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ERRATA

p 17, Section (2.2.2), line 5 from top: "+" for "-".
p 21, Section (2.2.7), line 3 from bottom: "Pesaran" for "Pearson".
p 42, Section (2.4.3.1), line 6 from bottom: " -1 < 6 < 1" for "0 < 6 < 1".
p 47, Section (2.4.4.1), line 13 from top: "invertibility" for "inevitability".
p 51, Section (2.4.5.2), line 5 from bottom: "second and first" for "first and second
actual" and "b0 = y2- 2/i" for "60 = |(yi + 2/2)".
p 51, Section (2.4.5.2), line 4 from bottom: "60 = §((2/2 — Vi) + (VA ~ Z/3))" for

p 55, Section (2.5), line 6 from bottom: "study" for "studiy".
p 79, replace the second last sentence of second paragraph with "We hope that the
ICL based information criteria will give better probabilities of correct selection."
p 83, Section (3.6.2), line 4 from bottom: "seasonality" for "seasonalitity".
p 129, lines 10 and 11, replace the description of design matrix X2 with "A con-
stant dummy, the first n observations of Durbin and Watson's (1951, p. 159) annual
consumption of spirits example (two variables, namely, "INCOME" and "PRICE"
were used)."
p 130, Section (4.6), line 9 from top: "performs uniformly better" for "performs
better".
p 145, Section (5.2), line 12 from top: "outside" for "inside",
p 146, Section (5.2), line 2 from top: "V(d) = ft(0)"5" for UV{6) = <8>(0)""t".
p 154, Section 5.5.2, line 9 from the bottom: "better" for "the best",
p 158, Section (5.7), line 11 from top: "Chapter" for "Cahpter".
pl69, replace the last sentence of first paragraph with "With this in mind, we use
IC for selecting forecasting models for the M3 competition data of Makridakis and
Hibon (2000)."

p 171, Section (6.2): in equations (6.2.5) and (6.2.6) "T*j" for "T*" in the right
hand sum.
p 179, Table 6.2, selection percentages for the SM2 model for AIC, MCp, GCV and
FPE should be 0.56, 0.49, 0.56 and 0.56, respectively instead of 5.6, 4.9, 5.6 and
5.6, respectively.
p 187, lines 1 and 2 from bottom: delete "Difference (ISM minus BIC) of data"
and read "Difference of selection percentages for various IC from ISM".
p 188, Figure 6.4(c): "p4" for "p3".
P 198, line 2 from bottom: "1989" for "1996" and "4th" for "5th".
p 210, line 4 from top: include "3rd edition" between "Applications," and "John".



ADDENDUM
p 198, between lines 18 and 19 from top: add the reference "Burnham, K.P. and An-
derson, D.R. (1998). Model Selection and Inference: A Practical Inference-theoretic
Approach, Springer: New York."
p 211, line 11 from top: delete "Montgomery, D.C. and Johnson, L.A. (1976)" and
read "Montgomery, D.C, Johnson, L.A. and Gardner, J.S. (1990)". Also include
"3rd edition" between "Analysis," and "McGraw-Hill" in line 12 from top.
p 213, delete lines 7 to 9 (reference "Ray, B.K. and Crato, N. (1994))" from top.
p 215 & 216, delete the references "Sweet, A.L. (1983a) and Sweet, A.L. (1983b)."
p 215, between lines 23 and 24 from top: add the reference "Sweet, A.L. (1985).
Computing the variance of the forecast error for the Holt-Winters seasonal models.
Journal of Forecasting, 4, 235-243."

p 157: delete the last paragraph of section 5.6 and read "As was discussed earlier of
this section that we require design matrices of order nxk, where n = 300. However,
the given row dimension, n*, of the design matrices X2 to X5 are smaller than n.
Therefore, we constructed modified design matrices of order n x k for the design
matrices X2 to X5. The procedure is as follows. For a particular design matrix,
draw n random integers between 1 to n* by using the uniform distribution and for
each number pick the corresponding row of the original design matrix. Then, use
the selected row at the ith, i = 1,2, • • •, n, drawing as the zth row of the modified
design matrix. This gives the required modified design matrix of order n x k."

Add at the end of Chapter 4: " In this chapter, the optimal penalty function was
estimated by optimizing the overall average probabilities of correct selection. The
same set of generated data were used to estimate penalties and hence, for calculating
overall average probabilities of correct selection. This may give biased probabilities
of correct selection. However, from the results of Chapter 6 (where real data were
used to estimate the optimal penalties) it is evident that the bias, if any, is minimal.
Therefore, we are very optimistic that the results of Chapter 4 will carry through
even if the penalty values are estimated from one set of simulated data and then
these penalties are evaluated using another set of data, which is generated changing
the seed number for random generation."

Add at the end of Chapter 5: " In this Chapter, the optimal penalties were esti-
mated for selecting models for forecasting. Similar to Chapter 4, the same set of
data were used for estimating penalties as well as to minimize overall average mean
square error. The question of biased forecast error may arise. However, forecast
error comparison between individual selection method (which is based on optimal
penalty estimation) and existing information criteria in Chapter 6 shows that the
individual selection method performs better than the existing information criteria
for all forecasting horizons. Therefore, we are optimistic that the results of Chapter
5 will carry through even if the estimated penalties are evaluated using another set
of simulated data."
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Abstract

The first contribution of this thesis is to investigate the use of information

criteria (IC) based model selection procedures for choosing between different ex-

ponential smoothing models. A preliminary study showed that the probabilities of

correct selection (PCS) depend on the values of exponential smoothing parameters.

Therefore, we calculated average probabilities of correct selection (APCS) as well

as overall APCS (OAPCS) in order to assess different selection strategies. We also

proposed an improved conditional likelihood (ICL) method, based on marginal like-

lihood (MGL) methods, and compared the performances of conditional likelihood

(CL) and ICL based existing IC procedures. The results of this study show that in

terms of OAPCS, ICL based Bayesian Information Criterion (BIG) performs better

than the other existing IC procedures considered in this study.

The second contribution is to investigate IC based model selection procedures

for selecting autoregressive moving average (ARMA) errors in the context of the

linear regression model. We observe that optimal penalties can be found by max-

imizing OAPCS. This requires the use of a robust optimization procedure capable

of optimizing average probabilities obtained by simulation. A new penalty estima-

tion method (PEM) can be applied for estimating optimal penalties. PEM, based

on grid search (PEM-GS) is one possible method, but it does involve high level

computational cost. As a result of our simulation experiment, we recommend the

use of PEM, based on the simulated annealing (SA) algorithm (PEM-SA) to find

optimal penalties for use with maximized MGL for this model selection problem.

In addition, we extend the PEM-GS and PEM-SA for selecting the order of

autoregressive (AR) errors in the context of the linear regression model with fore-

casting accuracy as the selection criteria rather than OAPCS. The results of our

simulation study show that for shorter forecast horizons no one existing IC pro-

xin



cedure performs best. However, in general, BIC performs best for longer forecast

horizons. Both the PEM-GS and PEM-SA perform better than the existing IC

procedures including BIC. In general, PEM-GS performs better than PEM-SA,

but with additional cost of high computational time. Hence, we recommend MGL

based PEM-SA for selecting time series forecasting models.

Finally, based on PEM, we outlined an individual selection method (ISM) for

selecting forecasting models for real life time series data. We applied the ISM

to the M3 competition data of Makridakis and Hibon (2000) divided into three

groups, namely, annual, quarterly and monthly data. The performance of ISM,

the combined method (COM) of Makridakis et al. (1982) and various existing IC

procedures are compared. The results of this study show that the ISM method

performs better than the COM method and the existing IC procedures.

The main contributions of this thesis relate to the development of MGL based

small sample model selection procedures. In general, the PEM performs better than

those existing IC procedures used in our study for choosing small sample ARMA

disturbance processes in the context of the linear regression model. Also, ISM is

better than the existing IC procedures for selecting exponential smoothing models

for the M3 competition data.
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Chapter 1

Introduction

1.1 Background

In econometrics we are often forced to use data to make a choice between a num-

ber of competing alternative models. Thus, an obvious question arises as to which

model provides the best characterization from the view point of the data. Econo-

metric modeling is largely about the process of searching for a suitable specification

or to put it another way, selecting the right model for the right job. In general, a

number of models are typically considered reasonable and a selection is made based

on how well each of them appears to fit the observed data. This is typically known

as model selection in the econometrics literature.

In fact, in econometric applications, we expect a great deal of reliability from

the selected model. In most practical situations, such a selection is made with a

limited number of sample observations, which involve partial information regarding

the underlying phenomena. When dealing with such cases of very little sample

information, there may be many ways to make mistakes in deciding on the best

possible model. In spite of this, we use our preferred model to perform a num-

ber of tasks such as forecasting future values, making inference about some or all

of its parameters and conducting sensitivity analysis on the assumptions of the



CHAPTER 1. INTRODUCTION 2

model. Therefore, prudent care should be taken to choose the techniques for model

selection.

The problem of selecting a true model, or the choice of an appropriate or best

model for a given data set, is considered to be a fundamental problem in econometric

modeling. For a given situation, the best model depends upon the loss function

under consideration. If the aim is to use the model for forecasting, for example, then

the best model will be that for which the forecast error, on average, is minimum in

some sense. Therefore, the best model selection method could also depend on the

characteristics of the data generating process (DGP) of both the true model and

also of other models we are willing to entertain. However, in practice, we have no

direct knowledge about the DGP. Typically, researchers use the information which

is available at the time of modeling to develop rules that will lead us in the direction

of the best model.

Econometric modeling which is used to help us understand complex economic

relationships should be designed so that the model demonstrates the main charac-

teristics of the economic system being modeled. A very complex model should be

avoided so that the basic understanding is not jeopardized. However, while making

the model simpler, care is needed to make sure that the important features of the

data are not overlooked. This is because, in such cases, the estimated parameters

of the model will suffer from an omitted variable bias which will result in invalid or

at the very least, questionable inference. One must, therefore, compromise between

the two and select models that are simple and fit the data well.

Monte Carlo experiments can be used to investigate the properties of various

model selection procedures through the analysis of model selection probabilities.

In such experiments, the data are generated from one of the models in the plau-

sible group and the correct model is selected if the chosen model is the DGP. In
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this thesis, we consider the model selection problem in the context of exponential

smoothing methods (models) and regression models with autoregressive moving

avei-age (ARMA) error processes. However, the vast range of exponential smooth-

ing methods as well as ARMA error processes make model selection more difficult

because there are numerous DGPs from which to chooae. Therefore, to make our

study more manageable, we consider some simple models which are widely used,

and which also perform well in applications.

1.2 Model Selection Procedures

A number of model selection methods have been suggested in the literature. These

methods can mainly be classified into the following four categories:

(i) Classical Hypothesis Testing Procedures: This approach is one of the oldest

methods developed for model selection problems. Classical test statistics such as t

and F tests are used in the context of the linear regression model for small sample

model selection problems, while for the models, other than the linear model, Wald

(W), likelihood ratio (LR) and Lagrange multiplier (LM) tests are often used.

(ii) Minimum Residual Variance or Minimum Mean Prediction Error: In this

approach, models are selected by minimization of some function of the model's

errors or forecast (prediction) errors, such as mean square error (MSE) or mean

absolute percentage error (MAPE). The model with the smallest average forecast

error is considered to be the best model.

(iii) Bayesian Criteria: Bayesian criteria uses posterior odds ratios for model

comparison and is recognized as a well established concept in model selection. More

details about Bayesian crit?ria can be found in DeGroot (1970).

(iv) Information Criteria (IC): IC is the most viable and popular model selection

approach in the econometrics literature. Clayton et ai. (1986) showed that IC based
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model selection procedures can be regarded as a more substantial approach than

any other procedures. Granger et al. (1995) pointed out that IC based procedures

have a number of advantages over hypothesis test based approaches, and hence,

have become more popular to practitioners. IC is defined as the maximized log-

likelihood function minus a penalty function. The general form of IC is given by

Id = log Li(9)-Pi{n,q), (1.2.1)

where i denotes the ith model, log £,-(#) is the maximized log-likelihood function

for the ith model, 9 is the q x 1 vector of unknown parameters and p,(n, q) is the

penalty function for the ith model, which is typically a function of sample size (n)

and number of parameters (q) in the model. Among the models in the plausible

group, the model with the largest IC is chosen as the best model.

The IC approach discussed above, which is based on maximizing the penalized

maximized log-likelihood, is one of the three modes that IC can sometimes take.

The other two are: choosing the model (a) that minimizes the penalized residual

variance and (b) that maximizes the penalized posterior probability using Bayes

theorem. In the context of linear regression model, as shown by Fox (1995), all the

existing IC procedures can be expressed as Minimum Residual Variance criteria or

equivalently, Theil's adjusted R2, which is a function of the least squares estimates

of the sum of squared errors. The Schwarz criterion (known as the Bayesian Infor-

mation Criterion or BIC) is based on an approximation to the asymptotic expansion

of the posterior probability that the model is true under a number of assumptions.

In other words, a Bayesian procedure, which selects the model with the highest

posterior probability is asymptotically equivalent to BIC. Thus, the IC approach

covers both Minimum Residual Variance and asymptotically at least one particular

Bayesian criterion.
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Popular hypothesis testing procedures for model selection have some disad-

vantages. For example, different choices of the significance level for any pairwise

hypothesis test may lead to a different solution. Also, because only one model is

considered as the null hypothesis, the null hypothesis model is unfairly favored if

the test lacks power, and when the power of the test is very high, the test could dis-

advantage the null hypothesis model. This classical approach also results in biases

due to incorrect sizes of the test statistics caused by pre-test Mases. Despite these

limitations of hypothesis testing as a model selection procedure, it has a clear link

with the IC approach. Potscher (1-991) observed that the use of an IC approach to

select a model is equivalent to testing each model against all the alternatives (by

means of likelihood ratio tests) and selecting the model that is accepted against

all alternative models. The penalty function of the IC approach determines the

critical values, and hence, the significance level of the tests. Among the four model

selection procedures outlined above, clearly, IC is the more general approach and

in this thesis we focus only on IC based model selection procedures.

1.3 Model Selection Problems in ARM A and Ex-
ponential Smoothing Models

In the literature, IC based model selection procedures are the most widely used class

of model selection procedures. Stone (1981) argued that IC procedures are simple

and take into account parameter parsimony when choosing a model from a group

of competing models to describe a given set of data. In general, for a given level of

accuracy, simpler models are preferable to more complicated models. In the litera-

ture, many IC based model selection procedures have been proposed. For example,

some prominent criteria are: Akaike's Information Criterion (AIC) of Akaike (1973),

Bayesian Information Criterion (BIC) of Schwarz (1978) and Rissanen (1978) and
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Hannan-Quinn Criterion (HQ) of Hannan and Quinn (1979). Among other cri-

teria, Mallows' Criterion (MCp) of Mallows (1964), Generalized Cross Validation

Criterion (GCV) of Schmidt (1971) and Finite Prediction Error Criterion (FPE) of

Amemiya (1972, 1980) are also often used in applications in the literature. Most

of these IC based procedures are derived on asymptotic arguments. Asymptotic

properties of IC procedures, mainly for AIC, BIC and HQ are well documented,

particularly in the context of ARMA models. However, much less is known about

their small sample properties. In fact, comprehensive Monte Carlo studies to eval-

uate the relatively small sample performance of various IC procedures are few. The

majority of research in this area has been related to asymptotic properties, and

Monte Carlo studies have mainly been used to illustrate the asymptotic results.

Further, the asymptotic as v/ell as the finite sample properties of the IC procedures

for selecting exponential smoothing methods (models) are still unexplored. In this

thesis, we aim to investigate these properties of the IC procedures when selecting

a model from a set of simple competing models.

In the literature, there is a long standing debate about the proper form of the

penalty function in IC based model selection procedures. This is because, from the

definition of IC, clearly, one can easily design a new criterion by slightly changing

the value of the penalty function, which can also be justified asymptotically. As

such, interest in introducing various IC based procedures for different types of

models continues to grow and such vigorous growth in the literature may make the

users confused as to which IC procedure to use for a particular problem in hand.

Further, the small sample performance of these new IC procedures may not be

satisfactory. Therefore, an IC based procedure that would work well for any kind

of model selection problem is a current gap in the IC literature. In this thesis, we

try to reduce this gap by introducing a new approach for model selection.
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Hurvich and Tsai (1989) provide an exception to the above picture by suggest-

ing small sample criteria. With the aim of improving the small sample performance

of IC based model selection, King, Forbes and Morgan (1995) and Forbes, King and

Morgan (1995) proposed a new approach for estimating penalties through simula-

tion. This method is known as the controlled probabilities approach. Hossain and

King (1998) applied this approach to Box-Cox transformation models and found

that it produces high selection rates in picking the true (data generating) model.

Further, in the context of maximizing the overall average probabilities of correct se-

lection (OAPCS), King and Bose (2000), Kwek and King (1997a, 1997b, 1998) and

Azam and King (1998) considered model selection problems in linear regression

models, conditional heteroscedastic models and structural break models, respec-

tively. The OAPCS is calculated by averaging the average probabilities of correct

selection (APCS) for all models in the plausible group. All of these applications

produced, on average, a high probability of selecting the true model. This has

motivated us to develop a new class of model selection approaches for the linear re-

gression with ARMA error processes. This new approach can also be used for other

model selection problems. For the sample size and plausible models under con-

sideration, this new model selection approach will maximize the OAPCS through

the estimation of penalty values numerically. The OAPCS is a step function, and

hence, it may not be easy to maximize it using standard methods.

The above function can be maximized by estimating penalty values numerically,

which we call the penalty estimation method (PEM). Grid search (GS) could be

one of the many successful ways for estimating penalty values so that OAPCS is

maximized, and in this thesis we denote this method by PEM-GS. This function

can also be maximized by exploiting the use of a new global optimization algo-

rithm called simulated annealing (SA). The SA algorithm works well, even for very
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complicated functions such as functions with a large number of local maxima (see

Corana et a!., 1987; Kirkpatrick et al., 1983; Goffe et al., 1994). The SA algorithm

can be modified to apply for functions like ours with ridges and plateaux. We call

this modified algorithm PEM-SA. A contribution of this thesis is to investigate the

use of the SA algorithm for this purpose.

Often the reason for selecting a model is for use in forecasting. All of the existing

IC procedures select a model on the basis of its within-sample fit. However, a

model's good within-sample fit may not necessarily provide better out-of-sample

forecasts. Therefore, the PEM is extended to selecting the forecast model on the

basis of the model's out-of-sample forecasting performance.

Briefly, the overall main aims of this thesis are as follows:

• To introduce IC methods for selecting the best model from a group of com-

peting exponential smoothing models, and to compare the model selection

performance of various existing IC procedures with respect to OAPCS.

• To apply the idea of OAPCS to time series model selection from regression

models with ARMA error processes, and to exploring the use of PEM (PEM-

GS and PEM-SA) for model selection through the estimation of optimal

penalties that maximize OAPCS.

• To apply PEM to time series with forecasting accuracy as the model selection

criteria rather than OAPCS.

• To introduce a new individual selection method (ISM), which is based on

PEM, for selecting forecast models for real life time series such as the M3

competition data of Makridakis and Hibon (2000).

Further, we also aim:
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• To compare the performance of profile likelihood (PL) and marginal likelihood

(MGL) based IC procedures.

• To introduce improved conditional likelihood (ICL) based model selection in

exponential smoothing via maximum MGL estimation methods.

1.4 Outline of the Thesis

In Chapter 2, various existing IC procedures are discussed and it is argued that,

in small samples, no one IC procedure performs consistently better for all model

selection problems. The SA algorithm is outlined, and it is expected that in small

samples, the implementation of this algorithm will provide better model selection

properties than the existing IC procedures. Further, this chapter includes a sur-

vey of exponential smoothing methods and their corresponding state space models,

which have gained much popularity, particularly in inventory forecasting. An au-

tomatic model selection approach (for selecting exponential smoothing methods),

which has been overlooked in the exponential smoothing literature, is also advo-

cated in this chapter.

A comprehensive Monte Carlo study to compare the small sample performance

of various IC procedures in selecting exponential smoothing models has never been

considered in the literature. The majority of the research in this area has been

related to the forecasting performance of various exponential smoothing methods.

Chapter 3 compares the performance of different IC procedures for selecting expo-

nential smoothing models discussed in Chapter 2. This chapter also outlines the

theory of OAPCS and proposes ICL based model selection procedures via maximum

MGL estimation methods.

As discussed in Section 1.3, this thesis attempts to utilize a recent algorithm

(SA) that has been successfully implemented to optimize various types of complex
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functions such as step functions. In Chapter 4, the theory of optimal penalties

is outlined and the SA algorithm is modified to estimate the optimal penalties so

that the OAPCS is maximized. Then, this chapter compares the small sample

performance of some of the existing IC procedures and PEM (PEM-GS and PEM-

SA) in selecting regression models with ARMA error processes, based on a large

Monte Carlo study. Further, this chapter compares the MGL and PL based model

selection procedures.

Chapter 5 is an extension of Chapter 4 to model selection for forecasting. In

this chapter, PEM-GS and PEM-SA are extended so that, irrespective of the DGP,

these methods can select the model with minimum ouo-of-sample forecast error

on average. This chapter also extends the theory of optimal penalties outlined in

Chapter 4 to model selection for forecasting. In this chapter, MGL based selection

procedures are considered, because they gave better OAPCS in Chapters 3 and 4.

Chapter 6 discusses how PEM, which has been proposed in Chapter 5 in the

context of model selection and forecasting, can be used to develop a new model se-

lection procedure (called ISM) for forecasting observations for the M3 competition

data of Makridakis and Hibon (2000). The combined forecasting (COM) method

of Makridakis et al. (1982), which performs better than the individual forecasting

methods is also discussed. The performance as measured by mean absolute per-

centage error (MAPE) of the new method, the COM method and the existing IC

procedures are compared.

Chapter 7 concludes our study by summarizing our results and main findings.

In summary, the theme of this thesis is that small sample properties are important

in selecting a model selection procedure rather than asymptotic properties. The

simulation studies have been conducted only in the context of exponential smooth-

ing models and regression models with ARMA error processes. However, we are
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optimistic that the proposed model selection procedures will also perform better

than the existing IC procedures for model selection problems outside of ARMA er-

ror models and exponential smoothing models, and also for bigger sets of plausible

models.



Chapter 2

Literature Review

2.1 Introduction

Model selection procedures play an important role in econometric as well as in

statistical modeling. In the model selection literature, many methods have been

suggested for selecting an appropriate model from a group of reasonable models. In

fact, the area of model selection is quite vast in its scope, and therefore, a complete

treatment is beyond the scope of this thesis. Among the various methods for model

selection, IC based procedures are widely used and are very powerful methods for

choosing among competing models (see Hampel et al., 1986). This chapter aims

to review the literature on some popular IC procedures and their applications,

particularly in small samples.

Almost all of the IC procedures proposed in the literature were actually de-

signed for solving a particular type of model selection problem. For example, AIC

grew out of Akaike's (1973, 1974) research on selecting the best order of an autore-

gressive process, while Mallows (1973) introduced a criterion (MCp) for selection

of regressors in a model. All of the existing IC differ from each other only by their

penalty function (see Fox, 1995). Therefore, by introducing a new penalty function,

researchers can easily arrive at a new criterion. However, the performance of these

12
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criteria may vary from one model selection problem to another (for example, see

Billah and King, 1998a, 2000a, 2000b; Crato and Ray, 1996; Holmes and Hutton,

1989; Kwek, 2000).

Exponential smoothing methods are widely used for univariate time series fore-

casting procedures in many industrial applications, including production planning,

inventory control and production scheduling (Makridakis and Wheelwright, 1989;

Gardner, 1985; Brown, 1963; Winters, 1960). Many studies have shown that al-

though these methods are extremely simple, and easy to apply, they are as accurate

as more complicated and statistically sophisticated alternatives for forecasting vari-

ous types of time series (Makridakis et al., 1982; Makridakis et al., 1993; Armstrong

and Collopy, 1992, 1993; Fildes et al., 1998; Makridakis and Hibon, 2000). Unfor-

tunately, the development of IC based model selection procedures for exponential

smoothing algorithms has not been popular because there has not been a well devel-

oped probability modeling framework for this approach in the literature. However,

the work of Gardner (1985), Ord et al. (1997) and Hyndman et al. (2000) to-

wards this framework provides an important foundation for developing IC based

model selection procedures. This chapter aims to review the literature on expo-

nential smoothing methods and their corresponding state space models, and also

findings from some recent studies on model selection for exponential smoothing

methods (models). Further, included in this chapter is the SA algorithm which has

gained popularity in the recent years as the optimization method for very complex

functions.

The chapter is organized as follows. Section 2.2 gives a review of the literature

on some existing IC procedures. This section also discusses the consistency and

small sample properties of some existing IC procedures. A brief survey of the SA

algorithm is presented in Section 2.3. Exponential smoothing methods and their
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corresponding state space models are outlined in Section 2.4. For some selected

exponential smoothing methods (models), the literature on ARIMA equivalence

and smoothing parameter spaces is also reviewed in this section. Further, this

section includes a discussion of the various initialization methods for seed vectors.

The accuracy of various forecasting procedures is discussed in Section 2.5, and

Section 2.6 contains a survey of model selection in exponential smoothing methods

(models). The final section presents concluding remarks.

2.2 A Review of Selected Information Criteria
(IC)

In the last three decades, a number of model selection criteria have been proposed

in the literature. However, we review only seven criteria, namely, AIC, BIC, HQ,

MCp, GCV, FPE and Residual Variance Criterion (RVC) of Theil's (1961), which

have been widely used in the literature. Recent reviews of these IC procedures

can be found in Fox (1995), Hughes (1997), Hossain (1998) and Kwek (2000). Fox

(1995) expressed these criteria in a penalized log-likelihood form (maximized log-

likelihood minus a penalty function). The new format of these criteria allows easy

comparison between different forms of model selection and also between the various

marginal penalties. The above IC procedures are briefly outlined in the following

subsections.

2.2.1 Akaike Information Criterion (AIC)

Akaike's information criterion (AIC) is a well known and most widely used proce-

dure developed by Akaike (1973). This criterion gives a measure of distance between

the estimated model and the true data generating process through examination of

Kullback-Leibler's (KL) (1951) information or alternatively, the mean expected log-
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likelihood of the model under consideration. It grew out of Akaike's (1973, 1974)

research on selecting the best order of an autoregressive (AR) process. Although

different forms by different authors are available, the penalized log-likelihood form

given by Fox (1995), with the penalty term being q, the number of free parameters

included in the model under consideration, is given by

A1L< = mlj\y) — q, {Z.Z.I.)

where 9 is the estimated parameter vector in the model and \ogL(9) is the maxi-

mized log-likelihood. The chosen model is the one that maximizes AIC within the

set of models under consideration.

For a linear regression model, using AIC is equivalent to choosing the model

that minimizes the following expression:

AIC = Info2) + ?£,
n

(2.2.2)

where a\ is the maximum likelihood estimate (MLE) of the error variance for the

model with q parameters.

For estimating the order of ARMA(p*,g*) models, where p* and q* are the orders

of the AR and moving average (MA) components, respectively, AIC can take the

following form:

-, (2.2.3)
n

where a\ is the corresponding MLE of the error variance.

Since the development of IC procedures, a significant amount of research has

been undertaken concerning the properties of these criteria. Among others, the

consistency property has been discussed by many researchers. Consistency refers

to the ability of a model selection criterion to select a finite, fixed true model

with certainty asymptotically, assuming that the true model is contained in the
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competitive set. The meaning of a finite model is that the model contains a finite

number of parameters. The AIC procedure is not consistent in this sense (see for

example, Akaike, 1979; Shibata, 1986; Hannan, 1982; Bethel, 1984; Hampel et al.,

1986; Koehler and Murphree, 1988; Atkinson, 1980).

AIC was developed to measure the goodness of fit and parsimony of a model.

The goodness of fit is measured by mean expected log-likelihood, i.e., the larger

the mean expected log-likelihood, the better the fit of the model. The parsimony

of a model is related to its simplicity, meaning that the smaller the number of

regressors, the more parsimonious the model is. AIC performs better at measuring

the goodness of fit than the parsimony, because recent studies have shown that AIC

has a tendency to overfit the data (see Hurvich and Tsai, 1989; Mills and Prasad,

1992). The study of Hurvich and Tsai (1989) showed that in small samples, AIC

tends to provide a negatively biased estimate of the KL information. The authors

argued that this under estimation is due to the fact that AIC tends to overfit when

the sample size is small relative to the dimension of the model.

2.2.2 Schwarz Criterion (BIC)

Schwarz (1978) provides a criterion which is a la ^e sample approximation for

the posterior odds ratio of the models considered. This is a Bayesian solution

to Akaike's criterion, and hence, it is typically referred to as the Bayesian infor-

mation criterion (BIC). BIC is asymptotically equivalent to a Bayesian procedure

that selects the model with the highest posterior probability. Another Bayesian

information criterion that is based on KL divergence was proposed by Sawa (1978).

This criterion is independent of the existence of a true model. Learner (1978) pro-

posed a similar criterion to BIC. However, the BIC proposed by Schwarz provides

the most general asymptotic properties.
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As for AIC, BIC is based on choosing the model with the largest value of

)> (2.2.4)

where n is the sample size. For a wide-ranging discussion on this, see Akaike (1981).

For the linear regression model, BIC is equivalent to the maximization of

BIC = lnL(ffj) — —log(n). (2.2.5)

According to the results of Hannan and Quinn (1979), this criterion (BIC) has

the property of strong consistency (see also Schwarz, 1978; Rissanen, 1978; Quinn,

1980; Hannan, 1980; Hannan and Kavalieris, 1984; Wei, 1992; Hurvich and Tsai,

1989, 1990). In a simulation study, Sneek (1984) found that BIC outperformed

Akaike's information criterion in selecting the correct order of an ARMA process,

especially ' i there was a large distance between competing models. BIC selects

more parsimonious models than AIC if the number of observations is large. This

is because, for increased n, BIC penalizes additional parameters much more than

AIC.

Jeffreys (1967) proposed a criterion for model discrimination and Stone (1979)

showed that Schwarz's (1978) BIC was a special case of Jeffrey's work. The study

of Geweke and Meese (1981) showed that AIC tends to overfit when identifying an

ARIMA model, however, asymptotically BIC correctly selects the true model. Kohn

(1983) showed that when choosing from a large class of models, BIC consistently

chooses a smaller (minimal dimension) model. Rissanen (1978) also proposed a

Bayesian IC whi~h ^ the same as Schwarz's BIC. For selecting ARMA models, Ris-

sanen's BIC has been extended by both Hannan (1980) and Hannan and Rissanen

(1982).
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2.2.3 Hannan and Quinn's Criterion (HQ)

Using the theorem of the law of iterated logarithms given by Heyde and Scott

(1973) and Heyde (1974), Hannan and Quinn (1979) derived a criterion for AR

models which is known as the Hannan and Quinn (HQ) criterion. The penalized

maximized log-likelihood form of this criterion (Fox, 1995) is based on choosing the

model with the largest value of

HQ = - q\og(logn). (2.2.6)

Fox noted that HQ shares a property of both AIC and BIC in that its marginal

penalty is constant as q increases, for a fixed sample size. The studies of Hannan

and Quinn (1979), Nishii (1988) and Atkinson (1981) showed that this criterion is

consistent.

For selecting between regression models, this criterion is equivalent to:

2. , 2gln(lnn)l
min

9 n
(2.2.7)

This criterion was also extended by Hannan (1980) for selecting between ARMA(p*,?*)

models. According to this extended criterion, the order of the ARMA(p*,g*) model

can be selected by minimizing:

+
n

(2.2.8)

where c is a constant to be specified. For c > 2, (2.2.8) is consistent for the order

of the autoregression (see Hannan, 1980).

2.2.4 Mallows' Criterion (MCp)

This criterion was first suggested by Mallows (1964) and has enjoyed much popu-

larity in many sciences. However, compared to AIC, MCp has lost its popularity as
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there now exist a number of alternative criteria in the IC literature. Among others,

Gorman and Toman (1966) and Mallows (1973) are common references for MCp.

Indeed, Mallows proposed this criterion for the selection of regressors. The original

statistic, MCp, is as follows:

MCp = |£«=i(^ a~y») j - n + 2q, (2.2.9)

where yt- is the ith. value of the dependent variable, q is the total number of param-

eters in the model, d\ — J2{yi ~ 2/«)2/(n — <Jf + 1) is the unbiased estimator of the

true residual variance and y,- is the fitted y,-.

Fox (1995) expressed this criterion in the following penalized log-likelihood form:

MCp = In L(0) - ! In f 1 + ^ \ , (2.2.10)

where q** is the number of free parameters in the smallest model which nests all

models under consideration. The model with the highest MCp is chosen. Criteria

proposed by Amemiya (1972, 1980) and Akaike (1973) are similar to that of Mal-

lows, although they are derived from somewhat different considerations. Atkinson

(1981) and Nishii (1988) showed that MCp is inconsistent.

2.2.5 Generalized Cross-Validation Criterion (GCV)

The Cross-Validation (CV) criterion was first advocated by Schmidt (1971). Other

studies on CV can be found in Schmidt (1974, 1975), Allen (1971, 1974) and Stone

(1974). Schmidt called CV, the sum of squared predictive errors (SSPE), while

Allen called it prediction sum of squares (PRESS). The PRESS criterion was ex-

tensively investigated by Stone (1974). As an approximation to CV, Golub et al.

(1979) derived the Generalized Cross-Validation (GCV) criterion. When applied to

regression models, GCV chooses the model that gives the smallest value of

^-. (2.2.11)
nj n
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In its logarithmic form, GCV is equivalent to:

nun (info2) - 2 ln(l - i ) ) . (2.2.12)

One important problem is that, like AIC and MCp, GCV is inconsistent (see

Nishii, 1988). More details on the GCV criterion can be found in Golub et al.

(1979). The asymptotic equivalence of the CV criterion to AIC was discussed by

Stone (1977) and Nishii (1986). The CV proposed by Stone (1974) and Geisser

(1974, 1975) is a very general procedure, however, these criteria have not become

as popular as AIC.

Fox (1995) derived the penalized log-likelihood form of GCV which is given by,

GCV = In L(9) + nlog f 1 - £ ) . (2.2.13)

The model with maximum GCV is chosen as the best model.

2.2.6 Finite Prediction Error Criterion (FPE)

Akaike (1970) developed the following criterion for selecting the order of univariate

AR models. The criterion uses prediction errors of an independent realization of

the fitted model. The value:

FPE = (2.2.14)

is computed for each order, where q is the order of the AR process. Then the order

with the smallest value of FPE is selected as the best.

An alternative procedure was also derived by Amemiya (1972, 1980). This

criterion is known as the Prediction Criterion (PC) and is the same as FPE. Fox

(1995) expressed FPE as follows:

FPE = \nL(9) - | log(n + q) + | log(n - q).

Nishii (1988) showed that this criterion is inconsistent.

(2.2.15)
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2.2.7 Theil's Residual Variance Criterion (RVC)

Historically, the coefficient of multiple determination (R2) probably was the first

model selection procedure used in econometrics. R2 measures the part of the error

variance that is explained by the regression model under consideration. In the

context oi the linear regression model, R2 is given by

(2.2.16)

where y,- is the mean of y,s. This procedure involves the choice of a linear re-

gression model that gives the best within sample predictions or equivalently, the

largest R2 value. However, the value of R2 always increases with any addition of

an explanatory variable. Therefore, R2 cannot be used as a criterion for choosing

between competing models. To handle this problem, Theil (1961) proposed the ad-

justed coefficient of determination denoted R2 that takes into account the number

of estimated parameters. The R2 criterion is given by

R2 = 1 - R2 n (2.2.17)

where n is the sample size and q is the total number of parameters included in the

model. Theil's adjusted R2 is equivalent to:

n
mm \aA

(2.2.18)

where a\ = Y^,{yi~yi)2/(n~9+1)1S ^n e ordinary least squares (OLS) error variance

estimate of the respective model.

It has been shown by Theil (1971) that a decision rule which favors the model

with the highest R2 will result on average in the correct choice of the model. Pearson

(1974) showed that the use of R2 for choosing between nested models is misleading,

because this criterion is equivalent to conducting a t test at the 25% significance
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level, which is much larger than a normally used significance level such as 5%.

However, the use of R2 for selecting between non-nested models has been justified

by Pesaran (1974). Unfortunately, this criterion is inconsistent (Nishii, 1988).

Fox (1995) expressed Theil's (1961) R2 in the following penalized maximized

log-likelihood form and called it the residual variance criterion.

RVC = In L(9) + \n ln(n - q + 1). (2.2.19)

2.2.8 Finite Sample Performance of IC

From the above discussion, clearly the large sample properties of IC procedures

have been investigated by many researchers. The next question that arises is how

these procedures perform in small samples. In investigating this, a small number of

finite sample performance studies of the IC procedures have been conducted. The

following is a short survey of results of some recent studies on the finite sample

performance of IC procedures.

Using Monte Carlo methods, Liitkelpohl (1984) compared the forecasting per-

formance of AIC and BIC for selecting models from AR and MA processes. The

results of this study showed that AIC performs better than BIC in small samples

for one-step ahead forecasts, but worse for five-step ahead forecasts. However, in

large samples, BIC performs better than AIC. In another Monte Carlo experiment,

Liitkelpohl (1985) compared the performance of AIC, BIC, HQ, FPE, CAT (Parzen,

1974), Shibata's criterion (Shibata, 1980) to the LR test (Hannan, 1970) in select-

ing the order of vector autoregressive (VAR) processes. The results of this study

showed that BIC performs best, followed by HQ and LR tests, with CAT being the

worst performer. Another finding of this paper wa? that BIC and HQ consistently

estimate the order of VAR processes.

Meese and Geweke (1984) compared the forecasting performance of AIC, BIC,
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Sawa's information criterion (SIC) (Sawa, 1978) and MCp for selecting the order of

AR processes. The authors considered three forecasting accuracy measures, namely,

mean error, mean absolute error and mean squared error. They found that AIC

performs best for every measure of forecast error, except mean error. Engle and

Brown (1986) empirically compared the forecast accuracy resulting from a variety

of model selection procedures and found that selection criteria such as BIC, which

most heavily penalizes overparameterized models, performs the best. In order to

compare the performance of BIC, AIC and bias corrected AIC (AICc), Crato and

Ray (1996) conducted a large-scale simulation study and concluded that for pure

fractional noise, BIC performs better than AIC and AICc. However, AIC and AICc

perform better than BIC for mixed fractionally integrated autoregressive moving

average (ARFIMA) models.

Mills and Prasad (1992) investigated the performance of AIC, BIC, AICc, RVC

or R2, BEC (Geweke and Meese, 1981), MDL (Rissanen, 1987, 1988) and PMDL

(Rissanen, 1988) for selecting the order of AR processes and also for variable se-

lection in the linear regression model. The evaluation was based on the number of

times the correct model was chosen and out of sample forecast error. This study

showed that AICc performs well for small sample sizes, but any advantages from

using AICc diminishes as the sample size increases. In general, BIC and BEC were

found to be more reliable and better than the other criteria and never considerably

worse. Considering the theoretical justification and wide applicability of BIC and

on the basis of the results of the study, Mills and Prasad (1992) recommended that

BIC should be the first choice of applied researchers.

In the context of regression and AR time series models, Hurvich and Tsai (1991)

compared the performance of AIC, BIC and AICc in terms of bias and concluded

that for a very small sample size, AICc performs significantly better than BIC and
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AIC, but it performs marginally better than BIC and AIC for moderately small

sample sizes. In another study, Hurvich and Tsai (1990) investigated the coverage

rate of confidence intervals in small samples for models selected by BIC and AIC

and found that AIC performs better than BIC. The coverage rate is defined as

the proportion of times the true parameter is contained in the confidence interval.

Also, Hurvich and Tsai (1993) extended AICc to VAR(p*) models, where p* is the

order of VAR model. Note that a VAR(*>'') model contains many more parameters

than a univariate AR(p*) model. The authors conducted a simulation study and

found that AICc has superior bias properties and performs much better than AIC.

The relationship between AIC and AICc was also investigated by Hurvich and Tsai

(1993).

Using a Monte Carlo study, Holmes and Hutton (1989) compared the small

sample performance of AIC, BIC, Hannan's criterion (HC) (Hannan, 1981), PC

criterion (Amemiya, 1980) and Theil's (1961) R criterion in the context of the

linear regression model. The results of the study showed that in general, the R

criterion performs better than the other criteria when the true relationship between

independent and dependent variables is weak. For a strong relationship, all of these

criteria have a high probability of choosing the correct model and the probability of

correct selection increases as the sample size becomes larger. However, R performs

worst and generally, BIC is the best in this case. In the context of the linear

regression model with AR(1) and MA(1) errors, a small sample Monte Carlo study

by Grose and King (1994) showed that the estimated optimal penalties as well as

the marginal log-likelihood based IC procedures result in improved probabilities of

correct selection.

In order to investigate the performance of AICc, BIC and HQ in selecting

stochastic models, Schmidt and Tschernig (1993) conducted a simulation study



CHAPTER 2. LITERATURE REVIEW 25

and found that AICc performs best followed by BIC, and HQ is the worst. Wei

(1992) compared the performance of AIC, BIC, MCp, FPE, the predictive least

squares (PLS) principle and the Fischer information criterion (FIC) in a simulation

study involving stochastic models and found that AIC and FPE are equivalent in

small samples.

Hughes (1997) conducted a Monte Carlo study to investigate the performance

of one sided AIC for selecting models for economic data and concluded that there is

no reason for applied researchers to uniformly favor consistent criteria, for example,

BIC. In a large simulation study involving autoregressive conditional heteroscedas-

tic (ARCH) models and generalized ARCH (GARCH) models, Kwek (2000) com-

pared the performance of penalized conditional log-likelihood based IC procedures

(AIC, BIC, HQ, MCp, GCV, RVC and FPE) and found that in small samples, RVC

is the best criterion and BIC is the worst. However, as the sample size becomes

larger, RVC loses its efficacy to AIC and the latter becomes comparatively a better

criterion.

Alternative methods of numerically estimating penalty value(s) using simula-

tions can also be found in the literature. For model selection of an AR time series,

Chen et al. (1993) proposed a resampling technique. For estimating penalties

for a special case of a non-Gaussian time series with an AR random component,

Grunwald and Hyndman (1998) proposed a parametric bootstrap method. King

et al. (1995) introduced a procedure for numerically estimating penalty values by

controlling probabilities of correct model selection. Following King et al. (1995),

Hossain (1998) proposed an empirical based information criterion called CIC and

compared the performance of AIC, BIC and CIC for selecting between Box-Cox

transformation models and found that CIC performs better than the existing IC

procedures considered in his study. By using Monte Carlo methods, Kwek (2000)
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also proposed a small sample optimal model selection procedure, which performed

better than all existing information criteria considered in her study. Rahman et al.

(1998) and Rahman and King (1997) also proposed other forms of penalty functions

where the functions consist of composite variables of n and q.

In the next section, we will introduce a global optimization algorithm called

SA which works well even to optimize very complex functions such as functions

with ridges and plateaux. More specifically, we wish to investigate whether this

algorithm can be used to estimate penalty values to improve the small sample

model selection properties.

2.3 Simulated Annealing (SA)

The basic algorithm for SA was introduced by Metropolis et al. (1953) who used it

to simulate a collection of atoms at a given temperature. Kirkpatrick et al. (1983)

were the first to show how Metropolis et al.'s model for simulating the annealing of

solids could be used for optimization problems. The minimization of the objective

function corresponds to the energy state of the solid. Therefore, the name of the

algorithm is drawn from an analogy between solving an optimization problem and

simulating the annealing of a solid.

Many econometric methods, for example, the maximum likelihood method, the

generalized method of moments and nonlinear least squares, depend upon opti-

mization to estimate parameters in the model. However, almost all conventional

algorithms sometimes fail to estimate the optimum value of parameters. Conven-

tional algorithms, such as Newton-Raphson, attempt to move up hill in an iterative

manner. More specifically, starting from a point, these algorithms determine the

best direction and step length to head up hill. Popular statistical packages such as

SAS, RATS and TSP use these algorithms. Reviews on these packages can be found



CHAPTER 2. LITERATURE REVIEW 27

in Judge et al. (1985) and Press et al. (1986). Many conventional algorithms as-

sume that the function to be optimized is approximately quadratic. Unfortunately,

some functions violate this assumption. Another assumption that is very common

to classiccil algorithms is that the function has one optimum, and hence, any local

optimum is also the global optimum. Also, the conventional algorithms may have

difficulties with ridges and plateaux. When such problems occur, researchers often

attempt to solve them by trying different starting values (see Cramer, 1986; p.72

and Finch et al., 1989). Even when these algorithms do converge, they may con-

verge to a local rather than the global optimum. Interestingly, the SA algorithm,

which assumes very little about the function, can tackle the optimization problem

very efficiently (see Corana et al, 1987; Goffe et al., 1994). The advantage of this

algorithm is that it is explicitly designed for functions with multiple optima and

also works wei •••• •••>• functions with ridges and plateaux. SA explores the function's

entire surface and tries to optimize the function while moving both up hill and

down hill. Therefore, SA is much more robust than classical algorithms.

An early SA algorithm was introduced in combinatorial optimization and is

known as combinatorial SA. This SA algorithm has been used successfully in com-

puter and circuit design (Kirkpatrick et al., 1983 and Wong et al., 1988), neural

networks (Wasserman and Schwartz, 1988), pollution control (Derwent, 1988), re-

construction of pollycrystalline structures (Telly et al., 1987) and image processing

(Carnevali et al., 1985). Corana et al. (1987) derived a new SA algorithm for op-

timization of functions of continuous variables from the SA algorithm introduced

in combinatorial optimization. This new SA algorithm has been fo.'ind to be more

reliable, being nearly always able to find the optimum, or at least a point very

close to it. Other SA algorithms proposed in the literature are as follows: adaptive

random search (Pronzato et al., 1984), fast SA (Szu and Hartly, 1987), down hill
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simplex with annealing (Vetterling et al., 1994) and direct search SA (Ali et al.,

1997). However, the algorithm introduced by Corana et al. (1987) appears to be

the best with respect to the combination of ease of use and robustness. Goffe et al.

(1994) compared the Corana et al. (1987) implementation of SA to conventional

algorithms on four econometric models. Compared to the three conventional algo-

rithms, SA was found to have several advantages. The most important advantage

is that it can optimize functions with which conventional algorithms have extreme

difficulty or simply cannot optimize at all. This algorithm can also be used as a

diagnostic tool to understand how conventional algorithms fail. Further, it can step

around regions in the parameter space for which the function does not exist.

The SA algorithm is a stochastic optimization algorithm, which borrows ideas

from statistical physics. Although it was first introduced by Metropolis et al. (1953)

in a pioneering paper, it was made operational by Kirkpatrick et al. (1983). Since

then, the SA algorithm has become a popular method for a wide class of optimiza-

tion problems. Let us assume that i9 = (i?i,t?2> • • * ^N)' is a vector of parameters

to be estimated and /(i?) is a bounded function to be maximized. Let V be the

N x 1 step length vector for $ and T be the temperature. The algorithm needs

starting values for tf, V and T which are assumed to be i90, VQ and To, respec-

tively. The algorithm computes the value of /(1?) at i?0 and also sets i?opt = dQ

and fopt = /($o)> where opt stands for "optimum". The explicit description of the

algorithm (for maximizing a function) is as follows.

The required steps are:

1. Using the following equation, the algorithm generates a random point -d' for

•d by changing the ith element of ti as follows:

u*v{, (2.3.1)
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where u* is a random number generated in the range [-1,1] by a pseudo random

number generator and u,- is the zth component of the step vector V.

2. The function value / ' is computed at this new point $(•. If this new function

value is greater than the function value /npt, •&' is accepted and d is replaced

by d' i.e., -d = d'. At this stage / ' and d' are recorded as opt values.

3. If / ' is less than or equal to fopt, the acceptance of the new point is decided

by the Metropolis criterion. This works as follows: the value

- eV'-M/T (2.3.2)

is calculated and then compared with a value pu , which is randomly generated

from a uniforn distribution ranging from 0 to 1. If pr is greater than pUi the

new point is accepted and r? is updated by d' (in this case the algorithm

moves down hill). Otherwise, the new point $' is rejected. Two factors, large

differences in function values and lower temperature, decrease the probability

of a down hill move.

4. In order to accept 50% of all moves, the step length vector is adjusted after N3

steps through all elements of the vector t?o- The aim of doing this is to sample

the function widely. If more than 60 percent of points are accepted for t9,-, then

the relevant component of V is enlarged by the factor 1 + 2.5ci(mi/Na — 0.6),

where mt- is the number of points accepted and c,- is the zth element of the

vector that controls step length adjustment. If less than 40 percent of points

are accepted, the component is declined by 1 +2.5c,-(0.4 —mf/iV,). Otherwise,

the component remains unchanged.

5. After iVr times through the steps 1 to 4, the temperature T is reduced and
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the new temperature is given by

r = rTr, (2.3.3)

where TT lies between 0 to 1.

6. From the end of the last four temperature reductions, the largest function

values are recorded and are compared. The algorithm terminates if all of

these differences are less than e, a very small quantity.

The SA algorithm has a number of potential advantages over classical optimiza-

tion methods. First, the SA algorithm can escape from local maxima by moving

both up hill and down hill. Also, the function to be optimized does not need to be

approximately quadratic and it does not even need to be difFerentiable (see Corana

et al., 1987). Second, the SA algorithm can snuggle up to a corner for functions

that do not exit in some region, and hence, the algorithm can identify corner solu-

tions. Another advantage of this algorithm is that it provides valuable information

about the function through the step length vector. A large element of V indicates

that the function is flat in that parameter. The most important advantage of SA

is that it can properly optimize functions that are very complex and impossible to

optimize (see Goffe et al., 1994). The only drawback of SA is that the required com-

puter power can be high. However, this problem has already disappeared with the

availability of high levels of computer power. Thus, SA is an attractive optimiza-

tion algorithm for difficult functions. In this study, we implement SA to estimate

penalty functions (which is a step function) for small sample model selection and

forecasting.
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2.4 Exponential Smoothing Methods/Models

Exponential smoothing methods have been used extensively in industry. For exam-

ple, typical applications include production planning, production scheduling and

inventory control. The related literature can be found in Brown (1959, 1963, 1967),

Holt et al. (1960), Winters (1960), Gardner (1985), Makridakis and Wheelwright

(1989), among others. Exponential smoothing methods are very popular in short-

range forecasting because of several practical considerations. Model formulations

for exponential smoothing methods are relatively simple. These methods have been

found by many studies to be as accurate as more complex and statistically sophis-

ticated alternatives (Groff (1973), Chatfield (1978), Makridakis and Hibon (1979),

Makridakis et al. (1982), Makridakis et al. (1993), Fildes et al. (1998), Makridakis

and Hibon (2000)). Furthermore, exponential smoothing methods are easy to pro-

gram, robust, require a minimum of historical data, and the cost of running them

on the computer is the smallest of all available alternatives. Exponential smoothing

methods, their corresponding state space models along with various properties and

initialization methods, are discussed in the following subsections.

2.4.1 Exponential Smoothing Methods

There are many versions of exponential smoothing methods in the literature. Pegels

(1969) has given a simple but very useful classification which has been extended by

Gardner (1985). Following Pegels (1969) and Gardner (1985), exponential smooth-

ing methods can bo summarized in a two-way classification. Each exponential

smoothing method has or does not have a trend component and/or seasonal com-

ponent, as shown in Table 2.1.

Cell NN describes the simple exponential smoothing (SES) method, cell AN

describes Holt's exponential smoothing method and the additive and multiplicative



CHAPTER 2. LITERATURE REVIEW 32

Table 2.1: Major categories of exponential smoothing methods.

Trend Component Seasonal Component
None (N) Additive (A) Multiplicative (M)

None (N) NN
Additive (A) AN
Multiplicative (M) MN
Damped (D) DN

NA
AA
MA
DA

NM
AM
MM
DM

Holt-Winters' exponential smoothing methods are given by cells AA and AM, re-

spectively. Formulae for calculations and forecasting using the classification in the

above table are as follows.

Following Makridakis, Wheelwright and Hyndman (1998), each of the above

exponential smoothing methods can be written as:

bt =

(2.4.1)

(2.4.2)

(2.4.3)

where <*i, a2 and ocz are smoothing parameters for local level It, local trend bt and

seasonal factors cf respectively, <j) is the damping parameter, s is the number of

seasons in a year and Vt, Qt, T^t and % vary according to which of the cells the

method belongs. Following Hyndman et al. (2000), the values of Vt, Qt, Tit and %

for different cells of Table 2.1 and the formulae for computing ft-step ahead forecasts

yt{h) at time t are as follows.

2.4.1.1 Methods with no Trend

These are the simplest of the exponential smoothing methods. These methods are

appropriate if there is no increasing or decreasing pattern in the data. However,

there might be seasonality in the data and the seasonal component can be modeled
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either as an additive or multiplicative factor. Additive seasonality is appropriate

when the seasonal variation is constant around the mean and the multiplicative

component is appropriate when the magnitude of the seasonal variation is propor-

tional to the local mean. The exponential smoothing methods with no trend are as

follows:

NN: Simple exponential smoothing:

Vt = Vu Qt = k-i,

<f> = i, yt[h) = it-

NA: Simple exponential smoothing with additive seasonality:

Vt = yt-cts, Qt = /t_i, Tt = yt-Qu

<f> = 1, yt{h) - lt + ct+h-s-

NM: Simple exponential smoothing with multiplicative seasonality:

Vt = yt/ct-a, Qt = h-u % = yt/Qu
(j> = 1, yt{h) = hct+h-8-

2.4.1.2 Methods with Linear Trend

(2.4.4)

(2.4.5)

(2.4.6)

Holt (1957) extended the simple exponential smoothing method to time series that

have a discernible trend. The algorithm considers different smoothing parameters

for level and trend and also assumes that the trend is evolving and locally linear.

Winters (1960) extended the Holt's method by including an additional equation to

smooth the seasonal factors in the data, explicitly using a third smoothing parame-

ter. This algorithm is known as the Holt-Winters' method. The seasonal component

can be included in the algorithm either as an additive or a multiplicative factor.

The equations of these algorithms are given below.

AN: Holt's linear exponential smoothing:

Vt = yt, Tit = h-h-
yt{h) = h + hbt.

(2.4.7)
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A A: Additive Holt-Winters' method:

Vt = yt-ct-s, Qt = Jt-i+ &*-i, Tit

% = yt-Qu <j> = 1, yt(h)

AM: Multiplicative Holt-Winters' method:

Vt = yt/ct-s, Qt = / t - i+ 61-!, Tit

^ = yt/Qu <f> = 1,

= h + hbt +
(2.4.8)

(2.4.9)

2.4.1.3 Methods with Multiplicative Trend

Holt's algorithm as well as additive and multiplicative versions of Holt-Winters'

methods assume that the underlying trend is linear. However, this may not be true

for all real time series data (Gardner, 1985). The exponential smoothing algorithms

with multiplicative (nonlinear) trend were developed to incorporate exponential

trend in the series into the smoothing equations (Pegels, 1969; Gardner, 1985).

Different versions of exponential smoothing methods with multiplicative trend are

outlined as follows:

MN: Multiplicative trend with no seasonality:

Vt = yt, Qt = /t-i + 6t-i, Tlt = h/lt-i,

<j> = 1, yt(h) = 1$.

MA: Multiplicative trend with additive seasonality:

Vt = yt-ct-s, Qt = / t - i + &<-i, Tlt = h/k-u

% = yt-Qt, <f> = 1, yt(h) = I

MM: Multiplicative trend with multiplicative seasonality:

Vt = yt/ct-a, Qt = /t-i + &t_i, Tlt = h/h-u

% = yt/Qu ^ = 1, yt{h) =

2.4.1.4 Methods with Damped Trend

(2.4.10)

(2.4.11)

(2.4.12)

Damped trend exponential smoothing methods are appropriate when there is trend

in the time series data. In additive (linear) trend methods, the growth rate esti-

mated from the end of the time series data are used for forecasting at all forecast
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horizons. However, this may give unrealistic forecasts because the estimated trend

is local, and therefore, should not be used without any modification. A number

of researchers have argued that a generalization of the linear trend algorithm was

possible by introducing an extra parameter to control the trend (see Gilchrist, 1976;

Roberts, 1982 and Gardner 1985). Gardner and McKenzie (1985, 1988 and 1989)

used an autoregressive damping parameter to control the rate of trend extrapola-

tion by incorporating a new parameter <p into the additive trend methods, which

are known as damped trend methods. The damped trend methods are given as

follows:

DN: Holt's damped trend method:

bt-ii Tit = h — k-i,Vt=Vu Qt = ft-i + fc-i, Kt

O 2 < * < 1 , yt(h) = U + btT&tf.

DA: Additive Holt-Winters' damped trend method:

Vt = yt- ct-s, Qt = h-i + bt-u

Tit = h-k-u % =yt-Qu

< * 2 < ^ < 1 , yt(h) = / t + 6 t E?Jo^

DM: Multiplicative Holt- Winters' damped trend method:

s, Qt =h-i + bt-i,

(2.4.13)

(2.4.14)

(2.4.15)

When <j> = 1, the damped trend methods and the linear trend methods are the same.

When 0 < <j> < 1, the trend is damped and for (j> > 1, the trend is exponential and

may result in an explosive and unstable situation. Therefore, the value of <f> is

restricted to the interval [0,1]. The damped trend equation dampens the trend as

the length of the forecast horizon increases. From equation (2.4.13), one can see

that the h-step ahead forecast is yt{h) = h + bt Y%=o $'• F° r each, additional future

time period, the trend is dampened by a factor of <f>. The formula for damped trend
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proposed by Gardner (1985) (yt(h) = lt + &t£f=1 ft) differs from that of Hyndman

et al. (2000) by a factor <f>. Hyndman et al. begin dampening the trend from the

two-step ahead forecast as shown in equation (2.4.13).

The difference between the smoothing methods presented in equations (2.4.4)

to (2.4.15) and those given by Makridakis et al. (1998) is that these authors did

not consider the damped trend methods. Further, in the above equations, U is

replaced by Qt in the % equations. The effect of this is that when the seasonal

component is updated, the level /f_j and the growth rate bt-\ are used from the

previous time period rather than the newly revised level /* from the current time

period. The alternative equations allow the exponential smoothing methods to be

expressed in state space form, which will be discussed in the next section. Also,

the equations used in cell AM are not those of the usual Holt-Winters' method.

They are equivalent to those used by Ord et al. (1997). The additive seasonal

method is not affected by this change, but it does affect the forecasts slightly for

the multiplicative seasonal method.

The error correction form (see, Gardner 1985) of the above exponential smooth-

ing methods can also be obtained by writing equations (2.4.1) to (2.4.3) in the

following form.

k = ati{Vt-Qt) + Qu

bt = a^CJlt — 6(_i) + # t -

Ct = OC3(Tt - Ct-S) + Ct-s-

(2.4.16)

(2.4.17)

(2.4.18)

The exponential smoothing method with fixed level, fixed trend and fixed seasonal

pattern can be obtained by setting c*i = 0, a2 = 0 and a3 = 0, in equations (2.4.16),

(2.4.17) and (2.4.18), respectively. Also, <j> = 1 in the damped trend method gives

the linear trend method.
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Each of the exponential smoothing methods discussed above can be expressed

in a state space modeling framework. We discuss this in the following subsections.

2.4.2 State Space Models

Since the development of exponential smoothing methods in the 1950s, an appro-

priate modeling framework incorporating stochastic models, likelihood calculation,

prediction intervals and IC based model selection procedures has been needed.

Some earlier work towards this framework can be found in Gardner (1985) and

Ord et al. (1997). Also Chatfield and Yar (1991), Ord et al. (1997) and Koehler

et al. (1999) worked on developing prediction intervals for exponential smooth-

ing methods. Snyder (1985a) and Ord et al. (1997) developed state space models

for the linear methods NN, AN and AA, and non-linear method AM, respectively.

Following the general approach of Ord et al. (1997), for the remaining methods,

Hyndman et al. (2000) derived an equivalent state space formulation with a ~.n-

gle source of error. This assists easy calculation of the likelihood and prediction

intervals for all models. A single source of error model has some advantages over

a multiple source of error model. Firstly, it allows the state space formulation of

linear as well as nonlinear cases. Secondly, it helps to express the state equations

in a form that coincides with the error correction form of the usual exponential

smoothing equations.

For each exponential smoothing method, two models, namely a multiplicative

error model and an additive error model, can be obtained. The point forecast

for the two models are the same, but their prediction intervals are different. The

general framework for state space equations given by Ord et al. (1997) is as follows:

yt
(2.4.19)

(2.4.20)
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where fit — (h, &t, <h, c*-i, • • •, Ct-(s-\))' is the state vector and et is from an iid(0,cr2)

series of disturbances. Equations (2.4.19) and (2.4.20) are known as the observation

equation and state equation, respectively.

Assuming et = /c(^f_1)et and jit — C(A-i)> equation (2.4.19) can be written as

Vt = A** + £*• Also, assuming fit is the one-step ahead forecast made at time t — 1

and K(j3t-i) = 1, the additive error model is given by

Vt= I*t + et.

The model with multiplicative errors is given by

yt =

(2.4.21)

(2.4.22)

Comparing equation (2.4.19) and (2.4.22), we have /c($_i) = \it and thus et =

et/nt = (yt —f^t)/f^t' Hence, et is the relative error for the multiplicative model. All

exponential smoothing methods can be written in the state space form (2.4.19) and

(2.4.20). The state space equations for each additive error model in the classification

are outlined in this section. Note that these equations are not unique. Changing

the value of /c(^_i), one can have many different models which will give identical

point forecasts for yt. By changing the value of K((3t-i), Archibald (1994), Koehler

et al. (1999) have given a number of models for the multiplicative Holt-Winters'

model.

2.4.2.1 Models with no Trend

NN: Simple exponential smoothing (local level) model:

yt = h-i + eu

h = h-i + OLXeu

(2.4.23)

(2.4.24)

where e< is independently and identically distributed with mean 0 and variance a2.



CHAPTER 2. LITERATURE REVIEW 39

NA: Simple exponential smoothing model with additive seasonality:

Vt = h-i + <k-s + eu

lt = /t-i

(2.4.25)

(2.4.26)

(2.4.27)

NM: Simple exponential smoothing model with multiplicative seasonality;

Vt = k-iCt-s + et,

h = ff-i + <xiet/<h-si

Ct = cts + a2et/lt-i.

2.4.2.2 Models with Linear Trend

AN: Holt's linear (local trend) model:

yt = ft-i + bt-i + et,

lt - h-i + 6f-i

A A: Additive Holt-Winters' model:

yt = k-i + bt-i + ct-a + et,

It = It-il

bt = bt-x-

Ct — Ct-s -

AM: Multiplicative Holt-Winters' model:

yt = (h-i + bt-i)ct-3 + eu

I J _i

*1 = *t-l +

(2.4.28)

(2.4,29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

- 5 »

(2.4.38)

(2.4.39)
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ct = ct-a + a3e t/(/1_1 + bt-\).

2.4.2.3 Models with Multiplicative Trend

MN : Multiplicative trend model with no seasonality:

-ibt-i + aiet,

Vt =

It =

bt = l

MA : Multiplicative trend model with additive seasonality:

Vt =

lt =

et,

-ibt-i + aiCt,

MM: Multiplicative trend model with multiplicative seasonality:

yt — h-ibt-xCt-a + et,

/t = U-ibt-i +

ct =

2.4.2.4 Damped Trend Models

DN: /foft's damped trend model:

yt = k-\ + bt-i +

h = h-i + 6t_i -f

bt = (j>bt-i

(2.4.40)

(2.4.41)

(2.4.42)

(2.4.43)

(2.4.44)

(2.4.45)

(2.4.46)

(2.4.47)

(2.4.48)

(2.4.49)

(2.4.50)

(2.4.51)

(2.4.52)

(2.4.53)

(2.4.54)

(2.4.55)
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DA: Additive Holt-Winters' damped trend model:

yt = h-! + &t-i + cts -f- eu

k = /i-H

Of = (pOf—!

°t = Ct-s "

DM: Multiplicative Holt-Winters' damped trend model:

bt-\

yt = [h

h = U-

bt = <pb

ct = ct-s + oc3et/(lt-!

(2.4.56)

(2.4.57)

(2.4.58)

(2.4.59)

(2.4.60)

(2.4.61)

(2.4.62)

(2.4.63)

The difference between the additive error model and the multiplicative error

model is only in the observation equation. Multiplicative error models can be

obtained by replacing et by /^e* in the above equations. For example, for the local

level model, y,t = h-! and hence the equations for the multiplicative version of this,

are given by yt = h-i(l + tt) and lt = / t_i(l + axet).

The simple exponential smoothing (SES) method, Holt's linear exponential

smoothing method, the additive Holt-Winters' method and the additive damped

trend method as well as their corresponding state space models discussed above

have ARIMA equivalence. The remainder of the smoothing methods (models) have

no known ARIMA equivalence. A brief survey of this issue is given in the following

subsection.

2.4.3 ARIMA Equivalence of Exponential Smoothing

It can be shown that the forecasts obtained from some exponential smoothing meth-

ods (models) are equivalent to those from particular ARIMA processes (see McKen-
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zie, 1984, 1986; Gardner and McKenzie, 1985, 1989; Chatfield and Yar, 1991; Yar

and Chatfield, 1990). In this subsection, we discuss ARIMA equivalence of expo-

nential smoothing methods and their equivalent state space models. It would make

a great deal of sense to choose a forecasting procedure, based on the underlying

model. However, such a choice is rarely made in applications. Many exponential

smoothing methods as well as their underlying state space models are equivalent

to convenient representations of ARIMA processes. The best procedure based on

exponential smoothing methods or state space models will provide the minimum

forecast error for the equivalent ARIMA process. The ARIMA equivalence of the

local level model, Holt's local trend model, Holt-Winters' additive seasonal model

and Gardner's damped trend model are discussed below.

2.4.3.1 ARIMA Equivalence of the SES Method

Muth (1960) first proved that the SES method is equivalent to the ARIMA(0,l,l)

process:

(1 - B)yt = (1 - 6B)eu (2.4.64)

where B is the backward shift operator, 6 is a scalar parameter and et is the white

noise process that is generally assumed to follow a normal distribution. The equiva-

lence condition is 8 = 1 — et\. Since the invertibility condition for an ARIMA(0,l,l)

process is 0 < 9 < 1, it follows that 0 < c*i < 2 (see Box and Jenkins, 1970, p.107).

By taking first differences of equation (2.4.23), the following expression can be

obtained:

yt-Vt-i = e t - ( l - a i ) e t _ 1 , (2.4.65)

or, (l-5)yt = (l-(l-ai)£)et, (2.4.66)

or, {1-B)yt = (l-0B)et, (2.4.67)
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where 9 — 1 — c*i, and hence, the state space form of the local level model is

equivalent to an ARIMA(O,1,1) process. Clearly, the SES method and its state

space framework have the same ARIMA equivalence.

2.4.3.2 ARIMA Equivalence of Holt's Method

Harrison (1967) showed that Holt's exponential smoothing method is equivalent to

the ARIMA(0,2,2) process:

- Bfyt = (1 - 91B - 92B
2)eu (2.4.68)

where 9\ and 92 are scalar parameters and the equivalence conditions are 9\ —

2 — a\ — a2 and 6>2 = ax — 1. McClain and Thomas (1973) showed that the stable

conditions of Holt's linear method are 0 < cc\ < 2, a2 > 0 and 2«i + a2 < 4.

Stability of Holt's method means the equivalent ARIMA process is invertible.

First differences of equation (2.4.31), gives

(1 - B)yt = lt-i + 6f-i + et - lt-2 - bt-2 - et_i

= 6t_i -f et + (ai - l)et_!.

Again taking differences of equation (2.4.69), one can obtain

(2.4.69)

(1-Bfyt = bt-i + e« + (ai - l)et_i

-6i_2 - e«_i - (ai - l)e,_2, (2.4.70)

= e< — (2 — OL\ — a2)et-i — {oi\ — l ) e t_ 2 ,

or, {l-Bfyt = (1-9^-9^^, (2.4.71)

where the moving average coefficients 9\ and 92 are related to the level and trend

smoothing parameters by 9\ = 2 — cti — a2 and 92 = cxi — 1, respectively. Hence

the local trend model (Holt's model) and Holt's algorithm have the same ARIMA

equivalence, and therefore, have the same invertible conditions.
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When ai = 1, the local trend model is equivalent to an ARJMA(0,2,l) process

and the level at time t is conditional on the observation yt only. Therefore, the

historical information is partially disregarded in level, and if in addition to that,

we set 0*2 = 1? the model is equivalent to an ARIMA(0,2,0) process.

2.4.3.3 ARIMA Equivalence of the Additive Holt-Winters' Method

The additive version of the algorithm is equivalent to a very complex ARIMA(0,1, $+

l)(0,3,0)s process, where s is the length of senironality. The process is given by

(1 - J5)(l - Ba)yt = (1 - 0xB - 02B
2 B3B

a - 6s+1B
8+1)eu (2.4.72)

where #,-, i = 1,2, • • • ,s -+• 1, are scalar parameters (for more details see McKenzie,

1976; Roberts, 1982; Abraham and Ledolter, 1986).

It can be shown that the additive Holt-Winters' model is equivalent to the

following ARIMA process:

(1 - J3)(l - Ba)yt = e* - (1 - ai - or2)e*-i - E?-2
1(-a2)et_t-

- ( 1 - ot2 - a3)e*_s - (ax + a3 - l)et_s_x. (2.4.73)

Comparing (2.4.72) and (2.4.73), the equivalence conditions are:

0x = l - c * i - a 2 , (2.4.74)

9S = l - a 2-a3 , (2.4.75)

0s+1 = - l + ai + a3, (2.4.76)

0i = - a 2 , t = 2 , - - - , s - l . (2.4.77)

Thus, the additive Holt-Winters' algorithm and its equivalent state space model

have the same ARIMA equivalence.



CHAPTER 2. LITERATURE REVIEW 45

2.4.3.4 ARIMA Equivalence of the Additive Damped Trend Model

Holt's damped trend method proposed by Gardner and McKenzie (1985) has at

least six equivalent ARIMA processes depending on different values of damping as

well as exponential smoothing parameters. A brief discussion of these processes is

given below.

If 0 < <j> < 1, the trend is damped and the equivalent process is the ARIMA(1,1,2)

process given by

(1 - J5)(l - 4>B)yt = [ l - ( l + ^ - o i - (f>oc1a2)B - (on - l)B2} e,. (2.4.78)

Setting a.\ — 1 in (2.4.78), we can also obtain an ARIMA(1,1,1) process and for

ctj = a2 = 1, the process is ARIMA(1,1,O).

A linear trend method can be obtained if <j> = 1 and the process is the ARIMA(0,2,2)

process:

(1 - Bfyt = [l - (2 - oi - aia2)B - (ai - l)B2] et. (2.4.79)

If <j> = 0, we get the SES method and the equivalent process is the ARIMA(0,l,l)

process:

(1 - B)yt = [1 - (1 - ai)B] e*. (2.4.80)

The random walk model, or the ARIMA(0,l,0) process can be obtained by setting

a\ = 1 in equation (2.4.80).

Due to the parameter restrictions shown in Gardner and McKenzie (1985), the

above ARIMA processes for Holt's damped trend model are only a subset of the

possible ARIMA processes of the same order. For example, in (2.4.78), <f> ranges

from 0 to 1, but (f> can range from -1 to 1 in the general ARIMA(1,1,2) process.

^
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Holt-Winters' multiplicative seasonal method has no known ARIMA equiva-

lence, and the same is true for its corresponding damped trend algorithm. Holt-

Winters' additive seasonal algorithm is linear and has ARIMA equivalence. This is

also true for the damped trend version of this algorithm. However, the equivalent

ARIMA processes are so complex as to be of little practical use (see, Gardner and

McKenzie, 1989). It can be shown that Holt's damped trend method and its state

space form have the same ARIMA equivalence, as discussed above.

One of the advantages of ARIMA equivalence of different exponential smooth-

ing methods (models) is that it helps the practitioner in choosing the method's

(model's) parameter space. Lack of reasonable choice of smoothing parameter(s) of

a exponential smoothing method (model) deteriorates the method's (model's) fore-

casting performance (see Archibald, 1990; Bartolomei and Sweet, 1989). Therefore,

care should be taken when selecting the value(s) of the parameter(s). The selection

of parameter space, particularly for the SES method (local level model), Holt's

algorithm (Holt's model) and Holt-Winters' method (Holt-Winters' model) are dis-

cussec' *•••• the next subsection.

2.4.4 Parameter Selection

The optimum choice of smoothing parameter(s) for various exponential smoothing

methods (models) is important to ensure their efficient forecasting performance.

Among those who have worked on the parameter space of exponential smoothing

methods are Archibald (1990), Roberts (1982), Montgomery and Johnson (1976),

McClain (1974), Chatfield (1978) and Gardner (1985). A brief literature survey of

this topic is given below.
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2.4.4.1 The Local Level Model (SES method)

In most applications of the SES model, the smoothing parameter value ct\ is as-

sumed to lie between 0 and 1. Also, a more restricted range of 0.1 to 0.3 is not

uncommon in practice. It is widely understood that a more complicated model

should be considered if the best ct\ value is found to be above 0.3 during the model

fitting process (Montgomery and Johnson, 1976).

However, there is no evidence to support a restricted range of parameters as

above. A wider range of parameter values are suggested both from theoretical and

empirical work. Exponential smoothing is equivalent to a difference equation which

is stable in the range 0 < a\ < 2. Gardner (1985) pointed out that this important

property is frequently overlooked in applications. Among others, Muth (1960)

was the first who proved that SES is optimal for the ARIMA(0,l,l) process. The

ARIMA(0,l,l) model implies through its inevitability condition that 0 < c*i < 2

(Box and Jenkins, 1970, p.107).

In spite of the theoretical justification, a value of ct\ more than one is not usually

recommended in most expositions of the SES model. However, in a time series, if

the irregular component is dominated by the business cycle, parameter values in

this range are quite appropriate. For example, in an upward phase of a business

cycle, the next period's forecast can be brought to the current level of the series

only if the value of the smoothing parameter is unity. This type of forecast will

tend to lag and a value of a\ above unity is required to eliminate the lag.

In the study by Makridakis et al. (1982), the values of oi\ were estimated

mostly above 0.3 during the model fitting process. However, rarely was it bigger

than unity. Large parameter values were also found in a limited study conducted by

Chatfield (1978). From these studies, it is clear that to guess at values of smoothing

parameters can be dangerous. According to Harrison (1967), overestimation of the
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optimal values of the parameters are less harmful than underestimation. The values

should come from the data (Gardner, 1985).

2.4.4.2 Holt's Model (Method)

For Holt's exponential smoothing model, a parameter value less than 0.3 has been

recommended by many researchers. Among those who recommended such a param-

eter value are Brown (1967), Harrison (1967) and Montgomery and Johnson (1976).

Chatfield (1978) has criticized these parameter ranges as arbitrary. However, they

are suitable in the application of inventory control where forecasts are generated

automatically. More support for these parameter values can be found in Gardner

(1983, 1984).

A wider range of parameter values is recommended in other applications. From

the studies of Makridakis et al. (1982) and Chatfield (1978), the most accurate

parameters were frequently found to be in the range of 0 to 1. The choice of this limit

for the smoothing parameters confirms that the level and slope are linear functions

of past observations with coefficients that decrease as the data get older. Also

McClain and Thomas (1973) showed that the trend model is suitable (invertible)

over the range 0 < «i < 2 and 0 < 0:2 < 4 — 2o;i.

As was discussed earlier, Holt's exponential smoothing model is equivalent to

an ARIMA(0,2,2) model (Harrison, 1967). Hence, the iavertibility conditions for

both models are identical. Therefore, compared to an ARIMA(0,2,2) model, the

invertibility conditions for the local trend model are ai > 0, a2 > 0 and 2ai+a2 < 4

(Box, Jenkins and Reinsel, 1994).

In an analysis of serial variation functions, Harrison (1967) showed that under-

estimation of the optimal parameters in the trend model is always more serious than

overestimation. This finding is similar to that for simple exponential smoothing.
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He also found that the departure of a\ from the optimum affects more seriously

the variance of the forecast errors than does such a departure for cti. Again, this

is supported by McClain and Thomas (1973).

2.4.4.3 Holt-Winters' Model (Method)

In Holt-Winters' exponential smoothing model, the smoothing parameters are usu-

ally restricted to the interval (0,1). However, this type of choice may have theoret-

ical weaknesses. McClain (1974) has shown that for the additive seasonal model,

some parameters within this interval cannot produce invertible models. Conse-

quently, when applied to forecasting, the implicit weight given to the older series

values is much larger than that given to more recent values (Archibald, 1990).

Intuition indicates that such parameter vaiues could produce poor forecasts.

McKenzie (1976) and then Roberts (1982) have shown that for additive sea-

sonality, the Holt-Winters' model is equivalent to an ARIMA(0, l ,s + l)(0,s,0)s

model. The invertible region of this ARIMA model or equivalently, the additive

seasonal model is developed by Archibald (1990) as:

a 3 ( l - c * i ) > 0 , (2.4.81)

SOL\ -f Q3 > «ia3, (2.4.82)

ai+as(l-ai)<2, (2.4.83)

ai«2 > 0, (2.4.84)

a.xo.2 < 0:2(0:1,0:3), (2.4.85)

where

a;(ai , 0:3) = [2 - ai - a3( l - ai)](l - cos <j>), (2.4.86)

and <f> is the smallest non-negative solution to:

Qi __ 0.5{l - cos <f> - cos((s - 1)0) + cos(s<j>)}
0:1 + 03(1-0:1) l -cos(s —

^
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The regions for the smoothing parameters of the seasonal models suggested so far

are complex and not easy to implement. From the empirical studies of Sweet (1983a,

1983b), it is observed that if there are four seasons (periods) in a cycle, the model

is invertible for parameters between 0 and 1. However, with the parameters in this

range, the model is not necessarily invertible if the cycle is 12 periods. In the latter

case, the conditions for invertibility are complex and procedures for checking the

invertibility of any set of parameters can be found in Sweet (1983a, 1983b). Note

that Ord et al. (1997) have given invertibility conditions for the multiplicative

seasonal model. However, as they point out, these conditions are necessary and

may not be sufficient. As was mentioned earlier, there is no ARIMA equivalent of

this model.

The forecasting performance of each exponential smoothing method (model)

mainly depends on two factors, namely, the values of smoothing parameters and

initial values of the seed vector. Different methods which have been suggested in the

literature for initialization of the seed vector are uutlined in the following section.

2.4.5 Initialization Methods

The state space models discussed in Subsection 2.4.2 contain unknown seed values.

For example, for the additive Holt-Winter's model (equations (2.4.56) to (2.4.59)),

the values of /*_i, 6i_1 and Cj_s, at time t = 1, are called seed values and the vector

(lQ, &O,CO,C_I," • ,c_(s_!))' is called the seed state vector. Usually, the seed state

vector is unknown and needs to be initialized for estimation of the model. This will

be discussed in this section.

The question of how to initialize the seed values has always been a subject of

discussion since the introduction of exponential smoothing (Gardner, 1985; Cogger,

1973; McClain, 1981; Taylor, 1981; Wade, 1967; Makridakis and Hibon, 1991 and
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Archibald, 1990). Several alternative methods have been suggested in the literature.

However, there is little advice as to which to choose (see Chatfleld and Yar, 1988).

Brown (1963) suggested a method to estimate the initial value(s). This method

advocates that the initial value(s) should come through comparison of the time

series of interest with other similar series. Also, the value of the smoothing constant

needs to be changed to reflect the uncertainty about these estimated initial value(s).

The drawback of this method is that it is not easy to compare time series and

to know which of them have similar behavior. Some of the methods used for

initialization are discussed below.

2.4.5.1 Least Squares Estimates (OLS)

In practice, this is the most widely used approach for estimating initial value(s).

Snyder (1985b) has discussed this method very clearly. He showed that the struc-

tural model, with appropriate transformations of the data can be converted to a

classical regression model and proposed that the conventional least squares proce-

dure be used to estimate the seed regression coefficient.

2.4.5.2 Convenient Initial Values

To initialize the smoothing equations, some convenient values can also be used. For

example, the first data value can be used to initialize the level, i.e., l0 = yi- The

difference between the first and second actual values (bo — |(j/i + J/2)) or the average

of the second minus the first and the fourth minus the third (b0 = \{y2 — t/i) + (j/4 —

y3)) (Makridakis and Wheelwright, 1978) can be used to initialize the trend. For

the seasonal model, the seasonal components are initialized proportionally to the

observations before being normalized.
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2.4.5.3 Backcasting

A different type of approach used, for example, in the M competition (Makridakis et

al., 1982), is backcasting. In this case, the time-order of the data is inverted and the

most recent data value becomes period one, while the least recent becomes period

n. Then, the seed vector is found by using the OLS method and the appropriate

equations are used to forecast. The forecasted last value of the state vector is used

as the initial estimate of the seed vector, except that the sign of the estimated value

of trend is reversed.

2.4.5.4 Training Set

In this approach, the data are divided into two parts. The first part (usually

the smaller of the two) is used to estimate the initial values for the exponential

smoothing equation(s) used with the second part of the data (Makridakis et al.,

1983).

2.4.5.5 Winters' Method

In this approach, the data are also divided into two parts and the first part (which

is much smaller than the second part) is used to estimate the seed state vector. In

the series, the periods are numbered t = 1,2, • • •, n. Denoting the length of the first

part of the series by n*, the number of years of data associated with this part is

K — n*ls. Winters' (1960) suggested calculating the initial trend from the average

change per period between the first and last year data of the first part, namely

& o = ^ T ^ ( y « - y i ) , (2.4.88)

where s is the number of seasons, yK is the mean of observations in year K and

is the mean of observations in the first year.
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The initial estimate for IQ is given by

53

(2.4.89)

Seasonal factors are computed for each season by

(2.4.90)

where i = 1,2, • • •, /c, is the year and j = 1,2, • • •, 5, is the position of the period

within the year, e.g., for January, j = 1; for February j = 2; etc. in the case of

monthly data.

Seasonal factors for corresponding periods in each of the initial years are aver-

aged to obtain one seasonal factor for each season in a year. For example, the c*7-

are averaged for all Januarys to get one January seasonal factor.

Assuming ĉ  = 52?=i c*%j is the average for season j , the seasonals are normalized

so that they sum to m for the multiplicative seasonal model and to 0 for the additive

seasonal model. For example, the normalized seasonal values for the multiplicative

seasonal model are

x 5.s r*
(2.4.91)

This adjustment ensures that over a cycle, the seasonal factors would make only

seasonal adjustments and not increase or decrease the average level of the data.

2.4.5.6 Granger and Newbold Method

Granger and Newbold (1986) suggested setting the initial value of the level /0 to

the average observation in the first year, namely

lo = 2/i = - t V« (2-4.92)
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and 60 to zero. The seasonal factors Co, ci, • • • ,c_s+i are calculated by comparing

the appropriate observation in the first year with yj. For example, CQ = ys — jji in

the additive case and Co = ya/yi in the multiplicative case.

Some limited empirical findings on this approach are given by Chatfield (1978,

Section 7). Other authors suggest calculating the initial values from the first two

or three years.

2.4.5.7 Zero Values

All the initial values can be set to be zero, or one can be chosen as zero and the

other(s) can be initialized using one of the alternatives described in Subsubsections

2.4.5.1 to 2.4.5.6 Although this approach seems to be unreasonable compared to

other alternatives, it provides an advantage in terms of large initial errors. These

large errors force the estimated values to approach the actual values much faster

than alternative initialization procedures (see Makridakis and Hibon, 1991).

The study of Makridakis and Hibon (1991), shows that, in general, the post-

sample forecasting accuracies do not depend on the initialization method. Shami

(1997) compared the performances of different initialization methods (including

OLS) in the analysis of M competition data and found OLS performs better than

the others. Moreover, OLS is the most widely used initialization method and is easy

to understand. Therefore, in this thesis, OLS will be considered as the initialization

method for the seed state vector.

2.5 Forecasting Accuracy Performance

Forecasting methods are mainly classified into two broad groups, namely, judge-

mental methods and quantitative procedures. In forecasting the future, the first

choice to be made is whether to rely on judgemental methods or use a quantitative



CHAPTER 2. LITERATURE REVIEW 55

procedure. From the psychological literature, it is evident that in repetitive situa-

tions, quantitative methods outperform clinical judgement. Some early studies on

the comparisons of quantitative methods and judgemental procedures can be found

in Hogarth (1975), Makridakis et al. (1993), Lawrence et al. (1985), Chatfield

(1989, section 5.4.3) and Collopy and Armstrong (1992), among others. The main

limitations of judgemental forecasts are described as forecasting based on irrelevant

information, lack of reliability, lack of application of valid principles and regression

biases.

A number of researchers, outside the psychological literature, have analyzed in

some detail the performance of judgemental and quantitative forecasts. Mabert

(1975) compared the performance of judgemental and quantitative methods such

as exponential smoothing, harmonic smoothing and Box-Jenkins and reported that

judgemental forecasts give less accurate results, cost more and take more time.

In a more complete study, Adam and Ebert (1976) found that Winters' method

produced forecasts that were statistically more accurate than those of subjective

forecasters.

There is less agreement as to which quantitative method is best in terms of

forecasting accuracy. Since many more methods are available in the literature, in

general, a comparison of the relative accuracy of different time series methods is

not easy. Further, different sets of methods are used by different researchers when

they conducted their comparisons. For example, in an early studiy, Kirby (1966),

compared regression (trend fitting), moving average and exponential smoothing

for monthly forecasting and reported in favor of exponential smoothing for shorter

forecasting horizons. The trend fitting model did better for forecasting horizons of

12 or more. Newbold and Granger (1974, p. 143) compared Box-Jenkins and Holt-

Winters' forecasting methods and concluded in favor of the Box-Jenkins approach.

s
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From the accuracy studies of McNees (1976) and Makridakis and Wheelwright

(1978), it is evident that the most accurate method varies from one time period to

the next and from one set of data to another.

The above seemingly contradictory findings about the accuracy performance of

forecasting methods continued until the studies of Makridakis and Hibon (1979)

and Makridakis et al. (1982). The findings of these studies assisted academics and

practitioners greatly in choosing between alternative forecasting methods. Makri-

dakis and Hibon (1979) considered 111 time series for comparing the forecasting

performance of 22 different forecasting methods. The major findings of this par-

ticular study was that simple methods, such as exponential smoothing, perform

better than the statistically sophisticated ones. However this conclusion was in

conflict with the recognized view of the time. More details about this can be found

in the discussion following the Makridakis and Hibon (1979) paper. Makridakis et

al. (1982) considered a bigger data set (total number of series was 1001) in order to

incorporate the suggestions for improvements and to respond to the criticisms. The

total number of forecasting methods used in Makridakis et al.'s (1982) study was

24. This extensive numerical study is known as the M competition. The results of

the earlier study (Makridakis and Hibon) and those from the M competition were

similar. More details about the four major findings from the M competition can be

found, particularly in Makridakis et al. (1982) and also in Makridakis and Hibon

(2000).

The major criticism of Makridakis et al.'s (1982) study was that in real situ-

ations, forecasters can use additional information to improve the forecasting ac-

curacy of quantitative methods. In response to this criticism, Makridakis et al.

(1993) performed another study which is known as the M2 competition. Incorpo-

rating all available additional judgemental information of forecasters and including



CHAPTER 2. LITERATURE REVIEW 57

their knowledge about forthcoming economic and industry conditions, Makridakis

et al. (1993) determined the post-sample accuracy of various methods/forecasters.

Although few differences were found between conclusions of the M2 competition

and those of the two previous studies of Makridakis and Hibon (1979) and Makri-

dakis et al. (1982), the M2 competition clearly showed that simple methods can

be used to find better predictions for real-life series. Further, in the context of

the telecommunications data of Fildes (1992), Fildes et al. (1998) examined the

robustness of the conclusion of the M competition data and reported that the find-

ings of the M competition carry through for their telecommunications data. One

additional conclusion drawn by Fildes et al. (1998) was that, in determining the

relative performance of forecasting methods, the characteristics of the data series

are an important factor. Therefore, developing any procedure that will identify

and use the most appropriate method from a set of possible choices may be an

important contribution to the field of forecasting.

Many researchers (Clemen, 1989; Geurts and Kelly, 1986; Fildes et al., 1998)

have introduced new methods for forecasting and found that the results of their

studies agree with those of the M competition. Also, the results from some addi-

tional studies (Armstrong and Collopy, 1992, 1993; Makridakis et al., 1993; Fildes

et al., 1998) using new time series data agreed with the conclusions of the M compe-

tition. However, criticisms and emotional objections to empirical accuracy studies

have continued in the literature. A detailed discussion of such criticisms/objections

can be found in Fildes and Makridakis (1995). Similar results to those of the M and

M2 competitions from other studies (Armstrong and Collopy, 1993; Fildes, 1992)

increased the confidence in the conclusions made from Makridakis et al. (1982) and

Makridakis et al. (1993). Makridakis and Hibon (2000) made an another attempt

(M3 competition) to replicate and extend the M and M2 competitions by including

1';;
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more methods, more researchers and also more data series (total number of series

used was 3003). The results of this study confirmed the original conclusions of the

M competition and again demonstrated that simple methods (e.g. SES and Holt's

damped trend exponential smoothing method), in general, do better than statisti-

cally sophisticated methods. Further, some new methods such as the theta method

(Assimakopoulos and Nikolopoulos, 2000) and robust trend method (Meade, 2000)

also did well.

Bartolomei and Sweet (1989) compared the forecasting performance of Brown's

general exponential smoothing (GES) method (Brown, 1963) and the Holt-Winters'

method using 47 of 1001 time series which were used in the M competition of

Makridakis et al. (1982). The study showed that although the Holt-Winters'

method always fits the data better than the GES method, the former gives better

forecasts than the GES method only for 55 percent of the series. Bartolomei and

Sweet (1989) conjectured that the use of one of the trend methods proposed by

Gardner and McKenzie (1985, 1989) may give better forecasts.

Gardner and McKenzie (1985) proposed a damped trend method as an exten-

sion of Holt's linear trend method (Holt's method). They compared Holt's method

and Holt's damped trend method using 1001 series of Makridakis et al. (1982)

and found that in general, the damped trend method performs better than Holt's

method. Lewandowski (1979) and Parzen (1979) developed methods for time se-

ries forecasting which are known as the Lewandowski method and Parzen method,

respectively. Gardner and McKenzie (1985) also analyzed a sample of 111 se-

ries from the population of 1001 series and compared the forecasting performance

of Lewandowski, Parzen and Holt's damped trend methods. The results of this

study show that both the Lewandowski method and Parzen method perform better

than the damped trend method at longer forecast horizc"; Further, Gardner and
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McKenzie (1989) introduced the strategy of trend damping to the popular Holt-

Winters exponential smoothing algorithm for seasonal time series. They considered

a sample of 60 series from 1001 series of the M competition data and compared the

forecasting performance of the following methods: the multiplicative Holt-Winters,

the additive Holt-Winters' damped trend, the multiplicative Holt-Winters' damped

trend, the Lewandowski method and the Parzen method. The results of the study

showed that the Holt-Winters' damped trend method performs better than its com-

petitors.

Chen (1997) investigated the robustness properties (in terms of forecasting per-

formance) of four major forecasting methods for seasonal time series and concluded

that the Holt-Winters method and the AR1MA fitting approach based on suitable

parsimonious models have satisfactory robustness for a wide class of time series.

They suggested that if the probabilistic structure of the data generating process

is not clearly known to forecasters, the Holt-Winters method and parsimonious

ARIMA methods are worth trying in practical situations. In another study, Chen

(1993) investigated the robustness properties of the SES method and various AR

processes and found that if the time series is stationary, the SES method is not as

good as an AR process, though it is not too poor. However, if the time series devi-

ates from a stationary processes, the SES can provide reasonable forecasts. Since

many real life time series in various fields have complicated non-stationarities and

structural changes that are not easy to detect, the SES method should be the choice

in such situations. Further, from the study of Chen (1996), it is evident that the

Holt-Winters method performs robustly for a wide class of time series that have

a stochastic/deterministic linear trend and seasonality components. However, this

method performs somewhat poorly for longer forecasting horizons (for more details,

see Chen, 1996). This behavior of the Holt-Winters' method shows the necessity
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of modifying the algorithm to accommodate a damped trend. Discussion on the

damped trend method can be found in Gardner (1985) and Gardner and McKenzie

(1985, 1989).

In conclusion, the ability of empirical studies to find forecasting methods which

more accurately predict real life data should not be ignored. Makridakis and Hibon

(2000, p.461) stated:

We are convinced that those criticizing competitions, and empirical

studies in general, should stop doing so and instead concentrate their

efforts in explaining the anomalies between theory and practice and in

working to improve the accuracy of forecasting methods May be the

time has come to follow the example of a recent conference on the Fu-

ture of Economics (see The Economist, March 4th, 2000, p.90) and start

debating, in a serious and scientific manner, the future of forecasting.

In this thesis, we aim to develop a numerical approach called individual selection

method (ISM) to select models for forecasting real life time series data such as the

M3 competition data of Makridakis and Hibon (2000).

2.6 Model Selection for Exponential Smoothing

The literature on IC based model selection for various types of models is vast.

However, because of the lack of an appropriate modeling framework and likelihood

based estimation methods for exponential smoothing algorithms, automatic model

selection procedures such as AIC or BIC in the context of exponential smoothing

are difficult to find in the literature.

Snyder (1985a) derived a state space formulation for simple exponential smooth-

ing, Holt's linear trend and additive Holt-Winters' methods. Ord et al. (1997)
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proposed a general class of nonlinear state space models with a single source of

error. This model also underpins the multiplicative Holt-Winters method. Ord et

al. (1997) also derived a conditional likelihood (CL) method for estimating these

models. The development of Ord et al. (1997) opened the door for IC based model

selection procedures for exponential smoothing methods. Following the framework

of Ord et al. (1997), Hyndman et al. (2000) derived the state space formulation for

the other exponential smoothing algorithms in Table 2.1. Hyndman et al. (2000)

proposed an AIC based automatic model selection procedure using 1001 and 3003

series of the M and M3 competition data, respectively. They also considered a

sample of 111 series from the population of the M competition. AIC was used to

select an appropriate forecast model for each data series from a group of 24 models

(both additive and multiplicative models). The results of this study demonstrated

that the AIC based automatic forecasting model selection procedure performs well

for short term forecasts.

Koehler et al. (1999) chose three more models from the original multiplicative

Holt-Winters' model of Ord et al. (1997) and compared the model selection perfor-

mance of CL and correlation methods in selecting from the original Holt-Winters'

and new models for simulated time series (Koehler et al., 1999, provide more details

about the correlation method). The results of this study showed that both methods

perform reasonably well in selecting the true models.

An extensive study on IC based model selection procedures in the context of

exponential smoothing methods (models) has been due since the development of

exponential smoothing methods in the 1950s. In this thesis, we investigate the

selection of exponential smoothing methods (models) from a set of simple and

widely used methods (models).
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2.7 Conclusions

In this chapter, we have reviewed some widely used IC procedures and exponential

smoothing methods, along with their corresponding state space models. We have

also discussed a global optimization algorithm called SA. There is a vast amount

of literature on IC based model selection procedures, and this limits cur ability to

review all statistical properties associated with each IC procedure. Therefore, we

have discussed only the main points for some important criteria namely, AIC, BIC,

HQ, MCp, GCV, FPE and RVC. We have also discussed some of their asymptotic

as well as finite sample properties. Most of these statistical properties of various

IC procedures were investigated for model selection problems in linear regression

models and ARMA processes.

Exponential smoothing methods and their corresponding state space models

were briefly discussed, along with the ARIMA equivalence and smoothing parame-

ter space of some selected smoothing methods. A number of initialization methods

for the seed state vector have been proposed in the literature. We have briefly dis-

cussed some of the leading initialization methods. A survey of the forecast accuracy

performance of various forecasting procedures was also presented in this chapter.

The survey shows that ths simple methods such as exponential smoothing methods

do better than or as well as complicated and statistically sophisticated methods (see

Makridakis et a l , 1982; Makridakis et al., 1993; Fildes et al., 1998; Makridakis and

Hibon, 2000; Hyndman et al., 2000). Although the idea of exponential smoothing

methods has been available since the 1950s, there has not been any extensive IC

based model selection procedures attempted in the literature. Therefore, one of

the objectives of this thesis is to investigate the use of IC based model selection for

exponential smoothing methods.

If the penalty value of an IC procedure is large, all else being equal, then smaller
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model: are favored. However, for a small penalty value the larger models are fa-

vored. Thus, assessing which IC is best for a given problem is very difficult. A

well designed Monte Carlo study which covers many different DGPs will never uni-

formly favor one information criterion over another. In spite of these shortcomings,

improvements on the existing IC approach may be possible by estimating penalty

functions numerically. The SA algorithm can be used to examine such a possibility.

The main aim of this thesis is, therefore, to propose a PEM by exploring the use

of SA for maximizing OAPCS as well as minimizing forecast error in the context

of time series models. Further, this thesis aims to investigate the use of PEM on

the M3 competition data.



Chapter 3

Model Selection for Exponential
Smoothing Methods

3.1 Introduction

In this chapter, we apply the existing 10 procedures discussed m Chapter 2 for se-

lecting exponential smoothing methods (models). There are many methods that fall

in the general category of exponential smoothing. There are as many as 24 different

versions for linear and non-linear exponential smoothing methods (see Chapter 2

and Hyndman et al., 2000). One reason for so many variations is that, in the real

world, different types of time series behavior do occur and for the best forecast-

ing of different types of time series, different methods have been designed. Some

researchers have perceived the existence of particular time series behaviour which

can be solved by some of these variations. However, in reality there are only a few

time series for which these variations are relevant. Therefore, some of the variations

can be ignored. On the other hand, many of the versions have some merit. This

is clear from the popularity of exponential smoothing as a forecasting technique.

Thus, for the practitioner in need of a forecast method for a particular time series

and wishing to select it from the range of exponential smoothing approaches, an

important question is: which of the exponential smoothing methods is the best for

64
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this time series.

As discussed by Hillmer (1985), in order to select the best version, the forecaster

needs experience, skill and some knowledge of the data series to be forecast. The

practitioner needs to decide on whether the data are seasonal. If they are seasonal,

then the practitioner needs to find out whether they are additive or multiplicative

seasonality. Finally, a decision r~eds to be made as to whether the model needs

a linear trend, a damped trend or is trend free. Some of these decisions are very

complex. For example, if the data are seasonal, it is difficult to separate the prob-

lems of seasonal type and trend type. Some other technical questions also arise

about the values chosen for the smoothing parameters and the starting value of

the seed state vector. A variety of opinions about these issues can be found in an

excellent review paper by Gardner (1985). However, because of the complexity of

these issues, Hillmer (1985) suspected that the simplicity of exponential smoothing

may be illusory.

A number of exponential smoothing methods have been mentioned in Chapter

2. An obvious question arises: how can we choose the right model for a particu-

lar data series? A good solution to this problem would be an automatic selection

procedure for any application. This need is also recognized by Gardner (1985,

p.38) who observed that "more research is needed on model identification and val-

idation in exponential smoothing". Similar suggestions have also been made by

McKenzie (1985). In other words, all we need in order to create a truly automatic

exponential smoothing forecasting system is the development of a robust model

selection procedure. For an automatic model selection procedure, a well developed

modeling framework is necessary that incorporates stochastic models, likelihood

calculation, prediction intervals and procedures for model selection. Although ex-

ponential smoothing methods have been around since the 1950s, the above gap
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in the literature has limited the development of an automatic model selection ap-

proach. Snyder (1985a) and recently, Ord et al. (1997) and Hyndman et al. (2000)

derived state space formulation for different exponential smoothing methods. Also,

following Ord et al, (1997), exponential smoothing models can be put on a condi-

tional likelihood (CL) footing, and hence, IC procedures can be applied to select

exponential smoothing models. Thus, the aim of this chapter is to propose IC based

automatic model selection procedures, which to the best of our knowledge have not

been considered in the context of exponential smoothing models. In evaluating

different IC procedures, the probability of correct selection depends on the model

and its parameter values. Therefore, we compare the performance of IC procedures

with respect to average probabilities of correct selection (APCS) as well as overall

APCS (OAPCS) (see Section 3.5 for more details).

Previous studies (Tunnicliffe Wilson, 1989; Grose and King, 1994) showed that

the MGL based IC procedures give improved probabilities of correct selection

(PCS). Therefore, another aim of this chapter is to investigate whether we can

use MGL methods to improve the quality of correctly model selection property.

However, because the maximal invariants of different exponential smoothing mod-

els have different distributions, MGL cannot be used for IC based model selection

procedures (for more details, see Section 3.4 and King, 1980). We solve this problem

by proposing improved conditional likelihood (ICL), based on the MGL methods,

and then apply ICL to IC procedures. We also consider CL based IC procedures,

and compare the performance of CL and ICL with respect to APCS as well as

OAPCS.

The plan of this chapter is as follows. The relationship between structural

models and exponential smoothing models is outlined in Section 3.2. Section 3.3

shows how structural models can be transformed to a simple regression model. This
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section also presents the OLS estimator of the seed state vector. The estimation

methods of the models are discussed in Section 3.4. Theory for calculation of

OAPCS using the IC approach is discussed in Section 3.5. A simulation study

to calculate the PCS, APCS and OAPCS by using the existing IC procedures is

outlined in Section 3.6, and the results of this study are discussed in Section 3.7.

The chapter ends with some concluding remarks in Section 3.8.

3.2 Structural Form of Exponential Smoothing
Models

In this section, we discuss structural (state space/dynamic) forms of exponential

smoothing models. This framework of exponential smoothing models is the key to

the development of the likelihood function for the exponential smoothing models

(see Ord et al., 1997; Snyder, 1985a). Also, this framework allows the derivation of

the general form of forecasting formulae for exponential smoothing models.

According to Harvey and Phillips (1979) and Harrison and Stevens (1976),

Kalman (1960) filtering is the central to time series analysis. For example, mod-

els that lie within its jurisdiction are the classical and dynamic regression models,

exponential smoothing and Box-Jenkins (1970) models. In the literature, Duncan

and Horn's (1972) version of the dynamic linear model has been used traditionally

to present the univariate cases of the above models. As shown by Snyder (1985a),

their model, however, can be replaced by a simpler form of a dynamic linear model

which is outlined as follows.

Let us assume that j/i, t/2? • • • ? Vn are observed time series at time t = 1,2, • • •, n.

All the past information contained in this time series can be condensed into the

so called state vector /?* with small order k. This state vector, in turn, is used to

provide information about future values of the series. The innovations form of the
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structural model considered by Snyder (1985a) is given by

yt = x'tPt^ + et, (3.2.1)

fit = T*pt-i + cteu (3.2.2)

Po = ft, (3.2.3)

where yt is the observed value, xt is a ^-vector of independent variables, j3t is a

unknown state vector of order k representing regression coefficients that change over

time, e* is an unobservable disturbance term which is independently and identically

distributed with mean zero and variance a2, T* is a k x k transition matrix of known

parameters, a is a fc-vector of smoothing parameters called the permanent effect

vector and /?Q is a k-vector of unknown seed values (called the seed state vector)

for the regression coefficients. Equation (3.2.1) is called the measurement equation

and equation (3.2.2) is called the transition equation.

Since the model has independent disturbances et, the model is stochastic. The

regression coefficients f3t are governed by the transition equation and change over

time. Hence, the model is dynamic and structural. The transition matrix, T*,

helps the model to update to systematic change. The model allows the regression

coefficients to respond to unanticipated changes and consequently takes into account

semi-systematic changes such as business cycles. The extent of the response is

determined by the adjustment parameter vector a. Thus, the role of a is similar

to the smoothing constants in exponential smoothing (Holt, 1957; Brown, 1959).

The framework (3.2.1) to (3.2.3) suggested by Snyder (1985a) is a mixture of

the traditional multiple regression and exponential smoothing models. Box and

Jenkins (1976, p.157) suggested transition equations for updating the coefficients

of integrated versions of their model. The transition equations suggested by Snyder

(1985a) are like those suggested by Box and Jenkins. It is also similar to the
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Duncan and Horn (1972) framework for Kalman filtering. However, unlike Kalman

filtering, it depends on only one primary source of randomness. It is still not known

whether there is any resulting loss of generality in the framework suggested by

Snyder (1985a). Even if there is a loss of generality, it should not be serious because

the framework suggested by Snyder possesses counterparts for all the 'guidelines'

listed in Harrison and Stevens (1976). The beauty of Snyder's framework is that

it is very simple and easy to apply. Following Snyder (1985a), some examples of

structural models are as follows.

Example 3.2.1 Local Level Model

The local level model can be expressed as a state space model with Xt as a unit

vector of dimension one which is constant over time and the transition matrix T*

as a unit matrix of order l x l . The only component of /?* is /* and that of a is a\.

The state space model corresponding to the local level model is now as follows:

yt = x'tfa-i+d, (3.2.4)

Pt = T*f3t-i+aeu (3.2.5)

or equivalently, it can be written as

yt = h-i + eu (3.2.6)

It = k-i + aie«. (3.2.7)

Example 3.2.2 Local Trend Model

The same structure can be applied to the local trend model. For this model, xt is a

2 x 1 unit vector and T" is a 2 x 2 upper triangular matrix with all elements equal

to unity. The equivalent state space model of the local trend model is given by

yt = [1 1 ] [ £ : ! ] + * . (3-2-8)
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h 1 1
0 1 bt-i

(3.2.9)

Equations (3.2.8) and (3.2.9) respectively, can be written as

where ft't =

yt =

and a = (c*i, 0:2).

(3.2.10)

(3.2.11)

Example 3.2.3 Additive Holt-Winters' Model

The additive Holt-Winters' model can be expressed as a state space model in the

same way with xt as a,n (s + 1) x 1 vector which is constant over time. The vector

Xt is defined as

(3,2.12)

The (s + l ) x ( 5 - J - l ) transition matrix T* is defined by

rp* __

1
0
0
0

1
1
0
0

0
0

- 1
1

0
0

- 1
0

... o

... o

. . . - 1

... o (3.2.13)

0 0 ••• 0 1 0

The unknown (s + 1) x 1 smoothing parameter vector a and the coeflBcient vector

/3t are given by

a' = (au a2, a3, 0,

# = {h, h, Q, Cf_i,

(3.2.14)

(3.2.15)

where lt, bt and Cf_,-, i = 0,1,2, • •• ,s — 2, are the smoothing level, trend and

seasonality respectively, and a,-, i = 1,2,3, are the smoothing parameters for the

level, trend and seasonality, respectively.
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3.3 OLS Estimate for the Seed Vector

71

The structural model can be converted to a classical linear regression model by

an appropriate transformation of data (Snyder, 1985b). Therefore, instead of the

Kalman filter, the conventional least squares procedures, particularly Gauss' (1821)

recursive version of it, can be applied to estimate the seed state vector.

In this approach, all the observed values are written in terms of the seed values

and the errors. Then, an estimate of the seed values can be obtained by applying

OLS to these resulting transformations. Snyder (1985b) has derived a procedure for

the above purpose. We consider the same procedure in our setting. The structural

model of our concern is:

yt =

A, = R.

Solving the measurement equation (3.3.1) for et, we get

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

and substituting e* from (3.3.4) into the transition equation (3.3.2) gives

ayt+D0t-u (3.3.5)

where D = T* — ax'ti and is called the discount matrix. This equation shows

a recursive relationship between the /3t. Hence, after back solving, all $ depend

linearly on the seed vector 0Q. The solution has the general form

pt = IfP0+U>t5 ^O.O.DJ

_
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where T* is a k x k matrix and u>t is a fc-vector. Substituting the value of /?* in

(3.3.5) gives:

i. (3.3.7)

Again substituting this valueof f3t-i in (3.3.7), we get

.i/?o + w«-i)- (3.3.8)

By equating the like terms of equation (3.3.8), the matrices T< and vectors u>f can

be expressed by the following recurrence relationships:

u>t -i + ayt] = 0.

Substituting the value of (3t-i from (3.3.6) into (3.3.1) gives

yt =

(3.3.9)

(3.3.10)

x'tu>t-i + et.

The above equation can be written as

Vt =

(3.3.11)

(3.3.12)

where yt is a scalar and x* is a k-vector determined by the respective transformations

yt

x; =

xtwt-i, (3.3.13)

(3.3.14)

Clearly, (3.3.12) is a classical linear regression model and an OLS procedure can be

used for estimating the seed vector (}Q. More specifically, the OLS estimate of p£

is given by

lX% (3.3.15)
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where X = (x$ j i j , - 1 ' ) ^ ) ' 1S the matrix formed from the vector x\ and y =

(y~i,y2,'-- ,yn)'' Moie details about the equivalent regression model of the struc-

tural model can be found in Snyder (1985b, 1985c).

In the above estimation procedure, it has been assumed that the smoothing

parameter vector a is known. Usually this assumption is not realistic in applica-

tions. Therefore, a potential method for estimating a is needed, and one possibility

involves maximum likelihood methodology. On the basis of normality assumptions

for the errors, it is possible to find an expression for the likelihood function in terms

of the one-step ahead prediction errors. This is outlined in the next section.

3.4 Maximum Likelihood Estimation

A recursive procedure similar to the Kalman filter has been proposed by Synder

(1985a) to estimate the dynamic linear model which involves the measurement

equation (3.3.1). In this paper, he assumed that the transition matrix T* and

the exponential smoothing parameter vector a are known. When either or both

of them are unknown, maximum likelihood methods can be used to estimate the

unknown parameters. By using the theory of conditional probability, the likelihood

function (LF) can be written in a very simple form in terms of the one-step ahead

prediction errors. Also, it can be shown that maximizing the likelihood is equivalent

to minimizing the sum of squared one-step ahead prediction errors. The likelihood

estimate must, therefore, be identical to the results from the Kalman filter described

by Snyder (1985a).

Let us assume that yj, y2, • • •, yn are random variables that are independent and

identically distributed with probability density function pr(y|a), where a is a vector

. I ' w
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of unknown exponential smoothing parameters. Then the LF of a is given by

a). (3.4.1)

The maximum likelihood estimator (MLE) 5 of a is defined by

L(a\y) = sapaL(a\y). (3.4.2)

3.4.1 MLE for Exponential Smoothing Models

At time t, the past time series values t/i, 2/21 * * • jj/t-i are known, while the value

yt at time t is unknown. Consider the inductive hypothesis that the state vector

0t-i is fixed and known conditional on the seed state vector /?£ and the smoothing

parameter vector a is given.

From equation (3.3.1), the probability density function of yt\yi,- • •, J/<_I,Q;, fi^c1

is identical to the probability density function of the error term e*. Assuming the

error terms, et, are independent and identically normally distributed, their proba-

bility density function is given by

pr{ei)=;^bexp(~2^'- (34-3)

The Jacobian of the transformation between yt given yi, • • •, y*-i, a, /?OJ °2

et is unity, and hence,

pr(yt\yi, • • •, yt-v, a, ft, a2) = pr(et). (3.4.4)

At the end of period t, the yt value is observed and a fixed value of the error

term, the one-step ahead prediction error, can be calculated from (3.3.1) as follows:

et = y t - x'tfr-u (3.4.5)

where e\ — y\ — X[0Q. Then, by using equation (3.3.2), a fixed value of 0t can be

calculated.
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The observations j/i, y2, • • •, yn are not independent for structural models. How-

ever, knowledge of the past values of the series can help to calculate the prob-

ability density function of yt. The repeated application of the probability law

pr(A*f]Bm) = pr{A*\B*)pr{B*) gives the following relationship:

n

y2,-'-,yn\a,Po,<r2) = Y[pr{yt\yi,---,yt-
t=2

a,PZ,o2). (3.4.6)

From equations (3.4.4) and (3.4.6)

(3.4.7)

The seed state vector J5Q has a well defined density x for a stationary time series. So

for a stationary case, an unconditional density i/>(yi, • • • ,yn\a,a2) can be obtained.

However, in most real life applications of exponential smoothing, the time series

are non-stationary, and hence, the distribution of 0Q does not exist. Therefore,

the unconditional density of the sample cannot be obtained. The definition of the

likelihood must be based upon the density (3.4.7), because it summaries all the

information that can be known about the sample generated by a non-stationary

stochastic process. Thus, the CL which is a function of /3Q together with the

parameters a and a is as follows:

= pr(yi,

1 exp(--i-E;L1e2). (3.4.8)

The prediction error decomposition of the likelihood function associated with the

Kalman filter (Schwepe, 1965; Harvey, 1991) and the likelihood function (3.4.8)
1 For example, it can be shown that the seed value PQ = /o of the local level model with damped

parameter has a finite variance.
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looks the same. However, the difference between these two is that the one-step

ahead prediction errors in (3.4.8) from the Kalman filter are heteroscedastic and

those from exponential smoothing are homoscedastic.

Taking logs on both sides of (3.4.8):

logL = -|log27r - ^logcr2 - ±- g el (3.4.9)

The estimate of the variance of <J2 can be obtained by maximizing logL with respect

to cr2 and the estimate is given by

a1 = —

= ^|>-^A-i)2- (3-4.10)

The estimates of a and /?£ are very complex. However, after fixing a, the

structural model can be converted to a classical regression model by an appropriate

transformation of the data. Then, an OLS method can be used to estimate the

seed vector $J (see Section 3.3).

Substitutjon of (3.4.10) into (3.4.9) yields the maximum ^kelihood value

logL = --Iog27r - -log?2 - -
/L L &

- C o n s t - | l o g a 2 , (3.4.11)

where Const = — |(log27r + 1). Ignoring the constant term, the likelihood depends

only upon a2 which is a function of the smoothing parameter a. Hence, calculating

maximum likelihood estimate with respect to a is the same as obtaining a so as to

minimize the estimate of the error variance a2.

Max(logZ) <=> Min (|logcr2) . (3.4.12)
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This is equivalent to minimizing sum of the squared residuals or estimated forecast

errors, i.e.,

n
^2Max(logL) <=> Min I £ ) e? J . (3.4.13)

The likelihood eventually depends only on exponential smoothing parameter

vector a, and is highly non-linear. As a result, an analytical solution for the closed

form estimate of a is complex and we believe impossible. Therefore, numerical

search methods such as the GAUSS constrained optimization technique or SA as

outlined in Chapter 2 need to be employed to solve this estimation problem.

3.4.2 ICL Via MGL Estimates

From the study of Grose and King (1994), it is evident that MGL (for details on

MGL see Ara, 1995; Tunnicliffe Wilson, 1989; King, 1980) based model selection

is better than that based on the profile likelihood (PL). Similar results were also

given by Tunnicliffe Wilson (1989) who considered the problem of choosing between

alternative time series models. This may be because the MGL provides better

estimates than those from the PL (Laskar and King, 1998). Therefore, it is of

interest to see how the MGL performs in the exponential smoothing settings.

In matrix and vector notation, regression equation (3.3.12) can be written as:

y = X/3* + e, (3.4.14)

where y and X are formed from yt and £*, respectively. It should be noted that yt

and x*t were defined in equations (3.3.13) and (3.3.14), respectively. It is noteworthy

to observe that the design matrices of different exponential smoothing models such

as the local level, local trend and Holt-Winters' are different. For these models, the

design matrices are as follows.
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From equations (3.3.13) and (3.3.14), the vector a;* can be expressed as a:*' =

1, i = 1,2, • • •, n, where D is the discount matrix defined in Section 3.3. D is

different for different exponential smoothing models. Let us denote the vector x\'

and the discount matrix D for the local level, local trend and additive Holt-Winters'

models by z*'/m, x^tm and x*'sm, respectively and D;m, Dtm and Dsm, respectively.

Then, the design matrices for the local level, local trend and additive Holt-Winters'

models are given by

x

Xl,lm

2,lmDlm

n x l

X l,tm

71"1r*' D71"

and

Xs =

n n - 1

(3.4.15)

respectively.

MGL (Ara, 1995) can be thought of as the density function of the maximal

invariant vector v (see King, 1980), which itself is a function of X. The maxi-

mal invariants of different exponential smoothing models are different, because the

design matrices of the models are not the same. But, because X is different for

different models, the maximal invariant statistics are different. Let us assume that

vi, v<i and 1/3 are maximal invariants for the local level, local trend and Holt-Winters

models, respectively, where

Vi =
„• _ i no (3.4.16)

\\Mty\\^ •

in which M* = /„ — JVi(Xt'Xt)~
1Xl- and /„ is the nxn identity matrix. We assume

that / i ( ^ i ) , ^(^2) and /3(^3) are the distributions of vi, v<i and 1/3, respectively.

Clearly, 1/1,1/2 and 1/3 have different dimensions and g'f1 does not exist. This means
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that the maximal invariants v\, f2 and J/3 have different distributions. Therefore,

MGL cannot be used for IC based model selection procedures in the usual way for

exponential smoothing models.

It is well known that the MGL based estimates are better (see Tunnicliffe Wilson,

1989; Ara, 1995) than those based on any other competitive methods. Therefore,

although in the exponential smoothing framework the application of the MGL to

IC is not appropriate, the estimate of a obtained from it can be useful to improve

model selection criteria as discussed below. Assuming that the MGL based estimate

of a is better than the one estimated from the CL, using the MGL estimate of a

in the CL function is likely to give a better likelihood value. We hope that the

application of the MGL estimate based CL to IC will give better probabilities of

correct model selection. This is investigated in Section 3.6.

3.5 Theory of OAPCS for IC Procedures

Among the existing IC procedures, that which selects the correct model or an

appropriate model most often is considered as the best performing IC. However, the

choice of the best IC procedure may depend on various factors such as the models

to be selected from and values considered for the exponential smoothing parameters

of the model. Particularly, probabilities of correct selection are affected largely by

the values of exponential smoothing parameters (see Subsection 3.7.1). For some

parameter values, the probabilities of correct selection is lower and for other values

it is higher. Further, in real life applications, the values of exponential smoothing

parameters are neither known nor necessarily fixed. Therefore, it would be better if

we can study the APCS. In this section, we outline a method of calculating APCS,

and hence, OAPCS by using a particular IC procedure.

Let us assume that Mi, M2, • • •,Mjq are N competing models. When data are
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Table 3.1: Maximized log-likelihood values.

DGP Estimated Models
Mi Mi • • • MN

MI l o g i n ( a 1 ) logL 2 (S 2 ) ••• \ogLN(aN)

M2 logL^a1) \ogL2{a2) ••• \ogLN{aN)

MN logL^S1) logL2(a2) .-• \ogLN{ZN)

simulated from the ith. model, i = 1,• • • ,7V, all the models in the competing set

are fitted by maximizing their log-likelihoods. Let \ogLj{a?) be the maximized

log-likelihood value for the jth model when data are generated from the ith model,

and a* is the corresponding estimated exponential smoothing parameter vector,

i,j = 1, • • • ,iV. Given the true models, all of the estimated log-likelihoods are

shown in Table 3.1. The diagonal elements of this table represent the estimated

log-likelihoods for the true models, while the off-diagonal elements show the log-

likelihoods for the other models.

Let us assume that we have generated R time series for each of the N models

in the competing group. At each replication we estimate maximized log-likelihoods

as shown in Table 3.1. We then penalize each of these estimated maximized log-

likelihoods with a penalty term from a particular IC procedure and compute the

number of times the true model is selected.

We choose the model with the largest value of the IC over all models under

consideration, i.e., model M,- will be selected if

log Li(&) - pi > log Lj(aj) - pj, for all j ^ i, j = 1, • • • , # ,

where logZ-,(5') is the maximized log-likelihood function for model M,- with S*



CHAPTER 3. MODEL SELECTION 81

being the maximum likelihood estimate of a* and pi is the corresponding penalty.

Let us assume that Pr(CSMi\Mi, a ' ,pi, • • • ,PN) denotes the probability of cor-

rect selection that model Mi is true with parameter vector a1 when penalties

Pi ? • • *» PN are used. This probability can be given by

V) -Pi ()

The value of (3.5.1) changes with a1 changes. An obvious way to overcome this

problem is to work with the APCS. This requires a weighting density function for

different values of a\ similar to a prior density function used in Bayesian statistics.

Assuming C(a') 1S the weighting density function for a', the APCS for the zth true

model M,- is given by

APCS; = fPr[CSMi\Mi,a\pu • • • ,pN]C(a'Va'. (3.5.2)

Given (3.5.1), we can estimate (3.5.2) through Monte Carlo integration by draw-

ing a1 randomly from the distribution given by C(a ') a n d using these parameter

values to generate R simulated data sets ya-, t ••= 1, • • •, n; £ = 1, • • •, R, of sample

size n. The only remaining problem is that (3.5.1) is unknown. It can easily be

estimated by Monte Carlo methods. In a different setting, King and Bose (2000)

have investigated how best to estimate expressions such as (3.5.2) via Monte Carlo

simulation. The question they addressed was the best split of a total number of

replications between those needed to estimate (3.5.1) and those needed to estimate

(3.5.2). They found the best results are obtained by maximizing the number of

drawings of a' and using only one iteration for each estimate of (3.5.1) in (3.5.2).

If

e - - ,pN)

= I (log Lift) - pi > l o g ^ ( S ' ) - p^ j f i,j = 1,• • •, N\Mh aie)

I
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denote the indicator function for the event that M{ is correctly chosen at the ith.

iteration, where L*-{pP) is the maximized log-likelihood for Mj, based on the data

set of the ^th iteration, and afe is the ith drawing from C(a t)' then the estimated

value of APCS,-(pi, • • • ,PN) is:

APCS{(p!, • • • iPN) = 1 f; ItiMu aie,pu • • • ,PN). (3.5.3)

The OAPCS for the set of penalties pi, • • • ,PN, is obtained by

Pu--,PN). (3.5.4)

The determination of the best IC can be made by evaluating the OAPCS for each

IC procedure.

3.6 Design of the Monte Carlo Study

A Monte Carlo experiment was conducted to investigate how the existing IC proce-

dures perform for selecting the true model from a group of exponential smoothing

models. Another aim was to compare the CL and ICL based selection probabilities.

Further, the effects of changing factors such as sample size n, standard deviation

a and exponential smoothing parameter vector a were also observed. Because the

idea of applying the IC approach to select a model from a group of exponential

smoothing models is fairly new, only two models, namely, the local level and local

trend were considered for the first part of the experiment, and data were generated

from the underlying models using selected values for exponential smoothing pa-

rameters. Then, for the second part of the experiment an additive seasonal model,

which has much use in applications, Wivs included into the above group of com-

peting models. The local level, local trend and seasonal models are denoted by

SMI, SM2 and SM3, respectively. In this part, at each replication, exponential
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smoothing parameters were generated randomly from a weighting distribution. For

comparison, we considered the following six IC procedures: AIC, BIC, HQ, MCp,

GCV and FPE.

3.6.1 First Part of the Experiment

In this part, the existing IC procedures were used to select between the SMI and

SM2 models to see how they perform in choosing the true models. The data were

generated by the underlying models for some specified values of the exponential

smoothing parameter vector. The effect of changing the exponential smoothing

parameters was observed in this part of the experiment. The sample size and

parameter choices in the data generating processes were as follows: n = 36, a — 1

and 5. For the SMI model the smoothing parameter values were oc\ = 0.0, 0.1, 0.2,

0.5, 0.7 and 0.9 and those for the SM2 model were ax = 0.0, 0.1, 0.2, 0.5, 0.7 and

0.9 and a2 = 0.01 and 0.1. The initial seed level l0 and seed growth rate (trend) b0

were set to 100 and 5.0, respectively. The results are discussed in Subsection 3.7.1.

3.6.2 Second Part of the Experiment

The second part of the simulation study was conducted in the context of selection

between SMI and SM2 models, SM2 and SM3 models, and SMI, SM2 and SM3

models. For all of these models, the parameter of interest is the vector of exponential

smoothing parameters. Although, theoretically the value of smoothing parameters

can be greater than unity, in most applications they are considered to be within 0

and 1. However, more restricted smoothing parameter values were considered for

trend and seasonalitity (see for example, Hyndman et al., 2000). Let us assume that

a\ i = 1,2,3, are the exponential smoothing parameter vector for the SMI, SM2

and SM3 models respectively, where a1 = a\, a2 = (a\, a?)' and o? = (ai, cx-i &•$)'.

We also assume that C(a') is the weighting distribution (uniform) for the ith model.
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At each replication, the values of exponential smoothing parameters were generated

randomly from independent uniform distributions with ranges as follows:

Weighting Distribution Smoothing Parameter Value

Oil <*2 C*3

SMI : ((a1) : [0, 0.999]

SM2 : C(a2) : [0, 0.999] [0, 0.2]

SM3 : ({a3) : [0, 0.999] [0, 0.2] [0, 0.1]

This helps to estimate APCS, and hence, OAPCS. The performance of the IC

procedures was compared in terms of APCS as well as OAPCS.

The necessary steps of the Monte Carlo study are as follows:

Step 1: Draw or1 = an, a2 = (an, 02)' and a3 = (an, 0:2, 0:3)' values from their

respective ((a) distributions at each replication.

Step 2: Generate three samples of size n from each of the SMI, SM2 and SM3

models for these parameter values.

Step 3: For each data set, compute the maximized log-likelihood for all of the

competing models as shown in Table 3.1.

Step 4: Repeat steps 1 to 3 R times, where R is the number of replication.

Step 5: Use maximized log-likelihoods obtained in step 4 for calculating APCS

(equation (3.5.3)) for each true model by using various IC procedures. Also, using

(3.5.4) calculate OAPCS by averaging APCS over the true models.

For comparison, we calculated OAPCS for each IC procedure considered in

the experiment, based on both CL and ICL. The sample size and a value were

considered: n = 24, 48, 72, 96, 120 and 200 and a - 1, 5 and 20, respectively. We

calculated the initial seasonal values by using the equation Cj-S = 1 + Asin(2J7r/.s),

j = 1,2,- •• ,3 , where A is the seasonal amplitude and s is the number of seasons

in a year. The values of A and s were set to 0.3 and 4, respectively (assuming

quarterly time series). For this choice of A, see Koehler et al. (1999). The initial
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seed state vector was estimated by using the OLS method on the transformed model

as discussed in Section 3.3.

Traditionally, the values of smoothing parameters are obtained through making

a good guess in most applications. The studies of Chatfield (1978) and Bartolomei

and Sweet (1989) show that it is dangerous to guess the values of the smoothing pa-

rameters. In fact, the parameters should be estimated from data. Therefore, both

CL and MGL estimation methods were used to estimate the exponential smoothing

parameters by using the data series under consideration. Since none of the likeli-

hoods (CL and MGL) have a closed form estimator for a, the GAUSS (see Aptech,

1996) constrained optimization algorithm was used for maximizing both the CL

and MGL.

3.7 Results and Discussion

The results of the simulation study are organized as follows. The probabilities of

correct selection (PCS) for the SMI and SM2 models from the first part of the

experiment are presented in Tables 3.2 to 3.4. From the second part of the study,

the APCS and OAPCS are presented in Tables 3.5 to 3.7, 3.8 to 3.10 and 3.11 to

3.16 when correct models are selected from the competing groups SMI and SM2,

SM2 and SM3 and SMI, SM2 and SM3, respectively. Tables 3.17 to 3.20 present

the effect of sample size on APCS and OAPCS. The effect of sample size is obtained

by taking the average of APCS and OAPCS across all a values for a particular n.

Similarly, Tables 3.21 to 3.23 show the effect of a value on APCS and OAPCS.

This means that for a particular value of a, the APCS and OAPCS were averaged

across all sample sizes. For a clearer view, selected results from Tables 3.5, 3.8 and

3.11 are presented in Figures 3.1 to 3.3, respectively. It should be noted that the

results are discussed below in terms of correctly selected models only.
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3.7.1 First Part of the Experiment

Table 3.2 presents the PCS for the SMI model. This table shows that irrespective

of the value of a i , BIC correctly selects the SMI model most often, followed by

HQ, and the third position is occupied by GCV. The fourth and fifth positions are

occupied by either AIC or FPE, while MCp correctly selects the SMI model least

often. The PCSs for all existing IC procedures used in this experiment are aifected

by the choice of smoothing parameter values. For example, Table 3.2 shows that

for n = 36 and a = 1, the PCS for ICL based BIC are 97.9%, 90.4%, 79.9%, 84.4%,

90.8% and 93.6% for ax = 0.0, 0.1, 0.2, 0.5, 0.7 and 0.9, respectively. Clearly, for

smoothing parameter values close to zero and unity, all the IC procedures perform

very well at correctly selecting th" °MI model. In general, the PCS for the SMI

model is not affected by changing the a value.

Tables 3.3 and 3.4 show the PCS for the SM2 model. According to these tables,

the existing IC procedures perform in the opposite direction to their performance

for correctly selecting the SMI model. More clearly, MCp selects the SM2 model

most often, followed by either AIC or FPE. The fourth and fifth positions are

occupied by GCV and HQ respectively, and BIC selects the SM2 model least often.

The PCS for the SM2 model decreases with increase of values of cx\ and a.^. Also,

the PCS decreases with a increases.

When correctly selecting the SMI model, irrespective of the values of a% and

cr, the ICL based existing IC procedures perform better than those based on CL.

Table 4.2 shows that for a = 5, ICL based AIC dominates CL based AIC by 9.86%

to 33.84% for various values of a\ in the interval 0.0 to 0.9. However, the CL based

IC procedures perform better than those based on ICL when correctly selecting

the SM2 model. For example, CL dominates ICL by 0.04% to 9.52% for a = 5,

OLI =0 .1 and different values of a.\ ranging from 0.0 to 0.9.
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Clearly, the results of the first part of the experiment show that the PCSs of the

SMI and SM2 models depend on the choice of the values of exponential smoothing

parameters. Therefore, we calculated APCS as well as OAPCS in the second part

of the experiment. The results are discussed as follows.

3.7.2 Second Part of the Experiment

As shown in Tables 3.5 to 3.16, in the context of APCS, it is clear that MCp most

often selects the largest (in terms of the number of smoothing parameters involved)

model in the competing group than any other existing IC procedures considered

in this chapter. MCp is followed by either AIC or FPE. The fourth and fifth

positions are occupied by GCV and HQ respectively, and BIC correctly selects the

largest model least often. On the other hand, when selecting other models ia the

group, the existing IC procedures are found to perform in the reverse order to their

performance of selecting the largest model.

In terms of OAPCS, in general, the performance of the existing IC procedures

follow the same order as they did in terms of APCS when correctly selecting the

models other than the largest model. When correctly selecting from the competing

models SMI and SM2, AIC, FPE and MCp perform equally, particularly for large

sample sizes (see for example, Table 3.7).

It is interesting to observe that the above ranking between the existing IC

procedures with respect to APCS and OAPCS carries through for both CL and

ICL based model selection criteria. Iu terms of APCS, ICL performs better than

CL if correctly selecting models other than the largest model. According to Table

3.11 (competing models are SMI, SM2 and SM3), for n = 24 and a = 5, with

respect to APCS, the ICL based IC procedures perform better than those based

on CL by 17.1% to 31.8% and 3.1% to 11.0% when correctly selecting the SMI
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and SM2 models, respectively. However, when correctly selecting the SM3 model,

the APCSs for CL based IC procedures are 0.4% to 1.9% larger than that of those

based on ICL. In terms of OAPCS, ICL uniformly dominates CL, For example, the

ICL based BIC (best among the existing IC procedures) performs better than that

based on CL by 0.12% to 6.08% (see Tables 3.5 to 3.16). The OAPCS for n = 24

and a = 1 , 5 and 20 from Tables 3.5, 3.8 and 3.11 are presented in Figures 3.1 to

3.3, respectively. These figures clearly show the difference between the performance

of CL and ICL based selection criteria in terms of OAPCS.

3.7.3 Effects of n and a on APCS and OAPCS

Tables 3.17 to 3.20 show that the APCS for each model increases as the sample size

increases. However, the improvement in APCS for the SM2 model is not remarkable

when it is selected from the competing groups SM2 and SM3, and SMI, SM2 and

SM3. When selecting from SMI, SM2 and SM3, the APCS for the SMI model is

low for small sample sizes, and it improves quickly as the sample size increases. For

all IC procedures, the OAPCS increases with increases in sample size.

The effects of a on APCS as well as on OAPCS can be observed from Tables

3.21 to 3.23. In terms of APCS, both CL and ICL based correct selection proba-

bilities of the smallest model (in terms of the number of parameters involved) of

each plausible group remains almost unchanged as a increases. However, APCS

corresponding to other models decreases with cr increases. Irrespective of a value,

ICL uniformly performs better than CL with respect to OAPCS, and its superiority

to CL decreases with a increases.
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3.8 Conclusions

89

The likelihood approach to exponential smoothing models allows the application

of IC procedures for selecting the best model from a group of competing models.

The results of this chapter show that the selection performance of the various IC

procedures depends on the value of the exponential smoothing parameter, sample

size n, <r and the models considered in the competing group. The OAPCS for

IC procedures decreases as a value increases. However, as was expected, OAPCS

increases as the sample size increases. In terms of OAPCS, BIC performs best,

followed by HQ, and MCp is the worst. All the existing IC procedures perform

well in selecting exponential smoothing models, but the selection criterion with

the largest penalty gives better selection probabilities. Among the existing IC

procedures, BIC has the largest penalty value.

We have introduced ICL based IC procedures, where ICL is based on the MGL

methods. We compared the performance of the CL and ICL based IC procedures

with respect to APCS and OAPCS. The results of our study show that in terms

of APCS, when correctly selecting the smaller models, ICL based IC procedures

perform better than those based on CL. However, when selecting the largest model

in the group, the CL based IC procedures usually perform better than those based

on ICL. Irrespective of sample size, a value and competing group, in terms of

OAPCS, the ICL based IC procedures perform better than those based on CL.

Therefore, we suggest the use of ICL based BIC criterion when faced with selection

problem between different exponential smoothing models.
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Table 3.2: The PCS for the SMI model (when SMI and SM2 are competing models)
for cr = l and 5, n = 36, /o = 100 and different values of exponential smoothing
parameter a.

n a ot\
36 1 0.0

0.1

0.2

0.5

0.7

0.9

36 5 0.0

0.1

0.2

0.5

0.7

0.9

LF
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

AIC
0.832
0.914
0.629
0.779
0.527
0.702
0.674
0.781
0.758
0.857
0.799
0.878
0.832
0.914
0.629
0.777
0.526
0.704
0.674
0.784
0.758
0.857
0.800
0.880

BIC
0.933
0.979
0.764
0.904
0.658
0.799
0.792
0.844
0.875
0.908
0.912
0.936
0.933
0.979
0.764
0.904
0.658
0.800
0.793
0.846
0.875
0.909
0.912
0.938

HQ
0.885
0.938
0.682
0.820
0.579
0.728
0.726
0.811
0.811
0.883
0.851
0.908
0.885
0.938
0.682
0.819
0.579
0.729
0.726
0.813
0.811
0.883
0.852
0.910

MCp.
0.827
0.912
0.625
0.777
0.520
0.700
0.669
0.780
0.752
0.853
0.793
0.876
0.827
0.912
0.625
0.776
0.520
0.701
0.669
0.783
0.753
0.853
0.794
0.878

GCV
0.846
0.922
0.639
0.784
0.536
0.705
0.687
0.784
0.767
0.861
0.813
0.881
0.847
0.922
0.639
0.783
0.536
0.706
0.687
0.787
0.767
0.861
0.813
0.883

FPE
0.833
0.915
0.631
0.779
0.528
0.703
0.674
0.781
0.759
0.858
0.799
0.878
0.833
0.915
0.631
0.777
0.528
0.704
0.674
0.784
0.759
0.858
0.800
0.880
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Table 3.3: The PCS for the SM2 model (when SMI and SM2 are competing models)
for cr = 1, n = 36, IQ = 100, &o = 5 and different values of exponential smoothing
parameters a\ and a?.

n a ax a2 LF AIC BIC HQ MCp GCV FPE
36 1.0 0.0 0.01

0.1

0.2

0.5

0.7

0.9

CL
ICL
CL
ICL
CL
TCL
CL
ICL
CL
ICL
CL
ICL

1.000
0.999
1.000
0 999
1.000
0.999
0.999
0.999
0.988
0.975
0.966
0.912

1.000
0.999
1.000
0.999
1.000
0.999
0.998
0.991
0.974
0.991
0.907
0.832

1.000
0.999
1.000
0.999
1.000
0.999
0.999
0.997
0.985
0.966
0.948
0.890

1.000
0.999
1.000
0.999
1.000
0.999
0.999
0.999
0.989
0.976
0.967
0.913

1.000
0.999
1.000
0.999
1.000
0.999
0.999
0.999
0.987
0.975
0.962
0.909

36 1.0 0.0 0.1

0.1

0.2

0.5

0.7

0.9

CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

0,998
0.994
0.998
0.992
0.992
0.978
0.931
0.886
0.873
0.832
0.840
0.767

0.997
0.986
0.996
0.983
0.986
0.964
0.895
0.853
0.829
0.773
0.760
0.705

0.998
0.992
0.998
0.990
0.989
0.972
0.917
0.876
0.858
0.813
0.811
0.745

0.998
0.994
0.998
0.992
0.992
0.978
0.932
0.888
0.875
0.834
0.844
0.768

0.998
0.993
0.998
0.991
0.991
0.978
0.928
0.885
0.870
0.831
0.836
0.766

1.000
0.999
1.000
0.999
1.000
0.999
0.999
0.999
0.988
0.975
0.966
0.911
0.998
0.994
0.998
0.992
0.992
0.978
0.931
0.886
0.873
0.832
0.839
0.767
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Table 3.4: The PCS for the SM2 model (when SMI and SM2 are competing models)
for a = 5, n = 36, /o = 100, &o = 5 and different values of exponential smoothing
parameters cti and ct2.

n a ax a2 LF AIC BIC HQ MCp GCV FPE
36 5.0 0.0 0.01

0.1

0.2

0.5

0.7

0.9

CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

0.994
0.979
0.991
0.981
0.982
0.968
0.928
0.899
0.897
0.851
0.864
0.820

0.998
0.972
0.989
0.970
0.967
0.949
0.895
0.873
0.846
0.785
0.816
0.753

0.988
0.977
0.990
0.981
0.977
0.961
0.914
0.887
0.881
0.833
0.847
0.801

0.992
0.979
0.991
0.981
0.982
0.970
0.928
0.901
0.900
0.853
0.868
0.823

0.993
0.979
0.990
0.981
0.982
0.967
0.926
0.897
0.895
0.848
0.860
0.817

36 5.0 0.0 0.1

0.1

0.2

0.5

0.7

0.9

CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

0.978
0.958
0.976
0.949
0.966
0.920
0.849
0.753
0.760
0.651
0.703
0.604

0.963
0.929
0.962
0.916
0.949
0.872
0.770
0.679
0.653
0.591
0.601
0.514

0.974
0.951
0.971
0.943
0.963
0.903
0.824
0.732
0.722
0.626
0.657
0.573

0.979
0.958
0.976
0.951
0.968
0.920
0.852
0.753
0.762
0.655
0.704
0.606

0.977
0.957
0.976
0.947
0.966
0.918
0.846
0.749
0.753
0.645
0.701
0.599

0.994
0.979
0.991
0.981
0.982
0.968
0.928
0.899
0.897
0.851
0.864
0.820
0.978
0.958
0.976
0.949
0.966
0.920
0.849
0.753
0.760
0.650
0.703
0.604
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Table 3.5: The estimated APCS and OAPCS (where indicated) when competing
models are SMI and SM2 with a = 1, 5 and 20, n = 24 and 48, /0 = 100 and
b0 — 5 .

n LF DGP AIC BIC HQ MCp GCV FPE
24 CL

ICL

SMI
SM2
SMI
SM2

0.615
0.973
0.663
0.966

0.695
0.964
0.748
0.956

0.641
0.972
0.686
0.964

0.610
0.976
0.652
0.968

0.625
0.973
0.670
0.964

0.6.15
0.973
0.664
0.966

OAPCS

5

OAPCS

20

OAPCS

48 1

OAPCS

5

OAPCS

20

OAPCS

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

0.798
0.815
0.611
0.849
0.690
0.814
0.730
0.752
0.612
0.822
0.690
0.793
0.717
0.742
0.734
0.992
0.769
0.991
0.863
0.880
0.734
0.903
0.770
0.890
0.812
0.830
0.737
0.876
0.771
0.859
0.807
0.815

0.830
0.852
0.697
0.804
0.766
0.782
0.751
0.774
0.697
0.767
0.768
0.740
0.732
0.754
0.841
0.989
0.884
0.970
0.905
0.917
0.862
0.874
0.885
0.863
0.868
0.874
0.861
0.824
0.885
0.804
0.843
0.845

0.807
0.825
0.638
0.831
0.712
0.801
0.735
0.757
0.639
0.809
0.711
0.781
0.724
0.746
0.788
0.992
0.821
0.991
0.890
0.906
0.789
0.893
0.822
0.879
0.841
0.851
0.789
0.853
0.822
0.836
0.821
0.829

0.793
0.810
0.606
0.854
0.679
0.815
0.730
0.747
0.607
0.825
0.680
0.798
0.716
0.739
0.731
0.992
0.766
0.991
0.862
0.879
0.730
0.903
0.766
0.893
0.817
0.830
0.733
0.878
0.768
0.863
0.806
0.816

0.799
0.817
0.623
0.839
0.698
0.810
0.731
0.754
0.624
0.817
0.698
0.789
0.721
0.744
0.751
0.992
0.775
0.991
0.872
0.883
0.751
0.902
0.777
0.892
0.827
0.835
0J53
0.874
0.777
0.857
0.814
0.817

0.794
0.815
0.611
0.849
0.691
0.813
0.730
0.751
0.612
0.822
0.691
0.793
0.717
0.742
0.734
0.992
0,769
0.991
0.863
0.880
0.734
0.900
0.770
0.893
0.819
0.832
0.737
0.876
0.771
0.859
0.807
0.815
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Table 3.6: The estimated APCS and OAPCS (where indicated) when competing
models are SMI and SM2 with a = 1, 5 and 20, n = 72 and 96, /0 = 100 and

n a
72 1

OAPCS

5

OAPCS

20

OAPCS

LF
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

DGP
SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

AIC
0.750
0.986
0.806
0.984
0.868
0.895
0.751
0.927
0.808
0.915
0.839
0.862
0.752
0.894
0.808
0.877
0.823
0.843

BIC
0.882
0.982
0.910
0.980
0.901
0.945
0.882
0.893
0.910
0.884
0.888
0.897
0.882
0.846
0.910
0.831
0.864
0.871

HQ
0.825
0.985
0.862
0.983
0.905
0.923
0.826
0.913
0.862
0.900
0.870
0.881
0.826
0.878
0.862
0.852
0.852
0.857

MCp
0.744
0.986
0.804
0.984
0.865
0.894
0.745
0.928
0.805
0.916
0.837
0.861
0.746
0.894
0.805
0.877
0.820
0.841

GCV
0.756
0.986
0.811
0.984
0.871
0.898
0.758
0.927
0.811
0.912
0.843
0.862
0.758
0.894
0.812
0.875
0.826
0.844

FPE
0.750
0.986
0.806
0.984
0.868
0.895
0.751
0.927
0.808
0.915
0.839
0.862
0.752
0.894
0.808
0.876
0.823
0.842

96 1 CL

ICL

SMI
SM2
SMI
SM2

0.773
0.994
0.851
0.994

0.906
0.993
0.946
0.989

0.846
0.994
0.905
0.992

0.771
0.994
0.850
0.994

0.777
0.994
0.853
0.994

0.773
0.994
0.856
0.994

OAPCS

5

OAPCS

20

OAPCS

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

0.884
0.923
0.772
0.946
0.851
0.932
0.859
0.892
0.773
0.921
0.852
0.909
0.847
0.881

0.950
0.968
0.906
0.917
0.946
0.901
0.912
0.924
0.906
0.884
0.946
0.871
0.895
0.909

0.920
0.949
0.845
0.934
0.905
0.918
0.890
0.912
0.845
0.906
0.906
0.894
0.876
0.900

0.883
0.922
0.771
0.946
0.850
0.933
0.859
0.892
0.772
0.921
0.851
0.909
0.847
0.880

0.886
0.924
0.776
0.946
0.854
0.932
0.861
0.893
0.777
0.920
0.854
0.909
0.849
0.882

0.884
0.923
0.772
0.946
0.851
0.932
0.859
0.892
0.773
0.921
0.852
0.909
0.847
0.881
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Table 3.7: The estimated APCS and OAPCS (where indicated) when competing
models are SMI and SM'2 with a = 1, 5 and 20, n = 120 and 200, l0 = 100 and

n LF DGP AIC BIC HQ MCp GCV FPE
120 CL

ICL

SMI
SM2
SMI
SM2

0.774
0.995
0.844
0.993

0.909
0.992
0.943
0.991

0.847
0.995
0.903
0.992

0.774
0.995
0.843
0.993

0.775
0.995
0.844
0.993

0.774
0.995
0.844
0.993

OAPCS

5

OAPCS

20

OAPCS

200 1

OAPCS

5

OAPCS

20

OAPCS

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

SMI
SM2
SMI
SM2

0.885
0.919
0.774
0.953
0.844
0.946
0.864
0.895
0.774
0.938
0.845
0.922
0.856
0.884
0.807
1.000
0.899
1.000
0.904
0.950
0.808
0.961
0.900
0.955
0.884
0.928
0.808
0.940
0.898
0.925
0.874
0.912

0.951
0.967
0.911
0.935
0.943
0.928
0.923
0.936
0.911
0.920
0.943
0.898
0.916
0.921
0.923
0.999
0.956
0.999
0.961
0.978
0.922
0.951
0.956
0.942
0.937
0.949
0.920
0.921
0.956
0.907
0.921
0.932

0.921
0.948
0.847
0.947
0.902
0.937
0.897
0.920
0.847
0.927
0.905
0.S10
0.887
0.908
0.870
1.000
0.925
1.000
0.935
0.963
0.868
0.958
0.925
0.952
0.913
0.939
0.868
0.933
0.925
0.914
0.901
0.920

0.885
0.918
0.774
0.953
0.844
0.946
0.864
0.895
0.773
0.938
0.845
0.922
0.856
0.884
0.806
1.000
0.899
1.000
0.903
0.950
0.807
0.961
0.900
0.955
0.884
0.928
0.807
0.940
0.898
0.926
0.874
0.912

0.885
0.919
0.775
0.953
0.844
0.946
0.864
0.895
0.775
0.936
0.845
0.922
0.856
0.884
0.808
1.000
0.901
1.000
0.904
0.951
0.810
0.961
0.902
0.955
0.886
0.929
0.810
0.940
0.901
0.925
0.875
0.913

0.885
0.919
0.774
0.953
0.844
0.946
0.864
0.895
0.774
0.938
0.845
0.922
0.856
0.884
0.807
1.000
0.899
1.000
0.904
0.950
0.808
0.961
0.990
0.955
0.885
0.928
0.808
0.940
0.898
0.925
0.874
0.912
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Table 3.8: The estimated APCS and OAPCS (where indicated) when competing
models are SM2 and SM3 with a = 1, 5 and 20, n = 24 and 48, /0 = 100, b0 = 5
and A = 0.3.

n a
24 1

OAPCS

5

OAPCS

20

OAPCS

48 1

OAPCS

5

OAPCS

20

OAPCS

LF
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

DGP
SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

AIC
0.411
1.000
0.468
1.000
0.706
0.734
0.420
0.905
0.467
0.906
0.663
0.687
0.423
0.734
0.467
0.706
0.579
0.587
0.441
1.000
0.484
1.000
0.721
0.742
0.443
0.956
0.482
0.956
0.699
0.719
0.443
0.806
0.476
0.795
0.625
0.636

BIC
0.595
1.000
0.610
1.000
0.798
0.805
0.598
0.841
0.617
0.838
0.720
0.728
0.600
0.592
0.605
0.585
0.596
0.595
0.692
1.000
0.718
1.000
0.846
0.859
0.695
0.925
0.722
0.906
0.810
0.814
0.695
0.634
0.722
0.613
0.665
0.668

HQ
0.457
1.000
0.502
1.000
0.729
0.751
0.463
0.888
0.498
0.884
0.676
0.691
0.462
0.695
0.498
0.673
0.579
0.586
0.576
1.000
0.601
1.000
0.788
0.801
0.580
0.947
0.600
0,943
0.764
0.772
0.580
0.735
0.596
0.719
0.658
0.658

MCp
0.384
1.000
0.449
1.000
0.692
0.725
0.392
0.915
0.448
0.908
0.654
0.678
0.394
0.757
0.450
0.727
0.576
0.589
0.427
1.000
0.467
1.000
0.714
0.734
0.433
0.956
0.466
0.956
0.695
0.711
0.433
0.812
0.462
0.800
0.623
0.631

GCV
0.440
1.000
0.489
1.000
0.720
0.745
0.448
0.894
0.487
0.892
0.671
0.690
0.449
0.703
0.487
0.680
0.576
0.584
0.467
1.000
0.500
1.000
0.734
0.750
0.467
0.955
0.499
0.952
0.711
0.726
0.467
0.792
0.494
0.785
0.630
0.640

FPE
0.414
1.000
0.468
1.000
0.707
0.734
0.423
0.905
0.467
0.904
0.664
0.686
0.426
0.731
0.467
0.702
0.579
0.585
0.441
1.000
0.485
1.000
0.721
0.743
0.443
0.956
0.483
0.G56
0.699
0.720
0.443
0.806
0.478
0.795
0.625
0.637
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Table 3.9: The estimated APCS and OAPCS (where indicated) when competing
models are SM2 and SM3 with a = 1, 5 and 20, n = 72 and 96, l0 = 100, b0 = 5
and A - 0.3.

n a
72 1

OAPCS

5

OAPCS

LF
CL

ICL

CL
ICL
CL

ICL

CL
ICI,

DGP
SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

AIC
0.443
1.000
0.495
1.000
0.722
0.748
0.445
0.978
0.503
0.976
0.712
0.740

BIC
0.750
1.000
0.773
1.000
0.875
0.887
0.750
0.954
0.776
0.950
0.852
0.863

HQ
0.597
1.000
0.632
1.000
0.799
0.816
0.595
0.973
0.639
0.965
0.784
0.802

MCp
0.434
1.000
0.485
1.000
0.717
0.743
0.435
0.978
0.493
0.976
0.706
0.735

GCV
0.460
1.000
0.509
1.000
0.730
0.755
0.461
0.978
0.517
0.973
0.720
0.745

FPE
0.443
1.000
0.495
1.000
0.722
0.748
0.445
0.978
0.503
0.976
0.712
0.740

20 CL

ICL

SM2
SM3
SM2
SM3

0.446
0.863
0.502
0.836

0.750
0.734
0.778
0.687

0.597
0.811
0.639
0.786

0.437
0.868
0492
0.838

0.461
0.859
0.517
0.834

0.446
0.863
0.502
0.836

OAPCS

96 1

OAPCS

5

OAPCS

20

OAPCS

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

0.655
0.669
0.439
1.000
0.511
1.000
0.720
0.756
0.441
0.981
0.511
0.986
0.711
0.749
0.440
0.898
0.510
0.868
0.669
0.689

0.744
0.733
0.765
1.000
0.799
1.000
0.883
0.900
0.768
0.969
0.799
0.992
0.869
0.900
0.767
0.772
0.796
0.744
0.771
0.770

0.691
0.713
0.616
1.000
0.658
1.G00
0.808
0.829
0.616
0.977
0.657
0.968
0.797
0.813
0.616
0.842
0.656
0.813
0.729
0.735

0.653
0.665
0.429
1.000
0.505
1.000
0.715
0.753
0.432
0.981
0.504
0.980
0.707
0.742
0.432
0.899
0.504
0.872
0.666
0.688

0.660
0.676
0.450
1.000
0.524
1.000
0.725
0.762
0.451
0.981
0.525
0.986
0.716
0.756
0.452
0.898
0.523
0.867
0.675
0.695

0.655
0.669
0.439
1.000
0.511
1.000
0.720
0.756
0.441
0.981
0.512
0.986
0.771
0.749
0.440
0.898
0.510
0.868
0.669
0.689
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Table 3.10: The estimated APCS and OAPCS (where indicated) when competing
models are SM2 and SM3 with a = 1, 5 and 20, n = 120 and 200, /0 = 100, bQ = 5
and A = 0.3.

n a
120 1

OA^CS

5

OAPCS

LI
CL

ICL

CL
ICL
CL

ICL

CL
ICL

DGP
SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

AIC
0.472
1.000
0.553
1.000
0.735
0.777
0.469
0.985
0.548
0.987
0.727
0.768

BIC
0.796
1.000
0.824
1.000
0.898
0.912
0.794
0.973
0.825
0.977
0.884
0.901

HQ
0.656
1.000
0.693
1.000
0.828
0.847
0.655
0.982
0.690
0.981
0.819
0.836

MCp
0.463
1.000
0.548
1.000
0.732
0.774
0.462
0.985
0.543
0.987
0.724
0.765

GCV
0,480
1.000
0.555
1.000
0.740
0.778
0.477
0.985
0.550
0.987
0.731
0.769

FPE
0.472
1.000
0.553
1.000
0.736
0.777
0.469
0.985
0.548
0.987
0.727
0.768

20 CL

ICL

SM2
SM3
SM2
SM3

0.469
0.926
0.550
0.903

0.794
0.829
0.825
0.801

0.654
0.883
0.692
0.866

0.462
0.928
0.545
0.903

0.477
0.925
0.552
0.902

0.469
0.926
0.550
0.903

OAPCS

200 1

OAPCS

5

OAPCS

20

OAPCS

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SM3

SM2
SM3
SM2
SMS

0.698
0.727
0.489
1.000
0.537
1.000
0.745
0.769 ,
0.493
0.986
0.537
0.992
0.740
0.765
0.492
0.931
0.538
0.933
0.712
0.736

0.812
0.813
0.829
1.000
0.861
1.000
0.915
0.931
0.829
0.983
0.862
0.989
0.906
0.926
0.831
0.863
0.861
0.855
0.847
0.858

0.769
0.779
0.680
1.000
0.707
1.000
0.840
0.854
0.680
0.985
0.709
0.990
0.833
0.850
0.680
0.898
0.710
0.906
0.789
0.808

0.695
0.724
0.486
1.000
0.536
1.000
0.743
0.768
0.490
0.986
0.536
0.992
0.738
0.764
0.489
0.931
0.536
0.933
0.710
0.735

0.701
0.727
0.497
1.000
0.544
1.000
0.749
0.772
0.499
0.986
0.543
0.992
0.743
0.768
0.499
0.931
0.544
0.932
0.715
0.738

0.698
0.727
0.489
1.000
0.537
1.000
0.745
0.769
0.493
0.986
0.537
0.992
0.740
0.765
0.492
0.931
0.538
0.933
0.712
0.736



CHAPTER 3. MODEL SELECTION 99

Table 3.11: The estimated APCS and OAPCS (where indicated) when competing
models are SMI, SM2 and SM3 with a = 1, 5 and 20, n = 24, l0 = 100, 60 = 5 and
A = 0.3.

n a LF
24 1 CL

ICL

OAPCS CL
ICL

5 CL

ICL

OAPCS CL
ICL

20 CL

ICL

OAPCS CL
ICL

DGP
SMI
SM2
SM3
SMI
SM3
SM3

SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

AIC
0.390
0.399
l.oon
0.489
0.451
1.000
0.596
0.647
0.391
0.363
0.900
0.461
0.403
0.896
0.551
0.577
0.392
0.355
0.702
0.507
0.379
0.659
0.483
0.515

BIC
0.571
0.570
1.000
0.669
0.593
1.000
0.714
0.754
0.574
0.480
0.810
0.714
0.495
0.795
0.621
0.654
0.575
0.466
0.536
0.679
0.466
0.528
0.52b
0.558

HQ
0.452
0.443
1.000
0.539
0.484
1.000
0.632
0.674
0.452
0.387
0.878
0.547
0.411
0.868
0.572
0.609
0.453
0.384
0.659
0.553
0.399
0.626
0.499
0.526

MCp
0.379
0.373
1.000
0.484
0.430
1.000
0.584
0.638
0.381
0.338
0.910
0.502
0.378
0.898
0.543
0.593
0.381
0.332
0.722
0.497
0.368
0.679
0.47$
0.515

GCV
0.425
0.427
1.000
0.531
0.471
1.000
0.617
0.667
0.426
0.381
0.885
0.533
0.407
0.878
0.564
0.606
0.428
0.377
0.672
0.530
0.395
0.639
0.492
0.521

FPE
0.392
0.402
1.000
0.490
0.450
1.000
0.598
0.647
0.393
0.365
0.900
0.514
0.391
0.894
0.553
0.600
0.394
0.358
0.699
0.510
0.379
0.656
0.482
0.515
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Table 3.12: The estimated APCS and OAPCS (where indicated) when competing
models are SMI, SM2 and SM3 with a = 1, 5 and 20, n = 48, /0 = 100, 60 = 5 and
A = 0.3.

n a LF
48 1 CL

ICL

OAPCS CL
ICL

5 CL

ICL

OAPCS CL
ICL

20 CL

ICL

OAPCS CL
ICL

DGP
SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

AIC
0.555
0.437
1.000
0.580
0.479
1.000
0.664
0.686
0.557
0.398
0.954
0.578
0.461
0.955
0.636
0.665
0.557
0.382
0.784
0.578
0.440
0.770
0.574
0.596

BIC
0.816
0.684
1.000
0.848
0.710
1.000
0.833
0.852
0.819
0.586
0.918
0.847
0.651
0.900
0.774
0.800
0.819
0.552
0.600
0.843
0.621
0.586
0.657
0.683

HQ
0.678
0.571
1.000
0.695
0.594
1.000
0.750
0.763
0.680
0.502
0.945
0.696
0.557
0.941
0.709
0.731
0.680
0.483
0.707
0.693
0.531
0.696
0.623
0.640

MCp
0.546
0.423
1.000
0.574
0.462
1.000
0.656
0.679
0.548
0.390
0.954
0.573
0.457
0.955
0.631
0.662
0.548
0.374
0.789
0.571
0.427
0.777
0.570
0.592

GCV
0.572
0.463
1.000
0.605
0.495
1.000
0.678
0.700
0.574
0.420
0.953
0.605
0.475
0.951
0.649
0.677
0.574
0.399
0.766
0.605
0.453
0.761
0.580
0.606

FPE
0.555
0.437
1.000
0.580
0.480
1.000
0.664
0.687
0.557
0.398
0.954
0.578
0.462
0.955
0.636
0.665
0.557
0.382
0.783
0.578
0.441
0.770
0.574
0.596
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Table 3.13: The estimated APCS and OAPCS (where indicated) when competing
models are SMI, SM2 and SM3 with a = 1, 5 and 20, n = 72, l0 = 100, 60 = 5 and
A = 0.3.

n a LF
72 1 CL

ICL

OAPCS CL
ICL

5 CL

ICL

OAPCS CL
ICL

20 CL

ICL

OAPCS CL
ICL

DGP
SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
AM3

SMI
SM2
SM3
SMI
SM2
SM3

AIC
0.624
0.434
1.000
0.608
0.487
1.000
0.686
0.698
0.626
0.415
0.976
0.607
0.472
0.975
0.672
0.685
0.626
0.406
0.853
0.613
0.472
0.827
0.628
0.644

BIC
0.876
0.737
1.000
0.862
0.762
1.000
0.871
0.875
0.877
0.670
0.946
0.892
0.692
0.945
0.831
0.843
0.876
0.627
0.699
0.894
0.670
0.659
0.734
0.748

HQ
0.762
0.588
1000
0.759
0.623
1.000
0.783
0.794
0.764
0.544
0.968
0.758
0.593
0.961
0.759
0.771
0.762
0.515
0.793
0.762
0.582
0.771
0.690
0.712

MCp
0.621
0.425
1.000
0.604
0.477
1.000
0.682
0.694
0.623
0.405
0.976
0.603
0.463
0.975
0.668
0.680
0.623
0.398
0.857
0.607
0.463
0.827
0.626
0.639

GCV
0.636
0.451
1.000
0.614
0.501
1.000
0.700
0.705
0.635
0.428
0.976
0.614
0.485
0.972
0.680
0.690
0.636
0.418
0.849
0.620
0.487
0.825
0.634
0.651

FPE
0.624
0.434
1.000
0.600
0.487
1.000
0.686
0.696
0.626
0.415
0.976
0.607
0.472
0.975
0.672
0.685
0.626
0.405
0.853
0.613
0.472
0.827
0.628
0.644
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Table 3.14: The estimated APCS and OAPCS (where indicated) when competing
models are SMI, SM2 and SM3 with a - 1, 5 and 20, n = 96, l0 = 100, b0 = 5 and
A = 0.3.

n a LF
96 1 CL

ICL

OAPCS CL
ICL

5 CL

ICL

OAPCS CL
ICL

20 CL

ICL

OAPCS CL
ICL

DGP
SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

AIC
0.695
0.436
1.000
0.637
0.506
1.000
0.710
0.714
0.695
0.413
0.981
0.637
0.498
0.986
0.696
0.707
0.696
0.392
0.879
0.638
0.496
0.862
0.656
0.669

BIC
0.919
0.757
1.000
0.916
0.793
1.000
0.892
0.903
0.920
0.694
0.964
0.915
0.751
0.965
0.860
0.877
0.919
0.672
0.749
0.915
0.732
0.724
0.780
0.794

HQ
0.822
0.611
1.000
0.784
0.653
1.000
0.811
0.812
0.820
0.564
0.970
0.804
0.633
0.980
0.785
0.806
0.821
0.549
0.821
0.781
0.626
0.804
0.730
0.741

MCp
0.692
0.426
1.000
0.634
0.500
1.000
0.706
0.711
0.692
0.404
0.981
0.654
0.491
0.986
0.692
0.710
0.693
0.384
0.880
0.634
0.490
0.865
0.652
0.667

GCV
0.698
0.447
1.000
0.642
0.519
1.000
0.715
0.720
0.698
0.423
0.981
0.662
0.512
0.986
0.701
0.720
0.699
0.404
0.879
0.644
0.508
0.861
0.661
0.675

FPE
0.695
0.436
1.000
0.637
0.506
1.000
0.710
0.714
0.695
0.413
0.981
0.657
0.499
0.989
0.696
0.714
0.696
0.392
0.879
0.638
0.496
0.862
0.656
0.669
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Table 3.15: The estimated APCS and OAPCS (where indicated) when competing
models are SMI, SM2 and SM3 with a = 1, 5 and 20, n = 120, 70 = 100, 60 = 5
and A = 0.3.

n a
120 1

OAPCS

5

OAPCS

20

OAPCS

LF
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

DGP
SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

AIC
0.684
0.469
1.000
0.625
0.552
1.000
0.718
0.726
0.685
0.450
0.984
0.623
0.545
0.986
0.706
0.718
0.685
0.437
0.916
0.640
0.537
0.895
0.679
0.677

BIC
0.921
0.789
1.000
0.907
0.818
1.000
0.903
0.908
0.922
0.741
0.970
0.907
0.792
0.977
0.878
0.892
0.922
0.723
0.814
0.904
0.783
0.787
0.820
0.825

HQ
0.827
0.651
1.000
0.787
0.690
1.000
0.826
0.826
0.827
0.615
0.981
0.787
0.671
0.980
0.808
0.813
0.829
0.600
0.871
0.781
0.662
0.851
0.767
0.765

MCp
0.682
0.460
1.000
0.623
0.547
1.000
0.714
0.723
0.683
0.444
0.984
0.621
0.540
0.986
0.704
0.716
0.683
0.432
0.918
0.619
0.532
0.895
0.678
0.682

GCV
0.688
0.477
1.000
0.627
0.554
1.000
0.722
0.727
0.690
0.458
0.984
0.626
0.547
0.986
0.711
0.720
0.689
0.445
0.914
0.626
0.538
0.894
0.683
0.686

FPE
0.684
0.469
1.000
0.625
0.552
1.000
0.718
0.726
0.685
0.450
0.984

" 0.628
0.545
0.986
0.706
0.718
0.685
0.437
0.916
0.622
0.537
0.895
0.680
0.685
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Table 3.16: The estimated APCS and OAPCS (where indicated) when competing
models are SMI, SM2 and SM3 with a = 1, 5 and 20, n - 200, /0 = 100, 60 = 5
and A = 0.3.

n cr
200 1

OAPCS

5

OAPCS

20

OAPCS

LF
CL

ICL

CL
ICL
CL

ICL

CL
ICL
CL

ICL

CL
ICL

DGP
SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

SMI
SM2
SM3
SMI
SM2
SM3

AIC
0.773
0.489
1.000
0.659
0.537
1.000
0.754
0.732
0.773
0.483
0.986
0.657
0.528
0.992
0.747
0.736
0.773
0.464
0.925
0.662
0.514
0.929
0.721
0.712

BIC
0.944
0.828
1.000
0.941
0.860
1.000
0.924
0.934
0.944
0.796
0.983
0.929
0.833
0.989
0.908
0.927
0.944
0.767
0.853
0.940
0.800
0.849
0.853
0.873

HQ
0.877
0.680
1.000
0.837
0.707
1.000
0.852
0.848
0.877
0.663
0.985
0.817
0.694
0.990
0.842
0.844
0.877
0.634
0.893
0.833
0.669
0.900
0.801
0.811

MCp
0.770
0.486
1.000
0.659
0.536
1.000
0.752
0.732
0.771
0.480
0.986
0.656
0.527
0.992
0.746
0.735
0.769
0.461
0.925
0.660
0.512
0.929
0.718
0.711

GCV
0.775
0.497
1.000
0.665
0.544
1.000
0.757
0.736
0.775
0.489
0.986
0.662
0.534
0.992
0.750
0.740
0.775
0.471
0.925
0.665
0.520
0.928
0.724
0.714

FPE
0.774
0.489
1.000
0.659
0.537
1.000
0.754
0.732
0.773
0.483
0.986
0.657
0.528
0.992
0.747
0.736
0.773
0.464
0.925
0.662
0.514
0.929
0.721
0.712
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Table 3.17: The a.verage (taken on a = 1, 5 and 20) of estimated APCS and OAPCS
(where indicated) when competing models are SMI and SM2 with n = 24, 48, 72,
96, 120 and 200, /0 = 100 and b0 = 5.

n
24

Average
OAPCS

48

Average
OAPCS

72

Average
OAPCS

LF
SMI

SM2

SMI

SM2

SMI

SM2

DGP
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

AIC
0.613
0.681
0.881
0.858
0.747
0.769
0.735
0.770
0.924
0.913
0.829
0.842
0.751
0.807
0.936
0.925
0.843
0.866

BIC
0.696
0.761
0.845
0.826
0.771
0.793
0.855
0.885
0.896
0.879
0.875
0.882
0.882
0.910
0.907
0.898
0.895
0.904

HQ
0.639
0.703
0.871
0.849
0.755
0.776
0.789
0.822
0.913
0.902
0.851
0.862
0.826
0.862
0.925
0.912
0.876
0.887

MCp
0.608
0.670
0.885
0.860
0.746
0.765
0.731
0.767
0.924
0.916
0.828
0.841
0.745
0.805
0.936
0.926
0.841
0.865

GCV
0.624
0.689
0.876
0.854
0.750
0.772
0.752
0.776
0.923
0.913
0.837
0.845
0.757
0.811
0.936
0.924
0.847
0.868

FPE
0.613
0.682
0.881
0.857
0.747
0.770
0.735
0.770
0.924
0.914
0.829
0.842
0.751
0.807
0.936
0.925
0.843
0.866

96 SMI

SM2

CL
ICL
CL
ICL

0.773
0.851
0.954
0.945

0.906
0.946
0.931
0.920

0.845
0.905
0.945
0.935

0.771
0.850
0.954
0.945

0.777
0.854
0.953
0.945

Average
OAPCS

CL
ICL

0.863
0.898

0.919
0.933

0.895
0.920

0.863
0.898

0.865
0.899

120 SMI

SM2

CL
ICL
CL
ICL

0.774
0.844
0.962
0.954

0.910
0.943
0.949
0.939

0.847
0.903
0.956
0.946

0.774
0.844
0.962
0.954

0.775
0.844
0.961
0.954

0.773
0.851
0.954
0.945
0.863
0.898
0.774
0.844
0.962
0.954

Average
OAPCS

200

Average
OAPCS

SMI

SM2

CL
ICL
CL
ICL
CL
ICL
CL
ICL

0.868
0.899
0.808
0.899
0.967
0.960
0.887
0.930

0.930
0.941
0.922
0.956
0.957
0.949
0.939
0.953

0.902
0.925
0.869
0.925
0.964
0.955
0.916
0.940

0.868
0.899
0.807
0.899
0.967
0.960
0.887
0.930

0.868
0.899
0.809
0.901
0.967
0.960
0.888
0.931

0.868
0.899
0.808
0.929
0.967
0.960
0.887
0.945
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Table 3.18: The average (taken on a = 1, 5 and 20) of estimated APCS and OAPCS
(where indicated) when competing models are SM2 and SM3 with n = 24, 48, 72
96, 120 and 200, /0 = 100, b0 = 5 and A = 0.3.

n
24

Average
OAPCS

48

Average
OAPCS

LF
SM2

SM3

SM2

SM3

DGP
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

AIC
0.418
0.473
0.880
0.871
0.649
0.672
0.442
0.481
0.921
0.917
0.682
0.699

BIC
0.598
0.611
0.811
0.808
0.704
0.709
0.598
0.611
0.811
0.808
0.774
0.780

HQ
0.461
0.499
0.861
0.852
0.661
0.676
0.579
0.599
0.894
0.887
0.736
0.743

MCp
0.387
0.449
0.891
0.878
0.639
0.664
0.431
0.465
0.923
0.919
0.677
0.692

GCV
0.446
0.488
0.866
0.857
0.656
0.673
0.467
0.498
0.916
0.912
0.691
0.705

FPE
0.421
0.467
0.879
0.869
0.650
0.668
0.442
0.482
0.921
0.917
0.682
0.700

72 SM2

SM3

CL
ICL
CL
ICL

0.445
0.500
0.947
0.937

0.750
0.776
0.896
0.879

0.596
0.637
0.928
0.917

0.435
0.490
0.949
0.938

0.461
0.514
0.946
0.936

0.445
0.500
0.947
0.937

Average
OAPCS

96

Average
OAPCS

120

Average
OAPCS

200

Average
OAPCS

SM2

SM3

SM2

SM3

SM2

SM3

CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

0.696
0.719
0.440
0.511
0.960
0.951
0.700
0.731
0.470
0.550
0.970
0.963
0.720
0.757
0.491
0.537
0.972
0.975
0.732
0.756

0.823
0.827
0.767
0.798
0.914
0.912
0.840
0.855
0.795
0.825
0.934
0.926
0.864
0.875
0.830
0.861
0.949
0.948
0.889
0.905

0.762
0.777
0.616
1.657
it M0
u.927
0.778
0.792
0.655
0.692
0.955
0.949
0.805
0.820
0.680
0.709
0.961
0.965
0.821
0.837

0.692
0.714
0.431
0.504
0.960
0.951
0.696
0.728
0.462
0.545
0.971
0.963
0.717
0.754
0.488
0.536
0.972
0.975
0.730
0.756

0.703
0.725
0.451
0.524
0.960
0.951
0.705
0.738
0.478
0.552
0.970
0.963
0.724
0.758
0.498
0.544
0.972
0.975
0.735
0.759

0.696
0.719
0.440
0.511
0.960
0.951
0.700
0.73

0.470
0.550
0.970
0.963
0.720
0.757
0.491
0.537
0.972
0.975
0.732
0.756
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Table 3.19: The average (taken on a = 1, 5 and 20) of estimated APCS and OAPCS
(where indicated) when competing models are SMI, SM2 and SM3 with n = 24,
48 and 72, l0 = 100, b0 - 5 and A = 0.3.

n
24

Average
OAPCS

48

Average
OAPCS

72

Average
OAPCS

LF
SMI

SM2

SM3

SMI

SM2

SM3

SMI

SM2

SM3

DGP
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

AIC
0.391
0.486
0.372
0.411
0.862
0.852
0.544
0.583
0.556
0.579
0.406
0.460
0.913
0.908
0.625
0.649
0.625
0.609
0.418
0.477
0.943
0.934
0.662
0.673

BIC
0.573
0.687
0.505
0.518
0.782
0.774
0.620
0.660
0.818
0.846
0.607
0.661
0.839
0.829
0.755
0.778
0.876
0.883
0.678
0.708
0.882
0.868
0.812
0.820

HQ
0.452
0.546
0.405
0.431
0.846
0.831
0.568
0.603
0.679
0.695
0.519
0.561
0.884
0.879
0.694
0.711
0.763
0.760
0.549
0.599
0.920
0.911
0.744
0.757

MCp
0.380
0.494
0.348
0.392
0.877
0.859
0.535
0.582
0.547
0.573
0.396
0.449
0.914
0.911
0.619
0.644
0.622
0.605
0.409
0.468
0.944
0.934
0.659
0.669

GCV
0.426
0.531
0.395
0.424
0.852
0.839
0.558
0.598
0.573
0.605
0.427
0.474
0.906
0.904
0.636
0.661
0.636
0.616
0.432
0.491
0.942
0.932
0.670
0.680

FPE
0.393
0.505
0.375
0.407
0.866
0.850
0.545
0.587
0.556
0.579
0.406
0.461
0.912
0.908
0.625
0.649
0.625
0.607
0.418
0.477
0.943
0.934
0.662
0.673



CHAPTER 3. MODEL SELECTION 108

Table 3.20: The average (taken on a = 1, 5 and 20) of estimated APCS and OAPCS
(where indicated) when competing models are SMI, SM2 and SM3 with n = 96,
120 and 200, /0 = 100, b0 = 5 and A = 0.3.

n
96

Average
OAPCS

120

Average
OAPCS

200

Average
OAPCS

LF
SMI

SM2

SM3

SMI

SM2

SM3

SMI

SM2

SM3

DGP
CL
ICL
CL
ICL
CL

CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

AIC
0.695
0.637
0.414
0.500
0.953
0.949
0.687
0.696
0.685
0.629
0.452
0.545
0.967
0.960
0.701
0.711
0.773
0.659
0.479
0.526
0.970
0.974
0.741
0.720

BIC
0.919
0.915
0.708
0.759
0.904
0.896
0.844
0.857
0.922
0.906
0.751
0.798
0.928
0.921
0.867
0.875
0.944
0.937
0.797
0.831
0.945
0.946
0.895
0.905

HQ
0.821
0.790
0.575
0.637
0.930
0.928
0.775
0.785
0.828
0.785
0.622
0.674
0.951
0.944
0.800
0.801
0.877
0.829
0.659
0.690
0.959
0.963
0.832
0.827

MCp
0.692
0.641
0.405
0.494
0.954
0.950
0.684
0.695
0.683
0.621
0.445
0.540
0.967
0.960
0.698
0.707
0.770
0.658
0.476
0.525
0.970
0.974
0.739
0.719

GCV
0.698
0.649
0.425
0.513
0.953
0.949
0.692
0.704
0.689
0.626
0.460
0.546
0.966
0.960
0.705
0.711
0.775
0.664
0.486
0.533
0.970
0.973
0.744
0.723

FPE
0.695
0.644
0.414
0.500
0.953
0.949
0.687
0.698
0.685
0.623
0.452
0.545
0.967
0.960
0.701
0.709
0.773
0.659
0.479
0.526
0.970
0.974
0.741
0.720
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Table 3.21: The average (taken on sample sizes) of estimated APCS and OAPCS
(where indicated) when competing models axe SMI and SM2 with a = 1, 5 and 20,
lo = 100 and b0 = 5.

a
1

Average

OAPCS
5

Average

OAPCS
20

Average

OAPCS

LF
SMI

SM2

SMI

SM2

SMI

SM2

DGP
CL

ICL

CL

ICL
CL

ICL
CL

ICL

CL

ICL
CL

ICL
CL

ICL

CL

ICL
CL
ICL

AIC
0.742

0.805

0.990

0.988
0.866

0.897
0.742

0.811

0.923

0.909
0.832

0.860
0.743

0.811

0.899

0.881
0.821

0.846

BIC
0.859

0.898

0.987

0.981
0.923

0.939
0.863

0.901

0.896

0.883
0.880

0.892
0.863

0.901

0.860

0.842
0.862

0.872

HQ
0.803

0.850

0.990

0.987
0.896

0.919
0.802

0.855

0.913

0.898
0.857

0.876
0.802

0.855

0.884

0.865
0.843

0.860

MCp
0.739

0.802

0.991

0.988
0.865

0.895
0.739

0.807

0.924

0.910
0.832

0.859
0.740

0.808

0.899

0.883
0.820

0.845

GCV
0.749

0.809

0.990

0.988
0.869

0.898
0.749

0.814

0.921

0.308
0.835

0.86!'
0.750

0.815

0.897

0.880
0.823

0.847

FPE
0.742

0.806

0.990

0.988
0.866

0.897
0.74

0.826

0.923

0.909
0.832

0.867
0.743

0.811

0.899

0.881
0.821

0.846
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Table 3.22: The average (taken on sample sizes) of estimated APCS and OAPCS
(where indicated) when competing models are SM2 and SM3 with a = 1, 5 and 20,
/o = 100, b0 = 5 and A = 0.3.

a
1

Average

OAPCS
5

Average

OAPCS
20

Average

OAPCS

LF
SM2

SM3

SM2

SM3

SM2

SM3

DGP
CL
ICL
CL

ICL
CL
ICL
CL
ICL

CL

ICL
CL
ICL
CL
ICL

CL

ICL
CL
ICL

AIC
0.449

0.511

1.000

1.000
0.725

0.756
0.452

0.508

0.965

0.967
0.709

0.738
0.452

0.507

0.860

0.840
0.656

0.674

BIC
0.738

0.764

1.000

1.000
0.869

0.882
0.739

0.767

0.941

0.942
0.840

0.854
0.740

0.765

0.738

0.714
0.739

0.739

HQ
0.597

0.632

1.000

1.000
0.799

0.816
0.598

0.632

0.959

0.955
0.778

0.794
0.598

0.632

0.811

0.794
0.704

0.713

MCp
0.436

0.498

1.000

1.000
0.718

0.749
0.441

0.498

0.967

0.967
0.704

0.732
0.441

0.498

0.866

0.846
0.654

0.672

GCV
0.466

0.520

1.000

1.000
0.733

0.760
0.467

0.520

0.963

0.964
0.715

0.742
0.468

0.520

0.851

0.833
0.659

0.676

FPE
0.450

0.508

1.000

1.000
0.725

0.754
0.452

0.508

0.965

0.967
0.709

0.738
0.453

0.508

0.859

0.840
0.656

0.674
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Table 3.23: The average (taken on sample sizes) of estimated APCS and OAPCS
(where indicated) when competing models are SMI, SM2 and SM3 with a = 1, 5
and 20, Zo = 100, b0 = 5 and A = 0.3.

a
1

Average
OAPCS

5

Average
OAPCS

20

Average
OAPCS

LF
SMI

SM2

SM3

SMI

SM2

SM3

SMI

SM2

SM3

DGP
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL
CL
ICL

AIC
0.620
0.600
0.444
0.502
1.000
1.000
0.688
0.701
0.621
0.594
0.420
0.485
0.964
0.965
0.668
0.681
0.622
0.606
0.406
0.473
0.843
0.824
0.624
0.634

BIC
0.841
0.857
0.728
0.756
1.000
1.000
0.856
0.871
0.843
0.867
0.661
0.702
0.932
0.929
0.812
0.833
G.843
0.863
0.635
0.679
0.709
0.689
0.729
0.743

HQ
0.736
0.734
0.591
0.625
1.000
1.000
0.776
0.786
0.737
0.735
0.546
0.593
0.955
0.953
0.745
0.760
0.737
0.734
0.528
0.578
0.791
0.775
0.685
0.696

MCp
0.615
0.596
0.432
0.492
1.000
1.000
0.682
0.696
0.616
0.602
0.410
0.476
0.965
0.965
0.664
0.681
0.616
0.598
0.397
0.465
0.849
0.829
0.621
0.631

GCV
0.632
0.614
0.460
0.514
1.000
1.000
0.698
0.709
0.633
0.617
0.433
0.493
0.961
0.961
0.676
0.690
0.634
0.615
0.419
0.484
0.834
0.818
0.629
0.639

FPE
0.621
0.599
0.445
0.502
1.000
1.000
0.688
0.700
0.629
0.606
0.421
0.483
0.964
0.965
0.669
0.685
0.622
0.604
0.406
0.473
0.843
0.823
0.624
0.633
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a: OAPCS Comparison for Sigma=1

• ICL

AIC HQ MCp

Selction Criteria
GCV FPE

b: OAPCS Comparison for Sigma=5

0.75-

0.3

I ICL

AIC BIC HQ MCp

Selection Criteria

GCV FPE

c: OAPCS Comparison for Sigma=20

0.75-

0.3
BIC HQ MCp

Selection Criteria
GCV FPE

Figure 3.1: Comparison of the CL and ICL based IC procedures with respect to
OAPCS when the competing models are SMI and SM2, and n = 24.
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a: OAPCS Comparison for Sigma=1

(0oa.<

BIC HQ MCp

Selection Criteria
GCV FPE

b: OAPCS Comparison for Sigma=5
0.8

0.7 4

0.3

I ICL

AIC HQ MCp

Selection Criteria
GCV FPE

0.7
c: OAPCS Comaprison for Sigma=20

AIC BIC HQ MCp GCV

Selection Criteria
FPE

Figure 3.2: Comparison of the CL and ICL based IC procedures with respect to
OAPCS when the competing models are SM2 and SM3, and n = 24.
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a: OAPCS Comparison for Sigma=1

0.7

0.3

0.6

CO 0.5 -

0.3

AIC BIC HQ MCp GCV

Selection Criteria

FPE

b: OAPCS Comparison for Sigma=5

I ICL

AIC HQ MCp

Selection Criteria
GCV FPE

c: OAPCS Comparison for Sigma=20

AIC BIC HQ MCp GCV

Selection Criteria
FPE

Figure 3.3: Comparison of the CL and ICL based IC procedures with respect to
OAPCS when the competing models are SMI, SM2 and SM3, and n = 24.



Chapter 4

Using PEM for Regression Error
Model Selection1

4.1 Introduction

As mentioned in Chapter 2, a number of Monte Carlo studies have been conducted

to compajv. the small sample performance of various IC procedures, in order to se-

lect the correct or appropriate model from a set of models. These previous studies

on small sample model selection show that there is no existing IC procedure which

is uniformly better than the other criteria. With an emphasis on small sample

performance, Hurvich and Tsai (1989) proposed bias corrected AIC (AICc) for re-

gression and AR time series models and pointed out that this criterion will perform

better when the se^mple size is small. However, the small sample performance of

AICc is not consistent for all model selection problems.

In the context of choosing between first-order autoregressive (AR(1)) and first-

order moving average (MA(1)) disturbances in the general linear regression model,

Grose and King (1994) have shown that a particular model can be unfairly favored

because of the shape or functional form of its log-likelihood. They also found that

the presence of nuisance parameters can adversely affect the probabilities of correct
1A paper based on the material in this chapter has been published in the Journal of Statistical

Research. See Billah and King (2000b).

115
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selection and recommended the application of an IC procedure to the MGL rather

than the classical likelihood. Their model selection problem is one in which both

models have the same number of parameters. In this chapter, we address a related

model selection problem of selecting from a range of different disturbance processes

with differing numbers of parameters. In particular, we consider the problem of

selecting between white noise (WN), AR(1), second-order AR (AR(2)) and MA(1)

disturbances in the general linear regression model using profile likelihood (PL) as

well as MGL. Note that a complete study of ARMA disturbance models under all

possible IC procedures is not feasible because of the size of the task. Therefore, we

have had to narrow the number of criterion and the number of models.

The aim of this chapter is to look at the application of OAPCS to time se-

ries model selection problems. We investigate a new approach called PEM, which

involves the use of those penalty function values that maximizes OAPCS for the

particular sample size and set of models under consideration. Simulation meth-

ods have been used to estimate the required APCS when different models are the

true model. This means that the OAPCS which we wish to maximize, is a step

function that might not always be particularly well behaved. This makes it very

difficult to use standard methods to maximize the OAPCS. The PEM based on

GS (PEM-GS) is one possible method, but sometimes the computation involved

becomes unrealistic as the number of competing models increases. We, therefore,

have turned to a relatively new global optimization algorithm called SA. As men-

tioned in Chapter 2, this algorithm performs well, even in the presence of a large

number of local maxima. Because the algorithm accepts both up hill and down

hill moves, transitions out of a local maximum are possible. Compared to classical

methods, it requires less rigorous assumptions regarding the objective function and

consequently functions like ours with ridges and plateaux can be dealt with more
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easily. In this chapter, we modify the SA algorithm in the context of model selec-

tion problems so that the modified algorithm (PEM-SA) will estimate the penalty

values which maximize OAPCS.

The plan of this chapter is as follows. The models and the two estimation

methods we use are discussed in Section 4.2. The theory of the new model selection

approach (PEM) is outlined in Section 4.3, while the penalty estimation algorithm

is presented in Section 4.4. The design of the Monte Carlo stud}' to evaluate PEM

is given in Section 4.5, with the results of the study discussed in Section 4.6. The

final section contains some concluding remarks.

4.2 The Model and the Methods of Estimation

Consider the linear regression model,

y = X$ + u, (4.2.1)

where y is an n x 1 vector of observations, X is an n x k non-stochastic matrix of

rank k < n, /? is a k x 1 unknown parameter vector and u is an n x 1 disturbance

vector such that u ~ Ar(0, a2Q{6)) in which Q(8) is an n x n positive definite matrix

function and 9 is a q x 1 vector of unknown parameters.

Several methods have been suggested in the vast array of literature for estima-

tion of the model (4.2.1). Examples include the use of MGL (Kalbfleish and Sprott,

1970; Tunnicliffe Wilson, 1989; Ara, 1995 and Ara and King, 1993), the conditional

profile likelihood (CPL; Cox and Reid, 1987 and Laskar and King, 1998) and the

approximate conditional profile likelihood (ACPL; Cox and Reid, 1993). From this

literature, it is evident that the MGL based estimates, tests and model selection

procedures perform better than those based on any other likelihoods. However, for

comparison, we also consider the PL.
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We are interested in choosing between four different covariance matrices £1(9)

which result from WN, AR(1), MA(1) and AR(2) disturbance processes in the

context of (4.2.1). The form of Q(9) in these four cases is well known, see for

example, Box and Jenkins (1976). The log-likelihood function of (4.2.1) is

I 1

= --\og{27ra2) - - log \Q{9)\ - — (y - XP)'n{9)-l{y - X0). (4.2.2)

For any given value of 9, the values of /? and cr2 that maximize (4.2.2) are

and

Bj = -(y - Xpg)'n(9)-l(y - Xfo). (4.2.4)
n

If these estimates of j3 and a2 are substituted back into (4.2.2), we get the profile

or concentrated log-likelihood:

/»(%) = - \ l o g ^ a j ) - \ log |n(«)| - ^ . (4.2.5)

The problem of maximizing (4.2.2) with respect to the unknown parameters /?, a2

and 9 therefore becomes one of maximizing the profile log-likelihood (4.2.5) with

respect to 9. In the case of WN disturbances, Q{9) = 7n, the nxn identity matrix,

and the maximized value of (4.2.2) is

in which a2 is (4.2.4) with f l^)"1 = In and (}$ is replaced by the OLS estimator of

/3 from (4.2.1).

The problem of choosing between the four different disturbance processes is

invariant to transformations of the form

y -> r,Qy + Xt}, (4.2.6)
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where rj0 is a positive scalar and 77 is a k x 1 vector. If m = n — fc, 2 = My is

the OLS residual vector from (4.2.1), M = /„ - A(X'A')-1 A' and P is an m x n

matrix such that P'P = M and PP' = 7m, then the m x 1 vector

Pz

is a maximal invariant under the group of transformations of the form of (4.2.6).

The principle of invariance allows one to work with the maximal invariant as though

it is the observed data in constructing invariant tests. This is because all invariant

test statistics can be written as functions of the maximal invariant (see Lehmann,

1991). Similarly, if we restrict our attention only to model selection procedures that

are invariant to transformations of the form of (4.2.6), then, because the maximal

invariant takes the same value for all sample points connected by a transformation

(and which, hence, have the same outcome) and different values for points not

connected by transformations, we can treat the maximal invariant as our observed
v

data and build a model selection procedure on this basis.

The joint density function of v can be shown (see King, 1980) to be,

h(u)dv = i |Pft(0)P 'r 1 / 2
du, (4.2.7)

where du denotes the uniform measure on the surface of the unit m-sphere. Note

that when £2(0) = /„, (4.2.7) reduces to

h{u)du = \Y{rnl2)K-ml2dv

which is the density of the uniform distribution on the surface of the unit m-sphere.

Two useful results in evaluating (4.2.7) are from King (1980, lemma 2)
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in which ug is the generalized least squares (GLS) residual vector of (4.2.1) assuming

covariarice matrix a79.(8) and from Verbyla (1990)

'\ = \x'x\~l

Therefore, an IC procedure for model selection of different disturbance processes

in (4.2.1) can be based on treating (4.2.7) as the likelihood to be maximized and

penalized. Ara and King (1993) have shown that the likelihood of 9 based on (4.2.7)

is equivalent to the MGL for 9 from Tunnicliffe Wilson (19S9) which is given by

1/2 \x'a{e)-lx\~1/2 (2in(*r1u*)~IB/2. (4.2.8)

Thus, applying IC procedures to (4.2.7) is equivalent to apptying them to (4.2.8)

when the model selection problem involves choosing different Q(9) specifications for

the distribution of u in (4.2.1). Either way, the resultant procedure is invariant to

transformations of the form cf (4.2.6). \

4.3 The Theory of Optimal Penalties in Small
Samples

From the literature, it is evident that the probability of correct selection of an IC

procedure depends on factors other than sample size and the number of parameters,

q, in the model. In particular, it depends on the characteristics of the models in

the set of models from which the selection is made. For choosing between AR(1)

and MA(1) disturbance models which both have the same number of parameters,

and hence, penalties. Grose and King (1994) showed that the probability of correct

selection is influenced by the shape of the LF. The latter depends on the error

process and the design matrix. A good penalty function should, in our view, be

able to adjust to different design matrices and error structures in addition to n and
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q. In tfiis section, we outline the theory towards obtaining optimal penalties in

small samples. The process for estimating APCS and OAPCS for a given optimal

penalty set is the same as discussed in Chapter 3.

Let us assume that M\,M2, •••, M$ denote N models each with different distur-

bance processes of (4.2.1), and logL,(0,-) is the maximized log-likelihood function

for the £th model Mi with #„• being the maximum likelihood estimate of #,-. The

probability of correct selection for the rth true model can be given by equation

(3.5.1) of Section 3.5, which changes as 0,- changes. As was done in Section 3.5,

this problem can be solved through calculating the APCS for the j'th true model

by using £(#,) as the weighting density function for #,-. Thus, APCS,- is given by

APCS,(pi, • • • ,PN) = / Pr\CSMi\Mi, 6i,Pl, • • •, j^KCftW- (4.3.1)

In general, calculation of (4.3.1) is not eas}7, because Pr[CSM,JAfi,0,-,pi,--- ,px]

is unknown. However, following the procedures in Section 3.5, APCS,(pi,'--,p,v)

can be estimated as follows:

I R
A?CSi(Pu-'-,PN) = -='£lt(Mi,eil,p1,.--,pN), (4.3.2)

where 9u is the £th drawing from C(#0 a n ^ h{M{.6u,Pi, • • ,PN), £ = I, — - ,R, is

defined in Section 3.5.

Then, the OAPCS for the set of penalties pi, • • • ,py, is estimated by

i Ar _

OAPCS(p1,---,pA0 = -rF i ;A P C S i (Pi ,--- ,PA')- (4-3.3)

Our proposed IC procedure involves finding the penalties p\, • • •, p.v which max-

imize (4.3.3). Without loss of generality, we can set pj = 0. Then, (4.3.3) will be

maximized with respect to the penalties P2, • • • ,PN- The APCS and hence, OAPCS

changes with changes in p2,---,p2x. Thus, the optimal penalties are found when

OAPCS is at its global maximum.
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4.4 Suitable Methods of Optimization

In this section, we describe two possible methods of optimizing (4.3.3), namely

PEM-GS and PEM-SA.

4.4.1 PEM-GS Algorithm for Model Selection

Let bu and 6,-u be preselected lower and upper limits for p,. i — 2, •••,Ar, chosen

by the researcher. For each value of ?, a grid of S: values of p,- is generated as

bu, bu -r 8, bu + 28, • - -, bu + {Si — 1)8 — 6ttl, where 8 is decided by the researcher.

The smaller 8 is, the finer will be the GS, with a cost of higher computational

time. From these grids of pt- values, K = S2 x S3 x • • • x S.y possible penalty

sets are constructed and for each set, (4.3.3) is calculated. The pesalt\? values,

denoted p2.---.py, corresponding to the highest calculated value of (4.3.3), are

recorded. Then, a new but much finer grid of penalty values centered at p?. • - - ,PAJ

is calculated and the process is repeated. The whole process is repeated several

times. The GS ends b}' comparing the last maximum OAPCS with the most recent

maximum OAPGS. If the difference is negligible, the algorithm can be terminated.

The GS should converge to the global maximum of (4.3.3).

GS is one of the successful ways to optimize a very complicated and relatively ill-

behaved function. However, the drawback of GS is the required computational time

which increases sharply with the number of parameters and so can be extremely

high for a refined search.

4.4.2 PEM-SA Algorithm for Model Selection

A discussion of the SA algorithm has been presented in Chapter 2, where it was

noted that this algorithm is very robust even with respect to estimating the pa-

rameters of difficult functions. In this subsection, we discuss how PEM-SA can be
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developed from the SA algorithm for model selection problems.

Let us assume that p be the vector of penalties, p = (JM, - • - ,p.v)' and let f(p)

denote (4.3.3). the function to be optimized. Also, we assume that the optimal

value of p is such that bu < Pi < &iu, where the values of bu and b:u are nominated

by the user. Note that in our case, f{p) is a discrete valued but bounded function.

Starting from an initial point po, the algorithm randomly chooses a new point

p1 in the neighborhood (within step length V", an (N — 1) x 1 vector of maximum

step lengths selected by the user) of po- The value of the objective function is

evaluated at this trial point and is compared to its value at the initial point. In

a maximization problem such as ours, all up hill moves are accepted, i.e., if the

change A / = f(p') — f(po) represents an increase in the value of the objective

function, then the new point is accepted and the algorithm continues from this

trial point. Note that the step length is always centered at the trial point. If the

change represents a reduction in the objective function value, then the down hill

moves may be accepted with probability exp(—A//T), where T is a parameter

called temperature. If the trial point is rejected, another point is chosen for a trial

evaluation.

Each element of the step length vector V is adjusted periodically so that about

half of all points are accepted. The algorithm also requires the specification of a

cooling schedule. An initial value To is set for the temperature parameter T. It

should be relatively high, in general, so that most trials are accepted and there is

little chance of the algorithm zooming in on a local maximum in the early stages.

A fall in temperature is imposed upon the systern with a temperature reduction

factor rr ranging from 0 to 1. Finally, a stopping criterion is imposed to terminate

the algorithm.

The following is a detailed description of how the algorithm can be implemented
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for our model selection problem.

Step 1 (Initialization of parameters)

Decide on initial values for:

po, the initial penalty vector of order N — 1,

Vo, the starting step length vector of order N — 1,

2o, the initial temperature,

r j , the temperature reduction factor; the suggested value by Corana et al.

(1987) is 0.85,

Ns, the number of cycles; after iY5(A
r — 1) function evaluations, each element

of the step length vector is adjusted,

NTI the number of iterations to each temperature reduction,

e, the error tolerance for termination,

Nt, number of final function values used to decide upon termination; suggested

value is 4,

hi, the lower bound for the penalty p,-, which is set to zero for our purposes.

6,u, the upper bound for the penalty p,-,

c = (c2, • • •, ex)', the vector that controls the step length adjustment.

In the steps which follow, whenever the objective function f(p) needs to be

evaluated at p = (p2, • • • ,PN)', this involves a series of N — 1 simulations of length

R as outlined in Section 4.3 to obtain OAPCS(p2, • • • ,PAr) as given by (4.3.3) which

is the required value of f(p)-

Step 2 (Calculate the objective function)

Calculate /(po) and store p0 as p and f{pq) as / .

Step 3 (Searching for a new penalty)
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Generate a new penalty p' by varying element i of p as

Pi = Pi + u*Vi,

where u* is a uniformly distributed number from [-1,1], generated by a random

number generator and u,- is the (i — l)th element of the step vector V, i =

2, • • -, N. If p(- is outside bu < p'{ < 6,u, then repeat step 3 until a p'{ is found

that is within these bounds.

Step 4 (Metropolis criterion)

Compute / ' = f(p'). If / ' > / , then accept the new penalty, i.e., store p' as

p and / ' as / , the optimum value of the function. If / ' < / , the Metropolis

criterion decides on acceptance or rejection of the penalty with acceptance

probability

This is done by generating pu, a uniformly distributed random number from

[0,1]. If pr > Pu, the new penalty is accepted, otherwise it is rejected (and

there is no change in p and / ) .

Step 5 (Adjustment ofV)

After Ns steps through all elements of p, i.e., after Na(N — 1) function eval-

uations, the step length vector V is adjusted so that approximately half of

all function evaluations are accepted. The (i — l)th element of the new step

vector V is

i f

0.4

otherwise,
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where mt- is the number of moves accepted in step 4 after Ns steps through

the (i — l)th element of p and c, is the (t — l)th element of c.

Step 6 (Temperature reduction)

After repeating steps 3 to -5 NT times, i.e.. after NTNS(N — 1) function eval-

uations, the temperature is reduced by the temperature reduction factor r j :

r = rTr.

Set T equal to T and return to step 3.

Step 7 (Termination criterion)

Let us assume that fk be the most recent function value from the A'th temper-

ature reduction. fk-k1, K = 1,2, • • •, Ne, be the last Ar
£ values of the largest

function values at the temperature reduction step. Then, if

\fk-h-e\ < e, A-' = 1.2,---?iV£?

\Sk-foA < e,

stop the search.

4.5 Design of the Monte Carlo Study

We conducted a Monte Carlo experiment in order to evaluate the feasibility of

the above two approaches to penalty value computation and to compare the per-

formance of the resultant IC procedures (denoted PEM-GS and PEM-SA) with a

range of existing IC procedures. The latter procedures are AIC, BIC, HQ, MCp,

GCV and FPE. These criteria and their penalty functions can be summarized as
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follows:

Criterion Penalty Function

AIC q

BIC glog(n)/2

HQ glog(log(n))

MCp nlog(l + 2g/m*)/2

GCV -nlog(l-q/n)

FPE (n log(n + q) - n log(n - g))/2

where n is the sample size, q is the total number of free parameters in the model

and m* = n — q*, where q* is the number of free parameters in the smallest model

which nests all models under consideration.

The experiment was conducted in the context of selecting between WN, AR(1),

MA(1) and AR(2) disturbance processes in the general linear regression model

(4.2.1). In this situation, (3 and a2 are nuisance parameters and 6 is the vector of

parameters of interest. The probabilities of correct selection are influenced by a

number of factors, but particularly by the value of 9. We need ((0), the weighting

function (similar to a prior density function) discussed in Section 4.3. Its purpose

is to weight different parameter vector values when calculating the APCS. This

weighting function is not necessary for WN disturbances.

In the case of AR(1) disturbances given by

t=l, (4.5.1)

where e = (ei,---,en) ' ~ N(0,a2In), 6 = p and £(p) was taken as the uniform

(4.5.2)

distribution on [-1,1]. For MA(1) disturbances given by

in which e* = (eo, ei, • • •, en)' ~ N(Q, a2/n + 1), 0 = 7 and £(7) was also taken as the
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uniform distribution on [-1,1]. For AR(2) disturbances given by

+ et, t = l , - - - , n , (4.5.3)

in which e ~ iV(0,cr2/n), then 6 = (^i,^2)'- Because (j>i = pi + pi and ^ = ~P\P2

where p\ and pi are the roots of z2 — <£iz — <£2 = 0 which lie inside the unit

circle, generating p\ and p% satisfying the condition |/?i|, \p%\ < 1 identifies <f>i and

(j>2. Therefore, p\ and pi were generated randomly from two independent uniform

distributions with range [-1,1].

The relevent steps of the experiment are as follows:

Step 1: At each replication, draw p, 7 and (fa, (f>2)' values from their respective

£(0) distributions as outlined above.

Step 2: Setting /? = 0 and a2 = 1 (which can be done without loss of generality

because our model selection problem is invariant to transformations of the form

(4.2.6), and therefore, to the values taken by /? and a2), generate four samples of

size n from each of the WN, AR(1), MA(1) and AR(2) disturbance models.

Step 3: For each data set, compute the maximized log-likelihood for each of

the four models.

Step 4: Repeat steps 1-3 R = 2000 times. The total number of maximized

log-likelihoods thus calculated is 4 x 4 x 2000 = 32000.

Step 5: Using these maximized log-likelihoods, estimate the APCS for each IC

procedure and for each of the four models. Also, calculate the OAPCS in each case.

Step 6: Finally, estimate^? Pz and P4 (setting pi = 0 without loss of generality)

by using PEM-GS as well as PEM-SA, as outlined in Section 4.4. Then, use these

penalties on the maximized log-likelihoods to estimate the APCS for the PEM-GS

and PEM-SA procedures and also their OAPCS.

For comparison purposes, we used both the PL (4.2.5) and the MGL (4.2.8).

Except for the WN model, a closed form maximum likelihood estimator for 6 is
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not available for either likelihood. The GAUSS (see Aptech, 1996) constrained

optimization algorithm was used to maximize log-likelihoods where required.

The following four design matrices with n = 20 and 30 were used in the exper-

iment.

XI : n x 3. The eigenvectors corresponding to the three smallest eigenvalues of the

Durbin-Watson (DW) nxn A\ matrix, and hence, regressors corresponding

to the upper bound of the DW statistic. A\ is a tridiagonal matrix with 2's

down the main diagonal, -l's on the off-diagonals and 1 as the top left and

bottom right elements.

XI : n x 3. The first n observations of Durbin and Watson's (1951, p. 159) con-

sumption of spirits ex-ample.

XZ : n x 3. A constant dummy, the quarterly Australian Consumer Price Index

commencing 1959(1) and the same index lagged one quarter.

X4 : n x 3. A constant dummy, quarterly Australian private capital move-

ments and quarterly Australian Government capital movements commencing

1968(1).

These design matrices cover a range of behavior. A plausible estimate of the

autocorrelation of the error term is given by (2 — d)/2, where d is the familiar

DW test statistic. Therefore, the results for XI may show some extreme behavior.

X2 is comprised of annual data, while XZ and XA are constructed from quarterly

data. XA contains strong seasonal regressors with two seasonal peaks per annum

in addition to some large fluctuations.
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4.6 Results and Discussion

The results from the simulation study are presented in Tables 4.5 to 4.8. These

tables give estimated APCSs for each of the 4 models in turn for each of the

selection procedures, based on both the PL and MGL. The estimated OAPCS

is albo provided. The OAPCS for n = 20 and 30 are also presented in Figures 4.1

and 4.2, respectively for design matrices XI to X3. The following is a detailed

discussion of the results.

From these results, it is clear that in terms of individual APCS, no one procedure

performs better than the others and relative performances change with changes

in sample size and design matrix. The existing IC procedures and PEM-SA are

ranked for each true model (DGP) with respect to APCS for all design matrices

and sample sizes considered in this chapter. Then, the overall rank for each criterion

is calculated by taking thev average of all corresponding ranks. These overall ranks

are presented in Table 4.1. This table shows that among the PL based existing IC

procedures, BIC performs better when correctly selecting WN and AR(1) models.

For correctly selecting MA(1) and AR(2) error models respectively, FPE and MCp

perform better. Among the MGL based IC procedures, BIC, GCV, AIC/FPE and

MCp perform better for selecting WN, AR(1), MA(1) and AR(2) error models,

respectively.

Compared to the existing IC procedures, in terms of APCS, the PL based PEM-

SA performs better when correctly selecting WN, AR(1) and AR(2) error models

and it correctly selects the MA(1) error model least often. MGL based PEM-

SA performs very well at correctly selecting AR(2) error models. Compared to

PEM-SA, the MGL based existing IC procedures perform very poorly for correctly

selecting AR(2) error models. At correctly selecting WN, AR(1) and MA(1) error

models, PEM-SA occupies second, sixth and third positions, respectively.
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Table 4.1: Overall ranks for the existing IC procedures and PEM-SA, based on
estimated APCS.

LF

PL

MGL

DGP

WN

AR(1)

MA(1)

AR(2)

WN

AR(1)

MA(1)

AR(2)

AIC

6

6

2

3

7

3

1

3

BIO

2

2

6

7

1

5

7

7

HQ

3

3

5

6

3

4

6

6

MCp

4

7

4

2

4

7

5

2

GCV

5

4

3

3

5

1

4

3

FPE

7

5

1

5

6

2

1

5

PEM-SA

1

1

7

1

2

6

3

1

Table 4.2: Overall ranks for the existing IC procedures and PEM-SA, based on
estimated OAPCS.

LF AIC BIC HQ MCp GCV FPE PEM-SA

PL 5 7 6 2 3 3

MGL 3 7 6 2 5 3
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Table 4.3: Comparison of computation times (elapsed time for Pentium 3, running
at 333 MHz) required by the PL, based PEM-GS and PEM-SA for estimating
optimal penalty values.

n Optimization Method XI X2 X3 XA

20

30

PEM-GS

PEM-SA

PEM-GS

PEM-SA

105.00 103.50 104.12 95.65

5.53 5.25 5.41 5.85

101.30 98.66 93.01 96.12

5.15 5.37 5.44 5.55

The IC procedures and PEM-SA were also ranked with respect to OAPCS.

Table 4.2, which reports these ranks, shows that among the PL based existing IC

procedures, MCp performs \best, followed by either GCV or FPE. The fifth and

sixth positions are occupied by AIC and HQ respectively, and BIC is the worst. All

the MGL based existing IC procedures carry through this ranking order, except for

AIC and GCV. In this case, AIC and GCV occupied the third and fifth positions,

respectively.

Of the existing IC procedures, it is interesting to note that the one with the

highest OAPCS depends very much on the design matrix and sample size, while

typically BIC has the lowest OAPCS, although the differences are not great in some

cases (see Figures 4.1 and 4.2). The reason for BIC being ranked so low seems to

be due to its poor performance at selecting the AR(2) error model when it is the

true model.

The percentage improvement (with respect to OAPCS) of PEM-GS and PEM-

SA over the existing IC procedures are presented in Table 4.4. This table shows

that on average, the PL and MGL based PEM-SA perform better than those based
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Table 4.4: Percentage improvement of PEM-GS and PEM-SA over the best and
lowest performing existing IC procedures with respect to OAPCS.

Design Matrix n PEM-GS PEM-SA
PL MGL PL MGL

XI

X2

XZ

20 11.28-15.33 6.26-9.60 12.34-16.62 6.05-9.56

30 10.34-12.86 4.76-6.92 10.14-12.66 4.58-6.73

20 8.63-13.53 6.93-11.38 8.39-13.28 6.93-11.38

30 8.37-11.24 5.37-8.59 8.37-11.24 5.37-8.59

20 5.23-6.34

30 4.45-5.77

20 6.82-7.93

30 5.40-6.16

7.87-10.15

4.O5-7.07

6.82-11.42

5.39-8.50

6.90-8.03

4.44-6.33

6.S2-7.93

5.22-5.9S

7.87-10.15

4.05-7.07

6.63-10.99

5.39-8.50

existing IC procedures by 4.44 — 16.62% and 4.05 — 11.38%, respectively. Also, the

OAPCS of the PL and MGL based PEM-GS method are respectively, on average

4.45 — 15.33% and 4.05 — 11.38% larger than those based existing IC procedures.

Therefore, the main feature of the results is that both the PEM-GS and PEM-SA

procedures perform uniformly better than the existing IC procedures with respect

to estimated OAPCS (see Figures 4.1 and 4.2). However, in some situations, PEM-

SA is marginally dominated by PEM-GS, but with a cost of high computational

time. The required computation times for PL based PEM-GS and PEM-SA are

presented in Table 4.3. It should be noted that the time required by the PL and

MGL based PEM-GS and PEM-SA are approximately the same. Tables 4.6 and 4.3

show that for n = 20 and design matrix X2, the OAPCS of PL based PEM-SA and

PEM-GS are 45.2% and 45.3%, respectively, and the corresponding computational
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times are 5.53 and 105 minutes, respectively.

Comparing the performance of PL and MGL based selection procedures in terms

of APCS, MCI typically out-performs PL when selecting WN and AR(1) error

models as well as APt,(2) error models for A1 and A'2. PL generally performs

better than MGL when the MA(1) error model is the true model and for AR(2)

error models for X3 and XA. In terms of OAPCS, the MGL based IC procedures

pick the true model more frequently for design matrices of non-lagged regressors

(XI and X2). For example, Table 4.5 shows that for XI with n = 20, the OAPCS

corresponding to the MGL based existing IC procedures are on average 21 — 22%

larger than those based on PL. As the sample size increases, any advantages from

using MGL over PL diminishes gradually. In the case of X3 and XA (lagged

regressor), there is little difference between the OAPCSs of the two different base

likelihoods. Overall, one would have to recommend the use of MGL because its use

can result in a significant improvement in the OAPCS and never in a substantial

drop.

4.7 Conclusions

The results of our experiment support the use of the MGL rather than the PL in

IC model selection procedures applied to choosing the disturbance process in the

general linear regression model. Of the existing IC procedures we considered, no

one procedure stands out as the best, although it does seem that BIC has the worst

overall performance. In contrast, PEM-GS consistently dominates all existing IC

procedures used in this chapter in terms of OAPCS, although at a high computa-

tional cost. To avoid the computational limits imposed by PEM-GS, we considered

the PEM-SA, whose performance is similar to that of PEM-GS, while its computa-

tional cost is much lower. We suggest its use in conjunction with maximized MGLs
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when faced with choosing between different regression disturbance models.

;
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Table 4.5: Estimated APCS and OAPCS (where indicated) for design matrix XI
and n = 20 and 30.

n DGP

20 WN

AR(1)

MA(1)

AR(2)

OAPCS

30 WN

AR(1)

MA(1)

AR(2)

OAPCS

LF

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

AIC

0.440
0.756
0.166
0.383
0.729
0.483
0.180
0.228

0.37?

0.463

0.651
0.780
0.293
0.501
0.727
0.568
0.2S9
0.333

0.493

0.546

BIC

0.487
0.863
0.170
0.368
0.677
0.402
0.138
0.159

0.367

0.448

0.740
0.904
0.307
0.494
0.673
0.497
0.215
0.246

0.482

0.535

HQ

0.458
0.780
0.164
0.383
0.722
0.463
0.176
0.217

0.381

0.461

0.688
0.836
0.300
0.499
0.712
0.545
0.254
0.295

0.489

0.544

MCp

0.449
0.771
0.167
0.373
0.726
0.467
0.184
0.235

0.381

0.462

0.657
0.791
0.302
0.489
0.724
0.562
0.292
0.334

0.491

0.544

GCV

0.442
0.764
0.164
0.388
0.727
0.474
0.177
0.217

0.379

0.461

0.653
0.787
0.292
0.502
0.727
0.566
0.279
0.322

0.489

0.544

FPE

0.440
0.756
0.169
0.383
0.729
0.483
0.180
0.228

0.379

0.463

0.651
0.780
0.296
0.502
0.728
0.568
0.289
0.332

0.490

0.546

PEM-GS

0.561
0.782
0.370
0.461
0.485
0.421
0.281
0.304

0.424

0.492

0.756
0.856
0.410
0.417
0.573
0.550
0.438
0.465

0.544

0.572

PEM-SA

0.556
0.784
0.378
0.463
0.495
0.409
0.283
0.296

0.428

0.491

0.75S
0.850
0.409
0.408
0.569
0.551
0.434
0.463

0.543

0.571



CHAPTER 4. USING PEM 137

Table 4.6: Estimated APCS and OAPCS (where indicated) for design matrix X2
and n = 20 and 30.

n DGP

20 WN

AR(1)

MA(1)

AR(2)

OAPCS

30 WN

AR(1)

MA(1)

AR(2)

OAPCS

LF

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

AIC

0.521
0.756
0.230
0.390
0.678
0.494
0.210
0.255

0.409

0.474

0.616
0.756
0.315
0.488
0.712
0.570
0.315
0.343

0.489

0.539

BIC

0.601
0.858
0.227
0.381
0.615
0.420
0.156
0.170

0.399

0.457 •

0.753
0.858
0.323
0.483
0.662
0.493
0.233
0.260

0.493

0.524

HQ

0.539
0.782
0.230
0.387
0.666
0.48G
0.200
0.231

0.408

y 0.470

0.692
0.782
0.325
0.490
0.691
0.541
0.287
0.319

0.499

0.533

MCp

0.532
0.769
0.223
0.380
0.672
0.492
0.219
0.263

0.412

0.476

0.668
0.769
0.311
0.479
0.710
0.563
0.320
0.350

0.502

0.540

GCV

0.562
0.763
0.231
0.391
0.674
0.492
0.202
0.235

0.417

0.470

0.666
0.763
0.317
0.491
0.710
0.567
0.308
0.338

0.500

0.539

FPE

0.521
0.756
0.230
0.390
0.678
0.494
0.210
0.254

0.409

0.474

0.662
0.756
0.315
0.488
0.712
0.570
0.315
0.343

0.501

0.539

PEM-GS

0.628
0.752
0.368
0.377
0.456
0.467
0.346
0.439

0.453

0.509

0.809
0.801
0.439
0.457
0.555
0.535
0.371
0.471

0.544

0.569

PEM-SA

0.636
0.800
0.356
0.347
0.471
0.458
0.343
0.431

0.452

0.509

0.802
0.804
0.440
0.452
0.553
0.537
0.372
0.473

0.544

0.569
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Table 4.7: Estimated APCS and OAPCS (where indicated) for design matrix XS
and n = 20 and 30.

n DGP

20 WN

AR(1)

MA(1)

AR(2)

OAPCS

30 WN

AR(1)

MA(1)

AR(2)

OAPCS

LF

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

AIC

0.685
0.769
0.339
0.397
0.579
0.488
0.303
0.272

0.477

0.482

0.756
0.797
0.458
0.507
0.630
0.586
0.374
0.363

0.555

0.563

BIC

0.777
0.866
0.337
0.390
0.536
0.433
0.242
0.201

0.473

0.473^

0.873
0.904
0.472
0.514
0.585
0.523
0.292
0.267

0.556

0.552

HQ

0.702
0.792
0.345
0.398
0.570
0.475
0.288
0.254

0.477

0.479

0.809
0.846
0.469
0.516
0.619
0.573
0.350
0.336

0.562

0.568

MCp

0.679
0.782
0.329
0.389
0.571
0.480
0.311
0.279

0.477

0.483

0.764
0.804
0.449
0.502
0.629
0.584
0.380
0.364

0.556

0.564

GCV

0.691
0.780
0.349
0.402
0.577
0.486
0.293
0.257

0.478

0.481

0.758
0.801
0.458
0.514
0.630
0.585
0.366
0.358

0.553

0.565

FPE

0.685
0.769
0.339
0.398
0.579
0.488
0.302
0.272

0.476

0.482

0.757
0.797
0.458
0.507
0.630
0.586
0.373
0.361

0.555

0.563

PEM-GS

0.778
0.839
0.251
0.356
0.498
0.463
0.523
0.424

0.503

0.521

0.879
0.869
0.492
0.554
0.609
0.574
0.358
0.365

0.587

0.591

PEM-SA

0.772
0.837
0.250
0.358
0.500
0.461
0.522
0.420

0.511

0.521

0.884
0.872
0.488
0.558
0.618
0.572
0.359
0.361

0.588

0.591
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Table 4.8: Estimated APCS and OAPCS (where indicated) for design matrix X4
and n = 20 and 30.

n DGP

20 WN

AR(1)

MA(1)

AR(2)

OAPCS

30 WN

AR(1)

MA(1)

AR(2)

OAPCS

LF

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

PL
MGL
PL
MGL
PL
MGL
PL
MGL

PL

MGL

AIC

0.602
0.744
0.362
0.430
0.647
0.488
0.312
0.270

0.481

0.483

0.730
0.784
0.461
0.503
0.653
0.579
0.379
0.355

0.556

0.555

BIC

0.700
0.837
0.362
0.421
0.607
0.408
0.248
0.188

0.479

0.464

0.853
0.899
0.469
0.509
0.603
0.519
0.284
0.262

0.552

0.547

HQ

0.628
0.767
0.369
0.429
0.638
0.467
0.300
0.252

0.479

0.478

0.774
0.826
0.463
0.510
0.633
0.563
0.347
0.318

0.554

0.554

MCp

0.620
0.756
0.356
0.426
0.642
0.478
0.316
0.276

0.484

0.484

0.738
0.793
0.454
0.498
0.649
0.578
0.384
0.359

0.556

0.541

GCV

0.613
0.754
0.372
0.434
0.644
0.482
0.301
0.257

0.483

0.482

0.734
0.790
0.466
0.508
0.652
0.580
0.371
0.349

0.556

0.557

FPE

0.603
0.744
0.365
0.430
0.647
0.488
0.312
0.270

0.482

0.483

0.730
0.784
0.461
0.503
0.653
0.579
0.379
0.354

0.556

0.555

PEM-GS

0.694
0.689
0.453
0.365
0.589
0.512
0.331
0.501

0.517

0.517

0.876
0.898
0.450
0.443
0.615
0.575
0.404
0.431

0.586

0.587

PEM-SA

0.691
0.687
0.450
0.360
0.591
0.515
0.333
0.499

0.517

0.515

0.875
0.903
0.444
0.440
0.617
0.574
0.403
0.429

0.585

0.587
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a: Estimated OAPCS for Design Matrix X1

AIC BIC MCp GCV FPE

Selection Criteria

PEM- PEM-
GS SA

HMGL

b: Estimated OAPCS for Design Matrix X2

AIC MCp GCV FPE

Selection Criteria

PEM- PEM-
GS SA

IMGL

c: Estimated OAPCS for Design Matrix X3

AIC BIC HQ MCp GCV FPE PEM- PEM-
GS SA

Selection Criteria

IMGL

Figure 4.1: Estimated OAPCS for n — 20 and design matrics XI to X3.
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a: Estimated OAPCS for Design Matrix X1

• MGL

AIC BIC HQ MCp GCV FPE PEM- PEM-
GS SA

Selection Criteria

CO 0.6
o
§ 0.5
•o
2

« 0.4

LU 0.3

b: Estimated OAPCS for Design Matrix X2

i 1 1 1
1AIC BIC HQ MCp GCV FPE PEM- PEM-
GS SA

Selection Criteria

I MGL

c: Estimated OAPCS for Desgin Matrix X3

AIC BIC HQ MCp GCV FPE PEM- PEM-
GS SA

Selection Criteria

I MGL

Figure 4.2: Estimated OAPCS for n = 30 and design matrices XI to X3



Chapter 5

Regression Error Model Selection
for Forecasting Via PEM1

5.1 Introduction

In applied work, it is often assumed that a given set of time series data are generated

by an AR process. On the basis of this assumption, the data generation process

can be modeled and used, for example, for forecasting future values of the time

series. The order determination of the AR process is usually the most delicate

part of an analysis of this kind. Recently, there has been a substantial amount

of literature on this problem and various different criteria have been proposed to

help in choosing the order of an AR process. A number of IC procedures have

been presented in Chapter 2. The most prominent and widely used are AIC and

BIC. Among the remaining alternatives, GCV, HQ and MCp are also familiar

to practitioners. Asymptotic theory leads to some precise results regarding the

performance properties of these model selection criteria in large samples. However,

the practitioner (e.g., see Geweke and Meese, 1981; Koehler and Murphree, 1988;

Lutkepohl, 1985; Engle and Brown, 1986; Koreisha and Pukkila, 1995) usually faces

the problem of making a choice on the basis of a limited data set. In this study,
1A paper based on the material in this chapter has been published in a special issue of the

Pakistan Journal of Statistics. See Billah and King (2000a)

142
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we are concerned with the performance of the various criteria in the context of the

linear regression model with AR disturbances in small samples.

To select a model which best represents a time series, it is necessarj' to be clear

about the purpose of the model. Is its main objective to explain the nature of the

system generating the series? Or is the model to be judged on its ability to forecast

future values of the time series? This chapter is concerned with the forecasting

abilities of a model. Usually, the proportion of times that each criterion selects the

true data generating model has been used as the main performance characteristic

for evaluating a criterion. However, there are other considerations. For example,

Makridakis (1986), and Mills and Prasad (1992) observe that a model having the

best within-sample fit for a given series does not necessarily mean it is the best

forecasting model. In general, the best forecasting model for a series is the one

which has the most accurate post-sample forecasting performance. This makes it

useful to compare model selection criteria in terms of out-of-sample forecast errors

I of the chosen model. Previous studies concerning AR errors in the linear regression

model have not addressed the model selection issue in detail from the stand-point of

forecasting. Therefore, we evaluate the relative performance of the model selection

criteria with the application of forecasting clearly in mind.

From previous studies (e.g., Crato and Ray, 1996; Ray, 1993; Engle and Brown,

1986), it is not clear which criteria, if any, should be used for the selection of a

forecasting model and the conditions under which different criteria can be expected

to perform well. As in model selection, the forecasting performance of a criterion is

sensitive to the variation of factors such as sample size, number of parameters in the

model, forecasting horizon, design matrix and data series being forecast. However,

the existing IC based selection procedures take into account only sample size and

number of parameters. Therefore, another objective of this chapter is to extend
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the PEM (PEM-GS and PEM-SA) based model selection procedures proposed in

Chapter 4 so that the selected model's average forecast error as measured by the

overall average forecast mean square error (OAMSE) is minimized (see Section 5.4

for the definition of OAMSE). We expect the extended procedures will result in

uniformly better forecasting performance irrespective of the variation of any (or

all) of the above factors.

The plan of this chapter is as follows. The models, their estimation methods and

forecasting equations are discussed in Section 5.2. Section 5.3 contains a description

of the theory for model selection and forecasting using existing IC procedures. The

theory of small sample penalty estimation for forecasting is discussed in Section

5.4. Section 5.5 presents the PEM-GS and PEM-SA methods for forecasting. The

design of the Monte Carlo study is given in Section 5.6, while the results of the study

are presented in Section 5.7. Finally, in Section 5.8, we draw some conclusions.

5.2 The Model and Estimation Method

Independent error processes are commonly assumed for applications of the linear

regression model. However, for economic time series applications, the assumption

of independent errors may be unrealistic and the possible presence of autocorrela-

tion in the disturbance term is well recognized. In this chapter, our interest is in

forecasting for models with AR error terms. Since their introduction, these models

have proved to be useful tools in time series analysis and have been extensively

used in many applications.

We consider the linear regression model,

u, (5.2.1)

where y is an n x 1 vector of observations, X is an n x k non-stochastic matrix of
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rank k < n, fi is a, k x 1 parameter vector and u is an n x 1 disturbance vector such

that u ~ JV(O,cr2fi(0)) in which Q(9) is an n x n positive definite matrix function

and 8 is a vector of unknown parameters.

In the context of (5.2.1), a p*th-order autoregressive error process, denoted by

AR(p*), is given by

u t = <j>iut-i + <i>2Ut-2 H r <f>pUt-p* •{• et, < = 1 , 2 , • • • , n , (5.2.2)

where e ~ A (̂0, a2 / ) . A stationary AR(p*) process is assumed because it guarantees

that the i^'s have finite variance and the covariance matrix is positive definite.

Stationarity requires <̂ ,-, i = 1,•••,/?*, to be such that the characteristic roots of

the equation

(f>p*zp* = 0

lie inside the unit circle. v

The matrix Q(8) can be given as follows:

ft(0) = [C'C -

where C is the n x n matrix of the form

1 0 0

£ =

1 0
1

0
0
0

0
1 0

—<pi 1

0 0 ••• -<f>p* ••• - <

and Af is the n x p* matrix of zeros whose top p* x p* block is

o
o o — <f>3

0
0
0

0
0

(5.2.3)

(5.2.4)

o
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For more detail, see Van der Leeuw (1994) or Ljung and Box (1979).

The Cholesky decomposition matrix T>(6) = ® ( 0 ) ~ is useful in this context

because of the relationship fi(5)"2u = e, where e ~ iV(0, <r2/). In fact, the matrix

T>(9) is equal to £, but with the top left p* x p* block replaced by the lower triangle

matrix,
dn
d2X

dsi

dli

0
•d22

d32

dl2

0 ••
0 ••

* •

• 0
• 0
• 0

. o
Up*

Following Ara (1995), the dy, i,j = 1, • • • ,p*, values of the above matrix can

be calculated recursively in the following order:

, - 1
^i2 X—̂  J 2

t = l «=T+1

for t = p* — 1, • • •, 2 and T = p* — i,
i—k—l p*—k p*

da =

i=l t=T+l
for & = 1, • - •, t — 2,

1 /
— ( —4>L-\ ~ <t>m+\<t>p' —

dn =

Wu (1991) and Silvapulle (1991) presented an alternative derivation of the T>(6)

matrix. The above decomposition of £1(6) helps in easy data generation from AR(p*)

processes as well as in calculating the MGL. In our experience, it also helps to

optimize the MGL function without frustrating computational error messages.

In most econometric applications, an adequate representation of a model in-
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volves many unknown factors about which we seek information. In the present

context, this comes down to deriving optimal estimators for the parameter vector

0 = {<t>um" i <i>v*)' °f the models in which we are interested. The likelihood func-

tion plays an important role in all forms of statistical inference, i.e., estimation,

testing and model selection. However, problems arise with the estimation of 6 in

the presence of nuisance parameters, particularly for small samples. The studies of

Chapter 3 and 4 (also, see Billah and King, 2000b) show that the MGL based IC

procedures perform better than those based on PL. Therefore, in this chapter we

consider MGL based estimates of 9 for model selection.

5.3 Model Selection and Forecasting Using Ex-
isting IC Procedures

As already discussed, in many practical problems, the order of an autoregressive

series is unknown and must be estimated using the available data. Once the model

is selected, it is of interest to evaluate its forecasting performance. Suppose we have

a data series, j/i, 2/2? • • • > Vn, where n is the size of the series. The series is divided into

two segments. Let us assume that the number of observations in the first segment

is n* and that in the second segment is H. The values of n* and H are determined

by the forecaster. The first n* observations are used to estimate the model and the

next H observations are held back to evaluate forecasting performance of various

models. Let ,̂-, i = 1,- • • ,p*, be the MGL estimates of the fc parameters. Then,

a reasonable /i-step ahead forecast from the regression model with AR(p*) errors

would be:

P*

yt(h) = cH.fc + 53&S(t+ ' '_ 1 - ) , ' = ! , • • • , « » (5.3.1)
t=i
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where bt+h = X't+hf3, (3 is the GLS estimate of /? and S(t+/,_,) is given by

148

U(t+h-i) = J2<j>jU(t+h_i_j), i f h - i > 0
i=i

= yt+h-i - ct+h-i, ifh-i < 0 .

(5.3.2)

(5.3.3)

The unknown parameter values of the variance covariance matrix in the GLS es-

timators are obtained by maximum MGL estimation methods of the underlying

model.

To evaluate the forecast accuracy of a model, a loss function associated with the

forecast error needs to be specified. In the literature, different methods have been

proposed for forecast accuracy evaluation, such as mean absolute error (MAE),

MAPE, MSE, root mean square error (RMSE), symmetric mean absolute percent-

age error (SMAPE). Discussions of some of these criteria can be found in Makridakis

et al. (1982) and Makridakis and Hibon (2000). Among these measures, the most

widely used forecast evaluation criteria in applied and theoretical research is MSE

and MAPE. However, MAPE requires non-zero observations, and hence, may not

be appropriate for simulated data. Therefore, in this chapter, we use the MSE as

our measure of forecast accuracy.

Let us assume that we have N data generating models, Mi, • • •, M/y. We also

consider Mi, • • •, MM as the plausible models. For each data series generated from

the zth model, we fit each of the N models and select a model by using IC. Note

that the selected model may not be the data generating model. Even when the

true order of the generating process is known, a lower order model may give better

forecasts (see e.g., Larimore and Mehra, 1985). The selected model is then used

to forecast future observations. Let us assume that from each model we have R

simulated data series. We also assume that at time t, e,-/ft(/i) = ya^t+h) — yi'et(h),

i, i' = 1, • • •, TV, is the /i-step ahead forecast error from the z'th selected model when

.



CHAPTER 5. REGRESSION ERROR 149

data are generated from the zth model at the Cih replication, where yint{h) is the

h-step ahead forecast for observed value yu(t+h)- The selected model for each data

generating process is then used for making H — h +1 h-step ahead forecasts without

re-estimating the model. Thus, the forecast MSE when the data are coming from

the z'th model at the tt\\ replication is given by

MSE{e(h) =. , £ 4a(h). (5.3.4)
•" ~ n + L t=n»+A

For simplicity, we replace MSE#(/i) and efet(h) by MSEu and ef(t, respectively, in

the following sections of this chapter.

The selection of a forecast model given a true model depends on the true pa-

rameter values 9i being considered in data generation. Following the arguments

for estimating APCS of Billah and King (2000b) (also, see Chapter 4), this prob-

lem can be solved by calculating average MSE (AMSE), which needs a weighting

function for various values of #,-. As mentioned by Billah and King (2000b), this is

similar to a prior density function used in Bayesian statistics. Bayesians use prior

distributions and we can do the same by considering a weighting density function

for the values of #,-. Let £(#,-) be a weighting distribution of the parameter of inter-

est 9{. Thus, when data are generated from the ztli model at the £th replication,

the AMSE can be obtained by

AMSE,- = J MSEu({0i)dOi. (5.3.5)

However, in general, the direct application of (5.3.5) to obtain AMSE,- is not easy.

Therefore, to estimate (5.3.5), we consider Monte Carlo integration by drawing 0,-

randomly from £(#,) and using this to generate R simulated sets of data. Then, the

estimate of (5.3.5) is obtained as follows:

i R

X ; M S E , Z = I , . . . , A T . (5.3.6)
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The forecast MSE« in the above equation can be estimated using (5.3.4).

Equation (5.3.6) can be used for estimating the overall or aggregate AMSE

(OAMSE). This is obtained by pooling N different AMSE,- in (5.3.6) with equal

weighting. Thus, the estimated OAMSE is given by

N
OAMSE = - ^ X ) AMSE,-. (5.3.7)

How well different IC procedures perform in ultimately producing good forecasts

is judged using OAMSE. The criterion having the smallest OAMSE is considered

best in the sense that it produces the best post-sample forecasts on average. As

we will see from the results of the simulation study, none of the criteria clearly

perform better than the others. Hence, similar to PEM of Chapter 4, we feel that

there is a need for a new approach which will perform better in every aspect. In

the next section, we discuss the theory of optimal penalty estimation for selecting

a forecasting model for small samples.

5.4 Small Sample Theory of Optimal Penalties
for Minimization of Mean Square Forecast
Error

In this section, we introduce the theory for developing simulation based model

selection procedures which will estimate optimal penalty values so that OAMSE

is minimized. The motivation for developing these new procedures arises from the

fact that no single model selection procedure (IC procedure) stands out as the

best for producing forecasts for all data series. These sentiments have been echoed

by Engle and Brown (1986), Ray and Crato (1994), and Crato and Ray (1996),

among others. As in model selection (see e.g., Billah and King, 1998b; Billah and

King, 2000b and Grose and King, 1994), the forecasting performance of a criterion
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varies with changes of sample size, number of parameters in the model, forecasting

horizon, design matrix, and data series being forecast. However, the existing IC

based selection procedures are different from one another through their penalty

function, which depends on the sample size and the number of parameters in the

model. In contrast, if this function is estimated numerically, we expect that it will

include other factors (which are ignored in standard IC), at least partially.

Let us assume that pi,---,PN denote the penalties corresponding to models

Mi • • •, MN, respectively. The penalty values will be estimated so that the OAMSE

is minimized. We also assume that e,v#|.Mi, 0#,pi,-- • ,pw denotes the forecast er-

ror for the i'th selected model at the £th iteration when Mi is the true model

(DGP) and MSE,-f|Aft-,0,^,pi,-- • ,pjy is the corresponding mean square error for

given Pw " IPN, where On is the value of Oi at the ^th iteration. Thus, the esti-

mated MSE#|M,-,Ou,pi, •-• ,PN is given by

1 n'+H

MSEie{pi---,pN} = 77
t=n'

[4et\Mu0u>Pi, • • • ,PJV) • (5-4.1)

This can be estimated for Mi and #,• for any given set of pi, i = 1,-- •, N. If

the parameter values are generated randomly from the uniform weighting function

£(#,), each drawing of 8{ produces a random value for (5.4.1). Therefore, for a given

set of pi, i = 1, • • •, N, the AMSE,- with respect to 0,- is given by

AMSE,-(pi , • • •, pN
(5.4.2)

The value of APCS,- varies with changes in the penalty values PI,---,PN-

any given penalty values, equation (5.4.2) can be estimated by using Monte Carlo

integration for R simulated data series for different #,-, which are generated randomly

from the prior distribution C(̂ «)- Through the estimation of optimal penalties,

(5.4.1) and hence, (5.4.2) can be estimated easily. Thus, the estimated AMSE,- is
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given by

R
(5.4.3)

where ## is the value of #,- generated from £(̂ «) at the £ih replication.

For the penalty set pi, • • • ,pn, the OAMSE is given by

N
OAMSEfo, • • • ,PN) = - £ AMSE,(Pl,

• " 1 = 1

(5.4.4)

The proposed IC procedure will find the penalties PI,---,PN SO that (5.4.4) is

minimized. This can be done by extending simulation based methods such as PEM-

GS and PEM-SA, which were discussed in Chapter 4 in the context of maximizing

OAPCS. In the context of forecasting model selection, the extended methods are

discussed in the following section.

5.5 Penalty Optimization Methods

In this section, we outline the extension of PEM-GS and PEM-SA (discussed in

Chapter 4) in the context of estimating optimal penalties for model selection so

that the selected model's OAMSE is minimized. The extended methods are as

follows.

5.5.1 PEM-GS Algorithm for Forecasting

As discussed in Section 4.4 of Chapter 4, the PEM-GS algorithm generates a num-

ber of penalty sets and the optimum penalty set is the one that yields the highest

OAPCS. A detailed description of how the algorithm can be implemented for se-

lecting the forecast model from a group of competing models is as follows. Without

loss of generality we assume p\ = 0.

Steps for Estimating Optimal Penalties:
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1. Decide on values for bu and 6IU such that bu < pi < fe,u, for i = 2 , • • • , / / ,

where bu and 6,u are preselected lower and upper limits for penalty p,-.

2. Calculate Di = b{u—bu for i = 2, • • •, N. Let N* be defined as the total number

of all possible combinations from p,-, i — 2, • • •, AT, where N* = 11^2 ( ^ + *) >

with 5 being an incremental value of bu chosen between 0 and 0.1.

3. For each set of penalties, estimate the OAMSE.

4. Choose min*=i,...,Ar* (OAMSE) and the corresponding penalty set with ele-

ments p*, i = 2,- - • ,N.

5. Repeat steps 2 to 4 by redefining p,- with b*t < p,- < b*u, where b*t = p* — 6,

b*u = p* +S and by using a new incremental value 6*(< 6).

6. Continue step 5 until successive minimum OAMSEs (of step 4) are approxi-

mately the same.

As we will see in Section 5.7, PEM-GS works well in selecting the AR forecasting

model. However, as mentioned in Chapter 4, the only drawback of this approach is

that it requires a large amount of computational time, particularly if the number

of models in the plausible group is very large. In the following subsection, we

therefore, modify PEM-SA (which was successfully implemented in Chapter 4 to

maximize OAPCS) for minimizing OAMSE.

5.5.2 PEM-SA Algorithm for Forecasting

In Chapter 4, the PEM-SA was discussed in the context of estimating optimal

penalties so that the OAPCS is maximized. The same method with a slight modifi-

cation (only in step 4 of the PEM-SA algorithm outlined in Chapter 4) can be used

to minimize OAMSE. In the context of a minimization problem, the modification,
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particularly in step 4 of the PEM-SA algorithm in Chapter 4, is briefly discussed

as follows.

Let / = f(po) be the value of the objective function (5.4.4) evaluated at the

initial value po for the penalty vector p = (p2, • • • ,PN)'-

Using step 4 of the PEM-SA algorithm of Chapter 4, a new penalty vector p'

is generated by replacing its zth element by p{. The objective function is evaluated

at this new point and is denoted by / ' = f(p'). If / ' < / , then the new penalty

is accepted and p' is stored as p and / ' as / . If / ' > / , the Metropolis criterion

decides on acceptance or rejection of the penalty with acceptance probability

where T is the temperature that has been discussed in Section 4.4.2. In fact, a

pseudo random number pu is generated in the range [0,1] and is compared with pr.

If pr > put the new point is accepted, otherwise it is rejected.

Indeed, this method is the same as the PEM-SA algorithm of Chapter 4, but

with the above change. We hope this new procedure will perform more efficiently

than the regular IC procedures and select models that give the best forecasts on

average.

5.6 Design of the Monte Carlo Study

A Monte Carlo study was conducted to compare the performance of various existing

IC procedures in selecting the order of AR models for forecasting. The main aim

of this study was to investigate how the PEM-SA algorithm works when compared

with the existing IC procedures. Four error generating processes, namely, AR(1),

AR(2), AR(3) and AR(4) error models were used as the competing error models

in the context of the linear regression model (5.2.1). The parameter values were



CHAPTER 5. REGRESSION ERROR 155

generated randomly from a weighting distribution, which is essential for estimating

AMSE and also for OAMSE. From (5.2.2), for AR(1) processes, 9 = p and 9

can be generated from a uniform prior £(/?) on [-1,1]. For AR(2) disturbances,

9 = (fa, fa)', where fa — p\ + p2 and fa = P1P2, while for AR(3) disturbances,

9 = (fa, fa, fa)' with <j>i -• pi + p2 H- Pz, fa = P1P2 + />i/>3 + P2P3 and <̂ 3 = —p\p2pz-

For AR(4) processes, 0 = (fa, fa, fa, fa)', where & = /?! + p2 + p3 + PA, fa =

~{p\P2 + Plp3 + P\PA + P2/J3 + P2PA + P3PA), $3 = Plp2PZ + P\?2PA + PlPzPA + P2PZPA

and ^4 = ~P\P2PZPA- In general, for an AR(p*) process, /?;, i = 1, ••-,£*, are

roots of (5.2.3) which lie inside the unit circle. Therefore, /?,-, i = 1, • • • ,p*, can be

generated satisfying the condition |/J,| < 1, i = 1, •••,£>*, which also identifies <j){,

i = 1, • • • ,p*. For each AR(p*) process, /?,-, i = 1, • • • ,p*, were generated randomly

from p* independent uniform distributions each on [-1,1].

Pseudo random numbers were generated using the GAUSS function RNDNS

which generates standard normal variates. For estimation and model se« jction, the

normality assumption of the error term was maintained. The parameters of the

models were estimated by using maximum MGL. However, the closed form MGL

estimator for the parameters is not available for all of the above models. To over-

come this difficulty, the GAUSS constrained optimization technique was used to

estimate the parameters. For each model, n = 300 data values were generated.

Among these n, the first n* were used to estimate and select an appropriate model

and the remaining values treated as future observations to calculate the correspond-

ing AMSE for forecast horizons 1 to 4. The experiment was conducted using 2000

replications.

The necessary steps of the experiment are as follows:

1. Using appropriate £(6) distributions, at each replication, draw p, (fa,^)',

(fa, fa, fa)' and (4>\,fa,fa,4>A)' values.



CHAPTER 5. REGRESSION ERROR 156

2. Generate four samples of size n from each of the AR(1), AR(2), AR(3) and

AR(4) error models.

3. For each of the four models, use the first n* observations to calculate the

maximized log-likelihood for each set of data series generated in step 2.

4. Repeat the above steps 2000 times (the number of replications used in this

chapter) which will give 32,000 maximized log-likelihoods.

5. Use the maximized log-likelihoods of step 4 and select a forecast model from

the competing group by a specific existing IC procedure for each DGP in step

2. Thus, at each replication, four models are selected for four different DGPs.

Finally, for each true model, 2000 models are selected. Each of these models

are used to calculate /i-step ahead forecast MSE using equation (5.3.4). Then,

the AMSE as well as the OAMSE of the selected models can be estimated

from equations (5.3.6) and (5.3.7), respectively.

6. Using PEM-GS and PEM-SA, which have been discussed in Section 5.5, esti-

mate penalties p2, Pz and p\ (without loss of generality, p\ can be set to zero).

Use these penalties for estimating the AMSE and OAMSE from equations

(5.4.3) and (5.4.4), respectively.

The following five design matrices with n* = 20,30 and 50 were used.

XI : n* x 2. A constant dummy and time trend.

X2 : n* x3. A constant dummy, the first n* observations of Durbin and Watson's

(1951, p. 159) consumption of spirits example.

XZ : n* x4. The quarterly Australian consumer price index commencing 1959(1)

and the same index lagged one quarter, two quarters and three quarters.
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*

XA : n* x 5. A constant dummy, quarterly Australian private capital movements

and quarterly Australian Government capital movements.

X5 : n* x 6. A full set of quarterly seasonal dummy variables plus quarterly

seasonally adjusted Australian household disposable income and private final con-

sumption expenditure commencing 1959(4).

The number of observations in the design matrices X2 — X5 are less than n.

Therefore, to make the design matrices workable for forecasting, we construct a

modified design matrix of order n x k (n > n*) by using random drawings from

the rows of X(n* x k). The first n* observations were used for estimation (model

selection) and the next H = n — n* observations fo " forecasting.

5.7 Results and Discussion

An important component of time series analysis is forecasting and a selection crite-

rion's forecasting performance needs to be assessed independently of other charac-

teristics of the criterion. Tables 5.1 to 5.5 indicate the AMSE and OAMSE for all

selection criteria used in this chapter, including the PEM-SA and PEM-GS. First,

we discuss the results in terms of OAMSE. According to the results presented in

Tables 5.1 to 5.5, it is evident that for sample size 20, among the existing IC pro-

cedures, BIC performs better than the other criteria in selecting the best forecast

model for relatively longer forecasting horizons. In general, AIC performs well for

one-step-ahead forecasts, but as the forecasting horizon increases, AIC loses its

ability to pick on average the best out-of-sample forecast model. Overall, GCV ap-

pears to perform moderately well and does relatively better for longer forecasting

horizons. MCp performs worst, while HO, works slightly better than MCp. Similar

to AIC, HQ does not work well for longer forecasting horizons.

The relative overall performance of BIC declines as the sample size increases.
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For example, for design matrix X3 with sample size 50, BIC performs better than

the other criteria only for four-step-ahead forecasts. In large samples, the selection

ability of HQ improves compared to its small sample performance. In contrast,

any advantage from using AIC for sample size 20 diminishes as the sample size in-

creases. At h = 1, GCV is found to work better for some cases, but its performance

deteriorates for longer horizons. Although MCp does better for a few situations for

one-step-ahead forecasts, its overall performance remains unchanged compared to

its relative performance for sample size 20.

From the results presented in Tables 5.1 to 5.5, irrespective of forecasting horizon

and sample size, clearly the new procedures (PEM-SA and PEM-GS) consistently

perform better than all the existing IC procedures considered in this cahpter for

selecting the best forecast model. This is because the new procedures use data

dependent penalties. For example, when the sample size is 20 and h = 4, the

relative OAMSE values of PEM-GS are, on average 3.07-12.88% larger than those of

the existing IC procedures. For larger sample sizes or smaller forecasting horizons,

the new procedures dominate all the existing IC procedures comparatively less

heavily. This confirms that the new procedures provide much better forecasts in

small samples and for longer horizons.

If the forecast results are examined in terms of AMSE, it is evident that for

all forecast horizons, the criteria with larger penalties (e.g., BIC) do considerably

better than the others when the regression errors are generated from an AR(1) pro-

cess. The relative performance of other existing criteria varies over design matrices

and sample sizes. Interestingly, the new procedures dominate all the existing IC

procedures for higher order (p* > 1) data generating processes. However, among

the existing IC procedures, generally, no one criterion performs better than the

others for all sample sizes and design matrices, particularly for shorter forecasting
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horizons. This confirms that the ability of the new procedures in selecting the best

forecast model increases if the regression errors come from higher order AR mod-

els. When the regression errors are generated from an AR(4) process, the relative

AMSE values of PEM-GS are, on average 2.63-18.81% larger than those from the

existing IC procedures for sample size 20 and forecasting horizon h = 4.

Exceptions to the above generalizations were found for some processes, but the

essential conclusion of the study is that the existing IC procedures are not gener-

ally equivalent in terms of forecasting performance for small sample observations,

and in terms of OAMSE, PEM is a better approach for selecting forecasting mod-

els. The performances of PEM-SA and PEM-GS are found to be very similar,

although on some occasions the latter performs slightly better than PEM-SA at a

high computational cost.

The estimated penalties for PEM-SA are also presented in Table 5.6. This table

shows that the estimated penalty values for different AR error models change with

change of sample size, design matrix and forecast horizon. However, the penalty

values for all of the existing IC procedures are not affected by changing the design

matrix and forecast horizon. These results clearly show the importance of the

PEM based model selection approach for selecting forecasting models, and hence,

we recommend the use of PEM-SA in practice. PEM-GS could also be used, but

it requires high amount of computational time.

5.8 Conclusions

In terms of OAMSE, the results of the experiment show that among the existing

IC procedures, the recommendation of AIC as a criterion for model selection is

moderately well founded for shorter forecasting horizons. However, for longer hori-

zons, the model selected by BIC gives much better forecasts on average than the
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model selected by any other existing IC procedures. In general, the criteria HQ,

MCp and GCV are not as good as BIC. When the performances of the selection

criteria are examined in terms of AMSE, the different criteria are found useful for

different forecasting horizons. We observe that the criterion which works best for,

say, shorter horizons, may not be so well for longer horizons. This means that

the criterion for choosing a model needs to be matched to the given application.

In particular, when ^-step-ahead (h > 1) forecasts are required, we recommend a

criterion that minimizes A-steps-ahead (h > 1) forecast errors. In contrast, the pro-

posed PEM-GS and PEM-SA consistently dominate all the existing IC procedures

considered in this chapter in all situations with very few exceptions. This finding

suggests that the model selection criteria based on PEM-GS and PEM-SA are bet-

ter than any existing IC procedures for choosing a model based on within-sample fit

in order to obtain better out-of-sample forecasts. However, we recommend the use

of PEM-SA, because it requires much less computation time compared to PEM-GS

and performs nearly as well.
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Table 5.1: Estimated AMSE and OAMSE (where indicated) for design matrix XI
with sample sizes n = 20, 30 and 50.

DGP
AH(l)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE

n
20

20

20

20

30

30

30

30

50

50

50

50

h
1

2

3

4

1

2

3

4

1

2

3

4

AIC
1.342
1.491
1.566
1.983
1.595
1.910
2.357
3.061
3.555
2.721
2.362
3.606
5.994
8.531
5.123
2.672
4.673
9.699
15.063
8.027
1.231
1.244
1.344
1.370
1.297
1.764
2.037
2.981
3.012
2.449
2.183
3.107
6.338
7.264
4.723
2.499
4.043
11.026
13.345
7.728
1.076
1.085
1.152
1.185
1.125
1.440
1.841
2.563
2.797
2.160
1.687
2.759
5.277
6.643
4.091
1.864
3.634
8.965
12.2813
6.688

BIC
1.333
1.534
1.644
2.206
1.680
1.908
2.402
3.075
3.667
2.763
2.361
3.632
5.927
8.674
5.148
2.670
4.694
9.499
15.060
7.981
1.228
1.299
1.349
1.527
1.351
1.759
2.053
2.691
3.072
2.394
2.173
3.082
5.198
7.400
4.463
2.487
4.005
8.429
13.303
7.056
1.070
1.088
1.142
1.200
1.125
1.432
1.840
2.373
2.772
2.104
1.677
2.752
4.570
6.509
3.877
1.851
3.622
7.344
11.997
6.203

HQ
1.341
1.493
1.581
1.977
1.598
1.909
2.362
3.084
3.509
2.716
2.361
3.610
6.007
8.472
5.113
2.671
4.675
9.710
14.936
7.998
1.228
1.244
1.35><
1.4S
1.329
1.755
2.037
2.985
3.062
2.459
2.169
3.106
6.308
7.400
4.746
2.482
4.043
10.921
13.329
7.694
1.074
1.084
1,155
1.188
1.125
1.437
1.839
2.565
2.781
2.155
1.684
2.756
5.274
6.577
4.073
1.862
3.631
8.959
12.156
6.652

MCp
1.342
1.494
1.580
1.970
1.596
1.909
2.363
3.089
3.505
2.717
2.361
3.616
6.033
8.474
5.121
2.671
4.686
9.770
15.025
8.038
1.229
1.244
1.344
1.368
1.296
1.757
2.038
2.982
3.015
2.448
2.172
3.108
6.340
7.275
4.724
2.486
4.046
11.030
13.363
7.731
1.076
1.085
1.152
1.186
1.125
1.440
1.841
2.563
2.797
2.160
1.686
2.759
5.278
6.643
4.092
1.864
3.634
8.966
12.289
6.689

GCV
1.341
1.493
1.581
1.984
1.600
1.909
2.360
3.084
3.508
2.715
2.361
3.608
6.007
8.472
5.112
2.672
4.672
9.710
14.921
7.994
1.228
1.243
1.349
1.481
1.326
1.756
2.037
2.988
3.032
2.453
2.169
3.107
6.352
7.372
4.750
2.483
4.045
11.051
13.304
7.721
1.075
1.085
1.153
1.186
1.125
1.439
1.840
2.563
2.796
2.160
1.686
2.758
5.276
6.639
4.090
1.864
3.633
8.964
12.282
6.686

PEM-GS
1.344
1.435
1.506
1.797
1.520
1.911
2.357
3.061
3.467
2.699
2.369
3.636
5.913
8.357
5.069
2.682
4.700
9.540
14.763
7.921
1.271
1.231
1.290
1.318
1.277
1.786
2.028
2.633
3.021
2.367
2.169
3.084
5.229
7.269
4.438
2.480
3.975
8.035
13.070
6.891
1.081
1.084
1.143
1.167
1.119
1.437
1.833
2.363
2.753
2.096
1.673
2.745
4.553
6.495
3.866
1.842
3.615
7.274
11.787
6.129

PEM-SA
1.341
1.438
1.513
1.788
1.500
1.921
2.366
3.043
3.477
2.702
2.383
3.642
5.902
8.350
5.070
2.666
4.712
9.534
14762
7.919
1.261
1.222
1.271
1.321
1.269
1.798
2.001
2.621
3.042
2.365
2.177
3.109
5.231
7.258
4.444
2.493
3.955
8.044
13.104
6.899
1.101
1.087
1.38
1.156
1.127
1.444
1.852
2.252
2.749
2.074
1.684
2.755
4.501
6.496
3.859
1.833
3.666
7.267
11.791
6.139
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Table 5.2: Estimated AMSE and OAMSE (where indicated) for design matrix X2
with, sample sizes n — 20, 30 and 50.

DGP
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR{1)
AR(2)
AR(3)
AR(4)

OAMSB
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(2)
AR(3)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(2)
AR(4)

OAMSE

n
20

20

20

20

30

30

30

30

50

50

50

50

h
1

2

3

4

1

2

3

4

1

2

3

4

AIC
1.460
1.672
1.809
2.564
1.S76
1.872
2.421
3.176
4.480
2.387
2.159
3.422
5.780
9.681
5.261
2.349
4.290
8.544
16.170
7.838
1.332
1.330
1.410
1.821
1.473
1.755
2.104
2.584
3.846
2.572
2.040
3.101
4.705
8.444
4.573
2.230
4.032
7.132
14.735
7.032
1.128
1.154
1.196
1.278
1.189
1.490
1.861
2.290
2.836
2.119
1.738
2.669
4.151
6.291
3.712
1.920
3.411
6.332
11.232
5.724

BIC
1.454
1.683
1.849
2.633
1.905
1.865
2.414
3.194
4.501
2.993
2.150
3.375
5.768
9.640
5.233
2.337
4.190
8.477
15.960
7.741
1.325
1.353
1.437
1.868
1.496
1.747
2.123
2.610
3.823
2.576
2.032
3.110
4.704
8.296
4.535
2.221
4.042
7.063
14.321
6.912
1.122
1.159
1.212
1.302
1.199
1.480
1.859
2.298
2.837
2.119
1.725
2.651
4.117
6.235
3.682
1.904
3.378
6.268
11.070
5.655

HQ
1.458
1.676
1.816
2.567
1.879
1.867
2.422
3.178
4.470
2.984
2.153
3.424
5.775
9.649
5.250
2.340
4.290
8.526
16.110
7.816
1.330
1.332
1.421
1.830
1.478
1.753
2.101
2.616
3.842
2.578
2.039
3.094
4.772
8.413
4.579
2.228
4.022
7.240
14.650
7.035
1.125
1.154
1.196
1.286
1.190
1.484
1.855
2.268
2.832
2.110
1.729
2.654
4.078
6.258
3.680
1.908
3.387
6.202
11.153
5.663

MCp
1.459
1.675
1.810
2.572
1.879
1.871
2.426
3.177
4.509
2.996
2.159
3.430
5.781
9.812
5.295
2.348
4.299
8.544
16.580
7.943
1.332
1.331
1.411
1.821
1.474
1.755
2.105
2.585
3.851
2.574
2.040
3.103
4.708
8.459
4.578
2.230
4.034
7.138
14.767
7.042
1.128
1.151
1.197
1.278
1.189
1.490
1.863
2.290
2.837
2.120
1.738
2.675
4.152
6.293
3.714
1.920
3.424
6.333
11.235
5.728

GCV
1.458
1.676
1.S14
2.567
1.879
1.868
2.424
3.171
4.467
2.982
2.153
3.428
5.770
9.636
5.247
2.340
4.296
8.510
16.083
7.807
1.331
1.329
1.413
1.822
1.474
1.755
2.101
2.587
3.847
2.572
2.040
3.099
4.707
8.440
4.571
2.230
4.029
7.134
14.715
7.027
1.127
1.154
1.195
1.279
1.189
1.489
1.861
2.286
2.835
2.118
1.737
2.669
4.141
6.285
3.708
1.920
3.410
6.319
11.221
5.718

PEM-GS
1.493
1.621
1.719
2.505
1.835
1.885
2.398
3.168
4.329
2.945
2.156
3.367
5.748
9.418
5.172
2.336
4.273
7.865
15.540
7.504
1.342
1.325
1.371
1.767
1.451
1.762
2.071
2.587
3.603
2.506
2.043
3.032
4.675
7.569
4.330
2.226
3.910
6.942
12.736
6.454
1.134
1.149
1.185
1.263
1.183
1.486
1.856
2.268
2.816
2.107
1.730
2.647
4.094
6.196
3.667
1.906
3.368
6.193
10.921
5.597

PEM-SA
1.501
1.633
1.705
2.513
1.838
1.901
2.409
3.188
4.322
2.955
2.165
3.373
5.735
9.419
5.173
2.302
4.253
7.855
15.543
7.488
1.334
1.333
1.371
1.752
4.448
1.762
2.070
2.601
3.592
2.506
2.046
3.043
4.688
7.578
4.338
2.232
3.901
6.932
12.733
6.450
1.134
1.151
1.192
1.221
1.175
1.478
1.866
2.252
2.836
2.108
1.743
2.654
4.032
6.210
3.660
1.915
3.377
6.243
10.913
5.612
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Table 5.3: Estimated AMSE and OAMSE (where indicated) for design matrix X3
with sample sizes n = 20, 30 and 50.

DGP
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR{3)
AR(4)

OAMSB
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

n
20

20

20

20

30

30

h
1

2

3

4

1

2

AIC
2.576
2.989
3.193
4.025
3.196
2.744
3.477
4.438
5.919
4.145
3.035
4.413
7.283
11.542
6.568
3.164
4.928
10.182
8.591
9.216
1.650
1.843
1.891
2.232
1.904
1.939
2.558
3.060
4.044

BIC
2.505
2.984
3.211
4.119
3.204
2.668
3.491
4.343
5.921
4.106
2.964
4.425
7.008

11.225
6.405
3.097
4.967
9.669
17.635
8.842
1.631
1.840
1.928
2.261
1.915
1.918
2.543
3.077
4.001

HQ
2.570
2.974
3.182
4.063
3.197
2.738
3.473
4.414
5.983
4.152
3.028
4.409
7.234
11.627
6.575
3.158
4.928
10.103
18.678
9.217
1.642
1.843
1.901
2.233
1.905
1.931
2.550
3.062
3.996

MCp
2.575
3.006
3.188
4.034
3.201
2.742
3.497
4.451
5.942
4.158
3.034
4.439
7.326
11.616
6.603
3.163
4.958
10.295
18.771
9.297
1.647
1.842
1.893
2.238
1.905
1.936
2.556
3.062
4.057

GCV
2.571
2.991
3.181
4.061
3.201
2.740
3.477
4.410
5.972
4.149
3.030
4.414
7.227
11.550
6.555
3.161
4.929
10.096
18.409
9.149
1.645
1.842
1.891
2.233
1.903
1.934
2.556
3.052
4.005

PEM-GS
2.598
2.969
3.169
3.991
3.182
2.670
3.465
4.314
5.766
4.054
2.952
4.379
6.985
10.772
6.272
3.079
4.927
9.552
16.430
8,497
1.682
1.842
1.868
2.182
1.893
1.960
2.523
3.031
3.924

PEM-SA
2.603
2.974
3.157
3.994
3.182
2.684
3.472
4.298
5.772
4.057
2.965
4.379
6.985
10.763
5.273
3.092
4.941
9.523
16.445
8.500
1.672
1.841
1.872
2.207
1.898
1.951
2.514
3.051
3.911

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

2.901 2.885 2.885 2.903 2.887 2.859
30 2.188

3.602
5.244
8.187

2.171
3.586
5.250
7.968

2.180
3.591
5.231
7.981

2.186
3.599
5.247
8.205

2.184
3.600
5.224
7.992

2.203
3.539
5.153
7.853

2.857
2.203
3.512
5.183
7.855

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE

30

50

50

50

50

4

1

2

3

4

4.805
2.334
4.551
7.713
13.801
7.100
1.226
1.271
1.332
1.393
1.306
1.547
1.929
2.403
2.939
2.204
1.766
2.687
4.192
6.310
3.739
1.918
3.375
6.256
11.179
5.682

4.744
2.317
4.533
7.675
13.247
6.943
1.219
1.273
1.344
1.417
1.313
1.538
1.926
2.402
2.953
2.205
1.756
2.677
4.146
6.319
3.725
1.907
3.355
6.157
11.179
5.649

4.746
2.326
4.538
7.675
13.309
6.962
1.223
1.272
1.335
1.396
1.306
1.543
1.928
2.395
2.938
2.201
1.762
2.684
4.142
6.305
3.723
1.913
3.368
6.153
11.170
5.651

4.809
2.331
4.546
7.716
13.832
7.107
1.226
1.271
1.333
1.394
1.306
1.547
1.929
2.403
2.941
2.205
1.766
2.687
4.193
6.315
3.740
1.918
3.374
6.258
11.189
5.6S5

4.750
2.330
4.548
7.685
13.322
6.971
1.226
1.270
1.333
1.393
1.306
1.547
1.928
2.403
2.942
2.205
1.765
2.686
4.189
6.315
3.739
1.917
3.372
6.245
11.186
5.680

4.687
2.322
4.429
7.450
12.990
6.799
1.236
1.264
1.322
1.381
1.301
1.556
1.913
2.377
2.931
2.194
1.766
2.675
4.132
6.273
3.711
1.913
3.351
6.188
10.997
5.612

4.688
2.319
4.428
7.472
13.011
6.808
1.236
1.281
1.313
1.379
1.303
1.543
1.923
2.375
2.929
2.193
1.765
2.663
4.126
6.274
3.707
1.902
3.367
6.188
10.999
5.613
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Table 5.4: Estimated AMSE and OAMSE (where indicated) for design matrix XA
with sample sizes n = 20, 30 and 50.

DGP
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE

n
20

20

20

20

30

30

30

30

SO

50

50

50

h
1

2

3

4

1

2

3

4

1

2

3

4

AIC
1.900
2.241
2.532
3.618
2.573

1 2.286
3.025
•4.111
6.246
3.917
2.542
4.004
7.044
12.150
6.435
2.718
4.851
10.274
19.674
9.379
1.503
1.486
1.576
1.724
1.572
1.908
2.266
2.769
3.559
2.626
2.159
3.233
4.866
7.637
4.474
2.337
4.156
7.297

13.352
6.785
1.165
1.193
1.242
1.277
1.219
1.524
1.898
2.342
2.849
2.153
1.768
2.706
4.187
6.314
3.744
1.949
3.460
6.379
11.265
5.763

BIC
1.879
2.224
2.554
3.510
2.542
2.259
2.962
4.051
5.713
3.748
2.512
3.921
6.850
10.952
6.059
2.682
4.751
9.838
17.432
8.676
1.494
1.491
1.610
1.770
1.591
1.903
2.262
2.805
3.541
2.628
2.157
3.223
4.896
7.505
4.446
2.336
4.141
7.297
12.991
6.690
1.157
1.200
1.254
1.299
1.228
1.511
1.901
2.345
2.846
2.151
1.751
2.701
4.153
6.254
3.715
1.926
3.444
6.298
11.102
5.693

HQ
1.897
2.242
2.543
3.632
2.578
2.281
3.011
4.124
6.172
3.897
2.538
3.985
7.054
11.873
6.363
2.714
4.832
10.268
18.984
9.200
1.500
1.492
1.587
1.726
1.576
1.905
2.272
2.772
3.533
2.621
2.157
3.241
4.851
7.556
4.451
2.335
4.168
7.246
13.167
6.729
1.161
1.195
1.243
1.285
3.221
1.519
1.895
2.331
2.842
2.147
1.762
2.696
4.148
6.269
3.719
1.941
3.437
6.306
11.154
5.709

MCp
1.901
2.252
2.540
3.629
2.581
2.286
3.026
4.135
6.242
3.922
2.543
3.996
7.074
12.117
6.433
2.719
4.836
10.305
19.600
9.365
1.503
1.489
1.581
1.709
1.570
1.908
2.273
2.791
3.543
2.629
2.160
3.245
4.932
7.617
4.488
2.337
4.172
7.418
13.354
6.820
1.165
1.193
1.243
1.277
1.220
1.524
1.898
2.344
2.850
2.154
1.769
2.707
4.194
6.318
3.747
1.949
3.460
6.391
11.270
5.768

GCV
1.894
2.247
2.537
3.629
2.577
2.278
3.017
4.113
6.167
3.894
2.535
4.002
7.036
11.869
6.360
2.711
4.850
10.237
18.981
9.195
1.501
1.493
1.580
1.720
1.574
1.907
2.275
2.763
3.542
2.622
2.159
3.244
4.845
7.600
4.462
2.336
4.171
7.242
13.291
6.760
1.165
1.193
1.242
1.277
1.219
1.522
1.897
2.337
2.844
2.150
1.767
2.705
4.173
6.299
3.736
1.945
3.458
6.353
11.230
5.746

PEM-GS
1.962
2.216
2.454
3.488
2.530
2.255
2.956
4.068
5.644
3.731
2.500
3.894
6.656
10.205
5.814
2.661
4.674
9.373
15.970
8.171
1.517
1.481
1.547
1.693
1.559
1.907
2.243
2.766
3.489
2.601
2.158
3.182
4.814
7.395
4.387
2.316
4.056
6.904
12.681
6.489
1.172
1.194
1.230
1.266
1.215
1.521
1.895
2.319
2.829
2.141
1.763
2.695
4.126
6.229
3.703
1.942
3.443
6.239
11.009
5.658

PEM-SA
1.962
2.222
2.476
3.489
2.537
2.254
2.968
4.073
5.635
3.733
2.533
3.900
6.644
10.219
5.524
2.646
4.684
9.367
15.999
8.174
1.536
1.475
1.546
1.701
1.565
1.904
2.253
2.784
3.469
2.603
2.153
3.173
4.832
7.410
4.392
2.337
4.035
6.910
12.679
6.490
1.178
1.209
1.221
1.263
1.218
1.510
1.892
2.320
2.820
2.136
1.74

2.696
4.110
6.231
3.694
1.943
3.443
6.231
11.018
5.659
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Table 5.5: Estimated AMSE and OAMSE (where indicated) for design matrix X5
with sample sizes n = 20, 30 and 50.

DGP
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSB
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE
AR(1)
AR(2)
AR(3)
AR(4)

OAMSE

n
20

20

20

20

30

30

30

30

50

50

50

50

h
1

2

3

4

1

2

3

4

1

2

3

4

AIC
1.973
2.262
2.437

43.413
2.521
2.318
2.972
3.882
5.573
3.686
2.588
4.011
6.726
10.987
6.078
2.744
4.829
9.732
17.700
8.751
1.480
1.573
1.599
1.7S9
1.611
1.894
2.295
2.810
3.636
2.659
2.178
3.303
4.972
7.722
4.544
2.376
4.249
7.473
13.398
6.874
1.198
1.213
1.273
1.331
1.254
1.553
1.911
2.378
2.917
2.189
1.798
2.706
4.235
6.415
3.789
1.979
3.444
6.422
11.399
5.811

BIC
1.948
2.317
2.496
3.591
2.588
2.294
2.969
3.804
5.479
3.636
2.562
4.011
6.388
10.838
5.950
2.726
4.813
9.031
17.388
8.489
1.466
1.581
1.632
1.900
1.645
1.877
2.279
2.801
3.612
2.642
2.160
3.242
4.899
7.626
4.482
2.354
4.136
7.293
13.005
6.697
1.191
1.220
1.289
1.357
1.254
1.545
1.916
2.376
2.921
2.189
1.788
2.705
4.187
6.373
3.764
1.969
3.437
6.316
11.268
5.747

HQ
1.969
2.268
2.445
3.441
2.531
2.314
2.974
3.865
5.580
3.683
2.586
4.011
6.694
10.998
6.072
2.744
4.827
9.672
17.723
8.742
1.474
1.574
1.607
1.796
1.613
1.886
2.284
2.805
3.637
2.653
2.172
3.264
4.944
7.706
4.522
2.368
4.172
7.415
13.356
6.828
1.194
1.215
1.277
1.340
1.257
1.548
1.912
2.377
2.911
2.187
1.791
2.704
4.219
6.375
3.772
1.972
3.439
6.393
11.297
5.775

MCp
1.973
2.253
2.446
3.423
2.526
2.318
3.973
3.890
5.708
3.722
2.590
4.010
6.740
11.477
6.204
2.747
4.828
9.751
18.802
9.032
1.479
1.574
1.601
1.793
1.612
1.8S3
2.296
2.813
3.647
2.662
2.178
3.305
4.977
7.747
4.552
2.375
4.251
7.481
13.446
6.888
1.198
1.214
1.273
1.330
1.254
1.553
1.912
2.379
2.917
2.191
1.797
2.712
4.241
6.417
3.792
1.979
3.456
6.434
11.406
5.819

GCV
1.969
2.266
2.446
3.414
2.524
2.314
2.977
3.868
5.547
3.675
2.585
4.009
6.701
10.950
6.061
2.743
4.825
9.677
17.654
8.725
1.477
1.571
1.599
1.790
1.609
1.893
2.286
2.807
3.632
2.654
2.178
3.272
4.963
7.702
4.529
2.376
4.189
7.456
13.353
6.844
1.198
1.213
1.273
1.331
1.254
1.553
1.909
2.378
2.917
2.189
1.797
2.703
4.234
6.415
3.787
1.979
3.437
6.420
11.399
5.808

PEM-GS
2.069
2.211
2.412
3.331
2.506
2.291
2.945
3.798
5.456
3.622
2.552
4.006
6.316
10.440
5.829
2.675
4.706
8.909
16.182
8.118
1.507
1.521
1.555
1.751
1.583
1.894
2.270
2.780
3.565
2.627
2.209
3.215
4.836
7.551
4.453
2.341
4.051
7.044
12.969
6.601
1.204
1.211
1.259
1.310
1.246
1.561
1.908
2.350
2.876
2.174
1.795
2.712
4.173
6.296
3.744
1.971
3.431
6.338
11.120
5.715

PEM-SA
2.072
2.222
2.421
3.332
2.512
2.301
2.943
3.798
5.458
3.625
2.563
4.018
6.309
10.450
5.835
2.666
4.706
8.917
16.180
8.117
1.511
1.502
1.566
1.751
1.582
1.899
2.281
2.777
3.564
2.630
2.201
3.233
4.821
7.542
4.449
2.343
4.073
7.031
12.954
6.600
1.211
1.224
1.248
1.310
1.248
1.563
1.910
2.346
2.876
2.174
1.799
2.712
4.172
6.29"?
3.745
1.972
3.433
6.334
11.134
5.718
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Table 5.6: Estimated penalties by PEM-SA for design matrices X\, X2 and XS,
and diiferent forecast horizons.

"

n
20

30

50

20

30

50

20

30

50

20

30

50

20

30

50

Design Matrix
XI

X2

A'3

A'4

A'5

Forecast Horizon
1
?,
.3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

Pi
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

P2
0.201
0.903
1.451
1.451
0.000
0.501
1.161
1.508
0.000
0.312
0.312
0.312
0.000
0.518
1.007
1.711
0.281
0.457
0.405
1.000
0.610
1.301
1.300
1.600
0.551
1.440
1.700
1.700
0.110
0.110
0.223
0.863
0.336
0.411
1.000
1.818
0.100
1.531
2.204
2.221
0.000
0.806
0.900
2.901
0.609
1.000
1.000
1.000
0.103
1.523
1.442
2.230
0.000
0.701
0.000
2.332
1.205
0.722
1.202
1.600

P3
0.201
1.912
2.542
2.411
0.201
1.S91
2.417
5.101
0.702
2.143
3.891
5.443
0.702
2.205
2.708
4.000
0.319
3.115
4.631
5.210
1.100
1.886
3.401
5.081
1.708
3.919
5.104
6.081
1.389
2.861
3.100
4.332
0.708
1.990
2.513
2.103
1.613
4.102
4.835
6.209
1.219
3.421
3.636
5.603
1.222
2.457
3.418
3.418
0.916
3.334
4.810
5.872
1.322
2.883
3.002
5.891
1.211
1.206
1.737
2.023

P4
1.702
2.835
3.990
3.990
0.106
3.r.n
3.321
7.541
2.261
4.511
6.203
7.802
2.205
4.419
4.917
7.101
2.904
6.637
8.181
8.713
2.614
4.771
7.152
8.700
2.709
7.621
8.809
9.700
2.516
5.507
6.501
8.100
2.631
4.624
6.324
6.995
2.894
5.990
6.613
9.237
3.205
6.781
6.610
8.714
3.541
5.603
5.900
8.261
1.553
5.S01
7.892
7.882
2.612
6.995
6.117
8.993
1.259
4.340
4.891
7.313



Chapter 6

Exponential Smoothing Model
Selection Using ISM

'

6.1 Introduction

In Chapter 4 and o, different existing IC procedures and PEM were used for model

selection as well as for model selection and forecasting, based on simulated data.

Using simulated data might raise the criticism that the real time series data are

not so well behaved as the simulated time series. This happens jven when random

errors and outliers are included in the simulated series. However, the use of real

time series data are free from the above criticism. This chapter, therefore, aims

to develop a new individual selection method (ISM), based on PEM proposed in

Chapter 5, for selecting forecast models for real life time series data.

In this chapter, we consider a forecast model selection problem which we face in

many industrial applications including production planning, production scheduling

and inventory control. In these applications, hundreds or even thousands of series

need to be forecast on a routine basis. The forecaster may either select one ap-

propriate model for all series under consideration, or may build up a method that

will select the appropriate model for each series from a group of competing models.

The former is known as aggregate selection method and the latter as an individual

167
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selection method (ISM) (see Fildes, 1989). In this chapter, we develop an ISM,

based on PEM.

The motivation of developing an ISM arises from the results of previous studies

which showed that no single forecasting procedure or model stands out as the

best for producing forecasts for all series in a given data set (see Makridakis and

Hibon, 1979; Makridakis et al., 1982, Makridakis et al., 1993; Fildes et al, 1998;

Makridakis and Hibon, 2000). Further, the results of Chapters 4 and 5 show that

no one existing IC procedure (which selects a model for each data series) uniformly

performs better than the others, but the proposed PEM performs better than the

existing IC procedures considered in these chapters. Therefore, we consider a PEM

based ISM which will simulate the penalty values from the thousands of roughly

similar time series that need to be forecast on a regular basis.

Accurate prediction of future events is the ultimate objective of any forecasting

method. In the last few decades, many methods ranging from judgemental or

intuitive to highly structured and complex quantitative procedures have become

available for forecasting. Between these two, there are a very large number of

possibilities. These procedures differ in their cost, their accuracy, their complexity

and their underlying philosophies. However, because of a lack of information about

these differences, objective selection between these methods was extremely difficult

until the papers of Makridakis and Hibon (1979) and Makridakis et al. (1982).

The purpose of these papers was to assess different forecasting methodologies on

the basis of their post-sample predicting accuracy. Reid (1969, 1972) and Newbold

and Granger (1974) also compared a large number of series to determine their post-

sample accuracy. A shortcoming is that these early studies considered a limited

number of forecasting methods in their comparisons.

The major finding of Makridakis and Hibon (1979) and Makridakis et al. (1982)
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is that simple methods (e.g., exponential smoothing, damped trend) perform bet-

ter than those that are more statistically sophisticated. Another finding is that the

performances of various methods depend upon the forecast horizons. Further, from

the above studies it is evident that the accuracy of the various methods depends on

the series being forecasted. Recent studies of Makridakis et al. (1993), Fildes et al.

(1998) and Makridakis and Hibon (2000) also support these findings. Therefore,

using only one method for all series might be questionable. As there are many com-

petitive methods available, for each series there is considerable choice for selecting

a single method from a plausible group. Such a choice may improve forecasting

accuracy. From the theoretical standpoint as well as in practice, the implications of

making the right choice are very important. In many situations, considerable sav-

ings can be made even through small improvements in forecasting accuracy. With

this in mind, we consider IC methods for selecting forecasting models which, to

the best of our knowledge, have not been applied to the M3 competition data of

Makridakis and Hibon (2000).

For seasonal data, three models, namely, the simple exponential smoothing or

the local level model (SMI), Holt's exponential smoothing or the local trend model

(SM2) and Holt-Winters' exponential smoothing or seasonal model (SM3) are used

to form the plausible group. The SM3 model in the above set is replaced by the

damped trend model (SM4) for annual data. For comparison, six existing IC proce-

dures, namely, AIC, BIC, HQ, MCp, GCV and FPE are considered. A combination

of forecasts (COM), which is a simple average of methods in the plausible group,

is also included in the comparison (see Makridakis et al., 1982). Makridakis et al.

(1982) and Makridakis and Hibon (2000) showed that the COM method performs

better than individual methods considered in the combination. Further, on the

basis of PEM (either of PEM-GS and PEM-SA), an ISM, which is the main con-
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tribution of this chapter, is proposed for model selection for forecasting for the M3

competition data, where the true model is unknown.

The plan of this chapter is as follows. The point forecasts of the models under

consideration are presented in Section 6.2. The COM method for forecasting is

outlined in Section 6.3. Section 6.4 includes the description of an ISM for penalty

estimation for selecting a forecast model. The M3 competition data are discussed

in Section 6.5. The estimation method and design of experiment are discussed in

Section 6.6. The results of the study are discussed in Section 6.7 and the final

section contains some concluding remarks.

6.2 The Models and Their Point Forecasts

As mentioned earlier, in this chapter we use the SMI, SM2, SM3 and SM4 mod-

els as the forecast methods. These models were chosen because they are easy to

understand, non-linear in nature and very familiar to practitioners. Further, these

models produce better forecasts for real life time series data (see Makridakis et al.,

1982; Makridakis et al., 1993; Fildes et al., 1998, Makridakis and Hibon, 2000).

The point forecasts of these models are given as follows.

The state space form of the above models, as discussed in Section 3.2 of Chapter

3, is given by

Vt =

Pt =

Po =

(6.2.1)

(6.2.2)

(6.2.3)

where xt, fit, T*, a and 0Q are as defined in Section 3.2 of Chapter 3. Equations

(6.2.1) and (6.2.2) are known as the measurement and transition equations, respec-
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tively. At the end of period n, the transition equation can be written as follows:

fin = aen. (6.2.4)

Now, recursive substitutions (h — 1 times) for /?„ in the right hand side of (6.2.4)

yield.': the equation:

or, fin+h =

(6.2.5)

(6.2.6)
i=o

From (6.2.1) and (C.2-6), the /i-step ahead forecast yn(h) is given by

= x'tT*h-l0n, (6.2.7)

where xt is independent of time.

Substituting appropriate values of xt, T* and /?„ for the SMI, SM2, SM3 and

SM4 models, the point forecasts for these models are given, respectively, by

Vn(h) = /„,

yn(h) = /„-}

yn(h) = /„ + hbn

yn(h) = / n 4

ni

= Cn+h-s

(6.2.8)

(6.2.9)

(6.2.10)

(6.2.11)
«=0

where 3 is the length of seasonally, ct is the seasonal index at time t and /„ and bn

respectively, are the level and trend at period n.

As mentioned in Chapter 5, MSE and MAPE are the most popular and widely

used forecast evaluation criteria. For real life data, the calculated forecast MSE

often becomes very large, and hence, may be difficult to manage and also interpret

(see Makridakis et al., 1982). Further, MAPE, or equivalently symmetric mean

absolute percentage error (SMAPE) was used as the forecast evaluation criterion
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in all of the previous studies on the M (Makridakis et al., 1982), M2 (Makridakis

et al., 1993) and M3 competition data as well as for the sub-sample of the M

competition data (Makridakis et al., 1982). Therefore, to avoid large errors and to

enable comparison of the findings of our study with those of the previous studies,

in this chapter, we use MAPE as the forecast evaluation criterion.

6.3 Combining Forecasts (COM)

In this section, we outline the COM method in the context of the SMI, SM2 and

SM3 models. Once the seed values (for example, for the SM2 model, the seed

values are /o and &o) and the smoothing parameters of the models are estimated,

the point forecasts corresponding to the SMI, SM2 and SM3 models are generated

using the formulae given in (6.2.8) to (6.2.10), respectively. Let us assume that

ySm{h), ynM2{h) and y%M3(h) denote the point forecasts for the SMI, SM2 and

SM3 models, respectively. Based on the forecast methods (models) under consider-

ation, there are two types of COM methods, namely, the simple average of methods

and the weighted average of methods (see Makridakis et al., 1982). The weights

are calculated on the basis of the sample covariance matrix of percentage error for

all forecasting methods under consideration for the model fitted to each series (for

more details, see Makridakis et al., 1982). Between these two, the former is simple,

easy to understand and provides better forecasts than does the latter method (see

Makridakis et al. 1982). Therefore, in this study, we consider the simple average

of forecasts, which is given as follows:

(6.3.1)

From the study of Makridakis et al. (1982), this COM method was found to perform

better than the individual methods used in the combination. This method can be

VnW = \ (ys
n
m(h) + y™*{h) + ys

n
M3(h)) .
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generalized easily for any number of models under consideration.

6.4 Individual Selection Method (ISM) Via PEM

In this section, we develop an ISM using PEM-GS, where PEM-GS was discussed in

Chapter 5. As mentioned in Chapter 5, the required computational time for PEM-

GS was very high, particularly for a refined search. However, the computational

cost is less of an issue when using PEM-GS to estimate penalties for ISM. This

is because the structure of the current problem is very simple, compared to that

in Chapter 5. For example, the number of maximized log-likelihoods that were

penalized in the previous chapter is N2R, while this number reduces to NR when

dealing with real data, where N is the number of competing models and R is the

total number of series. Further, a simple grid can find a penalty set that selects

the model with the smallest forecast error for most of the series.

ISM is a two stage method because it requires estimation of the penalties first,

and then we use these estimated penalties to select models for forecasting future

observations. This method is appropriate for a particular set of time series. This

means, different types of time series data such as annual, quarterly and monthly

data will be treated separately by ISM. The selection criteria of ISM is the forecast

accuracy measure such as MAPE rather than the selection percentage or probability

of correct selection of a model. In general, for real life data, the true model is not

known. Therefore, for a particular data series, we select an appropriate model from

a group of competing models. Detailed description of this method is as follows.

In ISM we treat annual, quarterly and monthly data separately. Let us assume

that we are dealing with a particular class of series containing R series and each

series has n,- observations, i = 1,2, ••• ,R (the number of observations may vary

from one series to another). Initially, each series is divided into two segments, as
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was done by Makridakis and Hibon (1979), Makridakis et al. (1982), Makridakis

et al. (1993), Fildes et al. (1998) and Makridakis and Hibon (2000). Let n*{ be the

number of observations in the first segment and H be the number of observations

held back in the second segment. The value of H is determined by the forecaster,

according to the number of future forecasts to be made. The first n* observations

are used to estimate the competing models and their corresponding maximized

log-likelihoods. The rest of H observations are used for forecast evaluation. The

models are estimated by maximizing MGL, and hence, maximized log-likelihoods

(log of ICL) are calculated.

Let us assume that for a particular type of data set, pi,p2, • • • ,PN are penalties

to be estimated for the Mi, Af2,- ••, Af/y models, respectively. This means, the

penalty values for quarterly, monthly and annual data will be estimated by running

ISM for each data set separately. Without loss of generality, we assume pi — 0.

Then, the steps involved in the ISM for a particular class of R series are as follows:

Stage One:

Step 1: By using the first h* = n* — 1 observations of the first segment, all

the competing models are estimated and the maximized log-likelihoods are cal-

culated. For all models, a one-step ahead forecast is made at origin n*. Then,

for each competing model we calculate APE,(1) = f l2/rt*-*-i ~ 2/ri*(l)l) /yn*+ii where

APE,(1) is the one-step ahead forecast absolute percentage error (APE) for the fth

series. Thus, for each competing model, the maximized log-likelihood and APE are

calculated for every series under consideration.

Step 2: Following Step 1 and Step 2 of PEM-GS in Section 5.5, N* penalty

sets are generated. Let us denote these penalty sets by p{, • • • ,p^, j = 1, • • •, N*.

Then, the MAPE for the j>th penalty set is calculated by

t = i
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where APE,-(1) corresponds to the selected model for the zth series. Then, we

choose minJ=li...i//»(MAPEj(l)) and the corresponding penalty set with elements

Pi-)'" ,PN- Similar to AIC, in this case, we have a single penalty set for a particular

type of data set under consideration. The penalty values are recorded.

Stage Two:

Step 3: For each series, the competing models are fitted for the first n* ob-

servations and the corresponding maximized log-likelihoods are calculated and are

recorded (we have R sets of maximized log-likelihood for R data series).

Step 4: The maximized log-likelihoods (recorded in step 3) are penalized by

the penalties estimated (recorded) in step 2, and for each series, a model is selected

from the competing models. Each selected model is then used for making h-step

ahead forecasts at origin n*, h = 1, • • •, H. Thus, APE is calculated for all forecast

horizons for each data series under consideration. Finally, for comparison with the

existing IC procedures, for each forecast horizon h, an average (for APE) is taken

across all R series which gives MAPE for the corresponding h, i.e.,

1 R

6.5 Data Description

In this chapter, we discuss the M3 competition data of Makridakis and Hibon

(2000). This data set is a large and diverse set of time series collected from various

sources. This data set has been extensively used in many experiments for forecast

accuracy measures and also for comparing the accuracy of univariate forecasting

procedures. The popularity of this data set is because it has become a sort of

benchmark. It is rare that such a data set is readily available. Therefore, ,n this

chapter, we decided to apply the ISM as well as the existing IC procedures to this
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Table 6.1: Major categories of the M3 competition data.

Data Type

Micro
Industry
Macro
Finance
Demographic
Other
Total

Annual
146
102
83
58

245
11

645

Frequency
Quarterly

204
83

336
76
57

756

of Observations
Monthly

474
334
312
145
111
52

1428

Other
4

29

141
174

Total
828
519
731
308
413
204

3003

data set for selecting a model from a group of competing exponential smoothing

models.

The Md competition includes 3003 series which were selected on a quota basis

to include different types of time series data, such as macro, micro, industry, etc.,

and different time periods such as annual, quarterly and monthly. The minimum

number of observations for annual, quarterly, monthly and other series was set at

14, 16, 48 and 60 respectively. The reason for such a restriction was to ensure

enough data to develop adequate forecasting models. The classification of 3003

series is given in Table 6.1.

Let us assume that n,-, i = 1,2, • • • ,R, be the number of observations in each

series. Following Makridakis and Hibon (1979), Makridakis et al. (1982), Makri-

dakis et al. (1993) and Fildes et al. (1998), Makridakis and Hibon (2000) divided

each series into two segments. For monthly series, the models were estimated from

the first n,- — 18 observations and the post-sample forecasts were made at origin

tii — 18 for forecasting horizons 1 to 18. Forecast generation was independent of

post-sample observations. Similarly, for quarterly and annual series, the models

were estimated from the first n,- — 8 and n,- — 6 observations, respectively. Then,

forecasts were made at origins n,- — 8 and n,- — 6, respectively, and the post-sample
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forecasts were compiled by horizon.

6,6 Estimation Method and Design of Experi-
ment

By using various existing IC procedures, we selected a forecast model from a set

of competing models for each series under consideration. The ISM was also used

for model selection and forecasting. As we know, the IC based model selection

procedures are based on the estimated maximized log-likelihood function of the

corresponding data series. Therefore, all the models in the plausible group need to

be estimated using a suitable estimation method. Among others, the CL method

proposed by Ord et al. (1997) is the only likelihood approach in the literature that

can be used directly to estimate exponential smoothing models. Also, after some

suitable transformations of the original exponential smoothing models, the MGL

method can be used to estimate these models, which was discussed in Chapter 3.

In Chapter 3, we compared the CL and ICL based six versions of widely used

existing IC procedures. The simulation results of this chapter show that gains can

be made by using the IC procedures, based on the ICL method (which in turn

is based on MGL estimates). Further, from Chapter 4, it is evident that MGL

based IC procedures perform better than those based on the PL. In this chapter,

we therefore used ICL based IC procedures. For some models, the time taken

for estimation of parameters is very high, particularly for the Holt-Winters' model

with monthly data. In this case, there are 13 initial values (states) and 3 smoothing

parameters to estimate, and searching for optimal values in a space of 16 dimensions

is very time consuming. Therefore, the OLS method as discussed in Chapter 3 was

used to estimate the seed state vector (initial values). Then, using the GAUSS (see

Aptech, 1996) constrained optimization algorithm, the smoothing parameters were

. .
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estimated, holding the seed state vector at the OLS values. Also, the seed state

vector was re-estimated by using the optimized value of the smoothing parameters.

For optimization, the exponential smoothing parameters were restricted to lie

within the following intervals:

level parameter: 0.0 < a\ < 0.99,

trend parameter: 0.0 < c*2 < 0.99,

seasonal parameter: 0.0 < c*3 < 0.99,

damped parameter: 0.0 < <j) < 0.99.

The seed state vector (see Chapter 3) was also restricted so that the seasonal indices

of the Holt-Winters' model add to zero. Once the likelihood is optimized, the models

can be selected by using the existing IC procedures and the ISM. Then, the post

sample forecasts for quarterly, monthly and annual data were made at origins n,-—8,

n,- — 18 and n,- — 6, respectively (Makridakis and Hibon, 1979; Makridakis et al.,

1982; Makridakis et al., 1993; Fildes et al., 1998; Makridakis and Hibon, 2000).

6.7 Results and Discussion

The results from the M3 competition data are presented in Tables 6.2 to 6-6 and

Figures 6.1 to 6.4. Table 6.2 and Figure 6.1 show the selection performance of

various existing IC procedures and the ISM, Tables 6.3 to 6.5 include the MAPEs,

and the graphical presentation of these MAPEs are shown in Figure 6.2. The

differences (ISM—Best Existing IC) between selection percentages are shown in

Figure 6.3. The estimated penalties for the M3 data are presented in Table 6.6 and

in Figure 6.4. Detailed discussion of the results is as follows.

The selection percentage of various models by the existing IC procedures for

different types of series are presented in Table 6.2 and Figure 6.1. Table 6.2 and
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Table 6.2: Selection percentages of different models by various IC procedures and
ISM for the M3 competition data series.

Data Type
Quarterly

Monthly

Annual

Models
SMI
SM2
SM3
SMI
SM2
SM3
SMI
SM2
SM4

AIC
11.24
21.16
67.59
1.33
5.60

98.11
17.46
29.79
52.75

BIC
18.65
26.85
54.50
5.74
3.43

90.83
24.05
37.48
38.46

HQ
13.89
23.28
62.83
2.94
1.68

95.38
18.07
31.01
50.92

MCp
11.11
19.58
69.31

1.26
4.90

98.25
16.85
27.84
55.31

GCV
12.04
22.62
65.34

1.40
5.60

98.04
19.66
35.53
44.81

FPE
11.51
21.43
67.06

1.33
5.60

98.11
17.83
30.28
51.89

ISM
35.05
25.26
39.68
52.10
16.81
31.09
32.17

1.10
65.93

Figures 6.1(a) and 6.1(b) show that for quarterly and monthly data, the SM3 model

is selected most often, followed by the SM2 model, and the SMI model is chosen

least often. Exceptions are found for monthly series where BIC and HQ select the

SM2 model least often. Compared to the existing IC procedures, the ISM selects

the single exponential smoothing model more often. For example, as shown in Table

6.2, for quarterly and monthly data, BIC selects the SMI model 18.65% and 5.74%

of the time respectively. On the other hand, for these data, the ISM selects the

SMI model 35.05% and 52.10% of the time respectively. Table 6.2 and Figure 6.1(c)

show that for annual data, all the existing IC procedures and the ISM selects the

SM4 model more often than any other model in the competitive group. Again, the

ISM selects the SM4 model more often than the existing IC procedures. The results

from the ISM are quite consistent with the findings of Makridakis and Hibon (2000),

where, in general, simple methods such as Brown's single and Gardner's damped

trend exponential smoothing were found to perform as well as, or better, than some

statistically sophisticated ones.

For the quarterly M3 data, as indicated by Table 6.3, it is clear that among
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Table 6.3: MAPE for forecast horizons 1 to 8 of models selected by various IC
procedures, ISM and the COM method for the quarterly M3 competition data
series.

h
1
2
3
4
5
6
7
8

AIC
5.85
7.62

10.02
9.44

13.12
13.83
15.77
27.04

BIC
5.78
7.53
9.79
9.26

12.96
13.54
15.36
26.55

HQ
5.87
7.63

10.00
9.45

13.19
13.84
15.74
26.97

MCp
5.87
7.59

10.00
9.44

13.12
13.80
15.75
27.03

GCV
5.84
7.62
9.98
9.40

13.10
13.77
15.66
26.93

FPE
5.86
7.62

10.02
9.44

13J2
13.83
15.77
27.05

ISM
5.77
7.12
9.74
8.95

11.41
11.56
13.17
24.38

COM
7.35
7.96

11.12
10.06
13.35
13.25
15.45
23.56

the existing IC procedures, in terms of MAPE, BIC performs better for all forecast

horizons. All the existing IC procedures used in this chapter are better than the

COM method for the forecast horizons 1 to 5. The MAPE of BIC, the ISM and

the COM methods are also presented in Figure 6.2(a) which shows that the ISM

performs better than the COM method for forecast horizons 1 to 7, and better

than BIC for all horizons. For the quarterly M3 competition data, compared to

the existing IC procedures, the performance of the ISM improves as the forecast

horizon increases.

The MAPE for the monthly M3 competition data are presented in Tab!.? 6.4,

which shows that in general, the MAPE of BIC is slightly lower than that for other

existing IC procedures at each forecast horizon. Indeed, there is no significant

difference between the MAPE of various IC procedures. Figure 6.2(b) and Table

6.4 show that the COM method performs better than the existing IC procedures

for all forecast horizons longer than 2. Clearly, irrespective of forecast horizon, the

ISM performs better than the COM method and the existing IC procedures. As the

forecast horizon increases, the ISM improves relative to the existing IC procedures

and the COM method.
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Table 6.4: MAPE for forecast horizons 1 to 18 of models selected by various IC
procedures, ISM and the COM method for the monthly M3 competition data series.

h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

AIC
15.54
12.76
16.49
20.10
19.77
20.08
20.23
23.66
25.45
22.61
28.63
25.67
34.91
30.59
30.23
28.34
29.10
31.23

BIC
15.45
15.95
16.37
20.00
19.32
19.77
20.13
23.53
25.26
22.49
28.41
25.50
34.76
30.36
29.86
28.06
28.76
31.26

HQ
15.48
15.81
16.41
20.07
19.34
19.95
20.13
23.60
25.28
22.44
28.53
25.48
34.72
30.36
30.06
28.15
28.82
31.17

MCp
15.54
15.93
16.49
20.10
19.77
20.08
20.23
23.66
25.45
22.61
28.64
25.67
34.91
30.42
30.23
28.34
29.10
31.23

GCV
15.55
15.95
16.48
20.09
19.76
20.06
20.22
23.65
25.44
22.58
28.61
25.64
34.87
30.59
30.20
28.35
29.06
31.19

FPE
15.54
15.95
16.49
20.10
19.77
20.08
20.23
23.66
25.45
22.61
28.63
25.67
34.91
30.56
30.23
28.43
29.10
31.23

ISM
12.86
12.76
13.24
16.21
16.07
16.19
16.05
19.18
21.36
17.83
24.22
20.53
26.62
22.27
21.69
19.55
19.76
22.62

COM
15.58
16.14
15.88
18.70
18.50
19.22
19.95
22.36
24.14
21.22
26.16
24.34
31.47
26.76
26.62
25.46
25.68
27.64

Table 6.5 and Figure 6.2(c) show the MAPE for the annual M3 competition

data. Among the existing IC procedures, in general, MCp performs better in terms

of MAPE. Surprisingly, the COM method is better than all existing IC procedures.

However, irrespective of forecast horizon, the performance of ISM is better than

the COM method, and hence, better than all existing IC procedures. Starting from

h = 2, as the forecast horizon increases, the difference between MAPE of the ISM

and the existing IC procedures (for example, MCp) increases (see Figure 6.2(c)).

Further, for the M3 competition data, the differences between the selection

performances of the ISM and the best existing IC procedure (for quarterly and

monthly data, BIC is better and for annual data, MCp is better) are presented in

Figure 6.3. This figure shows the differences of all the existing IC from the ISM
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Table 6.5: MAPE for forecast horizons 1 to 6 of models selected by various IC
procedures, ISM and the COM method for the annual M3 competition data series.

h AIC BIC HQ MCp GCV FPE ISM COM"
1 19.36 19.40 19.47 19.31 19.33 19.29 16.03 18.38
2 19.05 19.07 19.08 18.89 19.13 19.01 17.59 18.67
3 19.67 19.70 19.64 19.52 19.63 19.59 17.28 18.85
4 26.20 27.04 26.99 26.92 27.05 26.17 23.82 26.03
5 26.01 26.09 25.99 25.75 26.11 25.97 22.20 24.85
6 28.55 28.71 28.45 28.27 28.78 28.59 24.53 27.35

Table 6.6: Estimated penalties by ISM for the M3 competition data series.

Data Type Estimated Penalties for ISM
Pi Pi P3

Quarterly 0.0 4.500 22.250
Monthly 0.0 3.750 6.875
Annual 0.0 6.425 1.925

for all forecast horizons. These differences are very high (negatively), particularly

for the SM3 (for quarterly and monthly data) and SM2 (for annual data) models.

This means that depending on the type of data, the existing IC procedures have a

tendency to select the SM3 and SM2 models more often than the ISM.

The penalty values for AIC and those estimated by the ISM for the M3 competi-

tion data are presented in Figure 6.4 and Table 6.6, which show that the estimated

penalties for larger models are much higher than those of AIC for quarterly aiid

monthly data. This is also true for other existing IC procedures. This leads the ISM

to select simple models more frequently than the existing IC procedures. In fact,

the existing IC procedures cannot penalize sufficiently the log-likelihood function

of larger models (for example, seasonal model SM3), and hence, have a tendency

to select bigger models. Therefore, the ISM provides better forecasts than the ex-

isting IC procedures as it is able to penalize the maximized log-likelihood functions
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more efficiently than the existing IC procedures. For annual data, compared to

the existing IC procedures, the ISM penalizes the SM2 model more heavily, but it

penalizes the SM4 model slightly less. However, this does not occur for any of the

existing IC procedures.

6.8 Conclusions

We have proposed an ISM for selecting forecast models for real life time series data

and have applied it to the M3 competition data, which we subdivided in to three

sets of data, namely, annual, quarterly and monthly data. The forecasting accuracy

of the ISM, the COM method and the existing IC procedures have been compared.

Compared to the existing IC procedures, for quarterly and monthly data, typically,

BIC performs better and for annual data, overall, MCp performs better. In general,

the COM method performs better than the existing IC procedures with an exception

for quarterly data, where the latters perform better than the COM method for

h < 4. Irrespective of forecast horizon, in general, the ISM performs better than

the existing IC procedures and the COM method for all forecast horizons. The

ISM penalizes the larger models more efficiently than the existing IC procedures,

and hence, selects appropriate models more often than that of the existing IC

procedures. This performance of the ISM is in agreement with the previous study

on the M3 competition time series data, where the simple exponential smoothing

model and the damped trend model were found to perform as well as or better

than Holt's linear trend model and the Holt-winters' seasonal model, particularly

for longer forecast horizons. Although, the division of the M3 data set into annual,

quarterly and monthly data was fairly rough, yet the ISM produced better results

compared to the existing IC procedures and the COM method. We are optimistic

that it might work even better for typical industrial applications, where thousands
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of very similar data series need to be forecast on a regular basis.
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a: % of Selection for the Quarterly M3 Competition Data

ISM

b: % of Selection for the Monthly M3 Competition Data

AIC BIC HQ MCp GCV FPE ISM

ESM1
HSM2
DSM3

c: % of Selection for the Annual M3 Competition Data

Figure 6.1: Selection percentages for different models by the ISM and various ex-
isting IC procedures across all forecast horizons for the M3 competition data.
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a: MAPE for Quarterly M3 Competition Data
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b: MAPE for Monthly M3 Competition Data
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Figure 6.2: Comparison between MAPE of BIC, the ISM and the COM method
across different forecast horizons for the M3 competition data.
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40

a; Quarterly M3 Competition Data

IC

b: Monthly M3 Competition Data

IC

c: Annual M3 Competition Data
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Figure 6.3: Difference (ISM minus BIC) of selection percentages for different models
across all forecast horizons for the M3 competition data.



CHAPTER 6. EXPONENTIAL SMOOTHING 188

b: Monthly M3 Competition Data

c: Annual M3 Competition Data

Figure 6.4: Comparison of the estimated (by ISM) and AIC penalty values for
different models for the M3 competition data.

1. '



Chapter 7

Conclusions

This thesis has investigated several important issues on IC based small sample

model selection for exponential smoothing models, as well as regression models with

ARMA error processes. The first aim was to introduce CL based IC procedures for

selecting between exponential smoothing models and also to propose ICL (based

on MGL) based IC procedures, which to the best of our knowledge, have not been

considered before. The second aim was to develop a new model selection procedure

called PEM (PEM-GS and PEM-SA), which estimates the optimal penalty values

so that the OAPCS is maximized for the particular sample size and the set of

models under consideration. We also compared the performances of PL and MGL

based IC procedures. Another aim was to extend the PEM based model selection

procedures to a new loss function reflecting forecast accuracy rather than average

probabilities of correct selection. Finally, this thesis attempted to develop an ISM

for selecting between exponential smoothing models for real life collections of time

series data. The following is a detailed discussion of the findings of this thesis.

The literature survey of Chapter 2 showed that there are not many comprehen-

sive studies that have evaluated the relatively small sample performance of various

existing IC model selection procedures. The majority of the research in this area

has been related to asymptotic properties and Monte Carlo studies have mainly

189
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been used to illustrate the asymptotic results. This led to the identification of the

need to develop a small sample model selection procedure. Further, Chapter 2

included a survey of various exponential smoothing methods and their correspond-

ing state space models, and promoted the application of IC based model selection

procedures in the context of exponential smoothing models.

Chapter 3 showed that the development of CL methods to exponential smooth-

ing models allows the application of IC procedures to model selection for these

models. This led to a study of selection probabilities of exponential smoothing

models for distinguishing the best form of penalty function among some popular

and widely used existing IC procedures. Some preliminary simulations showed that

the selection performances of the existing IC procedures are determined by the

choice of exponential smoothing parameters. Therefore, we introduced APCS by

generating exponential smoothing parameters from a weighting distribution rather

similar to a prior distribution. Then, OAPCS was used as a measure for ranking

the relative performances of the existing IC procedures. We found that of the ex-

isting IC procedures, BIC performs best, followed by HQ and MCp is the worst.

Further, we proposed the ICL method, and compared the performances of CL and

ICL based IC procedures. Our results showed that the ICL based IC procedures

perform better than those based on CL.

In Chapter 4, a model selection problem for the linear regression model with

different ARMA error processes was considered. We proposed new model selection

procedures, namely, PEM-G3 and PEM-SA, which estimate optimal penalties so

that OAPCS is maximized. We found that the performances of different existing IC

procedures depend on a number of factors such as sample size and design matrix,

and no one procedure performs best. The new approaches (PEM-GS and PEM-SA)

perform better than the existing IC procedures used in this chapter. However, in
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some cases, PEM-GS was found to perform slightly better than PEM-SA, but with

a cost of high computational time. We also compared the performances of PL and

MGL based model selection procedures. The simulation results demonstrated that

the MGL based IC procedures perform better than those based on PL.

In Chapter 5, we introduced model selection using forecast MSE as the selection

loss function rather than average probabilities of correct selection. In this chap-

ter, we developed a small sample theory for OAMSE, and extended the new model

selection procedures (PEM-GS and PEM-SA) proposed in Chapter 4 to the new

loss function. These procedures estimate the penalty values so that OAMSE is

minimized. The results of this study showed that for longer forecast horizons, in

general, BIC performs better than other existing IC procedures in selecting the ap-

propriate forecast model. Typically, AIC was found to perform moderately well for

one-step ahead forecasts. Indeed, the forecasting performances of various existing

IC procedures are affected by sample size, design matrix and forecast horizon. On

the other hand, irrespective of sample size, design matrix and forecasting horizon,

the proposed PEM-GS and PEM-SA consistently perform better than the existing

IC procedures used in this chapter, particularly for .̂ mall sample sizes and larger

forecast horizons. In general, PEM-GS performs slightly better than PEM-SA, but

the former takes a much longer computational time compared to PEM-SA.

A new ISM was proposed in Chapter 6 for selecting exponential smoothing mod-

els for forecasting real life time series data. We applied the existing IC procedures

and ISM for selecting models for the M3 competition data of Makridakis and Hibon

(2000). The time series were divided into three groups, namely, annual, quarterly

and monthly, and ISM was applied to each group separately. The performances

of ISM, the COM method and various existing IC procedures were compared by

using MAPE as the forecast accuracy measure. For quarterly and monthly data,
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the existing IC procedures select the Holt-Winters additive seasonal model most

often, followed by Holt's tret d model, and the simple exponential smoothing model

was selected the least often. However, compared to the existing IC procedures, ISM

selects the simple exponential smoothing model more often. In terms of MAPE,

among the existing IC procedures, typically, BIC performs best. The COM method

performs better than the existing IC procedures for forecast horizons h > 5 (for

quarterly data) and h > 2 (for monthly data). Irrespective of forecast horizon,

in general, ISM performs better than the existing IC procedures and the COM

method. For annual data, ISM selects the damped trend and simple exponential

smoothing model mere often than the existing IC procedures. In terms of MAP~

among the existing IC procedures, MCp performs best, and the COM method per-

forms better than MCp for forecast horizons h > 3. ISM performs better than the

COM method as well as the existing IC procedures. We recommend the applica-

tion of ISM in situations where forecasts are required on a routine basis for a large

number of similar time series.

We summarize the findings of this thesis as follows. Firstly, our results showed

that the IC method can be successfully applied to selecting exponential smoothing

models from a group of competing models, and ICL based IC procedures perform

better than those based on CL. Secondly, in small samples, with respect to OAPCS,

the proposed PEM-GS and PEM-SA based model selection methods consistently

perform better than the existing IC procedures, and the MGL based procedures

typically perform better than those based on PL. Thirdly, PEM-GS and PEM-SA

were extended for selecting models on the basis of the model's forecasting accu-

racy. The results showed that these new methods work better than those existing

IC procedures used in our study. Finally, with respect to MAPE, the proposed

ISM performs better than the existing IC procedures as well as the COM method
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when applied to the M3 competition data. Overall, the model selection techniques

proposed in this thesis were found to be better than the currently available IC

methods. Therefore, we recommend the use of these new procedures (particularly

PEM-SA and ISM) in conjunction with maximized MGL when faced with choosing

between different exponential smoothing models as well as regression model with

various ARMA disturbance processes.

Our results also raise several interesting questions which invite future research

on model selection problems. Some of these are summarized as follows:

• Our proposed small sample model selection procedures can be applied to a

number of other model selection problems which have not been considered

in this thesis such as heteroscedasticity and error component ii'gression error

models.

• In Chapter 2, we discussed 24 versions of different kinds of exponential smooth-

ing models (additive and multiplicative error models). Selecting models from

this group of 24 competing models is an option worth exploring. This can be

done for generated as well as for the M, M2 and M3 competition data.

• The M, M2 and M3 competition data can be deseasonalized, and the various

IC procedures outlined in this thesis, can be applied to the problem of se-

lecting between the simple exponential smoothing model, Holt's linear trend

model and the damped trend model. The forecast MAPEs obtained can be

compared with those from the COM method, robust trend method and theta

method. Note that the study of Makridakis and Hibon (200G) showed that

the robust trend and theta methods perform very well when compared to

exponential smoothing methods.

• The proposed ISM can be extended to estimating a separate penalty set for
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each forecast horizon. This extended method may give better forecasts com-

pared to its present form, but it requires a higher level of computational

effort, and the extended ISM cannot be applied to series with relatively small

numbers of observations.

• The robustness properties of our proposed PEM can be investigated in the

face of departures from normality for non-normal error distributions. The

errors can be generated using Ramberg and Schmeiser's (1972) algorithm.

More details about simulating non-normal error distributions can be found in

Ramberg et al. (1979) and Lye and Martin (1993).

• Model selection can be based on the accuracy of estimation of a key parameter

in a collection of models. For example, consider the following regression model

with ARMA disturbance processes:

(7.0.1)y = Xfi + Zj + u,

where f3 is the parameter of particular interest, 7 is a k x 1 vector of nuisance

parameters, X is a regressor vector, Z is a regressor matrix and u is an

ARMA(p*, q*) process. Then, the loss function MSE(^) can be used as the

criteria for determining the parameters for selecting between different models

with different error processes in the context of the above regression model.

• Further, models can also be selected through the hypothesis testing approach,

where the power of the test on f3 in (7.0.1) is used as the selection criteria.

This approach may not work for all model selection problems, however it is

worthy of further investigation.
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