 3-14

Figure 3.9: Index Permutation 3-14

Figure 3.10: Array Slicing 3-15

Figure 4.1: Dataflow Graph Executing an Assertion 4-4

Figure 4.2: Dataflow Graph From Multiple Assertions 4-5

Figure 4.3: Example of AIF Usage 4-7

Figure 4.4: Block-Cyclic Decomposition 4-9

Figure 4.5: Transformation of a Rank 2 Array into Rank 3 Array 4-10

Figure 4.6: Shape Transformation with Swap 4-11

Figure 4.7: Index Permutation Example 4-12

Figure 4.8 Array Slice Example 4-13

Figure 4.9: Capturing Intermediate Data Values 4-13

Figure 4.10: GUARD Client/Server Architecture 4-15

Figure 4.11: GUARD Layered Interface Model 4-16

Figure 5.1: Notation for Representing Arrays 5-2

Figure 5.2: Abstractly Identical Arrays 5-3

Figure 5.3: Process Topologies as Arrays 5-4

Figure 5.4: Block Decomposition Example 5-5

Figure 5.5: Block-Cyclic Decomposition Example 5-6

Figure 5.6: Standard Array Flatten Function 5-8

Figure 5.7: Standard Array Block Function 5-9

Figure 5.8: Rank 2 to Rank 3 Transformation 5-10

Figure 5.9 Index Permutation Operation 5-11

Figure 5.10 Array Slice Operation 5-11

Figure 6.1: Main Components of the GUARD Client 6-2

XI



Figure 6.2: Standard Graph Templates 6-6

Figure 6.3: Assertions With Merged Sub-graph 6-7

Figure 6.4: General EXTRACT Template 6-8

Figure 6.5: General Assertion Graph 6-9

Figure 6.6: Expression Compilation 6-9

Figure 6.7: Sub-array and Shape Transformation 6-10

Figure 6.8: Data Mapping Graph 6-10

Figure 6.9: Internal Graph Format 6-11

Figure 6.10: COMPARE Sub-Graph Actions 6-13

Figure 6.11: Main Components of the GUARD Debug Server 6-14

Figure 6.12: Explicit Startup Method 6-16

Figure 6.13: Wait-Attach Startup Method 6-16

Figure 6.14: Parallel System Startup Methods 6-17

Figure 6.15: Example Client/Server Operation 6-18

Figure 6.16: Debug Server API and Backend Switch Table 6-24

Figure 6.17: AIF Format Descriptor Tags 6-25

Figure 6.18: AIF Representation of a C Structure 6-26

Figure 6.19: GUARD Display Types 6-30

Figure 6.20: Utility Programs 6-30

Figure 7.1: Scalar Error Value 7-1

Figure 7.2: Code Comparison Steps for the "simple" Code 7-2

Figure 7.3: ZPL Code Structure for the "simple" Code 7-4

Figure 7.4: C Code Structure for the "simple" Code 7-5

Figure 7.5: energy.c - C Scalar Error Calculation 7-6

Figure 7.6: Differences between $c: :hea t and $ z p l : :Heat 7-7

Figure 7.7: h e a t . c - C Heat Phase Code 7-7

Figure 7.8: Differences between $c: : i n t_en and $ z p l : : In t_en 7-8

Figure 7.9: i n i t . c - C Position and Velocity Initialisation Code 7-9

Figure 7.10 Output from the "shallow" Code 7-11

Figure 7.11: Sequential C version of "shallow" 7-12

Figure 7.12: Data Decomposition and Boundary Synchronisation 7-13

Figure 7.13: Distributed Memory Master Code 7-14

Figure 7.14: Distributed Memory Slave Code 7-15

Figure 7.15: Differences in cv 7-16

Xll



Figure 7.16: Differences in cv Running on Four Processors 7-17

Figure 7.17: Discovered Differences in Cu^cuvzh () Code 7-17

Figure 7.18: Periodic Error in cv 7-17

Figure 7.19: Second Error in calcuvzh () Code 7-18

Figure 7.20: Time Sequence of Errors in cu 7-18

Figure 7.21: Errors in u 7-19

Figure 7.22: Errors Reported in dudt 7-19

Figure 7.23: Final Error in Distributed Memory Code 7-20

Figure 7.24: Output From Sequential and Parallel Codes After 50 Iterations 7-20

Figure 7.25: Shared Memory i>\ive Code 7-21

Figure 7.26: Errors in cu, cv, h and z Respectively. 7-22

Figure 7.27: Errors in u, v and p Respectively 7-23

Figure 7.28: Errors in dudt, dvdt and dpdt Respectively 7-23

Figure 7.29: Loop Bound Error in Shared Memory Code 7-24

Xlll



Chapter 1

INTRODUCTION

On July 22, 1962 an Atlas-Agena booster was launched carrying the first U.S. Venus probe

Mariner I. At a height of approximately 90 miles, ground controllers realised in horror that

the rocket flight had become unstable and was heading off-course. The multi-million doilar

rocket had to be blown up rather than risk a crash into a populated area. Extensive analysis

of die incident eventually uncovered the problem. The flight plan software in a ground-

based computer system monitoring the launch was missing a hyphen in a critical guidance

equation.

Twenty-eight years later, on January 15, 1990 new software installed in 114 of AT&T's

electronic telephone switching systems failed, allowing the switches to repeatedly propagate

status messages and causing the switches to continually reset. Frustrated engineers were only

able to correct the problem by drastically reducing the total message load on the network.

The result was a 9-hour nationwide blackout, reportedly blocking 5 million calls and affecting

10 million customers. The problem was eventually traced to a misplaced break statement in

a C program [54].

These two incidents, nearly three decades apart, represent only a tiny fraction of such failures;

yet serve to illustrate the vulnerability of critical systems to software errors. The reason that

these critical systems are so vulnerable is because such systems have critical requirements,

and failure to meet these requirements can result in catastrophe. In addition, as the

complexity of these systems increases, so does the complexity of the software needed to

control them, and consequently there is a greater risk of software errors occurring. The trend

towards global reliance on critical and complex technologies has been apparent for many

years. Risk of serious economic or environmental damage due to such failures must now be

considered an important factor in the life cycle of these pervasive technologies.

Myers [52] views software as a collection of information. From this perspective, software

development can be regarded as a problem-solving process that involves the translation of a

complex problem into its solution. This process involves translating the initial problem,

through a number of intermediate steps that provide increasingly detailed representations,

into in a large number of instructions that direct a computer in how to solve the problem.

1-1



Errors are introduced into the software whenever an intermediate translation does not

accurately represent the problem, and so there are ample opportunities for this to occur in

the development process. Once errors have been introduced, it is no longer possible to

guarantee that the requirements of the system can be met. The software is unreliable.

As a consequence, considerable effort has been devoted to the task of increasing the

reliability of software. Myers considers the software life cycle as a two-phase process: design

and testing. The design phase comprises the usual processes of requirements analysis,

specification, design and implementation. The main techniques for improving reliability

through this design phase fall into the following categories:

• Fault awidance. This is the process of reducing or eliminating the occurrence of errors

in software by minimising complexity, improving communication, and identifying

and removing translation errors.

• Fault detectio?i. Designing software that provides a fault detection capability ensures

that errors can be detected and reported as soon as they occur, so that the effect of

the errors can be minimised.

• Fault correction. One step further is designing software with the capacity to correct the

errors once they are detected, or to repair the damage that the errors may have

caused.

» Fault tolerance. This technique refers to software that has been designed with the ability

to continue to function even if errors occur.

Another major influence on the reliability of software is the testing phase, which involves the

process of executing a program with the intention of finding errors. The testing process

usually consists of designing a set of test cases according to some established objectives,

executing the test cases using the software being examined and analysing the results to

identify any errors. Errors that are discovered during the testing phase must then be located

and corrected using a process known as debugging.

It is generally accepted, but not discussed in detail by Myers, that there is a third phase in

addition to design and testing in the software life cycle: maintenance [38]. Even the most

carefully designed and implemented software will contain errors, and as the faults caused by

1-2



these errors are observed, corrections to die code must be made. This is usually

accomplished through incremental changes that are implemented via new releases of the

software. In addition, new releases may also be made to cater for changes or extensions to

user requirements, incomplete specifications, errors in the design or implementation, changes

to hardware, or a combination of these. Changes such as these, made through an ongoing

maintenance process, result in continuous program growth. Lehman first identified that

program growth was related to the improvement in functional capability in 1969 [39]. It is

now widely accepted that continuous growth through the initial development and ongoing

maintenance of software constitutes program ewliition, and is intrinsic to die nature of the

software development process. According to Lehman, as much as 70% of me lifetime cost

of software is expended after die software is first installed.

Program debugging is a key component of the software life cycle and is utilised in each phase

of die process:

• Design — during die implementation stage of die design process, code must be

validated, and as faults are identified diey must be located and corrected.

• Testing — the testing process is designed to uncover errors diat have been introduced

during die design phase, but still requires a significant effort to analyse, locate and

correct die errors in die code.

• Maintenance — as die program evolves either dirough enhancements to die design, as a

response to die incidence of errors, or because of other environmental factors,

debugging will need to be employed to ensure diat the resulting software remains

fault-free.

Traditional debugging techniques have been designed to aid software development by

providing die tools necessary to identify, locate and correct errors in a program. To

successfully debug a program, it is first necessary to gamer enough information to identify an

error. There are a number of metiiods available to do diis, such as examining memory

dumps, displaying die contents of memory or registers, tracing program state, or viewing

event history data. This information gatiiering is used to establish die nature of die error,

what data structures are affected, what modules or subsystems are involved, and to provide

assistance in locating die source of die error. Using this information, die next step is to

determine die exact cause and location of the error. In an interactive debugger, tiiis process

1-3



might involve setting breakpoints at various locations throughout the program and observing

program state at these points. In some cases it may be possible to isolate an error by altering

data on the fly. Static analysis can also be used as an aid to locating and classifying errors by

performing data and control flow analysis of the static program code. Once the source of

the error has been identified, it is then necessary to correct the problem. This is done by

proposing a solution and examining the impact that this will have on the program. The

necessary modifications are then made, and the appropriate tests undertaken to ensure that

error is actually fixed, and that no new errors have been introduced.

While a large amount of research has been undertaken into developing debugging techniques

to assist the software development process, little, if any, work has ba:n directed specifically at

the software evolution process. In particular, the ability to utilise information from previous

program releases to aid in the debugging process seems to have been largely overlooked. In

1994, Abramson and Sosic invented a technique known as relative debugging in response to a

large effort to translate existing sequential programs to the new parallel architectures that

were becoming available. Subsequently, it was realised that relative debugging applies equally

well to more general program evolution. The relative debugging model they developed relies

on the premise that, in many situations where software evolution takes place, key data

structures are often invariant across releases. Because of this, it is possible to utilise the

information content contained in prior, but correctly functioning releases to support the

process of debugging a new version of the software.

Relative debugging is a powerful paradigm that enables a programmer to locate and identify

errors by comparing a suspect program against a reference code. By observing the

divergence of key data structures as the programs are executing, the programmer is able to

make informed decisions as to the likely cause. This becomes a particularly valuable tool

when a program is rewritten in order to operate on another computer platform (a technique

known as porting). Relative debugging is effective in these situations because the user can

concentrate on where two related codes are producing different results, rather than being

concerned with the actual values in the data structures. The efficiency of the technique is

now well established, and various case studies reporting the results of using relative

debugging have been published [5,2,3,69].

The concept of relative debugging is both language and machine independent. A

programmer can compare data structures without concern for the implementation, and thus

1-4



attention can be focussed on the cause of the errors rather than implementation details. As

a result, the effective implementation of a relative debugger requires architecture features that

differ from traditional debuggers. A significant requirement is the need to employ a

client/server model because the system must support the concurrent execution and control

of multiple processes, potentially on different machines. In addition to this, the debugger

client must operate in a multi-threaded manner in order to receive and process data from a

number of independently executing programs. Another significant requirement is due to the

likelihood that the programs might be running on completely different architectures. This

means that the debugger must provide some mechanism to isolate architectural

characteristics like word size, address type and byte ordering to enable the comparisons to be

made. Finally, the debugger must also be able to deal with situations where data

decomposition or transformation techniques have been applied in the process of porting

code from one architecture to another. During die porting process it might be necessary to

change the underlying data structures to better suite the target language or machine

architecture. For example, one version of a program suited to a vector processor might

require long single dimensioned arrays, whereas a cache based multiprocessor version might

require two dimensioned arrays for efficient execution. This means that the relative debugger

must be able to reverse these transformations seamlessly in order that data structures can be

compared

While Abramson and Sosic's original implementation of the relative debugging technique

addressed a number of these issues, it also had some severe limitations. The client/server

debug engine was based on Sosic's earlier "dynascope" work [63]. While this was designed to

provide rudimentary architecture independence, like most debuggers it was also highly

machine specific and so supported only a very small number of architectures. More

importantly, the comparison algorithm employed was simplistic and only single threaded, so

was seriously limited in its ability to deal with the asynchronous matching behaviour apparent

when debugging parallel programs. In fact, while the original implementation was designed

to aid in debugging parallel codes, the best it could deal with was a parallel program running

on a single process. The other major problem with the implementation was that it provided

no mechanism to deal with data structures that had been decomposed or transformed in the

porting process, something that is normally very common. This limited its applicability to

situations where only very simple transformations had been applied, such as swapping array

indices.

1-5



The latest version of the GUARD debugger, known as GUARD-2000 [69a], addresses each

of the limitations of the original implementation and meets all the requirements for a

successful relative debugger. The development of GUARD-2000 has required a number of

significant advances in the field of debugger research, and which form the basis of this thesis.

These advances consist of a number of key architectural features that have been added to the

debugger, including the following:

• A special data format that is independent of any particular architecture has been

developed. An architecture independent format (AIF) library provides a set of

routines that can be used to store and manipulate data in a completely machine

independent fashion.

• The debugger utilises a client/server architecture that includes a switchable protocol

interface and pluggable low-level debug engines. By supporting a range of protocols,

the debugger is able to take advantage of protocol features that suit a particular

environment. Low-level debug support is also the main factor that limits a

debugger's portability. Allowing different debug engines to be deployed ensures that

the debugger can support a wide variety of parallel and sequential architectures.

• A dataflow engine has been introduced to automate the control and comparison of

data from the programs being debugged. Dataflow is particularly suited to this

environment for a number of reasons. The execution of a dataflow engine occurs in

an inherently multi-threaded manner, which addresses the requirement outlined

above. In addition, the implicit matching logic of the dataflow model provides an

ideal framework to support the asynchronous extraction of data from concurrently

executing programs.

• The ability to transform data structures between different versions of a program is

another novel innovation. A transformation algebra has been developed in order to

address situations where a data decomposition or other transformations have been

applied. Once the actual transformation has been described using this algebra, the

debugger is then able to perform a seamless comparison of data.

1-6



• The ability to manage data decomposition and transformations enables the debugger

to provide support for distributed and shared memory parallel architectures, as well

as a wide range of data parallel languages.

The realisation of the relative debugging technology has been a complex process involving a

lengthy development cycle. Yet the current implementation of the debugger combines all

these, requirements together into an impressive package using a layered and modular

architecture. Novel features have been employed, such as the ability to choose alternate

network protocols for communication between the client and servers, and to deploy different

low-level debug engines on the servers. GUARD-2000 is now placed as the first fully

implemented prototype of the relative debugging paradigm.

The remainder of this document is devoted to presenting the key contributions the author

has made to the technique of relative debugging. A brief overview and guide to reading this

document follows.

Chapter 2 provides a brief history of debugging and introduces the reader to some of the

main debugging techniques that have been developed over this time. Further, it shows where

relative debugging and in particular the GUARD debugger fits into this evolution. Finally,

the chapter focuses on the architecture of conventional debuggers and discusses why these

are not suitable for implementing relative debugging.

Chapter 3 provides a detailed introduction and analysis of the relative debugging technique.

The chapter then examines the implications and challenges that have had to be overcome to

extended the paradigm to parallel computers.

Chapter 4 describes the key architecture features of a parallel relative debugger, and describes

how an innovative design has been used to fully realise the relative debugging technology.

Chapter 5 presents a formalisation of the techniques that are used to describe the mapping

and transformation operations that are employed by developers when codes are ported to

parallel machines. This unique and powerful formalism underpins the data transformation

features that are provided by the debugger.

1-7



Chapter 6 provides details of the novel techniques used to implement the key architectural

features of the debugger, and identifies the challenges that have had to be overcome to

during this process.

Chapter 7 describes three case studies of programs debugged using GUARD. These case

studies illustrate the power of relative debugging, and how our implementation can be

applied to all three major parallel software paradigms: data parallel, shared memory and

distributed memory. In addition these case studies have allowed us to test the debugger on a

variety of hardware and operating system platforms, thus illustrating the portability of the

debugger itself.

Chapter 8 provides an analysis of some future directions for improvements to the debugger

and for research into relative debugging technology.

1-8



Chapter 2

EXISTING DEBUGGING TECHONOLOGY

"If you don't see the bug where you're looking, then you're looking in the

wrong place." — The Second Law of Debugging [44].

This chapter serves a number of purposes. First, it provides a brief overview of debugger

history in the last 30 years, and introduces some of the technologies that have predominantly

influenced the development of debuggers during this time. The second aim is to provide the

reader with a clear picture of where the GUARD debugger, and in particular the technique of

relative debugging, fits into the evolutionary history of debuggers and debugging technology.

Finally, the chapter focuses on the architecture of conventional debuggers and discusses why

these are not suitable for implementing relative debugging. In particular, it highlights how

traditional debuggers have been designed to facilitate the program development process, but

do not necessarily address the requirements of program evolution.

W H A T IS D E B U G G I N G ?

The definition of "debug" in the IEEE/ANSI Standard Glossary of Software Engineering

Terminology [32] is given as "to detect, locate, and correct faults in a computer program".

Myers [52] defines debugging as "the activity of diagnosing the precise nature of a known

error and then correcting the error." The important distinction is that debugging is different

from testing. Although it may be used as part of the testing process, debugging is also used at

other stages in the software development life cycle. The particular debugging technique

adopted will depend largely on the number of errors and the complexity of the program.

One systematic approach commonly used is to address each error in turn using the following

steps.

1. Gather information. This step is used to establish the nature of the error, the behaviour that

is being observed, data structures likely to be involved, and a broad indication of the

error location, such as the relevant module or subsystem. Information gathering is also

sometimes referred to as monitoring.

2. Analyse and locate. Once sufficient information about the error has been obtained, it must

be analysed to determine the cause of the error. This is generally a deductive process that

2-1



relies on a range of investigative techniques such as static program analysis, direct code

inspection, interactive examination of program state, or a combination of these.

3. Correct the eiwr. After the cause of the error has been identified, a solution must be

proposed. The impact of the solution must be evaluated and once the changes have

been made, the program tested to ensure that the error has actually been fixed and that

no new errors have been introduced.

Most debugger research is devoted to the information gathering, analysis and location steps.

Some literature distinguishes information gathering from debugging, but like McDowell and

Helmbold [49], the author considers it an integral part of che debugging process.

SEQUENTIAL DEBUGGERS

Since early computer systems were almost exclusively sequential architectures, it is not

surprising that programming languages and development environments also reflected the

sequential nature of these machines. Debuggers were no different, and the early debugging

tools were predominantly designed with a single thread of control in mind.

As early as 1975, a large number of debugging systems had been developed for a wide variety

of architectures, operating systems and languages. Starting with tools designed to analyse

memory dumps, debugging technology developed at a rapid pace, so-that even by this time it

was well recognised that debugging methods could be categorised into a few basic types:

static analysis, event-based, interactive and post-mortem [47]. The debuggers themselves

often implemented a combination of these techniques. Some researchers also distinguished

debuggers as either static or dynamic [51], where static debuggers operated primarily on

source code and dynamic debuggers operated on executing programs. A brief overview of

these techniques follows.

STATIC ANALYSIS

This type of debugging method generally operates by performing a flow analysis of the static

program code in much the same way as optimising compilers [68]. Such analysis usually

consists of:

• control flow analysis — analysing the flow of control through the program in order to

identify unexpected transfers of control, as well as presenting information about the

structure and calling sequence of the program;

2-2



dataflow analysis — examining the use of variables within a program to detect errors

such as references to uninitialised variables and variables that may have indeterminate

values; and

inter-pwcednral flow analysis - analysing control and data flow across procedure

boundaries in order to examine the procedural structure, and identify data usage both

within and actoss procedure calls.

Another debugging technique is the event-action model. Here, interactions between the

debugger and the program being debugged ire viewed in terms of events. This type of

debugger works by allowing a series of conditions to be defined. The occurrence of an event

that satisfies the condition will cause an associated action to be triggered [35]. Typically,

actions might alter the state of the program, display the contents of a variable or perform

some other user-defined operation.

Another type of event-based debugger is one that utilises an event history to record

information about the execution of a program [11]. This history can then be compared with

the expected patterns of behaviour to isolate errors in the program. Event histories can also

be used to replay the execution of the program to examine the state of a suspicious operation

in more detail.

iNTERACrn/E

By far the most common type of dynamic debuggers are interactive debuggers, although

these are sometimes referred to as "breakpoint" debuggers [49]. Interactive debuggers are

characterised by some form of user interface (generally a command line or a graphical user

interface) that allows the user to issue commands that operate on an executing program.

This provides a mechanism for controlling the execution of the program through the

insertion of breakpoints, and then examining the state of the program once a breakpoint has

been reached.

Interactive debuggers are generally employed using an iterative process, referred to as cyclical

debugging [49]. This is a process familiar to many software developers, where a program is

repeatedly stopped during its execution in order to examine the state. The programmer

might begin by setting a breakpoint at a location that is suspicious or related to the error in

some way. The program is then executed and will eventually reach the breakpoint. The state

2-3



of the program can then be examined and, based on the information obtained, the execution

can be continued to another location. If execution has proceeded too far, then the program

must be restarted in order to stop at some earlier point.

POST-MORTEM

The remaining debugging technique is that of post-mortem debugging. Here, the operation

of an executing program is captured through the use of program traces or log files. The

debugger is then able to replay the execution sequence of the program by consulting the trace

information. This allows the user to repeatedly examine the program state in order to

determine the cause of an error. More sophisticated debuggers may also provide animation

of the program behaviour [36].

T H E PARALLEL PROBLEM

Debugging is a difficult task because it requires understanding the software being debugged.

Although attempts have been made to automate the debugging process, it still remains largely

a job for humans. Advances in software engineering, such as information hiding, abstract

data types and modularisation have simplified the identification and location of errors in

sequential programs, however significant challenges still remain when debugging parallel

programs.

By definition, parallel programs consist of many simultaneously executing processes. While

some of these processes may synchronise for long enough to exchange messages through an

inter-process communication mechanism, they must operate asynchronously in order to take

advantage of the parallel architecture. In general, this asynchronous operation results in

nondeterministic behaviour, and is the main reason that parallel programs are more difficult

to develop and debug.

Unfortunately for debugger designers, the traditional debugging process does not always

translate well to the parallel environment. The cyclical debugging technique may not prove

effective because the error may be dependent on a particular order of process execution or a

race condition that is affected by external factors. Further, the act of debugging the process

itself may effect its timing and hence whether the error is apparent or not, an occurrence

referred to as theprvbe effect [25]. In an attempt to overcome these problems, techniques such

as event-based debugging or static analysis are often employed, with varying degrees of

success.

2-4



As well as dealing with the nondctcrmtnisim of the programs, a parallel debugger must also

be able to manage the complex nature of multiple simultaneous executing processes and the

resulting large volumes of information that can be generated. In addition, most parallel

programs decompose their data, which may in turn be physically distributed across the

different processes. This also raises problems for the developer, because the specific data

decomposition used may be complex, so it may be difficult to identify where data is located

and the particular point that errors are being introduced.

PARALLEL/DISTRIBUTED DEBUGGING

In the early 1980's, concurrent programming was beginning to be widely accepted and

parallel computers were becoming commercially available. The first debuggers available for

parallel systems were interactive serial debuggers that had been modified to handle multiple

processes, such as "dbxtool" [8]. Some debuggers were also available for specialised

concurrent languages such as the "defence" debugger for concurrent Euclid [70] and the

"YODA" debugger for Ada [37]. By the late 1980's and early 1990's a wide range of

debuggers for parallel and distributed architectures had been developed. McDowell and

Helmbold [49] categorised these debuggers as follows.

EXTENSION OF TRADITIONAL TECHNIQUES

This refers to the technique of using a collection of sequential interactive debuggers, one per

process to debug a parallel program. This technique raises a number of difficulties, including

how the output from multiple debuggers can be displayed in a coherent fashion, and how the

multiple debuggers are coordinated and controlled. While these debuggers tend to be easy to

build, they are most restricted by the probe effect. Many debuggers in this category are (or

were) commercially available, such as the "dbxtool" debugger mentioned above, as well as

debuggers such as "CXdb" [20], "TotalView" [22], "HP/DDE" [27] , "pdbx" [30] and many

others.

EI^ENT-BASED DEBUGGING

This debugging technique is an extension of sequential event-based debugging. These

debuggers generally maintain a history of events (although the definition of event varies) and

allow the user to browse the history, replay the execution or simulate the environment in

order to debug the execution of individual processes. In the parallel environment, events

may also include messages or inter-process communication. By providing a deterministic

replay of events, these debuggers can also minimise the impact of the debugger on the

2-5



execution of the parallel program. Typical debuggers in this category are "HDL" [11],

"Clouds" [40] and "Ariadne" [19].

STATIC ANALYSIS TECHNIQUES

For parallel programs, static analysis can be used to detect various types of errors, including

synchronisation errors such as deadlock and other timing problems, and data-usage errors

such as the simultaneous access of shared variables. McDowell and Helmbold suggest that

static analysis debuggers cover two distinct areas: (1) applying dataflow analysis techniques to

parallel programs, and (2) determining if two statements in a parallel program can be

executed in parallel [49]. This latter area applies to debuggers that perform a data

dependency analysis on the target program to determine the location of schedule-

dependencies [15]. Static analysis debuggers do not suffer from the probe effect at all, since

the program is never executed. Recent debuggers that employ these techniques are

"DETOP" [71] and "PTOOL" [15].

OTHER

Two major advances in debugging technology have been in the use of graphical display

systems, and in the use of integrated development environments (IDEs). The introduction

of GUIs in the 1980's was quickly exploited by debugger designers, since a multi-window

environment provided an ideal mechanism for enhancing the display of key information such

as breakpoint location and variable data. Traditional parallel debuggers could also take

advantage of the GUI for the control and coordination of multiple processes. The GUI also

allowed novel visualisation techniques to be introduced, such as viewing complex data

structures, time-process diagrams and the animation of program execution and data

manipulation. Although integrated development environments have been available for

considerable time, die combination of IDE and GUI has seen widespread proliferation of

these systems.

In 1997, the Parallel Tools Consortium sponsored the High Performance Debugging Forum.

The aim of the Forum was to define a set of standards relevant to debugging tools for high-

performance computing (HPQ systems. In November 1998, Version 1 of the HPD

Standard was announced [28]. Until this standard was established, there had been no

published standards or definitions of debugger user interfaces or functionality. The

consequence of this has been that debugger implementations differ significantly. With the

standard now in place, users can be confident that debuggers will provide at least a base level

of consistency and functionality across a wide range of HPC platforms.

2-6



DEBUGGER IMPLEMENTATION

In the last decade, the number and types of debuggers has increased substantially. In one

non-exhaustive literature survey conducted by the author, it was found that well over 100

parallel and sequential debuggers have been developed between 1990 and 1999 (See

Appendix F). Many of these debuggers combine a number of the techniques described

above, and significant efforts have been made to extend these techniques to better support

parallel environments. For example, the "Panorama" debugging environment [48] combines

traditional debugging features with a post-mortem debugger into a portable and extensible

package. A few debuggers have developed substantially new technologies, such as the

"RAID" debugger [13], which employs probabilistic reasoning, heuristic debugging

knowledge and structural analysis to automate the debugging process.

Early debuggers only required the ability to examine memory and processor state information

that had been saved to a dump file. The level of sophistication has increased significantly in

more recent debuggers. Many debug tools, particularly interactive debuggers, provide

features such as the ability to set breakpoints, to single step programs, to read and write the

memory locations and registers, and to trap program exceptions and memory accesses. At a

minimum these features need to be supported by the host operating system since they

generally operate outside the memory protection schemes of most systems, or require a

transfer of control to the debugger such as when a breakpoint is encountered. On a number

of systems some or all of these features are also supported at the hardware level.

Most debuggers today exist as stand-alone applications that operate in their own address

space. In a multi-user protected-memory operating environment, a debugger must be able to

both gain access to and control the program being debugged. For interactive debuggers, this

is usually achieved by attaching to the program in some operating system specific manner.

Event-based debuggers usually require a special library to be linked with the target program

or statements inserted into the source code, although some debuggers are able to monitor

hardware busses passively. Static analysis debuggers, of course, do not require any special

support at all since the program is never actually executed.

Typically, the operating system will provide the debugger designer with the necessary

debugging tools. In the case of the UNIX operating system for example, the p t r a c e ()

system call is available for just this purpose. In order to use p t r a c e () the process to be

debugged must first be "stopped" by sending it a signal. The debugger is then able to take

2-7



control of, and perform debug operations on the process by issuing p t r a c e () calls with the

appropriate arguments.

Because of their special requirements, debuggers tend to be particularly dependent on

specific operating systems and architectures. Some attempts have been made to develop

more portable debuggers, such as "ldb" [55], "gdb" 166] and "P2d2" [16], the first of which

appeared in the early 1990's. The approach taken by all these implementations is to isolate

the machine dependent code from the portable code. In the case of "ldb", this is achieved

by defining machine independent classes that describe important abstractions in "ldb".

Machine dependencies are then defined as subtypes of these classes. "Gdb" takes a simpler

approach by isolating the machine dependencies to separate source files that are managed

using pre-processor directives when the debugger is built. The "p2d2" debugger [16] has

been designed with portability as a key objective, and accomplishes this using a client/server

architecture. The "p2d2" client, which provides a uniform debugger user interface, contains

no machine dependent code. All implementation dependencies are isolated to the servers,

which in turn employ "gdb" to provide the low-level debugger functionality. The portability

of "gdb" ensures that the debug servers are available for a wide range of architectures.

SonwARE DEVELOPMENT V. SOFTWARE EVOLUTION

Current debuggers provide good support for the software development process. Static

debuggers provide the developer with a preventative mechanism for locating and

determining problems before they are encountered. Event-based debuggers, particularly

those that are equipped with sophisticated visualisation features, aid the developer in

analysing the behaviour of programs through the use of time-process diagrams or the

animation of program activity. Interactive debuggers incorporate features to identify and

determine the location of errors, to monitor the operation of a program as it is executing, and

to examine the state of a program that has stopped or failed. Some debuggers combine two

or more of these capabilities.

Unfortunately, these debuggers are not as effective in supporting the software evolution

process. In most cases, where incremental changes are made to existing software or where a

program is ported from one architecture to another, a working reference program is

available. Ideally the developer should be able to take advantage of such a reference program

in order to assist in locating errors in the new code. A small number of existing debuggers

do go some way to meeting these needs. For example, the III programming

2-8



environment [46] provides an integrated development and debugging environment that

allows the developer to make incremental changes to executing programs. However none of

these systems allow the developer to make direct comparisons with a reference code.

RELATIVE DEBUGGING

The technique of relative debugging was first introduced in 1994 as a result of a large effort

to port existing sequential and vector codes to the new parallel computers that were

becoming widely available by .his time. Unfortunately, the porting process tends to be a

difficult and specialised one, as is reflected in the lack of high quality automated parallelising

systems available even today. However, it is often possible to use information from these

known, working codes in order to simplify the porting and subsequent debugging process.

Relative debugging is the first technology that has been specifically designed to aid software

evolution by allowing the developer to make such comparisons.

The design of a relative debugger has required the development of a number of technologies

that are not available in traditional paiallel (or sequential) debuggers. These technologies are

necessary for the following reasons:

• Typically a sequential program will be executed on a different architecture to a

parallel version of the same code, which means that even simple data comparisons

can be problematic if the architectures have different byte orderings, word sizes or

floating point representations.

• The sequential and parallel programs will in most situations, be located on separate

machines. This implies that the debugger must be able to control two or more

programs, each of which may possibly be running on a remote computer system.

• In order to be useful to the developer, the comparison process must be reasonably

automated. Since the programs are operating asynchronously, this requires a

sophisticated control mechanism to manage the extraction of data at arbitrary points

in the execution of each program.

• A data structure may undergo significant changes in the sequential-to-parallel porting

process through data decomposition or other transformations. In order to compare

such a data structure with the original version, some mechanism to replicate and/or

undo these changes must be available to the debugger.

2-9



•"•*?

While some debuggers may address a few of these issues (such as "p2d2" which operates in a

client/server manner) we know of no debugger that deals with them all in an integrated

fashion that would support the process of relative debugging.

Abramson and Sosic developed an early proof-of-concept version of GUARD in 1995 [4].

This version provided a simple interactive framework that was limited to debugging two

separate images on a local machine. In particular, the comparison-matching logic was a

simplistic design that prevented the relative debugging technique from being used in a truly

parallel environment. Since then, the original program has been completely redesigned to

incorporate a number of new technologies developed by the author. Client/server

technology has been employed to expand traditional interactive debugging techniques to

parallel architectures. The implementation now utilises novel and unique methods to address

the heterogeneity issue, provides a dataflow control mechanism to manage the complex

control requirements, and provides techniques for the decomposition and transformation of

data.

In terms of the overall debugger genealogy, GUARD evidently falls into the category of the

parallel interactive debugger. However it has some significant improvements over many of

the "standard" debuggers of this type. Unlike many of these debuggers, GUARD is now

capable of controlling multiple independent programs rather than just a single parallel program.

In addition, through the use of its internal dataflow engine it is highly programmable and can

perform automatic data matching. Finally, it has the ability to perform powerful

transformations on user data while a program is executing, a capability that is not available in

any other debugger.

Future versions of GUARD could clearly take advantage of other debugging techniques. In

particular, static analysis could be used effectively to automate the creation of assertions

through data dependency analysis. Also, the ability to maintain an event history could easily

be used to streamline the process of data comparison. The use of a GUI could provide a

great deal of scope for improving user interaction and data visualisation. These issues will be

discussed in more detail in Chapter 8.

2-10



Chapter 3

RELATIVE DEBUGGING

In 1994, Abramson and Sosic [4] developed the technique of relative debugging to assist in

the porting of sequential programs to parallel architectures. Relative debugging, like most

good ideas, is deceptively simple: utilise the availability of a known, correct version of a

program to aid the debugging of later releases of the software. However, it turns out that the

technique is somewhat more difficult to implement. Abramson and Sosic were able to

produce a working debugger, but this was restricted to debugging sequential programs, and

only provided limited support for changes that result from software engineering practices or

when software is ported to parallel systems. Since then the author has significantly advanced

the technology in a number of key areas to address these shortcomings. The work

undertaken to date includes:

• formalising some common transformations that occur to programs as a result of

software engineering and when programs are parallelised, and developing techniques

for supporting these transformations;

• solving the complex control issues that arise when applying relative debugging to

parallel programs; and

• building support for debugging programs on remote machines and addressing the

heterogeneity issues that this raises.

This chapter comprises three parts. First, the technique of relative debugging is described in

detail. In particular, key aspects of relative debugging are examined, including the use of

imperative and declarative comparisons, the use of comparison tolerances when defining

assertions, how differences can be reported and how the technique can be applied to parallel

programs. The chapter then identifies the transformations that arise from common software

engineering practices in program evolution, and how these must be addressed in order to

support relative debugging. These transformations include data parallel decomposition,

variable promotion and loop fusion, shape transformation, index permutation and array

slicing. The remainder of the chapter then describes a range of issues that must be overcome

when designing a practical parallel relative debugger.

3-1

I



RELATIVE DEBUGGING

Software evolution is now widely recognised as a process that involves the initial software

development followed by ongoing maintenance releases that accommodate enhancements

and corrections to the code, and changes to the operating environment [39]. Debugging is a

key part of this evolutionary process, but few if any debuggers have been designed to take

advantage of the inherent informational content available in previous software releases. In

many situations such as after minor corrections have been made, or when programs are

ported from one architecture to another, key data structures within a program remain

invariant between releases. Because of this, it is often possible to compare data structures

between one release and the next as an aid to identifying the cause and location of introduced

errors. In these situations, relative debugging provides a powerful technique for locating

such errors quickly. Relative debugging is the first debugging technology to exploit this

capability.

PROGRAM EVOLUTION

REFERENCE
PROGRAM

SUSPECT
PROGRAM

Use differences to
locate errors

Observe differences

Figure 3.1: Relative Debugging

Relative debugging is a high level technique that allows data in a reference program to be

compared to that of a suspect program [5,64], as shown in Figure 3.1. By observing the

differences in key data structures, important clues about the nature and location of the errors

can be obtained. Various case studies reporting the results of using relative debugging have

now been published [3,4]. An important feature of relative debugging is that it is both

3-2



language and machine independent. This allows a user to compare data structures without

concern for program complexities, and thus attention can be focussed on the cause of the

errors rather than implementation details. While the technique applies equally well to all

kinds of data structures, current research has focussed on reporting differences in scalars and

arrays only. This is because it is not immediately obvious how to compare complex, dynamic

data structures such as lists or trees, nor is it easy to visualise the differences in such

structures. This is an area that requires significantly more research, and is discussed further

in Chapter 8.

To the user, a relative debugger appears like any traditional interactive debugger, but it also

provides additional functionality that allows data from different programs to be compared. A

user spf Ties the comparisons they wish to make using two distinct mechanisms:

• imperative comparison — the user issues comparison commands to immediately compare

data between two programs and observe the differences; and

• declarative comparison — the user defines a series of assertions that specify the conditions

necessary for correct execution of the programs.

The user must also define what is meant by "different" and does this by declaring tolerance

values for each comparison. The results of the comparisons can then be examined using data

visualisation techniques.

IMPERATTI-'E COMPARISON

Relative debugging extends the traditional interactive debugging technique of displaying

program state information by allowing the user to make immediate comparisons between

two executing programs. The user does this by first ensuring that each of the programs has

been halted at a breakpoint and then issuing a command instructing the debugger to perform

a comparison. Provided that the two data structures are the same size and shape, the

debugger will extract the data from the respective programs and then perform a numeric

subtraction on each pair of corresponding elements. Differences that are present in the data

will then be displayed to the user. This technique works well for simple situations or where

the user requires immediate feedback on the program state, but because of the high level of

user interaction required, can become unwieldy in certain situations such as within program

loops.

3-3



A relative debugger provides support for imperative comparison using the compare

command. An example of such a command might be as follows:

compare ref::RefVar = sus::SusVar

In this example, the compare command \ 'ill instruct the debugger to extract the contents of

RefVar from the program1 ref and SusVar from the program sus, perform a

comparison, and then report the results to the user.

DECI^ARATIVE COMPARISON

Relative debugging provides an alternative technique to address the limitations of imperative

comparisons. In many circumstances the user may wish to specify a priori a set of conditions

(known as assertions) that must be satisfied for the correct execution of the program. These

assertions combine the imperative comparison information with specific location details so

that the debugger is able to perform the comparisons automatically. Because the comparison

process is now automated, this also addresses the situation where a high degree of user

interaction is undesirable. As the name suggests, declarative comparisons are not performed

immediately, but instead the assertion information is stored internally in the debugger. This

allows the user to issue multiple assertion commands, and at some later time instruct the

debugger to use the assertion information to automatically set the appropriate breakpoints,

control the execution of the programs, and extract and compare data from key data

structures. The comparison results can then be used to identify the likely location of errors

in the program.

Choosing an appropriate breakpoint location is an important aspect of defining assertions. If

the locations refer to source lines in the body of a program loop structure, then the assertion

will be executed on each iteration of the loop. This allows the accumulation of differences in

the data structures to be observed dynamically, and the location of the error to be readily

pinpointed. Another useful approach is to choose locations before and after such loop

structures. This can then be used to verify that the data remains invariant across the loop,

and provides a useful tool to establish the correctness of the code region.

A relative debugger provides support for declarative comparisons using the a s s e r t

command. This command is similar to the imperative compare command, but as

1 Throughout this document the term "program" is used synonymously with "process" and refers to the
instance of an executing code. In the case of parallel architectures a "program" refers collectively to many
concurrently executing instances. We use "process" to refer to a specific instance if necessary.

3-4



mentioned, includes additional breakpoint information that is used by the debugger to

manage the program execution automatically. An example of such a command might be as

follows:

asser t ref: :RefVar@"progl.c":4300 = sus::SusVar@"prog2.c":4400

This example also compares data in Ref Var from the program ref with SusVar from

sus, however the user is also able to specify the locations at which this comparison will take

place. In this case the value of Ref Var is obtained from the program when line 4300 in the

source file p r o g l . c is reached, and SusVar is obtained when line 4400 in prog2 .c is

reached.

The full syntax for comparisons and assertions is provided in Appendix A.

COMPARISON TOLERANCE

When performing comparisons it is possible that errors may be incorrectly attributed to

differences in the precision of the program variables or because of other minor numeric

factors. In order to avoid this situation the user is able to specify a tolerance value. Variables

are considered equivalent when the result of a comparison is within the tolerance. Tolerance

can be specified in two ways:

• absolute tolerance — the magnitude of the difference between the variables is compared

directly with the toleranc value. If v, and v2 are the values of two variables, then

for some tolerance €, differences will be ignored if |v, -v2 | < e;

• relative tolerance — in situations where the values being compared are very small but the

differences still constitute a significant error, using absolute tolerance may swamp the

difference value. Instead the difference can be first divided by the maximum of the

two variables before being compared to the tolerance. If v, and v2 are the values of

two variables, then for some tolerance £ differences will be ign > -ed if — , ., . < e.
max(|v,|,|v2|)

REPORTING DIFFERENCES

A key component of relative debugging is the reporting of differences that occur in the data

structures being compared. The simplest method is to display the magnitude of the

numerical difference between two values. This technique is generally used only for quickly

3-5



displaying differences in simple data structures, as it becomes much too unwieldy for large

amounts of data such as when assertions are located within program loops or when large

arrays are being compared. For more complex data structures, some form of data

visualisation is necessary to view the difference information.

The errors in two-dimensional array data structures can be conveniently displayed as a pixel

map2, where each pixel represents the difference between corresponding elements in the

arrays. The pixel map can then be used to visually determine the location of the differences

in the data structures by setting the appropriate pixel to indicate the presence of a variation in

the data. Colours can also be assigned to represent the relative magnitude of the differences

as a means of providing additional information. Examples of typical pixel maps are shown in

Figure 3.2.

^ individual pixel

(a) Possible Stride Error (b) Possible Boundary Error

Figure 3.2: Example Pixel Maps

The pixel map in Figure 3.2(a) uses black, to represent a difference and white to indicate that

any difference is within the acceptable tolerance value. This example shows the typical

characteristics indicating the possibility of a stride error that appears periodically in columns

of the array. In Figure 3.2(b) colours have been assigned to the relative magnitude of the

differences. This example shows a possible boundary error appearing in the left-most

columns of the array. The colours indicate that the magnitude of the error depends on its

distance from the middle of the column.

Where data structures have three or more dimensions, complex visualisation techniques are

required. In programs that compute data in a time-step loop it is also useful to view

differences as a series of frames to provide a graphic indication of the development of the

errors. These frames can then be run consecutively as a movie. Figure 3.3 show several

2 A two-dimensional arrangement of pixels.

3-6



frames of a three-dimensional data structure where the differences have been displayed using

an iso-surface representation.

Tlmralnp 10

K ti

Timont.op 20

J l

an

s

Figure 3.3: Visualisation of Differences in 3-D Data Set

There is significant evidence to suggest that visualisation of comparisons, particularly using

2-D and 3-D representations, provides the user with a means of characterising patterns of

differences. In a previous study [2], a time series iso-surface representation of the error

(shown in Figure 3.3) was used to identify independent errors in a meso-scale weather model.

In particular, the structure of the iso-surface allowed the identification of errors in different

code sections that were responsible for various physical processes. For example, an error in

the physics on the planetary boundary appeared as an iso-surface that was visible at the

bottom of the 3-D space used to represent a slice of the atmosphere. A second error

occurring in the long-wave radiation physics code was visible in the top of the atmosphere.

In another case study [69], differences showed characteristic periodic behaviour suggesting

problems involving trigonometric operations. In each of these cases generalisations can be

made about the nature of the patterns, but until further research is conducted in this area

these are currently limited to being used for insight when making deductions about the

nature of the errors.

PARALLEL RELATIVE DEBUGGING

Although initially developed to address the problems encountered when porting programs to

parallel architectures, early implementations of relative debugging were limited to only

supporting the comparison of sequential codes (or single process parallel codes).

Conceptually, parallel relative debugging extends the relative debugging paradigm by allowing

the comparison of data in a parallel program with the corresponding data in the sequential

program from which it is derived. Figure 3.4 show a high level model for how this might

occur.

3-7



When traditional sequential or vector programs are modified for execution on a parallel

computer, it is often necessary to re-organise the key data structures and associated code.

For example, if the parallel platform has physically distributed memories then the data must

be parii • "d and allocated to the individual processes, and in some cases the loop structures

themselves must also be altered. Transformations may also be automatically introduced by

parallelising compilers, or when converting codes to data parallel languages.

PROGRAM EVOLUTION

SEQUENTIAL
PROGRAM

PARALLEL
PROGRAM

\

Use differences to
locate errors

Observe differences

Figure 3.4: Parallel Relative Debugging

In the above diagram, a sequential data structure has been decomposed into smaller blocks

that are distributed across the parallel processes. The user may wish to compare the

sequential data with the parallel data, but does not need to be concerned with the details of

the particular decomposition that has been used. Ideally, the debugger will be responsible for

arranging for each of the distributed blocks to be recombined into a single data structure

before the comparison is performed. In addition, the debugger must also manage the

program synchronisation so that the data can be extracted from the correct location in each

process.

The existing declarative comparison command provides the debugger with all of the

information it needs to perfonn such a comparison, apart from a description of the data

decomposition technique that has been employed. All that remains is for the user to describe

3-8



I this mapping in order to provide the debugger with the details of the decomposition method.

This may be achieved through a statement such as:

" define mappingi) = . . . description of data decomposition . . .

Although such a definition can be complex, once it has been established the user no longer

I needs to be concerned with how the decomposition takes place. Instead, the mapping can be

used in combination with a normal assertion statement to perform a comparison between a

sequential and a parallel da«\i structure. For example, a typica' assertion might be:

assert seq::SeqVar@"progl.c":4300 = mappinglpar::ParVar@"prcg2.c":4400)

\ Here, segrefers to a single sequential program containing the array SeqVar. However, par

now refers to a collection of parallel processes, each of which contains a portion of the

decomposed array in the variable ParVar. The data decomposition description provided by

I mapping will extract data from each of the parallel processes and recombine the data in a

way that allows the comparison with data from the sequential program.

Data decomposition is not the only type of transformation that can be applied to a sequential

program when it is parallelised, and these additional transformations must also be supported.

The next section discusses the range of transformations that must be addressed if relative

debugging is to prove a useful tool to aid in die evolution of software.

I SOFTWARE ENGINEERING AND RELATIVE DEBUGGING

Many factors contribute to the continuing evolution of software. Changes may arise as a

result of:

I

• errors that are identified and corrected as part of a regular maintenance process;

) • the desire to exploit the availability of new languages and architectures; and

• the impact of other external factors such as economic and social constraints.

I
In these situations it is sometimes necessary to alter a particular data structure, perhaps to

take advantage a new architectural feature or because of restrictions imposed by different

! programming languages. Because of such changes, it may no longer be a simple process to

perform a comparison with previous releases of the software. However in many cases the

actual data remains invariant, the changes may just involve altering the ordering of the data or

i
i 3-9
4

j



the addition of extraneous information to the data structure. In these situations, the ability to

perform comparisons using relative debugging can still be an extremely valuable tool for

locating errors.

The types of transformations that occur because of such software engineering changes are

particularly important in parallel relative debugging. The user may wish to compare data

structures at various places without concern for the different organisation of the data in each

of the programs. To support this, the debugger must provide a mechanism to replicate the

transformations that have been applied to the programs. It is also desirable that such a

mechanism be transparent to the user so they can concentrate on identifying the location of

the error, rather than on the particular implementation.

Although the number and types of changes that may be introduced to program data

structures is virtually unlimited, this research has focused on those changes that commonly

occur to array data structures as a result of software engineering practices, and the

reorganisation of code and data as programs are parallelised. A number of researchers have

examined the classification of data transformations, particularly in relation to data locality

issues for cache optimisation [58,72]. We are not attempting to duplicate this prior work, but

>ither identify a subset of common transformations that are both of interest to the debugger

user, and allow us to establish the validity of the technique. Addressing the changes to other

types of data structures is left for future research.

Some of the transformations that are applied to data and code when a sequential program is

parallelised consist of:

• data parallel decomposition which defines the data distribution method used to

implement a parallel version of the program; and

• temporal displacement which deals with situations where a variable is promoted (such as

scalar to array) or loops have been fused to optimise parallelisation.

A number of transformations are also used in a more general software engineering context,

including;

• shape transformation where the rank of an array or the size of its dimensions have been

altered to exploit a particular architecture or language features;

3-10



• index permutation where array indices hu«e been reordered, such as through

architectural optimisation or language differences; and

• atray slicing where additional information has been added to an array, such as in the

form of guard bands.

The following sections will examine these transformations in detail and show how they are

used to support the process of relative debugging.

DATA PARAUUBL DECOMPOSITION

Except for extremely coarse-grained or parameterised models, parallelisation of an algorithm

on a distributed memory computer usually requires the decomposition of arrays in order to

distribute data to the individual processes. In the case of data parallel languages, this

decomposition is typically a block, cyclic or block-cyclic decomposition [24,29] and is handled

automatically by the language runtime system. These types of decomposition are also

typically used in automated parallelising systems [61]. Hand coded distributed memory

implementations may produce much more complex algorithms, and are beyond the scope of

this thesis. In many cases, particularly where process pool sizes are dynamic, the exact

partitioning is not normally known until runtime.

DATA PARALLEL
DECOMPOSITION

SEQUENTIAL
DATA

n
•Ss-

i>

PARALLEL
DATA

COMPARE

Figure 3.5: Duplication of Data Distribution

Figure 3.5 shows an example in which serial and parallel data are compared using relative

debugging. In this situation, the sequential data has been distributed to multiple processes as

a result of the parallelisation process. Since an assertion requires two identical data structures

for comparison, the distributed data must be recombin~d before the comparison can take

3-11



place. This is achieved by mapping the distributed data into a serialised data structure that

can be used in order to perform the comparison operation.

VARIABLE PROMOTION

Variable re-use is a common programming construct. When this occurs, a scalar value may

be calculated, used and then overwritten in a new computation, usually within some form of

loop construct. However, when this type of program is parallelised, it is often necessary to

promote the scalars to an array, one unique value per loop iteration. Such a variation

between the sequential and parallel codes makes it extremely difficult to compare the data,

because there may be no point in time in which the data exists concurrently in both

programs. Figures 3.6 shows code fragments demonstrating how a temporary variable in

Fortran code might be promoted to an array written in C.

DO 90, 1 = 1 , 100
80 TEMP - X(I) * Y(I)

X(I) = 2 * Y(l)
Y(I) = PI * TEMP

90 CONTINUE

128 for (i=0; i<100;
129 {
130 tempii] = x[i]
131 }
132
133 for (i=0; i<100; i + +)
134 {
135 x[i] = 2 * y[i]
136 y[i] = PI * temp[i]
137 }

y[i)

(a) Fortran code (b) C code

Figure 3.6: Variable Promotion Example

Since temp is an array in Figure 3.6(b), and TEMP is a scalar in Figure 3.6(a), comparison is

not possible unless some mechanism for promoting TEMP to an equivalent array is provided.

At present, the only way to perform this comparison is to modify the Fortran code in order

to promote TEMP to an array. This is clearly undesirable because it requires the

modification of the reference program, possibly resulting in the introduction of errors or

other changes in program behaviour.

LOOP FUSION

Another common optimisation for parallel programs is to fuse a number of sequential loops

into one larger parallel one. Serial codes often perform computation on entire rows or in the

case of 2 dimensional arrays entire columns, for vectorisation purposes. In a parallel

program, multiple computations may be fused into a single calculation on each grid element,

since in general each process will be applying the same computation to the partitioned data.

This has the effect of reducing the overhead of parallel loops while improving data locality

3-12



and reuse [34,50]. However, where loop fusion has been employed there will never be a

point in the execution of the codes when the arrays are equivalent. Figure 3.7 shows code

fragmen ts where this occurs.

128 for ( i=0; i<100;
129 x [ i ] = 2 * x [ i ]

131 for ( i=0; i<100;
132 y [ i ] = x [ i ] + y | i ]

134 for (i=0; i<100;
135 x[i] - y[i] / x[ij

(a) Serial code

100 f o r ( i = 0 ; i < 1 0 0 ; H i

10-J x [ i ] = 2 * x f i ]

104 y [ i ] = x [ i ] + y [ i ]

106 x [ i ] = y [ i ] / x [ i ]

108

(b) Parallel code

Figure 3.7: Example of Loop Fusion

In this example, comparison of the array x prior to the execution of line 131 in Figure 3.7(a)

and 104 in Figure 3.7(b) is not possible. Instead, a temporary array must be constructed to

hold the intermediate values from the parallel code, and the comparison delayed until al!

elements of this temporary array have been obtained, i.e. line 108 in Figure 3.7(b).

SHAPE TRANSFORMATION

Sometimes it is necessary to change the shape of program data structures in order to exploit

language or architectural features. For example, data may be stored in a long single

dimensioned vector to exploit a vector architecture, but this data may need to be re-organised

into a multi-dimensioned array to take advantage of an array-based language. In other

situations the shape of arrays may be altered to exploit processor performance

improvements, for load balancing purposes, or for better cache utilisation [50,58].

In order to allow the comparison of transformed data structures, a relative debugger must

provide a shape transformation mechanism. This allows the debugger to duplicate the

common shape transformations that are applied to data in order to facilitate comparison in

situations where these transformations have been utilised. Figure 3.8 shows an example of

this type of transformation.

In relative debugging, shape transformation is supported using the t r a n s command. This

command allows the user to define a shape transformation and then apply that

transformation to data that is used to perform a comparison.

3-13



VECTOR

TRANSFORM
SHAPE

ARRAY

VECTOR
TRANSFORMED

INTO ARRAY

if-
3¥
I:

St.

rr
*

Figure 3.8: Shape Transformation

A program that is ported from a vector to a cache-based architecture may have been

optimised for the vector processor and so will scan the data in a particular way. However,

this may not be suitable to take advantage of the capabilities of the cache-based machine. In

such a situation the order of array accesses may be need to be altered so that data locality is

improved to exploit the processor cache, thereby increasing performance [58]. In other

situations, permutation of array indices may be used as an alternative to loop transformations

[17] or may result from language differences, such as between C and Fortran.

In general, comparison of arrays in these situations using relative debugging requires a

mechanism that preserves the number of elements and the array contents, but allows

arbitrary permutation of the indices. Figure 3.9 shows an example of how a typical

permutation, in which a 3x5 array is transformed into the equivalent 5x3 array, can be

compared using relative debugging.

3 X 5 ARRAY

INDEX ORDER
PERMUTED

Figure 3.9: Index Permutation

3-14



1

I ARRAY SLICING

In some circumstances, perhaps tlirough modification to the boundary conditions of an

algorithm, additional rows or columns may be added to an array. Both the imperative and

declarative comparison techniques operate on all elements in the respective data structures,

so direct comparison of arrays under these conditions is not possible. Instead, it is necessary

to provide a mechanism to allow the extraction of a sub-array from the expanded array that is

the same size and shape of the array with which i*- is to be compared. An example of this

array slicing process is show in Figure 3.10. In this example, extra elements have been added

to the ends of each row and column of 2-dimensional array, increasing the size of the 2x3

array to 4x6 elements. These extra elements must be removed before the array can be

compared with a 2x3 reference array.

ARRAY WITH
ADDED ROWS AND

COLUMNS

SLICE
XARRAY

ARRAY

SUB-
ARRAY

Figure 3.10: Array Slicing

DEBUGGER DESIGN ISSUES

In addition- to the changes that are introduced into programs through software engineering

processes, a relative debugger must also deal with programs that are executing

simultaneously, possibly on physically separate machines that may have completely different

architectures. A relative debugger also gives the user the unique ability to define a series of

assertions that instruct the debugger on how to control and compare data extracted from

many concurrently executing programs. Because of these requirements, the debugger design

must address some key issues. These include:

• process control requirements — how the debugger will control independent processes

possibly executing on remote machines;

3-15



• heterogeneity issues — hov to deal with the architectural differences between the

machines executing the programs being debugged, and the debugger host system

itself; and

• debugger control logic - the mechanism that will be used to process the assertion

commands, control the executing processes, and extract and compare the target data.

The following sections describe these design issues in detail. The next chapter will present a

debugger architecture that addresses all of these issues, and incorporates the features into a

powerful and innovative package.

PROCESS CONTROL

By definition, a relative debugger must be able to control two or more processes

simultaneously. While many debuggers are designed to do this, the processes they control

usually consist of tasks comprising a single parallel program, or threads comprising a single

sequential program. The processes controlled by a relative debugger are almost always from

completely independent programs, and in many cases may be executing on physically remote

computer systems. In addition, the debugger must be capable of controlling a combination

of sequential and parallel programs.

Because of its unique re • jments, a relative debugger must provide a sophisticated process

control mechanism. This mechanism must include the ability to:

• control multiple independent programs — since each assertion compares data from two

different processes (which may comprise all or part of a sequential or parallel

program respectively) and there are no restrictions on the number or combinations of

processes used in assertions;

• mix sequential and parallel processes — the debugger must be able to compare data from

parallel and sequential processes in order to fully support the concept of parallel

relative debugging;

• control processes on physically remote machines — relative deb jgging supports comparison of

data in a number of situations w! ere the processes may be located on remote

machines. This includes sequential programs running on different architectures and

3-16



the processes comprising a parallel program executing on a distributed memory or

cluster architecture;

• conttvl both individual and arltitrary groups of processes — comparison of data between

parallel and sequential programs requires that the debugger manage the extraction of

data from arbitrary processes in order to account for the d?.ra distribution method

employed;

• start and stop debugging processes arinirarily - so that the user is free to choose which

versions of a program will be used for comparison; and

• support as wide a range of parallel and sequential anbitectures as possible — in order to ensure

that the debugger provides a useful tool to aid the process of software engineering.

Clearly, a debugger that satisfies these requirements will need to employ a client/server

architecture. In addition though, the control mechanism employed must be able to multiplex

control across many independent processes and handle asynchronous events as they occur.

The debugger must also be able to support a number of different, architectiare specific

mechanisms for parallel process startup and control.

HETEROGENEHY

A relative debugger has the ability tc compare data from programs executing on completely

different systems. However, these machines may employ completely different architectures,

and consequently the data representations used may not be compatible. Further, the

machines executing the programs that are being debugged might use different data

representations from the debugger itself. The obvious approach to addressing this issue is to

employ some mechanism for dealing with data in an architecture neutral manner. Such a

mechanism must:

• be compatible with a client/server architecture;

• allow data distribution across networks and support in-core operations;

• retain data type information;

• convert to/from native formats without loss;

3-17



• support a broad range of arithmetic, logical and comparison operations;

• provide an efficient storage and execution mechanism; and

• support a wide range of architectures.

While a number of portable data format exists, none of them address all these issues. To

overcome the limitation of these existing implementations, a completely new architecture

independent format (AIF) has been developed. The details of this format are described in

the next chapter.

CONTROL LOGIC

In addition to data and code changes, parallel computers also increase complexity since they

must deal with many concurrently executing processes. This raises problems for parallel

relative debugging because these multiple processes need to be controlled and synchronised

if data is to be extracted and compared with a sequential counterpart. In order to support

this, the declarative assertion mechanism must be extended to ensure that such

synchronisation remains transparent to the user.

One of the primary tasks of a relative debugger is to evaluate a series of user-defined,

assertions in order to perform a comparison of data that has been extracted from two or

more executing processes. Each assertion instructs the debugger on what data to extract

from each process and where trie data is to be extracted. In the case of parallel programs, data

may be extracted from the same location in a number of processes simultaneously. Once

data has been extracted, it may be manipulated or transformed in arbitrary ways before the

comparison is filially performed.

In order to evaluate the assertions, a relative debugger proceeds as follows. First, it must set

a breakpoint in each process and at each location specified in the assertion statements. This

may involve setting multiple breakpoints in some processes. Once all the breakpoints have

been set, the processes are started. Each process will reach a breakpoint at some arbitrary

time, and when this occurs the debugger must extract the data that has been associated with

that breakpoint by an assertion statement. This data must then be stored until data from the

corresponding process is available for comparison. The stopped process is then restarted

and the debugger waits for the next breakpoint to be reached.

3-18



A relative debugger must provide a control mechanism to support this process. Such a

control mechanism must be capable of:

• extracting data from one process independent of another,

• handling breakpoints in any order, regardless of the static structure of assertions;

• reusing a data item in many different assertions; and

• managing many processes at once.

In the next chapter, we will describe how we employ a unique dataflow technique to address

all these requirements.

CONCLUSION

The technique of relative debugging has been used in many case studies since it was first

developed in 1994. It has been shown to be very successful in isolating errors that have been

introduced into programs through the porting process or through software evolution.

Relative debugging allows the user to focus on key data structures in the code and provides

tools to allow the location of errors to be quickly located, often without requiring detailed

knowledge of the program. Recent research and development undertaken by the author has

extended the use of relative debugging to parallel architectures and to data parallel languages.

This research has resulted in the development of a number of novel techniques that provide

the fundamental basis for re-engineering the debugger to support parallel computing

environments.

Porting a serial program to a parallel computer generally involves transforming the code and

data structures of the program in order to take advantage of the architecture, and to ensure

that optimum performance is obtained. There are a large number of these transformations

available, however in many cases only a small subset of such transformations are commonly

used, particularly by parallelising compilers and data parallel language run-time systems. The

extension of the relative debugging paradigm to encompass serial and parallel codes

necessitates some mechanism to duplicate these transformations so that comparisons

between serial and parallel data structures are possible.

3-19



This chapter has examined the types of transformations that are commonly applied to code

and data structures in the porting process and identified how this impacts on the relative

debugging process. It has also looked at a range of issues that must be addressed to

effectively implement the relative debugging paradigm.

3-20



Chapter 4

THE ARCHITECTURE OF A PARALLEL RELATIVE DEBUGGER

A parallel relative debugger combines the functions of a conventional parallel debugger with

those that are specifically required to support the relative debugging paradigm. The debugger

must provide the functionality of a conventional parallel debugger for two reasons. First, the

user must be able to perform normal debugging operations in the process of determining

programming errors. These services could be provided by a separate debugger, but the cost

of switching between debuggers m^kes this approach undesirable. Second, when employing

relative debugging (i.e. performing comparisons between programs) the debugger must

ensure that multiple processes can be distributed onto different platforms and can be

controlled independently of one another. Since this requirement is identical to that of a

conventional parallel debugger, it is available at no additional cost or effort.

Extending conventional debugging technology to support the relative debugging paradigm

requires that significant additional functionality be provided. This is because the debugger

must be able to deal with:

• software engineering issues;

• issues specific to parallel environments, such as parallel architecture and language

details; and

• the changes to the code and data structures that occur when programs are

parallelised.

The functionality that must be provided by a parallel relative debugger can be loosely

grouped into three categories:

• relative debugging support, including the evaluation of user-defined assertions, the storage

and manipulation of data from concurrently executing processes, and the ability to

deal with software engineering transformations;

I 4-1



• parallel aixhitecture support, including the ability to interpret the parallel data structures

used by data parallel language run-time systems, and functionality to deal with the

code and data changes that occur as a result of parallelisation; and

• pamlkiprocess support, including the ability to control multiple independent: processes,

support for widely distributed processes, and support for heterogeneous

architectures.

The debugger described here, know as GUARD1, has been specifically designed to address

these architectural considerations. As well as providing traditional debugging functions, the

debugger includes four key features that address each of the functional requirements of

parallel relative debugging. These include:

• a dataflow compiler and engine;

• an architecture independent data format;

• data and code transformation support; and

• a client/server architecture.

In addition, the GUARD debugger employs a modular architecture that incorporates a multi-

layered interface design, switchable network protocols and a pluggable debugger backend.

All these features are combined into a powerful package to address the needs of parallel

software engineers.

This chapter will discuss each of the key architecture features of GUARD in detail, and

describe how they meet the functional requirements of a parallel relative debugger.

DATAFLOW COMPILER & ENGINE

The evaluation of user-defined assertions is central to the operation of a relative debugger.

However, the ability to define assertions over parallel programs places a significant burden on

the matching and control logic of the debugger. In order to support the semantics of parallel

assertions the debugger must be capable of:

1 The latest version of GUARD is known as GUARD-2000. References to GUARD should be assumed to
be this version unless otherwise stated.

4-2



• extracting data from one process independent of another,

• handling breakpoints in any order, regardless of the static structure of assertions;

o reusing a data item in many different assertions; and

• managing many processes at once.

GUARD meets all of these requirements by employing a dataflow execution mechanism to

manage the evaluation of assertions [9,21]. In the dataflow model, a directed graph contains

nodes that perform certain functions. These nodes are connected together by edges, and tokens

travel from node to node via the edges. Some dataflow architectures may allow only one

token to be present on an edge at any time, while others may allow many. These are known

as static [21,21a] and dynamic [9,9a] dataflow architectures respectively, although some

implementations combine both methods using a hybrid scheme [la]. Once tokens arrive at a

node, they must be stored until at least one token is available on each input edge. In the case

of the dynamic architecture a mechanism is required to match the correct tokens on each

input, usually with a tag field in the token. This type of mechanism is known as a matching

store. A modified version of the static architecture, know as static queued, allows the queuing of

tokens at the nodes [16a]. Once tokens have been matched, they can then be passed as

operands to the node for execution.

In GUARD, an assertion statement is represented as a node that performs a comparison only

when it has data from two processes available on its inputs, as shown in Figure 4.1. Data

from each process is encapsulated in the tokens, which are generated asynchronously as the

result of a process reaching a breakpoint. Since there is no guarantee that data from one

process will arrive at any" particular time, the architecture must ensure that tokens remain

available until all the operands for the node have been generated. In addition, it is important

that the time each process remains at a breakpoint is kept to a minimum. A static queued

dataflow architecture allows almost immediate program restart since multiple tokens can be

queued, but does not require the complexity of a matching store. This arrangement also

works well if two assertions require the same data item, since a token can simply be

duplicated and sent to the appropriate input for each assertion.

4-3



node

edge

Figure 4.1: Dataflow Graph Executing an Assertion

In a normal debug session, the user will define a number of assertions about the programs

being debugged. As part of its user interface, GUARD provides a compiler that translates

these assertion definitions into a dataflow graph consisting of nodes that define comparison

and control operations, and edges that define the flow of data through the graph. When the

assertions are to be evaluated, the dataflow graph is passed to a dataflow engine for

execution. To begin the execution process, the graph is "seeded" with an initial token.

Figure 4.2 shows a simplified graph that results from compiling the following series of

assertions:

assert $S::A[0..49]@seq.c:100 = $P[0]::B@par.c:100
assert $S::A[50..99]@seq.c:100 = $P[1]::B@par.c:100
assert $S::A[0..9]@seq.c:150 = $P[0] ::B [0..9]0par.c:90
assert $S::A[50..59]@seq.c:150 = $P[1]::B[0..9]@par.c:95

In this example, the array A[100] in the sequential code (seq.c) has been decomposed

across two processes into the array B [50] in the parallel code (par. c). The syntax uses the

notation $S to refer to the sequential process and $P[0] and $P[1] to refer to the two

parallel processes. The first two assertions reflect the relationship between the array in the

sequential and parallel codes. The second two assertions compare the first 10 elements of

the sequential and parallel arrays at different line numbers.

The graph in Figure 4.2 contains a compare node and a display node for each assertion

statement. A compare node computes the difference between its arguments. If there is a

difference, then this is reported to the user via the display node. The diagram shows tokens

4-4



moving along the input edges and arriving at the compare nodes at different limes. The first

compare node in the diagram has received tokens on both its inputs and has fired (shown in

red). The result of the comparison has been sent to the display node, which has also fired,

and so has displayed the results to the user.

SEQUENTIAL CODE (scq.c)

_$S

100

150

PARALLEL CODE (pare)

ff "$"pm"

Figure 4.2: Dataflow Graph From Multiple Assertions

A few debuggers have used dataflow as a control mechanism in the past [45,56]. In one of

these [56], the dataflow mechanism used a breakpoint as an event trigger for a piece of

debugger code. Likewise TotalView [22] allows the user to write expressions that are

executed when a breakpoint is reached, and these can be considered like dataflow

expressions. .GUARD extends this previous work by building complex tokens containing

data from the processes being debugged, and then using this data to evaluate the assertion

statements.

ARCHITECTURE INDEPENDENT DATA FORMAT

In addition to debugging programs on physically separate hosts, a relative debugger must also

support programs running on heterogeneous architectures. Many debugger commands

require access to data in the processes being debugged. However, the remote systems

executing the target processes (and the debugger host system itself) may each use different

architectural features such as word length and byte ordering. Some form of architecture

4-5



standardisation must be employed in order to be able to manipulate and compare data from

these disparate systems.

The problem of sending architecture specific data over a network has been addressed by

standard networking protocols such as XDR [65]. Much work has also been done on the

development of architecture independent file formats, with NCSA's HDF [53] generally

accepted as the defacto standard. However, none of these approaches address the issues of

performing in-memory operations on data from architecturally different systems. The

solution adopted by GUARD, know as the architecture independent format (AIF), is

designed to achieve true architecture independence for arbitrary data types. The key

components of the AIF system are:

• a format for representing date in an architecture independent manner;

• a well-defined application programming interface (API); and

• a set of library routines implementing the AIF API.

The AIF API provides a rich collection of routines that provide support for all common

arithmetic, logical, comparison and tile I/O operations. In addition, routines are provided to

convert data between host specific and AIF formats.

Figure 4.3 shows AIF being used to add two integers from different architectures. First, date

is converted into AIF using the IntToAIF () routine. The AIF date can then be passed to

the AIFAdd () routine which calculates the result, also in AIF. This result can then be

passed to the AIFPrint () routine to be displayed.

The GUARD debugger converts data into AIF as soon as it is extracted from the target

process. Debugger commands that manipulate target process data 'such as display,

arithmetic or comparison commands, or actions generated as a result of the execution of the

dataflow engine) operate only on data in this format and so are completely independent of

the target architectures. This early conversion of process data to AIF ensures that the

debugger remains isolated from the architectural dependencies of its own host system. A

clear separation of architecture specific and architecture independent data formats has

additional benefits. Defining an AIF API allows routines to be isolated to an independent

library, simplifying the debugger implementation and promoting code reuse. The addition of

4-6



support for new architectures or language data types also becomes straightforward, as code

need only be modified in a single location.

progl
Big Endian
32 Bit

V
IntToAIFO

prog 2
Little Endian
64 Bit

IntToAIF <) Data above here
in target format

AIFAddO
Data below here

. T A I F format V

AIFPrint ()

Figure 4.3: Example of AIF Usage

DATA AND CODE TRANSFORMATION SUPPORT

One important feature of relative debugging is that it minimises the detailed knowledge

needed by the user when formulating assertions. This allows the user to concentrate on

where an error might be occurring rather than on details of the implementation. As

discussed in the previous chapter, this technique can become complicated when data or code

transformations are employed during the software engineering process, or when sequential

codes are parallelised, because the transformations have to be duplicated for the data to be

compared. The ability to model these transformations is therefore a key component of the

paralleLrelative debugger architecture. The GUARD debugger provides the capability that

allows libraries of common data transformations to be defined (perhaps supplied as a

standard transformation library) and then to be easily applied by the user when needed.

There are five main types of transformation supported by the debugger

• data decomposition;

• shape transformation;

• index permutation;

• array slicing; and

I
4-7



» temporal displacement.

Data transformations are managed using the two commands "map" and " t r a n s " ,

combined with the array slice notation. The debugger handles code transformations resulting

from temporal displacement programmatically using the " c r e a t e " and '"assign"

commands.

DATA DECOMPOSITION

A parallel mapping function is used to specify the data decomposition technique that has

been employed when a sequential code is ported to a parallel architecture. GUARD provides

a mechanism to specify such a mapping using the following syntax:

map _fur;c(P: :D)
define index(i,x) = exprl
define proc(j,x) = expr2

end

Here, func is declared as a parallel map. Each map must define an index function and a

proc function. The index function is used to specify the relationship between each

element of the serial array and the corresponding element of the parallel arrays. The proc

function defines the location (in terms of parallel process identifiers) of each element of the

array. There are two arguments to the mapping function func. These are P, which is an M-

element array of rank m of process identifiers, and D, which is an TV-element data array of

rank n that is located in tiie address space of each of the processes. A number of predefined

functions are also provided to assist in defining mapping functions, ncluding:

rank (A) the rank n of array A
ne 1 (A) the number of elements N in A
upper (A, i ) the upper bound of index i of array A
lower (A, i ) the lower bound of index i of array A

When a map is applied to a parallel array, a new single data structure of rank n with

NxM elements is created. This resulting array can then be used in an assertion statement as

normal. Figure 4.4 shows a typical block-cyclic mapping.

4-8

M



DATA
DECOMPOSITION

p_array

M " &tffi!$$\

prag2»c

$p[0,0]

Figure 4.4: Block-Cyclic Decomposition

In this example, the sequential array s_array has been decomposed by assigning each row

to one of the parallel arrays p_array. In GUARD, this would be defined as follows:

map bcyc(P::A)
define index(i,x) = i < rank(A) ? x[i] : (x[i]-1)/nel(P) + 1
define proc(i,x) = (x[i] - 1) % nel(P) + 1

end

Once the mapping function has been defined, it can then be applied to a parallel data

structure using an assertion statement as follows:

invoke $s "ser_prog"
invoke $p[4,l] "par_prog" using "mpich"
assert $s::s_array@"progl.f":55 = bcyc($p::p_array@"prog2.c":49)

Here, $s refers to the serial code ser_prog and $p refers to a 4x1 process mesh running

the parallel code par_prog. The assertion statement applies a block-cyclic mapping to the

variable p_ar ray in p rog2 . c at line 49 of the parallel code. This is then compared with

the equivalent variable s_a r r ay in p r o g l . f at line 55 of the serial code.

SHAPE TRANSFORMATION

Array shape trans formation occurs when an array of rank n in a reference program is

transformed into an array of rank m in a suspect program, provided the total number of

elements in the array are preserved. To compare these arrays using relative debugging, a

4-9



1

mechanism for specifying this transformation must be provided. In order to do this, we

conceptualise this process as flattening the array into a 1 dimensional vector, performing an

arbitrary permutation on the vector, then blocking the permuted vector to an array of the

new shape. The process of flattening and blocking an array can be defined in terms of

standard transformation functions, so the user only needs to define the vector permutation

operation in order to fully specify a shape transformation. Figure 4.5 shows this process

transforming a rank 2 array into a rank 3 array.

SHAPE
TRANSFORMATION

rank 2 rank 3

is)

Figure 4.5: Transformation of a Rank 2 Array Into Rank 3 Array

In GUARD, transformations are defined using the following syntax:

trans func(A,B)
define index(i) = expr

end

Here func is the name of the transformation, and as is the case with all transformations, it

must be supplied with two arguments. The first argument A is the array to be transformed.

The second argument B is used to specify the shape of the result, and can be either a

program variable or an internal debugger variable. The contents of this variable are ignored;

only its shape information is used. The result of the transformation is a new array of the

same shape as B.

Figure 4.6 shows an example transformation in which a vector of twelve elements is

transformed into a 4x3 array, and where each pair of elements is swapped. The following

GUARD commands demonstrate how such a transformation can be used.

4-10



trans swap(A,B)
define index(i) = (i

end
2) ==

create $a[4] [3]
assign $a swap($p::vector, $a)

In this example swap defines a transformation that maps the arr?/ supplied in the first

argument into one of the same shape as the second argument, but also performs a mapping

to exchange adjacent elements. The c r e a t e command is used to create a debugger variable

to store the resulting array. This command is also used to define the shape of the result,

which in this case will be an array of 4x3 elements. Ihe a s s i g n command is then used to

apply the transformation to the program variable v e c t o r in process $p and store the result

in the debugger variable $a.

v e c t o r
$a

a, I a 2 I a. as l a , a, &io > n <>1:1

>io

»i

» j

a,

as

>u

a j

Figurt 4.6: Shape Transformation with Swap

INDEX PERMUTATION

The permutation of array indices is supported using a special case of the map command. In

this case a mapping is defined that translates the array indices as required, but leaves the

processor information unchanged. Permutations can also be combined with other types of

data decompositions to perform complex translation functions.

Figure 4.7 shows a typical permutation where the order of indices is reversed. Such a

permutation is commonly used when comparing arrays from Fortran and C programs, since

Fortran uses column major order and C uses row major order when storing arrays. A

mapping that defines this permutation is shown below, along with an assertion statement that

applies the mapping.

4-11



map f2c(P::A)
define index(i,x) - x[rank(A)
define proc(i,x) = i

end

- i - 1]

assert $c::Y@"c_prog.c":34 == f2c($f::X@"f_prog.f":45)

In this example, we assume $c and $f arc serial C and Fortran codes respectively. The

assert statement applies the f 2c mapping to the Fortran array X at line 45 in f_prog. f.

The result of this mapping will be the same array with indices transposed, which can then be

compared directly to the C array Y at line 34 of c_prog. c.

INDEX PERMUTATION

X

a,0

«2 »J

»s

»,

»1I

«2

«3

>4

»S

a<

»7

•a

<h

•ID

5.1

» I 2

Figure 4.7: Index Permutation Example

ARRAYSUONG

Comparison of sub-arrays is achieved by providing an array slice notation. A sub-array is

created from an array by specifying a range of values for each index.

Figure 4.8 shows an example where an array slice operation is required. The arrays A and B

cannot be compared directly because they have different sizes and shapes. Instead, B must

be compared with a sub-array of A using the syntax shown below.

assert $pl::A[1..3][1..4]@ "progl.c":34 == $p2::B@"prog2.c":45

In this case the notation A [ 1. . 3 ] [ 1. . 4 ] is used to specify a sub-array of A that contains

all elements that have a first index in the range 1 to 3 and a second index in the range 1 to 4

(indices are numbered from 0).

4-12



ARRAY SLICE

B

Figure 4.8 Array Slice Example

TEMPORAL DISPLACEMENT

Temporal displacement transformations, such as variable promotion and loop fusion, require

the use of temporary arrays in the debugger. A temporary array can be built at run time, and

then can be compared with data arrays in a target program, or with other temporary debugger

arrays. In the case of variable promotion, a temporary array is used to store the scalar or

array that has been promoted to a higher rank. For loop fusion, a temporary array is used to

hold the intermediate values of a variable that are overwritten. In both cases, a temporary

array is populated by extracting a single value during each loop iteration, as shown in Figure

4.9.

program uses scalar
variable in loop

temporary array
holds value from

each iteration

array to be
compared

Figure 4.9: Capturing Intermediate Data Values

For the variable promotion example shown in Figure 3.6 in the previous chapter, the

following statements would be used:

4-13



create $1
create $TEMP[100]

assign $1 $f::I@"prog.f":80
assign $TEMP[$I] $f::TEMP@"prog.f":80
assert $c::temp@"prog.c":134 == $f::$TEMP@"prog.f":100

In this example we assume that $c and $f refer to the C and Fortran codes respectively. On

each iteration of the DO loop in the Fortran code (Figure 3.6(a)), a breakpoint at line 80 will

be encountered. The first assign statement will extract the value of the program variable I

and store it in the debugger variable $1. The second assign statement will the extract uie

value of the scalar variable TEMP and store it in the array $TEMP at.the element

corresponding to $1. This process will continue until the loop is completed. Meanwhile, the

array temp from line 134 in the C code (Figure 3.6(b)) will have been obtained, but the

assertion will not proceed until the breakpoint at line 100 of the Fortran code has been

reached. By this time each element of $TEMP will contain the corresponding value of TEMP

at each iteration of the loop. A comparison of $TEMP and temp can then take place as

usual.

Loop fusion can be handled in a similar way to variable promotion. In the example shown in

Figure 3.7 in the previous chapter, a temporary variable must be created to hold the contents

of array x at line 102 in the parallel code (Figure 3.7(b)). Once all elements of x have been

transferred, the temporary array can then be compared with the equivalent array in the serial

code (Figure 3.7(a)). If we assume that $s and $p represent the serial and parallel codes

respectively, then the comparison can be performed as follows:

create $i
create $temp[100]

assign $i $p::i@"pprog.c":104
assign $temp[$i] $p::x[i]@"pprog.c":104
assert $s::x@"sprog.c":131 == $p::$temp@"pprog.c":108

Breakpoints are set at lines 104 and 108 of the parallel code (pprog. c) and 131 of the serial

code (sprog. c). The breakpoint at line 104 will be encountered on each iteration of the

loop, where the appropriate element of x will be copied to the temporary array. The parallel

code will then continue until the breakpoint at line 108 is reached. At some stage, line 131 of

the serial code will also be reached and the comparison specified by the assertion statement

will then take place.

4-14



CUENT/SERVER ARCHITECTURE

GUARD is a multi-process parallel debugger. Most parallel debuggers support the ability to

control and manipulate processes running on remote nodes, whether on a tightly coupled

shared memory system or in a distributed memory cluster. Parallel relative debugging

extends this paradigm further however, since the user may be debugging a combination of

serial and parallel codes, all of which are under the control of the debugger at the same time.

HOST A

HOSTC

HOSTB

SERIAL PROCESS PARALLEL PROCESS

Figure 4.10: GUARD Client/Server Architecture

A number of debuggers and debugging environments have been developed to support

parallel and distributed architectures, many of which employ a client/server mechanism

[16,22,33,48]. Some, such as DETOP [12] have been developed to support both task and

data parallel codes.

GUARD also employs a client/server model in order to ensure that the processes being

debugged can be distributed onto multiple platforms and can be controlled independently.

In this architecture, each of the debug servers is responsible for managing a single process

that is being debugged. The client/server architecture used by GUARD is shown in Figure

4.10. This diagram shows a scenario where the user is debugging a serial process SI on host

A and a parallel program comprising two processes PI and P2 on hosts A and B respectively.

The client/server architecture places no distinction on the host running the debugger client,

so in this case it is located on a third machine, host C.

4-15



Both the client and server that make up the debugger are designed to be as modular as

possible. To achieve this, a three-layer model has been adopted for both the client and the

server. Figure 4.11 shows the components that make up the debugger.

DEBUG CLIENT

NETWORK

DEBUG SERVER

PROCESS

t
DEBUG
SERVER API

REW

AIF API

Figure 4.11: GUARJ Layered Interface Model

At the top level, the debug client provides a user interface that accepts and processes user

commands in either of two modes: immediate or deferred. In immediate mode, the user

interface parses and decodes commands and executes them immediately, displaying any

results to the user. In deferred mode, the user interface accepts commands that are in turn

passed to the dataflow compiler for translation into a dataflow graph. This graph can then be

executed at a later date by the dataflow engine.

At the next level, the debug client API layer provides a consistent interface to debugging

actions that can be performed on target programs. The debug client API layer manages

debug requests from the client regardless of whether they are a result of immediately

executed commands, or are generated by the dataflow engine. This layer is responsible for

translating these actions into the appropriate network requests using the network API layer,

and for receiving and processing responses from the debug server. The AIF API provides an

interface for managing and manipulating data in an architecture independent format. All data

that is transmitted between client and server is first converted to this format using routines

supplied by the API.

4-16



At the lowest level the network API is responsible for transmitting and receiving debug

requests between the client and the server. A modular interface at this level allows the

protocol to be tailored to suit particular requirements.

The server receives requests from the client via the network API layer. These requests are

then passed to the debug server API layer, which converts the request into a form suitable

for the debug backend. The backend controls the low-level architecture specific functions of

the debugger. Maintaining this distinction between the server API and the backend allows

for a clean separation between the architecture independent and architecture dependent parts

of the server, which in turn ensures that additional architecture support can be easily added

to the debugger.

A major consideration in the design of modern debuggers is one of portability. Most recent

debuggers are designed to be non-vendor specific, and support as wide a range of computer

architectures as possible. Portability has also been an important goal in the design of

GUARD, however supporting low-levfl debug services on multiple architecture- requires

considerable overhead. Instead, GUARD provides a well-defined interface between the

debug server and the low-level debug functions. This allows the services of a pre-existing

multi-purpose debugger, such as GDB [66], to be used to provide the low-level functionality.

If GDB is not available for a particular architecture, then the well-defined interface also

enables other debuggers to be utilised in its place.

The use of a backend debugger also has other benefits. It allows language and language run-

time specific details to be separated from the high-level debugger and isolated in the backend.

Accordingly, the debug client and server can be designed to be language independent, relying

on the backend to interpret the syntax and semantics of individual languages. Support for a

new language can then be reduced to a process of modifying the backend to interpret the

specific syntactic and semantic details of the language.

Most data parallel languages rely on the language run-time system to manage the distribution

of parallel arrays in a manner that is normally hidden from the user. The user need not be

concerned about how blocks of data will be decomposed and mapped to processes (although

some languages, such as HPF [29] and FORTRAN D [24] do provide mechanisms to specify

this). Similarly, it is a design philosophy of GUARD that the user should interact with the

debugger in terms of the data structures themselves, without concern for their

decomposition and distribution. In order to enable this functionality the debugger must



inherently understand how the parallel decomposition and distribution takes place. By

isolating the parallel language support in the debugger backend, the addition of new

languages is simplified, and changes required to the debugger are minimised.

CONCLUSION

This chapter has examined the architectural features that distinguish a parallel relative

debugger from conventional serial and parallel debuggers. Key innovations that have been

developed include:

• the use of dataflow technology to manage the evaluation of user-defined assertions;

• an architecture independent data format addresses the heterogeneous nature of the

debugger;

• a framework for defining and managing data decomposition mapping, shape

transformations, index permutations and array slicing; and

• a client/server architecture that provides a distributed platform on which the

debugger is built.

In addition, this chapter has described some advanced features of the GUARD debugger,

including a modular multi-layered architecture, a switchable network protocol subsystem, and

a pluggable debugger backend. The result is a debugger architecture that provides a new and

innovative technology for parallel software developers.

4-18



Chapter 5

DATA TRANSFORMATION ALGEBRA

Many of the transformations necessary for parallelising serial code discussed in Chapter 3 are

already implemented by parallelising compilers such as Parafrase [57], automated by pre-

processing systems [61], or documented by researchers [72], so are not new in their own

right However for the purposes of relative debugging, these transformations must be

specified explicitly because the debugger needs to generate the transformation in order to

access and compare data from both programs. Abstract algebra has been used to describe

program data structures for some time [26,43,60]. By defining an algebra that describes the

possible transformations, we provide a formal basis for extending our debugger to support

these techniques.

This chapter focuses on an algebra used to describe four types of array transformations:

• data decomposition;

• shape transformation;

• index permutation; and

• array slicing.

This formalisation does not attempt to duplicate prior work, but rather presents a framework

that allows data transformations to be described in terms of an algebraic abstraction. The key

advantage of this algebraic abstraction is that it lends itself to interpretation by the debugger,

and thus the transformations can be performed automatically. Currently the algebra is only

concerned with transformations on arrays, however it is intended that the abstraction be

extended to encompass other data structures and transformations in the future.

It is likely that many common transformations can be derived using the proposed algebra and

then packaged into macros written in the debugger command language for later use. Thus,

the user may not need to specify common transformations, but may simply choose one from

a pre-specified library. However, if a new transformation is required, the algebra and

5-1



associated command language are sufficiently powerful to allow the new transformation to be

specified.

DEFINITION OF NOTATION

The algebra defined in this chapter is concerned with abstractions about two kinds of objects:

arrays of data in computer memory and the (physical ur logical) processes that these arrays

reside on. Before describing the operations that can be performed on such arrays, a notation

for representing the arrays and processes will be presented.

ARRAY REPRESENTATION

An array of rank // (i.e. an ^-dimensional array) of data held in a computer memory is

represented as a set of ^-vectors, where each w-vector represents the index values of one cell

of the array. Note that the algebra is not concerned with the contents of the array cell, but

rather with the size, shape and location of the array elements.

Definition. Let [A]={O|1£O£A:} be a set of indices. Then the Cartesian product

[Ar,]x...x[A:n] represents the index values of a rank n array (the //-vectors). We

represent these ^-vectors using the notation [^.•••,A:n]=[A'1]x...x[^n]. We also call

this the shape of the array. The number of elements in the array is then given by

For example, the shape [5] represents a rank 1 array (a vector) containing 5 elements; the

shape [4,5] characterises a 4x5 array of rank 2; and the shape [4,5,3] characterises a 4x5x3

array of rank 3. Figure 5.1 shows the three arrays represented using this notation.

[5]

[4,5]

•

ft

Figure 5.1: Notation for Representing Arrays

5-2



In general, array indices used in programming languages can vary between some arbitrary

lower bound and upper bound rather than 1 and k. In order to simplify the algebra we need

to show that such an array is equivalent to one where the index values are in [k].

Proposition 1. Suppose the indices of a vector (array of rank 1) are elements of the

set A -{aeZ\l<,a<,u} for some lower bound / and upper bound // where

/ <u(l.u e Z). Then A is abstractly identical, or isomorphic, to the array shape [k]

where k = u -1 +1.

Proof. Lei ^ :Z-»Z define the translation
that:

= x-! + 1. Since ^ (x)eZVxeZ we find

- [k] where k = u-l + l

Since <f> is bijective, the shapes A and (j>{A) are isomorphic and hence are abstractly identical.

This result extends to array shapes [fc,,..., kn ] of rank n > 1 in a straightforward manner.

Example 1. Let ^(x,,x2)=(x1-4,x2-2). Then the array shape

{(x,, x2 )| 5 < x, < 8 and 3 < x2 < 7} is abstractly identical to [3,4] as in Figure 5.2.

Figure 5.2: Abstractly Identical Arrays

PROCESS REPRESENTATION

In addition to arrays of data, the algebra is also concerned about how data is distributed

across multiple processes on a parallel computer. If a particular process topology is

described as an w-dimensional mesh then the same notation as used for arrays, can be used

5-3



to deal with these process meshes. In this case however, an index value identifies a particular

process, rather than referring to a cell containing data.

Definition. A process topology described as an w-dimensional mesh of processes is

represented as an array shape [/'i,...,/'m] of rank m. The number of processes in the

m

array is then given by P = ]~[ p{

i=l

For example , 12 processes could be arranged as either a 3 x 4 , 3 x 2 x 2 , o r 6 x 2 mesh (and

o the r combina t ions) . These cor respond to t he arrays [3,4], [3,2,2] and [6,2] respectively.

Figure 5.3 shows t w o o f these topologies.

[3,4] [6,2]

C O O ® © © @ 6 ®

o o o m ® Q m e ®
© © ©

Figure 5.3: Process Topologies as Arrays

DATA DECOMPOSITION

Data parallelisation is concerned with the partitioning and distribution of data. However, in

order to use relative debugging with parallel codes, it must be possible to compare equivalent

serial and parallel data structures. To describe the distribution of an array onto multiple

processes for relative debugging purposes, we define an algebra that specifies how each

element of the array is mapped to a partitioned array on each process. Such mappings are

oblivious to the array data. They are expressed entirely as a mapping of the array shapes.

Definition. Let [[fc,,.. -,&„],[/?!,.• -,Pm]', a,p] define a heterogeneous algebra with the

two carriers:

[#,,...,*„] the shape of an am.̂  of rank », and

[/>!,..., pm ] the shape of a process mesh of rank nr,

5-4



and the two operations:

«:[&,,...,£„]->[£,,...,£„] the data mapping function, used to specify the

location of each element of an array on a particular process, and

p:[fri,...,A'n]->[p,,...,/>(n] the process mapping function, used to specif)' the

process that a particular partitioned array is located on.

To illustrate how these functions can be used in practice, examples of block and block-cyclic

decomposition are shown below. It should be noted that the equations provided are

sufficient for illustrative purposes, but may not necessarily be generalise to higher order

A'
arrays. In particular, the equations are only valid when px < —'- for 1 <, i S n .

Example 2. A simple example of block decomposition might be defined as follows. Let

m — n, then for 1 <, i < n define a and P by:

a ( x 1 , . . . , x j = (a1 . . . . ,a l l) where « ,=
ffo-ljmodrf,

.
a n d "< =

Pi

p(xl,...,xn) = (bl,...,bn) where b, =« d,
U

P.

For example, suppose we have the array [95,95]. For a process topology [3,2], then we have

the mapping shown in Figure 5.4.

PROCESSORS PARAIXEL ARRAY

SERIAL ARRJIY

1 3132 64 65 95

95

— •

^ —
J

-

— -

\ (!:.n
(2,1) (3,1)

. - • •

1

47

31
\ / 1

/ \47

31
\ / 1

'-.47

33

(U) (2.2)

Figure 5.4: Block Decomposition Example

(3,2)

•-• 1

1

18

31 \

') ( ^
/ \

48

3.

..
.-
••

)('
/

•••48

33

5-5



Example 3. As an example of simple block-cyclic decomposition, consider the case where

each process is allocated successive rows of an array. For this example we consider the

process mesh as a linear array with m—\. We then define the following mapping:

a(x,,...,xn)=(a,,...,fln) where a, =
+ 1

p(xx,...,xn)=(xn-l)modP + l

Suppose we have an array [95,95] and a process topology [4], then P - 4 and the

decomposition of this array is shown in Figure 5.5.

PARA1XEL ARRAY

PROCESSORS

SERIAL ARRAY

Figure 5.5: Block-Cyclic Decomposition Example

ARRAY SHAPE TRANSFORMATION

In the preceding section we introduced shapes as array index sets and considered simple

reblockings of such shapes. In general, more complex shape transformations include

permutations of array rows, columns or individual cells. An array shape transformation maps

an array shape of rank n into a shape of rank m preserving the number of elements.

Intuitively a shape transformation can be thought of as taking a rank n array, linearising it into

a 1-dimensional vector, swapping elements in this vector arbitrarily, and finally rebuilding the

vector into a rank m array. Each step of the process preserves the si2e of the array, so the

final array remains the same size as the original.

5-6



Definition. Let H/j,•••,/„],[#],[ftp...,£„,];#,*•,/?] define a heterogeneous algebra

with the carriers:

[/",,...,/„] the set of indices of an array of rank n,

[k] the set of indices of an array of rank 1, and

[/>,,...,6m] the set of indices of an array of rank rtr,

and the three operations:

0 :l/i>"•>/«]->• [fc] thc "flatten" function and used to linearise the array,

n : [k] -> [k] the "permute" function and used to permute the order of array

elements, and

/?:[Ar]->[fc,,...,6m] the "block" function and used to transform a flat array

into an array of rank m.

We call the bijection cr:|/],...,/n]->[A1,...,Am] where <j = p°no$ a general shape

transformation. Since a is a bijection, the number of elements in the arrays, given by

/j x...x/n =Z?, x...xbm, remains constant.

Example 4. The standard "flatten" function is always used to linearise the array in row

major order. This function is defined as follows.

, = , 1 I 7 = 1

To see how the flatten function works, consider the array shape [95,95]. For this array the

standard flatten function is:

The transformation of the array is show in Figure 5.6.

5-7



95

/

f 1

1
/ 1
1 1

1
/
/

Figure 5.6: Standard Array Flatten Function

Example 5. The standard "block" function is always used to convert a flattened array into

an array of rank m in row major order. This function is defined as follows.

P(*) = (*i.• • • >xm) where xt =
x-\

r.
modi, +1

and

Suppose we now wish to block this array to the shape [361,25]. The standard block function

for this array is:

= (x-1) mod 361 + 1, X - .

361
mod 25 + 1

Figure 5.7 shows the result of this transformation.

The composition of <f> and /?, fiofi forms a standard trarisformation from an array of rank n

to an array of rank m. This can be considered as a special case of a more general

transformation, in which a permutation n :[£]->[£] is applied to the index of the flattened

array.

5-8



25

Figure 5.7: Standard Army Block Function

Example 6. To illustrate the use of the general transformation function, consider an array of

shape [95,95]. Suppose we wish to transform this into an array of shape [19,25,19], but with

each pair of elements swapped. First we check:

95x95

9025
19x25x19

So the arrays contain the same number of elements and the transformation can be applied.

Next we find <f> and fi.

(x,,x2) = (x,-l
= x,+95x2-95

fa) = J
1 1 9 J

mod25 + l

J
— modl9 + l|
475J J

= |(x-l)modl9+l, — mod25 + l j — modl9 + l]
v. L 19 J [_ 475 J j

Finally, we define the permutation function:

*(*) =
x-l

x+l

>0

= 0

The result of this transformation can be seen in Figure 5.8.

5-9



•ii
91
95

V.9C2S

Figure 5.8: Rank 2 to Rank 3 Transformation

INDEX PERMUTATION

Index permutation introduces a very specific requirement the ability to reverse the order of

two or more of an array's indexes. After describing the concepts of data mapping and shape

transformation, it should be clear that either could be used to specify index permutation. We

choose to use data mapping because it is more intuitive, and more importantly because it

allows the useful ability to combine data mapping and permutation in one step.

Definition. Index permutation of an array is a special case of data mapping where

a: [fcj,..., kn ] -» fo,..., kn ] is defined so that the appropriate permutation is obtained.

Example 6. An example of an index permutation that swaps each pair of indices is:

If we are not concerned with process mapping when performing an index permutation, we

can define p(x,,...,xn)=(l), the identity function. The index permutation shown in Figure

5.9 is obtained using the array shape [4,5] with n - 2.

5-10



(1.1)

(2.1)

(3,1)

(4.1)

(1.2)

(2,2)

(3,2)

4,2)

(U)

(23)

(3.3)

C4.3)

(1.4)

(2,4)

(3.4)

(4,4)

1,5)

2.5)

3.5)

4.5)

Figure 5.9 Index Permutation Operation

ARRAY SLICING

Sometimes it is necessary to consider a subset of an array. This is achieved using army slicing,

which extracts a sub-array that preserves the rank but reduces the total number of elements

in the array.

Definition. Let [[£,,...,£„}.a] define a heterogeneous algebra where the carrier

[&,,...,#„] represents the shape of an array of rank tr, and the operation

a :[£,,...,&„]-> [/,,...,/„] is an array slice function such that [/,-]c [fcj.

Example 7. Suppose we wish to remove the first and last rows from the array [4,5] as

shown in Figure 5.10. In this case we define an array slice function

a(xl,x2)=(x1,x2 -1)| 1 <x2 <5.

(2.1) (2.2)

(3,1)

(2,3)

(3.3)

(2,4)

(3.4)

2,5)

3.5)

(2.1) (2,2)

(3,1)

(23)

(3,2)

(2,4)

(3,3) (3,4)

2,5)

3,5)

Figure 5.10 Array Slice Operation

5-11



CONCLUSION

This chapter has presented a series of algebraic definitions for transformations that are

commonly applied to data structures during the parallelisation process: data decomposition,

shape transformation, index permutation and array slicing. The algebra underpins a series of

command language features that allow users to compare a data structure in a serial code with

its equivalent parallel version using relative debugging. The implementation details of the

command language are discussed in the following chapter.

5-12



1 C I.) ap t e r 6

IMPLEMENTATION DETAILS

As detailed in Chapter 4, a parallel relative debugger must provide a range of functions to

allow relative debugging to be employed in a parallel environment. These functions can be

categorised as relative debugging support, parallel debugging support and parallel process

support. Such a debugger must combine a conventional interactive parallel debugger

architecture with the technology necessary to support the relative debugging of parallel and

sequential programs. This chapter will describe the specific implementation details that

comprise these key technologies, and form the basis of the GUARD debugger.

Most conventional portable interactive debuggers consist of three main components: a user

interface (either a command line interpreter (CLI) or graphical user interface (GUI), or both);

an architecture independent debugging engine that provides an abstraction of the high-level

debug operations; and a sst of machine specific low-level debug operations. In the case of

interactive debuggers for parallel computers, these are also mostly client/server based. As

detailed in the architectural description, GUARD includes all the features of a conventional

debugger (apart from a GUI), but also provides a number of additional features to support

parallel relative debugging. To achieve this, the GUARD implementation has been designed

with a client/server parallel debug engine forming the core infrastructure of the debugger.

Built on top of this core is support for the relative debugging technology.

This chapter will examine the specific implementation details of the GUARD debugger. In

particular, the following components will be considered in detail:

• the debug client, including the user interface, and the dataflow compiler, engine and

internal graph representation;

• the debug server, including the server startup process, interaction between the client

and the server, network protocol selection and debug backend selection;

• the client/server debug API;

• the architecture independent data format API;

6-1



• support for data and code transformations;

• support for the visualisation of differences; and

• support for data parallel languages, in particular ZPL.

DEBUG CLIENT

The debug client is the primary means of user interaction with the GUARD debugger. The

role of the debug client is io provide an interface between the user and the debugging

operations that can be performed on one or more target programs. The client is a stand-

alone application consisting of the components shown in Figure 6.1.

C „ y ft£% USER INTERFACE »>v

DATAFLOW ENGINE

1
AIF API |

1

DEBUG CLIENT API \

NETWORK API ^ * ^

Figure 6.1: Main Components of the GUARD Client

The debug client provides three main services consisting of:

• a user interface that allows users to control programs being debugged, enter

commands, and view the results of the commands;

• a dataflow complier that converts user-defined assertions into an internal dataflow

graph;and

• a dataflow engine that uses the dataflow graph produced by the compiler to

automatically control the execution of the programs and perform the required

comparisons.

6-2



Ihese services make use of a number of interfaces that are provided in the modular design of

the debugger. Both the dataflow engine and the user interface components utilise the

services provided by the AIF and debug client API's. These API's provide access to the

architecture independent format services and the debug operations that are available using

the client/server architecture respectively. The debug client API interfaces to the available

network protocols through the network API.

USER INTERFACE

GUARD is primarily a command line driven debugger (see Chapter 8 for details of work

developing a GUI). In the UNIX en\ironment, users enter commands via the standard

input, which are passed to the command line interpicter (CLI). The CLI parses the

command by splitting it into a series of words, each separated by white space. The first word

is used to index a lookup table that contains the address of the corresponding command

routine. The command routine is called and the remaining words are collected into an array

and passed as an argument to the routine. On completion, the command routine returns a

status value indicating the success or failure of the operation.

GUARD provides three types of command routines:

• prvcess targeted, that perform an operation on a process being debugged (such as setting

a breakpoint or single stepping);

• process optional, that optionally perform in operation on a process (such as evaluating

expressions): and

• _ process independent, that do not interact with a process (such as informational

commands).

Process targeted commands are primarily responsible for translating the command and its

arguments into a call to the debugger API, then displaying any results to the user. The

command may also need to update internal data structures, such as a list of breakpoints, as a

result of the call.

Process optional commands are similar in operation to process targeted commands, however

they can also perform actions that do not require communication with a target process. An

example is the print command, which evaluates an expression passed as an argument and

6-3



displays the result to the user. Issuing the command " p r i n t 5+3" does not require any

communication with the target process, so the result can be immediately displayed.

However, to complete the command " p r i n t a+4", the debugger must extract the value of

the variable a from the target process, then perform the addition and display the result.

Process independent commands do not require any communication -vith a target process.

These commands are generally informational, or are used to modify or display the internal

state of the debugger.

Commands are defined by populating a command lookup table with the name of the command,

the command type, and the address of the command routine. Various support routines are

provided to facilitate the addition of new debugger commands. GUARD commands can

also support sub-commands by indexing additional command lookup tables with the second

and subsequent command words. The two pre-defined commands info and s e t support

sub-commands by default.

The CLI operates in two modes: immediate and deferred. In immediate mode, commands are

parsed and executed as soon as the user types them. This is the normal mode of operation

for the debugger. Some immediate mode commands switch the CLI to deferred mode.

When deferred mode is entered, commands are collected and stored internally until the

"end" command is typed. At this point the debugger processes the deferred commands,

then switches back to immediate mode. Commands that utilise deferred mode include

"graph", "map", " t rans" , and "func". Appendix A provides a description of all the

commands supported by GUARD.

DATAFLOW COMPILER

Assertions and other control statements that are collected by the deferred mode command

interpreter are passed to a dataflow compiler. These assertion and control statements

correspond to a low-level graph description. The dataflow compiler translates this graph

description into a series of nodes and edges representing the dataflow graph, and stores the

resulting graph internally. A simplified version of the graph description syntax is as follows

(the full syntax is presented in Appendix A).

6-4



graph $name /-debug./
control statement(s)
assertion statement(s)

control statement(s)
assertion statement(s)

end

The "graph" command switches the interpreter to deferred mode, and allows a name to be

associated with the resulting dataflow graph. The graph description then consists of a series

of control and assertion statements. The control statements are used to modify the

behaviour of the assertions that follow them. For example, the control statement

"se t e r r o r 0 .1 0.5 abso lu t e " could be used to set the lower and upper tolerances

and the tolerance type for subsequent assertions. The effect of the control statements is to

modify the value of constant nodes that are emitted by the compiler, which are discussed in

more detail below. The "end" command terminates the graph description.

Compilation is completed in a single pass of the graph description. Single pass compilation

places some restrictions on the semantics of the language, by precluding the use of forward

references to functions and variables, and requiring that control statements precede the

assertions they are intended for. Apart from the usual check of assertion syntax, the

compiler also performs some limited type checking, and verifies that process references are

valid.

The compiler generates a dataflow graph using a number of standard graph templates. These

templates are supplied with information derived from the graph description, and are used to

specify the nodes in the graph, and the edges that are used to connect the nodes together.

The information passed to the templates is used to specify the values that are generated by

special constant nodes. These nodes are used to generate information such as file and variable

names and line numbers at the appropriate point the execution of the graph. The primary

template is the ASSERT template which defines the structure of a dataflow graph used to

process a single assertion. Figure 6.2(a) shows the basic ASSERT template. For simplicity,

boxes in the diagram represent sub-graphs that perform complex operations. The special

symbols ® and © represent a synchronisation node and a merge node in the graph

respectively.

6-5



1PI r

H8K-
•>• COMPARE

(V1.F1.LI)

SET BREAKPOINT
AT "Fl^O,!

START

WAIT FOR
BREAKPOINT

READ
VARIABLE VI

I DISPLAY |

(a) Basic ASSERT Template (b) Basic EXTRACT Template

Figure 6.2: Standard Graph Templates

The ASSERT template takes eight parameters, which correspond to the process name,

variable name, file name and line number from each half of an assertion. So, an assertion

such as:

a s s e r t $ p l : : v l @ " f i l e l . c " : 3 5 = $p2: :v2@"fi le2. c" : 55

will result in the generation of die ASSERT template:

ASSERT($pl, " v l " , " f i l e l . c " , 35, $p2, "v2", " $ f i l e 2 . c " , 55)

The ASSERT template comprises two EXTRACT sub-graphs, a COMPARE sub-graph, a

DISPLAY sub-graph and a number of nodes to perform synchronisation operations. The

EXTRACT sub-graphs are generated from the EXTRACT template shown in Figure 6.2(b).

One sub-graph is generated for each half of the assertion statement. The EXTRACT template

takes three parameters consisting of a variable name and breakpoint location (file name and

line number), specifying the name and location of a variable to be extracted from a process.

The templates in Figure 6.2 are also able to deal with multiple assertions, provided they refer

to independent processes or are able to share EXTRACT sub-graphs. In the latter case the

6-6



shared sub-graphs are simply merged together and the data sent to the appropriate

comparison sub-graph. For example, consider the following two assertions:

assert $pl::vl@"filel.c":35 = $p2::v2@"file2.c":55
assert $p3::vl@"file3.c":15 = $p2::v2@"file2.c":55

The right hand side of these assertions refers to the same process, variable and breakpoint

location. This means that the EXTRACT sub-graphs that are generated can be merged

together in the final dataflow graph. Figure 6.3 shows a dataflow graph that represents these

two assertions.

ASSERT(Spl, "vl", "filel.c".35,$p2. "v2". "file2.c",55) ASSERT($p2. "v2". "file2.c",55,$p3. "v3"."file3.c".15)

Sp2 Sp3

COMPARE COMPARE

DISPLAY DISPLAY

Figure 6.3: Assertions With Merged Sub-graph

While this method works well for simple assertions, problems arise when assertions extract

different variables at multiple line numbers from within the same process. In order to

overcome this difficulty a more general form of the EXTRACT template must be used. The

new EXTRACT template is shown in Figure 6.4.

6-7



fiXTMCT(l'l...rm,Fl.Ll....n,...rm,FnljO

SET BREAKPOINT
AT"F1":L1

WATT FOR
BREAKPOINT

-L

SET BREAKPOINT
AT"Fn":Ln

START

i

READ VI [READ Vm|

WATT FOR
BREAKPOINT

"Fn":Ln

READVm

f

Figure 6.4: General EXTRACT Template

The generalised EXTRACT template allows m variables at « breakpoint locations to be read

from a single process. When this template is used in conjunction with the ASSERT template,

any arbitrary set of assertions can be defined.

As an example, consider the following assertions:

assert $pl::vl@"filel.c":35 = $p2::v2@"file2.c":55
assert $pl::vl@"file3.c":15 = $p2::v20"file2.c":55
assert $pl::v2@"file3.c":15 = $p2::v20"file2.c":40

These assertions will generate the following ASSERT templates:

ASSERT($pl
ASSERT($pl
ASSERT($pl

Since all three assertions share the same processes, the EXTRACT sub-graphs for these

assertions will need to be merged. The end result will be a dataflow graph containing the

following two EXTRACT templates:

EXTRACT("vl", " f i l e l . c " , 35, " v l " , "v2" , " f i l e 3 . c " , 15)
EXTRACT("v2", " f i l e 2 . c " , 55, "v2" , " f i l e 2 . c " , 44)

The resulting graph is shown in Figure 6.5.

6-8



jEXTRACT i
l ("v l* / '

> fHs l . c - ,33 ,

Figure 6.5: General Assertion Graph

The full graph syntax allows the use of general expressions in the specification of assertions.

These expressions can contain numeric constants, internal variable references and function

references, as well as the usual arithmetic and logical operators. When the compiler

encounters such an expression, it is first converted into postfix form. The compiler will then

generate a sub-graph that evaluates the expression and insert the sub-graph at the appropriate

point in the ASSERT graph. Figure 6.6 shows and example of this translation process.

infix expression

$var * 56 - 14

postfix expression

$var 56 * 14 -

Figure 6.6: Expression Compilation

The graph syntax also supports the use of sub-array operators applied to array data types.

The sub-array operator is translated into a sub-graph using a special SLICE node, with the

sub-array bounds supplied as inputs to the node. Support for the transformation of array

shapes is handled in a similar way, using a special TRANS node. The sub-array and shape

transformation sub-graphs are inserted into the ASSERT graph at the appropriate locations

by the compiler. Figure 6.7 shows examples of these translations.

6-9



subarray operator

$ v a r [ 1 0 . . 2 0 ] [ 5 . . 1 0 ]

shape transformation

trans ($var, $shaf._)

succ)

T

$var Sahape

TRANsi

T

Figure 6.7: Sub-array and Shape Transformation

As described in previous chapters, support for relative debugging of parallel processes is

achieved through the use of parallel data mapping. Data maps are implemented in much the

same way as shape transformation functions, by using a special MAP node. However, unlike

TRANS, the inputs to the MAP node are obtained from data extracted from each parallel

process. In practice this means that for n parallel processes, there will be n EXTRACT

templates connected to the inputs of the MAP node. The output of the MAP node is then

used as input into the COMPARE sub-graph in the usual way.

Sp[0] Sp[l) Sp[2]

vi "!

'"FXTRACP r

| v2 - ! •

JtTRACT

v2

[EXT~RACT"

MAP

1

Figure 6.8: Data Mapping Graph

Figure 6.8 shows a simplified graph of the following assertion:

assert $s::vl@"filel.c":42 = map($p::v2@"file2.c":99)

6-10



In this example the data mapping function map is used to compare an array from a serial

process with one distributed across number of processes. Here, $s represents the serial

process and $p is used to refer to all of the parallel processes (in this example there are three,

$p[0]> $p[ l ] and $p[2]). The function map, which is unspecified here, is assumed to

replicate the data decomposition technique used to model the serial data in the parallel code.

INTERNAL GRAPH REPRESENTATION

The result of the compilation process is a dataflow graph that is stored using an internal

graph representation. This internal format is comprised of two main components: a linked

list of node objects, and a list of the tokens that are currently active in the graph. Each node

object contains a node identifier, information describing the function the node is to perform,

and connectivity information. Graph edges are not maintained explicitly. Instead, each node

contains two arrays, one holding input objects and the other output objects. These input and

output objects provide the connectivity information needed for tokens to traverse the graph.

Nodes that have at least one token on an input are also kept on an active list to avoid

traversing the entire graph during processing. Figure 6.9 shows this arrangement.

Input array Output array

Inputs from
other nodes

Active list

Node 35

Outputs to
other nodes

Figure 6.9: Internal Graph Format

'The dataflow graph employs a modified static dataflow architecture. Each input object

provides a FIFO queue that is able to store multiple tokens. Tokens must arrive at the node

in the correct order as the graph matching logic only examines the head of each queue. The

input and output objects also employ a form of flow control, so when an input queue is full

the output object can be instructed to suspend the generation of new tokens.

The use of a static queued dataflow architecture is an important element of the debugger

implementation because it allows the time that a program must wait after reaching a

6-11



breakpoint to be minimised. Data can be extracted, stored on an input queue, and then the

program restarted almost immediately. The disadvantage with such an architecture is that the

graph must be carefully constructed in order to avoid a deadlock situation.

DATAFLOW-' ENGINE

When the user issues an immediate mode " s t a r t " command, the graph is passed to the

dataflow engine for execution. It is the job of the dataflow engine to manage the flow of tokens

through a graph generated by the compiler. Since no tokens are present in the graph when it

is first executed, a special start node must be primed with a single token and placed on the

active list. The dataflow engine then checks the active list to see if any nodes are ready to

fire. Nodes in the dataflow graph only fire when tokens are present on all their inputs,

except in uV special case of the merge node, ©, which fires when a token is present on any

input. When a node fires a number of actions take place:

• the tokens are removed from the inputs and discarded;

• an output token may be generated;

• the node may perform some internal operation; and

• the node is removed from the active list.

If the node generates a token, the engine will route the token to the input of any nodes

connected to its outputs, and these nodes will be placed on the active list. The active list is

again checked for nodes ready to fire, and the entire process repeated. The engine will

continue execution until a token is sent to an EXIT node, or an error occurs.

The ASSERT graph manages the comparison of data from separate processes. It does this by

first setting breakpoints at the appropriate locations in each process, and then waiting for a

breakpoint to be reached. When a breakpoint is encountered, the graph will extract the data

value from the process. All these operations are managed for each process using an

EXTRACT sub-graph. An EXTRACT sub-graph has two inputs: an initialisation input and a

synchronisation input. A token containing a reference to a process can be sent to either

input. The actions performed by the EXTRACT sub-graph are:

6-12



1. set one or more breakpoints at the specified lines of the source files;

2. start (or restart) execution of the process;

3. wait for a breakpoint to be reached; and

4. obtain the contents of the variables associated with this breakpoint.

A token received on the initialisation input will perform actions 1 through 4, while token

received on the synchronisation input will perform actions 2 through 4. The output from the

EXTRACT sub-graph consists of tokens containing the values of each of the variables at the

location of the breakpoint that has been reached, and a token that can be used for

synchronisation purposes.

The data from each EXTRACT sub-graph is sent to the input of a COMPARE sub-graph that

performs the comparison operation. A COMPARE sub-graph has two inputs (one for each

EXTR?\CT) and two outputs: a data output and a synchronisation output. The COMPARE

sub-graph checks the value of the comparison against an upper and a lower tolerance value.

The result of this check determines what output tokens are generated by the sub-graph, or if

the graph execution is terminated. Figure 6.10 shows the possible output combinations for

some difference value e, and upper and lower tolerance values // and /respectively.

Tolerance
£<l

1<£<U
£>U

Data Output?
no

yes

yes

Sync Output?
yes

yes

yes

Tetminate?
no

no

yes

Figure 6.10: COMPARE Sub-Graph Actions

A token generated on the data output of the COMPARE sub-graph is sent to a DISPLAY node

to be displayed to the user.

The ASSERT graph must restart execution of the processes it controls at the earliest available

opportunity, so that data is continually available for comparison. However it must do so in a

way that prevents one process from flooding the graph with tokens. The graph does this by

delaying the process restart until the EXTRACT sub-graph has completed and the comparison

has been performed. Since the comparison is dependent on data values from both EXTRACT

sub-graphs being available, this implicitly synchronises the processes and forms a simple flow

6-13



control mechanism. The end result of this process will be a steady stream of tokens reaching

the inputs of the COMPARE sub-graph.

DEBUG SERVER

User interaction and the evaluation of user-defined assertions in GUARD is the

responsibility of the debug client. However the process being debugged might reside on a

completely separate machine, possibly with a different architecture. The job of managing and

controlling the target process is the responsibility of the debug server. The debug server

provides a mechanism for accepting high-level client debug requests using an arbitrary

network protocol and mapping these into low-level debug operations on a target process.

The server is also responsible for managing and reporting asynchronous events that occur as

a result of debugging the target, as well as handling terminal I/O streams between the client

and the target process. The main components of the debug server are shown in Figure 6.11.

Client debug requests are received by the server via the network API and are passed to the

debug server API layer. This layer decodes the client requests and invokes the appropriate

backend routines. The debug backend provides the low-level debug routines that correspond

to each of the possible client debug operations. If a backend routine produces a response,

then this is passed to the debug server API, which in rum forwards it to the client via the

network.

Figure 6.11: Main Components of the GUARD Debug Server

SERVER STARTUP

The mechanism used to start the debug servers is an important issue because it is

fundamental to the client/server architecture. The debug server startup mechanism used by

GUARD provides the following features:

6-14



T

• the ability to start multiple simultaneous processes for parallel codes;

• notification of server startup failure;

• user selection of network protocol; and

• user selection of debugger backend.

The debug servers are started when the client calls the Dbglnvoke () debug client API

routine. The startup method, the location and the number of debug servers that are started

depends on a number of factors, including the location of the target process, whether the

target process is serial or parallel and what operating system the target machine uses.

For sequential programs there are three possible methods to start the debug server. These

include:

a) the server process is executed directly on the local machine using the exec () system

call;

b) the Berkeley remote shell command is used to start the server on a remote UNIX

system; and

c) the Cluster i^ispatcher [7] is used to start the server on a remote NT system.

For parallel programs, the method used to start debug servers in order to debug each parallel

process depends on the architecture of the parallel runtime environment. There are currently

two mechanisms supported: the explicit method and the wait-attach method.

The explicit method requires that GUARD start each process via an individual debug server.

To do this, GUARD executes a debug server for each parallel process (using either method

(a) or (b) above) and passes the program name as an argument. Each debug server is then

able to start a parallel process under its control. In order for this method to work, the

number of parallel processes must be static and the run-time environment must provide a

mechanism for associating a task ID with each process. The explicit startup method is

shown in Figure 6.12.

6-15



parallel program

DEBUG
CLIENT

Figure 6.12: Explicit Startup Method

The wait-attach method is available for situations where the parallel run-time system does not

provide support for explicit process startup. This method requires that the debugger obtain

the UNIX process identifier (PID) for each parallel process, and then attach debug servers to

the running processes. In order to support the wait-attach method, the parallel run-time

system must know that a parallel program is to be started under debugger control, and also

requires that the parallel program use a master/slave arrangement The run-time system

must ensure that each process waits at a well-known location until the debug server has had

time to attach. Once the debug servers have attached to all the parallel processes, execution

can continue under debugger control. The wait-attach startup method is shown in Figure

6.13.

parallel program

DEBUG ^ D E B U G \
CLIENT J+--rDT__ SERVER ) *

Figure 6.13: Wait-Attach Startup Method

6-16



Currently, three parallel run-time systems are supported. These are the distributed memory

systems MPICH and IBM's Parallel Environment and the shared memory system P4. Figure

6.14 shows the server startup method for each of these systems, along with the startup

command that is us;d by GUARD to initiate the parallel program.

Parallel System
MPICH
IBM PE

P4

Startup Method
explicit
explicit

wait-attach

Stan Command
inpirun
poe
rsh/exec

Figure 6.14: Parallel System Startup Methods

A debug server that is started using any of these invocation methods is passed a number of

arguments. The arguments are used to supply essential information that the server needs to

know in order to communicate with the client. These arguments are as follows:

-pprvto the server protocol, such as "rpc" or "socket", which must match the

protocol used by the client;

-h host the host name or IP address of the client;

-c callback^ a protocol specific communication point in the case of RPC, an RPC

program number, or for sockets, a port number;

-a arch the architecture type, specifying a serial process, or one started by MPICH,

IBM's PE or P4;

~\pid the PID of a process the debugger is to attach to (wait-attach method only);

-n taskid the task identifier of this process in a group of parallel processes (wait-

attach method only);

-b backend the backend debugger type; and

program [args] the name of the target process, and any arguments it requires.

When the debug server is started using one of these invocation methods, its first action is to

invoke the appropriate debug backend supplying the target process name and arguments.

The server will then contact the client using the protocol specific communication point. If

6-17



the backend fails for some reason, an appropriate error condition is returned. Provided there

are no other problems, the debug server supplies the client with the following information:

• the host name on which the server is executing (since this may not be known die

client, particularly for parallel processes);

• a protocol specific communication point;

• for parallel processes, the process task id; and

• a port number used to handle terminal I/O.

If the client invokes a p^-allel program, then the startup sequence will be repeated for each

process that is started, and each server will communicate this information back to the client.

Once all the processes have been started, the debugger is ready to begin the debug session.

The Dbglnvoke () routine will not complete until the number of processes that start

matches the number of processes requested, or an uxor occurs.

CUENT/SERI/ER OPERATION

Once the debug server startup process is completed, the client is able to issue debug requests

to the server using the selected protocol and the negotiated communication point. This

process will continue until the client issues a server shutdown request using the

DbgFinish () debug client API routine.

Dbglnvoke()

host:
prog:
task:
port:

far
2445
0
7668

' other debug
operations

^DbgQuit()

dbgsrv -h near -c 2234 -p rpc
-a serial myprog

RPC
host: near
prog: 2234

RPC
host: far

prog: 2445

RPC
host: far

prog: 2445

Figure 6.15: Example Client/Server Operation

6-18



An example of the client/server operation is shown in Figure 6.15. In this example, the

client is running on a host called "near" and the server will be started on a host called "far".

Events that occur during the life of the server are numbered consecutively. A description of

each event is provided below.

© The debugger client issues a Dbg Invoke () request to start a serial process on host

"far" using the RPC protocol.

© The client API determines that the remoce shell command will be used to start the

server, and the server command is issued. The arguments to the command supply a

host name of "near" and an RPC program number of 2234. They also indicate the

process is serial and that the RPC protocol will be used.

© Once the server starts successfully, it issues an RPC callback request using the

supplied hostname and program number.

© The client obtains the appropriate information from the RPC callback. At this point

the startup negotiation is complete.

© The client can now issue debug operations to the server.

© Debug operations will use the hostname and RPC program number obtained during

the startup negotiation.

© When the client has finished the debug session, it issues a DbgQuit () request.

© On receipt of the request, the server terminates.

NETWORK PROTOCOL SELECTION

Part of the startup sequence is used to determine the appropriate network protocol. The

actual protocol to be used h selected by the client using the Dbglnit () debug client API

routine as described below. On the server side, the protocol is selected by supplying the

protocol name as a command line argument. This is in turn used to index a protocol switch

table in a similar manner to the client.

6-19



DEBUG BACKEND SELECTION

In order to select a debug backend, the client passes the name of the backend to the server as

a command line argument. The server uses this to index a backend switch table. This table

contains the entry points for the low-level debug routines that must be implemented by the

backend. Currently only the "gdb" backend is supported, allowing the use of the GDB

debugger [66] to provide the backend services. If GDB is not available on a particular

architecture, then this technique allows other backends to be added with relative ease.

CLIENT/SERVER DEBUG API

The debug API is central to the operation of GUARD as a client/server debugger. The API

provides the mechanism that the client uses to communicate debug commands to the server,

and the server uses to send the results of these commands back to the client. The following

functionality is provided by the debug API:

• the ability to start and stop debugging processes;

• a set of high level debugging operations that can be performed on a target process;

• the ability to notify the client wi\- a debug operations are completed, or when the

state of the target process changes;

• the facility to control terminal I/O channels between the target process and the

client;

• a switchable low-level debugger interface; and

• a switchable network protocol interface.

The debug API is separated into two parts: a client debug interface and a server debug

interface which are discussed in more detail below.

CLIENT DEB UG INTERFACE

On the client side, the debug API provides a set of routines that implement the high level

debug operations. These op> rations are grouped into the following categories:

6-20



i • debugger initialisation routines;

• process management routines, such as starting and terminating processes;

• debug operation routines, such as setting breakpoints and traversing stack frames;

• notification routines, such as waiting for a breakpoint to be reached or notification of

a signal; and

• status routines, such as obtaining the state of the debugger or displaying error

messages.

i

Appendix B provides a list of the currently implemented routines and a detailed description

of each routine. Many of the API routines return pointers to pre-defined data types

representing various objects of interest to the debugger. These data types allow access to

debugger specific information, such as breakpoint details, call stack frame information and

debugger events. A complete list of the pre-defined types is provided in Appendix C.

To begin a debug session, the client first calls the Dbglnit () routine. This routine must

, always be called before any other routine so that the client interface can be initialised. This

routine is also used to select the required network protocol.

Once the API has been initialised, the client must invoke the program to be debugged using

the Dbglnvoke () routine. The result of this call is an opaque pointer that must be used to

identify the target process in subsequent calls to other API routines.

I

After invoking the target process, the client must arrange to deal with any terminal I/O that

the process requires, and to service events that are generated as a result of debugging the

! ~ process. To do this, callback routines are registered using the DbgHandlelnput (),

DbgHandleOutput () and DbgHandleEvent () routines.

1 At this point, the client is ready to issue debug commands using the debug operation and

status routines available in the API. On completion of the debugging session, the client calls

the DbgQuit () routine to terminate the target process and shut down the server. Finally

Dbg F i n i s h {) is called to release any internal data structures associated with the client API.

A typical client calling sequence for the debug API is shown below.

6-21

i



main()
{

void *p;

Dbglnit{proto);

p = Dbglnvoke {program);

DbgHandlelnput(p, in_callback);
DbgHandleOutput(p, out_callback);
DbgHandleEvent(p, ev_callback);

/* Call debug operations */

DbgQuit(p);

DbgFinish();
exit (0);

}

Client/server network protocol selection on the client side is managed by the Dbglni t ()

routine. The argument to this routine is a string identifying the protocol to be used. This

string is used to look up client protocol routines in a ptvtocol switch table. Currently two

protocols are defined: "rpc" and "socket". The "rpc" protocol uses Sun Microsystems'

Remote Procedure Call (RPC) Protocol [67] for communication between the client and

server. The "socket" protocol uses standard Berkeley sockets for communication. The latter

is useful for systems that do not support RPC, such as Windows NT.

While the network protocol is established at initialisation time, the client/server API allows a

different debug backend to be selected for each target process. The backend is selected by

the client which supplies a string argument to the Dbglnvoke () routine. This information

is passed directly to the server as a command line argument. The server then uses this

information to select the appropriate backend routines in a backend switch table.

The client must be able to handle asynchronous activities generated as a result of the

debugging operations. The client API supports this through the use of callback routines. If

the process interactively reads or writes to the users terminal, this needs to be intercepted and

managed via the debugger user interface. In addition, the process management routines,

such as DbgGo () and DbgStep () do not return a value immediately, but rather initiate an

operation that may complete at some future time. In order to receive notification of the

completion of these operations, the client must register an event handling callback routine.

6-22



The use of asynchronous callbacks places some restrictions on the nature of the client.

Callbacks are particularly suited to graphical environments such as X-Windows, since these

environments generally operate on an asynchronous event model. The use of callbacks is

less common in command line environments, since it precludes a main command loop from

blocking at any stage. In order to facilitate the use of the API in command line

environments, a special event handling routine is provided. The WaitForEvents ()

routine can be used to block until an event is received or input is available on the command

line. By using this routine, the main loop of a command line interpreter can be simplified

significantly. A typical main loop is shown below.

while ( !finished )

DisplayPrompt() ;

WaitForEvents(fileno(stdin)) ;

ReadAndExecuteCommand();
}

SERI^R DEBUG INTERFACE

On the server side, the debug API is responsible for communicating client debug requests to

the backend debugger and for returning results to the client. The server API is also

responsible for managing asynchronous events and terminal I/O streams. There are two

main components to the server interface:

• a series of server stub routines that interface to the appropriate backend services; and

• utility routines that are used by the debug backend to process debug requests.

Client debug requests are received via the network interface where they are passed to the

debug server API layer. This layer decodes the request and its associated arguments and

invokes the appropriate server stub routine. The server stub routines are associated with

corresponding backend routines using the backend switch table. This results in the

appropriate backend routine being invoked to perform the requested operation. Once the

backend routine has completed its operation, an event will be generated and returned to the

client. This event be delivered either synchronously or asynchronously, and can contain

result or status information. Figure 6.16 shows this process in operation.

6-23

±



server stubs

Figure 6.16: Debug Server API and Backend Switch Table

In addition to the stub routines, the debug server API provides a number of utility routines

for use by the debug backend. These include routines that provide the following services:

• event creation and handling;

• debugger status management;

• error handling; and

• asynchronous task processing.

Details of these routines are provided in Appendix D.

ARCHITECTURE INDEPENDENT FORMAT

AIF is designed to achieve true architecture independence for arbitrary data types. The key

components of the AIF system are:

• a format for representing data in an architecture independent manner;

• routines for converting to and from native formats;

• routines for performing arithmetic, logical and comparison operations on AIF data;

• routines for accessing components of structured data types; and

• routines for performing I/O on AIF data.

6-24



Data types are represented in AiF using a data tag and a normalised bit stream. When data is

converted to AIF, a series of normalisation operations are performed. These operations

include the conversion of integers to big-endian byte ordering, characters to the ASCII

collating sequence and floating-point number to the IEEE 754-1985 big-endian format [31].

The format also standardises on a byte size of 8-bits and single byte characters. Since the

normalisation operations can result in the loss of native format information, the bit stream is

tagged with a format descriptor string (FDS). Figure 6.17 shows the current format

descriptor tags.

Tag
c

is/

f/

*lt

unt2

<?,=v,,..., e=v^-

VI

Rrf

Type
character

integer

floating-point

address

array

structure or union

enumeration

range

void

ZPL region

Details

j is s (signed) or u (unsigned), /is size in bytes

/is size in bytes

type /, /is size of the address in bytes

type t2 with index type //, which must be a range

/ is size in bytes, J, is the name of the field, o, is
the offset in bits from structure's origin, I, is the
size in bits, and /, is type of the 6eld
e, is the name of each value t>.

based on integral type /with t'^and J'^as limits

/is size in bytes

rank r, whose limits are base on integral type t

Figure 6.17: AIF Format Descriptor Tags

Tags for simple data types provide AIF library routines with a type identifier, a field

indicating if the type is signed or unsigned, and the length of the data. This allows different

integer sizes and single, double, and extended floating point formats to be recognised, and

also ensures that the AIF library routines can perform calculations with no loss of precision.

Complex data types have tags that describe the size and memory layout of the data, and can

contain nested tag types.

Figure 6.18 shows an example of how a C structure is represented in AIF. In this example,

the format descriptor string is used to describe the layout of a structure. The FDS starts with

"{16=" indicating that the accompanying data represents a structure that is 16 bytes in total

length. The next two fields separated by ", " describe the layout of the fields in the structure.

The string "a@0#32 : i s 4 " defines the name of the first field as "a", along with its starting

position and length (0 and 32 bits respectively), and a type of " i s4" indicating a 4 byte

signed integer. The string "b@32#72: [rO. . 2 i s4 ] f4" defines the name of the second

field as "b" and indicates that the field starts at bit position 32 and is 72 bits in length. The

I

6-25



type of this field is given as " [rO. . 2is4 ] f 4". This is a complex type that defines an array.

The string "rO. . 2 i s 4 " specifies a range consisting of 3 elements of type " i s4" . When

applied to an array, this specifies the number of elements in the array. The type of each

element is defined as "f 4" or a 4 byte floating point number.

C STRUCTURE

struct (
int a;
float b[3],

AIF REPRESENTATION

FORMAT DESCRIPTOR

DATA

bytel \ byte 2 | iyte3 | byte 4

sign

sign
sign

exponent

exponent
exponent

mantissa

mantissa
mantissa

Figure 6.18: AIF Representation of a C Structure

Data is converted into AIF using one of the data conversion routines. Routines are provided

to convert simple data types, such as IntToAIF() and FloatToAIF () and complex data

types, such as ArrayToAIFO and St ruc tToAIFO. All the data conversion routines

return a pointer to an AI F structure that holds the data and tag information. This pointer

can then be used as an argument to the other AIF routines. Routines are also provided

convert AIF data back to native format.

Once data is converted to AIF it can then be manipulated using the arithmetic and logical

operations. The code below shows an example using the AIF API to multiply two integers.

main i

int i = 45;
int j = 33;
int res;
AIF * ai;
AIF * aj;
AIF * ar;

ai = IntToAIF(45) ;
aj = IntToAII (33);
ar - AIFMul(ai, a j ) ;
res = AIFToInt(ar) ;

printf("th- result is %d\n", res);

exit (0);

6-26



In this example, the IntToAIFO routine is used to convert the integers into AIF. The

AIFMul () routine then multiplies the values and returns the result, again in AIF. This can

then be converted back to the native format for display.

Routines are also provided to access and manipulate complex data lypes, such as indexing

elements of arrays, iterating over array indices or retrieving structure fields. In addition,

routines are available to perform I/O on AIF objects, such as reading from and writing to

files. A full list of the AIF routines is given in Appendix E.

The current implementation provides descriptors for C, Fortran, and ZPL [42]. Additional

languages can be employed by defining new descriptors for each data type that is not

supported by the current descriptors, and by providing routines to perform appropriate

operations on these data types.

DATA AND CODE TRANSFORMATIONS

In previous chapters, we have discussed the types of transformations that are often applied to

data structures and code when translating programs from serial to parallel architectures, and

have presented an algebra for describing the array data transformations. The data

decomposition, shape transformation, index permutation and array slicing transformations

are implemented in the debugger using a new command language that allows libraries of

common transformations to be developed. A mechanism for the creation and population of

temporary arrays has also been added to the debugger command language in order to provide

support for temporal displacement techniques such as variable promotion and loop fusion.

The following section discusses these features in more detail.

DATA PARALLEL DECOMPOSITION AND INDEX PERMUTATION

As described in Chapter 4, the "map" command is used to specify how serial arrays are

decomposed when a code is ported to a parallel architecture and when performing

-permutations of array indices. When a map is applied to a series of data structures that

comprise the parallel array, a new single data structure is created. For the purposes of this

discussion, we denote this resulting array by R, although it normally is not explicitly named.

Given a "proc" and "index" function defined by the mapping, an array of process

identifiers P and a parallel array A, the following pseudo-code shows how GUARD will

compute the elements of Me resulting array:

6-27



for (each index (xu.. .,;<•,) of the result array R)
compute (pu.. .̂ >J where/), = proc{/; (xu.. .p<)) forj=\..m
compute (ax,.. .,a) where a} — index(/, (v,,...,*•„)) for /-I..//
set R[*•„.. .,xj = P [/>„.. .J>J : : A [*,,...,*„]'

endfor

Note that the index and proc functions are actually supplied with two arguments. As

shown above, the first argument is the index number. The second argument is an array

representing the values of the indices of the current element of the result array R during the

computation. This information ensures that complex mapping functions can be defined.

SHAPE TRANSFORMATION

Array shape transformation is specified using the " t r a n s " command. This is the process of

flattening the array into a 1 dimensional vector, performing an arbitrary mapping on the

vector, then blocking the mapped vector to an array of the new shape. Sincfj flattening and

blocking of arrays uses the standard transformation functions <j> and J3, the user only needs to

define the permutation fiinction 7t (called "index" when defining the transformation) in

order to specify a shape transformation.

Given a permutation function n, an array A and the shape of an array B, the result of the

transformation is a new array which we denote as R. The following pseudo-code shows how

the result array is computed:

for (each index (xu.. .,x^) of the array A)
compute i~(f) (xu.. .,x^)
set F[/] =A[xu...^xJ

endfor

for (each index /of the array F)
computey= index(f)
s e t F l [ / ] =F[t]

endfor

for (each index / of the array Fl)
compute {yu...^= fit)
setRtfl,...^,] =F1[/]

endfor

The first loop computes the flattened vector F. This is done by applying the flatten function

(f> to the indices of array A to calculate a new index value /'. The corresponding value of A is

1 The notation P [p\,--J>m] : : A [dl,...,«•] means the (•«,...,tf,) element of array A on process (pi,...^»).

6-28



then stored in F at the location specified by /. The next loop applies thr permute function

index to each element of F to create a new vector Fl. The final loop then blocks the Fl

vector to the resulting array R.

VARIABLE PROMOTION AND LOOP FUSION

Support for variable promotion and loop fusion involves extracting data from within an

executing program and storing the values as internal variables in the debugger. The debugger

syntax then allows these internal variables to be compared with data from target programs, or

with other temporary debugger variables.

The implementation of internal debugger variables uses the same implementation techniques

as that used for storing data from target programs, and involves converting the data to the

architecture independent data format, AIF. The AIF API provides all the support necessary

for managing these internal variables. GUARD provides the user with a " c r e a t e "

command that can be used to instantiate scalars, or arrays of a specified size and shape.

These data structures are initially "empty", but can be subsequently populated with data from

a target program using the "a s s ign" command.

VISUALISATION OF DIFFERENCES

The visualisation of differences that have been obtained by the execution of user-defined

assertions underpins the relative debugging paradigm. Currently the primary means of

interaction with the debugger is through a command line user interface. In order to support

this visualisation, GUARD allows assertions to generate intermediate data files that can then

be examined by a visualisation package such as EBM's Open Visualization Data Explorer or

VIS-5D [27a]. In addition, a number of tools are provided to assist with this visualisation

process.

When defining assertions in GUARD, the user has the ability to select a particular display

type using the " se t d i s p l a y " command. This command is used to specify the format

that is used when the difference information is generated. The difference information can

also be stored in an output file using the " se t output" command. The available display

types are shown in Figure 6.19.

6-29



Display
text
hdf

hdf5
a i f

Description
Plain text is used to display differences directly
Differences will be output using the NCSA Hierarchical Data
Format (HDF) [53]
Differences will be output using the later HDF Version 5
Differences will be output in the Architecture Independent
Format (AIF)

Figure 6.19: GUARD Display Types

In situations where assertions generate multiple results, such as when an assertion is made

within a program loop, it is useful to store difference information as consecutive data sets in

a single file. Both the HDF and AIF file formats support this, and the visualisation software

is able to use this information to display the differences as a series of frames in a movie.

In situations where simple 2-dimensional arrays are being compared, GUARD provides

utility programs to convert the data files into GIF's for display using a web browser. If the

data files include multiple data sets, then the utilities can also be used to generate animated

GIFs to display simple movies. Utilities are also provided to analyse and manipulate data

that has been generated from the assertions. The utility programs are shown in Figure 6.20.

Utility Program
hdf2gif
aif2gif
hdfanalyse
dumpset
l istset

Description
Convert a file in HDb to an animated GIF
Convert an AIF file into an animated GIF
Display information about a file in HDF
Convert an AIF data set file to text
list data sets in an AIF file

Figure 6.20: Utility Programs

DATA PARALLEL LANGUAGE SUPPORT

A key component of the GUARD debugger is its ability to support data parallel languages.

The current implementation provides support for the relatively new, but efficient and easy to

use data parallel language ZPL [42]. As will be discussed later, this support can also be

extended to other languages.

ZPL is a data parallel array-based language. The language uses the array as a fundamental

data type, and provides various features that allow programmers to generalise algorithms

using array semantics. The most fundamental of these is the region, which is used to specify a

set of indices that define the bounds of an array, or over which computations on an array are

performed. ZPL has been designed as a machine-independent language that is portable

across multiple architectures and memory paradigms. Although it is primarily designed as a

6-30



data parallel language, ZPL executes on both sequential and parallel architectures. ZPL is

also an implicitly parallel language, as the programmer does not need to explicitly specify how

parallel computations are to take place, rather the compiler determines the distribution of

data automatically. Parallelism is derived from the semantics of the array operations, so there

are no parallel directives or mechanisms for explicit message passing. Programmers scr. a

single address space and are able to utilise traditional sequential programming semantics for

software development.

From an implementation perspective, support for a data parallel language requires the

following capabilities:

• knowledge of the specific language features;

• the ability to extract locally held components of a data structure from each process;

and

• the ability to recombine these components into a single data structure in the

debugger.

Data parallel language run time systems generally maintain per-process data structures that

contain a description of each parallel array, and provide information such as the rank of the

array, the size, of each dimension, and information on the distribution of the array across the

processes. In order to access a block of data from an individual process, the debugger must

first access this description information to determine the location and bounds of the block

that is resident in the process.

In ZPL, this distribution information is stored in run-time structure called an ensemble, one of

which is maintained for each parallel array in each process. An ensemble consists of the

following (simplified) structure:

struct ensemble {
int blocksize[MAXRANK];
int offset[MAXRANK];
int stride[MAXRANK];
void *data;
int numdims;
region *regptr;
unsigned long size;
char *basetype;

6-31



In order to access the data specific to a particular process, the debug server for that process

must first extract the upper and lower bounds for each index of the array from regp t r , a

pointer to the array's region information. The location of a particular element of the array is

then computed from the of f se t , s t r i d e and b locks i ze information. For some

element in the array whose indices are (a0,«,,..., on_,), where n is the number of dimensions

specified by numdims, the location of the data is given by:

numdims-lf (a. - offset [(])
data+ £ — —x blocksize [i]

i=0 I s t r ide [»]

This information is interpreted by the debug server and used to obtain a copy of the data that

is specific to the particular process.

To allow data parallel arrays to be used in assertions in a transparent manner, GUARD

utilises the decomposition information along with the per-process location information to

reassemble a complete structure. Using the appropriate mapping function GUARD is able

to apply the language decomposition rules to request the components of the array from each

process via the debug servers, and then reassemble these components into a complete array.

Assertions can then be used to compare the data in this array with that obtained from a

reference program.

Adding support for other data parallel languages to the debugger is a three-step process.

First, the syntax and semantics of the language must be defined in the debugger parser.

However, since the debugger only allows immediate evaluation of expressions, the full

language syntax does not need to be defined. Second, the parallel data distribution

information must be made accessible to the debugger backend. Finally, AIF tags may need

to be added to support any new data types introduced by the language.

For example, to add support for the data parallel language C* [59] to GUARD, new language

support would need to be included in the parser. C* provides additional syntax to allow

scalar access of parallel arrays, adds a number of new operators such as minimum and

maximum value reduction ("<?=" and ">?="), and introduces a new type syntax for shape

declarations. Next, the run-time representation of parallel variables would need to be added

to allow the debugger backend to access the parallel array information. In C*, as in ZPL, a

single structure is used to store the parallel array distribution information. Finally, as for

6-32



I

Z.PL, a new AIF type would need to be added so that parallel array shape information would

be accessible to the debugger client.

{ CONCLUSION

This chapter has presented the details comprising the implementation of the GUARD

debugger. In particular, the chapter has examined the aspects of the implementation that

enable the debugger to support the relative debugging paradigm. These include the

client/server implementation details consisting of the debug client, the debug server and a

debug API that allows the client and server to communicate efficiently and effectively. In

addition, the chapter has examined innovations that are uniquely specific to the GUARD

debugger. These include the dataflow technology, AIF, support for data and code

transformations and support for data parallel languages.

From the information provided in this chapter, it should be clear that a number of significant

advances in debugger technology have been made in the process of implementing the relative

debugging paradigm. It is hoped that the techniques presented here will provide other

debugger designers with a powerful platform on which to build future tools for parallel

computer systems.

6-33



Chapter 7

CASE STUDIES IN RELATIVE DEBUGGING

This chapter presents a series of three case studies to demonstrate the application of relative

debugging in a parallel computing environment. The case studies have been chosen in order

to show how relative debugging can be used on a range of codes that utilise the major parallel

architectures. These include a data parallel case study, a distributed memory message passing

case study, and a shared memory case study. The aim is to demonstrate that the architecture

proposed in Chapter 4 is suffie. itly powerful to handle the differences between two

languages, between a broad range of parallel programming architectures and in the underlying

platforms. The case studies also highlight the efficiency of the debugging technique for

locating errors across multiple program versions.

CASE STUDY 1: DATA PARALLEL CODE

The data parallel case study illustrates the power of relative debugging when applied to a

sequential C code that has been ported to the data parallel language ZPL.

The program is a hydrodynamics code, known as "simple" [18], that is used to model the

hydrodynamics of a pressurised fluid inside a spherical shell. To demonstrate our debugging

methodology, a problem size of 128x128 using four iterations has been chosen. The output

of the "simple" code is a scalar error value that is calculated from the values used in the

hydrodynamics computation. For the C and ZPL comparison, the ZPL code was run using

four jirocesses in a 2x2 mesh. The initial run of the codes produced scalar error values that

differ at around the fourth decimal place. Figure 7.1 shows the values that were produced

for each of the four iterations.

Iteration
1
2
3
4

C
0.984958283
0.985004506
0.985086136
0.985224992

ZPL(2x2)
0.984946715
0.984971498
0.985033153
0.985147640

Figure 7.1: Scalar Error Value

Both the C and ZPL codes employ double precision variables for all computations, so it

would be expected that the scalar error value would be equivalent within the precision

7-1



available, or about 15 decimal places (although only 9 decimal places are shown in Figure

7.1). The precision of the floating-point representation also allows us to set a lower bound

for the error tolerance used in defining assertions. In this case study both codes use double

precision, so the lower bound will be 1(T15. In situations where different precision is used in

each code, the lower bound will need to be adjusted to the larger of the two values.

Our initial hypothesis was that the C and the new ZPL codes were working correctly, even

though on first examination it can be seen that the codes produce slightly different results.

In order to account for the discrepancy, it was assumed that different numeric evaluation

techniques in the language run time systems or minor numerical errors were the likely cause.

Since it was not obvious at the outset which of these factors was contributing to the

differences, it was necessary to adopt the three-phase approach shown in Figure 7.2 when

debugging the codes.

ZPL
(seq)

ZPL
(par)

Figure 7.2: Code Comparison Steps for the "simple" Code

The first step compares a single process ZPL code with the same code on multiple processes

in order to ensure that the ZPL runtime system is not introducing any differences into the

results. The second step compares the parallel ZPL code to the C code so that errors in the

ZPL version of "simple" can be identified and corrected. The last step compares the serial

ZPL code to the C code as a final check to verify that all errors have actually been corrected.

Relative debugging relies on the ability to compare a suspect program with a reference code.

As a result, a debugging methodology using an iterative refinement process can be used to

narrow down the region (or regions) containing potentially incorrect code until the error is

7-2



located. This process has been applied very successfully in the past in various case studies

[3,4,5].

CODE DESCRIPTION

The "simple" code is used to model the hydrodynamics of a pressurised fluid inside a

spherical shell. The simulation computes values that describe the physics of the fluid at many

points inside the shell over a number of time steps. Each iteration results in the computation

of new values for var.ous physical quantities such as velocity, density, energy, viscosity,

pressure and temperature. Although "simple" is modelling the inside of a spherical shell, the

symmetry of the problem allows the computation to be reduced to one quarter of an annular

region. This region can then be transformed into Cartesian coordinates so that each physical

quantity can be stored in a 2-dimensional array.

The structure of the ZPL version of the "simple" codt is shown in Figure 7.3. The ZPL

code combines all the hydrodynamics calculations in a single loop of N iterations, with the

scalar error computation performed by lines 540 and 544. The first line computes the

En_error array. The second line performs a reduction across all elements of the

En_error array to produce the scalar error Sc_error .

ZPL introduces parallelism into the "simple" code by defining the variables for each physical

quantity over a region. This region can then be automatically partitioned by the ZPL run-

time system into blocks that are managed by the individual processes. The algorithm has also

been designed so that computations in each phase share the same data dependencies, thus

minimising the overall communications overhead required for communication bevween

processes. More details on the ZPL implementation of "simple" can be found in [41].

The C code is structured slightly differently from the ZPL in that each phase of the

hydrodynamics calculation is located in a separate module. The main body of the C code,

shown in Figure 7.4, is contained in the module s imple , c, and consists of an initialisation

phase, load () , followed by N iterations over delta, hydro, heat and energy phases. The

load phase routine load() is located in load .c , d e l t a () in d e l t a , c, hea t () in

h e a t . c and so on.

7-3



program simple;

region
R = [1..DL, 1..DK];
WEST = [1..DL, 1..DK];

direction
east = [0,+l];

var
X: [R] double;
Heat: [R] double;
En_error: [R] double;
Theta: [R] double;
Delta_t: [R] double;
Sc_error: double;

procedure InitPositionVelocity()

begin
154 R := (Index2-1) * deltaR / (maxX - minX) + Rmin;
155 W := (((maxY-Indexl) * PI) / (2 * (maxY - minY))) + angleOtfset;
156
157 X.r := R * cos (W);
158 X.z := R + sin(W);

end;

procedure simple()

[R]
begin

/* Initialisation Routines */

for count := 0 to N-l do

/* Delta Phase */

/* Hydro Phase */

/* Heat Phase V

474 for i := DK-1 downto 0 do
475 [,i] Theta := Alpha * Theta@east + Beta;

476 end;

479 [WEST] Heat := (Theta - Theta@east) * R_ * Delta_t;

/* Energy Phase */

538 Heat := Heat * Delta_t;
539
540 En_error := Int_en + Kin_en - Work + Heat;
544 Sc_error := +<< En_error;

end;
end;

Figure 7.3: ZPL Code Structure for the "simple" Code

7-4



main()
{
int loop = 0/

load() ;

do
{
delta();
hydro();
heat () ;
energy();

} while (loop++ < N ) ;

Figure 7.4: C Code Structure for the "simple" Code

In the C code, calculation of the scalar error value is performed in the routine energy () ,

shown in Figure 7.5. The scalar error value is computed as the sum of all elements in the

energy error array en_er ro r (line 92), which is in turn derived from the values of the energy

phase arrays in t_en , kin_en, and work, and the boundary heat flow array hea t (line 86).

Values for these arrays are computed in the corresponding phase routines.

SERIAL/ PARALLEL ZPL COMPARISON

The first step in the debugging process was a comparison of the ZPL code in a single process

configuration with that in a multi-process configuration, in this case four processes in a 2x2

mesh. The results from these runs showed that different process topologies produced slight

variations in the scalar error value, with a magnitude of slightly greater than 10~15. Since

differences of this magnitude are still significant for double precision floating-point numbers,

these appeared to be errors introduced by the parallel run-time system. Relative debugging

was then used to determine the cause of these differences, by defining assertions over the

phase variables Int_en, Kin_en, Work and Heat, and the error value En_error.

However, no differences were visible in these variables. This meant that the source of the

variations must be the final reduction operation at the end of each iteration. As the order of

the floating-point operations is the only factor affected by topology changes, it is likely that

the non-associative nature of these operations was the cause of the variations. This result is

an important one, since it shows that non-deterministic behaviour can impact on the results

of the computation, and effectively sets a lower bound to the accuracy of the final error

value.

7-5

I



extern double heat[DL][DK];
extern double delta_t[DL][DK];
double int_en[DL][DK];
double kin_en[DL][DK];
double work[DL][DK];

energy()
{
int i, j;
double localerror_sum = 0.0;

81 for (i=0; i<DL;
82 for (j=0; j<DK; j++) {
83 heat[i][j] *= delta_t[i][j];
86 en_er ror [ i ] [ j ] = in t_en [ i ] [ j ] + kin_en[ i ] [ j ]

+ work[i][ j ] + h e a t [ i ] [ j ] ;
87 }
88 }
89
90 for (i=0; i<DL;
91 for (j=0; j<DK;
92 local_error_sum += en_error[i][j];
93 }
94 }

Figure 7.5: e n e r g y . c - C Scalar Error Calculation

ZPL AND C COMPARISON

Having isolated the variations introduced by the parallel non-determinism, it was now

possible to identify the cause of the differences between the ZPL and C codes. The next

step of the debugging process involved using an iterative refinement process to identify and

correct four errors in the code.

Error 1: Extra Term In An Expression

Debugging of the ZPL and C "simple" codes starts by defining assertions for the four phase

variables used in the scalar error calculation. Since the magnitude of the error was around

Iff"4 the initial error tolerance was set to 10"5 5 e <. 10"1:

set error 1.0e-5 1.0e-l
assert $zpl::Int_en@"simple.z":540 = $c::int_en@"energy.c":81
assert $zpl::Kin_en@"simple.z":540 = $c::kin_en@"energy.c":81
assert $zpl::Work@"simple.z":540 = $c::work@"energy.c":81
assert $zpl::Heat@"simple.z":540 = $c::heat@"energy.c":81

The results from these assertions indicate differences in the $c: : hea t and $zp l : :Heat

arrays which are used to store the results of the heat phase computation. Figure 7.6 shows a

visualisation of these differences. Since the variables are 2-dimensional arrays, it is

convenient to visualise the differences as a 2-dimensional bitmap. These bitmaps are

7-6



generated from difference information by assigning a colour to represent the magnitude of

the difference, ranging fron: blue for the smallest difference, through green, yellow and red,

to black for the largest. White indicates no difference.

differences

i 128 elements

Figure 7.6: Differences between $c: : heat and $zp.l: : Heat

Differences can be seen along the left (or western) edge of the comparison. The western

edge of the array is accessed in ZPL using the syntax " [WEST ] Heat : = ...", where WEST

has been defined as the appropriate region. A search of the ZPL code results in only one

example of such syntax at line 479 in s imple . c. The corresponding C code can be seen at

lines 163-165 of h e a t . c in Figure 7.7.

extern double heat[DL] [DK] ;
extern double theta[DL][DK];
double temp_theta[DL][DK];

heat()

143 for (i=DK-2; i>=0; i—) {
144 for (j=0; j<DL; j++) {
145 temp_theta[j] [i] = t he t a [ j ] [ i+1 ] ;
146 }

149 for (j=0; j<DL; j++) {
150 t h e t a [ j ] [ i ] = a lpha[ j ] [ i j * temp_theta[j][ i] + b e t a [ j ] [ i ] ;
151 }
152 }

163 for (i=0; i<DL; i++) {
164 heatf i ] [0] = ( theta[ i ][0] - temp_theta[i][0]) * r [ i ] [ 0 ] ;
165 }

Figure 7.7: h e a t . c - C Heat Phase Code

Careful examination of both codes indicates that the term Del t a_ t (shown in red in the

ZPL code) has been erroneously included in the computation of Heat in the ZPL code in

Figure 7.3. Prior to using relative debugging, this error had not been detected, even though it

7-7



is obvious post fact. In this case, relative debugging allowed us to identify a faulty statement

in the ZPL code fragment, even though the syntax and implementation details of the

languages are completely different.

Error 2: Incorrectly Specified Constant

After correcting the first error, there are still difFerences visible in the output, though the

magnitude has now been reduced to around 1(T7. Setting the error tolerance to

1CT10 s^siO"1 and re-running the original assertions now indicates differences between the

$c: : in t_en and $zp l : : In t_en arrays, which are used to store the internal energy values

computed in the energy phase. Figure 7.8 shows these differences.

Figure 7.8: Differences between $ c: : i n t _ e n and $ z p l : : Int_en

By defining additional assertions, it is possible to observe that differences in many of the

variables involved in the computation of the internal energy have similar characteristics to

those seen in Figure 7.8. With differences occurring in so many variables, no clear path to

the source of the error is evident. Instead, the initialisation code was examined for similar

patterns of differences, beginning with the code to initialise the position and velocity

components used throughout the program. Figure 7.9 shows the C version of this code,

which corresponds to lines 154-158 of the ZPL code.

Visualising differences in variables from these codes shows the characteristic pattern in the

differences between $c: :w and $zp l : :W, and $c: :x and $zp l : :X. As both $c: :w and

$zp l : :W are computed entirely from constants, the problem must be related to these

variables. Further examination indicates that the value of PI used in the ZPL code was only

specified to 7 decimal places, while the corresponding value used in the C code, M_PI was

specified to 20 decimal places (of which only 15 are significant).

7-8



101 for (i=0; i<DL+2;
102 for (j=0; j<DK+2; j++) {
103 r[i][j] = ((PEj-l)*DK+ (j-1)) * deltaR / (NUM_K_PROCS *

DK - 1) + Rmin;
104 w [ i ] [ j ] = ((M_PI * ( ( P E i - 1 ) * DL + ( D L - i ) ) )

/ (2 * (NUM_L_PROCS * DL-1)) ) + ANGLEJDFFSET;

107 x [ i ] [ j ] . r = r [ i ] [ j ] * c o a ( w [ i ] [ j ] ) ;
108 x [ i ] [ j ] . z = r [ i ] [ j ] * s i n ( w [ i ] [ j ] ) ;
109 }
110 )

Figure 7.9: i n i t . c - C Position and Velocity Initialisation Code

Like the previous error, the difference in PI is obvious with hindsight. However, because a

symbolic constant is used in the code, a cursory examination would not have revealed the

difference. Relative debugging allowed us to identify a characteristic pattern of differences

that was visible in a number of variables, suggesting that a common source was responsible.

The error was eventually located by tracing this pattern back to the constant declarations,

even though the two languages use different syntactic structures for defining constants.

Error 3: Invalid Boundary Conditions

On correcting the second error there are still differences in the output of the programs,

though the magnitude had now been reduced further, to around 10"'°. Setting the error

tolerance to 10~15 ̂ £-<l0"1and re-running the original assertions shows that the $c: :hea t

and $ z p l : :Heat arrays are again the source of errors. A series of assertions must now be

applied to narrow down the erroneous region of code in the heat phase computation. The

result of these assertions is that the problem appears to be occurring between lines 474 and

479 of the ZPL code am;' lines 143 and 152 of the heat phase calculation in h e a t . c (Figure

7.7).

The ZPL code uses the ( i+l) s t column of The t a in the computation Alpha *

ThetaSeas t f Beta and propagates this across columns (DK-1) to 0 of Theta. The C

code uses a tempotrj-y array to hold the (i+1) s t column of theta. However, the outer loop

of the C code only ranges from (DK-2) to 0, so the (DK-1)st column is not computed, and

hence the C code is incorrect. An identical situation is also found in the computation of the

north boundary condition.

This error is interesting because the ZPL code is actually correct, while the original C code is

incorrect. When developing the ZPL code the programmer did not need to be concerned

with issues such as computing loop bounds, but instead was able to concentrate on the

7-9



underlying physics of the model. In comparison, the C programmer needed to consider the

loop bound issues, with the extra complexity presumably leading to the coding error. In spite

of these significant implementation differences, relative debugging was able to identify the

incorrect code.

Error 4: Wrong Sign

Even after correcting the third error, the magnitude of the differences in the output of the

programs still remains at around 10~10 . Further examination of the scalar error computation

indicates that while uie values of $c: : en_er ro r and $zpl : : En_error have a very small

differences, the calculations of the energy, work and heat values are now identical. This can

only point to a problem with calculating the error value itself. Close examination of the ZPL

and C code shows the source of the error, which can be seen at line 540 of the ZPL code

(Figure 7.3) and line 86 of the C code (Figure 7.5).

Using relative debugging it was possible to identify a pattern of differences and quickly

pinpoint the location of erroneous code that was only obvious with the benefit of hindsight.

Interestingly, the original paper describing the "simple" code gives the error computation as:

Int_en + Kin_en - Work - Heat

This means that both programs are actually incorrect.

SERIAL ZPL AND C COMPARISON

The final step in the debugging process is to verify that the changes made to both the ZPL

and C codes have resulted in bitwise equivalence of the variables used in the physics

computation. Since non-determinism was introduced by running the ZPL code in parallel,

comparison of the serial ZPL and C codes must be used. For this test, the same series of

assertions defined over the four phase variables were used and the error tolerance was set to

0 (although a tolerance of 10"16 would have been equally valid). As predicted, the results

showed that each of the variables were now identical.

The debugging exercise outlined in this case study took a remarkably short time, considering

that the programmer performing the case study was not the author of either version of

"simple" and was not particularly fluent in ZPL. Whilst it is dangerous to generalize the

results too far, this example adds to the evidence of our other case studies that support the

7-10



power of relative debugging — in the case even when the programs run on different

computers and are written in different languages.

CASE STUDY 2: DISTRIBUTED MEMORY CODE

The second case study examines how relative debugging can be applied to a hand-coded

distributed memory code. The program is a distributed memory version of a simple

numerical model of the shallow water equations [62]. Abramson, et al. ported the shallow

water equations to a number of languages and architectures [1]. This case study will use

versions written in C for sequential and distributed memory architectures.

For this case study, a model size of 32x32 and a run length of 950 time steps was chosen.

The distributed memory code was initially run on two processors. The codes are designed to

report a number of key values every 50 time steps, so it is simple to determine if the codes

are working correctly or not. Figures 7.10(a) and 7.10(b) show the output from the two

versions of the code after 950 time steps in which significant errors can be clearly seen in all

four values.

Cycle number 950
Potential energy
Total Energy

Cycle number 950
Potential energy
Total Energy

Model time in days 0.99
6816.106 Kinetic Energy

47999.262 Pot. Enstrophy

(a) Sequential

Model time in days 0.99
6790.644 Kinetic Energy

48009.723 Pot. Enstrophy

41183.156
2.006166e-27

41219.078
6.152948e-17

(b) Distributed Memory

Figure 7.10 Output from the "shallow" Code

CODE DESCRIPTION

According to Abramson, et al., "the shallow water equations describe the motion of an

incompressible fluid with a free surface, with the constraint that the horizontal scales of

motion are much larger than the vertical. The equations are a favoured choice for

experiments with various model structures and numerical schemes, and thus must be ported

to many different computing platforms. Although they use a very simple representation of

the atmosphere, they do include the two types of horizontal wave motion important in more

realistic global climate models, gravity waves and Rossby waves." [1]

The sequential C code consists of two main phases: an initialisation phase and a time-step

phase. Figure 7.11 shows the overall structure of the sequential code.

7-11

i
i



float u[m][n]; /* Zonal wind */
float v[m][n]; /* Meridional wind */
float p[m][n]; /* Pressure (or free surface height) */
float cu[m][n]; /* Mass weighted u */
float cv[m][n]; /* Mass weighted v */
float z[m][n]; /* Potential enstrophy */
float h[m][n];
float psi[m] [n] ; /* Velocity stream function */
float dudt[m][n]; /* Time tendency of u */
float dvdt[m][n]; /* Time tendency of v */
float dpdt[m][n]; /* Time tendency of p */

main()
{
int ncycle;

58 initialise(u,v,p,psi,di,dj);

61 for (ncycle = 0; ncycle < itmax; ncycle++) {
/* Calculate cu, cv, z and h*/

67 calcuvzh(p,u,v,cu,cv,z,l ,fsdx,fsdy);

/* Calculate time tendencies of u, v and p */
71 timetend(dudt,dvdt,dpdt,z,cv,cu, h ) ;

/* Calculate new values for u, v and p */
78 tstep(u,v,p,dudt,dvdt,dpdt, firststep,tdt);

80 if ( firststep ) {
/* Double tdt because all future steps are leapfrog */

81 tdt = tdt+tdt;
82 firststep = 0;
83 )
85 } /* End of time step loop */

Figure 7.11: Sequential C version of "shallow"

Initialisation of the key data structures is performed by the i n i t i a l i s e () routine. The

time step loop is then executed for the number of iterations determined by itmax. This

loop executes three routines in succession. The calcuvzh () routine is used to calculate the

mass fluxes cu and cv, the potential enstrophy z and the quantity h. Next, the

t imetend () routine is used to calculate the time tendencies for velocity components dudt

and dudt, and for the pressure dpdt. Finally, the t s t e p () routine is called to recalculated

new values for the velocity components u and v, and the pressure p in a "leapfrog" time step

process.

The distributed memory code uses a master/slave arrangement, where the master maintains

primary copies of the key data structures. Each slave is sent an entire copy of the data

structures, but only performs computations on a portion determined by slicing the outer

loop. Before and after a calculation, each slave synchronises the edges of the data structures

7-12



with its immediate neighbours. At the end of the time step loop the slave data is copied back

to the master process. This arrangement is shown in Figure 7.12.

master

initial and final
synchronisation of

slave data

data boundary synchronised before and
after each calculation

Figure 7.12: Data Decomposition and Boundary Synchronisation

The structure of the master code is shown in Figure 7.13. The master begins by initialising

the distributed memory subsystem (in this case MPI) and determining the number of slave

processes (lines 106 — 107). The loop at lines 137 — 162 is then used to determine the

decomposition of the data structures. The values j s t a r t and jend, which define the lower

and upper bounds of the slices respectively, are computed and sent to each slave process.

Next, the loop at lines 178 — 208 sends the contents of each key variable to the slaves, a row

at a time. Finally, the update_global_ds () routine is used to recover the contents of

each of the variables. This routine waits for each slave to finish its computation and send the

final results, which are collected and stored in the appropriate data structure.

The slave code, shown in Figure 7.14, is similar in operation to the sequential code, however

it is complicated by the addition of synchronisation code. The first action of the slave

routine is to obtain the slice bounds j s t a r t and jend. Tiese values are then used

throughout the computations to determine the slice of data the slave will be calculating.

7-13



float
float
float
float
float
float
float
float
float
float
float

u[n][m];
v[n] [m] ;
p[n] [m] ;
cu[n][m];
cv[n][m];
z[n] [m] ;
h[n][m];
psi[n] [m] ;
dudt[n][m];
dvdt[n][m];
dpdt[n][m];

/* Zonal wind */
/* Meridional wind */
/* Pressure (or free surface height) */
/* Mass weighted u */
/* Mass weighted v */
/* Potential enstrophy */

/* Velocity stream function */
/* Time tendency of u */
/* Time tendency of v */
/* Time tendency of p */

main(int argc, char *argv[])
{
int proc_cnt, jstart, jend;

106 MPI_Init(Sargc, &argv);
107 MPI_Comm_size(MPI_COMM_WORLD, &proc_cnt);

137 for (i=0; i < proc_cnt; i

139 jstart = (i-1) * chunk_size;

141 jend = (i * chunk_size - 1) % n;

160 MPI_Send(&jstart,MPI_INT,i,MPI__COMM_VfORLD) ;
161 MPI_Send(Sjend,MPI_INT,i,MPI_COMM_WORLD) ;
162 }

175 initialise(u, v,p,psi,di,dj);

178 for (i=0; i < proc_cnt; i-
179 for (j=0; j < n; j++) {

/* send row of each variable */
207 )
208 }

218 update_global_ds(u);

223 update_global_ds(v);

228 update_global_ds(p);

233 update_global_ds(h);

238 update_global_ds(z);

24 S MPI_Barrier(MPI_COMM_WORLD);
24', MPI_Finalize();

Figure 7.13: Distributed Memory Master Code

Next, the loop at lines 375 — 403 is used to receive the contents of the key variables. The

main time step loop at lines 405 — 449 is identical to the sequential code except that the data

structure boundaries are synchronised before and after the calcuvzh () and t imetend ()

calculations. This synchronisation is performed using the ca lc_ load (),

c a l c unload () , t ime load () and t ime unload () routines.

7-14



slave()

363 MPI_Recv(&J3tart,MPI_INT,MPI_ANY_S0URCE,MPI_C0MM_W0RLD);
364 MPI_Recv(&jend,MPI_INT,MPI_ANY_SOURCE,MPI_COMM_WORLD);

375 for (i=0; i < n;
/* receive row of each variable */

403 )

405 for (ncyclo = 0; ncycle < itmax; ncycle++) (

421 calc_load(jstart,jend,p,u,v);
422 calcuvzh(jstart,jend,p,u,v,cu,cv,z,h,fsdx,fsdy);
423 calc_unload(jstart,jend,cv,z);

430 time_load(jstart,jend,cu,cv, h,z);
431 timetend(jstart,jend,dudt,dvdt,dpdt,z,cv,cu,h);
432 time_unload(jstart,jend,dvdt);

/* Calculate new values for u, v and p */
439 tstep(jstart,jend,u,v,p,dudt,dvdt,dpdt,firststep,tdt);

442 if ( firststep ) {
/* Double tdt because all future steps are leapfrog */

444 tdt = tdt+tdt;
445 firststep = 0;
446 }

449 } /* End ofxtime step loop */

457 send_updated_ds(u);
458 send_updated_ds(v);
45 9 send_updated_ds(p);
460 send_updated_ds(h);
4 61 send_updated_ds(z);

MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

}

Figure 7.14: Distributed Memory Slave Code

ERROR 1: INCORRECT INDEX VALUE

In order to begin debugging the "shallow" code, a map that describes the data

decomposition technique used by the distributed memory code was defined. One major

difference between the codes is the index ordering which has been swapped in the translation

from sequential to parallel, presumably to take advantage of some cache effect. The map was

also defined to account for this index permutation.

map shallow(P::A)
define index (i, a,u.-1) = a[l-i]
define proc(i,a,u,1) = a[lj * ($procs - 1) / $n

end

Using this map, a series of assertions were then defined that compare the values of the key

data structures u, v and p between the sequential and parallel codes just prior to entering the

time step loop. This tests the initialisation code in the two programs, and ensures that the

7-15



variables are correct before any calculations are undertaken. The error limits were set to an

initial estimate of the likely error range.

set error 1.0e-20 1.0e-l
assert Sc::u@"cshallow.c":61
assert $c: :p@"cshaJ.low. c" : 61
assert $c::v@"cshallow.c":61

shallow($p::u@"iiiain.c":405)
shallow($p::p@"main.c":405)
shallow($p::v@"main.c":405)

Execution of these assertions showed that u, p and v are correct prior to entering time step

loop. This confirms that the errors must be being introduced by calculations in the time step

loop.

The next step was to examine the result of the computation calcuvzh (). This was done

by defining assertions to compare die values of the variables cu, cv, h and z as follows:

assert $c::cu@"cshallow.c":71 = shallow($p::cu@"main.c":430)
assert $c: : cv@'"cshallow.c" : 71 = shallow($p: :cv@"main. c": 430)
assert $c::h@"cshallow.c":71 = shallow($p::h@"main.c":430)
assert $c::z@"cshallow.c":71 = shallow($p::z@"main.c":430)

After first call to calcuvzh () , differences were observed in the variable cv. These

differences, shown in Figure 7.15, suggested that the error was related to a boundary

calculation by each processor.

32 elements

• 32 elements

Figure 7.15: Differences in cv

To confirm this suspicion, the codes were re-run with the distributed memory code running

on four processors rather than the initial two. Errors were again observed in the variable cv,

however this time the differences appeared as shown in Figure 7.16.

7-16



I
1

I
t

\

i

1
1
1

1

Figure 7.16: Differences in cv Running on Four Processors

This confirmed that cv was affected by a boundary issue that depended on numbev of

processes. Since the error was in the boundary column, the boundary code was examined for

coding defects. Inspection of calcuvzh () code lead to the discovery of the difference

shown in Figures 7.17(a) and (b).

cv[i] [jp] = . . . cv[j][i] = . . .

(a) Sequential (b) Distributed Memory

Figure 7.17: Discovered Differences in calcuvzh () Code

Even allowing for the index permutation, the parallel code was clearly using the wrong index.

Relative debugging allowed the rapid identification of this error by observing the changes

resulting from running on different numbers of processors, and irrespective of the fact that

the array indexes are permuted.

ERROR 2: WRONG ARRAY ELEMENT

After correcting the code and re-running the programs using the same assertions, an error

was still observed iruthe cv variable. The characteristics of the differences had altered

significantly however, and now seemed to indicate a periodic error in the cv calculation. The

new differences are shown in Figure 7.18.

Figure 7.18: Periodic Error in cv

7-17



Further inspection of the calcuvzh () revealed a second error in the calculation of cv. In

this case the wrong element of the array v was used in the calculation, as shown in Figure

7.19.

c v [ i ] t j p ] = 0 . 5 *

(a) Sequential

i ] = 0 . 5 *

(b) Distributed Memory

Figure 7.19: Second Error in calcuvzh () Code

This error was interesting because it occurred in the same statement as the previous error,

but was missed in the original code inspection. Because the nature of the error in a single

variable changed from a boundary problem to a periodic problem, the source of the problem

was quickly identified.

ERROR 3: WRONG SIGN

After ensuring that both errors had been corrected in the parallel code, the programs were

rerun to check that the cv variable was now correct. The assertions showed that all four

calculated variables, cu, cv, h and z were correct after first iteration, however on subsequent

iterations errors were observed accumulating in the cu variable. Figure 7.20 shows a time

sequence of these errors, one frame per iteration.

• v

1

1
1
1
A .

1

1
1

T

I-
.1
x

| -
i
1
1

» ¥ • t

1 I

1 1
1 1

T V
• •

rr
1

I

—nt"—
1

I
5

1
Figure 7.20: Time Sequence of Errors in cu

Inspection of the code showed that the calculation of cu is derived from the values of p and

u. Since all values of cu are correct on first iteration but incorrect on second and subsequent

iterations, this implies that there must be in error in the computation of p and u (which were

shown to be correct immediately after initialisation).

In order to check the values of p and u at the end of the time step loop, the following

assertions were defined:

7-18



assert $c::u@"cshallow.c":85 = shallow($p::u@"main.c":449)
assert $c::p@"cshallow.c":85 = shallow($p::p@"main.c":449)

When the codes were again run, errors were immediately reported in u. These are shown in

Figure 7.21.

Figure 7.21: Errors in u

At this point it was clear that errors were being introduced into the variable u, but these

could have resulted from either the calculation of u itself in t s t e p () or in the time tendency

variable dudt which is calculated in t imetend (). To verify which routine was the source

of the errors, it was necessary to rerun and check the value of dudt immediately after the call

to t imetend (). Figure 7.22 shows the differences visible in dudt when this was done.

Figure 7.22: Errors Reported in dudt

It was now known with reasonable certainty that the errors were occurring in the

t imetend () routine. At this point a visual inspection could be used to locate the source of

the error. In this case the error turned out to be a wron^ sign used in the calculation of

dudt. This can be seen in the code segments presented in Figure 7.23(a) and (b).

This error highlights the use of relative debugging to quickly reduce the possible location of

an error to a small region of code. Once this has been done, simple code inspection will

usually pinpoint the incorrect statement immediately, even when the actual error is very

minor as in this case.

7-19



d u d t [ j ] [ i p ] =
0 .125 * ( z [ j p ] [ i p ] * ( c v t j p ] [ i p ] + c v [ j p ] [ i ] ) - z [ j ] [ i p ] *

j ] [ i ] ) ) - ( h [ j ] [ i p ] - h [ j ] [ i ] ) * i n v d x ;

(a) Seq uential

d u d t f j ] [ i p ] =
0 .125 * ( z [ j p ] [ i p ] * ( c v [ j p ] [ i p ] + c v [ j p ] [ i ] ) + z [ j ] [ i p ] *
( c v [ j ] [ i p ] + c v [ j ] [ i ] ) ) - ( h [ j ] [ i p ] - h [ j ] [ i ] ) * i n v d x ;

(b) Distributed Memory

Figure 7.23: Filial Error in Distributed Memory Code

CASE STUDY 3: SHARED MEMORY

This final case study examines the used of relative debugging on a sequential C program

ported to a shared memory architecture. The same shallow water model used in the previous

case study is again used here, however the implementation of the shared memory code is

significantly different from that of the distributed memory version. The shared memory

code is written in C using the Argonne P4 system [14].

On execution of the codes, it was observed that all values -are correct after the first iteration.

However, after only 50 iterations these values begin to diverge significantly. The output

from the sequential and parallel codes after 50 iterations is shown in Figure 7.24.

Cycle number 1
Potential energy
Total Energy

Cycle number 50
Potential energy
Total Energy

Cycle number 1
Potential energy
Total Energy

Cycle number 50
Potential energy
Total Energy

Model time in days 0.00
0.000 Kinetic Energy

48036.828 Pot. Enstrophy

Model time in days 0.05
5681.312 Kinetic Energy
48052.320 Pot. Enstrophy

48036.828
0.000000e+00

42371.008
8.849624e-28

(a) Sequential

Model time in days 0.00
0.000 Kinetic Energy

48036.828 Pot. Enstrophy

Model time in days 0.05
6649.025 Kinetic Energy

41841.242 Pot. Enstrophy

48036.828
0.000000e+00

35192.219
2.349158e-16

(b) Shared Memory

Figure 7.24: Output From Sequential and Parallel Codes After 50 Iterations

The shared memory version of "shallow" uses the same master/slave arrangement as the

distributed memory code, but is considerably simpler since there is no longer a requirement

7-20



to synchronise data between processes. The main time step loop of the shared memory code

is shown in Figure 7.25. In this version, the key data structures are maintained in global

shared memory that is accessed by each process. Code synchronisation is achieved by calling

the wai t fo r () routine after each calculation.

struct globmem {
float u [m][n]; / * Zonal wind * /
float v [m] [n]; / * Meridional wind * /
float p [m][n]; / * Pressure (or free surface height) * /
float cu [m][n]; / * Mass weighted u * /
float cv [m][n]; / * Mass weighted v * /
float z [m][n]; / * Potential enstrophy * /
float h [in] [n] ;
float psi [m][n]; / * Velocity stream function * /
float dudt [m] [n]; / * Time tendency of u * /
float dvdt [m][n]; / * Time tendency of v * /
float dpdt [m][n]; / * Time tendency of p * /
int ncycle;
float time;
float tdt;
int firststep;
int nproc;

) *glob;

slave()
{

* jstart = (mynum - 1) * chunk_size;

jend = mynum * chunk_size - 1;

waitfor();

140 while ( ncycle < itmax ) {

145 calcuvzh(j s t a r t , j end,glob->p,glob->u,glob->v,glob->cu,
glob->cv,glob->z,glob->h,fsdx,fsdy);

148 waitforO;

151 timetend(jstart, jend,glob->dudt,glob->dvdt,glob->dpdt,
glob->z,glob->cv,glob->cu,glob->h);

15 4 waitforO;

/* Calculate new values for u, v and p */
164 tstep(jstart,jend,glob->u,glob->v,glob->p, glob->dudt,

glob->dvdt,glob->dpdt,glob->firststep, glob->tdt);

169 waitforO;
170 if ( mynum == 1 } {
171 if ( glob->firststep ) {
172 /* Double tdt because all future steps are leapfrog */
173 glob->tdt = glob->tdt + glob->tdt;
174 glob->firststep = 0;
175 }
17 6 glop->ncycle++
177 }

179 waitforO;

180 } /* End of time step loop */

}
Figure 7.25: Shared Memoiy Slave Code

7-21



ERROR /.- LOOP BOUND ERROR

As in case study 2, debugging the codes begins by checking that the key variables have been

correctly initialised. Rather than define a series of assertions, it was decided that it would be

faster to manually set breakpoints in the sequential and parallel codes and then execute the

following series of comparison statements in the debugger

compare $c::u = $m::"glob->u"
compare $c: :v = $in: : "glob->v"
compare $c::p = $m::"glob->p"
compare $c::psi = $m::"glob->psi"
compare $c::uold = $m::"glob->uold"
compare $c::vold = $m::"glob->vold"
compare $c::pold = $m::"glob->pold"

These comparison statements indicated that there were no differences in the main data

structures. At this point it is clear that the data was correct prior to entering the time step

loop, and that errors were introduced in one or more of the calculation phases. To narrow

down the location of the error, each calculation was checked in turn looking for differences

in the results. First, the values of cu, cv, z and h were checked after the call to

calcuvzh () using the following assertions:

assert $c::cv@"cshallow.c":71 = shallow($p::"glob->cv"@"pshallow.c":151)
assert $c::cu@"cshallow.c":71 = shallow($p::"glob->cu"@"pshallow.c":151)
assert $c::h@"cshallow.c":71 = shallow($p::"glob->h"@"pshallow.c":151)
assert $c::z@"cshallow.c":71 = shallow($p::"glob->z"@"pshallow.c":151)

No errors v ere apparent after the first iteration. However, after the second iteration errors in

each of the variables was seen. These errors are shown in Figure 7.26 and were appearing in

only the top two or three rows of the arrays.

Figure 7.26: Errors in cu, cv, h and z Respectively.

As the errors were introduced only on the second iteration, it was surmised that the errors

must have been occurring in a subsequent calculation. Since the variables cu, cv, h and ?.

are derived from u, v and p, the values of these variables were now checked after the call to

t s t e p () using the following assertions:

_

7-22



assert $c::p@"cshallow.c":80 = shallow($p::"glob->p"Q"pshallow.c":170)
assert $c::u@"c3hallow.c":80 = shallow($p::"glob->u"@"p3hallow.c":170)
assert $c::v@"cshallow.c":80 = shallow($p::"glob->v"C"p.3hallow.c":170)

Again, errors were observed all three variables as shown in Figure 7.27, but this time they

occurred after thejirrt iteration and only in the top two rows. However this still did not

provide enough information to conclusively identify the cause of the error or its location.

Figure 7.27: Errors iu u, v and p Respectively

Since u, v and p are derived from dudt, dvdt and dpdt, it was still necessary to check

these after the call to t imetend (). This was done using the assertions:

assert $c::dudt@"cshallow.c":73 = shallow($p::"glob->dudt"@"pshallow.c":155)
assert $c::dvdt@"cshallow.c":73 = shaliow($p::"glob->dvdt"@"pshallow.c":155)
assert $c::dpdt@"cshallow.c":73 " shallow($p::"glob->dpdt"@"pshallow. c":155)

In this case, all three variables again exhibited errors in the top two rows after the first

iteration. These errors are shown in Figure 7.28.

Figure 7.28: Errors iu dud,-., dvdt and dpdt Respectively

Using the evidence that had been gathered so far, it was now possible to conclusively identify

the t imetend () routine as the source of the errors since all other potential locations had

been eliminated. Once the general location of the error had been established, the next step

was to use the characteristic visualisation to identify the precise location. Since the error was

manifest only in the first and second rows of the data structures (at least after the first

iteration), there was a high likelihood that the problem was located in the loop bound code.

Examination of the codes at this point quickly identified the error as an incoaect loop

bound. This is shown in Figure 7.29.

7-23



for(j = 0; j <= n;
JP = (J+D % n ;
for (i = 0; i < m; i++)(

ip = (i+1) % m;
dudt[ip][j] = . . . ;
dvdt[i][jp] = . . . , -
dpdt[i][j] = . . . ;

for(j = j s t a r t ; j <= jend;
jp = (j+1) % n;
for (i = 1; i < m; i++)(

ip = (i+1) % m;
dudt[ip][j] = . . .?
dvdt[i][jp] = . . . ;
dpdt[i]lj] = . . . ;

(a) Sequential (b) Shared Alemoty

Figure 7.29: Loop Bound Error in Shared Memory Code

While not particularly interesting in itself, this error again showed how a combination of

judicious use of assertion statements and analysis of the error characteristic could quickly

identify the location and nature of an error.

CONCLUSION

This chapter has presented a series of three case studies that examine the use of relative

debugging to find errors in parallel programs using a range of different parallel architectures.

The case studies show that relative debugging works equally effectively for data parallel

programs, and for programs that have been designed to use distributed memory and shared

memory architectures. A key feature of the GUARD debugger is that it allows a user to

debug programs developed using three completely distinct parallel architectures within the

same debugger.

In addition to support for a range of parallel architectures, a number of common themes

emerge from the case studies.

• The iterative refinement technique is equally effective across different architectures, and

is the primary method for locating error regions.

• Error characteristics can provide a useful tool for identifying specific errors, and can be

used to trace an error to its source.

• The characteristics can change as errors are located and corrected, but this does not

affect the debugging process.

• Observing changes resulting from varying the number of processes is a useful technique

for isolating errors.

7-24



• Maps provide an effective mechanism for hiding data distribution and other data

transformations.

• Minor coding errors can result in highly visible differences in variables, even thought the

absolute magnitude of the differences is small.

• Error tolerances can be used to foais on the most significant errors first, followed by less

significant errors later.

Each case study required the investment of considerable time and effort to debug all the

errors that had been introduced into the codes as a result of the porting process. Clearly,

many of the errors could have been located using traditional debugging practices such as

instrumenting the code, or by employing existing parallel debuggers. No direct comparison

was performed with these techniques. However the experience gained here suggests that

relative debugging was able to provide an additional level of detail that would not ordinarily

be available, and that this resulted in a faster and more efficient debugging process than

would be possible using traditional debugging techniques.

7-25



Chapter 8

FUTURE DIRECTIONS & CONCLUSION

The current version of GUARD clearly demonstrates that the technique of relative

debugging is a powerful tool for locating errors in parallel programs. As a research prototype

however, the development of GUARD has focussed on a number of core technologies.

These have included:

• a dataflow engine;

• an architecture independent data format;

• a data transformation/mapping; and

• a client/server architecture.

Although these core technologies combine to produce a powerful debugger, there are a

number of areas that would benefit from further research and development. This chapter

examines a number of enhancements that could be added to the current implementation in

order to increase its functionality and usability. The final part of this chapter is devoted to

concluding the dissertation.

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

Currently, GUARD exists as a stand-alone, command-line debugger. While a number of

similar debuggers have gained wide acceptance, most notably Cygnus's GDB [66], the trend

is to provide debuggers as part of a fully integrated development environment. IDEs offer a

number of advantages over stand-alone tools, such as a homogeneous user interface and a

simplified development cycle [46]. Research is currently underway to integrate GUARD into

Microsoft's Visual Studio IDE.

Parallel debuggers also benefit greatly from the use of a graphical user interface, as is

provided in many IDEs. Since parallel debuggers are generally dealing with multiple

processes (and sometimes hundreds of processes), the control of these processes becomes a

significant issue. A GUI provides the ideal mechanism for this purpose. In addition, the

8-1



user may wish to examine or modify the code and data from many processes simultaneously,

and the GUI provides the most natural environment to facilitate this interaction.

MAPS/TRANSFORMATIONS

GUARD is unique in its ability to model data distribution and transformations that occur

when serial programs are ported to parallel architectures. However, in the current

implementation, both the distribution and transformation of data must be specified using a

simple, low-level command language. One drawback with this technique is that it is difficult

to specify complex mappings. This is because the user must have a detailed understanding of

the mapping that has been used, and must produce what is in effect a formal specification of

the mapping. A second drawback is that the mapping language is inherently fragile. That is,

minor coding errors can lead to major changes in the final specification. The consequences

of such mapping errors are that it may become difficult or impossible to locate the original

program errors, or that 'spurious' errors may be introduced. A number of solutions are

proposed to overcome these difficulties, however future researchers would also be advised to

draw on the experiences of the formal specification community- A library of common

mappings could be provided so that the user is not always required to formulate a mapping

prior to beginning the debug session. Also, where mappings have been defined for unusual

decompositions or translations, a mechanism for storing these mappings in the library for

future use could be provided. Map creation could also be facilitated, through the use of

either a semi- or fully automated analysis system. A semi-automated system could provide a

graphical environment for specifying maps, allowing the user to model and test the

decomposition or transformation interactively. A fully automated system could perform

code analysis on the serial and parallel codes to determine the required mapping.

ASSERTIONS

Assertions, like maps, are also implemented in a very basic manner, which raises a number of

problems for the user. Despite its power, the comparison of data by specifying variable and

breakpoint information in assertion statements is a very "low level" approach. It relies on

the programmer making sensible choices about the location from which data will be

extracted.

In order that data can be compared, it is not only important that the programs are

functionally equivalent at this point, but that breakpoints aren't inserted at locations where

the flow of control is disrupted or data is in an indeterminate state. This issue is particularly

8-2



important for arbitrary parallel programs incorporating distributed processes and/or

multithreading and requires further investigation. Moreover, relative debugging cannot

currently be applied to find timing errors, which are a common cause of failure in task

parallel programs. In fact, the insertion of data gathering breakpoints, as required by a

relative debugger, alters the timing of the programs and may mask or highlight temporal

problems (the "probe effect" [25]). It might be possible to combine the assertion constructs

used here with data gathering techniques that arc not as invasive as the current debug server,

however, this also requires further investigation.

A user currently formulates assertions by examining the programs under consideration and

by following the data-flow of the variables manually. This information is then used to create

the assertions. However, it would be much simpler and less error-prone to build assertions if

an interactive browser could present the data-flow of a program graphically, and in particular

show the define and use points for variables. Such a tool set would need to be integrated with

some form of IDE.

VISUALISATION

Visualisation of data errors also presents a challenge to the debugger user. Currently the

results of comparison operations are exported into an intermediate file. This data must then

be transformed into a graphical format for visualisation. Although GUARD provides tools

to facilitate this process, it is still relatively cumbersome and time consuming. The obvious

approach would be to provide a visualisation engine in the debugger itself, perhaps as part of

a GUI. Not only would this streamline the debugging cycle, it would give the visualisation

engine access to data structure and mapping information that it would not normally have.

This information could be used to enhance the display format, perhaps providing a "drill

down" data hiding facility to simplify the display of large or complex data structures.

As discussed in Chapter 3, there is also some evidence to suggest that visualisation of

comparisons, particularly using 2-D and 3-D representations, provides the user with a means

of characterising patterns of differences. This has been highlighted in a number of previous

studies r3,69] where characteristic patterns have been able to be used to identify specific types

of behaviour and consequently the identification of sources of errors. While it is possible to

make certain generalisations about the nature of the patterns in these situations, further

research is still needed if this technique is to become the basis for formulating deductions

about the nature of general classes of errors.

8-3



COMPLEX DATA TYPES

Currently, user-defined assertions, the data mapping algebra and the visualisation facilities

provided by GUARD only support scalar data types and multi-dimensional arrays. AIF

provides some support for structured data types, such as the C s t r u c t or the Pascal

record types, but this is limited to simple manipulation and does not support linked lists or

recursive data types.

Clearly there is scope to extend the relative debugging paradigm to more complex data types

3uch as structures, lists and trees. However a number of issues still need to be addressed.

For example, how exactly is a linked list compared? Does it mean that each element contains

the same values, but the link pointers can differ? What if the linked list contains a pointer to

an earlier element, how should this be compared? In addition, visualisation of these complex

data types can also be difficult and time consuming. The utility of GUARD could be

enhanced significantly from further research into these areas.

CONCLUSION

Relative debugging has introduced a new paradigm into the sphere of traditional debugging

techniques. Unlike other debugging methods, relative debugging is language and machine

independent, and works by comparing the divergence of key data structures in

simultaneously executing programs. This allows programmers to focus on finding the

location of an error rather than trying to understand how the program works. Relative

debugging combines the unique ability to utilise the inherent correctness of a reference code

for determining errors in a suspect code, with many of the tools found in traditional

debuggers.

The work that has been undertaken demonstrates that this technique can be applied equally

well to parallel programs. This was not obvious from the outset. Programs ported to parallel

computers undergo significant modifications in order to take advantage of architectural

features, often altering key data structures in complex ways. In addition, early versions of

relative debuggers were limited to single process parallel codes due to inherent limitations of

the implementations, so demonstrating the technique in real situations was difficult. It has

only been after considerable effort was invested to achieve a number of key advances that the

applicability of the technology to parallel codes has become apparent.

8-4



A range of key achievements has been accomplished in order to develop a parallel relative

debugger. These achievements, culminating in the implementation of the GUARD

debugger, include:

• the introduction of dataflow techniques as a method to control the relative debugging

process;

• the development of a general purpose architecture independent data format that,

unlike other data formats, can be used to perform in-core arithmetic, logical and

comparison operations;

• the ability to describe data decomposition and transformations in a machine-

independent manner, and for the debugger to use that information in performing

data comparisons;

• the ability of the debugger to work with different parallel architectures including data

parallel, shared memory and distributed memory architectures; and

• the extension of a client/server architecture to support the relative debugging

technology.

The implementation of GUARD described in this thesis provides a robust platform for

relative debugging, anvl with this as a basis, has extended the relative debugging technique to

parallel computers. The effectiveness of this technology has been demonstrated by

presenting three case studies. Each case study shows how relative debugging can be used to

efficiently locate errors in a program that has been developed using one of three traditional

parallel programming paradigms: data parallel, shared memory and distributed memory. The

case studies show how important information can be derived from a range of sources,

including:

• the location at which differences occur;

• in which data structures differences are visible; and

• the patterns that are observed in these differences.

8-5



All tliis information can be utilised to quickly identify a suspect code region using iterative

refinement techniques. On this basis, it is clear that that this work has made a major

contribution to the pool of debugging techniques that are available to aid programmers in the

evolution of parallel codes.

8-6



f

Appendix A

GUARD USERS MANUAL

INTRODUCTION

GUARD is a relative debugger. Unlike other debuggers, GUARD allows programmers to

compare data from programs as they are executing, and then use this information as an aid to

identifying the location of errors.

GUARD is also a conventional interactive parallel debugger. It can be used to debug parallel

and sequential programs using normal interactive commands, such as setting breakpoints and

displaying program state. Because G UARD is a parallel debugger, it will allow commands to

be applied to sets of parallel processes as well as a single sequential program.

GUARD'S command set is derived from GDB, since this debugger is currently used to

provide the low-level debug services. The syntax that GUARD uses has also been heavily

influenced by the High Performance Debugging Forum's HPD standard.

DEFINITIONS & SYNTAX

Commands in GUARD consist of a keyword followed by an optional number of arguments,

as in:

command[argl] [arg2] ...

Arguments can consist of keywords or expressions.

Expressions are comprised of the usual C-like operators, constants, internal variables and

program variables and are evaluated locally by the client. Text enclosed in quotes "" is

evaluated as an expression on the server, using a syntax defined language being debugged.

GUARD supports the use of internal variables for storing temporary values. These variables

are denoted by a dollar sign followed by a name, for example $var. Internal variables can be

referenced before they are defined, but will always return void.

When programs are debugged by GUARD, the executing processes are managed using

process sets. The set " a l l " contains all processes that are currently being debugged by

A-l



default. Users can create new sets that contain arbitrary combinations of processes that the

user wishes to control as a group. A process set can be selected as the "current set" (using

the "focus" command), and subsequent commands will be automatically applied to all

processes in this set.

Variables in a target program are referenced using a syntax consisting of an optional process

specifier and an identifier or server expression separated b)' ": :". If no process is specified

then all processes in the current set are used. For example to refer to the variable v a r in

process $s the program variable $s : :var would be used. If var was a pointer to a

structure, then this must be dereferenced by evaluating a server-side expression, such as

$ s : : " v a r - > f i e l d " .

If an internal or target program variable is an array, then elements can be referenced using

standard C array syntax, such as $s : :var[3] [4]. GUARD also supports the notion of

slices. An array can be sliced by specifying an array index as a range, such as

$ s : : v a r [ 3 . . 1 0 ] [ 4 ] .

USAGE

GUARD is a client/server debugger. The GUARD client must be started before the

debugger can be used. The following command is used when starting the debugger under

UNIX:

guard [program [args]]

If arguments art supplied to the guard command, a single program will be started under

debugger control, much the same way as the GDB command would.

Once the debugger is started, the user will see an introductory message, followed by a

command prompt:

GUARD-2000 Parallel Relative Debugger
Copyright (c) 1996-2000 by Monash University

dbg all>

At this point, the user can issue commands to the debugger.

A-2



PROCESS INVOCATION

Process identifiers are first class debugger variables. Processes are declared using the

invoke command which specifies the name of the executable and the number of processes

to create. The syntax of the invoke command is:

invoke <decl> "command" [on "hos t " ] [using "arch"]

<decl> is a list of one or more internal debugger variables which can be either scalars or

arrays of multiple dimensions. The number of processes started is calculated from the

number of scalar variabler combined with the number of elements in each array in the list.

The following example starts a sequential code called "progl" on machine "hos t l " :

invoke $se r " p r o g l " on " h o s t l "

The process identifier $ se r can then be used to refer to the sequential process. The next

example starts a 5 process parallel code called "par" using the MPICH parallel architecture:

invoke $master,$slave[2][2] "par" using "mpich"

Parallel processes are assigned to the process identifiers in order, so $master refers to the

first process, and the remaining processes are assigned to elements of the two-dimensional

array $ s l a v e [2] [2] .

COMPARISONS AND ASSERTIONS

Comparisons and assertions are commands specifically designed for relative debugging. The

comparison command is used to compare data between two programs interactively. For

examgle, if the processes $procl and $proc2 are stopped at a breakpoint, the user might

issue the following command to compare variables var l and var2:

compare $procl::varl = $proc2::var2

If the display mode is set appropriately, then differences in these variables will be displayed

immediately to the user.

Assertion commands are employed when the user wishes to define a set of conditions about

the programs before they are executed. Assertions are encapsulated using the "graph"

command, and take a special form of variable reference that includes a breakpoint reference

consisting of a file name and line number. An assertion comparing the variable v a r l from

A-3



f i l e l . c at line 34 of the process $pl with the variable var2 from f i l e 2 . c at line 55 of

the process $p2 would take the form:

graph $g
assert $pl::varl@"filel.c":34 = $p2::var2@"file2.c":55

end

Entering these commands in the debugger will create a graph called $g. Issuing the

command " s t a r t $g" will then instruct the debugger to execute the graph. This results in

breakpoints being inserted at the appropriate locations and then the processes started. When

the breakpoints are reached, the debugger will extract the contents of the variables and

perform the comparison.

DEBUGGER COMMANDS

The following list describes the commands available in GUARD. Letters shown in bold

correspond to the abbreviation for the command.

Commands are classified into three groups. These are:

• pivcess independent— the command does not interact with a process;

• process targeted— the command interacts with a process, and at least one process must

have been invoked; and

• process optional — the command may interact with a process, depending on its

arguments.

Immediate mode commands are executed as soon as they are issued, and generally result in

communication with the server. The " se t " and " in fo" sub-commands are also immediate

mode commands. Deferred mode commands may only be issued when the debugger is in

defened mode, and are collected by the debugger and are only processed when the "end"

command is encountered. The three commands: "graph", "map" and " t r a n s " switch the

debugger from immediate to deferred mode. The "end" command switches from deferred

to immediate mode.

A-4



INTERACTIVE MODE COMMANDS

assign target expr [-force]

Process Optional. Assign the value of an expression defined by expr to target. The target must evaluate
to an 1-value that is either an internal variable or a program variable. If target is the name of an
internal variable that does not exist, a new variable is created automatically.

break [2ine\func\addr]

Process Targeted. Set a breakpoint in all processes in the current process set. The location of the
breakpoint can be defined as a line number line, a (unction name func or an address addr.

compare exprl = expr2

Process Optional Compare (subtract) the value of expression exprl with the value of expression expr2.
The values must be the same size and shape. For complex data types such as arrays and structures,
the comparison is performed on each element. The output of this command depends on the settings
of the display, output and error variables.

cont [n]

Process Targeted Continue execution of all processes in the current process set from a breakpoint. If n
is specified, then the debugger will stop on the //th breakpoint.

create $var[[diml] [dim2]...]

Process Independent. Create an internal variable. If dim1, dim2, etc. are supplied then the internal
variable will be an array of the specified rank and shape.

defset pset pi [p2 ...]

Process Independent. Define a process set called pset containing the processes/)/, p2, etc.

delete [bpl bp2 ...]

Process Targeted Delete the list of breakpoints specified by bp1, bpl, etc. in the current process set. If
no arguments are specified then all breakpoints will be deleted.

down [n]

Process Targeted. Move down the call stack by n frames in all processes in the current process set. If
no argument is supplied then move down one frame.

focus [pset]

Process Independent. Change focus to process set pset. Subsequent process targeted commands will
refer to the processes in this set.

function func( [argl,...]) = expr

Process Independent. Define a function (macro) called func. The expression expr can contain format
arguments that are substituted by actual arguments supplied to the function. Recursion is not
allowed.

graph name

Process Independent. Define a dataflow graph called name. Switches to deferred mode until the end
command is encountered.

A-5



h a l t

Process Targeted Halt all executing processes in the current process set. This is the equivalent of
sending a SIGINT to the process.

h e l p [command]

Process Independent. Display help information on the command command. If no argument is supplied
then a list of available commands is displaced.

in fo sub-command

Process Independent. Display information specified by sab-command

invoke var-list program [args] /on host [user passwd]] /us ing arch]

Process Independent. Invoke a program called program with arguments args.

If on is supplied, then the program is executed on the remote system host optionally suppling user
and passwd for authentication.

If u s i n g is supplied, the program is started under one of the parallel run-time systems specified.
These can be mpich, poe or p4.

For sequential programs, var-list is just a scalar variable. For parallel programs, var-list must be a list
of one or more scalar variables or arrays. Parallel process tasks are assigned to each variable or array
in turn, starting from the left The total of the number of scalars and the ranks of each array
detcrmLie the number of processes started.

k i l l

Process Targeted. Kill all executing processes in the current process set.

l is t /-|[file:]line\[file:]func\addr][,[file:]line\[file:]func\addr]

Process Targeted, list lines of all processes in the current process set.

With no arguments, list ten more lines after the previous listing. If "-" is specified, list ten lines
before the previous listing.

If one argument is supplied, this specifies a line around which ten lines are listed. If two arguments
are supplied, these specify the starting and ending lines to list.

map name{proc: :var)

Prvcess Independent. Define a data transformation map called name. The mapping will be supplied with
an array of processes proc and a distributed variable var. Switches to deferred mode until the end
command is encountered.

next [n]

Prvcess Targeted. Skip to next statement of each process in the current process set, ignoring subroutine
calls. If n is supplied, skip next n statements.

A-6



p r i n t expr

Process Optional. Print the value of expr for each process in the current process set. Exprcm contain
any combination of internal variables and program variables.

q u i t

Process Independent. Quit the debugger,

r e l e a s e prog

Process Independent. Release an invoked program from the debugger. Shuts down the debug servers for
all processes associated with the program and releases the internal variable prog.

r e s t a r t graph

Process Independent. Restart a graph. All processes referenced by the graph are restarted first

run [args]

Process Targeted Start executing all processes in the current process set. args are passed to die program
as command line arguments.

s e t sub-command

Process Independent. Set information specified by sub-command.

source filename »

Process Independent. Read commands from the file specified by jilename.

s t a r t graph

Process Independent. Start execution of the graph specified by graph.

s t a t u s

Process Targeted. Print die status of dl processes in the current process set.

s t e p In]

Process Targeted. Skip to next statement of each process in the current process set. Will step into
subroutine calls. If n is supplied, skip next n statements.

t r a n s name(var)

Process Independent. Define a data transformation function called name. The data structure to be
transformed will passed as die argument var. Switches to deferred mode until the end command is
encountered.

up In]

Process Targeted. Move up the call stack by n frames in all processes in the current process set. If no
argument is supplied then move up one frame.

v e r s i o n

Process Independent. Display the debugger version.

A-7



viewset [pset]

Process Independent. Display the processes associated with the process set pset. If no argument is
supplied, display all process sets.

wha t i s expr

Process Targeted Display the data type of the expression ixpr for each process in the current process
set.

where [n]

Process Targeted Display the current stack frames for all processes in die current process set. If n is
supplied, only die innermost n frames are displayed. If n is negative die outermost ;/ frames are
displayed.

SET SUB-COMMANDS

set async = on|off

Default on. Turn asynchronous mode on or off. This only affects interactive mode, and determines
if die debugger waits for each command to complete before accepting additional commands.

set dfmode = default|sync|async

Set die dataflow mode to synchronous or asynchronous. This changes die dataflow graph diat is
generated using die graph command so diat it operates in one of diese modes. The synchronous
mode is default for assertions that refer to independent processes, while die asynchronous mode is
die default for assertions diat refer to die same process.

set display = text|aif|hdf|hdf5!ms

Default t e x t . Set die display format for assertions. In t e x t mode, any differences are displayed as
text at die users terminal. In a i f mode, differences are output in architecture independent format
(AIF). In hdf and hdf 5 modes, differences are output in die hierarchical data format (HDF)
version 4 or version 5 respectively. In ms mode, die differences are displayed in a GUI environment
running under Microsoft Windows (experimental).

set error lower upper relative|absolute

Default " 0 . 0 0 . 0 a b s o l u t e " . Set die error limits for assertions. Differences below lower are
ignored. Differences between lower and upper ait displayed using the current d i s p l a y mode. Any
differences above upper M/i\l halt die dataflow interpreter. The r e l a t i v e and a b s o l u t e modes
are used to specify if lower and upper ast relative or absolute limits respectively. In r e l a t i v e mode,
die difference is first divided by die maximum of die two values being compared.

set ERROR_CHECKS = max I normal|min

Default normal . Sets error checking mode to max, no rma l or min. This determines if die
debugger prompts before a potentially dangerous action is taken, prompts only before a potentially
fatal action or warns odierwise, or ignores potential danger respectively.

set EVENT_INTERRUPT = on|off

Default on. Determines whether program events are detected and reported to die user as soon as
possible, or deferred until die user has completed typing a command.

A-8



set EXECUTABLE_PATH = path

Default ". / : $PATH". In order to find the location of an executable specified using the i n v o k e
command, the debugger searches the current directory, then all the directories included in the
executable search path.

set force = on|off

Default off. Determines whether subsequent assertions will copy the value from the LHS variable
into the RJIS variable after the assertion is executed.

s e t h a l t = on |o f f

Default on. Determines if processes are halted when the dataflow interpreter terminates,

s e t l o g f i l e = filename

Default empty. Specifies the name of a file to send logging entries,

s e t logging = on |of f

Default off. Turns dataflow event logging on or off.

s e t MAXJLIST = lines

Default 20. Specifies the number of lines that are displayed using the l i s t command,

s e t MAX_LEVELS = levels

Default 20. Specifies the maximum number of call stack fnuns that are displayed using the where
command.

set MAX_HISTORY = length

Default 20. Specifies the length of die command history that will be maintained,

s e t MAX_PROMPT = length

Default 20. Specifies the maximum length of the command prompt,

s e t MODE = p rocesses I t h r e a d s | m u l t i l e v e l

Default p r o c e s s e s . Defines if the debugger is capable of debugging multiple-process single
thread, single process multiple-thread or multiple-process multiple-thread programs respectively.
Currently only the p r o c e s s e s mode is supported.

s e t output = filename

Default empty. If defined, specifies a file to which output from assertions is sent,

s e t PROMPT = prompt

Default"quard $ p t s e t > ". Sets the current prompt,

s e t SOURCE_PATH = path

Default empty. Defines where the debugger will look for source files associated with the executable,

s e t VERBOSE = e r r ] w a r n | a l l

Default warn. Defines the level of debugger diagnostics. These levels are e r r , warn and a l l ,
which correspond to show error messages only, show warning messages and normal command
output and show maximum information respectively.

A-9



INTO SUB-COMMANDS

Each s e t sub-command has a corresponding info sub-command to display the current

setting. In addition, the following info sub-commands are available.

in fo g loba l s

Process Targeted. Display a list of the global symbols for each process in the current process set.

in fo map [name]

Process Independent. Display information about the definition of the map name. If no argument is
supplied, information on all maps is displayed.

info process [pset]

Process Independent. Display information about the process set pset. If no argument is supplied,
information on all process sets is displayed.

in fo t r a n s [name]

Process Independent. Display information about the definition of the translation name. If no argument is
supplied, information on all translations is displayed.

DEFERRED MODE COMMANDS

assert varl =l== var2

Assert wmmaiid only. Assert that variable varl is equivalent to variable varl. Variables are specified in
the format proc. \var%fih'.line to denote a variable called par at line number line in filc_$fc from
executing process prvc.

def ine i n d e x ( a , i , u , 1 ) = expr

Map command on/y. Define a function that describes the mapping of indices from a serial array to a
parallel arrays. The argument i is the current index value, a is an array of index values, u is an array
of index upper bounds and 1 is an array of index lower bounds.

define proc(a,i,u, 1) = expr

Map command only. Define a function that describes the mapping of indices from a serial array to set
of processes. The argument i is the current index value, a is an array of index values, u is an array
of index upper bounds and 1 is an array of index lower bounds.

de f ine func( i ) = expr

Trans command only. Define a function that describes translation of elements of a vector. The
argument i is the current index value.

end

All commands. Finish deferred mode command.

A-10



Appendix B

DEBUG CLIENT API ROUTINES

The following routines make up the debug client API library. Each routine returns a value

that depends on its function, but is genendly an integer or a pointer. For routines returning

an integer, an error is indicated by a value of —1. For routines returning a pointer, a NULL

pointer indicates an error. The API provides the DbgError () and DbgErrorStr ()

routines to find out more detail about the exact error that occurred.

Most routines operate synchronously, with the exception of DbgGo () and DbgStepO

which operate asynchronously. Prior to calling the asynclironous routines, the appropriate

handlers must be installed using the DbgHandle* () routines.

DEBUGGER INITIALISATION

These routines are used to perform the necessary initialLsuuon and shutdown operations for

the client/server protocol.

int Dbglnit(char *proto)

Initialise the debugger. Must be - ied once prior to any other API routine; The

protocol that is used between debug client and server is specified using the p r o t o

argument. Allowable values "socket" and "rpc". Returns 0 on success or -1 on

failure.

int DbgFinish(void)

Terminate tht debugger. Must be called once after all calls to other API routines.

Returns 0 on success or -1 on failure.

PROCESS MANAGEMENT

These routines are available to manage processes in the debugger. This includes routines for

creating and removing, controlling the execution of, and finding the status of processes

under the control of the debugger. When a process is created, a process handle is returned.

This handle is then used to refer to the process in any subsequent operations.

B-l



void *DbgInvoke( char *prog, char **args, int nproc, char *user,
char *passwd, char *host_or_arch, char **env,
char *backend)

Invoke a program to be debugged. The program name and command line arguments

are supplied as prog and a rg s respectively. For parallel programs, nproc specifies

the number of processes to start, and hos t_o r_a rch is used to determine the

parallel architecture to use. For sequential programs nproc is set to 1 and

host_or_arch can be used to specify the name of a remote host on which the

program will be started, or NULL for the local machine. The use r and passwd

arguments can be used to supply authentication information if it is required. The

env argument is used to pass local environment information to the remote

processes. The backend aigument is used to select a backend debugger. Currently

only "gdb" is supported. On success a process handle is returned which can then be

used by other routines to refer to this process. On failure, a null pointer is returned.

void *DbgProc (void *proc, int pnurn)

If the process handle p roc refers to a parallel process, this routine will return a

handle to the process identified by pnum. Returns a process handle on success, or a

null pointer on failure.

dyad_t DbglsActive(void *proc)

Returns true if the process referred to by process handle p roc has a server and is

able to receive commands.

int DbgKill(void *proc)

Kill the process referred to by the process handle proc . After this command, the

orocess is no longer being debugged, though the server is still running. Returns 1 on

success or 0 on failure.

in t D'.jgGo(void *proc)

Start the process referred to by the process handle p roc running. This routine can

be used to initiate execution (as in the "run" command) or continue execution after a

breakpoint (as in the "cont" command). Returns 0 on success or -1 on failure.

B-2



int DbgStep(void *proc, int count, int step_in)

Single step the process referred to by the process handle p roc one source line. If

count is greater than one, then count -1 lines will be skipped. If s t e p _ i n is non-

zero then the command will step into subroutine calls. Otherwise subroutine calls

will be treated like a single statement. Returns 0 on success or -1 on failure.

int Dbglnterrupt(void *proc)

Interrupt the running process referred to by the process handle proc. Returns the

process to a state ready to accept a new command. If the process is not running then

it will have no effect. Returns 0 on success or -1 on failure.

int DbgQuit(void *proc)

Shut down the server debugging the process referred to by proc. Returns 0 on

success or -1 on failure.

int DbgQuitAll(void)

Shut down all servers in one operation. This is equivalent to issuing DbgQuit ()

commands for each process being debugged. Returns 0 if all server shut down

successfully, or -1 otherwise.

DEBUG OPERATION

These routines are used to perform a range of operations on processes being debugged. The

first argument of all these commands is a process handle that refers to the process on which

the operation is to be performed.

char *DbgGetType(void *proc, char *expr)

The expression expr is evaluated by the process referred to in proc. If successful,

an AIF type descriptor for the result is returned. If an error occurs, NULL is

returned.

AIF *DbgEvalExpr(void *proc, char *expr)

The expression expr is evaluated by the process referred to in proc. If successful,

the resulting value is converted to AIF and returned. A null pointer is returned on

error.

B-3



int DbgSetVar(void *proc, char *var, AIF *val)

Sets the program variable var to the value represented by va l . The routine

attempts to convert v a l if its type is different from var or it contains a value that is

not representable on the remote host. Returns 0 if successful or -1 on failure.

dbgbp_t *DbgSetLineBreak(void *proc, char *file, int line)

Set a breakpoint at line number l i n e in the source file f i l e of the process proc.

If successful, returns a structure containing information about the breakpoint. On

failure, returns a null pointer.

dbgbp_t *DbgSetFuncBreak(void *proc, char *file, char *func)

Set a breakpoint at the first line of the function (or subroutine) f unc in the source

file f i l e of the process proc. If successful, returns a structure containing

information about the breakpoint On failure, returns a null pointer.

int DbgDeleteBreak(void *proc, int bpid)

Delete the breakpoint identified by bpid. Breakpoints are managed on a per-process

basis. The breakpoint identifier is available in the bp_id field of the dbgbp_t

structure. Returns 0 on success or -1 on failure.

dbgbp_t *DbgShowBreak(void *proc)

Lists all the breakpoints set in the process proc. If successful, returns a linked list of

breakpoint information. Returns a null pointer on failure.

dbglist_t *DbgList(void *proc, char *loc)

List the source lines of the current file for process proc. If successful, returns a

linked list of source lines. If loc is empty or refers to a single location 10 lines are

returned. If loc is a range, returns all lines in the range. Returns a null pointer on

error.

int DbgSetArgs(void *proc, char *args)

Sets the command line arguments that are passed to the executable when it is first

started using the DbgGo () routine. Returns 0 if successful or —1 on error.

B-4



dbgframe_t *DbgMoveFrame(void *proc, int count, int dir)

Move the current call stack frame. If count is greater than 1, specifies the number

of stack frames to move. The parameter d i r sets the direction of movement. If d i r

is set to 1 the routine will move up the call stack, otherwise the routine will move

down the call stack. On success, returns a structure describing the current stack

frame. Returns a null pointer on failure.

dbgframe_t *DbgShowFrame(void *proc)

Show each frame of the current call stack for the process proc. On success, returns

a linked list of call stack frames. Returns a null pointer on error.

dbgloc_t *DbgGetLocation(void *proc)

Find the current breakpoint location for the process proc. On success, the

dbgloc_t structure provides the location information. Returns a null pointer on

error.

dbgvars_t *DbgGetVars(void *proc, char *filej

Returns the global symbols that are defined in the source file f i l e . On success a

linked list of dbgvars_t structures is returned containing the symbol information.

Returns a null pointer on error.

NOTIFICATION

These routines are used to manage the asynchronous activities of the debugger. The first two

routines are normally called from within an event loop to manage the processing of debugger

events. The remaining routines are used to specify handler functions for specific types of

events that occur in the debugger.

int DbgWaitEvent(void *proc, int f i le , sigset_t *mask, int noblock)

Wait for an event to occur. This routine is provided for compatibility with debuggers

that use a command-line interface. The f i l e argument is the file descriptor that

user commands will be read from, or —1 if none. The mas k argument is used to

specify a set of signals that will be masked during the call. If noblock is set to 1

then trie routine can be used to poll for new events.

int DbgWaitBreak(void *proc, sigset_t *mask)

B-5



Wait for a breakpoint to occur. Similar to the WaitForEvent () routine, but

specifically waits for a breakpoint to be reached. Must only be used after a

DbgStep () or DbgGo () command has been issued.

v o i d D b g H a n d l e l n p u t ( v o i d * p r o c , v o i d ( * ) ( ) h a n d l e r , v o i d * a r g )

Handle input related events. This routine is used to set a handler for events that

result from the program being debugged requesting input from stdin. The handler

routine is set using the hand le r parameter. Any handler specific information

provided using the arg parameter will be passed to the handler when it is called.

void DbgHandleOutput(void *proc, void (*)()handler, void *arg)

Handle output related events. This routine is used to set a handier for events that

result from the program being debugged sending output to stdout The handler

routine is set using the hand le r parameter. Any handler specific information

provided using the arg parameter will be passed to the handler when it is called.

void DbgHandleSignal(int signal, void (*)()handler)

Handle signals. This routine is used to set a handler for signals that are sent to the

client. Using this routine rather than the standard sign-J routines ensures that the

debugger will manage all signals properly.

void DbgHandleEvent(void *proc, dyad_t (*)()handler, void *arg)

Handle asynchronous events. This routine is used to set a handler for events that

result from issuing commands that operate asynchronously. The handler routine is

set using the handle r parameter. Any handler specific information provided using

the arg parameter would be passed to the handler when it is called.

STATUS

These commands are used to find staras information about the debugger or the last debug

operation performed.

dbgstat DbgStatus(void *proc)

Obtain the status of the debug server.

void DbgError(void)

Print a description of the last error.

B-6



char *DbgErrorStr (dbgevent__t *ev)

Return a string containing the last error associated with the event ev.

B-7



A p p e n d i x C

CLIENT DATA TYPES

dbgbp_t

dbglist t

dbgf rame_t

dbgloc t

dbgvars_t

dbgsig_t

A structure containing information relating to a breakpoint. Includes
the following fields:

bp_id

bp_type

bp_location

bp_hits

bp_stmt

bp cmds

breakpoint identifier
type of this breakpoint
location of this breakpoint (dbgloc_t)
number of times this breakpoint has been reached
source line at breakpoint
list of commands associated with this breakpoint

A structure used to specify a linked list of line numbers and
corresponding source lines. Includes the following fields:

l i s t _ lno the line number of this source line
l i s t _ l i n e the source line

A structure used to specify a linked list of stack frames. Includes the
following fields:

f rame_level the level of this stack frame
frame_loc the stack frame information

A structure representing a location in a source file. Consists of the
following fields:

loc_file
loc_func
loc_addr
loc line

a source file name
a function name
an address
a line number

A structure used to represent a linked list of variable names. Contains
only one field:

var name name of the variable

A structure containing information relating to a signal event.
Includes the following fields:

sig_type the signal type
sig_f unc the current source line
sig addr the current stack frame

C-l



dbgstep_t A structure containing information returned after a single step
operation. Consists of the following fields:

step_lno

step_line

step_frame

the current line number
the current source line
the current stack frame

dbgerr_t A structure containing information relating to the last error that
occurred. Contains the following fields:

e r r_s t r a description of the error
err errno the error number

dbgevent_t A structure representing and event that has just occurred. An event
consists of a type and the data associated with the event.

dbgstat The status of the debugger. Can be one of the follov/ing values:

AIF

DBGSTAT_INITIALISING

DBGSTAT_WAITING

DBGSTAT_RUNNING

DBGSTAT_STOPPED

DBGSTAT_DBGERR

DBGSTAT INTERR

the debugger is initialising
the debugger is waiting for a command
the process is running
the process is stopped
an error occurred
an internal debugger error occurred

Data that has been converted to the architecture independent format.

C-2



Appendix D

DEBUG SERVER API

The debug server API library is divided into two parts: stub routines and utility routines. The

server stub routines are called when the server decodes a client debug request. The debugger

backend must provide a series of routines that match up with each of the stubs, and that

perform the appropriate debug operations. The utility routines are used by the debugger

backend to aid in the processing of debug requests.

STUB ROUTINES

Stub routine arguments are obtained by decoding the client request and extracting the

argument information. Each stub routine returns a debugger event of type dbgevent_t *.

The contents of this event must be generated by the associated backend routine. The

following is a list of stub routines, their associated arguments and a description of the

function the routine must perform.

dbgevent_t *DbgDeleteB:reak(int bp)

Delete the breakpoint identified by bp. Breakpoints are numbered starting from 1,

so this value must be mapped to the internal breakpoint identifier used by the

backend debugger.

dbgevent_t *DbgEvalExpr(char *expr)

Evaluate the expression specified in expr and return the result in AIF format.

dbgevent_t *DbgGetLocation(void)

Return the current breakpoint location for the process. A location consists of a

source file name, and a line number, function name or address.

dbgevent_t *DbgGetType(char *var)

Obtain type information for the named object var. Currently returns the AIF type

description.

D-l



dbgevent_t *DbgGetVars(char * f i l e )

Returns a list of the global symbols that are defined in the source file f i l e .

dbgevent_t *DbgGo(char *host , i n t cb)

Start the process running. The combination of hos t and cb are used to provide a

protocol specific communication point for event callback.

dbgevent_t *DbgInterrupt(char *host, int cb)

Send an interrupt signal to the current process. The combination of hos t and cb

are used to provide a protocol specific communication point for event callback.

dbgevent_t *DbgKill(void)

Terminate the process being debugged. The server remains operational after thi:

command.

dbgevent_t *DbgLastBreak(void)

Return breakpoint number of the last breakpoint reached.

dbgevent_t *DbgList(char * s t r )

List the source lines of the current file. The argument s t r specifies the range of

lines to list.

dbgevent_t *DbgMoveFrame(int count, int up)

Move up or down the call stack by the number of frames specified in count. If the

argument up is non-zero, then the direction is towards the calling frame.

dbgevent_t *DbgQuit(void)

Shut down the server,

dbgevent t *DbgSetArgs(char *args)

Set the arguments that will be passed to the process the next time it is run.

D-2



dbgevent_t *DbgSetLineBreak(char *f i le , in t line)

Set a breakpoint at line number l ine in the source file f i le .

dbgevent_t *DbgSetFuncBreak(char *f i le , char *func)

Set a breakpoint at the first line of the function (or subroutine) f unc in the source

file f i l e

dbgevent_t *DbgSetVar(char *var, AIF *data)

Set the variable identified by var to the value specified by data. Since data is in AIF

format, it must first be converted to the target format before this operation can be

completed.

dbgevent_t *DbgShowFrame(void)

Return a list of the current call stack frames.

dbgevent_t *DbgStep(int count, i n t i n , char *host , i n t cb)

Single step the process. The argument count specifies how many breakpoints to

skip. If the argument in is non-zero then the process will step into the next

subroutine call. If in is zero then the process will step over the next subroutine call.

The combination of host and cb are used to provide a protocol specific

communication point for event callback.

dbgevent_t *DbgStatus(void)

Obtain the status of the debug server.

UTILITY ROUTINES

The following routines provide a number of .mscellaneous services for use by the debug

server backend routines.

int DbgReadyForCmd(void)

Check if the debugger is in the correct s' ce to accept a new command. Returns non-

zero if commands are ready to be a c ^ .dd.

D-3



int DbgStopped(void)

Check if the process being debugged is in the stopped state. Returns non-zero if the

process is stopped.

dbgstat GetStatus(void)

Get the current status of the debugger. Possible values are:

DBGSTAT_INITIALISING, DBGSTAT_WAITING, DBGSTAT_RUNNING,

DBGSTAT_STOPPED, DBGSTAT_DBGERR, and DBGSTAT_INTERR.

void Se tS ta tus (dbgs t a t s t a t )

Set the debugger status to the value of s t a t .

void ResetWDT(void)

Reset the debugger watchdog timer. If this timer expires, the debug server will

automatically shut down. This routine must be called regularly to prevent this from

happening.

void Shutdown(void)

Shut the server down. This routine is called once the process being debugged has

terminated and all cleanup actions have been taken.

void AsyncCheck(dbgevent_t *(*rtn)(), dbgevent_t *event,
char *host, int prog)

Cause an event to be sent to the client asynchronously. At some point, the routine

r t n will be called with event supplied as its argument. The routine must return an

event, which will be sent back to the client. The arguments hos t and prog specify

the client callback communication point. If r t n is ASYNC_FORCE, the argument

event will be sent directly to the client instead.

D-4



A p p e n d i x E

ARCHITECTURE INDEPENDENT FORMAT API

The following routines make up the AIF API library. Each routine returns a value that

depends on its function, but is generally an integer, a pointer to an AIF object or some other

type of pointer. Routines returning an integer normally do so to indicate the success or

failure of the operation. In these routines an error is indicated by a value of —1. For routines

returning a pointer, a NULL pointer indicates an error. The API provides the AIFError ()

and AIFErrorStr () routines to find out more detail about the exact error that occurred.

Routines that return a pointer to an AIF object automatically allocate memory for that object.

It is the callers responsibility to release memory for the arguments and the result using the

AIFFree() routine.

CONVERSION

Conversion routines are used to convert data in target format to and from the architecture

independent format. These routines require that the caller knows the type of the object

being converted.

AIF *IntToAIF(int va l )

Convert an integer in target format into an AIF object.

AIF *FloatToAIF(flc»; . va l )

Convert a single precision floating point into an AIF object.

AILT *DoubleToAIF (double val )

Convert a double precision floating point into an AIF object.

AIF *VoidToAIF(char * s t r , i n t len)

Convert a byte string of length l en into an AIF object of type VOID.

E-l



AIF *ArrayToAIF(int rank, int *min, int *max,
char *data, char *base)

Convert the array pointed to by da ta into an AIF object. The argument rank

specifies the rank of the array, min and max are arrays containing the minimum and

maximum value of each dimension respectively, and base is the base type (element

type) of the array.

i n t AIFToInt(AIF *obj , i n t * re t )

Convert the AIF object ob j into an integer in target format. The value is returned

into the location pointed to by r e t .

i n t AIFToFloat(AIF *obj, f l o a t *re t )

Convert the AIF object obj into a single precision floating-point value in target

format. The value is returned into the location pointed to by r e t .

i n t AIFToDouble(AIF *obj, double *re t )

Convert the AIF object obj into a double precision floating-point value in target

format. The value is returned into the location pointed to by r e t .

i n t AIFToVoid(AIF *obj, char *data, i n t len)

Convert the AIF object obj into a byte string of length len. The result is stored in

the location pointed to by data.

char *AIFIntToStr(AIF *obj , i n t base)

Convert the integer AIF object obj into its string representation using the base

supplied. The base must be 16 or less.

char *AIFFloatToStr(AIF *obj)

Convert the floatingpoint AIF object obj into its string representation.

AIF *AIFCoerce (AIF *obj, char *type)

Coerce the AIF object obj into the type specified by the argument type.

E-2



ARITHMETIC & LOGICAL

Arithmetic and logical routines can be applied to any AIF types that arc type compatible, and

will perform any type conversions necessary. Currently, the routines support arguments of

complex types array and structure, however both arguments in binary operations must be of

the same type (including the size, shape and number of fields). For these objects, the

routines will perform element-wise or field-wise operations. The following table shows the

result type after performing an arithmetic operation.

objl
integer
floating
integer
array

structure

obj2
integer

,_ integer
floating

array
structure

result
integer
floating
floating

array
structure

AIF *AIFAdd(AIF *objl, AIF *obj2)

Add the AIF object ob j 1 to the AIF object obj 2 and return the result.

AIF *AIFNeg(AIF *ob j)

Returns thevarithmetic negation of obj .

AIF *AIFSub(AIF *objl, AIF *obj2)

Subtract the AIF object obj 2 from the obj 1 and return the result

AIF *AIFMul(AIF *objl, AIF *objl)

Multiply the AIF object obj 1 by obj 2 and return the result.

AIF *AIFDiv(AIF *objl, AIF *obj2)

Divide the AIF7 object obj 1 by obj 2 and return the result.

AIF *AIFRem(AI.7 *objl, AIF *obj2)

Divide the AIF object obj 1 by obj 2 and return the remainder as the result.

E-3



AIF *AIFNot(AIF *obj)

Returns the logical COMPLEMENT of the AIF object ob j .

AIF *AIFAnd(AIF * o b j l , AIF *obj2)

Returns the logical AND of the AIF objects obj 1 and obj 2.

AIF *AIFOr(AIF * o b j l , AIF *obj2)

Returns the logical OR of the AIF objects obj 1 and obj 2.

COMPARISON

These routines are used to perform comparisons between AIF objects. Currently, the

comparison routines can only be applied to the numeric types integer and floating. The

complex types array and structure are supported, and in these cases the comparison

operations will be performed on an element-wise or field-wise basis.

i n t AIFIsZero(AIF *ob j , i n t *res)

Test of the AIF object is equivalent to zero. Returns 1 if true, otherwise 0. The

return value is placed in the variable pointed to by r e s .

i n t AIFCompare(AIF * o b j l , AIF *obj2, i n t *res)

Compare the AIF objects obj 1 and obj 2. Returns -1 if obj 1 < obj 2, 0 if obj 1

= obj 2 and 1 if obj 1 > obj 2. The return value is placed in the variable pointed to

by res .

dyad_t AIFTypeCompare (AIF * o b j l , AIF *obj2)

Compare the types of AIF objects ob j l and obj 2. Returns true if they are

equivalent, false otherwise.

int AIFEPS(double lower, double upper, AIF *obj, int *res)

Compute the epsilon value for the AIF object ob j . The return value, which is placed

in the variable pointed to by r e s , is shown below.

E-4



Arguments
obj < lower

lower <= obj <= upper
obj > upper

Result
- l

0
1

ARRAY

The following routines are provided for performing operations specifically on AIF objects

that represent arrays. AIF arrays are characterised by ihcir rank or number of dimensions.

An array has a base type that specifies the type of each element of the array. Arrays also have

bounds, which specify the upper and lower limits of each index of the array. Routines are also

provided to iterate over the indices of an array. This is done with an index counter, which is an

array of integers representing the current value of each index of the array.

int AIFArrayRank(AIF *obj)

Returns the rank of the AIF array object ob j .

i n t AIFArraySize(AIF *obj)

Returns the number of elements in the AIF array object obj .

int AIFArrayBounds(AIF *ob j, int rank, int **min,

int **maxf int **size)

Give the AIF array object obj of rank rank, return the minimum index value,

maximum index value, and if size is not NULL, the size of each dimension of the

array.

int AIFArrayInfo(AIF *obj, int *rank, char **type, int *itype)

Find out information about the AIF array object obj . Returns the number of

dimensions in rank and the element type in type . If i t y p e is not NULL, returns

an array containing the type of each index.

AIF *AIFArraySlice(AIF *obj, int rank, int *min, int *max)

Perform an array slice operation on the AIF array object obj . The rank of the array

must be supplied in rank, and the minimum and maximum index values of each

slice in min and max respectively.

E-5



i n t AIFArrayMinlndex(AIF * o b j , i n t n)

Find the minimum index value of the n01 array indtac of the AIF array object obj .

i n t AIFArrayMaxIndex(AIF * o b j , i n t )

Find the maximum index value of the nUl array index of the AIF array object obj .

char *AIFArrayIndexType{AIF *obj)

Find the type of the index of the AIF array object ob j .

AIFIndex *AIFArrayIndexIni t (AIF *obj)

Create an index counter object and initialise it with the minimum index values from

the AIF array object obj .

int AIFArraylndexInRange( int rank, int *index, int *min,
int *max)

Check that the value of each index in the array index is within the range specified

by min and max. Returns 1 if they are, 0 otherwise.

i n t AIFArraylndexInc(AIFIndex *cnt)

Increment the index counter object cn t .

void AIFArraylndexFree(AIFIndex *cnt)

Free the memory allocated for the index counter object cnt .

AIF *AIFArrayElement(AIF * o b j , AIFIndex *cnt)

Return the element of the AIF array object obj referenced by the index counter

object cnt .

int AIFArrayElementToDouble(AIF *obj, AIFIndex *cnt,
double *res)

Convert the element of the AIF array object obj referenced by the index counter

object cnt to a double precision floating point in target format.

E-6



int AIFArrayElementToInt(AIF *obj, AIFIndex *cnt, int *res)

Convert the element of the AIF array object obj referenced by the index counter

object cnt to an integer in target format.

int AIFSetArrayData(AIF *obj, AIFIndex *cnt, AIF *val)

Store the AIF object val in the element of the AIF array object obj referenced by

the index counter object cnt .

STRUCTURE

The following routines are provided for perfoi r ling operations specifically on AIF objects

that represent structures. AIF structures are characterised by a series of fields, each of which

is used to store an AIF object.

i n t AIFNumFields(AIF *obj)

Return the number of fields in the AIF structure object ob j .

i n t AIFFieldType(AIF * o b j , char *name)

Return the type of a field of the AIF structure object ob j . The field is specified by

the argument name.

i n t AIFFieldToInt(AIF * o b j , char *name, i n t *res)

Convert the field name of the AIF structure object obj to an integer in target

format. The return value is placed in the variable pointed to by res .

int AIFFieldToDouble(AIF *obj, char *name, double *res)

Convert the field name of the AIF structure object obj to a double precision

floating point in target format. The return value is placed in the variable pointed to

by res .

INPUT/OUTPUT

AIF objects can be stored in a persistent file, called a data setfik using the AIFOpenSet (),

AIFWriteSet () and AIFReadSet() routines. These routines allow multiple AIF

E-7



objects to be store in one file, each object being tagged with a character string for

identification. A routine is also provided to enable AIF objects to be displayed.

i n t AIFCloseSet(AIFFILE *fp)

Close the data set file referred to by f p.

AIFFILE *ATFOpenSet(char * f i l e , i n t mode)

Open a data set file called f i l e and return a pointer to the open file. The argument

mode is a bitwise-inclusive-OR of the values AIFMODE_READ, AIFMODE_CREATE

and AIFMODE_APPEND.

AIF *AIFReadSet(AIFFILE *fp, char **tag)

Read an AIF object from the data set file referenced by fp. The object tag is

returned in the string t ag .

int AIFWriteSet(AIFFILE *fp, AIF *obj, char *tag)

Write the AIF object ob j to the data set file referenced by f p. The object is tagged

with the string t ag .

vo id AIFPrint(FILE *fp, AIF *obj)

Print a string representation of the AIF object ob j to the standart I /O stream f p.



UTILITY

The following are utility routines for performing -"arious functions on AIF objects.

aiferr AIFError(void)

Return the last AIF error that occurred,

char *AIFErrorStr(void)

Return the last AIF error that occurred as a printable string,

void AIFFree(AIF *obj)

Free the memory allocated for the AIF object obj .

i n t AIFType(AIF *obj)

Returns a integer indicating trie type of the AIF object obj . Possible types are:

AIF_INTEGER, AIF_FLOATING, AIFJPCINTER, AIF_ARRAY, AIF_STRUCT,

AIF_FUNCTION, AIF_COMPOUND, AIF_VOID, and AIF_REGION.

int AIFBaseType(AIF *obj)

Returns the base type of the AIF object obj , if the object is a complex type.

Otherwise returns the type of the object.

long AIFTypeSize(AIF *obj )

Returns the size in bytes of the AIF object obj.

AIF *CopyAIF(AIF *obj)

Create a copy of the AIF object obj .

E-9



Appendix F

SURVEY OF DEBUGGERS: 1969 - 1999

PARALLEL/DISTRIBUTED DEBUGGERS

Name

defence

CBUG
dbxtool
HARD

idd

RADAR
TSL
YODA
DISDEB

EBES
Meglos
pdbx
Pi
Belvedere
Bugnet

DI

Instant
Replay
Jade

Pilgrim

DECON
MacBug

mtdbx

NDB
ParaScope

Parasight

PPD
Recap

Technology
interactive, concurrent
language
source-level interactive,
concurrent
event-driven multiprocess
distributed, GUI
GUI, multiple-process

GUI, assertions,
distributed
event-based, replay

interactive high-level,
event-driven
behaviour specification

distributed, object-oriented
pattern oriented, animated
real time distributed
debugging
interactive debugging
interpreter

distributed
windows, client/server

concurrent
GUI

GUI, real-time views of
multitasking
synchronization primitives
parallel
parallel programming
environmei)t

high-level abstractions

distributed breakpoints

Lang. / Arch.
ECSP

concurrent Euclid

C
C, Pascal. Fortran
Ada

C, Modula2

Ada
Ada
Mara

C
C, Fortran, Pascal
C, C++
Simple Simon
C, Modula2

IF1, IF2/SISAL

CLU
DADO

C, Fortran

Fortran

CrOS NCUBE
Fortran

C

C

Authors
De Francesco N., Latella D.,
Vaglini G., Baiardi F.
Weber, JC.

Smith ET.
Gait J.
Adains E., Muchnick SS.
Di Maic A., Ceri S., Reghizzi
SC.
Harter PK Jr., Heimbigner
DM., King R.
LcBlanc RJ., Robbins AD.
Hembold D., Luckham D.
LeDoux CH., Parker DS.
Lazzerini B., Prete CA.

ChienNH.
Gaglianello RD., Katseff HP.

CargillTA
Hough AA, Cuny JE.
Jones SH., Barkan RH.,
Wittie LD.
Skedzielewski SK., Yates
RK., Oldehoeft RR.
LeBlanc TJ., Mellor-
Crummey JM.
Joyce J., Lomow G., Slind
K.,UngerB.
Cooper R.
Mills RC, Woodbury L.,
Maguire GQ Jr.
Wei Min Pan., Jackson V
Bcmmerl T., Erl N., Hansen
0.
Griffin JH., Wasserman HJ.,
McGavran LP.

Flower J., Williams R.
Callahan CD.. Cooper KD.,
Hood RT., Kennedy K.,
Torczon L.
Aral Z., Gertncr I., Schaffer
G.
MillerBP., Choi J.-D.
Pan I>Z., Linton MA.

Date
1983

1983

1984
1985
1985
1985

1985

1985
1985
1985
1986

1986
1986
1986
1986
1987
1987

1987

1987

1987

1987
1988

1988
1988

1988

1988
1988

1988

1988
1988

F-l



Name
Voyeur

Agora

Amoeba
DPD
HDB
MAD

Pdeb

DB

bdb
CodeVision

CPEM
DESK

ipd
Idb
mdb
MPD

Observer

Paragraph
Prism
SIMGER

EREBUS

HyperDEBU
NeD

TOPSYS

Ariadne

Conductor
Ddbx-LPP
DPDP

IMPROV

Technology
application-specific
graphical views
parallel
data path debugging
integrated tools
replay, user-defined
synchronisation primitives
distributed
distributed
checksums
debugs in parallel

shared memory parallel
distributed

distributed
sequential view
library
distributed, client/server,
multiple user interfaces
graphical, multi-process
distributed, object-
oriented, heterogeneous
interactive, parallel
parallel
debug library
event-action

debugger for object-
oriented, distributed
programs
post-mortem, visualization
distributed
language level simulator
parallel programming
environment

distributed

multiwindow, parallel
debug server,
programmable network
interface
parallel system tools
layered distributed
program debugger
object, thread

distributed
event- and state-based
debugging
simultaneous breakpoints
distributed, GUI
distributed, event-action
model
debugging views,
visualization

Lang. / Arch.
Poker, Fortran

Fortran
Agora

Amoeba
REM

Modula-2,
C/TUMULT

Cray
SGI

C
ESP

Fortran/UNICOS
Cedar
ParaC

EDAM

Estelle

Fleng

MMK

C

Authors
Bailey ML., Socha D.,
Notkin D.
Griffin J., Hiromoto R.
Hseush W., Kaiser GE.
Appclbe WF., McDowell CE.
Forin A.

ElshofflJP.
Side RS., Shoja GC.
Cheng DY.
Rubin RV., Rudolph L.,
ZemikD.
Zifrony D., Averbuch A.
Scholten J., Jansen PG.,
Posthuma J.
Dahem J-H, Lenga R.
CohnR.
Young B.
Chang AM., Karlton PL.,
Ciemiewicz DM.
Bullinger H-J.
Khanna A.

Intel Corporation
Brown JS.
Emrath P., Marsolf B.
Ponamgi MK., Hseush W.,
Kaiser GE
Jamrozik H., Roisin C ,
Santana M.

Heath MT., Etheridge JA.
Thinking Machines
Chaumette S., Counilh MC.
Chaumette S., Counilh MC,
Roman J., Vauquelin B.,
Charrier P.
Hurfin M., Plouzeau N.,
RaynalM.
Tanaka H., Tatemura J.
Maybee P.

Bemmerl T.
Zhou W.

Gunascelan L., LcBianc RJ
Jr.
Scholten H., Posthuma J.
Kundu J., Cuny JE.

Baek Y., Jin S.
Fernandez MG., Ghosh S.
Zaki M., El-Nahas MY,
Allam HA.
KohlJA.,CasavantT.

Date
1988

1989
1989
1989
1989

1989
1989
1989
1989

1989
1990

1990
1991
1991
1991

1991
1991

1991
1991
1991
1991

1991

1991
1991
1991
1992

1992

1992
1992

1992
1993

1993

1993
1993

1993
1993
1993

1993

F-2



Name
Panorama
PDG

Source

ADAT

AIMS

DETOP

DPD

HP DDE

LPdbx

mdb

Node Prism

p2d2
PPPE

Annai

EDL

GOLD

GUARD

PDT

BUSTER

dbxR
DDB

Technology
rctargctablc, extensible
proccss-lcvcl debugger for
concurrent programs,
animating, hierarchical
graphical representations
distributed
integrated, hierarchical
tool environment
data-parallel, performance

automated, very high level

instrumentation and
monitoring
simple GUI, static and
dynamic parallel codes
dynamic rollback, replay,
GUI
event-based, retarg stable
debugger

distributed, iconic interface

semantic race detection,
replay
parallel message-passing,
scalable expression,
execution, and
interpretation
parallel, client/server
integrated parallel
programming tools

parallel debugger with
adaptively replayable lock
integrated tool
environment

Event-Based Behavior
Abstraction
visualization-based
environment
relative debugger,
visualisation
race detection,
deterministic replay
parallel visualizing
debugger
parallel debugger

integrated parallel
debugger
replay
distributed, replay

Lung. / Arch.

GRAPE

ParMod
TOPSYS

Ada

REM

C C++, Foitrcm,
Pascal

C, Fortran/PVM

HPF/MPI, PVM
PARMACS/MPI

HPF/MPI

C, Fotran,
ZPL/MPI
Annai

Parallaxis

PVM

PVM

Authors
May J., Berman F.
Cacrts C, Lauwercins R.,
Pcperstraetc JA.

Wciningcr A.
Bode A.

Van Dongcn V., Hurtcau G.,
Singh A., Reihcr E., Hum H.
Lopes AV., Heller RS.,
Feldman MB.
YanJC.

Obcrhuber M., Wismuller P.

Side RS., Shoja GC.

Iyengar AK., Gr/esik TS.,
Ho-Gibson VJ., Hoover TA.,
Vasta JR.
Sorel PE., Fernandez MG.,
Ghosh S.
Damodaran-Kamal SK.,
Francioni JM.
Sistarc S., Allen D., Bowkcr
R., Jourdenais K., Simons J.,
Title R.

Hood R., Cheng D.
Cownie J., Dunlop A.,
HellbergS. HeyAJG.,
Pritchard D.
Miei T., Takahashi N.

Clemencon C , Decker KM.,
Deshpande VR., Endo A.,
Fritscher X, Lorenzo PAR.,
Masuda N., Muller A., Ruhl
R., Sawyer W., Wylie BJN.,
Zimmermann F.
Bates PC.

Sharnowski JL., Cheng BHC.

Abramson D., Watson G.,
Sosic R.
Clemencon C , Fritscher J.,
Meehan MJ., Ruhl R
Oyanagi S., Kubota K.,
Kawakura Y.
Braunl T., Keller H., Stippa
J.
Jianxin X., Dingxing W.,
Weimin Z., Meiming S.
Miei T., Takahashi N.
Sienkiewicz J.,
Radhakrishnan T.

Date
1993
1993

1993
1994

1994

1994

1994

1994

1994

1994

1994

1994

1994

1994
1994

1995

1995

1995

1995

1995

1995

1996

1996

1996

1996
1996

F-3



Name

Aardvark

dect

EPPP

Kemari

DDBG

net-dbx
ParaDebug

PDBG

PSUITE

UniVIEW

Xunify

DCDB

DeHiFo

MPVisualizer

Technology
replay dcbuggci

multilingual distribute
debugger
data parallel, nin-timc
dependence analysis,
performance
single control and data
views
machine-independent,
graphical, programmable,
distributed, extensible, and
small
data parallel performance
debugger
programming environment

process tracing, break-
point setting, process
monitoring, error
localization, and error
fixing
interfacing to software
engineering environment,
graphical programming
language a testing and
debugging too!, meta-
brcakpoint, macrostep
execution
java-based debugger
graphical view mapping

process-based distributed
debugger

graphical array-data
visualizer

event trace based,
heterogeneous,
client/server
instrumentation system
and a performance
evaluation tool
reduced intrusion,
cooperative debugging

java front end

HPF debugger

trace/replay mechanism,
GUI, visualization engine

Lang. / Arch.
A-NETL

HPF

C, Java

HPF/MPI

CHILL

C, GRAPNEL
/PVM

MPI
ParaC/MPI

DAMS

RPC

CHILL, C, C++

HPF

Authors
Baba T., Furuya Y.,
Yoshinaga T.
Olivier PA.

Rajamony R., Cox AL.

LaFrance-Linden DCP.

Hanson DR., Kern JL.

Singh A., Van Dongen V.

Kamachi T., Muller A., Ruhl
R., Seo Y., Suehiro K.,
Taniura M.
Paik EH., Byun YJ., Chung
YS., Lee BS.

Cunha JC, Lourenco J.,
Antao TR., Kacsuk P.

Ncophylou N., Evripidou P.
Gi-Won 0., Dong-Hae C ,
Suk-Han Y.
Cunha JC, Medeiros P.,
Lourenco J., Duarte V.,
Vieira J., Moscao B., Pcreira
D., Vaz R.
Fujii H., Shibata T.,
Yoshioka H., Ishikawa K.,
Endo A., Nakatomi T.
Young-Ae S., Eun-Jung L.,
Chang-Soon Pk.

Lumpp JE Jr., Sivakumar K.,
Diaz G, Griffioen JN.

SatoN., WanvikDH.,
Botnevik H., Borsting T.,
Stromme JE.
Feng W., Qilong Z., Hong
A., Guoliang C.
Brezany P., Grabner S.. Sowa
K., WismullerR.
Claudio AP., Cunha JD.,
Carmo MB.

Date
1997

1997

1997

1997

1997

1997

1997

1998

1998

1998
1998

1998

1998

1998

1998

1999

1999

1999

1999

F-4



SERIAL DEBUGGERS

Name
DYDE
PEBUG

DDS
MODS
TOADC
AIDS
ALADDIN
DEB-2
ISSP
ADVISOR

SYMbug
ZSID

DELTA
DICE

joff
SWAT
VAX
DEBUG
MAP

Ctrace
Lilith
SHD
ASDB

SDE

VIPS

Chillscope
Periscope

2X

DDB
gdbxtool

Ups

AdaProbe
DOC

1LM
Pbug

DDS
PISLD

Technology
on-line, symbolic
interactive and non-
intcractive
monitor, breakpoints
clean user interface
interactve/batch, high-level
symbolic, interactive
breakpoint assertions
batch
interactive, top-down
AI

symbolic, multi-language
debugger
high-level, multi-language

step-wise debugging
hardware support
symbolic
integrated programming
environment, incremental
compiler
source-level, GUI
high-level symbolic
interactive, symbolic^
multilingual debugger
static analysis

preprocessor
high-level, GUI
screen oriented
symbolic, source-level

symbolic, macro-oriented
data abstractions
linked-list visualisation

event-action breakpoint
symbolic

static and dynamic analysis

interactive, source-level
graphical display and
editing of data structures
GUI
execution backtracking
friendly user interface
optimised code debugger

on-line debugger
abstractions

declarative debugging
interactive source-level

Lang. / Arch.
assembly
CDC-6500

l_asscmbly

TRIDENT

assembly
assembly
ROMTRAN
Fortran

CPM/Zilog
PL/1, Fortran,
BASIC

CP-6

C
C, Pascal/AOS

COBOL

C
Modula-2
Pascal

C

EC

CHILL
C, Fortran,
Pascal, BASIC

C

Ada
C

COBOL, PL/1
Pascal, PL/M

Pascal

Authors
Josephs WH.
Blair JC.

North S.
Havvrylak JJ.
Gaines JA Jr.
Hart JJ.
Fairlcy RE.
Lanzaronc GA.
Andreussi G., Salza S.
Isomoto Y., Yamagata K.,
Ishikcta T.
Duyck R.
Miller AR.
Elliott B.

Hamlet D.
Abramson D., Rosenberg J.
Walter CK.
Fritzson P.

Cargill TA.
Caidell JR.
Beander B.

Tischler R., Schaufler R.
Payne C.
Steffen JL.
Geissmann L.
GarsVK.
Kodama K., Fukushima S.,
HoriiK.
Katzenelson J., Strominger A.

Shimomura T.. Isoda S.. Ono
Y.
Hallsteinsen SO.
Christensen W.

Clemente G., Congiu S., Moro
M.
Livshin D.
Potrebic P., Goldman P.

Bovey JD.
Agrawal H.,JSpafford EH.
Altarac H., Plisson P.
CoutantDS., MeloyS.,
Ruscetta M.
Varga V.
Benunerl T., Huber F.,
Stampfl R.
Takahashi N., Ono S.
Chi Zn., Liu C.

Date
1969
1971

1977
1977
1978
1979
1979
1979
1979
1980

1980
1980
1982

1983
1983
1983
1983

1983
1983
1983

1983

1984
1984
1984
1985

1985

1985

1986
1986

1987

1987
1987

1987
1988
1988
1988

1988
1988

1989
1989

F-5



Name
dbx
Moped

o2

PDB

Thisdb

CDBX
CXdb

Dalek

DARTS
DBL

DUDU

MultiScope
SIPDES
Spyder

VBD-II

Watson

GHC

ldb
Opium
UDI

ACID
ADAPT
HotWire
gdb
cdb
DDD
FIND

SNiFF+
wshdbg

Coca

Technology
interactive
tracing, backtracing

DBMS

GUI, object-oriented,
distributed
GUI, symbolic
algorithmic, semi-
automatic
visual, program generating
technique
X-Windows
optimised code debugger

events, control and query
language, dataflow
dynamic, real-time
interactive, functional
language
functional models,
automatic
multiple debuggers
expert system
checkpoint, backtrack

object-oriented interface

GUI environment for
debugger development
process-oriented,
reflection, program
transformation
retargetable
programmable
universal interface
distributed execution
replay
language interpreter
automated
visualization
GNU debugger
machine-independent
graphical front-end
automated debugging
assistant
traversal based
visualization
customisable
debugger for CGI
program instrumentation,
load-time code generation,
query optimization, and
incremental reevaluation
breakpoint mechanism is

Lang. / Arch.
C, Fortran
lisp

o2

C
Pascal

Cray
Convex

DOS/Windows
Pascal

NEC

Cray

C
Prolog
C
CHORUS

Prolog
C++, Smalltalk
C, C++, Fortran
C
GDB, DBX

TCL

C

Authors
Linton MA.
Pourheidari M., Kessler RR.,
CarrH.
Meersman RA, Kent W,
Khosla S.
Maybce P.

Hagen T.
Fritzson P., Gyimothy T.,
Kamkar M., Shahmehri N.
Ming Z.

Rigsbee PA.
Streepy LV Jr., Brooks G.,
Buyse R., Chiarelli M.,
Garzione M., Hansen G.,
Lingle D.. Simmons S..
Woods J.
Olsson RA., Crawford RH.,
HoWW.,WeeCE.
Tinunerman M., Gielen FJA.
Krishnamoorthy MS.,
Anastasiou AD.
Allemang D.

KearnsS.
Doukidis GL, Paul RJ.
AgrawalH. DeMilloRA.
Spafford EH.
Hiramatsu T.. Ichinose N.,
KojoT.
MurrishR

MaedaM.

Ramsey N., Hanson DR.
Ducasse M
MannD.
Ruget F.

Winterbottom P.
Gegg-Harrison TS.

ButtF.
Hanson DR.
Zeller A., Lutkehaus D.
Shimomura T.

Korn JL., Appel AW.

Parker T.
Vckovski A.
Lencevicius R., Holzle U.,
Singh AK.

Ducasse M.

Date
1990
1990

1990

1990

1990
1991

1991

1991
1991

1991

1991
1991

1991

1991
1991
1991

1991

1991

1992

1992
1992
1992
1994

1994
1994
1994
1995
1996
1996
1996

1998

1998
1998
1999

1999

F-6



Name

RAID

Technology
based on events related to
language constructs
probabilistic reasoning,
heuristic debugging
knowledge, structurdl
analyses

Lang. / Arch.

C

Authors

Burnell L., Meadows A., Bass
P., Biggcrs K., Priest J.

Date

1999

F-7



Appendix G

CD-ROM CONTENTS

Folder Name

d About

d Case Studies

d Case Study 1

CJ Case Study 2

d Case Study 3

d guard-0.9.17

d doc

d src

d aif

d compat

d dbgsrv

d gc

d guard

d tools

d util

d zgdb-4.16

d zgdb-4.17

d Thesis

d d"oc

d pdf

Description

About the author.

The three case studies examining the use of GUARD.

Data parallel case study.

Distributed memory case study.

Shared memory case study.

Source code of the GUARD-2000 debugger.

Documentation associated with the debugger.

Debugger source tree.

Architecture independent format library.

Compatibility library.

Debug server.

Dataflow compiler.

Debug client.

Visualisation tools.

Utility library.

Modifications to GDB version 4.16.

Modifications to GDB version 4.17.

Electronic version of debugger thesis.

Debugger thesis in Microsoft Word 2000 format.

Debugger thesis in Adobe PDF format.

G-l



REFERENCES

[I] D. Abramson, M. Dix, and P. Whiting, "A Study of the Shallow Water Equations
on Various Parallel Architectures", 14th Australian Computer Science Conference, pp. 06-
1 - 06-12, Sydney, 1991.

[la] D. Abramson and G.K. Egan, "The RMIT Data Flow Computer A Hybrid
Architecture", The Computer Journal, June 1990.

[2] D. Abramson, I. Foster, J. Michalakes, and R. Sosic, "Relative Debugging and its
Application to the Development of Large Numerical Models", Proceedings of IEEE
Supercomputing 1995, San Diego, December 95.

[3] D. Abramson, I. Foster, J. Michalakes, and R. Sosic, "Relative Debugging: A New
Methodology for Debugging Scientific Applications", Communications of the ACAl,
Vol. 39, No. 11, pp. 69 - 77, November 1996.

[4] D. Abramson and R. Sosic, "A Debugging Tool for Software Evolution", CASE-
95, 7th International Workshop on ComputerAided Software Engineering, pp. 206 — 214,
Toronto, Canada, July 1995.

[5] D. Abramson and R. Sosic, "A Debugging and Testing Tool for Supporting
Software Evolution"', Automated Software Engineering 3, pp. 369 — 390,1996.

[6] D. Abramson, R. Sosic, and G. Watson, "Implementation Techniques for a Parallel
Relative Debugger", Proceedings of PACT '96, Boston, October 1996.

[7] Active Tools Inc., The Clustor 1.5 User Manual, San Francisco, CA, February 1999.

[8] E. Adams and S. Muchnick, "Dbxtool, A Window-Based Symbolic Debugger for
Sun Workstations", USENTX Association Summer Conference Proceedings 1985,
USENIX Assoc, pp. 213 - 227, El Cerrito, CA, USA, 1985.

[9] Arvind, L. Bic, and T. Ungerer, "Evolution of Data-flow Computers", Chapter 1,
Advanced Topics in Dataflow Computing, Prentice Hall, 1991.

[9a] Arvind and R.S. Nikhil, "Executing a Program on the MIT Tagged-Token
Dataflow Architecture", Lecture Notes in Computer Science 259, pp. 1-29, 1987.

[10] P. Bates, "Debugging Heterogeneous Distributed Systems Using Event-Based
Models of Behavior", Proceedings ACM SIGPLAN and SIGOPTS Workshop on Pamllel
and Distributed Debugging, WI, USA, May 5-6, 1988.

[II] P. Bates and J. C. Wileden, "High-Level Debugging of Distributed Systems: The
Behavioral Abstraction Approach", Journal of System Software, 3, pp. 255 - 264, 1983.

H-l



[12] T. Bemmerl and R. Wismiiller, "On-line Distributed Debugging on Scaleable
Multicomputer Architectures", High Performance Computing and Networking, Volume II:
Netavrking Tools, Volume 797 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 394 - 400, April 1994.

[13] L. Burnell, et. al., "RAID: A System to Aid in the Removal of Program Bugs",
Proceedings of the Tavlfth International Florida AI Research Society Conference, AAAI Press,
pp. 32 - 36, Menlo Park, CA, USA, 1999.

[14] R. Butler and E. Lusk, "Monitors, Messages, and Clusters: the p4 Parallel
Programming System", Parallel Computing, 20 April 1994.

[15] D. Callahan and J. Subholk, "Static Analysis of Low-level Synchronization",
SIGPLAN Notices, Vol. 24, No. 1, January 1989.

[16] D. Cheng and R. Hood, "A Portable Debugger for Parallel and Distributed
Programs", Proceedings ofSupercomputing '94, pp. 723 - 732, November 1994.

[16a] Y.M. Chong, "Data Flow Chip Optimizes Image Processing", Computing Design, pp.
97-103, October 1984.

[17] M. Cierniak and W. Li, "Unifying Dat. and Control Transformations for
Distributed Shared-Memory Machines", Proceedings of the SIGPLAN '95 Conference on
Programming Language Design and Implementation, Lajolla, California, June 1995.

[18] W. Crowley, C. Hendrickson, and T. Rudy, The SIMPLE Code, Lawrence Livermore
Laboratory, UCID-17715, February 1, 1978.

[19] J. Cuny, et. al., "The Ariadne Debugger: Scalable Application of Event-Based
Abstraction", ACM SIGPLAN Notices, Vol. 28, No. 26, pp. 85 - 95, December
1993.

[20] Convex Computer Corporation, Convex CXdb User's Guide, Second Edition,
October 1993, DSW-473.

[21] J. Dennis, "The Evolution of "Static" Data-flow Architectures", Chapter 2,
Advanced Topics in Dataflow Computing, Prentice Hall, 1991.

[21a] J.B. Dennis and D.P. Misunas, "A Preliminary Architecture for a Basic Data-Flow
Processor, Proc. 2ndISCA, pp. 126-132, January 1975.

[22] Dolphin Interconnect Solutions, Inc. (now Etnus, Inc.), TotalView Multiprocess
Debugger User's Guide, Version 3.7.7, Revision 8, October 1997.

[23] M. Folk, L. Kalman and W. Whitehouse, HDF User's Guide, Version 4.1rl, National
Centre for Supercomputing Applications, May 1997.

H-2



[24] G. Fox, et al., Fortran D Language Specification, Center for Research on Parallel
Computation, Rice University, CRPC-TR90079, December 1990.

[25] J. Gait, "A Probe Effect in Concurrent Programs", Software Practice and Experience,
Vol. 16, No. 3, pp. 225 - 233,1986.

[26] J. Goguen, J. Thatcher, and E. Wagner, "An Initial A'gebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types", Current
Trends In Programming Methodology, VoL IV: Data Structuring, Yeh, R., (ed.), Prentice-
Hall, pp. 80-149, Englewood Cliffs, New Jersey, 1978.

[27] Hewlett Packard Company, HP/DDE Debugger User's Guide, First Edition, B3476-
90015, July 1996.

[27a] W. Hibbard and D. Santek, "The VIS-5D System for Easy Interactive
Visualization", Proceedings of IEEE Visualisation '90, pp. 129-134, 1990.

[28] High Performance Debugging Forum, "HPD Version 1 Standard: Command
Interface for Parallel Debuggers", ed. C. Pancake and J. Francioni, Technical Report
CSTR-97, Dept. of Computer Science, Oregon State University, 1997.

[29] High Performance Fortran Forum, High Performance Fortran Language Specification,
Version 2.0, Center for Research on Parallel Computation, Rice University, CRPC-
TR92225, January 1997.

[30] IBM Corporation, IBM ADC Parallel Parallel Environment: Programming Primer, Release
2.0, SH26-7223, June 1994.

[31] Institute of Electrical and Electronic Engineers, "Binary Floating-Point
Arithmetic", IEEE Std.754-1985, Piscataway, N.J., 1985.

[32] Institute of Electrical and Electronic Engineers, "IEEE Standard Glossary of
Software Engineering Terminology", IEEE Std 610.12-1990, New York, USA,
1990.

[33] P. Kacsuck, J. Cunha, G. Dozsa, and J. Lourenco, "A Graphical Development and
Debugging Environment for Parallel Programs", Parallel Computing, Vol. 22, No. 13,
pp. 1747-1770, 1997.

[34] K. Kennedy and K. McKinley, "Maximizing Loop Parallelism and Improving Data
Locality via Loop Fusion and Distribution", Proceedings of the Sixth Workshop on
Languages and Compilers_/or Parallel Computing, Portland, Oregon, August 1993.

[35] B. Lazzerini and L. Lopriore, "Abstraction Mechanisms for Event Control in
Program Debugging", IEEE Transactions on Software Engineering, Vol. 15, No. 7, pp.
890-901, USA, July 1989.

H-3

a



1.1[36] T. J. LeBlanc and J. M. Mellor-Crummey, "Debugging Parallel Programs With
Instant Replay", IEEE Transactions on Computers C-36, Vol. 4, pp. 471 - 482, April g
1987. 9

1
[37] C. H. LeDoux and D. S. Parker, "Saving Traces For Ada Debugging", In Ada In

Use, Proceedings of the Ada International Conference, ACM, Cambridge University
Press, pp. 97 - 108, 1985.

[38] M. M. Lehman, "Programs, Programming and the Software Life Cycle", Proceedings
IEEE Special Issue on Software Engineering, pp. 1060 — 1076, September 1980.

[39] M. M. Lehman, "The Programming Process" in Program Evolution: Processes ofSofhvare
Change, M. M. Lehman and L. A. Belady eds., Academic Press Inc., USA, 1985.

[40] C. Lin and R. J. LeBlanc, "Event-based Debugging of Object/Action Programs",
Proceedings ACM SIGPLAN and SIGOPTS Workshop on Pamllel and Distributed
Debugging, WI, USA, May 5-6, 1988.

[41] C. Lin and L. Snyder, "A Portable Implementation of SIMPLE", International Journal
of Parallel Pmgramming, Vol. 20, No. 5,1991.

[42] C. Lin and L. Snyder, "ZPL: An Array Sublanguage", Languages and Compilers for
Parallel Computing, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, eds, pp. 96
- 114, 1993.

[43] J. Lipson, Elements of Algebra and Algebraic Computing, Addison-Wesley, Reading,
Massachusetts, 1981.

[44] R. Loeser and E. M. Gaposchkin, "The Second Law of Debugging", Software-Practice
& Experience, Vol.6, No.4, pp. 577-578, UK, October-December 1976.

[45] J. Lumpp, T. Casavant, H. Siegel, and D. Marinescu, "Specification and
Identification of Events for Debugging and Performance Monitoring of
Distributed Multiprocessor Systems", Proceedings of the 1(f International Conference on
Distributed Computing Systems, IEEE, pp. 476 - 483,1990.

[46] B. Magnusson and S. Minor, "III — an Integrated Interactive Incremental
Programming Environment Based on Compilation", Proceedings of the ACM
S1GSMALL, Symposium on Small Systems, 1985.

[47] R. F. Mathis, "Pre-execution, Batch, Interactive, and Postmortem Debugging",
Computer Science Conference 75, ACM, pp. 9, New York, NY, USA, 1975.

[48] J. May and F. Berman, "Panorama: A Portable Extensible Parallel Debugger",
Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 96-
106, San Diego, May 1993.

H-4



I

[49] C. E. McDowell and D. P. Helmbold, "Debugging Concurrent Programs", ACM
Computing Surveys, Vol. 21, No. 4, pp. 593 - 622, December 1989.

[50] K. McKinley, S. Carr, and C.-W. Tseng, "Improving Data Locality with Loop
Transformations", ACM Transactions on Programming Languages and Systems, Vol. 18,
No. 4, pp. 424-453, July 1996.

[51] M. A. F. Miillerburg, "The Role of Debugging Within Software Engineering
Environments", ACM SIGPLANNotices, Vol. 18, No. 8, pp. 81 - 90, USA, August
1983.

[52] G. J. Myers, Software Reliability: Principles and Pradices,}o\\n Wiley & Sons, USA, 1976.

[53] The National Center for Supercomputing Applications, NCSA HDF Specification
and Developer's Guide, University of Illinois at Urbana-Champaign, November 1993.

[54] P. G. Neumann, Computer Related Risks, ACM Press, Addison-Wesley, New York,
USA, 1995.

[55] N. Ramsey and D. R. Hanson, "A Retargetable Debugger", Proceedings of the
SIGPLAN "92 Conference on Programming Language Design and Implementation, pp. 22 —
31, ACM, 1992.

[56] R. Olsson, R Crawford, and W. Ho, "A Dataflow Approach to Event-Based
Debugging", Software-Practice and Experience, Vol. 21, No. 2, pp. 209 - 229, February
1991.

[57] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D.
Schouten, "Parafrase-2: An Environment for Parallelizing, Partitioning,
Synchronizing, and £ :heduling Programs on Multiprocessors", Proceedings of the
International Conference on Parallel Processing, St. Charles IL, pp. 1139 -48 , August 1989.

[58] G. Rivera and C.-W. Tseng,, "Locality Optimization for Multi-Level Caches",
Proceedings of the ACM/IEEE SC99 Conference, Portland, Oregon, November 1999.

[59] J. Rose and G. Steele Jr., "C*: An Extended C Language for Data Parallel
Programming", Technical Report PL 87-5, Thinking Machines Corporation,
Cambridge, MA, 1987.

[60] A. Rosenberg, "Storage Mappings for lixtendible Arrays", Current Trends In
Programming Methodology, Vol. IV: Data Structuring, Yeh, R., (ed.), pp. 263-311,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[61] M. Rosing and S. Yabusaki, "A Programmable Preprocessor for Parallelizing
Fortran-90", Proceedings of the ACM/IEEE SC99 Conference, Portland, Oregon,
November 1999.

H-5



[62] R. Sadoumy, "The Dynamics of Finite-Difference Models of the Shallow Water
Equations", Journal of Atmospheric Science, Vol. 32, pp. 680 - 689, 1975.

[63] R. Sosic, "Design and Implementation of Dynascope, a Directing Platform for
Compiled Programs", Computing Systems, Vol. 8, No. 2, pp. 107 -135,1995.

[64] R. Sosic and D. Abramson, "Guard: A Relative Debugger", Software - Practice and
Experience, Vol. 27, No. 2, pp. 185 - 206, February 1997.

[65] R. Srinivasan, "XDR: External Data Representation Standard", RFC 1832, Sun
Microsystems, Inc., August 1995.

[66] R. Stallman, Debugging with GDB — The GNU Source Level Debugger, Edition 4.12, Free
Software Foundation, January 1994.

[67] Sun Microsystems Inc., "RPC: Remote Procedure Call Protocol Specification
Version 2", KFC-1057, June 1988.

[68] R Tischler, R. Schaufler, and C. Payne, "Static Analysis of Programs as an Aid To
Debugging", ACM SIGPLAN Notices, Vol. 18, No. 8, pp. 155 - 158, USA, August
1983.

[69] G. Watson and D. Abramson, "Relative Debugging For Data-Parallel Programs: A
ZPL Case Study", IEEE Concurrency, Vol. 8, No. 4, pp. 42 - 52, USA, October
2000.

[69a] G. Watson and D. Abramson, "The Architecture of a Parallel Relative Debugger",
13th International Conference on Parallel and Distributed Computer Systems — PDCS 2000,
Las Vegas, Nevada, August 2000.

[70] J. C. Weber, "Interactive Debugging of Concurrent Programs", SIGPI^AN Notices
Vol. 18, No. 8, pp. 112-113,1983.

[71] R. Wismuller, M. Oberhuber, and J. Krammer, "Interactive Debugging and
Performance Analysis of Massively Parallel Applications", Parallel Computing, Vol.
22, No. 3, pp. 415 - 442, March 1996.

[72] M. Wolf and M. Lam, "A Data Locality Optimizing Algorithm", Proceedings of the
SIGPLAN '91 Conference on Programming Language Design and Impkmentation, Toronto,
Canada, June 1991.

H-6



f'i
SI.;,;
fi:

GLOSSARY

abstract algebra

The mathematics of generalized abstract arithmetical operations.

application programming interface (API)

A software interface that enables applications to communicate with each other.

assertion

A condition specified a priori that must be satisfied for the correct execution of a
program.

asynchronous

Processes or actions whose execution can proceed independently.

big-endian

A computer architecture in which, within a given rnulti-byte numeric representation,
the most significant byte has the lowest address.

bijective

A bijective function maps each element of a set A onto one and only one element
in a set B and maps each element of B onto one and only one element in A.

block-cyclic distribution

A technique for distributing two dimet. -ional data arrays to different processors in a
parallel application that gives a one or more columns or rows of data values to each
processor.

breakpoint

A point in a program that, when reached, triggers some special behaviour useful to
the process of debugging.

cache

A high-speed memory, local to a single processor, whose data transfers are carried
out automatically in hardware.

callback

The mechanism by which a server program can invoke a service in a client program.

1-1



cartesian product

A set of all pairs of elements (x, y) that can be constructed from given sets, X and
Y, such that x belongs to X and y to Y.

client/server architecture

An arrangement whereby a computer program (the client) sends requests for
services to another computer program (the server) across a communications
network.

command line interpreter (CLJ)

A program which reads textual commands from the user or from a file and executes
them.

data decomposition

A technique where the data on which a sequential computation operates is
partitioned into smaller pieces in a way that is suitable for parallel computation.

dataflow

A model of parallel computing in which programs are represented as dependence
graphs and each operation is automatically blocked until the values on which it
depends are available.

data parallelism

A model of parallel computing in which a single operation can be applied to all
elements of a data structure simultaneously.

debug

To detect, locate, and correct faults in a computer program.

distributed memory

Memory that is physically distributed amongst several modules.

graph

A collection of nodes and edges symbolising a system of interrelations.

graphical user interface (GUI)

A user interface based on graphics (icons, pictures and menus) instead of text.

1-2



i heterogeneous

1 Containing components of more than one kind.

j isomorphic

\ Two mathematical objects that have the same structure, i.e. for every component of
one there is a corresponding component of the other.

I iso-surface

An implicit surface that exists wherever a continuous scalar field in a volume is at a
particular value.

little-endian

i A computer architecture in which, within a given multi-byte numeric representation,

| bytes at lower addresses have lower significance.

'• message passing

i A style of interprocess communication in which processes send discrete messages

to one another.

nondeterminisiiu

; , A property of a computation that may have more than one result.

parallel computer
A computer system made up of many identifiable processing units working together
in parallel.

] parallelisation

| The process of turning a serial computation into a parallel one.

pixel map

A two-dimensional arrangement of picture elements (pixels).

probe effect
The interaction between the debugger and the program being debugged, generally
timing related, that affects the appearance of a program error.

process

The fundamental entity of the software implementation on a computer system.

1-3



processor

A hardware device that executes the commands in a stored program in a computer
system.

relative debugging

The process of locating and identifying errors by comparing a suspect program
against a reference code.

sequential computer

A computer comprising a single central processing unit (CPU) that executes a
program to perform a sequence of read and write operations on an attached
memory. Also known as a Von Neumann architecture.

shared memory

Memory that appears to the user to be contained in a single address space and that
can be accessed by any process.

software development

A problem-solving process that involves the translation of a complex problem into
detailed instructions that direct a computer to solve the problem.

software evolution

Continuous growth through the initial development and ongoing maintenance of
software.

software life cycle

A two-phase process consisting of a design phase and a testing phase.

yecjor computer

A computer designed to apply arithmetic operations to long vectors or arrays.

1-4




