MONASH UNIVERSITY

THESIS ACCEPTED !N SATISFACTION QF THE
REQUIRETAENTS FOR THE DEGREE OF
DOCTOR OF PHILOSGHHY

Under the Copyright Act 1968, this thesis rust be
used only under the normal conditions of scholariy
tair dealing for the purposes of research, criticism
or review. In particular no resuits or conclusions
should ha extracted from it nor ghould it ke ropied
¢ close!lv paraphrased in whole or in not withaut
tho written consont of the avthor, Proner vriten
aeknowlednzment should be made for any casistance
obtained from this thesis,

hd o

<o 2

THE DESIGN AND IMPLEMENTATION OF A
PARALLEL RELATIVE DEBUGGER

by
Gregory R Watson

Bachelor of Computer Science (Honours)

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Mcnash University

October 2000

™

This thesis was produced with Microsoft® Word 2000". The main text was typeset using
Garamond 12 point font and 1.5-line spacing, Program code and commands use the
Courier New font. Diagrams were produced with the Microsoft Word Picture Editor and
equations with Microsoft Equation 3.0. The production coptes were printed on an HP
Desk]Jet 1120C printer.

[don't claim it was easy.

IR

b e

[S - P L I S NP AL P

P I T I ST R R

DECLARATION

This thests contains no matenal that has been accepted for the award of any other degree in
any other university. To the best of my knowledge, this thests contains no material

previously published or written by another person, except where due reference is made in the
text of the thesis.

Gregory R Watson

ACKNOWLEDGMENTS

The author wishes to acknowledge the support of a number of people, without whom this
thesis would nort exist. First and foremost is the wonderful Libby Chapitn, who has been my
constant companion and soul mate throughout this entire process and beyond, and who’s
support made this thesis possible. Next is my supervisor, Prof. David Abramson, for the
remarkable effort that he has made to provide all the resources and encouragement that any
PhD candidate could possibly hope for. T would also like to thank my family for their
enthustasm and understanding when, as s always the case, things don’t quite go to plan,
Thanks too, go to my very best friends Abigail and Su who, as partnets in crime, understand
what it is all about. Finally, the time I have spent walking with Jarrah, during those crisp
winter momings and balmy sumrmer evenings, has enabled me to keep a clear head and a

constant focus when I needed it most.

This thesis is dedicated to the memory of US Navy Rear Admiral Grace Brewster Hopper
(9 Jan 1906 -1 Jan 1992) who is credited with having coined the term “debug”, and the adage
“it is always easier to ask forgiveness than it is to get permussion”, which has been the guiding

principie in systern administrator decisions ever since.

ABSTRACT

As the complexity of cntical software systems increases, there is a cotrespondingly greater
risk of software errors occurring, The trend towards global reliance on critical and complex
technologtes that has been apparent for many ycars means that the risk of serious cconomic
or environmental damage due to software failures is also increasing. Such issues must now
be considered an important factor in the life cycle of these critical systems. Program
debugging is a key component of this software life cycle. While a large amount of rescarch
has been undertaken into developing :lebugging techniques to assist the software
development process, little, if any, wotk has been directed specifically at the software

evolution process.

This thesis presents a novel and interesting technique, known as relafive debugging, which
exploits the ability to utilise information from previous program releases as an aid in the
debugging process. Relative debugging is a powerful paradigm that enables a programmer to
locate and identify errors by comparing key data structures in a suspect program against that
in a reference program. By observing the divergence of the data as the programs are
executing, the programmer is able to make informed decisions as to the likely cause of the
errors. Relative debugging is effective in these situations because the user can concentrate on
where two telated codes are producing diffecent results, rather than being concerned with the
actual values. The efficiency of the technique has been well established, and various case

studies reporting the results of using relative debugging have been published.

The development of the latest version of the relative debugger, known as GUARD-2000, has
required 2 number of significant advances in the field of debugger research. This includes a
special intemal data format that is independent of any particular architecture, the use of
dataflow technology to control the comparison of data from executing programs and the
ability to make comparisons in situations where significant transformations to data structures
have occurred. This technology is built on top of a client/server architecture that supports a
wide range of parallel and sequential architectures, and includes the ability to choose alternate
network protocols for communication between the client and servers, and to deploy differer.t

low-level debug engines on the servers.

TABLE OF CONTENTS

Chapter 1: Introduction 1-1
Chapter 2: Existing Debugging Technology 2-1
What is Debugging? 2-1
Sequential Debuggers 2-2
Static Analysis 2.2
Event-Based 2-3
Interactive 2-3
Post-Mortern _ 24

The Parallel Problem 2-4
Parallel/ Distributed Debugging 2-3
Extension of Tradittonal Techniques 2-5
Event-Based Debugging 2-5

Static Analysis Techniques 26

Other Developments 2-6
Debugger Implementation 2-7
Software Development v. Software Evolution 2-8
Relative Debugging 29
Chapter 3: Relative Debugging 3.1
Relative Debugping 3-2
-Imperative Comparison 3-3
Declarative Comparison 34
Comparison Tolerance 35
Reporting Differences 3-5
Parallel Relative Debugging 3-7
Software Engineering and Relative Debugging_ _ 3.9
Data Parallel Decomposition 31
Variable Promotion 3-12

Loop Fusion 3-12

Shape Transformation 3-13

Index Permutation 3-14

vii

M

Array Slicing 3-15
Debugger Design Issues 3-15
Process Control 3-16
Heterogeneity 3-17
Control Logic 3-18
Conclusion 3-19
Chapter 4: The Architectsure of a Parallel Relative Debugeer. 4-1
Dataflow Compiler & Engine 4-2
Architecture Independent Data Format 4-5
Data and Code Transformati_n Support 4-7
Data Decomposition 4-8
Shape Transformation 4-9
Index Permutation 4-1t
Array Slicing 4-12
Temporal Displacement 4-13
Client; Server Architecture 4-15
Conclusion 4-18
Chapter 5: Data Transformation Alpebra 5-1
Definition of Notation 5-2
Array Representation 5-2
Process Representation 5-3
Data Decomposition 5-4
Array Shape Transformation 5-6
Index Permutation 5-10
Array Slicing 5-11
Conclusion 5-12
Chapter 6: Implementation Detasls 6-1
Debug Chent 6-2
User Interface 6-3
Dataflow Compiler 6-4
Internal Graph Representation 6-11
Dataflow Engine 6-12
Debug Server 6-14

viil

'ig‘,. .

Server Startup

Client/Server Operation

Network Protocol Selection

Debug Backend Selection

Client/Server Debug API

Client Debug Interface

Server Debug Interface

Architecture Independent Format

Data and Code Transformations

Datz Parallel Decomposition and Index Permutation

Shape Transformation

Variable Promotion and Loop Fusion

Visualisation of Differences

Data Parallel Language Support

Conclusion

Chapter 7: Case Studies in Relative Debugging

6-14
6-18
6-19
6-20
6-20
6-20
6-23
6-24
6-27
6-27
6-28
6-29
6-29
6-30
6-33

7-1

Case Study 1: Data Parallel Code

7-1

Code Description

Sertal /Parallel ZPL Comparison

7-3
7-5

ZPL and C Comparison

7-6

Error 1: Extra Term In An Expression
Error 2: Incorrectly Specified Constant
Error 3: Invalid Boundary Conditons

7-6

7-8

Error 4: Wrong Sign

Serial ZPL and C Comparison

Case Study 2: Distributed Memory Code
Code Description

Error 1: Incorrect Index Value

Error 2: Wrong Array Element

Error 3: Wrong Sign

Case Study 3: Shared Memory

Error 1: Loop Bound Error

Conclusion

7-10
7-10
7-11
7-11
7-15
7-17
7-18
7-20

7-24

Chapter 8: Frtnre Directions & Conclusion 8-1
Integrated Development Environment (IDE) 8-1
Maps/Transformations 8-2
Assertions 8-2
Visualisation 8-3
Complex Data Types : 8-4
Conclusion 8-4

Appendix A: GUARD Users Mannal A-1

Appendisc B: Debug Client API B-1

Appendixc C: Debng Clisnt API Data Types C1

Appendix D: Debug Server API D-1

Appendix E: Architedture Independent Format APl E-1

Appendix F: Survey of Debrgoers F-1

Appendix G: CD-ROM Contents G-1

References H-1

Glossary It

T e

LIST OF FIGURES

Figure 3.1: Relative Debugging 3-2
Figure 3.2: Example Pixel Maps 3-6
Figure 3.3: Visualisation of Differences in 3-D Data Sct 3-7
Figure 3.4: Parallel Relative Debugging 3-8
Figure 3.5: Duplication of Data Distribution 3-11
Figure 3.6: Vanable Promotion Example 3-12
Figure 3.7: Example of Loop Fusion 2-13
Figure 3.8: Shape Transformation 3-14
Figure 3.9: Index Permutation 3-14
Figure 3.10: Array Slicing 3-15
Figure 4.1: Dataflow Graph Executing an Assertion 44
Figure 4.2: Dataflow Graph From Multiple Assertions 4-5
Figure 4.3: Example of AIF Usage 4-7
Figure 4.4: Block-Cyclic Decomposition 4-9
Figure 4.5: Transformation of 2 Rank 2 Array into Rank 3 Array 4-10
Figure 4.6: Shape Transform':uion with Swap 4-11
Figure 4.7: Index Permutation Example 4-12
Figure 4.8 Array Slice Example 4-13
Figure 4.9: Capturing Intermediate Data Values 4-13
Figure 4.10: GUARD Client/Server Architecture 4-15
Figure 4.11: GUARD Layered Interface Model 4-16
Figure 5.1: Notation for Representing Arrays 5-2
Figure 5.2: Abstractly Identical Arrays 5-3
Figure 5.3: Process Topologies as Arrays 5-4
Figure 5.4: Block Decomposition Example 5-5
Figure 5.5: Block-Cyclic Decomposition Examnple. 5-6
Figure 5.6: Standard Array Flatten Function 5-8
Figure 5.7: Standard Array Block Function 5-9
Figure 5.8: Rank 2 to Rank 3 Transformation 5-10
Figure 5.9 Index Permutation Operation 5-11
Figure 5.10 Array Slice Operation .51
Figure 6.1: Main Components of the GUARD Client 6-2
X1

Figure 6.2: Standard Graph Templates 6-6

Figure 6.3: Assertions With Merged Sub-graph 6-7
Figure 6.4: General EXTRACT Template 6-8
Figure 6.5: General Assertion Graph 6-9
Figure 6.6: Expression Compilation 6-9
Figure 6.7: Sub-array and Shape Transformation 6-10
Figure 6.8: Data Mapping Graph 6-10
Figure 6.9: Internal Graph Format 6-11
Figure 6.10: COMPARE Sub-Graph Actions 6-13
Figure 6.11: Main Components of the GUARD Dcbug Server. 6-14
Figure 6.12: Explicit Startup Method 6-16
_ Figure 6.13: Wait-Attach Startup Method 6-16
- Figure 6.14: Parallel Systemn Startup Methods 6-17
Figure 6.15: Example Client/Server Operation 6-18
Figure 6.16: Debug Server API and Backend Switch Table 6-24
Figure 6.17: AIF Format Descriptor Tags 6-25
Figure 6.18: AIF Representation of a C Structure 6-26
Figure 6.19: GUARD Display Types 6-30
Figure 6.20: Utility Programs 6-30
Figure 7.1: Scalar Error Value 7-1
Figure 7.2: Code Comparison Steps for the “simple” Code 7-2
Figure 7.3: ZPL Code Structure for the “simple” Code 7-4
Figure 7.4: C Code Structure for the “simple” Code 7-5
Figure 7.5: energy.c - C Scalar Error Calculation 7-6
Figure 7.6: Differences between $c: :heat and $zpl: :Heat 7-7
Figure 7.7: heat . ¢ - C Heat Phase Code 7-7
Figure 7.8: Differences between $c::int_enand $zpl::Int_en 7-8
Figure 7.9: init. c - C Position and Velocity Initialisation Code 7-9
Figure 7.10 Output from the “shallow” Code 7-11
Figure 7.11: Sequential C version of “shallow™ 7-12
Figure 7.12: Data Decomposition and Boundary Synchronisation 7-13
Figure 7.13: Distributed Memory Master Code 7-14
Figure 7.14: Distributed Memory Slave Code 7-15
Figure 7.15: Differences in cv 7-16

xii

[Figure 7.16: Differences in cv Running on Four Processors

Figure 7.17: Discovered Differences in ca.cuvzh () Code

Figure 7.18: Pertodic Esror in cv

Figure 7.19: Second Error in calcuvzh() Code

Figure 7.20: Time Sequence of Errors in cu

Figure 7.21: Errors inu

Figure 7.22: Errors Reported in dudt

Figure 7.23: Final Error in Distributed Memory Code
Figure 7.24: Output From Sequential and Parallel Codes After 50 Itcrations

Figure 7.25: Shared Memory S'ave Code

Figure 7.26: Errors in cu, cv, h and z Respectively.

Figure 7.27: Errors in u, v and p Respectively

Figure 7.28: Errors in dudt, dvdt and dpdt Respectively

Figure 7.29: Loop Bound Error in Shared Memory Code

xiti

7-17
7-17
7-17
7-18
7-18
7-19
7-19
7-20
7-20
7-21
7-22
7-23
7-23
7-24

Chapiter 1

INTRODUCTION

On July 22, 1962 an Atlas-Agena booster was launched carrying the fisst U.S. Venus probe
Mariver I At a height of approximately 90 miles, ground controllers realised in horror that
the rocket flight had becomne unstable and was heading off-course. The multi-million dollar
rocket had to be blown up rather than risk a crash into a populated area. Extensive analysis
of the incident eventually uncovered the problem. The flight plan software in a ground-
based computer system monitoring the launch was missing a hyphen in a critical guidance

equation.

Twenty-eight years later, on January 15, 1990 new software installed in 114 of AT&T’s
electronic telephone switching systems failed, allowing the switches to repeatedly propagate
stalus messages and causing the switches to continually reset. Frustrated engineers were only
able to correct the problem by drastically reducing the total message load on the network.
The result was a 9-hour nationwide blackout, reportedly blocking 5 million calls and affecting

10 million customers. The problem was eventually truced to a misplaced break statement in

a C program [54].

These two incidents, nearly three decades apart, represent only a tiny fraction of such failures;
yet serve to illustrate the vulnerability of critical systems to software errors. The reason that
these critical systerns are so vulnerable is because such systems have critical requirements,
and failure to meet these requirements can result in catastrophe. In additon, as the
complexity of these systems increases, so does the complexity of the software needed to
control then, and consequently there is a greater risk of software ervors occurring, The trend
towards global reliance on critical and complex technologies has been apparent for many
years. Risk of serious economic or environmental damage due to such fatlures must now be

considered an important factor in the life cycle of these pervasive technologres.

Myers [52] views software as a collection of information. From this perspective, software
development can be regarded as a problem-solving process that involves the translation of a
complex problem into its solution. This process involves translatng the initial problem,
through a number of intermediate steps that provide increasingly detailed representations,

into in a large number of instructions that direct a computer in how to solve the problem.

1-1

NPT, .

Errors are introduced into the softwarc whenever an intermediate transiation does not
accurately represent the problem, and so there are ample opportunities for this to occur in
the development process. Once errors have been introduced, it is no longer possible to

guarantee that the requirements of the system can be met. The software is unreliable.

As a consequence, considerable effort has been devoted to the task of increasing the
reliability of software. Myers considers the software life cycle as a two-phase process: design
and testing. The design phase comprises the usual processes of requirements analysis,
specification, design and implementation. The main techniques for improving relability

through this design phase fall into the following categories:

e Fanlt aoidance. This is the process of reducing or eliminating the occurrence of errors
in software by minimising complexity, improving communication, and identifying

and removing translation errors.

o Fanlt detection. Deesigning software that provides a fault detection capability ensures
that errors can be detected and reported as soon as they occur, so that the effect of

the errors can be minimised.

o Fanlf wrreciion. One step further ts designing software with the capacity to correct the
errors once they are detected, or to repair the damage that the errors may have

caused.

» Fanlf tolerance. This technique refers to software that has been designed with the ability

to continue to function even if errors occur.

Another major influence on the rehability of software is the festing phase, which involves the
process of executing a program with the intention of finding errors. The testing process
usually consists of designing a set of test cases according to some established objectives,
executing the test cases using the software being examined and analysing the results to
identify any errors. Errors that are discovered during the testing phase must then be located

and corrected using a process known as debngging.

It is generally accepted, but not discussed in detail by Myers, that there is a third phase in
addition to design and testing in the software life cycle: maintenance [38). Even the most

carefully designed and implemented software will contain errors, and as the faults caused by

1-2

these errors are observed, corrections to the code must be made. This is usually
accomplished through incremental changes that are implemented via new releases of the
software. In addition, new relenses may also be made to cater for changes or extensions to
user requirements, incomplete specifications, errors in the design or implementation, changes
to hardware, or a combination of these. Changes such as these, made through an ongoing
maintenance process, result in continuous program grpth. Lehman first identified that
program growth was related to the improvement in functional capability in 1969 [39]). It is
now widely accepted that continuous growth through the initial development and ongoing
maintenance of software constitutes program ervintion, and is intrinsic to the nature of the
software development process. According to Lehman, as much as 70% of the lifetime cost

of software is expended after the software is first installed.

Program debugging is 2 key component of the software life cycle and is utilised in each phasc

of the process:

o Desipn — dunng the implementation stage of the design process, code must be

validated, and as faults are identified they must be located and corrected.

o Teting — the testing process 1s designed to uncover errors that have been introduced
during the design phase, but still requires a significant effort to analyse, locate and

correct the errors in the code.

e Maintenance — as the program evolves either through enhancements to the design, as a
response to the incidence of errors, or because of other environmental factors,
debugging will necd to be employed to ensure that the resulting software remains
fault-free.

Traditional debugging techniques have been designed to aid software development by
providing the tools necessary to identify, locate and correct errors in a program. To
successfully debug a program, it is first necessary to gather cnough information to identify an
error. There are a number of methods available to do this, such as examining memory
dumps, displaying the contents of memory or registers, tracing program state, or viewing
event history data. This information gathering is used to establish the nature of the error,
what data structures are affected, what modules or subsystems are involved, and to provide
assistance in locating the source of the error. Using this information, the next step is to

determine the exact cause and location of the error. In an interactive debugger, this process

1-3

S

m

might involve setting breakpoints at vatious locations throughout the program and observing
program state at these points. In some cases it may be possible to isolate an etror by altering
data on the fly. Static analysis can also be used as an aid to locating and classifying errors by
performing data and control flow analysis of the static program code. Once the source of
the error has been identified, it is then necessary to correct the problem. This is done by
proposing a solution and examining the impact that this will have on the program. The
necessaty modifications are then made, and the appropriate tests undertaken to ensure that

error is actually fixed, and that no new errors have been introduced.

While a large amount of research has been undertaken into developing debugging techniques
to assist the software development process, little, if any, work has bean directed specifically at
the software evolution process. In particular, the ability to utilise information from previous
program releases to aid in the debugging process seems to have been largely overlooked. In
1994, Abramson and Sosi¢ invented a technique known as relative debugging in response to a
large effort to translate existing sequential programs to the new parallel architectures that
were becoming available. Subsequently, it was realised that relative debugging applies equally
well to more general program evolution. The relative debugging model they developed relies
on the premise that, in many situations where software evolution takes place, key data
structures are often invartant across releases. Because of this, it is possible to utilise the
information content contained in prior, but correctly functioning releases to support the

process of debugging a new version of the software.

Relative debugging is a powerful paradigm that enables a programmer to locate and identify
errors by companing a suspect program against a reference code. By observing the
divergence of key data structures as the programs are executing, the programmer is able to
make informed decisions as to the likely cause. This becomes a particularly valuable tool
when a program is rewritten in order to operate on another computer platform (a technique
known as porting). Relative debugging is effective in these situations because the user can
concentrate on where two related codes are producing different results, rather than being
concerned with the actual values in the data structures. The efficiency of the technique is
now well established, and various case studies reporting the results of using relative

debugging have been published [5,2,3,69].

The concept of relauve debugging is both language and machine independent. A

programmer can compare data structures without concern for the implementation, and thus

attention can be focussed on the cause of the errors rather than implementation details. As
a result, the effective implementation of a relative debugger requires architecture features that
differ from traditional debuggers. A significant requirement is the need to employ a
client/server model because the system must support the concurrent execution and control
of multiple processes, potentially on different machines. In addition to this, the debugger
client must operate in a multi-threaded manner in order to receive and process data from a
number of independently executing programs. Another significant requirement is duc to the
likelihood that the programs might be running on completely different architectures. This
means that the debugger must provide some mechanism to isolate architectural
characteristics ltke word size, address type and byte ordering to enable the comparisons to be
made. Finally, the debugger must also be able to deal with situations where data
decomposition or transformation techniques have been applied in the process of porting
code from one architecture to another. During the porting process it might be necessary to
change the underlying data structures to better suite the target language or machine
architecture. For example, one version of a program suited to a vector processor might
require long single dimensioned arrays, whereas a cache based multiprocessor version might
require two dimensioned arrays for efficient execution. This means that the relative debugger
must be able to reverse these transformations seamlessly in order that data structures can be

compared

While Abramson and Sosi¢’s original implementation of the relative debugging technique
addressed a number of these issues, it also had some severe limitatons. The client/server
debug engine was based on SosiC’s earlier “dynascope” work [63]. While this was designed to
provide rudimentary architecture independence, like most debuggers it was also highly
machine specific and so supported only a very smali number of architectures. More
importantly, the comparison algorthm employed was simplistic and only single threaded, so
was seriously limited in its ability to deal with the asynchronous matching behaviour apparent
when debugging parallel programs. In fact, while the original implementation was designed
to aid in debugging parallel codes, the best it could deal with was a parallel program running
on a single process. The other major problem with the implementation was that it provided
no mechanism to deal with data structures that had been decomposed or transformed in the
porting process, something that is normally very common. This limited its applicability to
situations where only very simple transformations had been applied, such as swapping array

indices.

The latest version of the GUARD debugger, known as GUARD-2000 [694], addresses each
of the limitations of the original implementation and meets all the requirements for a
successful relative debugger. The development of GUARD-2000 has required a number of
significant advances in the field of debugger research, and which form the basis of this thesis.
These advances consist of a number of key architectural features that have been added to the

debugger, including the following:

¢ A special data format that is independent of any particular architecture has been
developed. An architecture independent format (AIF) library provides a set of
routines that can be used to store and manipulate data in a completely machine

independent fashion.

e The debugger utilises a client/server architecture that includes a switchable protocol
interface and pluggable low-level debug engines. By supporting a range of protocols,
the debugger is able to take advantage of protocol features that suit a particular
environment. Low-level debug support ts also the main factor that limits a
debugper’s portability. Allowing different debug engines to be deployed ensures that

the debugger can support a wide variety of parallel and sequenttal architectures.

e A dataflow engine has been introduced to automate the control and comparison of
data from the programs being debugged. Dataflow is particularly suited to this
environment for a number of reasons. The execution of a dataflow engine occurs in
an inherently multi-threaded manner, which addresses the requirement outlined
above. In addition, the implicit matching logic of the dataflow model provides an
ideal framewotk to support the asynchronous extraction of data from concurrently

executing programs.

o The ability to transform data structures between different versions of a program is
another novel innovation. A transformation algebra has been developed in order to
address situations where a data decomposition or other transformations have been
applied. Once the actual transformation has been described using this algebra, the

debugger is then able to perform a seamless comparison of data.

1-6

¢ The ability to manage data decomposition and transformations enables the debugger
to provide support for distributed and shared memory parallel architectures, as well

as a wide range of data paralle] languages.

The realisation of the relative debugging technology has been a complex process involving a
lengthy development cycle. Yet the current implementation of the debugger combines all
these requirements together into an impressive package using a layered and modular
architecture. Novel features have been employed, such as the ability to choose alternate
network protocols for communication between the client and servers, and to deploy different
low-level debug engines on the servers. GUARD-2000 is now placed as the first fully
implemented prototype of the relative debugging paradigm.

The remainder of this document is devoted to presenting the key contributions the author
has made to the technique of relative debugging. A brief overview and guide to reading this

document follows.

Chapter 2 provides a brief history of debugging and introduces the reader to some of the
main debugging techniques that have been developed over this time. Further, it shows where
relative debugging and in particular the GUARD debugger fits mito this evolution. Finally,
the chapter focuses on the architecture of conventional debuggers and discusses why these

are not suitable for implementing relative debugging,

Chapter 3 provides a detailed introduction and analysis of the relative debugging technique.
The chapter then examines the implications and challenges that have had to be overcome to

extended the paradigm to parallel computers.

Chapter 4 describes the key architecture features of a parallel relative debugger, and describes

how an innovative design has been used to fully realise the relative debugging technology.

Chapter 5 presents a formalisation of the techniques that are used to describe the mapping
and transformation operations that are employed by developers when codes are ported to

paraliel machines. This unique and powerful formalism underpins the data transformation

features that are provided by the debugger.

Chapter 6 provides details of the novel techniques used to implement the key architectural

features of the debugper, and identifies the challenges that have had to be overcome to

during this process.

Chapter 7 describes three case studies of programs debugged using GUARD. These case
studies illustrate the power of relative debugging, and how our implementation can be
applied to all three major parallel software paradigms: data parallel, shared memory and
distributed memory. In addition these case studies have allowed us to test the debugger on a
variety of hardware and operating system platforms, thus illustrating the portability of the

debugger itself.

Chapter 8 provides an analysis of some future directions for improvements to the debugger

and for research into relative debugging technology.

1-8

*‘———-———-——1

Chapter 2
EXISTING DEBUGGING TECHONOLOGY

“If you don't sce the bug where you're looking, then you're looking in the

wrong place.” - The Second Law of Debugging [44].

This chapter serves a number of purposes. First, it provides a brief overview of debugger
history in the last 30 years, and introduces some of the technologies that have predorminantly
influenced the development of debuggers during this time. The second aim is to provide the
reader with a clear picture of where the GUARD debugger, and in particular the technique of
relative debugging, fits into the evolutionary history of debuggers and debugging technology.
Finally, the chapter focuses on the architecture of conventional debuggers and discusses why
these are not suvitable for implementing relative debugging. In particular, it highlights how .

traditional debuggers have been designed to facilitate the program development process, but H

do not necessarily address the requirements of ptegram evolution.

WHAT IS DEBUGGING?

The definition of “debug” in the IEEE/ANSI Standard Glossary of Software Engincering
Terminology [32] is given as “to detect, locate, and correct faults in a computer program”.
Myers [52] defines debugging as “the activity of diagnosing the precise nature of a known
error and then correcting the error.” The important distinction is that debaeging 15 different
from zesting. Although it may be used as part of the testing process, debugging is also used at
other stages in the software development life cycle. The particular debugging technique
adopted will depend largely on the number of errors and the complexity of the program.

One systematic approach commonly used is to address each error in turn using the following

steps. |

X

i. Gather information. ‘This step is used to establish the nature of the error, the behaviour that ;
is being observed, data structures likely to be involved, and a broad indication of the
error location, such as the relevant module or subsystem. Information gathering is also

sometimes referred to as wonrfering. g

2. Analyse and locate. Once sufficient information about the error has been obtained, it must

be analysed to determine the cause of the error. This is generally a deductive process that

relies on a range of investigative techniques such as static program analysis, direct code

inspection, interactive exarnination of program state, or a combination of these,

3. Correat the enor. After the cause of the error has been identified, a solution must be
proposed. The impact of the solution must be evaluated and once the changes have
been made, the program tested to ensure that the error has actually been fixed and that

no new errors have been introduced.

Most debugger research is devoted to the information gathering, analysis and location steps.
Some literature distinguishes information gathering from debugging, but like McDowell and
Helmbold {49], the author considers it an integral part ~f the debugging process.

SEQUENTIAL DEBUGGERS

Since early computer systems were almost exclusively sequential architectures, it is not
surprising that programming languages and development environments also reflected the
sequential nature of these machines. Debuggers were no different, and the early debugging

tools were predominantly designed with a single thread of control in mind.

As early as 1975, a large number of debugging systems had been developed for a wide vaniety
of architectures, operating systems and languages. Starting with tools designed to analvse
memory dumps, debugging technology developed at a rapid pace, se that even by this time it
was well recognised that debugging methods could be categorised into a few basic types:
static analysis, event-based, interactive and post-mortem [47]. The debuggers themselves
often implemented a combination of these techniques. Some researchers alsn distinguished
debuggers as either static or dynamic [51}, where static debuggers operated primarnly on
sousce code and dynamic dzbuggers operated on executing programs. A brief overview of

these techniques follows.

STATIC ANALYSIS
This type of debuggn'g method generally operates by performing a flow analysis of the static

program code in much the same way as optinising compilers [68]. Such analysis usuaily

consists of:

o conirol flow analysis — analysing the flow of control through the program in order to
identify unexpected transfers of control, as well as presenting information about the

structure and calling sequence of the program;

® data flow analysis — examining the use of variables within a program to detect errors
such as references to uninitialised variables and variables that may have indeterminate

values; ind

® nlerprocednral flow analysis — analysing control and data flow across procedure
boundaries in order to examine the procedural structure, and identify data usage both

within and actoss procedure calls.

EVENT-BASED

Another debugging technique is the event-action model. Here, interactions between the
debugger and the program being debugged ire viewed in terms of events. This type of
debugger wortks by allowing a series of conditions to be defined. The occurrence of an event
that satisfies the condition will cause an associated action to be triggered [35]. Typically,
actions might alter the state of the program, display the contents of a variable or perform

some other user-defined operation.

Another type of event-based debugger is onc that utlises an event history to record
information about the execution of a program [11]. This histoty can then be compared with
the expected patterns of behaviour to isolate errors in the program. Event histories can also
be used to replay the execution of the program to examine the state of a suspicious operation

in more detail.

INTERACTIVE
By far the most common type of dynamic debuggers are interactive debuggers, although

these are sometimes referred o as “breakpoint” debuggers [49]. Interactive debuggers are
characterised by some form of user interface (generally a command line or a graphical user
interface) that allows the user to issue commands that operate on an executing program.
This provides a mechanism for controlling the execution of the program through the
insertion of breakpoints, and then examining the state of the program once a breakpoint has

been veached.

Interactive debuggers are generally employed using an iterative process, referred to as cyelieal
debngging [49]. This is a process familiar to many software developers, where a program is
repeatedly stopped during its execution in order to examine the state. The programmer
might begin by setting a breakpoint at a location that is suspicious or related to the error in

some way. The program is then executed and will eventually reach the breakpoint. The state

of the program can then be examined and, based on the information obtained, the execution
can be continued to another location. 1f execution has proceeded too far, then the program

must be restarted in order to stop at some earlier point.

PosT-MORTEM

The rematning debugging technique is that of post-mortem debugging. Here, the operation
of an exccuting program is captured through the use of program traces or log files. The
debupger is then able to replay the execution sequence of the program by consulting the trace
information. This allows the user to repeatedly examine the program state in order to
determine the cause of an error. More sophisticated debuggers may also provide animation

of the program behaviour [36].

THE PARALLEL PROBLEM

Debugging is a difficult task because it requires understanding the software being debugged.
Although attempts have been made to automate the debugging process, it still remains largely
a job for humans. Advances in software engineering, such as information hiding, abstract
data types and modularisation have simplified the identification and location of errors in

sequential programs, however significant challenges still remain when debugging parallel
programs.

By definition, parallel programs consist of many simultaneously executing processes. While
some of these processes may synchronise for long enough to exchange messages through an
inter-process communication mechanism, they must operate asynchronously in order to take
advantage of the parallel architecture. In general, this asynchronous operation results in
nondeterministic behaviout, and ts the main reason that parallel programs are more difficult

to develop and debug.

Unfortunately for debugger designers, the traditional debugging process does not atways
translate well to the parallel environment. The cyclical debugging technique may not prove
effective because the error may be dependent on a particular order of process execution or a
race condition that is affected by external factors. Further, the act of debugging the process
itself may effect its timing and hence whether the error is apparent or not, an occutrence
referred to as the probe ¢ffécz [25]. In an attempt to overcome these problems, techniques such
as event-based debugging or static analysis are often employed, with varying degrees of

SUCCESS.

2-4

-‘-,-!..‘.;:

As welf as dealing with the nondeterminisim of the programs, a parallel debugger must also
be able to manage the complex nature of multiple simultaneous executing processes and the
resulting large volumes of information that can be generated. In addition, most paraliel
programs decompose their data, which may in tum be physically distributed across the
different processes. This also raises problems for the developer, because the specific data
decomposition used may be complex, so it may be difficult to identify whete data is located

and the particular point that errors are being introduced.

PARALLEL/DISTRIBUTED DEBUGGING

In the early 1980's, concurrent programming was beginning to be widely accepted and
paraliel computers were becoming commercially available. The first debuggers available for
parallel systems were interactive serial debuggers that had been modified to handie multiple
processes, such as “dbxtool” [8]. Some debuggers were also available for spectalised
concurrent languages such as the “defence” debugger for concurrent Euclid [70] and the
“YODA” debugger for Ada [37]. By the late 1980°s and early 1990"s a wide range of
debuggers for parallel and distributed architectures had been developed. McDowell and
Helmbold [49] categorised these debuggers as follows.

EXTENSION OF TRADITION.AL TECHNIQUES
This refers to the technique of using a collection of sequential interactive debuggers, one per

process to debug a parallel program. This technique raises a number of difficulties, including
how the output from multiple debuggers can be displayed in a coherent fashion, and how the
multiple debuggers are coordinated and controlled. While these debuggers tend to be easy to
build, they are most restricted by the probe effect. Many debuggers in this category are (or
were) commercially available, such as the “dbxtool” debugger mentioned above, as well as
debuggers such 2s “CXdb” [20], “TotalView” [22], “HP/DDE?” [27), “pdbx” [30] and many

-

others.

EVENT-BASED DEBUGGING
This debugging technique is an extension of sequential event-based debugging. ‘These

debuggers generally maintain 2 history of events (although the definttion of exeaf varies) and
allow the user to browse the history, replay the execution or simulate the environment in
order to debug the execution of individual processes. In the parallel environment, events
may also include messages or inter-process communication. By providing a deterministic

replay of events, these debuggers can also minimise the impact of the debugger on the

2-5

execution of the paraliel program. Typical debuggers in this category are “HDL” [11],
“Clouds” [40} and “Ariadne” [19].

STATIC ANALYSIS TECHNIQUES
For parallel programs, static analysis can be used to detect various types of errors, including

synchronisation errors such as deadlock and other tming problems, and data-usage errots
such as the simultaneous access of shared variables. McDowell and Helmbold suggest that
static analysis debuggers cover two distinct areas: (1) applying dataflow analysis techniques to
parallel programs, and (2) determining if two statements in a parallel program can be
executed in parallel [49]. This latter area applies to debuggers that perform a data
dependency anmalysis on the target program to determine the location of schedule-
dependencies [15]. Static analysis debuggers do not suffer from the probe effect at all, since
the program is never executed. Recent debuggers that employ these techniques are
“DETOP” [71} and “PTOOL” [13].

OTHER DEVELOPMENTS
Two major advances in debugging technology have been in the use of graphical display

systems, and in the use of integrated development environments (IDEs). The introduction
of GUIs in the 1980°s was quickly exploited by debugger designers, since a mult-window
environment provided an ideal mechanism for enhancing the display of key information such
as breakpoint location and vanable data. Traditional parallel debuggers could also take
advantage of the GUI for the control and coordination of multiple processes. The GUI also
allowed novel visualisation techniques to be introduced, such as viewing complex data
structures, time-process diagrams and the animation of program execution and data
manipulaton. Although integrated development environments have been available for
considerable time, the combination of IDE and GUI has seen widespread proliferation of

these systems.

In 1997, the Parallel Tools Consortium sponsored the High Performance Debugging Forum.
The aim of the Forum was to define a set of standards relevant to debugging tools for high-
performance computing (HPC) systems. In November 1998, Version 1 of the HPD
Standard was announced [28]. Until this standard was established, there had been no
published standards or definitions of debugper user interfaces or functionality. The
consequence of this has been that debugger implementations differ significantly. With the
standard now in place, users can be confident that debuggers will provide at least a base level

of consistenicy and functionality across a wide range of HPC piatforms.

2-6

DEBUGGER IMPLEMENTATION

In the last decade, the number and types of debuggers has increased substantially. In one
non-exhaustive literature survey conducted by the author, it was found that well over 100
parallel and sequential debuggers have been developed between 1990 and 1999 (Sce
Appendix F). Many of these debuggers combine a number of the techniques described
above, and significant efforts have been made to extend these techniques to better support
parallel environments. For example, the “Panorama” debugging environment [48] combines
traditional debugging features with a post-mortem debugger into 2 portable and extensible
package. A few debuggers have developed substantially new technologies, such as the
“RAID” debugger [13], which employs probabilistic reasoning, heuristic debugging
knowledge and structural analysis to automate the debugging process.

Early debuggers only required the ability to examine memory and processor state information
that had been saved to a dump file. The level of sophistication has increased significantly in
more recent debuggers. Many debug tools, particularly interactive debuggers, provide
features such as the ability to set breakpoints, to single step programs, to read and write the
memory locations and registers, and to trap program exceptions and memory accesses. At a
minimum these features need to be supported by the host operating system since they
generally operate outside the memory protection schemes of most systems, or require a
transfer of control to the debugger such as when a breakpotnt is encountered. On a number

of systems some or all of these features are also supported at the hardware level.

Most debuggers today exist as stand-alone applications that operate in their own address
space. In a multi-user protected-memory operating environment, a debugger must be able to
both gain access to and control the program being debugged. For interactive debuggers, this
is usually achieved by attaching to the program in some operating system specific manner.
Event-based debuggers usually requir; a special library to be linked with the target program
or statements inserted into the source code, although some debuggers are able to monitor
hardware busses passively. Static analysis debuggers, of course, do not require any special

support at all since the program is never actually executed.

Typically, the operating system will provide the debugger designer with the necessary
debugging tools. In the case of the UNIX operating system for example, the ptrace()
systern call is available for just this purpose. In order to use ptrace() the process to be

debugged must first be “stopped” by sending it a signal. The debugger is then able to take

27

control of, and perform debug operations on the process by issuing ptrace () calls with the

appropriate arguments.

Because of their gpecial requirements, debuggers tend to be particularly dependent on
specific operating systems and architectures. Some attempts have been made to develop
more portable debuggers, such as “Idb” [55), “gdb” [66] and “p2d2” [16], the first of which
appeared in the early 1990’s. The approach taken by all these implementations is to isolate
the machine dependent code from the portable code. In the case of “Idb™, this s achieved
by defining machine independent classes that describe important abstractions in “ldb”.
Machine dependencies are then defined as subtypes of these classes. “Gdb” takes a simpler
approach by isclating the machine dependencies to separate source files that are managed
using pre-processor directives when the debugger is built. The “p2d2” debugger {16] has
been designed with portability as 2 key objective, and accomplishes this using a client/server
architecture. The “p2d2” client, which provides a uniform debugger user interface, contans
no machine dependent code. All implementation dependencies are isolated to the servers,
which in tumn employ “gdb” to provide the low-level debugger functionality. The portability

of “gdb” ensures that the debug servers are available for a wide range of architectures.

SOFTWARE DEVELOPMENT V. SOFTWARE EVOLUTION

Current debuggers provide good support for the software development process. Static
debuggers provide the developer with a preventative mechanism for locating and
determining problems before they are encountered. Event-based debuggers, particulatly
those that are equipped with sophisticated visualisation features, aid the developer in
analysing the behaviour of programs through the use of time-process diagrams or the
animation of program activity, Interactive debuggers incorporate features to identify and
determine the location of etrors, to monitor the operation of a program as it is executing, and
to examine the state of a program that has stopped or failed. Some debuggers combine two

or more of these capabilities.

Unfortunately, these debuggers are not as effective in supporting the software evolution
process. In most cases, where incremental changes are made to existing software or whete a
program is potted from one architecture to another, a working reference program is
available. Ideally the developer should be able to take advantage of such a reference program
in order to assist in locating errors in the new code. A small number of existing debuggers

do go some way to meeting these needs. For example, the III programming

2-8

environment [46] provides an integrated development and debugging enviconment that
allows the developer to make incremental changes to executing programs. However none of

these systems allow the developer to make direct comparisons with a reference code.

RELATIVE 'DEBUGGING
The technique of relative debugging was first introduced in 1994 as a result of a large effort
to port existing sequential and vector codes to the new parallel computers that were

becoming widely available by s time. Unfortunately, the porting process tends to be a

difficult and specialised one, as is reflected in the lack of high quality automated parallelising

systems available even today. However, it is often possible to use information from these
known, working codes in order to simplify the porting and subsequent debugging process.
Relative debugging is the first technology that has been specifically designed to aid software

evolution by allowing the developer to make such comparisons.

The design of a relative debugger has required the development of a number of technologies
that are not available in traditional pziallel (or sequential) debuggers. These technologies are

necessary for the following reasons:

Typically a sequential program will be executed on a different architecture to a
parallel version of the same code, which means that even simple data comparisons
can be problematic if the architectures have different byte orderings, word sizes or

floating point representations.

‘The sequential and parallel programs will in most situations, be located on separate
machines. This implies that the debugger must be able to control two or more

programs, each of which may possibly be running on a remote computer system.

In order to be useful to the developer, the comparison process must be reasonably
automated. Since the programs are operating asynchronously, this requires a
sophisticated control mechanism to manage the extraction of data at arbitrary points

in the execution of each program.

A data structure may undergo significant changes in the sequential-to-paraliel porting
process through data decomposition or other transformations. In order to compare
such a data structure with the original version, some mechanism to replicate and/or

undo these changes must be available to the debugger.

While some debuggers may address a few of these issues (such as “p2d2” which operates in a
client/server manner) we know of no debugger that deals with them all in an integrated
fashion that would support the process of relative debugging.

Abramson and Sosi¢ developed an early proof-of-concept version of GUARD in 1995 [4].
This version provided a simple interactive framework that was limited to debugging two
separate images on a local machine. In particular, the comparison-matching logic was a
simplistic design that prevented the relative debugging technique from being used in a truly
parallel environment. Since then, the original program has been completely redesigned to
incorporate a number of new technologies developed by the author. Client/server
technology has been employed to expand traditional interactive debugging techniques to
parallel architectures. The implementation now utilises novel and unique methods to address
the heterogeneity issue, provides a dataflow control mechanism to manage the complex
control requirements, and provides techniques for the decomposition and transformation of

data.

In terms of the overall debugger genealogy, GUARD evidently falls into the category of the
parallel interactive debugger. However it has some significant improvements over many of
the “standard” debuggers of this type. Unlike many of these debuggers, GUARD is now
capable of controlling multiple independent programs rather than just a single parallel program.
In addition, through the use of its internal dataflow engine it is highly programmable and can
perform automatic data matching. Finally, it has the ability to perform powerful
transformations on user data while a program is executing, a capability that is not available in

any other debugger.

Future versions of GUARD could clearly take advantage of other debugging techniques. In
particular, static analysis could be used effectively to automate the creation of assertions
through data dependency analysis. Also, the ability to maintain an event history could easily
be used to streamline the process of data comparison. The use of 2 GUI could provide a
great deal of scope for improving user interaction and data visualisation. These issues will be

discussed in more detail in Chapter 8,

2-10

Chapter 3

RELATIVE DEBUGGING

In 1994, Abramson and Sosi¢ [4] developed the technique of relative debugging to assist in
the porting of sequential programs to parallel architectures. Relative debugging, like most
good ideas, is deceptively simple: utilise the availability of a known, correct version of a
program to atd the debugging of later releases of the software. However, it tumns out that the
technique is somewhat more difficult to implement. Abramson and Sosi¢ were able to
produce a working debugger, but this was restricted to debugging sequential programs, and
only provided limited support for changes that result from software engineering practices or
when software is ported to parallel systems. Since then the author has significantly advanced
the technology in a number of key areas to address these shortcomings. The work

undertaken to date includes:

e formalising some common transformations that occur to pregrams as a result of
software engmeering and when programs are parallelised, and developing techniques

for supporting these transformations;

s solving the complex control issues that arise when applying relative debugging to

parallel programs; and

¢ building support for debugging programs on remote machines and addressing the

heterogeneity issues that this raises.

This ¢hapter comptises three parts. First, the technique of relative debugging is described in
detail. In particular, key aspects of relative debugging are examined, including the use of
imperative and declarative comparisons, the use of comparison tolerances when defining
assertions, how differences can be reported and how the technique can be applied to parallcl
programs. The chapter then identifies the transformations that arise froin common software
engineering practices in program evolution, and how these must be addressed in order to
suppott relative debugging. These transformations include data parallel decomposition,
variable promotion and loop fusion, shape transformation, index permutation and array
sticing. The remainder of the chapter then describes a range of issues that must be overcome

when designing a practical parallel relative debugger.

341

RELATIVE DEBUGGING
Software evolution is now widely recognised as a process that involves the initial software
development followed by ongoing maintenaace releases that accommodate enhancements
and corrections to the code, and changes to the operating environment [39]. Debugging is a
key part of this evolutionary process, but few if any debuggers have been designed to take
advantage of the inherent informational content available in previous software releases. In
many situations such as after minor corrections have been made, or when programs are
ported from one architecture to another, key data structures within a program remain
invariant between releases. Because of this, it is often possible to compare data structures
between one release and the next as an aid to identifying the cause and location of introduced
errors. In these situations, relative debugging provides a powerful technique for locating
such errors quickly. Relative debugging is the first debugging technology to exploit this
capability.

PROGRAM EVOLUTION

\
T—

REFERENCE SUSPECT
PROGRAM PROGRAM

wamnd COMPARE)-gmem:

Use differences o
locate errors

Obsarve differences
Figure 3.1: Relative Debugging

Relative debugging is a high level technique that allows data in a rgference program to be
compared to that of a suspet program [5,64], as shown in Figure 3.1. By observing the
differences in key data structures, important clues about the nature and location of the errors
can be obtained. Various case studies reporting the results of using relative debugging have
now been published {3,4]. An important feature of relative debugging is that it is both

language and machin.: independent. This allows a user to compare data structures without
concern for program complexities, and thus attention can be focussed on the cause of the
errors rather than implementation details. While the technique applies equally well to all
kinds of data structures, current research has focussed on reporting differences in scalars and
arcays only. This is because it is not immediately obvious how to compare complex, dynamic
data structures such as lists or trees, nor is it casy to visualise the differences in such
structures. This is an area that requires significantly morce research, and is discussed further

in Chapter 8.

To the user, a relative debugger appears like any tradidional interactive debugger, but it also
provides additional functionality that allows data from different programs to be compared. A

user spe fies the comparisons they wish to make using two distinct mechanisms:

® mperative comparison — the user issuecs comparison commands to immediately compare

data between two programs and observe the differences; and

® declarative comparison — the user defines a series of assertions that specify the conditions

necessary for correct execution of the programs.

The user must also define what is meant by “different” and does this by declaring tolerance
values for each comparison. The results of the comparisons can then be examined using data

visualisation techniques.

IMPERATIVE COMPARISON
Relative debugging extends the traditional interactive debugging technique of displaying

program state information by allowing the user to make immediate comparisons between
two executing progtams. The user does this by first ensuring that each of the programs has
been halted at a breakpoint and then issuing a command instructing the debugger to perform
a compatison. Provided that the two data structures are the same size and shape, the
debugger will extract the data from the respective programs and then perform a numeric
subtraction on each pair of corresponding elements. Differences that are present in the data
will then be displayed to the user. This technique works well for simple situations or where
the user requires immediate feedback on the program state, but because of the high level of
user interaction required, can become unwieldy in certain situations such as within program

loops.

33

A relative debugger provides support for imperative comparison using the compare

command. An example of such a command might be as follows:
conmpare ref::RefVar = sus::susVar

In this example, the compare command vill instruct the debugger to extract the contents of

RefVar from the program' ref and SusVar from the program sus, perform a

comparison, and then report the results to the user.

DECILARATIVE COMPARISON
Relative debugging provides an alternative technique to address the lmitations of imperative

comparisons. In many circumstances the user may wish to specify a priorf 2 set of conditions
(known as assertions) that must be satisfied for the correct execution of the program. These
assertions combine the imperative comparison information with specific location details so
that tise debugger is able to perform the comparisons automatically. Because the comparison
process is now automated, this also addresses the situation where 2 high degree of user
interaction is undesirable. As the name suggests, declarative comparisons are not performed
immediately, but instead the assertion informaticn is stored internally in the debugger. This
allows the user to issue muluple assertion commands, and at some later ime instruct the
debugger to use the assertion information to automatically set the appropriate breakpoints,
control the execution of the programs, and extract and compare data from key data

structures. ‘'The compartson results can then be used to identify the likely location of errors

in the program.

Choosing an appropriate breakpoint location is an important aspect of defining assertions. If
the locations refer to source lines in the body of a program loop structure, then the assertion
will be executed on each iteration of the loop. This allows the accumulation of differences in
the data structures to be observed dynamically, and the location of the error to be readily
pinpointed. Another useful approach is to choose locations before and after such loop
structures. This can then be used to verify that the data remains invariant across the loop,

and provides a useful tool to establish the correctness of the code region.

A relative debugger provides support for declarative comparisons using the assert

command. This command is similar to the imperative compare command, but as

! Throughout this document the term “program” is used synonymously with “process” and refers to the
instance of an executing code. In the case of paralle! architectures 3 “program® refers collectively to many
concurrently executing instances. We use “process” to refer to a specific instance if necessary.

3.4

i
Y
'

mentioned, includes additional breakpoint information that is used by the debugger to
manage the program execution automatically. An example of such a command might be as

follows:
assert ref::RefVar@“progl.c”:4300 = sus::SusVar@“prog2.c”:4400

This example also compares data in RefVar from the program ref with SusVar from
sus, however the user is also able to specify the locations at which this comparison will take
place. In this case the value of RefVar 1s obtained from the program when line 4300 in the
source file progl.c is reached, and Susvar is obtained when line 4400 in prog2.c is
reached.

The full syntax for comparisons and assertions is provided in Appendix A.

COMPARISON TOLERANCE
When performing comparisons it is possible that errors may be incorrectly attributed to

differences in the precision of the program variables or because of other minor numeric
factors. 1n order to avoid this situation the user is able to specify a tolerance value. Vanables
are considered equivalent when the result of a comparison is within the tolerance. Tolerance

can be specified in two ways:

o absolute tolerance — the fagnitude of the difference between the variables is compared

directly with the tolerancs value. If v, and v, are the values of two variables, then

for some tolerance ¢, differences will be ignored if p, -vo}<¢;

® relative tolerance — n situat' ons where the values being compared are very small but the
differences still constitute a significant error, using absolute tolerance may swamp the

difference value. Instead the difference can be first divided by the maximum of the

two variables before being compared to the tolerance. If v, and v, are the values of

}"l -v3]

two variables, then for some tolerance & differences will be ign :ved if max(n 2P <E-

REPORTING DIFFERENCES
A key component of relative debugging is the reporting of differences that occur in the data

structures being compared. The simplest method is to display the magnitude of the

numerical difference between two values. This technique is generally used only for quickly

displaying differences in simple data structures, as it becomes much too unwieldy for large
amounts of data such as when assertions are located within program loops or when large
arrays arc being compated. Tor more complex data structures, some form of data

visualisation is necessary to view the difference information.

The errors in two-dimensional array data structures can be conveniently displayed as a pixel
map’, where each pixel represents the difference between corresponding elements in the
arrays. The pixel map can then be used to visually determine the location of the differences
in the data structures by setting the approprate pixel to indicate the presence of a variation in
the data. Colours can also be assigned to represent the relative magnitude of the differences
as a means of providing additional information. Examples of typical pixel maps are shown in

Figure 3.2.

/ individual pixcl

{a) Possible Stade Error (b} Postible Boundary Error

Figure 3.2: Example Pixel Maps

The pixel map in Figure 3.2(a) uses black to represent a difference and white to indicate that
any difference is within the acceptable tolerance value. This example shows the typical
characteristics indicating the possibility of a stride error that appears periodically in columns
of the array. In Figure 3.2(b) colours have been assigned to the relative magnitude of the
differences. This ernample shows a possible boundary error appearing in the left-most
columns of the array. The colours indicate that the magnitude of the etror depends on its

distanice from the middle of the column.

Where data structures have three or more dimensions, complex visualisation techniques are
required. In programs that compute data in a time-step loop it is also useful to view
differences as a sertes of frames to provide a graphic indication of the development of the

errors. These frames can then be run consecutively as a movie. Figure 3.3 show several

2 A two-dimensional arrangement of pixels.

36

ki A i

frames of a three-dimensional data structure where the differences have heen displayed using

an iso-surface representation.

ismaslop 30

aary =nc.a g
-

¢

Figure 3.3: Visualisation of Diffecences in 3-D Data Set

There is significant evidence to suggest that visualisation of comparisons, particularly using
2-D and 3-D representations, provides the user with a means of characterising patterns of
differences. In a previous study [2], a time series iso-surface representation of the error
{shown in Figure 3.3) was used to identify independent errors in a meso-scale weather model.
In particular, the structure of the iso-surface allowed the identification of errors in different
code sections that wete responsible for various physical processes. For example, an error in
the physics on the planetary boundary appeared as an iso-surface that was wvisible at the
bottom of the 3-D space used to represent a slice of the atmosphere. A second error
occurring in the long-wave radiation physics code was visible in the top of the atmosphere.
In another case study [69)], differences showed characteristic periodic behaviour suggesting
problems involving trigonometric operations. In each of these cases generalisations can be
made about the nature of the patterns, but until further research is conducted in this area
these are currently limited to being used for insight when making deductions about the

nature of the errors.

PARALLEL RELATIVE DEBUGGING
Although initially developed to address the problems encountered when porting programs to

parallel architectures, early implementations of relative debugging were limited to only
supporting the comparison of sequential codes {or single process parallel codes).
Conceptually, parallel relative debugging extends the relative debugging paradigm by allowing
the comparison of data in a parallel program with the corresponding data in the sequential
program from which it is derived. Figure 3.4 show a high level model for how this might

occur.

When traditional sequential or vector programs are modified for execution on a parallel
computer, it is often necessaty to re-organise the key data structures and associated code.
For example, if the parallel platform has physically distributed memories then the data must
be part, . ~d and allocated to the individual processes, and in some cases the loop structures
themselves must also be altered. Transformations may also be automatically introduced by

parallelising compilers, or when converting codes to data parallel languages.

PROGRAM EVOLUTION
V
PARALLEL
SEQUENTIAL PROGRAM

PROGRAM

Usa differences to
locate errors

Observe gifferences

Figure 3.4: Parallel Relative Debugging

In the above diagram, a sequential data structure has been decomposed into smaller blocks
that are distributed across the parallel processes. The user may wish to compare the
sequential data with the parallel data, but does not need to be concerned with the details of
the particular decomposition that has been used. Ideally, the debugger will be responsible for
arranging for each of the distributed blocks to be recombined into a single data structure
before the comparison is performed. In addition, the debugger must also manage the
program synchronisation so that the data can be extracted from the correct location in each

process.

The existing declarative comparison command provides the debugger with all of the
information it needs to perform such a comparison, apart from a description of the data

decomposition technique that has been employed. All that remains is for the user to describe

this mapping in order to provide the debugger with the details of the decomposiion method.

This may be achieved through a statement such as:

define mapping(} = ... description of data decomposition ...

Although such a definition can be complex, once it has been established the user no longer
needs to be concerned with how the decomposition takes place. Instead, the mapping can be
used in combination with a normal assertion statement to perform a comparison between a

sequential and a paralle! d-t. structure. For example, a typica’ assertion might be:
assert seq::SeqvVar@“progl.c”:4300 = mapping{par::ParVar@ prog2.c”:4400)

Here, seqrefers to a single sequential program containing the array SeqVar. However, par
now refers to a collection of parallel processes, each of which contains a portion of the
decomposed array in the variable Parvar. The data decomposition description provided by
mapping will extract data from each of the paralkl processes and recombine the data in a

way that allows the comparison with data from the sequential program.

Data decomposition is not the only type of transformation that can be applied to a sequential
program when it is parallelised, and these additional transformations must also be supported.
The next section discusses the range of transformations that must be addressed if relative

debugging is to prove a useful tool to aid in the evolution of software.

SOFTWARE ENGINEERING AND RELATIVE DEBUGGING
Many factors contribute to the contnuing evolution of software. Changes may arise as a

result of
e errors that are identified and corrected as part of a regular maintenance process;

e the desire to exploit the availability of new languages and architectures; and

-

e the impact of other external factors such as economic and soctal constraints.

In these situations it is sometimes necessary to alter a particular data structure, perhaps to
take advantage a new architectural feature or because of restrictions imposed by different
programming languages. Because of such changes, it may no longer be a simple process to
perform a comparison with previous releases of the software. However in many cases the

actual data remains invariant, the changes may just involve altering the ordering of the data or

3-9

the addition of extraneous information to the data structure. In these situations, the ability to
perform comparisons using relative debugging can still be an extremely valuable tool for

locating ecrors.

The types of transformations that occur because of such software engineering changes are
parucularly important in parallel relative debugging, The user may wish to compare data
structures at various places without concem for the different organisation of the data in each
of the programs. To support this, the debugger must provide a mechanism to replicate the
transformations that have been applied to the programs. It is also desirable that such a
mechanism be transparent to the user so they can concentrate on identifying the location of

the error, rather than on the particular iplementation.

Although the number and types of changes that may be introduced to program data
structures is virtually unlimited, this research has focused on those changes that commonly
occur to array data structures as a result of software engineering practices, and the
reorganisation of code and data as programs are parallelised. A number of researchers have
examined the classification of data transformations, particularly in relation to data locality
issues for cache optimisation [58,72]. We are not attemnpting to duplicate this prior work, but
s ther identify a subset of common transformations that are both of interest to the debugger
uset, and allow us to establish the validity of the technique. Addressing the changes to other
types of data structures is left for future research.

Some of the transtormations that are applied to data and code when a sequential program is
parallelised consist of:

o data parallel decomposition which defines the data distribution method used to

implement a parallel version of the program; and

o lemporal displacemrent which deals with situations where a variable 1s promoted (such as

scalar to array) or loops have been fused to optimise parallelisation.

A number of transformations are also used in a more general software engineering context,

including:

* shape transformation where the rank of an array or the size of its dimensions have been

altered to exploit 2 particular architecture or language features;

3-10

® index permutafion where arcay indices hu.e been reordered, such as through

architectural optimisation or language differences; and

e armuy shicing where additional information has been added to an array, such as in the

form of guard bands.

The following sections will examine these transformations in detail and show how they are

used to support the process of relaiive debugging.

D414 PARAILEL DECOMPOSITION
Except for cxtremely coarse-grained or parameterised models, parallelisation of an algorithm

on a distributed memory computer usually requires the decomposition of arrays in order to
distribute data to the individual processes. In the case of data parallel languages, this
decomposition is typically a block, gyclic or block-cyelic decomposition [24,29] and 1s handled
automatically by the language runtime system. These types of decomposition are also
typically used in automated parallelising systems [61). Hand coded distributed memory
implementations may produce much more complex algorithms, and are beyond the scope of
this thesis. In many cases, particularly where process pool sizes are dynamic, the exact

partitioning is not normally known unti] runtime.

DATAPARALLEL
DECOMPOSITION

Figure 3.5: Duplication of Data Disuibution

Figure 3.5 shows an cxample in which serial and parallel data are compared using relative
debugging. In this situation, the sequential data has been distributed to multiple processes as
a result of the parallelisation process. Since an assertion requires two identical data structures

for comparison, the distributed data must be recombincd before the comparison can take

31

place. This is achieved by mapping the distributed data into a serialised data structure that

can be used in order to perform the comparison operation.

V' ARL4BLE PROMOTION
Variable re-use is a common programming construct. When this occurs, a scalar value may

be calculated, used and then overwritten in a new computation, usually within some form of
loop construct. However, when this type of program is parallclised, it is often necessary to
promote the scalars to an array, one unique value per loop iteration. Such a variation
between the sequential and parallel codes makes it extremely difficult to compare the data,
because there may be no point in time in which the data exists concurrently in both
programs. Figures 3.6 shows code fragments demonstrating how a temporary variable in

Fortran code might be promoted to an array written in C.

Do 90, I =1, 100 128 for {i=0; i<10Q; i++)
B0 TEMP = X(1I} * YI(I) 122 |
X(I) = 2 * Y(I) 130 temp[i] = x[1] * y[1}
¥{I) = PI * TEMP 131 |}
30 CONTINUE 132
133 for (i=0; i<100; i+4}
134 ¢4
135 x[(i) = 2 ¥ y[i]
136 y(i] = PI * temp(i]
137 1}
{a) Fortran code () C eode

Figure 3.6: Variable Promotion Example

Since temp is an array in Figure 3.6(b), and TEMP is a scalar in Figure 3.6(a), comparison is
not possible unless some mechanism for promoting TEMP to an equivalent array is provided.
At present, the only way to perform this comparison is to modify the Fortran code in order
to promote TEMP to an array. This is clear’s undesirable because it requires the
modification of the reference program, possibly resulting in the introduction of errors or

other changes in program behaviour.

Loop FUsION
Another common optimisation for paralle! programs is to fuse a number of sequential loops

into one larger parallel one. Serial codes often perform computation on entire rows ot in the
case of 2 dimensional arrays entire columns, for vectorisation purposes. In a parallel
program, multiple computations may be fused into a single calculation on each grid element,
since in general each process will be applying the same computation to the partitioned data.

This has the effect of reducing the overhead of parallel loops while improving data locality

3-12

" e _~__-,(__-,_-...'..,‘;.-vau;ﬂf

and reuse {34,50]. However, where loop fusion has been employed there will never be a
point in the execution of the codes when the arrays are equivalent. Figure 3.7 shows code

fragments where this occurs.

128 for (i=0; i<100; i++} 100 for (i=R; i<100; i4+}
129 ®[i} = 2 * xIil i

102 Xfil = 2 * x[i]
131 for {(i=0; i<100; i++)
132 ylil = =x[1] + yiil 104 viil = x{i) + yli]
1390 for (i=0; 1<100; i++) 106 xli] = yiil / x[i)
135 w[i} = yld] / x[i] }

108

(a} Sertal wode {b) Parallel code

Figure 3.7: Example of Loop Fusion

In this example, comparison of the array X prior to the execution of line 131 in Figure 3.7(a)
and 104 in Figure 3.7(b) is not possible. Instead, a temporary array must be constructed to
hold the intermediate values from the parallel code, and the comparison delayed untl al'
elements of this temporary array have been obtained, i.e. line 108 in Figure 3.7(b).

L]

SHAPE TRANSFORMATION
Sometimes 1t is necessary to change the shape of program data structures in order to exploit

language or architectural features. For example, data may be stored in 2 long single
dimensioned vector to exploit a vector architecture, but this data may need to be re-organised
into a multi-dimensioned array to take advantage of an array-based language. In other
situations the shape of arrays may be altered to exploit processor performance

improvernents, for load balancing purposes, or for better cache utilisatton [50,58}.

In order to allow the comparison of transformed data structures, a relative debugger must
provide a shape transformation mechanism. This allows the debugger to duplicate the
common shape transformations that are applied to data in order to facilitate comparison in
situations where these transformations have been utlised. Figure 3.8 shows an example of

this type of transformation.

In relative debugging, shape transformation is supported using the trans command. This
command allows the user to define a shape transformation and then apply that

transformation to data that is used to perform a comparison.

ARRAY
] 2 focd 2 1

TRANSFORMED [EplA e wq—-
INTO ARRAY nlierabinkin

Figure 3.8: Shape Transformation

INDEX PERMUTATION
A program that is ported from a vector to a cache-based architecture may have been

optimised for the vector processor and so will scan the data in a particular way. However,
this may not be suitable to take advantage of the capabilities of the cache-based machine. In
such a situation the order of array accesses may be need to be altered so that data locality is
improved to exploit the processor cache, thereby increasing performance [58]. In other
situations, permutation of array indices may be used as an alternative to loop transformations

{17} or may result from language differences, such as between C and Fortran,

In general, comparison of arrays in these situations using relative debugging requires a
mechanism that preserves the number of elements and the array contents, but allows
arbitrary permutation of the indices. Figure 3.9 shows an example of how a typical
permutation, in which 2 3x5 array is transformed into the equivalent 5x3 array, can be

compared using relative debugging,

IX S ARRAY

PERMUTE
™~ INDICES

INDEXORDER
PERMUTED

Figure 3.9: Index Permutation

3-14

e .

L

ARRAY SLICING

In some circumstances, perhaps through modificstion to the boundary conditions of an
algorithm, additional rows or columns may be added to an array. Both the imperative and
declarative comparison techniques operate on all elements in the respective data structures,
so direct compatison of arrays under these conditions is not possible. Instead, it is necessary
to provide a mechanism to allow the extraction of a sub-array from the expanded array that is
the same size and shape of the array with which i* is to be compared. An example of this
array slicing process is show in Figure 3.10. In this example, extra elements have been added
to the ends of each row and column of 2-dimensional array, increasing the size of the 2x3
array to 4x6 elements. These extra elements must be removed before the array can be

compated with a 2x3 refetence array.

l ARRAY WITH
i ADDED ROWS AND
B3 COLUMNS

ARRAY

Figure 3.10: Array Slicing

DEBUGGER DESIGN ISSUES

In addition to the changes that are introduced into programs through software engineering
processes, a relative debugger must also deal with programs that are executing
stmultaneously, possibly on physically separate machines that may have completely different
architectures. A relative debugger also gives the user the unique ability to define a series of
assertions that instruct the debugger on how to control and compare data extracted from
many concurrently executing programs. Because of these requirements, the debugger design

must address some key issues. These include:

o process eontrol requirements — how the debugger will control independent processes

possibly executing on remote machines;

3-15

o betergeneify fssnes ~ how to deal with the architectural differences between the
machines executing the programs being debugged, and the debugger host system
itself; and

o debupger vontrol logic — the mechanism that will be used to process the assertion

commands, control the executing processes, and extract and compare the target data.

The following sections describe these design issues in detail. The next chapter will present a
debugper architecture that addresses all of these issues, and incorporates the features into a

powetful and innovative package.

PRrROCESS CONTROL
By definition, a relative debugger must be able to control two or more processes

simultaneously. While many debuggers are designed to do this, the processes they centrol
usually consist of tasks comprising a single parallel program, or threads comprising a single
sequential program. The processes controlled by a relative debugger are almost always from
completely independent programs, and in many cases may be executing on physically remote
computer systems. In addition, the debugger must be capable of controliing a combination

of sequential and parallel programs.

Because of its unique rec - :ments, a relative debugger must provide a sophisticated process

control mechanism. This mechanism must include the ability to:

o control pulliple independent programs — since each assertion compares data from two
different processes (which may comprise all or part of a sequential or parallel
program respectively) and there are no restrictions on the number or combinations of

processes used in assertions;

o mix sequential and parallel processer — the debugger must be able to compare data from
paraliel and sequential processes in order to fully support the concept of parallel
relative debugging;

® control processes on physically remote machines — relative deb ugging supports comparison of

data in a number of situations w!.ere the processes may be located on remote

machines. This includus sequential programs running on different architectures and

the processes comprising a parallel program executing on a distibuted memory or

cluster architecture;

o control both individual and arbitrary groups of processes — compatison of data between
parallel and sequential programs requires that the debugger manaze the extraction of
data ftom arbitrary processes in ordet to account for the dea distribution method

employed;

® siart and stop debugging processes arbitrantly — so that the user is free to choose which

versions of a program will be used for comparison; and

o support as wide a range of parallel and sequential architectnires av possible — in order to ensure

that the debugger provides a useful tool to aid the process of software engineering,

Clearly, a debugger that sansfies these requirements will need to employ a client/server
architecture. In addition though, the control mechanism employed must be able to multiplex
contro] across many independent ptocesses and handle asynchronous events as they occur.
The debugger must also be able to support a number of different, architecture specific

mechanisms for parallel process startup and control.

HETEROGENEI[Y
A relative debugger has the ability tc compare data from programs executing on completely

different systems, However, these machines may employ completely different architectures,
and consequently the data representations used may not be compatible. Further, the
machines executing the programs that are being debugged might use different data
representations from the debugger itself. The obvious approach to addressing this issue is to
employ some mechanism for dealing with data in an architecture neutral manner. Such a

mechanism must:
® be compatible with a client/server architecture;
¢ allow data distribution across networks and support in-core operations;

® retain data type information;

¢ convert to/from native formats without loss;

* support a broad range of atithmetic, logical and comparison operations;
¢ provide an efficient storage and execution mechanism; and
¢ support a wide range of architectures.

While a number of portable data format exists, none of them address all these issues. To
overcome the limitation of these existing implementations, a completely new architecture
independent format (AIF) has been developed. The details of this format are described in

the next chapter.

CONTROL LOGIC
In addition to data and code changes, parallel computers also increase complexity since they

must deal with many concurrently executing processes. This raises problems for parallel
relative debugging because these multiple processes need to be controlled and synchronised
if data is to be extracted and compared with a sequential counterpart. In order to support
this, the declarative assertion mechanism must be extended to ensure that such

synchrontsation remains transparent to the user.

One of the primary tasks of a relative debugger is to evaluate a series of user-defined.
assertions in order to perform a comparison of data that has been extracted from two or
more executing processes. Bach assertion instructs the debugger on what daia to extract
from each process and where the data is to be extracted. In the case of parallel programs, data
may be extracted from the same location in a number of processes simultaneously. Once
data has been extracted, it may be mantpulated or transformed in arbitrary ways before the

comparison is finally performed.

In order to evaluate the assertions, a relative debugger proceeds as follows. First, it must set
a breakpoint in each process and at each location specified in the assertion statements. This
may involve setting multiple breakpoints in some processes. Once 2ll the breakpoints have
been set, the processes are started. Fach process will reach 2 breakpoint at some arbitrary
time, and when this occurs the debugger must extract the data that has been associated with
that breakpoint by an assertion statement. This data must then be stored until data from the
corresponding process s availabie for comparison. The stopped process is then restarted

and the debugger waits for the next breakpoint to be reached.

3-18

A relative debugger must provide a control mechanism to support this process. Such a

control mechanism must be capable of:
e cxtracting data from one process independent of another;
e handling breakpoints in any order, repardless of the static structure of assertions;
® reusing a data item in many different assertions; and
® manhaging rmany processes at once.

In the next chapter, we will describe how we employ a unique dataflow technique to address

all these requitements.

CONCLUSION

The technique of relative debugging has been used in many case studies since it was first
developed in 1994. It has been shown to be very successful in isolating etrors that have been
introduced into programs through the porting process or through software evolution.
Relative debugging allows the user to focus on key data structures in the code and provides
tools to allow the location of errors to be quickly located, often without requiring detatled
knowledge of the program. Recent research and development undertaken by the author has
extended the use of relative debugging to parallel architectures and to data parallel languages.
This research has resulted in the development of a number of novel techniques that provide
the fundamental basis for re-engineering the debugger to support parallel computing

environments.

Porting a serial program to a parallel computer generally involves transforming the code and
data structures of the program in order to take advantage of the architecture, and to ensure
that optimum performance is obtained. There are a large number of these transformations
available, however in many cases only a small subset of such transformations are commenly
used, pacticularly by parallelising compilers and data parallel language run-time systems. The
extension of the relative debugging paradigm to cncompass serial and parallel codes

necessitates some mechanism to duplicate these transformations so that comparisons

between senal and paralle]l data structures are possible.

This chapter has examined the types of transformations that are commonly applied to code
and data structures in the porting process and identificd how this impacts on the relative
debupging process. It has also looked at a range of issues that must be addressed to

effectively implement the relative debugging paradigm.

3.20

i
B
4
2
:;;

Chapter 4

THE ARCHITECTURE OF A PARALLEL RELATIVE DEBUGGER

A parallel relative debugger combines the functions of a conventional parallel debugger with
those that are specifically required to support the relative debugging paradigm. The debugger
must provide the functionality of a conventional parallel debugger for two reasons. First, the
user must be able to perform normal debugging operations in the process of determining
programming errors. These services could be provided by a separate debugger, but the cost
of switching between debuggers mak.es this approach undesirable. Second, when employing
relative debugging (ie. performing comparisons between programs) the debugger must
ensure that multiple processes can be distributed onto different platforms and can be
controlled independently of one another. Since this requirement is identical to that of a

conventional paraliel debugger, it is available at no additional cost or effort.

- Extending conventional debugging technology to support the relative debugging paradigm

requires that significant additional functionality be provided. This is because the debugger

must be able to deal with:
¢ software engineering issues;

» issues specific to parallel environments, such as parallel architecture and language
details; and

o the changes to the code and data structures that occur when programs are
parallelised.

The functionality that must be provided by a parallel relative debugger can be loosely

grouped into three categones:

» relative debiugging suppont, inchuding the evaluation of user-defined assurtions, the storage
and manipulation of data from concurrently executing processes, and the ability to

deal with software engineering transformations;

o pamllel anhitesture support, including the ability to interpret the paraliel data structures
used by data parallel language run-time systems, and functionality o deal with the

code and data changes that occur as a result of parallelisation; and

» pamllel process sspport, including the ability to control multiple independent processes,
support for widely distributed processes, and support for heterogeneous

architectures.

‘The debugger described here, know as GUARD', has been specifically designed to address
these architectural considerations. As well as providing traditional debugging functions, the
debugger includes four key features that address each of the functional requirements of

parallel relative debugging. These include:
¢ a dataflow compiler and engine;
e an architecture independent data format;
* data and code transformation support; and
¢ aclient/server architecture.

In addition, the GUARD debugger employs a modular architecture that incorporates a multi-
layered interface design, switchable network protocols and a pluggable debugger backend.
All these features are combined into a powerful package to address the needs of parallel

software engineers.

This chapter will discuss each of the key architecture features of GUARD in detail, and

describe how they meet the functional requirements of a parallel relative debugger.

DATAFLOW COMPILER & ENGINE

The evaluation of user-defined assertions is central to the operation of a telative debugger.
However, the ability to define assertions over parallel programs places a significant burden on
the matching and control logic of the debugger. In order to support the semantics of parallel

assertions the debugger must be capable of:

! The latest version of GUARD is known as GUARD-2000. References to GUARD should be assumed to
be this version unless otherwise stated.

extracting data from one process independent of another;

handling breakpoints in any order, repardless of the static structure of assertions;

reusing a data item in many different assertions; and

® managing many processes at once.

GUARD meets all of these requirements by employing a dataflow execution mechanism to
manage the evaluation of assertions [9,21]. In the dataflow model, a directed graph contains
nodes that perform certain functions. These nodes are connected together by edges, and fokens
travel from node to node via the edges. Some dataflow architecturzs 1nay allow only one
token to be present on an edge at any time, while others may allow many. These are known
as static [21,21a) and dynamic [9,92] dataflow architectures respectively, although some
implementations combine both methods using a Ayér7d scheme {1a]. Once tokens arrive at a
node, they must be stored until at least one token is available on each input edge. In the case
of the dynamic architecture a mechanism is required to match the correct tokens on each
input, vsually with a tag field in the token. This type of mechanism s known as a matshing
sfore. A modified version of the static arc};itecture, know as static quened, llows the queving of
tokens at the nodes [i6a]. Once tokens have been matched, they can then be passed as

operands to the node for execution.

In GUARD, an assertion statement is represented as a node that performs a comparison only
when it has data from two processes available on its inputs, as shown m Figure 4.1. Data
from each process is encapsulated in the tokens, which are generated asynchronously as the
result of a process reaching a breakpoint. Since there is no giarantee that data from one
process will arrive at any particular time, the architecture must ensure that tokens remain
available until all the operands for the node have been generated. In addition, it is important
that the ime each process remains at a breakpoint is kept to a2 minimum. A static queued
dataflow architecture allows almost immediate program restart since multiple tokens can be
queued, but does not require the complexity of a matching store. This arrangement also
works well if two assertions require the sarne data item, since a token can simply be

duplicated and sent to the appropriate input for each assertion,

43

Figure 4.1: Daflow Graph Executing an Assertion

In a normal debug session, the user will define a number of assertions about the programs
being debugged. As part of its user interfacc, GUARD provides a compiler that translates
these assertion definitions into a dataflow graph consisting of nodes that define comparison
and control operations, and edges that define the flow of data through the graph. When the
assertions are to be evaluated, the dataflow graph is passed to a dataflow engne for

execution. To begin the execution process, the graph is “seeded” with an initial token.

Figure 4.2 shows a simplified graph that results from compiling the following series of

assertions:

assert $S::A[0..49]@seq.c:100 = $P[0]::B@par.c:100
assert $S::A[50..99)Eseq.c:100 = $P{1l])::Blpar.c:100
assert $S::A[0..9]@seq.c:150 = $P[0]::B[0..9]@par.c:90
assert $S::A[(50..59]@seq.c:150 = $P[{1]::B[0..9]8par.c:95

In this example, the array A{100] in the sequential code (seq.c) has been decomposed
across two processes into the array B[50] in the parallel code (par.c). The syntax uses the
notation $S to refer to the sequential process and $P[0] and $P[1] to refer to the two
parallel processes. The first two assertions reflect the relationship between the array in the
sequential and parallel codes. The second two assertions compare the first 10 elements of

the sequential and parallel arrays at different line numbers.

The graph in Figure 4.2 contains a compare node and a display node for each assertion
statement. A compare node computes the difference between its arguments. If there is a

difference, then this 1s reported to the user via the display node. The diagram shows tokens

moving along the input edges and arriving at the compare nodes at different times. The first
compare node in the diagram has received tokens on both its inputs and has fired (shown in
red). The resuit of the comparison has been sent to the display node, which has also fired,

and so has displayed the results to the user.

SEQUENTIAL CODE (seq.c) PARALLEL CODE (par.c)

Figure 4.2: Dataflow Graph From Multiple Assertions

A few debuggers have used dataflow as a control mechanism in the past [45,56]. In one of
these [56], the dataflow mechanism used a breakpoint as an event trigger for a piece of
debugger code. Likewise TotalView [22] allows the user to write expresstons that are
executed when a breakpoint is reached, and these can be considered like dataflow
expressions. GUARD extends this previous work by building complex tokens containing
data from the processes being debugged, and then using this data to evaluate the assertion

statements.

ARCHITECTURE INDEPENDENT DATA FORMAT

In addibon to debugging programs on physically separate hosts, a relative debugger must also
support programs running on heterogeneous architectures. Many debugger commands
require access to data in the processes being debugged. However, the remote systems
executing the target processes (and the debugger host system itself) may each use different
architectural features such as word length and byte ordering. Some form of architecture

standardisation must be employed in order to be able to manipulate and compare data from

these disparate systems.

The problem of sending architecture specific data over a network has been addressed by
standard networking protocols such as XDR [65). Much work has also been done on the
development of architecture independent file formats, with NCSA’s HDF [53] generally
accepted as the defacto standard. However, none of these approaches address the issues of
performing in-memory operations on data from architecturally different systems. The
solution adopted by GUJARD, know as the architecture independent format (AIF), is
designed to achieve true architecture independence for arbitrary data types. The key

components of the AIF system are:
¢ a format for representing data in an architecture independent mannet;
e awell-defined application programming interface (API); and
e aset of library routines implementing the AIF APL

The AIF API provides a rich collection of routines that provide support for all common
arithmetic, logical, comparison and tile 1/0 operations. In addition, routines are provided to

convert data between host specific and AIF formats.

Figure 4.3 shows AIF being used to add two integers from different architectures. First, data
is converted into AIF using the IntToAIF () routine. The AIF data can then be passed to
the AIFAdd () routine which calculates the result, also in AIF. This result can then be

passed to the ALFPrint () routine to be displayed.

The GUARD debugger converts data into AIF as soon as it is extracted from the target
process. Debugger commands that manipulate target process data ‘such as display,
arithmetic or comparison commands, or actions generated as a result of the execution of the
dataflow engine) operate only on data in this format and so are completely independent of
the target architectures. This early conversion of process data to AIF ensures that the
debugger remamns 1solated from the architectural dependencies of its own host system. A
clear separation of architecture specific and architecture independent data formats has
additional benefits. Defining an AIF API allows routines to be isolated to an independent

itbrary, simplifying the debugger implementation and promoting code reuse. The addition of

46

support for new architectures or language data types also becomes straightforward, as code

need only be modified in a single location.

B Litde Endien
j 64 Bit

TRETOATE(Introatr() Disimieter

______________ / N
T1ala below here
ATFACGA () L1 AR format

AIFPrint()

Big Endian
32 Bit

Figure 4.3: Exarnple of AIF Usage

DATA AND CODE TRANSFORMAYION SUPPORT

Onc important feature of relative debugging is that it minimises the detailed knowledge
needed by the user when formulating assertions. This allows the user to concentrate on
where an error might be occurring rather than on details of the implementation. As
discussed in the previous chapter, this technique can become complicated when data or code
transformations are employed during the software engineering process, or when sequential
codes are parallelised, because the transformations have to be duplicated for the data to be
compared. The ability to model these transformations is therefore a key component of the
paraliel.relative debugger architecture. The GUARD debugger provides the capability that
allows libraries of common data transformations to be defined (perhaps supplied as a

standard transformation library) and then to be easily applied by the user when needed.

There are five main types of transformation supported by the debugger:
¢ data decomposition;
® shape transformation;

* index permutation;

¢ array slicing; and

e temporal displacement.

Data transformations are managed using the two commands “map” and “trans”,
combined with the array slice notation. The debugger handles code transformations resulting
from temporal displacement programusatically using the “create” and “assign”

commands.

DATA DECOMPOSITION
A panallel mapping function is used to specify the data decomposition technique that has

becn employed when a sequential code is poried to a parallel architecture. GUARD provides

a mechanism to specify such a mapping using the following syntax:

map func(P::D)

define index(i,x) = exprl
define proc(j,x) = expr2
end

Here, func is declared as a parallel map. Each map must define an index function and 2
proc function. The index function is used to specify the relationship between each
element of the serial array and the cormresponding clement of the parallel arrays. The proc
function defines the location (in terms of parallel proces: identifiers} ot each element of the
array. Thete are two arguments to the maoping function func. These are P, which is an M-
element array of rank » of process identifiers, and D, which is an N-element data array of
rank # that s located tn the address space of each of the processes. A number ot predefined

functions are also provided to assist in defining mapping functions, ‘ncluding;

rank (R) the rank # of array A

nel(n) the number of elements Nin &
upper (A, i) the upper bound of index i of array &
lower (&, 1) the lower bound of index i of array &

When a map is applied to a parellel array, a new single data structure of rank # with

NxM elements is created. This resulting array can then be used in an assertion statement as

noreal. Figure 4.4 shows a typical block-cyclic mapping,

DATA,
DECOMPOSITION

wmwemnmoRs

Figure 4.4: Block-Cyclic Decomposition

In this example, the sequential array s_array has been decomposed by assigning each row

to one of the parallel arrays p_array. In GUARD, this would be defined as follows:

map beyc(P::A)

define index{i,x) = i < rank(A} ? x[i] : (x[i}-1})/nel{P) + 1
define proc(i,x) = (x([1i] - 1} % nel(P) + 1
end

Once the mapping function has been defined, it can then be applied to a parallel data
structure using an assertion statement as follows:
invoke §s “ser_prog”
- invoke $pl4,1] “par_prog” using “mpich”
assert $s::s_array@“progl.f”:55 = bcyc($p::p_array@“prog2.c”:49}
Here, $s refers to the setial code ser_prog and Sp refers to a 4x1 process mesh running

the parallel code par_prog. The assertion statement applies a block-cyclic mapping to the

variable p_array in prog2.c at line 49 of the parallel code. This 1s then compared with

the equivalent variable s_array in progl. £ at line 55 of the senal code.

SHAPE TRANSFORMATION
Array shape transformation occurs when an array of rank » 1n a reference program is

transformed into an array of rank # in a suspect program, provided the total number of

1 elements in the array are preserved. To compare these arrays using relative debugging, a

3 4-9

_%’

R -

mechanism for specifying this transformation must be provided. In order to do this, we

conceptualise this process as flattening the array into a 1 dimensional vector, performing an
arbitrary permutation on the vector, then blocking the permuted vector to an array of the
new shape. The process of flattening and blocking an array can be defined in terms of
standard transformation functions, so the user only needs to define the vector permutation
operation in order to fully specify a shape transformation. Figure 4.5 shows this process

transforming a rank 2 array into a rank 3 array.

SHAPE
TRANSFORMATION

tank 2 rank 2

b #

Figure 4.5: Transfommation of a Rank 2 Array Into Rank 3 Acray

In GUARD, transformations are defined using the following syntax:

trans func(AiA,B)
define index (i) = expr
end

Here func is the name of the transtormation, and as s the case with all transformations, it
must be supplied with two arguments. The firet argument A ts the array to be transformed.
The second argument B s used to specify the shape of the result, and can be either 2
program variable or an internal debugger variable. The contents of this variable are ignored;
only its shape information is used. The result of the transformation is a new array of the

same shape as B.

Figure 4.6 shows an example transformation in which a vector of twelve elements is

transformed into a 4x3 armay, and where each pair of elements is swapped. The following

GUARD commands demonstrate how such a transformation can be used.

4-10

trans swap(A,B)
define index (i)
end

{1 % 2) == i+ 1 i -1

create $af4)([3)
assign $a swap($p::vector, $a)

In this example swap defines a transformation that maps the arrey supplied in the first
argument into onc of the same shape as the second argument, but also performs a mapping
to exchange adjacent elements. The create command is used to create a debugger variable
to store the resulting array. This command is also used to define the shape of the result,
which in this case will be an array of 4x3 clements. The assign command is then used to
apply the transformation to the program vanable vector in process $p and store the result

in the debugger variable $a.

Sa

vector

felafufulofa|a]ulois]/mful — 9 [GTolels

LT T T

Figure: 4.6: Shape Transfonnation with Swap

INDEX PERMUTATION
The permutation of array indices is supported using a special case of the mgp command. In

this case 2 mapping is defined that translates the array indices as required, but leaves the
processor information unchanged. Permutations can also be combined with othert types of

data decompositions to perfori: complex translation functions.

Figure 4.7 shows a typical permutation where the order of indices is reversed. Such a
permutation is commonly used when comparing arrays from Fortran and C programs, since
Fortran uses column major order and C uses row major order when storing arrays. A
mapping that defines this permutation is shown below, along with an assertion statement that

applies the mapping.

4-11

map f2c(P::A}
define index{i,x) =
define proc(i,x) = i
end

assert $c::Y8“c_prog.c”:34 == f2¢($f::X@"f prog.£”:45)

In this example, we assume $c and $£ are serial C and Fortran codes respectively. The
assert staternent applies the £2¢ mapping to the Fortran array X at line 45 in £_prog. £.
The resuit of this mapping will be the same array with indices transposed, which can then be

compared directly to the C array Y at line 34 of c_prog.c.

X

o B &y

g |41 A2

x[rank{a) - i - 1]

INDEX PERMUTATION

LT]

Byy

L

Figiee 4.7: Index Penmnutation Example

ARRAY SLICING

Comparison of sub-arrays is achieved by providing an array slice notaton. A sub-array is

created from an array by specifying a range of values for each index.

Figure 4.8 shows an example where an array slice operation is required. The arrays A and B
cannot be compared directly because they have different sizes and shapes. Instead, B must

be compared with a sub-array of A using the syntax shown below.

assert $pl::Afl..3]1[1..41@ “progl.c”:34 == $p2::BE@“prog2.c”:45

In this case the notation: A[L1..3]{1..4] is used to specify a sub-atray of A that contains

all elements that have a first index in the range 1 to 3 and a second index in the range 1 to 4

(indices are numbered from 0).

412

R |
REFIES *akﬂ;-ﬁ g

ARRAY SLICE

Figure 4.8 Array Slice Example

TEMPORAL DISPLACEMENT
Temporal displacemnent transformations, such as vanable promoton and loop fusion, require

the use of temporary arrays in the debugger. A temporary array can be built at run time, and
then can be compared with data arrays in a target program, or with other temporary debugger
amrays. In the case of vanable promotion, a temporary array is used to store the scalar or
array that has been promoted to a higher rank. For loop fuston, a temporary array is used to
hold the intermediate values of a variable that are overwritten. In both cases, a temporary
array is populated by extracting a single valuc duning each loop iteration, as shown in Figure
4.9.

temporary array
program uses scalar holds value from amay to be

aach iteration

variable in loop compared

e COMPARE)C::I

Figure 4.9: Capturing Intemnediate Data Values

For the variable promotion example shown in Figure 3.6 in the previous chapter, the

following statements would be used:

413

create $I
create S$TEMP{100)

assign $I S$f::I@“prog.£”:80

assign $TEMP[$I) $£::TEMP@“prog.f”:80

assert Sc::temp@“prog.c”:134 == $f::5$TEMPR“prog.£”:100
In this example we assume that $¢ and $£ refer to the C and Fortran codes respectively. On
each iteration of the DO loop in the Fortran code (Figure 3.6{a)), a breakpoint at line 80 will
be encountered. The first assign statement will extract the value of the program variable I
and store it in the debugger variable $I. The second assign statement will the extract e
value of the scalar variable TEMP and store it in the array $TEMP at the clement
corresponding to $I. This process will continue until ihe loop ts completed. Meanwhile, the
array temp from line 134 in the C code (Figure 3.6(b)) will have been obtained, but the
assertion will not proceed unnl the breakpoint at line 100 of the Fortran code has been
reached. By this time each element of $TEMP will contain the corresponding value of TEMP
at each iteraton of the loop. A comparison of $TEMP and temp can then take place as

usual.

Loop fusion can be handled in a similar way to variable promotion. In the example shown 1n
Figure 3.7 in the previous chapter, a temporary variable must be created to hold the contents
of array x at line 102 in the parallel code (Figure 3.7(b)). Once all elements of x have been
transferred, the temporary array can then be compared with the equivalent array in the seral
code (Figure 3.7(a)). If we assume that $s and $p represent the serial and parallel codes

respectively, then the comparison can be performed as follows:

create $i
create $temp (100}

assign $i $p::i@“pprog.c”:104

assign S$temp[$i] S$p::x[il@%pprog.c”:104

assert $s::x@%“sprog.c”:131 == $p::S$templ pprog.c”:108
Breakpoints are set at lines 104 and 108 of the parallel code (pprog.c) and 131 of the serial
code (sprog.c). The breakpomt at line 104 will be encountered on each iteration of the
loop, where the appropniate element of x will be copied to the temporary array. The parallel
code will then continue untl the breakpoint at line 108 is reached. At some stage, line 131 of

the serial code will also be reached and the comparison specified by the assertion statement
will then take place.

4-14

——— 4 e

ERMEgE =

CLIENT/SERVER ARCHITECTURE

GUARD is a multi-process parallel debugger. Most parallel debuggers support the ability to
control and manipulate processes running on remote nodes, whether on a tightly coupled
shared memory system or in a distributed memory cluster. Parallel relative debugging
extends this paradigm further however, since the user may be debugging a combination of

serial and parallel codes, all of which are under the control of the debugger at the same time.

HOSTC

i
1
1
1
]
]
]
]
]
]

Figure 4.10: GUARD Client/Server Architocture

A number of debuggers and debugging environments have been developed to support
parallel and distributed architectures, many of which employ a client/server mechanism
[16,22,33,48]. Some, such as DETOP [12] have been developed to support both task and
data parallel codes.

GUARD zlso employs a client/server model in order to ensure that the processes being
debugged can be distributed onto muliiple platforms and can be controlled independently.
In this architecture, each of the debug servers is responsible for managing a single process
that is being debugged. The client/server architecture used by GUARD is shown in Figure
4.10. This diagram shows a scenario wl:ure the user is debugging a serial process 81 on host
A and a parallel program comprising two processes P1 and P2 on hosts A and B respectively.
The client/server architecture places no distinction on the host running the debugger client,

so in this case it 1s located on a third machine, host C.

415

Both the client and server that make up the debugger are designed to be as modular as
possible. To achieve this, a three-layer model has been adopted for both the client and the
server, Figure 4.11 shows the components that make up the debugger.

DEBUG CLIENT DEBUG SERVER

_ PROCESS)

Figure 4.11: GUARI" Layered Interface Model

At the top level, the debug client provides a user interface that accepts and processes user
commands in either of two modes: immediate or deferred. In immediate mode, the user
interface parses and decodes commands and executes them immediately, displaying any
results to the user. In deferred mode, the user interface accepts commands that are in turn
passed to the dataflow compiler for translation into a dataflow graph. This graph can then be

executed at a later date by the dataflow engine.

At the next level, the debug client API layer provides a consistent interface to debugging
actions that can be performed on target programs. The debug client API layer manages
debug requests from the client regardless of whether they are a result of immediately
executed commands, or are generated by the dataflow engine. This layer is responsible for
translating these actions into the appropriate network requests using the network API layer,
and for receiving and processing responses from the debug server. The AIF API provides an
interface for managing and manipulating data in an architecture independent format. All data
that is transmitted between client and server is first converted to this format using routines

supplied by the APL

416

ario i

At the lowest level the network API is responsible for transmitting and receiving debug
reqquests between the client and the server. A modular interface at this level allows the

protocol to be tailored to suit particular requirements.

'The server receives requests from the client via the network AP layer. These requests are
then passed to the debug server API layer, which converts the request into a form suitable
for the debug backend. The backend controls the low-level architecture specific functions of
the debugger. Maintaining this distinction between the server API and the backend allows
for a clean separation between the architecture independent and architecture dependent parts
of the server, which in turn ensures that additional architecture support can be easity added

to.the debugger.

A major consideration in the design of modem debuggers is one of portability. Most recent
debuggers are designed to be non-vendor specific, and support as wide a range of computer
architectures as possible. Portability has also been an important goal in the design of
GUARD, however supporting low-level debug services on multiple architectutv: requires
considerable ovethead. Instead, GUARD provides a well-defined interface between the
debug server and the low-level debug functions. This allows the services of a pre-existing
multi-purpose debugger, such as GDB {66], to be used to provide the low-level functionality.
If GDB is not available for a particular architecture, then the well-aefined interface also
enables other debuggers to be utilised in its place.

The use of a backend debugger also has other benefits. It allows language and language run-
time specific details to be separated from the high-level debugger and isolated in the backend.
Accordingly, the debug client and server can be designed to be language independent, relying
on the baekend to interpret the syntax and semantics of individual languages. Support for a
new language can then be reduced to a process of modifying the backend to interpret the

specific syntactic and semantic details of the language.

Most data parallel languages rely on the language run-time system to manage the distnibution
of parallel arrays in a manner that is normally hidden from the user. The user need not be
concerned about how blocks of data will be decomposed and mapped to processes (although
some [anguages, such as HPF [29] and FORTRAN D [24] do provide mechanisms to specify
this). Similarly, it is a design philosophy of GUARD that the user should interact with the
debugger in terms of the data structures themselves, without concemn for their

decomposition and distribution. In order to enable this functionahty the debugger must

417

inherently understand how the parallel decomposition and distribution takes place. By
isolating the parallel language support in the debugger backend, the addition of new
languages is simplified, and changes required to the debugger are minimised.

CONCLUSION
This chapter has examined the architectural features that distinguish a parallel refauve
debugger from conventional serial and parallel debuggers. Key innovations that have been

developed include:

the use of dataflow technology to manage the evaluation of uscr-defined assertions;

¢ an architecture independent data format addresses the heterogeneous nature of the

debugger;

o 2 framework for defining and managing data decomposition mapping, shape

transformations, index permutations and array slicing; and

¢ a client/server architecture that provides a distributed platform on which the

debugger is built.

In addition, this chapter has described some advanced features of the GUARD debugger,
including 2 modular multi-layered architecture, a switchable network protocol subsystem, and
a pluggable debugger backend. The result is a debugger architecture that provides 2 new and

innovative technology for parallel software developers.

T mam—

Chapter 5
DATA TRANSFORMATION ALGEBRA

Many of the transformations necessary for parallelising serial code discussed in Chapter 3 are
already implemented by parallelising compilers such as Parafrase [57), automated by pre-
processing systemns [61], or documented by researchers [72), so are not new in their own
right. However for the purposes of relative debugging, these transformations must be
specified explicitly because the debugger needs to generate the transformation in order to
access and compare data from both programs. Abstract algebra has been used to describ=
program data structures for some time [26,43,50]. By defining an algebra that describes the

possible transformations, we provide a formal basis for extending our debugger to support

these techniques.

This chapter focuses on an algebra used to describe four types of array transformations:

® data decomposition;

L]

e shape transformation;
¢ index permutation; and
e array slicing.

'This formalisation does not attempt to duplicate prior work, but rather presents a framework
that allows data transformations to be described in terms of an algebraic abstraction. The key
“advantage of this algebraic abstraction is that it lends itself to interpretation by the debugger,
and thus the transformations can be performed automatically. Currently the algebra is only
concerned with transformations on arrays, however it is intended that the abstraction be

extended to encompass other data structures and transformations in the fuwre.

It is likely that many common transformations can be derived using the proposed algebra and
then packaged into macros written in the debugger command language for later use. Thus,
the user may not need to specify common transformations, but may simply choose one from

a pre-specified library. However, if a new transformation is required, the algebra and

associated command language are sufficiently powerful to allow the new transformation to be

specified.

DEFINITION OF NOTATION

The algebra defined in this chapter is concerned with abstractions about two kinds of objects:
arrays of data in computer memory and the {physical ur logical) processes that these arrays
reside on. Before describing the operations that can be performed on such arrays, a notation

fot representing the arrays and processes will be presented.

ARRAY REPRESENTATION
An array of rank # (ie. an ndimensional array) of data held in a computer memory is

represented as a set of #-vectors, where each #-vector represents the index values of one cell
of the arrag. Note that the algebra 1s not concerned with the wntents of the array cell, but

rather with the size, shape and location of the array elements.

Definition. Let [¢]={s|1<a<k} be a set of indices. Then the Cartesian product
[k]x...x[k,] represents the index values of 2 rank # array (the n-vectors). We
represent these #-vectors using the notation ...k,] = [k]x ...x[k,]. We also call

this the shgpe of the array. The number of elements in the array is then given by

-
i=1

For example, the shape [5] represents a rank 1 array (a vector) containing 5 elements; the
shape [4,5] characterises a 4x5 array of rank 2; and the shape {4,5,3] characterises a 4x5x3

atray of rank 3. Figure 5.1 shows the three arrays represented using this notation.

14,5.3]

[4.5]

Figure 5.1: Notation for Represeating Acrays

5-2

’%ﬁ_{ e e

In general, array indices used in programming languages can vary between some arbitrary
lower bound and upper bound rather than 1 and & In order to simplify the algebra we need

to show that such an atray is equivalent to one where the index values are in [£].

Proposition 1. Suppose the indices of a vector (array of rank 1) are elements of the
set A={geZ|/sasu} for some lower bound / and upper bound # where
I<u(l.ueZ). Then A is abstractly identical, or isomorphic, to the atray shape [#]

where k=u—1+1.

Progf. Lei ¢:Z~>Z define the translation ¢{x)=x~/+1. Since ¢lx}cZ V xeZ we find
that;

{bezipl)<b < p(u)}
peZilsbsn-I+1}
|€] where & =u—1+1

#(4)

It

Since ¢ is bijective, the shapes 4 and ¢{4) are isomotphic and hence are abstractly identical.

L

This result extends to atray shapes [&,...,4,] of rank #>1 in a straightforward manner.

Example 1. Let $lx,, x5)=(x, -4,x, -2). Then the array shape

{(c;. x,)|5< %, <8and3 < x, <7} is abstractly identical to [3,4] as in Figure 5.2.

Figure 5.2: Abstractly Identical Arrays

PROCESS REPRESENTATION
In addition to arrays of data, the algebra is also concerned about how data is distributed

across multiple processes on a parallel computer. If a particular process topology is

described as an »~dimensional mesh then the same notation as used for arrays, can be used

5-3

v

to deal with these process meshes. In this case however, an index value identifies a particular

process, rather than referring to a cell containing data.

Definition. A process topology described as an z-dimensional mesh of processes is

represented as an array shape [p,,..., p,,] of rank 7 The number of processes in the

array is then given by P=[]»;
i=1

For example, 12 processes could be arranged as etthera 3 x 4,3 X 2 X 2, or 6 x 2 mesh {(and
other combinations). These correspond to the arrays [3,4], [3,2,2} and [6,2} respectively.
Figure 5.3 shows two of these topologies.

[3.4] [6.2]

O 00
0 0O 00006
0O 6 0 600648
© 00

Figure 5.3: Process Topologies as Arrays

DATA DECOMPOSITION

Data parallelisation is concemed with the partitioning and distnbution of data. However, in
order to use relative debugging with parallel codes, it must be possible to compare equivalent
serial and parallel data structures. To describe the distribution of an array onto multiple
processes for relative debugging purpcses, we define an algebra that specifies how each
element of the array is mapped to a partitioned atray on each process. Such mappings are

oblivious to the array data. They are expressed entirely as 2 mapping of the array ohapes.

Definition. Let [[4),....k,].[p;,.--, P,]2 o] define a heterogeneous algebra with the

two carriers:
[k,.....%,] the shape of an arre, of rank #, and

[2,.---, p,,] the shape of a process mesh of rank

and the two operations:

@l ok,][k 0k,] the data mapping function, used to specify the

location of each element of an array on a particular process, and

gk, &,]2 [P pa] the process mapping function, used to specify the

process that a particular partitioned array is located on.

To illustrate how these functions can be used in practice, examples of block and block-cyclic
decomposttion are shown below. It should be noted that the equations provided are

suffictent for illustrative purposes, but may not necessarily be generalise to higher order

. . . k
arrays. In particular, the equations are only valid when p, 47‘ for 1<i<n.

Example 2. A simple example of block decomposition might be defined as follows. Let

#r = n, then for 1<i<n define @ and g by:

(r,—Dmodd, +1 | x, sd,(p,-1) k,
= = ' i ' 4. =| -
alx,,....,x,)=(a,,....a,) where a, { od(p~) | x>din-D and d, P

LY

x, —1

ol Butd < dp. — K
plxy.eex,)=(by,....0,) where b, = [d, J+l | xsddp-) and d, {_rJ
i I x, >d, (Pr' _1) i

For example, suppose we have the array [95.95]. For a process topology [3,2], then we have

the mapping shown n Figure 5.4.

PROCESSORS PARALLEL ARRAY

Hxyx2) o xy.x3)
SERIAL ARRAY \ a.n @n on
(xl,X2) ;..-"i 3 -i_N - {‘..-'TM ;‘r . }f? 53“"._'
1 3132 6465 95 Qo Vo LA)
1 I.--"""'———. i.\. __g’ i t_'" ‘
i a7 o har VAN K
47 e o - \"‘-_,_I_%_‘____,f"' e -~
a8 (1.2 @2) a2
Ana) R L8R
ST aT T Ty
"""1'---..___ — ,] “ . ;), l ._‘-.- }!? l ‘
95 \\-‘"“*--L,. 1 L '
! R : H
4 A /
\',_\ - ~"‘-. .

Figure 5.4: Block Decomposition Example

3-5

Lo

e—

Example 3. As an example of simple block-cyclic decomposition, consider the case where
each process is allocated successive rows of an array. For this example we consider the

process mesh as a linear array with 7 = 1. We then define the following mapping:

x, | 1gisn-1

a(xls"-»xn)=(als°"&an) thrc a; = ‘-xi _IJ+1 | i=n

P

! o%)se0rx,)= (x, ~1)mod P +1

Suppose we have an array [9595] and a process topology [4], then P=4 and the

decomposition of this array is shown in Figure 5.5. 3

PARALLEL ARRAY

LMy PROCESSORS
| g Axxz)

! SERIAL ARRAY \\ : !,
1 (x%3) &

A et Ll =
o 1o
Ih.h"“«u—-»u"“

=)

93

it

95 _—

J——

Figure 5.5: Block-Cyclic Decomposition Example

ARRAY SHAPE TRANSFORMATION

In ihe preceding section we introduced shapes as array index sets and considered simple
reblockings of such shapes. In general, more complex shape transformations include
permutations of array rows, columns or individual cells. An array shape transformation maps
an array shape of rank » into a shape of rank » preserving the number of elements.
Intuitively a shape transformation can be thought of as taking a rank # array, linearising it into
a 1-dimensional vector, swapping elements in this vector atbitrarily, aud finally rebuilding the

vector into a rank 7 array. Each step of the process preserves the size of the array, so the

l : final array remains the same size as the original. S

5-6

Definition. Let [[/,,.... £, LIkL[,, ...,]:¢. 7, 8] define a heterogeneous algebra

with the carriers:
[£1,++s £,] the set of indices of an array of rank #,
[¥] the set of indices of an array of rank 1, and
[py,-.-,8,,] the set of indices of an array of rank 75,
and the three operations:
¢:[4.-- f.] =[] the “flatten” function and used to linearise the array,

7 :[k]~ [£] the “permute” function and used to permute the order of array

elements, and

B:[k]-,.-.5,,] the “block” function and used to transform a flat array

into an array of rank .

We call the biecton o:[f,.... .} b.....5,] where o=pomeg 2 gemeral shape
transformation. Since o is a bijection, the number of elements in the arrays, given by

Sixox f, =b x...xb, , remains constant.

Example 4. The standard “flatten” function is always used to linearise the array in row

major order. This function is deftned as follows.

n i1 .
#lxy.enx,)= D q,(x, ~1)+1 where qi={1—lj-=1fj | 2<i<n

i1 1 | i=1

To see how the flatten function works, consider the array shape {9595]. For this array the

standard flatten function is:

¢(x, ’Iz) = (xl ’1)"‘95("3 -])“‘1
= x; +95x, —95

The transformation of the array is show in Figure 5.6.

5.7

o

R AR

RS PV

(x1.%2)

Fa

.
[t
b —

-""'--.._

/

#1,x2)

>
/
J

$6

961
8681
1562]
s706[]

Figure 5.6: Standard Array Flatten Function

Example 5. The standard “block” function is always used to convert a flattened array into

an array of rank » in row major order. This function is defined as follows.

ﬁ(x)=(xl"“,-xm) \thre Xy =lﬂ}mwbi +1

i

i-1 ,
and r= j:]bi | 2<ism
1 | i=1

Suppose we now wish to block this array to the shape [361,25]. The standard block function

for this array is:

Blx) = uf-iﬂJ mod 361 +1, [;T_:J mod zs+1]

=[(x—l)mod36l+l,

1 od 25 +1
361
Figure 5.7 shows the result of this transformation.

The composition of gand B, fo¢ forms a standard transformation from an array of rank #

to an array of rank 7 This can be considered as a special case of a more general

transformation, in which a permutation 7 :{k]-> f¥]is applied to the index of the flattened

array.

5-8

bt 4

it

b e etttk W

Figute 5.7: Siandard Array Block Function

Example 6. To illustrate the use of the general transformation function, consider an array of
shape {9595]. Suppose we wish to transform this into an array of shape [19,2519], but with

each pair of elements swapped. First we check:

[T /i =95%95
=9025
=19%x25x 49 N

= l_[; b;

So the arrays contain the same number of elements and the transformation can be applied.

Nextwe find gand 2

#lx,x,) =[x, —1)+95(x, —1)+1
= x] +95x2 —95

165 =uxT"J modl%],{-’%iJmod 25+ L[:T';J mod19+l]

x-1 x-1
={(x- — 25+ | —— 1
[(x l)mod19+l,l S Jmod ,[475Jmod 9+l)

Finally, we define the permutation function:

x(x)) x=1] [-;»J>O

The result of this transformation can be seen in Figure 5.8.

wx) > daa) > ak) —> Ax)
b
b

1
2
a

9

T4t b1l

I7

'
=
a

L1

)4
1 i 95 :P
m

PR
o

Ry
I

i
i
Es) '
o \
93 N

T
w5

Figure 5.8: Rank 2 10 Rank 3 Transformation

INDEX PERMUTATION

Index permutation introduces a very specific requirement: the ability to reverse the order of
two or more of an array’s indexes. After describing the concepts of data mapping and shape
transformation, it should be clear that either could be used to specify index permutation. We
choose to use data mapping because it is more intuitive, and more importantly because it

allows the useful ability to combine data mapping and permutation in one step.

Definition. Index permutation of an array is a special case of data mapping where

a:[ky,....k, | > [k, ... k,] is defined so that the appropriate permutation is obtained.
Example 6. An example of an index permutation that swaps each pair of indices is:

a(xl,...,x,,)=(xz,xl,...,xn,xn_l)

If we are not concerned with process mapping when performing an index permutation, we

can define plx;,.-.,x,)=(1), the identity function. The index permutation shown in Figure

5.9 is obtained using the array shape {4,5] with » = 2.

5-10

(x1.x2)

(1,1) (1.2)|(L3)l(1,4]' 1.5)
evjealenfeslzs
) (23 RS e)
7) B T i)

Figure 5.9 Index Pennutation Operation

ARRAY SLICING
Sometimes it is necessary to consider a subset of an array. This is achieved using array skong,
which extracts a sub-array that preserves the rank but reduces the total number of clements

in the atray.

Definition. Let [[k,,....4,}a) define a heterogencous algebra where the carrier
[,....k,] represents the shape of an amay of rank # and the operation

a:k.....k,] = [.....1,] is an array slice function such that §1,]c [k,].

Example 7. Suppose we wish to remove the first and last rows from the amray [4,5] as
shown in Figure 5.10. In this case we define an array slice function

a(x,x,)=(x,x, ~Dj1<x; <5.

oAx1,%2)

(2.1)](2.2) 2.3 |(2.4)1 2.5)
(31](3.2NE3.3))3.4)3.5

Figure 5.10 Array Slice Operation

CONCLUSION

This chapter has presented a sertes of algebraic definitions for transformations that are
commonly applied to data structures durting the parallelisation process: data decomposition,
shape transformation, index permutation and array slicing. The algebra underpins a sertes of
command language features that allow users to compare a data structure m a serial code with
its equivalent parallel version using relative debugging. The implementation details of the

command language are discussed in the following chapter.

512

Chapter 6

IMPLEMENTATION DETAILS

As detailed in Chapter 4, a parallel relative debugger must provide a range of functions to

allow relative debugging to be employed in a parallel environment. These functions can be

categonised as relative debugging support, parallel debugging support and parallel process
support. Such a debugger must combine a conventional interactive parallel debugger
architecture with the technology necessary to support the relative debugging of parallel and
sequential programs. This chapter will describe the specific implementation details that
comprise these key technologies, and form the basis of the GUARD debugger.

Most conventional portable interactive debuggers consist of three main components: a user
interface (either a command line interpreter (CLJ) or graphical user interface (GUI), or both);
an architecture independent debugging engine that provides an abstraction of the high-level
debug operations; and a sst of machine specific low-level debug operations. In the case of
interactive debuggers for parallel computers, these are also mostly client/server based. As
detailed in the architectural description, GUARD includes all the features of a conventional
debugger (apart from a GUI), but also provides a number of additional features to support
paraliel relative debugping, To achieve this, the GUARD implementation has been designed
with a client/server parallel debug engine forming the core infrastructure of the debugger.
Built on top of this core is support for the relative debugging technology.

This chapter will examine the specific implementation details of the GUARD debugger. In

particular, the following components will be considered in detail:

e the debug client, including the user interface, and the dataflow compiler, engmne and

internal graph represcntation;

o the debug server, including the server startup process, interaction between the client

and the server, network protocol selection and debug backend selection;
e the client/server debug API;

e the architecture independent data format API;

6-1

o support for data and code transformations;
¢ support for the visualisation of differences; and

s support for data parallel languagss, in particular ZPL..

DEBUG CLIENT

The debug client is the primary means of user interaction with the GUARD debugger. The
role of the debug client i1s io provide an interface between the user and the debugging
operations that can be performed on one or more target programs. The client is 2 stand-

alone application consisting of the components shown in Figure 6.1.

Figure 6.1: Main Components of the GUARD Client

The debug client provides three main services consisting of:

e a user interface that allows users to control programs being debugged, enter

commands, and view the results of the commands;

e 2 dataflow complier that converts user-defined assertions into an internal dataflow

graph; and

e a dataflow engine that uses the dataflow graph produced by the compiler to
automatically control the execution of the programs and perform the required

COMPparisons.

6-2

- -

‘These services make use of a number of interfaces that are provided in the modular design of
the debugger. Both the dataflow engine and the user interface components utilise the
services provided by the AIF and debug client APPs. These API's provide access to the
architecture independent format services and the debug operations that are available using
the client/server architecture respectively. The debug client API interfaces to the available

network protocols through the network ATL.

USER INTERFACE

GUARD ts primarily a command linc driven debugger (see Chapter 8 for details of work
developing a GUI}. In the UNIX environment, users enter commands via the standard
input, which are passed to the command line interpteter (CLI). The CLI parses the
command by splitting it into a series of words, each separated by white space. The first word
1s used to index a lookup table that contains the address of the corresponding command
routine. ‘The command routine is called and the rematning words are collected into an array
and passed as an argument to the routine. On completion, the command routine returns a

status value indicating the success or failure of the operation.

GUARD provides three types of command routines:

® process largeted, that perform an operation on a process being debugged (such as setting

a breakpoint or single stepping);

e process optional, that optionally perform an operation on a process (such as evaluating

expressions); and

o _ process independent, that do not interact with a process (such as informational

commands).

Process targeted commands are primarily responsible for translating the command and its
arguments into a call to the debugger API, then displaying any results to the user. The
command may also need to update internal data structures, such as a list of breakpoints, as a

result of the call.

Process optional commands are similar in operation to process targeted commands, however
they can also perform actions that do not require communication with a target process. An

example is the prnt command, which evaluates an expression passed as an argument and

6-3

displays the result to the user. Issuing the command “print 5+3” does not require any
communication with the target process, so the result can be immediately displaycd.
However, to complete the command “print a+4”, the debugger must extract the value of

the variable a from the target process, then perform the addition and display the result.

Process independent commands do not require any communication -vith a target process.
These commands are generally informational, or are used to modify or display the internal

state of the debugger.

Commands are defined by populating a command lovkup tabl with the name of the command,
the command type, and the address of the command routine. Various support routines are
provided to facilitate the addition of new debugger commands. GUARD commands can
also support sub-commands by indexing additional command lookup tables with the second
and subsequent command words. The two pre-defined commands info and set support

sub-commands by default.

The CLI operates in two modes: immediate and deferred. In immediate mode, commands are
parsed and executed as soon as the user types them. This is the normal mode of operation
for the debugger. Some immediate mode commands switch the CLI to deferred mode.
When deferred mode 15 entered, commands are collected and stored internally until the
“end” command is typed. At this point the debugger processes the deferred commands,
then switches back to immediate mode. Commands that utilise deferred mode include
“graph”, “map”, “trans”, and “func”. Appendix A provides a description of all the

commands supported by GUARD.

Da4TarLow COMPILER

Assertions and other control statements that are collected by the deferred mode command
interpreter are passed to a dataflow corspiler. These assertion and control statements
correspond to a low-level graph description. The dataflow compiler translates this graph
description into a series of nodes and edges representing the dataflow graph, and stores the
resulting graph internally. A simplified version of the graph description syntax is as follows
(the full syntax 1s presented in Appendix A).

6-4

AR

graph $name [-debug]
control statement(s)
assertion statement(s)

control statement(s)
assertion statement(s)
end

The “graph” command switches the interpreter to deferred mode, and allows a name to be
associated with the resulting dataflow graph. The graph description then consists of a series
of control and assertion statements. The control statements are used to modify the
behaviour of the assertions that follow them. For example, the control statement
“set error 0.1 0.5 absolute” could be used to set the lower and upper tolerances
and the tolerance type for subsequent assertions, The effect of the control statements is to
modify the value of consfant nodes that are emitted by the compiler, which are discussed in

more detail below. The “end” command terminates the graph description.

Compilation is completed in a single pass of the graph description. Single pass compilation
places some restrictions on the semantics of the language, by prechuding the use of forward
references to functions and variables, and requiring that control staternents precede the
assertions they are intended for. Apart from the usual check of assertion syntax, the
compiler also performs some limited type checking, and verifies that process references are
valid.

-

The compiler generates a dataflow graph using a number of standard graph templates. These
templates are supplied with information derived from the graph description, and are used to
specify the nodes in the graph, and the edges that are used to connect the nodes together.
The information passed to the templates is used to specify the values that are generated by
-:pecial constant nodes. These nodes are used to generate information such as file and vaniable
names and line numbers at the appropriate point the execution of the graph. The primary
template is the ASSERT template which defines the structure of a dataflow graph used to
process a singl assertion. Figure 6.2(a) shows the basic ASSERT template. For simplicity,

boxes in the diagram represent sub-graphs that perform complex operations. The special
symbols @ and @ represent a synchronisation node and a merge node in the graph

respectively.

6-5

P2 pmmm PO U
\ENTRACT
| (VLFLLY
FXTRACT(VZ.#2.L3) SET BREAKPOINT
: AT “F1™L1

(a) Basic ASSERT Template (b) Basic EXTRACT Template

Figure 6.2: Standard Graph Templates

The ASSERT template takes eight parameters, which correspond to the process name,
variable name, file name and line number from each half of an assertton. So, an assertion

such as:
assert Spl::vli@“filel.c”:35 = $p2::v2@%“file2.c”:55
will result in the generation of the ASSERT template:
ASSERT ($p1, “vi”, “filel.c”, 35, $p2, “v2”, “$file2.c”, 55)

The ASSERT template comprises two EXTRACT sub-graphs, a COMPARE sub-graph, a
DISPLAY sub-graph and a number of nodes to perform synchronisation operations. The
EXTRACT sub-graphs are generated from the EXTRACT template shown in Figure 6.2(b).
One sub-graph is generated for each half of the assertion statement. The EXTRACT template
takes three parameters consisting of a variable name and breakpoint location (file name and

line number), specifying the name and location of a variable to be extracted from a process.

The templates in Figure 6.2 are also able to deal with multiple assertions, provided they refer

to independent processes or are able to share EXTRACT sub-graphs. In the latter case the

6-0

shared sub-graphs are simply merged together and the data sent to the appropriate

comparison sub-graph. For example, constder the following two assertions:

assert $pl::vi@“filel.c"”:35 $p2::v2@“file2.c":55
assert $p3::vif“file3.c”:15 = $p2::v2@“file2.c”:55

B

The right hand side of these assertions refers to the same process, variable and breakpoint
location. This means that the EXTRACT sub-graphs that are generated can be merged

together in the final dataflow graph. Figure 6.3 shows a dataflow graph that represents these
two assertions.

ASSERT(Epl, vt *, "filelc .35 5p2,"v2", " file2.c".55) ASSERT(8p2, V2", file2.c", 55, 8p3."v3 ", " filedc"\I5)

DISPLAY DISPLAY

Figure 6.3: Assertions With Merged Sub-graph

While this method works well for simple assertions, problems arise when assertions extract
different variables at multiple line numbers from within the same process. In order to
overcome this difficulty a more general form of the EXTRACT template must be used. The

new EXTRACT template is shown in Figure 6.4.

6-7

Eﬁiﬁﬁ%ﬁiii}ﬂﬁf]ﬁ:?ﬁiﬁ;?'1 """""""""""""

|
SET BREAKPOINT +v. | SETBREAKPOINT
AT “FI"LE AT "Fn":Ln

Figure 6.4: General EXTRACT Template

The generalised EXTRACT template allows 7 variables at # breakpoint locations to be read
from a single process. When this template is used in conjunction with the ASSERT template,
any arbitrary set of assertions can be defined.

As an example, consider the following assertions:

Il

assert $pl::vi@¥filel.c”:35
assert $pl::vi@“file3.c”:15
assert $pl::v2@% file3.c”:15

$p2::v2@*file2.c”:55
5p2::v2@“file2.¢”:55
$p2::v2@“file2.c”:40

I

fl

These assertions will generate the following ASSERT templates:

ASSERT ($pl,“v1”,“filel.c”, 35, $p2, "v2”,"file2.¢”,55)
ASSERT (Spl,“vl”, “file3.c”,15,5p2,"v2", “file2.c",55)
ASSERT ($pl, “v2*”,%“file3.c”,15,$p2,"v2”, “file2.c”,44)

Since all three assertions share the same processes, the EXTRACT sub-graphs for these
assertions will need to be merged. The end result will be a dataflow graph containing the
following two EXTRACT templates:

EXTRACT {(“vi”, “filel.c”, 35, “vl1”, “w2%, “file3.c”, 15)
EXTRACT {“v2”, “file2.c”, 55, “v2¥, “fileZ.c”, 44)

The resulting graph is shown in Figure 6.5.

6-8

 J

DISPLAY [ﬁ_&.a:v_] DISPLAY

Figure 6.5: General Assertion Graph

The full graph syntax allows the use of general expressions in the specification of assertions.
These expressions can contain numeric constants, internal variable references and function
references, as well as the usual arithmetic and logical operators. When the compiler
encounters such an expression, it is first converted into postfix form. The compiler will then
generate a sub-graph that evaluates the expression and insert the sub-graph at the appropriate

point in the ASSERT graph. Figure 6.6 shows and example of this translation process.

$var S6 '
infix expression postfix cxpression ¥/

$var * 56 - 14 — Svar 56 * 14 - —» “'3 1*)
»

Figure 6.6: Expression Compilation

'The graph syntax also supports the use of sub-atray operators applied to array data types.
"The sub-array operator is translated into a sub-graph using a special SLICE node, with the
sub-array bounds supplied as inputs to the node. Support for the transformation of array
shapes is handled in a similar way, using a special TRANS node. The sub-atray and shape

transformation sub-graphs are inserted into the ASSERT graph at the appropriate locations

by the compiler. Figure 6.7 shows examples of these translations.

subarray opcralor gvar i%a ’ /_5) 10 ’
Svar{l0,.20]]5..10} P . [/
st.m:'
Shil])c transformation ‘$var ashapob
trans (3var, SSNaL:)] ae—je 3{ */
?apms’

Figure 6.7: Sub-array and Shape Transformation

As described in previous chapters, support for relative debugging of parallel processes is
achieved through the use of parallel data mapping. Data maps are implemented in much the
same way as shape transformation functions, by using a special MBP node. However, unlike
TRANS, the inputs to the MAP node are obtamned from data extracted from each parallel
process. In practice this means that for # parallel processes, there will be # EXTRACT
templates connected to the inputs of the MAP node. The output of the MAP node is then
used as input into the COMPARE sub-graph in the usual way.

1] spi0) spll] spl2]

CEXTRACT -: :'zii}ni,c':' v EXTRACT? {'xiﬁz'n CT ':
) ,

.l 1

L1 [

1 " 1

1
4
uap
COMPARE

DIEPLAY

Figure 6.8: Data Mapping Graph

Figure 6.8 shows a simplified graph of the following assertion:

assert $s::v1@“filel.c”:42 = map(Sp::v2@“file2.c”:99)

610

[P,

" p——

In this example the data mapping function map is used to compare an array from a scrial
process with one distributed across number of processes. Here, $s represents the serial
process and $p is used to refer to all of the parallel processes (in this example there are three,
$pl0], $pf1] and $p(2]). The function map, which is unspecified here, is assumed to

replicate the data decomposition technique used to model the serial data in the parallel code.

INTERNAL GRAPH REPRESENTATION

The result of the compilation process is a dataflow graph that is stored using an intemal
graph representation. This internal format is comprised of two main components: a linked
list of node objects, and a list of the tokens that are currently active in the graph. Each node
object contains a node identifier, information describing the function the node is to perform,
and connectivity information. Graph edges are not maintained explicitly. Instead, each node
contains two arrays, one holding input objects and the other output objects. These input and
output objects provide the connectivity information needed for tokens to traverse the graph.
Nodes that have at least one token on an input are also kept on an active list to avoid

traversing the entire graph during processing. Figure 6.9 shows this arrangement.

Input array Outputarray e Jom——ans

! [Sutg

inputs frorm 1opht,
Trpu e

- mdes/e’ . AL L R '.- <
e | Hode 34 .
Active list mfm

MNode 35 T

Qutpuis to
other nodes

Figure 6.9: Internal Graph Format

“The dataflow graph employs a modified static dataflow architecture. Each input object
provides a FIFO queue that is able to store multiple tokens. Tokens must arrive at the node
in the correct order as the graph matching logic only examines the head of each queuve. The
input and oufput objects also employ a form of flow control, so when an input queue is full

the output object can be instructed to suspend the generation of new tokens.

The use of a static queued dataflow architecture is an important elerment of the debugger

implementation because it allows the time that a program must wait after reaching a

6-11

S

breakpoint to be minimised. Data can be extracted, stored on an input queue, and then the
program restarted almost immediately. The disadvantage with such an architecture s that the

graph must be carefully constructed in order to avoid a deadlock situation.

DATarLow ENGINE

When the user issues an immediate node “start” command, the graph is passed to the
dataflow engine for execution. It is the job of the dataflow engine to manage the flow of tokens
through a graph generated by the compiler. Since no tokens are present in the graph when it
is first executed, a special wart node must be primed with a single token and placed on the
active list. The dataflow engine then checks the active list to see if any nodes are ready to

fire. Nodes in the dataflow graph only fire when tokens are present on all their inputs,
except in th: special case of the merge node, D, which fires when a token is present on any

input. When a node fires a number of actions take place:
s the tokens are removed from the inputs and discarded;
* an output token may be generated;
¢ the node may perform some internal operation; and

¢ the node is removed from the active list.

If the node generates a token, the engine will route the token to the input of any nodes
connected to its outputs, and these nodes will be placed on the active list. The active list is
again checked for nodes ready to fire, and the entire process repeated. The engine will

continue execution untl 2 token s sent to an EXIT node, or an etror occurs.

The ASSERT graph manages the comparison of data from separate processes. It does this by
first setting breakpoints at the appropriate locations in each process, and then waiting for a
breakpoint to be reached. When a breakpoint is encountered, the graph will extract the data
value from the process. All these operations are managed for each process using an
EXTRACT sub-graph. An EXTRACT sub-graph has two inputs: an imtialisation input and a
synchronisation input. A token containing a reference to a process can be sent to etther

input. The actions performed by the EXTRACT sub-graph are:

6-12

t. set one or more breakpoints at the specified lines of the source files;

2. start (or restart) exccution of the process;

3. wait for a breakpoint to be reached; and

4. obtain the contents of the variables associated with this breakpoint.

A token received on the initialisation input will perform actions 1 through 4, while token
received on the synchronisation iput will perform actions 2 through 4. The output from the
EXTRACT sub-graph consists of tokens containing the values of each of the variables at the
locatton of the breakpoint that has been reached, and a token that can be used for

synchronisation purposes.

The data from each EXTRACT sub-graph is sent to the input of 2 COMPARE sub-graph that

perforras the comparison operation. A COMPARE sub-graph has two inputs (one for each

EXTRACT) and two outputs: a data output and a synchronisation output. The COMPARE
sub-graph checks the value of the comparison against an upper and a lower tolerance value.
The result of this check determines what output tokens are generated by the sub-graph, or if

the graph execution is terminated. Figure 6.10 shows the possible output combinations for

some difference value & and upper and lower tolerance values # and / respectively.

‘Tolerance Data Ountpur? Sync Quiput® | TFerminate?
e<l no yes no
I<e<u yes yes no
E>N yes yes yes

Figure 6.10: COMPARE Sub-Graph Actions

_ A token generated on the data output of the COMPARE sub-graph is sent to a DISPLAY node

to be displayed to the user.

‘The ASSERT graph must restart execution of the processes it controls at the earliest available
opportunity, so that data is continually available for comparison. However 1t must do so in a :
way that prevents one process from flooding the graph with tokens. The graph does this by ‘
delaying the process restart until the EXTRACT sub-graph has completed ard the comparison]
has been performed. Since the comparison is dependent on data values from both EXTRACT

sub-graphs being available, this implicitly synchronises the processes and forms a simple flow

6-13

control mechanism. The end result of this process will be a steady stream of tokens reaching

the inputs of the COMPARE sub-graph,

DEBUG SERVER

User interaction and the cvaluation of user-defined assertions in GUARD is the
responsibility of the debug client. Flowever the process being debugped might reside on a
completely separate machine, possibly with a different architecture. The job of managing and
contrelling the target process is the responsibility of the debug server. The debug server
provides a mechanism for accepting high-level client debug requests using an arbitrary
network protocol and mapping these into low-level debug operations on a target process.
'The server is also responsible for managing and reporting asynchronous events that occur as
a result of debugging the target, as well as handling teniminal 1/O streams between the client

and the target process. The main components of the debug server are shown in Figure 6.11.

Client debug requests are received by the server via the network API and are passed to the
debug server APT layer. This layer decodes the client requests and invokes the appropriate
backend routines. The debug backend provides the low-level debug routines that correspond
to each of the possible client debug operations. If a backend routine produces a response,

then this is passed to the debug server AP, which in tum forwards it to the client via the

network.
TARGET
PROCESS
Figure 6.11: Main Components of the GUARD Debug Server
SERVER STARTUP

The mechanism used to start the debug servers is an important issue because it is
fundamental to the client/server architecture. The debug server startup mechanism used by

GUARD provides the following features:

6-14

e e - -~

¢ the ability to start multiple simultaneous processes for parallel codes;
¢ notification of server startup failure;
¢ user selection of network protocol; and

¢ user selection of debugger backend.

The debug servers are started when the client calls the DbgInvoke () debug client API
routine. The startup method, the location and the number of debug servers that are started
depends on a number of factors, including the location of the target process, whether the

target process s sertal or parallel and what operating system the target machine uses.

For sequental programs there are three possible methods to start the debug server. These

include:

a) the server process is executed directly on the local machine using the exec () system
call;

b) the Berkeley remote shell command is used to start the server on a remote UNIX

systetn; and
¢) the Clustor Laspatcher [7] is used to start the server on a remote NT system.

For parallel programs, the method used to start debug servers in order to debug each parallel
process depends on the architecture of the parallel runtime environment. There are currently

two mechanisms supported: the expfeit method and the wast-attach method.

The explicit method requires that GUARD start each process via an indtvidual debug server.
To do this, GUARD executes a debug server for each parallel process {using either method
{a) or (b) above) and passes the program name 2s an argument. Each debug server is then
able to start a parallel process under its control. In order for this method to work, the
number of parallel processes must be static and the run-time environment must provide a
mechanism for associating a task 1D with each process. The explicit startup method is

shown in Figure 6.12.

6-13

paralic] program

Figure 6.12: Expliat Startup Method

The wait-attach method is available for sttuations where the parallel run-time system does not

provide support for explicit process startup. This method requires that the debugger obtain
the UNIX process identifier (P1D) for each paralle] process, and then attach debug servers to
the running processes. In order to support the wait-attach method, the parallel run-time
system must know that a parallel program s to be started under debugger control, and also
requires that the parallel program use a master/slave arrangement. The run-time system
must ensure that each process waits at a well-known location untl! the debug server has had
time to attach. Once the debug servers have attached to all the parallel processes, execution
can continue under debugger control. ‘The wait-attach startup method is shown m Figure
6.13.

Figure 6.13: Wait-Attach Startup Method

,
|
|
|

Currently, three parallel run-time systems are supported. These are the distributed memory

systems MPICH and IBM’s Parallel Environment and the shared memory system P4. Figure

6.14 shows the server startup method for cach of these systems, along with the startup

command that is uszd by GUARD to initiate the parallel program.

Paralle] Sysiem Stanup Method | Star Command
MPICH explicit mpirun
IBM PE explicit poe
P4 wist-attach rsh/exec

Figure 6.14: Paralle] System Startup Methods

A debug server that is started using any of these invocation methods is passed a number of

arguments. The argauments are used to supply essential information that the server needs to

know in order to communicate with the client. These arguments are as follows:

-p prolo

-h host

- callback,

-a arch

-1 pid

-n taskid

-b backend

£

the server protocol, such as “rpc” or “socket”, which must match the

protocol used by the client;
the host name or IP address of the client;

a protocol specific communication point: in the case of RPC, an RPC

program number; or for sockets, a port number;

the architecture type, specifying a serial process, or one started by MPICH,
IBM’s PE or P4,

the PID of a process the debugger is to attach to (wait-attach method only);

the task identifier of this process in a group of parallel processes (wait-

attach method only);

the backend debugger type; and

program [args] the name of the target process, and any arguments it requires.

When the debug server is started using one of these invocation methods, its first action is to

invoke the approptiate debug backend supplying the target process name and arguments.

The server will then contact the client using the protocol specific communication point. If

6-17

the backend fails for some reason, an appropriate error condition is returned. Provided there

are no other problems, the debug server supplies the client with the following information:

the host name on which the server is executing (since this may not be known the

client, particularly for parallel processes);
* 2 protocol specific communication point;
¢ for parallel processes, the process task id; and

¢ 2 port number used to handle terminal I/O.

If the client invokes a pa.allel program, then the startup sequence will be repeated for each
process that is statted, and each server will communicate this information back to the client.
Once all the processes have been started, the debugger is ready to begin the debug session.
The DbgInvoke() routine will not complete untl the number of processes that start

matches the number of processes requested, or an crior occurs.

CLIENT/SERVER OPERATION

Once the debug server startup process is completed, the client is able to issue debug requests
to the server using the selected protocol and the negotiated communication point. This
process will continue until the client issues a server shutdown request using the

DogFinish() debug client API routine.

dbgscy -b rear -¢ 222 -p pe

near .
o -a serial myprog

T
DbaInvoke {}

host: far
prog: 2445
task: O

port: 7668

e other debug
operations

01-‘Jlr>-au::uit Q
T 0

Figure 6.15: Example Client/Server Opetation

6-18

[Ty, -

An example of the client/server operation is shown in Figure 6.15. In this example, the

client is running on a host called “near” and the server will be started on a host called “far”.

Events that occur during the life of the server are numbered consecutively. A description of

each event is provided below.

o

The debugger client issues a DbgInvoke () request to start a serial process on host

“far” using the RPC protocol.

The client API determines that the remoie shell command will be used to start the
server, 2i1d the server command is issued. The arguments 1o the command supply a
host name of “near” and an RPC program number of 2234. They also indicate the

process is serial and that the RPC protocol will be used.

Once the server starts successfully, it issues an RPC callback request using the

supplied hostname and program number.

The client obtains the appropriate information from the RPC caliback. At this point

the startup negotiation is complete.
The client can now issue debug operations to the server.

Al

Debug operations will use the hostname and RPC program number obtained during
the startup negotiation.

When the client has finished the debug session, it issues a DbgQuit () request.

On receipt of the request, the server terrinates.

NETW”ORK PROTOCOL. SEIECTION

Part of the startup sequence is used to determine the appropriate network protocol. The

actual protocol to be used i» sclected by the client using the DbgInit () debug client API

routine as described below. On the server side, the protocol is selected by supplying the

protocol name as a command line argument. This is in turn used to index a protocol switch

table in a simitar manner to the client.

6-19

T

DEBUG BACKEND SELECTION
In order to select a debug backend, the client passes the name of the backend to the server as

a command line argument. The server uses this to index a backend switeh table. This table

contains the entry points for the low-level debug routines that must be implemented by the
backend. Currently only the “gdb” backend is supported, allowing the use of the GDB
debugger [66] to provide the backend services. If GDB is not available on a particular ;
architecture, then this technique allows other backends to be added with relative ease.

CLIENT/SERVER DEBUG AP]

The debug API is central to the operation of GUARD as a client/server debugger. The API
provides the mechanism that the client uses to communicate debug commands to the server,
and the server uses to send the results of these commands back to the client. The following

functionality is provided by the debug APIL:
* the ability to start and stop debugging processes;
¢ asct of high level debugging operations that can be performed on a target process;

o the ability to notify the client wiii1 debug operations are completed, or when the

state of the target process changes; I

¢ the facility to control terminal I/O channels between the target process and the

client; |

¢ aswitchable low-level debugger interface; and

¢ aswichable network protocol interface.

The debug API is separated into two parts: a client debug interface and a server debug I

interface which are discussed in more detail below.

CLIENT DEBUG INTERFACE

On the client side, the debug API provides a set of routines that implement the high level

debug operations. These op- rations are grouped into the following categories:

6-20

® debugger initialisation routines;
® process management routines, such as starting and terminating processes;
¢ debugoperation routines, such as setting breakpoints and traversing stack frames;

* notification routines, such as waiting for a breakpoint to be reached or notification of

a signal; and

® status routines, such as obtaining the state of the debugger or displaying error

messages.

Appendix B provides a list of the currently implemented routines and a detailed descnption
of each routine. Many of the APl routines return pointers to pre-defined data types
representing vatious objects of interest to the debugger. These data types allow access to
debugger specific information, such as breakpoint details, call stack frame information and
debugger events. A complete list of the pre-defined types is provided in Appendix C.

To begin a debug session, the client first calls the DbgInit ()} routine. This routine must
always be called before any other routine so that the client interface can be initialised. This

L]
routince is also used to select the required network protocol.

Once the APT has been initialised, the client must invoke the program to be debugged using
the DbgInvoke {) routine. The result of this call is an opaque pointer that must be used to
identify the target process in subsequent calls to other API routines.

After invoking the target process, the client must arrange to deal with any terminal I/O that
the process requires, and to service cvents that are generated as a result of debugging the
process. To do this, callback routines are registered using the DbgHandleInput (),

DbgHandleOutput () and DbgHandleEvent () routines.

At this point, the client is ready to issue debug commands using the debug operation and
status routines available in the API. On completion of the debugping session, the client calis
the DbgQuit ()} routine to terminate the target process and shut down the server. Finally

DbgFinish() is called to release any internal data structures associated with the client APL

A typical client calling sequence for the debug API is shown below.

main()

{

wvoid *p;

DbglInit{proto):

p = Dbglnvoke (program):
DbgHandlelInput (p, in caliback);
DbgHandleOGutput (p, out callback):
DbgHandleEvent (p, ev_callback):

/* Call debug operations */
DbgQuit (p):

DbgFinish{}:

exit{0):

Client/server network protocol selection on the client side is managed by the DbgInit ()
routine. The argument to this routine is a string identifying the protocol to be used. This
string is used to look up client protocol routines in a pretorol switch table. Currently two
protocols are defined: “rpc” and “socket”. The “mpc” protocol uses Sun Microsystems’
Remote Procedure Call (RPC) Protocol [67) for communication between the client and
server. The “socket” protocol uses standard Berkeley sockets for communication. The latter

is useful for systems that do not support RPC, such as Windows NT.

While the network protocol is established at initialisation time, the client/server API allows a
different debug backend to be selected for each target process. The backend 1s selected by
the client which supplies a string argument to the DbgInvoke () routine. This information
is passed directly to the server as a command line argument. The server then uses this

information to select the appropriate backend routines i a backend snvteh table.

The client must be able to handle asynchronous activities generated as a result of the
debugging operations. The client API supports this through the use of callback routines. If
the process interactively reads or writes to the users terminal, this needs to be intercepted and
managed via the debugger user interface. In addition, the process management routines,
such as DbgGo () and DbgStep () do not return a value irﬁmediately, but rather initiate an
operation that may complete at some future time, In order to receive notification of the

completion of these operations, the client must register an event handling callback routine.

The use of asynchronous callbacks places some restricdons on the nature of the client.
Callbacks are particularly suited to graphical environments such as X-Windows, since these
environments generally operate on an asynchronous event model. The use of callbacks is
less common in command line environments, since it precludes a main command loop from
blocking at any stage. In order to facilitate the use of the API in command line
environments, a special event handling routine is provided. The WaitForEvents ()
routine can be used to block until an event is received or input is available on the command
line. By using this routine, the main loop of a command line intetpreter can be simplified

significantly. A typical main loop is shown below.

while (!finished)

{
DisplayPrompt();
WaitForEvents(fileno (stdin});

- = .

ReadAndExecuteCommand{) ;

SERVER DEBUG INTERFACE

On the server side, the debug API i= responsible for communicating client debug requests to

the backend debugger and for returning results to the client. The server API 15 also

responsible for managing asynchronous events and terminal 1/O streams. There are two

main components to the server interface:
e aseries of server stub routines that interface to the appropriate backend services; and
¢ utility routines that are used by the debug backend to process debug requests.

Client debug requests are received via the network interface where they are passed to the
debug server API layer. This layer decodes the request and its associated arguments and
invokes the appropriate server stub routine. The server stub routines are associated with
corresponding backend routines using the backend switch table. This results in the
appropriate backend routine being invoked to perform the requested operation. Once the
backend routine has completed its operation, an event will be generated and returned to the
client. This event be delivered either synchronously or asynchronously, and can contain

result or status information. Figure 6.16 shows this process in operation.

DEBUG SERVER

elicnl request |

v
l:oq-sw oZzdRo>w

server stubs event

Figure 6.16: Debug Server API and Backend Switch Tablk:

In addition to the stub routines, the debug server API provides a number of utility routines

for use by the debug backend. These include routines that provide the following services:
® ¢vent creation and handling;
e debugger status management;
e error handling; and
¢ asynchronous task processing,
Details of these routines are provided in Appendix D.

ARCHITECTURE INDEPENDENT FORMAT
ATF is designed to achieve true architecture independence for arbitrary data types. The key

components of the AIF system are:
e a format for representing data in an architecture independent manner;
¢ routines for converting to and from native formats;
e routines for performing arithmetic, logical and comparison operations on AIF darta;

e routines for accessing components of structured data types; and

» routines for performing I/0 on AIF data.

Data types are represented in AdF using a data tag and a normalised bit stream. When data is
converted to AIF, a series of normalisation operations are performed. These operations
include the conversion of integers to big-endian byte ordering, characters to the ASCII
collating sequence and floating-point number to the IEEE 754-1985 big-endian format [31].
The format also standardises on a byte size of 8-bits and single byte characters. Since the
normalisation operations can result in the loss of native format information, the bit stream is

tagged with a format descriptor string (FIDS). Figure 6.17 shows the current format

descriptor tags.
Tag Type Details
c chaeacter
is/ integer s1s 8 (signed) or v {unsigned), /1s size in bytes
[£/ o foating-point Zis size in bytes
i address type £, 1is size of the address in bytes
[#7Ys2 areay type £2 with index type 17, which must be a range

(EfRo#tit,, ..., fRo 8.0} | structure orunion | /is size in bytes, fis the name of the feld, o, is
the offset in bits from structure's origin, £ is the
size in bits, and 4, is type of the feld

COTl, .. 0B enumeration ¢, 1s the name of each value .

TV, el range based on integral type { with #_ and £, as limits
A4 votd {is size in bytes

Rrt ZPL region rank 7, whose limits are base on integeal type £

Figure 6.17: AIF Format Desctiptor Tags
Tags for simple data types provide AIF library routines with a type identifier, a field
indicating if the type is signed or unsigned, and the length of the data. This allows different
integer sizes and single, double, and extended floating point formats to be recognised, and
also ensures that the AIF library routines can perform calculations with no loss of precision.
Comnplex data types have tags that describe the size and memery layout of the data, and can

contain nested tag types.

Figure 6.18 shows an example of how a C structure is represented i AIF. In this example,
tl‘le format descriptor string is used to describe the layout of a structure. The FDS starts with
“{16=" indicating that the accompanying data represents a structure that is 16 bytes in total
length. The next two fields separated by “, ” describe the layout of the fields in the structure.
The string “a@0#32: 154" defines the name of the first field as “a”, along with its starting
position and length (0 and 32 bits respectively), and a type of “is4” indicating a 4 byte
signed integer. The string “b@32#72: [r0..2is4] £4” defines the name of the second
field as “b” and indicates that the field starts at bit position 32 and s 72 bits in length. The

6-25

type of this field is given as “[xD. .2is4]£4”. This is a complex type that defines an array.

The string “r0. . 2i=4" specifies a range consisting of 3 elements of type “is4”. When

applied to an array, this specifies the number of elements in the array. The type of each

element is defined as “£4” or a 4 byte floating point number.

C STRUCTURE AJF REPRESTNTATION

FORMAT DESCRIFTOR

|115-a56:32x1=4 L U2A2012: 0. 21841 A 1.

struct | DATA
int a; — byie1 | tye2 | dyte3 | bywa
Fleat b[3]; sign | axponent]| .mankssa
sign | exponent muanbssa
sign | axponent] 5

[

Figure 6.18: AIF Represeatation of a C Structure

Data is converted into ATF using one of the data conversion routines. Routines are provided

to convert simple data types, such as IntToAIF () and FloatToAIF () and complex data

types, such as ArrayToAIF() and StructToAIF(). All the data conversion routines

return a pointer to an AIF structure that holds the data and tag information. This pointer

can then be used as an argument to the other AIF routines. Routines are also provided

convert AIF data back to naove format.

Once data is converted to AIF it can then be manipulated using the arithmetic and logjcal

operations. The code below shows an example using the AIF API to multiply two integers.

main()

{

int 1 = 45;
int j = 33;
int res;
AIF *ai;
AIF *aj;
AIF *ar;

ai IntToAIF(29);
a7 IntToAI: (33);
ar = AIFMul (ai, aj):
res = AIFToInt{ar):

I

printf (“tb- ragult is #d\n", resj;

exit{0);

P

In this example, the IntToAIF () routine is used to convert the integers into AIF. The
AIFMul{) routine then multiplies the values and returns the result, again in AIF. This can

then be converted back to the native format for display.

Routines are also provided to access and manipulate complex data types, such as indexing
elements of arrays, iterating over array indices or retrieving structure fields. In addition,
routines are available to perform 1/0 on AIF objects, such as reading from and writing to

files. A full list of the AIF routines is given in Appendix E.

The current implementation provides descriptors for C, Fortrun, and ZPL [42]. Additional
languages can be employed by detining new descriptors for each data type that is not
supported by the current descriptors, and by providing routines to perform approprate

operations on these data types.

DATA AND CODE TRANSFORMATIONS

In previous chapters, we have discussed the types of transformations that are often applied to
data structures and code when transiating programs from serial to parallel architectures, and
have presented an algebra for descnibing the urray data transformations. The data
decomposition, shape transformation, index permutation and array slicing transformations
are implemented i the debugger using a new command language that allows librasies of
common transfdrmations to be developed. A mechanism for the creation and population of
temporary arcays has also been added to the debugger command language in order to provide
support for temporal displacement techniques such as variable promotion and loop fusion.

‘The following section discusses these features in more detail.

DATA PARALLEL DECOMPOSITION AND INDEX PERMUTATION

As described in Chapter 4, the “map” command is used to specify how serial arrays are
decomposed when a code is ported to a parallel architecture and when performing
permutations of array indices. When a map 15 applied to a series of data structures that
comprise the parallel array, a new single data structure is created. For the purposes of this

discussion, we denote this resulting array by R, although it normally is not explicitly named.

Given a “proc” and “index” function defined by the mapping, an array of process
identifiers P and a parallel array A, the following pseudo-code shows how GUARD will

compute the elements of 1he resulting array:

6-27

for (each index (,...,%) of the result array R)
compute (p,...,»,) where p = proc(j, (x,...,) for j/=1.»
compute (a,,...,a) where 4 = index(), (x,...,x) for/=1.x
Set R([x;,. ;%] = PLpp.eepy) t 1ALdyy.. 3,

endfor

Note that the index and proc functions are actually supplied with two arguments. As
shown above, the first argument is the index number. The second argument is an array
representing the values of the indices of the current element of the result array R during the

computation. This information ensures that complex mapping functions can be defined.

SHAPE TRANSFORMATION

Array shape transformation is specified using the “trans” command. This is the prrcess of
flattening the array into a 1 dimensional vector, performing an arbitrary mapping on the
vector, then blocking the mapped vector to an array of the new shape. Since: flattening and

blocking of arrays uses the standard transformation functions gand J, the user only needs to

define the permutation function 7 (called “index” when defining the transformation) in

order to specify a shape transformation.

Given a permutation function &, an array A and the shape of an array B, the result of the
transformation is a2 new array which we denote as R. The following pseudo-code shows how

the result array s computed:

for {each index (xi,...,x,) of the array &)
compute i = @ (x,...,%)
set F[/] = Alx,...00]

endfor

for (each index / of the array F)
compute j = index{)
set F1{/] = F[/]

endfor

for (each index / of the array F1)

compute (,....5) = G
set R[y,....5] = F1{/]
endfor

The first loop computes the flattened vector F. This is done by applying the flatten function

@ to the indices of array A to calculate a new index value /. The corresponding value of A 1s

"Ihe notation E g1, pa) t 1 A[al, . 2] means the {a,...,5 element of amray A on process (o, .. pu)

G-28

P,

i'ﬁﬁmm:.... e e

then stored in F at the location specified by /. The next loop applies the permute function
index to each element of F to create a new vector F1. The final loop then blocks the F1

vector to the resulting array R.

L 4Ri4BLE PROMOTION AND LooP FUSION

Support for variable promotion and loop fusion involves extracting data from within an
executing program and storing the values as internal variables in the debugger. The debugger
syntax then allows these internal variables to be compared with data from target programs, or
with other temporary debugger variables.

'The implementation of internal debugger variables uses the same implemenmation techniques
as that used for storing data from target programs, and involves converting the data to the
architecture independent data format, AIF. The AIF API provides all the support necessary
for managing these internal variables. GUARD provides the user with 2 “create”
command that can be used to instantiate scalars, or arrays of a specified size and shape.
These data structures are initially “empty”, but can be subsequently populated with data from

a target program using the “assign” command.

VISUALISATION OF IMFFERENCES

The visualisation of differences that have been obtained by the execution of uscr-defined
assertions underpins the relative debugging paradigm. Currently the primary means of
interaction with the debugger is through a command line user interface. In order to support
this visualisation, GUARD allows assertions to generate tntermediate data files that can then
be examined by a visualisation package such as IBM’s Open Visuzlization Data Explorer or
VIS-5D [27a]. In addition, a number of tools are provided to assist with this visualisation

process.

When defining assertions in GUARD, the user has the ability to select a particular display
type using the “set display” command. This command is used to specify the format
that is used when the difference information is generated. The difference information can
also be stored in an output file using the “set output” command. The available dispkily

types are shown in Figure 6.19.

6-29

Display Description :

text Plaiu text is used to display differences direcily

hdf Differences will be outpot using the NCSA Hierarchical Data
Format (HDF) {53]

hdf5 Differences will be output using the later HIDF Version 5

aif Differences will be output in the Architecture Independent
Format (AlF)

Figire 6.19: GUARD Display Types

In situations where assertions generate multiple results, such as when an assertion is made
within a program loop, it is useful to store difference information as consecutive data sets in
a single file. Both the HDF and AIF file formats support this, and the visualisation software

15 able to use this information to display the differences as a senies of frames 1 a movie.

In situations where simple 2-dimensional arrays are being compared, GUARD provides
utility programs to convert the data files into GIF’s for display using a web browser. If the
data files inciude multiple data sets, then the utilities can also be used to generate animated
GIF's to display simple movies. Ultilities are also provided to analyse and manipulate data

that has been generated from the assertions. The utility programs are shown in Figure 6.20.

Uhility Frogram Description

hdf2gif Convert a fle in HDF to an animated GIF
aif2gif Convert an AlF file into aa animated GIF
hdfanalyse Display information about a file in HDF
dumpset wonvert an AIF data set file to text
listset List data scts in an AIF file

Figure 6.20: Udlity Programs

DATA PARALLEL LANGUAGE SUPPORT

A key component of the GUARD debugger is its ability to support data parallel languages.
The current implementation provides support for the relatively new, but efficient and easy to
use data parallel language ZPL [42]. As will be discussed later, this support can also be

extended to other languapes.

ZPL is a data paralle] array-based language. The language uses the array as a fundamental
data type, and provides various features that allow programmers to generalise algorithms
using array semantics. ‘The most fundamental of these is the rggfon, which is used to specify a
set of indices that define the bounds of an array, or over which computations on an array are
performed. ZPL has been designed as a machine-independent language that is portable
across multiple architectures and memory paradigms. Although it is primarily designed as a

6-30

data parallel language, ZPL executes on both sequential and parallel architectures. ZPL is
also an implicitly parallel language, as the programmer does not need to explicitly specify how
parallel computations are to take place, rather the compiler determines the distribution of
data automatically. Parallelism is derived from the semantics of the array operations, so there
are no parallel directives or mechanisms for explicit message passing. Programmers ser a
single address space and are able to uvtilise traditional sequential programming sernantics for

software development.

From an implementation perspective, support for a data parallel language requires the

following capabilities:
e knowledge of the specific language features;

e the ability to extract locally held components of a data structure from each process;

and

o the ability to recombine thcse components mto a single data structure in the

debugger.

Data parallel language run time systems generally maintain per-process data structures that
contain a description of each parallel array, and provide information such as the rank of the
array, the siza of each dimension, and information on the distribution of the array across the
processes. In order to access a block of data from an individual process, the debugger must
first access this description information to determine the location and bounds of the block

that is resident in the process.

In ZPL, this distribution information 1s stored in run-time structure called an ensemnblk, one of
which is maintained for each parallel array in each process. An ensemble consists of the

following (simplified) structure:

struct ensemble {
int blocksize[MAXRANK];
int offset [MAXRANK]:
int stride [MAXRANK]:
void *data;
int numdims;
region *regptr;
unsigned long size;
char *basetype;

6-3

s A i st

In order to access the data specific to a particular process, the debug server for that process
must first extract the upper and lower bounds for each index of the array from regptr, a
poinier to the array’s region information. The location of a particular element of the array is
then computed from the offset, stride and blocksize information. For some

element in the array whose indices are {ay,4;,...,a,.,), whete # is the number of dimensions

specified by numdims, the location of the data is given by:

nomdims=1{ la, —offaet]s
data+ ¥ ("—'—"—-—"—(: !])

xblocksize|i]
stridel(i]

=0

This information is interpreted by the debug server and used to obtain a copy of the data that

is specific to the particular process.

To allow data parallel arrays to be used in assertions m a transparent manner, GUARD
utilises the decomposition information along with the per-process location information to
reassemble a complete structure. Using the appropriate mapping function GUARD s able
to apply the language decomposition rules to request the components of the array from each
process via the debug servers, and then reassemble these components into a complete array.
Assertions can then be used to compare the data in this array with that obtained from a

reference program.

Adding support for other data parallel languages to the debugger is a three-step process.
First, the syntax and semantics of the language must be defined in the debugger parser.
However, since the debugger only allows immediate evaluation of expressions, the full
language syntax does not need to be defined. Second, the parallel data distnbution
information must be made accessible to the debugger backend. Finally, AIF tags may need
to be added to support any new data types introduced by the language.

For example, to add support for the data paralle] language C* [59] to GUARD, new language
support would need to be included in the parser. C* provides additional syntax to allow
scalar access of parallel arrays, adds a number of new operators such as minimum and
maximum value reduction (“<?=" and “>?="), and introduces a new type syntax for shape
declarations. Next, the run-time representation of paraliel variables would need to be added
to allow the debugger backend to access the parallel array information. In C*, as in ZPL, a

single structure is used to store the parallel array distribution information. Finally, as for

6-32

ZPL, ancw AIF type would need to be added so that parallel array shape information would
be accessible to the debugger client.

CONCLUSION

This chapter has presented the details comprising the implementation of the GUARD
debugger. In particular, the chapter has examined the aspects of the implementation that
enable the debugger to support the relative debugging paradigm. These include the
client/scrver implementation details consisting of the debug client, the debug server and a
debug AP1 that allows the client and server to communicate efficiently and effectively. In
addition, the chapter has examined innovations that are uniquely specific to the GUARD
debugger. These include the dataflow technology, AIF, support for data and code
transformations and support for data parallel languages.

From the information provided in this chapter, 1t should be clear that a number of significant
advances in debugger technology have been made in the process of implementing the relative
debugging paradigm. It is hoped that the techniques presented here will provide other
debugger designers with a powerful platform on which to build future tools for parallcl

computet systems.

6-33

Chapter 7

CASE STUDIES IN RELATIVE DEBUGGING

‘This chapter presents a series of three case studies to demonstrate the application of relative
debugging in a parallel computing environinent. The case studies have been chosen in order
to show how relative debugging can be used on a range of codes that utilise the major parallel
architectures. These include a data parallel case study, a distributed memory message passing
case study, and a shared memory case study. The aim is to demonstrate that the architecture
proposed in Chapter 4 is suffic’. atly powerful to handle the differences between two
languages, between a broad range of paralle] programming architectures and in the undetlying
platforms. The case studies also highlight the efficiency of the debugging technique for

locating errors across multiple program versions. ¢

CASE STUDY 1: DATA PARALLEL CODE
The data parallel case study illustrates the power of relative debugging when applied to a
sequential C code that has been ported to the data parallel language ZPL.

The program s 2 hydrodynamics code, known as “simple” [18], that is used to model the
hydrodynamics of a pressurised fluid inside a spherical shell. To demonstrate our debugging

methodology, a problem size of 128x128 using four iterations has been chosen. The output

of the “simple” code is a scalar error value that is calculated from the values used in the
hydrodynamics computation. For the C and ZPL comparison, the ZPL code was run using
four processes in a 2x2 mesh. The initial run of the codes produced scalar error values that
differ at around the fourth decimal place. Figure 7.1 shows the values that were produced

i i for each of the four iterations.

Tteration C ZPL(2x2)
1 0.984958283 | 0.984946715

2 0.985004506 | 0.984971498

I 3 0.985086136 | 0.985033153
| 4 0.985224992 | 0.985147640

L e

Figure 7.1: Scalar Error Value

Both the C and ZPL codes employ double precision variables for all computations, so it

would be expected that the scalar error value wouid be equivalent within the precision |

3

-i

A
L T e T A T T T e e e e ——J

available, or about 15 decimal places (although only 9 decimal places are shown in Figure
7.1). The precision of the floating-point representation also allows us to set a lower bound
for the error tolerance used in defining assertions. In this caseé study both codces use double
precision, so the lower bound will be 107 . In situations where different precision is used in

each code, the lower bound will need to be adjusted to the larger of the two values.

Our initial hypothesis was that the C and the new ZPL codes were working correctly, even
though on first examination it can be seen that the codes produce slightly different results.
In order to account for the discrepancy, it was assumed that different numeric evaluation
techniques in the language run time systems or minor numerical errors were the likely cause.
Since it was not obvious at the outset which of these factors was contributing to the
differences, it was necessary to adopt the three-phase approach shown in Figure 7.2 when

debugging the codes.

Figure 7.2: Code Comparison Steps for the “simple” Code

The first step compares a single process ZPL code with the same code on multiple processes
in order to ensure that the ZPL runtime systern is not introducing any differences into the
results. The second step compares the parallel ZPL code to the C code so that errors in the
ZPL version of “simple” can be identified and corrected. The last step compares the serial

ZPL code to the C code as a final check to verify that all errors have actually been cotrected.

Relative debugging relies on the ability to compare a suspect program with a reference code.
As a result, a debugging methodology using an iterative refinement process can be used to

narrow down the region (or regions) containing potentially incorrect code until the error is

72

located. This process has been applied very successfully in the past in various case studies
[3:435]‘

CoDE DESCRIPTION

‘The “simple” code is used to model the hydrodynamics of a pressurised fluid inside a
spherical shell. The simulation computes values that describe the physics of the fluid at many
points inside the shell over 2 number of time steps. Each iteration results in the computation
of new values for var.ous physical quantities such as velocity, density, energy, viscosity,
pressure and temperature. Aithough “simple” is modelling the inside of a spherical shell, the
symmetry of the problem allows the computation to be reduced to one quarter of an annular
region. This region can then be transformed into Cartesian coordinates so that each physical

quantity can be stored in a 2-dimensional array.

The structure of the ZPL version of the “simple” code is shown in Figure 7.3. The ZPL
code combines all the hydrodynamics calculations in 2 single loop of N iterations, with the
scalar error computation performed by lines 540 and 544. The first line computes the
En_error array. The second line performs a reduction across all elements of the

En_error array to produce the scalar error Sc_error.

ZPL introduces parallelism into the “simple” code by defining the variables for each physical
quantity over a region. This region can then be automatically partitioned by the ZPL run-
time system into blocks that are managed by the individual processes. The algorithm has also
been designed so that computations in each phase share the same data dependencies, thus
minimising the overall communications overhead required for communication Levween

processes. More details on the ZPL implementation of “simple” can be found in {41].

The C code is structured slightly differently from the ZPL in that each phase of the
hydrodynamics calculation is located in a separate module. The main body of tlie C code,
shown in Figure 7.4, is contained in the module simple.c, and consists of an initialisation
phase, load (), followed by N iterations over delta, hydro, heat and energy phases. The
load phase routine load ()} is located in load.c, delta() in delta.c, heat() in

heat.cand so on.

7-3

474
1475
476

479

38
539
540

544

program simple;

region
R =[1..D1, 1..DX];
WEST = [1..DL, 1..DK)};

direction
east = {0,+1];

var
X: [R] double;
Heat: [R] double;
En_error: [R} double;
Theta: [R] double;
Delta_t: [R] double;
Sc_error: double;

procecdure InitPositicnVelocity(}

begin
R := {Index2-1) * deltaR / {(max¥X - minX] + Rmin;
W := ({{maxY-Indexl) * PI} / {2 * (maxY¥ - min¥Y})) + angleotfset;
X.r ;=R * cos(W):
X.2 ;=R * sin(W);
end;

“ e

procedure simple()
[R]
begin
/* Initialisation Routines */
for count := 0 to N-1 do
/* Delta Phase */
/* Hydro Phase */
/* Heat Phase */
for i := DK-1 downte 0 dec
[.i] Theta := Alpha * Thetafleast + Beta;
end;
[WEST] Heat := {Theta - Thetalleast) * R_ * Delta_t;
/* Energy Phase */

Heat := Heat * Pelta_t;

En_error := Int_en + Kin_en - Work + Heat:
Sc_error := +<< En_error;

LI

end;
end;

Figure 7.3: ZPL Code Stnucture for the “simple” Code

7-4

b

main{}

{
int loop = G;

load(};

do

(
delta():
hydrot}:
heat():
energy () :

} while (loop++ < N}:
!

Figure 7.4: C Code Structure for the “simple™ Code

In the C code, calculation of the scalar error value is performed in the routine energy (),

shown in Figure 7.5. The scalar error value is computed as the sum of all elements in the
energy error array en_error {line 92), which s in turn derived from the values of the encrgy
phase arrays int_en, kin_en, aad work, and the boundary heat flow array heat (line 86).

Values for these arrays are comnputed in the cotresponding phase routines.

SERIAL/PARALLEL ZPI. COMPARISON

The first step in the debugging process was a comparison of the ZPL code in a single process
configuration with that in a multi-process configuration, in this case four processes in a 2x2
mesh. The results from these runs showed that different process topologies produced slight

vanations in the scalar error value, with 2 magnitude of slightly greater than 107", Since
differences of this magnitude are still significant for double precision floating-point numbers,
these appeared to be errors introduced by the parallel tun-time system. Relative debugging
was then used to determine the cause of these differences, by defining assertions over the
phase variables Int_en, Kin_en, Work and Heat, and the error value En_error.
However, no differences were visible in these vanables. This meant that the source of the
variations must be the final reduction operation at the end of each iteration. As the order of
the floating-point operations is the only factor affected by topology changes, it is likely that
the non-associative nature of these operations was the cause of the variations. This result is
an important one, since it shows that non-deterministic behaviour can impact on the results
of the computation, and effectively sets a lower bound to the accuracy of the final error

value.

1-5

extern double heat [DL] [DK]:
extern double delta t[DL][DX]:
double int_en{DL] [DK]);

double kin_en[DL] [DK];

double work[DL] [DK]:

energy{)

int 4, J:

double local error sum = 0,0;
gl for {i=0; i<DL; i++} ¢
82 for {j=0; j<DK:; j++} {
83 heat[i] [}] *= delta_t(il[3j):
86 en_error(i}[j] = int_enlil{3] + kin en([i]{j]

+ work[il (3] + heat[i][3];

a7 }
88 1
8o
a0 for {i=0; i<DL; i++} {
91 for (j=0; j<DK; ji++) |
92 local_error_sum += en_error[i] [j):
93 }
94 }

Figure 7.5: energy. ¢ - C Scadar Exor Calculation

ZPL. AND C COMPARISON
Having isolated the vanations introduced by the parallel non-determinism, it was now

possible to identify the cause of the differences between the ZPL and C codes. The next
step of the debugging process involved using an iterative refinement process to identify and

correct four errors in the code.

Error 1: Extra Term In An Expression
Debugging of the ZPL and C “simple” codes starts by defining assertions for the four phase
variables used in the scalar error calculation. Since the magnitude of the error was around
10* the initial error tolerance was set to 107 <5107
set error l.0e-5 1.0e-1
assert $zpl::Int_enl@"simple.z":540
assert S$zpl::Kin_en@"simple.z":540 $cizkin_en@”energy.c®:81

assert $zpl::Work@"simple.z":540 = $c::work@"energy.c":81
assert $zpl::Heat@"sinmple.z":540 = $c::heat@"energy.c":81

$c::int_en@”"energy.c”:81

The results from these assertions indicate differences in the $c::heat and $zpl::Heat
arrays which are used to store the results of the heat phase computation. Figure 7.6 shows a
visualisation of these differences. Since the variables are 2-dimensional arrays, it is

convenient to visualise the differences as a 2-dimensional bitmap. These bitmaps are

generated from difference information by assigning a colour to represent the magnitude of
the difference, ranging fron: blue for the smallest difference, through green, yellow and red,
to black for the largest. White indicates no difference.

128 eemenis
—

differences

128 elements

Figure 7.6: Differences between $¢::heat and $zpl: :Heat

Differences can be seen along the left (or western) edge of the comparison. The western
edge of the array is accessed in ZPL using the syntax “ [WEST) Heat := ..”, where WEST
has been defined as the appropmnate region. A search of the ZPL code results in only one
example of such syntax at line 479 in simple. c. The corresponding C code can be seen at
lines 163-165 of heat . ¢ in Figure 7.7.

extern double heat(BL] [DK] ;

extern double thetalDL}[DK};:

double temp_theta[DL] [DK];

heat ()

{
143 for {i=DK-2; i>=0: i--} {
144 for (3=0; 3<DL; }++) {
145 temp_theta(jj[i] = theta{j}[i+1];
146 ‘}
149 for {j=0; j<DL: j++) {
150 theta[j}[i] = alpha{j]l[i] * temp_theta([j][i] + beta[i][i]/
151 }
152 }
163 for (i=0; i<DL; i++) |
164 heat[i]1[Q] ~ (theta[i][0] - temp_theta{i]{0})} * r[i}(0];

163 1

Figure 7.7: heat. c — C Heat Phase Code

Careful examination of both codes indicates that the teem Delta_t (shown in red in the
ZPL code) has been errcneously included in the computation of Heat in the ZPL code in

Figure 7.3. Prior to using relative debugging, this error had not been detected, even though it

7

is obvious post fact. In this case, relative debugging ailowed us to identify a faulty statement
in the ZPL code fragment, even though the syntax and implementation details of the
languages are completely different.

Eirror 2: Incorvectly Spedified Constant

After correcting the first error, there are sill differences visible in the output, though the
magnitude has now been reduced to around 1077. Setting the error tolerance to
1071° <£<10™ and re-running the original assertions now indicates differences between the
$c:iint_enand $2pl::Int_en amays, which are used to store the internal energy values

computed in the energy phase. Figure 7.8 shows these differences.

Figure 7.8: Differcuces between $¢: :int_enand $2pl::Int_en

By defining additional assertions, it is possible to observe that differences in many of the
variables involved in the computation of the internal energy have similar characteristics to
those seen in Figure 7.8. With differences occurring in so many variables, no clear path to
the source of the error is evident. Instead, the inittalisation code was examined for similar
patterns of difterences, begining with the code to inttialise the position and velocity
compenents used throughout the program. Figure 7.9 shows the C version of this code,
which corresponds to lines 154-158 of the ZPL code.

Visualising differences in variables from these codes shows the characteristic pattern in the
differences between $c: 1w and $zpl::W, and $c: :x and $2zpl: :X. As both $c::wand
$zpl::W are computed entirely from constants, the problem must be related to these
variables. Further examination indicates that the value of PT used in the ZPL code was only
specified to 7 dectmal places, while the corresponding value used in the C code, M_PT was

spectfied to 20 decimal places (of which only 15 are significant).

101 for (i=0; i<DL42; i++} |
102 for (3=0; j<DK+2; F++) |(

103 r{i] [3] = {(PEj-1}"DK + {j-1)) * deltaR / (NUM K PROCS *
DK - 1) + Rmin;

104 wlil[j] = ((M_PI * ({(PEi-1) * DL + (DL-i)))
/ (2 * (NUM_L PROCS * DL-1)}) + ANGLE_OFFSET;

107 x[i]1[31.
108 x[i) {§].
109 1

110 }

&

M
LI

e[i)[3] * cos{wli] [31}:
r{i] (3] * sin(w{i] [j]}:

Figure 7.9: init . ¢ - CPaosition and Velocity Initalisation Code

Like the previous error, the difference in PT is obvious with hindsight. Fowever, because a
symbolic constant is used in the code, a cursory examination would not have revealed the
difference. Relative debugging allowed us to identify a characteristic pattern of differences
that was visible in a number of variables, suggesting that a common source was responsible.
The etror was eventually located by tracing this pattern back to the constant declarations,

even though the two languages use different syntactic structures for defining constants.

Error 3: Invalid Bonundary Conditions

On correcting the second etror there are still differences in the output of the programs,
though the magnitude had now been reduced further, to around 107'%. Setting the error
tolerance to 107" s& <107 and re-running the original assertions shows that the $c::heat
and $zpl: :Heat arrays are again the source of errors. A series of assertions must now be
applied to narrow down the erroneous region of code in the heat phase computation. The
result of these assertions is that the problem appears to be occutring between lines 474 and

479 of the ZPL code an! lines 143 and 152 of the heat phase calculation in heat . c (Figure
1.7).

The ZPL c:)de uses the (i+1}™ column of Theta in the computation Alpha *
Theta@east ! Beta and propagates this across columns (DK-1) to O of Theta, The C
code uses a temporry array to hold the (i+1)" column of theta. However, the outer loop
of the C code only ranges from (DK~2) to 0, so the (DK-1)" column is not computed, and
hence the C code is tncorrect. An identical situation is also found in the computation of the

north boundary condition.

'This error is interesting because the ZPL code is actually correct, while the original C code is
incorrect. When developing the ZPL code the programmer did not need to be concerned

with issues such as computing loop bounds, but instead was able to concentrate on the

underlying physics of the model. In comnparison, the C programmer needed to consider the
loop bound issues, with the extra complexity presumably leading to the coding error. In spite
of these significant implementation differences, relative debugging was able to identify the

incorrect code.

Eror 4: Wiong Sign

Even after correcting the third error, the magnitude of the differences in the output of the
programs still remains at around 107!, Further examination of the scalar error computation
indicates that while ue values of $c: :en_error and 3zpl::En_error have a very small
differences, the calculations of the energy, work and heat values are now identical. This can
only point to a problem with calculating the error value itself. Close examination of the ZPL
and C code shows the source of the error, which can be seen at line 540 of the ZPL code

(Figure 7.3) and line 86 of the C code (Figure 7.5).

Using relative debugging it was possible to identify a pattern of differences and quickly
pinpoint the location of erroneous code that was only obvious with the benefit of hindsight.

Interestingly, the original paper describing the “simple” code gives the error computation as:
Int_en + Kin_en — Work - Heat
This means that both programs are actually incorrect.

SERIAL ZPL. AND C COMPARISON
The final step in the debugging process is to verify that the changes made to both the ZPL

and C codes have resulted m bitwise equivalence of the variables used in the physics
computation. Since non-determinism was introduced by munning the ZPL code in parallel,
comparison of the serial ZPL and C codes must be used. For this test, the same series of
assertions defined over the four phase variables were used and the error tolerance was set to
0 (although a tolerance of 107'° would have been equally valid). As predicted, the results

showed that each of the variables were now identical,

The debugging exercise outlined in this case study tock a remarkably short time, considering
that the programmer performing the case study was not the author of either version of
“simple” and was not particularly fluent in ZPL. Whilst it is dangerous to generalize the

results too far, this example adds to the evidence of our other case studies that support the

7-10

power of relative debugging — in the case even when the programs run on different

computers and are written in diffetent languages.

CASE STUDY 2: DISTRIBUTED MEMORY CODE

The sccond case study examines how relative debugging can be applied to 2 hand-coded
distributed memory code. The program is a distributed memory version of a simple
numerical model of the shallow water equations [62]. Abramson, et al. ported the shallow
water equations to a number of languages and architectures [1]. This case study will use

versions written in C for sequential and distributed memory architectures.

- For this case study, a model size of 32x32 and a run length of 950 time steps was chosen.

The distributed memory code was initially run on two processors. The codes are designed to
report a number of key values every 50 time steps, so it is simple to determine if the codes
are working correctly or not. Figures 7.10(a) and 7.10(b} show the output from the two
versions of the code after 950 time steps in which significant errors can be cleatly seen in all

four values.

Cycle number ' 950 Model time in days 0.%9

Potential energy 6816.106 Kinetic Energy 41183.156
Total Energy 47999.262 Pot. Enstrophy 2.006166e-27
(a) Sequential
Cycle number 9590 Model time in days 0.99
Potential energy 67590.644 Kinetic Energy 41219.078
Total Energy 48009.723 Pot. Enstrophy 6.152948e-17
(b) Distributed Memiory

Figure 7.10 Cutput from the “shallow” Code

CODE DESCRIPTION
According to Abramson, et al,, “the shallow water equations describe the motion of an

incompressible fluid with a free surface, with the constraint that the horizontal scales of
motion are much larger than the vertical. The equations are a favoured choice for
experiments with various model structures and numerical schemes, and thus must be ported
to many different computing platforms. Although they use a very simple representation of
the atmosphere, they do include the two types of horizontal wave motion important in more

realistic global climate models, gravity waves and Rossby waves.” 1]

The sequential C code consists of two main phases: an initialisation phase and a time-step

phase. Figure 7.11 shows the overall structure of the sequential code.

71

[

float ulm] [n}¢ /* Zonal wind */

float viml[nl: /* Meridional wind */

float pim] [n]; /* Pressure (or free surface héight) */
float cu[m][n): /* Mass weighted u */

float cvml(n]; /* Mass weighted v */

float z[m)(n); /* Potential enstrophy */

float him] [n):

float psi[m] {n]; /* Velocity stream function */

float dudt[m)([n); /* Time tendency of u */

fleat dvdtim]{n]: /* Time tendency of v */

float dpdt(m] [n]; /* Time tendency of p */

main{}
{

int ncycle;

58 initialise{u,v,p,psi,di,dj}:
61 for {ncycle = 0; ncycle < itmax; ncyclet++) |
/* Calculate cu, ev, z and h*/
67 calcuvzhip,u,v,cu,cv,z,}., f3dx, fsdy);
};‘Calculate time tendencies of u, v and p */
71 timetend (dudt, dvdt, dpdt, z, cv,cu, h) ;
};-Calculate new values for u, v and p */
78 tstep{u,v,p,dudt, dvdt, dpdt, firststep, tdt);
g0 if { firststep)} {
/* Double tdt because all future steps are leapfrog */
81 tdt = tdt+tdt;
82 firststep = 0;
83 !

85] /* End of time step loop */
Figure 7.11: Sequential C version of “shallow™

Initialisation of the key data structures is performed by the initialise () routine. The
time step loop s then executed for the number of iterations determined by itmax. This
loop executes three routines in succession. The calcuvzh() routine is used to calculate the
mass fluxes cu and cv, the potential enstrophy z and the quantity h. Next, the
timetend () routine is used to calculate the time tendencies for velocity components dudt
and dudt, and for the pressure dpdt. Finally, the tstep () routine is called to recalculated
new values for the velocity components u and v, and the pressure p in 2 “leapfrog” time step

process.

The distributed memory code uses a master/slave arrangement, where the master maintains
primary copies of the key data structures. Each slave is sent an entire copy of the data

structures, but only performs computations on a portion determined by slicing the outer

loop. Before and after a calculation, each slave synchronises the edges of the data structures

E R

with its immediate neighbours. At the end of the time step loop the slave data is copied back

to the master process. This arrangement is shown in Figure 7.12.

master
. T initial and final
swclironisation of
. slave data
siave data sifce

slave 1 siave 2 slave 3 slave d

S dala bo:mdazy symchronised bef:re and

after each calcnlatior

Figure 7.12: Data Decomposition and Boundary Synchronisation
The structure of the masier code is shown in Figure 7.13, The master begins by initialising
the distributed memory subsystem (in this case MPI) and determining the number of slave
processes (lines 106 — 107). The loop at lines 137 — 162 is then used to determine the
decomposition of the data structures. The values jstart and jend, which define the lower
and upper bounds of the slices respectively, are computed and sent to each slave process.
Next, the loop at lines 178 — 208 sends the contents of each key variable to the slaves, 2 row
at a time. Finally, the update global ds() routine is used to recover the contents of
each of the variables. This routine waits for each slave to finish its computation and send the

final results, which are collected and stored in the appropniate data structure.

The slave code, shown in Figure 7.14, is similar in operation to the sequential code, however
it is complicated by the addition of synchronisation code. The first action of the slave
routine is to obtain the slice bounds jstart and jend. These values are then used

throughout the computations to determine the slice of data the slave will be calculating.

float ufn)im); /* Zonal wind */

float vin)im): /* Meridional wind */

float pin](m]; /* Pressure (or free surface height) */
float cui{n] [m]; /* Mass weighted u */

float cvi(n]lim]; /* Mass weighted v */

float z[n)im): /* Potential enstrophy */

float hin}{mi;

float psoiln]lim); /* Velocity stream function */

float dudt(n] [m]: /* Time tendency of u */
float dvdt[n] [m]; /* Pime tendency of v */
float dpdtin]{m]: /* Time tendency of p */

main(int arge, char *argv(])
{

int proc_cnt, jstart, jend;

106 MPI_Init(&argc, &argv);
107 MPI_Comm_size (MPY_COMM _WORLD, &proc_cnt):

137 for (i=0; i < proc_cnt; it} |

139 jstart = (i-1) * chunk_size;
141 jend = (i * chunk_size - 1) ¥ n;
160 MPI_send(&jstart,MPI_INT,i,MPI_COMM WORLD);
161 MPI_send(&jend,MPI_INT,i,MPI_COMM WORLD);
162 1
175 initialise({u,v,p,psi,di,dj};
178 for (i=0; i < proc_ecnt; i++) |
179 for (j=0: j < m:; 3++) |
/* send row of each variable */]
207)
208 H

218 update _global_ds (u);
223 1‘11-:>1;late_g1 obal_ds (v);
228 v‘.\;-)t.:late_global__ds {p}:
233 ﬁl;éate_”global_ds th):
238 lll;élate_”global__ds (z}: i
245 l:‘li’i_Barrier {MPI_COMM_WORID) ;

24 MPI Finalize():;

Figure 7.13: Distributed Memory Master Code

Next, the loop at lines 375 — 403 is used to reccive the contents of the key variables. The
main time step loop at lines 405 — 449 is identical to the sequential code except that the data
structure boundaries are synchronised before and after the calcuvzh () and timetend()
calculations. This synchronisation is performed using the calc load{(),

calc_unload(},time_load() and time un:ocad() routines.

7-14

slave()

363 MPI_Recv(&jstart,MPI_INT,MPI_ANY SOURCE,MPI_COMM_WORLD) ;
364 MPI Recv { &jend,HPI_IN‘I‘ LMPI_ANY SOURCE,MPI_COMM_WORLD) ;
375 for (i=0; i < n; i++) {

/* receive row of each variable */

403)
405 for (ncycle = 0; ncycle < itmax: ncyclet+) |
*. .-
3 421 calc_load(jstart,jend.p,u,v};
: 422 calcuvzh (jstart, jend,p,u,v,cu,cv,2,h, fadx, fady};
423 calc unload({jstart, jend, cv,2});
- 430 time load({jstart,jend, cu,cv, h,z);
i ! 431 timetend{jstart, jend,dudt, dvdt,dpdt, z,cv, cu, h) ;
" _ 432 time_unleoad(jstart, jend, dvdt);
3 /* Calculate new values for u, v and p */
439 tstep{jstart,jend,u, v, p,dudt,dvdt,dpdt, firststep, tdt};
442 if { firststep) | i
/* Double tdt because all future steps are leapfrog */ :
444 tdt = tdt+tdt; 3
F 445 firststep = G;
' 446 1

449 } /* End oftime step lcop */

457 send_updated ds{u};
458 send updated ds(v);
459 send_updated_ds(p};
460 send_updated_ds(h};
461 send_updated_ds(z};

MPI Barrier{MPI_COMM WORLD):
MPI_Finalize({):

Figure 7.14: Distributed Memory Slave Code

ERROR 7: INCORRECT INDEX IV ALUE
In order to begin debugping the “shallow” code, a map that describes the data

decomposition techiique used by the distributed memory code was defined. One major

difference between the codes is the index ordering which has been swapped in the translation
from sequential to parallel, presumably to take advantage of some cache effect. The map was

also defined to account for this tindex permutation.

map shallow{P::A)

define index{i,a,u.,l) = al[l-i]
define proc(i,a,uw,1l} = a[l] * ($procs - 1) / $n
end

Using this map, a series of assertions were then defined that compare the values of the key
data structures u, v and p between the sequential and parallel codes just prior to entering the

time step loop. This tests the initialisation code in the two programs, and ensures that the

7-15

variables are correct before any calculations are undertaken. The error limits were set to an

initial estimate of the likely error range.

set error 1.0e~-20 1.0e-1

assert $Sc::u@"ecshallow.c":61
assert $c::i:p@”cshallow.c":61
assert %c::v@%¥cshallow.c":61

shallow($p::u@"main.c™:405)
shallow($p::p@"main.c":405)
shallow($p::v@"main.c":405)

naon

Execution of these assertions showed that u, p and v are cotrect prior to entering time step
loop. This confirms that the errors must be being introduced by calculations in the tme step

loop.

The next step was to examine the result of the computation caleuvzh (). This was done

by defining assertions to compare the values of the variables cu, cv, h and 2 as follows:

assert S$ciicu@"cshallow.c”:71 = shallow{$p::cu@"main.c”:430)
assert $ci:cv@¥cshallew.c":71 = shallow($p::cv@"main.c":430)
assert $c::h@"cshallow.c":71 = shallow({$p::h@"main.c":430}
assert $c::z@"cshallow.c":71 = shallow($p::z@"main.c":430)

After first call to calcuvzh(), differences were observed in the variable cv. These
differences, shown in PFigure 7.15, suggested that the error was related to a boundary

calculation by each processor.

J2 slemenis

32 etements

Figure 7.15: Differences in cv

To confirm this suspicion, the codes were re-run with the distributed memory code running

on four processors rather than the initial two. Errors were again observed in the variable cv,

however this time the differences appeared as shown in Figure 7.16.

Figure 7.16: Differences in cv Running on Four Processors

This confirmed that cv was affected by a boundary issue that depended on number: of
processes. Since the error was in the boundary column, the boundary code was examined for
coding defe&s. Inspection of calcuvzh{) code lead to the discovery of the difference
shown in Figures 7.17{a) and (b).

cvi{illip]l = ... ev(jlli} = ...
(@} Sequential (b) Distributed Memory

Figure 7.17: Discovered Differences in calcuvzh() Code

L]

Even allowing for the index permutation, the parallel code was cleatly using the wrong index.

Relative debugging allowed the rapid identification of this error by observing the changes

resulting from running on different numbers of processors, and irrespective of the fact that

the array indexes are permuted.

ERROR 2: WRONG ARRAY ELEMENT
After correcting the code and re-running the programs using the same assertions, an error

was still observed in.the cv variable. The characteristics of the differences had altered
significantly however, and now seemed to indicate a periodic error in the cv calculation. The

new differences are shown in Figure 7.18.

Figure 7.18: Periodic Errorin cv

717

Further inspection of the calcuvzh () revealed a sccond error in the calculation of cv. In

this case the wrong element of the array v was used in the calculation, as shown in Figure
7.19,

ev[i] [jp] = 0.5 * (p{il[ip] + plil (3]} * v(i}[Ip]:
(a) Sequential
cvljpl (i1 = 0.5 * (p{3p1[i] + p[Ii[il} * v(3][i};
() Distributed Memory

Figure 7.19: Second Error in calcuvzh{) Code

This error was intcresting because it occurred in the same statement as the previous error,
but was missed in the original code inspection. Because the nature of the error in a single
variable changed from a boundary problem to a periodic problem, the source of the problem

was quickly identified.

ERROR 3: WRONG SicN
After ensuring that both errnis had been corrected in the parallel code, the programs were

rerun to check that the cv varable was now correct. The assertions showed that all four
calculated variables, cu, v, h and z were correct after first iteration, however on subsequent
iterations errors were observed accumulating in the cu varable. Figure 7.20 shows a time

sequence of these errors, one frame per iteration.

I |

T
|
!

1!
i

Figure 7.20: Time Sequence of Emrers in cu

Inspection of the code showed that the calculation of cu is derived from the values of p and
u. Since all values of cu are correct on first iteration but incorrect on second and subsequent
iterations, this implies that there must be in error in the computation of p and u {which were

shown to be correct immediately after initialisation).

In order to check the values of p and u at the end of the time step loop, the following

assertions were defined:

assert £e¢:ijul"cshallow.c":85
assert $c::pB"cshallow.c":85

shallow ($p: :u@"main.c":449)
shallow{$p::p@"main.c":4489)

nn

When the codes were again run, errors were immediately reported in u. These are shown in

Figure 7.21.

Figure 7.21: Emors in u

At this point it was clear that errors were being introduced into the variable v, but these
could have resulted from either the calculation of u itself in tstep () or in the time tendency
variable dudt which is calculated in timetend (). To verify which routine was the source
of the errors, it was necessary to rerun and check the value of dudt immediately after the call

to timetend (). Figure 7.22 shows the differences visible in dudt when this was done.

Figure 7.22: Exrors Reportedin dudt

It was now known with reasonable certainty that the errors were occurring in the
timetend () routine. At this point a visual inspection could be used to locate the source of
the error. In this case the error tumed out to be a wrong sign used in the calculation of

dudt. This can be seen in the code segments presented in Figure 7.23(a) and (b).

This error highlights the use of relative debugging to quickly reduce the possible location of
an error to a small region of code. Once this has been done, simple code inspection will
usually pinpoint the in-arrect staterment immediately, even when the actual error is very

minor as in this case.

7-19

it

dudtfjjlip] =
0.125 * (z[jp][ip]l * (ev[jpl{ip]l + cv[ip] [i)) - z[3][ip} *
(ev 3] (ipl+evi) (i1} = (hlj1{ip) -~ h[j1[i))} * invdx;
() Seqicedial
dudt[j] [ip] =
0.125 * (zfjpltip) * {evlipllip] + cv(ipl[i]) + =z[J)[ip] *
(cv i1 [ipl+ev(i){il)} - (h{j1lip) - h[3][i]} * invdx;
¢h) Distributed AMemory

Figure 7.23%: Final Error in Distributed Memory Code

CASE STUDY 3: SHARED MEMORY

This final case study examines the used of relative debugging on a sequential C program
ported to a shared memory architecture. The same shallow water model used in the previous
case study is again used here, however the implementation of the shared memory code is
significantly different from that of the distributed memory version. The shared memory
code is written in C using the Argonne P4 systeim [14].

On execution of the codes, it was observed that all values 2re correct after the first iteration.
However, after only 50 iterations these values begin to diverge significantly. The output
from the sequential and paralle] codes after 50 iterations is shown in Figure 7.24.

Cycle number 1 Model time in days 0.00
Potential energy 0.000 Kinetic Energy 48036.828
Total Energy 48036.828 Pot. Enstrophy 0.000000e+00
Cycle number 50 Model time in days 0.05
Potential energy 5681.312 Kinetic Energy 42371.,008
Total Energy 48052.320 Pot. Enstrophy 8.849624e-28
(@) Sequential
Cycle number 1 Model time in days 0.00
Potential energy 0.000 Kinetic Energy 48036.828
Total Energy 48036.828 Pot. Enstrophy 0.000000e+00
Cycle number 50 Model time in days 0.05%
Potential energy 6649.025 Kinetic Energy 35192.219
Total Energy 41841.242 Pot. Enstrophy 2.348158e~16
(b) Shared Memory

Figure 7.24: Qutput From Sequential and Parallel Codes After 50 lterations

The shared memory version of “shallow” uses the same master/slave arrangement as the

distributed memoty code, but is considerably simpler since there is no longer a requirement

720

to synchronise data between processes. The main time step loop of the shared memoty code
is shown in Figure 7.25. In this version, the key data structures are maintained in global

shared memory that is accessed by each process. Code synchromsation is achieved by calling

the waitfor () routine after each calculation.

140

145

l48

151

154

164

169
170
171
172
173
174
175
176
177

17¢

180

stuct globmem {

float u [m][n]: /* Zonal wind */
flecat v [m][nl; /* Meridicnal wind */
float p [m][n}: /* Pressure (or free surface height) */

float cu [m)([n): /* Mass weighted u */
fleat cv [m] [n): /* Mass weighted v */
float z [m)[n); /* Potential enstrophy */
float h [m] [n);

fleat psi [m]in}; /* Velocity stream function */
float dudt [m}in):; /* Time tendency of u */
float dvdt [m)n): /* Time tendency of v */
float dpdt [ml{n]; /* Time tendency of p */
int ncycle;

float time;

float tdt:

int firststep;
int nproc;
)} *glob;
slave()
{
jstart {(mynum - 1) * chunk_size;

jend

- .

mynum * chunk_ size - 17

-

waitfor(});

while { ncycle < itmax } {

H

caicuvzhtjstart,jend,glob—>p,glob->u,glob—>v,glob—>cu,
glob->cv, glob->z, glob->h, £3dx, £3dy) ;

waitfor{}:

timetend(jstart, jend, glob->dudt, glob~>dvdt, gl ob->dpdt,
glob->z,glcb->cv, glob->cu, glob->h) ;

waitfor(};

/*’Calculate new values for u, v and p */
tstep(jstart, jend, glob~>u, glob->v, glob->p, glob->dudt,
glob->dvdt, glob->dpdt, glob->firststep, glob->tdt};

waitfor({);
if (mynum == 1) {
if { glob->firststep } |
/* Double tdt because all future steps are leapfrog */
glob->tdt = glob~>tdt + glob->tdt;
glob->firststep = 0;
}
glop->ncycle++
1

waitfor();

/* End of time step loop */

Figure 7.25 Shared Memory Slave Code

)

ERROR 1: L.OOP BOUND ERROR |
As in case study 2, debugging the codes begins by checking that the key variables have been

correctly initialised. Rather than define a series of assertions, it was decided that it would be
faster to manually set breakpoints in the sequential and parallel codes and then execute the

following series of comparison statements in the debugger:

compare $ci:u = $m::"glob->u"
compare $c::v = $m::"glob->v"
compare $ci:p = $m::"glob->p"
compare $c::psi = $m::"glob->psi”
compare $ci:uold = $m::"glob->uold”
compare $Sci::vold = Sm;::"glob->vold"
compare $c::ipold = $m::"glob->pold"

ion

n

These comparison statements indicated that there were no differences in the main data
structures. At this point it is clear that the data was cotrect prior to entering the time step
loop, and that etrors were introduced in one or more of the calculation phases. To natrow
down the location of the error, each calculation was checked in tumn looking for differences
in the results. First, the values of cu, cv, z and h wete checked after the call to
calcuvzh () using the following assertions:

assert $ec:iov@”cshallow.c™:71 = shallow($p::"glob->cv”@"pshallow.c":151)

assert S$cr:icufi”cshallow.c":71 = shallow($p::"glob->cu"@"pshallow.c":151)

assert $c::h@"cshallow.c":71 = shallow($p::"glob->h"@"pshallow.c™:151)
assert $c::z@"cshallow.c":71 = shallow{Sp::"glob->2"@"pshallow.c™:151)

No errors v-ere apparent after the first iteration. However, after the second iteration errors in
each of the variables was seen. These errors are shown in Figure 7.26 and were appearing in

only the top two or three rows of the arrays.

HEEN

Figure 7.26: Errors in cu, cv, h and z Respectively,

As the errors were introduced only on the second iteration, it was surmised that the errors
must have been cccurring in a subsequent calculation. Since the variables cu, cv, h and z
are derived from u, v and p, the values of these variables were now checked after the call to

tstep () using the following assertions:

assert $c::p@"cshallow.c":80
assert $c::;u@"cshallow.c":80
assert Sci:v@"cshallow.c":80

shallow {$p: :"glob->p"E"pshallow.c":170)
shallow {$p: :"glob->u"@"pshallow.c”:170)
shallow ($p: :"glob->v"3"pshallow.c":170}

oo

Again, errors were observed all three variables as shown in Figure 7.27, but this time they
occurred after the fint iteration and only in the top two rows. However this still did not

provide enough information to conclusively identify the cause of the error or its location.

Figure 7.27: Eoors in v, v and p Respectively

Since u, v and p are derived from dudt, dvdt and dpdt, it was still necessary to check

these after the call to timetend (}. This was done using the assertions:

assert Sci:dudt@¥gshallow.c":73
gssert $c:r:dvdtffeshallow.c":?3
assert $cr:dpdtf"eshallow.c":73

L]

i

shallow(sp: - "glob->dudt"@"pshallow.c*:155)
shaliow{$p::"glob->dvdt"@"pshallow.c" 1155}
shallow($p::"glob->dpdt"@"pshallow.c":155)

1 0

In this case, all three variables again exhibited errors in the top two rows after the first

iteration. 'These etrors are shown in Figure 7.28.

Figure 7.28: Emors in dud -, dvdt and dpdt Respectively

Using the evidence that had been gathered so far, it was now possible to conclusively identify
the timetend () routine as the source of the errors since all other potential locations had
been eliminated. Once the general location of the error had been cstablished, the next step
was to use the charactetistic visualisation to identify the precise location. Since the error was
manifest only in the first and second rows of the data structures (at least after the first
iteration), there was a high likekhood that the problem was located in the loop bound code.
Examination of the codes at this point quickly identified the error as an incorrect loop

bound. This is shown in Figure 7.29.

D e T —

e e 3 e U ey e 4 g

for{j = 0; j <= n; Jj++) | for(j = jstart; j <= jend; j++} {

ip = (j+1} & n; jp = (3+1) % n;

for (i = 0; 1 < m;y i++){ for (i = 1; 1 < my i++)(
ip = {i+l}) % m; ip = (i+l) % m;
dudt [ip) {3] = ...; dudt [ip] [3] = ...7
dvdt{i][ip) = ...; dvdt [il1ip] = ...7
dpat[i] (il = ...7 dpdt[1}{j]) = ...;

) }

1]
(@) Sequentinl (b} Shared Memory

Figure 7.29: Loop Bound Error in Shared Memory Code

While not particularly interesting in itself, this error again showed how a combination of
judicious use of assertion statements and analysis of the error charactenistic could quickly

identify the location and nature of an error.

CONCLUSION

This chapter has presented a series of three case studies that examine the use of relative
debugging to find errors in parallel programs using a range of different parallel architectures.
The case studies show that relative debugging works equally effectively for data parallel
programs, and for programs that have been designed to use distributed memory and shared
memory architectures. A key feature of the GUARD debugger is that it allows a user to
debug programs developed using three completely distinct parallel architectures within the

same debugger.

In addition to suppott for 2 range of parallel architectures, a number of common themes

emerge from the case studies.

* The iterative refinement technique is equally effective across different architectures, and

is the primary method for locating error regions.

¢ Error characteristics can provide a useful tool for identifying specific errors, and can be

used to trace an error to its source.,

¢ The charactenstics can change as errors are located and corrected, but this does not

affect the debugging process.

® Observing changes resulting from varying the number of processes is a useful technique

for isolating errors.

T T T I

e Maps provide an effective mechanism for hiding data distribution and other data i

transformations.

¢ Minor coding errors can result in highly visible differences in variables, cven thought the i

absolute magnitude of the differences is small.

e Irror tolerances can be used to focus on the most significant errors first, followed by less

significant errors later.

Each case study required the investment of considerable time and effort to debug all the
errors -that had been introduced into the codes as a result of the porting process. Clearly,
many of the errors could have been located using traditional debugging practices such as
instrumenting the code, or by employing existing parallel debuggers. No direct comparison
was performed with these techniques. However the experience gained here suggests that
relative debugging was able to provide an additional level of detatl that would not ordinanly
be available, and that this resulted in a faster and mere efficient debugging process than

would be possible using traditional debugging techniques.

7-25

Chapter &
FUTURE DIRECTIONS & CONCLUSION

The current version of GUARD clearly demonstrates that the technique of relative
debugging is a powerful tool for locating errors in parallel programs. As a research prototype
however, the development of GUARD has focussed on a number of core technologies.

These have included:
¢ a dataflow engine;
® an ar;hitecture independent data format,
e 2 data transformation/mapping; and
@ 2 client/server architecture.

Although these core technologies combine to produce a powerful debugger, there are a
number of areas that would benefit from further rescarch and development. This chapter
examines a number of enhancements that could be added to the current implementation in
order to increase its functionality and usability. The final part of this chapter is devoted to

concluding the dissertation.

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

Currently, GUARD exists as a stand-alone, command-line debugger. While 2 number of
similar debuggers have gained wide acceptance, most notably Cygnus’s GDB [66], the trend
is to provide debuggers as part of a fully integrated development environment. IDEs offer a
number of advantages over stand-alone tools, such as a homogeneous user interface and a
simplified development cycle [46]. Research is currently underway to integrate GUARD into
Microsoft’s Visual Studio IDE.

Parallel debuggers also benefit greatly from the use of a graphical user interface, as is
provided in many IDEs. Since parallel debuggers are generally dealing with multiple
processes (and sometimes hundreds of processes), the control of these processes becomes a

significant issue. A GUI provides the ideal mechanism for this purpose. In addition, the

8-1

user may wish to examine or modify the code and data from many processes simultancously,

and the GUI provides the most natural environment to facilitate this interaction.

MAPS/ TRANSFORMATIONS

GUARD is unique in its ability to model data distribution and transformations that occur
when serial programs are ported to parallel architectures. However, in the current
implementation, both the distribution and transformation of data must be specified using a
simple, low-level command language. One drawback with this technique is that it is difficult
to specify complex mappings. This is because the user must have a detailed understanding of
the mapping that has been used, and must produce what is in effect a formal specification of
the mapping, A second drawback is that the mapping language is inherently fragile. That is,
minor coding errors can lead to major changes in the final specification. The consequences
of such mapping errors are that it may become difficult or impossible to locate the original
program ertrors, or that ‘spurious’ etrors may be introduced. A number of solutions are
proposed to overcome these difficulties, however future researchers would also be advised to
draw on the experiences of the formal specification community. A library of common
mappings could be provided so that the user is not always required to formulate a mapping
prior to beginning the debug session. Also, where mappings have been defined for unusual
decomposttions or translations, a mechanism for storing these mappings i the library for
future use could be provided. Map creation could also be facilitated, through the use of
either a semi- or fully automated analysis system. A semi-automated system could provide a
graphical environment for specifying maps, allowing the user to model and test the
decomposition or transformatton wnteractively. A fully automated system could perform

code analysis on the serial and parallel codes to determine the required mapping.

ASSERTIONS

Assertions, like maps, are also implemented in a very basic manner, which raises 2 number of
problems for the user. Despite its power, the comparison of data by specifying variable and
breakpoint information in assertion statements is a very “low level” approach. It relies on
the programmer making sensible choices about the location from which dat will be

extracted.

In order that data can be compared, it is not only important that the programs are
functonally equivalent at this point, but that breakpoints aren’t inserted at locations where

the flow of control is disrupted or data is in an indeterminate state. This issue is particularly

8-2

_.'r!-__ e
|
}

important for arbitrary parallel programs incorporating distributed processes and/or
multithreading and requires further investigation. Moreover, relative debugging cannot
currently be applied to find timing crrors, which are a common cause of failure in task
parallel programs. In fact, the insertion of data gathering breakpoints, as required by a
relative debugger, alters the timing of the programs and may mask or highlight temporal
problems (the “probe effect” [25]). 1t might be possible to combine the assertion constructs
used here with data gathering techniques that are not as invasive as the current debug server,

however, this also requires further investigation.

A user currently formulates assertions by examining the programs under consideration and
by following the data-flow of the variables manually. This information is then used to create
the assertions. However, it would be much simpler and less error-prone to build assertions if
an interactive browser could present the data-flow of a program graphically, and in particular
show the define and use points for variables. Such a tool set would need to be integrated with

some form of IDE.

VISUALISATION

Visualisation of data errors alsg presents a challenge to the debugger user. Cutrently the
results of comparison operations are exported into an intermediate file. This data must then
be transformed into a graphical format for visualisation. Although GUARD provides tools
to facilitate this process, it is still relatively cumbersome and time consuming. The obvious
approach would be to provide 2 visualisation engine in the debugger itself, perhaps as part of
; a GUL. Not only would this streamline the debugging cycle, it would give the visualisation
engine access to data structure and mapping information that it would not normally have.
This information could be used to enhance the display format, perhaps providing a “drill
down” data hiding facility to simplify the display of large or complex data structures.

As discussed in Chapter 3, there 15 also some evidence to suggest that visualisation of

comparisons, particularly using 2-D and 3-D representations, provides the user with a means

of characterising patterns of differences. This has been highlighted in a number of previous
studies 13,69] where characteristic patterns have been able to be used to identify specific types
of behaviour and consequently the identification of sources of etrors. While it is possible to
make certain generalisations about the nature of the patterns in these situations, further
research is still needed if this technique is to become the basis for formulating deductions

about the nature of general classes of errors.

ComrLEX DATA TYPES

Currently, user-defined assertions, the data mapping algebra and the visualisation facilities
provided by GUARD only support scalar data types and multi-dimensional arrays. AlF
provides some support for structured data types, such as the C struct or the Pascal
record types, but this is limited to simple manipulation and does not support linked lists or

recursive data types.

Clearly there is scope to extend the relative debugging paradigm to more complex data types
such as structures, lists and trees. However a number of issues still need to be addressed.
For example, how exactly is a linked list compared? Does it mean that each element contains
the same values, but the link pointers can differ? What if the linked list contains a pointer to
an earlier element, how should this be compared? In addition, visualisation of these complex
data types can also be difficult and time consuming, ‘The utility of GUARD could be
enhanced significantly from further research into these areas.

CONCLUSION

Relative debugging has introduced a new paradigm into the sphere of traditional debugging
techniques. Unlike other debugging methods, relative debugging is language and machine
independent, and works by comparing the divergence of key data structures in
simultaneously executing programs. This allows programmers to focus on finding the
location of an error rather than trying to understand how the program works. Relative
debugging combines the unique ability to utilise the inherent correctness of a reference code
for determining errors in a suspect code, with many of the tools found in traditional

debuggers.

The work that has been undertaken demonstrates that this technique can e applied equally
well to parallel programs. This was not obvious from the outset. Programs ported to parallel
computers undergo significant modifications in order to take advantage of architectural
teatures, often altering key data structures in complex ways. In addition, early versions of
relative debuggers were limited to single process parallel codes due to inherent limitations of
the implementations, so demonstrating the technique in real situations was difficult. It has
only been after considerable effort was invested to achieve a number of key advances that the

applicability of the technology to parallel codes has become apparent.

A range of key achievements has been accomplished in order to develop a parallel relative

debugger. These achievements, culminating in the implementation of the GUARD

debugger, include:

the introduction of dataflow techniques as a method to control the relative debugging

Process;

the development of a general purpose architecture independent data format that,
unlike other data formats, can be used to perform in-core arithmetic, logical and

comparison operations;

the ability to describe data decomposition and transformations in a machine-
independent manner, and for the debugger to use that information in petforming

data comparisons;

the ability of the debugger to work with different parallel architectures including data

parallel, shared memory and distributed memory architectures; and

the extension of a client/server architecture to support the relative debugging

L]

technology.

The implementation of GUARD described in this thesis provides a robust platform for

relative debugging, and with this as a basis, has extended the relative debugging technique to

parallel computers. The effectiveness of this technology has been demonstrated by

presenting three case studies. Each case study shows how relative debugging can be used to

efficiently locate errors in a program that has been developed using one of three traditional

parallel programming paradigms: data parallel, shared memory and distributed memory. The

case studies show how important information can be derived from a range of sources,

including:

the location at which differences occur;
in which data structures differences are visible; and

the patterns that are observed in these differences.

8-5

All this information can be utilised to quickly identify a suspect code region using iterative

refinement techntques. On this basis, it is clear that that this work has made a major
contribution to the pool of debugging techniques that are available to aid programmers in the

evolution of parallel codes.

8-6

Appendix A

GUARD USERS MANUAL

INTRODUCTION
GUARD is a relattve debugger. Unlike other debuggers, GUARD allows programmers to
compare data from programs as they are executing, and then use this information as an aid to

identifying the location of errors.

GUARD is also a conventional interactive parallel debugger. It can be used to debug parallel
and sequential programs using normal interactive commands, such as setting breakpoints and
displaying program state. Because GUARD is a parallel debugger, it will allow commands to
be applied to sets of parallel processes as well as a single sequential program.

GUARD’s coramangd set is derived from GDB, since this debugger is currently used to
provide the low-level debug services. The syntax that GUARD uses has also been heavily
influenced by the High Performance Debugging Forum’s HPD standard.

DEFINITIONS 8 SYNTAX
Commands in GUARD consist of a keyword followed by an optional number of arguments,

as in:

command farg1] farg2] ...

Arpuments can consist of keywords or expressions.

Expressions are comprised of the usual C-like operators, constants, internal variables and
: program variables and are evaluated locally by the client. Text enclosed in quotes “” is
H evaluated as an expression on the server, wiing a syntax defined langrage being debngged.

GUARD supports the use of internal variables for storing temporary values. These variables
are denoted by a dollar sign followed by a name, for example $var. Internal vartables can be

referenced before they are defined, but will always return void.

When programs are debugged by GUARD, the executing processes are managed using

process sets. The set “all” contains all processes that are currently being debugged by

A-1

default. Users can create new sets that contain arbitrary combinations of processes that the
user wishes to control as a group. A process set can be selected as the “current set” (using
the “focus” command), and subsequent commands will be automatically applied to all

processes in this set.

Variables in a target program are referenced using a syntax consisting of an optional process
specifier and an identifter or server expression separated by “: :”. If no process is specified
then all processes in the current set are used. For example to refer to the variable var in
process $s the program variable $s::var would be used. If var was a pointer to a
structure, then this must be dereferenced by evaluating a server-side expression, such as

$s::“"var->field”.

If an internal or target program variable is an array, then elements can be referenced using
standard C array syntax, such as $s::var (3} [4]). GUARD also supports the notion of
slices. An array can be sliced by specifying an array index as a range, such as

$siivar([3..1011[4].

USAGE
GUARD 1is a client/server debugger. The GUARD client must be started before the

debugger can be used. The following command is used when starting the debugger under
UNIX:

guard [program [args]]

If arguments are supplied to the guard command, a single program will be started under

debugger control, much tise sazne way as the GDB command would.

Once the debugger is started, the user will see an introductory message, followed by a

command prompt:

GUARD-2000 Parallel Relative Debugger
Copyright {c)} 1996-2000 by Mconash University

dbg all>

At this point, the user can issue commands to the debugger.

PROCESS INVOCATION
Process identifiers are first class debugger variables. Processes are declared using the
invoke command which specifics the name of the executable and the number of processes

to create. The syntax of the invoke command is:
invoke <decl> “ecommand” [onh “host?] [using “arch”]

<decl> is a list of one or morc internal debugger variables which can be either scalars or
arrays of muitiple dimensions. The number of processes started is calculated from the

number of scalar variables combined with the number of elements in each array in the list.

‘The following example starts a sequential code called “progl” on machine “host1™:

invoke Sser “progl” on “hostl”

The process identifier $ser can then be used to refer to the sequential process. The next

example starts a 5 process parallel code called “par” using the MIPICH parallel architecture:

invoke $master,$slavel[2]{2] “par” using “mpich”

»

Parallel processes arc assigned to the process identifiers in order, so $master refers to the
first process, and the remaining processes are assigned to elements of the two-dimensional

array $slave([2]([2].

COMPARISONS AND ASSERTIONS

Comparisons and assertions are commands specifically designed for relatve debugging. The
comparison command is used to compare data between two programs interactively. For
example, if the processes Sprocl and $proc2 are stopped at a breakpoint, the user might

issue the following command to compare variables varl and var2:

compare Sprocl::varl = §proc2::var2

If the display mode is set appropriately, then differences in these variables will be displayed

immediately to the user.

Assertion commmands are employed when the user wishes to deftne a set of conditions about
the programs before they are executed. Assertions are encapsulated using the “graph”
command, and take a special form of variable reference that includes a breakpoint reference

consisting of a filc name and line number. An assertion comparing the variable varl from

filel.c at line 34 of the process $pl with the variable var2 from file2.c at hine 55 of
the process $p2 would take the form:

graph §g
assert $pl::varl@*“filel.c”:34 = 3p2::var2@“file2.c”:55
end
Entering these commands in the debugger will create a graph called $g. Issuing the
command “start $g” will then instruct the debugger to execute the graph. This results in
breakpoints being inserted at the appropriate locations and then the processes started. When
the breakpoints are reached, the debugger will extract the contents of the variables and

perform the comparison.

DEBUGGER COMMANDS
The following list describes the commands available in GUARD. Letters shown in bold

correspond to the abbreviation for the command.

Commands are classified into three groups. These are:
o prucess independent — the command does not interact with a process;

* process targeted — the command interacts with a process, and at least one process must

have been invoked: and

o press optional — the command may interact with a process, depending on its

arguments.

Immediate mode commands are executed as soon as they are issued, and generally result in
communication with the server. The “set” and “info” sub-commands are also immediate
mode commands. Deferred mode commands may only be 1ssued when the debugger 1s in
deferred mode, and are collected by the debugger and are only processed when the “end”
command is encountered. The three commands: “graph”, “map” and “trans” switch the
debugger from immediate to deferred mode. The “end” command switches from deferred

to immediate mode.

INTERACTIVE MODE COMMANDS

assign target expr {-force]}
Process Oprional. Assign the value of an expression defined by expr to target. The target must evaluate
to ant l-value that is gither an internal vadable or a program vadable. If target is the name of an
internal variable that does not exist, a new variable is created automatically.

break [line|funcladdr]

Process Targered. Set a breakpoint in all processes in the current process set. The location of the
breakpoint can be defined as a line number line, a function name func or an address addr.

compare exprl = expr2
Process Opiional. Compare (subtract) the value of expression expr? with the value of expression expr2.
The values must be the same size and shape. For complex data types such as arrays and structures,
the comparison is performed on each element. The output of this command depends on the settings
of the display, ospat and error vadables.

cont [n]

Process Targered. Continue execution of all processes in the cutrent process set from a breakpoint. I »
is specified, then the debugger will stop on the #th breakpoint.

create $var[idiml] [dimZ]..]

Process Independent. Create an intemal vadable. If dimf, dim?, etc. are supplied then the internal
vaniable will be an army of the specified rank and shape.

defset pset pl [p2 ..}
Process Independens. Define a process set called psef containing the processes p, p2, etc.
delete [bpl bpZ ..}

Process Torgeted. Delete the list of breakpoints specified by £97, 4p2, etc. in the current process sct. If
no arguments are specified then all breakpoints will be deleted.

doewm [n}

Process Targeted. Move down the call stack by # frames in all processes in the current process set. If
no argnment is supplied then move down one frame.

fortus [pset]

Process Indgpendent. Change focus to process set pse. Subsequent process targeted commands will
refer to the processes in this set.

function func{{argl,..]} = expr

Process Indspendent. Define a function (macro) called finc The expression ogr can contain format
arguments that are substituted by actual arguments supplied to the function. Recussion is not
aliowed.

graph name

Process Indspendent. Define a dataflow graph called same. Switches to defecred mode until the end
command i3 encountered.

A-5

halt

Process Targeted. Halt all exccuting processes in the current process set. This is the equivalent of
sending a SIGINT 1o the process.

help {command]

Process Independent. Display help information on the command command, 1f no atgument is supplied
<hen alist of available commands is displa-ed.

info sub-command

Process Tudgpendent. Display information specified by s«b-commrand

invoke var-list program [args] [on host [user passwd]] [using arch]
Progess Independent. Invoke a program called pmgram with arguments args.

If on is supplied, then the program is exccuted on the remote system bost optionally suppling wser
and passuid for authentication.

If using is supplied, the program is started under one of the parallel run-time systems specified.
These can be mpich, pee or p4.

For sequential programs, rar-fist is just a scalar varable. For parallel programs, rer-#s must be a list
of one or more scalac variables or arrays. Parallel process tasks are assigned to each variable or array
in tumn, starting feom the left. The total of the number of scalars and the ranks of each array
determiie the number of processes started.

kill
Process Targeted. Kill alt executing processes in the current process set.

list [-|[file:}lineiffile:]funcladdr}{,{file:}lline|{file:]funcladdr]

Process Targeted. List lines of all processes in the current process set.

123

With no arguments, list ten more lines after the previous listing. If “-” is specified, list ten lines

before the previous ksting,

If one atgument is supplied, this specifies a line around which ten lines are listed. If two arguments
are supplied, these specify the starting and ending lines tc list,

map name({proc::var

Process Independent. Define a data transformation map called same. The mapping will be supplied with
an array of processes proc and a distubuted vanable gy, Switches to deferred mode until the end
command is encountered.

next [nj}

Process Targeted. Skip to next statement of each process in the current process set, ignoring subroutine
calls. If # is supplied, skip next » statements.

print expr
Prowess Optional, Priat the value of expr for each process in the curreat process set. Expr can contain
any combination of internal variables and program variables.

quit
Process Indgpendere. Quit the debugger.

release preg

Process Indspendent. Release an invoked program from the debugger. Shuts down the debug servers for
all processes associated with the program and releases the intemal variable prog.

restart graph
Process Indegpendent. Restart a graph. All processes referenced by the graph are restaried first

run fargs}

Process Targeted. Start executing all processes in the current process set. args are passed to the program
as command line arguments.

set sub-command

Process Independent. Set information specified by swb-command.

source filename .

Progess Independent. Read commands from the Ble specified by flename.
start graph

Process Independeny, Start execution of the graph specified by grapb.

status

Process Targeted. Print the status of df processes in the current process set.

step [n]

Process Targeted. Skip to next statement of each process in the current process set. Will step into
subroutine calls. I # is supplied, skip next » statements.

trans name(var)
Process Indgpendent. Define a data transformation function called same. The data structure to be

transformed will passed as the argument zar Switches to deferred mode until the end command is
encountered.

up {nj

Provess Targered. Move up the call stack by » frames in all processes in the current process set. If no
argument is supplied then move up one frame.

version

Process Independenr. Display the debugger version.

viewset [pset]

Process Independens. Display the processes associated with the process set psef. If no acgument is
supplied, display all process sets,

whatis expr

Process Targeted. Display the data type of the expression eypr for cach process in the current process
sel

where [n}

Process Tangered. Display the current stack frames for all processes in the current process set. If 7 is
supplied, only the innermost » frames are displayed. If » is negative the outermost # frames are
displayed.

SET SUB-COMMANDS

set async = on|off

Defardr on. Turn asynchronous mode on or off. This only affects interactive mode, snd determines
if the debugger waits for each command to complete before accepting additional commands.

set dfmode = default|synclasync

Set the dataflow mode to synchronous or asynchronous. This changes the dataflow graph that is
generated using the graph command so that it operates in one of these modes. The syachronous
mode is default for assertions that refer to independent processes, while the asynchronous mode is
the default for assertions that tefer to the same process.

set display = textjaif|hdf!hdfS5|ms

Defanle text. Set the display format for assertions. In text mode, any differences are displayed as
text at the users terminal. In aif mode, differences are output in architecture independent format
(AIF). In hdf and hdf5 modes, differences are output in the hierarchical data format (HDF)
version 4 or version 5 respectively. In ms mode, the differences are displayed in a GUI environment
runming under Microsoft Windows (experimental).

set error lower upper relativelabsolute

Difawit “0.0 0.0 absolute” Set the error kimits for assertions. Differences below lner are
ignored. Differences between fuer and upper are displayed using the current display mode. Any
differences above spper will halt the dataflow interpreter. The relative and absolute modes
are used to specify if uerand spper ace relative or absolute limits respectively. In relative mode,
the difference is first divided by the maximum of the two values being compared.

set ERROR_CHECKS = max|normalimin

Defenit normal. Sets error checking mode to max, normal or min. This determines if the
debugger prompts before a potentially dangerous action is taken, prompts only before a potentially
fatal action or warns otherwise, or ignores potential danger respectively.

set EVENT INTERRUPT = onlofl

Defanlt on. Determines whether program events are detected and reported to the user as soon as
possible, or deferred until the user has completed typing a command.

set

set

set

set

set

set

set

set

set

set

set

set

set

set

EXECUTABLE_PATH = path

Defanls . / + $PATH”, In ocder to find the location of an exccutable specified using the invoke
commang, the debugper searches the curent directory, then all the directories included in the
executable search path.

force = conloff

Default off. Determines whether subsequent assertions will copy the value from the LHS variable
into the RHS vanable after the assertion is exccuted.

halt = onloff

Defaniz on. Determinces if processes are halted when the dataflow interpreter weeminates.
logfile = filename

Default empty. Specifies the name of a file to send logging entrics.
logging = onloff

Defanls off. Turns dataflow event logging on or off.
MAX_LIST = lines

Default 20. Specifies the number of lings that are displayed using the 1ist command.
MAY_LEVELS = levels

Defanlt 20. Specifies the maxtmum number of call stack frams that are displayed using the where
command.

MAX HISTORY = length
Defauis 20. Specifies the length of the command history that will be maintained.
MAX PROMPT = length
Default 20. Specifies the maximum length of the command prompt.
MODE = preocessesithreadsimultilevel
Defantt processes. Defines if the debugper is capable of debugging multiple-process single
thread, single process multiple-thread or multiple-process muluple-thread programs respectively.
Currently only the processes mode is supported.
output = filename
Default empuy. If detined, specifies a file to which output from assertions is sent.
PROMPT = prompt
Defawlt *“guard S$ptset> ”. Sets the current prompt.
SOURCE_PATH = path
Default empty. Defines where the debugger will look for source files associated with the executable.

VERBOSE = err|warniall

Dejunlt warn. Defines the level of debugger diagnostics. These levels are err, warn and all,
which correspond to show error messages only, show warning messages and normal command
output and show maximum information respectively.

A9

INTO SUB-COMMANDS
Each set sub-command has a cotresponding info sub-command to display the current

setting. In addition, the following info sub-commands are available.

info globals
Process Targeted. Display a list of the global symbols for each process in the current process set.
info map [name}

Process Independent. Display information about the definition of the map wawe. If no argument is
supplied, information on all maps is displayed.

info process [pset]

Process Independent. Display information about the process set pse. If no argument is supplied,
information on all process sets is displayed,

info trans [name}

Process Indgpendent. Display information about the definition of the translation name. If no argumeat is
supplied, information on all translations is displayed.

DEFERRED MODE COMMANDS

assert varl =i== var2

Assert command only. Assert that vadable rari is equivalent to variable #ar2. Variables are specified in
the format proc: t var@fle: fue to denote a vadable calied var ot line number 4wz in file e from
executing process proc.

define indexi{a,i,u,l) = expr

Map command enly. Define a function that descabes the mapping of indices from a seral array to a
parallel arrays. The argument i is the current index value, a is an acray of index values, u is an array
of index upper bounds and 1 is an array of index lower bounds.

define procis,i,u,l) = expr

Map command onfy. Define a function that describes the mapping of tdices from a serial array to set
of processes. The argument i is the current index value, a is an array of index values, u is an array
of index upper bounds and 1 is an array of index lower bounds,

define func{i) = expr

Trans wmmand only. Define a function that describes traaslation of elements of a vector. The
argument 1. is the current index value.

end

Al wmmands, Finish deferved mode command.

A-10

Appendix B

DEBUG CLIENT API ROUTINES

The following routines make up the debug client API library. Each routine returns a value
that depends on its function, but is generally an integer or a pointer. For routines returning
an integet, an error is indicated by a value of ~1. For routines returning a pointer, a NULL
pointer indicates an error. The API provides the DbgError ()} and DbgErrorsStr ()

routines to find out more detail about the exact error that occurred.

Most routines operate synchronously, with the exception of DbgGo (} and DbgStep ()
which operate asynchironously. Prior to calling the asynchronous routines, the appropnate

handlers must be installed using the DbgHandle* () routines.

DEBUGGER INITIALISATION
These routines are used to perform the necessary initialis.uon and shutdown operations for

the client/server protocol.
int DbgInit(char *proto)

Initialise the debugger. Must be - .ed once prior to any other APl routine:. The
protocol that is used between debug client and server 1 specified using the proto
argument. Allowable values “socket” and “rpc”. Retumns 0 on success or -1 on
fatlure.

int DbgFinish (void)

Terminate th= debugper. Must be called once after all calls to other API routines.

Returns 0 on success or -1 on failure.

PROCESS MANAGEMENT

These routines are available to manage processes in the debugger. This includes routines for
creating and removing, conirolling the execution of, and finding the status of processes
under the control of the debugger. When 2 process is created, 2 process handie is returned.

"This handle is then used to refer to the process in any subsequent operations.

void *DbgInvoke{ char *prog, char **args, int nproec, char *user,
char *passwd, char *host_or_arch, char **env,
char *backend)

Invoke a program to be debugged. The program name and command line arguments
are supplied as prog and axgs respectively. For parallel programs, nproc specifies
the numbet of processes to start, and host_or_arch is used to determine the
parallel architecture to use. For sequential programs nproc is set to 1 and
host_or _arch can be used to specify the name of a remote host on which the
program will be started, or NULL for the local machine. The user and passwd
arguiments can be used to supply authentication information if it is required. The
env argument is used to pass local environment information to the remote
processes. The backend agument is used to select a backend debugger. Currently
only “gdb” is supported. On success a process handle is returned which can then be

used by other routines to refer to this process. On failure, a null pointer is returned.

void *DbgProc{void *proc, int pnum)

If the process handle proc refers to a parallel process, this routine will retum a
handle to the process identified by pnum. Returns a process handle on success, or 2

null pointer on failure.

dyad_t DbgIsActive(void *proc)

Retumns true if the process refesred to by process handle proc has a server and is

able to receive commands.

int DbgKill{void *prcc)

Kill the process referred to by the process handle proc. After this command, the
orocess is no longer being debugged, though the server is still running. Returns 1 on

success or (on fatlure.

int DugGo{void *proc)

Start the process referted to by the process handle proc running. This routine can
be used to initiate execution (as in the “run” command) or continue execution after a

breakpoint (as in the “cont” command). Returns 0 on success or -1 on failure.

B-2

int DbgStep(veid *pree, int count, int step_in)

Single step the process referred to by the process handle proc one source line. If
count is greater than one, then count-1 lines will be skipped. If step_inis non-
zero then the command will step into subroutine calls. Otherwise subroutine calls

will be treated like a single statement. Returns O on success or -1 on failure.

int Dbginterrupt (veoid *proc)

Interrupt the running process referred to by the process handle proc. Retumns the
process to a state ready to accept 2 new command. If the process is not running then

it will have no effect. Returns () on success or -1 on failure.

int DbgQuit (void *proc)

Shut down the server debugging the process referred to by proc. Returns @ on

success or -1 on failure,

int DbgQuitAll (void)
Shut down all servers in one operation. This is equivalent to issuing DbgQuit ()
commands for each process being debugged. Returns O if all server shut down

successfully, or -1 otherwise.

DEBUG OPERATION
These routines are vsed to perform a range of operations on processes being debugged. The
first argument of all these commands is a process handle that refers to the process on which

the operation is to be performed.

char *DPbgGetType({void *proc, char *expr)

The expression expr is evaluated by the process referred to in proc. If successful,
an AIF type descriptor for the result is returned. If an error occurs, NULL is

returned.

ATF *DbgEvalExpr{void *proc, char *expr)

The expression expr is evaluated by the process referred to in proc. If successtul,
the tesulting value s converted to AIF and returned. A null pointer is returned on

CITOfL.

B.3

int DbgSetVar(veid *proc, char *var, AIF *val)

Sets the program variable vax to the value represented by val. The routine
attempts to convert val if its type is different from var or it contains a value that is

not representable on the remote host. Retumns 0 if successful or -1 on fatlure.

dbgbp_t *DbgSetLineBreak{veid *proc, char *file, int line)

Set a breakpoint at line number 1ine in the source file £ile of the process proc.
If successful, returns a structure containing information about the breakpoint. On

failure, returns a null pointer.

dbgbp_t *DbgSetFuncBreak(void *proc, char *file, char *func)

Set a breakpoint at the first line of the function (or subroutine) func in the source
file file of the process proc. If successful, returns a structure containing

information about the breakpoint. On failure, returns a null potnter.

int DbgDeleteBreak{void *proc, int bpid}

¢lete the breakpoint identified by bpid. Breakpoints are managed on a per-process
basis. The breakpoint identifier is available in the bp_id field of the dbgbp_t

structure. Returns € on success or -1 on failure.

dbgbp_t *DbgShowBreak(void *proc)

Lists all the breakpounts set in the process proc. If successful, retumns a linked list of

breakpoint information. Returns a null pointer on failure.

dbglist t *DbgList(veld *proc, char *loc}

List the source lines of the current file for process proc. If successful, returns a
linked list of source lines. If loc is empty or refers to a single location 10 lines are
returned. If loc is a range, retumns all lines in the range. Returns a null pointer on

€I1ror.

int DbgBetArgs (void *proec, char *args)

Sets the command kine arguments that are passed to the executable when it is first

started using the DbgGo () routine. Retumns 0 if successful or —1 on error.

dbgframe_t *DbgMoveFrame {void *proc, int count, int dir)

Move the cutrent call stack frame. If count is greater than 1, specifies the number
of stack frames to move. The parameter dir sets the direction of movement. If dir
is set to 1 the routine will move up the call stack, otherwise the routine will move
down the call stack. On success, returns a structure describing the current stack

frame. Retumns a nuil pointer on fatlure.

dhgframe_t *DbgShowFrame (void *proc)

Show each frame of the current call stack for the process proc. On success, returns

a linked list of call stack frames. Returns a null pointer on error.

dbgloc_t *DbgGetLocation(void *proc)

Find the current breakpoint location for the process proc. On success, the
dbgloc_t structure provides the location information. Returns a null pointer on

€rror.

dbgvars_t *DbgGetVars (void *proc, char *file!

Returns the global symbols that are defined in the source file £ile. On success a
linked list of dbgvars_t structures is returned containing the symbo! information.

Retums a null pointer on error.

NOTIFICATION

These routines are used 10 manage the asynchronous activities of the debugger. The first two
routines are normally called from within an event loop to manage the processing of debugger
events. The remaining routines are used to specify handler functions for specific types of

events that occur in the debugger.

int DbgWaitEvent (void *proc, int file, sigset_t *mask, int ncblock)

Wait for an event to occur. This routine is provided for compatibility with debuggers
that use a command-line interface. The £ile argument is the file descrptor that
user commands will be read from, or —1 if none. The mask argument is used to
specify a set of signals that will be masked dunng the call. If noblock is set to 1

then the routine can be used to poll for new events.

int DbgWaitBreak{void *prec¢, sigset t *mask)

B-5

Wait for a breakpoint to occur. Similar to the WaitForEvent () routine, but
specifically waits for a breakpoint to be reached. Must only be used after a

DbgStep () or DbgGo () command has been issued.

void DbgHandleInput(void *proc, void (*} (}handler, void *arg)

Handle input related events. This routine is used to set a handler for events that
result from the program being debugged requesting input from stdin. The handler
routine is set using the handler parameter. Any handler specific information

provided using the arg parameter will be passed to the handler when it is called.

void DbgHandleOutput {void *proc¢, void (*} ()handler, void *argq}

Handle output related events. This routine is used to set a handler for events that
result from the program being debugped sending output to stdout. The handler
routine is set using the handler parameter. Any handler specific information

provided using the arg parameter will be passed to the handler when it is called.

void DbgHandleSignal (int signal, void (*) (}handler)
Handle signals. This routine s used to set a handler for signals that are sent to the
client, Using this routine rather than the standard sign«: -outines ensures that the
debugger will manage all signals properly.

void DbgHandleEvent(void *proc, dyad_t (*} (Jhandler, void *arg)

Handle asynchronous events. This routine is used to set a handler for events that
result from issuing commands that operate asynchronously. The handler routine 1s
set using the handler parameter. Any handler specific information provided using

the arg parameter would be passed to the handler when it is called.

STATUS
These commands are used to find statas information about the debugger or the last debug

operation performed.

dbgstat DbgStatus({void *proc)

Obtain the status of the debug server.

void DbgError {void)

Print a description of the last error.

B-6

char *DbgErrorStr{dbgevent t *ev)

Return a string containing the last error associated with the event ev.

dbgbp_t

dbglist t

dbgframe t

dbgloc_t

dbgvars_t

dbgsig_t

Appendix C

CLIENT DATA TYPES

A structure containing information relating to a breakpoint. Includes

the following fields:

bp_id breakpoint identifier

bp_type type of this breakpoint

bp_location location of this breakpoint (dbgloc_t)

bp hits number of times this breakpoint has been reached
bp_stmt source line at breakpoint

bp cmds list of commands associated with this breakpoint

A structure used to specify a linked list of line numbers and
corresponding source lines. Includes the following fields:

list_lno the line number of this source line
list_line the source line

A structure used to specify a linked list of stack frames. Includes the
following fields:

frame_level the level of this stack frame
frame_loc the stack frame information

A structure representing a location in a source file. Consists of the

following fields:

loc file a source file name
loc_func a function name
loc_addr an address
loc_line a line number

A structure used to represent a linked list of vartable names. Contains
only one field:

var_name name of the vartable

A structure containing information relating to a ignal event.
Includes the following fields:

sig type the signal type
sig_func the current source line
sig_addr the current stack frame
C1 -

dbgstep_t

dbgerr_t

dbgevent_t

dbgstat

ATF

A structure containing mformation returned after a single step
operation. Consists of the following fields:

step_lno the current line number
step line the current source line
step_frame the current stack frame

A structure containing information relating to the last error that
occurred. Contains the following [ields:

err str a description of the error
err_errno the error number

A structure representing and event that has just occutred. An event
consists of a type and the data associated with the event.

The status of the debugger. Can be one of the following values:

DBGSTAT_INITIALISING the debugger is initialising

DBGSTAT WAITING the debugger 1s waiting for a command
DBGSTAT RUNNING the process is running

DBGSTAT STOPPED the process ts stopped

DBGSTAT DBGERR an errot occurred

DBGSTAT_INTERR an internal debugger error occurred

Data that has been converted to the architecture independent format.

C-2

P

Appendix D
DEBUG SERVER AP1

The debug server API library is divided into two parts: stub routines and utility routines. The
server stub routines are called when the server decodes a client debug request. The debugger
backend must provide a series of routines that match up with each of the stubs, and that
perform the appropriate debug operations. The utility routines are used by the debugger
backend to aid in the processing of debug requests.

STUBFKﬁﬂXNES

Stub routine arguments are obtained by decoding the client request and extracting the
argument information. Each stub routine returns a debugger event of type dbgevent_t *.
The contents of this event must be generated by the associated backend routine. The
following is a list of stub routines, their associated arguments and a description of the

function the routine must perform.
dbgevent t *DbgDeleteBreak(int bp)}

Delete the breakpoint identified by bp. Breakpoints are numbered starting from 1,
so this value must be mapped to the internal breakpoint identifier used by the
backend debugger.

dbgevent t *DbgEvalExpr{char *expr)
Evaluate the expression specified in expr and return the result in AIF format.

dbgevent t *DbgGetLocation(veoid)

Return the current breakpoint location for the process. A locaton consists of a

source file name, and a line number, function name or address.
dbgevent t *DbgGetType(char *var)

Obtain type information for the named object var. Currently returns the AlF type

description.

dbgevent_t *DbgGetVars(char *file)
Returns a list of the global symbols that are defined in the source file file.
dbgevent_t *DbgGo (char *host, int cb}

Start the process running. The combination of host and cb are used to provide a

protocol specific communication point for event callback.
dbgevent t *DbgInterrupt(char *host, int cb)

Send an interrupt signal to the cutrent process. The combination of host and cb

are used to provide a protocol specific communication point for event caliback.
dbgevent t *DbgKill(void)

Terminate the process being debugped. The server remains operational after thi:

command.
dbgevent t *DbgLastBreak(void)

Return breakpoint number of the last breakpoint reached.
dbgevent t *bbgList(char *str)

List the source lines of the current file. The argument str specifies the range of

lines to list.
dbgevent_t *DbgMoveFrame(int count, int up)

Move up or down the call stack by the number of frames specified in count. If the

argument up is non-zero, then the direction is towards the calling frame.
dbgevent_t *DbgQuit (void)

Shut down the server.
dbgevent_t *DbgSetArgs(char *args)

Set the arguments that will be passed to the process the next time it is run.

D-2

dbgevent t *DbgSetLineBreak{char *file, int line}
Set a breakpotnt at line number 1ine in the source file file.
dbgevent_t *DbgSetFuncBreak(char *file, char *func)

Set a breakpomt at the first line of the function (or subroutine) func in the source

file file
dbgevent_t *DbySetVar(char *var, AIF *data)

Set the variable identified by var to the value specified by data. Since data is in AIF
format, it must first be converted to the tatget format before this operation can be

completed.
dbgevent t *DbgShowFrame (void)
Retum a list of the current call stack frames.
dbgevent_t *DbgStep (int count, int in, char *host, int cb)

Single step the process. The argument count specifies how many breakpoints to
skip. If the argument in ts non-zero then the process will step into the next
subroutine call. 1f in is zero then the process will step over the next subroutine call.
The combinaton of host and cb are used to prowide a protocol specific

communication poiat for event callback.
dbgevent t *DbgStatus(void)
Obtain the status of the debug server.

UTILITY ROUTINES
The following routines provide a number of _niscellaneous services for use by the debug

setver backend routines.
int DbgReadvyForCmd {void}
Check if the debugger 1s 1n the correct <% te to accept a2 new command. Returns non-

zero if commands are ready to be acu. .ed.

D3

int DbgStopped(void)

Check if the process being debugged is in the stopped state. Returns non-zero if the

process is stopped.
dbgstat GetStatus(void}

Get the cument status of the debugger. Possible values are
DBGSTAT INITIALISING, DBGSTAT WAITING, DBGSTAT _RUNNING,

DBGSTAT_STOPPED,DBGSTAT*DBGERR,mKiDBGSTAT_INTERR.
void SetStatus(dbgstat stat)

Set the debugger status to the value of stat.
void ResetWDT (void)

Reset the debugger watchdog timer. If this timer expires, the debug server will
automatically shut down. This routine must be called regularly to prevent this from

happening.
void Shutdown (void)

Shut the server down. This routine is called once the process being debugged has

terminated and all cleanup actions have been taken.

void AsyncCheck(dbgevent_t *(*rtn) (), dbgevent_t *event,
char *host, int prog)
Cause an event to be sent to the client asynchronously. At some point, the routine
rtn will be called with event supplied as its argument. The routine must return an
event, which will be sent back to the client. The arguments host and prog specify
the client callback communication point. If rtn is ASYNC_FORCE, the argument

event will be sent directly to the client instead.

Appendix E

ARCHITECTURE INDEPLNDENT FORMAT API

The following routines make up the AIF API library. Fach routine retums a value that
depends on its function, but is generally an integer, a pointer to an AlF object or some other
type of pointer. Routines returning an integer normally do so to indicate the success or
failure of the operation. In thesc routines an error is indicated by a value of —1. For routines
returning a pointer, a NULL pointer indicates an error. The API provides the ALFExror ()
and AIFErrorStr () routines to find out more detail about the exact ervor that occurred.
Routines that return a pointer to an Al object automatically allocate memory for that object,
It is the callers responsibility to release memoty for the arguments and the result using the

AIFFree () routine.

CONVERSION
Conversion routines arc used to convert data in target format to and from the architecture

independent format. These routines require that the caller knows the type of the object

1Y

being converted.
ATF *IntToAIF(int val)
Convert an integer in target format into an AIF object.
ATIF *FloatToAIF(flc.a.. val)
Convert a single precision floating point into an AIF object.
AI‘L-‘ *DoubleToAIF (double val)
Convert a double precision floating point into an AIF object.

AIF *VoidToAIF{(char *str, int len)

Convert a byte string of length len into an AIF object of type VOID.

B-1

AIF *ArrayToAlLF({(int rank, int *min, int *max,
char *data, char *base)

Convert the array pointed to by data into an AIF object. The argument rank
specifies the rank of the array, min and max are arrays containing the minimum and
maximum value of each dimension respectively, and base is the base type (element

type) of the array.
int AIFTolInt{AIF *obj, int *ret)

Convert the AIF object obj into an integer in target format. The value is returned

into the location pointed to by ret.
int AIFToFloat{AIF *obj, float *ret)

Convert the AIF object obj into a single precision floating-point value in target

format. The value 1s retumned into the location pointed to by ret.
int AIFToDouble(AIF *obj, double *ret)

Convert the AIF object ob3j into a double precision floating-point value in target

format. The value s returned into the location potnted to by ret.
int AIFToVoid (AIF *obj, char *data, int len)

Convert the AIF object obj into a byte string of length 1en. The result is stored in

the location pointed to by data.

char *AIFIntToStr (AIF *obj, int base)

Convert the integer AIF object obj into its string representation using the base

supphed. The base must be 16 or less.
char *AIFFloatToStr (AIF *obi)

Convert the floating point AlF object obj into its string representation.
AIF *AIFCoerce{AIF *obj, char *type)

Coerce the AIF object obj into the type specified by the argument type.

ARITHMETIC & LOGICAL

Arithmetic and logical routines can be applied to any AIF types that are type compatible, and
will perform any typc conversions necessary. Cucrently, the routines support arguments of
complex iypes array and structure, however hoth arguments in binary operations must be of
the same type (including the size, shape and number of ficlds). For these objects, the
routines will perform element-wise or field-wise operations. The following table shows the

result type after performing an arithmetic operation.

obj1 obj2 result
integer integer | integer
floating | integer | floating
integer | floating | floating
array array array
structure | structure | strucwure

AIF *ATFAdd(AIF *objl, AIF *obj2)

Add the AIF object obj1 to the AIF object obj2 and return the result.
AIF *AIFNeg(AIF *obj)

Returns the anthmetic negation of ob3j.
AIF *AIFSub{AIF *objl, AIF *obj2)

Subtract the AIF object obj2 from the obj1 and return the result
AIF *AIFMul (AIF *objl, AIF *objl)

Multiply the AIF object obj1 by obj2 and return the result.
AIP *AIFDiv(AIF *objl, AIF *obj2)

Divide the AIF object obj 1 by obj2 and rcturn the result.
ATIF *AIFRem(AIT *objl, RAIF *obj2)

Divide the AIF object obj1 by ob3j2 and return the remainder as the result.

E-3

ATF *AIFNot (AIF *obj)

Returns the logical COMPLEMENT of the AIF object obj.
AIF *AIFAnd (AIF *objl, AIF *obj2)

Retutns the logical AND of the AIF objects obj1 and obj2.
AIF *ATFOr(AIF *objl, AIF *obj2)}

Returns the logical OR of the AIF objects obj1 and obj2.

COMPARISON

These routines arc used to perforrn comparisons between AIF objects. Currently, the
comparison routines can only be applied to the numeric types integer and floating, The
complex types array and structure are supported, and in thesc cases the comparison

operations will be performed on an element-wise or field-wiss basis.
int AIFIsZero(AIF *cbj, int *res)

Test of the AIF object is equivalent to zero. Returns 1 if true, otherwise 0. The

return value is placed in the vanable pointed to by res.
int AIFCompare (AIF *obijl, AIF *obj2, int *res)

Compare the AIF objects obj1 and obj2. Returns —1if objl < obj2, 0 if objl
= obj2 and 1if obj1 > obj2. The retumn value is placed in the variable pointed to

by res,
dyad_t AIFTypeCompare (AIF *objl, AIF *obj2)

Compare the types of AIF objects objl and obj2. Returns true if they are
equivalent, false otherwise.
int AIFEPS (double lower, double upper, AIF *obi, int *res)

Compute the gprilon vaine for the AIF object obj. The return value, which is placed

in the variable pointed to by res, is shown below.

- Argpuments - | Result
obj < lower -1
lower <= obj <= upper 0
obj > upper 1

ARRAY

'The following routines are provided for performing operations specifically on AIF objects
that represent arrays. AIF arrays are characterised by ineir 72z& or number of dimensions.
An array has 2 base type that specifies the type of each element of the array. Arrays also have
bonnds, which specify the upper and lower limits of each index of the array. Routines are also
provided to itecate over the indices of an array. This is done with an fndex connter, which is an

array of mmtegers representing the current value of cach index of the array.
int AIFArrayRank{AXF *obj)
Returns the rank of the AIF array object ob3j.

int AIFArraySize (RIF *obi})

x

Returns the number of elements in the AIF array object obj.

int AIFArrayBounds (AIF *obj, int rank, int **min,
int **max, int **sjize)

Give the AIF array object obj of rank rank, return the minimum index value,
maximum tndex value, and if size is not NULL, the size of each dimensien of the

array.
iﬂt AlFArrayInfo (AIF *obj, int *rank, char **type, int *itype)

Find out information about the AIF array object obj. Retumns the number of
dimensions in rank and the element type in type. If itype is not NULL, retums

an array containing the type of each index.
AIF *AIFArraySlice(AIF *obj, int rank, int *min, int *max)

Perform an array slice operation on the AIF array object obj. The rank of the array
must be sugplied in rank, and the minimum and maximum index values of each

slice in min and max respectively.

E-5

int AIFArrayMinIndex (AIF *obij, int n) 4

Find the minimum index value of the n'" array index of the AIF array object obj.

T

int AIFArrayMaxIndex (AIF *ob3j, int)
Find the maximum index value of the n™ array index of the AIF array object ob3.

char *AIFArrayIndexType (AIF *obj)

Find the type of the index of the AIF array object ob3j. : {
AIFIndex *AlFArrayIndexiInit (AIF *ob3l)

Create an index counter object and initialise it with the mintmum index values from

the AIF array object obj.

int AIFArrayIndexInRange(int rank, int *index, int *min,
int *max)

Check that the value of each index in the atray index is within the range specified

by min and max. Returns 1 if they are, 0 otherwise.
int ATFArrayIndexInc (AIFIndex *cnt)
Inzrement the index counter object cnt.
void AIFArrayIndexFree(AIFIndex *cnt)

Free the memory allocated for the index counter object cnt.

AIF *AIFArrayElement (AIF *cbj, AIFIndexr *cnt)

Return the element of the AIF array object obj referenced by the index counter

object cnt.

int AIFArrayElementToDouble (BIF *obj, AIFIndex *cnt,
double *res)

Convert the element of the AIF array object obj referenced by the index counter

object cnt to a double precision floating point in target format.

E-6

int AIFArrayElementToInt (AIF *obj, AIFIndex *cnt, int *res)

Convert the element of the AIF array object obj referenced by the index counter

object cnt to an integer in target format.
int AIFSetArrayData(AIF *obj, AIFIndex *cnt, ALF *val)

Stote the AIF object val in the elenient of the AIF array object obJj referenced by

the index counter object cnt.

STRUCTURE
The following routines are provided for perfoi rving operations specifically on AIIT objects
that represent structures. AIF structures are characterised by a sertes of fields, each of which

15 used to store an AIF object.
int AIFNumFields (AIF *obj)
Return the number of fields in the AIF structure object obj.

int AIFFieldType (AIF *obj, char *name)

Return the type of a field of the AIF structure object obj. The field is specified by

the argument name.
int AIFFieldTolInt (RIF *obj, char *name, int *res)

Convert the field name of the AIF structure object obj to an integer in target

format. The return value is placed in the variable pointed to by res.
int AIFFieldTocDouble (AIF *obj, char *name, double *res)

Convert the field name of the AIF structure object obj to a double precision
floating point in target format. The return value is placed in the variable pointed to

by res.

INPUT/OUTPUT
AIF objects can be stored in a persistent file, called a data sez file using the AIFOpensSet (},

AIFWriteSet() and AIFReadSet() routines. These routines allow multple AIF

E-7

objects to be store in one file, each object being tagged with a character string for
identification. A routine js also provided to enable AIF objects to be displayed.

int AIFCloseSet (AIFFILE *fp)
Close the data set file referred to by £p.
AIFFILE *ATFOpenSet (char *file, int mode)

Open a data set file called £ile and return a pointer to the open file. The argument
mode is a bitwise-inclusive-OR of the values ATFMODE_READ, ATFMODE_CREATE

and ATFMODE_APPEND.
AIF *AIFReadSet (AIFFILE *fp, char **tag)

Read an AIF object from the data set file referenced by £p. The object tag is

returned in the string tag.
int AIFWriteSet(AIFFILE *fp, AIF *obkj, char *tag)

Write the AIF object obj to the data set file referenced by £p. The object 1s tagged

with the string tag.
void AIFPrint {FILE *£fp, AIF *obj)

Print a string representation of the AIF object obj to the standart I/O stream fp.

E-8

UTILITY

The following are utility routines for performing various functions on AIF objects.
aiferr AIFError {void)
Retum the last AIF error that occurred.
char *AIFErrorStr{void)
Return the last AIF error that occurred as a printable string.
void AIFFree (AIF *obj)
Free the memory allocated for the AIF object ob3j.
int AIFType (AIF *obj)

Returns a integer indicating the type of the AIF object obj. Possible types ate:
AIF_INTEGER, AIF_FLOATING, AIrF PCINTER, AIF ARRAY, AIF_STRUCT,

AX E‘_E'UNCTION, AT E‘_COMPOUND, Al F_VOID, and AIF_REGION.
int AIFBaseType (AIF *obj)

Retumns the base type of the AIF object obj, if the object is a complex type.
Otherwise returns the type of the object. |

long AIFTypeSize(AIF *obi)
Returns the size in bytes of the AIF object ob3.

AIF *CopyRIF(AIF *obj)

Create a copy of the AIF object obj.

Appendix F

SURVEY OF DEBUGGERS: 1969 ~ 1999

PARALLEL/DISTRIBUTED DEBUGGERS

Name Technology Lang, / Arch, Authors Date
interactive, concurrcnl ECSP Pe Francesce N, LatellaD., | 1983
language Vaglini G., Baiardi F.
defence source-level ineractive, concurrent Euclid | Weber, JC. 1983
concurrent
event-driven multiprocess SmithET. 1984
CBUG distributed, GU1 C Gait J. 1985
dbxigol GUI, multiple-process C, Pascal, Foriran | Adams E., Muchnick SS. 1985
HARD Ada Di Maic A., Ceri S, Reghizzi | 1985
SC.
idd GUI, assertions, C, Medula2 Harier PK Jr., Heimbigner 1985
distributed DM., King R,
RADAR cvent-based, replay LeBlanc RJ., Robbins AD. 1985
TSL Ada ! Hembold D., Luckham D. 1985
YODA Ada LeDoux CH., Parker DS. 1985
DISDER interactivg high-level, Mara Lazzerini B, Prete CA. 1986
cvent-driven
EBES behaviour specification Chien NH. 1986
Meglos C Gagtiancllo RD., Katseff HP. | 1986
pdbx C, Fortran, Pascal 1986
Pi distributed, objeci~-oricnted | C, C+-+ Cargill TA. 1986
Belvederc paitern orienied, anituated | Simple Simon Hough AA . Cuny JE. 1987
Bugnet read time distributed C, Modula2 Jones SH., Barkan RH., 1987
debugging Wittic LD.
v DI interactive debugging IF1, IF2/SISAL Skedziclewski SK., Yates 1987
interpreler RK., Oldehocfi RR.
Instant LeBlanc TJ., Meclior- 1987
Replay Crummey JM.
Jade Joyce J., Lomow G., Siind 1987
- K., Unger B.
Pilgrim distributed CLU Cooper R. 1987
1 windows, clici/server DADOQ Mills RC.., Woodbury L., 1988
Maguire GQ Ir.
DECON concurrent (., Foriran Wei Min Pan,, Jackson V 1988
MacBug GUI Bemmer! T., Efl N, Hansen | 1988
0,
mtdbx GUI, real-time views of Fortran Griffin JH., Wasserman HJ., | 1988
multitasking McGavran LP.
synchronization primitives
NDB parallel CrOS NCUBE Flower J,, Williams R. 1988
ParaScope parallel programming Fortran Callahan CD., Cooper KD, 1988
cnvironmei't Heod RT., Kennedy K.,
‘Torczon L.
Parasight high-levet abstractions C Anal Z., Gertner L, SchafTer | 1988
G.
PPD distributed breakpoints C MillerBP., Chei 1.-D. 1988
Recap Pan DZ., Linton MA, 1938

Name Technology Lang. / Arch. Authors Datc
Voycur application-specific Poker, Fortran Bailey ML, Sccha D, 1988
graphical vicws Notkin D.
paralicl Ciriffin J., Hiromoto R. 1989
data path dcbugging Hscush W, Kaiser GE, 1989
integrated tools Fortran Appelbe WF., McDowell CE. | 1989
Agora rcplay, uscr-defined Agora Forin A. 1989
synchronisation primitives
Amoeba distributed Amoeba ElshofT 1JP. 1989
DPD distributed REM Side RS., Shoia GC. 1989
HDB checksums Cheng DY, 1989
MAD debugs in paraliel Rubin RV Rudolph L., 1989
| Zemik D,
Pdcb shared memory paraliel Zifrony D, Averbuch A, 1989 |
distributed Modula-2, Scholten 1., Jansen PG, 1990
C/TUMULT Posthuma J.
DB distributed Dahem J-H, Lenga R 1990
sequential view Cohn R, 1991
bdb library Cray Young B. 1991
CodeVision distributed, clien/scrver, SGI Chang AM,, Karlton PL.,, 1991
multiple user interfaces CicmiewiczDM.
CPEM graphical, mulli-process C Bullinger H-J. 1991
DESK distributed, object- ESP Khanna A. 1991
orienled, helerogencous
ipd inleractive, parallel Iniel Corporation 1991
idb parailel Fortran/UNICOS | Brown JS. 1991
mdb debug library Cedar Emrath P., Marsolf B, 1891
MFD event-action ParaC Ponamgi MK, Hseush W., 1991
Kaiser GE
Observer debugger for objecl- Jamrozik H., Roisin C., 1991
orienied, distnbuted Santana M.
programs
Paragraph post-mortem, visualization Heath MT., Etheridge JA. 1991
Prism distributed Thinking Machines 1991
SIMGER Janguage level simulalor EDAM Chaumetic S., Counilh MC. 1991
parallcl programining Chaumette S., Counilh MC., | 1992
environment Roman J., Vauquelin B.,
Charrier P.
EREBUS distributed Estelle Hurfin M., Plouzeau M., 1992
Raynal M.
HyperDEBU | multiwindow, parallel Fleng Tanaka H., Tatemum J. 1992
NeD debug server, Maybee P. 1992
programmable network
interface
TOPSYS _paralle] system tools MMEK Bemmerl T, 1992
layered distributed Zhou W. 1993
program debugger
object, thread Gunaseelan L., LeBlanc R} 1993
Jr.
distributed Scholten H., Posthuma J, 1993
Ariadne event- and state-based Kundu J., Cuny JE. 1993
debugging
Conductor simulianeous breakpoinis Baek Y., Jin S. 1993
Ddbx-LPP distributed, GUIL Fernandez MG., Ghosh S. 1993
DPDP distributed, event-action C Zaki M., El-Nahas MY , 1993
model Allam HA.
IMPROV debugging views, Kohl JA,, Casavant T. 1993
visualization
F-2

Name Technology Lang. / Arch. Authory Date
Panoranma retargetable, exicensible May)., Berman F, 1993
PDG process-level debugger for | GRAPE Cacris C,, Lanwercins R, 1993
concuiTent programs, Pepersimcte JA,
animating, hicrarchical
graphical representations
Source distributed ParMod Weininger A. 1992
integrated, hicrarchical TOPSYS Bode A, 1994
tool cnvironment
data-parallel, performance Van Dongen V., Hurtecau G, | 1994
Singh A., Reiher E., Hum H.
ADAT automated, very highi level | Ada Lopes AV, Heller RS, 1994
Feldman MB,
AIMS instrumentation and Yan JC. 1994
nionitoring
DETOP simple GUI, static and Oberhuber M., Wismulter P. | 1994
dynamic paraltel codes
DPD dynamic rollback, replay, | REM Side RS,, Shoja GC. 1994
GUI
HP DDE cvent-based, relargstable C, C++, rFoitnm, Iyengar AK., Grzesik TS., 1994
dcbugger Pascal Ho-Gibson V., Hoover TA.,
Vasta JR.
LPdbx distributed, iconic inlerface Sorel PE., Fernandex MG., 1994
Ghosh S,
mdb semantic race detection, C, Fortran/PVM | Damodaran-Kamal SK., 1994
replay Francioni fM.
Node Prism | parallet message-passing, Sistare S., Allen D, Bowker | 1994
scalable expression, R.. Jourdenais K., Simons J.,
execution, and Title R.
) interpretation
p2d2 parallel, client/server HPF/MPL, PVM | Hood R., Cheng D. 1994
PPPE intcgrated paralicl PARMACS/MP1 | Cowrie J., Dunlop A., 1994
programming tools Hellberg S. Hey AJG.,
Pritchard D.
parallel debugger with Miei T., Takahashi N. 1995
adaptively replayable lock
Annai integrated tool HPF/MPI Clemencon C., Decker KM., | 1995
environment Deshpande VR., Endo A,
Fritscher J., Lorenzo PAR.,
Masuda N., Muller A., Ruhl
R., Sawyer W., Wylie BIN.,
Zimmermann F.
EDL Event-Bascd Behavior Bates PC. 1995
Abstraction
GOLD visualization-based Sharmowski JL.., Cheng BHC. | 1995
environment
GUARD relative debugger, C, Fotran, Abramson 2., Watsen G., 1995
visualisation ZPL/MPE Sosic R,
PDT race detcction, Annai Clemencon C., Fritscher J., 1995
deterministic replay Meghan MJ., Ruhl R.
paratlel visualizing Ovanagi S., Kubola K., 1996
debugger Kawgkura Y,
parallcl debugger Parallaxis Braun! T., Keller H., Stippa 1996
J.
BUSTER integrated parailel PVM Jianxin X_. Dingxing W, 1996
dcbugger Weimin Z, Meiming S.
dbxR replay PVM Mici T., Takahashi N. 1996
DDB distributed, replay Sienkiewicz J.,

Radhakrishnan T.

F-3

Technology | Lang. / Arch. Authors Daie
rcplay debugge: A-NETL Baba T, Furuya Y., 1997
Yoshinaga T.
multilinguat distribut. < Olivicr PA. 1997
debugger
data paallel, un-ime Rajamony R,, Cox AL. 1997
dependence analysis,
performance
Aardvark single controt and data HPF LaFrance-Linden DCP. 1997
views
dect machinc-indcpendent, C, Java Hanson DR., Kem JL. 1997
graphical, programmablc,
distributcd, extensible, and
small
EPPP data parallel performance Singh A., Van Dongen V. 1997
debungger
Kemari programming environment | HPF/MP1 Kamachi T,, Muller A, Ruhl | 1997
R, Seo Y., Suchiro K.,
Taraum M.
process lracing, break- CHILL Paik EH., Byun Y1, Chung 1998
point setting, process YS,, Lee BS.
monitoring, etror
localization, and crror
fixing
DDBG interfacing to soflwarc C, GRAPNEL Cunha JC., Lourcnco J., 1998
cigineering environment, /PVM Antao TR., Kacsuk P.
graphical programming
language a testing and
debugging tool, meta-
breakpoint, macrosicp
execution
net-dbx Jjava-based debugger MP! Neophytou N, Evripidou P, | 1998
ParaDebug graphical view mapping ParaC/MP1 Gi-Won O., Dong-Hae C., 1998
Suk-Han Y.
PDBG process-based distributed | DAMS Cunha }C., Medeiros P, 1998
debuggcr Lourenco J., Duarte V.,
Vicira J., Moscao B., Percira
D,, Vaz R.
PSUITE graphical array-data Fujii H., Shibata T., 1998
visualizer Yoshioka H., Ishikawa K.,
Endo A., Nakatomi T,
UniVIEW cvent trace based, RPC Young-Ae 8., Eun-Jung L., 1998
heterogeneous, Chang-Soon Pk,
client/server
Xunify instrumentation system Lumpp JE Jr, Sivakumar K., | 1998
ard a periormance Diaz C., Griflioen JN.
cvaluation teol
reduced intrusion, CHILL, C, C++ Sato N,, Wanvik DH., 1999
cooperative debugging Betnevik H., Borsting T.,
Stromme JE.
DCDB java front end Feng W., Qifong Z., Hong 1999
A., Guoliang C.
DeHiFo HPF debugger HPF Brezany P., Grabner S.. Sowa | 1999
K., Wismuller R.
MPVisnalizer | trace/replay mechanism, Claudio AP., Cunha JD., 1999
GUI, visualization engine Carmno MB.
F-4

T

SERIAL DEBUGGERS
Name Technology Lang./ Arch. | Authors Date
DYDE on-ling, symbolic assembly Josephs WH. 1969
PEBUG infcractive and non- CDC-6500 Blair IC. 1971
inicractive
DDS raonilor, breakpoints assembly North S, 1977
MODS clean user interface Hawrylak JI. 1977
TQADC interactve/baich, higi-level | TRIDENT Gaines JA Jr. 1978
AIDS symbeolic, interactive Hart J). 1979
ALADDIN breakpoint assertions assembly Fairlcy RE. 1979
DEB-2 batch assembly Lanzaronc GA. 1979
ISSP interactive, lop-down ROMTRAN Andreussi G., Salza S, 1979
ADVISOR Al Fortran Isomoto Y., Yamagata K., 1980
Ishiketa T,
SYMbug symbolic, mulii-language Duyck R, __ 11980
Z8ID debugger CPM/Zilog Miller AR, _ 11980 |
high-level, multi-language | PL/1, Forran, Elliott B. 1982
BASIC
step-wise debugging Hamlel D. 1983
hardware suppori Abramson D., Rosenberg J. 1983
DELTA symbolic CP-H Walier CK. 1983
DICE integrated programimning Fritzson P. 1983
environment, incremental
compiler
joff source-level, GUI C Cargill TA. 1983
SWAT _high-level symbolic C, PascallAOQS | Caideli JR. 1983
VAX interactive, symbolic, Beander B. 1983
DEBUG multilingual debugger
MAP static analysis COBOL Tischler R., Schaufler R. 1983
Payne C.
Clrace PreProcessor C Steffen JL. 1984
Lilith high-level, GUI Modula-2 Geissmann L. 1984
SHD screen oriented Pascal Gars VK. 1984
ASDB symbolic, source-level C Kodama K., Fukushima S., 1985
Horii K.
SDE symbolic, macro-otiented | EC Katzenelson J., Strominger A, | 1985
daia abstractions
VIPS linked-list visualisation Shimomum T., Isoda S., Ono | 1985
Y,
Chiilscope eveni-action breakpoint CHILL Hallsteingen S:0. 1986
Periscope syrabelic C, Fortzan, Christensen W, 1986
Pascal, BASIC
2X static and dynamic analysis Clemente G., Cotgiu S., Moro | 1987
M.
DDB interactive, source-level C Livshin D, 1987
gdbxtool graphical display and Potrebic P., Goldman P. 1987
editing of data structurcs
Ups GUI Bovey JD. 1987
execution backtracking Agrawal H., Spafford EH. 1988
AdaProbe friendly user interface Ada Altarac H., Plisson P, 1938
DOC optimised code debugger | C Coutant DS, Meloy 8., 1938
Ruscetta M.
LM on-line debugger COBOL, PL/1 Vatga V. 1988
Pbug abstractions Pascal, PL/M Benumerl T., Huber F., 1988
Stampfl R.
DDS declarative debugging Takahashi N., Ono §. 1989
PISLD interactive source-level Pascal Chi Zn,, Lin C.
F-5

Name Technology Lang. /Arch. | Authors Date
dbx interactive C, Foriran Linton MA. 1990
Moped tracing. backtracing lisp Pourheidari M., Kessler RR., | 1990
Carr H.
0, DBMS O, Mcersman RA, Kent W, 1990
Khosla S.
FDB GUI, objcct-oriented, Maybee P. 1990
distributed
Thisdb GUI, symbolic C Hagen T. 1990
algorithmic, semi- Pascal Fritzson P., Gyimothy T, 1991
automatic Kamkar M., Shahmehri N.
visual, program generating Ming 2. 1991
technigque
CDBX X-Windows Cray Rigsbee PA. 1991
CXdb optimised code debugger Convex Streepy LV Jr., Brooks G., 1991
Buyse R., Chiarelli M.,
Garzione M., Hansen G.,
Lingle D.. Simmons S..
Woods J.
Dalck cvents, control and query Olsson RA,, Crawford RH., 1991
language, dataflow Ho WW., Wee CE.
DARTS dynamic, real-time Timmerman M., Gielen FJA. | 1991
DBEL interactive, functional Krishnamoorthy MS., 1991
language Anastasion AD,
DuUDyY functional models, Allemang D. 1991
automatic
MultiScope multiple debuggers DOS/Windows | Keams S, 1991
SIPDES expert system Pascal Doukidis Gl., Paul RJ. 1991
Spyder checkpoint, backtrack Agrawal H. De Millo RA, 1991
Spafford EH.
VBD-1I object-ortented interface NEC Hiramatsu T.. Ichincse N., 1991
Kojo T,
Watson GUI environument for Cray Murrish R 1991
debugger development
GHC process-oriented, Maeda M. 1992
reflection, program
ransformation
Idb retargetable C Ramsey N,, Hanson DR. 1992
Opium programmable Prolog Ducasse M. 1992
UDI universal interface C Mann D. 1992
distributed execution CHORUS Ruget F. 1994
replay
ACID language interpreter Winterbottom P. 1594
ADAPT automated Prolog Gegp-Harrison TS. 1994
HotWire visnalization C++, Smalltalk 1994
| gdb GNU decbugger C, C++, Fortran | Buit F. 1995
edb machine-independent C Hanson DR. 1996
DDD graphical {front-end GDB, DBX Zeller A, Lutkehaus D, 1996
FIND automated debugging Shimomura T, 1996
assistant
traversal based Kornt JL., Appel AW. 1998
visnalization
SNIFF+ customisable Parker T. 1998
wshdbg debugger for CGI TCL Vekovski A, 1998
program instromentation, Lencevicius R., Holzle U, 1999
load-time code generation, Singh AK.
query optimization, and
incremenial reevahuation
Coca breakpoint mechanisin is C Ducasse M. 1999
F-6
;

Name Technology Lang. / Arch. Authors Date
bascd on evenis related 0
language constructs

RAID probabilistic recasoning, C Burnell L., Mcadows A, Bass | 1999
heuristic debugging P., Biggers K. Priest J.

knowledge, stiuctural
analyses

E-7

Folder Name

3 aAbout
(J case Studies
(3 case Study 1
(3 case Study 2
3 case Study 3
(3 guard-0.9.17
3 doc
D 5rc
(] aif
(2 compat
(3J dbgsrv
QO gc
- guard
(3 tools
(3 util
3 zgdb-4.16
(3 zgdb-4.17
(3 Thesis
a doc
O pdf

Appendix G

CD-ROM CONTENTS

Description

About the author.

The three case studies examining the use of GUARD.
Data parallel case study.

Distributed memory case study.

Shared memory casc study.

Source code of the GUARD-2000 debugger.
Documentation associated with the debugger.
Debugger source tree.

Architecture independent format library.
Compatibality library.

Debug server.

Dataflow compiler.

Debug client.

Visualisation tools.

Utility library.

Modifications to GDB version 4.16.
Modifications to GDB version 4.17.

Electronic version of debugger thesis.

Debugger thests in Microsoft Word 2000 format.
Debugger thesis in Adobe PDF format.

. .

(1]

[ta]

121

3]

4]

Pl

[6]

9]

[%2]

(10}

[11]

REFERENCES

D. Abramson, M. Dix, and P. Whiting, “A Study of the Shallow Water Equations
on Various Parallel Architectures™, 14sh Anstralian Computer Science Conference, pp. 06~
1 - 06-12, Sydney, 1991.

D. Abramson and G.K. Egan, “The RMIT Data Flow Computer: A Hybrid
Architecture”, The Computer Journal, June 1990.

D. Abramson, 1. Foster, J. Michalakes, and R. Sosic, “Relative Debugging and its
Application to the Development of Large Numerical Models”, Proceedings of IEEE
Supercomputing 1993, San Diego, December 95.

D. Abramson, 1. Foster,]. Michalakes, and R. Sosic, “Relative Debugging: A New
Methodology for Debugging Scicntific Applications”, Communications of the ACM,
Vol. 39, No. 11, pp. 69 — 77, November 1996.

D. Abramson and R. Sosic, “A Debugging Tool for Software Evolution”, CASE-
95, 7th International Workshop on Computer--4ided Sofiware Engineering, pp. 206 — 214,
Toronto, Canada, July 1995.

L]

D. Abramson and R. Sosic, “A Debugging and Testing Tool for Supporting
Software Evolution”, Awtomated Software Engineering 3, pp. 369 — 390, 1996.

D. Abramson, R. Sosic, and G. Watson, “Implementation Techniques for a Parallel
Relative Debugger”, Proceedings of PACT 96, Boston, October 1996.

Active Tools Inc., The Clustor 1.5 User Manuat, San Francisco, CA, February 1999.

E. Adams and S. Muchnick, “Dbxtool, A Window-Based Symbolic Debugger for
Sun Workstations”, USENIX Association Summer Conference Proceedings 1985,
USENIX Assoc., pp. 213 — 227, El Cerrito, CA, USA, 1985.

Arvind, L. Bic, and T. Ungerer, “Evolution of Data-flow Computers”, Chapter 1,
Advanced Tapics in Dataflow Computing, Prentice Hall, 1991.

Arvind and RS. Nikhil, “Executing a Program on the MIT Tagged-Token
Dataflow Architecture”, Lecture Notes in Computer Science 259, pp. 1-29, 1987.

P. Bates, “Debugging Heterogeneous Distributed Systems Using Event-Based
Models of Behaviot”, Proceedings ACM SIGPLAN and SIGOPTS Workshop on Parallel
and Distribnted Debngging, W1, USA, May 5-6, 1988.

P. Bates and J. C. Wileden, “High-Level Debugging of Distnbuted Systems: The
Behavioral Abstraction Approach”, Journal of System Software, 3, pp. 255 — 264, 1983.

H-1

[12)

[13]

[14]

[15]

[16]

[162)

(17)

[18]

(19]

(201

[21}

[21a]

[22]

(23]

T. Bemmer! and R. Wismiiller, “On-line Distrtbuted Debupging on Scaleable
Multicomputer Architectures”, High Performance Compnting and Networking, Volume 11:
Networking Tools, Volume 797 of Lecture Notes in Computer Science, Springer-Verlag,
pp- 394 - 400, April 1994.

L. Burnell, et. al, “RAID: A System to Aid in the Removal of Program Bugs”,
Procecdings of the Twelfth International Florida AI Research Society Conference, AAAL Press,
Pp- 32 - 36, Menlo Park, CA, USA, 1999.

R. Butler and E. Lusk, “Monitors, Messages, and Clusters: the p4 Parallel
Programming System”, Paraflel Conputing, 20 April 1994,

D. Callahan and J. Subholk, “Static Analysis of Low-level Synchronization”,
SIGPLAN Noticer, Vol. 24, No. 1, January 1989,

D. Cheng and R. Hood, “A Portable Debugger for Parallel and Distributed
Programs™, Procecdings of Supercorspuiing ‘94, pp. 723 — 732, November 1994

Y.M. Chong, “Data Flow Chip Optimizes Image Processing”, Computing Design, pp.
97-103, October 1984,

M. Cierniak and W. Li, “Unifying Dat. and Control Transformations for
Distributed Shared-Memory Machines”, Proceedings of the SIGPLAN 95 Conference on
Programming Language Design and Implementation, La Jolla, California, June 1995.

W. Crowley, C. Hendrickson, and T. Rudy, The SIMPLE Code, Lawrence Livermore
Laboratory, UCID-17715, Fecbruary t, 1978.

J. Cuny, et. al, “The Anadne Debugger: Scalable Application of Event-Based
Abstraction”, ACM SIGPLAN Notices, Vol. 28, No. 26, pp. 85 — 95, December
1993.

Convex Computer Corporation, Comvex CXdb User’s Guide, Second Edition,
October 1993, DSW-473.

J. Dennis, “The Evolution of “Static” Data-flow Architectures”, Chapter 2,
Advanced Topics in Dataflow Comprting, Prentice Hall, 1991,

J-B. Dennis and D.P. Misunas, “A Preliminary Architecture for a Basic Data-Flow
Processor, Proc. Znd ISCA, pp. 126-132, January 1975.

Dolphin Interconnect Solutions, Inc. (now Etnus, Inc), Tetafliew Multiprocess
Debugoer User's Guide, Version 3.7.7, Revision 8, October 1997.

M. Folk, L., Kalman and W. Whitehouse, HDF User’s Guide, Version 4.1r1, National
Centre for Supercomputing Applications, May 1997.

[24]
(25]

126]

[27]
[27a]

(28]

29]

[30]
[31)

[32]

33}

(34]

[35]

G. Fox, et al,, Fortran D Lanpnage Spedfication, Center for Research on Parallel
Computation, Rice University, CRPC-TR90079, December 1990.

J. Gait, “A Probe Effect in Concurrent Programs”, Software Practice and Expertence,
Vol. 16, No. 3, pp. 225 — 233, 1986.

J. Goguen, J. Thatcher, and E. Wagner, “An Initial A'gebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types”, Current
Trends In Programming Methodology, V'ol. 1V': Data Sirwcturing, Yeh, R, (ed.), Prentice-
Hall, pp. 80-149, Englewood Cliffs, New Jersey, 1978.

Hewlett Packard Company, HP/DDE Debugger User's Guide, First Edition, B3476-
90015, July 1996.

W. Hibbard and D. Santek, “The VIS-5D System for Easy Interactive
Visualization”, Proceedings of IEEE Visualization ‘90, pp. 129-134, 1990.

High Performance Debugging Forum, “HPD Verston 1 Standard: Command
Interface for Parallel Debuggers”, ed. C. Pancake and J. Francioni, Technical Report
CSTR-97, Dept. of Computer Science, Oregon State University, 1997.

High Performance Fortran Forum, High Performance Fortran Language Specification,
Version 2.0, Center for Research on Parallel Computation, Rice University, CRPC-
TR92225, January 1997.

IBM Corporation, IBM AIX Paralle! Parallel Environurent: Programming Primer, Release
2.0, SH26-7223, June 1994.

Institute of Electrical and Electronic Engineers, “Binary Floatng-Point
Arithmetic”, IEEE S$td 754-1985, Piscataway, N.J., 1985.

Institute of Electrical and Electronic Engineers, “IEEE Standard Glossary of
Software Engineering Terminology”, IEEE Sid 610.12-1990, New York, USA,
1990.

P. Kacsuck, J. Cunha, G. Dézsa, and J. Lourengo, “A Graphical Development and
Debugging Environment for Parallel Programs”, Parallel Conputing, Vol. 22, No. 13,
pp- 1747-1770, 1997.

K. Kennedy and K. McKinley, “Maximizing Loop Parallelism and Improving Data
Locality via Loop Fusion and Distribution”, Proceedings of the Sixth Workshop on
Languages and Compiters for Parallel Computing, Portland, Oregon, August 1993.

B. Lazzerini and L. Lopriore, “Abstraction Mechanisms for Event Control in
Program Debugging”, IEEE Transactions on Software Engineering, Vol. 15, No. 7, pp.
890-901, USA, July 1989.

(36]

(37

38]

[39]

(40]

(#1]

[42)

{43]

[44]

[45]

[46]

[47]

{48]

T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Parallel Programs With
Instant Replay”, IEEE Transactions on Compuiters C-36, Vol. 4, pp. 471 ~ 482, April
1987.

C. H. LeDoux and D. S. Parker, “Saving Traces For Ada Debugging”, In Ada In
Use, Proceedings of the Ada International Conference, ACM, Cambridge University
Press, pp. 97 — 108, 1985.

M. M. Lehman, “Programs, Programming and the Software Life Cycle”, Proceedings
TEEE Spedal Issne on Software Engineering, pp. 1060 — 1076, September 1980.

M. M. Lehman, “The Programming Process™ in Program Evolution: Processes of Software
Change, M. M. Lehman and L. A. Belady eds., Academic Press Inc,, USA, 1985.

C. Lin and R.]. LeBlanc, “Event-based Debugging of Object/Action Prograrns”,
Proceedingg ACM SIGPLAN and SIGOPTS Workshop on Parallel and Distributed
Debngging, W1, USA, May 5-6, 1988.

C. Lin and L. Snyder, “A Portable Implementation of SIMPLE”, International Journal
of Parullel Programming, Vol. 20, No. 5, 1991.

C. Lin and L. Snyder, “ZPL: An Array Sublanguage”, Languages and Compilers for
Parallel Computing, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, eds, pp. 96
— 114, 1993,

J. Lipson, Elements of Algebra and Algebraic Computing, Addison-Wesley, Reading,
Massachusetts, 1981.

R. Loeser and E. M. Gaposchkin, “The Second Law of Debugging”, Software-Practice
& Expenence, Vol.6, No.4, pp. 577-578, UK, October-December 1976.

J. Lumpp, T. Casavant, H. Siegel, and D. Marinescu, “Specificarion and
Identification of Events for Debugging and Performance Monitoring of
Distributed Multiprocessor Systems”, Proceedings of the 10° International Conference on
Distributed Computing Systems, IEEE, pp. 476 — 483, 1990.

B. Magnusson and S. Mindr, “III -- an Integrated Interactive Incremental
Programming Envitonment Based on Compilation”, Proceedings of the ACM
SIGSMAILL Symposinurt on Small Systems, 1985.

R. F. Mathis, “Pre-execution, Batch, linteractive, and Postmortem Debugging”,
Computer Scienice Conference 75, ACM, pp. 9, New York, NY, USA, 1975.

J. May and F. Berman, “Panorama: A Portable Extensible Parallel Debugger”,
Proceedings of the ACM/ONR Warkshop on Parallel and Distributed Debugging, pp. 96-
106, San Diego, May 1993.

o R Sy g
o B Atz e o

i49]

[50]

[51}

152]

[53]

[54]

[55]

(36}

(57]

[58]

(59

[60]

[61]

C. E. McDowell and D. P. Helmbold, “Debugging Concutrent Programs”, ACM
Computing Surveys, Vol. 21, No. 4, pp. 593 — 622, December 1989.

K. McKinley, 8. Catr, and C.-W. Tseng, “Improving Data Locality with Loop
Transformations”, ACM Transactions on Programming Langnages and Systerrs, Vol. 18,
No. 4, pp. 424-453, July 1996.

M. A. . Millerburg, “The Role of Debugging Within Software Engineering
Environments”, ACM SIGPL.AN Nofices, Vol. 18, No. 8, pp. 81 - 90, USA, August
1983.

G.]. Myers, Software Reliability: Prineiples and Pradices, John Wiley & Sons, USA, 1976.

The National Center for Supercomputing Apphications, NCSA HDF Specification
and Developer’s Guitde, University of lllinois at Urbana-Champaign, November 1993.

P. G. Neumann, Computer Related Risks, ACM Press, Addison-Wesley, New York,
USA, 1995.

N. Ramsey and D. R. Hanson, “A Retargetable Debugger”, Prcecdings of the
SIGPLAN’92 Conference on Programming Language Design and Implenientation, pp. 22 —
31, ACM, 1992,

R. Olsson, R Crawford, and W. Ho, “A Dataflow Approach to Event-Based
Debugging”, Software-Practice and Exgenience, Vol. 21, No. 2, pp. 209 — 229, February
1991.

C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D.
Schouten, “Parafrase-2: An Environment for Parallelizing, Partitioning,
Synchronizing, and {:cheduling Programs on Multtprocessors”™, Procedings of 1he
International Conference on Parallel Processing, St. Charles 1L, pp. 1139 — 48, August 1989.

G. Rivera and C.-W. Tseng, “Locality Optimization for Multi-Level Caches”,
Proceedings of the ACM/IEEE SC99 Conférence, Portland, Oregon, November 1999.

J. Rose and G. Stecle Jr., “C*: An Extended C Language for Data Parallel
Programming”, Technical Reporr PL. 87-5, Thinking Machines Corporation,
Cambridge, MA, 1987.

A. Rosenberg, “Storage Mappings for dxtendible Arrays”, Current Trends In
Programming Methodology, Vol. IV: Data Siructuring, Yeh, R., (ed), pp. 263-311,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

M. Rosing and S. Yabusaki, “A Programmable Preprocessor for Parallelizing
Fortran-90", Proceedings of the ACM/IEEE S5C99 Conference, Portland, Oregon,
November 1999,

(62)

[63)

[64]

[65)

[66]

(67

(o8]

{91

[69a]

[70]

{71]

[72]

R. Sadousrny, “The Dynamics of Finite-Difference Models of the Shallow Water
Equations”, Jowrnal of Atmospheric Scienee, Vol. 32, pp. 680 — 659, 1975,

R. Sosi¢, “Design and Implementation of Dynascope, a Directing Platform for
Compiled Programs”, Computing Systems, Vol. 8, No. 2, pp. 107 — 135, 1995.

R. Sosic and D, Abramson, “Guard: A Relative Debugger”, Soffwrre — Practice and
Experience, Vol. 27, No. 2, pp. 185 ~ 206, February 1997.

R. Srinivasar, “XDR: External Data Representation Standard”, RFC 7832, Sun
Microsystemns, Inc., August 19935,

R. Stallman, Debygeing with GDB - The GNU Sonrce Level Debugger, Edition 4.12, Free
Software Foundation, January 1994.

Sun Microsystems Inc, “RPC: Remote Procedure Call Protocol Specification
Version 27, RFC-1057, June 1988.

R. Tischier, R. Schaufler, and C. Payne, “Static Analysis of Programs as an Aid To
Debugging”, ACM SIGPLAN Notices, Vol. 18, No. 8, pp. 155 ~ 158, USA, August
1983.

G. Watson and D. Abramson, “Relative Debugging For Data-Parallel Programs: A
ZPL Case Study”, IEEE Concurrengy, Vol. 8, No. 4, pp. 42 — 52, USA, October
2000.

G. Watson and D. Abramson, “The Architecture of a Parallel Relative Debugger”,
13* International Conference on Parallel and Distrébuted Compnter Systemss — PDCS 2000,
Las Vegas, Nevada, August 2000. .

J. C. Weber, “Interactive Debugging of Concurrent Programs”, SIGPLAN Notices
Vol. 18, No. 8, pp. 112 — 113, 1983.

R Wismuller, M. Oberhuber, and J. Krammer, “Interactive Debugging and
Performance Analysis of Massively Parallel Applications”, Paralle! Compuiing, Vol.
22, No. 3, pp. 415 — 442, March 1996.

M. Wolf and M. Lam, “A Data Locality Optimizing Algorithm”, Proceedings of the
SIGPLAN 91 Conference on Programming Langnage Design and Implementation, Toronto,
Canada, June 1991.

H-6

GLOSSARY

abstract algebra

The mathematics of generalized abstract arithmetical operations.
application programining interface (API)

A software interface that enables applications to communicate with each other.
asseriion

A condition specified « priorf that must be satisfied for the correct execution of a
program.

asynchronous
Processes or actions whose execution can proceed independently.
big-endian

A computer architecture in which, within a given multi-byte numeric representation,
the most significant byte has the lowest address.

bijective

A bijective function maps each element of 2 set A onto one and only one element
in a set B and maps each element of B onto one and only one element in A

block-cyclic distribution

A technique for distributing two dimer. ional data arrays to different processors in a
parallel application that gives a one or more columns or rows of data values to each

processor.
breakpoint
A point in a program that, when reached, triggers some special behaviour useful to
the process of debugging,
cache
A high-speed memory, local to a single processor, whose data transfers are carried
out automatically in hardware.
callback

The mechanismm by which a server program can invoke a service in a client program.

114

cartesian product

A set of all pairs of elements (%, y) that can be constructed from given sets, X and
Y, such that % belongs to Xandyto Y.

client/server architecture
An arrangement whereby a computer program (the client) sends requests for
services to another computer program (the server) across a communications
network.

command line interpreter (CLI)

A program which reads textual commands from the user or from a file and executes
themn.

data decomposition

A technique where the data on which a sequential computation operates is
partitioned into smaller pieces in a way that is suitable for paralle] computation.

dataflow
A model of parallel computing in which programs are represented as dependence
graphs and each operation is autornatically blocked until the values on which it
depends are available.

data parallelism

A model of paralle]l computing in which a single operation can be applied to all
elements of a data structure simultancously.

debug

To detect, locate, and correct faults in a computer program.
distributed memory

Memory that is physically distributed amongst several modules.
graph

A collection of nodes and edges symbolising a system of interrelations.
graphical user interface (GUI)

A user interface based on graphics (icons, pictures and menus) instead of text.

A e o o ey

;
%
'

]
i

[RRERRALF LAY

heterogeneous
Containing components of more than one kind.
isomorphic

Two mathematical objects that have the same structure, 1.e. for every component of
one there is a corresponding component of the other.

iso-surface

An implicit surface that exists wherever a continuous scalar field in a2 volume is at 2
particular value.

little-endian

A computer architecture in which, within a given multi-byte nurneric representation,
bytes at lower addresses have lower significance.

message passing

A style of interprocess communication in which processes send discrete messages
to one another,

nondeterminisim
A property of a computation that may have more than one result.
parallel computer

A computer system made up of many identifiable processing units working together

in parallel
parallelisation

The process of tuming a serial computation into a parallel one.
pixel map

A two-dimensional arrangement of picture elements (pixels).
probe effect

The interaction between the debugger and the program being debugged, generally
timing related, that affects the appearance of a program error.

process

The fundamental entity of the software implementation on a computer system.

processor

A hardware device that executes the commands in a stored program in a computer
system.

relative debugging

The process of locating and identifying errors by comparing a suspect program
against a reference code.

sequential computer
A computer comprising a single central processing unit {CPU) that executes a
program to perform a sequence of read and write operations on an attached
memory. Also known as a Von Neumann architecture.

shared memory

Memory that appears to the user to be contained in a single address space and that
can be accessed by any process.

sofiware development

A problem-solving process that involves the translation of a complex problem into
detailed instructions that direct a computer to solve the problem.

software evolution

Continuous growth through the initial development and ongoing maintenance of
software.

software life cycle
A two-phase process consisting of a design phase and a testing phase.
yecjor computer

A computer designed to apply artthmetic operations to long vectors or arrays.

