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Abstract
Analysis of the transitional dynamics of endogenous growth models with more than a single
state variable has been a somewhat neglected area. No doubt this has been due to analytical
difficulties associated with the non-linear differential equation systems. While some
'characterisations' of the dynamics have been made, complete numerical analyses have been
rare. Instead, the tendency has been for models to be examined in terms of their steady-state
growth paths; and for their responses to exogenous economic shocks to be analysed by
comparing their pre- and post-shock steady-state equilibria, a so-called comparative statics
approach. This thesis seeks to contribute towards closing the gap in the analysis of transitional
dynamics. It also seeks to examine the dynamics of an important model of endogenous growth, *
both to illustrate the techniques of dynamic analysis, and to advance examination of the
economics of the model beyond that of comparative statics.

i Various (approximate) techniques for analysing the dynamics of the model are developed: First
i it is linearised and a 'closed form' solution obtained. Next its phase-space is calculated and
j examined qualitatively. Then an abridged 'Solowian-Romsr' model is developed and its simpler
| i dynamic system is examined by both numerical integration and quantitative phase space
! analysis. This abridged model is shown to be simply a particular parameterisation of the full
j ! model.
i;
\ | Numerical integration techniques for dynamic analysis of the full model are then examined.

\\\ 'Shooting' is found not to work. Three other techniques are considered: 'time elimination',
\ i 'eigenvector-backwards integration' and 'finite differe nces'. The latter, when implemented via a
I : software package known as GEMPACK, is shown to be clearly superior. This technique is
\ applied to the dynamic analysis of a variety of simulated exogenous shocks to the model.
i Numerical results are scrutinised and the underlying economic mechanisms identified and

explained. Comparative statics analysis is shown to conceal a great deal of transitory change,
;; both in terms of relative magnitudes and in terms of persistence over time. Transitional
;: adjustment is found to be characterised by relatively large discontinuous jumps in many
;| variables, and by half-lives of adjustment of the order of two decades.

ji A social optimum solution to the model is derived and compared with the sub-optimal market
• solution, revealing a significant degree of forgone welfare'. The imperfections of the market
\ model are examined and identified as the causes of specific differences between the two models.
! From this a variety of subsidisation schemes capable of converting the steady-state market
! outcomes into the socially optimum ones are devised. Subsidies are then implemented, in
\ various different ways, as shocks to the model and the resulting adjustment paths from the
\ \ market solution steady-state to the socially optimum one are computed and analysed.

\ Finally, the implications for economic policy arising from the characteristics of adjustment
\ [ paths are identified and discussed. In particular, once long-term policy is set, a case is made for
I a greater focus on the economic management of short-run adjustment.

;; * Paul M. Romer (1990), "Endogenous Technological Change", Journal of Political
\} Economy, Vol. 98, No. 5, Part 2

viii Abstract
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Chapter 1

1 Introduction

1.1 Background

This dissertation is concerned with the dynamics of endogenous economic growth
theory. In particular, it involves a detailed examination of the transitional dynamics (that
is the movement from some current state towards a steady-state equilibrium) of the
endogenous growth model from Paul Romer's 1990 Journal of Political Economy
article: "Endogenous Technological Change" (Romer, 1990b).

The initial idea for a PhD topic was to examine the 'new growth theory' literature with a
view to incorporating its fundamentals in a large computable general equilibrium model
of the Australian economy: the 'MONASH Model', being, developed at the Centre of
Policy Studies at Monash University by Peter Dixon and his colleagues. However, it
gradually became apparent that this was not a viable task, at least not for a PhD topic.
As a result, such work remains as a possible area for further and future research (see
Section 6.3).

Nevertheless, it was apparent that die field offered more than ample scope for
identifying a suitable alternative. Despite there having been a great deal written on the
subject of endogenous growth by the mid-1990s, and despite its fundamentally dynamic
nature, it seemed that very little work had fully addressed the dynamics of the growth
systems. Most work was concerned with solving the dynamic systems to establish their
balanced growth equilibria, and then undertaking a form of comparative statics analysis
whereby the impact of economic shocks or policy changes were assessed by comparing
the pre- and post-shock equilibria.1 For example, see Arrow (1962b), Sheshinski (1967),
Lucas (1988), Romer (1990a and 1990b), Jones and Manuelli (1990), and Rebelo
(1991).

Although generally a more difficult problem, the basic differential equations of any
growth model can also be solved to establish the paths towards equilibrium from
arbitrary starting points.2 These are the transitional dynamics of a growth system. The
issues here seemed interesting and important, and there seemed to be something of a
gap in the literature.3 For these reasons the "dynamics of endogenous economic growth"
was selected as the topic for the PhD dissertation. Motivation for this choice was also
provided by certain views expressed in the literature. For example:

1 Typically, the dynamic equilibrium of a growth model is a balanced growth path, where the asymptotic
growth rates of key variables are identical and constant. Since this means that the ratios of many variables
are asymptotically constant it is also referred to as a steady-state equilibrium.
2 Actually, it is rarely possible to obtain analytic solutions; but numerical solutions can be obtained by a
number of techniques (see Chapters 3 and 4).
3 Mulligan and Sala-i-Martin (1993) also identified this gap in the study of transitional dynamics, noting
that: "Due to its analytical difficulty...these transitional dynamics are always left unexplained". But their
paper, which contributed significantly towards filling the gap, was not discovered until much later.
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In respect of his endogenous growth model that is studied here, Paul Romer commented
tbat:

"...Studying this kind of model is feasible in principle, but it would
require explicit attention to dynamic paths along which growth rates
vary, a kind of analysis much harder to undertake than balanced growth
analysis."(Romer, 1990a; p.346).

and

"By focussing on only balanced growth paths, the analysis neglects the
transient dynamics....One should be able to study convergence to the
balanced growth....by using the tools used for studying the Solow and
Uzawa models, but this analysis is not attempted here." (Romer, 1990b;
p.S90).

and also

"Any intervention designed to move an economy from one balanced
growth path to another must consider the transition dynamics along the
way, and an explicit analysis of these dynamics is beyond the scope of
this paper."(Romer, 1990b; p.S97).

Having also developed a two-sector endogenous growth model with human and
physical capital, Lucas only conjectured about the dynamics of the system, noting that:

"The dynamics of this system are not as well understood as those of the
one-good model." (Lucas, 1988; p.25).

And Chiang, commenting on Romer's (1990b) model noted that:

"Since there are four differential equations, the system cannot be analysed
with a phase diagram. And solving the system explicitly for its dynamics
is not simple." (Chiang, 1992; p.273).

In addition, a comment by Mulligan and Sala-i-Martin that would have been equally
motivating but for the feet that it was not discovered until some time after the relevant
work had already been achieved was:

'1 invite (dare) the reader to draw a phase diagram for the Lucas
model....and for the more general two sector models...." (Mulligan and
Sala-i-Martin, 1991; footnotep.il).

Having decided to study the dynamics of endogenous growth, one option would have
been to select a technique by which dynamic paths could be calculated and then to apply
this to the dynamic systems of a number of different endogenous growth models,
comparing the results. However, a considerable amount of effort went into
understanding and developing a full dynamic version of the model due to Romer
(1990b),4 and into learning about the techniques of dynamic analysis and applying them
to that model. As a result, the dissertation has focussed upon a detailed examination of
the dynamics of the Romer (1990b) model, the analysis being conducted through the use

4 Particularly into establishing the necessity for, and then identifying a 'second so-called trcmsversality
condition"; and into calibrating the model to fit the Australian economy (see Chapter 2, especially
Sections 2.2.5, 2.3 and 2.4).
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of a variety of techniques.5 Since the results from these are all approximations of one
sort or another, the performances of the different techniques are compared (Appendix
4.4).

The remainder of this chapter is structured as follows: First, a short history of the
development of economic growth theory up to Romer's (1990b) model is presented in
Section 1.2. The principal aim here is to provide some perspective for the dissertation in
general; and more particularly, for where the model studied stands in relation to the
history of economic thought on growth theory. Finally, an outline or summary of the
dissertation is provided in Section 1.3.

1.2 A short history of economic growth theory

Research activity in the theory of long-run growth has, ironically, tended to follow a
path more akin to the fluctuations of a long business cycle (or a short Krondratieff one)
than the smooth advancement of the steady-state growth process itself. The current
episode of research activity, the 'endogenous growth era', began some 15 years ago
with the publication of Paul Romer's influential 1986 Journal of Political Economy
article "Increasing Returns and Long-Run Growth". This was preceded by about 15
years of relative inactivity that in turn followed the active 'neoclassical growth era',
again of about 15 years, whose beginning in 1956 was marked by the seminal
contributions of Solow (1956) and Swan (1956). Prior to this were the 'Keynesian'
growth model contributions of Harrod (1939) and Domar (1946) and before these, the
pioneering and precocious work of Ramsey (1928).

1.2.1 Classical, Keynesian, and neoclassical growth theory

As an essential and central issue of economics, growth theory is as old as the discipline
itself, many of the fundamental ideas coming from the classical economists of the 18th

and 19th centuries: Adam Smith, Thomas Malthus, David Ricardo and Alfred Marshall.
Much later, the ideas of Young (1928), Schumpeter (1934 and 1942), and Knight (1925
and 1944) played significant roles. Moreover, some of the concepts accepted today as
central elements of growth theory had lengthy gestations, with many different
economists contributing to their development. For example, Romer (1986a and 1986b)
traced the development of the idea of externalities and increasing returns as an essential
element of modern growth theory from:

• Adam Smith's (1776) story of the pin factory and his concept of the division of
labour;

• through Marshall's (1890) notion of economies that are external to firms;
• Young's (1928) model of growth based on specialisation and externalities;

5 This model is of considerable importance. It represents an extension of what was the seminal work on
the new endogenous growth theory (Romer, 1986a); and it captures both of the two main issues long held
to be the driving forces of economic growth: Namely, increasing returns due to specialisation, and
externalities from the accumulation of knowledge. Some work was also done on the model due to Lucas
(1988), sufficient to indicate that it could also be analysed by all the techniques employed here (including
the development of a Solowian-Lucas version of the Solowian-Romer model - see Section 3.4.).
Otherwise, work on different models has to be considered an opportunity for future research.
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• Knight's (1925) objections to the many (indeed spurious) industrial specialisation
and organisational examples of such externalities;6

• Mead's (1952) formalisation of the concept of true 'technological external
economies';

• Arrow's (1962b) 'learning-by-doing' growth model; and
• Chipman's (1970) demonstration that a perfectly competitive general equilibrium is

not inconsistent with increasing returns and (true) externalities.

In this way a formal growth model based upon a version of Marshall's concept of
external economies was finally developed and rigorously justified. As a result, it
became widely recognised that as an input to production, the output of research and
development, or knowledge, leads to increasing returns and spillovers that cannot be
internalised by the firms or individuals who generate it.7

The chronology of the development of modern growth theory begins here with the
qualitative model of Young (1928), who described a model of growth driven by
increasing returns. Following Adam Smith, Young took the degree of specialisation to
be both encouraged and limited by the 'extent of the market'.8 However, he argued that
the limiting effect would be overcome by the increased demand generated by rising
incomes. Thus, Young described how a virtuous circle of growth could arise: with
increased specialisation improving productive efficiency and allowing output to grow
faster than inputs; thereby generating growth, raising per capita incomes and expanding
demand; and so increasing the 'extent of the market' to permit further specialisation for
the next round of the growth cycle. Young also argued, following Marshall, that such
growth could be consistent with a competitive equilibrium because the increasing
returns from specialisation would take the form of improvements in industrial
organisation as a whole, and so be external to individual firms. While this view of
external economies was later discredited (following Knight, 1925; Meade 1952; and
Chipman, 1970), it turned out that Young's insight into specialisation as an engine of
growth (regarded as 'fundamental' by Kaldor),9 relied on a different type of externality.
But one that had to wait nearly 60 years before it was formalised by Romer (1986b and
1987).

It was also in 1928 that Frank Ramsey's classic work on optimal savings appeared. In
purely technical terms Ramsey's treatment of intertemporal optimsation on the part of
consumers must rank as among the most influential of contributions, not only to modern
growth theory, but to modern economics in general. Though Ramsey operated in a
world of the 'calculus of variations' and its 'Euler equations' the principles and
conditions he introduced to economists now pervade the discipline to such as extent
that, as Barro and Sala-i-Martin (1995) point out, it is difficult to discuss whole topics
without them. In terms of its influence on growth theory, Barro and Sala-i-Martin

6 According to Romer (1986a), Knight had been a student of Young's.
7 With die addition of Romer's (1986b and 1987) models, the above path also leads to the modern
recognition of'growth based on increasing returns due to specialisation'.
8 The idea appears to be that with a relatively small market it may not be 'worth' paying the fixed costs
associated with an increase in specialisation, such as the cost of equipment for some new production
technique; but that with a relatively large market it may become 'worthwhile'. Note that this requires a
capacity to recover such fixed costs - by charging a price greater than the marginal costs of the newly
made products.
9 See Kaldor (1981) and Sandilands (1990).

4 Chapter 1

(1995) have described Ramsey's work as "the starting point for modern growth theory";
and Hahn (1990) has opined that "Ramsey led the way to a study of optimal growth".
But Ramsey's work was ahead of its time. Almost 40 years was to pass before it would
suddenly take-off with the work of Cass (1965), Koopmans (1965), and Shell and his
contributors (1967a), newly couched in the terms of 'optimal control theory', ths
'Hamiltonian', and the 'Maximum principle'.

Following Ramsey there was little development of growth theory, at least in terms of
formal modelling, until the work of Harrod (1939) and Domer (1946); Of course this is
not to say that thinking about economic growth ceased. On the contrary, the work of
economists such as Schumpeter (1934 and 1942) and Knight (1944) introduced ideas
that are fundamental to modern theory. For example, Schumpeter's (1934) process of
'creative destruction', whereby new inventions render existing capital obsolete and
result in the demise of its producers, is the basis for the modern 'vertical innovation' or
'quality ladder' models. And his contention that research and development is an
ordinary economic activity, undertaken intentionally and in response to profit
incentives, and that this implies a sub-optimal equilibrium characterised by market
power (Schumpeter, 1942), are central and explicit propositions to Romer's (1990a and
b) models, and similarly underlie virtually all of the subsequent endogenous growth
theory. Also, the idea that diminishing returns to capital might be avoided if a broad
enough concept of capital was considered, in particular, one including 'human capital',
goes back to Knight (1944). This idea forms the basis of Rebelo's (1991) so-called AK-
model of endogenous growth.11

Around 1940 a model was developed that is notable now for the fact that it contributed
little to the subsequent development of growth theory. This was the Keynesian styled
model proposed (independently) by Harrod (1939) and Domar (1946). Using a fixed
proportions production function (so no substitution was allowed between labour and
capital), the Harrod-Domar model suggested that balanced growth was only possible on
a 'knife edge' (when four exogenous parameters satisfied an equality relationship).12

Otherwise the model led to perpetually increasing unemployment of either labour or
capital. No doubt the backdrop of the Great Depression influenced the conclusion of
Harrod and Domar - that capitalist economies were inherently unstable -and the
credence this received at the time. Nevertheless, the implausibility of the assumptions
seem spectacular when viewed from today: Why should consumers continue to save at a
constant rate in the face of ever increasing idle capacity?

After another period of relative inactivity, the models of Solow (1956) and Swan (1956)
rescued growth theory from the 'knife edge' notion of the Harrod-Domar model and
began a revival of interest in the subject. On the consumption side the Solow-Swan
model was (mostly) rudimentary. With the main specification comprising an
exogenously constant savings rate, consumption was also basically exogenous. The key
feature of the model was on its production side. Introduction of the neoclassical

10 For example: Segerstrom, Anant and Dinopoulis (1990); Grossman and Helpman (1991a, b and d);
Aghion and Howitt (1992 and 1998); and Barro and Sala-i-Martin (1995).
11 The name refers to the form of the aggregate production function: Y=AK, where A is a positive
constant reflecting the level of technology, and K is a broad concept of capital including human capital.
12 With the production fiinction Y= min.(AK,BL), for A and B given constants; depreciation at the
constant rate 5; an exogenously constant savings rate of s; and exogenous population growth at the
constant rate n, the condition that had to be satisfied was: sA=n+8.
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production function (with constant returns to scale, diminishing returns to individual
factors, and substitution possibilities between them)13, allowed full employment of both
labour and capital, and formalised the idea that savings and investment could lead to
rising labour productivity and growth. However, diminishing returns to capital meant
that in the absence of an exogenously specified rate of technological progress, per capita
growth would eventually cease.14

While this conclusion of zero long-run growth accorded with the 'increasing
population-limited natural resources-limits to growth' ideas of Malthus (1798) and
Ricardo (1817), it flew in the face of the empirical evidence. It was therefore avoided in
the Solow-Swan model by the addition of an exogenous rate of technological progress.
In particular, a level of technology term A(t) that grew at a specified vate was added to
the production function. For technical reasons this technological progress was specified
as 'labour augmenting technical change': Y=F[K, A(t).L], and A was interpreted as the
number of efficiency units per unit of labour (see Barro and Sala-i-Martin, 1995, p.32).

In the model without technological progress, transitional growth was possible between
steady-states with zero long-run growth, the equilibria being distinguished by differing
levels of their (constant) capital per head. Little was changed in this respect by the
inclusion of exogenous technological progress. In either case, the speed of the
transitional dynamics at any time is inversely proportional to the divergence of capital
per head from its steady-state level. This property led to the empirically testable concept
of conditional convergence among economies, based upon the fkct that those with lower
levels of per capita income relative to their steady-state values should tend to exhibit
faster per capita growth. Econometric analysis of cross-sectional data on countries and
other regions have confirmed this convergence hypothesis and so lent empirical support
to the Solow-Swan model (see Mankiw, Romer and Weil, 1992). Nevertheless, the fact
remained that this was a growth model that did not explain long-run growth. Nor did it
allow any consumer sovereignty over the important choice of the consumption-savings
trade-off. As a result, the model was impossible to evaluate in an efficiency sense since
it lacked any measure of consumer welfare.

Research proceeded in three directions. One was empirically based. Another addressed
the problem of exogenous savings. And the third confronted the problem of exogenous
long-term growth itself. Empirical research sought to explain differences in growth rates
across countries according to the convergence proposition; to measure speeds of
transitional dynamics; and most significantly, to measure the contribution of
technological progress to economic growth - the so-called growth accounting
research.15

13 See Barro and Sala-i-Martin (1995, p. 16) for a formal specification.
14 With diminishing returns to capital, less and less extra output is generated from extra units of capital.
And since a constant proportion of each unit of output is saved to invest in new capital, marginal
investment and output are eventually reduced to zero and growth stops.
15 'Growth accounting' seeks to measure the contribution of technological change to economic growth as
the residual from output growth left 'unexplained' by the growth of inputs. Early work such as that of
Abromovitz (1956), Kendrick (1956), and Solow (1957) put the contribution at around 50 per cent A vast
body of subsequent work, with improved measurement and techniques, gradually whittled mis away (for
example: Denison, 1962 and 1967; Jorgenson and Griliches, 1967; Kendrick, 1976; and Jorgenson,
Gollop and Fraumeni; 1987); the last of these estimating the contribution from productivity growth at
about 25 per cent Aghion and Howitt (1998) also report growth accounting exercises by Young (1995b)
and Jorgenson (1995) that "portray technological progress as an unimportant source of economic growth

The models of Cass (1965) and Koopmans (1965) overcame the problem of exogenous
savings by at last resurrecting Ramsey's (1928) approach of mtertemporal optimisation
by consumers. The time path of savings was thus determined endogenously by utility
maximising consumers who traded-off current for future consumption according to the
constraint of a neoclassical production function and their rate of time preferences, or
discount rate. Along an optimal path capital would increase whenever its net marginal
product exceeded the discount rate, and decrease whenever it fell short of it. With a
neoclassical production function this prevents sustained per capita growth since
diminishing returns to capital would eventually drive its net marginal product below the
discount rate. Exogenous technological progress was added to the model in exactly the
same way as for the Solow-Swan model.

Transitional growth was along a single trajectory in per capita consumption-capital
space. This is a very common result for applications of dynamic optimisation and
models that exhibit it are said to possess the property of 'saddle-path stability'. It is
currently regarded as a most propitious outcome in that it allows unique transition paths
to be identified. But when it was first discovered it was regarded more as a property of
'saddle-path instability', something like the Harrod-Domar 'knife edge', which had the
potential to bring down the whole theory (see Hahn, 1966).

Overall, the effect of the Cass-Koopmans neoclassical growth model was to introduce
optimum savings and a welfare measure, and to enrich the transitional dynamics of the
Solow-Swan model, while preserving the empirically supported property of conditional
convergence. However, long-run per capita growth continued to depend on exogenously
specified technical change.

It was clear that a relevant and fully specified model of economic growth must
incorporate some means for the endogenous determination of knowledge creation and
technical advancement. But there were difficulties in embedding a theory, or process of
technical change in the neoclassical framework; and such a framework continued to
seem appropriate. The fundamental problem is that when technology, or knowledge is
included as a factor of production, it leads to increasing returns, which are incompatible
with the notion of perfect competition.16 As a result, income from production would not
be sufficient to pay all the factors (labour, capital and technology) at the value of their
marginal products. But on the other hand, if existing technological knowledge were to
be paid at its current marginal cost of production (zero), there would be no incentive for
the private creation of new knowledge. Inclusion of technology in the Solow-Swan
model avoided these problems, but at the cost of specifying technology as both publicly
provided and exogenous.

relative to capital accumulation", but go on to dispute this. Romer (1987a) showed how the presence of
increasing returns in production (in the manner of his 1986a and 1987b models) meant mat a conventional
growth accounting approach could be expected to yield a residual - suggesting mat increasing returns are
a fact of the real world.
16 Since technology, or knowledge, is a non-rival good, that is its use by any one agent in no way
precludes its use by any other, it can be used repeatedly at no (extra) cost. For example, once purchased a
blueprint or design for a product may be used indefinitely in producing the product. Now, given the
existing level of technology and a neoclassical type of production function, since it is not necessary to
replicate the (non-rival) technology, replication of the other (rival) factors generates increased output with
constant returns to scale. Thus, if technology has any productive value as it grows, a production function
that includes it must show increasing returns in all its factors taken together. See Romer (1990b and
1990c) or Section 2.1 here for a more detailed discussion.
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Neoclassical growth theory effectively came to an end not long after the work of Cass
and Koopmans in 1965. Since the remaining problem with the theory was the
exogeneity of technological progress, research focussed on this issue and a tentative
beginning was made on what was later to be termed 'endogenous growth theory7. Over
a period of about 10 years commencing with the work of Arrow (1962b), a series
models emerged for which technological progress was an endogenous outcome.
However, all these models had some undesirable feature or other, including the feet that
per capita growth was not actually sustainable.

1.2.2 Early (neoclassical) endogenous growth theory

Arrow (1962b) constructed a vintage capital model in which knowledge and hence
technological progress were generated endogenously and through private economic
activities. In his model knowledge was created as an unintended by-product of learning-
by-doing in the course of private investment. This knowledge then spilled over as an
external benefit to the economy as a whole. Thus, initial investment and learning by any
one producer raised the productivity of others; and the state of knowledge at any time
was equated with cumulative investment in the economy up to that time. Growth was
driven by increasing returns, which arose because the (productive) new knowledge
came as a by-product and was publicly available. Because the increasing returns were
external to individual firms the equilibrium was competitive. However, although it
derived from private activity, aggregate knowledge was still formally treated as a public
good in the model. It was completely non-excludable. The spillovers could not be
prevented, not even partially, and the generation of knowledge received no market
compensator!.17

In addition, while growth in Arrow's model was endogenous in the sense that it would
respond to changes in savings behaviour, it was only fully worked out at the industry
level and for fixed proportions production functions. This meant that the marginal
product of capital was diminishing given a fixed labour supply* and the rate of growth
of output was therefore limited by that of labour. In an aggregate economy
interpretation of the model, which involved no dynamic optimisation, the savings
function is constant. Thus, as in the Solow-Swan model, the rates of growth of the
variables in the system are neither sustainable nor depend on savings behaviour;
however their levels do. . .

Arrow's model was extended by Levhari (1966a and 1966b) and Sheshinski (1967).
Levhari (1966b) simply replaced Arrow's fixed proportions production function with a
linearly homogeneous one, but maintained the vintage capital technology, and so
reproduced much the same results as Arrow. Sheshinski (1967) replaced both the fixed
proportions production function and the vintage capital notion of embodied
technological change. Instead he employed a standard neoclassical production function
with (disembodied) labour-augmenting technical change.18 This made it possible to
conduct the analysis in terms of standard dynamic optimisation techniques. In the

17 And as Romer (1990b) has pointed out, the results of Dasgupta and Stiglitz (1988) meant that
knowledge had to be completely non-excludable or a competitive equilibrium would not be susta?—*le.
18 But this technological progress was not exogenous as in the similar Solow-Swan formulatfc * .: ixause
it continued to depend, as in Arrow (1962b), on cumulated investment that was publicly available, this
also continued to be the source of increasing returns and growth with a competitive equilibrium.

Sheshinski model once the diminishing returns to capital cause its marginal product to
fall below the discount rate the incentive for investment vanishes and growth stops.
Thus, while they could generate growth endogenously, the models of Arrow (1962b),
Levhari (1966b) and Sheshinski (1967) all faced the shortcomings of having
technological progress arising only incidentally, and also unsustainably.

Shell (1966 and 1967b) modelled the generation of knowledge as an intentional output
of those who produce it. But they were not private economic agents motivated by profit.
Instead, knowledge arose from a separate research sector financed by Government
taxes. This sector drew resources from the market economy but its size was exogenous.
Knowledge entered the market economy as a pure public good in a production function
that was neoclassical in terms of capital and labour. Thus, as in the previous endogenous
growth models, growth was again driven by increasing returns, a competitive
equilibrium ensued, and accumulation eventually ceased due to diminishing returns.
Shell's main contribution from these models was his emphasis that the creation of
knowledge requires the diversion of resources from other economic activities.

Uzawa (1965) showed how sustained growth could be achieved in a neoclassical model
with labour augmenting technical progress produced with diminishing returns by labour
inputs in a separate education sector. The resulting efficiency units of labour were
interpreted as human capital and so both physical and human capital are accumulated in
the model; or in effect, a single broad measure of capital is accumulated. Although there
are no increasing returns, the fact that the accumulation of human capital per worker is
linear in itself (A(t) = A(t)<|>[l-l(t)], where l(t) is the fraction of the total workforce
devoted to production), combined with the constant returns in production allows both
human capital and physical capital to grow at ."ie same asymptotic rate: g=^)(l-l*),
where 1* maximises consumer welfare. Thus, Uzawa's model generated unbounded per
capita growth endogenously. When consumer welfare was maximised according to a
linear utility function the optimal path was one for which investment was specialised in
either human or physical capital (l(t)= 0 or 1) until 1* was achieved. But the model was
limited to the description of optimal accumulation paths and did not resolve the
economics of how factors that made A grow would be compensated.

As work on the neoclassical model came to an end, and not long after the early attempts
to develop a theoretically and empirically justifiable model of endogenous long-run
growth, interest in growth theory began to wane. Barro and Sala-i-Martin (1995)
expressed the view that it became "excessively technical and steadily lost contact with
empirical applications". It is possible that the advent of the new 'optimal control theory'
and the 'Maximum principle' of Pontryagin et aL (1962) contributed to such a state of
affairs. The new techniques were certainly regarded as highly technical and esoteric at
the time and it is possible there was some 'over concentration' on this.19 Perhaps the
lack of real success of the early endogenous growth models also contributed to waning
interest in growth theory. In any event, research into growth theory became relatively
inactive for some 15 years from about 1970, attention turning to short-term fluctuations
such as the incorporation of rational expectations into business-cycle models (Barro and
Sala-i-Martin, 1995).

19 Dixt (1990) remarked that" the early enthusiasts in this field had to grapple with a new and difficult
technique, and sometimes neglected the economics of their models, thereby earning a reprimand....from
Hahn's (1968) review of Shell (1967a).... for an "unseemly haste to get down to the Hamiltonian" ".
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1.2.3 Modern endogenous growth theory

Romer (1994) has emphasised that both empirical and theoretical streams of work have
led to the development of modern endogenous growth theory. Empirical work on
convergence initially posed a problem for the neoclassical model. But when the model
was augmented with a broad definition of capital that included the human as well as the
physical variety, it could be made to fit the data (Mankiw, Romer and Weil, 1992). But
other models with endogenous growth and which could also explain the data on
convergence had also emerged. For example, Romer (1987a) employed a model with
knowledge spillovers from capital investment (like that of Arrow, 1962b), and with
negative externalities from increases in the labour supply, arguing that such increases
could reduce incentives for labour-saving capital. And Barro and Sala-i-Martin (1992)
devised a technology diffusion model to explain differences in the stocks of technology
that slowly converged over time. The multiplicity of models that fitted the limited data
created further unease and dissatisfaction with the neoclassical model This reinforced
the search for a more comprehensive theory that not only fitted the data, but also
explicitly recognised the special nature of knowledge or technology as a rival input to
production that necessarily precluded perfect competition.

The work of Romer (1986a) began a new research boom that became known as
'endogenous growth theory'. After all the false starts of the 1960's research, Romer
(1986a) showed that a competitive equilibrium with externalities was possible in a
model with long-term growth in per capita income driven by the endogenous
accumulation of knowledge by private, profit maximising firms. New knowledge was
the product of a diminishing returns research-technology (necessary to ensure that
consumption does not diverge - and proved in Romer, 1986c); and its creation by any
one firm produced external benefits for all others (essential for the existence of an
equilibrium). But the crucial feature of the model, necessary to generate unbounded
growth, was increasing marginal productivity of knowledge. This is what distinguished
Romer's model from those of Arrow (1962b) and Sheshinski (1967). The production for
a firm i could be taken as Yj=A.F(Ai, Kj, Li), where A* is firm specific knowledge; K,
and Li are its inputs of capital and labour; and A=SAi is the publicly available aggregate
stock of knowledge. While output Y\ exhibited overall increasing returns to scale, in
order to ensure the existence of a competitive equilibrium F(.) had to be linearly
homogeneous of degree not greater than one. The model employed dynamic
optimisation on the part of consumers by taking the path of A as given, maximising
utility subject to the technology it implies, and later substituting the equilibrium
condition A=SAj.20

But Romer realised that the model failed to deal properly with the firm specific inputs
of knowledge (Romer, 1990a). As noted before, the function F(.) had to exhibit non-
increasing returns to scale. But the non-rival nature of the input A; means that with A
and Ai fixed, F(.) should show constant returns to scale in Kj and Li, and therefore
increasing returns in Aj, Kj and Lj. Also, to make the dynamics tractable Romer ended
up assuming that the firm specific technological input, the excludable portion of firms'
research, was employed in fixed proportion to capital. As a result the model turns out to

be equivalent to one like that of Arrow (1962b) where learning-by doing is incidental to
the production of capital. These problems were corrected in Romer (1990b).

Young's (1928) qualitative growth model based on increasing returns from
specialisation was eventually formalised by Romer (1986b and 1987). Romer captured
the productive efficiencies of specialisation by employing a production function in
which output is increasing in the total number A, of specialised intermediate inputs.21

Each type of specialised input was produced out of a 'primary resource' (Z) in fixed
supply, with a cost function that involved fixed costs. Thus, market power, and
therefore imperfect competition, was necessary to recoup these fixed costs. The extent
of variety A was a matter of choice, but one that was limited by the fixed costs and the
fixed supply of Z. While the production of final output was perfectly competitive, it
turns out that there is a single producer for each type of specialised intermediate, and the
equilibrium in that sector is one of monopolistic competition. Then, the equilibrium is
calculated by having the monopolists maximise profits by setting marginal cost equal to
marginal revenue in the normal manner. This generates an equilibrium level AE, which
depends on capital, and a production function that exhibits increasing returns to scale in
its other factors (capital and labour) given Ag. While the model has no true
technological externality it behaves as if it does. In the spirit of Scitovsky (1954),
Romer interprets it as having a pecuniary externality. The key feature of this model is
the fact that it shows how a decentralised market equilibrium in the presence of
increasing returns (already shown to necessarily accompany the input of a non-rival
input like technology or knowledge) can be supported by imperfect competition.

Lucas (1988) also produced a highly influential work. He proposed human capital
accumulation as an alternative to technological progress as the source of sustained
growth. Following Uzawa (1965), human capital (h) was produced in a separate
education sector, but depended on the time people spent being educated rather than on
labour inputs. Of course in both models the accumulation of the growth factor required
resources to be withdrawn from production. As was the case in Uzawa (1965), the
accumulation of human capital was characterised by constant returns to its existing
stock (h(t) = 5h(t)[l - u(t)], where [l-u(t)] was the fraction of time spent in education).
In combination with constant returns to scale in production22 this generated sustained
endogenous growth in per capita income at the rate g=5(l-u*), where u* maximised
consumers' intertemporal welfare. Because consumers' CEIS utility function was more
complex than Uzawa's linear one, richer transitional dynamics are generated. But these
were not worked out.

In a separate model Lucas (1988) also investigated human capital accumulation from
learning-by-doing. The model was highly stylised (for example there was no physical
capital). There were two consumption goods produced and human capital was
accumulated according to the proportion of labour employed in the production of each
good. Simply being engaged in production made people more arxi more productive
thereby generating growth endogenously. The transition in this model is between the
mix of consumption goods.

20 Romer regarded this demonstration of how 'analysis of th is kind of sub-optimal equilibrium can
proceed even though the equations describing the equilibrium cannot be derived from any stationary
maximisation p r o b l e m ' a s one of the main contributions of his paper. Also see Romer (1989a).

21 In addition to the source references of Romer, further details of the production function may be found
in Appendix 2.1 here; and further discussion of the modelling issues in Section 5.1.
22 Lucas (1988) actually introduced an external effect from human capital (its average level) into
production. But this is not necessary for endogenous growth.
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Rebelo (1990 and 1991) studied two models capable of generating endogenous growth.
In the first, the so-called 'AK-modeF, the production function was simply Y=AK, with
K given the interpretation of a broad range of capital including human capital. This led
directly to endogenous per capita growth; but there were no transitional dynamics. In
the second model Rebelo disaggregated the broad measure K into physical and human
capital a in model similar to that of Lucas (1988), but where physical capital was
introduced as an input into the accumulation of human capital, while maintaining
constant returns of hwith respect to stock of human and physical capital together. This
allowed Rebelo to conduct some policy analysis. In particular, he showed how a change
in income tax could affect the steady state growth rate (unlike the case in Lucas, 1988).

Jones and Manuelli (1990) overcame the lack of transitional dynamics from the AK-
model by considering a production function that was a simple additive combination of
the 'AK' and neoclassical ones. Specifically, it took the form Y=F(K, L)=AK+Q(K,L).
Where the AK part of F(.) generated endogenous growth, and the Q(.) part, which was
neoclassical, produced the transitional effects.

This early endogenous growth theory, much of which built upon the work of the 1960s,
growth was sustained because diminishing returns were avoided for a broad composite
of factors that could be accumulated.23 But these models did not come to grips with the
problem of having a rival factor such as knowledge or technology as a productive input
and so did not represent a proper theory of technological change. While externalities
were sometimes present, their role was only to help avoid diminishing returns. The
exception was the model of Romer (1986b and 1987), as already discussed.

Romer (1990b) expanded upon this earlier work. The production function continued to
be increasing in the variety of specialised intermediate inputs, and these were given the
interpretation of specialised capital equipment constructed out of forgone consumption,
or general-purpose capital. In effect, an alternative use was allowed for the resource Z
of Romer (1986b and 1987b). Also, a separate research sector was introduced to
produce designs for the specialised equipment. So now the extent of variety was
determined by the resources diverted from the production of goods and into the research
sector. Research also generated external benefits. As already stated, it is this model that
is the focus of the dissertation. Consequently it is described in detail later on (in Chapter
2).

1.3 Structure and summary of the dissertation

Overall the dissertation comprises six chapters. In addition to the current introductory
chapter there are four main or substantive chapters, and a brief final chapter offering
some concluding remarks. A summary and an indication of the structure of the
remainder of the dissertation is as follows:

1.3.1 Chapter 2: Development of the Dynamic System

Chapter 2 describes the model, defining it in a fully dynamic context. Importantly, it is
also formally derived as the result of dynamic optimisation problems faced by its
economic agents. From a brief discussion of the public finance concepts of rivalry and
excludability,2* Section 2.1 sets up the underlying premise of Romer's model. Namely,
that growth is driven by the intentional accumulation of knowledge, which is non-rival
and partially excludable; and that a competitive, price-taking market equilibrium is
therefore not possible. Rather, the market equilibrium is supported by monopolistic
competition among the manufacturers of technological goods, who exploit market
power over their customers.

Description of the model

A detailed description of all the component parts of the model is given in Section 2.2.
Four factors (capital, labour, human capital and technology), and four sectors (research,
capital goods manufacture, final output production and consumption) are identified and
the economic behaviour of agents in each sector are described in detail. A diagrammatic
representation of the model is offered to assist with its assimilation (Figure 2.1).

The exposition here mostly follows that of Romer (1990a and 1990b), although the
model is generalised slightly by introducing capital depreciation; and many issues are
expanded and elaborated upon in an effort to clarify them and to facilitate a thorough
understanding of the model. However, the exposition here does depart from that of
Romer in one significant respect. Namely, problems of dynamic optimisation that are
fundamental to the model are made explicit, and certain 'first-order necessary
conditions' (the so-called transversality conditions) are shown to be essential for the
rigorous determination of economically feasible growth paths of the model. While
Romer simply posits the existence of a balanced growth equilibrium with a constant
'price of technology',25 by formally solving the two dynamic optimising problems faced
by economic agents of the model and utilising their transversality conditions, here the
dynamic equilibrium is derived mathematically. One of these problems, 'utility
maximisation by consumers', is an explicit part of the model. The other however, is
only implied, concealed by certain simplifying aspects of the model specification.
Details of the Section 2.2 material are as follows:

• Section 2.2.2 describes the research sector: its output of new 'designs' being
produced from the input of human capital and the existing stock of designs in such a
way that a differential equation for technological change is provided directly.

• Savings and capital accumulation are described in Section 2.2.3. Here the output of
research is explicitly recognised as contributing to both gross output and savings,
and allowance is made for capital depreciation. A second differential equation, for
the growth of capital, is furnished.

• Section 2.2.4 covers the (competitive) final output sector. The production
technology employs human capital, ordinary labour, and capital. Its unusual feature
is that the input of capital is disaggregated into all the different types of specialised

23 Rebelo (1991), King md Rebelo (1990), and Jones and Manuelli (1990) exploited the idea (recognised
by Solow, 1956) that p.,* cepita long run growth would be sustainable as long as the returns to capital
were bounded from below. In neoclassical terms where g = sf(k)/k-(n+8), f(k)/k has to be bounded above
(n+8)/s.

12 Chapter 1

24 Rivalry describes the extent to which the use of a particular good by one agent precludes its use by
another. Excludabili ty refers t o t h e extent to which the owner of a good can prevent its use by others .
25 His (correct) intuition n o doubt coming from long experience with such problems if not from formal
derivation elsewhere.
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equipment that exist at any date, with each type having an additively separable
impact on output. This is scrutinised in some detail in an accompanying appendix.

• The production of specialised capital goods based upon the designs from the
research sector is the subject of Section 2.2.5. Monopolistic behaviour on the part of
capital goods producers is first derived according to the (time independent)
approach adopted by Romer (1990b). This leads to a discussion of the nature of
capital in the model and reveals the feet that these producers actually face an
implicit dynamic maximisation problem. It is argued that this problem is important
because the transversality condition that its solution must necessarily satisfy is
required to properly establish the dynamics of the system. The problem is then
formalised and solved, via the Maximum Principle, yielding the desired
transversality condition as well as the same results (for monopoly output, prices and
profits) as the time independent approach.

• Section 2.2.6 defines the price of a design as the present value of all future
monopoly profits from the specialised capital goods associated with the design. This
generates a third differential equation - for the time path of the price of technology.

• The allocation of human capital between the research and final output sectors in
such a way that wages are equated in the two sectors is derived in Section 2.2.7.

• Finally, consumer behaviour is specified in Section 2.2.8. The standard problem of
determining the level of resources that are to be devoted to the production of goods
for current consumption on the one hand, and the level to be used for capital
formation and future production of consumption goods on the other, is addressed. It
is solved as another formal dynamic maximisation problem, the discounted sum of
all future consumer utility being maximised subject to the economy-wide income
constraint. The solution yields a fourth differential equation - one for the growth
rate of consumption - as well as a second transversality condition.

Two appendices support the material of Section 2.2. Appendix 2.1 scrutinises the
production technology; describes how it generates the increasing returns necessary for
unbounded growth; indicates the distribution of factor incomes; reveals a fundamental
departure of the competitive model, namely, that general-purpose capital is under-
valued; and discusses the somewhat peculiar nature of capital in the model. Appendix
2.2 provides a theoretical background to dynamic optimisation, with a focus on
economic reasoning rather than mathematical rigour; and sets up and solves the two
specific problems of the model.

The dynamic system

Derivation of the complete dynamic system is completed in Section 2.3. The
significance of the optimum control problems that underlie the model, and of the 'first-
order necessary conditions' known as transversality conditions that their solutions must
satisfy, is addressed in Section 2.3.1. It is shown that such conditions, by imposing
constraints on the asymptotic behaviour of the system, either directly or indirectly also
provide 'boundary conditions', which are necessary to integrate the system of
differential equations and so establish the dynamics. The necessity for a 'second'
transversality condition (in addition to that arising from the consumer utility
maximisation problem) is also demonstrated here. In Section 2.3.2 the system of
equations derived in Section 2.2 are condensed into the overall dynamic model. A
system of four linked first-order differential equations in four variables (the level of
technology A(t); the capital stock K(t); the price of technology pA(t); and the flow of
consumption C(t)), together with the two transversality conditions are shown to

completely describe the dynamic model. The variables (including the transversality
conditions) are transformed in Section 2.3.3 and the system reduced to one of only three
linked differential equations. In this way its dynamic equilibrium may be represented as
a stationary or steady-state equilibrium rather than one of balanced growth26. The
transversality conditions are used to derive this steady-state analytically.

There are three appendices associated with Section 2.3. Appendix 2.3 provides further
explanation of the meaning and economic interpretation of transversality conditions;
and Appendix 2.4 emphasises their essential nature by demonstrating that if they are
ignored and only the differential equations are considered, the Romer model produces
two dynamic equilibria or steady-states. Finally, in Appendix 2.5 some supplementary
variables, such as savings rates, capital-output ratios and factor shares of income are
derived for use in later economic analyses with the model.

Calibration and sensitivity

In the remaining section of Chapter 2, Section 2.4, the model is calibrated by
establishing an annual time dimension, and by setting the values of its parameters and
exogenous variables to levels commensurate with various macroeconomic magnitudes
of the Australian economy. This set is termed the benchmark parameter set and it is
used widely throughout the dissertation as a set of initial conditions. The sensitivity of
the steady-state to changes in these benchmark parameter values is then assessed.

Calibration of the model is necessary to ensure that its exogenous or input parameters
generate endogenous (or output) variables whose magnitudes conform to actual
quantitative economic measures. Of course the input parameters themselves must also
satisfy any definitional or theoretical constraints and must also conform to relevant
empirical data. The broad method adopted to effect the calibration is described in
Section 2.4.1. Two stages go to make up the calibration process. The first is the
identification of constraints, consistent with the empirical data, for both the parameters
and the endogenous variables that they generate. This is undertaken in Sections 2.4.1.1
and 2.4.1.2. The second stage is the determination of actual parameter values from
within these ranges. Section 2.4.1.3 describes the process adopted. Briefly, it was one of
endogenising the parameters. Empirically quantifiable variables (including some new
ones functionally related to the parameters) were set exogenously and the model used to
calculate consistent parameter values endogenously, all of these subject to their
constraints.

Finally, in Section 2.4.2, the sensitivity of the model's steady-state to changes in these
benchmark parameter values is assessed. This is precisely the form of comparative
statics analysis undertaken by Romer (1990a and 1990b). Some interesting results are
identified and discussed, including a somewhat controversial relation between the
growth and interest rates noted by Romer (1990b). Appendix 2.6 presents the
transitional dynamics resulting from changes to parameters that produce no permanent
effects on many variables. The aim being to demonstrate that dynamic analysis reveals
many significant and persistent, though transitory, changes concealed by comparative
statics analysis.

26 Contrary to the earlier quote from Chiang (p. 3), this also allows the phase-space of the system to be
visualised as a three dimensional figure (see Chapter 3, Section 3.3).
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1.3.2 Chapter 3: Dynamic Behaviour of the System: Approximations

Analysis of the dynamic behaviour of the Romer model is commenced in Chapter 3.
Because the dynamics of the complete (non-linear) model cannot be solved analytically,
numerical methods or other approximations must be employed. Applying numerical
methods to the full non-linear model is the subject of Chapter 4. Here the dynamics are
investigated by the application of three simpler 'analytic characterisations' of the model
These are referred to as the linearised model; phase-space analysis; and the
development of a simplified abridgment of the model termed the Solowian-Romer
model.

Linearisation of the model

Section 3.2 deals with the linear approximation to the model. In Section 3.2.1 the model
is linearised by first-order Taylor series expansions about its steady-state; and an
analytical or closed form solution (always possible for linear systems) is derived.27 This
solution furnishes explicit and independent functions for the evolution of the dynamic
variables over time. Computation of the eigenvalues of the matrix of coefficients of the
linearised dynamic equations confirms a theoretical proposition that the system exhibits
the property of saddle-path stability about its steady-state.28 Three appendices support
the preceding analysis:

• Appendix 3.1 contains the algebra of the linearisation of the model;
• Appendix 3.2 presents the solution of a (first-order) system of linear equations, and

derives formulae for computing the (constrained) initial values necessary for
equilibrium and for the complete solution or saddle-path of the system; and

• Appendix 3.3 shows how to calculate the eigenvalues and eigenvectors required for
the solution of the linearised system, and then computes numerical values for the
eigenvalues for a wide range of parameter values.

A simulation of the transient dynamics of the linearised model is undertaken in Section
3.2.2. The system is taken to be initially at its benchmark steady-state equilibrium, when
a sudden and sustained shock is applied to a parameter reflecting the income share of
capital (y). Calculations made according to the analytic solution of Section 3.2.1 then
furnish the paths taken by economic variables as they adjust to the new steady-state
equilibrium. Both initial jumps as well as the subsequent smooth adjustments are
calculated and presented graphically. The shock analysed here is considered to come as
a surprise to the market, which also believes it to be permanent (or at least indefinite).
Accordingly, such shocks are labelled as unanticipated and sustained. It is also possible
to analyse the transient dynamics of the linearised model in response to anticipated
shocks and to temporary shocks. Appendix 3.4 provides a derivation of the method and
applies it to two additional simulations: an 'anticipated and sustained rise in the

27 As a form of verification of an issue covered in Chapter 2 , this solution demonstrates that for the
system to attain its steady-state equilibrium certain constraints on its initial values must be met ; and that
these constraints result from the satisfaction of the transversality conditions associated with the
underlying dynamic optimisation problems to the system.
28 The dynamic behaviour and stability of the system nearby its steady-state equilibrium is shown to
depend on the signs of these eigenvalues and upon whether these are real or complex numbers .

productivity of researchers', represented by the parameter £; and 'an unanticipated but
temporary rise in the income of ordinary labour', achieved via the related
parameter a).29

Section 3.2.3 examines the rate at which the linearised model converges towards its
steady-state. Two measures are defined and evaluated. The convergence coefficient
measures the 'proportional rate at which the gap between the system's current position
and its steady-state equilibrium is closed'; and the half-life measures 'the time taken for
half of the gap between the system's current position and its steady-state equilibrium to
be closed'. The convergence coefficient is shown to be equal to the negative eigenvalue
of the system. Details of the work here are provided in Appendix 3.5, which derives a
log-linearisation of the model and proves that the 'linear' and the 'log-linear'
convergence coefficients are asymptotically equal.

Phase-space analysis

An analysis of the phase-space of the Romer model is undertaken in Section 3.3, the
object being to present a visualisation of the dynamics of the system. This involves
breaking up the vector space of the dynamic system into a number of regions, each of
which defines, for all principal dynamic variables, whether any individual variable must
always increase or must always decrease within the region. The boundaries of these
regions are the so-called phase surfaces, each one representing the locus of points for
which a different dynamic variable is constant over the vector space. These are derived,
calculated and three-dimensional graphs of the phase-space are plotted in Section 3.3.1,
where the movement of each principal dynamic variable in each region is also defined,
and the (two) regions from which the saddle-path must emanate are determined. Details
of the calculations, and an examination of the sensitivity of the surfaces to parameter
changes, are provided in Appendix 3.6. Then in Section 3.3.2, by borrowing a procedure
from Chapter 4 (the eigenvector-backward integration technique), the saddle-path of the
model is computed for the benchmark steady-state and added to the graphical
representation. While all this (hopefully) assists in promoting an understanding of the
dynamics, it remains difficult to visualise precisely what transitional dynamics arise
from different implementations of shocks. Thus, in Section 3.3.3 a schematic two-
dimensional phase diagram is analysed qualitatively to explain the dynamics arising
when the same shock is implemented in fundamentally different ways: namely, when it
surprises the market, when it is anticipated, and when it is correctly foreseen as being
only temporary.

A Solowian-Romer model

An analytic difficulty with the full Romer model is its dimension. As discussed above,
this is demonstrated in Sections 3.3.1 and 3.3.2 in respect of its phase-space analysis. It
is also true in terms of its numerical solution. To overcome the problem a truncated (but
still non-linear) version of the model is developed and analysed in Section 3.4. It is
termed a Solowian-Romer model because a simple Solow-type consumption function
(with an exogenously constant savings rate) replaces the consumer optimising behaviour
of the full Romer model. The supply-side however, remains exactly the same as in the
full model. Because this construct reduces the dimension of the system, it

29 As shown later (Section 4.5 of Chapter 4) each of these three simulations are proxies for shocks to
actual economic variables.
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greatly simplifies both its numerical solution and the analysis of its phase-space. Section
3.4.1 specifies the differential equations for the modified model, showing that the
dynamic system is now reduced to one of only two-equations. Steady-state relationships
are also derived here and it is shown that when the exogenous savings rate is set at the
steady-state level for the full model, the equilibria for the two models (with one small
exception) are identical.

This truncated version of the model seems a valuable instructive simplification of the
complete model. But objections may be raised about the regressive nature of its demand
side. This issue is addressed in Appendix 3.7, where it is proved that the Solowian-
Romer model simply represents particular paramaterisations of the complete model.
Moreover, it is also shown there that parameter configurations that generate equivalence
between the two versions can be found close to the empirically based benchmark set.
The question of how accurately the modified model reflects the dynamics of the full
Romer model when the parameter settings are not such as to generate equivalence, is
left to Chapter 4 (Section 4.5.4 and Appendix 4.4 in particular).

Numerical integration of the Solowian-Romer model is undertaken in Section 3.4.2 in
order to conduct the same three simulations that were run under the linearised model:
namely, 'an unanticipated and sustained rise in parameter y'; 'an anticipated and
sustained rise in parameter £'; and 'a temporary fall in parameter a ' . The numerical
integration technique used, is the fourth-order Runge-Kutta method (explained in detail
in Appendix 4.1 of Chapter 4). With the system now comprising only two coupled
ordinary differential equations this is not difficult. It is accomplished in a simple
Microsoft Excel spreadsheet.

The final sections of Chapter 3 deal with the phase-space of the Solowian-Romer
modeL Necessary functions for the system's phase diagram are derived, computed and
plotted (for the benchmark parameter set) in Section 3.4.3. The basic procedure is the
same as that reported in Section 3.3 for the complete modeL Phase lines for each of the
two principal dynamic variables of the model are derived and computed;30 the direction
of motion of each variable in each region of the phase-space is worked out; the saddle-
path is computed numerically from a technique explained in detail in Cliapter 4; and all
are plotted on a phase diagram. As before, the numerical technique requires calculation
of the 'eigenvalues and eigenvectors of the dynamic system'. This is performed in
Appendix 3.8 where the Solowian-Romer model is log-linearised.

The resulting two-dimensional phase plane diagram of the Solowian-Romer model,
which is similar to the schematic phase diagram of Section 3.3.3, allows clear graphical
analysis of the dynamics of the system from the changes to its phase lines and saddle-
path generated by economic shocks. Three such analyses are undertaken in Section
3.4.4. These are for the same three shocks that were examined numerically in Section
3.4.2. It should be emphasised that these analyses are not merely diagrammatic. On the
contrary, they are completely quantitative, all the functions and paths being plotted from
numerical values.

1.3.3 Chapter 4: Numerical Integration

The broad subject of the Chapter is the computation of the transitional dynamics of the
full (non-linear) Romer modeL Since an analytical or closed form solution is not
possible, numerical methods are adopted.

Application of numerical integration to the Romer system

Section 4.1 presents a general description of the fundamental approach of numerical
integration and its application to the Romer model, illustrating the concepts with the
simple Euler method. This material is supplemented in Appendix 4.1, which examines a
selection of numerical integration methods. Their difference equation approximations
are defined, their levels of accuracy relative to the 'step size' are noted, and the nature
of some approximations is illustrated diagrammatically. The Euler, Gragg (or 'modified
mid-point'), and the fourth order Runge-Kutta (RK4) methods are covered, as well as
the Richardson's extrapolation technique for further increasing accuracy. Section 4.1
also emphasises the significance of boundary conditions and how they define a
dichotomy of numerical integration problems as either initial value problems, which are
relatively easy to solve, or boundary value problems, which are usually much more
difficult. Solution of the dynamic Romer system is recognised as a two-point boundary
value problem, with certain stock levels defining an initial condition on the variables,
and the transversality conditions from the underlying dynamic optimisation problems
defining two terminal conditions. The shooting method of solving such problems
(whereby terminal conditions are replaced by 'guessed' initial conditions that are
iteratively updated) is explained and its impracticality in respect of the Romer system is
noted.31

Conversion to an initial value problem

With the unsuitability of shooting as a means of solving the two-point boundary value
problem posed by the Romer system, some other method is required. Two different
ways of converting the problem to an initial value one are considered in Section 4.2.
The basic idea of using the steady-state to provide all the necessary initial conditions is
explained, as is the problem of having all the differential equations identically equal to
zero at that point.

Section 4.2.1 considers the time elimination method as a means of surmounting this
problem. By using (any) one of the system's differential equations to divide all the
others, the original independent variable, time, is replaced by the (originally dependent)
variable corresponding to the 'dividing equation', and a new system of differential
equations is developed. Formulae for the (non-zero) values of these equations at the
steady-state are then derived and evaluated for the benchmark parameter set. Using
these as initial values the new system is then solved to yield the saddle-path directly.
An alternative way of overcoming the problem of all the equations being zero at the
steady-state is to use the eigenvectors corresponding to the negative eigenvalue to take a
small step away from the steady-state. This is the basis of the eigenvector-backward

30 These correspond to the phase surfaces for each of the three variables of the foil model.

31 Shooting was easy to use in the case of the Solowian-Romer model where there was only one terminal
condition. However, for the foil Romer model with its two terminal conditions, the integration could not
be made to converge.
32 Whereas solving the original set of differential equations yields the t ime paths for each variable,
solution of the new set yields paths expressed as fonctions of the 'new dependent variable', which defines
the saddle-path.
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integration method described in Section 4.2.2; where it is shown to be preferable to the
time elimination method. Appendix 4.2 supplements both Section 4.2.1 and Section
4.2.2. It provides details of the mathematical derivation of the time elimination method,
and it solves the initial value problems from each method by applying the Euler, Gragg,
and RK4 numerical integration techniques to them bothl The performances of the
integrations are analysed and compared and the RK4 approach is shown to be clearly
superior.

Finite differences and GEMPACK

Another numerical method for solving two point boundary value problems of the type
posed by the Romer model is described In Section 4.3. This is the so-called method of
finite differences. The method itself is described in Section 4.3.1, where it is shown to
involve the simultaneous solution of a large number of non-linear equations. This
usually requires linearisation of the equations and the application of specialised matrix
techniques. A set of computer programs known as GEMPACK, which offers a highly
flexible and accurate means of achieving this, is then described in Section 4.3.2. The
particular application to the Romer model of a finite differences method implemented
via GEMPACK, is also considered here.

Specification of the solution method

Section 4.4 specifies the precise procedure by which the model is to be solved and the
transient dynamics to be computed. Time elimination, eigenvector-backward
integration, and the finite differences-GEMPACK methods are considered as
candidates. Under each of these methods the necessary steps required to solve for the
dynamics of unanticipated and anticipated shocks are examined in Sections 4.4.1 and
4.4.2 respectively. Section 4.43 summarises the issues, demonstrating that the finite
differences-GEMPACK method is clearly superior. This section also records details of
the actual specification of the GEMPACK program runs to be used. The analysis
leading to this specification is undertaken in Appendix 4.3 where results from the same
simulation, conducted under a variety of finite differencing configurations and of
GEMPACK solution methods are compared. Examples of the two primary computer-
input files necessary to run the GEMPACK programs are also recorded in this appendix.

Numerical results of simulations

Numerical evaluation of the dynamic properties of the full non-linear model is the
subject of Section 4.5. The dynamic impacts of a variety of simulated economic shocks
(specified as realistically as possible33) are computed according to the finite differences-
GEMPACK method as specified in the previous section, and the results are analysed in
terms of qualitative economic reasoning. The general approach to the simulations was to
commence with the system in equilibrium at its benchmark steady-state, and then to
perturb this via shocks to its parameters or variables. Seven simulations are reported:

• an unanticipated and sustained 10 per cent rise in the profit share of income,
simulated by raising the parameter y by 10 per cent (Section 4.5.1);

• both an unanticipated and an anticipated sustained rise of 15 per cent in the
productivity of researchers, simulated by increasing parameter C, by 15 per cent
(Section 4.5.2);

• an unanticipated but temporary rise of 15 per cent in the ordinary labour share of
wages, simulated by decreasing parameter a by 20 per cent (Section 4.5.3);

• a program of immigration designed to raise the overall level of human capital by 15
per cent over five years, simulated by a series of 20 cumulating shocks of 0.75 per
cent each to the variable H(t) (Section 4.5.5);

• a sudden temporary reduction of 5 per cent in the capital stock, simulated by cutting
the value of variable ¥0 by 5 per cent (Section 4.5.6); and

• a gradual loss, of 20 per cent over three years, in the human capital employed in
research, simulated by a series of negative shocks to the variables HA(t) and H(t),
cumulating to -20 per cent and -5 per cent respectively (Section 4.5.7).

For each of these simulations the transient dynamics of a variety of variables are
recorded graphically. Particular attention is given to the initial jumps in variables and to
the rate at which they approach their new steady-states. Tables of results summarise this
information for each simulation. In addition, a priori explanations of the dynamic
responses to each simulation, based simply upon qualitative economic reasoning, are
offered as a sort of confirmation of the quantitative results. However, the difficulties in
these exercises are also made apparent. For example ambiguities arise due to opposing
influences on some variables, demonstrating the value of the quantitative dynamic
results from the model.

These results also demonstrate the importance of dynamic analysis from another point
of view. Two points are particularly significant. The first concerns that of the initial
jumps in economic variables, which seem to be generally large, mostly difficult to
predict, and usually to be either in the opposite direction to that of the 'new'
equilibrium, or to overshoot it significantly. The second point concerns the slow rate at
which the dynamic system converges towards its new equilibrium. Typically, the time
taken for half the initial gap between the pre- and post- shock equilibria to be closed
was around 15 to 20 years, and the time taken to close three quarters of that gap was
some 30 to 35 years. Both points emphasise the greater relevance of the shorter-term
dynamics over static comparisons between the existing state and the equilibrium of the
distant future.34

The first three simulations here were also conducted previously (Chapter 3) under both
the linearised and the Solowian-Romer model approximations to the full non-linear
model. Section 4.5.4, supported by Appendix 4.4, compares and evaluates these
different methods of analysis, concluding that while both alternatives are 'good'
approximations, overall it is the Solowian-Romer model that is the more accurate.

1.3.4 Chapter 5: Economic Welfare and Policy Issues

The general-purpose of Chapter 5 is to examine the welfare sub-optimality of the free
market solution of the Romer model and to propose policy measures that may correct
for this. Two sources of market imperfection are evident from the construction and
derivation of the model. First, capital goods producers engage in monopolistic
behaviour, restricting supply and raising prices in order to recoup their fixed costs for

j3 Of course, given the highly aggregated nature of the model and its lack of policy variables, the
simulations are necessarily "stylistic".

34 This is true at least for the purposes of eccnomic management, including counter cyclical policy.
Nevertheless, evaluation of long term equilibria is most important for welfare considerations.
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designs. As a result the prices of designs exceed their marginal costs. Second, research
generates external benefits that are not excludable and which are therefore not included
in the remuneration of the original researchers. It follows that the marginal social
product of technology exceeds fe marginal private product. A third, not so evident
market distortion, termed the specialisation divergence, arises from the unusual
production technology of the model. It causes the market outcome for the stock of
designs at any date to be lower than is socially optimal. These issues are discussed
throughout Section 5.1.

Comparison of the social optimum and market solutions

The social optimum solution to the model is calculated in Section 5.1. This not only
allows the extent of the market sub-optimality to be measured, but also identifies the
goals for policy measures designed to correct for it. The 'social planning problem' is
specified and solved as a problem of optimal control theory (Appendix 2.2) to generate
the dynamic system and its steady-state equilibrium. The sensitivity of the steady-state
to changes in parameter values and the transitional dynamics resulting from one such
change are then briefly examined in the same way as was done for the market system
(Sections 2.4 and 4.5 respectively).

Comparisons of the social planning and free market solutions to the model are presented
and analysed in Section 5.1.2. In equilibrium, the allocation of human capital to
research, the interest rate and (therefore) the growth rate for the market solution are ah1

found to be unambiguously less than their counterparts for the social optimum solution.
And, for the benchmark parameters at least, the differences are shown to be stark.
Somewhat counter intuitively, the relative magnitudes for the social and market levels
of the capital-technology ratio *F and the price of technology pA are ambiguous,
depending on parameter values. Although for the benchmark set the intuitive results are
obtained. The reasons for all these differences between the two solutions are explored in
terms of the market distortions.

Four appendices support the work of Section 5.1. Appendix 5.1 sets up and solves the
social planning solution of the model, including a log-linearisation in order to calculate
the speed of convergence of the resulting dynamic system. Appendix 5.2 records the
'TABLO-input file' necessary for the social optimum dynamics to be computed via the
GEMPACK. software. Appendix 5.3 explores something of a side issue concerning an
apparent constraint on the maximum allowable level of human capital in the social
planning solution. And in Appendix 5.4 the relative magnitudes of the steady-state
results for the social optimum and market solutions of the capital intensity variable *F
and the price of technology PA are analysed in terms of their variation with respect to
different parameter values.

A subsidised market solution

The key question posed by the sub-optimality of the market solution is whether it is
possible to identify some package of policy instruments that could overcome the
shortcomings of the free market and achieve the welfare maximising results of the
social planning solution. Demonstration of the fact that this is indeed possible via
various combinations of subsidies is the subject of Section 5.2.

It is noted in Section 5.2.1 that because there are distortions in both the production and
research sectors of the economy, two different subsidies (at least) could be expected to
be required to remove them. Following a discussion of the individual distortions,
apparently possible methods of correcting them are evaluated and a policy package is
developed whereby:

• savings are encouraged by a subsidy (SK) to the rentals received by households for
eacl> \init of general-purpose capital, K; and

• the purchase of research output is encouraged by subsidising the price of designs
faced by capital goods producers (at the rate SAK).

These subsidies are then jointly incorporated into the market model and the dynamic
system and steady-state equilibrium for this new 'subsidised market model' are derived
(in the same way as before in Chapter 2). The new dynamic system is shown to
resemble closely both that of the 'free market model' and that of the 'social optimum
model'.

Section 5.2.2 is concerned with defining analytic expressions, in terms of the model
parameters, for the as yet non-specific subsidies SK and SAK, which allow the
decentralised market steady-state results to be converted to the social optimum ones.
The 'optimum subsidy SK' is determined directly from the knowledge that in the free
market, capital is undervalued by the factor y (Appendix 2.1). Then, by substituting this
into steady-state expressions for the 'subsidised market model' and equating the results
with the counterpart expressions from the 'social optimum model', the 'optimum
subsidy SA' is determined. The effects of the individual imposition these optimum
subsidies is also examined and, because of their impacts on the growth rate, it is
concluded that SK may be thought of as correcting for static distortions, and SAK as
correcting for dynamic ones. In the final part of Section 5.2.2, all these analytical results
are confirmed numerically with calculations based on the benchmark parameter values.

Appendix 5.5 is associated with the material covered in Section 5.2. It shows how it is
possible to combine different 'production side' subsidies with a subsidy to the purchase
of designs, to produce alternative policy packages that will again convert the free
market steady-state outcomes to those of the social optimum. It also shows that it is not
possible to replicate the social optimum steady-state through a subsidy to research
wages.

Adjustment of the subsidised market model to the social optimum steady-state

Section 5.3 deals with the transitional dynamics of the subsidised market system in
moving from its (sub-optimal) free market steady-state to the socially optimal
equilibrium. The subsidy rates SK and SAK are both initially set at zero to generate the
market equilibrium, and then raised to their 'optimum levels' to produce a dynamic
system with an identical steady-state to that of the social optimum. The two-point
boundary value problem is the same as that confronted in Chapter 4 and is solved in
exactly the same manner.

35 The existence of alternative policy packages, based upon subsidising the purchase of specialised capital
or on the manufacture of final output are also discussed and referred to an Appendix.
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Three alternative simulations of the many different ways in which the optimum subsidy
levels could sensibly be implemented are conducted and analysed. In each case the
quantitative model results arc supported by qualitative explanations of the economic
mechanisms behind them. The three simulations undertaken are:

• Section 5.3.1: where both the subsidy to the rentals received for general-purpose
capital SK, and the subsidy to the purchase of technology SAK, are assumed to be
instantly applied at their full 'optimum' levels with no prior announcement, and
without me market anticipating their introduction in any other way;

• Section 5.3.2: where the subsidy to the rentals received for general-purpose capital
sK is applied as in the first simulation, but where implementation of the optimum
subsidy to the purchase of designs SAK is delayed by five years, this being
announced at the time SK is implemented; and

• Section 5.3.3, the mirror image of that of the second simulation. Now it is the
designs subsidy SAK which is fully implemented unannounced, and the capital
rentals subsidy SK, whose foil implementation in five years time is announced in
advance at the same time as the designs subsidy is being introduced.

Section 5.3.4 notes that even from these simple alternatives it is apparent that different
methods of implementation of the optimum subsidies can result in significant variations
of the adjustment paths by which the social welfare maximising steady-state is
approached.

There are two appendices relevant to Section 5.3. As it does for the dynamic system of
the social optimum, Appendix 5.2 also records the 'TABLO-input file' necessary for the
subsidised market dynamics to be computed via GEMPACK. Appendix 5.6 examines
the transitional dynamics of simulations in which each of the two optimum subsidies, SK
and RAK, are implemented individually. Qualitative explanations of these results form
the basis for similarly explaining the outcomes of the joint implementation simulations
of Section 5.3. Appendix 5.6 also presents exactly the same individual simulations for
the 'alternative' optimum subsidies identified in Appendix 5.5.

1.3.5 Chapter 6: Concluding Remarks

Three broad issues are covered in Chapter 6. First, some conclusions are drawn from the
transitional dynamics, both in respect of the technical methods examined and employed,
and of the dynamic results themselves. Second, some important policy implications to
emerge from the work are identified and discussed under the headings of the
'transitional dynamics' and the 'sub-optimality of the model'. Finally, some unresolved
issues and other matters for further research are identified.
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Chapter 2

2 The'Romer Model':
Development of the Dynamic System

2.1 Introduction

Over a series of articles from 1986 through 1990 Paul Romer developed a model of
economic growth in which the fundamentally different nature of technological
innovations compared to that of most economic goods plays a central role (see
Bibliography: particularly Romer, 1990b and Romer, 1990c). Technological change is
the principal engine of growth. Despite the gradually decreasing magnitude of the
residual from the vast literature on 'growth accounting', this is uncontroversial. A
history of observational evidence led Kaldor (1961) to include among his famous stylised
facts about growth, that 'output per worker rises continually and productivity growth
rates show no tendency to decline'.1 Of course capital accumulation is also a powerful
force driving the growth of per capita incomes (Dowrick and Nguyen, 1989). But since
new capital equipment frequently embodies new technologies, rising investment-output
ratios also imply rising technology-output ratios. It is in this way that technological
progress provides the incentive for continued capital accumulation.

From studies of public finance, economic goods are characterised according to two basic
attributes: their degree of rivalry, and the degree to which they are excludable. Rivalry
describes the extent to which the use of a particular good by one agent precludes its use
by another. Excludability refers to the extent to which the owner of a good can prevent
its use by others.2 While rivalry is a function only of the technological attributes of a
good, excludability depends upon both technology and the legal system (patents,
copyright etc.). Most rival goods are also excludable; and conventional, privately
provided economic goods are predominantly rival and excludable. At the other extreme,
public goods are (by definition) both mn-rival and non-excludable, and as such they
cannot be privately provided.

Technology, or knowledge, has long been taken to exhibit public good characteristics.
As an input to production it is largely non-rival. A new design, a set of instructions, a
computer program can all be used without diminution by an indefinitely large number of
agents as often as desired, and at little additional cost once the (probably high) initial
costs of development have been met. Non-rivalry in the technological input necessarily
introduces a so-called non-convexity into the production function, which must show
increasing returns in respect of all inputs together. This can be readily demonstrated by a

1 Further evidence of the positive relationship between growth and the accumulation of technological
knowledge is provided the by Romer (1986a), and the vast literature on 'growth accounting' (see
footnote 15 of Chapter 1 for a small sample). Schmookler (1966) also observed the positive relationship
between growth and technological knowledge at the industry level in his comprehensive and detailed
study of inventions.
2 Arrow (1962a) refers to the degree to which they are appropriable, but the meaning is the same.
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simple replication argument, noting that it is not necessary to replicate non-rival inputs,
(Romer, 1990c). Because of this, a price-taking equilibrium cannot hold unless
technology is regarded as a public good, both non-rival and completely non-excludable.
Market power is necessary to achieve an equilibrium in which technology is (at least)
partially excludable, an idea that goes back to Schumpeter (1942).

Non-rivalry also carries a strong implication of non-excludability through externalities.
And external benefits and spillovers of knowledge are undoubtedly important outcomes
from innovative activity. Arrow (1962a) notes that "no amount of legal protection can
make a thoroughly appropriable commodity of something so intangible as information".3

Nevertheless, the feet remains that much (perhaps most) innovative activity is undertaken
by private agents with the expectation of economic gain.4 The total benefits from
technological improvements and the generation of knowledge must therefore be at least
partially excludable. Consistent with this, growth in Romer's model is driven by the
intentional (and endogenous) accumulation of knowledge, which is non-rival and
partially excludable; and a decentralised market equilibrium is supported by monopolistic
competition among the producers of capital.

2.2 Description of the model

2.2.1 General

Romer's (1990b) model comprises four factors: capital, labour, human capital, and
technology. Capital (K) is represented by a large variety of specialised equipment
available for final goods production, with the extent of the variety depending on the level
of technology. The usual representation of ordinary (unskilled) labour (L) is adopted.
Knowledge is separated into a rival component, human capital (H) which is embodied in
people, and a non-rival technolc'«:.cal component (A) which is independent of individuals
and can be accumulated without, bound on a per capita basis.

The economy's aggregate supplies of both ordinary labour and human capital are taken
as exogenous and constant. Ordinary labour has no alternate use to that in the production
of final output (including no labour-leisure trade-off) and so it is all devoted to this.
However, human capital is employed in both research and in final output production and
its allocation between these sectors is endogenous.

Technology, which grows over time with research effort, is represented as a stock of
(non-rival) designs for all the different types of specialised capital equipment. The
designs are excludable in terms of their direct use in the production of specialised

3 It should be emphasised that externalities are included in the model because they are important in the
real world, not because they are necessary to generate growth endogenously (Romer, 1987b).
4 Private rates of return on research and development in excess of 30 per cent, and social rates of more
than twice as much have commonly been estimated (for example, see Griliches, 1973; Mansfield et al.,
!977; and Scherer, 1982). And at the industry level again, Schmookler (1966) has provided hundreds of
detailed and specific examples for which the driving force could clearly be identified as prospective
profitability.

capital: For example they are patentable so that any particular type of specialised capital
good can only be produced by a firm which owns the design for it. However, in adding
to the general stock of design knowledge and contributing to subsequent designs, each
design makes an indirect contribution to production that is not excludable. Overall,
technology is only partially excludable.

Formally the model comprises three supply-side sectors5 and a consumption sector. A
research sector employs human capital and the existing stock of knowledge to produce
new knowledge in the form of designs for new types of specialised capital equipment. A
capital goods producing sector purchases the designs and uses them with forgone
consumption (or general-purpose capital, K) to produce a wide variety of specialised
capital goods. These are then rented (or purchased) by a final goods producing sector,
which uses them in conjunction with labour and human capital, to produce final output
that can either be consumed, or saved and invested (Figure 2.1).

2.2.2 Research Sector

The research sector is highly stylised: The output of research (technological knowledge
growth) is manifested totally as expansions in the range of specialised capital equipment
and the designs for them, and these never become obsolete.6 This research output is a
deterministic function of its inputs, subject to none of the uncertainties present in the real
world. And, the idea that the production of new knowledge is relatively intensive in its
use of human capital and existing knowledge is captured by specifying these as the onty
inputs. In reality of course, particular types of capital equipment would also be essential.7

Thus, aggregate production of designs is taken to be a deterministic function of the
research inputs of human capital and the existing total stock of design knowledge, A(t).
Specifically, the rate of increase of designs is:8

A(t)=CHA(t)A(t) (2.1)

where C, is a productivity parameter, and HA(t) is the human capital employed in research.
This specification neatly reflects the view expressed by Arrow (1962a) that "information
is not only the product of inventive activity, it is also an input - in some sense the major
input apart from the talent of the inventor" (p. 618). Note that the productivity of human

5Actually, this is merely a convenience to facilitate understanding the flows and transfer prices involved.
A variety of institutional arrangements could apply.
6Other types of technological progress, such as expansions in the range of consumer or final output
goods, and the development of capital goods of greater quality and productivity, which consequently
render their predecessors obsolete, have also been analysed in the same sort of growth context as for the
current model. For example, see Grossman & Helpman (1991a, b & d).
7The reason (of course) is mathematical tractability. Romer (1989b) considers more realistic research
technologies, but not to the analytic degree of this model. On the other hand, Rivera-Batiz & Romer
(1991a) analyse a model where the technology of research is identical to that of final output production
(the lab equipment specification). While this is tractable, it fails to capture the essential factor
intensities: the existing state of knowledge plays no part in the generation of new knowledge, and
research is no more intensive in its use of human capital than is the production of final output.
8Time derivatives of variables are indicated throughout by the 'dot notation'. Thus, dZ(t)/dt is denoted
by Z (t). Partial differentiation is represented by the usual d/dt notation.
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capital in research is an increasing function of accumulated knowledge. As a result, the
costs of producing new designs decline over tim^ This is the source of the externality in
research.

With the price of designs given by pA(t) measured in terms of the output of the
consumption good9, the value of the output of research is:

R(t) = pA(t)A(t) (2.2)

2.2.3 Savings and capital accumulation

In most macroeconomic models capital is viewed as being produced directly out of
forgone consumption.10 The consumption forgone is taken to represent aggregate
savings, and in a closed economy this is equated with gross capital investment. In the
Romer model this would represent only a narrow view of aggregate savings. A broader
view would recognise that the output of goods is not the only thing produced by the
economy. The research sector produces designs. These add to ths general stock of
technological knowledge and help to produce first capital, and then consumption goods.
In order to increase future consumption, the economy as a whole 'chooses' to divert
resources from the current production of goods and into the production of technology in
much the same way as consumers choose to forgo some current consumption in favour
of capital formation. Thus, gross product of the economy comprises both the output of
goods and the output of the designs from the research sector:

GP(t) = Y(t) + R(t) (2.3)

Taking aggregate savings as the value of gross product which is not consumed, means
that under this broad view aggregate savings comprise both those made in the form of
research and those in the form of capital accumulation:

= SK(t) + SR(t) = R(t)-C(t)

But savings made in the form of research amount to the total value of resources devoted
to research, which of course, is also the contribution to gross product from research -
SR(t) = R(t). Thus, the amount of savings available for capital formation is the value of
forgone consumption out of the total output of goods, which, since the economy is
closed, equals aggregate capital investment:

= Y(t)-C(t) (2.4)

The number of different types of specialised capital goods increases as new designs are
developed. At any time t there are A(t) different types in existence, and there are Xj(t)
units of type i. Since the capital goods sector employs the same technology as that of

9 All prices in the model (including interest rates) are measured in real terms: Specifically, they are
expressed in units of the output good which acts as the model's numeraire.
10Forgone consumption is said to be used to produce capital, but such output is not actually produced.
Rather, the resources that would have been necessary to manufacture it are devoted instead to the
production of capital. Given the existence of designs, the production technology for capital goods is
identical with that of final output.

final output, it is possible to exchange consumption goods for capital goods. If it
requires T| units of output to produce one unit of any of the different specialised types,
the aggregate capital stock at time t is given by:

A(t)

I
A(t)

K(t) = T\YX{(t) or, ignoring indivisibilities K(t) = r) Jx(i,t)di (2.5)

This aggregation, K(t), can be thought of simply as an accounting measure, specifying all
the potential consumption embodied in the specialised capital equipment. It may also be
thought of as an amorphous form of general-purpose capital that can be readily
converted into any of the existing or future types of specialised equipment. Furthermore,
as will become clear soon, in this model re-conversion back to general-purpose capital is
also possible, and both conversion and re-conversion are costless.

Figure 2.1: Diagrammatic representation of the Romer model.
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All capital goods are assumed to depreciate at the constant rate 8, so aggregate
depreciation is given by:

D(t) =
A(t) A(t)

= 8K(t)

(2.6)

and capital accumulation at all times t, is therefore determined by the relation:

K(t) = I(t)-D(t) = Y(t)-C(t)-8K(t)

2.2.4 Final output sector

Labour (L), human capital (HY), and physical capital in the form of specialised equipment
(X;), are the inputs to the production of final output. With capital expressed in these
terms the production function exhibits diminishing returns (marginal productivities) for
each input, and is linearly homogeneous with respect to all inputs together. Aggregate
(economy-wide) output is given by:

A(t)()

= N(t)1"T|]X i(t)T or Y(t) =
A(t)

JX(i,t)rdi (2.7)

where N(t) = N(HY(t),L) can be regarded as a measure of the composite labour used in
final goods production, comprising the amount of human capital, HY(t), and the amount
of ordinary labour, L. Specifying N(.) as a 'Cobb-Douglas' function:

N(HY(t),L) = HY(t)aL(1~a)

generates the production function for final output as:

(2.8)

or

Y(t) =

Y(t) =

A(t)

A(t)
(2.9)

Jx(i,t)r di

This production technology is somewhat unusual in that capital is disaggregated into all
the different types of specialised equipment available at any time (Xj(t), for
i = 1> >A(t)). Thus, in addition to the usual inputs of capital and labour (the latter
including human capital here), output in the model also depends on the input of designs.
While the production function exhibits overall constant returns to scale in terms of the
inputs of labour, human capital, and the range of specialised capital equipment, when
account is taken of the fact that all of this specialised equipment is constructed out of
more fundamental factors of production, namely, the accumulated stocks of designs A(t),
and saved output K(t), then increasing returns become evident. It is this aspect of the
production function that generates endogenous growth of output in the model. In terms
of these 'more fundamental factors' the production technology exhibits Harrod neutral or
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labour-augmenting technical change, which can be shown to be a necessary condition for
a steady state equilibrium to exist!11 These features of the production technology are
discussed in more detail in Appendix 2.1.

The final output sector is characterised by competitive price taking and constant returns
to scale. Producers take rental prices px(i,t) for each type of specialised capital
equipment i as given, and choose the quantities X(i,c) to maximise profits. In aggregate
the problem is, given HY(t) and L:

A(t)

Maximise J[N(HY(t),L)1~TX(i,t)T -px(i,t)X(i,t)]di

Since each type (i) of specialised equipment has an additively separable effect on
production, the maximisation may be performed through the integral, thereby yielding the
demand function:

px(i , t) = Y N(H y (t),L) '-T 1 = y HY(t)«1^)L(1^XHr)X(i,t)T-1 (2.10)

2.2.5 Capital goods producing sector

Firms in the capital goods sector convert general-purpose capital, which they rent from
households, into specialised equipment according to designs they purchase from the
research sector. The firms bid against one another for the sole rights to manufacture from
each new design. In this way the knowledge represented by designs is excludable in
terms of its direct use in the production of capital goods (through the granting of
infinitely lived patents for example). Each design becomes the property of only a single
firm, which produces the corresponding specialised capital and which can charge a price
greater than the marginal cost of production. Indeed, to recover the fixed costs of their
design rights they must charge more than the marginal production cost. Monopoly power
is restricted however, by the free entry of the bidding process, and the rental market for
specialised capital goods is one of monopolistic competition.

Having incurred the fixed cost of purchasing a design, the producers of specialised
capital take the demand functions for their equipment arising from the final goods sector
as given, end set prices to maximise the excess of their rental income over variable cost.
Rental income is simply px(i,t)X(i,t). Variable costs are the gross rentals paid to the
owners (households) of general-purpose capital. These may be worked out from the rate
of return on such capital. With ric(t) as the rental for each unit of general-purpose capital
and vK(t) its price or value in terms of output, then the rate of return (net of
depreciation) on such capital comprises the usual income component and a capital gain
component as:

(2.11)
vK(t) vK(t)

11For example, see Solow (1970); or Dixit (1976a).
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Since vic(t) is constant at the value of unity, the capital gain term vanishes and the rate of
reran becomes (rK(t)-8). Then, since the production technologies in the final output and
capital producing sectors are exactly the same, goods can be converted into capital one-
for-one, and the interest rate on goods is also the net rate of return on capital.
Alternatively, since assets can also be held as claims on loans at the interest rate r(t),
arbitrage will ensure that this is equated with the net rate of return to capital Thus, the
rental rate on general-purpose capital faced by capital goods producers is determined as
follows:

rK(t) = r(t) + 8 (2.12)

So variable costs amount tc the sum of the opportunity interest income and the
replacement costs due to depreciation at the constant rate 8, on the T|X(i,t) units of
general-purpose capital or forgone consumption needed to produce X(i,t) units of
specialised equipment. That is, variable costs are: [r(t) + 8]T]X(i,t); and the problem of
the monopolist capital goods producers is:

Maximise 7r(i,t) = [px (i,t)X(i,t) - (r(t) + 8)T]X(i,t)]

First order conditions yield the optimal monopoly levels of prices, quantities and profits
as follows (also see Figure 2.2):12

= x(t) =
a(Hr)

T,[r(t)

= ( l -y)p x ( t )X(t)

(2.13)

(2.14)

(2.15)

Thus, it is optimal in the model for all the different types of capital goods available at any
time to be used at the same level. Although each type of capital good is different, they all
have the same productivity and all produce identical effects on output, including new
types as they are designed.13 It follows from equation (2.5) that this level is:

X(i,t) = X(t) = K(t) / TiA(t) (2.16)

The preceding follows (more or less) the approach of Romer (1990a and b). It relies on
the pliable nature of capital in the model. In particular, it depends critically on the
assumption that specialised capital of any type can be costlessly reconverted back to
general-purpose capital at all times. This sort of view of capital is not new. Jn feet, it is
the necessary interpretation in any aggregate model of disembodied technical change
where substitution possibilities exist between labour and capital. However, in a model
like Romer's, where technological progress is explicitly embodied in a wide variety of
specialised equipment, it is not an appealing part of the set-up (though it seems necessary
for tractability).

12 The rental price on specialised equipment, px(t) from equation (2.14), is equal to the value of the
marginal product of this type of capital. This is not the case for general-purpose capital. There the rental
rate, rK(t) from equation (2.12), is less than the value of its marginal product (Appendix 2.1).
13Because of the usual diminishing returns in the production technology of the capital goods sector, it
would otherwise be possible to increase profits by diverting resources from high to low output goods.

s
i

Updating an analogy made by Swan (1956), it is as if capital is made up of a great big
box of 'lego' which "...can be put together, taken apart, and reassembled with negligible
cost or delay in a great variety of models...". At any time all the lego pieces are
assembled, from a book of designs, into large and equal numbers of each of the many
different useful models. As time goes on a few of the pieces wear out, but many more
pieces become available to replace them, and some more useful designs for assembling
them are also devised. If, after replacing the worn out pieces, there are not enough new
pieces to construct the same number of each of the new models as there are of the
existing ones, an equal number of each of the existing models are dismantled so that
when these pieces are added to the new ones and used to build the new models, there
will then be the same number of units for all the model types, both new and old. It must
also be possible to modify all of the models so they can be operated with various
combinations of labour and human capital when relative prices make such substitutions
desirable. The issues associated with this view of capital are explored further in
Appendix 2.1.

Figure 2.2: Monopolistic supply behaviour by the capital goods producing sector:
Romer model.
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In any alternative specification for which such negative investment was prohibited, or at
least for which significant adjustment costs were imposed, the monopolist profit
maximisation problem could not be solved independently at all points of time as before.
Instead, the techniques of dynamic optimisation would be necessary. Of course, these
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techniques are equally applicable under the present putty-putty 14 specification of capital
and so dynamic optimisation is used below to provide an alternative method of solution
to that of maximising at all points of time. The motivation for this is not because it adds
any extra insight to the profit maximisation solution, but because the problem is
fundamentally one of dynamic optimisation, and as such its solution is required to satisfy
a certain.///-,?/ order necessary condition, which ought to be made explicit. This is the so-
called transversality condition, a constraint imposed by the problem on the terminal (or
asymptotic) behaviour of the dynamic system which ensures that optimisation is
achieved. The significance, and the necessity of transversality conditions in both
identifying the dynamic optimum and ensuring it is attained is discussed in Section 2.3.

It is apposite to note here that when the Romer model is considered in the context of a
centralised economy, in which it is possible for some social planning authority to set
quantities and (shadow) prices for all goods and factors, the problem of maximising
community welfare is a clearly defined dynamic optimisation one whose solution includes
two transversality conditions (see Chapter 5).15 Both of these are necessary for the
(social) optimum equilibrium to be attained in that they provide the necessary boundary
conditions for the transitional dynamics. Similarly, two boundary conditions are also
required for the dynamics of the decentralised market solution to the model (Chapter 4),
and here, short of arbitrarily imposing just the right conditions necessary to attain the
market optimum, they can only be provided by transversality conditions associated with
the dynamic optimisation problems of the economic agents. One is generated through the
utility maximisation of consumers (Section 2.2.8); the other arises here via the profit
maximisation of capital goods producers.

Formally, the problem faced by the producers of specialised capital is to choose a time
path for the level of their output which maximises the discounted sum of all their future
excesses of rental incomes over variable costs:16

» -Jr(s)ds

Maximise J[px(i,t)X(i,t)-riIx(i,t)]e ° dt
o

subject to X(i,t) = I x (i,t) - 8X(i,t)

X(i,0) given, and X(i,t)>0
and where:

(2.17)

Ix(i,t) is gross investment in X(i,t); and px(i,t) is the demand function given by
equation (2.10)

14The terms putty and clay were used by Phelps (1963) to describe the extent of substitution possibilities
between capital and labour before and after technological progress which is embodied in capital. Like
Johansen (1959), Phelps considered substitution possibilities to be high for new investment, but zero for
existing capital, the putty-clay case. Romer's use of the term is intended to reflect the ease with which
general-purpose capital can be converted to any type of specialised capital equipment or vice versa
(Romer, 1990a and 1990b).
15 The opposite side of this technical coin is demonstrated by the 'linearised Romer model' of Chapter 3.
There satisfaction of two constraints on the system's initial values are found to be required for the steady
state to be approached; which in turn requires the satisfaction of two transversality conditions.
16 Barro and Sala-i-Martin (1990) and Sala-i-Martin (1990b) adopt similar maximisation set-ups but do
not draw out the full implications from the transversality conditions.

This is solved by invoking the Maximum Principle of Pontryagin et aL (1962), from
which the first order conditions generate the identical profit maximising results for prices
and quantities as obtained before when the maximisation was performed at all points of
time. Details of the derivation are contained in Appendix 2.2. Importantly, the Maximum
Principle also produces a transversality condition:

limv(t)>0 and limv(t)X(t) = 0 (2.18)

where v(t) is the shadow price of specialised capital. As mentioned above, this condition
is an integral part of the dynamic optimisation process (also see Section 2.3).

2.2.6 Price of technology

Competition among capital goods producing firms to obtain the rights to any new design
means that all the monopoly rents will be bid away. Thus, the research sector will be able
to extract prices for its designs equal to the present value of the monopoly rents
associated with each corresponding new capital good.17 At any time t the price of
designs is given by:

T

j- jr(s)dsj
PAO) = J*(*)e ' dx

t

which can be solved by differentiating with respect to time:

- J r(s)ds

(0 H00

(2.19)

PA (0 = H
°° -Jr(s)ds

] t = t + J7i(t)d / dt[e • ]dx

» -Jr(s)ds t

= -7r(t)+j7t(T)[e ' d/dt{-Jr(s)ds}]dT
t t

» -Jr(s)ds

= -*(t)+J*(T)[e' «s)}^]dT

-Jr(s)ds
x)e ' dx

Thus, the differential equation for the time-path of the price of technology is:

pA(t) = r(t)pA(t)-7i(t) (2.20)

This relation can also be seen as a condition of perfect arbitrage. Over a small period of
time, (t, t+At) say, the interest that could be earned on an amount of money equal to the
price of an asset, must be equal to the value of the alternative investment of holding the
physical asset itself; that is, to the income it earns plus its capital gain over the period.

rtp,At = 7ttAt + (p t + A t -p t )

17The decision of whether to incur the costs of new research and development will therefore be based
upon (the expectation of) future monopoly rents exceeding such costs.
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2.2.7 Allocation of human capital

As for aggregate labour (L), aggregate human capital (H) is exogenously fixed. It is also
taken to be homogeneous, so there is no distinction between that employed in research
and that employed in the production of final output, both of which are determined
endogenously.18 Thus:

= HA( t )+HY( t ) (2.21)

Moreover, the returns to human capital will be the same in each sector. In research
human capital earns all the income, and its marginal (physical) product is
MPH = cA(t)/3HA(t) = £A(t). Thus its wage is:

(2.22)

That is, researchers' wages are equated to the market value of their marginal product,
which in turn is based upon the market price of designs pA. However, since this price
captures only part of the of the social value of a design, the wage rate of human capital in
research is actually less than the true value of its marginal product. Although some of the
knowledge of designs is non-excludable, since every researcher is free to exploit all the
knowledge, any benefits exten al to one researcher are captured by others. In aggregate,
researchers collect all the benefits of the sale of designs. From equations (2.1) and (2.2),
the total of their wages amount to the overall value of the output of research:

= wIlA(t)HA(t) = (2.23)

Since the final output sector is competitive, human capital employed there receives the
value of its marginal product. Using equations (2.9) and (2.16), wages are thus:

wH v(t) =
<5HY(t)

= a( l - y )r\~y HY ( t ) 0 ^ 1 L(1-aX1-y)A(t) ̂  K(t)T
(2.24)

The allocation of human capital to manufacturing ii aien determined by equating the
expressions for wH (t) and wH ( t ) :

(2.25)

2.2.8 Consumption

Consumers (or households) own all the assets of the economy; and since we are dealing
with a closed economy these amount to the aggregate capital stock and the accumulated
value of designs.19 They earn income from wages and interest payments on their assets of
capital; and since they are competitive they take both the wage and interest rates as
given. Aggregate household income equals gross product, the path of which they also
take as given, along with the paths of its components: the output of goods (Y) and the
output of research (R). The problem they face is to determine how much of total output
to consume through the purchase of goods, and how much to save by the accumulation
of additional capital Any decision to save more, clearly means less immediate
consumption is available. However, since saving also raises productive capacity it allows
the possibility of greater consumption in the future. The consumption problem is to
determine the appropriate trade-offs in order to maximise consumer welfare. To this end
current consumers are assumed to take account of the welfare of all future consumers,
and thus to maximise over an infinite time horizon.20

Consumer welfare is synonymous with consumer utility, which is itself an increasing
function of consumption. The part'icular functional form employed here is the Constant
Intertemporal Elasticity of Substitution (CIES) utility function. Since there is only one
type of household or consumer in the model, it is possible to aggregate and consider only
a single consumer. Thus formally, the consumption problem is 'to maximise the
discounted sum of all future aggregate utility, subject to the economy-wide income
constraint' That is:

Maximise JU{C(t)}e"pldt

subject to K(t) = WY(t) + rK(t)K(t) - C(t) - 8K(t)

K(0) given, and K(t) > 0

where U{C(t)} = [C(t)'-a -1] / (1 - a ) for CT > 0

(2.26)

In this formulation WY(t) is aggregate wages from the output of goods; rK(t) = r(t)+8 is
the rental rate on general-purpose capital; and U(.) is the instantaneous utility function
(the felicity function), with p as the subjective discount rate and 1/crthe elasticity of
intertemporal substitution. Notice that since aggregate household income corresponds to
gross product, and since research wages correspond to research output, then:
WY(t) + rK(t)K(t) = Y(t), and the economy wide income or resource constraint above
corresponds to the capital accumulation relation (2.6).21

18The model generates endogenous growth in technology (and hence in output per head) through
research effort. However, since the aggregate supply of the input to research, human capital, is
exogenous, much of the growth story remains unexplained - despite the fact that the share of total
human capital employed in research is endogenous. This suggests a direction for further research:
Namely, modifying the model to endogenise the supply of human capital, perhaps along the lines of
Lucas (1988).

36. Chapter 2

19In addition to their direct ownership claims on capital, individual households may also hold assets in
the form of loans. However, in aggregate loans will be zero.
20Since the optimisation takes place over an infinite horizon, all future consumers are assumed to
"always be governed by the same motives as regards accumulation" (Ramsey, 1928). Families or
dynasties of overlapping generations, all taking account of the well-being of their progeny, are usually
postulated.
21 The economy wide income constraint is simply that aggregate income equals gross product. That is:
W(t)+rK(t)K(t) = GP(t), where W(t) is aggregate wages and rK(t) = r(t)+8 is the rental rate on general-
purpose capital (equation (2.12)). Total wages are composed of those earned in the research and output
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As was the case for problem (2.17), application of the Maximum Principle is the method
employed to solve the dynamic maximisation problem (2.26). From this, first order
conditions generate the following results:

C(t) = -[r(t)-p]C(t)
a

and the transversality condition:

limX(t)>0 and limX(t)K(t) = 0

(2.27)

(2.28)

where X(t) is the shadow prior of (general-purpose) capital. Details of the solution are at
Appendix 2.2.

The economic content of equation (2.27) can be interpreted in terms of the standard
optimising condition of equating marginal benefits (or costs) from competing activities or
demands. In particular, it can be seen as expressing the condition that for an optimum
allocation of resources between savings and consumption, the returns from each of these
should, at the margin, be equal.22

2.3 The dynamic system

2.3.1 Transversality conditions

The dynamic system of the Romer model is derived in part from the optimising behaviour
of economic agents. As has been shown, both households (consumers) and the producers
of specialised capital goods face dynamic maximisation problems. Necessary conditions
furnished through the Maximum Principle for the solutions to these problems not only
specify differential equations of the dynamic system, but also certain transversality
conditions which impose constraints on its asymptotic behaviour (see for example
Intrilligator, 1971; Chiang, 1992; or Leonard and Van Long, 1992).

Because of the particular formulations and functional forms involved in these
maximisation problems it turns out that given the differential equations of the system, the
transversality conditions are both necessary and sufficient (Appendix 2.3). For this
reason it should be possible to use the transversality conditions explicitly to derive the
optimum dynamic path from amongst the infinity of paths described by the differential
equations alone. This is done in the following section.

It should be noted however, that this sort of procedure does not seem to be common
practice in economic applications of dynamic optimisation. In most cases the dynamic
system is characterised by some sort of equilibrium, either a balanced growth equilibrium

sectors, WR and WY respectively, so W = WR+WY. Then, using equations (2.3), (2.6) and (2.23), the
economy wide resource constraint becomes: WY(t) + rK(t)K(t) = K(t) + 8K(t) + C(t) .
22Written as: rK - 8 = p + aC / C, the left hand side is seen as the marginal return to savings The right

hand side can be shown to be the marginal return to consumption: (see Barro and Sala-i-Martin, 1995).

where the dynamic variables grow at constant asymptotic rates; or a steady state
equilibrium where the dynamic variables are asymptotically constant. While such an
equilibrium, and the path to it, are indeed usually synonymous with the dynamic
optimum,23 it is frequently simply posited as such, sometimes without explicitly checking
whether necessary conditions are satisfied. In cases of multiple equilibria such an
approach could go awry. Hahn (1990) indicates how easy it is to constructexamples of
growth models with multiple equilibria. Also, the importance of the transversality
conditions can be illustrated by the Romer model itself, since if they are ignored it can be
shown that the differential equations of the model generate two dynamic equilibria or
steady states. One of these is ruled out as a potential dynamic optimum by the
transversality condition attached to the utility maximisation problem faced by consumers.
While it could also have been dismissed as invalid by economic reasoning, its
mathematical existence cannot be disputed (also see footnote 27 and Appendix 2.4).

On the other hand, sometimes transversality conditions can be, and are, used directly in
the differential equations. This is possible in those (somewhat rare) cases where the
dynamic system is simple enough to permit a closed-form solution - linear systems for
example. Then substitution of transversality conditions can be used to evaluate the
constants of integration.2* which are often initial values of the costate variables or of
price or flow type variables to which they are functionally related by the necessary
conditions of the dynamic optimisation.25 Such cases emphatically illustrate the necessity
of transversality conditions in providing sufficient boundary conditions to integrate a
system's differential equations to its dynamic optimum. They also raise the issues of
jumping variable> and two-point boundary value problems, each of which are discussed
in some detail in Chapters 3 and 4, particularly in Section 4.1.

2.3.2 Condensation of the equations

From the equations specified in Section 2.2, the Romer model can be condensed into a
dynamic system of four first order differential equations in the variables A(t) - the stock
of technology; K(t) - the capital stock; C(t) - the flow of consumption; and pA(t) - the
price of technology. In the specification below the variables r(t) and HY(t) have been
retained for notational convenience. Thus there are actually six equations and six
variables. However, these 'extra' variables can readily be substituted out. The dynamic
system can be condensed from the equations of Section 2.2 as follows:

• substitute the exogenous total human capital expression (2.21) into the research
technology equation (2.1):

A( t )=5H-H Y ( t ) ]A( t )

23In fact, this can be shown generally to be the case under conditions which often characterise economic
problems (Appendix 2.3).
24For example, see the linearised Romer model in Section 3.2 of Chapter 3 here; the dynamic models of
Romer (1986b); problem 'P7(K)' in Romer (1989a); Rebelo (1990 and 1991) particularly the discussion
in Sala-i-Martin (1990b); and Jones and Manuelli (1993).
25Like the relation between the costate variable k(t) and the level of aggregate consumption C(t) given
by equation (A2.2.29) of Appendix 2.2, from which the corresponding initial values would be related by:
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use (2.13) and (2.16) first to obtain an expression for [r(t)+5], and second, with (2.9),
to generate an alternative formulation for output; then combine these results and
substitute into (2.6):

r(t) + 5 = y2Ti-THY(t)a(1-T)L(1-aXM)[K(t) / A(t)]7-1

Y(t) =

r(t) + 5
K(t)

(2.29)

K(t) =

substitute the specialised capital profit maximising conditions (2.14) and (2.15) into
the capital stock accounting relation (2.16); and then substitute the result into the
technology pricing equation (2.20):

PA (t) = r(t)pA (t) -

• maintain the human capital allocation equation (2.25); and the utility maximising
expansion path for consumption (2.27).

At this stage the system comprises four ordinary differential equations in four variables
(as noted before the variables r(t)and Hy(t) may be substituted out). To solve these, in
the sense of generating a dynamic path, four so-called boundary conditions are also
required. Further discussion of the meaning and significance of these, and exactly how a
dynamic system such as this is solved is held over to Chapters 3 and 4. Here it is simply
noted that the necessary four boundary conditions are indeed available. Two take the
form of initial conditions, and two the form of transversality conditions, and they all arise
from the two dynamic maximisation problems inherent in the model. Thus, the final steps
in the condensation process are:

• maintain the initial condition 'K(0) given' from the consumers' utility maximisation
problem (2.26), and combine it via equation (2.16) with the initial condition 'X(O)
given' from the capital goods producers' profit maximisation problem (2.17) to
obtain an initial condition 'A(O) given'; and

• maintain the transversality conditions (2.18) and (2.28) from the two dynamic
optimisation problems.

Then, re-writing the key equations, the dynamic system for the Romer model is as
follows:

= C[H-HY(t)]A(t) (2.30)

(2.31)

where

1 - 8

a(l-y)
HY(t)pA(t)[K(t)/A(t)r-8

(2.32)

(2.33)

(2.34)

(2.35)

together with the four boundary conditions:

A(0), K(0) both given; (2.36)

limv(t)>0 and limv(t)X(t) = 0 (2.37)

and

limMt)>0 and limMt)K(t) = 0 (2.38)
t->co t-»oo

2.3.3 Asymptotic dynamics and the steady state equilibrium

The asymptotic behaviour of the dynamic system is determined by the transversality
conditions, (2.37) and (2.38). They require that under the system of differential equations
(2.30) to (2.35) the products v(t)X(t) and X.(t)K(t) both decline towards zero as the time
since their initial values were realised becomes very large. This is equivalent to requiring
that in the limit, the growth rates of both v(t)X(t) and X(t)K(t) be negative. Thus, the
transversality conditions require:

lim[v(t) / v(t) + X(t) / X(t)] < 0
t-»°o

which, in view of equation (2.16) can be written as:

lim[v(t) / v(t) + K(t) / K(t) - A(t) / A(t)] < 0
t->«>

and
i K(t) / K(t)] < 0

(2.39)

(2.40)

This means that the four growth rate limits:

lim[v(t)/v(t)]; lim[K(t) / K(t)]; lim[A(t) / A(t)]; and
t-voo t->«> t->«o

must all exist. That is, they must all be constants. This is what generates the so-called
balanced growth equilibrium for the system:

[
t->«>
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From equations (A2.2.21) and (A2.2.30) of Appendix 2.2, the growth rates of both the
shadow prices, v(t) and ^.(t), are equal to the negative of the interest rate, r(t).26 The
transversality conditions therefore imply that the interest rate is asymptotically constant;
and from (2.33) this means that the rate of growth of consumption, C(t) / C(t), is also
asymptotically constant. Next, it follows from (2.30) that for the limit rate of growth of
technology A(t) / A(t) to be constant, the allocation of human capital between the
research and output sectors, HA(t) and Hy(t), must also be constant in the limit.
Equations (2.34) and (2.35) then require the ratio of capital to technology, K(t)/A(t), and
the price of technology, PA(0, to be asymptotically constant. The former implies that in
the limit, the stocks of capital and technology must grow at the same (constant) rate, and
it then follows from (2.31) that the limiting value of the consumption-capital ratio,
C(t)/K(t), is constant so that consumption also grows at the same rate as capital in the
limit.27 Moreover, from the expression for output in equation (2.29), the capital-output
ratio, K(t)/Y(t), is asymptotically constant and the growth rate of output is also equal to
that of capital.

Thus, satisfaction of the transversality conditions together with the dynamic equations
ensure that the system will tend asymptotically to a balanced growth equilibrium in
which technology, capital, consumption, and output all grow at the same constant rate.28

This and other features of the equilibrium from the previous paragraph are summarised
below:

lim[A(t) / A(t)] = lim[K(t) / K(t)] = lim[C(t) / C(t)] = lim[Y(t) / Y(t)] = gM
t-^co t-*"> t->00

lim[v(t)/v(t)] = = -limr(t) = - ss

lim[K(t)/A(t)] = ¥ ^ ; lim[C(t)/K(t)] = <E>̂ ; li
t->00

limHA(t) =
t->00

where g V * . ^ G ^ p ^ H ^ a n d H ^ are all constants of the balanced growth
equilibrium (and the notation is explained further shortly). Also, referring back to
equation (2.38), indicates that the transversality conditions require that gM

The equilibrium may then be characterised in terms of the model parameters and
exogenous variables by using the differential equation system (2.30) to (2.35) to set the

26Equality of the growth rates of the two shadow prices is only to be expected: Since specialised capital
is costlessly assembled out of r\ units of general-purpose capital then surely v(t)=r|X,(t). This can be

confirmed mathematically by integrating (A2.2.30) with the aid of an integrating factor e f 0 ) l , realising
that M0)=l, and comparing the result with (A2.2.14).
27Strictly, these deductions on the equality of growth rates depend upon the constant values of the
corresponding ratios not being zero. K/A=TIX=0 is ruled out since it means the whole system
degenerates to the origin; and C/K=0 is ruled out by the transversality condition (2.38) associated with
the consumer utility optimisation problem: in the limit, optimising consumers must consume all their
income. Appendix 2.4 indicates that if this condition is ignored, the differential equations of the Romer
system produce a second dynamic equilibrium or steady state.
28As noted in footnote 23, this result can be shown to apply more generally (Appendix 2.3).

appropriate rates of growth equal to one another and then solving for the balanced
growth constants. However, before proceeding along these lines it is convenient to
transform the variables in such a way that the system yields a stationary equilibrium or
steady state rather than the balanced growth equilibrium. This can be achieved by
defining the new variables *F(t) = K(t)/A(t) and <D(t) = C(t)/K(t),29 then taking logs and
derivatives and substituting from equations (2.30) to (2.35):

- 8 -

r r ( t ) - p r(t) + S

CT Y

1--

(t)F(t)

8]<D(t)

PA (0 = r(t)pA (t) - ^-4r( t )+5]TO)

where:

(2.41)

(2.42)

(2.43)

(2.44)

and
r(t) = -1 - 8

Of
a(l-y)

(2.45)

Also, from the above analysis of the transversality conditions and the asymptotic
behaviour of the system, the boundary conditions (2.36) to (2.38) transform to:

¥(0) given

lim<D(t) =

and

(2.46)

(2.47)

(2.48)
t-»°0

In this way the dynamic system is reduced to one of only three differential equations in
three variables, all of which are asymptotically constant. Such a reduction of the system
also allows its phase-space to be visualised as a three dimensional figure (Section 3.3).

The steady state equilibrium of this dynamic system, equations (2.41) to (2.48), which is
equivalent to the balanced growth equilibrium of (2.30) to (2.38), may be computed by
taking limits and setting each of (2.41) to (2.43) to zero and solving. In the notation
below (which was also foreshadowed earlier in summarising the balanced growth
equilibrium outcomes), the 'ss-subscripts' denote the steady state and replace the earlier
limit concepts. The 'M-superscripts' refer to the decentralised market solution of the

29The variable *F=K/A=TIX reflects the economy's allocation of capital per design; or the total value of
each type of capital (expressed, as usual, in terms of the consumption good numeraire). It is a measure of
the capital intensity of technology. And the variable O measures the contemporaneous consumption
available from the capital stock.
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M_M
P

model and are used to distinguish this from certain other solutions introduced in
subsequent chapters.

s = 0 (2.49)

= 0 (2.50)

= 0 (2.51)( r s

In addition to all the economic variables already explicitly identified in the dynamic
system, it will prove useful to specify some extra ones. In particular, it will be useful to
have results for both the dynamics and the steady state levels of the savings rate, capital-
output ratio, and the factor shares of income. It is also desirable to calculate the
dynamics of the growth rates,. Growth rates for. capital,- consumption and technology are
already explicit in the system; but for output Y, and gross product GP, further derivation
is necessary. The behaviour of all the variables wiil then be studied in the various
dynamic analyses undertaken later in the dissertation. The extra variables are specified
and derived in Appendix 2.5.

+5 =

a(l-Y)
M
ss

(2.52)

First substitute (2.52) into (2.51) to obtain a relation between T™ and H " :

(2.53)

Then add equations (2.49) and (2.50) and substitute for r " to obtain the steady state
allocation of human capital to manufacturing:

M
1 + a a / y

(2.54)

The corresponding allocation to research, and the steady state growth and interest rates
can then be obtained from this by using H = H ^ + H?B; (A / A)* = gM = CHJJ,; and
equation (2.53) respectively:

HM _
Ass -

1 + aa I Y 1 + oca / Y

r M _ crffl + p
55 1 + a a / y

(2.55)

(2.56)

Next, the steady state ratio of consumption to capital may be obtained from
(K/K)^ -g =(rss +8)/y2 -<I>^ - 8 ; and the steady state levels of the capital
intensity of technology and the technology price level from (2.52) and (2.51) to generate:

-M

and

PASS -

2TT
1 "Yss

J_
1-Y

M

(2.57)

(2.58)

(2.59)

2.4 Calibration and sensitivity

Having established the formulae for the model's steady state equilibrium, the effect of
changes in its parameters on the equilibrium levels of its (endogenous) variables may be
examined, lliis is the sort of comparative statics analysis undertaken by Romer (1990a
and 1990b). However, it is not the main focus of the work here since it forms part of the
broader analysis of the transitional dynamics between equilibria, which is the basis of
Chapter 4. Nevertheless, some idea of the numerical sensitivity of the model's
equilibrium to changes in its parameters is provided, and a few special cases are
discussed. Of course, this requires numerical values to be assigned to these parameters.
Accordingly, the model has been calibrated with a set of parameter values intended to
reflect the rudiments of the relevant magnitudes for the Australian economy. This set,
termed the benchmark parameter set, is used widely throughout the paper in various
numerical simulations of the model. Here it forms the base from which the sensitivity of
the equilibrium is assessed.

2.4.1 Calibration of the model

When the model is solved numerically the differential equations defined in equations
(2.41) to (2.45) are converted to difference equations in which adjacent time points are
separated by suitably small intervals or step-sizes (see Section 4.1 of Chapter 4). The
conversion from continuous to discrete time introduces the step-size into the units of
measurement of certain parameters and endogenous variables such as the discount,
depreciation, interest and growth rates which must be specified in terms of per some unit
of time. Prior to calibration the step-size has no explicit real-time dimension and it only
acquires one through a specification of parameters which is consistent in terms of time.
Thus, one of the aims in calibrating the model is to set it on an annual time basis. The
other aim is to ensure consistency with the empirical economic evidence.

Most, but not all of the model's parameters and exogenous variables represent economic
magnitudes for which at least some form of quantitative measurement is available. For
the others, at least broad indications of their magnitudes are available from their
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definitions and from constraints arising from the theory of the model.30 The particular
numerical values assigned to all these input parameters and exogenous variables then
determine the magnitudes of the model's endogenous or output variables, such as the
real interest rate or the share of savings in gross output, which can also be assessed in
terms of actual quantitative economic measures. Calibration of the model is intended to
ensure that its input parameters, constrained as necessary to conform with empirical data,
generate outputs which are also consistent with empirical observation. Since some of the
parameters of the model are only loosely constrained, there is some degree of freedom
amongst the parameter set. For the calibration to be 'successfiil' this freedom must
provide sufficient flexibility to allow the necessary consistency between irr/Uts, outputs
and the data.

Two broad stages go to make up the calibration process. The first is the identification of
constraints, consistent with the empirical data, for both the parameters and the
endogenous variables that they generate. The second is the determination of actual
parameter values from within these ranges. Since variations in the different parameters
have vastly different effects on the endogenous variables, in terms of both the magnitudes
and the directions of their change, this second stage is complicated and messy to
undertake in any 'trial and error' manner. Instead, the approach adopted is one of
endogenising the parameters. Normally it is the parameters which are exogenous and
which, through the model, generate results for the endogenous variables such as the rate
of economic growth and the interest rate. Here, since empirical data for the normally
endogenous variables are available these roles are reversed. The empirically quantifiable
variables (including some new ones functionally related to the parameters) are set
exogenously and the model is used to calculate consistent parameter values
endogenously, all of these subject to their constraints. Details of the method are provided
after the specification of constraint ranges (in Section 2.4.1.3).

2.4.1.1 Parameter constraints

The Cobb-Douglas parameter a: This is the elasticity with respect to human capital of
composite labour, N = HY

aL(1"a), employed in the final output sector. It is related to the
shares of total income from the output of consumption goods going to human capital and
to ordinary labour. Under conditions of perfect competition, which are assumed to
prevail in the final output producing sector of the model, (1-y) is the income share to
composite labour; a(l-y) the share to human capital; and (l-<x)(l-y) the share to ordinary
labour (Appendix 2.1). Thus, a represents the share to human capital of the total labour
income from the production of goods.

a =
wHHY

wHHY
(2.60)

Empirical data exist for the incomes accruing to different occupational categories, which
can be used as a proxy to differentiate human capital and ordinary labour; however such

30 For example, from their definitions the parameters ^, p, and CT are constrained only by: C, >0; p £0;
and a >0. However, it is known from the theory of the model that: C, = g ^ ^ ; and p + ag = r^. Thus,
even very crude estimates of permissible values for the endogenous variables HA^, g, and r^ allows the
constraint ranges for these parameters to be narrowed enormously.

data camniot distinguish between human capital employed in the production of goods and
that employed in research. Thus, the data can only provide a share expression similar to
(2.60) with HY replaced by H. For this reason (2.60) is modified as follows:

wHH w L L+w H H

w
H

rHY nr(l-a)(l-y)Y+a(l-y)YH/H,

where an empiricjd proxy is available to measure Sa, the share of human capital wages in
total wages; and where the income distribution and wage rate results from Appendix 2.1
have been substituted into the third ratio of the first line in the above equation. This is
then readily simplified, at the steady state:

a = S a [ l - ( l - a ) H A s s / H ] (2.61)

Because HASS is an endogenous variable it has not been possible to obtain a direct
empirical measure for the parameter a. Instead, a new endogenous variable, Sa - which
can be empirically measured - has been defined, and this will prove useful in the
calibration process. The next task is to obtain this statistic explicitly.

The Australian Standard Classification of Occupations (ASCO) identifies the following
broad occupational groupings: Managers and Administrators; Professionals; Associate
Professionals; Tradespersons and Related Workers; Advanced Clerical and Service
Workers; Intermediate Clerical, Sales and Service Workers; Intermediate Production
and Transport Workers; Elementary Clerical, Sales and Service Workers; and
Labourers and Related Workers. Data on earnings by occupation for 1996 indicate that
if the first three of these groupings are taken to define human capital, then its share of
total 'wages, salaries and supplements' was 48 per cent. When the next two occupational
categories are progressively included, the human capital share rises first to 62 per cent,
and then to 66 per cent (Australian Bureau of Statistics, 1996). These data suggest, a
constraint range for this new share variable of Sae[0.5,0.7].31

The exogenous variables H (human capital) and L (ordinary labour): Using these
same occupational proxies for human capital, data on employment by occupation suggest
a ratio of ordinary labour to human capital of about unity to two (Australian Bureau of
Statistics, 1997a). On the basis of this the exogenous variables L and H have been set at
H = 1 and L = 2 in the benchmark parameter set.32

The Cobb-Douglas parameter y is the elasticity of output with respect to capital, and
nice a it is also related to income shares. In particular, and as shown in Appendix 2.1,

31 This is precisely the range identified by Mankiw, Romer and Weil (1992) who note that "In the
United States the minimum wage - roughly the return to labor without human capital - has averaged
about 30 to 50 percent of the wage in manufacturing." Oddly, this 'guesstimation' appears to take no
account of the relative amounts of human capital and ordinary labour.
32 In any case, these are not critical measures in the calibration. Different values for H can be thought of
as arising simply from a change in the units in which it is measured (and thus subsumed into the level of
the productivity parameter £, see footnote 33). And the model results are largely unaffected by changes
in the value of L (Table 2.3).
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y is the capital share of total income from the production of goods:y = p x A X / Y , or in
terms of the capital share of gross product:

P xAX Y+p A A =

Y + pAA Y
Sr[l + pAA/Y]

where Sy is the share of income to capital in gross product, which can readily be
measured from national income statistics. Then, using equations (2.29) and (2.32), and
evaluating at the steady state:

y ( l - y ) g / r J (2.62)

Thus, in similar vein to the case for the parameter a, since this expression contains the
endogenous variables g and r^, it does not provide a direct empirical estimate of y.
However, once again another empirically measurable endogenous variable, Sr, has been
defined which will facilitate the calibration.

Australian national accounts data over the ten years 1986-87 to 1995-96, indicate that
returns to capital as a share of GDP have been highly stable, averaging 44 per cent, and
only varying between 43 and 45 per cent (Australian Bureau of Statistics, 1997b).
Accordingly, the constraint range for this share term was set at Sre[0.4,0.5].

The research productivity parameter, C, (which is not dimensionless but depends,
rather, on the units in which H is counted)33 was merely constrained according to its
definition as Q>0.

The capital depreciation rate 8: Data on the 'consumption of fixed capital' from the
Australian Bureau of Statistics (1997c) indicate an average aggregate rate of
depreciation of capital in Australia of some five per cent per annum, varying only from
5.2 per cent to 5.5 per cent over the entire thirteen year period reported (1982-83 to
1994-95). According to the Australian Bureau of Statistics (1990), these estimates are
based on the concept of 'expected economic lifetimes' and allow for 'foreseen
obsolescence'. Because obsolescence is explicitly ruled out in the Romer model, the
calibration process allows for the possibility of a slightly lower depreciation rate.
Specifically, in defining the benchmark parameter set the model parameter 8 was
constrained within the range 8e [0.04,0.06].

The discount rate p; and the elasticity of intertemporal substitution, a"1: From their
definitions, these parameters are constrained only as p >0; and o>0. However, for certain
technical reasons (see Chapter 5) it is desirable to have a>l . Nevertheless, these very
wide ranges can be narrowed considerably by noting that from equation (2.33) the

33Chiang (1992) sees a problem "with the formulation of the steady state growth rate from Romer's
model. He claims that like the other parameters in the growth rate expression, his research productivity
parameter, a (equivalent to C, here), is a pure number, and thus the appearance of the human capital
term, So (equivalent to H here), renders the growth rate a dimensioned quantity. This is false. The
research productivity parameter can be seen from the technology accumulation relation to have
dimension equal to the inverse of that in which human capital is measured. From this the dimensions of
these two quantities cancel in the growth rate formulation and the growth rate is indeed a pure number.

parameters are related by p + e g = r^. When the permissible ranges for g and rss (to be
developed shortly from the empirical evidence) are substituted into this relation,
approximate upper bounds are established as: p<0.06 and a<7. In order to ensure a
somewhat closer conformity of these parameters with the values used in other research,
the smaller constraint ranges of pe[0.01, 0.03] and asf l .5 , 5] were adopted for the
calibration process.34

The cost of specialised capital, t\: Somewhat arbitrarily, the cost of one unit of any
type of specialised capital equipment in terms of output was taken to be r|=2. However
this is of little consequence since it turns out that the steady state equilibrium of the
system is largely unaffected by this parameter (see Table 2.3 and the ensuing discussion).

2.4.1.2 Endogenous variable constraints

The steady state growth rate, g: Data on multifactor productivity (labour and capital
productivity combined) provides an empirical measure for the model's steady state rate
of growth of technology, (A/A)^ = g. Calculations of the growth rate of multifactor
productivity are, however, highly sensitive to the relative positions of the start are? end
dates in the business cycle. Consequently, such calculations should be made between
dates which represent corresponding phases of the cycle. The Australian Bureau of
Statistics (1997d) provides the necessary data, which indicate a long-term average annual
growth rate in multifactor productivity of 1.5 per cent,35 with the highest and lowest
growth figures for individual cycles being 2.1 and 0.8 per cent respectively. Over the
most recent growth cycle at the time of writing, the seven years from 1988-89 to 1995-
96, multifactor productivity grew at an average annual rate of 1.2 per cent. Accordingly,
the model's steady state growth rate g, was constrained within the range ge [0.01,0.02]
for the calibration process.

The steady state savings rate, SpM: National Accounts data over the ten years 1986-87
to 1995-96 indicate that in constant price terms, consumption as a share of the
expenditure measure of gross domestic product varied between 74.6 and 77.9 per cent,
averaging 76.5 per cent (Australian Bureau of Statistics, 1997b). On the basis of these
figures, and taking national savings as the share of output not consumed (the definition
of sB in Section 2.3.3), the constraint range for the model's savings rate was set as
sBe[0.22, 0.26].

The steady state real interest rate, r^: Like economic and productivity growth rates,
estimates of average interest rates are also somewhat sensitive to the business cycle, and
so should also be measured across similar phases of the cycles. Using the same growth
cycle definitions as above (Australian Bureau of Statistics, 1997d), together with data on
90 day Bank bills, 10 year Treasury bonds, and the Consumer Price Index from the
Reserve Bank of Australia (1997), the interest rate data shown in Table 2.1 were
calculated. With the 15 year/three cycle average of 5.8 per cent, and the average of the

34In some empirical work with a Cass-Koopmans type neoclassical growth model applied to the United
States (see Cass, 1965 and Koopmans, 1965), Barro and Sala-i-Martin (1995) used the values of p -
0.02 and cr=3 as their 'baseline' values.
35 The period is 31 years from 1964-65 to 1995-96 and incorporates six growth cycles.
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90 day and 10 year rates ranging between 5.7 and 6.8 per cent, the calibration constraint
range was set as r^e [0.055,0.07].

Table 2.1: Real interest rates, 1981-82 to 1995-96, Australia.

Growth rate
cycle"
1981-82 to 1984-85
1984-85 to 1988-89
1988-89 to 1995-96
1984-85 to 1995-96
1981-82 to 1995-96

90 day
Bank bills

5.64
7.45
5.59
6.16
5.80

10 year
Treasury bonds

5.84
6.06
6.10
6.13
5.81

Average1"

5.74
6.75
5.85
6.15
5.81

d:\phd\chptZ\calibrtn.xb

Source: Reserve Bank of Australia, Bulletin, June 1997.
Notes: a As defined by Australian Bureau of Statistics, Australian National

Accounts, Multifactor Productivity: 1995-96, July, 1997.
b Simple averages of the previous two columns.

The steady state capital-gross product ratio, kcp^, is also measured empirically from
National Accounts data. Capital stock and GDP figures from the Australian Bia-eau of
Statistics (1997b) and (1997c) respectively, indicate that over the ten years 1985-86 to
1994-95 (the most recent ten years for which data was available), the average annual
value of the capital-output ratio was 2.85 with a variation about this figure of just under
±2.5 per cent. For the purpose of calibration the model's capital-gross product ratio as
calculated by equation (A2.5.17) was constrained as kope [2.75, 3.00].

The speed of convergence, also known as the convergence coefficient, p is a measure
of the rate at which a dynamic system approaches its steady state equilibrium. More
specifically, the coefficient refers to the rate at which the divergence of a variable from
its steady state value is closed. The usual variable is the growth rate of per capita
income. This concept, its definition, and calculation within the model are introduced in
the following chapter (Section 3.2.3). Here the issue is simply one of endeavouring to
calibrate the model in such a way that its convergence is not at odds with the available
empirical evidence. Because the calculation of P within the model is rather complicated,
involving all the parameters and the complex-algebra necessary to solve a cubic
equation, no specific constraint range was set for it. Nevertheless, in accordance with the
empirical evidence from Mankiw, Romer and Weil (1992), and from Barro and
Sala-i-Martin (1995), a value in the range of about 2.0 to 3.5 per cent was sought. As
explained below, the coefficient P was assigned a pivotal role in the determination of the
benchmark parameter set.

2.4.1.3 Determining the benchmark parameter set

Specific values for the parameters were identified from within their constraint ranges
through the use of a non-linear programming technique: in particular, by utilising the
program Solver from the Microsoft Excel 97 suite. First, a specific value for the
convergence coefficient variable, p, was selected as a target, and the program used to
search for a parameter set which satisfied all the constraints on both the parameters
themselves and on the endogenous variables. When obtaining a solution for p < 3.5 per
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cent proved impossible, the program was then used to search for the minimum value of P
consistent with the constraints. This generated a result of just under 5 per cent for the
convergence coefficient, together with the benchmark values for the parameters and,
from the steady state formulae (2.53) to (2.59), and (A2.5.16) to (A2.5.18), the
corresponding benchmark steady state values for the endogenous variables. All these are
shown in Table 2.2 below.

Table 2.2: Benchmark set parameter values and the resulting steady state equilibrium values of
the endogenous variables, Romer model market solution.

Parameter values a=0.43; y=0.54; 5=0.04; p=0.01; a=3.0; £=0.06; ry=2.0; H=1.0; L=2.0

Endogenous variables

Steady state values

<pB PA* H Y S S

(%)
r o g sNss sBss

(%) (%) (%) (%)
6.48 0.27 9.45 74.41 25.59 5.61 1.54 16.80 22.10 2.84 4.93
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The value of the convergence coefficient (4.9 percent per annum) which results from the
benchmark set of parameter values is somewhat greater than the empirical estimates
referred to above. However, there are several reasons for not being overly concerned
about this, especially in the context of the current model:

L The empirical estimates of convergence are dependent on the particular growth
models used, which are themselves limited in terms of both theory and the empirical
validity of their own parameter values.

ii. While the estimates of Sato, R. (1963) for a simple Solow neoclassical model
applied to the United States, also implied a convergence coefficient of only some
2.5 per cent, in a slightly modified model Sato, K. (1966) preferred an estimate of
some 6 to 9 per cent for the speed of adjustment.

iii. And for a Ramsey type neoclassical model calibrated to U.S. data, King and Rebelo
(1993) calculated adjustment processes that implied a convergence coefficient
varying between almost 3 per cent to some 11.5 per cent, depending on whether the
intertemporal substitutability of consumption parameter o, was set at a=10 or o=l.
As discussed in Appendix 2.1, there are no adjustment costs associated with either
investment or disinvestment in the model. Inclusion of these could be expected to
slow down the speed of adjustment.
The calculation of the convergence coefficient P in the calibration here is
(necessarily) from the linearised approximation to the Romer model (Section 3.2.3).
Simulations with the non-linear model (Section 4.5) indicated somewhat slower
adjustments - with implied convergence coefficients of about 3.6 per cent (also see
footnote 10 of Chapter 3). And finally:

vi. it is also notable that with the estimated convergence coefficient P=4.9 per cent, the
magnitudes of all the other economic variables of the model, whether specified as
input parameters or determined as endogenous outputs, conform closely with their
quantitative measures for the Australian economy. Even the consumption-capital
ratio <D, which was unconstrained in the calibration process, returned a steady
state value, Oss=0.27, in exact (two figure) agreement with the empirical data over
1985-86 to 1994-95 (Australian Bureau of Statistics, 1997b and 1997c).

IV.

v.
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2.4.2 Sensitivity of the steady state to parameter values

The sensitivity of the steady state values may then be gauged by examining the impact
upon them of changes in the benchmark parameter values. This has been done for each
parameter in turn, by raising its value by ten per cent, while holding the values of all
other parameters at benchmark (Table 2.3).

Table 23: Sensitivity of the benchmark steady state to independent 19 per cent increases
in each parameter, Romer model market solution, (%).

Steady state
variables

<!>*

PASS

Hyss

HASS

Tss

g
SNSS

sBss

^GPss

P -

Parameters

a
5.7

-4.2
8.8
2.8

-8.0
-6.6
-8.0
1.7
0.9
4.1

-0.7

1
61.8

-17.4
26.4

-2.9 I
8.3 1
6.8 i
8.3 1

19.0
13.2
16.5

-17.0

5
-8.5
3.5

-4.7

SRSSwmIP
2.9
2.1

-4.0
4.4

P
-0.4
0.5

-0.7

1 °-5

1 -1.5MB
-0.7
-1.0
-0.2
0.3

a
-1.9
2.0

-2.8
2.3

-6.9•HUS
-3.1
-4.2
-0.8
-1.1

-11.2 -10.6
6.0 BfflHB

-14.4 -10.6
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The high sensitivities of most of the steady state results, and particularly those for T , O,
PA, SB, and p, to the output elasticity of capital parameter y are noteworthy. Next to
these many of the steady state results are most sensitive to the exogenous supply of
human capital H, and to the research productivity parameter C,. As foreshadowed in
footnote 32, there is also a great deal of symmetry among the sensitivity results to
changes in each of these inputs (note the appropriate highlighted cells of the table).

Further symmetry is apparent in the signs of the sensitivities to changes in the discount
rate p and in the reciprocal of the inter-temporal elasticity of substitution a (though for p
the results are quite insensitive). Raising either of these preference parameters has the
effect of reducing the equilibrium growth rate. Romer (1990b) argues that this is because
increases in these parameters both tend to raise the interest rate and thereby to reduce
the discounted stream of future benefits from research. He also comments that it is "...a
strong and robust implication that reductions in the interest rate will speed up growth."
But this is contradicted by the results in Table 2.3 where movements in the steady state
growth and interest rates in response to parameter changes, except for those in p and a,
are in the same direction.

It is true that the steady state interest rate rises directly with both p and a.36

Nevertheless, Rentier's general conclusions about the effect of a rising interest rate on the
rate of growth are only partly true. Romer is referring to his equation (11) which holds

3 6 This is seen in Table 2.3. Also, it can easily be demonstrated from equation (2.56) that both
and drjda are non-negative.
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only in the steady state and which, from the technology growth equation (2.30) in its
steady state form and from (2.53) here, is equivalent to:

g M = £ (2.63)

On the surface this may appear to support his proposition.37 However, one may focus
instead upon the steady state version of the consumption growth rate equation, (2.33):

gM=(C/C)* =
r M -

a
(2.64)

which now seems to show that the growth rate rises with the interest rate, and so
suggests that when p and/or a are increased, the growth rate falls despite rather than
because the interest rate rises. It also demonstrates that anything other than changes in p
or a which acts to raise (lower) the interest rate will also raise (lower) the growth rate,
as seen in the results in Table 2.3.

Using (2.63) to conclude that reducing the interest rate will unambiguously speed up
growth is true only in a partial equilibrium sense; namely, for an exogenous interest rate.
For the same reason it would be equally wrong, or again only partially right, to conclude
from (2.64) that raising the interest rate would speed up growth, and perhaps to
endeavour to support the contention with the argument that 'since the interest rate
represents the return to savings, a higher interest rate means greater savings and
therefore higher growth'.38 The problem with either contention is that the interest rate is
endogenous; and great care needs to be taken about assigning an endogenous variable as
a driving force. Rather, the effects on any endogenous variable of a model are best
determined and explained in terms of the fundamental parameters and exogenous
variables of the model. Here, as in Table 2.3, the determination should be via the steady
state equations, in particular equations (2.55) and (2.56) for the growth and interest
rates.

As a final comment on these issues: while it should be emphasised that neither of the two
arguments advanced above concerning the effect of 'changes in the interest rate on the
rate of economic growth' are true in the steady state, it may be that the partial validity of
both are revealed by the dynamics of the model as analysed in Chapter 4. For example, in
the pairs of Figures (4.2) & (4.3) and (4.34) & (4.35), whenever the interest rate r(t)
increases (decreases) the rate of growth of technology gA(t) falls (rises) in accordance
with the discounting of future benefits argument, while the rate of growth of capital
gic(t) rises (falls) as suggested by the return to savings argument. This broad behaviour is
also exhibited in Figures (4.18) & (4.19), (4.25) & (4.27), and (4.41) & (4.42) for the
final periods of smooth adjustment; however there are periods or instantaneous jumps
characterised by contrary movements in each of these cases.

3 7 Equation (2.63) indeed shows that increases in p or 0, which raise the steady state interest rate, will
also lower the steady state rate of growth. However, for any of the parameters p= a , y, C» or H in the
equation, knowledge that a change 'dp ' increases r^ is not sufficient to determine whether g rises or
fells.
3 8 Equations (2.4) and (2.6) indicate how the growth rate (of capital) depend on savings.
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Now consider the sensitivity of the endogenous variables to a change in the rate of
capital depreciation 5. A rise in 8 clearly reduces the amount of capital, and therefore
output to a lesser extent, and thence consumption and savings (or investment) to even
lesser degrees. 39 It is perhaps unsurprising therefore, that the capital-technology ratio
Yss and the capital-output ratio ICGPSS fell; and that the consumption-capital ratio O^ and
the savings-output rates SNSS and sBs& rise; or even (through equations (2.15), (2.16) and
(2.20)) that the price of technology PASS fells. However given all these changes, it is
somewhat surprising that a change in the rate at which capital depreciates has no effect
on the steady state allocation of human capital HAS/HYS, or the interest rate rss, or the
rate of economic growth g (Table 2.3).40

In broad terms the reason seems to be as follows: Once it is optimal not to let the capital
stock run down (in finite time) due to depreciation, then some resources have to be
devoted to replacement investment. However, the problems of optimising the usage of
the remaining resources, both between research and production and between capital
accumulation and consumption, do not depend on the amount of such resources. As a
result the steady state allocation of human capital between research and production; and
the steady state rate of growth of consumption and the interest rate which supports it are
all independent of the rate at which capital depreciates. Despite this invariance of the
steady state levels, these variables do undergo transitory dynamic changes in response to
a shift in the rate of depreciation. And it is these changes which cause the permanent
shifts in the steady state values of the other endogenous variables. Full analysis of this
requires a computation of the transitional dynamics of the model, not dealt with formally
until Chapter 4. Nevertheless, the results of such a computation for a rise of 25 per cent
in the benchmark level of 8 (from 0.04 to0.05) are presented in Appendix 2.6.

Finally, perhaps the most surprising aspect of the sensitivity results concerns the lack of
any impact from changes in either the parameter r| (the cost of a unit of specialised
capital) or L (the exogenous supply of ordinary labour) on the steady state allocation of
human capital, and hence on the steady state growth and interest rates and other
endogenous variables. Of course this was already known from the feet that neither TJ nor
L appear in the steady state formula (2.53) to (2.57). The mechanisms for these results
may be seen to be due to exactly offsetting effects on the returns to human capital in
research and in final output production, with the result that there is no change in its
allocation between these sectors.

For example, an increase in L will raise the output of each type of specialised capital,
increasing monopolists' profits and raising the prices of designs, which will in turn
generate an increase in the wages of researchers. At the same time, the marginal product,
and hence the wages, of human capital in the output sector will rise as a result of the
increased usage of the other factors employed there (the ordinary labour L, and the
specialised capital X). Using pv to denote a proportional change v /v in a variable v, the
mechanism explained above may be quantified via the model equations as follows:

(2.13)
(2.10)
(2.14)
(2.20)

(2.22)
(2.24)

px
pp X

p n

ppA

and so:

= ppx + Px = (l-a)pL = P(rf5) + ( l -a)p L + apnv- P(r+6)/(l-y)
=pic-pt^ P(r+6) + (l-a)pL + apHY - P(r+5/(l-Y) " Pr
= (l-a)p>L + apHY - YPoV(l-Y) - pr
= (1-OC)PL - (l-a)p>HY - YP(rf6/(l-y), (from equation (2.53))
= PpA = (1-O0PL - (l-a)pHY ~ YP(r+8)/(l-Y)
= [a(l-Y)-l] PHY + (l-a)(l-y)pL + ypx
= [a(l-y)-l+ay] PHY + [(l-a)(l-y) + y(l-a)]pL -

- (l-a)pHY - YPoV(l-Y)

PwHA/A = PwHY/A

Thus, the effect of an increase in ordinary labour on the wages to human capital in
research is the same as its effect on the wages to human capital in goods production.

A decrease in T| has similar effects to an increase in L. By reducing the costs of specialist
capital producers it induces an expansion of their output and, despite the concomitant
reduction in their prices, it raises monopoly profits. This causes an increase in the price
of designs and thereby raises research wages. Meanwhile, the marginal product, and
hence the wages, of human capital in the final output sector also rise due to the increased
employment of specialised capital. In terms of the model's equations:

(2.13) =>
(2.10) =>
(2.14) =>
(2.20) =>

Px
pPx
P*
PpA

Thus:

- P(r+8)/(l"Y) "f

= a(l-y)pHY - (l-y)px = P(r+8) + Pn

- PpX + PX = OtpHY -YP(r+8)/(l-Y) -

= pn - p r = apHY -YP(.V(1-Y) - YPn /(1-Y) - Pr

= -(l-a)pHY -YP(r+8)/(l-y) - YPn /(1-Y), ( f r o m equation (2.53))

(2.22) => pwHA/A = PpA = (l-0t)pHY -YP(r+6)/(l-y) " YPn/C1^)

(2.24) => PWHY/A = [ a ( l - y ) - l ] PHY + ypx

= -(l-a)pHY -YPcr+sj/O-y) - YPn /(1-Y)

PwHA/A ~ PwHY/A

And as for an increase in ordinary labour, the effect of a decrease in the production cost
of specialised capital on the wages to human capital in research is also the same as its
effect on the wages to human capital in goods production.

As noted by Romer (1990a) and (1990b), this precise balancing is however, no economic
necessity, merely a property of the Cobb-Douglas form of the composite labour function
used here. So that in truth this particular formulation of the model can shed no light on

39 The output elasticity of capital is y < 1; and consumption and savings are component parts of output.
40 Of course these four variables are all linked, through the steady state versions of (2.30), (2.31), and
(2.33), so that a change in any one of them would mean changes in them all. It might also be noted that
the steady state factor shares of gross income are also invariant to 5 (see Appendix 2.1).

41 These mechanisms are also discussed in Romer (1990a and 1990b). The former argues that 'an
increase in L...increases the marginal product of each of the producer durables' but from the analysis
here it seems that since the interest rate r turns out to be constant, the marginal product of X, which
equals its price px , also remains constant.
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the impact of these parameters.42 As before with the case of the rate of depreciation of
capital 5, changes in r| and L do generate transitional dynamics. Such dynamics, for
shocks of 10 per cent in T| and 20 per cent in L, computed from the machinery developed
in Chapter 4, are presented in Appendix 2.6.

Appendix 2.1

Production technology and the nature of capital

42 In Romer (1990a), when a more general (CES) function is specified for composite labour, the true
impact of the aggregate supply of ordinary labour L, is shown to be ambiguous - the result depending on
whether human capital and ordinary labour are more or less substitutable for one another than capital is
for composite labour. However, even with this CES specification, the cost of specialised capital in terms
of final output r\, continues to have no effect on the allocation of human capital.

A2.1.1 Production technology

A2.1.1.1 Specialised capital, increasing returns and technical change

The production function adopted by Romer (1990a & b) has its origins in a paper by
Dixit and Stiglitz (1977), who employed a similar formulation in a utility function to
capture the utility of variety in consumption. A similar approach was later used by Ethier
(1982) in a production function designed to exhibit the economies of scale available from
specialisation. In particular, final output in Ethier's model was considered to be
assembled out of a set of specialised or differentiated intermediate components, and was
an increasing function of the number of these. That is, output was an increasing function
of the degree of specialisation in intermediate component gtods. Romer (1986b and
1987b) adapted this sort of production function to capture the old idea that a rise in the
degree of specialisation in the economy would increase output, and generate economic
growth. In order to impose a brake on the degree of specialisation, Romer introduced
certain fixed costs associated with the production of the intermediates. These were
measured in terms of some 'primary resource', the supply of which was initially
exogenously limited. Finally, to generate a growth model an alternative use for this
resource (direct consumption) was introduced, and its accumulation was allowed. It was
then interpreted as a form of general-purpose capital, and the different intermediate
inputs as services from specialised forms of capital equipment.

The unusual feature of the specification of the production technology is that capital is
disaggregated into all the different types of specialised equipment available at any time
(Xi(t), for i = 1,....,A(t)). With the basic form of the production function taken to be
'Cobb-Douglas', aggregate output at any time is given by:

A(t)
(A2.1.1)

where N(t) is some measure of aggregate composite labour devoted to final goods
production.

In a more conventional specification of an aggregate production function differences in
forms of capital equipment are ignored; or equivalently, all the specialised types of
capital are aggregated together into a single capital input:43

A(t)

(A2.1.2)

to generate the production function:

4 3 Where the X; need to measured in terms of some 'opportunity resource cost' in order that they can be
added-up.
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Y(t) = ;.j*=N(t)(1-T)K(t)7 (A2.1.3)

Such aggregation means that all the different types of capital goods are assumed (either
explicitly or implicitly) to be perfectly substitutable.

In contrast, the approach adopted by Romer means that different types of capital are
never close substitutes for one another. Instead, they have addkively separable effects on
output. Under this technology final output may be thought of as being produced through
successive value-adding stages (i = 1, ,A(t)) in the overall production process, with
each stage providing some specific transformation or assembly operation using the
economy's aggregate composite labour (N(t)), and a stage specific type of capital (Xj(t)).

The key property resulting from the specification of disaggregated capital inputs is that
output becomes an increasing function of the extent of the disaggregation; or more
significantly, of the degree of specialisation in the production of capital goods. With
0<y<l, the function y =xr rises at a diminishing rate as x increases (jfy/d^O), so
xiy+x2

r > (xi+x2)
Y. More generally, with the total K(t) from equation (A2.1.2)

representing an accounting measure of total capital rather than a single homogeneous
aggregate, the greater the degree of specialisation A(t), the greater the resulting output.
Comparing two different index levels of A(t), namely Ai and A2:

A,<A2 Y1(t)<Y2(t> (A2.1.4)

where X;(t) (i=l,...,Ai) and Wj(t) Q=1,...,A2) are the measures of each type of specialised
capital in the specialisation indices A(t) = Ai; and A(t) = A2 respectively; and where:

and provided, of course, that 0<y<l.

This may be seen most easily for the case where, within each index the measures of each
type of specialised capital are equal (as they are in the Romer model).
ThenXj (t) = K(t) /A, and Wj (t) = K(t) / A2 Vi, j , and equation (A2.1.4) becomes:

A, < A2 => A j" r < A2"
Y, which is obviously true for 0<y<l.

Also, it should be noted that the conventional aggregated capital specification of
equation (A2.1.3) is simply a special case, with A = 1, of the more general specification
in equation (A2.1.1). Thus, any degree of capital specialisation (A>1) in the production
function will result in greater output than for the (conventional) aggregate capital
approach.

Under the disaggregated or specialised capital technology there are two distinct ways in
which capital can grow. Extra units of already existing types can be made and employed,

or new types can be developed and units of these constructed and brought into use. It is
clear from (A2.1.1) that diminishing returns apply to the former type of capital
accumulation:

<0 Vi

Since this is the same as raising the aggregate level of capital while holding the set of
specialised types fixed, the same relation can be obtained in terms of K(t). Suppose
Xj(t)=X(t) Vi,44 then (A2.1.2) defines this level as X(t)=K(t)/A(t) and (A2.1.1) becomes:

= N(t)(Hr)A(t)(Hf)K(t)T (A2.1.5)

Then

0

As shown above, even with aggregate capital (K) fixed, output can be increased by
introducing new types, that is by raising A, and spreading the total more thinly amongst
them. However, this method of expanding output also encounters diminishing returns.45

From (A2.1.5):

= -y(l-y)N(t) ( H r )A(t)- ( 1 + Y )K(ty < 0
32Y(t)

3A(t)2

Thus, increases in K and increases in A both encounter diminishing returns when the
other is held constant. However, when both are allowed to rise the production
technology shows increasing returns. As given by equation (A2.1.1) the production
function exhibits constant returns to scale in terms of labour and the specialised capital
inputs. But when it is expressed in terms of the more fundamental factor of general-
purpose capital or saved output, K(t), from which the specialised equipment is
constructed, increasing returns become evident. It is apparent from equation (A2.1.5)
that with the degree of specialisation (A) fixed, the production technology shows
constant returns to scale in terms of labour (N) and capital (K). However, if these last
two factors are fixed, output increases with A. Overall the production function is linearly
homogeneous of degree (2-y), which with ye (0,1), is clearly greater than unity.46

It is also apparent from equation (A2.1.5) that the production function describes an
economy whose equilibrium growth behaves just like the Solow neoclassical model,
exhibiting Harrod neutral or labour augmenting technical change*1 In particular, the
production function can be seen to be composite labour augmenting:

44 This is the case in Romer's (1990b) model, the focus of this dissertation. See equation (2.13).
45 Moreover, in the Romer model expansion of A(t) is not costless: The range of capital types is
constrained at any time by the fixed costs of research necessary for their production.
46 In terms of the model description in the text of Chapter 2, the two forms of the production function
are given by equations (2.9) and (2.29). In that setting, the 'degree of specialisation' term, A(t), is an
even more fundamental factor - the output of research.
47 For definitions and discussions of neutral technical progress see, for example, Layard and Walters
(1978) or Chiang (1992). Also, note that labour augmenting technical change is a necessary condition
for the model to possess a balanced growth path, that is, one for which the rates of growth of all
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Y(t) = [A(t)N(t)fTK(t)7 = Y(A(t)N(t)5K(t)) (A2.L6)

Combined with the usual capital accumulation equation with a constant savings rate, s,
equation (A2.1.6) generates the basic Solow model equation:

K(t) = sY[A(t)N(t),K(t)] - 5K(t)

F A grew at an exogenously specified rate, the economy would converge to a
I growth' path along which capital, output and consumption all grew at that

same rate

A2.1.1.2 Marginal products and factor returns

Since each type of capital input enters the production function in the 'additively
separable' manner of equation (A2.1.1), the marginal product of each type is independent
of the usage of any (and all) other types.48 Also, given that the production function for
final goods is linear homogeneous in terms of labour, human capital and specialised
equipment; and that the sector is perfectly competitive, Euler's Theorem holds and all
factors can be paid the value of their marginal products. From equation (2.9):

MPHy (t) = 3Y(t) / dH Y (t) = <x(l - y) Y(t) / H Y (t)

MPL (t) = 9Y(t) / 5L = (1 - a)(l - Y) Y(t) / L

_ YY(t) Xt(t)
T

MPX;(t) =

or, since X{ (t) = X(t)Vi: (from (2.16))

MPX (t) = 9Y(t) / dX(t) = yY(t) / A(t)X(t)

Then:

Y(t) = HY( t)^2L + LW 5HY(t)

(A2.1.7)

5L

9Y(t)
(A2.1.8)

= HY(t)wH(t) + LwL(t) + A(t)X(t)px(t)

where wH(t) and wL(t) are the wage rates for human capital and ordinary labour
respectively, and px(t) is the rental price of specialised capital equipment. Then the
distribution of total income from final goods production, Y(t), is as follows:

• income to HY(t): a(l-Y)Y(t)
• income to L: (l-a)(l-y)Y(t)
• income to A(t)X(t): yY(t)

variables are constant. See for example, Solow (1970), or Dixit (1976a) where it is proved that either
capital augmenting technological progress must be zero; or if not, the production function must be of the
Cobb-Douglas form, in which case the technological progress may be expressed as being purely labour
augmenting anyway.
48Barro and Sala-i-Martin (1995) thfek that this is a reasonable aggregate approach for breakthrough
types of technologies since these would sometimes substitute for existing technologies and sometimes
complement them, thus generating some cancelling effects.

Because the final goods producing sector is competitive, it uses specialised capital up to
the point where its (rental) price equals the value of its marginal product. Conversely, as
monopolists, the capital goods producers do not use sufficient general-purpose capital to
equate its price with its marginal product.49 From (2.10) (or (2.14) and (2.13)), together
with the production function (2.9)

px(t) = YHY(t)a(1-y)L(1-aX1-T)X(t)(T-1) = yY(t) / A(t)X(t)

whence the results (A2.1.7) above demonstrate that:

px(t) = MPx(t)

Then, from (2.12), (2.13), (2.16) and the production function (A2.1.5):

rK(t) = r(t) + 8 = Y2<n"THy(t)a(I^)L(1-oXI-T)A(t)(1-ir)K(t)<r-1)

= Y2Y(t)/K(t)

(A2.1.9)

(A2.1.10)

and obtaining the marginal product of general-purpose capital K(t) from equation
(A2.1.5)

MPK(t) = 5Y(t)/5K(t) = yY(t)/K(t)
Thus:

rK(t) = yMPK(t) < MPK(t)

Of the total income from goods production that goes to specialised capital, yY(t), only
the total profits A(t)7i(t) actually accrue to capital goods producers. From (2.13) to
(2.16) and the production function (2.9) these amount to:

A(t)7t(t) = (1 - y) Y Y(t) (A2.1.13)

The remainder, which are the rentals paid by capital goods producers for general-
purpose capital, accrue to the households that own this forgone consumption type of
capital. From (A2.1.10) these are rK(t)K(t) = y2Y(t).

So far the only output of the economy that has been considered has been that of goods.
The production of designs by human capital in the economy's research sector is
additional to this; and so gross product of the economy is the sum of these two outputs:

GP(t) = Y(t) + pA(t)A(t) = Y(t) +SpA(t)HA(t)A(t) (A2.1.14)

Human capital in research, HA(0, earns all of the income from this sector. Thus,
summarising all of the above, the economy's gross product is distributed as follows:

• human capital in the final goods production sector, HY(t), earns a(l-y)Y(t);
• ordinary labour, L, earns (1 -a)( 1 -y)Y(t);
• producers of specialised capital equipment, A(t)X(t), earn (net) y(l-y)Y(t);
• household owners of general-purpose capital, K(t), earn y2Y(t); and
• human capital in the research sector, HA(0, earns CpA (t)HA (t)A(t)

4 9 The form of the production function, with its variety of intermediate inputs, also contributes to this
divergence (Romer, 1986b and 1987b). This issue is discussed further in Chapter 5 (Section 5.1).
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A2.1.2 The nature of capital

Romer (1990a and b) notes that in the model specialised capital is assumed to be putty-
putty. This was intended to mean that it can be both costlessly produced out of forgone
consumption (or out of some general-purpose capital K, which is itself produced
costlessly by forgoing consumption); and that it can also be costlessly reconverted back
to this medium (see footnote 14). The first aspect of this putty nature of capital is the
standard assumption for 'one-sector' models and is plausible enough when interpreted as
meaning that consumption is 'foregone' by diverting resources away from the production
of final output and into that of capital goods. In the current model resources capable of
producing t| units of final output must be diverted in order to produce one unit of
specialised capital. Allowance for costs of adjustment associated with investments of
specialised capital (installation costs) could be made, but notwithstanding this the putty
nature of capital creation is a reasonable and common simplifying assumption.

It is the second aspect of the putty nature of capital which is unappealing. This is
equivalent to allowing any type of specialised capital to be costlessly converted to any
other type, even types for which designs are yet to be invented! Such a property suggests
a degree of substitutabihty between capital types far greater than implied by the 'additive
separability' of the production function.

Romer was of course fully aware of this limitation on the nature of capital, but because
his analysis was primarily concerned with the model equilibrium, where the optimal level
of specialised capital is constant, he indicated that it was 'harmless'. However, the
current analysis is more concerned with the transitional dynamics between equilibria,
and the possibility of disinvestment in specialised capital along these adjustment paths
certainly exists. It also exists even in comparative statics analyses of the model
equilibria.50

It can be seen from equation (2.16) that X(t) < 0 whenever K(t) / K(t) < A(t) / A(t).
That is, although the aggregate capital stock may be growing, if it is not increasing as
rapidly as technology (which amounts to the designs for specialised capital equipment),
there will be insufficient new general-purpose capital to produce as many units of each of
the new specialised types as there are for already existing types. The stock of general-
purpose capital must therefore be spread more thinly across the entire range of
specialised types of equipment and the amount of each type (X) must decline. Thus, new
specialised capital equipment will be constructed partly out of newly saved output (or
new general-purpose capital or consumption foregone), and partly out of general-
purpose capital released by the declining amounts of all existing types of specialised
capital. If this disinvestment in existing types of capital were not possible some units

50Noting that nX=¥, it is apparent from Table 2.3 that, for the benchmark parameters at least, such
disinvestment arises whenever the parameters 8, p, cr, C, or H are raised; and whenever a, y or L are
lowered. Less obviously, it is also the case when parameter r| is raised (it is easy to show from equation
(2.58) that dTss/dri<0).

would have to be idle, and extra savings would be necessary to supply all of the general-
purpose capital required for new specialised equipment.51

Figure A2.1.1 illustrates the situation of disinvestment in specialised capital as it
currently stands in the model: As time goes on and the level of technology A(t) grows,
the (uniform) number of units of each type X(t), falls asymptotically towards its steady
state Xss. At any point of time T on the way there, a marginal increase in the number of
types of specialised capital equipment, dA(x), induces a fall of dX(x) in the number of
units of all the existing A(x) types. This releases an amount r|dX(x)A(x) of general-
purpose capital, but the new X(x) units of the dA(x) types require rjdA(x)X(x) general-
purpose capital. The shortfall is made-up from savings of an amount dK(x). Allowing for
the fact that dX(x) is negative generates:

dK(x) - T)dX(T)A(T) = T|dA(T)X(T)

which, upon dividing through by T]A(x)X(x).dx, reproduces the growth relation
X(x)/X(x) = K(x)/K(x)-A(x)/A(x).

Figure A2.1.1: Disinvestment in specialised capital equipment, Romer model.
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The difficulty faced by any attempt to either prohibit disinvestment in specialised capital
(other than by depreciation) or to account explicitly for costs associated with it, is that at
all points of time a distinction must be drawn between existing and imminent types. That
is, some sort of vintage model of capital creation would be necessary. Such models were
developed in neoclassical growth theory when the concept of disembodied technical

5'Some reduction in the aggregate extra savings requirement could be achieved by de-commissioning
idle units of existing types (thereby avoiding depreciation), and by later re-commissioning them to
replace the working units which did depreciate.

62 Chapter 2 Chapter 2 63



progress was replaced by the more realistic description of having technical progress
embodied in capital (Phelps, 1962 and 1963; Solow, 1960 and 1962; Solow et aL 1966;
and Cass and Stiglitz, 1969). Under this general approach the productivity of capital
improves over time and so capital created at one time is different to that created at any
other time. Hence the vintages of capital had to be explicitly considered. These models
'greatly increased the complexity of the analysis of growth' (Dixit, 1976a).52

Nevertheless, for particular important cases such models were found to possess steady
states that differed little from that of the disembodied technical progress model of
economic growth, even though the transitional dynamics were different (Phelps, 1962;
and Solow, 1960 and 1970).

Technological growth in the Romer model is explicitly specified as being embodied in
differentiated capital goods distinguished by their vintage. However, the complexities of
keeping track of the quantities of all the different types/vintages are avoided for two
reasons. First, as has been noted in the text, permitting costless disinvestment of existing
types of capital removes all intertemporal issues of the monopolists' profit maximisation
problems, And second, because of the way the different types of capital enter the
production function there are no differences in their productivity. Consequently, there is
no need to trace the productivity of different vintages through time.53 Output growth in
the model arises only through the mere existence of greater specialisation and not at all
through any improvements in the productivity of specialised capital, nor via any
improvements new capital may engender in labour productivity. The designs for
specialised capital do not "improve" over time, they merely become more numerous.

It would seem that if the modelling could be altered to dispense with the unappealing
aspect of disinvestment, it might also fairly readily accommodate some desirable aspects
of vintage capital models including that of more recent vintages being more productive,
and that of economic obsolescence. This is all well beyond the scope of the present
work, and it may prove intractable. However, it does suggest a direction for future
research. Perhaps aspects of the technological progress and production technologies
from both Romer (1990b) and Grossman and Helpman (1991a) could be combined? In
this way technological growth would incorporate advances in both the variety and the
quality of capital goods.

Appendix 2.2

Dynamic maximisation problems

A2.2.1 General theory

Dynamic optimisation problems of the type faced by economic agents in the Romer
model are solved by the branch of mathematics known as optimal control theory. The
seminal and mathematically rigorous work was that of the Russians Pontryagin and his
co-authors (1962).54 Because of the abundance cf economic applications, there are also
many thorough treatments of optimal control theory in the economic literature. For
example, see Arrow (1968), Arrow and Kurz (1970), Intrilligator (1971); Dixit (1976b);
Kamien and Schwartz (1991), Chiang (1992); and Leonard and Van Long (1992). Some
familiarity with such references is required for a proper understanding of the theory and
its application to the Romer model. A brief and highly informal discussion is also
included here. It is confined to a description of the type of problem addressed by optimal
control theory and of the types of variables involved (a certain knowledge of the
properties of which is necessary in understanding the transitional dynamics of the model);
and to the presentation and rationalisation of the main optimisation conditions.

A typical problem of optimum control theory, is to choose the time paths of certain
control variables, x(t) say, possibly subject to some constraints, in order to optimise
some objective functional, W{.}.55 The value of W depends upon the control variable
time paths as well as on those of associated state variables, k(t),56 which are initially
'inherited' from the past and then subsequently evolve. Usually the functional takes the
form of the sum of a pay-off or profit function u(.) over the relevant time domain
t e[0,T] say. At any instant this profit function depends upon the values of both the
control and state variables and also possibly on time itself: u(.) = u(x(t), k(t), t). Thus, in
continuous time the objective functional is:

l

W{x,k}=Ju(x(t),k(t),t)dt (A2.2.1)

52For example, it is not generally possible to aggregate capital of different vintages; account must be
taken of the capital-labour substitution possibilities both before and after the creation of a new capital
vintage; and the concept of economic obsolescence must be introduced. Moreover, Dixit (1976a) wrote:
"...we do not even have a general answer to the question of whether equilibrium growth paths converge
to a steady state."
53This also means that there is no economic obsolescence.
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where the notation x,k indicates the entire time paths over t e[0,T].

The paths of the state variables are determined by their initial values and by the paths of
the control variables according to a set of equations of motion. In continuous time these
are differential equations:

54 It appears that the work of an American mathematician, Magnus R. Hestenes, ought also be cited:
According to Chiang (1992), Hestenes, had produced comparable work in 1949 in a Rand Corporation
report "A general Problem in the Calculus of Variations -with Applications to Paths of Least Time"; but
this was not known to the Russians, and in fact little known anywhere.
55 The term functional refers to the mapping from paths to real numbers, in contrast to the mapping
from reals to reals in a normal function.
56 With a total of C control variables and S state variables, x(t) and k(t) are (column) vectors of
dimension (Cxi) and (Sxl) respectively.
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k(O) = ko given, forte[0,T] (A2.2.2)

Because of these relations the objective functional in (A2.2.1) may be re-written as:

W{I,ko}=Ju(x(t),k(t),t)dt (A2.2.3)

Clearly, the values chosen for the control variables at any instant have a direct effect on
the objective functional. But what makes these problems difficult is that they also have an
indirect effect through their influence on future state variables via the equations of
motion. Because of the dependence of state variables on initial values, Aghion and
Howitt (1998) describe them as being "historically predetermined", in contrast to control
variables which are subject to at least some degree of choice. A key difference between
control and state variables is that while the former are only required be piecewise
continuous (that is their paths may contain jumps), the latter must be properly
continuous, although they need only be piecewise differentiable. For these reasons, in
economic applications the state variables are usually stock-type variables such as capital,
while the control variables are of the flow variety, like consumption.

Using maximisation as the form of optimisation z ad taking the control constraints as
defining a bounded set @, the control problem may b? restated symbolically as:

T

Maximise W{x,ko}= Ju(x(t),k(t),t)dt

subject to k(t) = f (x(t), k(t), t)

k(0) = k0 given

for all x(t) eg and t e[0,T]
(A2.2.4)

The most important result of optimal control theory is a set of first-order necessary
condition known as the maximum principle - the centrepiece of the work of Pontryagin
et al (1962). First a function known as the Hamiltonian (which turns out to be the
dynamic analogy of the more familiar static Lagrangean function) is defined as:

= u(x,k,t) + [0(t)ff (x,k,t) (A2.2.5)

where a third type of dependent variable, denoted here as 9(t), has been introduced.57

These are the so-called costate variables, and like the control variables they may also be
discontinuous. The term [0(t)]T in the Hamiltonian is simply the transpose of the
(column) vector of costate variables.58 Then, the maximum principle conditions for the
optimal control problem are as follows:

57 Note that time is typically the independent variable as it is in this discussion.
s

58 So the last terra is 2 9 , ( t ) f (x ,k , t ) and the Hamiltonian is a sealer.
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Max-»(x,k,9,t) for all te[0,T]

k =

fiT -

9(T) = 0

aeT
(A2.2.6)

Ths first condition in (A2.2.6) is a familiar static optimisation problem, though one
which must be addressed at all points of time. It is solved in the usual way: by writing the
constraints on the control set in the form g[x(t)] > 0, attaching multipliers p,(t) to them,
forming a Lagrangean,

4 x , k, 9, t, u) = #(x, k, 9, t,) + iiTg(x)

differentiating with respect to x and \i, and applying the Kuhn-Tucker conditions.59

The second set of conditions in (A2.2.6) is merely a restatement of the equations of
motion for the state variables; but the third set of conditions, which have generated
equations of motion for the costate variables, are new. As a pair these two sets of
differential equations are referred to as the Hamiltonian system or the canonical system.
They define the dynamics of all possible time paths of the state and costate variables and
their joint evolution in state-costate space. Since the first condition relates the control
variables to the state and costate variables, the first three conditions together define all
possible evolutionary paths of all the variables; both as individual time paths and in
control-state-costate space.™ That is, starting from any valid but otherwise arbitrary
point, these three conditions completely define the dynamic behaviour of the system.

However, among all the possible paths only one is optimal. It is the fourth set of
conditions of (A2.2.6), the so-called transversality conditions, which allow this optimal
path to be identified. To derive any dynamic path from the canonical system of 2S first
order differential equations, a corresponding 2S boundary values are necessary. The
problem statement (A2.2.4) furnishes S of them in the form of the initial values k(to) =
kto- The transversality conditions of (A2.2.6) provide the remaining S in the form of the
terminal conditions G(T) = 0 for the optimal path.

Thus, together the four parts of the maximum principle define the entire optimal path. In
doing so the initial values of the costate and control variables 9(to) and x(to),
corresponding to the given initial values of the state variables k(to), are also determined.
Unless the system was already at a point precisely on the optimum path these values will
involve discontinuities or jumps from their pre-existing levels. In particular, the
maximum principle has made it possible to specify all the choices which need to be made
for the control variables in order to optimise the objective functional.

59 Kuhn and Tucker (1951) is the classic article on concave programming. The Kuhn-Tucker theorem
and conditions are also covered in many mathematical texts; for example Intrilligator (1971), Chiang
(1984), Kamien and Schwartz (1991). Since the conditions take the form dJ/d\iT Z 0, \iT > 0, T T

= 0, they are often referred to as complementary slackness conditions.
60 A set of equations of motion for the control variables may also be derived.
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A general and rigorous proof of the maximum principle requires some powerful and
sophisticated mathematics.61 In keeping with the informal nature of this discussion such
rigour is eschewed. Instead, a rationalisation of the maximum principle for a simple and
particular case is given in terms of pure economic reasoning. This rationalisation is due
to Dorfinan (1969), which the following briefly paraphrases.

Dorfinan analysed the case of a firm that wishes to maximise its total profits over a fixed
period of time [0,T]. Capital k(t) was the only state variable, and a single business
decision variable x(t), which influenced both profits and capital, was the only control
variable. Profits were earned at the (instantaneous) rate u(k, x, t), and the rate of change
of the capital stock was k = f(k,x, t) . The previous notation of this appendix was
chosen to correspond with Dorfinan's and as a result his control problem of choosing the
optimal path x = x(t) V t e[0,T] is the same as that stated in equation (A2.2.4), with
the vectors simply interpreted as sealers.

By considering the profits obtainable from any time t e [0,T] as being broken into those
available over a short interval "dt" (so short that there would be no change in the control
x(t)) and those available from (t+dt) onwards, Dorfinan reduced the problem of
optimising the entire control path to one of finding the optimal control at a single point
of time. He imagined a hybrid policy whereby the (arbitrary) control x(t) was followed
over the interval dt, but from then on the controls optimal to the whole path were
followed. This converted the functional W{.} to an ordinary function V[.] which could
be differentiated. Using an asterisk superscript to denote the optimum, total profits
obtainable from t are:

V[x(t),k(t),t] = u[x(t),k(t), t]dt + V[k( t + dt),(t + dt)] (A2.2.7)

Then, assuming an interior maximum with a concave differentiable function V, total
profits from any time t-»T will be maximised when x(t) takes the optimal value x*(t) such
that [dV/ax(t)]x.(,) = 0. Thus, differentiating (A2.2.7) with respect to x(t), Dorfinan
derived the condition:

au[x(t),k(t),t]. A _ af[x(t),k(t),t]
Sx(t)

= U (A2.2.8)

where X(t) = 5V*[k(t), t]/dx(t) is the marginal value of capital in terms of maximum
possible profits, or more succinctly, the shadow price of capital.62

Making the same assumptions about the Hamiltonian *? as were made for V above,63 the
first condition from the maximum principle (A2.2.6) yields:

61 Even treating time as a continuous variable, with the result that there are a continuously infinite
number of control variables, raises significant formal mathematical difficulties (Dixit, 1976b). If the
terminal time is extended to infinity (as is the case in the optimal control problems in this dissertation,
and in economic growth theory in general), there are even more technical difficulties, particularly with
the transversality conditions.
62 The derivation uses the relations: 5VVdx(t) = [dV*/dk(t+dt)][ dk(t+dt)/dx(t)]; dV*/dk(t+dt) = Wt+dt);
k =[k(t+dt)-k(t)]/dt = f[x,k,t]; and i =[X(t+dt)-X(t)]/dt.
63 It should be noted however, that in its general form the maximum principle does not require these
assumptions. In fact ft need not even be differentiable with respect to x.

\ '

x(t) r
CX(t)

= 0:
Su[x(t),k(t),t] af[x(t),k(t),t]

ax(t)
(A2.2.9)

This is identical with (A2.2.8). It follows that the economic interpretation of the
maximum principle costate variables 9(t) is that of shadow prices of the corresponding
state variables k(t).M In view of this the Hamiltonian function (A2.2.5) may be
interpreted as the sum of the rate of increase of profits and thft rate of accumulation of
the value of capital. The first term represents the direct and 'current' contribution to
profits from control x(t), and the second represents the indirect or 'future' profit impact
of control x(t). Thus, the economic interpretation of the Hamiltonian is that for all times
in the optimisation period it expresses the total profit potential of any set of control
variable choices.

Now consider the economic interpretation of the first maximum principle condition of
(A2.2.6). Maximisation of the Hamiltonian with respect to x is now seen as simply a
requirement to choose the control variables in such a way that potential profits are
maximised at all times. When expressed by (A2.2.9) it becomes apparent that this
involves a balancing of the marginal current profits with the marginal future costs of
changing the capital stock:

du df
(A2.2.10)

The next 'new' result of the maximum principle is the third condition of (A2.2.6).
Expanding this in the terms of Dorfinan's example produces:

9(t) = -
5k -« ( t )=t+ 9 ( t ) i (A2.2.11)

The left hand side of which is the rate at which the shadow price of capital depreciates,
or alternatively, the marginal loss incurred by postponing the acquisition of a unit of
capital. The right hand side is the sum of capital's marginal contribution to current profits
plus its marginal contribution to enhancing the value of the capital stock. Thus, the
condition imposed by (A2.2.11) is the economically logical one of equating, at the
margin, the loss from not employing capital to the overall profit (both current and future)
it could generate.

Finally, the last condition from the maximum principle of equation (A2.2.6), the
transversality condition G(T) = 0, sets the terminal shadow price of capital to zero. This
simply reflects the fact that in maximising over a fixed horizon any capital left over at
that date exists too late to raise any profits and is therefore worthless. Some further
discussion of transversality conditions is at Appendix 2.3.

64 That the costate variables represent valuations of the state variables may also be proved more
formally. Writing the maximum value function as V*[k<>, k(T),T] and differentiating with respect to the
given initial ko and the optimal terminal k(T) produces: dV73k<>=8*(0) and SV*/dk(T)=-0*(T). So the
marginal value of having more (capital) ko initially is 9*(0), while the marginal cost of having more 'left
over' at T is 9*(T). This proves the result for the initial and terminal costate variables. It may also be
extended for the whole optimisation period; that is V t e[0,T]. See Leonard and Van Long (1992).
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A2.2.2 Maximising monopoly profits

The problem faced by the producers of specialised capital is to choose a time path for the
level of their output which maximises the discounted sum of all their future excesses of
rental incomes over variable costs:

Maximise J|px(i,t)X(i,t)--nIx(i,t)]e

t

-Jr(s)ds

(A2.2.12)subject to X(i,t) = Ix( i , t )-6X(i , t)

X(i,0) given, and X(i,t) > 0
and where:

Ix(i,t) is gross investment in X(i,t);65 and px(i,t) is the demand function given by

Forming the (present valued) Hamiltonian W and invoking the maximum principle:

tf = [px(i,t)X(i,t) - T|Ix(Lt)]e-f<t)t + v(i,t)[Ix(i,t) -8X(i,t)] (A2.2.13)

where v(i,t), the dynamic multiplier of the accumulation constraint, is the costate variable
associated with the state variable X(i,t) and has the usual interpretation of a shadow
price (here it is the present value shadow price of specialised capital goods, X(i,t)); and
where r(t) is the average interest rate over (0,t):

r(t)=|jr(s)ds
1 o

Then the first order necessary conditions for the solution of the maximisation problem
(A2.2.12) are:66

= 0 => v(i,t) = v(t) = -ne- (A2.2.14)

v(i,t) = 8v(i,t)-y2N(.)1-TX(i5t)T-Ie1-TX(it)T-Ie-f(t) t

and the transversality condition:

limv(i,t)£0 and limv(i,t)X(i,t) =

and lim*? = 0

(A2.2.15)

(A2.2.16)

65Ix(i,t) is the control variable and X(i,t) is the state variable of this dynamic optimisation problem.
6 6 The non-negativity constraints on the state variables X(i,t), were they ever to be binding, would
require the formation of a Lagrangean function of the form 4 = # + 9X(i,t) with additional 'Kuhn-
Tucker complementary slackness' type conditions &<? / 59 > 0,9 > 0, QdJ 159 = 0 and X(i,t) £ 0,
9X(i,t) = 0 (for example see Chiang, 1992). However, since all the X(i,t) turn out to be equal, and since
no output is possible without some capital, X(i,t)=X(t) must be strictly positive over all finite time.
Hence the Lagrangean and associated additional first order conditions may be safely ignored (also see
footnote 67).
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Then, differentiating equation (A2.2.14) with respect to time:

v(t) = -T|—[ fr(s)ds]e"f(t)t = -r|r(t)e- f (o t

At Jdt
(A2.2.17)

and substituting this result together with (A2.2.14) itself into (A2.2.15), and then using
the demand function px(i,t) generates the results:

(A2.2.18)

and
l imv(t)>0 and limv(t)X(t) = 0
t->oo t->co

and lim?? = 0
t->to

It may also be noted from (A2.2.17) and (A2.2.14) that:

v(t)/v(t) = -r(t)

(A2.2.19)

(A2.2.20)

(A2.2.21)

• Imposing a non-negativity constraint on Ix(i,t)

If the unappealing aspect of costless disinvestment in specialised capital equipment
(Appendix 2.1) were addressed simply by not permitting it in the dynamic optimisation,
the problem (A2.2.12) would have to include another constraint. Namely:

I x ( i , t )>0 (A2.2.22)

Then, by the Kuhn-Tucker conditions the first order necessary condition (A2.2.14)
would have to be replaced by a corresponding inequality and a complementary slackness
condition:

eix(i,t)
<0 and = 0 (A2.2.23)

From this it can be seen that when the non-negativity constraint (A2.2.22) is not binding
(Ix(i,t)>0), the optimisation conditions are exactly as before and the results (A2.2.18) to
(A2.2.21) stand. However, when the non-negativity constraint is binding the first order
condition (A2.2.14) becomes:

aix(i,t)
<o »-f(t)t (A2.2.24)

and when this is combined with the transversality condition (A2.2.16) it implies that the
growth rate of v(t) must be negative. Then, from first order condition (A2.2.15), which
still applies:

v( t)<l-N(.)1- rX(t)Y-1e-" r ( t ) t

5
(A2.2.25)
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Finally, these last two results imply that when the non-negativity condition on investment
in specialised capital is binding the number of units of each type of specialised capital
must satisfy the inequality:

X(t) < [- (A2.2.26)

This lacks sufficient specificity to allow the development of a system of differential
equations from which defined dynamic paths can emerge. More specific modelling, as
discussed in Section A2.1.2 of Appendix 2.1, would be required.

• Imposing adjustment costs on Ix(M)

Another method of resolving the unappealing aspect of costless disinvestment (and of
costless positive investment also) might be to impose some form of adjustment costs on
the processes of assembling and dismantling specialised capital. An adjustment term
could be added to the unit investment cost of r\. For example, the costs of investment
might be defined as:

Cost of investment = T|IX (i, t)[l + K(I)]

where K(.) is a non-negative Junction such that:

K(0) = 0;K'(|I|) > 0;and K"(|I|) < 0

Then this 'cost of investment term' would replace the ' rjlx (i, t ) ' term in the integrand of
equation (A2.2.12). However none of this is pursued here. Instead, it is left as an area for
further research.

A2.2.3 Maximising consumer welfare

The capital stock, one of the factors detennining the level of output from which
consumption is possible, rises with household income (both wages and interest
payments) and falls with consumption. This generates an accumulation relation for
capital in the form of a first order differential equation. As such, the consumption
problem is one of dynamic optimisation. Formally, the problem is 'to maximise the
discounted sum of all future aggregate utility, subject to the (dynamic) economy-wide
resource constraint on capital'. That is:

CO

Maximise Ju{C(t)}e"ptdt

subject to K(t) = WY(t) + rK(t)K(t) - C(t) - 8K(t)
0<C(t)<Y(t)

K(t)>0 and, K(0) given

where U{C(t)} = [C(t)1"0 -1] / (1 - a) for a > 0

(A2.2.27)

In this formulation W(t) is aggregate wages from the output of goods; ric(t) = r(t)+8 is
the rental rate on general-purpose capital, and U(.) is the instantaneous utility function
(the felicity function), with p as the subjective discount rate and I/a the elasticity of
intertemporal substitution. Since aggregate household income amounts to gross product,
and since research wages correspond to research output, then:

WY(t) + rK(t)K(t) = Y(t)

and the economy wide resource constraint above corresponds to the capital accumulation
relation (2.6). Also see footnote 21 in Section 2.2.8.

Then, proceeding again according to the maximum principle (Pontryagin et al, 1962), the
(present valued) Hamiltonian, *?, is formed and the first order conditions for a maximum
are applied:

-pt+X(t)[Wy(t) + r(t)K(t)-C(t)] (A2.2.28)

where the dynamic multiplier ?i(t), is the costate variable associated with the.state
variable K(t) and has the interpretation of its (present value) shadow price.67

= 0: - o -pt

dC

X = -

and the transversality condition for the problem (A2.2.27) is:

limA.(t)>0 and limX(t)K(t) = 0
t->oo t-»°o

and

(A2.2.29)

(A2.2.30)

(A2.2.31)

Then differentiating (A2.2.29) with respect to time and substituting (A2.2.30) generates
the condition for the optimum pattern of consumption over time:

C(t)/C(t) = [ r ( t ) -p ] / a (A2.2.32)

67 Rigorously, because the optimisation problem (A2.2.27) includes constraints on both the control and
state variables (consumption and capital respectively) a Lagrangean function A incorporating the
Hamiltonian together with these constraints should also be formed, with the solution to the
maximisation problem, as usual, being a saddle point of A. As before (footnote 66), this would introduce
additional 'Kuhn-Tucker complementary slackness' type first order conditions which would greatly
complicate the solution. Fortunately these complexities can be avoided because the general forms of the
utility and production functions U(.) and Y(.) exhibit the so-called 'neoclassical' properties (in
particular: U(0)=0, U>0, U"<0, lT(0)=oo; and Y(0)=0, Y'>0, Y"<0 and Y(oo)<p+S<Y(0)) which imply
that the variables automatically satisfy the constraints. For example, see Leonard and Van Long (1992,
pp.146, 159); Chiang (1992, p.256) and Romer (1989a, p.79).
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Appendix 2.3

Transversality conditions

Transversality conditions are constraints imposed by the particular form of an optimum
control problem on the terminal, or asymptotic, behaviour of a dynamic path if such a
path is not to be ruled out as a possible solution. Thus, in the first instance at least,
transversality conditions are necessary conditions. They arise whenever the optimisation
problem is not completely constrained by the exogenous specification of both the
terminal time and the terminal values of all the state variables. In the absence of such a
fixed terminal point specification there are more degrees of freedom available in the
optimisation process, and so correspondingly more conditions are necessary in order to
distinguish the optimal path from other admissible paths. These are the transversality
conditions, so named, according to Chiang (1992), because they describe how the
optimal path transverses the terminal time.

The particular form of a transversality condition depends on the manner in which the
terminal value of its state variable is constrained in the problem statement.68 In the case
of the two dynamic optimisation problems in the Romer model, asymptotic non-
negativity restrictions were imposed, the state variables in both cases being capital
stocks. These took the form:

limk(t) > 0
t-*°o

(A2.3.1)

where k(t)=X(t) for the monopoly profits maximisation problem and k(t)=K(t) for the
utility maximisation problem. Inequality constraints like these generate transversality
conditions which are the continuous time, infinite horizon analogues of the Kuhn-Tucker
complementary slackness conditions from inequality constrained static optimisation
theory (Romer, 1989a). These were given in Appendix 2.2 as equations (A2.2.20) and
(A2.2.31). With the above notation, and including that restriction, they take the form:

l imk( t )>0; l im9(t)>0; and
t->00 t->°o

iim9(t)k(t) = 0
t-»GO

(A2.3.2)

where 9(t) is the shadow price of capital k(t), so 9(t)=v(t) in the profits problem and
9(t)=A,(t) in the utility problem Also, since the time horizons in these oroblems are
infinite, the terminal times cannot be fixed and so another transversality condition is also
required in each problem. Namely, in each case the limit value of the (present valued)
Hamiltonian must vanish (Michel, 1982):69

= 0 (A2.3.3)
t-K»

68Except, of course, if it fully constrained (that is, constrained by a fixed terminal point), in which case
no transversality condition is required.
6 9 Notice that this condition is satisfied for both dynamic maximisation problems in the model. From
equations (A2.2.13) and (A2.2.28) the first term of each limit Hamiltonian vanishes because of the
discount factors; and the second terms vanish because, from (A2.3.2), either the costate variables are
zero, or the state variables are zero. And in the latter case there can be no output and no capital
accumulation lim k(t) = 0. •
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These transversality conditions have intuitively appealing meanings. Following the spirit
of Dorfinan (1969) as discussed in Appendix 2.2, the conditions (A2.3.2) can be
interpreted as stating that if capital has any value at the end of the horizon, then the
optimisation process should ensure that none is 'left over'. That is:

Iim9(t) > 0 limk(t) = 0
t-K»

or, if some capital is 'left over' then it must be worthless:

l imk(t)>0 => lim9(t) = 0

Alternatively, since 9(t)k(t) represents the value of the community's capital assets at time
t, this transversality condition simply says that to maximise the total profit function, the
assets should be used in such a way as to increase its value within the planning period
rather than having any assets l̂ ft over at the end. Also, the transversality condition
(A2.3.3) may be interpreted as requiring that at the end of the planning period all the
potential profit opportunities, both current and future, (recall that this was the economic
interpretation of the Hamiltonian) must have been used up.

As noted above, transversality conditions are in general only necessary conditions for an
optimum; and then they are only part of the necessary conditions from the Maximum
Principle. However, because of the particular formulations of the maximisation problems
in the model, and because the functional forms of the maximands and of the dynamic
constraints in each of these problems are such that the Hamiltonians of the problems are
jointly concave in the state and control variables, the Maximum Principle conditions are
both necessary and sufficient (Chiang, 1992; and Leonard and Van Long, 1992). Thus,
given the dynamic equations, the transversality conditions are all that is required to
define the optimum.

When the transversality conditions were imposed on the differential equations of the
model (Section 2.3.3) the asymptotic behaviour of the optimum turned out to be a
steady-state equilibrium of the differential equations. As it happens, this result follows
from the sufficiency (concavity) requirements whenever certain other conditions are
satisfied. In particular, if the differential equations of a dynamic optimisation problem
yield a balanced growth or steady state equilibrium with the saddle-point stability
property (and this is shown in Chapter 3 to be the case for the Romer system), then the
path leading to the equilibrium will be the optimal path provided the problem:

• is autonomous with a positive discount factor;
• has a Hamiltonian (or allowing for constraints, a Lagrangeari) which is jointly

concave in terms of its state and costate variables;
• has state variables which are required to be non-negative; and
• imposes non-negativity constraints on the asymptotic values of the costate variables

(Leonard and Van Long, 1992).
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Appendix 2.4

A second steady state

If the transversality conditions are ignored and only the differential equations are
considered, the dynamic system of the Romer model can be shown to produce two
dynamic equilibria or steady states: Thus, consider equations (2.30) to (2.35), ignoring
(2.37) and (2.38), and posit the existence of an asymptotic balanced growth equilibrium
for the system (where, in the limit, A(t), K(t), and C(t) all grow at constant rates). Then,
following similar logic to that applied in the text when the transvers.ility conditions were
used, it may be argued as follows:

From equations (2.30) and (2.33), the rates of growth of A(t) and C(t) will be constant
only if Hy(t) and r(t) respectively are both constant. Then, from (2.35) and (2.34) this
requires the ratio K(t)/A(t) and pA(t) also to be constant. The former, as long as it is not
equal to zero,70 implies that K(t) and A(t) must grow at the same (constant) rate, and it
then follows from (2.31) that the ratio C(t)/K(t) must be constant. At this point there are
two possibilities: First, that the value of this constant is strictly greater than zero, and
second that it equals zero. In the first case it may safely be argued that the rate of growth
of C(t) equals that of K(t), and from this the 'market determined' steady state
equilibrium denoted by equations (2.53) to (2.59) may be deduced.

In the second case however, the asymptotic rate of growth of C(t) merely has to be less
than that of K(t), no matter by how small an amount. That is:

,. C(t) ,. K(t)
lim—— < lim

C( )
< lim

C(t) t->» K(t) K(t)
(A2.4.1)

Then, as shown below the asymptotic versions of the differential equations (2.30) to
(2.35) generate an ''alternate' steady state equilibrium. This is denoted by 'ss-subscripts'
and 'A-superscripts' to distinguish it from the 'M-superscripts' of the market determined
steady state.

First, equation (2.32) is set to zero and (rA +5) substituted from equation (2.35):

(A2.4.2)

Then (2.30) and (2.31) are equated, noting that (C/K)A is zero; and (A2.4.2) is
substituted to obtain the steady state allocation of human capital to manufacturing:

HYss
gyH-a8(l-Y2)/yC

1 + ay (A2.4.3)

i l

The corresponding allocation to research, and the steady state growth and interest rates
can then be obtained from this by using H =
equation (A2.4.2) respectively:

1 + ay
A

g

+ H* . ; (A/A)A = gA =

•a8(l-Y2)/y
1 + ay

A =
1 + ay

and

(A2.4.4)

(A2.4.5)

Finally, re-writing the steady state consumption-capital ratio condition from which this
steady state was generated, and obtaining the steady state capital-technology ratio and
technology price levels from (2.35) produces:

(C/K)A=<DA=0

5)
and

PASS -

(A2.4.6)

(A2.4.7)

(A2.4.8)

Equations (A2.4.3) to (A2.4.8) define the alternate steady state. They may be compared
with their counterparts (2.54) to (2.59), which define the true (market determined)
steady state of the system. It should be emphasised that this alternate steady state is not a
valid outcome of the model. It is ruled out by the proper application of the transversality
condition, attached to the consumer utility optimisation problem, equation (2.3 8).71 As
argued in Section 2.3.3 that condition results in an asymptotically constant interest rate.
Mathematically, using the steady state versions of the capital and consumption growth
rate equations (2.31) and (2.33); equation (A2.4.1) implies:

which in turn means that both capital and consumption would decline towards zero and
the system would degenerate to the origin.

And qualitatively, an asymptotically constant interest rate means that in the limit, income
from capital grows at the same rate as capital. This means that for consumption to be
growing more slowly than capital, as required by this alternative equilibrium, it must also
be growing more slowly than income - clearly not optimal behaviour for consumers
seeking to maximise utility through consumption.

The purpose of including this invalid equilibrium was to illustrate the importance of
transversality conditions in determining the correct dynamic solutions of optimal control
problems such as this one.

70If K(t)/A(t) = 0, then the entire system degenerates to the origin, a rather boring static equilibrium. 71 This was first pointed out to me by Paul Romer, who also put the 'qualitative argument' above.
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Appendix 2.5

Derivation of some supplementary variables

The purpose of this appendix is to specify some additional variables to those already
explicitly identified in the derivation of the dynamic system, and to derive their
relationship with existing variables. Results for the savings rate, capital-output ratio, the
factor shares of aggregate income, and the growth rates of output and gross product are
described below.

• savings rate

Under a narrow view (see Section 2.2.3), the savings rate is taken simply as "the
investment share of the output of goods", and denoted here by SN. From equations (2.4)
and (2.29):

= 1
c(t)

1

Y(t) r(t) + 8K(t)
sN(t) = l -

r(t) + S
<D(t) (A2.5.1)

Under a broader notion of output and savings the savings rate, denoted here by SB, is
defined as "the proportion of the economy's gross product (GP) which is not
consumed". Using equations (2.29) and (2.30), gross product is:

GP(t) = Y(t) + pA(t)A(t) =

whence:

sB(t) = l -

Y

C(t)

+£>A(t)[H-HY(t)]A(t) (A2.5.2)

(r(t) + 8)K(t) / y2 + C[H - H Y (t)]pA (t)A(t)
(A2.5.3)

(r(t) + 8)/y - H Y (t))p - i

• capital-output ratio

In the same way as for the saving rate, the capital-output ratio may also be defined with
either the narrow output of goods measure (Y), or the broader gross product measure
(GP) as denominator. Thus, using (2.29) and (A2.5.2):

and

kY(t) =

kGP(t) =

Y(t) r(t)

K(t) 1
GP(t) [r(t) + 8]/y2 +C[H-H Y ( t ) ]p A ( tmt )- i

(A2.5.4)

(A2.5.5)

78 Chapter 2

• factor shares of aggregate income (gross product)

The distribution of the economy's gross product to its factors of production was
described in Appendix 2.1 (Section A2.1.1 following equation (A2.1.14)). This
information, combined with the expression for output Y from equation (2.29), and that
for gross product from (A2.5.2), generates the following results:

sHv(t) =

sK(t)=-

CPA(t)HA(t)

a(l-y)(r(t) + 8)

y[r(t) + 8]

(A2.5.6)

(A2.5.7)

(A2.5.8)

(A2.5.9)

• dynamic paths of growth rates

The dynamic paths of technology, capital, the price of technology, and consumption are
already specified as part of the dynamic system. Re-writing equations (2.30) to (2.33)
they are as follows:

<D(t)-S

(A2.5.10)

(A2.5.11)

r(t)-p

(A2.5.12)

(A2.5.13)

But obtaining expressions for the growth rates of output Y and gross product GP
requires further derivation. Dropping the 'time' arguments temporarily to make the
notation simpler: from the expression (2.29) for Y, and from the relation between r and
HY from (say) equation (2.45):

and substituting [ygv - g^]/[I - cc(l - y)] for gHY. obtained from the relation (2.44):
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1

l-a(l-y)

- 8 K
l - a ( l - y ) l - a ( l - y )

= gK —
l - a ( l - y )

[ g K - g A ] -

furnishing the result:

l -a ( l -y)

a)(l-y)

8pA

l -a( l -y)
gpA (A2.5.14)

Then, using (A2.5.2), the growth rate of gross product may be written as:

" G P 8 Y

Now the research share of gross product (R/GP) is simply the share of gross product
distributed to the only factor employed in research, HA, which was defined and derived
earlier (equation (A2.5.6) as "SHA". Using this, and noting that since HA=H-Hy, the
growth rate of HA may be expressed as: gHA=-gHY(HY/HA), generates:

IT

=a-SH A)gy+SH A[g p A-gH y-^H-gA]

Finally, substituting an expression for gnv derived from (2.44) and simplifying as before:

Tn _HvY(gK-gA)-gpA _ ,=fl-S
HA l -a ( l -y)

(A2.5.15)

Of course the steady-state values of all these variables may be obtained simply by
substituting the steady-state versions of their constituent variables. Thus, for example:

and

J

M

=1

= 1 —•
> M

ss

kM -
M
ss

(A2.5.16)

(A2.5.17)

(A2.5.18)

Appendix 2.6

Preliminary transitional dynamics

This appendix is intended merely to provide a preliminary appreciation of the significance
of identifying the adjustment paths between equilibria, rather than focussing simply upon
the comparative statics of the equilibria alone. The parameters chosen for this purpose
have no permanent effect on many of the model's variables. This was the point in
selecting them. Comparisons of the equilibria prior to these parameter changes with the
ensuing equilibria simply indicate no change to have occurred for many variables.
However, the dynamic analyses presented here reveal that such comparative statics can
conceal a great deal of transitory change, both in terms of relative magnitudes and in
terms of persistence over time.

No attempt is made at this stage to explain either how these transitional dynamics are
computed, or the meaning of the results presented. Such explanations are the subject of
later chapters.

A2.6.1 A 25 per cent rise in the rate of depreciation of capital §

Figure A3.6.1: Dycsmic effects on the principal dynamic variables *P, ti>, and pA of
a unstained 25 per cent rise in the rate of depreciation of capital (S)
from time t=0, benchmark parameter set
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Figure A2.6.2: Dynamic effects on the growth rates a sustained 25 per cent rise in
the rate of depreciation of capital (5) from time t=0, benchmark
parameter set.

1.8

1.6

1.4

\2

Growth rates
(percent)

Romcr Model Dynamics: Market Solution

0.8

0.6

-gK(t)

-aSP(i)

-10 20 30 40 50 60

Time (Years)

70 80 90 100

d:\phJ\ganpack\mktrom\25daO25dttini.xls(gA)

Figure A2.6.3: Dynamic effects on the interest rate (r) and the human capital in
research (HA) of a sustained 25 per cent rise in the rate of
depreciation of capital (5) from time t=0, benchmark parameter set
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Figure A2.6.4: Dynamic effects on the savings rates (sN &sB) and capital-gross
product ratio (kc?) of a sustained 25 per cent rise in the rate of
depreciation of capital (5) from time t=0, benchmark parameter set
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A2.6.2 A10 per cent rise in the production cost of capital r|, and a 20
per cent rise in the quantity of ordinary labour L

Figure A2.6.5: Dynamic effects on the principal dynamic variables Y, <X>, and pA of
a sustained 10 per cent rise in the production cost of capital (r|), and
a sustained 20 per cent rise in the level of ordinary labour L from
time t=0, benchmark parameter set.
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Figure A2.6.6: Dynamic effects on the growth rates of a ST stained 10 per cent rise in
the production cost of capital (TJ) firm time t=0, benchmark
parameter set
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Figure A2.6.8: Dynamic effects on r and HA of a sustained 10 per cent rise in the
production cost of capital (TJ), and a 20 per cent rise in the level of
ordinary labour L from time t=0, benchmark parameter set
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Figure A2.6.7: Dynamic effects on the growth rates of a sustained 20 per cent rise
in the level of ordinary labour L from time t=0, benchmark
parameter set
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Figure A2.6.9: Dynamic effects on sN, SB, and kep of a sustained 10 per cent rise in
the production cost of capital (rj), and a 20 per cent rise in the level
of ordinary labour L from time t=0, benchmark parameter set
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Chapter 3

3 Dynamic Behaviour of theSystem:
Linearisation, Phase-space Analysis,
and Development of an Abridged Model

3.1 Introduction

With the dynamic system established and its asymptotic equilibrium or steady-state
solution identified, the dynamic behaviour of the model may now be examined. Equations
(2.41) to (2.43), with the variables r and HY substituted out via (2.44) and (2.45),
provide three first-order ordinary differential equations (ODEs) in the three variables ¥ ,
G>, and pA. An analytic solution to these equations, where each variable is expressed as a
function of the independent variable time, would generate three (arbitrary) constants of
integration. Different values of these would then produce an infinity of alternative time
paths for each of the variables, raising the question of how to identify, in terms of the
problems (2.17) and (2.26), precisely which of these were the optimal paths. This
apparent dilemma is resolved by the initial and transversality conditions (2.46) to (2.48)
since their satisfaction is necessary for an optimum. By providing particular solutions on
the time path (at t = 0 and as t -> oo), they allow those particular constants of integration
appropriate to the optimal paths to be evaluated.

In practice however, only, the amplest of non-linear differential equation systems permit
'closed form' solutions (Robeits and Shipman, 1972), and the Romer system is most
definitely not one of these. An analytic solution of its differential equations is not
possible. Instead they must be solved by numerical methods, which present their own
difficulties. For this reason a detailed investigation of the numerical solution to the
dynamics of the complete Romer model is postponed until Chapter 4. Meanwhile, in this
chapter the dynamic behaviour is examined by the application of three simpler 'analytic
characterisations' of the model: linearisation, phase-space analysis, and the
development of a simplified abridgment of the model.

First, by making linear approximations to the differential equations of the model it is
possible to characterise the dynamics of the non-linear system in explicit and quantitative
functional terms, a 'closed form' or analytic solution being readily obtainable from the
linearised system. Second, the construction and analysis of a phase-diagram for the
system can provide an illuminating picture of its dynamic behaviour. In such a
delineation, plots of the differential equations are used to decompose all the possible
values of a system's variables into a variety of regions in each of which the 'direction of
motion' (increase or decrease) of each variable remains unchanged. While the phase-
space analysis undertaken here is totally quantitative, in that all the graphical
representations have been explicitly calculated from the appropriate functions, the real
advantage of the method lies in the qualitative insights it provides into the dynamics of a
system. Third, by replacing the full model specification of intertemporal optimising

behaviour on the part of consumers with a simple 'Solow-type' consumption function, an
abridged Solowian-Romer model is constructed. The advantage of this over the full
model is that it is much easier to integrate numerically and that its phase-space is vastly
simpler, both to visualise and to analyse.

3.2 The linearised Romer model

3.2.1 Linearisation of the model and its dynamic solution

The idea behind the linearisation of a dynamic system is simply to replace the non-linear
differential equations, wfrbh cannot usually be solved analyticalry, with linear
approximations that can be. In the usual manner of differential calculus, such
approximations are considered 'valid' over a sufficiently small domain. While this
linearisation could be undertaken in the neighbourhood of any specific point in the entire
domain of the system, it is the equilibrium or steady-state points that are of most interest
and about which linearisation is usually performed. This is because the linear
approximation to the system's closed form solution in the neighbourhood of its
equilibrium describes the stability of that equilibrium.

Thus, the asymptotically stationary Romer model system specified by equations (2.41) to
(2.45) was linearised by first-order Taylor series expansions about the model's steady-
state, as defined by equations (2.54) to (2.59), to produce the result:

= QRR(t) + vR (3.1)

where R(t) is the column vector (R1(t),R2(t),R3(t))T = W),<&(t),pA(t))T; R(t) is
the corresponding vector of time derivatives; and QR and vR are a matrix and a vector of
constant coefficients which depend upon the point about which the linearisation was
performed (in this case the steady-state). Details of the linearisation and the evaluation of
Q R and vR in terms of the parameters of the model are at Appendix 3.1.

The general analytic solution to an ^-dimensional first-order linear dynamic system like
equation (3.1) is then described in Appendix 3.2, the first part of which largely follows
Dixon et al. (1992). It is demonstrated there that for such a system to attain its steady-
state equilibrium certain constraints on its initial values must be met. These are shown to
result from the necessary satisfaction of the transversality conditions associated with the
underlying dynamic optimisation problems to the system. Two alternative methods for
obtaining the unknown initial values in terms of the known ones are then derived, thus
allowing the complete solution to be calculated. The following particularises that
appendix material to the linearised Romer model.

It turns out that the dynamic behaviour of a linear system depends on the eigenvalues or
characteristic roots and eigenvectors of the system's coefficients matrix. In particular, the
solution for the linearised Romer system of equation (3.1) is as follows:

R(t) = rReA RT- IAR0 +RM for, AR0 = (Ro - R J (3.2)

where, as described in the appendix:
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• TR =(yjj) is a (3x3) matrix whose columns are the eigenvectors yiu=(yji) of Q ;

• FR1 =(y|j) is its inverse;

• AR is a (3x3) diagonal matrix of the eigenvalues Am, and eA'* denotes a diagonal
matrix of terms eKKit; and

• Ro and Ru are (3x1) vectors of the initial values Q¥Q, 0>Q, pA0), and the steady-state
levels OFss, O^, pAsd of the dynamic variables.

As also shown in Appendix 3.2, this can be expanded from its compact matrix notation
to give the solution for the kth dynamic variable as:

"R (f\ — 7 v p^Ri* T V 1 A P 4-T? fi 1\

» j

where, for i, j , k each equal to 1,2, 3:

• Rk(t) represents the functional time paths of the dynamic variables *P(t), ®(t), and
pA(t) respectively;

• Rssk specifies the steady-states, ^ Oss and pAss of the dynamic variables;
• ARoj = Roj _. R ^ refers to the initial divergences of the dynamic variables from their

steady-states, (¥<)-¥«), (<X>o-<I>ss), and (pA0-pAss);
• the AR, and y ^ are the eigenvalues and eigenvector components respectively of the

coefficients matrix fl^ (Appendix 3.3 provides details of their calculation.); and
• the terms y ̂  are derived from the eigenvectors (Appendix 3.2).

It is clear from equation (3.3) that if the first of the two terms on the right hand side
vanishes over time, then the system will approach its steady-state QV^, (D ,̂ pAss). From
the presence of the exponential power terms it is also apparent that if the real part of all
three characteristic roots X^, were negative, then the system would converge to its
equilibrium from all (nearby) starting points. In such a case the equilibrium would be
locally stabled Conversely, if the real part of all three roots were positive, the system
would be divergent and its equilibrium would be unstable. In this case the steady-state
could only be attained if the system began there initially, with all the terms AROj in (3.3)
equal to zero. The interesting (and most common case in economic applications at least),
is where there is a mixture of both positive and negative real parts among the
characteristic roots. Then the system will converge to its (local) equilibrium from some
initial points, but diverge from others. This is the property of saddle-path stability, and if
any path to the steady-state exists, then from Kurz (1968) this is the nature of the
equilibrium that the model will exhibit.2

Equation (3.3) indicates that if any of the characteristic roots has a positive real
component, then the only way the system can be prevented from diverging over time is
for the coefficients on the corresponding exponential terms to be identically equal to
zero. Since convergence is required by the transversality conditions, these conditions in

1A truly linear system would also converge from distant points and the system would be globally stable.
2 Kurz (1968) proved the general result that if a steady-state exists for any autonomous dynamic
optimisation problem with a constant positive discount factor, then the coefficients matrix of the system
must have at least one characteristic root with a positive real part, so that the steady-state must be either
completely unstable or exhibit saddle-path stability.
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turn imply that such coefficients must indeed be zero. It follows from (3.3) that for the
linearised Romer model to approach its steady-state equilibrium asymptotically it is
necessary that:

y ^ o j -Rssj) = o
j j

for j = 1,2,3; and for all i such that X.̂  > 0
(3.4)

Since the eigenvectors y, and the steady-state values RK are basic properties of the
model, such conditions amount to constraints on the set of valid initial values. Thus, in
the linearised model the existence of positive real components in the eigenvalues of its
coefficients matrix, and the consequent necessity for the initial value constraints (3.4),
are manifestations of the transversality conditions from the underlying dynamic
optimisation problems of the model. Since there are two transversality conditions
associated with the Romer model (as shown in Chapter 2), two positive eigenvalues can
be expected from its linearised version.

Numerical evaluation of the eigenvalues (Appendix 3.3) confirmed this correspondence
between transversality conditions and the constraints on positive roots. In all
economically meaningful cases there were exactly two roots with positive real parts.3 For
the most plausible values of the parameters all three eigenvalues were real (one negative
and two positive). For somewhat less plausible parameter values the two real positive
roots could be converted to a pair of complex conjugates with positive real components.
The benchmark parameter set (Table 2.2 of Section 2.4), which was used as a base
about which both individual and joint parameter variations were made, generated the
following eigenvalues, A., and the corresponding eigenvectors, yi:

h = -0.0493; A,2 = 0.1899; and X3 = 0.1021
yi = (0.6874, -0.01352,0.7262); y2 = (0.8181,-0.02548, -0.5745); and (3.5)
y3 = (0.4843, -0.000768, -0.8749)

Calculation of the eigenvalues and corresponding eigenvectors for any set of parameter
values then allows the complete solution of the linear model (that is, the dynamic paths
of all the variables) to be determined via equation (3.2), or (3.3), and the necessary
conditions (3.4). In particular, the two initial value constraints can be evaluated
numerically so as to express the initial values for the two variables associated with
positive eigenvalues in terms of the initial value of the variable associated with the only
negative eigenvalue.4 Such a result defines the (linearised) saddle-path of the dynamic

3 The system could be made to return either two real negative roots or a pair of complex conjugates with
negative real parts (so that the path towards steady-state would be oscillatory), or even three positive real
roots, but only with sets of parameter values which were either invalid in themselves or which generated
economically meaningless outcomes (Appendix 3.3).
4 Mathematically, the decision of which variables and which eigenvalues are to be associated with one
another is arbitrary. Moreover, the saddle-path solution is invariant to any such allocation. The real question
is: which variables are to have their initial values specified exogenously, and which are to be solved for from
the constraint equations? Despite the invariance of the saddle-path to this choice, the time paths of the
variables are highly dependent upon it. In some ways it is dictated by the dynamic optimisation procedure
which required state variables to be continuous while control and costate variables could contain jumps
(Appendix 2.2). Economic criteria are also important. Further discussion of the issues is in Section 4.1 of
Chapter 4.
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system. Two general methods (for an n-dimensional system with m<n negative
eigenvalues) are presented in Appendix 3.2, with the results given in equations (A3.2.12)
and (A3.2.15). Application of these to the 3-dimensional linearised Romer model system
produced its saddle-path solution. As shown below, the result from (A3.2.15) is by fer
the simpler. First, from (A3.2.12):

(3.6)

while from (A3.2.15):

so (3.7)

Yn Yn l i Yn

Numerical evaluation of equations (3.6) and (3.7) produces identical results, which may
be written more simply as:

O 0 = c , + c 2 % and (3.8)

where ci, c2, c3 and C4 are constants determined by the parameters. For the benchmark
set of parameter values: Ci«0.4015, c2«-0.0197, c3«2.6113, and c4«1.0564.

By specifying a particular value for ¥ 0 , equation (3.8) defines the vector Ro in equation
(3.2) or (3.3), which may then be used to calculate the dynamic paths. Alternatively, the
complete linear system solution given by equation (A3.2.16) in Appendix 3.2 may be
used. In any case, it is apparent that the dynamic solution takes the form:

Ass

where the terms Cy, Co, and CpA are functions of the eigenvector components and as
such are constants. Moreover, as can be seen by setting the time variable to zero (t=0),
these terms are equal to the initial divergences from the steady-state. That is:

So the dynamic paths are:

<D(t) = <Doe
XRlt

(3 . 9 )
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3.2.2 A simulation of the transient dynamics of the linearised model

Calculations of these dynamic paths have been made with ¥0 set at its steady-state value
under the benchmark parameter set; and the constants ci to C4 in (3.8) above taking
values determined by setting y at ten per cent higher than its benchmark level from time
t=0 onwards while the other parameters remained at benchmark. Thus, the calculations
simulate the application to the system, in its benchmark equilibrium, of a sustained ten
per cent shock to the output elasticity of capital (y), which may also be interpreted as the
profit share of income from the production of final output (Appendix 2.1). The results of
the simulation are presented in Figure 3.1 to Figure 3.5 and the principal numbers
involved are (approximately) as follows:

¥(-10) to *F(0) « 6.48; O(-10) to <D(~1) « 0.274; and pA(-10) to pA(-l) « 9.45 (all
benchmark values);
ci, c2, c3, and c 4 « 0.320,0.009,2.75, and-0.877 respectively;
<X>(0) « 0.262 and pA(0) * 8.43 (from equation (3.8)); and
^ss, Oss, and pAss« 10.48,0.227, and 11.94 respectively.

Figure 3.1: Dynamic effects on *F, <$, and pA of an unanticipated and sustained
10 per cent rise in parameter y from time zero, benchmark
parameter set.
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The jumps (from their previous equilibria) in the initial values of the consumption-capital
ratio O and the price of technology pA, which are necessary to get to the new saddle-
path, are evident from Figure 3.1, as are their subsequent exponential growth paths
towards the new equilibrium, according to equation (3.3) or (3.9). Eventually, when the
system adjusts to its new equilibrium, the overall changes in the variables ¥ , O, and PA
are 61.8 per cent, -17.4 per cent, and 26.4 per cent respectively; as calculated previously
in Chapter 2 (Table 2.3 of Section 2.4.2).
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Interestingly, while the initial jump in 0 (-4.3 per cent) is in the same direction to its
subsequent adjustment towards equilibrium, this is not the case for PA', which initially
drops by 10.8 per cent before gradually rising towards its new equilibrium! TJiscussion of
the economics behind the directions of adjustment in these and other variables is
postponed until Section 4.5 of Chapter 4 where, along with other simulations this one is
repeated for the actual (non-linear) model, and where the dynamics are solved by
numerical methods. Here the discussion is limited to descriptions of the variables plotted
in the figures, and simply to pointing out some of the more significant results depicted
therein.

Figure 3.2: Dynamic effects on thu growth rates of an unanticipated and
sustained 10 per cent rise in parameter y from time zero, benchmark
parameter set
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While the growth rates of technology, consumption, capital, output and gross product all
begin at the same (benchmark) level and all approach the same new steady-state level,
thereby all registering the same overall change (of 8.3 per cent as calculated in Table
2.3), their individual adjustment paths are very different (Figure 3.2). In response to the
autonomous ten per cent rise in y, the initial jumps in these growth rates vary between a
fall of 13.8 per cent in the case of gA, to an increase of 202.6 per cent for gK.

The changes in the growth rates of technology and consumption (gA and gc) directly
reflect the respective changes in the allocation of human capital to research, HA, and the
interest rate, r (Figure 3.2 and Figure 3.3). In percentage terms, both the initial jumps in
HA and gA, and their overall steady-state adjustments are identical; while for r and gc
there is a close, but not exact correspondence. These results follow from the relations:

and g c = ( r - p ) / a
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In addition to the overall savings rate SB, both the narrow measure SN (which is
equivalent to the investment share of output, I/Y), and the research share of gross
product, SHA, are also measures of savings in the model. The latter measures the extent
of the savings decision to devote human capitfd resources to research rather than
directly to the output of consumables; while the former measures the proportion of
output to be saved as capital rather than consumed.5 The relationship between them is as
follows (also refer back to Appendix 2.5):

Define R(t) as the total value of research, measured as usual in terms of the consumption
good. Then gross product is GP(t) = Y(t) + R(t), and the savings terms are: sB(t) =
[I(t)-HR(t)]/GP(t); SN(t) = I(t)/Y(t); and SHA© = R(t)/GP(t). It follows that:

(3.10)

This relation may be confirmed visually from Figure 3.3 and Figure 3.4 - notice first that
SHA(0 varies between about 0.045 to 0.065 over the 100 year time span so multiplication
of the [I-SHA©] term by the 25 to 20 per cent variation in sN(t) indicates that the second
term in (3.7) varies between about 24 per cent at t=0 to WA per cent at t=10C;
deducting these from the corresponding variation in ss(t) (« 28.5 to 25 per cent)
confirms the approximately 414 to 6Vz per cent variation in SHAW.

Figure 33: Dynamic effects on r and HA of an unanticipated and sustained 10
per cent rise in parameter y from time zero, benchmark parameter
set
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The response of both overall savings sB, and output savings SN=I/Y, to the autonomous
ten per cent rise in the output to capital elasticity 7, are substantial initial upward jumps

5 Or alternatively, the share of non-research resources to be devoted to capital formation rather than to the
production of consumables.

Chapter 3 93

1
si

', 'A



(28 and 48 per cent respectively) followed by gradual declines which erode some 55 or
60 per cent of the initial increases, so that these variables finish 13 per cent and 19 per
cent respectively above their pre-shock levels. In contrast, savings manifested through
research effort initially fell by 26 per cent then gradually recover, but remain VA per cent
below the pre-shock level.

Figure 3.4: Dynamic effects on SB, SN, and kcp of an unanticipated and sustained
10 per cent rise in parameter y from time zero, benchmark
parameter set
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The distribution of gross income (which equals gross output) between the factors of
production: capital, human capital in production, ordinary labour, and human capital in
research are shown in Figure 3.5. The formulations for these were derived in Appendix
2.1. The share of gross income to human capital in research is equivalent to the research
share of gross output, SHA- In this simulation most of the response in these variables
arises in the initial jumps. Also, the overall responses in SK, SHy, and SL are almost
completely determined by the direct impact of the shock itself:

From Appendix 2.1 the shares are determined by:

sK(t) = yY(t) / GP(t); sHy (t) = a(l - y)Y(t) / GP(t); and

sL(t) = ( l - a ) ( l -y )Y( t ) /GP( t )

It follows from this that the overall percentage changes are:

(3.11)
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AsK

AsHy AsL A(l-y) A(Y/GP) Ay y A(Y/GP)

sHy ~ sL * (1-y) + (Y/GP) ~~ y l - y + (Y/GP)

« -10.(034 / 0.46)% + 0.1% = -11.6%

(3.12)

The actual changes in SK, SHY and SL (to one decimal place) are 10.1, 11.7 and 11.7 per
cent respectively.

Figure 3.5: Dynamic effects on the factor shares of gross income from an
unanticipated and sustained 10 per cent rise in parameter y from
time zero, benchmark parameter set
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Although somewhat more difficult than the 'unanticipated and sustained' type of shock
examined above, the linearised model also allows the analytic determination of the
dynamics resulting from 'anticipated' and 'temporary' shocks. These types of shocks are
discussed in general terms with the aid of a 'phase diagram' in Section 3.3.3. In
Appendix 3.4 the analytic determination of their linearised model dynamics is derived and
the method applied to two different shocks: 'an anticipated and sustained rise in the
productivity of researchers' (parameter Q; and 'an unanticipated but temporary decline
in parameter a'.6 Later in the current chapter all three of the shocks examined with the
linearised model are also analysed under the Solowian-Romer model framework; and in
Chapter 4, both these sets of results are compared with the corresponding dynamics of
the full non-linear model obtained from numerical methods.

6 Which is shown in Chapter 4 (Section 4.5.3) to be equivalent to a 15 per cent rise in the wages of
ordinary labour.
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3.2.3 Speed of convergence

The signs of the linearisation eigenvalues have been seen to be important in determining
the type of convergence or stability of the dynamic system. Because the sign of one and
only one of the three is negative, the system converges with saddle-path stability. As will
be demonstrated in the following, the magnitude of this eigenvalue is also significant
since it determines the rate at which the system approaches its steady-state; the greater
the absolute value of the negative eigenvalue, the faster the convergence.

In broad terms the speed of convergence, or the convergence coefficient may be defined
as the "proportional rate at which the gap between the system's current position and its
steady-state equilibrium is closed." For non-linear systems this will depend upon the
divergence of the 'current position' from equilibrium and upon which variable is chosen
for the measurement. On the attainment of equilibrium, at time T say,7 all variables will
have closed 100 per cent of whatever gaps there were at any earlier time, to<T say.
Nevertheless, at some intermediate time tj, where to<ti<T, some variables may have
closed a greater proportion of their gaps than others. For example, for variables x(t) and
y(t)=logiox(t), in the time taken to close 50 per cent of the gap between x(to)=lO and
Xss=100 - so x(ti)=55; 74 per cent of the initial divergence of y(t), from y(to)=l to its
equilibrium level yss=2 is closed since y(ti)=logi055=l .74.

However, for linear systems, or for linearised systems in the neighbourhood of the
steady-state linearisation point, the speed of convergence is both constant over time and
across all variables of the system. Taking the variable *P, and writing p as the
convergence coefficient:

-¥( t ) ) /d t
MO = -

and from the first equation of the set (3.9):

So:

(3.13)

P(t) = P = -XRl (3.14)

Thus, the magnitude of the negative eigenvalue determines the speed of convergence, at
least in the neighbourhood of the steady-state. As calculated in Chapter 2 (Section 2.4),
the convergence coefficient for the benchmark parameter set was 0.049, or 4.9 per cent
per annum. The source of this estimate was, of course, the negative eigenvalue from the
linearised model coefficients matrix calculated under the benchmark parameter set and
recorded in (3.5). Under the simulation considered here, this rate of convergence is
slowed by some 17 per cent to 4.1 per cent a year.

Empirical measures of the speed of convergence have usually been based on the
convergence of a growth rate variable, commonly income per unit of labour, or per unit

ofeffective labour* in a log-linearised model9 (see Mankiw, Romer and Weft, 1992; and
Barro and Sala-i-Martin, 1995). This raises the question of whether a log-linearised
version of the Romer model would generate the same convergence coefficient as the
ordinarily linearised version. The prior expectation would seem to be that the results
should be at least asymptotically the same. After all, the underlying model is the same
and both methods of linearisation are merely approximations, valid in the neighbourhood
of the steady-state. A formal proof to this effect is offered in Appendix 3.5 and, as will
be seen below, the result is confirmed by numerical evaluation of the eigenvalues of the
log-linear system.

Corresponding to the ordinarily linearised form (3.1), the log-linearised version of the
Romer model is:

d/dt(lnR(t)) = + vRL (3.15)

where lnR(t) is the column vector (lnRi(t), inR^t), hiR3(t))T=(lrfP(t), ln<D(t), In pA(t))T;
d/dt(InR(t)) is the corresponding vector of time derivatives; and QRL and VRL are a
matrix and a vector of constant coefficients. Log-linearisation of the model has been
undertaken in Appendix 3.5 where the matrix QRL and the vector VRL are calculated in
terms of the parameters.

The general solution to a linear system of first-order differential equations was described
in App.-vvJx 3.2. This is directly applicable to the log-linearised system (3.15), and
generates a result corresponding to equation (3.2). Moreover, the same arguments
concerning the transversality conditions and the necessity for zero coefficients on terms
with positive eigenvalues continue u, apply, and results similar to equation (3.9) can be
derived in exactly the same manner as before. In particular, for the log-linearised system:

t +lntPss(l-eXRLlt) (3.16)

In these log-linearised systems the convergence coefficient, denoted here as PL, is defined
as 'the rate of decline in the growth rate with respect to the corresponding logged
variable'; or equivalently, 'the proportional rate of decline in the growth rate' (see Barro
and Sala-i-Martin, 1995). That is:

d(gv(t)) d(gT(t))/dt

where
g v (t) =

d(ln¥(t))/dt

= d(ln*F (t)) / dt

(3.17)

Applying this definition to (3.16) generates a result similar to (3.14):

and

So:

7 Strictly, equilibrium is not actually attained, but only approached asymptotically. Nevertheless, points
arbitrarily close to equilibrium are attained.
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8 Effective labour is the product of the normal labour and the (labour augmenting) level of technology.
9 Log-linearisatinn naturally produces growth rate variables since d(ln z(t)) / dt = z(t) / z(t) .
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pL(t)=pL=-x RL1 (3.18)

The result also follows from (3.16) if the convergence coefficient is denned in a
corresponding way to that used for the simple linear model. Namely, as 'the proportional
rate at which the gap between the ciirrent position of a logged variable and its steady-
state is closed'. That is:

"XL1 (3.19)

Now, from (3.18) and (3.14), the convergence coefficients from the simple linearisation
and the log-linearisation, despite being somewhat differently denned, will be equal if
^RLI=A,RI. This is proved in Appendix 3.5 by applying the log-linear definition of the
convergence coefficient to the ordinarily linearised model and vice versa. Moreover,
when the eigenvalues and eigenvectors of the log-linear coefficients matrix, QRL, are
evaluated numerically, and this is done in exactly the manner described earlier in
Appendix 3.3, all the eigenvalue results turn out to be the same as for the ordinary
linearisation. The eigenvectors however, are different. Results for the benchmark
parameter set, which may be compared with those reported earlier in equation (3.5), are
as follows:

h = -0.0493; X2 = 0.1899; and X3 = 0.1021
yi = (0.7582, -0.3523, 0.5487); y2 = (0.7510,-0.5527, -0.3613); and
y3 = (0.6283, -0.0235, -0.7776)

(3.20)

Some comment on the effect of the different definitions of the convergence coefficients
in the alternative linearisations is in order here. It turns out that in the simple linear
model, the log-linear convergence coefficient is asymptotically equal to the 'true' simple
linear coefficient; and that in the log-linear model the simple linear coefficient is
asymptotically equal to the 'true' log-linear coefficient. In particular:

and limpL(t) =
t-»°o

and

(3.21)

(3.22)

This issue is explored in a little more detail in Appendix 3.5.

Besides the convergence coefficient p, another common measure of the speed of
convergence of a dynamic system is its half-life, denoted by Xm. This is "the time taken
for half of the gap between the system's current position and its steady-state equilibrium
to be closed." Once again, in non-linear systems t)/2 will depend upon the divergence of
the 'current position' from equilibrium and upon which variable is chosen for the
measurement; but in a linear system it is constant, both over time and across all the
dynamic variables.

As before, the variable ¥ is chosen. Generalising, when a proportion p of the initial gap
from its steady-state equilibrium is closed, ^( t ) will take the value:
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= ^o-+PCF. - ^ o ) =

Then, substituting this value for ¥(t) in its dynamic equation - the first of the set (3.9):

(3. 23)

''Rl

Thus, setting p=l/2, for a linear dynamic system with saddle-path stability, or for a non-
linear one in the neighbourhood of a steady-state, the half-life measure of the speed of
convergence is given by:

ln(l/2) 0.693
(3.24)

where ,̂1 is the negative eigenvalue of the coefficients matrix (computed about the
steady-state for a non-linear system).

In the case of the linearised Romer model with the benchmark parameter set, where the
negative eigenvalue was A,RI=-0.049, the half-life of the system is a little over 14 years;
and for the simulated ten per cent increase in the output elasticity of capital (for which
A,RI=-0.041) this rises to 17 years. These are relatively long periods of time and they
suggest that the processes of adjustment to economic shocks are slow.10 With only half
the adjustment undertaken in about 15 years, and with some three decades required to
achieve three-quarters of the adjustment it is unlikely for economies ever to be in steady-
state equilibrium. Some new shock will surely arise long before the adjustment to a
previous one is even hah0 complete. Of course this in turn suggests that for practical
economic management it is the transient dynamics which are more important than the
(eventual) long-run behaviour of the economy.

3.3 Phase-space analysis

In general, the phase-space of any dynamic system is simply an w-dimensional vector
space (with n orthogonal coordinates) encompassing all the possible values which can be
jointly taken by its n dependent variables (x;(t), for i = l,.../i, say). The first derivatives
of each of these dependent variables with respect to the system's independent variable (t,
say) over all points in this hyperspace define a vector field which, in principle, could be
evaluated and mapped to describe the dynamics of the system over the entire phase-
space. However, it is more convenient to break the phase-space up into a set of specific
regions in each of which the change in any dynamic variable always has the same sign.
That is, within any one of these regions any particular variable is either always increasing

10 Somewhat lengthier adjustment periods were revealed from simulations with the non-linear model
(Section 4.5), where half-lives of almost 20 years, were generated. From equation (3.24) above, this
would imply a convergence coefficient of about 3.6 per cent.
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or always decreasing. Also, in crossing the boundary between two of these regions there
is a switch in the sign of the direction in which a specific variable changes.

Thus, analysis of the phase-space is undertaken by defining n hypersurfaces (each of
dimension n-1) as the loci of points for which the first derivatives of each of the system's
dependent variables with respect to its independent variable are zero:
dxj(t)/dt = 0, i = 1,....,«. Then, for any specific independent variable, i = i* say, the
direction of change of i*, which is given by dxj»(t)/dt, switches sign in moving across the
surface dxi»(t)/dt = 0. Moreover, in the phase-space regions defined by the intersections
of these phase surfaces the 'directions of motion' of each of the system's dependent
variables (that is the signs of dxj/dt) can be ascertained. Any point of common
intersection of all these hypersurfaces defines a steady-state of the system.

3.3.1 Phase-surfaces and phase-space regions

With only three dynamic variables, the 'stationary' form of the Romer system (as
specified in equations (2.41) to (2.45)), defines a three-dimensional phase-space
comprising three two-dimensional surfaces which can be illustrated diagrammatically. In
turn, these surfaces define boundaries in the phase-space at which the (time) derivatives
of the dynamic variables change sign. For *¥(t), O(t), and pA(t) all positive, the stationary
dynamic system generates the surfaces psisurf, phisurf and pAsurf described by
equations (3.25) to (3.27) respectively (see Appendix 3.6 for details).

^ 0 as

(3.25)

>TO as

and
TO as

ITI < YPA

a

r a ( l - Y ) a_gXi_Y) Y -i"ji-a(i-r)

~1JL Crf * P A J "
(3.27)

These phase-surfaces have been computed numerically and then plotted in Figure 3.6 to
Figure 3.9 for the benchmark parameter set described r Section 2.4 of Chapter 2.11 The
first three of these figures show the individual surfaces, while in the fourth (Figure 3.9)
all three surfaces are plotted jointly. Here the point of intersection of all three surfaces is
the steady-state of the system. By re-calculating and re-plotting the phase surfaces that
result from changes to the different parameters, an indication of the sensitivity of the

11 Using the mathematical software package "Maple" from Waterloo Maple Software Inc., Canada; and
then copying to "Microsoft Paint" for labelling.
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whole phase-space to such variations in parameter values is obtained. The results of such
calculations are presented in Appendix 3.6 in the form of further diagrams similar to
Figure 3.9.

Figure 3.6: Romer system phase surface for which 4* = 0 (ie. "psisurf"), seen
from the viewpoint: angle of incidence=60 degrees, angle of
declination=70 degrees; benchmark parameter set

d:\phd\chpt3\RphaseSadinw5

Figure 3.7: Romer system phase surface for which 4> = 0 (ie. "phisurf"), seen
from the viewpoint: angle of incidence=60 degrees, angle of
declination=70 degrees; benchmark parameter set
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Figure 3.8: Romer system phase surface for which f>A = o (ie. "pAsurf"), seen
from the viewpoint: angle of incidence=60 degrees, angle of
declination=70 degrees; benchmark parameter set
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Figure 3.9: Romer system phase-space, seen from the viewpoint: angle- of
incidence=60 degrees, angle of declination=70 degrees; benchmark
parameter set
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With its three surfaces intersecting each other only once, the phase-space of the Romer
model comprises eight separate regions (23=8). In each of these the directions of motion
of the model's dynamic variables are uniquely specified from equations (3.25) to (3.27).
This allows the identification of those regions from which convergence to the steady-
state is possible. The eight regions, denoted Rl to R8, and their corresponding directions
of motion are marked on Figure 3.10 and defined in Table 3.1, where an analysis
comparing the valid types of motion to the motion necessary to reach the steady-state is
undertaken. The regions from which convergence to the model's steady-state equilibrium
is possible are highlighted in the table.

Table 3.1: Romer model phase-space, valid regions from which to reach the steady-state.

Region
number
Rl

R2

R3

R4

R5

R6

R7

R8

Definition of
region
<J> > psisurf
<I> > phisurf
¥ > pAsurf

<t> > psisurf
<I> > phisurf
¥ < pAsurf

<I» psisurf
<I> < phisurf
*¥> pAsurf

O > psisurf
<D < phisurf
¥ < pAsurf

<S> < psisurf
<I> > phisurf
¥ > pAsurf

<!>< psisurf
<I> > phisurf
T < pAsurf

<1> < psisurf
O < phisurf

*F > pAsurf
<X> < psisurf
0 < phisurf
*F < pAsurf

Dynamic
motion
*F<0
6>0
PA<<>

4><o
6>o
P A >O

6<o
P A <O

6<o
P A > 0

4»>0
O>0
PA<°
4> > 0

<i>>o
P A > 0
x¥>0
©<0
P A < 0

6<o
P A > 0

Validity of the region as a source to the steady-state

The necessary motion to reach the ss can be satisfied for
I ^ ^ s s , <&<$„»and PA>PASS in this region
=> RIVALED V , v

Since 6>0, must have ^ x ^ s . Then it is not also possible
for p A >0 in this region.

=>R2 INVALID
To reach the ss requires <i>>0 which is not possible in this
region. .
=>R3 INVALID

Satisfaction of the 4><0 requirement would imply 4'>0.
Since this is not possible here:
=>R4 INVALID

With ^ X ) , reaching the ss would require 6 < 0 which is
not possible in this region.
=>R5INVALID

Here it is not possible to reach the ss without <i> <0. As this
is not possible in this region:
=> R6 INVALID

To reach the ss with pA <0, would also need to have 4 » 0

which is impossible here
=>R7 INVALID
Here the necessary dynamic motion allows the ss to be
reached from points where ¥ < ¥ * , $ > O a , and PA<PASS

=>R8 VALID

Thus, to reach the steady-state, the dynamic variables must follow a path from either:

• the region Rl where <I»psisurf, <I»phisurf, and lF>pAsurf, and along points where
T>Tss, <D«Dss, and pA>PAss; or

• the region R8 where CExpsisurf, O<phisurf, and ^pAsurf, and along points where
X¥<XVSS, OxDss, and pA<pAss.

This result could also have been inferred from the linearised model since the eigenvector
associated with the negative eigenvalue specifies the direction of the saddle-path at (or in
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the neighbourhood of) the steady-state. For the benchmark parameter set the first and
third components of this eigenvector, corresponding to the variables *P(t) and pA(t) given
the way in which the linear model was set-up, were of common sign, and different to that
of the second (3>(t)) component. The interpretation of this is that at the steady-state
and pA(t) are either both increasing while O(t) fells, or are both decreasing while ( )
rises. Since the regions Rl and R8 are the onry ones in which such motion is possible, the
saddle-path must lie within them. Not surprisingly, the result can also be seen to hold
from the solution for the saddle-path of the linearised model. Given the signs of the
eigenvector components, it can easily be seen from the saddle-path equation (3.7), that if

then a>o<Oss and PAO>PASS; and if <FO<XFSS then ^oXfc* and pA0<pAss.

Figure 3.10: Phase-space regions and their directions of motion for the Romcr
system, seen from the viewpoint: angle of incidence=60 degrees;
angle of declination=70 degrees; benchmark parameter set
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All this offers a qualitative description of the saddle-path of the model: Namely, that its
stable arms emanate from the steady-state equilibrium point into those specific parts of
the phase-space denoted here as Rl and R8. It is also possible to calculate the saddle-
path quantitatively from various numerical solution methods for the differential equations
of the model. Such methods are the subject of Chapter 4 and the Romer model saddle-
path is calculated there in a variety of ways. However, to complete the description of the
phase-space one of these calculation methods is outlined here and the results presented in
phase-space diagrams.

3.3.2 The saddle-path in phase-space

As mentioned in the previous section, the eigenvector associated with the negative
eigenvalue from the linearised model specifies the direction of the saddle-path in the
neighbourhood of the steady-state. Thus, by taking a small defined step away from the
steady-state into region Rl, and in particular, in the direction of the eigenvector, the
differential equations of the model can be integrated backwards in time from this known
initial value to compute the 'Rl-half of the saddle-path. Similarly, by taking a
corresponding step into~R8 the other half of the path is calculated. Further explanation
and details of the method, referred to as the eigenvector-backwards integration method,
are contained in Section 4.2.2 of Chapter 4. In the results presented below these small
steps were achieved by taking the fractions 0.05, and -0.05 of the eigenvector and adding
the results to the (benchmark) steady-state.

In Figure 3.11 the benchmark saddle-path is plotted alone in phase-space, while in Figure
3.12 to Figure 3.16 its position relative to the phase surfaces is shown explicitly.
Different three-dimensional views, of the phase-space have been employed to assist in
depicting its position relative to the phase surfaces, particularly in the difficult to see R8
region; and in particular, two-dimensional plan type views have been used to clarify the
position at and nearby the steady-state (Figure 3.15 and Figure 3.16).

Figure 3.11: Saddle-path for the Romer system, seen from the viewpoint: angle of
incidence=65 degrees; angle of declination=75 degrees; benchmark
parameter set
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Figure 3.12: Saddle-path and phase surfaces for the Romer system, seen firom the
viewpoint: angle of incidence=60 degrees; angle of declination=70
degrees; benchmark parameter set

d:\phd\chpt3\RphaseSad.nnvs

Figure 3.13: Saddle-path and phase surfaces for the Romer system, seen from the
viewpoint: angle of incidence=-70 degrees; angle of declination=70
degrees; benchmark parameter set

d:\plld\chpt3\RphascSod.mws
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Figure 3.14: Saddle-path an£ phase surfaces for the Romer system, seen from
the viewpoint: angle of incidence=-110 degrees; angle of
t!eclination=50 degrees; benchmark parameter set

d:\phd\chpO\RphascSad.mvw

Figure 3.15: Saddle-path and phase surfaces for the Romer system, seen from the
viewpoint: angle cf incidence=90 degrees; angle of declination^)
degrees; benchmark parameter set
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Figure 3.16: Saddle-path and phase surfaces for the Homer system, seen from the
viewpoint: angle of incidence=O degrees; angle of declination—180
degrees; benchmark parameter set

20 25 3 0

2O-.

Saddle-path • Jr.

-Plan view
• of pAsurf

^Steady-State
_LJ i •

psisurf

d:\phd\chpt3\RphaseSad.m\re

Phase-space analysis is usually undertaken for two-dimensional systems. In addition to
the saddle-path other 'streamlines' are usually shown on phase diagrams. These depict
the evolution of the system off the saddle-path. They show (more explicitly than the
'corner arrows' of Figure 3.10) how the system can move between different sectors of
the phase-space, and how it eventually diverges to economically meaningless outcomes
unless it evolves along the saddle-path. Typically the approach is to determine, often only
qualitatively, how the phase curves and concomitantly the saddle-path of a dynamic
system are altered by some change to its parameters or exogenous variables.12 The
reaction of the system is then characterised by a jump towards the new saddle-path
(typically from some prior steady-state); perhaps some further smooth adjustment to the
final saddle-path; and finally, a smooth adjustment along it. Obviously, the precise nature
of the transient dynamics will depend on which variable or variables are shocked.
Perhaps Isss obviously, they also depend upon the manner in which the shock is
implemented. - p .

While such analysis of the three-dimensional phase-space described above is possible, it
is complicated, messy, and difficult to visualise clearly. It would be far easier if the model
could be modified and the system reduced-to two dimensions. Such modification and
analysis are the subject of Section 3.4; but first a variety of transitional dynamics are
described in general terms with the aid of a schematic two dimensional phase diagram.
Here the different dynamics arise from the same basic shock implemented in
fundamentally different ways.

12 It should perhaps be emphasised that all the representations of the Romer system phase-spaa
presented here have been explicitly calculated. That is, they are all quantitative representations.
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3.3.3 Schematic phase-space analysis13

Shocks can be either temporary or (indefinitely) sustained, but a temporary shock may be
thought of as two consecutive sustained shocks, the second simply reversing the first.14

A more fundamental dichotomy in the types of shocks that can be imposed on dynamic
systems distinguishes those that surprise the market, and those that are foreseen. These
are referred to as anticipated and unanticipated respectively. For a shock or policy
change to be anticipated we may have in mind some sort of perfect foresight or rational
expectations type of model. More prosaically, it may simply be assumed that policy
changes are announced in advance.

Figure 3.17: Schematic two-dimensional phase diagram demonstrating the
dynamics of the same shock when it is (a) unanticipated; (b)
anticipated; and (c) temporary.

d:\phd\chpt3\schanephase.bmp

Figure 3.17 depicts a situation where a dynamic system is initially in equilibrium at the
steady-state ssO, when some specific shock is announced at time t=0 and implemented at
t=I (I>0). Obviously, when 1=0 the shock is unanticipated and when I>0 it is anticipated.
Other nomenclature of Figure 3.17 is as follows: n(t) is a notional variable representing
the non-jumping variables, and j(t) is a similar abstraction for the jumping variables.15

Steady-states ssO and ssl and the correspondingly scripted saddle-paths are associated
with the pre- and post-shock differential equations respectively. The pre- and post-shock

13 The work here was inspired by the phase-space material in Chapter 5 of Dixon et al. (1992).
14 Of course a temporary shock can have no permanent effect in that it cannot affect the steady-state
equilibrium of the system, but it can induce significant transient dynamic behaviour.
15 The notion of jumping and non-jumping variables was encountered in the determination of initial
values for variables in the linearised model (see footnote 4, Figure 3.1 and their associated text). The
issues are covered in detail in Section 4.1, particularly footnotes 5 and 6 of Chapter 4 and the text that
they supplement.
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phase lines for the non-jumping variables, n0 = 0 and n, = 0 respectively, are distinct
from one another; but to simplify the diagram it is assumed that the shock has no effect
on the phase line for the jumping variables ( j , = 0 coincides with j 0 = 0).16 And finally,
the 'corner arrows' marked on the diagram and labelled Rij for 1=0,1 and j=l,..,4 denote
the directions of motion of the dynamic variables under both the pre- and post-shock
systems; with i=0 referring to the former aad i=l to the latter. The different regions for
each system are numbered j=l,..,4 beginning directly to the right of the relevant steady-
state and proceeding in a clockwise direction.

When future changes are anticipated the processes of adjustment are somewhat more
complex than when such changes come as a surprise; though of course the final
equilibrium positions are identical. As could be expected, adjustment commences at the
initial time of anticipation or announcement. Even though there is no change to the
underlying dynamic equations, the announcement (or the initial anticipation) that such a
change is imminent represents a shock to the system and disturbs its current path. The
impending change to the dynamic equations and their new saddle-path are anticipated,
and any jumping variable responds by jumping part, but not all of the way to what will be
the new saddle-path. As will be demonstrated shortly, the extent of such jumps are
precisely determined. While there may be further abrupt changes to the adjustment paths
at the time the changes are actually realised (or the policies implemented), because it is
only the announcement not the implementation which comes as a surprise, it is only at
that initial time that any discontinuities in the adjustment paths can arise.17

Whether a shock is anticipated or not, from the point in time at which it is implemented
the dynamics of the system are governed by the post-shock differential equations. Also,
for the types of system considered here, the solution of a dynamic optimisation problem
requires that it approach asymptotically the post-shock steady-state. Since the only way
to achieve this is along the corresponding saddle-path, then it must be the case that the
system lies on this saddle-path at ths time of implementation. Of course prior to
implementation it is the pre-shock equations which determine the dynamic behaviour.
Thus, the system must evolve under the influence of these in such a way as to reach the
post-shock saddle-path at precisely the time that the shock is implemented and the
governing equations therefore change.

This means that in the case of an unanticipated shock, announced and implemented at t
=0 say, the initial response must be for the jumping variables to jump instantaneously to
the new saddle-path while the non-jumping variables remain constant. Then, with the
original dynamic equations being replaced by the new ones at the same instant, all
dynamic variables commence their smooth adjustment along the saddle-path. In terms of
Figure 3.17 the adjustment path is from 'ssO to C to ssl'.

Suppose now that the same shock as before is anticipated. In this case the previous
argument means that the dynamic response immediately upon anticipation (or

llS In the Romer model with no depreciation, this would be the case for the p A = 0 phase surface for any
parameter shock other than one to y
17 While there can be no discontinuities associated with any of the differential equation variables at any
time after the announcement of a shock, it is possible for other derived dynamic variables (such as HA or
r in the Romer model) to exhibit discontinuities. This is shown in Section 3.4.2.

announcement) at time t=0, must be for the jumping variables to jump to a unique point
part-way towards what will be the new saddle-path, from ssO to A in Figure 3.17. To
understand why the jump must be part-way towards the saddle-path - and neither away
from it, to it, nor beyond it - realise that mere must be further adjustment governed by
the pre-shock equations in the intervening period between announcement and
implementation; recall that such adjustment must take the system to the post-shock
saddle-path; and consider the directions of motion of the pre-shock system in the
different regions of its phase-space. Also, to understand why the jump must be to a
unique point, realise that from there the adjustment to the post-shock saddle-path must
be made in precisely the time interval between announcement and implementation; and
that any lesser jump would entail more adjustment which would be at a slower rate
because the system would be closer to the pre-shock steady-state; while any greater jump
would entail less adjustment at what would be a faster rate. Thus, the initial jumps at the
time of announcement must be to the exact point in phase-space, part-way to the new
saddle-path, from which, evolving under the influence of the pre-shock dynamic
equations, the system reaches the saddle-path of the post-shock equations at the precise
moment of its birth; that is, just as the policy change is implemented!

In terms of Figure 3.17 the second phase of adjustment for the anticipated shock is along
the path AB. It is worth emphasising that such paths are not saddle-paths, and so they do
not lead directly towards an equilibrium. In fact, if followed for long enough they would
either diverge to infinite values or lead to other economically nonsensical zero or
negative values. However, having reached the new saddle-path at B precisely as the
policy change is implemented (ie. as the shock occurs), the final phase of adjustment is
then the usual smooth one from B to ssl along it. Overall, the transitional dynamics in
response to the anticipated shock describe the path from 'ssO to A to B and through C to
ssl'.

Now consider the same shock being imposed only temporarily. For a temporary shock
it is necessary to specify both whether its imposition is anticipated or not, and whether
its removal is anticipated or not. Here we consider the case where its imposition comes
as a surprise at time t=0, but its removal is correctly foreseen, at time t=R. In general
terms the dynamic behaviour here is somewhat similar to the case of a sustained
anticipated shock. Again the initial response is a jump to a precisely defined point part-
way to the post-shock saddle-path, point D in Figure 3.17.18 Next the system must
evolve according to the post-shock equations along a path which takes the system back
to its pre-shock saddle-path at exactly the time that this becomes relevant again with the
removal of the temporary shock. This is shown as the path 'DEF' in Figure 3.17. Mote
that as this path crosses the j = 0 locus the adjustment of the j(t) variables must change
sign. This accords with the 'direction of motion' indicators for 'R13' and 'RI2', Finally,
the system re-approaches its pre-shock steady-state along this saddle-path. The overall
dynamic adjustment to the temporary shock follows the path 'ssO to D, through E to F,
and back on to ssO'.

18 As for the case of the sustained anticipated shock, this can be shown to be necessary from a
consideration of the governing equation system, the directions of motion in different regions of its
phase-space, the amount of adjustment required, and the times at which such adjustment must be
completed.
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3.4 A ?Solowian-Romerf model

3.4.1 Development and specification

An analytical difficulty with the fall Romer model is its dimension. In its fundamental,
balanced growth form it comprises four coupled differential equations in four variables.
This can neither be visualised nor represented diagrammatically. While the system can be
transformed to a stationary one of three differential equations in three variables, any
calculation of its dynamic paths remains a difficult boundary value problem. An initial
value for one of the transformed variables is known, but only the asymptotic steady-state
values are known for the other two. This makes numerical integration of the system
difficult, particularly by the common approach of shooting (see Section 4.1 which deals
with these issues in much greater detail). Also, as seen in Section 3.3, while the system
can then be represented pictorialry with a three dimensional phase-space diagram,
analysis of its dynamics when the phase surfaces and saddle-path are altered is too
complicated to illustrate clearly.

By specifying savings to be a fixed proportion (s) of income, the consumer optimising
behaviour of the Romer system is replaced by a simple consumption of the form
C = (l-s)Y. This apparently retrograde step enables the development of a modified
model with a stationary dynamic system of only two variables. This is termed the
Solowian-Romer model19 and its dynamics can now be computed quite easily. The two-
point boundary value problem it poses can readily be solved by the shooting method
since an initial value for only one variable needs to be accurately calculated, as opposed
to the two required in the case of the fall Romer model (again, Section 4.1 should be
consulted here for more details). Moreover, having only two dynamic variables means
that the phase-space of the modified model can be constructed and examined in only two
dimensions, greatly simplifying the graphical analysis and facilitating an understanding of
the dynamics of the system. There is of course, the question of how accurately the
modified model reflects the dynamics of the fall model. This question is addressed in
Chapter 4 after the dynamics of the Romer model itself are computed.

Specification of the Solowian-Romer model is extremely close to that of the full Romer
model. Its supply side (which is what drives the 'exogeneity of growth') is exactly the
same as that of the fall model. On the demand side however, its savings-consumption
split is exogenous. In particular, the savings rate is taken as exogenously constant. Thus,
the Solowian-Romer model differs from its progenitor in only a single aspect. In fact, the
difference might be said to be more a matter of degree than a substantive qualitative
difference since it can be shown that the S-R model simply represents particular
paramaterisations of the Romer model. This is an important result since it significantly
reduces objections to the apparently regressive step of abandoning utility optimisation in
favour of exogenous consumption, particularly as there are parameter settings close to
the empirically based benchmark set which make the two models equivalent. The result is
proved in Appendix 3.7.

19 Simply because this was the (main) approach adopted by Soiow (1956) in his celebrated growth
article. Of course, Solow was well aware that this was a simplification (for example, see Samuelson and
Solow (1956) for a general model of optimal saving and accumulation.
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There are two options for the specification of constant savings in the S-R model. One is
to take savings, and thus consumption, as a fixed proportion of gross product, GP. The
other is to base the savings rate upon the final output of goods, Y. In the former case
consumption would be determined by: C(t) = (l-sB)GP(t) , where sB is the exogenously
constant and broadly defined propensity to save. And in the latter case it would be
written as: C(t) = (l-sN)Y(t) where SN is the exogenously constant and narrowly defined
propensity to save. An argument in support of the former approach is that gross product
is equivalent to the total income of consumers and it is easy to conceive of consumers
deciding upon a fixed proportion (1-SB) of this to spend on goods. On the other hand,
since "the amount of savings for capital formation is the value of forgone consumption
out of the total output of goods" (Section 2.2.3); and since the fundamental problem
faced by consumers is to decide "how much of total output to consume through the
purchase of goods, and how much to save by the accumulation of capital" (Section
2.2.8), it is also easy to conceive of this being solved in a static sense by the choice of a
fixed proportion (l-sN) of output. This latter approach is the one that has been adopted,
though from now the savings rate will be denoted simply as "s".20

Thus, the specification for the Solowian-Romer model is the same as that given in
Section 2.2 of Chapter 2 for the Romer model; except that equation (2.27) is replaced by
the consumption function:

C(t) = ( l -s)Y(t) (3.28)

Also, no transversality condition (or boundary value) of the form of equation (2.28)
exists in the modified model.

After condensing the model in precisely the same way as before for the Romer model,
and defining the same new variable *F(t) (Section 2.3), the dynamic system for the
Solowian-Romer model is obtained as just two coupled first-order differential equations:

[S(r ( t )
2

+6) - S - (3.29)

where:

(3.30)

(3.31)

Or
a(l-y)

1 - 8
(3.32)

20 This decision was, it must be said also influenced by the feet that the algebra of the model turns out
to be far more complicated under the choice of sB as the exogenously constant savings rate rather than
sN. For example, while simple expressions of the parameters can be derived for the steady-state values of
the variables under the choice of sN, corresponding steady-state values under the choice of sB involve
obtaining the positive roots of quadratic functions (whose coefficients are expressions of the parameters).
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The steady-state for this model can also be derived in the same manner as before
(Section 2.3). Namely, by using the transversality condition (2.37) to deduce that in the
steady-state the variables r, HY and pA; and the growth rate g = *F / ¥ are all constant,
and so setting equations (3.29) and (3.30) to zero and solving. The results are as follows:

HSR _
Yss -

H+-(l-s/y2)

(s/ay)

HSR _
Ass - l + (s/ay)

and
H-8(l-s/y2)

l + (s/ay)

8y(l-s/y2)
: + (s/ay)]

r
L

2TTSR a(l-Y 1-aXHr) J_
l-y

nsR
PASS ~~

l-yrf+5, /SR
SR

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Evaluating these steady-state formulae with the benchmark parameter values (Section
2.4), including setting the exogenous savings rate at the calculated benchmark level for
the full Romer model (s = s ^ » 0.1680) generates exactly the same steady-state levels
for all but one of the endogenous variables as in the Romer model itself. The exception is
for the asymptotic convergence coefficients, the (5s (Table 3.2, which may be compared
with the corresponding Table 2.2 from Chapter 2).

Table 3.2: Benchmark set parameter values and the resulting steady-state equilibrium values of
the endogenous variables, Solow-Romer model market solution.

Parameter values a=0.43; y=0.54; 6=0.04; s=0.1680; C=0.06; TI=2.0; H=1.0; L=2.0

Endogenous variables ¥ * O^ PASS HYSS H ^ r^ g sNss sBss

Steady-state values 6.48 0.27 9.45 74.41 25.59 5.61 1.54 16.80 22.10 2.84 4.22

d:\phd\chpt3\SotowR\SobwRomer.xls

3.4.2 Numerical integration of the Solowian-Romer system

In some ways the presentation of the Solowian-Romer model here is premature. One
reason why this abridged model is valuable is because computation of its dynamic
behaviour is far simpler than for the full Romer model. That is, it can be numerically
integrated much more readily. However, for this to be argued cogently the difficulties
with numerical integration of the full model need to be articulated. In turn, a general
description of the integration problem and its application to the Romer system is
required, together with details of particular solution techniques. All this seems better left
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until Chapter 4, which deals specifically with numerical integration of the full Romer
modeL In particular, the issues are covered in Section 4.1 and Appendix 4.1. While these
may need to be read before the remainder of this section, a brief outline of the issues are
nevertheless presented here.

What makes numerical integration of the SR system simpler than for the full model is the
reduction from a three variable system to a two variable one. The dynamic solution of
the model is a two point boundary value problem: an initial value is available for one
variable (*P), but only terminal values, via the transversality conditions and the resulting
steady-state levels, are available for the other two variables (O and PA). This means that
to solve the full model by the (straightforward and commonly used) shooting method,
initial values for <D and pA need to be obtained which will take the system to its required
steady-state. Given the extreme sensitivity of the system to initial conditions, such values
must be highly accurate and their joint determination is difficult. By reducing the system
to one of only two dynamic variables, only one such initial value (for pA) need be found.
Despite the continued sensitivity of the condensed system this is easily done.

Here it is achieved in a Microsoft Excel spreadsheet in the following way: The
continuous-time differential equations (3.29) to (3.32) are approximated by discrete-time
difference equations, written in a form appropriate to whatever integration technique is
being adopted. An initial value T(0) is given exogenously and a corresponding value for
pA(0) is simply 'guessed'. The manner in which the resulting integration path diverges
from the steady-state for the given parameter settings is then observed and the 'guess'
amended to improve the shot at this steady-state, iterating the procedure until it is
approached sufficiently closely. The underlying integration technique used for this was
the fourth order Runge-Kutta method (Appendix 4.1), with a time step-size of 0.5,
integrated over 400 steps until pA(200) = pA* (to at least 5 figures).21 In this way the
dynamic responses of the model to a variety of simulated shocks to its parameters are
computed. The system is taken to be initially at equilibrium at its benchmark steady-state,
which is then perturbed by some such exogenous shock(s). Thus, the immediate post-
shock initial value for the (non-jumping) variable ¥(t) is given by its pre-shock steady-
state level: p̂ost-shock̂ ) = 4V-shock *. In order to make the transient dynamics of the
model as good an approximation as possible to those of the Romer system itself, in
addition to any other parameter shocks the savings rate is also adjusted: by an amount
which takes it to the steady-state level which would be achieved in the full model under
the post-shock parameter settings. This ensures that both models approach the same
steady-state in response to the other exogenous shocks.

3.4.2.1 An unanticipated and sustained 10 per cent rise in parameter y

Since the change to the system is not foreseen, the shocks to both y and to the savings
rate s (the latter is a 19 per cent rise) are simply introduced from the outset, at time t=0.
Also, since the changes are considered to be sustained indefinitely the shocks apply in all
the difference equations, from t=0 to t=200.

21 In Appendix 4.2 this 'RK4' method is shown to be superior to two alternative numerical integration
techniques, the 'Euler' and the 'Gragg' methods, in integrating the saddle-path of the full Romer model.
Also, as an indication of the sensitivity of the system, to achieve the required accuracy in pA(200) it was
necessary to refine the 'guess' for the initial value pA(0) to an accuracy of 15 figures!
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figure 3.18: Dynamic effects on *F, <&, and PA of an unanticipated and sustained
10 per cent rise in parameter y from time zero, benchmark
parameter set.
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figure 3.20: Dynamic effects on r and HA of an unanticipated and sustained 10
per cent rise in parameter y from time zero, benchmark parameter
set
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Figure 3.19: Dynamic effects on the growth rates of an unanticipated and
sustained 10 per cent rise in parameter y from time zero, benchmark
parameter set
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Figure 3.21: Dynamic effects on SB, S\, and kep of an unanticipated and sustained
10 per cent rise in parameter y from time zero, benchmark
parameter set
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Figure 3.22: Dynamic effects on the factor shares of gross income from an
unanticipated and sustained 10 per cent rise in parameter y from
time zero, benchmark parameter set
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Figure 3.23: Dynamic effects on the convergence coefficients from an
unanticipated and sustained 10 per cent rise in parameter y from
time zero, benchmark parameter set
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3.4.2.2 An anticipated and sustained 15 per cent rise in parameter C,

Because the changes to the system are to be anticipated in this simulation, they must be
implemented at some 'future time'. Here time t=5 has been chosen. Thus, the shocks to
C, and to s (the latter being a 3.23 per cent decline) are not introduced into the difference
equations until the t=5 equation. Again, since the changes are intended to be indefinitely
sustained these shocks continue to apply in all the difference equations from t = 5
onwards. The initial value PA(0) is then determined in the usual shooting manner and,
since the post-shock parameter values are already written into the difference equations,
the effect is as if the simulation changes to occur at time t = 5 are already known or
anticipated at time t=0. Figure 3.24 to Figure 3.29 record the results of the simulation.

Figure 3.24: Dynamic effects on ¥ , <J>, and PA of an anticipated and sustained 15
: per cent rise in parameter C, from time t=5, benchmark parameter

set
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In Figure 3.29 the effects of the shock to £ may be seen to cause the convergence
coefficient of the variables T , O and y to be negative over the interval t=(0,5). This is
because these variables move away from their final steady-states until the shock is
actually implemented (see the phase-space analysis of Section 3.4.4.2). Conversely, since
the adjustment of PA is always towards its steady-state value its convergence coefficient
remains positive.
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figure 3.25: Dynamic effects on the growth rates of an anticipated and sustained
15 per cent rise in parameter C, from time t=5, benchmark
parameter set
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Figure 3.26: Dynamic effects on r and HA of an anticipated and sustained 15 per
cent rise in parameter C, from time t=5, benchmark parameter set
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Figure 3.27: Dynamic effects on SB, SN, and k<a> of an anticipated and sustained 15
per cent rise in parameter C, from time t=5, benchmark parameter
set
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Figure 3.28: Dynamic effects on the factor shares of gross income from an
anticipated and sustained 15 per cent rise ia parameter t, from time
t=5, benchmark parameter set
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Figure 3.29: Dynamic effects on the convergence coefficients from an anticipated
and sustained 15 per cent rise in parameter C, from time t=5,
benchmark parameter set
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Note: a The negative portions of the convergence coefficients reflect temporary movements away from the new
steady-states for the relevant variables.

Figure 330: Dynamic effects on *P, <E>, and pA of a temporary 20 per cent fall in
parameter a from time t=0 to t=5, benchmark parameter set
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3.4.2.3 A temporary (five year) fal! of 20 per cent in parameter a

A more precise description of what is being modelled in this simulation is 'an
unanticipated 20 per cent fall in a followed by its anticipated reversal five years later'.
Thus, the shocks to a and to s (-3.68 per cent for the latter) are introduced to the
difference equations from time t=0 and apply until their removal at time t=5. Since there
is no sustained change to any of the system's parameters or variables it will return
(asymptotically) to its initial steady-state. In calculating the dynamic response of the
model to these shocks it is therefore this initial steady-state which is the target in the
shooting determination of pA(0). The results are presented in Figure 3.30 to Figure 3.34
below.

The figure for changes in the convergence coefficients (Figure 3.35) requires some
explanation. Because the system begins at the steady-state, which it eventually re-
approaches, calculation of rates of convergence towards that steady-state causes
problems. For example, since the variable *F does not jump at t=0, its initial rate of
convergence would be calculated as infinite. Later, as \P slowly moves away from this
steady-state (see the phase-space analysis of this shock in Section 3.4.4.3) its
convergence coefficient would change suddenly to being highly negative. Because of
these difficulties the convergence coefficients have been calculated differently over the
two time segments of the shock. Over t=(0,5) they refer to the rate of convergence
towards the intermediate (shocked) steady-state; and from then on towards the initial
(and final) steady-state.

Figure 3.31: Dynamic effects on the growth rates of a temporary 20 per cent fall
in parameter a from time t=0 to t=5, benchmark parameter set
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Figure 332: Dynamic effects on r and HA of a temporary 20 per cent fall in
parameter a from time t=0 to t=5, benchmark parameter set.
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Figure 3.33: Dynamic effects on SB, SN, and kep of a temporary 20 per cent fall in
parameter a from time t=0 to t=5, benchmark parameter set.
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Figure 334: Dynamic effects on the factor shares of gross income from a
temporary 20 per cent fall in parameter a from time t=0 to t=5,
benchmark parameter set
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Figure 335: Dj'aamic effects on tfc<e convergence coefficients from a temporary 20
per cent fall in parameter a from time t=0 to t=5, benchmark
parameter set.
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Note: a While the temporary shock is operating convergence is to the 'shocked ss'. After it is removed convergence

reverts back to the original ss. The negative portion of PpA reflects its temporary movement away from the

'shocked ss*.
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3.4.3 Phase-space of the Solowian-Romer system

Since the Solowian-Romer model comprises only two dynamic variables (neither of
which can be negative), its phase-space is the positive quadrant of the Q¥, pA)-plane.
Within this space the loci of points for which 4>(t) = 0 and pA (t) = 0 are obtained in the
same way as was done for the full Romer model (Section 3.3.1). Specifically, equations
(3.31) and (3.32) are first used to eliminate HY and r from the differential equations
(3.29) and (3.30), for W and pA respectively, to generate:

¥

and

PA a
L *

(3.38)

(3.39)

Setting these expressions to zero defines the loci for which 4>(t) = 0 and pA (t) = 0
respectively, but it remains difficult to tell on which sides of these phase lines the
varif bles increase and on which sides they decrease. As in the case of the pA (t) = 0
locus in the full Romer model (which is exactly the same in the S-R model) this difficulty
is overcome by evaluating the 'cross partial derivatives'. In particular, it is easy to show
that:

both unambiguously (see Appendix 3.6 for the pA case).22

Hence, ¥ must decrease (from *F >0, through ¥ = 0, to 4> <0) as pA crosses the *F = 0
phase line; and similarly, pA must also decrease as ¥ crosses the pA= 0 phase line. That
is:

H0 as

(3-40)

and

TO as

a PA - 5 p /

With this information the directions of change in both pA and ¥ are known for all points
in the phase-space and a phase diagram of the dynamic system may be plotted. This has

2 2 The 'cross partial derivatives' were used here because, due to the non-monotonicity of the functions,
the 'own partial derivatives' &¥/dpA and 5pA I dV are not of constant sign. Note that the 4>=0 curve
has a clear minimum in Figure 3.36 to Figure 3.38 and Figure 3.40.
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been done for the benchmark data set, including having the savings rate set at the
benchmark steady-state level for sN in the full (market) Romer model. That is, with the
savings rate set exogenously at s= s j^ »16.8%.

The results are presented in Figure 3.36, where the directions of change in pA and *¥ in
the (four) different regions of the phase-space are indicated by "corner arrows". From
these it is possible to draw streamlines of the motion from any point in the phase-space.23

Such streamlines indicate that the equilibrium (or steady-state) is one of saddle-path
stability. The steady-state can only be reached from the regions marked Rl and R3, and
then only from those points which He on the saddle-path.24 Here the saddle-path has been
obtained in the same way as in the phase-space analysis of the full Romer model (Section
3.3). Namely, by linearising the SR model, calculating the eigenvectors from its
coefficients matrix (recall that these indicate the directions of motion of the saddle-path
at the steady-state), and then employing the eigenvector-backward integration technique
(explained in detail in Section 4.2.2) to compute the saddle-path numerically. As
explained in Section 3.2, the signs of the eigenvalues of the linearised system confirm the
saddle-path stability of the system. The linearisation and calculation of the eigenvalues
and eigenvectors are recorded in Appendix 3.8.

Figure 336: Phase-space and saddle-path of the Solowian-Romer model,
benchmark parameter set (including savings rate of s=sNss=0.1680).
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23The streamlines must cross the 4* = 0 locus with infinite slope and the p A = 0 locus with zero slope.
24 Even very small discrepancies from such points will cause the system to diverge.
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3.4.4 Phase-space analysis of the Solowian-Romer dynamics

Having determined how to compute the phase lines and saddle-path it is now possible to
analyse the dynamics of the model within its phase-space. The advantage of such
analyses is that the geometric pictures produced allow clear and concise visualisations of
the key elements of the dynamic responses of the model to exogenous shocks. In this
way they promote understanding of the model dynamics. In order to allow comparison
between the time path analysis of numerical integration and this phase-space analysis, the
shocks considered here are the same as those of Section 3.4.2. Finally, it is worth
emphasising here that these phase-space analyses are entirely quantitative, all the phase
lines, steady-states, saddle-paths and adjustment paths having been computed
numerically and then plotted graphically.25

3.4.4.1 An unanticipated and sustained 10 per cent rise in parameter y

The rise in parameter y alters the magnitudes of the coefficients in the differential
equations shifting the ¥ ( t ) = 0 locus upwards and the pA (t) = 0 locus to the right,
thereby moving the steady-state from ssO to ssl and of course, generating a new saddle-
path (Figure 3.37). As required by the dynamic optimisation, the system must converge
towards this new steady-state. Since the dynamics of the system from time t=0 onwards
are governed by the post-shock differential equations, and since the only way for these to
converge to the new steady-state is along the new saddle-path, the system must jump
immediately to it. But the variable lP=K/A is a stock variable and is accordingly
constrained not to be discontinuous. In particular, its immediate post-shock level must
equal its immediate pre-shock level. This is formalised in the boundary condition "¥(0)
given" of equation (2.46). Conversely, prices readily jump discontinuously. For these
reasons the jump to the post-shock saddle-path is made entirely by the remaining
dynamic variable PA.

Thus, in terms of Figure 3.37 the dynamic response of the Solowian-Romer model to the
rise in y is first for pA to fell discontinuously from pAsso to PAJ while *¥ remains constant at
the level ^sso; and then, having instantaneously reached the saddle-path, for both
variables to increase smoothly along it towards the new steady-state of the system. The
entire adjustment path is along (ssO, J, ssl) as indicated in Figure 3.37. Note that
although pA ends up at a higher level than it begins at (PASSI>PASSO), its initial response is a
sudden fall (PAJ<PASSO). These sorts of issue are addressed in Chapter 4 when the
transitional dynamics of the full model are computed.

Figure 337: Phase-space analysis of the dynamic response of the Solowian-Romer
model to an unanticipated 10% rise in parameter y, benchmark
parameter set
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2 5 By the same procedure as used in the Section 3.3 phase-space analysis of the full Romer model (see
footnote 11).
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3.4.4.2 An ant? ipated and sustained 15 per cent rise in parameter C,

In terms of the shifts induced on the phase lines, a rise in C, produces opposite effects to a
rise in y: Here the ^ ( t ) = 0 phase line is shifted down and the pA (t) = 0 line is shifted
to the left. As a result, a new equilibrium is established at 'ssl ' where both ¥»! and PASSI

are less than their initial levels at 'ssO', and a new saddle-path is generated leading to it
(Figure 3.38).

With the shock to the system being anticipated, the initial dynamic response is for the
jumping variable, PA, to jump instantaneously to a specific point part way towards the
new saddle-path from which, evolving under the influence of the pre-shock differential
equations, the system reaches the saddle-path at precisely the time at which the
anticipated shock is to be implemented. Then, under the post-shock equations the system
adjusts smoothly along the saddle-path towards the new steady-state (recall the earlier
general explanation of these sorts of dynamics in Section 3.3.3). In terms of Figure 3.38
and Figure 3.39 (the latter showing the detail of the early adjustment path) the dynamic
response of the system for the shock to C, is:

• first, for pA to fall precipitously from ssO to J where PAJ<PASSO, but where ¥ remains
constant at Tsso;

• second, for the system to adjust smoothly under the pre-shock equations with ¥
increasing and pA decreasing until the new saddle-path is reached at point A; and

• finally, for both variables to decline as the system adjusts along the saddle-path
towards the new, post-shock steady-state.
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Overall, the transitional dynamics of the system trace out the adjustment path
(ssO,J,A,ssl) as indicated in Figure 3.38 and Figure 3.39.

Figure 3.38: Phase-space analysis of the dynamic response of the Solowian-Romer
model to an anticipated 15% rise in parameter C,, benchmark
parameter set

PAI=0/ Saddle
path

dAphd\chpt3\solowi\SRzeta5.bt m, £ .mws

Figure 3.39: Phase-space analysis of the dynamic response of the Solowian-Romer
model to an anticipated 15% rise in parameter C,, benchmark
parameter set, detail of the adjustment prior to implementation.

3.4.4.3 A temporary (five year) fall of 20 per cent in parameter a

It is assumed here that the implementation of the shock is unanticipated: It is not
announced in advance and for no other reason is it expected. However, at the time it is
implemented its duration is known. Perhaps this is announced! In any event, the 'shock'
of its removal is assumed to be (correctly) anticipated.

The fall in a shifts the *F(t) = 0 phase line downwards and moves the pA (t) = 0 line
marginally to the right. The steady-state of this post-shock system, labelled as 'ssT' in
Figure 3.40, lies below and to the left of the initial steady-state. Its saddle-path also lies
below the initial steady-state. However, since the shock to a is only temporary and so
can have no lasting effect, the system must eventually adjust back towards its initial
steady-state along the corresponding initial saddle-path; not along the saddle-path for the
temporary steady-state. Moreover, the system must reach this saddle-path at exactly the
time at which it becomes relevant; that is, precisely when the temporary shock is
reversed, for from that time the original (unshocked) differentia] equations once again
govern its dynamics. Of course before that time the dynamics are governed by the
temporary (shocked) equations.

Figure 3.40: Phase-space analysis of the dynamic response of the Solowian-Romer
model to a temporary (5 years) 20% fall in parameter a, benchmark
parameter set
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With the removal of the temporary shock to a being anticipated, the dynamic response
here is similar in general terms to that of the anticipated shock to C, discussed in the
previous section (also see the explanation of these sorts of dynamics in Section 3.3.3). In
terms of Figure 3.40 and Figure 3.41, the latter concentrating on a smaller part of the
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phase-space in order to show the adjustment path in greater detail, the full dynamic
response of the system to the temporary shock to a is as follows:

• the initial response is for the jumping variable, PA, to jump instantaneously from ssO
to J, a specific point part of the way towards the temporary saddle-path where
PAJ<PASSO, but where *F remains constant at Wsso',

• from J the system then adjusts smoothly under the temporary-shock equations
- firstly with both *F and pA decreasing but later, as the system crosses the pA (t) = 0

phase line and thus changes 'regions' of the temporary phase-space, with *¥
continuing to decrease while PA now begins to increase - until the original saddle-
path is reached at point A;

• finally, from A both variables rise as the system adjusts along this saddle-path back
towards its original pre-shock steady-state.

Figure 3.41: Phase-space analysis of the dynamic response of the Solowian-Romer
model to a temporary (5 years) 20% fall in parameter a, benchmark
parameter set, detail of the adjustment path.
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Overall, the transitional dynamics of the system trace out the adjustment path
(ssO,J,A,ssO) as indicated in Figure 3.40 and Figure 3.41.

132 Chapter 3

Appendix 3.1

Linearisation of the Romer model

For any vector function^z) = / z , , z2, ,Zn), the Taylor series expansion about a point

z is:2

where
dz; =Z i - z * ; /,. =df/dzi ; and fm

or, in complete vector notation:

/ ( z ) = / ( « ) + (dz)'/ r(z4) + ^(dz) ' / a , (z*)

Then, ignoring second order and higher terms (that is, assuming the
small) generates the linear approximation:

/(z)«/(z*) + l]/Zi(z*)dzi=/(z*) + d/(z*)

are sufficiently

(A3.1.1)

This result can then be applied to the (stationary) Romer model system
w(t) = OF(t), <D(t), pA(t))T, described by equations (2.41) to (2.45) about its steady-state
wM = CPss, 0>ss, PASS)1", as determined by equations (2.57) to (2.62). It will prove useful
first to differentiate the expressions for HY(t) and [r(t)+8]. Thus, from (2.44):

dHY

H

1
[Y

dp,

Yss

and from this result and (2.45):

dr dHY dpA
+

l-a(l-Y)

1

l-a(l-y)

' L i l-a(l-y) ]
PAss

a(l-Y) dpA

l -a(l-y)

(A3.1.2)

(A3.1.3)

Then linearising ¥ from equation (2.41):

. r + 5

26 For example, see Leonard and Van Long (1992).
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and since ^ B =0=>[( r s s +8) /y 2 -<D s s -5 -CH+gH Y s s ] = 0, and H is exogenousry
constant:

= [dr/y2 - (A3.1.4)

Substituting (A3.1.2) and (A3.1.3) into (A3.1.4), using (2.45) to write the steady-state
relation: (r^ + 5) = Ky 2 / a ( l - y)]HyjPjJP?, and writing 1 / [1 - a( l - y)] = A , yields
(after some manipulation):

" • PASS

and substituting d ¥ =

linearised result for *F:

- ^ , dd> = O - O , , and dpA = pA - PASS generates the final

_ A?HyJ1 + ̂ k ] p A (t)
PASS (A3.1.5)

*.* . .+(A?/a

Next, linearising O from equation (2.42) about w :

Noting that Ou = +8] = 0, and substituting (A3.1.3) yields:

then, w i t h . d ^ F ^ ^ - ^ , dO = O - O s s , a n d d p A = p A - p A s s , and using (2.43) to
write the component (1 - y)(Tss + 8) / PASS of the last term above as y r . / ¥ „ , the final
linearised form of <b is:

1 1 r O 1 1 (A3.1.6)

'Ass

Finally, linearising pA from (2.43) about w B :

dpA -.dpA

{Aa(l -
Y PASS

8)

which, with dT = ¥ - ¥ , „ . , dO = O - O ^ , a n d dpA = pA - p ^ as before; and this

time using (2.43) to write (1 - y )(rss + 8) / y = r ^ p ^ / ̂  becomes:

PA - ( r .

{Aa( l -y) [ r s s - ( r^

a)(l - y )8pAss

rss}pA(t)

{Aa(l - y)S

and the final linearised form of pA is:

PA(t) = - [ r s s+A8( l - a ) ( l -

+ A8(l-y)P A s s

PASS -A8a( l -y ) ]p A ( t )
(A3.1.7)

Writing (A3.1.5), (A3.1.6) and (A3.1.7) in matrix notation produces the final linearised
form of the Romer model about its steady-state equilibrium:

w( t ) = QRw(t) + vR (A3.1.8)

where w(t) is the column vector CF(t), <&(t), PAO))T; w( t ) is the corresponding vector
of time derivatives; and OR and vR are the coefficients matrix and vector, the
components of which reflect the point about which the linearisation was performed, in
this case the steady-state:

1

4HYss 1 - a
l-a(l-y))L/ a

in(i-aj(i-y) (r̂
aJ l-a(l-y)

[ l s s ' l-a(l-y)

PASS-.

vu J
SS

+ 8)O

•••£;

^ s s

\TJ
SS

o
SS

0

1
[ y 2

V1Yss\ i ss'rAss

l-a(l-y)
1 cty r
c-'l-aa-y) v

\J\X\\. j J

lss l-a(l-y)

^ s s

SS

J

(A3.1.9)
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+ P A

5(1 -Y)
l-a(l-y) PASS

(A3.1.10)

and where, as usual (see equations (2.53) to (2.59) of Chapter 2), for the market solution
to the model:

1 + a a / y

ffl-ap/y
1 + acr/y '

55 J

and
1-y

*ss

Appendix 3.2

Solution of a first-order system
of linear differential equations

A3.2.1 General solution

A first-order linear system of dynamic equations may be written as:

= Q(t)w(t) + (A3.2.1)

where w(t) = (w1,...swn)T is a column vector of the system's dynamic variables; w(t)
is the corresponding vector of time derivatives; and Q(t) and v(t) are respectively, a
matrix and a vector of coefficients. Provided such a system has an equilibrium or steady-
state, Q and v will be (approximately) constant in its neighbourhood. (In the case of a
non-linear system which has been linearised - that is, approximated by a first-order
Taylor series expansion - to the form (A3.2.1), Q and v will have already been taken to
be constant).

Now consider the solution to equation (A3.2.1).27 From the theory of differential
equations the solution comprises two parts: the complementary function (which is the
solution to the reduced form or homogeneous version of the complete function), and the
particular integral (which is simply any specific solution of the complete equation).28

The homogeneous form of equation (A3.2.1)) is:

w(t) = Qw(t) (A3.2.2)

Following Dixon et al (1992), consider the most general case where all the eigenvalues
or characteristic roots (A,;) of Cl are distinct and non-zero. Then any vector w(t) may be
written as a linear combination of the eigenvectors (yO of Q:

w(t) = Tc(t) (A3.2.3)

where T is a matrix whose columns are the eigenvectors of Q, and c(t) is a vector of
coefficients. Differentiating (A3.2.3) and substituting back into (A3.2.2) produces:

(A3.2.4)

Now, the eigenvectors and eigenvalues of Q are defined by:

= Xjy. fori= 1, ,n (the dimension of Q)

136
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27The linearisation, of a non-linear system is an approximation which is only valid in some region
nearby the point of linearisation, usually a steady-state (Appendix 3.1). In this case the solution too is
only valid in the neighbourhood of the steady-state.
28For example, see Chiang (1974).
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Thus, in matrix notation: QT = FA, where A is a diagonal matrix of the eigenvalues.
Substituting this into (A3.2.4) and pre-multiplying by I " 1 generates c(t) = Ac(t)
which, with A diagonal, is simply a set of independent differential equations
6j (t) = kjCi (t) with solutions: Cj(t) = 5-e*1*1, where the £ are constants of integration.
In matrix notation this is written as c(t) = eA% , where eAt is a diagonal matrix of terms
Aite . Then, substituting back into (A3.2.3) produces the complementary function:

(A3.2.5)

Next, the steady-state may be used as a particular integral (a specific solution) to the
complete equation (A3.2.1). That is, the particular integral is taken as: w(t) = wM, for
wM a vector constant representing the steady-state. For this solution w(t) = 0, and
substituting produces the result for the steady-state:

(A3.2.6)= -Q-^

Combining (A3.2.5) and (A3.2.6)), generates the following complete solution to the
linear system (A3.2.1):

w( t ) = reAt£ - ST'v (A3.2.7)

Finally, the vector of arbitrary integration constants (£) may be made definite by the
specification of initial conditions. If these are w(0) = w0, the complete solution
becomes:

w(t) = TeAtr 1 Aw0 + wM where, Aw0 = (w0 - wM) (A3.2.8)

A3.2.2 Necessary conditions for equilibrium

Equation (A3.2.8) may be expanded from its compact matrix notation as follows: With
YKYjt) as the ith (column) eigenvector, the components of T are given by r=(yg) for
i, j = l,...,n. If the components of F 1 are similarly denoted as T"1 = (y J), i, j = l,...,n,
then the complete solution for the kth dynamic variable is obtained as:

for
Aw o j=(wO j-w s s j) and

(A3.2.9)

Clearly, if the first term on the right hand side of (A3.2.9) vanishes over time, then the
system will approach its steady-state, wM = (w lss, , W n s s ) . From the presence of the
exponential power terms it is apparent that if the real part of every eigenvalue (X{) is
negative, the system will converge to its steady-state equilibrium from any initial
position. In this case the system is globally stable.29 However, if any of the roots are
positive (or more correctly, have a positive real component) the system will diverge over

29In the case of a linear approximation to a non-linear system, the region of convergence is only 'in the
neighbourhood of the steady-state', and the equilibrium is only locally stable.
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time unless the coefficient on the corresponding exponential term is identically equal to
zero. Thus, conditions for a linear dynamic system to attain a steady-state equilibrium are
that for all 'non-negative' roots, fa

= 0 forj = (A3.2.10)

Since the eigenvectors y, and the steady-state values w s are basic properties of the
model, such conditions amount to constraints on the set of valid initial values.

If all the roots are 'positive' it follows from equation (A3.2.9) that the steady-state could
only be attained if the system begins there! From any other initial position it is divergent.
Thus, the equilibrium of a linear dynamic system for which all the characteristic roots or
eigenvalues have positive real parts is globally unstable.

In systems for which there is a mixture of both positive and negative real components to
the characteristic roots, convergence is possible only from some particular initial values.
From all other initial values such a system will diverge. This is the property of saddle-
path stability and it arises because of the constraints (A3.2.10). In particular, if m of the
n roots have negative real components, convergence to the steady-state equilibrium
requires (n-m) constraints. Thus, there are only m degrees of freedom in the choice of
initial values: An arbitrary choice of initial values for any m of the dynamic variables fixes
those necessary for the remaining (n-m) variables if the system is to reach its steady-
state.

To this point the Appendix has largely followed Dixon et al (1992), who go onto argue
that 'a unique stable path will exist if all the eigenvalues are distinct, non-zero and of
mixed sign'; and that 'because the stable path is unique, features of the steady-state can
be imposed on the solution as boundary conditions'. Here a somewhat different
argument is advanced: one emphasising the underlying dynamic optimisation problems
inherent in these types of models, and their associated transversality conditions. Also, a
general method of determining the necessary boundary conditions and thus obtaining a
complete solution for these linear models is developed.

There is nothing in the dynamic equations themselves that force systems towards
equilibrium. However, for systems which arise from dynamic optimisation problems the
first-order necessary conditions for an optimum, in addition to generating the dynamic
equations, also produce certain constraints on the long-run dynamic behaviour of the
system which ensure that it approaches its steady-state equilibrium asymptotically. These
are the so-called transversality conditions?0 Thus, the initial constraints (A3.2.10),
imposed by insisting that a linear (or a linearised) system with some positive eigenvalues
must approach a steady-state, are manifestations of these transversality conditions. In
particular, if there are (n-m) transversality conditions associated with some dynamic
optimisation problem, then there will be (n-m) positive eigenvalues and so (n-m) initial
value constraints on the linearised system.

30They describe the manner in which the dynamic paths must cross or traverse, the boundaries of the
dynamic problems (see Chiang, 1992; and Appendix 2.3 here).
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Suppose now, that there are 0<m<ii 'negative' eigenvalues.31 Without loss of generality
these may be taken to be the first m: That is, assume ^<0 for i=l,...,m: and h >0 for
i=m+l,...,n. Then, the necessary conditions for equilibrium mean that there are (n-m)
constraints of the form of equation (A3.2.10) linking the n initial values WOJ, j=l,...,n. By
specifying m of these, woj for j=l,...,m say, the constraint equations may be solved for the
remaining (n-m) initial values wOj, j=m+l,...,n. From equation (A3.2.10):

j=m+l j=]

or, in matrix notation:

(r"1)H5w0_

where:

(A3.2.11)

1 l )m,niW0Ill

( r l)m,m are matrices formed from F"1 by respectively:

deleting the first m rows and the first m columns; deleting the first m rows and taking
the first n (ie. all) of the columns; and deleting the first m rows and taking the first m
columns (only); and

wom a r e vectors formed from w0 by respectively deleting the first mw os
elements; and then taking (only) the first m elements.

The solution to (A3.2.11) is:

which may be simplified by partitioning the (F ' 1 ) - , , and wM matrices as follows:

,w_.

Thus:

Om (A3.2.12)

Equation (A3.2.12) defines the saddle-path (or strictly, the m-dimensional saddle
surface) of the linear model given by equation (A3.2.1). It specifies, for all initial values
of the dynamic variables w, for j=l,...,m, the corresponding initial values for all other
dynamic variables which are necessary for the system to converge to its steady-state
equilibrium. Convergence is then along this path.

An alternative calculation of the saddle-path may be obtained from the linear model
solution (A3.2.9) and the necessary conditions (A3.2.10). As before, the 'first m' of the
n eigenvalues are taken to be negative, and the equations are ordered so that it is abo the
'first m' of the n variables for which initial values are known. Then, invoking (A3.2.10)
means that (A3.2.9) becomes:

31 When m=0 there are n initial value constraints meaning that system is globally unstable with the
steady-state equilibrium only attainable if the system begins there initially. On the other hand, when
m=n there are no initial value constraints and the system is globally stable.
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fork = l,...,n

or in matrix notation:

w(t) = r ^ e

(A3.2.13)

-1 )
m(n

where, following the earlier notation, F̂ m is a matrix composed of the first n rows and
the first m columns of F; eAminl denotes the first m rows and columns of eAt; and

!! represents the first m rows and first n columns of F"1 .

Next, the left hand side of (A3.2.13) is converted to initial values by setting t=0. This
produces the somewhat curious expression:

Awo=r^(T-1)m ( I 1Awo (A3.2.14)

However, by partitioning the Awo and F^n. matrices this result can be made to yield the
saddle-path of the linearised model32:

m,m

which generates the two sets of equations:

(r-1)III,nAwAwOm=Fm(in and Awoa =

then the first set is used to solve fcr the (nxl) vector (F'1 )„,„ Aw0 in terms of the (mxl)

vector of known initial divergences from equilibrium; which is then substituted into the
second equation set to solve for the urhiown initial values. As before, this defines the
saddle-path. Thus:

)"1Awo (A3.2.15)
/ " " O n . v '

" 0m "ssm ~ x (F m,m

A3.2.3 The complete solution

Finally, the previous results allow the complete solution to a first-order linear dynamic
system of the form (A3.2.1), which is also constrained to approach asymptotically its
steady-state equilibrium. Specifically, the solution is obtained in terms of the system's
coefficients matrix and vector, Q and v, and the eigenvalues and eigenvectors of Q.
First, from (A3.2.13) the Aw0 matrix is partitioned:

as
Aw0 such that

the only non-zero
eigenvalue of unity!
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then Awos is substituted from either (A3.2.12) or (A3.2.15); and w» is substituted out
using (A3.2.6) to give the alternative final solutions:

or (A3.2.16)

A3.2.4 The oscillatory effect of complex-valued roots

For any complex eigenvalue, A. = x + iy, equation (A3.2.8) generates terms in the
dynamic solution of the form:

which, through the use of Euler's relations, can be expressed in trigonometric terms as:

S Y kie^ (cosyt + i sin y t ) i ; y ?.Aw0 j
1 j

Oscillatory behaviour of the dynamic solution for complex valued roots follows from the
nature of these functions, provided the coefficient term is non-zero. That is, provided the
real part x of the complex root A/is negative, so the constraint (A3.2.10) does not apply.

Appendix 3.3

Eigenvalues and eigenvectors
of a linear dynamic system

As shown in Appendix 3.2, the solution and concomitant dynamic behaviour of a linear
system such as (A3.2.1) depends upon the eigenvalues (or characteristic roots) and the
eigenvectors of the system's coefficients matrix. Accordingly, to quantity the system
dynamics and to determine the dynamic stability of the Romer model steady-state, these
eigenvalues and eigenvectors need to be calculated for the coefficients matrix OR
(equation (3.1) of the texO

The eigenvectors and eigenvalues of a (square) matrix Q are defined by y and X
respectively, where:

= A.y or, ( Q - A J ) y = 0 (A3.3.1)

and for this to have a non-trivial solution y, the matrix (Q-AI) must be singular. That is:

|Q-XI| = O (A3.3.2)

This is the characteristic equation of SI. It is an n-degree polynomial in X to which there
are n roots Xu A.2, ,Xn (not necessarily all distinct), called the characteristic roots or
eigenvalues of Q.

A3.3.1 Eigenvalues of a 3x3 matrix £1

Writing Q = ((Oij) for i,j = 1,2,3 and evaluating (A3.3.2) algebraically, the

characteristic equation is:

X3 - ( ( » n +a>22 + (O33)X
2 +[(con(D22 +G>n<o33 +G>22G>33)-(G>12G>21 +©23©32 +co 13co31)]A.

or
(A3.3.3)

Using the results of Appendix 3.1 and a variety of numerical values for the parameters,
this equation has been evaluated for the coefficient matrix QR, of the linearised model,
and the resulting cubics solved to generate the eigenvalues.33 The results for the
benchmark parameter set were: A,i=-0.0493, A.2=0.1899, and A.3=0.1021; and those for
the 'ten per cent rise in y simulation' (see Section 3.2.2 of the text) were: A.i=-0.0409,
A.2=0.1686,andA.3=0.1021.

3 3 The method adopted to solve the cubic equations (A3.3.3), in a Microsoft Excel spreadsheet, was that
described by Press et al (1992). For an alternative method see Abromowitz and Stegun (1965).
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An analysis of the variation of the eigenvalues in response to changes in the parameter
values was also conducted. The results of this analysis are presented in Figure A3.3.1 to
Figure A3.3.15, where the real parts of the eigenvalues have been plotted against each
individual parameter in turn, for specified values (often the benchmark levels) of the
other parameters. The notation "el, e2, e3" in the legends of these graphs denote the real
parts of the corresponding "Xi, X2, A,3" with which the eigenvalues were denoted in the
text.

When the parameters were restricted to values which reflect economic realities, that is
they were not too far from their benchmark settings, the analysis strongly suggested that
the dynamic path and the dynamic stability of the model's equilibrium were well behaved
in the sense that a single real negative eigenvalue was always returned and so the system
approached its steady-state monotonically and with saddle-path stability (Figure A3.3.1
to Figure A3.3.7).34

Figure A3.3.1: Variation in the eigenvalues of the linearised Romer model for
changes in parameter a; all other parameters at benchmark.
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34 That the implications of the analysis are only "strongly suggested", rather than (say) "confirmed",
'Verified" or "proved" is a reflection of two points; firstly, that it is not possible to check all numerical
combinations of parameter values, and secondly, that in these types of dynamic systems changes in the
limiting dynamic behaviour can be precipitous, fleeting and chaotic. This second point is illustrated in
Figure A3.3.11 to Figure A3.3.15.Also, Hahn (1990) notes that even in the familiar econmic models
with infinite horizon optimisation, a high enough discount rate can result in optimum paths that are
cyclical, or indeeed chaotic.
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Figure A33.2: Variation in the eigenvalues of the linearised Romer model for
changes in parameter y; all other parameters at benchmark.
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Figure A3.3.3: Variation in, the eigenvalues of the linearised Romer model for
changes in parameter Q, with all other parameters at benchmark.
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Figure A33.4: Variation in the eigenvalues of the linearised Romer model for
changes in parameter p; with all other parameters at benchmark.
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Figure A33.6: Variation in the eigenvalues of the linearised Romer model for
changes in parameter S; with all other parameters at benchmark.
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Figure A3.3.5: Variation in the eigenvalues of the linearised Romer model for
changes in parameter «r; with all other parameters at benchmark.
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Figure A3.3.7: Variation in the eigenvalues of the linearised Romer model for
changes in parameter H; with all other parameters at benchmark.
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Comparison of Figure A3.3.3 and Figure A3.3.7 confirms that the effect of variations to
the exogenous variable H (the aggregate level of human capital) on the eigenvalues of
the system are multiplicativery identical with those of £, the productivity of human capital
in research (see footnotes 32 and 33 of Chapter 2). This is because in the steady-state of
the system (about which the linearised model is generated) HA is determined as some
fraction of H, and C, appears only once in the fundamental equations which generate the
dynamic system, and there it multiplies HA (equation (2.1) of the text).

Neither the parameter r| nor the exogenous variable L have any effect on the eigenvalues
of the system. However, as discussed in Section 2.4, this is a feature of the particular
form of the production function (Cobb-Douglas) specified in the model, rather than some
unambiguous outcome of the underlying economics.

In the preceding cases the two positive eigenvalues were, like the negative root, also
real. A pair of complex conjugates (with positive real parts) could also be returned for
certain economically allowable if somewhat implausible or unrealistic parameter settings
(Figure A3.3.8 to Figure A3.3.10).

Figure A3.3.8: Variation in tbe eigenvalues of the linearised Romer model for
changes in parameter a; with 5=0; and all other parameters at
benchmark.
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Figure A33.9: Variation in the eigenvalues of the linearised Romer model for
changes in parameter y; with <x=0.22; and all other parameters at
benchmark.
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Figure A3.3.10: Variation in the eigenvalues of the linearised Romer model for
changes in parameter C,; with a=0.5; 5=0.01; and all other
parameters at benchmark.
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Mathematically, it was also possible for the system to be made to return sets of
eigenvalues which, if valid, would indicate very different dynamics and stability
properties to those implied by the optimisation. For example, it was possible to generate:
• three positive real roots, which would indicate a totally unstable equilibrium (Figure

A3.3.11);or
• two real negative roots, so the system would follow a saddle-surface thereby

exhibiting greater stability than for the saddle-path (Figure A3.3.12 to Figure
A3.3.15);or

• a pair of complex conjugate roots with negative real parts, which would cause the
steady-state to be approached along a bizarre oscillatory saddle-surface - see
Appendix 3.2 (also Figure A3.3.12 to Figure A3.3.15)

However, all of these 'outcomes' are economically meaningless: In Figure A3.3.11 and
Figure A3.3.12 the 'odd behaviour' only arises for invalid parameter values; while in
other cases (Figure A3.3.13 to Figure A3.3.15) the occurrence of two negative roots,
whether real or complex, was always associated with negative steady-state consumption
(as well as other, merely implausible outcomes)! Nevertheless, these 'results' have been
included here to illustrate the sometimes unpredictable nature and extreme sensitivity of
these types of dynamic systems. It might be noted in this regard that non-linear dynamic
systems are likely to exhibit such traits much more strongly, with chaotic behaviour also
a possibility. Necessary conditions for chaotic behaviour of a dynamic system are that
there are at least three independent dynamic variables; and that the 'equations of motion'
contain at least one non-linear term coupling some of the variables (Baker and Gollub,
1990).

Figure A33 . l l : Variation in the eigenvalues of the linearised Romer model for
changes in parameter y as it exceeds unity; with all other parameters
at benchmark.
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Figure A3.3.I2: Variation in the eigenvalues of the linearised Romer model for
changes in parameter a as it exceeds unity; with all other
parameters at benchmark.
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Figure A3.3.13: Variation in the eigenvalues of the linearised Romer model in
response to changes in parameter y; with a=0.22; C=0.2; p=0.005;
a=0.3; 5=0.01; and all other parameters at benchmark.
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Figure A3.3.14: Variation in the eigenvalues of the linearised Romer model for
changes in parameter p; with a=0.2; y=0.7; £=0.2; 0=03; 5=0.01;
and all other parameters at benchmark.
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Figure A33.15: Variation in the eigenvalues of the linearised Romer model for
changes in parameter <?; with y=0.8; £=0.07; p=O.003; 5=0; and all
other parameters at benchmark.
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A3.3.2 Eigenvectors of a 3x3 matrix Q

Since there are three eigenvalues and three eigenvectors, equation (A3.3.1) may be
written:

( Q - M ) Y i = 0 for Y i=(y l i ,Y2 i ,y3 i)
T , 1 = 1,2,3

From the singularity of the matrix (Q-A,jX) and the consequent linear dependence of its

rows and columns, there is only distinct information from two rows or columns. Taking
(arbitrarily) the first two rows, denoting the elements of (Q-A4I) as (ajj), and imposing

the usual normalisation condition to obtain specific eigenvectors generates the three
equations:

which, as for the eigenvalues, can be solved for particular data-sets of parameter values
to obtain numerical results for the eigenvectors yj =(Y11,y2i,Y3i)T; and thus for the
related coefficients yjj (see Appendix 3.2) which appear in the initial value constraints

specified by equation (3.4) in the text. As for the calculation of the eigenvalues, this was
performed in a Microsoft Excel spreadsheet (see footnote 33).
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Appendix 3.4

Anticipated shocks:
Analytic determination with the linearised model

A3.4.1 Algebraic derivation

The behaviour of dynamic systems such as that of the Romer model in response to
shocks which are either 'unanticipated' or 'anticipated' is described in detail in Section
3.3.3 of the text.35 That material ought probably be read before the rest of this appendix
since only a very much more basic explanation is offered here.

Suppose an impending shock which is to be imposed at some time t=I say, is anticipated
at earlier dates. The time at which it is first anticipated will be referred to as the time of
'announcement' and taken to be t=0. Then, from time t=0 to t=I the system will continue
to evolve according to the 'pre-shock' dynamic equations, while from the instant of
imposition its dynamics will be determined by the 'post-shock equations'. In particular,
since the system must approach the post-shock equilibrium its dynamics from t=I must be
along the post-shock saddle-path. Since the imposition comes as no surprise there will be
no discontinuities in the dynamic variables CF(t), <X>(t), and pA(t)) at that time. Thus, at
t=I both the pre-shock equations and the post-shock equations must be satisfied by the
same point, namely [*F(I), <1>(I), PA(I)]. However, the announcement of the shock does
come as a surprise (to the agents whose actions are described by the dynamic system)
and so discontinuities in the 'jumping variables' <J> and PA may be expected. It is the
precise extent of such jumps that allow the system, evolving under the influence of the
pre-shock equations, to reach the post-shock saddle-path at time t=I, and it is these
which must be determined to calculate the dynamic response of the system to the
anticipated shock.

Equation (A3.2.8) from. Appendix 3.2 describes the general dynamics of the linear
system (A3.2.1) with arbitrary boundary conditions. That is, without the constraints on
initial values necessary to ensure satisfaction of the transversality conditions and
adjustment along a saddle-path towards the (optimal) equilibrium or steady-state. This
formulation is appropriate to the pre-shock dynamic response to an anticipated shock.
On the other hand, equation (A3.2.15) specifies those necessary constraints on initial
values and is appropriate to the post-shock adjustment. However, in adapting (A3.2.15)
to describe the post-shock constraints, its "0" subscript notation, which refers to initial
time, needs to be interpreted as referring to time t=I. This is because the post-shock
adjustment begins at t=I. Then, using "P" and "F ' subscripts to denote the pre- and post-
shock equations, and otherwise maintaining the notation of Appendix 3.2, in the current
context equations (A3.2.8) and (A3.2.15) become:

3 5 The key characteristic of such a system is that it is constrained to move towards some equilibrium
with saddle-path stability. In most economic models this is the outcome of optimising behaviour on the
part of economic agents (Chapter 2).
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= (rp)eAl ' t(rp)-1Apwo+wPB where, A P w o = ( w 0 - w m )

and

(A3.4.1)

(A3.4.2)

Partitioning (A3.4.1) into the non-jumping and jumping variables (according to the
negative and the non-negative eigenvalues) generates:

) (A3.4.3)

allowing w 5 (I) on the left to be substituted by (A3.4.2). And, given the initial values of
the non-jumping variables wom, the resulting matrix expression represents a system of n
linear equations in the n variables Wn,(I) plus w o s , which can readily be solved for.
These then represent all the 'initial values' necessary for (A3.4.1) and (A3.4.2) to be
used to compute the complete dynamic response of the linear system to the anticipated
shock:

• the wo are first used in (A3.4.1) to compute the path over t=0 to t=I;
• then, either the wm(I) can be used with (A3.4.2) to calculate the w 5 (I) also, or the

first step results for t=I used to provide the w(I) directly; and finally
• the w(I) are used as initial values in a post-shock version of (A3.4.1 ).36

In terms of the three variable Romer model dynamic system (A3.4.3) and (A3.4.2) give:

7
TFI.!

YFH

= (rP)eA"(rPr1 ^PSS
(A3.4.4)

where given ¥0, the only unknowns are O0, PAO and ¥(1). To solve for these write the
matrix ( r p )e A p t ( r p )~ 1 as M = (m,j), expand the first term on the right hand side of
(A3.4.4) accordingly, and collect all the unknowns on the left hand side. This produces:

V P A O J

f \
m u

m21

lm 3 I J

%+B ^ P S S

vPAft.-j

+
0

(A3.4.5)

\ F » '

where the matrices A and B are given by:

3 6 In practice the positive eigenvalues in the matrix AF are also replaced by zeros to avoid any problems
with rounding errors in the computation of the constraints from (A3.4.2).
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A =

1
YFT,

YFU

YF31

YFII

i - m , 2

-DI22

~ m 3 2

- m ] 3

~m23

- m 3 3

and B =
(i-mii) j -m ] 2

- m
2,

>, - m
31

Thus, the solution of (A3.4.5) for the unknowns is:

m,

I PA0 J
- A "1 n

m2,

^m 3 ] ;

rPss

'Pss

- m
32

- m
13

0-mn),
(A3.4.6)

0

'Fss (A3.4.7)

A3.4.2 Computations of adjustment paths

Equation (A3.4.7) is applied, according to the method described by the 'dot points' on
the previous page, to compute the adjustment paths for two anticipated shocks. As in the
simulation of the unanticipated shock to parameter y, presented in Section 3.2.2, the
system is considered to be initially in equilibrium at its benchmark steady-state.

A3.4.2.1 A sustained 15 per cent rise in parameter £

While the shock is not imposed until time t=5, in this simulation it is considered to be
(correctly) anticipated from time t=0.

Figure A3.4.1: Dynamic effects on *F, 4>, and PA of an anticipated and sustained
15% rise in parameter C, from time t=5, benchmark parameter set
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Figure A3.4.2: Dynamic effects on the growth rates of an anticipated and sustained
15% rise in parameter C, from time t=5, benchmark parameter set
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Figure A3.4.3: Dynamic effects on the interest rate and share of human capital
devoted to research of an anticipated and sustained 15% rise in
parameter C, from time t=5, benchmark parameter set
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Figure A3.4.4: Dynamic effects on the savings rates and the capital-output ratio
SN, and kcp, respectively) of an anticipated and sustained 15% rise in
parameter £ from time t=5, benchmark parameter set.
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Figure A3.4.5: Dynamic effects on the factor shares of gross income from an
anticipated and sustained 15% rise in parameter £ from time t=5,
benchmark parameter set
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A3.4.2.2 A temporary (five year) fall of 20 per cent in parameter a.

Here the shock is implemented at time t=0 and removed at time t=5. While its
implementation is unanticipated, its removal is (again correctly) anticipated from the
outset. Thus, the anticipated shock simulated here is actually the increase in parameter a
necessary to return it to its benchmark level.

In effect, two shocks are being simulated simultaneously. The first is an unanticipated 20
per cent reduction in the level of parameter a implemented at time t=0; and the second is
a 25 per cent increase in parameter a, implemented at time t=5 but anticipated from time
t=0.

Figure A3.4.6: Dynamic effects on *F, O, and pA of a temporary 20% fall in
parameter a from time t=0 to t=5, benchmark parameter set.
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Figure A3.4.7: Dynamic effects on growth rates of a temporary 20% fall in
parameter a from time t=0 to t=5, benchmark parameter set.
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Figure A3.4.9: Dynamic effects on the savings rates and the capital-output ratio (SB,
SN, and kcp, respectively) of a temporary 20% fall in parameter a
from time t=0 to t=5, benchmark parameter set
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Figure A3.4.8: Dynamic effects on the interest rate and share of human capital
devoted to research of a temporary 20% fall in parameter a from
time t=0 to t=5, benchmark parameter set
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Figure A3.4.10: Dynamic effects on the factor shares of gross income of a temporary
20% fall in parameter a from time t=0 to t=5, benchmark parameter
set
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Appendix 3.5

Log-linearisation of the Romer model

A3.5.1 Deriving the log-linear coefficients matrix

In the ordinary linearisation of the model (Appendix 3.1), the time derivatives of the
dynamic variables were expressed as (approximate) functions of the variables themselves.
Analogously, here the procedure is to write the time derivatives of the logged variables
as approximate functions of the logged variables. First, note that:

d
(A3.5.1)

where i=l , 2 , 3 and Ri=xF, R2=O, and R3=pA

Next, write equations (2.41) to (2.43) as:

+e
lnO(t)

- ( 8 + CH)

a a

g (t) =
1 —V
i L-ln[rln[r(t)+5]+In4'(t)-lnpA(t)

(A3.5.2)

(A3.5.3)

(A3.5.4)

Then take logs of equations (2.44) and (2.45):

Y . ... 1
lnHY(t) =

ln[r(t)

l - a ( l - y ) l - a ( l - y )
lnpA(t)+ constant (A3.5.5)

l - a ( l - y ) l - a ( l - y )
constant (A3.5.6)

and use these to linearise (A3.5.2) to (A3.5.4) above by first-order Taylor series
expansions about the log of the steady-state. That is, obtain:

gRi (t)«[gRi (t)L+Z[alnR(t)L(lnR i(t)-lnR i !a)

See the first part of Appendix 3.1, and equation (A3.1.1) in particular, for further details
of the method.

Thus, linearising (A3.5.2), where in order to simplify the notation, the time argument is
omitted from this point onwards; and the term [l-a(l-y)]"1 is written as A:

a(i-y)Aeta(ns+S)
L 2

^ * ^ S

PAS

That is:

Similarly, linearising (A3.5.3):

y2 a

finally, linearising (A3.5.3):

ln(rss+5)

8) I n l -

In:

1-y
[1 - (1 - a)(l - y)A]

PA

In
Y

-a(l-y)Aeln(niS+8)ln

¥.

PASS

1 - Y [1 + a ( l - y)A]e l n ( t s s + 5 ) + l n M ' s s- I n p A s 5 In
PA

PASS

that is:

gpA = -[(l - a)(l - y) A(rM + 8) + (1 - y)A(rss + 8)—Mln—

gPA =-A[(l-a)(l-y)(r s s+8) + yrss]ln—

+ A[r s s -a( l -y)(r s s+8)] ln^-
PASS

(A3.5.7)

(A3.5.8)

+8) -

1-Y P
and noting that since p ^ = 0, then from (2.43) —— (r^ + y)—— = r̂  , and so:

y PASS

(A3.5.9)

Equations (A3.5.7) to (A3.5.9) express the growth rates of the dynamic variables as
linear functions of the logarithms of the ratios of the variables to their steady-state levels:
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where ga; and ln(R(t)/RM) are the column vectors: [g^, g«D, gPA]T; and
ln(<&(t)/<E>ss), lnpA(t)/pAss)]T respectively; and where QRL is a matrix of constant
coefficients. Equivalentry, using (A3.5.1) this may be written in terms of the logarithms
of the dynamic variables and their time derivatives, in an expression exactly analogous to
the ordinary linearisation of Appendix 3.1, equation (A3.1.8):

d/dt(Sn(R(t)) = QRLInR(t) , where VRL =-QRLlnR, (A3.5.10)

Here InR(t) is the column vector |TrfF(t), ln<JE>(t), lnpA(t)]T; d/dt(InR(t)) is the
corresponding vector of time derivatives; and InRM the corresponding vector of steady-
states. From (A3.5.7) to (A3.5.9), the matrix QRL is as follows:

yCHyss-(l-a)(l-T)(rss+8)/y:

1 1 Q-aKi-y)(Tss+8)
V aJ l-a(l-y)

(l-a)(l-Y)(rs

l-a(l-y)
0

qiYss+a(l-Y)(rss+5)/y:

l-a(l-y)

1 1 qQ
V aJ l-a(l-y)

l -a ( l -y)

(A3.5.11)

A3.5.2 Speed of convergence in the log-linear model

Since the log-linear model (A3.5.10) takes exactly the same form as the ordinary linear
one of equation (A3.1.8), its solution is also the same. In particular, the log-linear
solution has its counterpart to equations (3.9) and it was from these that the speeds of
convergence or convergence coefficients were defined, for each of the ordinary and the
log linear models, in Section 3.2.3. For the ordinary linearisation the convergence
coefficient was defined as:

so:
defii.

(A3.5.12)

where A.R1 is the negative eigenvalue of the simple linear coefficients matrix.

Similarly, for XRLI the negative eigenvalue of the log-linear coefficients matrix, the
convergence coefficient for the log-linearisation was defined as:

defn.

where +ln¥ s s( l -eX R L l t)

so:
defh.

(A3.5.13)

Clearly, from (A3.5.12) and (A3.5.13) the convergence coefficients p and pL wffl be
equal if the negative eigenvalues ?LR, and A,RU are equal. To prove that this is indeed the
case, consider applying the log-linear definition of the convergence coefficient to the
solution for the ordinarily linearised model, and vice versa. That is, calculate:

a ( t ) = _ w h e r e
(A3.5.14)

and

(A3.5.15)

First, from (A3.5.14):

g*F {*•) ~

and

So:

and taking limits as time goes to infinity:

limPL(t) = -XK ()

(A3.5.16)

(A3.5.17)

Comparison of (A3.5.17) and (A3.5.13) then establishes that the negative eigenvalues
from the simple and the log-linearisations must be equal:

3L...=JL.. (A3.5.18)

Equally, from (A3.5.15):

(A3.5.19)

and using L'Hopital's rule to obtain the limit as time goes to infinity (while noting that
* ^ as t->oo):

limP(t) « -

lim

(A3.5.20)

- I
= -X RLl

which, when compared with (A3.5.12) again confirms the equality of the negative
eigenvalues - as expressed in (A3.5.18).
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Finally, the effect of the different definitions of the convergence coefficients in the
alternative linearisations may be explored It is apparent from the above equations that in
the ordinary linear model, the log-linear coefficient is asymptotically equal to the 'true'
ordinary linear coefficient; and that in the log-linear modd the ordinary linear coefficient
is asymptotically equal to the 'true' log-linear coefficient. In particular, from equations
(A3.5.12), (A3.5.16), and (A3.5.17):

and limPL(t) =
t > c ot—>co

Similarly, from (A3.5.13), (A3.5.19), and (A3.5.20):

and

(A3.5.21)

(A3.5.22)

The question of whether either one of these alternative definitions is 'right', or perhaps
just 'better, and if so which one it is, does not seem to admit of an unambiguous or
objective answer. There are simply certain relevant facts about the linear dynamic
systems from which they derive. Namely, for a pair of dynamic systems, one linear in
certain 'levels variables', the other linear in the logs of these, where both systems are
derived from some common parent system (which may even be one of the pair):

1. For the system which is 'levels-linear', the gaps between its variables and their equilibria
are diminished at a constant proportional rate (X say), while the gaps between the
'logged variables' and their equilibria - which are, of course, the logs of the levels
equilibria - are diminished at a variable proportional rate, but one which approaches the
constant X asymptotically; and

2. For the log-linear system the gaps between the logged variables and their equilibria are
diminished at the same constant rate X, while here the levels variables close their gaps to
equilibrium at variable rates which again are only asymptotically equal to X.
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Appendix 3.6

Phase-space surfaces of the Romer model

The objective here is to obtain functional forms in the principal dynamic variables *F, O,
and pA (hopefully explicit) which describe the three surfaces in phase-space for which
each of these variables are respectively constant; and to identify on which 'sides' of these
phase surfaces the corresponding dynamic variables either increase or decrease over
time. Then it will be possible to determine the direction of motion in each region of the
phase-space. This is achieved from the dynamic specification of the model, as described
by equations (2.41) to (2.45), simply by setting the time derivatives of each variable to
zero. In particular, the variables HY and r are first eliminated by substituting equations
(2.44) and (2.45) into (2.41) to (2.43) which are then set to zero. From this, equation
(2.41) produces:

Thus:
H0 as:

(A3.6.1)

Similarly, (2.42) produces:

P A J

So:
67O as:

S ( o - l ) - p

(A3.6.2)

And lastly, from (2.43):

P

Whence:
PA tO as:

However, the problem with this implicit formulation is that it is not easy to tell on which
'side' of the surface pA > 0 and on which side pA < 0! To resolve this pA is partially
differentiated with respect to ^ as follows:
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PA

a(l-y)

and since the right hand side of this expression is unambiguously negative —^- < 0 and

so pA must fell as ¥ increases across the pA = 0 surface. Hence it must change from
pA > 0, through pA = 0, to pA < 0 . Thus

PA t as:

YPA

a
-
PA

(A3.6.3)

These phase surfaces may now be plotted and the directions of motion of trajectories in
different regions of the phase-space assessed. This is done in Section 3.3 of the text for
the benchmark parameter set. Here the surfaces are plotted for a range of alternative
parameter settings in order to provide an idea of their sensitivity. Specifically, each
parameter in turn is both reduced and raised by 20 per cent of its benchmark value while
holding all the other parameters at their benchmark levels.

Figure A3.6.1: Romer system phase-space for Figure A3.6.2: Romer system phase-space for
a=0.34 (-20%); other parameters at a=0.52 (+20%); other parameters at
benchmark benchmark

Steady-state: ¥„= 5.60; 0>B= 0.304; P A S = 7.67 Steady-state: «?„= 7.21; Oa= 0.252; PASS= 11.18
HYss= 69.0%; g = 1.86%= ; r = 6.58% HYss= 78.4; g = 1.30; r = 4.89
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Figure A3.63: Romer system phase-space for Figure A3.6.4; Romer system phase-space for
7=0.43 (-20%); other parameters at 7=0.65 (+20%); other parameters at
benchmark benchmark

Steady-state: <P.= 2.96; <DS= 0.421; pAss= 7.22
HYss= 79.2%; g = 1.25%; r = 4.75%

Steady-state: ¥*= 19.49; <DS= 0.187; PASS= 17.09
HYss= 70.2%; g = 1.79%; r = 6.37%

Figure A3.6.5: Romer system phase-space for Figure A3.6.6; Romer system phase-space for
£=0.048 (-20%); other parameters at C=0.072 (+20%); other parameters at
benchmark benchmark

Steady-state: ^ ^ 8.40; $*= 0.241; pAss= 13.46 Steady-state: 4^= 5.14; 0*= 0.307; pAss= 7.00
HYss= 75.4%; g = 1.18%; r = 4.54% HYss= 73.8%; g = 1.89%; r = 6.67%

All the phase surfaces are affected by changes to the three parameters a, y and ^, and
while they retain their general shapes in response to the ±20 per cent changes in these
parameters, there are significant changes in their positions and their points of intersection
(equivalent to changes in the steady-state of the system). Corresponding changes in their
saddle and adjustment paths would result. The impact of variations to the parameter y
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can be seen to be by far the greatest, particularly on pAsurf (Figure A3.6.1 to Figure
A3.6.6).

Conversely, the parameters p and a affect only phisurf, and then not to a great degree.
As a result, neither the shapes nor positions of the surfaces are very responsive to
variations in these parameters (Figure A3.6.7 to Figure A3.6.10).

Figure A3.6.7: Romcr system phase-space for Figure A3.6.8; Romer system phase-space for
p=0.008 (-20%); other parameters at p=0.072 (+20%); other parameters at
benchmark benchmark

Steady-state: TB= 6.53; O ^ 0.272; P A S S= 9.58 Steady-state: ¥*= 6.42; 0^= 0.277; pAss= 9.33
HYss= 73.6%; g = 1.58%; r = 5.55% HYss= 75.2%; g = 1.49%; r = 5.67%

Figure A3.6.9; Romer system phase-space for Figure A3.6.10; Romer system phase-space
ar=2.4 (-20%); other parameters at . for a=3.6 (+20%); other parameters at
benchmark benchmark

Steady-state: 4^= 6.79; <!>*= 0.261; pAss= 10.16 Steady-state: ¥«= 6.25; ^= 0.284; p ^ 8.97
HYss= 70.2%; g - 1.79%; r = 5.29% HYss= 77.6%; g = 1.35%; r = 5.84%
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Changes to parameter 8 again affect all three phase surfaces. The impacts on psisurf and
phisurf are small, but that on pAsurf is quite significant. The resulting change to the
steady-state are small but not insignificant. As discussed in Section 2.4.2 of Chapter 2,
changes to 8 have no impact on the allocation of human capital nor on the growth or
interest rates (Figure A3.6.11 and Figure A3.6.12).

Figure A3.6.11: Romer system phase-space
for 5=0.032 (-20%); other parameters at
benchmark

Figure A3.6.12; Romer system phase-space
for 5=0.048 (+20%); other parameters at
benchmark

Steady-state: ¥*= 7.82; (DB= 0.255; pAss= 10.47
HYss= 74.4%; g = 1.54%; r = 5.61%

Steady-state: 4y= 5.44; <&*= 0.294; PASS= 8.61
HYs= 74.4%; g = 1.54%; r = 5.61%

The magnitudes of the parameters r\ and L also influence the shapes and positions of all
three phase surfaces, with the effects of r| being somewhat the stronger of the two.
However, despite the changes to the intersection points of the surfaces, neither
parameter has any effect upon the steady-state values of the allocation of human capital
HYSS, the growth rate g, the interest rate r^, nor even on the consumption-capital ratio 3>ss
(Figure A3.6.13 to Figure A3.6.16).

These last results could have been predicted from the steady-state equations (2.55) to
(2.57) from Section 2.3.3 of Chapter 2. Also, as for 8, neither of the parameters r| or L
have any impact on the steady-state values of the allocation of human capital, the growth
rate, or the interest rate. However, unlike the case for 8, there is no unambiguous
underlying economic rationale for such results. As discussed in Section 2.4.2, they are
merely the outcomes of exactly cancelling effects due to the particular form (Cobb-
Douglas) of the production function of the model.
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Figure A3.6.13: Romer system phase-space Fignre A3.6.14; Romer system phase-space
for TI=1.6 (-20%); other params at benchmark for T]=2.4 (+20%); other pararas at

benchmark

Steady-state: Y ^ 8.42; 0^= 0.274; pAss= 12.28 Steady-state: %,= 5.23; <!>*= 0.274; p x ^ 7.63
Hyss= 74.4%; g = 1.54%; r = 5.61% HYss= 74.4%; g = 1.54%; r = 5.61%

Figure A3.6.15; Romer system phase-space Figure A3.6.16; Romer system phase-space
for L=1.6 (-20%); other parameters at for L=2.4 (+20%); other parameters at
benchmark benchmark

Steady-state: ¥«= 5.70; 4^= 0.274; pAss= 8.32 Steady-state: T ^ 7.19; d>s= 0.274; p ^ 10.49
HYss= 74.4%; g = 1.54%; r = 5.61% HYss= 74.4%; g = 1.54%; r = 5.61%
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The phase surface psisurf is the only one upon which parameter H has any effect.
Nevertheless, the ±20 per cent changes to H produce significant impacts on the points of
intersection/steady-state outcomes (Figure A3.6.17 and Figure A3.6.18). In fact, the
impacts upon the steady-state consumption-capital ratios (O^), the growth rates (g), and
the interest rates (rss), but not the allocation of human capital (HYss or HA*), are identical
with those produced by the same changes to parameter £. Once again these results could
have been predicted from the steady-state equations (2.55) to (2.57) of Section 2.3.3 in
Chapter 2.

Figure A3.6.17; Romer system phase-space
for H=0.8 (-20%); other parameters at
benchmark

Fignre A3.6.18; Romer system phase-space
for H=1.2 (+20%); other parameters at
benchmark

Steady-state: ¥*= 7.63; 0^= 0.241; pAss= 12.23 Steady-state: ¥M= 5.56; <&*= 0.307; pAss= 7.57
HYss= 60.3%; g = 1.18%; r = 4.54% HYss= 88.5%; g = 1.89%; r = 6.67%
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Appendix 3.7

Equivalence of the Solowian-Romer model
and the full Romer model

Kurz (1968) introduced the concept of an "inverse optimum problem" whereby, given
some specified consumption-investment function, the aim was to find a class of objective
functions (along with any concomitant parameter restrictions), which when optimised
would reproduce the given function as an optimal outcome. He solved such a problem
for the Solow growth model proving, in terms of the model set-up and notation of this
dissertation (see Section 2.2), that the intertemporal optimisation of a ''Constant
Intertemporal Elasticity of Substitution (CIES) utility function

would generate the constant savings rate Solow consumption function: C(t) = (l-s)Y(t)
provided a = 1/s, and (8+p) = y5/s where 8 is the rate of depreciation, p is the discount
factor and y is the output elasticity of capital in the production function.

The objective of this appendix is to extend Kurz' results by showing that the full Romer
model can generate constant transitional savings subject to certain restrictions on the
parameters. In this way the Solowian-Romer model will be shown to be merely a
particular parameterisatioh of the full model.

In the full Romer model savings for capital formation are given by equation (A2.5.1) as:

s(t) = l -
r(t)

O(t) (A3.7.1)

So:

6(t) £
[l-s(t)] 0>(t) [r(t) + 8]

Thus, for transitional savings to be constant, that is s(t) = 0, it must be the case that:

[r(t) + 8]

The right hand side of this expression has already been evaluated in terms of ^ ( t ) / T(t)
and P A W / P A C * )

 m equation (A3.1.3) of Appendix 3.1. Using this result and
substituting for ¥ ( t ) / ¥ ( t ) , 6(t)/<D(t) and pA ( t ) /pA ( t ) from equations (2.41),
(2.42) and (2.43), and dropping the time (t) argument generates:

pA
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Then, using (A3.7.1) where now s(t) = constant = s, to substitute for O; using equation
(2.43) to express the very last term in the above expression as (^yHy/a); and collecting
together the coefficients of Hy and (r+8) gives:

ai-Y)(l-a-y)HY +

l-a(l-y)

l-a(l-y)_s
a y (A3.7.2)

For the Romer model to display constant transitional dynamics this expression must
always hold. Clearly it can only be satisfied at all times if all three of the coefficient terms
are zero. Thus, the conditions for constant transitional dynamics in the Romer model are:

a + y = 1;

CT =
s-ay(l-y)

l-a(l-y) /c . N

; and (A3.7.3)

Notice that if y = 1 in (A3.7.2) the conditions for constant transitional growth become
a =l/s , and (8+p) = Sy/s ; precisely the conditions derived by Kurz (1968) for the
'inverse optimum problem' defined by the Solow model.37

While satisfaction of the conditions (A3.7.3) ensures that transitional savings will be
constant, and while they limit the feasible parameter sets from which this is possible,38 it
remains a matter of trial and error to identify such a set. However, the search is made
simple by the fact that there is an additional relation that the parameters must satisfy.
Namely, if the saving rate is to be constant then it must always be equal to its steady-
state level. Hence, substituting <&« and r̂ , from equations (2.55), (2.56) and (2.57) into
(A3.7.1) above generates the steady-state savings formula:

s =
y 2 [ £ H - a p / y + 8 + a8a7y]

(A3.7.4)

while the constant transitional savings rate condition derived from (A3.7.3) is:

s = +ay(l-y) (A3.7.5)

Equating these two expressions for the savings rate will allow one of the parameters to
be expressed in terms of all the others; here CT is arbitrarily chosen to be the 'dependent
variable'. As will be seen in the algebra below, since it is easy to bring the other two
conditions from (A3.7.3) into the derivation, the resulting formula for a will ensure
constant transitional growth for arbitrarily chosen feasible values of the other parameters.
It will then only remain to choose these values so as to ensure that a itself is feasible

37 This is probably due to the fact that when 7=1 capital is the only factor input to production, similar to
the output per head formulation used by Solow.
38 Remember that apart from empirical plausibility, the parameters are constrained so as not to be
economically nonsensical. Thus 0< a,y <1; £,a,Ti,H,L>0;and S,p£O (also see Section 2.4).
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(oX)), and that all parameters and steady-state results are economically plausible. Thus,
equating (A3.7.4) and (A3.7.5); multiplying through by o and by the denominator of
(A3.7.4); and collecting together 1he coefficients of cr2 and o produces:

a5 / y) - 8]CT2 + [1 - a(l - y )](8 + p) =

- ap + 8y - (Qi + aS / y){l - a(l - y)} - a(l - y)(8 + p)]a

-y)(£H+a8/y)-8]a2 +[l-a(l-y)](8+ p) =

Using the third of the conditions from (A3.7.3) this simplifies to:

a[(l-y)(^H+a8/y)-8]cy2=4ap(2--y)
or

and finally, using the first of the conditions from (A3.7.3) produces:

(l + oXB + p)
o = + a8/(l-cc)] (A3.7.6)

Since a must be positive the choice of a, 8, £ and H must be such that the denominator
of (A3.7.6) is also positive. Otherwise the choice of the parameters is restricted only by
their individual feasibility constraints. One of many parameter sets which satisfy (A3 7 3)
and (A3.7.6), and which may therefore be expected to generate constant transitional
growth in the full Romer model, is the following:

constant SNO =
{a=0.4; y=0.6; C=0.05; 8=0.05; p=0.01; a=5.04; Tp2; H=l; and L=2}

(A3.7.7)

To demonstrate that these settings do indeed generate constant transitional growth, a
simulation shifting the Romer model from its benchmark parameter set to the set
constant sN0 has been conducted. The system was taken to be initially at its benchmark
steady-state, when at time t = 0 all its parameters were instantly converted to their
corresponding levels in the set constant sN0. The dynamics of this simulation were
Tf^fJl^ numfrfCal '^V*™ technique offinite differences, implemented via
the GEMPACK modelling software (see Sections 4.3 and 4.4 of Chapter 4 for details)
Furthermore, to demonstrate the dynamic equivalence of the Solowian-Romer and the
lull Komer models this simulation has also been run on the former. In this case the
consumer preference parameters p and a are 'replaced' by the exogenous savings rate
parameter s, which has been moved from the full model benchmark steady-state level
sNss(benchniark) = 0.1680, to its post-simulation steady-state s^(constant sN0) = 0.1960.
Here the dynamics of the simulation were computed by a fourth order Runge-Kutta
mtegration procedure using the technique of shooting, (details may be found in Section
3 41 of the current chapter, and Section 4.1 and Appendix 4.1 of Chapter 4. The results
of both simulations are presented in Figure A3.7.1 to Figure A3.7.6, where data points
towards the end of the full model series have been omitted in order to reveal the
bolowian-Romer series.
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Figure A3.7.1: Dynamic effects on *P, 4>, and pA of a simulation exhibiting constant
transitional savings SN<t)=s, 'benchmark' and 'constant sN0'
parameter sets, Romer and Solnwian-Romer models.
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Figure A3.7.2: Dynamic effects on the growth rates of a simulation exhibiting
constant transitional savings SN(t)=s, 'benchmark' and 'constant sN0'
parameter sets, Romer and Solowian-Romer models.
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Figure A3.7.3: Dynamic effects on r, and HA of a simulation exhibiting constant
transitional savings srft}=s, 'benchmark' and 'constant
parameter sets, Romer and Solowian-Romer models.
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Figcre A3.7.4: Dynamic effects on SB, SN and kep of a simnlation exhibiting constant
transitional savings SN(t>=s, 'benchmark' and 'constant sN0'
parameter sets, Romer and Solowian-Romer models.
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Figure A3.7.5: Dynamic effects on the factor shares of gross income of a simulation
exhibiting constant transitional savings SN0)=S, 'benchmark' and
'constant SNO' parameter sets, Romer and Solowian-Romer models.
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Figure A3.7.6: Dynamic effects on the convergence coefficients of a simulation
exhibiting constant transitional savings sN(t)=s, 'benchmark' and
'constant SNO' parameter sets, Romer aad Solowian-Romer models.
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Three things are apparent from these results. FHt, the results in Figure A3.7.4 confirm
that as expected, the transitional savings rate SN jf the Romer model, despite its infinite
horizon utility maximising consumers, is indeed constant for the parameter configuration
constant SNO. Second, since the results for the Solowian-Romer model all coincide with
those for the Romer model (the plotted adjustment paths are all indistinguishable), then
the two models are confirmed as equivalent for the parameter settings. Third, the fact
that the benchmark steady-state convergence coefficients of the two models differ, while
those for the constant s^O parameter set are the same (Figure A3.7.6), suggests that the
two models may be set up to generate completely identical steady-states only if the
parameters are such as to ensure constant transitional savings in the full model
Otherwise the convergence coefficients will differ even though the steady-state values for
all other variables are identical.39

At the time of Kun;' paper (1968) many economists were untroubled by simply asserting
or 'postulating' various savings functions, but objected to the use of cardinal utility
functions in the theory of optimal growth.40 Karz commented that one useful aspect of
solving inverse optimum problems was that 'by proving that most "reasonable" savings
functions could be constructed from the optimisation of a well defined utility function', a
correspondence between the theory of optimal growth and the theory of competitive
deterministic growth was established which ought to remove these objections. Nowadays
the objections likely run the other way: with the theory of optimal growth being widely
(if not unanimously) accepted, and the use of deterministic Solow-type savings functions
regarded as regressive. Once again, proving the equivalence of the two approaches,
albeit under certain parameter restrictions, ought to at least temper the objections to
some degree. Here the fact that parameter configurations which generate equivalence
between the Solowian-Romer and full Romer models can be found close to the
empirically based benchmark set, must surely further weaken objections to the former as
a didactic simplification/approximation of the latter.

Appendix 3.8

Log-linearisation of the Solowian-Romer model

It should be noted at the outset that the procedure here is exactly the same as that for the
log-linearisation of the full Romer model (Appendix 3.5). Moreover the dynamic
equations of the Solowian-Romer model are also very similar to those of the full model.
Nevertheless, for ihe sake of completeness the linearisation of the SR model is recorded
here explicitly (although briefly) rather than simply stating the results and referring to the
earlier appendix for the method.

The dynamic system for the Solowian-Romer model is given by equations (3.29) to
(3.32) of Section 3.4 of the text. Noting that:

where i=l, 2 and SRi^T, SR2=pA, these may be written in log form as:

,.^ _ ln[r(t)+5] _

and

lnHY(t) =
1

l-a(l-y) l-a(l-y)
lnpA(t)+ constant

(A3.8.1)

(A3.8.2)

(A3.8.3)

l-a(l-y) l-a(l-y)
constant (A3.8.4)

These last two expressions are then used to linearise (A3.8.1) and (A3.8.2) by first-order
Taylor series expansions about the log of the steady-state by obtaining:

gSRi (t) «[gSRi (t)]

V r a g s R ' r S R i ( t )

39 Further confirmation of this was obtained by examining other parameter sets, but no attempt has been
made to obtain an analytic proof.
40 It might also be noted that as recently as 1990 Frank Hahn preferred the use of a deterministic saving*
function in an illustrative model: "...although one is just willing to let firms peer into the indefinite
future, this seems so awful an assumption for households that I prefer the dreaded ad hoc savings
function. Moreover, that is what Solow preferred." (Hahn, 1990, p.34).

Thus, log-linearising (A3.8.1), where in order to simplify the notation the time argument
is omitted from this point onwards; and the term [l-a(l-y)]"1 is written as A:

= _ [ S(l-aXl-Y)Ae ! n ( r e s + S ) + y;Ae.nHYss ] l n _ | L

m H Y S S -
_£A_
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That is:

(A3.8.5)

And since (A3.8.2) is identical to (A3.5.4) its linearised form may be taken directly from
(A3.5.9):

gPA =-A[(l-cx)(l-y)(rss +8) + yrJln

A[rss-a(l-y)(rss+5)]ln-

JL
(A3.8.6)

PASS

Again following Appendix 3.5, the Solowian-Romer dynamic system may be written in
matrix notation as:

where gsR and ln(SR(t)/SR,s) are respectively the column vectors: [g^, gPA]T; and
[(lnC^t)/^), lnpA(t)/pAss)]T; and where the coefficients matrix QSRL is:

2 \

l - a ( l - y )

l - a ( l - y )

Evaluation of this for the benchmark parameter set yields:

l - a ( l - Y )
(A3.8.7)

0.01996

,-0.06914
-0.06930"!

0.04620 )

from which the eigenvalues and eigenvectors are calculated as:

Xx = 0.10039 and X2 = -0.04223

_( °:6}6*4.} _f .°:Z. 8 . 7 . 7 9 l
Yl = l -0 .78708 j and 7z =lo.6159,V

As shown earlier (Section 3.2.3), the negative eigenvalue (X2) represents the asymptotic
speed of convergence, 4.223 per cent a year; and as will be seen later (Section 4.2.2) the
eigenvector associated with it (y2) indicates the corresponding direction of motion
thereby allowing computation of the saddle-path.
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Chapter 4

4 Numerical integration

4.1 General application to the Romer system

The problem of numerically solving, or integrating, a system of ordinary differential
equations (ODEs) is not completely specified by the equations themselves. Any system
of n first-order ODEs also requires n boundary conditions (analogous to constants of
integration) in order to be solved.1 Whether these boundary conditions all relate to the
same value of the independent variable, or whether they relate to different values defines
a dichotomy in the types of integration problems: Initial value problems arise when
values for all the dependent variables are given at a single point, typically the initial level
of the independent variable; and so-called boundary value problems arise when
dependent variable values are specified at more than a single point. Where only two such
points are involved (often the initial level and the terminal level of the independent
variable) the description is one of a two-point boundary value problem.

Two-point boundary value problems are, under most numerical methods, considerably
more difficult to solve than initial value problems.2 While initial value problems have a
given valid solution with which to begin (and so can then simply be integrated forwards
to whatever value of the independent variable is required), for two-point boundary value
problems a valid starting solution must first be determined.

The fundamental approach of all numerical integration, whether for initial value or
boundary value problems, is that of using derivatives multiplied by step-sizes to add small
increments to the functions to be integrated. The differential equations are replaced by
difference equation approximations (constructed from Taylor series expansions of the
primitive functions), and the integration is effected through iterative application of these
difference equations. The simplest approach is Euler's method where all second order
(and higher) step-size terms from the Taylor expansion are simply ignored. Consider the
set of coupled ODEs:

for i = l,...,n

or, in vector notation:
z(t) = g(z(t),t)

(4.1)

1 These define the values of the dependent variables at discrete specified points (values of the
independent variable). The means of definition may take complicated functional forms, and the
specification of points may be anywhere in the domain of integration. However, to simplify the
exposition here we shall consider the definition to be simply a numerical value; and the boundary points
to be either initial or terminal ones.
2 The exception is the method of finite differences actually used here (see Section 4.3).

Chapter 4 183



Because the differential equations cannot be solved analytically, the vector function

z(t) = Jg(z(t),t)dt is unknown. However, with h as the step-size its Taylor series

expansion is:

2! 3!

and for the Euler method it is approximated by the difference equation:

z(t + h)«z(t) + hz(t) (4.2)

which, with all terms of order h2 and higher having been dropped, is accurate only to
order-h. The Euler method of numerical integration is then to proceed heratively from
the known initial condition z(to) = zo to (say) z(t>j) = ZN via:

z
k+1

 = z
k
 + h

k , t (4.3)

where k = 0,1,2,...,(N-1).

A graphical illustration of this Euler process is presented in Appendix 4.1.

Being accurate only to order-h, Euler's method is generally considered a somewhat
crude approximation, more of conceptual significance than of practical value.3 However,
by combining Taylor series expansions at nearby points, difference equation
approximations of much greater accuracy can be obtained (Dixon et al, 1992). The
possible choices are numerous.4 Two other methods are described in Appendix 4.1. First,
because it is often employed in the software used to undertake the simulations reported
later in Section 4.2, the modified mid-point or Gragg's method is considered. And
second, because it has high order accuracy and is by far the most commonly used
integrator (Birkhoff and Rota, 1969; and Press et al., 1992), the fourth-order Runge-
Kutta method is briefly described. The use of variable step-sizes and of Richardson's
extrapolation techniques as means of increasing the accuracy of numerical integration are
also briefly discussed in the Appendix.

To see how the Romer model could easily be integrated forwards if it were an initial
value problem consider replacing its differential equations with Euler-type difference
equation approximations. The dynamic system given by equations (2.41) to (2.45) then
becomes:

3 Baker and Gollub (1990) note that since the errors generated by the Euler method grow rapidly, it
should be avoided for extended calculations. Nevertheless, as will be seen later the simple Euler
approach performs extremely well for particular applications to the Romer model. It clearly out-performs
Gragg, and while not as accurate as the fourth-order Riinge-Kutta method, it is far less computationally
intensive and for many purposes its results would be considered just as acceptable (see Appendix 4.2).
4 Difference equation approximations can be based upon forward, backward or central differences and
can apply to 2nd and higher order derivatives as well as to 1st order ones. In addition to Gragg's method,
superior and more sophisticated approaches to that of Euler include the many varieties of Runge-Kutta;
the Adams-Bashford predictor method; and predictor-corrector methods such as that of Gear and of
Adams-Bashford-Moulton. Vast improvements in accuracy are also sometimes possible from
extrapolation techniques such as Richardson extrapolations and the particular Bulirsch-Stoer
implementation (see for example, Boyce and DiPrima, 1969; Dixon et al, 1992; Gear, 1971; Pearson,
1991; and Press et al, 1992). The choice of method obviously depends upon truncation error and
computing effort, but questions of stability and consistency of the solutions also arise (Issacson and
Keller, 1966).
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and, with the three initial values given as % , <D0 and pAo at time t=0, it can be seen that
*Fi, <3>i and PAI could readily be generated and so the system could be integrated
forwards to obtain *F2,O2 and p/u and so on.

However, initial values are known only for some of the variables. Nevertheless, as
demonstrated in Chapter 2 the Romer model system of differential equations derives
fundamentally from two dynamic optimisation problems where necessary conditions for
optimisation not only specify the equations, but also certain transversality conditions,
which impose constraints on the terminal behaviour of the dynamic system, ensuring that
it tends asymptotically to its steady-state equilibrium. In this way, the transversality
conditions supply end values for the remaining variables and so define the problem of
solving the dynamic system as a two-point boundary value problem.

In the linearised model (Section 3.2), the transversality conditions were shown to impose
certain constraints, which could be determined analytically, on the initial values of the
dynamic variables. This amounted to a determination of the policy function or saddle-
path of the system. In particular, with m constraints and n variables, only (n-m) initial
values could be freely selected or given. For the non-linear system it is not possible to
derive initial value constraints analytically. Nevertheless, such constraints still exist. In
the absence of an explicit policy function or saddle-path they are imposed by fixing initial
values for some variables and end values for others. Any variable whose initial value is
not fixed will than have to jump discontinuously in order to take the system to the
saddle-path. This raises the questions of which variables are to have their initial values
fixed and which are then to be determined in order to satisfy the transversality
conditions; and to what extent this choice is a free one. The maximum principle of
optimal control theory, by which the dynamic maximisation problems in the model were
solved, requires that state variables be continuous while control and costate variables
maty incorporate discontinuities (Appendix 2.2). This seems to dictate the choice; but it
might be possible to swap the state and control variables in the formulations of some
problems.

In any event, the choice is rarely arbitrary in economic terms. It depends on the particular
problem being analysed but it is most common for initial values to be specified for stock
variables like capital (which are commonly the state variables), and for end values to be
specified for prices or flow variables like consumption (the costate and control
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variables). The reason for this is that stock variables are not usually discontinuous. In
response to most economic shocks their immediate pre- and post-shock values will be
identical.5 On the other hand, prices and flow variables can more readily exhibit
discontinuities and jump spontaneously in response to relevant shocks. Accordingly, they
are sometimes referred to as jumping variables.6

In the present context, where there are two constraints imposed by transversality
conditions, only one initial value may be specified freely. The obvious choice for this is
the variable *F = K/A, since both K and A are stock variables. The other necessary
boundary conditions are then provided by the steady-state solution to the dynamic
system. In particular, equations (2.54) to (2.59) can be used to specify the end values &&
and PASS expressed in terms of the model parameters and exogenous variables.

A common approach to solving two-point boundary value problems is that of shooting.
In this method an originatty 'guessed' set of initial values is iteratively updated according
to how accurately the subsequent integration satisfies the end value boundary conditions
(see Birkhoff and Rota, 1969; Dixon et al, 1992; Keller, 1968; Press et al, 1992; and
Roberts and Shipman, 1972). There is no problem with the method when there is only a
single 'end-value target' at which to shoot. For example, King and Rebelo (1993)
calculated transition paths for one-sector neoclassical growth models by this method.
Also, as seen in Section 3.4.2, the shooting method easily furnished transitional dynamics
for the Solowian-Romer model. However, when shooting was applied to the current
problem the system could not be made to converge at all.7 In theory, for smooth varying
functions (but not in the neighbourhood of a local extremum) the Newton-Raphson
method, which was employed here, will converge quadratically, the error reducing by a
power of two after each successive iteration, to a steady-state of the system provided
the initial guess is "close enough". However, for a system such as the Romer one, which
is extremely sensitive to initial conditions, it turns out to be extremely difficult in practice
to make a sufficiently close first guess (see Roberts and Shipman, 1972 and Press et al
1992). Consequently, two other broad approaches are examined. The first is to consider
conversion to an initial value problem, and the second to employ the so-called finite
differences methods, known to be particularly useful for solving numerically sensitive
two-point boundary value problems (Roberts and Shipman, 1972).

5 Nevertheless, discontinuous jumps in stock variables can and do occur. Moreover they are not rare,
often arising through natural disasters, wars, and other politically based reorganisations: The massive
destruction of physical capital in World War II, particularly the atomic bombing of Japan, is perhaps the
greatest example this century. Others include the Gulf war, the 1993 Los Angeles and the 1995 Kobe
earthquakes, the re-unification of Germany, and the dissolution of the Soviet Union. Capital may also be
considered to change discontinuously by thinking of it as utilised capital rather than as the total stock.
6 The scope for price variables to change discontinuously is probably the stronger, although even here ?t
is possible to envisage at least temporary restraints through general stickiness, or perhaps more likely,
through various institutional rigidities such as price surveillance authorities, trade unions, minimum
wage legislation, and fixed or pegged exchange rate systems like the European Monetary Union or the
Hong Kong dollar. In the case of flow variables like output or consumption there may be even more
constraints to discontinuous jumps. For example, with binding labour market constraints a discontinuous
increase in output would not be possible without a corresponding jump in the stock variable capital!
Similarly, with insufficient inventories it may be equally difficult for consumption to increase
discontinuously. Finally, it should be noted that these difficulties tend to be asymmetric - discontinuous
decreases not feeing the sams constraints as similar increases.
7 This was the case despite the use of small step sizes (h = 0.1), allowing for a long convergence period
(400 years), and employing the fourth-order Runge-Kutta integration technique.
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4.2 Conversion to an initial value problem

It may be thought possible to obtain the saddle-path of a dynamic system such as that of
the Romer model by solving an initial value problem where the steady-state solution to
the model provides the necessary initial conditions. Up to a point this turns out to be
true, but it is not as simple as might first appear. Since the steady-state values can be
derived from the underlying differential equations together with the transversality
conditions, they constitute a point on the saddle-path. And since the differential
equations are autonomous, that is they do not explicitly involve the independent variable
(time), these steady-state values correspond to a set of simultaneous values of all the
dynamic variables on that path at an arbitrary but common point of time, which may be
defined as initial time, t=0. Thus, the steady-state certainly provides a valid set of initial
values. However, the difficulty with using such initial values is that since all of the
variables are stationary at the steady-state, their time derivatives are zero and the
differential equations provide no indication about how to proceed from that point and so
cannot be integrated, or at least not directly. Nevertheless, there are two ways out of the
dilemma.

4.2.1 Time elimination method

Mulligan and Sala-i-Martin (1991 and 1993) describe and recommend a method under
which, by taking ratios of the differential equations (which must be autonomous), the
original independent variable, time, is replaced by one of the dependent dynamic
variables chosen arbitrarily. Despite the fact that at the steady-state the differential
equation expressions for the new derivatives produce an ̂ determinancy (zero+zero), it is
possible to evaluate the limits of these by employing L'Hopital's rule. Since these limits
are in general finite and non-zero they can then be used as initial values to integrate the
new system. This approach is referred to as the time elimination method. Its great
computational benefit is that it is an initial value problem rather than a boundary value
problem.8 Details of its application to the Romer system are at Appendix 4.2, while a
broad description follows:

Forming the ratios ¥( t ) / <X>(t) and ¥( t ) /p A ( t ) from equations (2.41) to (2.43)
eliminates time as the independent variable and reduces the system to one of only two
linked, non-autonomous ODEs with independent variable O:

<W(t)/dt

6(t) dO(t)/dt d<D

j ^ _
d>(t) " dO(t)/dt [(r-p)/a-(r

(4.9)

(4.10)

where HY and r are to be substituted out in terms of ¥ , <D, and pA via equations (2.44)
and (2.45). In geometrical terms these derivatives furnish the slopes of the saddle-path in
the system's phase-space. However, since ¥„ = 6 . = p*,. = 0, both the numerators

8 In addition, time elimination also reduces the number of linked differential equations to be solved by
one, but the new system is no longer autonomous.
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and denominators in the differential equations are zero at the steady-state and these
slopes cannot be evaluated there. This indeterminancy would seem to preclude
integration of the system from steady-state initial values, but the difficulty can be
overcome by invoking L'Hopital's rule. Denoting the new derivatives as
d¥(O)/dt=¥'(<D) and dpA(®)/d<&=pA'(®), this produces:

and

(4.11)

(4.12)

whereupon substitution of (2.44) and (2.45) for HY and r, and differentiation of the
above numerators and denominators generates a pair of polynomials in ¥'53 and p'Ass of
the form:

and
= 0 (4.13)

(4.14)

in which ai to ai are functions of the parameters and steady-state values (see Appendix
4.2 for details). These equations yield three solutions. One is the desired solution for the
trajectory along which the steady-state is approached, which has been referred to as "the
saddle-path" but which might more descriptively have been called "the stable arm of the
saddle equilibrium". The other two solutions relate to the two "unstable arms" of the
saddle, trajectories which only lead away from the steady-state.9

Of course the existence of three solutions raises the question of which particular one
relates to the stable arm, or saddle-path? Mulligan and Sala-i-Martin (1991) suggest that
a trial and error approach is not inconvenient but that "economic intuition" will often
help to identify it. The phase-space analysis of Section 3.3 more than confirms this last
point, demonstrating that the signs of the slopes of the saddle-path, as well as the regions
of phase-space in which it must lie, can readily be identified. Specifically, in Table 3.1 it
was shown that the saddle-path must lie in either:

• region Rl where *F < 0, 6 > 0, and pA < 0 and so both *F'(O)<0 and p'A(O)<0; or

• in region R8 where *P > 0, 6 < 0, and pA > 0 and again H"(<l>)<0 and p'A(O)<0.

Thus, when equations (4.13) and (4.14) are solved for the benchmark parameter set,
generating the solutions:

¥'»i = -50.8455, p'Assi = -53.7116;
T'ss2 = -32.1058, p'Ass2 = 22.5429; and (4.15)
¥'ss3 = -630.637, p'Ass3 = 1139.28;

the first of these is readily identified as the solution for the saddle-path.

9 The different solutions arise because all three saddle arms satisfy the differential equations and the
steady-state lies on each of them. What distinguishes the stable arm is that it also satisfies the
transversality conditions.
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Having evaluated *¥f
m and p ' ^ it can easily be seen how the 'time eliminated' differential

equations (4.11) and (4.12) could be numerically integrated - for example, by an Euler
process similar to that described by equations (4.3) and (4.4) to (4.8). Furthermore, as
may be seen from the phase-space analysis, by making the small steps in the dependent
variable positive, the R8 portion of the saddle-path is calculated; and making them
negative generates the Rl portion. Computations of the saddle-path based upon the
Euler, Gragg, and fourth-order Runge-Kutta methods of numerical integration are at
Appendix 4.2. They reveal three principal facts:

• first, that for this application at least, the Gragg approach is highly unstable and
divergent and as a result, wholly unsuitable for the problem;

• second, that for sensibly small step-sizes the Euler and RK4 methods track one
another very closely for a considerable duration of the integration, and that in
contrast to Gragg they are highly stable, correctly estimating the phase-space regions
in which the saddle-path lies for unlimited iterations; and

• thirdly, that when the integrations are extended to distant values of the independent
variable (O), the Euler and RK4 methods begin to diverge, with the RK4 results
clearly more consistent and accurate.

Overall taking the computing and data manipulation effort into account as well as; the
requirement for accuracy, the most efficient of the many integration configurations
would seem to be the RK4 based on step-sizes of ±0.001.

If adjustment paths of the dynamic variables over time are required, because time has
been eliminated in this system another initial value problem must be solved for the
original dynamic system, where the initial values are obtained from some appropriate
point on, or interpolated from, the computed saddle-path. However, in practise it turns
out that integrations of these 'second' initial value problems are unstable and rapidly
diverge from the saddle-path and its steady-state (Appendix 4.2).

104.2.2 Eigenvector-backwards-integration method

The eigenvectors of a linearised dynamic system such as the Romer one provide a precise
indication of the directions of trajectories into and out of the steady-state. That is, they
measure the slopes of the saddle arms at the steady-state.11 Mulligan and
Sala-i-Martin (1991 and 1993) note that this fact can be used to identify the "correct"
solution of the 'derivatives-polynomials* generated by the application of L'Hopital's rale
in the time elimination method. While this is certainly true, it is also unnecessary. Given
the eigenvectors of a dynamic system, time elimination is not necessary to convert the
integration problem to an initial value one.

The difficulty with beginning an integration of the original dynamic system from precisely
the steady-state still exists, the differential equations being zero there. But, by taking a

10 This method was used to calculate the 'benchmark saddle-path' in Section 3.3 (Figures 3.11 to 3.16).
11 It can be seen that Hi vision of the first Q¥) and third (PA) elements by the second (<D) elements of the
eigenvectors calcuh- '.f n Section 3.2 for the benchmark parameter set (equation (3.5) in particular)
reproduces, approximately, the values of the saddle-path slopes given in equation (4.15). Calculation
with greater decimal accuracy shows that the correspondence is virtually exact.
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small step away from the steady-state to a nearby point in the direction of the
eigenvector corresponding to the negative eigenvalue, the differential equations then
evaluate to non-zero values. Using the (known) coordinates of this point as initial values,
the original differential equations may then be integrated backwards in time to generate
the saddle-path. Since an eigenvector actually specifies two diametric directions,12 the
initial step away from the steady-state may be in either of these exactly opposite
directions. One of these will be into region Rl of the phase-space, the other into region
R8. Backwards-integration will then generate the Rl and R8 segments of the saddle-path
respectively.

As for the time elimination technique, these integrations have been performed under each
of the Euler, Gragg, and fourth-order Runge-Kutta methods and the results compared in
Appendix 4.2. The principal conclusions from this analysis were precisely the same as
those for the time elimination technique, with the superiority of the RK4 over the Euler
method being even more pronounced. Overall, the most efficient of the integration
configurations was determined as being an initial eigenvector step of ±0.0007yi, and an
RK4 integration with a time step-size of -0.5, or perhaps -0.25 for the R8 arm of the
saddle-path. One advantage this method has over that of time elimination is in the
calculation of adjustment time paths. Since the integration here is performed over time,
such paths are automatically calculated and merely require a simple change of the time
origin, as opposed to the solution of another initial value problem which is necessary
under the time elimination method (and which tends to be divergent).I3

4.3 Finite differences and the GEMPACK software

Two-point boundary value problems such as that posed by the dynamic Romer model
may also be solved by numerical procedures known as finite differences (for example,
see Wilcoxen, 1985). Such methods typically involve the simultaneous solution of a large
number of non-linear equations, a problem in itself. However, this can be solved flexibly
and accurately via a suite of computer software known as GEMPACK.14 The issues
involved in all this are discussed in the following, both in general terms and in respect of
the particular Romer model problem.

4.3.1 Method of finite differences

In common with the fundamental approach to all numerical integration techniques, the
so-called finite differences methods involve the replacement of continuous time
differential equations with discrete time finite difference equation approximations
(FDEs). These are generated by the substitution of finite difference approximations,

12 The information content of an eigenvector is unchanged by scalar multiplication, including by ' -F .
13 Although unnecessary, attempting to solve a second initial value problem in the same way as for the
time elimination method encounters the same sort of divergence problems (Appendix 4.1).
14 The GEMPACK Software System was developed by the Impact Project and KPSOFT in order to solve
large scale economic models, in particular, the ORANI and MONASH models. Its name is an acronym
of 'General Equilibrium Modelling Package'. The approach of integrating a set of intertemporal
difference equations into the Johansen (1960) solution procedure employed by GEMPACK, was due to
Wilcoxen (1987). Also see Dixon et al. (1992).
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constructed from Taylor series expansions in exactly the same manner discussed
previously (Section 4.1), for all derivatives in the original. differential equations.
However, unlike other methods the resulting difference equations are not solved
iteratively. In this sense methods of finite differences are not strictly numerical
integration techniques.

The methods proceed by replacing the continuous domain of the set of differential
equations with a finite grid of discrete points. The FDEs are then used to express the
values of the primitive functions - z(t) from equation (4.1) and the ensuing discussion- at
each of these points in terms of the values at other neighbouring points. The resulting set
of FDEs is then solved simultaneously to yield the values of z(t) at every grid point, an
approximation to the entire path of z(t) over the original domain. Since both the specified
initial and terminal boundary conditions are incorporated in the FDEs, the solution is
constrained to satisfy them.15 Also, this means that under the finite differences approach
there is no difference in the solution procedures for initial and two-point boundary value
problems (see footnote 2).

When the original differential equations are non-linear, as they are in the Romer model,
the resulting set of FDEs will be similarly non-linear. Then, because there are no general
methods for solving such systems, they must be solved by some linearisation technique.
This involves the approximation of the difference equations by linear functions in the
neighbourhood of particular linearisation points. Since the set of difference equations
relates to all points of the grid, the corresponding set of all the necessary linearisation
points must be a complete solution path of the FDE-model over the domain of interest.
Such a solution is often referred to as a base case, and is frequently specified as a steady-
state, or constant path.

As a result of the procedures described above, a two-point boundary value problem
comprising (say):

• n dynamic variables and an equal number of first-order differential equations; and
• with the correspondingly necessary n boundary conditions split as m initial conditions

and (n-m) terminal conditions;

is transformed via a grid of (T+l) points: t = 0,l,...,T; into a problem of solving
[m + nT + (n-m)] = n(T+l) linear equations for the n(T+l) variables over the grid. In
principle this is a simple matter of matrix inversion. The pi* blem can be written as: Solve
the equation:

Ax = b (4.16)

for the vector x of dynamic variables at each grid point; where A is an n(T+l) x n(T+l)
matrix of coeflScients comprising parameter values, and the step-sizes between grid
points; and b is a vector of parameter values, step-sizes, and boundary conditions (Dixon
et al, 1992). And the solution is simply:

x = A~*b

15 Replacement of the original ODEs with an approximating set of FDEs on a grid of points spanning
the range of integration also forms the basis of Relaxation methods. As with shooting methods, here the
procedure is to begin with a trial solution or guess and then to improve it iteratively. As the iterations
improve the solution they are said to relax (see Press et al, 1992).
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In practice the problem of obtaining A 1 may not be that simple. For example, with a
grid of 350 intervals applied only to each of the three dynamic variables, the matrix A
would be of dimension 1053x1053.16 However, it turns out that as a result of the finite
differencing techniques that are used to generate these matrices, they have a well defined
(diagonally banded) structure which allows (4.16) to be solved for x much more simply
by non-inversion matrix techniques such as Gaussian elimination, or LU decomposition
and back-substitution.17 Such techniques are employed within the GEMPACK
software.18 Also, it should be noted here that although linearisation of the dynamic
equations involves an approximation, highly accurate results can be obtained quite easily
via GEMPACK. In feet theoretically, results accurate to any arbitrary level are attainable
(see the reference to Harrison and Pearson (1996a), following equation (4.22) in the next
sub-section.

4.3.2 GEMPACK and its application to the Romer model

Briefly, GEMPACK is:

"...a suite of general-purpose modelling software especially suitable for general and
partial equilibrium models. It can handle a wide range of economic behaviour and
also contains powerful capabilities for solving intertemporal models. GEMPACK
provides software for calculating accurate solutions of an economic model, starting
from an algebraic representation of the equations of the model. These equations can
be written as levels equations, linearised equations or a mixture of the two."
(quotation from the Abstract of Harrison and Pearson, 1996a).19

In general, GEMPACK solves models of the type:

y2,.-.,ym) = 0, fori=l,2,...,n; (4.17)

where the equations g,- may be non-linear and where there are more variables than
equations (m>n), so that (m-n) of the variables must be specified exogenously. The finite
difference equations for the Romer model can easily be written in this way.

For example, with the Euler differencing method the model can be written in the form of
equations (4.4) to (4.8) with a time grid: t = 0,1,...,T (as in Section 4.1). In this case it
comprises (T+l) discrete time-subscripted variables for each of the five continuous time
variables ^(t) , O(t), PA(0, Hy(t), and r(t). Also, in order to conduct simulations with the
model by imposing shocks to parameter values, it is convenient to declare all of its nine

16 While a 350 interval grid is actually used later (in Section 4.5) to conduct simulations on the model,
the matrices whose inverses need to be found in those simulations are considerably larger than
1053x1053; namely 6305x6305 (see Section A4.3.2 of Appendix 4.3).
17 Roberts and Shipman (1972) also mention Gauss-Seidel and Jacobi procedures - also see Press et al
(1992).
18 GEMPACK employs the Harwell Laboratory's "sparse-linear-equation-solving routines MA28 and
MA48"; arid the GEMPACK documentation refers to Duff (1977); and to Duff and Reid (1993). See
Harrison and Pearson (1996a & 1996b).
19 For a complete description of the GEMPACK procedures and suite of programs see Codsi ai> i
Pearson (1988) and the GEMPACK User Documentation for Release 5.2, namely: Harrison and Pearson
(1993,1994,1996a and 1996b). Also, see Codsi, Pearson and Wilcoxen (1991) for an account of the use
of GEMPACK in intertemporal modelling.
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parameters (a, y, £, 6, p, a, r\, H, and L) as variables of discrete time to the software.
Then, the total number of variables confronted by GEMPACK is:

m = (5+9)x(T+l) = 14(T+1)

On the equations side, there are T inter-temporal equations Unking the values of each of
the three principal dynamic variables, ¥ t , Ot, and pAt (viz. one equation links *Fi with ¥0,
a second links ¥2 with ¥1 , . . . , and a T* links ¥ T with ^T- I ) . In addition, there are (T+l)
atemporal equations necessary to define each of the variables Hyt and rt at each grid
point. Finally, there are two steady-state equations specifying the terminal values of the
jumping variables, Or and pA-r- Overall, the number of equations is:

n = 3T + 2(T+1) + 2 = 5(T+1) -1

Comparing the number of variables and equations, it is clear that the number of variables
that must be declared as exogenous is:

m-n =

Similarly, for the fourth order Runge-Kutta method of finite differencing (RK4)
described in Appendix 4.1, the model includes the same (T+l) time-subscripted variables
for each of the five continuous time variables and nine parameters as above. In addition,
as may be seen from equation (A4.1.4), at each time point t=0,l,...,(T-l), there are four
intermediate variables for each of the principal dynamic variables ^( t ) , O(t), and pA(t).
Overall the number of variables in the model is then:

m = (5+9)x(T+l) + 12T = 14(T+1) +12T

Also, under 4th order Runge-Kutta the model contains the same 2(T+1) atemporal
equations and the same 2 terminal value boundary equations as for the case of Euler
differencing. Since it also comprises 3T intertemporal equations Unking the principal
dynamic variables and 12T atemporal equations for the intermediate RK4 variables
(equation (A4.1.4)), the total number of equations is:

n = 2(T+1) + 2 +3T + 12T= 5(T+1) + 12T -1

So again the number of variables that must be declared as exogenous is:

m-n = 9(T+l)+l

Usually these would be the parameter values at all grid points, plus the initial value of the
non-jumping variable, ¥0; and not all of these exogenous variables would be shocked in
any given simulation.

Returning to the description of the manner in which GEMPACK solves the finite
differences formulation of the model, the exogenous variables in (4.17) are denoted by x,
and the remaining, endogenous variables by z. Then, following Dixon et al (1982) and
Pearson (1991), the general type of model solved by GEMPACK may be written as:

or

g i(z1,z2,...,zn;x1,x2,...,xm_n) = 0 for i=l,2,... ,n

g,(z,x) = 0 for i = l,2,...,n
(4.18)
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where z and x are nxl and (m-n)xl vectors of the endogenous and exogenous variables
respectively.

For such models the fundamental problem addressed by GEMPACK is a simulation one
of the form: "Given that z=zo and x=xo is a solution of the model (4.18), find the values
of the endogenous variables z=z, (where Z,=ZO+ATZ), which solve the model when the
exogenous variables are shocked by ATX from x=xo to X=*S=XO+ATX".20 ^ n e w a v t 0

obtain numerical solutions to these simulation problems is to linearise the model
equations by differentiation, make the approximation that the overall shock ATx to the
exogenous variables can be considered as differentially small, and then solve the
resulting linear system of equations for ATz by matrix algebra. Thus, from (4.18):

for i = l,2,...,n

whereupon substituting ATXk « dxk and ATz,«dZj generates the matrix solution:

where

(4.19)

(4.20)

ATz is the nxl vector (ATZi,...,ATZn)T = (zsi-zou-.^ZsnZon);
ATx is the (m-n)xl vector (ATx,,...5ATX(m-n))

T = (xsi-x0i,...,xs(m.nrzo(m.n))
T; and

A and B are the nxn and nx(m-n) matrices of partial derivatives 9gj/9z, and
dgi/dxk respectively.

Such an approximate solution, where the entire shock is taken to be differentially small,
is the Johansen solution. It may be improved by breaking the overall exogenous shocks
down into smaller sub-shocks and generating an iterative solution by an Euler type of
process. Indeed, as the sub-shocks are made smaller and smaller, the numerically
computed solution converges to the true solution (see Dixon et al., 1982; and Johansen,
1960). This suggests a link between simulation modelling problems of the type described
above, and initial value problems with differential equations which were discussed earlier
in Section 4.1. Pearson (1991) has shown formally how such simulation problems can be
expressed as initial value problems for a set of ODEs where the dependent variables are
the endogenous variables z; and the independent variable v, measures fractions of the
overall shocks to the exogenous variables x. For this correspondence, v is defined by:

x = x0 + v(xs - x 0 ) = x0 + vATx (4.21)

so that when v = 0, x = xo; and when v = 1, x = xs. Using this relation and dividing
equation (4.19) by "dv" produces the ODE set:

dz
— = -A" BATx (4.22)

In this way, the initial value problem corresponding to the earlier simulation problem is
as follows: "Given z=zo when v=0, and given the ODEs (4.22), find z=z, when v=l."
This can then be solved by any of the numerical integration methods for initial value

20 The subscript " F in ATZ and ATx denotes that these changes are the 'total' changes in z and
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problems in exactly the way described earlier in Section 4.1 and Appendix 4.1.21 The
GEMPACK software offers the Euler, Gragg, and the midpoint (or 2nd order Runge-
Rutta) methods, each of which may be extrapolated by the Richardson procedures for
either two or three sets of steps (see Appendix 4.1).22 Such methods naturally provide
great improvements in accuracy over the single step Johansen solution. Theoretically,
results accurate to any arbitrary level are attainable simply by taking enough steps
(Harrison and Pearson, 1996a).

4.4 Specification of the solution method

The sensitivity of the Romer system steady-state to changes in its parameter values was
examined in Section 2.4.2 where, after changing some parameter the resultant new
steady-state was simply compared with the original (benchmark) steady-state. Such
analysis is referred to as comparative static and its shortcoming is that it ignores the
dynamic path between equilibria, that is the tramient dynamics.23 Here, the object is to
define precisely how to calculate these dynamics. The three candidate methods are those
just discussed in Sections 4.2 and 4.3: time elimination; eigenvector-backward
integration; and finite differences implemented via GEMPACK. In the following the
procedures necessary, under each of these methods, to calculate the dynamic paths that
result from different types of shock are examined and compared. The aim being to
identify a preferred method.

4.4.1 Simulating unanticipated shocks

Time elimination technique

First, the post-shock steady-state needs to be calculated and the results substituted into
the coefficients of polynomials of the form of (4.13) and (4.14). The appropriate
formulae are at Appendix 4.2. These must then be solved to obtain the derivatives of the
time-eliminated system at this steady-state (¥ '« and p'Ass). Next, the initial value problem
for the time eliminated system must be solved to generate the post-shock saddle-path for
values of the non-jumping variable Q¥) which include its pre-shock value - that is, for
either its Rl or R8 saddle-path segment as appropriate (Section 3.3.1). This numerical
solution, together with the pre-shock value of XF, is then used to interpolate the
immediate post-shock values of the jumping variables (d> and pA). Finally, these values of
x¥, O, and pA are used as initial values to solve the original differential equations (those

21 Note that for any small change Av in v, where Av corresponds to the step-size in numerical
integration, the corresponding small change in x is found from (4.21): Ax = (dx/dv)Av = ATxAv; and the
resultant small change in z is then obtained from (4.22) as: Az = (dz/dv)Av = -A'BATXAV.
22 In practice GEMPACK is usually implemented to solve for percentage changes in the endogenous
variables, p_z = (Az/z)100, given exogenous shocks which are also expressed as percentage changes,
p_x = (Ax/x)100. Clearly, as long as the base levels z and x are never zero, the percentage change
variables can simply be calculated directly from levels changes. To calculate them directly multiply
(4.19) by Av/dv, then (4.22) becomes: p_z = -C !D.p_x, where C = ([dgi/dzJ.Zj), and D = ([dgj/dxJ.Xk).
23 Of course the system need not be in equilibrium at the time of a shock, and its subsequent path need
not be examined all the way to its new steady-state.

Chapter 4 195



for which time is the independent variable) with the post-shock exogenous variables or
parameters, to obtain the adjustment path. But note that this last integration tends to be
unstable (Appendix 4.2).

Eigenvector-backwards-integration method

Here again the post-shock steady-state first needs to be calculated. Under this technique
the results must then be substituted into the coefficients matrix of the linearised system
(Appendix 3.1), from which the eigenvectors corresponding to the negative eigenvalue
must be computed. A small fraction of these eigenvectors are then used to take a small
step away from the steady-state and 'towards' the pre-shock value of the non-jumping
variable, *¥. From the resulting point, an initial value problem is solved to compute the
relevant section (either Rl or R8) of the saddle-path. The immediate post-shock values
of the jumping variables (O and pA) are then interpolated as in the time elimination
method; and finally, the time variable is re-numbered to increase from t=0 at the pre-
shock value of the non-jumping variable towards the post-shock steady-state.

Finite differences and GEMPACK

Here the principal effort is that of writing two input files for the GEMPACK software.
The first of these is a TABLO Input file, which specifies the model and its finite
differences implementation. In particular, it specifies all variables and parameters; the
(non-linear) dynamic equations and the method of their finite differencing; the boundary
conditions; and the (pre-shock steady-state) base case solution.24 TABLO Input files are
model specific, so all individual simulations can be run from the one file. The second is a
GEMPACK Command file to carry out a particular simulation. This defines the closure
of the model (which variables are to be endogenous and which are to be exogenous), the
shocks to the exogenous variables; and the method of multi-step solution - that is Euler,
Gragg, or mid-point. Unanticipated shocks are simply applied at initial time (time zero).
Although these Command files are simulation specific, only negligible alterations were
necessary for the different simulations. The only other issue in obtaining results under
this approach is the simple conversion of the GEMPACK output from its 'changes
relative to the base case' form, to absolute levels. Details of the TABLO and Command
files are at Appendix 4.3. Also see Codsi, Pearson and Wilcoxen (1991).

2 4 GEMPACK subsequently converts this to a FORTRAN program, compiles and links it, and produces
an executable (TABLO generated) program from it. Part of this process involves the linearisation of the
model equations for which GEMPACK offers two methodological choices: percentage change
differentiation and simple change differentiation. It has been found that for certain models and
simulations, the former of these, unlike the latter, can produce a similar instability in the numerical
results to that encountered with the Gragg method of numerical integration in Appendix 4.2. As the
number of steps in the integration increases, the final results exhibit rapidly widening oscillations,
making any Richardson type extrapolations (Appendix 4.1) inaccurate (Harrison and Pearson, 1994).
For this reason the GEMPACK option "ACD" (always use change differentiation of levels equations),
has been adopted here in producing TABLO generated programs.

4.4.2 Simulating anticipated shocks

Time elimination technique; and Eigenvector-backwards-integration method

The post-implementation adjustment path can be readily obtained from the post-shock
saddle-path, calculated by either of these methods. Referring back to the schematic phase
diagram Figure 3.17, this may be represented, for example, by the path from B to ssl.
But the problem is that the point B is unknown. Since point A is also unknown, to
calculate the adjustment which occurs before implementation - this is the path ssO to A to
B - it is necessary to solve a two point boundary value problem over the time interval
from anticipation to implementation, t=0 to t=I say. In this problem the initial value of
the non-jumping variable, is simply its known pre-shock value ^(0)=¥0 ; the final point
0F(I), <3>(I), PA(I)), is constrained to lie on the post-shock saddle-path; and the initial
values of the jumping variables, <3>(0) and PA(0), are unknown.

This sounds like a fairly standard two-point boundary value problem. Nevertheless, it
presents considerable difficulty for the explicit specification of its terminal condition; that
is, in the precise definition of what target to 'shoot at'. If the saddle-path were known
analytically, say W = f(G>,pA), the target would be {O(I), PA(I)} such that
^(1) = f(O(I),pA(I)). However, the saddle-path is only known numerically, and then only
at a discrete and finite number of points. As a result, some procedure for comparing and
interpolating the intermediate shooting results with those from the saddle-path
integration would have to be devised (and programmed) in order to sensibly update the
'guesses' for the initial values of the jumping variables and so to take another shot at the
saddle-path. In fact, in the case of these anticipated shocks, knowledge of the saddle-
path is of no great help in solving the two-point boundary value problem. In the absence
of any such knowledge the terminal condition could readily be specified as the post-
shock steady-state after a suitably large time; and the integration could proceed
according to the pre-shock dynamic equations for the time interval (0,1), and thereafter
according to the post-shock equations.

Finite differences and GEMPACK

Here the time of anticipation or announcement is taken as the initial time (t=0) and the
shock is simply introduced into the equation set from the time of its implementation
(t=I). In this way the pre-shock equations apply up to the time of implementation, and
the post-shock ones apply from then on. Thus, when the entire system is solved
simultaneously, adjustment in the period between announcement and implementation
occurs under the influence of the pre-shock equations, and after implementation it is
governed by the post-shock equations. In this way the coordinates of the points A and B
in Figure 3.17 are solved for automatically.

4.4.3 The solution method: finite differences and GEMPACK

It is abundantly clear that the method of finite differences, implemented via the
GEMPACK software, is far and away the best of the three methods analysed in solving
for the transient dynamics of the Romer model in response to exogenous shocks.
Simulation of unanticipated shocks is considerably simpler with these procedures than
with either the time elimination, or the eigenvector-backwards-integration method. It is
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also more accurate since it avoids the need for interpolation. However, it is the
simulation of anticipated shocks that most clearly establishes the superiority of the finite
diflerences-GEMPACK method. For these type of shocks it is not otherwise possible to
avoid confronting a two-point boundary value problem and some sort of shooting
procedure, and a difficult one to boot, even when the post-shock saddle-path has already
been numerically calculated.

Having thus chosen as the numerical solution method for the model, a finite differences
approximation which is to be solved by GEMPACK, two issues remain to be resolved
before simulations can commence. The first is the determination of the actual finite
differencing procedure for the differential equations whose integration is sought via
GEMPACK. And the second is the specification of the solution method for the initial
value problem that GEMPACK must actually solve in order to implement the exogenous
shocks and effect the simulations.25 There are a number of different choices to be made
for each broad issue, all involving varying degrees of trade-off between numerical
precision and computational effort. These matters are analysed in Appendix 4.3 and a
resultant 'standard configuration' for the finite differencing-GEMPACK approach
identified. Namely:

4th order Runge-Kutta finite differencing with an uneven grid of 350 time
intervals extending over 250 years and with step-sizes varying between 0.125 and
5 years (Appendix Table A4.3.1 contains the details); and a Gragg integration
technique extrapolated from 12, 24, and 36 steps as the GEMPACK solution
method for implementing exogenous shocks.

4.5 Numerical results of simulations

The dynamic properties of the full non-linear model may now be evaluated numerically.
In order to furnish a degree of realism this is performed here by using the model to
examine the dynamic impacts of a variety of economic shocks. Of course, given the high
level of aggregation of the model and its lack of policy variables (there is no Government
sector) these analyses are merely stylistic. Nevertheless, the economic effects generated
are sensible and interesting. The general approach to the simulations was to commence
with the system in equilibrium at its benchmark steady-state (Table 2.2), and then to
perturb this via shocks to its parameters or variables. This initial benchmark steady-state
was also used as the base case about which the post-shock solution was calculated (via
GEMPACK) as percentage change variations. With the capital-technology ratio *¥ as a
non-jumping (stock) variable, its initial component *Fo is determined exogenously by the
boundary conditions.26 Overall seven simulations are reported:

• an unanticipated and sustained 10 per cent rise in the profit share of income,
simulated by raising the parameter y by 10 per cent (Section 4.5.1);

25 It is perhaps somewhat ironic that having abandoned the iterative initial value methods of numerical
integration in favour of the finite differences approach, it turns out that the manner in which
GEMPACK solves these simulation problems is precisely by the methods of initial value problems.
26 While *P0 is not usually shocked, it is in one of the simulations that follow (Section 4.5.6).
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• both an unanticipated and an anticipated sustained rise of 15 per cent in the
productivity of researchers, simulated by increasing parameter C, by 15 per cent
(Section 4.5.2);

• an unanticipated but temporary rise of 15 per cent in the ordinary labour share of
wages, simulated by decreasing parameter a by 20 per cent (Section 4.5.3);

• a program of immigration designed to raise the overall level of human capital by 15
per cent over five years, simulated by a series of 20 cumulating shocks of 0.75 per
cent each to the variable H(t) (Section 4.5.5);

• a sudden temporary reduction of 5 per cent in the capital stock, simulated by cutting
the value of variable ¥o by 5 per cent (Section 4.5.6); and

• a gradual loss, of 20 per cent over three years, in the human capital employed in
research, simulated by a series of negative shocks to the variables HA(t) and H(t),
cumulating to -20 per cent and -5 per cent respectively (Section 4.5.7).

4.5.1 An unanticipated rise in the profit share of income

A rise in the profit share of income from goods production may be thought of, for
example, as being due to some change in Government tax policy. Since this profit share
is given by the Cobb-Douglas parameter y from the production function (Appendix 2.1),
a rise of say 10 per cent could be simulated with the Romer model by shocking y by 10
per cent. The results of such a simulation are reported below in Figure 4.1 to Figure 4.6
and in Table 4.1; but before these results are examined it is instructive to think about the
a priori effects which may be expected. That is, to try to deduce the likely effects from
qualitative economic reasoning.

In this respect it helps to think about the simulation in different terms. In particular, since
y is the output elasticity of capital (y =[dY/dK]Y/K=[dY/Y]/[dK/K] from Appendix 2.1),
an increase in this parameter will raise the proportional output response from any
increase in capital. In this way raising y has the effect of increasing the productive
efficiency or the efficiency of usage of capital at all levels. It should be noted that what is
meant by the term the productive efficiency of capital is not the same as the
'productivity of capital' (in marginal or in average terms). While the marginal and
average productivities of capital vary with the scale of usage or the number of units of
capital, the concept of the productive efficiency of capital applies equally to all units and
does not vary with levels of usage. Diminishing returns mean that both the average and
marginal productivities of capital fall as the amount of capital rises. Raising the
parameter y also lowers both of these measures.27 In this way raising y is like having
extra capital. Since this is also the effect produced by capital saving technical or

2 7 With output given by Y ^ ^ A ' ^ ' ^ K ? , where N=HY
 l-aLa is a measure of composite labour (see

Appendix 2.1), the marginal product of capital is MPK=5Y/aK=yr|'1fA1'rN1-irKT-1=7Y/K=7APK, and the
average product of capital is APK=Y/K. Differentiating these with respect to capital demonstrates the
existence of diminishing returns: dMPK/dK—yO-y^A'^^lC'^O; and similarly dAPK/8K<0.
To see how capital productivity varies with y, use equation (2.29) to write the average and marginal
products of capital as APyr(r+6)l-/1, and MPK=(r+6)/y; and consider the interest rate at its steady-state
level as given by (2.56): rsKa^H+pyO+ao/y). Then differentiate with respect to y to obtain:
SMPK/dy=(l/y) 5(r+8)/dy - (r+dyfHWftrJQ+Y/™) - (rss+8)]<0; and similarly 5APK% <0
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organisational change, a rise in y can be thought of as reflecting just such an
improvement, perhaps via some policy of microeconomic reform intended to raise the
productive efficiency of capital. With this in mind the issue of gauging the a priori
impact of raising y may now be examined.

An increase in the productive efficiency of capital could be expected to stimulate
investment as producers moved around their transformation frontiers substituting capital
for labour, which takes the form of human capital (HY) here. This could then be expected
to raise rental rates as reflected by the interest rate (r), thereby moderating the demand
for capital until a new equilibrium was established. Increased investment would also raise
the demand from the capital goods producing sector for new designs. In turn, this would
increase the demand for human capital in research (HA), and would push up the price of
designs (pA) until sufficient research activity were stimulated to re-establish equilibrium
between the growth of capital and the growth of designs.

Although the growth rates of technology, output and consumption will all increase, these
are secondary to the increase in capital which should therefore raise the capital-
technology and the capital-output ratios ( ¥ and kcp); and lower the consumption-capital
ratio (<D). Similarly, both the narrow and broad measures of the savings rate (sN and sB)
could be expected to rise; and finally, higher productive efficiency implies a higher rate of
economic growth.

This qualitative analysis is supported by the numbers for the pre- and post-shock steady-
state equilibria (Table 4.1) These numbers may also be seen respectively, as the values
corresponding to the 'time = -10 to zero' and (approximately) as the 'time = 100'
abscissae in Figure 4.1 to Figure 4.5. However, this analysis is simply one of
comparative statics and could have been undertaken and confirmed in the context of the
steady-state formulations of Chapter 2, no dynamic analysis of the model being
necessary.» But this is not to say that the dynamics are unimportant. On the contrary
the dynamic analysis of this simulation reveals an essential limitation of the comparative
statics approach. Namely, that for most variables there can be no presumption that the
transition path towards the new (post-shock) equilibrium is smooth, nor even monotonic.

From previous discussions, both in the current chapter and in Chapter 3, it was known
that the transition paths for most variables would not be smooth - immediate post-shock
discontinuities or jumps being necessary to take the system to its new saddle-path.2* As it
turns out these jumps are sometimes (perhaps often) in the 'opposite direction' to that
ol the subsequent adjustment paths towards the new equilibria so the overall transition
path is not monotonic. There are two possibilities: First, that the initial jump is perverse
but that the subsequent adjustment accords with the direction of change from the
comparative statics. And second, that while the initial jump takes a variable away from
its pre-shock level in the direction of its post-shock steady-state, it overshoots this new
equilibrium level with the result that the subsequent adjustment must be perverse in

2 ' 3 ' W h k h ^ ^ aUd) ^ ^ ^ y - 8 ^ c h ^ ^ Precisely this

» The capital-technology ratio T(t) is the usual exception. It is also conceivable, though unlikely that

^ Z ^ X ^ Z ^ t 0 * * ~other variable(s) "•"not need > h
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terms of the comparative statics. In terms of the results in Table 4.1, the initial jumps
expressed as a percentage of the total adjustment (column 5) will be negative in the first
case, and greater than 100 in the second.

Table 4.1: Simulation results of an unanticipated and sustained 10 per cent rise in the
capital share of income (y) from time zero, benchmark parameter set

Dynamic
variable

T(t)
O(t)
PAW
r(t)

HA(t)
gop(t)
sB(t)
SNC)

kop(t)
P*p(t)

Final
steady-state

10.48
0.2265
11.94

5.99%
27.7%
1.66%
25.0%
20.0%
3.31

4.09%

Total adjustment
(% of initial ss)

61.8
-17.4
26.4
6.85
8.33
8.33
13.2
19.0
16.5

-17.0

Initial jumps as a % of:
initial ss

0.00
1.00

-13.0
49.3
-23.1
63.1
9.89
25.3
-3.77
-27.9

VUife"
total adjustment (years)

0.00
-5.75
-49.2
720
-277
757
74.9
133

-22.9
164

19(19)
15(16)
18(28)
15(0)

15(46)
15(0)
15(0)
17(0)

17(22)
16(0)

3A life"
(years)
37(37)
31(32)
36(46)
31(0)

31(63)
30(0)
31(1)
34(0)
34(39)
33(0)

d:\phd\ganp3ck\mktrom\10gCM 0g0sim.xlu<mklg0)

Note: a The first set of results give the time taken for 14 and % of the remaining adjustment
after the initial jumps; while the figures in parentheses give corresponding results from the pre-
shock levels.

Figure 4.1: Dynamic effects on ¥ , O, and PA of an unanticipated and sustained
10 per cent rise in the capital share of income (y) from time zero,
benchmark parameter set
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For the simulation considered here, the first of these 'non-monotonic' possibilities is
exhibited by:
• the consumption-capital ratio, & and the price of technology, pA (Figure 4.1);
• the growth rate of technology, gA (Figure 4.2);
• the allocation of human capital to research, HA (Figure 4.3);
• the capital to gross product ratio, ICGP (Figure 4.4); and
• the convergence coefficient for the consumption-capital ratio, p<& (Figure 4.6).

Similarly, the second 'non-monotonic' possibility is followed by:
• the rates of growth of capital, output, gross product and consumption, gic, gy, gGP,

and gc respectively (Figure 4.2);
• the interest rate, r (Figure 4.3);
• the narrow concept of savings (equivalent to the investment share of output), sN

(Figure 4.4); and
• the convergence coefficients for output per design, the price of technology and the

capital-technology ratio, py, ppA, and P^ respectively (Figure 4.6).

Of all the different variables analysed in this simulation, only the capital-technology ratio
*¥, and the broad savings measure sB, show monotonic adjustment paths. The former is
due to the initial boundary condition precluding any discontinuity. Thus, only the latter
exhibits an immediate post-shock jump that is in the direction of the new steady-state and
does not overshoot it (Figure 4.1 and Figure 4.4 respectively).

Figure 4 3 : Dynamic effects on r and HA of an unanticipated and sustained 10
per cent rise in the capital share of income (y) from time zero,
benchmark parameter set
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Figure 4.2: Dynamic effects on the growth rates of an unanticipated and
sustained 10 per cent rise in the capital share of income (y) from time
zero, benchmark parameter set
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Figure 4.4: Dynamic effects on Su, sN, and kep of an unanticipated and sustained
10 per cent rise in the capital share of income (y) from time zero,
benchmark parameter set
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Figure 4.5: Dynamic effects on the factor shares of gross income from an
unanticipated and sustained 10% rise in the capital share of income
(y) from time zero, benchmark parameter set
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Figure 4.6: Dynamic effects on the convergence coefficients from an
unanticipated and sustained 10 per cent rise in the capital share of
income (y) from time zero, benchmark parameter set
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Because of this non-monotonic nature of the adjustment process, some of the shorter-
term effects of economic change, whether policy induced or otherwise, may have the
opposite sign to their longer-term impacts. As the model is founded upon economic
agents who optimise their decision making, in a sense this is the best that can be done.30

Nevertheless it does raise the issue of the short-term adjustment costs which need to be
traded-off against perceived long-term benefits. Also, in a richer model with different
classes of consumers (such as lenders and borrowers perhaps), there would be trade-off
issues concerning the income distribution effects of economic change.

Suppose that the overall change in some variable from its initial level to its final steady-
state is considered beneficial, then an immediate post-shock jump in the opposite
direction to this change would presumably be considered deleterious. Or, if the overall
change in a variable is thought to represent some sort of trade-off cost for other benefits
of economic change, then an initial jump in this variable which significantly overshoots its
new steady-state level will produce even higher trade-off costs. In such cases there will
therefore be adjustment costs to be borne in the shorter term that must be taken into
account in any assessment of the overall efficacy of the economic change. Moreover, as
demonstrated in this simulation, the shorter term can persist for many years.

For example, while the eventual rise of 0.4 percentage points, or 6.8 per cent, in the
interest rate may be considered a justified or worthwhile price to pay for the overall 16.5
per cent, or 0.47 point, increase in the economy's capital-output ratio (Table 4.1), such
figures may not be the best basis of comparison. Two other points also seem highly
relevant to the calculation. Namely:

• the feet that the capital-output ratio initially falls by almost 4 per cent, taking five
years to recover its pre-shock level (Figure 4.4); and

• the feet that the interest rate initially jumps by 50 per cent, and only slowly declines
so that even after 20 years it remains 33 per cent above its pre-shock level (Figure
4.3)

Thus, a better idea of the relative costs and benefits may be to compare their averages, or
perhaps better still, their integrals over some (finite) time horizon. When such
calculations are made here, the benefit-cost ratios obtained are considerably smaller than
those implied by the simple single time-point values, which are of course, asymptotic to
the steady-state ratio of about 1.22 « 0.47/0.38 (Figure 4.7).

All these issues emphasise the explanatory power of the dynamic model over the static
one. From a comparative statics analysis of the model's steady-state formulation it was
not possible to identify either the extent or the direction of the initial jumps nor,
consequently, the direction of the subsequent smooth adjustment towards equilibrium.
Some idea of the dynamic behaviour may be possible from more thorough qualitative
economic reasoning, though in some respects it may be impossible or at least ambiguous
because of opposing influences. A rationalisation of the results for thk. simulation might
be as follows:

30 While this 'market solution' to the model is based upon optimised behaviour by economic agents,
there are certain market imperfections which mean that the solution is not a Pareto optimum. The
economic welfare implications of this are examined in Chapter 5.
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figure 4.7: Dynamic trade-off 'costs' of higher interest rates for the 'benefits' of
a higher capital-output ratio resulting from an unanticipated and
sustained 10 per cent rise in the capital share of income (y) from time
zero, benchmark parameter set.
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Autonomously increasing the productive efficiency of capital makes capital suddenly
more valuable to final goods producers and so instantaneously raises the demand for it.
In the very short term, before the supply of capital can adjust, such increased demand
merely raises rental prices and the rate of return on capital, and with them the Merest
rate (r), which therefore jumps upwards. Also, since more goods can suddenly be
produced (and then consumed) with the same capital stock, the rates of growth of both
output and consumption (gy and gc) J the consumption-capital ratio (<f>) all rise
spontaneously, while the capital-outf :! ratio (kop) fells spontaneously. Further, since
more goods can be produced with the same stock of technology, the instantaneous
demand for designs falls, and with it, their price (pA), their rate of growth (gA), and the
demand for the human capital resources (HA) which produce them.

Later, when the supply of capital begins to adjust, the 'economic effects story' more
closely resembles that already told in the comparative statics case: Greater efficiency in
the usage of capital stimulates investment as producers move around their transformation
frontiers substituting capital for labour. Such investment gradually satisfies the demand
for extra capital, thus reducing the level of excess demand and with it the value of
capital as reflected by its rate of return and the interest rate, which eventually decline to
new equilibrium levels where all extra demand is satisfied. Since the new equilibrium
demand for capital is surely greater than that before its rise in productive efficiency, the
final rate of return and interest rate are also be greater than their pre-shock levels. Also,
as more capital is produced and installed the consumption-capital ratio falls over time,
ending up lower than its pre-shock level since more resources are devoted to capital
creation than to the production of consumables at the new steady-state. Similarly, the
capital-output ratio rises to a higher steady-state level. Since capital is more efficiently
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employed the greater the degree of its specialisation, any rise in capital will be
accompanied by increased demand from the capital goods producing sector for new
designs from the research sector and consequently, increased demand by the research
sector for human capital. In this way, over time the gradually increasing capital stock
pushes up both the price of designs and the employment of human capital in research to
higher steady-state levels.

The speed of the adjustment process in the simulation is indicated by the half-life and
three quarter-life figures of Table 4.1 (columns 6 and 7).31 Two sets of results are given.
The first indicate the time taken, in years, for one hah0 and for three quarters respectively
of the gap between the immediate post-shock and final steady-state levels of the
different variables to be closed. The second set of figures (in parentheses) use the
immediate pre-shock level instead as the starting point. In this case wienever the initial
jump of a variable exceeds half (three-quarters) of the total adjustment, the haJX-life
(three quarter-life) is zero'! Also, under this second definition there are wide variations in
the half-life and three quarter-life results for different variables. However using the
immediate post-shock level as the starting point also raises difficulties. For example,
whenever the initial jump in a variable is towards, but less than half way to its final
equilibrium this method of calculation 'exaggerates' the half-life adjustment time; while
when the initial jump is away from the new equilibrium it 'understates' it. For these
reasons it seems best to use the half-life of the non-jumping variable *F in any description
of the speed of convergence of the system as a whole; and to use both the size of the
initial jumps and the post-jump half-lives to describe the adjustment of particular jumping
variables.

The half and three quarter-life results from this simulation indicate that the process of
economic adjustment to a 10 per cent shock to the profit share of income would be quite
slow. As a whole the system could be expected to take almost two decades to complete
half of its total adjustment, and three to four decades before three quarters of the change
had eventuated. These figures accord well with those obtained from the magnitude of the
negative eigenvalue of the linearised coefficients matrix for the model as calculated in
equation (3.20) of Section 3.2.3.

4.5.2 An anticipated rise in the productivity of researchers

Suppose that at some date the Government announces that a policy of microeconomic
reform measures designed to improve productivity in the research sector is to be
implemented in five years time. An economic assessment of the direct effects of the
measures estimates that :'h:y will raise the productivity of researchers by some 15 per
cent; and the next question is: 'what will be the broader, or overall, economic impact of
the policy measures?' To answer this with the dynamic Romer model a simulation is run
where the research productivity parameter C, is increased by a factor of 1.15 from the
time the measures are to be implemented (t=5 years), and the model is solved from the
time of announcement (t=0) for all future time points. The results are shown in Figure

31 The 'half-life' concept of adjustment was introduced in Section 3.2.3 in relation to the linearised

model.
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4.8 to Figure 4,15 and in Table 4.2 below. Unlike the previous simulation, where the
shock to the capita! share of income/productive efficiency of capital came as a surprise to
the market, here the impending shock has been announced in advance and so is
anticipated. The Figures here also show the results of an unanticipated 15 per cent rise in
C, from time t=5 years, reflecting the situation where the same policy measures are still
implemented at time t=5, but where there was no prior announcement. This enables
ready comparison of the effects of the anticipated shock with those of the same shock
when it comes as a surprise to the market.

Figure 4.8: Dynamic effects (over 100 years) on x¥, G>, and pA of both an
anticipated and an unanticipated sustained 15 per cent rise in the
productivity of researchers (c,) from time t=5 years, benchmark
parameter set
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To obtain an a priori understanding of these results, first consider qualitatively the broad
comparative statics effects that might be expected from an autonomous increase in the
productivity of researchers: Such a shock would make designs cheaper to produce,
thereby reducing their price pA (Figure 4.8 and Figure 4.9), and raising the demand for
them from the capital goods producing sector. More researchers would then be required
in order to satisfy this increased demand, so the allocation of human capital to research
HA would rise (Figure 4.12), as would the growth rate of research output gA (Figure
4.10).

Increased productivity is like having extra resources, so output growth will rise and so
will that of consumption (Figure 4.10 and Figure 4.11). Greater consumption growth in
the fixture suggests that less savings will be required to generate consumers' desired (and
optimal) intertemporal pattern of consumption. A lower investment-output ratio sN,
could be expected to result (Figure 4.13). With relatively more resources being devoted
to research and the production of output for consumption rather than for capital
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generation, the capital-technology ratio ^ can be expected to fell; the consumption-
capital ratio <J> to rise; and the capital-gross product ratio kcp to fall (Figure 4.8, Figure
4.9, and Figure 4.13).

Figure 4.9: Dynamic effects (over 25 years) on HP, <t>, and DA of both an
anticipated and an unanticipated sustained 15 per cent rise in the
productivity of researchers (Q from time t=5 years, benchmark
parameter set
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Figure 4.10: Dynamic effects on the growth rates of both an anticipated and an
unanticipated sustained 15 per cent rise in the productivity of
researchers (Q from t=5 years, benchmark parameter set
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To support the higher growth of consumption (so future consumption is greater than
current consumption) the return to savings and hence the interest rate r, must also rise
(Figure 4.12). Finally, the increase in human capital resources devoted to research and
the complementary reduction in those for the production of goods, means that the share
of gross product to HA can be expected to rise while the shares to the other factors (Hy,
L and K) can be expected to fall (Figure 4.14).

Figure 4.11: Dynamic effects on the growth rates of output and gross product (gY

and gGP respectively) of both an anticipated and an unanticipated
sustained 15 per cent rise in the productivity of researchers (Q from
t=5 years, benchmark parameter set.
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Now consider the dynamics more explicitly. In particular, consider those resulting from
the unannounced policy shock. By suddenly and unexpectedly making designs cheaper
to produce, the rise in research productivity causes their price pA to fall immediately
(Figure 4.8 and Figure 4.9). Thus, the increase in demand for designs and so for the
human capital necessary to produce them is also immediate. Higher wages are offered,
and since HA is a flow not a stock variable, it responds by jumping spontaneously to a
higher level (Figure 4.12). Here it helps to think about hours worked rather than numbers
emplov-d; and to suppose that at least some individuals divide their working hours
between research and production.

Movements in the growth rate of designs (or technology) gA, in response to any shock
usually mirror those of HA. Here this indirect effect via HA is boosted by a direct
response to the sudden rise in the productivity parameter C, (see equation 2.1). Thus, the
growth of designs also jumps upwards and to a relatively higher degree than does HA

(Figure 4.10). But since the number of designs, like capital, is a stock variable, it is fixed
in the very short run. This is why the capital-technology (or capital-designs) ratio VP,
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does not jump. Later, as the stock of designs begins to rise their price gradually falls
further until this reduction eventually restrains their growth at a new equilibrium with a
lower price and a higher growth rate than initially (Figure 4.8, Figure 4.9 and Figure
4.10).32 With HA and gA linked inexorably by equation (2.1), after its initial jump the
allocation of human capital to research declines gradually towards its new equilibrium
level (Figure 4.12).

Figure 4.12: Dynamic effects on the interest rate and share of human capital
devoted to research of both an anticipated and an unanticipated
sustained 15 per cent rise in the productivity of researchers (Q from
time t=5 years, benchmark parameter set
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As noted before, higher research productivity implies greater output growth in the
future.33 As it turns out, optimising consumers respond to this by immediately raising
their level of consumption, but lowering its instantaneous rate of growth. Later they
gradually increase their consumption growth towards its new equilibrium (Figure 4.9 and
Figure 4.10). To support this behaviour the return to savings, that is the interest rate,
also first falls and then gradually rises to a new steady-state higher than before (Figure
4.12). The sudden transfer of human capital resources from the output sector to research
(from HY to HA) causes output Y to fall momentarily (recall that the other factors of
production are all fixed in the very short run at least). In combination with the jump in
consumption, this causes investment ' A thereby both the rate of growth of capital gK
and the narrow savings rate sN to fall .ddenly (Figure 4.10 and Figure 4.13). The effect

32 Or looking at this the 'other way round': the rising demand restrains the felling prices. In any case,
the two eventually equilibrate.
33 Greater research productivity allows capital to be employed more efficiently by allowing it to be
spread over more designs.
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on the broad level of savings SB however, is ambiguous. While savings in the form of
research increases, those in the form of capital accumulation decline. The results show
that the two influences almost balance, the latter prevailing only slightly (Figure 4.13).

Figure 4.13: Dynamic effects on SB, SN, and kcp of both an anticipated and an
unanticipated sustained 15 per cent rise in the productivity of
researchers (Q from time t=5 years, benchmark parameter set.
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In this 'balanced growth equilibrium' model, the growth rates for all the non-stationary
variables eventually converge to the same new steady-state level. Nevertheless, there are
significant differences in their transient dynamics, both in terms of their initial jumps and
of their subsequent smooth adjustment. Despite the sudden large upward jump in the
human capital devoted to research HA, since it must decline gradually thereafter, its
instantaneous growth rate gHA must be negative over the whole adjustment period,
including immediately after the shock is imposed. Thus, the rate of growth of human
capital employed in the output sector gHY must be positive over the whole period. Now
the growth rate of output gY depends on those of its factors (Hy, L, K, and A). Ordinary
labour L is fixed so its growth rate gL is zero. While the rate of growth of capital gK falls
sharply initially, the sudden increases in gHy and gA are sufficient to cause a small sudden
rise in gY which subsequently increases smoothly towards its new (higher) equilibrium as
gA and gHY decline and gK rises smoothly (Figure 4.10 and Figure 4.11).

Gross product GP is the sum of the output of goods Y and that of research R, so its
growth rate gGp is a weighted average of the growth rates of output and research (gY and
gR). The latter depends upon the rates of growth of pA, HA, and A (see equations 2.1 and
2.2). As has been seen, while gA is greater than gy, gPA and gHA are negative. It turns out
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that they are sufficiently negative to result in initial fells in gR and gGP, and for gR<gy over
the whole adjustment period.34 As a result, the growth rate of gross product falls upon
implementation of the shock, before rising smoothly with gGP<gy (Figure 4.11).

Table 4.2: Simulation results of an anticipated and sustained 15 per cent rise in the
productivity of researchers (Q from time t=5, benchmark parameter set

Dynamic
variable

T(t)
Oft)
PA(t)
r(t)

HA(0
gcp(t)
sB(t)
SN(0

kop(t)
Mt)

Final
steady-state

5.43
0.2988

7.51
6.40%

26.10%
1.80%

21.73%
16.26%

2.62
5.33%

Total adjustment
(% of initial ss)

-16.2
9.00
-20.5
14.2
2.00
17.3
-1.69
-3.23
-7.82
8.08

Jumps as a % of initial ss on:
Announcement

0.00
0.49
-5.13
2.24
-19.7
-0.40
-2.77
3.99
0.30
-175

14 life" V* life"
Implementation (years) (years)

0.00
0.00
0.00
-6.15
47.7
-5.45
2.64
-15.6
-0.27
218

18(22)
20(23)
18(16)
20(29)
19(5)

20(26)
20(5)
19(5)

19(21)
19(5)

31(35)
33(37)
31(29)
33(42)
33(5)
33(39)
34(5)
32(5)
32(34)
32(5)

Note: a The first set of results give the total time taken (from t=0) for Vi and V* of the remaining
adjustment after implementation; while the figures in parentheses give corresponding results after
the post-announcement jumps.

Figure 4.14: Dynamic effects on the factor shares of gross income from an
anticipated and sustained 15 per cent rise in the productivity of
researchers (Q from time t=5 years, benchmark parameter set
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34 Nevertheless, the magnitude of the initial jumps mean that the new equilibrium level of R/Y is greater

than its initial equilibrium.
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As stock variables, neither technology A nor general-purpose capital K can jump in
response to the shock. Conversely, as a flow variable consumption C is free to jump.
Here it responds to the unanticipated shock to C, with a sharp but small increase. Also,
over the whole adjustment period the growth rates of both technology and consumption
are greater than that of capital (gAjgc^gic). Thus, the capital-technology ratio *P
decreases monotonicaUy towards its new equilibrium with no initial jump; and the
consumption-capital ratio O makes a small upwards jump before rising towards its new
equilibrium (Figure 4.8 and Figure 4.9). For similar reasons the capital-gross product
ratio ICGP decreases smoothly after making a small jump downwards (Figure 4.13).

Figure 4.15: Dynamic effects on the convergence coefficients from an anticipated
and sustained 15 per cent rise in the productivity of researchers (Q
from time t=5 years, benchmark parameter set
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Now consider the effects when the policy shock is anticipated. Since it is now the
announcement that is the surprise, not the implementation, the market can be expected to
commence its adjustment process from the time of announcement. For the principal
dynamic variables Q¥, O and pA, and the latter two in particular) any jumps in their levels
will occur only at that time. They will then evolve smoothly, their motion governed by
the still operative pre-implementation dynamic equations, until the shock is realised after
five years. At that point the system will have just reached the post-shock saddle-path and
while there may be further abrupt changes in the adjustment paths of these variables,
there can be no further discontiruities. Their evolution will again proceed smoothly, this
time towards their new steady-state equilibrium levels in accordance with the post-shock
dynamic equations.
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However, for derived dynamic variables such as the interest rate or the allocation of
human capital, jumps will be likely at the time of implementation as well as at the time of
announcement. This is because derived variables are functions of the main variables and
the parameters, and while the main variables do not jump at implementation, any shocked
parameter must jump to reflect its shock directly. Of course after implementation the
derived variables adjust smoothly and asymptotically towards their post-shock steady-
state levels in the same way as the principal dynamic variables.

While the steady-state equilibrium for an anticipated shock is identical to that for the
same shock when it is unanticipated (see Figure 4.8 in particular), the transient dynamics
differ markedly. Furthermore, since adjustment in the anticipated simulation commences
when the policy change is first announced (at time t=0 here), while in the unanticipated
case there is no adjustment until the change is actually implemented (at time t=5), it is
during this pre-implementation period that the results of these simulations differ the
most.

The big differences arising from the shock being anticipated lie in the fact that, for
reasons yet to be explained, the post-announcement jumps tend to be in the opposite
direction to the post-implementation ones, making these latter jumps much bigger than
those which result when the shock is unanticipated! For most variables the immediate
post-implementation and subsequent adjustment effects under the anticipated shock are
qualitatively the same as those for the unanticipated shock.35 Hence, the following
discussion is confined to a 'rationalisation' of the economics underlying the pre-
implementation adjustment.

Announcement of the shock raises the prospect of having a more productive research
sector, which can generate cheaper designs. Capital goods producers respond by
postponing some of their demand for designs until the shock is actually implemented and
prices are reduced. Ironically, this immediate reduction in the demand for designs
actually provokes a fall in their price. Similarly, it also causes sharp falls in the
employment of human capital in research, and in the growth rate of technology. The
mechanism is similar to that for the case when the shock was unanticipated,36 but here
the dynamic paths are not equilibrating. Falling prices only exacerbate the falling growth
rate and employment of human capital which decline further until the shock is finally
implemented (Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.12).

With total human capital fixed, the response of that employed in the output sector HY is
complementary to the response of that employed in research. Thus, Hy first rises steeply
and then continues to increase more gradually until implementation. This causes output
Y and its growth rate gy to respond similarly. Given that optimising consumers only raise

35 The only exceptions are for gY and sB, and in both these cases the jump for the unanticipated shock is
only small (Figure 4.11 and Figure 4.13).
36 A 'standard' supply-demand diagram relating the price of designs pA and their rate of growth gA,
provides a framework for thinking about the economic mechanisms at work: Implementation of the
unanticipated shock lowers the supply schedule causing pA to fall and gA to rise. On the other hand,
announcement of the anticipated shock has the effect of (temporarily) reducing the demand schedule,
again causing pA to decline, but this time inducing gA to fell as '.veil. For the anticipated shock the
supply schedule is not lowered until implementation. At that point the temporary fell in the demand
schedule is also reversed and whiJe pA continues to decline (but at a different rate), gA rises.
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consumption a little, this in turn results in a large rise in investment and the growth of
capital gK, and also in the narrow savings measure or investment-output ratio SN (Figure
4.10, Figure 4.11 and Figure 4.13).

Despite the steep rise in output Y, because of the large fell in the research component of
gross product its growth rate gGp fells marginalry (Figure 4.11). This large fell in research
is also reflected in the decline of the share of income to human capital in research and the
concomitant rises in the shares to other factors (Figure 4.14); and, interpreted as a
component of broad savings, it is also responsible for the fall in SB on announcement of
the shock (Figure 4.13). As before the dynamic behaviour of the interest rate reflects that
of consumption growth (Figure 4.10 and Figure 4.12). Also as before, the initial jumps
and transient dynamics of the capital-output ratio, the consumption-capital ratio, and the
capital-gross product ratio Q¥, O, and kop respectively), are readily explained by those of
the growth rates of their component variables (Figure 4.8, Figure 4.9, and Figure 4.13):

• There are no jumps in *F (=K/A) because both K and A are stock variables
for which discontinuities are not permitted. As K and A begin to adjust in the
post-announcement/pre-implementation period *P rises because gjc>gA- After
implementation W declines towards its new steady-state equilibrium level
because gK<gA (Figure 4.8, Figure 4.9 and Figure 4.10).

• On announcement of the shock there is a small upward jump in O (=C/K)
reflecting just such a jump in C. Then, in the post-announcement/pre-
implementation period O falls because gc<gK; and post-implementation it
rises since then gc>gK (Figure 4.8, Figure 4.9 and Figure 4.10).

• A small sudden fall in gross product GP=Y+R (due to a large precipitous
drop in research R outweighing a steep rise in output Y), explains the slight
upwards jump in kop (=K/GP) on announcement of the shock. In the post-
announcement/pre-implementation period kop grows because gK>gGP- At
implementation it fells sharply because at that point GP jumps higher (since
now a steep rise in R more than compensates for a sharp drop in Y). And
finally, after implementation it continues to decline since then gK<gop (Figure
4.10, Figure 4.11 and Figure 4.13).

The adjustment process for this simulation is again a lengthy one; a half of the total
adjustment requiring some 20 j'ears, and three quarters of it not being completed for
over three decades (Table 4.2). This 'anticipated shock type of simulation' raises another
problem for the determination of half-life etc. measures. Namely, whether they should be
calculated from the time of'announcement' or from the time of 'implementation'. As can
be seen from Table 4.2, because of significant differences in the post-announcement/pre-
implementation adjustment, when the former are used the half-life and three quarter-life
figures for different variables are quite disparate, while when the latter are employed the
results are fairly homogeneous. Convergence coefficients (see equations (3.13) and
(3.17)) provide another measure of the speed of adjustment of the system towards its
new steady-state equilibrium. Here the big variations, both between variables and over
time, occur in the intervening period between announcement and implementation of the
shock (Figure 4.15). Negative values of these coefficients indicate that the variable in
question is moving away from its new steady-state. Such negativity could easily be
predicted from the previous results.

Most of the preceding discussion has been something of a post-rationalisation of the
dynamic results of the shock. While this indicates that it may be possible ex ante to
describe some of the dynamics of anticipated shocks intuitively by qualitative economic
reasoning, it does not seem simple. Moreover, the feet that there are opposing
mechanisms and forces at work make some descriptions ambiguous. In such cases the
economic outcomes cannot be discovered by a priori theorising alone. The empirics of
the dynamic model are necessary to resolve such ambiguities and thereby to reveal the
economic effects. And it is only through the dynamic vehicle that quantitative measures
can be obtained. The economics of adjustment in response to shocks that are correctly
foreseen certainly could not be captured, even qualitatively, with a static model. These
points emphasise the power of the dynamic model.

4.5.3 A temporary rise in the ordinary labour share of wages

Consider some campaign of trade union action which, together with an accommodating
wages policy, succeeds in obtaining certain benefits for ordinary labour at the expense of
human capital employed in the output sector. As a result, ordinary labour's share of the
total wages to these groups is estimated to increase by some 15 per cent. It is assumed
that the specific measures used to achieve this change are implemented 'immediately'.
That is they are not announced in advance and are not anticipated for any other reason.
Conversely, it is also assumed that it is known that they are to operate only temporarily;
in particular, for five years. It may be supposed either that this is announced at the time
of their implementation; or that it is just correctly foreseen by the market - perhaps the
changes are made under the auspices of a labour government which is correctly forecast
to lose the next election to conservatives known to be hostile to them! Whatever the
case, the problem is to simulate such changes using the Romer model in order to assess
their broad economic implications.

From Chapter 2 (Appendix 2.1) the wages income received by ordinary labour (L) from
the n? afecture cfpoods is (l-a)(l-y)Y, and that received by human capital (Hy) is a ( l -
y)Y. The share of these wages to ordinary labour is therefore (1-ot); and a rise in this
share may be simulated by exogenously reducing the parameter a. In particular, a 15 per
cent rise in SV/L = (1-ot) is equivalent to a fall of some 20 per cent in a from its
benchmark level.37 Accordingly, the economic shock of a 15 per cent rise in the share of
wages to ordinary labour for five years is simulated here by reducing the benchmark level
of parameter a by 20 per cent from time t=0 to t=5. The results are reported below in
Figure 4.16 to Figure 4.21 and in Table 4.3.

The elasticity of output Y with respect to ordinary labour L is given by svx = (l-a)(l-y).
Thus, in addition to increasing the income of ordinary labour in the output sector, a fall
in a also raises its productive efficiency. In the real world these incentives would
increase its usage in producing output, drawing extra units out of overtime,
unemployment or some other sector in which it was employed. In the model however,

3 7 If the initial share is SWLO = (l-a<>) and the post-shock share is Swu = (1-a,) - 1.15-SWLO, then
a,/ao = 1.15.- 0.15/cto; which, with ao at its benchmark level of 0.43, gives a, * 0.8cto-
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ordinary labour is fully employed and has no alternative use than in the output sector.
Moreover, its aggregate supply is exogenously fixed. Thus, under the confines of the
model there can be no effect on ordinary labour. Nevertheless, many other effects may be
expected.

Figure 4.16: Dynamic effects (over 100 years) on T , <I>, and pA of a sustained but
temporary 15 per cent rise in the ordinary labour share of wages
from time t=O to t=5 years, benchmark parameter set

Romer Model Dynamics: Market Sc!=tlo=

psKO. pA(t)
10 0.285

0.28

0.275

-10
-> 1 1 r"-027

10 20 30 40 50 60 70 80 90 100
TkrM(Vurs)

d:\phd\gempaclAmIitroni\-20o05V-20a05sini.xh»<psi)

The elasticity of output with respect to the human capital employed in producing it HY, is
given by e^y = ct(l-y); so lowering a will reduce its productive efficiency. This will
induce producers to substitute physical capital K for human capital HY. But physical
capital is fixed in the very short run. The only way to increase its supply is to produce
more output from which to save (and invest); and the only way to do this is to raise the
level of technology A. As a result, human capital will move from the output sector to
research until the wage rates equilibrated Thus, HA, gA and A can all be expected to
rise; and pA and W to fall (Figure 4.16 to Figure 4.19).

While the loss of human capital from the output sector to research would initially tend to
reduce the output that could be produced, the greater productive efficiency of ordinary
labour would tend to raise it. It turns out that the latter effect dominates with gY initially
jumping to a higher level and continuing to rise as long as the lower a remains extant.
With output growing faster, and technology even faster still, the rate of growth of gross
product (which is a weighted average of Y and A) will lie between them That is-
gY<gop<gA (Figure 4.18).

38 Another way of looking at this is to note that since the wages of human capital in the output sector
fell, it will be bid away to the research sector.

Figure 4.17: Dynamic effects (over 25 years) on T , 4>, and pA of a sustained but
temporary 15 per cent rise in the ordinary labour share of wages
from time t=0 to t=5 years, benchmark parameter set
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Figure 4.18: Dynamic effects on growth rates of a sustained but temporary 15 per
cent rise in the ordinary labour share of wages from time t=0 to t=5
years, benchmark parameter set
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Figure 4.19: Dynamic effects on r and HA of a sustained but temporary 15 per
cent rise in the ordinary labour share of wages from time t=0 to t=5
years, benchmark parameter set.
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The results show that the optimising consumers raise the growth of consumption slightly
while the lower a prevails. While this is only small, it is sufficient for the narrow savings
measure SN and the growth rate of capital gK to fell initially. However, the growth of
consumption remains below that of output and after about three years the savings rate
rises by enough for gK to equal gc and then to exceed it (Figure 4.20 and Figure 4.18).
As a result of these movements the consumption-capital ratio O first increases and then,
after some three years, begins to fall (Figure 4.16 and Figure 4.17). To support the
slightly higher growth of consumption (so future consumption is greater than current
consumption) the return to savings and hence the interest rate r, must also rise slightly.
Another way of looking at this is to consider the linkage between the interest rate and the
return to capital; and to argue that with capital a little scarcer due to its lower growth, its
return and therefore the interest rate must also rise a little. In any case this is indeed what
happens in the simulation (Figure 4.19). Devoting more human capital resources to
research as opposed to current production (and consumption) would be expected to
result in an increase in the broad measure of savings SB. Also, with a slower rate of
growth of capital and a faster growth of gross product, the capital-gross product ratio
kop must fall (Figure 4.20).

Finally, consider the factor shares of income. 7 shares to human capital in research,
ordinary labour, human capital in goods production, and physical capital are given by:
SHA=R/(R+Y), SL=(1-OC)(1-Y)Y/(R+Y), SHY=O:(1-Y)Y/(R+Y) and SK=yY/(R+Y)
respectively, where R = pA A is the output of research. Although the price of technology
(PA) declines a little, the strong growth in its quantity means that the output of research
grows faster than that of goods. Thus, the share of income to human capital in research
will rise, and the shares to both human and physical capital in the output sector will fall.
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These effects from the relative growth rates of the outputs of research and of goods are
indirect and not sufficient to overcome the direct effect of the reduction in a, so the
share of income to ordinary labour rises (Figure 4.21).

Figure 4.20: Dynamic effects on SB, SN, and kep of a sustained but temporary 15
per cent rise in the ordinary labour share of wages from time t=0 to
t=5 years, benchmark parameter set
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Figure 4.21: Dynamic effects on the factor shares of gross income from a
sustained but temporary 15 per cent rise is the ordinary labour
share of wages from time t=0 to t=5 years, benchmark parameter set.
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Of course, with the shock to a being only temporary none of these effects are lasting.
Following the removal of the shock after five years, the dynamic system begins a smooth
adjustment back to its initial steady-state. Once again however, this adjustment is quite a
slow process - taking some 15 more years to get halfway back, and some thirty more
years to close three-quarters of the gap at the time of removal (Table 4.3).

Table 4 3 : Simulation results of an unanticipated but known to be temporary 15 per cent
rise in the ordinary labour share of wages from time t=0 to t=5, benchmark
parameter set

Dynamic

variable
¥(t)
O(t)
pA(t)
r(t)

HA(t)
gcp(t)
sB(t)
SN(t)

kop(t)

Final
steady-state

6.48
0.2741

9.45
5.61%

25.60%
1.54%

22.10%
16.80%

2.84
4.93%

Total adjustment
(% of initial ss)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Jumps as a % of initial ss on:
Imposition

0.00
1.75

-2.84
1.71
48.9
19.3
6.89
-3.70
-3.65
n.a.

Removal
0.00
0.00
0.00
-0.83
-57.4
-33.7
-13.5
-1.82
3.85
399

% me
(years)
21(na)
20(20)
21(20)
20(33)
20(5)
20(5)
20(5)
21(2)
21(5)

20(na)

% life8

(years)
35(na)
34(34)
35(33)
34(47)
34(5)
34(5)
34(5)
35(3)

35(18)
35(na)

d:\phd\fX3npack\inVln)mV20a05V20a05smijchv<20aOS)

Note: a The first set of results give the total time taken (from t=0) for XA and % of the remaining
adjustment after implementation; while the figures in parentheses give corresponding results after
the post- announcement jumps.

4.5.4 Comparison of the linearised, Solowian- and full non-linear
Romer model results

In Chapter 3 two approximations to the Romer model were developed and their transient
dynamics examined. These were the 'complete' but linearised model (Section 3.2); and
the truncated but non-linear Solowian-Romer model (Section 3.4). The analysis has now
reached a point where it is possible to assess the value of these in terms of how closely
their computed dynamics approximate those of the full non-linear Romer model. Each of
these three models has now been confronted with the same three shocks: an
unanticipated and sustained 10 per cent rise in parameter y, an anticipated and
sustained 15 per cent increase in parameter £ and an unanticipated but known to be
temporary fall of 20 per cent in parameter a. Details of the results of their computed
dynamics in response to these shocks are compared in Appendix 4.4. The following
summarises that material.

When judged over all three simulations and over the entire dynamic paths of all the
dynamic variables the linearised and Solowian-Romer model approximations seem
'reasonably good'. As expected, the main differences arise when the variables jump and
in their adjustment paths not long afterwards.39 In the case of the y-shock simulation

39 All three models, by their construction, correctly generate the analytic asymptotic results.
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both approximations were excellent for ¥ , pA, r, and kop. Variables gA and HA could be
added to this list for both the Q- and the a-shock simulations; and in the latter case so too
could variables <D, gGP, and sB. This means that for the a-shock simulation excellent
approximations were achieved for almost all the dynamic variables. One reason why the
'goodness of fit' of the approximations improved from the y-shock to the ^-shock to the
a-shoek is that the total adjustments involved in these respective simulations decrease
(also see Table 4.1, Table 4.2, and Table 4.3). While the linearised model tended to
converge to the mil model a little faster than the Solowian-Romer model, overall it was
the S-R model that was the more accurate.

4.5.5 An immigration program to raise the level of human capital

Here the effects of an immigration program designed to raise the overall level of hunian
capital in the economy by 15 per cent over five years are considered. The program is to
be implemented in uniform quarterly steps with the first migrants under the scheme due
to arrive at the end of the first quarter one year after its announcement. The policy is
simulated by raising the benchmark level of the model's human capital variable H, by a
series of 20 cumulating shocks of 0.75 per cent each, beginning five quarters from the
time of announcement (that is, at time t=1.25 years). As a result, from time t=6 years
onwards the level of human capital will be 1.15 times its benchmark level. Since the
entire program is announced in advance of its implementation, all of the shocks are
anticipated by the market. This means that once the shocks are written into the model's
equations at the appropriate time points, the immigration policy is simulated by solving
the model from the time of announcement (t=0), for all future time points.

The level of human capital devoted to research rises more than proportionally with any
increase in the total level of human capital and conversely, the level devoted to the
output sector rises less than proportionally.40 Now, as noted previously in the research
productivity simulation (Section 4.5.2), an increase in the productivity of researchers is
like having more of them. Thus, the effects of increasing the total level of human capital
H ought to be similar to those of increasing the research productivity parameter Q but
with the human capital in research increasing even further, and with that employed in the
output sector increasing instead of decreasing.41

In terms of their impacts on steady-state levels the veracity of this proposition is
supported by the sensitivity results of Table 2.3. For the transitional dynamics however,
the connection is more difficult to see. In order to facilitate comparison, some of the
results for the research productivity simulation of Section 4.5.2 have been re-plotted on

40 This can be simply demonstrated by differentiating the formulae for the steady-state levels HA* and
HYss (equations 2.54 and 2.55) with respect to H to obtain: dHAs/HA^dH/H and dHYss/Hyss<dH/H. Also
see the benchmark steady-state sensitivity results in Table 2.3 of Chapter 2.
41 It may be noted however, that the proportional change in the allocative share of human capital to
either the research or output sector is the same for any relative change in H as it is for an identical
relative change in £. Once again this may be demonstrated by differentiating equations (2.54) and/or

J ' " * J " d (aH A ) ; dC

aHA H aHA £
(2.55) to obtain A / — =
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the same graphs as those recording the results for this simulation (Figure 4.22 to Figure
4.28). Other results for the current simulation are presented in Figure 4.29 and Figure
4,30, and in Table 4.4, which may be compared with the corresponding results for the
research productivity simulation (Figure 4.14 and Figure 4.15, and Table 4.2).

figure 4.22: Dynamic effects (over 100 years) on ¥ , 4>> and PA of an anticipated
and phased 15 per cent rise in the aggregate level of human capital
(H), and an anticipated but sadden 15 per cent rise in research
productivity (Q, benchmark parameter set
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Considerable differences in the adjustment paths of the two simulations are evident.
These are due largely to two factors: the differential timing of their shocks, and the
variance of their impacts on Hy. Despite the similarity of the underlying economic
mechanisms of the simulations, these two factors have a profound effect in generating
differences in their transitional dynamics.

Like a rise in the productivity of researchers, an increase in the level of human capital
(which is fully employed at all times), allows the 'production' of more research at all
price levels; or equivalently, it lowers the price of research at all output levels. Since it is
also announced in advance, once again there is an incentive for capital goods producers
to postpone some of their demand for designs (refer back to footnote 36). However,
because the total shock to the level of human capital is phased in, while the research
productivity shock all comes at the one time, the scope for such postponement of
demand in the immigration simulation is very much the lesser of the two. As a result, the
dynamics of the current simulation are considerably more gradual, exhibiting no
significant jumps at either the beginning or the end of the implementation period. It is
also the differential timing of the shocks which causes the main differences in the results
to be manifested during the immigration policy implementation period and not too long

thereafter. Once the shocks are all fully implemented the adjustment paths for both
simulations begin to converge. And for many variables such convergence is all the way to
their (common) steady-state.

With regard to the second factor: In the productivity simulation Hy declines, as it must,
when HA rises; while in the immigration simulation both rise. As a result of this extra
productive resource more output is eventually generated and greater consumption is
possible under the immigration simulation.42

Figure 4.23: Dynamic effects (over 25 years) on *F and O of an anticipated and
' phased 15 per cent rise in the aggregate level of human capital (H),

and an anticipated but sudden 15 per cent rise in research
productivity (Q, benchmark parameter set
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Interestingly, while relative variations in the growth rates of capital and designs
between the simulations result in different steady-state levels of HP, apparently not
dissimilar variations in the growth rates of capital, consumption and gross product
generate steady-state levels of <I> and kop that are the same in both simulations
(Figure 4.22 to Figure 4.24). However close examination of the differences in
growth rates confirms that this is possible.

4 2 Although all growth rates are asymptotically equal, for output gY_H>gY_£ over most of the
adjustment period; and for consumption gC_H>gC_£ at all dates (Figure 4.25 and Figure 4.26).
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Figure 4.24: Dynamic effects (over 25 years) on pA and kcp of an anticipated and
phased 15 per cent rise in the aggregate level of human capital (H),
and an anticipated but sudden 15 per cent rise in research
productivity (Q, benchmark parameter set
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Figure 4.25: Dynamic effects on the growth rates gA, go and gK, of an anticipated
phased 15 per cent rise in the aggregate level of human capital (H),
and an anticipated but sudden 15 per cent rise in research
productivity (Q, benchmark parameter set
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Figure 4.26: Dynamic effects on the growth rates gv, and gcp> of an anticipated
phased 15 per cent rise in the aggregate level of human capital (H),
and an anticipated but sudden 15 per cent rise in research
productivity (Q, benchmark parameter set
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Figure 4.27: Dynamic effects on r and HA of an anticipated phased 15 per cent
rise in the aggregate level of human capital (H), and an anticipated
but sudden 15 per cent rise in research productivity (Q, benchmark
parameter set
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figure 4.28: Dynamic effects on SB and SN of an anticipated phased 15 per cent
rise in the aggregate level of human capital (H), and an anticipated
but sodden 15 per cent rise in research productivity (Q, benchmark
parameter set
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Figure 430: Dynamic effects on the convergence coefficients from an anticipated
15 per cent rise in the aggregate level of human capital (H),
implemented in 20 uniform quarterly steps from time t=1.25 years to
t=6 years, benchmark parameter s i t
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Figure 4.29: Dynamic effects on the factor shares of gross income from an
anticipated 15 per cent rise in the aggregate level of human capital
(H)» implemented in 20 uniform quarterly steps from time t=1.25
years to t=6 years, benchmark parameter set
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Table 4.4: Simulation results of an anticipated and sustained 15 per cent rise in the
aggregate level of human capital (H), implemented in 20 uniform quarterly
steps from time t=1.25 years to t=6 years, benchmark parameter set

Dynamic
variable
TO
O(t)
PA(0

r(t)
HA(t)
gop(t)
sB(0
SN<t)

koF<t)
Pv(t)

Final
steady-state

5.77
0.2988

7.98
6.40%

26.10%
1.80%

21.73%
16.26%

2.62
5.33%

Total adjustment
(% of initial ss)

-11.0
9.00
-15.6
14.2
2.00
17.3

-1.69
-3.23
-7.82
8.08

Initial jumps as a % of:
initial ss

0.00
2.16
-6.28
2.76
-24.5
-14.8
-3.89
-2.68
0.35
-158

total adjustment
0.00
24.0
40.3
19.4

-1226
-85.8
526
82.9
-4.52
-1959

V2 life"
(years)
19(19)
20(16)
19(14)
20(18)
20(4)
20(6)
20(4)
20(0)

20(14)
20(4)

3A life"
(years)
32(31)
33(29)
32(27)
33(31)
33(5)

33(16)
34(5)
33(1)

33(33)
33(5)

Notes: a The first set of results give the time taken for Vi and 3A of the remaining adjustment
after implementation is completed at t=6 years; while the figures in parentheses give
corresponding results after the post-announcement jumps.

4.5.6 A sudden, temporary reduction of the capital stock

Here one may have in mind some sort of destructive calamitous event, such as the
invasion of Kuwait, a major earthquake in Tokyo, or a nuclear strike upon Israel, which
destroys a significant proportion of the capital stock of the particular country.
Specifically, the simulation assumes that five per cent of an economy's capital stock is
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suddenly destroyed. This is modelled by imposing an unanticipated shock of minus five
per cent on the initial value of the capital-technology ratio, ¥<>. It is easily done without
having to change the 'closure' of the model, since this is the one component of *F(t)
which is exogenous.43

The shock is a temporary one in that it does not permanently hold down the value of *F.
Rather, it simply disturbs the existing steady-state for a time. Since there is no permanent
change to any of the underlying parameters of the model, the pre-shock equilibrium
continues to be optimal for the economy. Thus, the post and pre-shock steady-states are
identical and once disturbed, the economy then simply re-adjusts back to an equilibrium
identical in all respects to its original configuration. The results of the simulation are
presented in Figure 4.31 to Figure 4.37 and Table 4.5 below. The annual long-term
results of Figure 4.31 are intended to show clearly how the initial steady-state levels of
the main dynamic variables are restored; while the quarterly shorter term results in the
other diagrams emphasise the main period of adjustment.44

Figure 4.31: Dynamic effects (over 100 years) on *P, 4>, and PA of an
unanticipated and temporary 5 per cent fall in the initial capital
stock fF), benchmark parameter set
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Because of the equivalence of the pre and post-shock steady-states, any a priori
consideration/rationalisation of the impact of the shock can be restricted to explaining
the directions of the initial jumps in the relevant economic variables:

43 In this context the term 'closure' refers to the split between the endogenous and exogenous variables
of a model.
44 The 'factor shares of income' diagram has been omitted due to their lack of perceptible change.
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The precipitous fell in capital, manifested via the capital-technology ratio ¥ , will cause a
similar fell in the capital-gross product ratio ICGP, and a sudden upwards jump in the
consumption-capital ratio O (Figure 4.31 to Figure 4.33). Restoration of the capital-
technology ratio *F requires capital to grow fester than technology. Increased savings
and investment at the expense of current consumption is one route that might be
followed to achieve this. A reduction in research activity, with a transfer of human
capital resources to output production is another. From the dynamic utility maximisation
process underlying the model (Appendix 2.2) it turns out to be optimal for the latter of
these means to be heavily preferred. Since current consumption does not have to be
traded for capital formation, there is very little change to the rate of savings out of
output, SN (Figure 4.36). Instead, human capital is instantly switched from the research to
the output sector and HA falls sharply (Figure 4.35). As a result, the rate of growth of
technology also fells sharply, while the growth rate of output, and with it those of
consumption and capital, rise suddenly (Figure 4.34).

Figure 4.32: Dynamic effects (over 25 years) on ¥ and O of an unanticipated and
temporary 5 per cent fall in the initial capital stock (*F), benchmark
parameter set
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The shortage of capital and the increased demand for it drive up its price as reflected by
the interest rate r (Figure 4.35). Also, with less general-purpose capital available there
will be less demand for designs from specialist capital goods producers and their price
(pA) will fall (Figure 4.31 and Figure 4.33). Finally, since it happens that savings in the
form of research fall slightly more than those in the form of capital formation rise, the
broad savings rate out of gross product sB, exhibits a small initial fell (Figure 4.36).

Chapter 4 231



Figure 433: Dynamic effects on PA and I(GP of an nnanticipated and temporary
5% fall in the initial capital stock (T), benchmark parameter set
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Figure 435: Dynamic effects on the interest rate and the share of human capital
devoted to research, of an unanticipated and temporary 5% fall in
the initial capital stock (¥) , benchmark parameter set
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Figure 434: Dynamic effects on the growth rates, of an unanticipated and
temporary 5% fall in the initial capital stock (40, benchmark
parameter set
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Figure 436: Dynamic effects on the broad and narrow savings rates (SB and sN,
respectively) of an unanticipated and temporary 5% fall in the initial
capital stock OF), benchmark parameter set
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This simulation suggests that while a sudden reduction in the capital stock of an
economy may not permanently alter its steady-state equilibrium, such an event can be
extremely traumatic, its effects remaining significant for decades. After such a shock the
economic system appears likely to converge back towards its pre-shock equilibrium at a
mte of about 4.9 per cent per annum. This means that half of the initial disturbance
would remain after about 15 years, and a quarter would still be felt after some three
decades ((Figure 4.37 and Table 4.5).

Table 4.5: Simulation results of an unanticipated and temporary 5 per cent fall In the
initial capital stock (4*), benchmark parameter set

Dynamic
variable

TO
d>(t)

PAW
r(0

HA(0
gop(t)
sB(t)
SN(t)

kop(t)
Pv(t)

Final
steady-state

6.48
0.2741
9.45

5.61%
25.60%
1.54%

22.10%
16.80%

2.84
4.93%

Total adjustment
(% of initial ss)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Initial jumps as a % of:
initial ss

-5.00
2.41
-3.65
4.50
-3.45
5.76
-0.30
1.02

-2.27
-1.24

total adjustment
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

Vz life8

(years)
15
14
15
15
14
14
14
15
15
14

% life8

(years)
29
28
29
28
28
28
28
29
29
28

d:>phd\ganpack\mkln>m\l SzS\\ 5z5sim.xhv(l5z5)

Note: a The time taken for Vi and V* of the adjustment after the post-announcement jumps.

Figure 4.37: Dynamic effects on the convergence coefficients from an
unanticipated and temporary 5% fall in the initial capital stock (*F),
benchmark parameter set
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4.5.7 A gradual loss of human capital from research

Part of the received wisdom about the state of innovation and technological change in
Australia is that there is a persistent and significant (net) loss of human capital, smart
researchers being continually enticed overseas with higher remuneration packages and
better research opportunities. The term brain drain is frequently trotted out by the press
and elsewhere, often with some anecdotal 'support' though rarely, if ever, with any
formal analytical evidence. Nevertheless, to obtain an idea of the broad economic
implications of such a phenomenon it is assumed here that some sort of brain drain
episode occurs. Or perhaps alternatively, that as a result of some rampant and
diabolically mutating computer virus many researchers are infected and die! Whatever
the reason, it is supposed that the level of human capital in the research sector, HA,
suddenly begins to decline, falling gradually so that after three years it is 20 per cent
below its initial (benchmark steady-state) level. At that time the rate of decline has
gradually been reduced to zero. The total supply of human capital, H, fells concomitantly
to a cumulative level some 5.12 per cent below benchmark. The cumulative shocks
specified for each cf the (time) elements of both HA and H are illustrated in Figure 4.38.

Figure 438: Shocks imposed on variables HA and H in order to simulate a
gradual loss of human capital in research, cumulative percentage
change to elements 1 to 25 of the variables.
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Because the allocation of overall human capital to research is usually determined
endogenously (that is within the model), in order to impose the specified shocks the (25)
particular elements of HA were redefined as exogenous variables. Then, to ensure that the
model continued to be soluble, the equality of the number of endogenous variables and
the number of equations had to be maintained by switching 25 previously exogenous
variables to endogenous ones. The 25 corresponding elements of the research
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productivity parameter C, were selected for this purpose.45 Results of the simulation are
presented in Figure 4.39 to Figure 4.45 and in Table 4.6.

As a whole, the set of shocks is unexpected. However, it is assumed that once the
episode begins, its progress is accurately foreseen (aka rational expectations).
Mathematically, and in terms of the modelling assumptions this means that while the
initial shock is unanticipated, the remainder are anticipated.

The direct effects of the exogenous reductions in researchers are shown in Figure 4.42 as
the results over the first three years for HA. (They're also directly reflected in the rate of
growth of technology gA, shown in Figure 4.41). But these reductions to researchers are
not sustained. When they have ceased and the decline of HA has been reined in, it is well
below its optimum allocation. As a result, HA first rises precipitously and later very
gradually, as does the growth rate of technology.46

Figure 4.39: Dynamic effects on *F and <I> from a gradual loss of 20% of
researchers (HA), benchmark parameter set
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Devoting human capital resources to research instead of to production is a form of
savings in that some current consumption is traded off against the greater future
consumption made possible by new technology. Because the exogenous decline in HA

limits the output of research, it reduces the stream of future consumption benefits from
technology. To counterbalance this, more savings in the form of capital formation are
necessary. That is, relatively more resources must be devoted to investment than to

4 5 The changes in these necessary to accommodate the exogenous shocks to HA and H were then
determined (within the model) to vary between -3.75 and -3.48 per cent of the benchmark level of 0.06.
4 6 In terms of the modelling, at the cessation of the shocks the endogeneity of HA and C, are swapped and
the model is suddenly free to choose the allocation of aggregate human capital to research.
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consumption. The combination of the restriction of research output and this need for
greater capital savings explains the directions of the initial jumps (and the subsequent
adjustments while HA continues to decline) for many of the model's economic variables.
In particular:

• together they mean that the capital-technology ratio *F must rise (Figure 4.39);
• restricted research output creates an excess demand for designs which is only

eliminated by a rise in their price PA (Figure 4.40);
• increased capital savings means that the investment-output ratio SN (which is the

narrow definition of savings) and the rate of growth of capital gK, must both rise
(Figure 4.43 and Figure 4.41); and that the conrumption-capital ratio <D must fell
(Figure 4.39);

• the greater supply of capital lowers its price as reflected by the interest rate r (Figure
4.42); and

• since it is only greater capital growth that can accelerate gross product here, the
capital-gross product ratio ICGP must rise (Figure 4.40).

Figure 4.40: Dynamic effects on pA and kcp from a gradual loss of 20% of
researchers (HA), benchmark parameter set.
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As usual, the responses of other variables are ambiguous in terms of a priori theorising,
but are resolved by the (quantitative) model. Thus:

• the rate of accumulation of capital is initially fast enough to more than
counterbalance the slower growth of designs, and so raises the rate of growth of
output gy; but as the shocks to HA cumulate, output growth slows. Also, though the
price of designs rises, their growth rate M s sufficiently to keep the rate of growth of
gross product gGp below that of output (Figure 4.41);
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despite the fell of savings in the form of research, capital accumulation is sufficiently
strong to cause the broad savings rate sB to rise initially, though it then declines as
the exogenous shocks build (Figure 4.43); and
the rate of growth of consumption fells slightly, output growth not being sufficient to
overcome the increased rate of savings (Figure 4.41).

Figure 4.41: Dynamic effects on the growth rates from a gradual loss of 20% of
researchers (HA), benchmark parameter set
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Once the exogenous falls in researchers are over, more savings in the form of research
are possible, and these can replace some of the capital formation savings. This explains
(inter alia) the jumps in gK, SN, and kop immediately after the third year; and also the
changes in the rates of change of 4*, <5>, and kcp. But while the exogenous reductions to
HA are only temporary, the corresponding fells in aggregate human capital H are
sustained. Then, since the steady-state level of HA changes more than proportionally with
changes in H (see footnote 40), the eventual equilibrium level of human capital in
research is a lower proportion of the diminished aggregate level of human capital (Figure
4.42). This continues to depress the supply of research output slightly, with the result
that its price PA rises slowly. The stream of future benefits from research are therefore
permanently lower, so the savings required from capital formation will be greater in the
post-shock equilibrium than in the pre-shock one. Thus, the final steady-state outcomes
for ¥ , sN, sB and kop, must be greater than their initial counterparts; and for O and g (the
common growth rate), and consequently for r, they must be less.
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Figure 4.42: Dynamic effects on r and HA from a gradual loss of 20% of
researchers (HA), benchmark parameter set
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Figure 4.43: Dynamic effects on the broad savings rate and investment share of
output (SB and sN respectively) from a gradual loss of 20% of
researchers (HA), benchmark parameter set
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Figure 4.44: Dynamic effects on the factor shares of gross income from a gradual
loss of 20% of researchers (HA), benchmark parameter set
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Figure 4.45: Dynamic effects on the convergence coefficients from a gradual loss
of 20% of researchers (HA), benchmark parameter set
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Like all the previously analysed simulations, adjustment of the 'Romer economy' to these
exogenous reductions in researchers is lengthy. After initial accelerations during the
period of the shocks, the rates of convergence to the new equilibrium fell rapidly to a
level slightly below their pre-shock values (Figure 4.45). This results in an adjustment
period of 16 years being required to close half of the gap remaining between the position
after the post-shock jumps and equuibrium; and three decades being necessary to close
three quarters of that gap (Table 4.6).

Table 4.6: Simulation results of a gradual loss of 20 per cent of researchers (HA),
benchmark parameter set

Vz life" V* life"Dynamic Final Total adjustment Initial jumps as a % of:
variable steady-state (% of initial ss) initial ss total adjustment (years) (years)

- - ^ 11 r A 1 f\

O(t)
pA(t)
r(t)

HA(t)
gcp(t)

SN(0

6.75
0.2657
10.06
5.33%
24.08%
1.44%

22.24%
17.01%

2.93
4.80%

4.19
-3.07
6.40
-4.85
-5.90
-5.90
0.63
1.23
2.98
-2.76

0.00
-0.99
3.89
0.00
-2.00
7.02
3.05
491
0.13
73.8

0.00
32.3
60.8
0.00
33.9
-119
488
400
4.27

-2679

16(8)
16(6)
16(13)
16(4)
16(1)

16(0,3)
16(0,2)
16(0,4)
16(3)

16(0,4)

30(23)
30(20)
30(27)
30(15)
30(1)

30(0,4)
30(0,2)
30(0,4)
30(14)
31(0,4)

d:\phd\gempack\mktrom\10HA2\Q10HA2simj(ls(psi)

Notes: a The first set of results give the time taken for V2 and 3A of the remaining adjustment
after implementation is completed at t=3+ years; while the figures in parentheses give
corresponding results after the initial jumps at t=0.
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Appendix 4.1

Numerical integration methods
for initial value problems

The Euler method of numerically integrating the system of coupled ODEs:
dz-(t)

z( t ) ^ ( ( t ) ( t ) t ) for i =
or, in vector notation:

= g(z(t),t)
(A4.1.1)

was described algebraically in equation (4.3). Here it is described graphically as an
approximation to the actual curve for a single variable z = f(t) (Figure A4.1.1). The Euler
iterations step along the path I, Ei, E2, E3, ...et cetera, with each chord segment being
parallel to the tangent to the curve at the independent variable coordinate corresponding
to the current point. Thus, IEi is tangential at I; E1E2 is parallel to the tangent at Ci; E2E3
is parallel to the tangent at C2 et cetera.

Figure A4.1.1: Illustration of the Euler and Gragg (or 'modified mid-point')
methods of numerical integration."

I
Note: a This diagram is based upon those appearing in the Gempack User
Documentation (Harrison and Pearson, 1996a and 1994).
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While the Euler method was based upon a Taylor series expansion about a single point,
the Gragg, or modified mid-point numerical integration procedure is based upon Taylor
series expansions at two points as follows:

z(t - h) = z(t) - hz ( t )+ |p ( t ) -~2 ( t )+ . . .

Whereupon subtraction and the omission of all 3rd and higher order terms produces:

z(t + h ) - z ( t - h ) = 2hz(t) (A4.1.2)

Since it is now only 3rf and higher order terms which are dropped to form the difference
equation approximation, the Gragg method of numerical integration is accurate to order-
h2. The integration involves first taking an Euler-step, subsequently iterating according to
(A4.1.2), and finally calculating a correction, based upon the two immediately preceding
uncorrected results, for the last result.47 Thus, the Gragg integration of (A4.1.1)
proceeds as follows:

tk+I = t k +h k for k =

(A4.1.3)yk+i=yk-i+2hkg(yk ,tk) fork = l,...,(N-l
z ,=y ,

zk =T[yk+yk-i+hkg(yk,tk)] fork = 2,...,

where the y terms are intermediate approximations.

As shown in Figure A4.1.1, the uncorrected Gragg results march along the path
I, Ei, G2, G3, ...et cetera in a 'saw-tooth' manner. Like the Euler method, each chord
segment is parallel to the tangent to the curve at the independent variable coordinate
corresponding to the current point, but unlike the Euler case, the step along each chord
commences from the previous point. Thus, IEi is tangential at I; IG2 is parallel to the
tangent at ci; E1G3 is parallel to the tangent at c2 et cetera. The corrected Gragg
approximation to the actual curve z = f(t) smooths out the saw-teeth of these raw,
intermediate results. In Figure A4.1.1 the correction would produce the results: zo=I;
zi=El; Z2= a point between C2 on the curve and the line E1G3 above it; z3

= a point
between C3 on the curve and G3 above it; etc.

The fourth-order Runge-Kutta method involves four evaluations of the derivative,
g(z(t),t) in (A4.1.1), at each step: one at the current point, two at trial mid-points, and a
final one at a trial end-point. The final end-point is obtained by combining all these as
follows:

4 7 The Gragg approach is most commonly used to calculate only an end-point rather than an entire path.
Then the correction only needs to be performed once. Nevertheless 'Gragg can be used as an ODE
integrator in its own right' (Press et al., 1992), correcting each point in turn. It is these corrections, as
well as the first Euler step, which distinguish the Gragg approach from the unmodified mid-point
method.
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r l k=hkg(zk , tk)

/2,tk +hk 12)
/2,tk +hk (A4.1.4)

r3k f4k

Fourth-order Runge-Kutta has an error of only order-h5. See Birkhoff and Rota (1969)
for a proof.

In addition to the use of difference equation approximations accurate to higher orders of
the step size, the accuracy of numerical integration can obviously be improved by making
the step sizes themselves smaller. This can be particularly important throughout regions
of 'high curvature'; that is, where the derivatives are changing rapidly,48 Uniform step
sizes are often used in numerical integration, but judicious selection of non-uniform sizes,
even with fewer overall steps can significantly improve accuracy.

Another, powerful means of increasing the accuracy of these numerical integration
methods is through the use of so-called extrapolation techniques. The name arises from
the idea that in integrating to some end point, z(t+H), the estimated result is itself some
function of the step-size (h), say, zt+H =z(h) ; and that if sufficient information about
this function can be discovered (from investigating estimates based on different step-
sizes), then it may be possible to extrapolate the results from finite step-sizes to the limit,
h=0! This is known as Richardson's deferred approach to the limit or simply
Richardson's extrapolation. In practice it provides a means of combining end point
estimates calculated from different step-sizes to produce an (extrapolated) estimate of
higher order accuracy. Since any point on an integrated path can be considered an end
point, it is possible to extrapolate for an entire path.

Pearson (1991) provides the formulae for the Richardson extrapolations based on step-
sizes h and J/2h; and also on h, fch, and V4h for both the Euler and Gragg methods of
numerical integration. The 3-Euler solution extrapolation, which is used later in the
paper, is given by:

h (A4..1.5)

Pearson also shows that the accuracy of these extrapolations are order-h2 and order-h3

for the 2-Euler and 3-Euler combinations respectively, and order-h3 and order-h6 for the
Gragg combinations.

77 ? ? ? g ? S!C°nd der ivat ives » (datively) high and so difference equation approximations
for which the second order Taylor series terms are dropped become relatively less accurate.
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Appendix 4.2

Computing the saddle-path of the Ronter model
as the solution to an 'initial value9 problem

A4.2.1 Time elimination method

Following the procedure suggested by Mulligan and Sala-i-Martin (1991), the
'independent variable', time (t), is eliminated from the stationary dynamic Romer system
given by equations (2.41) to (2.45) by taking ratios of the differential equations. In this
way the system is expressed in terms of the original 'dependent variables' only with one
of these, chosen arbitrarily, as a new independent variable. In particular, choosing G> as
the new independent variable, the ratios *F(t)/<i>(t) and 4*(t)/pA(t) are formed from
(2.41) to (2.43) to generate the new (non-autonomous) pair of ODEs:

<PF(t)/dt

rpA - ( l -

(A4.2.1)

(A4.2.2)

whereupon substitution of equations (2.44) and (2.45) for HY and r allows the system to
be expressed in terms of *P, O, and pA only:

6 ( t )~d<£( t ) /d t~ d<D

P A W _ dpA(t)/dt _ dpA(O)

d<D(t)/dt d<D

dO
{(V " 1)

<*PA

d<D

+ * +
(A4.2.3)

, ftr r
\a(l-y)L pA

^ - ' _ i i i ] _ 5 } P A

{(v - a(l-7)L
Y - i - i i -

PA J
S(a-l)-p

a

In order to integrate this system as an initial value problem the two equations must be
evaluated at the only point known to lie on their paths, namely at the steady-state.
However, since both the numerators and denominators in the differential equations are
zero at the steady-state ( 4 ^ = O s = p ^ =0) , substitution of the steady-state values

produces ^determinancies (0-^0). This difficulty is overcome in the usual way by
invoking L'Hopital's rule. Working with (A4.2.1) and (A4.2.2) and denoting the new
derivatives as d»P(<D)/dt=vP'(<1>) and dpA(O)/d<D=pA'(̂ >)5 this produces:
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* - > * _
= lim

fl>-»«J>t»

= lim r+S

le.

(A4.2.4)

and

P A . = K

lim

so

\r — (A4.2.5)

Then, to evaluate (A4.2.4) and (A4.2.5) it is first necessary to obtain expressions for
dr

* = (a*)*, and HYss =
, d H v in terms of ̂  and p ^ . Accordingly, from (2.44):

r-1

l - a ( l - y )
le.

PASS

(A4.2.6)

Which, together with (2.45) produces:

PASS

lYss

a(l-Y)LVl-a(l-y)
1

l-a(l-y)J

l -a( l -y) ^ s s PASS
(A4.2.7)
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Expressions for ¥^ and p^ . may now be obtained from (A4.2.4) and (A4.2.5) by
substituting (A4.2.6) and (A4.2.7). The algebra is messy. It results, in a pair of

d ipolynomials in ̂  and p^ s , each including cross product terms in
terms of the known parameter and steady-state values. Specifically:

and

where

expressed in

(A4.2.8)

(A4.2.9)

1 1 ( l -
)

1 10(1-7)^+5)

(l-a)(l-Y)(rss+5)

Y2

PASS

(A4.2.10)

1 - Y
- a)[y *T - d - Y)] + [1 ~ a(l -

• ss

To obtain the saddle-path (A4.2.8) and (A4.2.9) must then be solved for ¥'« and p'Ass,
and the results used as initial conditions to integrate the pair of differential equations
(A4.2.4) and (A4.2.5). The first of these tasks was achieved relatively painlessly by the
use of the mathematical software package "Maple".49 Three solutions were yielded. One
is the desired solution for the trajectory along which the steady-state is approached - the
"stable arm of the saddle equilibrium". The other two solutions relate to the two
"unstable arms" of the saddle, trajectories that do not satisfy the transversality conditions
and only lead away from the steady-state. As explained in the text, by referring to the
phase-space analysis of Section 3.3 it is clear that for the 'correct' saddle-path solution,
both H"ss and p'Ass must be negative. Consequently, of the three solution pairs:

¥'«! = -50.8455, P'ASSI = -53.7116;
y'sa = -32.1058, p'Ass2 = 22.5429; and
y ^ = -630.637, p'AsS3 = 1139.28;

obtained from (A4.2.8) and (A4.2.9) evaluated at the benchmark parameter values, the
first is readily identified as the solution for the saddle-path. It is also apparent from the
phase-space analysis that in integrating the differential equations (A4.2.3), when the
small steps in the independent variable O are positive it is the 'R8' portion of the saddle-
path that is calculated, while when they are negative it is the 'Rl' portion.

Integrations were performed under each of the Euler, Gragg, and fourth-order Runge-
Kutta (RK4) methods, as explained in Section 4.1 and in Appendix 4.1. Results are

4 9 From Waterloo Maple Software Inc., Canada.
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shown in Figure A4.2.1 to Figure A4.2.12.50 Figure A4.2.1 to Figure A4.2.8 are
presented in pairs, the first member of which depicts the 'R l ' arm of the saddle-path
(with the dependent variable steady-state, and its axis, to the right of the graph), and the
second indicates the 'R8' arm (where now the steady-state and dependent variable axis
are drawn to the left of the diagram).

Two significant observations are immediately apparent from this analysis. One is the
instability of the Gragg or modified mid-point method; the other is the apparently very
close correspondence of the Euler and the RK4 procedures.51 These properties of the
integrations are manifested for both the dependent variables,^ and pA, and across a large
range of step-sizes for the independent variable, <D.

Figure A4.2.1: Saddle-path for the Romer model: 'Rl' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable psi vs. phi; phi step-size = -0.001.
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The erratic behaviour of the Gragg method should not be completely unexpected. Both
Gragg and the (unmodified) midpoint method are defined to be only weakly stable.52 In

50 Formulae for each of the methods were programmed into Microsoft Excel spreadsheets largely
because of the quality and flexibility of the graphical output from Excel.
51 Graphically the correspondence is so close that the Euler series tends to completely obscure the RK4
series. To help alleviate this problem the Euler series have been plotted as square data points with no
connecting lines; and the RK4 as lines with no explicit points. Also, some of the data points from the
end of the reported Euler integration have been omitted in order that, for this part of the saddle-path at
least, the path plotted for the RK4 integration may be seen.
52 See Atkinson (1989); Abramowitz and Stegun (1965), who give various numerical integration
formulae and add a special caution against possible instabilities from the Gragg approach; and Harrison
and Pearson (1994), who note that in some highly non-linear simulations with GEMPACK the Gragg
and midpoint method results diverge rapidly.
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the current application the 'saw-tooth' nature of the Gragg approach (see Figure A4.1.1
in Appendix 4.1) soon results in estimating that a point on the saddle-path lies in an
invalid region of the phase-space. Since even the signs of the derivatives are then totally
inappropriate to the saddle-path, and because the point still lies 'close' to the phase-
surfaces, the integration tends to generate further points that bounce around in different
phase-space regions. Eventually the system gets far enough away from the phase surfaces
that it remains in a single region. Sometimes the oscillations then die out, as in Figure
A4.2.3 for example, but of course by then the system is nowhere near the saddle-path,
and the integration simply tracks whatever streamline of the phase-space it happens to
fall on.

Figure A4.2.2: Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable psi vs. phi; phi step-size = 0.001.
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Instability in the Gragg approach persists even when the independent variable step-size is
made very small. While decreasing the step-size raises the number of integration
iterations for which the estimated saddle-path points lie in the correct phase-space
region, it actually seems to reduce the interval from the steady-state to the point where
an invalid region is first entered! For example, with step-size 0.001 (equivalent to some
0.36 per cent of <I>ss) the system first leaves the correct R8 region and enters R6 after
only five iterations and when O«0.2801. When the step-size is reduced to 0.0005 (0.18
per cent of <S>^) the system departs R8 for R7 after six iterations but when O«0.2776.
And when a step-size of a mere 0.00001 or only 0.0036 per cent of ®ss is employed,
while the system remains in R8 for 25 iterations before entering R6, at that stage
O«0.2743 only (Figure A4.2.9).
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Figure A4J23: Saddle-path for the Romer model: 'Rl' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable PA VS. phi; phi step-size — -0.001.
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Figure A4.2.4: Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable pA vs. phi; phi step-size = 0.001.
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Figure A4.2.5: Saddle-path for the Romer model: 'Rl' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integii ation; variable psi vs. phi; phi step-size = -0.0005.
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Figure A4.2.6: Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable psi vs. phi; phi step-size = 0.0005.
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Figure A4.2.7: Saddle-path for the Romer model: 'Rl' arm; time elimination
technique; Enter, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable PA VS. phi; phi step-size = -0.0005.

Romer model saddle-path: 'Rl'arni
Time-elimination technique

0.2391 0.2441 0.2491 0.2541 0.2591

phi

0.2641 0.2691

11.5

10.5

0.2741

d:\phd\chpt4YrimcElim_ xhv{pARl)

Figure A4.2.8: Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable DA VS. phi; phi step-size = 0.0005.
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Figure A4.2.9: Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable PA VS. phi; phi step-size = 0.00001.
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In contrast to Gragg, the Euler and RK4 methods appear highly stable and the saddle-
path estimates from both remain in the correct regions over indefinite iterations. Also,
the fact that they both return extremely similar results suggests a degree of reliability.
Their accuracy may be assessed and compared by examining the results they generate for
the dependent variables, ¥ and PA, at distant values of the independent variable (ie.
relatively far from Oss), over a range of step-sizes, and utilising the Richardson
extrapolation technique (see Appendix 4.1). The calculations have been examined for
step-sizes ±0.0001, ±0.0002, and ±0.0004; for ±0.0005, ±0.001, and ±0.002; and for the
3-Euler Richardson's extrapolations based upon each of these sets.53 The 'distant' values
of G> were those reached after 1000 and 2000 iterations of the smallest step-size; namely:
<D«0.1741 and 0.0741 on the Rl side of the saddle-path; and <D»0.3741 and 0.4741 on
the R8 side.

The results are recorded in Table A4.2.1. Given the orders of accuracy of the
differencing methods (in terms of omitted Taylor series terms - see Appendix 4.1), the
most accurate calculations can be expected to be those for RK4 on the smallest step-
sizes. Whether the 3-ER extrapolated results for the finest set of step-sizes are more or
less accurate than those for RK4 on larger step-sizes cannot be predicted; although the
calculations for the most distant Q> values suggest that the latter, for all but the biggest
step-size, is probably the case. Encouragingly, the 3-ER calculations all agree with the
RK4 outcomes from the smallest relevant step-size, to at least 6-figures and often to 8 or
9-figures.

53 The "±" step-sizes confirm that the calculations cover both the Rl and R8 arms of the saddle-path.
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Overall the results suggest a 'fair' degree of accuracy for the Euler method with the
smallest step-sizes, showing 4 or 5-figure agreement with the RK4(±0.0001) outcomes
and with the relevant 3-ER extrapolations. However, generally the Euler results lack
consistency, with at best 3 or 4-figure agreement among the different step-size outcomes
and sometimes only 2-figure agreement. This is all the more evident when compared with
the great consistency and robustness of the RK4 results. These always show (at least) 9-
figure agreement for the finer set of step-sizes, and even for largest step-size (±0.002)
the results agree to at least 5-figures and usually to 7, 8, or 9-figures, with the results for
the smallest step-size. Taking the computing and data manipulation effort into account,
the most efficient of these integration configurations would seem to be the RK4 based on
step-sizes of ±0.001. This represents about 0.36 per cent of the steady-state value CE^
0.2741, and the agreement with RK4(±0.0001) only falls short of 8-figures for a single
one of the calculations in Table A4.2.1.

Table A4.2.1: Assessment of the accuracy of the Eider aud 4th order Runge-Kutta (RK4)
methods of numerical integration for the 'Time elimination technique'.

Saddle-path region

and <X> value
Region Rl

<S> = 0.17408779

(1000 steps at
the smallest
step-size)

Region R8

<D = 0.37408779

(1000 steps at
the smallest
step-size)

Region Rl

O = 0.07408779

(2000 steps at
the smallest
step-size)

Region R8

<D = 0.47408779

(2000 steps at
the smallest
step-size)

Step-size
-0.0001
-0.0002
-0.0004
3-ER on above
-0.0005
-0.001
-0.002
3-ER on above
+0.0001
+0.0002
+0.0004
3-ER on above
+0.0005
+0.001
+0.002
3-ER on above
-0.0001
-0.0002
-0.0004
3-ER on above
-0.0005
-0.001
-0.002
3-ER on above
+0.0001
+0.0002
+0.0004
3-ER on above
+0.0005
+0.001
+0.002
3-ER on above

Dependent variable*!'
Euler
17.5279648
17.5236152
17.5149331
17.5323200
17.5106005
17.4890217
17.4462814
17.5323184
3.34253737
3.34227777
3.34175815
3.34279684
3.34149814
3.34019596
3.33758114
3.34279681
129.272661
129.040872
129.580187
129.505416
128.351282
127.220887
125.028579
129.504504
2.04015237
2.03993157
2.03948970
2.04037307
2.03926862
2.03816181
2.03594106
2.04037306

RK4
17.5323200
17.5323200
17.5323200
n.a.
17.5323200
17.5323201
17.5323222
n.a.
3.34279684
3.34279684
3.34279684
n.a.
3.34279684
3.34279684
3.34279686
n.a.
129.505424
129.505424
129.505424
n.a.
129.505424
129.505425
129.505442
n.a.
2.04037307
2.04037307
2.04037307
n.a.
2.04037307
2.04037307
2.04037307
n.a.

Dependent variable pA
Euler
19.2307079
19.2297206
19.2277490
19.2316962
19.2267648
19.2218588
19.2121220
19.2316959
5.82879095
5.8277550
5.82874460
5.82880641
5.82872916
5.82865205
5.82849825
5.82880643
75.5309970
75.4855759
75.3951131
75.5765445
75.3500703
75.1267192
74.6891109
75.5764528
4.03657968
4.03659286
4.03661931
4.03656653
4.03663257
4.03669926
4.03683464
4.03656653

RK4
19.2316962
19.2316962
19.2316962
n.a.
19.2316962
19.2316963
19.2316963
n.a.
5.82880641
5.82880641
5.82880641
n.a.
5.82880641
5.82880642
5.82880663
n.a.
75.5765453
75.5765453
75.5765453
n.a.
75.576545*
75.5765460
75.5765554
n.a.
4.03656653
4.03656653
4.03656653
n.a.
4.03656653
4.03656653
4.03656656
n.a.

d:\phd\chpt4\RichExtrap..(TE.RichEx) AND d:\phd\chpl4\Time FJim(TE RK4 Rl & TE.RK4.R8)

254 Chapter 4

For values of the independent variable that are not so distant from the steady-state the
Euler and RK4 methods of integration closely shadow one another. It is not until the
step-size is made relatively large that this correspondence breaks down, and then,
somewhat surprisingly, it is the RK4 method that fails. This is illustrated for the variable
pA: For step-sizes up to about -0.003 on the Rl side of the saddle-path and 0.008 on the
R8 side, the series PA(E) and pA(RK4) continue to correspond closely and to correctly
track the saddle-path. As the step-sizes are increased slightly from these levels the
PA(RK4) series begins to diverge from the PA(E) series at the early iterations, but then to
return to correspondence at later iterations. At step-sizes of -0.0038 and 0.01215 the
series diverge for about a dozen iterations (Figure A4.2.11 and Figure A4.2.12).54 Then,
for only slightly larger step-sizes (no more than a 0.00001 absolute increase is necessary)
the RK4 procedure breaks down completely, causing pA to go negative at the first step.
When the step-size has been increased to somewhere between -0.0039 and -0.0040 for
the Rl arm, and to between 0.0130 and 0.0131 for the R8 arm, the RK4 procedure
begins integrating once again; but now it is nowhere near the saddle-path. As before with
the Gragg method, it merely integrates along whateT'̂ r streamline it happens to be o a
Throughout all this the simple Euler integration process continues its estimation of the
saddle-path with great equanimity, correctly placing it in either Rl or R8 as appropriate.
Moreover, it continues to do so even for step-sizes as large as -0.03 on the Rl side, and
0.12 on the R8 side. Nevertheless, as we have seen from the calculations in Table
A4.2.1, for sensibly small step-sizes RK4 is clearly superior.

Figure A4.2.10 Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable pA vs. phi; phi step-size = 0.01.
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54 This somewhat bizarre temporary divergence may also be seen from Figure A4.2.10 to arise very

briefly for a step-size of 0.01.
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Figure A4.2.11: Saddle-path for the Romer model: 'Rl' arm; time elimination
technique; Euler, Gragg, and fourth-order Rnnge-Kntta methods of
numerical integration; variable pA vs. phi; phi step-size = -0.0038.
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Figure A4.2.12: Saddle-path for the Romer model: 'R8' arm; time elimination
technique; Euler, Gragg, and fourth-order Runge-Kutta methods of
numerical integration; variable pA vs. phi; phi step-size = 0.01215.
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Because time has been eliminated in this system, another initial value problem must be
solved in order to obtain adjustment paths of the dynamic variables over time.
Specifically, initial values obtained from some appropriate point on, or interpolated from,
the computed saddle-path must be used to integrate the original dynamic system, for
which time is the independent variable. However, it turns out that in practice integrations
of these 'second' initial value problems are unstable and tend to diverge rapidly from the
saddle-path and its steady-state equilibrium. This is because the initial values are not
precisely on the saddle-path, nor are they sufficiently close to it given the Romer
system's extreme sensitivity to initial conditions. Thus the integration is along some other
very nearby but nevertheless divergent streamline.

Figure A4.2.13: Adjustment paths for the Romer model: time elimination Euler
generated initial values on a phi step-size =-0.0001 ('Rl' arm);
second Euler integration on a time step-size = 0.25.
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The superiority of the 4th order Runge-Kutta method of numerical integration over that
of Euler is demonstrated quite dramatically in this context. When one of the calculated
points from an Euler generated saddle-path is used to provide the initial values for an
integration of the time paths of the dynamic variables on their approach towards the
steady-state, this second integration rapidly becomes divergent. This is illustrated in
Figure A4.2.13 for the case of what might be described as a 'medium distant' saddle-
path point: 0P«17.53, pA«19.23, Q»0.1741), originally estimated by a time elimination
Euler process with a (very small) phi step-size of-0.0001, and then used as initial values
for a second Euler integration with a time step-size of 0.25. This second integration
departs region Rl after only t=27, and it breaks down completely after t=47. Employing
RK4 for the second integration improves matters only slightly, the equivalent time points
to the above being t=36, and t=57 respectively.
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In contrast, when the initial values for the time path integration are obtained from an
RK4 generated saddle-path, the variables make far more definite and proximate
approaches towards their steady-state levels. Nevertheless, these second integrations are
still eventually divergent, and not after particularly long periods. Two cases of two 'very
distant' RK4 generated points, 0F«62.86, pA«46.46, CEMMOOO) in region Rl , and
0F«2.273, pA«4.377, and O>«0.4500) in R8, both used as initial values for ensuing RK4
time integrations, are shown below in Figure A4.2.14, and Figure A4.2.15.

Figure A4.2.14: Adjustment paths for the Romer model: time elimination RK4
generated initial values on a phi step-size =-0.0001 ('Rl' arm);
second RK4 integration on a time step-size = 0.25.
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In the first case, for the Rl arm of the saddle-path the steady-state is approached in a
well behaved apparently asymptotic manner for some time, the integration correctly
placing the adjustment path in the Rl region of phase-space until t=96. However, from
this point the divergence is rapid with the integration breaking down completely after
t=126 (Figure A4.2.14). Things are not quite so well behaved for estimates of the R8
arm of the saddle-path. Here the correct region is returned only up to t=65, and the
integration breaks down after t =90 (Figure A4.2.15).
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Figure A4.2.15: Adjustment paths for the Romer model: time elimination RK4
generated initial values on a phi step-size =+0.0001 ('R8' arm);
second RK4 integration on a time step-size = 0.25.
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A4.2.2 Eigenvector-backwards-integration method

As for the time elimination technique, integrations here were performed by the Euler,
Gragg, and the 4th order Runge-Kutta methods. Moreover, the same general conclusions
about their performances were found to hold. In particular, it was found firstly, that the
Gragg method was again highly unstable and consequently unsuitable for the problem;
secondly, that the Euler and RK4 methods approximate one another (although somewhat
less so than was the case under the time elimination technique); and thirdly, that the
greater consistency, stability and accuracy of the RK4 approach make it clearly superior
and more efficient than Euler. These conclusions are illustrated in Figure A4.2.16 to
Figure A4.2.21 and in Table A4.2.4 and will be discussed in some more detail soon. First
it is necessary to discuss an additional issue that arises in this eigenvector-backwards-
integration technique over that of time elimination.

This is the question of determining the magnitude of the first small step to be taken away
from the steady-state and in the direction of the eigenvector. Of course the smaller is this
first step, the more accurate the final results are likely to be; but also, the closer to zero
are the time derivatives and so the slower is the progression of the integration. For this
reason the integration is sensitive to the size of this initial step in the sense that changes
in it generate very different values for each of the dependent variables (*F, pA, and <D) for
the same (distant) value of the independent variable, t=time (Table A4.2.2).
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Table A4.2.2: Sensitivity of the 'Eigenvector-backwards-integration technique' at distant time
points, to the initial eigenvector step; Enter and 4th order Runge-Kutta (RK4) methods of
numerical integration, time step-size=0.25.

Time interval
& saddle arm

t=-150

t=-175

t=-200 Rl

t=-225

t=-250

t=-150

t=-175 R8

t=-200

Eigenvector
step multiple

+0.0007
+0.0005
+0.0007
+0.0005
+0.0007
+0.0005
+0.0007
+0.0005
+0.0007
+0.0005
-0.0007
-0.0005
-0.0007
-0.0005
-0.0007
-0.0005

Euler method

7.2730
7.0407
9.3695
8.4913
18.372
14.388
69.713
45.182
465.42
265.87
5.7228
5.9335
4.0922
4.7206
0.5248
1.5886

PA

10.279
10.041
12.333
11.492
19.890
16.739
49.989
37.177
176.33
122.28
8.6420
8.8718
6.7664
7.5117
1.1445
3.3533

<J>
0.2597
0.2637
0.2311
0.2418
0.1704
0.1928
0.0954
0.1148
0.0443
0.0552
0.2903
0.2855
0.3398
0.3177
0.9175
0.5341

4th order Runge-Kutta method

7.3145
7.0677
9.5474
8.6113
19.388
15.020
77.775
49.740
547.511
309.72
5.6896
5.9092
3.9833
4.6359
0.4033
1.4155

PA
10.318
10.061
12.498
11.607
20.639
17.247
53.669
39.612
194.68
134.43
8.6053
8.8453
6.6322
7.4121
1.1592
3.0634

0.2591
0.2633
0.2292
0.2403
0.1665
0.1866
0.0914
0.1104
0.0420
0.0523
0.2911
0.2860
0.3442
0.3205
1.0585
0.5664
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On the other hand the saddle-path itself seems relatively insensitive to changes in the
eigenvector step, approximately the same points simply being reached at a later time for
smaller eigenvector steps (Table A4.2.3).55 However, as demonstrated by the problem of
obtaining adjustment paths from the saddle-path computed by the time elimination
technique, the dynamic Romer system is so sensitive to initial conditions that even small
differences from the true saddle-path are rapidly magnified in integrating towards the
steady-state. For this reason it is a moot point to say that the saddle-path is insensitive to
changes in the eigenvector step, even for points whose magnitudes agree to say, five or
six figures!

One thought about choosing the size of the initial eigenvector step is to make it
equivalent, in terms of <D, to the step-size found sufficiently small for accurate results
under the time elimination method: that is, to a step in O of some ±0.001 for RK4, or of
about ±0.0001 or less for unextrapolated Euler. With the relevant eigenvector having
been estimated in terms of W, pA, and 3> respectively as yi« (0.6874, 0.7726, -0.0135),
this suggests an initial step of ±0.07yi or ±0.007yi. However, even with the smallest of
these steps and for time step-sizes down to a tiny -0.1 or smaller, integration of the R8
arm of the saddle-path 'falls over' between t=158 and t=159 Q¥ having become
negative) for both the Euler and RK4 methods. The 'period of successful integration' can
be gradually extended by reducing the initial eigenvector step, but to get the integration
beyond t=200 requires a step-size of about one-tenth of the smallest considered for the
time elimination case; namely, +0.0007yi, and at this eigenvector step the R8 integration
still only extends to time t =205.56

55 Interestingly, for the eigenvector steps and time step-size used in Table A4.2.2 and A4.2.3 (±0.0007,
+0.0005, and dt=-0.25), the time difference is approximately constant At« 7! -
56 In contrast, the integration of the RI arm continues to proceed at t=4000 with a time step-size of-2.0!
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Table A4.23 Sensitivity of the 'Eigenvector-backwards-integration technique' saddle-path, to
the initial eigenvector step; Euler and 4th order Runge-Kutta (RK4) methods of numerical
integration, time step-size=0.25.

Time interval
& saddle arm
t=-150
=-156.75
=-157
t=-175
=-181.75
=-182

t=-200
=-206.75 Rl
=-207

t=-225
=-231.75
=-232

t=-250
=-256.75
=-257

t=-150
=-156.75
=-157

t=-175
=-181.75 R8
=-182
t=-200
=-206.75
=-207

Eigenvector
step multiple
+0.0007
+0.0005
+0.0005
+0.0007
+0.0005
+0.0005
+0.0007
+0.0005
+0.0005
+0.0007
+0.0005
+0.0005
+0.0007
+0.0005
+0.0005
-.0007
-.0005
-.0005
-.0007
-.0005
-.0005
-.0007
-.0005
-.0005

Euler method

7.2730
7.2684
7.2785
9.3695
9.3522
9.3908
18.372
18.291
18.471
69.713
69.192
70.352
465.42
461.07
470.76
5.7228
5.7269
5.7179
4.0922
4.1039
4.0779
0.5248
0.5403
0.5062

PA
10.279
10.275
10.285
12.333
12.316
12.353
19.890
19.828
19.966
49.989
49.735
50.300
176.33
175.26
177.64
8.6420
8.6465
8.6366
6.7664
6.7807
6.7491
1.1445
1.478!
1.4059

0
0.2597
0.2598
0.2596
0.2311
0.2313
0.2309
0.1704
0.1707
0.1699
0.0954
0.0957
0.0950
0.0443
0.0445
0.0441
0.2903
0.2902
0.2904
0.3398
0.3393
0.3404
0.9175
0.9045
0.9340

4th order Runge-Kutta method

7.3145
7.3085
7.3191
9.5474
9.5357
9.5772
19.388
19.331
19.532
77.775
77.397
78.742
547.51
544.223
555.913
5.6896
5.6922
5.6828
3.9833
3.9910
3.9638
0.4033
0.4121
0.3815

PA
10.318
10.315
10.326
12.498
12.487
12.562
20.639
20.597
20.747
53.669
53.493
54.119
194.68
193.927
196.608
8.6053
8.6083
8.5979
6.6322
6.6416
6.6083
1.1592
1.1791
1.1094

<J>
0.25909
0.25914
0.25897
0.2292
0.2293
0.2288
0.1665
0.1667
0.1659
0.0914
0.0916
0.0910
0.0420
0.0421
0.0418
0.29113
0.29106
0.29129
0.3442
0.3439
0.3450
1.0585
1.0470
1.0888
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Performances of the Euler, Gragg, and RK4 integration methods are illustrated in Figure
A4.2.16 to Figure A4.2.21. As was the case for the time elimination technique, the
instability of the Gragg method is immediately apparent, including the oscillatory and
divergent nature of its time derivative estimates. Even with the small eigenvector and
time step-sizes of ±0.0007 and -0.25 respectively, for both the Rl and R8 arms of the
saddle-path the Gragg integration only returns estimates in the correct region of phase-
space up to t =-69, and it breaks down completely after t =-109. While the "end point-
corrected Gragg" saddle-path accords closely with those for Euler and RK4 before it
breaks down, this is only for a period in which the integration remains very close to the
steady-state.

The explanation of how this erratic behaviour arises is exactly the same as for the time
elimination technique. In the graphs presented here, a change in sign of a time derivative
estimate reflects the tendency of the Gragg approach to estimate that a point on the
saddle-path lies in an invalid region of the phase-space. However, a change in the sign of
the plotted derivative is not necessary for such an invalid point to have been reached by
the integration. One of the other derivatives not plotted may have changed sign instead.

Because of the many different combinations of the variables, saddle arms, eigenvector
and time step-sizes it is possible to draw a vast number of different graphs of these
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integrations. However they all seem to show very much the same behaviour. Those
presented here have been chosen to illustrate the general properties of the integrations
for step-sizes that provide some visual clarity and which are not 'unreasonable'.

Figure A4.2.16: Saddle-path for the Romer model: 'Rl' arm; eigenvector-
backwards-integration technique; Euler, Gragg, and fourth-order
Runge-Kutta methods of numerical integration; variable p^;
eigenvector step = O.Olyi; time stepsize = -1.0.
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The similarity of the Euler and the 4th order Runge-Kutta integrations is evident from the
diagrams. They appear to be particularly close to one another when the time step-size is
small (Figure A4.2.20). Nevertheless, it turns out that when the integrations are extended
further, the accuracy of the Euler results clearly fell short of those of the RK4 approach
in estimating the saddle-path of the Romer model by this eigenvector- backwards-
integration technique. As before for the time elimination technique, the accuracy of the
Euler and RK4 here were assessed by examining their saddle-path estimates at a 'distant'
integration point (in this case a time point) over a variety of time step-sizes. In this
analysis the eigenvector step used was ±0.0007yi and the integrations were performed
out to time t=-200. Under the smallest step-size used of -0.125, this meant that the
integration comprised 1600 iterations. Richardson extrapolations of the '3-Euler', or
'3-ER' type, (see Appendix 4.1) were performed for each of the step-size groups
(-0.125, -0.25, and -0.5); and (-1.0, -2.0, and -4.0). The results are presented in Table
A4.2.4.

Table A4.2.4 Assessment of the accuracy of the Euler and 4th order Runge-Kutta (RK4)
methods of numerical integration for the 'Eigenvector-backwards-integration technique*.

Description Time
of the step- Variable *F Variable pA Variable <&

integration size Euler RK4 Euler RK4 Euler RK4
-0.125 18.8651234 19.3880093

Saddle arm -0.250 18.3718146 19.3880093
=R1, -0.500 17.4655281 19.3880084

eigenv'step 3-ER on 19.3852094 n.a.
=+0.0007 above

t=200 -1.000 15.9250158 19.3879946
(1600 steps -2.000 13.6426998 19.3877770
at smallest -4.000 10.9328175 19.3843559
step-size 3-ER on 18.8255819 n.a.

above

20.2557876 20.6390020
19.8903759 20.6390020
19.2088275 20.6390015
20.6376243 n.a.

18.0177826 20.6389940
16.1685060 20.6388802
13.8157963 20.6372510
20.3156739 n.a.

0.16842125 0.16645538
0.17035564 0.16645538
0.17413001 0.16645538
0.16645538 n.a.

0.18130311 0.16645547
0.19418854 0.16645686
0.21469385 0.16647877
0.16666249 n.a.

-0.125 0.46210380 0.40332119
Saddle arm -0.250 0.52476979 0.40332085

=R8, -0.500 0.66051214 0.40331513
eigenv'step 3-ER on 0.40290792 n.a.

=-0.0007 above
t=200 -1.000 0.96428864 0.40321579

(1600 steps -2.000 1.63306092 0.40126086
at smallest -4.000 2.89090007 0.35127608
step-size 3-ER on 0.26894789 n.a.

above

1.30045187 1.15922541
1.44536321 1.15922640
1.74262846 1.15954273
1.15802139 n.a.

2.34672964 1.15951230
3.49458563 1.16370664
5.30321366 1.21264429
1.03651233 n.a.

0.98259782 1.05851807
0.91754475 1.05851825
0.81266532 1.05852043
1.03605980 n.a.

0.66998507 1.05853265
0.51799114 1.05818470
0.39634144 1.06360007
0.88275839 n.a.
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Figure A4.2.17: Saddle-path for the Romer model: 'R8' arm; eigenvector-
backwards-integration technique; Euler, Gragg, and fourth-order
RungtvKutta methods of numerical integration; variable PA;
eigenvector step = -O.Olyi; time stepsize = -1.0.

Romer model saddle-path: 'R8' arm
Eigcnvcctor-backwards integration technique
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Figure A4.2.18: Saddle-patfa for the Romer model: 'Rl' arm; eigenvector-
backwards-integration technique; Enter, Gragg, and fourth-order
Rnnge-Kntta methods of numerical integration; variable phi;
eigenvector step = O.OI71; time stepsize=-1.0.
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Figure A4.2.19: Saddle-path for the Romer model: 'R8' arm; eigenvector-
backwards-integration technique; Euler, Gragg, and fourth-order
Runge-Kutta methods of numerical integration; variable PA;
eigenvector step = -O.Q007yi; time stepsize = -1.0.
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Figure A4.2.20: Saddle-path for the Romer model: 'Rl' arm; eigenvector-
backwards-integration technique; Euler, Gragg, and fourth-order
Runge-Kutta methods of numerical integration; variable phi;
eigenvector step = O.Olyi; time stepsize = -0.25.

Romer model saddle-path: 'Rl' arm
Eigenvector-backwards integration technique
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Figure A4.2.21: Saddle-path for the Romer model: 'R8' arm; eigenvector-
backwards-integration technique; Euler, Gragg, and fourth-order
Runge-Kutta methods of numerical integration; variable psi;
eigenvector step = -0.0007yi; time stepsize = -1.0.
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Once again, from the orders of accuracy of the differencing methods (Appendix 4.2) the
most accurate calculations can be expected to be those for RK4 on the smallest step-
sizes. Also, the 3-Euler Richardson extrapolations based upon the set of smaller step
sizes can be expected to exploit any divergences between the simple Euler results and to
improve them significantly. Even more so than was the case for the time elimination
technique (see Table A4.2.1 and the accompanying commentary), the divergences and
inconsistency of the Euler results stand in marked contrast to the great consistency of
those of the RK4 method. It appears that for the Euler method only the 3-ER figures for
the set of smaller step-sizes are sufficiently accurate, and that these are less accurate than
the RK4 figures based on a step-size of-2.0.

Overall, it would appear that the accurate and efficient calculation of the 'benchmark'
Romer model saddle-path under the eigenvector-backwards-integration technique,
requires an eigenvector step of ±0.0007 or smaller and a 4th order Runge-Kutta
procedure with a time step-size of-0.5 or smaller (or perhaps -0.25 or smaller in region
R8). Furthermore, the efficiency of the integration could be improved by increasing the
time step-size at the beginning of the integration where there is very little change in any
of the variables (the time derivatives are very close to zero near the steady-state), and
decreasing it later where the curvature is higher.

Figure A4.2.22: Adjustment paths for the Romer model: eigenvector-backwards-
integration technique, RK4 method on an eigenvector step of
+0.0007yi ('Rl' arm) and a time step-size = -0.25, simple re-ordering
of the time scale.
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Calculation of adjustment time paths from saddle-paths generated by this eigenvector-
backwards-integration technique is far simpler and more accurate than for the time
elimination saddle-paths. Since the integration here is performed over time, such paths
are in fact calculated automatically, merely requiring a simple re-ordering of the time
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scale. In contrast, recall that the solution of another initial value problem, which tends to
be divergent, is necessary under the time elimination method. Adjustment paths obtained
in this manner for the 'distant point (¥=62.49, PA*46.28, O«0.1002) are shown in
Figure A4.2.22. These paths are directly comparable with those computed for the time
elimination generated neighbouring point (¥=62.86, pA«46.46, OwO.1000) and
presented in Figure A4.2.14. The asymptotic behaviour here indicates a clearly superior
estimate of the saddle-path.

Although unnecessary here, it is of course still possible to compute adjustment paths as
the solution to a second initial value problem in the same way as was necessary for the
time elimination method. Such calculations encounter the same sort of divergence
problems and for the same reason. Namely, that given the high degree of non-linearity
and consequent sensitivity of the dynamic system, the estimated initial values are simply
not sufficiently close to the true saddle-path to constrain the error magnification and
prevent divergence. Nevertheless, it is instructive to sohrc for the adjustment paths by
this method in order to compare the results with thoss from the corresponding time
elimination calculation. Figure A4.2.23 illustrates the adjustment paths computed in this
way from the same initial point used in Figure A4.2.22. It is also therefore directly
comparable with the time elimination calculations in Figure A4.2.14.

Figure A4.2.23: Adjustment paths for the Romer model: eigenvector-backwards-
integraticn RK4 generated initial values on an eigenvector step of
•+fl.0007y, ('Rl' arm) and a time step-size of -0.25; second RK4
integration on a time step-size = 0.25.
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The similarity is reassuring in that it suggests some reliability for both the time
elimination and the eigenvector-backwards-integration techniques. Nevertheless, the
adjustment paths based on initial values from the latter approach exhibit the more durable
asymptotic performance (the second integration correctly places the system in region Rl
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up to time t -118, compared to t =96 for the time elimination initial values), and would
therefore be preferred, at least for the integration settings employed. However, it may be
a relatively simple matter to make the performances more similar. Perhaps a smaller <J>-
step-size at the beginning of the time elimination integration, and a slightly bigger one
later on would make the techniques more comparable?
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Appendix 4.3

Specification of the finite differences-GEMPACK
method of numerical integration

A4.3.1 General

Numerical integration of the Romer model under a finite differences approach
implemented via the GEMPACK software requires the specification of two separate
procedures. First is the finite differencing procedure itself. This is necessary to convert
the continuous-time differential equations of the model into a finite set of discrete-time
difference equations, the form in which the model is presented to GEMPACK. The
second procedure that must be specified is the (multi-step) GEMPACK solution method
to be used in calculating the changes to the many endogenous time differentiated finite
difference variables in response to the imposition of exogenous shocks to other similar
variables. The purpose of this appendix is to examine the impact of alternative
configurations and to select the most appropriate for investigating the dynamic behaviour
of the Romer system.

In view of the unstable and divergent performance exhibited by the Gragg or modified
mid-point method in the earlier integrations of the Romer model saddle-path,57 neither
Gragg nor the mid-point method have been considered as candidates for the finite
differencing to be adopted in specifying the model to GEMPACK. Rather, the choice has
been restricted to the straightforward and robust, but somewhat approximate Euler
method; and the more complex but reliable and accurate fourth order Runge-Kutta
method. In addition to deciding upon the differencing method itself, both the time step-
size and the overall time period for the difference equations must also be determined. For
the solution procedure under which the effects of the exogenous shocks of simulations
are calculated (shown in Section 4.3.2 to be equivalent to an initial value problem), the
GEMPACK software offers the choice of the Euler, mid-point and Gragg methods, all
with Richardson extrapolations from two or three multi-step applications.

Some trade-off between accuracy and computational effort is involved in choosing
amongst the alternatives for each different decision, and ultimately the final selection of a
composite configuration is a somewhat subjective choice, though one based upon
empirical outcomes. Accordingly, a variety of alternative finite differences-GEMPACK
configurations have been run for similar simulations. Their results are examined in
Section A4.3.2. The model itself and the finite differencing procedure to be applied to it
are specified in a TABLO input file; while details any particular simulation, including the
exogenous shocks, the overall time horizon and time step-sizes, and the multi-step
method of solution are specified via a Command file. These are discussed further in
Section A4.3.3.

57 Namely, the time elimination and the eigenvector-backwards-integration techniques examined in
Section 4.2 and Appendix 4.2).

Chapter 4 269



A4.3.2 Empirical performances on the Romer model

The simulations used were for either a decrease or an increase of 10 per cent in the
capital elasticity parameter y, in order to return it to its benchmark setting (0.54), while
all other parameters were held at benchmark.58 In this way the simulation results
generated portions of either the Rl or the R8 arm of the benchmark saddle-path. The
step-sizes employed were constrained by the desire to be able to report results for all
complete or integral year periods up to and including 'year 100', and all quarterly results
to 'year 25' from the configuration eventually chosen as the 'standard'. The different
configurations tested are specified in Table A4.3.1, and some diagnostic results from
their corresponding simulations are recorded in Table A4.3.2.

TableA4.3.1: Specification of configurations for finite differences-GEMPACK test
simulations.

Test
simulatio

n
labels

Test simulation configurations
Finite differencing Step size Total period Time GEMPACK steps Saddle

(years) (years') intervals anri solution armand solution
method

arm

E.I Euler 1.0 250
E.2 Euler 0.25 250

RK4.1 4th order Runge-Kutta 1.0 250
RK4.2 4th order Runge-Kutta 0.5 250
RK4.3 4th order Runge-Kutta Uneven 1" 250
RK4.4 4th order Runge-Kutta Unevenla 250
RK4.5 4th order Runge-Kutta Uneven 1" 250
RK4.6 4th order Runge-Kutta Uneven la 250
RK4.7 4th order Runge-Kutta Uneven2b 250
RK4.8 4th order Runge-Kutta Uneven3c 500
RK4.9 4th order Runge-Kutta Uneven4d 200
RK4.10 4th order Runge-Kutta Uneven la 250

E.3 Euler Uneven5c 250
E.4 Euler Uneven5c 250

250 2-4-6 Gragg Rl
1000 8-16-24 Euler Rl
250 2-4-6 Gragg Rl
500 8-16-24 Gragg Rl
350 8-16-24 Gragg Rl
350 12-24-36 Gragg Rl
350 12-24-36 Euler Rl
350 12-24-36 Gragg R8
400 12-24-36 Gragg R8
375 12-24-36 Gragg R8
345 12-24-36 Gragg R8
350 16-32-48 Gragg R8
625 12-24-36 Gragg Rl
625 12-24-36 Gragg R8

Notes: a 0.125 over the first 15 years; 0.25 for the next 25 years; 0.5 for the following 25
years to year 65; then 1.0 for the 35 years to year 100; 2.0 for the next 50 years; and finally, 5.0
over the last 100 years to year 250.

b 0.0625 over the first 5 years; 0.125 for the following 10 years; 0.25 over years 15 to 25; 0.5
for the 25 years to year 50; then 1.0 over the next 100 years; and 2.0 over the final 100 years.
c As for "Uneven 1" but with an additional 25 steps of 10.0 from year 250 to year 500.
d As for "Uneven 1" but without the last 5 steps of 10.0 from year 200 to year 250.
e 0.05 over the first 15 years; 0.1 for the next 10 years; 0.2 over years 25 to 40; 0.25 to year 50;
then 0.5 for the next 15 years; 1.0 for the 35 years to year 100; 2.0 to year 150; and 5.0 for the
100 years to year 250.

The results labelled "Time in Rl or R8" require some explanation: They were calculated
by using the coordinates of post-shock saddle-path points from the simulations as initial
values for the direct integration of the model's differential equations by a 4th order
Runge-Kutta process with a step-size of 0.25 years. Two sets of coordinates were used:
The first were those immediately after the shock, at time t=0. These define the saddle-

58 Tbr choice of y was made simply because the Romer system saddle-path is more sensitive to this than
to any other parameter (see Table 2.3 in Chapter 2).
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path points to which the system first jumps in response to the shocks. The second set of
coordinates used in these integrations were those from five periods later, at time t=5,
when it turns out that about 20 per cent of the total adjustment along the saddle-path has
occurred.59 In general, the longer the system remains in its correct region of phase-space
under these integrations (and hence the longer the period of asymptotic approach to the
new steady-state), the closer to the true saddle-path are its initial conditions. Thus, these
integrations provide some measure of the accuracy of the finite differences-GEMPACK
results.

It is apparent from the diagnostic results that although GEMPACK extrapolations for
Euler finite differencing can be made with a great deal of precision (all the results in
simulations E3 and E4 achieve the "6-jigures level of machine accuracy"), the Euler
method simply does not produce very accurate estimates of the saddle-path (results E.I,
E.2, E.3 and E.4). Even for the finely defined grid 'TTneven5" the system never really
reaches a state of asymptotic approach to the new steady-state (Figure A4.3.1 and Figure
A4.3.2). In comparison to this, even the relatively crude 4th order Runge-Kutta
configuration RK4.1 generates better estimates.

Table A4.3.2 Some diagnostic results from the finite differences-GEMPACK test simulations.

Test
simulatio

n
number

E.1
E.2

RK4.1
RK4.2
RK4.3
RK4.4
RK4.5
RK4.6
RK4.7
RK4.8
RK4.9
RK4.10

E.3
E.4

Time
orR8

t=0
24.75
30.75
55.75
64.5
64.5
64.5
55.25
53.5
55.5

53.75
53.75
53.75
37.25
28.25

inRl
from:

t=5
25

30.75
51
56
56
56
53

51.75
53.25
57.25
51.75
51.75
37.25
29.75

Initial jumps (% of base)*

phi
-3.57497(3)
-3.64603(5)
-3.66901(2)
-3.66917(5)
-3.66917(5)
-3.66917(6)
-3.66919(3)

-0.848975(5)
-0.848971(5)
-0.848974(5)
-0.848974(5)
-0.848974(5)
-3.66426(6)

-0.846192(5)

PA
12.9021(4)
12.9914(6)
13.0197(3)
13.0203(5)
13.0203(5)
13.0203(6)
13.0203(4)

-11.6679(6)
-11.6679(6)
-11.6679(6)
-11.6679(6)
-11.6679(6)
13.0134(6)

-11.6710(6)

Error in total adjustment
(%ofbasexl0-3)a

psi
0.06(3)
0.16(6)
-72.0(1)
0.06(4)
0.16(4)
0.16(5)
-0.24(3)
-0.06(5)
-0.06(5)
0.04(5)
-2.26(5)
-0.16(6)
0.06(6)
-0.06(6)

phi
0.43(2)
-0.48(5)
25.1(1)
-0.18(4)
-0.28(4)
-0.28(4)
-1.08(3)
0.05(5)
0.05(5)
-0.05(5)
1.35(5)
0.05(5)
-0.18(6)
0.05(6)

pA
0.09(3)
0.09(3)
136.5(1)
0.11(4)
0.21(4)
0.31(4)
0.21(3)
-0.08(5)
-0.08(5)
0.12(5)
-2.68(5)
-0.08(5)
0.21(6)
0.02(5)

Accuracy of results
(% of all results)6

6 figures0

0.5
78.8
0.1
10.8
45.8
69.8
0.8
87.4
80.5
83.7
82.0
96.3
100.0
100.0

5 figures
6.0
21.2
3.5
20.6
31.7
30.2
6.5
12.6
19.5
6.3
18.0
3.7
0.0
0.0

Notes; a Figures in bracket denote the number of digits of accuracy for the extrapolated results.
b "All results" means the values of psi, phi, and pA, for every grid point in the simulation.
c With double precision unavailable in GEMPACK, "6 figures" is the level of machine accuracy.

59 For the simulations considered here it turns out that about 20 per cent of the adjustment along the
saddle-path occurs in the first 5 years; some 15 per cent in each of the next two 5 year periods; about 10
per cent in each of the following two 5 year periods; and around another 5 per cent in each of the next
three sets of 5 year groups. Further adjustments of some 5 per cent of total also take place in each of the
following 10 year, 15 year, and 35 year periods. Thus, in round numbers some 50 per cent of the
adjustment is made in 15 years, about 75 per cent after 30 years, 90 per cent after 50 years, and over 99
per cent after 100 years. The uneven sets of grid intervals used in the finite differences-GEMPACK runs
(Table A4.3.1) were defined with this pattern of adjustment in mind.
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Results of the various Runge-Rutta simulations then reveal that in terms of the accuracy
of both the saddle-path coordinates and the GEMPACK initial value extrapolations:

• smaller step-sizes for both the finite differencing and for the initial value problem help
(RK4.1 and RK4.2);

• an uneven grid, with smaller step-sizes corresponding to ranges of greater change
also helps (also see Appendix 4.1), though here apparently only with the "figures of
accuracy". Importantly, the gain is that considerably less overall grid intervals are
required (RK4.2 and RK4.3);

• smaller steps in the GEMPACK initial value problem and extrapolation also generate
more reliability in the results, though here again the accuracy of the actual estimates
of the saddle-path coordinates remain unchanged (RK4.3 and RK4.4);

• using an Euler process with extrapolation for the GEMPACK initial value problem is
clearly inferior to the Gragg approach (RK4.4 and RK4.5);

• integration along the R8 arm of the saddle-path is more sensitive to initial
coordinates than along the Rl arm, although it generates more reliable extrapolations
(RK4.4 and RK4.6);

• the gains from a finer uneven ^rid with more intervals (grid "Uneven2" compared ..o
grid "Unevenl") appear to be fiurly small (RK4.6 and RK4.7);

• extending the overall time horizon (the point at which the steady-state is deemed to
be reached) also does not produce great improvement (RK4.6 and RK4.8);

• conversely, a reduction in the overall time horizon does not seem to cost much
(RK4.6 and RK4.9); and finally

• whilst further raising the number of steps for the GEMPACK initial value problem
and extrapolation improves the reliability of the results in terms of the "figures of
accuracy", here it produces little other improvement (RK4.6 and RK4.10).

Figure A4.3.1: Adjustment p?tas for the Romer model: 'Euler finite differencing-
GEMFACK' integration generated initial values, simulation E.3
specification from Table A43.1 ('Rl' arm); second RK4 integration
on a time step-size = 0.25.
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Figure A4.3.2: Adjustment paths for the Romer model: 'Euler finite differencing-
GEMPACK' integration generated initial values, simulation E.4
specification from Table A43.1 ('R8' arm); second RK4 integration
on a time step-size = 0.25.
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As a result of this analysis the finite differences-GEMPACK configuration chosen as the
'standard' for the investigation of the dynamics of the Romer model is that specified for
simulations RK4.4 and RK4.6 in Table A4.3.1 above.60 Namely:

4th order Runge-Kutta finite differencing with an uneven grid of 350 time
intervals extending over 250 years and step-sizes varying between 0.125
and 5 years (grid "Unevenl"); and a GEMPACK solution method of
Gragg, extrapolated from 12,24, and 36 steps.

While use of the 12-24-36 step extrapolation over the 8-12-16 step one did not produce
a vast improvement in the test simulations (RK4.3 and RK4.4), the former has been
preferred for the standard specification since it is readily computable with the grid
"Unevenl", and it allows for the possibility of discernibly greater accuracy in other
simulations, particularly if larger shocks are involved. The re-integration performances of
the Rl and R8 simulations based upon this standard specification are illustrated in Figure
A4.3.3 and Figure A4.3.4 respectively.

It is notable that in these re-integrations of the model equations from initial points
generated by the finite differences-GEMPACK approach, the best performance, in terms
of the period for which the estimated saddle-path remains in its correct phase-space

60 For considerably bigger shocks both a finer grid and more extrapolation steps would be considered,
perhaps the grid "Uneven2" and a 16-32-48 Gragg extrapolation method - computing capacity
permitting.
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region (Rl or R8), fells far short of that for initial points generated by the time
elimination or the eigenvector-backwards-integration techniques (see Figure A4.2.15
and Figure A4.2.23 and associated text in Appendix 4.2).

The reason for this lies in the level of computing precision available from GEMPACK
compared to that from Microsoft's Excel and Waterloo's Maple programs which were
used in calculations with the other integration techniques. In the absence of double
precision, the so-called level of machine accuracy for GEMPACK results is only six
figures. Given the severe non-linearity and extreme sensitivity of the Romer model to
initial conditions, this is simply not sufficient to define a point on the saddle-path closely
enough to allow an integration from there to generate distant points which remain 'close'
to the true saddle-path. Rather, such an integration tends to diverge feirly rapidly from
the saddle-path.61 Nevertheless, this is not a problem for the finite differences-
GEMPACK method since, like the eigenvector-backwards-integration method, the feet
that time paths are generated automatically means that all of the saddle-path points, that
is all of the (¥ , O, pA)-triples, that can be calculated from them are 'more or less equally
close' to the true saddle-path.

Figure A4.3.3: Adjustment paths for the Romer model: '4th order Runge-Kutta
finite differencing-GEMPACK' integration generated initial values,
simulation RK4.4 specification from Table A4.3.1 ('Rl' arm); second
RK4 integration on a time step-size = 0.25.
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61 It is also for this reason that the comparisons of the "time in Rl or R8", being based upon only 6-
figure estimates not all of which are accurate to that degree, were described earlier as only providing
"some measure of the accuracy of the finite-differences-GEMPACK results".
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Figure A43.4: Adjustment paths for the Romer model: '4th order Runge-Kutta
finite differencing-GEMPACK' integration generated initial values,
simulation RK4.5 specification from Table A4.3.1 ('R8' arm); second
RK4 integration on a time step-size = 0.25.
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Having now specified the finite differencing procedure and the grid upon which it is
defined, the magnitude of the computing problem faced by GEMPACK can be
calculated. In Section 4.3.2 the numbers of variables and equations in the model under
fourth-order Runge-Kutta finite differencing were calculated as

m=14(T+l)+12T, and n=5(T+l)+12T-l

respectively. Because one of the simulations undertaken in Section 4.5 involves imposing
a shock to the variable HA, it was also necessary to specify this variable explicitly (rather
than continuing to write it as (H-HY)). It was then convenient to include HA in the
TABLO files for all simulations. As a result, in practice both the number of variables and
the number of equations in the GEMPACK representation of the model were increased
by (T+l) over the above amounts. Thus, for the uneven 350 interval grid used in the
simulations the overall numbers of variables, equations, and exogenous variables were:

m=15(T+l)+12T =
n=6(T+l)+12T-l = 6305 ; and
m-n=9(T+l)+l=3160

From this and from equations (4.20) and (4.22) it can then be seen that in order to solve
the simulation problems, GEMPACK must find the inverses of matrices of dimension
6305x6305 (the A"1 matrices); and that these must then be multiplied by matrices of
dimension 6305x3160 (the B matrices); and then by the 3160x1 vectors of exogenous
shocks.
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A4.3.3 TABLO input and Command files for GEMPACK

A TABLO input file and a Command file are the iwo principal input files required to run
the GEMPACK software (see footnotes 19 and 24 and associated text for further details
and references). Here, the TABLO file defines the underlying dynamic Romer model
upon which simulations are conducted. In particular, it defines all the variables,
parameters and (non-linear) equations of the model and the particular finite differences
technique and boundary conditions through which it is to be implemented. This involves
the specification of sets for describing the grid of time points and intervals upon which
the finite difference variables are defined and calculated. The number of grid points and
the time step-sizes are specified in general terms by reference to generic or logical fties
containing the details (which can thereby easily be changed). In addition, the pre-
simulation base case solution to the model, about which simulation results are reported
as perturbations, is defined via instructions for the program to read certain data from
another logical file and via specified formulae relating these data.

While a TABLO input file defines the underlying model and its finite differences
implementation, details for a particular simulation on the model are then defined in a
Command file. Thus, a Command file specifies the closure of the model (which variables
are to be exogenous and which are to be endogenous), the simulation shock(s) to the
exogenous variables and the multi-step method of solution of the initial value problem
they pose. By defiling specific data files corresponding to the generic ones referred to in
the TABLO file, Command files also provide details of the grid upon which the finite
differences variables and equations are constructed. Once GEMPACK has converted a
TABLO input file into an executable program, that program may be run by reading an
appropriate Command file. TABLO input files for the Euler and for the 4th order Runge-
Kutta differencing methods are reproduced in Table A4.3.3 and Table A4.3.4, and an
example Command file is presented in Table A4.3.5.

Table A4.3.3 TABLO input file specifying an Enler finite differencing method for modelling the
dynamics of the decentralised market Romer model (file MKTE.TAB).

! ROMER MODEL DYNAMICS: DECENTRALISED MARKET !

! GORDON SCHMIDT, 14 SEPTEMBER 1996. !

Solution of the "two-point boundary value problem" posed by the market solution
of the Romer model of endogenous growth:

The base case is a steady-state solution of the model, with the value of
the capital/technology stock ratio equal to the desired initial level.
The model is implemented in its "levels" form.
Finite differencing is by the "Euler method".

COEFFICffiNT(DEFAULT=PARAMETER);

! Number of grid intervals - representing the overall time horizon in years. To be
! read from a file of logical name "tperiods"

FILE (TEXT) tperiods;
COEFFICIENT (INTEGER) NINTERVAL;
READ NINTERVAL FROM FILE tperiods ;

! Sets for describing periods

SET (INTERTEMPORAL) alltime # all time periods # MAXIMUM SIZE
2001 ( p[0] - pJMNTERVAL] ) ;
SET (INTERTEMPORAL) fwdtime # domain of fwd diffs # MAXIMUM SIZE
2000 (p[0] - pIMNTERVAL -1] ) ;
SET (INTERTEMPORAL) endtime # ending time # SIZE 1 ( p[NINTERVAL] ) ;
SUBSET fwdtime IS SUBSET OF alltime ;
SUBSET endtime IS SUBSET OF alltime ;

! Variables

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

(alLt,alltime) psi(t)
(alLt,alltime) phi(t)
(alLt,alltime) pA(t)
(alLt,alltime) HY(t)
(all,t,aUtime) r(t)
(alLt,aUtime) H(t)
(aU,t,aUfime) L(t)

# capital/technology ratio # ;
# consumption/capital ratio # ;
# price of technology # ;
# human capital in mfg # ;
# interest rate # ;
# total human capital # ;
# total ordinary labour # ;

! Parameters: declared as variables, and as functions of time, in order to
! the dynamics of changes 'between' equilibria.

examine

VARIABLE (alLt,alltime) a(t)
VARIABLE (all,t,alltime) g(t)
VARIABLE (all,t,alltime) z(t)
VARIABLE (alLt,alltime) e(t)
VARIABLE (alLt,alltime) rho(t)
VARIABLE (all,t,alltime) s(t)
VARIABLE (alLt,alltime) d(t)

# human cap productivity param # ;
# capital productivity param # ;
# research productivity param # ;
# specialised cap cost param # ;
# consumers' discount factor # ;
# inter-temporal substn param # ;
# depreciation rate on capital # ;

! Defaults for "levels model"

EQUATION(DEFAULT=LEVELS)
VARIABLE(DEFAULT=LEVELS);
FORMULA(DEFAULT=INITIAL);

! Base case: established by a combination of READ statements from a file of logical
! name "basedata", and dependent FORMULA(INITIAL) statements.

FILE (TEXT) basedata;
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READ H FROM FILE basedata;
READ L FROM FILE basedata;
READ a FROM FILE basedata;
READ g FROM FILE basedata;
READ z FROM FILE basedata;
READ e FROM FILE basedata;
READ rho FROM FILE basedata;
READ s FROM FILE basedata;
READ d FROM FILE basedata;

FORMULA (alLt,alltime)
HY(t) = [a(t)*s(t)/g(t)*H(t)+a(t)*rho(t)/g(t)/z(t)]/[l+a(t)*s(t)/g(t)]

FORMULA (all,t,alltime)
r(t) = (g(t)*z(t)/a(t))*HY(t);

FORMULA (all,t,alltime)
psi(t) = [g(t)A2/e(t)-g(t)/{r(t)+d(t)}*HY(t)^{a(t)*(l-g(t))}

FORMULA (alLt,alltime)
phi(t) = (r(t)+d(t)}/g(tr2-z(t)*{H(t)-HY(t)}-d(t);

FORMULA (alLt,alltime)
pA(t) = {l/g(t)-l}*{r(t)+d(t)}/r(t)*psi(t);

! Time intervals: grid points, representing years, to be read from a file !
! of logical name "time". !

FILE (TEXT) time;
COEFFICIENT (alLt,aUtime) year(t);
READ year FROM FILE time ;
COEFFICIENT (alLt,fwdtime) dt(t);
FORMULA (all,t,fwdtime) dt(t) = year(t+l) - year(t) ;

! Dynamic equations: relating variables at adjacent time points.

EQUATION psidot (a]l,t,fwdtime)
psi(t+l) = psi(t)^at(t)*[{r(t)+d(t)}/g(t)A2-phi(t)-d(t)-z(t)*{H(t)-HY(t)}]*psi(t);

EQUATION phidot (alLt,fwdtime)
phi(t+l) = pW(t)+dt(t)n{r(t)-rho(t)}/s(t)-{r(t)+d(t)}/g(tr2+phi(t)+d(t)]*phi(t);

EQUATION pAdot (all,t,fwdtime)
= pA(t)+dt(t)*[r(t)*pA(t)-{l/g(t)-l}*{r(t)+d(t)}*psi(t)];

! Intraperiod equations: relationships existing over all points of time.

EQUATION humcapY (all,t,alltime)
HY(t)=[a(t)*(l-g(t))/z(t)/e(t)-g(t)*L(t)-{(l-a(t))*(l-g(t))}*

i ( t )^ ( t ) /A( t ) ]A{l / ( l ( )* ( l ( ) ) )}
EQUATION irate (all,t,alltime)
r(t)=[z(t)*g(t)A2/a(t)/(l-g(t))]*HY(t)*pA(t)/psi(t)-d(t);
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Boundary conditions:
1. Initial capital/technology ratio fixed at its immediate pre-shock level:

psi(O)=psiO.This is implemented simply by declaring psi(O) exogenous,
and setting its change(shock) to zero.

2. 'Final5 value of the consumption/capital ratio set at its market solution
steady-state level: phi(T)=phiMss.

3. 'Final' value of the price of technology set at its market solution
steady- state level: pA(T)=pAMss.

EQUATION phiMss (alLt,endtime)
phi(t) = {r(t)+d(t)}/g(tr2-z(t)*{H(t)-HY(t)}-d(t);

EQUATION pAMss (alLt,endtime)
pA(t) = {l/g(t)-l}*{r(t)+d(t)}/r(t)*psi(t);

Table A4.3.4 TABLO input file specifying a 4th order Runge-Kutta finite differencing method
for modelling the dynamics of the decentralised market Romer model (file
MKTRK4.TAB).

! ROMER MODEL DYNAMICS: DECENTRALISED MARKET !

! GORDON SCHMIDT, 17 SEPTEMBER 1996. !

Solution of the "two-point boundary value problem" posed by the market solution
of the Romer mode! of endogenous growth:

The base case is a steady-state solution of the model, with the value of
the capital/technology stock ratio equal to the desired initial level.
The model is implemented in its "levels" form.
Finite differencing is by the "4th order Runge-Kutta" method.

! Defaults for "levels model"

EQUATION(DEFAULT=LEVELS);
VARIABLE(DEFAULT=LEVELS);
FORMULA(DEFAULT=INITIAL);
COEFFICIENT(DEFAULT=PARAMETER);

! Number of grid intervals - representing the overall time horizon in years. To be
! read from a file of logical name "tperiods"

FILE (TEXT) tperiods;
COEFFICIENT (INTEGER) NINTERVAL;
READ NINTERVAL FROM FILE tperiods ;
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! Sets for describing periods

SET (INTERTEMPORAL) alltime # all time periods # MAXIMUM SIZE
2001 ( p[0] - pIMNTERVAL]);
SET (INTERTEMPORAL) fwdtime # domain of fwd difife # MAXIMUM SIZE
2000 ( p[0] - p[NINTERVAL - 1]) ;
SET (INTERTEMPORAL) endtime # ending time H SLZE 1 ( pfNTNTERVAL] ) ;
SUBSET fwdtime IS SUBSET OF alltime ;
SUBSET endtime IS SUBSET OF alltime;

! Time intervals: grid points, representing years, to be read from a file
! of logical name "time".

FILE (TEXT) time;
COEFFICIENT (alLt,alltime) year(t);
READ year FROM FILE time;
COEFFICIENT (alLt,fwdtime) dt(t);
FORMULA (alLt,fwdtime) dt(t) = year(t+l) - year(t) ;

! Variables

VARIABLE (alLt,alltime) psi(t)
VARIABLE (all,t,alltime) phi(t)
VARIABLE (all,t,alltime) pA(t)
VARIABLE (all,t,alltime) HY(t)
VARIABLE (alLt,alltime) HA(t)
VARIABLE (alLt,aIltime) r(t)
VARIABLE (alLt,alltime) H(t)
VARIABLE (alLt,alltime) L(t)

# capital/technology ratio # ;
# consumption/capital ratio # ;
3 price of technology # ;
# human capital in mfg # ;
# human capital in research # ;
# interest rate # ;
# total human capital # ;
# total ordinary labour # ;

! Intemediate variables: used in the RK4 finite differencing and, since their base
! levels are zero, declared such that their linear equivalent
! is a 'change' variable rather than a 'percentage change' one.

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

(CHANGE) (all,t,fwdtime) psiRl(t)
(CHANGE) (alLt,fwdtime) phiRl(t)
(CHANGE) (alUfwdtime) pARl(t)
(CHANGE) (all,t,fwdtime) psiR2(
(CHANGE) (alLt,fwdtime) phiR2(t)
(CHANGE) (all,t,fwdtime) pAR2(t)
(CHANGE) (all,t,fwdtime) psiR3(t)
(CHANGE) (all,t,fwdtime) phiR3(t)
(CHANGE) (all,t,fwdtime) pAR3(t)
(CHANGE) (alLt,fwdtime) psiR4(t)
(CHANGE) (all,t,fwdtime) phiR4(t)

VARIABLE (CHANGE) (all,t,fwdtime) pAR4(t) ;

! Parameters: declared as variables, and as functions of time, in order to examine
! the dynamics of changes 'between' equilibria.

VARIABLE (alLt,alltime) a(t)
VARIABLE (alLt,aUtime) g(t)
VARIABLE (alLt,alltime) z(t)
VARIABLE (att,t,alltime) e(t)
VARIABLE (alLt,alltime) rho(t)
VARIABLE (alLt,alltime) s(t)
VARIABLE (alLt,alltime) d(t)

# human cap productivity param # ;
# capital productivity param # ;
# research productivity param # ;
# specialised cap cost param # ;
# consumers' discount factor # ;
# inter-temporal substn param # ;
# depreciation rate on capital # ;

! i3ase case: established by a combination of READ statements from a file of logical
! name "basedata", and dependent FORMULA(INITIAL) statements.

FILE (TEXT) basedata;
READ H FROM FILE basedata;
READ L FROM FILE basedata;
READ a FROM FILE basedata;
READ g FROM FILE basedata;
READ z FROM FILE basedata ;
READ e FROM FILE basedata;
READ rho FROM FILE basedata;
READ s FROM FILE basedata;
READ d FROM FILE basedata;

FORMULA (all,t,alltime)
HY(t) = [a(t)*s(t)/g(t)*H(t)+a(t)*rho(t)/g(t)/z(t)]/[l-fa(t)*s(t)/g(t)];

FORMULA (alLt,alltime)
HA(t) = H(t)-HY(t);

FORMULA (all,t,alltime)
r(t) = (g(t)*z(t)/a(t))*HY(t);

FORMULA (alLt,alltime)
psi(t) = [g(tr2/e(t)-g(t)/{r(t)+d(t)}*HY(tr{a(t)*(l-g(t))}

}r{l/(l())}
FORMULA (alLt,alltime)

phi(t) = {r(t)+d(t)}/g(t)A2-z(t)*HA(t)-d(t);
FORMULA (all,t,alltime)

pA(t) = {l/g(t)-l}*{r(t)+d(t)}/r(t)*psi(t);
FORMULA (alLt,fwdtime)

psiRl(t)=0;
FORMULA (all,t,fwdtime)

phiRl(t)=0;
FORMULA (alLt,fwdtime)

pARl(t)=0 ;
FORMULA (all,t,fwdtime)

psiR2(t)=0 ;
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FORMULA (all,t,fwdtime)
phiR2(t)=0;

FORMULA (all,t,fwdtime)
pAR2(t)=0;

FORMULA (aU,t,fwdtime)
psiR3(t)=O;

FORMULA (all,t,fwdtime)
phiR3(t)=O;

FORMULA (alLt,fwdtime)
pAR3(t)=0;

FORMULA (alUfwdtime)
psiR4(t)=0;

FORMULA (all,t,fwdtime)
phiR4(t)=0;

FORMULA (all,t,fwdtime)
pAR4(t)=0;

! Dynamic equations: relating variables at adjacent time points.

EQUATION psiincr (all,t,fwdtime)
psi(t+l)=psi(t)+psiRl(t)/6+psiR2(t)/3+psiR3(t)/3+psiR4(t)/6 ;

EQUATION phiincr (all,t,fwdtime)
phi(t+l)=phi(t)+phiRl(t)/6+phiR2(t)/3+phiR3(t)/3+phiR4(t)/6 ;

EQUATION pAincr (aU,t,fwdtime)
pA(t+l) =pA(t)+pARl(t)/6+pAR2(t)/3+pAR3(t)/3+pAR4(t)/6 ;

! where the RK4 variables are defined by the time derivative functions of the main
! dynamic variables as follows:

EQUATION psiRKl (all,t,fwdtime)

( ) / Ap(
phi(t)-d(t)-z(t)*H(t)]*psi(t);

EQUATION phiRKl (all,t,fwdtime)
phiRl(t)=dt(t)*[(g(t)A2/s(t)-l)*z(t)/a(t)/(l-g(t))*pA(t)/psi(t)

{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(tr{(l-a(t))*(l-g(t))}*
i ( ) ^ / ) } [ ( ( ) ( g ( ) ) ) ]

phi(t)+{d(t)*(s(t)-l)-rho(t)}/s(t)]*phi(t);
EQUATION pARKl (all,t5fwdtime)

A R l ( ) ^ g ( ) ) [ p ( ) p ( ) ( g (
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
psi(t)^g(t)/pA(t)}ll/(l-a(t)*(l-g(t)))]-d(t)]*pA(t);

EQUATION psiRK2 (all,t,rwdtime)
psiR2(t)=dt(t)*[z(t)*{l+[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(tr{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A

[l/(l-a(t)*(l-g(t)))]-|phi(t)+phiRl(t)/2]-d(t)-z(t)*H(t)]*[psi(t)+psiRl(t)/2];
EQUATION phiRK2 (aU,t,fwdtime)

phiR2(t)=dt(t)*[(g(t)A2/s(t)-l)*z(t)/a(t)/(l-
g(t))*[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(tr{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A[l/(l-a(t)*(l-g(t)))]+
[pW(t)+phiRl(t)/2]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiRl(t)/2];

EQUATION pARK2 (all,t,fwdtime)
pAR2(t)=dt(t)*[z(t)*g(t)A2/a(t)/(l-g(t))*[[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]-

(l-g(t))/g(t)]*{a(t)*(l-g(t))/2(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
(psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
d(t)]*[pA(t)+pARl(t)/2] ;

EQUATION psiRK3 (all,t,fwdtime)
psiR3(t)^t(t)*[z(t)*{l+[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(t)A{(l-a(t))*(l-g(t))}*
lpsi(t)+psiR2(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiR2(t)/2]-d(t)-z(t)*H(t)]*[psi(t)+psiR2(t)/2];

EQUATION phiRK3 (alU,fsvdtime)
phiR3(t)==dt(t)*[(g(t)A2/s(t)-l)*z(t)/a(t)/(l-

g(t))*[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]*
(a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiR2(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]+
[phi(t)+phiR2(t)/2]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiR2(t)/2];

EQUATION pARK3 (all,t,fwdtime)
pAR3(t)=dt(t)*[z(t)*g(t)A2/a(t)/(l-g(t))*[[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]-

(l-g(t))/g(t)]*{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+ps^(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
d(t)]*[pA(t)+PAR2(t)/2] ;

EQUATION psiRK4 (aU,t,^vdtime)
psiR4(t)=dt(t)*[z(t)*{l+[pA(t)+pAR3(t)]/[psi(t)+psiR3(t)]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiR3(t)]Ag(t)/[pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiR3(t)]-d(t)-z(t)*H(t)]*[psi(t)+psiR3(t)];

EQUATION phiRK4 (all,t,fwdtime)
phiR4(t)=dt(t)n(g(t)A2/s(t)-l)*z(t)/a(t)/(l-g(t))*[pA(t)+pAR3(t)]/[p^^^

(a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l.g(t))}*
[psi(t)+psiR3(t)]Ag(t)/[pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]+
[phi(t)+phiR3(t)]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiR3(t)];

EQUATION pARK4 (all,t5ftvdtime)
pAR4(t)=dt(t)^z(t)*g(t)A2/a(t)/(l-g(t))n[pA(t)+pAR3(t)]/[psi(t)+psiR3(t)]-

(l-g(t))/g(t)]*{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiR3(t)]Ag(t)/[pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]-
d(t)]*[pA(t)+PAR3(t)];

! Other intraperiod equations: relationships existing over all points of time.

EQUATION humcapY (all,t,alltime)
HY(t)=[a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*

psi(t)Ag(t)/pA(t)]A{l/(l-a(t)*(l-g(t)))};
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EQUATION humcapA (alLt,alltime)
HA(t)=H(t)-HY(t);

EQUATION irate (all,t,alltime)
r(t)=[z(t)*g(tr2/a(t)/(l-g(t))]*HY(t)*pA(t)/psi(t>d(t);

Boundary conditions:
1. Initial capital/technology ratio fixed at its immediate pre-shock level:

psi(O)=psiO.This is implemented simply by declaring psi(O) exogenous,
and setting its change(shock) to zero.

2. 'Final' value of the consumption/capital ratio set at its market solution
steady-state level: phi(T)=phiMss.

3. 'Final' value of the price of technology set at its market solution
steady- state level: pA(T)=pAMss.

EQUATION phiMss (all,t,endtime)
phi(t) = {r(t)+d(t)}/g(t)^2-z(t)*HA(t)-d(t);

EQUATION pAMss (all,tendtime)
pA(t) = {l/g(t)-l}*{r(t)+d(t)}/r(t)*psi(t);

Table A4.3.5 GEMPACK Command file to run simulation RK4.4 as specified in Table A4.3.1

! GEMPACK Command file: for 'market solution Romer model dynamics'

! GORDON SCHMIDT, 11 NOVEMBER 1996:

Solves the 'two-point boundary value problem' posed by the decentralised market
solution of the Romer model of endogenous growth, by carrying out a multi-step
simulation using the TABLO-generated program produced from MKTRK4.TAB.

! Input files and actions options:
BCV file = RK44 ;
NSC = yes;
NSE = yes;
NUD = yes;
model = Market;
version = 1 ;
identifier = 350 uneven intervals over 250 years ;
file basedata = UlglORl.dat;
file time = Ul.dat;
file tperiods = Ultp.dat;
updated file basedata = UlglORl.upd;

! Note: NINTERVAL is read from the file with logical name 'tperiods'

! Method and steps:
method = gragg;
steps = 12 24 36 ;
harwell parameter =1 .0 ;
i

! Output files:
solution file = RK44;
cumulatively-retained endogenous p_psi pjphi p__pA;
extrapolation accuracy file = yes;
xac-retained p_psi p_phi p_pA;
j

! Closure:
exogenous p_psi 1 p_H p_L p_a p_g p_z p_e p_rho p_s p_d;
rest endogenous;

! Shocks:
Ishock p_H = uniform 10 ;
Ishock p_L = uniform 10 ;
Ishock p_a = uniform 10 ;
shock p_j> = uniform -10 ;
Ishock p_z = uniform 10 ;
Ishock p_e = uniform 10 ;
Ishock pjrho = uniform 10 ;
Ishock p_s = uniform 10 ;
Ishock p_d = uniform 10 ;
I
I Description of the simulation:
verbal description =
GENERAL: Examination of the dynamics and sensitivity of the (decentralised) market
solution of the Romer model, to changes in its parameters and its exogenous variables
(allowing some to occur AFTER time zero). Uneven 350 interval grid over a 250 year
time horizon - step-size varies from 0.1 to 10.0 (see RK44 description).
PARTICULAR: 10% fall in g from time zero (from 0.6 to benchmark of 0.54). Other
variables at benchmark data-set levels;
I
log file =RK44.1og;
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Appendix 4.4

Comparison of the computed dynamic behaviours of
the linearised Romer model, the Solowian-Romer

model and the full non-linear Romer model

There being no analytic or 'closed form' solution to the dynamic Romer model of
endogenous economic growth, three computable models have been used as
approximations in order to calculate its transitional dynamics. These are: the Linearised
Romer model (Section 3.2); a truncated version with exogenous savings, termed the
Solowian-Romer model (Section 3.4); and the full non-linear model solved via the
GEMPACK software (Section 4.3 and 4.4). Each of these has been confronted with the
same three exogenous shocks: an unanticipated and sustained 10 per cent rise in
parameter y, an anticipated and sustained 15 per cent increase in parameter Q and an
unanticipated but known to be temporary fall of 20 per cent in parameter a, all applied
to the systems in equilibrium at their benchmark steady-state (Tables 2.2 and 3.2). The
purpose of this Appendix is to compare the results of their computed transitional
dynamics in response to these common shocks. Individual results for each model were
presented in the Sections in which they were first analysed.62 Here these are collected
together and re-graphed in Figure A4.4.1 to Figure A4.4.26 for easy comparison.

It is worth recalling that the results for each model, including the full non-linear model,
all involve different approximations. For the linearised model the results are exact
computations for an approximation to the full non-linear model, and as such they are
strictly only valid in the proximate neighbourhood of the linearisation point.63 The further
the system is away from this, the greater the errors in the approximation, particularly
when the true system is highly non-linear as it is in the Romer model.

For the Solowian-Romer model the results are approximate computations for an
approximation to the full model. Despite this 'double approximation' however, the S-R
results may not be inferior to those of the linearised model. In fact they may even be
better. For one thing, the S-R model maintains the significant non-linearity of the full
model. And for another, whilst its approximation involves a truncation of the full model's
demand side (with apparently different economics), recall that there were
parameterisations for which the models were identical and that at least one of these had
parameter values close to those of the empirically based benchmark parameter set
(Appendix 3.7). Moreover, since direct numerical integration of the non-linear equations
was used to solve the S-R model (there being no need to linearise the equations), these
computations could be made highly accurate.

62 Specifically: Section 3.2.2 and Appendix 3.4 for the linearised model; Section 3.4.2 for the Solowian-
Romer model; and Sections 4.5.1 to 4.5.3 for the full Romer model with GEMPACK solution.
63 For unanticipated shocks the only linearisation point is the new steady-state. In the case of anticipated
shocks, however, there are two linearisation points - the steady-state prior to imposition of the
anticipated shock, and that which applies after it has been imposed.
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Finally, results for the full non-linear mouel are approximate computations for the exact
model Since the GEMPACK solution method involves linearisation of the equations, it
is probably not as accurate as the direct numerical integration of the non-linear equations
which is possible for the Solowian-Romer model. Nevertheless, the software facility that
allows any shock to be broken into small components means that linearisation errors can
be made arbitrarily small and that in the limit, it is the ison-linear equations which are
being solved. Sn practical terms this means that a very high degree of accuracy can be
readily attained. Clearly these result's are the most accurate of the three.

In some ways differences in the dynamics of the three 'models' are summarised by the
principal dynamic variables Q¥, <X>, and pA). Since all the other variables are derived from
these, 'modelling differences' between other variables reflect those in the principal
ones.64 However, differences in the derived dynamic variables also result from their
functional forms and from the 'scaling' effect of parameter values which can, in
particular, generate significant effects at the time of implementation of anticipated
shocks. For these reasons comparison of the dynamics of the three 'models' has been
made across the whole range of the standard variables analysed.

A4.4,I An unanticipated and sustained 10% rise in parameter y

Figure A4.4.1: Comparison of the linearised, S-R and full model dynamic effects on
the principal dynamic variables ¥ , O, and PA, of an unanticipated
and sustained 10 per cent rise in parameter y from time zero,
benchmark parameter set.
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64 In the case of the Solowian-Romer model <I> is also a derived variable.
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Figure A4.4.2: Comparison of the linearised, S-R and full model dynamic effects on
the growth rates g* & g o of an unanticipated and sustained 10 per
cent rise in parameter y from time zero, benchmark parameter set
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Figure A4.4.4: Comparison of the linearised, S-R and full model dynamic effects on
r and HA, of an unanticipated and sustained 10 per cent rise in
parameter y from time zero, benchmark parameter set
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Figure A4.4.3: Comparison of the linearised, S-R and full model dynamic effects on
the growth rates gK & gep, of an unanticipated and sustained 10 per
cent rise in parameter y from time zero, benchmark parameter set
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Figure A4.4.5: Comparison of the linearised, S-R and full model dynamic effects on
the savings rates sB and sN, of an unanticipated and sustained 10 per
cent rise in parameter y from time zero, benchmark parameter set
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Figure A4.4.6: Comparison of the linearised, S-R and full model dynamic effects on
kcp, of an unanticipated and sustained 10 per cent rise in parameter
y from time zero, benchmark parameter set
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A few general points may be made in summarising the preceding results. Firstly, both the
linearised and the Solowian-Romer models seem to be 'reasonably' good approximations
to the full non-linear Romer model when the entire adjustment path is considered. For
the variables *P, pA, r, and ICGP both approximations were excellent; as was the linearised
model approximation for gc. Also, for all variables the discrepancy was never more than
about 5 pei cent after about 20 years and was usually much less. Even after only 10 years
it was mostly below 10 per cent and usually not above 5 per cent. The exception in this
latter case being for the linearised model result for the growth rate of capital gK, for
which the divergence was about 17 per cent (Figure A4.4.3). However, for periods less
than 10 years the results were mixed. While there were many close correspondences,
there were also some significant divergences.

Thus, as could have been expected the main differences arise in the initial jumps
necessary to reach the saddle-paths and in the adjustments not too long thereafter. All
three approaches generate the correct asymptotic results. In the case of the linearised
model this is because the saddle-path is calculated analytically from the post shock
steady-state. For the Solowian-Romer model it is due to the fact that the simulation also
involves a shock to the exogenous savings rate s, which takes it to the final steady-state
value of the savings variable SN in the full model; that is SO=SNSSO is shocked to SI=SNSSI,

where SNSSO is the original (benchmark) steady-state and SNSSI is the steady-state resulting
after the 10 per cent shock to y. Finally, in the full non-linear case the correct asymptotic
results are ensured because the finite differences method explicitly uses the post shock
steady-state as part of its boundary conditions. All this is, of course, also true for the two
(anticipated) shocks which follow in Sections A4.4.2 and A4.4.3.
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In general the linearised model results tend to approach those of the full Romer model a
little faster than do those of the S-R model, and in this way they are better
approximations. The most significant case is for the adjustments of the allocation of
human capital, HA (Figure A4.4.4). But the linearised model results are not generally
superior to those of the S-R model They are clearly better for the growth rate of
consumption, gc (Figure A4.4.2); but they are clearly inferior for the growth rates of
capital and gross product, gK and gGp (Figure A4.4.3); and also for the savings rates SN
and SB (Figure A4.4.5).

Perhaps the most significant difference in the results occurs for the consumption-capital
ratio <J>, the linearised solution producing an initial jump in the opposite direction to that
generated by the finite differences non-linear solution and that of the Solowian-Romer
model (Figure A4.4.1). Here, despite the fact that the linearised results converge to full
model results faster than the S-R results do, it is the latter that seem the better
approximation for most of the adjustment path.

A4.4.2 An anticipated and sustained 15% rise in parameter t,

Figure A4.4.7: Comparison of the linearised, S-R and full model dynamic effects on
the principal dynamic variable *F, of an anticipated and sustained
15 per cent rise in parameter C, from time zero, benchmark
parameter set
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Figure A4.4.8: Comparison of the linearised, S-R and full model dynamic effects on
the principal dynamic variables O and PA of an anticipated and
sustained 15 per cent rise in parameter C, from time zero, benchmark
parameter set
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Figure A4.4.9: Comparison of the linearised, S-R and full model dynamic effects on
the growth rates gA & gK, of an anticipated and sustained 15 per cent
rise in parameter C, from time zero, benchmark parameter set
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Figure A4.4.10: Comparison of the linearised, S-R and full model dynamic effects on
the growth rate go of an anticipated and sustained 15 per cent rise
in parameter C, from time zero, benchmark parameter set
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Figure A4.4.11: Comparison of the linearised, S-R and full model dynamic effects on
the growth rate of output (gy) of an anticipated and sustained 15 per
cent rise in parameter C, from time zero, benchmark parameter set
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figure A4.4.12: Comparison of the linearised, S-R and full model dynamic effects on
the growth rate gGp, of an anticipated and sustained 15 per cent rise
in parameter C, from time zero, benchmark parameter set
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Figure A4.4.13: Comparison of the linearised, S-R and full isodel dynamic effects on
the interest rate (r) of an anticipated and sustained 15 per cent rise
in parameter C, from time zero, benchmark parameter set.
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Figure A4.4.14: Comparison of the linearised, S-R and full model dynamic effects on
HA, of an anticipated and sustained 15 per cent rise in parameter C,
from time zero, benchmark parameter set
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Figure A4.4.15: Comparison of the linearised, S-R and full model dynamic effects on
the savings rate SN, of an anticipated and sustained 15 per cent rise in
parameter C, from time zero, benchmark parameter set
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Figure A4.4.16: Comparison of the linearised, S-R and full model dynamic effects on
the savings rate SB, of an anticipated and sustained 15 per cent rise in
parameter C, from time zero, benchmark parameter set

24

23

sB(t)
(percent)

Romer Model Dynamics: Market Solution

20

-lBLiD
- iBSR
-iBRam

-10 10 20 30 40 50 60 70 80 90 100

Time (Yean)

d:\phd\chpt4\modcomps jdw(sB_z)

on
Figure A4.4.17: Comparison of the linearised, S-R and full model dynamic effects

kep, of an anticipated and sustained 15 per cent rise in parameter C,
from time zero, benchmark parameter set
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Overall, for this shock to ^ the results from the linearised and the S-R models produced
even better approximations to the mil Romer model than for the y-shock.65 Here the
correspondence from both models was excellent for the variables *F, PA, gA, r, HA and
kep; as it also was for O in the case of the S-R model; and for gc for the linearised one-
Other general points made in respect of the y-shock also apply here: Almost all of any
discrepancies occur in the initial and 'iinplementation' jumps and in the adjustment soon
afterwards;66 and whether the linearised or the S-R model provides the better
approximation to the full model remains ambiguous. Also, like the y-shock, by twenty
years after the £-shock (at time t=25 years) the discrepancies were always under 5 per
cent; and ten years after it (at t=15 years) the only discrepancies greater than 10 per cent
were both models' estimates in respect of gK, where both were 12 per cent higher than
the full model estimate.

A4.4.3 An unanticipated but temporary 20% fall in parameter a

Figure A4.4.18: Comparison of the linearised, S-R and full model dynamic effects on
the principal dynamic variable *P of an unanticipated but temporary
20 per cent fall in parameter a from time zero, benchmark
parameter set
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65 Note that the scales on the graphs need to be considered in assessing how close different estimates are
to one another
66 In the case of anticipated shocks there are now two key time points in the adjustment paths: the time
from which anticipation first commences (previously referred to as the time of announcement), and the
time at which the shock is implemented. Here these are times t=0 and t=5 years respectively. While the
principal dynamic variables do not jump at implementation, the derived variables do.
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Figure A4.4.19: Comparison of the linearised, S-R and full model dynamic effects on
the principal dynamic variables <X> and pA of an unanticipated but
temporary 20 per cent fall in parameter a from time zero,
benchmark parameter set
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Figure A4.4.20: Comparison of the linearised, S-R and full model dynamic effects on
the growth rate gK, of an unanticipated but temporary 20 per cent
fall in parameter a from time zero, benchmark parameter set
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Figure A4.4.21: Comparison of the linearised, S-R and full model dynamic effects on
the growth rates gc & gv» of an unanticipated but temporary 20
cent fall in parameter a from time zero, benchmark parameter set
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Figure A4.4.22: Comparison of the linearised, S-R and full model dynamic effects on
the growth rates gA & gas of an unanticipated but temp-orary 20 per
cent fall in parameter a from time zero, benchmark parameter set
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Figure A4.4.23: Comparison of the linearised, S-R and full model dynamic effects on
r & HA, of an unanticipated but temporary 20 per cent fall in
parameter a from time zero, benchmark parameter set
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Figure A4.4.24: Comparison of the linearised, S-R and full model dynamic effects on
the savings rate SN, of an unanticipated but temporary 20 per cent
fall in parameter a from time zero, benchmark parameter set
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Figure A4.4.25: Comparison of the linearised, S-R and full model dynamic effects on
the savings rate SB, of an unanticipated but temporary 20 per cent
fall in parameter a from time zero, benchmark parameter set
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Figure A4.4.26: Comparison of the linearised, S-R and full model dynamic effects on
the capital-gross product ratio (1(GP) of an unanticipated but
temporary 20 per cent fall in parameter a from time zero,
benchmark parameter set
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The accuracy of the results from both the linearised model and the Solowian-Romer
model in reflecting the dynamics computed from the full Romer model in response to the
-20 per cent shock to a are all very high; significantly higher than was the case for either
of the shocks examined in the previous two sections. Here both approximations are
excellent over the entire adjustment paths for the variables ¥ , <X>,67 PA, gA, gGP, r, HA, SB
and kcp. The computed dynamics of the linearised model for gc, gy, and SN are also
excellent approximations to those of the full Romer model. Moreover, from the time the
shock is implemented at t=5 years both the linearised and the S-R models produce
excellent approximations for all dynamic variables.

One reason that approximations from the linearised and S-R models were best for the o>
shock simulation and second best for the £-shock simulation, is that these two involved
the lowest and next lowest total adjustments. Since the shock to a was only temporary,
the dynamic system eventually returned to its initial steady-state and the overall
adjustment was zero. The accuracy of the linearised system in particular was always
expected to deteriorate the further the system was from its steady-state linearisation
point. The total adjustments for different variables under each simulation can be found in
Table 4.1, Table 4.2, and Table 4.3.

6 7 Even at t=5 the S-R result is only 1.2 per cent above the full model estimate for Q>; (recall that
differences in the scales on the graphs need to be taken into account).
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5 Economic Welfare and Policy Issues

Two broad welfare issues arise from the model. First, the transition path to the steady-
state will have implications for the magnitude and timing of any adjustment costs flowing
from economic change. Second, the economic welfare generated in the steady-state itself
can be expected to be sub-optimal and thus, perhaps, subject to policy induced
improvement. Examples of the first issue, temporal adjustment costs, were encountered
in the simulations undertaken in Section 4.5, where the speeds of convergence of the
system towards new equilibria, and the magnitude and direction of the initial
discontinuities or. jumps to the new saddle-paths were found to be important. Such issues
will also be met again later in this chapter; but it is the other welfare issue, that of sub-
optimal equilibria and the role of policy improvement, which is the focus of this chapter.

5.1 Sub-optimality of the market solution

Imperfections in the competitive economic market model have long been associated with
processes of technological advance. Schumpeter (1942) was perhaps the first to regard
innovation as an explicit economic activity, undertaken at private cost and with the
expectation of making profits. He recognised the necessity for monopoly profits from the
sale of innovations, not only in covering the sunk costs of research and development, but
also in providing the fundamental incentives for undertaking these activities.2 A difficulty
with this is that once innovations arrive at the market place the welfare maximising
course is for them to be sold at marginal cost, thereby suggesting a role for anti-
monopoly policy. The policy problem is to find an optimum balance between the dynamic
gains from innovation, which are encouraged by the prospect of monopoly profits, and
the static welfare losses of the monopoly pricing and restriction cf supply.

At least some degree of non-excludability, whereby not all of the economic benefits from
such activity can be appropriated by the initiator, is another market imperfection usually
accompanying technological advance. Here the suggested policy response is for some
form of property rights, such as patents, to actually enforce a degree of monopoly
power. The same natural conflict as before arises: On the one hand, the innovators would
need to be able to extract all the economic value if the optimal amount of resources were
to be devoted to innovative activity. On the other hand, once the community's resources
have been used to generate an innovation, its competitive supply (at marginal cost) is
optimal.

'The term "solution" refers to both the adjustment path and the steady-state behaviour of the model. It
was the market solution which was developed in Chapter 2, and which has so far been analysed.
2 Schumpeter's (1934) process of creative destruction, as its name suggests, involved new inventions
replacing existing products and processes. However, such obsolescence is not a feature of the current
model. This issue is discussed in the final chapter.
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From the construction and derivation of the Romer model it is clear that both of these
sources of distortion are present in its market solution. First, firms in the capital goods
producing sector engage in restricting the supply of these goods through monopoly
pricing, such pricing behaviour being necessary in order for these firms to recoup the
fixed costs they must pay for their designs. The second distortion in the free market
Romer economy arises from the feet that the output of research is only partially
excludable. While designs for capital goods are patentable, and so excludable in terms of
their direct use in the production of goods, by adding to the aggregate stock of
knowledge used in the development of new designs they raise the productivity of other
researchers. These indirect, or external benefits of research are non-excludable and are
not reflected in the remuneration of the original researchers, who are therefore not
compensated to the full extent of the value of the marginal social product of their output.

In addition to these monopoly distortions and research externalities, the free market
equilibrium in an economy such as that described by the Romer model is also
characterised by a third source of divergence from a Pareto optimum? This may be
termed a specialisation divergence since in general 'real-economy' terms it arises from
the degree of specialisation in the supply side of the economy, along lines suggested by
Adam Smith, Alfred Marshall and Allyn Young (also see Section 1.2). This is precisely
what the production function used in the model seeks to capture. Thus, in terms of the
model, the specialisation divergence arises because output is an increasing function of the
extent of variety of capital inputs. Through an ingenious construction Romer (1986b)
showed that models with such production functions behave precisely as if they had a true
(technological) externality generating increasing returns.4

Romer (1986b and 1987b) used a model similar to the one studied here. Output was an
increasing function of the extent of variety of specialised inputs, but there was no
technology (such as a research sector) producing designs for generating the different
types of inputs. Rather, the 'appropriate' number of types was simply chosen, either by
the market or by a social planner seeking to maximise welfare.5 Fixed costs involved in
producing the specialised inputs from a primary resource, aggregate capital, ensured that
the number of types would be finite. Thus, while the specialisation divergence seems to
be simply a property of the technology, which is of course a binding constraint on
markets and social planners alike, it results in a sub-optimal equilibrium since it causes
the market's choice of the range of intermediates to be lower than would be chosen by a

3 An allocation of resources and income that is preferred by at least one agent over any alternative
feasible allocation, while all other agents are indifferent. See, for example, Bohm (1977) and/or Varian
(1978). Here, with only a single (type of) consumer in the model, the Pareto optimum corresponds to the
simple aggregate welfare maximising allocation of resources.
4 By constructing a model of an artificial economy with a true technological externality, and which was
an isomorphic transformation of the original model, Romer showed that the equilibrium quantities from
the artificial economy were identical with those from the original model with specialisation.
Also, recall from Appendix 2.1 (particularly equation A2.1.5) that in terms of its fundamental factors
Hy, L, K, and A; the production function used here (from Romer, 1990b) exhibits increasing returns.
5 A social planner is an artificial construct invested with the object of setting the economy to a Pareto
optimum; and the power to achieve it through the allocation of resources and distribution of income by
administrative fiat.
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social planner.6 Extending this to the current model, where the range of intermediates
arises from the production of designs from a research sector, it means that the demand
for designs is 'too low' and so 'too little' human capital will be allocated to research.

Further clarification of the effects of these distortions, together with quantitative
measures of the extent of the sub-optimality of the market solution, may be obtained by
solving the actual problem faced by a social planner concerned with maximising welfare
under the constraints imposed by the Romer model technology. In the market solution to
the model individual consumers have no control over the paths of either technology or
aggregate capital and so treat these, together with the interest and wage rates, as given in
their optimisation problems.7 A social planner however, would recognise the
relationships of both capital and labour incomes with aggregate savings (both in the form
of investment and of research). In this way the expansion paths of capital, K(t) and
technology A(t), would be optimised, and with them, all the other variables of the model.

5.1.1 Social planning solution to the Romer model

As a practical means of economic policy management social planning has little direct
value.8 Nevertheless, the mathematical procedures of obtaining a social planning solution
to an economic model provide an extremely useful means of exploring and evaluating the
efficacy of decentralised market mechanisms in a modelling environment. Such
procedures can help identify the nature of any distortions and imperfections in the market
model and provide estimates of the implied welfare losses. Importantly, they can also
suggest practical policy measures designed to correct for the market distortions and
restore the economic welfare, at least partially, towards a social optimum.

The social planning problem in the Romer economy is to maximise the discounted sum of
all future aggregate utility, subject to the production and research technologies and the
aggregate resource constraint on the economy. Formally, the problem is as follows:

CO

Maximise Ju{C(t)}e-
ptdt

0

subject to K(t) = Y(t) - C(t) - 8K(t)

where

K(0),A(0) given; K(t), A(t) > 0

U{C(t)} = [C(t)1"0 -1] / (1 - a) for a > 0

Y(t) = i f HY(t)a (

HA(t) + HY(t) =

(5.1)

6 With output being an increasing function of the range of intermediates, new types generate surplus for
final output producers that cannot be captured by the intermediates producers. As a result, for any given
level of aggregate capital the range of intermediates is 'too small' and the number of units of each type
is 'too big' from a social welfare perspective (see Romer, 1986b & 1987b).
7This is because these all depend on aggregate savings and thus on the savings decisions of others.
8 The evidence from many communist regimes seems testament enough of this.
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The problem is solved by the usual Hamiltonian techniques. This generates a solution
which includes equations for the growth rates of the shadow prices of technology u(t),
and of capital A,(t), and which also includes the ratio of these shadow prices in other
dynamic equations. It is possible however, to eliminate the shadow prices completely
from the system: Since n is the price of technology measured in terms of utils (utility is
the variable being maximised), and X is the price of capital, or equivalentry of output,9

also measured in utils, then the ratio \xJX is the price of technology measured in terms of
output. Thus, by substituting pA(t)=u<t)A.(t), as well as ¥(t)=K(t)/A(t) and
0>(t)=C(t)/K(t) as before (Section 2.3.3), a stationary dynamic system for the social
optimum solution to the model, which is directly comparable to that for the market
solution, is obtained. Derivation of the steady-state for this system is also the same as
before in Section 2.3.3. Details of the solution are contained in Appendix 5.1. The results
are as follows:

Stationary dynamic system for the social optimum

;(D(t)

10or

where

PA(t) = [r(t)-<;(l/a-l)HY(t)-OTpA(t)

PA(t) = r(t)pA - (1 - a )

(5.2)

(5.3)

(5.4)

(t)

r(t) =

with the boundary conditions:

¥(0) given;

lim O(t) = O° ;

and

-1 - 8

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

9 Recall that output, capital, and consumption are all convertible 'one-for-one' according to the
aggregate resource constraint for the economy: K. = Y - C - 5K..

'°The alternative formulation, obtained by substituting (5.6) in the first part of (5.4), is presented in
order to facilitate comparison of the social optimum and market solution dynamic systems.
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Steady-state for the social optimum
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The sensitivity of the social optimum solution steady-state to changes in parameter
values may be assessed in the same manner as was done for the market solution steady-
state. Namely, by raising the value of each parameter in turn by ten per cent, while
holding the values of all other parameters at benchmark. The results are reported in
Table 5.1. Mostly, they are similar to those obtained for the market solution (Table 2.3
of Chapter 2). For example, with one notable exception and one trivial one, the signs of
the elasticities are the same and the magnitudes exhibit similar relativities. The greatest
elasticities are in response to changes in parameters y, £,, and H. The 'notable exception',
and perhaps the most interesting feature of the social optimum steady-state results, is
that the allocation of human capital across the research and final output sectors does not
depend on the output-elasticity of capital parameter, y.11 The reason for this is not
pursued here. It is instead, simply noted as a possible topic for further research.

Table 5.1:

Steady-state
variables

PASS

Hyss

HASS

gss
SNss

sBss

^GPss

Sensitivity of the benchmark steady-state to independent
each parameter, Romer model social optimum solution, (%).

Benchmark ]
ss values

9.219
0.189
15.71

50.09%
49.91%
9.98%
2.99%
27.0%
39.0%
3.226

Parameters increased by 10% above benchmark

a
3.8

-3.7
5.0
5.1

-5.2
-4.6
-5.2
1.1
0.5
3.6

Y
53.0

-12.5
22.7mIHmmmm
10.0
2.8
12.2

5
-5.9
1.8

-3.3mHIHiHi
2.8
1.6

-2.8

P
-0.1
0.4

-0.7
0.8

-0.8
0.3

-0.8
-0.5
-0.7
0.0

<7

-1.3
3.5

-5.6
6.5

-6.5
2.6

-6.5
-4.5
-5.9
0.2

c,
-13.8

7.8
-15.6
-0.7
0.7
9.7
10.8
-2.2
-0.9
-6.7

10 per cent increases in

n H L
-10.6 -10.2 5.6

HBHHH1 i c UMHfllBoHHOi HDHHB
-10.6 -12.1 5.6

HBI 9.2 MM@HB 10-8 M™M B 9.7 9HH
H i 10-8 HHn -i2 HH
aSHB -o.9 WBH
WKKM -6-7 M B
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1 ' This also implies (or is implied by) the similar independence of the interest and growth rates on y.
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The transitional dynamics of the social optimum solution may sJso be computed and
examined by exactly the same numerical procedure used for the market solution. Recall
that this was (principally) that of a 4th-order Runge-Kutta finite differences integration
implemented via the GEMPACK software (Sections 4.4 and 4.5). It was only necessary
to amend the TABLO input file to reflect the differences in the differential equations and
steady-state formulae of the social optimum solution over those of the market solution.
The amended file is recorded at Appendix 5.2. While many different simulations of the
dynamics of this social optimum solution of the Romer system could of course be readily
undertaken, only a single one is reported here: the standard 'unanticipated 10 per cent
rise in the output elasticity of capital y' (Figure 5.1 to Figure 5.6 and Table 5.2).

Figure 5.1: Dynamic effects on *F, 4>, and pA of an unanticipated and sustained
10 per cent rise in the output elasticity of capital (y) from time zero,
benchmark parameter set.
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This simulation was also conducted for the market solution of the Romer system
(Section 4.5.1).12 Comparison of the results for the two solutions indicates that their
adjustment paths for this simulation are proportionally very similar, with the adjustment
of the social optimum system tending to be the smaller in overall terms, initial jumps, and
the V2 and 3A life measures (Table 4.1, Table 5.2 and the corresponding Figures). That is,
the social optimum system tends to adjust to a smaller degree and to do so more rapidly,

12 It was also carried out for the 'linearised Romer market solution' (Section 3.2.2), and for the '(non-
linear) Solowian-Romer model market solution' (Section 3.4.2.1); and all three market solution results
were closely scrutinised in Appendix 4.4 where they were shown to be highly similar.
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its post-shock convergence coefficient (P°=5.6%) being some 37 per cent higher than
that of the decentralised market system (pM=4.1%).13

Figure 5.2: Dynamic effects on the growth rates, of an unanticipated and
sustained 10% rise in the output elasticity of capital (y) from time
zero, benchmark parameter set
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Figure 5.3: Dynamic effects on r and HA, of an unanticipated and sustained 10%
rise in the output elasticity of capital (y) from time zero, benchmark
parameter set
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13 Linearisation of the social optimum system and calculation of the negative eigenvalue of its
coefficients matrix (see Chapter 3, particularly Appendices 3.1 and 3.5) is summarised in Appendix 5.1.
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Figure 5.4: Dynamic effects on SB, SN, and kcp, of an unanticipated and sustained
10% rise in the output elasticity of capital (y) from time zero,
benchmark parameter set
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Figure 5.5: Dynamic effects on the factor shares of gross income from an
unanticipated and sustained 10% rise in the output elasticity of
capital (y) from time zero, benchmark parameter set
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TThe adjustment of the growth and interest rates and the allocation of human capital for
the social optimum solution further emphasise the importance of quantifying the
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transitional dynamics of these types of system. While there is no change at all in their
pre-shock and final post-shock equilibrium levels (recall that y does not appear in their
social optimum steady-state formulations), the adjustment between them is extensive: the
share of human capital to research initially fells by 18 per cent, and the interest and
growth rates initially rise by almost 1/3, before adjusting back to their pre-shock levels
(Figure 5.2, Figure 5.3 and Table 5.2)

Figure 5.6: Dynamic effects on the convergence coefficients from an
unanticipated and sustained 10 per cent rise in the output elasticity
of capital (y) from time zero, benchmark parameter set"
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Note: a The apparent non-convergence of these coefficients is due to numerical instability in their calculation
near the steady-state. As may be seen from equation (3.13), the coefficients are calculated as ratios for
which both the numerators and denominators approach zero.

Vz life8 % life"
(years) (years)

Table 5.1: Simulation results of an unanticipated and sustained 10 per cent rise in
parameter y from time zero, benchmark parameter set, social optimum solution.

Dynamic Final Total adjustment Initial jumps as a % of:
variable steady-state (% of initial ss) initial ss Total

adjustment
0.00
4.03
-16.6
31.2
-17.7
29.2
0.17
17.3

-3.98
-26.5

d:\phd\gempaclt\optrom\lQgCM OgQsim.xlw(mktg0)

Note: a The first set of results give the time taken for V4 and V* of the remaining adjustment after the initial jumps; while the
figures in parentheses give corresponding results from the pro-shock levels.

TO
<D(t)

pA(t)
r(t)

HA(t)

gop(t)
sB(t)
SN(t)

kop(t)

Mt)

14.10
0.1655
19.28
9.98%
49.9%
2.99%
40.1%
29.7%
3.62

5.60%

53.0
-12.5
22.7
0.00
0.00
0.00
2.82
10.0
12.2

-17.7

0.00
-32.3
-73.0
n.a.
n.a.
n.a.
5.97
173

-32.7
150

14(14)
11(16)
14(24)
ll(oo)
11(00)
10(oo)
12(11)
12(0)
13(17)
12(0)

27(27)
23(27)
26(36)
23(oo)
23(oo)
21(«)
25(24)
25(0)
25(30)
24(0)
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5.1.2 Comparison of the social planning and market solutions

The dynamic systems for the market and social optimum formulations of the Romer
model are perhaps more notable for their overall similarity than for their particular
differences. Comparison of equation sets (2.41) to (2.45) with (5.2) to (5.6) indicates
that the only differences are:

• "y2 terms" in the market system equations for *¥, O, and r in place of the
corresponding "y terms" in the social optimum system; and

• a "(l-a)-factor" on the ¥-term, and an additional "-£HpA term" in the social
optimum equation for p A .

Differences in the steady-state equations also involve extra (or absent) "y-factors" and
"(l-oc)-factors".

The extent of the market solution sub-optimality may be gauged by comparison of the
steady-state results above with those for the market solution (equations (2.54) to (2.59)
in Section 2.3.3). Consider the ratio of the steady-state allocations of human capital to
research by dividing equation (2.55) by equation (5.11):

( l - a ) -Kxa
H - a p / £ ' 1 + a a / y (5.16)

Since a,y e(O,l), both of the major ratio terms in this expression are less than unity.
Hence, H^. < H ^ . That is, less than the optimum amount of human capital is devoted
to research in the decentralised market solution. The most obvious explanation for this
lies with the research externality. Because the activity of research generates benefits that
cannot be captured by the researchers who created them, the human capital employed
there is not remunerated to the full extent of its marginal social product. Thus, from a
societal perspective human capital in research is under-compensated and too little will be
employed there. As will be seen shortly there are also other, less obvious, factors that
reinforce this effect.

From the technology accumulation relation it follows that the steady-state growth rate of
the market solution is also sub-optimal: gM < g°. Numerically, the extent of these sub-
optimalities may be quantified by comparing the social optimum and market solution
steady-states for the benchmark parameter set. Such a comparison indicates extremely
significant differences for most variables. In particular, both the allocation of human
capital to research and the growth rate for the social optimum are almost double their
decentralised market solution levels (Table 5.3). It might also be noted that as a result,
the social optimum share of total income to researchers is more than 2XA times its market
level.

Two differences in the formulations for H ^ and H ^ are apparent. First, where the
market formulation has a "y-term", the optimum result effectively has a " 1 " . Second,
where the optimum allocation has a "(l-ct)-term", the market formulation has a "1" .
Both of these differences in the formulations cause the amount of human capital
allocated to research in the market determined steady-state, and hence the growth rate,
to be less than optimal. Distortions arising on the production side of the economy
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(monopoly pricing and the under-valuation of capital) can be shown to be responsible for
the first difference noted above. By elimination, the externalities associated with research
may be seen to be the cause of the second difference (Section 5.2.2).14

Table 53: Steady-state equilibrium values for the 'market' and 'social
optimum' solutions to the Romer model, benchmark parameter set

Dynamic
variable

< * > *
PASS

" Y S S

HASS

rss
g

SBss

^HAss

SL*

SHYSS

SKSS

Pss

Steady-state values:
Market solution

6.48
0.2741
9.45

74.41%
25.59%
5.61%
1.54%

22.10%
2.84
6.37
25.55
18.52
50.56
4.93%

Optimum solution
9.22

0.1890
15.71

50.09%
49.91%
9.98%
2.99%
39.03%

3.23
16.46%
21.90%
16.52%
45.11%
6.81%

Percentage difference:
Optimum over Market

42.35
-31.04
66.22
-32.68
95.02
78.07
95.02
76.58
13.50
158.47
-10.78
-10.78
-10.78
38.13

d:\phd\chapl6\wtlfare.xlw

The formula for the market determined steady-state rate of interest also differs from that
of the social optimum due to "y -" and u(l-a)-terms". Furthermore, it is also below the
socially optimum level. This may be readily seen from the relations: r ™ = <ygM + p and
r° = CTg° + p , simply by noting that gM < g° as demonstrated above. However,
because it seems to make more economic sense to argue that it is because consumers
face too low a return from savings that the growth rate of capital is sub-optimal,15 this
logic would then seem to be somewhat circular. Also, examining the ratio r " / r° in
similar vein to that done for H ^ / H ^ above is inconclusive. Instead, the result that
r^1 < r° is proved by taking derivatives (Appendix 5.4). For the benchmark parameter
set the social optimum steady-state rate of interest turns out to be some 80 per cent
higher than in the free market (Table 5.3).

The marginal product of capital exceeds its rental price in the decentralised market. In
particular, equation (A2.1.12) from Appendix 2.1 shows that: rK = yMPK < MPK. Thus,
capital is undervalued and the return on savings is too low. It follows directly that both
the interest rate and the rate of growth of capital are also too low. Also, now the

14 The different formulation for H ^ compared to H ^ . also raises another issue. Namely, it seems
that when c<l a constraint on the maximum allowable level of human capital is introduced into the
social planning solution. It turns out that this constraint actually derives from the dynamic maximisation
of consumer utility. As such, a similar constraint also applies to the market solution. While this may
represent a general deficiency of the model, it causes no problems in any of the work in this paper since
all parameterisations have o>l . The issues are discussed in detail in Appendix 5.3.
15In either solution to the model, anything that acts (ceteris paribus) to reduce the interest rate will also
lower the rate of growth (see the discussion in Section 2.4.2).
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relations T™ = agM + p and r ° = ag° + p may be used 'correctly', to confirm that the
growth rate in the market solution is sub-optimaL

Now consider the amounts of resources devoted to each type of capital good, ^^nX,
under both the market and the optimal solutions. That is, consider the relative
magnitudes of ¥^* and *¥°. Because the monopolistic behaviour of capital goods
manufacturers involves the elevation of price above marginal cost and the restriction of
the supply of each type of capital (see Figure 2.2 of Chapter 2), the intuition may be that
¥™ < *F° unambiguously. However, it turns out that ¥™ > *F° is also possible. This
may be seen by comparing the market and optimal steady-state results in equations
(2.58) and (5.14) respectively. These are as follows:

T M

i
J

and

L

TTO a
nYss

)y (1-aXl-T)
(5.17)

The presence of the extra "y-fector" in

earlier results that r " < r ° and H ^ >

outcome is indeterminate.

tends to make . However, the

both work the other way, and the overall

A diagram similar to Figure 2.2 may also help to illustrate the situation. Under a social
optimum regime, where (shadow) prices equal marginal costs, the output of specialised
capital would be determined by the intersection of the marginal cost and demand curves
rather than by equating marginal cost and marginal revenue as in the decentralised
economy. But the social optimum levels of both these cost and demand schedules will
differ from their free market levels. In particular, since r ° > r^1 and H ^ < ]
equations (2.10), (2.14) and (5.6) demonstrate that:

MC°: p° =

D°: p°(t) =

MCM: = (rM
; and

jpj(t) =

with the extent of the differences depending on parameter values. These are drawn in
Figure 5.7, from which it can be seen that it is possible for the social optimum steady-
state output of specialised capital to be greater than, equal to, or less than the
corresponding level in the decentralised market.16 That is:

X* 7 * 2 or equivalents ^ M f ^ °

The reason for this ambiguity is that the monopoly distortion is not the only influence
causing a departure of the market system from the social optimum. The specialisation
divergence arising from the increasing-returns nature of the production function is also a

16 In Figure 5.7 they are drawn as being equal simply to avoid further cluttering the diagram.
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factor, and one that has an opposite effect. For any given level of aggregate capital (K),
the monopolists restriction of supply causes the number of units of each type of capital
good (X) to be 'too low', and the number of different types (A) to be 'too high'.
Conversely, because of the output increasing property of a greater variety of capital
inputs, and the fact that final goods producers cannot control the extent of this variety,
the specialistion effect causes the number of types to be 'too low', and the number of
units of each type to be 'too high' (refer back to footnote 6). In the static-model versions
of his 1986b and 1987b 'growth from specialisation' papers (where there are no savings
and capital is simply in fixed supply), Romer shows that for precisely the 'power' type of
production function used here, these opposing effects exactly balance, the decentralised
market levels of the number of types and the number of units coinciding with their social
optimum levels.17 He also suggests that with the same 'power' type production function
this balance is maintained when the model is made dynamic through the introduction of
savings ( K = Y - C ). Although the market solution is then sub-optimal, the reason is the
under-valuation of capital, its price falling short of its marginal product due to both the
monopoly and the specialisation effects.

Figure 5.7: The supply of specialised capital goods under 'decentralised market'
and 'social optimum' economic regimes, Romer modeL

Price, p(t)

Market profits

,X(t)

d:\pbdWhpt2\fig22.brBnap

In a working paper on 'public finance issues in various models of economic growth',
Barro and Sala-i-Martin (1990) described an extension of the Romer (1986b and 1987b)
dynamic model. Increases in the number of types of specialised capital (new designs)

17 The specialisation effect is demonstrated by the construction of a production function for which output
remains an increasing function of the number of types of specialised inputs, but for which monopoly
pricing is eliminated, the rental price of units of capital being equal to their marginal cost. For such a
function the market and social optimum outcomes are shown to diverge (Romer, 1986b & 1987b).
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were taken to be generated by 'purposive research activity'. But since these new designs
were, like capital, created simply by saving output, the model remains a one-sector
simplification of the two-sector Romer (1990b) model studied throughout this
dissertation.18 For this one-sector model it can be shown, as Romer (1987b) intimated,
that the equilibrium level of the number of units per design (X) is the same for the market
solution as it is for the social optimum.19 However, as has been demonstrated, this is not
unambiguously the case for the two-sector model studied here.

Evidently, the addition of a distinct research sector, with its externality distortion, has
added to the complexity. Since the externality tends to cause the allocation of human
capital to the sector to be too small, there also tends to be an insufficient number of
designs at all dates. Also, as Romer (1990b) argues, the purchase of designs by capital
goods producers and their mark-up of the price over marginal cost of the specialised
capital the designs help to produce, 'forces a wedge between the marginal social product
of the designs and the market compensation of the human capital that produces them,
causing too little human capital to be devoted to research'. Of course this represents
another tendency for 'too few' designs being produced by the free market at any date.
While the static monopoly effect described by Romer in his earlier papers on 'growth due
to specialisation' causes an opposing tendency, this has been shown (for the 'power'
production function used here) to be exactly offset by the static specialisation effect.
Finally, since capital is under-valued by the free market there is too little available at any
date. The end result of all these effects is that at any date the free market generates less
designs and less capital than are socially optimal; but that the relative magnitude of the
ratio of these ( ¥ " / ¥ ° ) , or equivalently, of the number of specialised units per design
( X " / X ° ) , depends on parameter values. As it turns out, the intuitive result that
*¥» < ^ ° n°lds for the benchmark parameter set (Table 5.3). Further numerical
evaluation shows that this remains the case for a reasonably wide range of parameter
values centred upon the benchmark set, but also identifies many of the parameter
combinations for which ¥ ° is the smaller (Appendix 5.4).

Like the resources devoted to each type of specialised capital Q¥), the steady-state price
of technology (pAss) in the free market relative to that in the social optimum turns out to
be mathematically ambiguous, and numerically to depend on the model's parameter
values (Appendix 5.4). Using equation (2.52) to define the market price in order to
compare it directly with the social optimum price of equation (5.15), the ambiguity may
be seen as:

18 At the time, Barro and Sala-i-Martin indicated that the model had transitional dynamics which
"should be similar to that in the two-sector production model", but that "the details of this transition
have not been worked out". In feet, with both the interest rate and the number of units of each type of
specialised capital being constants, the model has no transitional dynamics.
19 In performing the necessary dynamic maximisation it needs to be recognised that there are two state
variables: K(t) and A(t) in the notation used here; and that the economy-wide resource constraint is
Y(t) = K(t) + C(t) + pA(t), where 0 is the constant cost (in terms of output) of producing a design.
The trick then is to define a share of output, sR(t) say, to be devoted to research and so to form the
(current valued) Hamiltonian » = UCQe""1 +A,[ ( l - s R )Y-C] + n[sRY/p] and to proceed via the
Maximum Principle.

PASS =
•M

rM
lYss

and pAss =
o _ a ( l - Y ) r ° + 5 v p O

n O
"Ys

(5.18)

The results that r^ < r° and > HYss, tend to make < PL • But w ^ Y<1'
^ > *F° possible, p ^ > p ^ may also be possible. For the benchmark parameter

set the market price turns out to be the lower: p ] ^ < p j ^ (Table 5.3). Because of the
failure of the market price to reflect the contribution made by every existing design in the
generation of future designs this might be seen intuitively as the expected result.20

Nevertheless, that pA^s^pA
)
ss is incontrovertible.

The dramatic excess of the social optimum steady-state growth rate over that of the free
market, points to the potential for a significant rise in welfare. For example, after five
years of growth at the 'social optimum benchmark steady-state growth rate' annual
consumption would be almost 7.5 per cent higher than at the market rate; and after ten
years it would be more than 15 per cent higher. The corresponding figures for
cumulative consumption are about 3.7 per cent and 7.7 per cent respectively.

5.2 Policy implications
Fundamental dilemmas are faced by policy makers concerned with the economics of
research and innovation and the subsequent dispersion of the outputs of these processes
into the economy at large. The usual problem is one of balance between the growth
benefits from ensuring there are sufficient incentives for innovative activity, and the
inefficiency costs from having to tolerate the associated market distortions. These issues
were discussed in Section 5.1. The concern of this section may seem ambitious: It is to
suggest a policy prescription, free of these balancing or compromise drawbacks, which
will correct for the distortions of the market and generate the socially optimum level of
economic welfare.

Specifically, identification a subsidisation policy which will convert the decentralised
market economy outcomes to the socially optimum ones is sought. Such a policy must
ensure that the return to savings is just sufficient to bring about the optimum rate of
capital accumulation. It must also raise the incentives to researchers to the exact level
required to attain the optimum allocation of human capital between the research and final
output sectors. At the same time it must reduce the rentals paid for specialised capital to
the marginal cost of its production, while maintaining the incentives to capital goods
manufacturers that are enjoyed through monopoly pricing in the free market economy.
Of course, to avoid introducing any new distortions into the economy any subsidies must
be financed by lump-sum taxes.

2 0 The price should correspond to the marginal benefit of designs to society. In the market economy
however, it only reflects the marginal valuation (measured by the available profits) placed upon the
particular type of specialised capital made directly from the design, no account being taken of the
contribution any one design makes in the development of other designs. On the other hand, the shadow
price of technology in the socially (and Pareto) optimal economic regime would take account of this
externality, properly equating price with marginal benefit.
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5.2.1 A subsidised market solution

Romer makes a statement that suggests it is possible to convert the free market
economic outcomes to those of the social optimum simply by subsidising the research
sector. In particular, he says:

"Within the confines of the model, the social optimum may be achieved
by subsidizing the accumulation of A." (Romer, 1990b; p.S97).

However, since there are distortions in both the production and research sectors of the
economy, it seems that (at least) two different subsidies would be required: at least one
to correct for the production distortions (the under-valuation of capital, and the
monopoly supply of specialised goods); and another to correct for the imperfect
appropriability of research effort.21 These issues are investigated below.

5.2.1.1 Production-side distortions

For a similar model to the one studied here, but one with no research sector, Romer has
suggested that "the only intervention needed to achieve the optimum....is a subsidy to
savings" (Romer, 1987b). This was, he indicated, due to the special property of the
'power' type production function in producing an efficient static equilibrium. That is, one
for which the monopoly distortion and the specialisation divergence generate exactly
offsetting effects. Since the same production function is used in the current model, the
balancing of these influences can be expected to continue to underlie it. While the static
equilibrium may no longer be efficient, this is because of the effect of the separate
research sector with its attendant externality distortion. Thus, a policy combining the
subsidisation of savings with the correction of the research distortion may be expected to
generate the socially optimum outcomes for the current model.

Suppose savings are encouraged via a subsidy to the rentals received by households for
each unit of general-purpose capital, K. With the subsidy set at the rate 100sK per cent,
householders receive rentals of:

(5.19)

by exactly the same argument as in Section 2.2.5, which led to equation (2.12), the rate
of return on capital (r^ (t) - 5 ), is equated to the interest rate r(t) yeilding:

(5.20)22

Producers of specialised capital continue to pay the unsubsidised rental on capital, rjc(t),
so their variable costs are {[r(t) + 5]/(l + sK)}T|X(i,t) Proceeding as for the
development of the market model (Section 2.2.5 of Chapter 2), produces the following
results, analogous to the pure market conditions in equations (2.13), (2.14) and (2.15):

21 Barro and Sala-i-Martin (1995) also make this point about two subsidies being required.
2 2 This result means that while aggregate household income now becomes W(t) + r^ (t)K(t) - T(t)
(where T(t) is the non-distortionary tax used to pay for the subsidy), the utility maximisation generates
the same results as in the free market case. In particular, equation (2.27) continues to apply (refer back
to Section 2.2.8 and Appendix 2.2).
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(5.21)

(i+sK)y

• = (l-Y)Px(t)X(t)

(5.22)

(5.23)

The key result here is equation (5.21). Together with equation (2.16) from Section 2.2.5,
it determines the interest rate, r(t), in the subsidised dynamic system as:

r(t) = » _ 5 (5.24)

From this result and the expression for Y(t) in the problem statement (5.1), it is also
useful to express output in a manner corresponding to that in equation (2.29) as:

(5.25)

Now, from (5.19) and from the extent of the undervaluation of capital - rK(t)=yMPK(t)
from equation (A2.1.12) - it is immediately apparent that setting SK=(1/Y-1) will equate
the subsidised rental price of capital with its marginal product, thereby removing the
undervaluation distortion. Moreover, with the subsidy set at this level, it is clear from
equation (5.22) that the price of specialised capital will be equated with its marginal cost,
and the monopoly pricing distortion will also be removed. Finally, as is apparent from
equations (5.24) and (5.6), this level of subsidy will cause the expressions for the
subsidised and the social optimum interest rates to coincide. All this strongly suggests
that the rate of subsidisation to savings SK=(l/y-l) is indeed an 'optimal subsidy'. This
will be demonstrated more rigorously in Section 5.2.2, after the research externality
correction is determined and the fully subsidised dynamic system is developed.

As it has turned out, no extra subsidy has been necessary to correct for the monopoly
pricing distortion. In fact, a subsidisation policy to correct for the mark-up of the rental
rate of specialised capital over its marginal cost, is an alternative to the savings subsidy.
This is true for either direct subsidisation of the rental costs faced by final output
producers, or for the somewhat less direct subsidisation of final output.23 Perhaps this
could have been inferred from the outset: as the usual case of being able to generate the
same price/quantity outcomes by either expanding demand via a subsidy to users, or
expanding supply via a subsidy to suppliers. In any event, details of the different subsidy
rates necessary for equivalence are worked out in Appendix 5.5.

5.2.1.2 Externalities in research

There are three possible candidates to correct for the distortion of having insufficient
research due to the externalities it generates: subsidising the wages of researchers;
subsidising the 'accumulation of research'; and subsidising the purchase of designs. The
first of these approaches must be ruled out since, in combination with a subsidy to

2 3 This approach was followed by Barrro and Sala-i-Martin (1990 and 1995).
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savings as discussed in the previous section (or to the rental costs of specialised capital
goods examined in Appendix 5.5), subsidising the wages of researchers fails to replicate
completely the steady-state of the social optimum (this is shown later in Table 5.5). Of
course to make these calculations it was necessary to derive the modifications to the
model that subsidising research wages entails. This is also reported in Appendix 5.5.

Under the second of the above subsidisation approaches it is not clear to what base the
subsidy would be applied. It is also difficult to see who would receive the subsidy
payments under the existing institutional set-up for the model. In order to clarify these
matters an additional group of economic agents, research entrepreneurs, is proposed and
the issues are explored in Appendix 5.5 - where it is shown that the approach is
equivalent to subsidising research wages, and so similarly fails to replicate the social
optimum results.

This leaves the third of the above approaches, which is examined as follows: A subsidy
of IOOSAK per cent24 to the purchase of research output means that the price of designs
faced by capital goods producers would be:

= (l-sA K)pA(t) (5.26)

where PA is the unsubsidised price of designs as usual. Then, proceeding as before in
Section 2.2.6: Under the monopolistic competition which characterises this segment of
the economy, the price paid by capital goods producers, that is the subsidised price, is
equivalent to the discounted sum of all future monopoly profits from the intermediates
produced from any design. As before, this generates a dynamic equation in pA(t)
analogous to (2.20):

= r(t)pA(t)-Tt(t) = r(t)pA(t)-7c(t)/(l-SAK) (5.27)

5.2.1.3 Subsidised stationary dynamic system

With the savings subsidy SK in place as before, the dynamic system incorporates
equations (5.21) to (5.25) as well as (5.27). Otherwise the system is the same as for the
decentralised market case in Section 2.2. In particular, the differential equations (2.1),
(2.6) and (2.27) continue to apply, and by equating the wage rates in research and final
output production, so does equation (2.25). Thus, incorporating the subsidisation results
into the condensation of the equations of the model and transforming to the variables
¥(t)=K(t)/A(t) and <D(t)=C(t)/K(t) as in Section 2.3, the stationary dynamic system for
the subsidised market Romer model is:

n+s^)v

^ t ) - [ r ( t ) " p r ( t ) + s . 8]<D(t)

(5.28)

(5.29)

2 4 The 'K' sub-script is needed to distinguish this 'designs' subsidy, combined as it is with the subsidy
sK to general-purpose capital, from similar 'designs' subsidies (to be introduced later) which will be
combined with different production side subsidies.
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where

and

(5.30)

(5.31)

r ( t) ( t ) ao- -i _ 5

(5.32)

This system may be readily compared with the corresponding stationary dynamic systems
for both the pure market and for the social optimum; that is, with equations (2.41) to
(2.45) and (5.2) to (5.6) respectively. A high degree of similarity is apparent. In
particular, it may be noted that if both subsidies are set equal to zero, the subsidised
market system collapses to that of the pure market, as would be expected. Determination
of subsidy values that would convert the subsidised system to that of the social optimum
is not so simple. Though it is worth noting that if (1+SK) is set equal to 1/y, so the rate of
subsidy is SK = 100(l-y)/y per cent, all of the differences apart from those in the
pA -equations are eliminated). In fact, it is not possible to set constant subsidy values that
make the dynamic systems equivalent.25 Nevertheless, specific subsidy values which
equate the steady-states of the two systems can be found. This is undertaken in Section
5.2.2; but first it is necessary to comput? the steady-state for the subsidised system.

5.2.1.4 Steady-state of the subsidised market solution

Derivation of the steady-state for this system is exactly the same as for the pure market
system (Section 2.3.3) and very similar to that for the social optimum system (Appendix
5.1). Thus, setting each of (5.28), (5.29) and (5.30) to zero and solving produces the
results:26

-HYss

Hs _
Y s s -

s _H/(l-sAK)-ap/y;
1 1 Ass - 1

(5.33)

(5.34)

(5.35)

25Nevertheless, such equivalence may be possible if the subsidy to the purchases of designs was a
function of time, and so followed its own adjustment path! For example, with sK = (l-yXy, it can be
shown by equating the equations (5.4) and (5.30) that the subsidy to the purchase of designs, SAK must

satisfy [i - sAK (t)] = [1 + aH A ( t ) /H v ( t ) r ' •
2 6 For example, set (5.30) to zero and substitute (5.32) to obtain (5.3.3); then set (5.28) and (5.29) to
zero, add them, and substitute for r from (5.33) to generate (5.34).
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s_ff l / ( l -sA K ) -gp/Y

4 =

- g s - 8

s _
55

PL = a-y) (5.40)

Again it may be noted that if both subsidies are set to zero, the subsidised steady-state
above reduces to that of the pure market solution as in equations (2.53) to (2.59). In
fact, the market solution may be considered to be a particular parameterisation of the
more general subsidised solution, which includes the additional parameters subK and
subAi< based upon the subsidies SK and SAK. The market solution is then the particular one
obtained by setting SK=0 and SAK=0, or more formally, setting subK=(l+Sic)=l and
subAK=(l-SAK)=l.27 Taking the market solution as a reference base, so the 'benchmark
parameter set' now includes subK=l and subAK=l, the sensitivity of the steady-state to
changes in these parameters is then assessed in Table 5.4. This assessment follows
exactly what was done for the other parameters in Table 2.3 for the market solution; and
in Table 5.1 for the social optimum solution.

Table 5.4: Sensitivity of the benchmark steady-state to 10 per cent increases in
parameters subK and subAK, subsidised market solution, (%).

Steady-state

variables
V*
®*
PASS

HYSS

HASS

J"ss

gss
SNss

SBSS

^GPss

SHA

SL

SHY

SK

Benchmark

(mkt) ss values
6.4760
0.2741
9.4524
74.41%
25.59%
1.54%
5.61%
16.80%
22.10%
2.8421
6.37%

24.55%
18.52%
50.56%

Parameters increased
SubK
23.02
-10.93
11.84
0.00
0.00
0.00
0.00
10.00
7.12
10.00
0.00
0.00
0.00
0.00

by 10%

subAK

10.17
-4.17
3.10
2.76
-8.01
-8.01
-6.58
1.68

-1.16
4.70
-9.88
0.67
0.67
0.67

subK & subAic
35.54
-14.68
15.30
2.76
-8.01
-8.01
-6.58
11.85
6.12
15.17
-9.88
0.67
0.67
0.67

d:\phd\chaptS\subjsera.xlw

2 7 The subsidy parameters have been defined as subK^l+Sn) and subAK=O-SAicX rather than simply sK

and sAic because it is intended to simulate the introduction of these subsidies (from a zero base) by
raising their parameters by specified percentages.

322 Chapter 5

5.2.2 Optimum rates of subsidy

As seen in Section 5.2.1.1, several of the distortions present in the free market model
may be corrected by setting the variable subK= (l+sK) to the value 1/y - so the rate of the
subsidy to savings would be IOOSK = 100(l-y)/y per cent.28 To confirm that this is indeed
an 'optimal subsidy', the approach is to try to determine whether it can be combined with
a specific rate of subsidy to designs, so that together they can convert all of the
subsidised market steady-s^te outcomes to the socially optimum ones. If so, these
specific subsidies will then be defined as the 'optimum rates of subsidy'.

The problem can be solved by setting SK=(l-y)/y, and equating any of the formulae for
the steady-state variables of the subsidised solution, with the formula for the
corresponding steady-state variable in the social optimum solution, and solving for the
subsidy level SAK- In particular, if SAK is to convert the subsidised steady-state to that of
the social-optimum it must be valid to write equation (5.33) as:

subAK=(l-sAK) =
a r;

or
LYss

a r°

Substitution of the appropriate formulae for the steady-state optimum; namely, equations
(5.10) and (5.12), then allows subAK and SAK to be expressed in terms of the (exogenous)
model parameters only:29

S A K = l - s u b A K = l - y

In summary, the decentralised market steady-state results of the Romer model can be
converted to the social optimum ones through a policy of subsidising savings at the rate
of 100sK per cent, and the purchases of designs at the rate IOOSAK per cent, where:

sK = subK - 1 = 1/y - 1 ;and

sAK=l-subAK = 1 -
a r

= l - y
C(q-l)H (5.41)

Ass

The computation of this conversion, for the benchmark parameter set, is recorded in
Table 5.5. The table also contains the results of various other subsidisation schemes. For
example, as mentioned before in Section 5.2.1.1, it shows that a subsidy designed to

2 8 In particular, it was seen that such a subsidy would equate the returns to general-purpose capital to its
marginal product; equate the rental price of specialised capital to its marginal cost; and ensure that the
expression for the interest rate in the subsidised system coincides with that for the social optimum.
2 9 It is also easy to express subA in terms of the alternative social optimum steady-state levels of HA and

HY as: subA = yfl + a H ^ / H ^ J " 1 , which is simply the steady-state version of the expression

mentioned in footnote 25.
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correct for the monopoly pricing mark-up, when similarly combined with subsidisation of
the purchase of designs, also transforms the free market steady-state to that of the social
optimum. This is the case whether the 'monopoly-pricing' subsidy is applied directly to
the rental of specialised capital by final goods producers (subX=l-sx), or indirectly to the
sale of final output (subY=H-sY). Details of the model amendments for these 'alternative'
subsidisation schemes are at Appendix 5.5. The optimum subsidies required are:

and

sx=l-subX = (l-

S A X = 1 -

sv=subY-l = l/v-]

(5.42)

a rAss

J AY
i , A 1 C=l - subA v = 1 - —

(5.43)

a rAss

Table 5.5: Steady-state equilibrium values for the 'market', 'social optimum' and
alternative 'subsidised' solutions to the Romer model, benchmark parameter set

Steady
state

variables

&*
PA

H Y

H A

g
r

sN

sB

SHA

S L

SHY

SK

Market, optimum and alternative subsidise*:
Market
solution
6.4760
0.2741
9.4524
74.41%
25.59%
1.54%
5.61%
16.80%
22.10%
2.8421
6.37%

24.55%
18.52%
50.56%

Optimum
solution
9.2188
0.1890
15.7122
50.09%
49.91%
2.99%
9.98%

27.01%
39.03%
3.2258
16.46%
21.90%
16.52%
45.11%

SK&SAK

subsidies'"
9.2188
0.1890
15.7122
50.09%
49.91%
2.99%
9.98%

27.01%
39.03%
3.2258
16.46%
21.90%
16.52%
45.11%

SX,SY&SAX
subsidies
9.2188
0.1890
15.7122
50.09%
49.91%
2.99%
9.98%

27.01%
39.03%
3.2258
16.46%
21.90%
16.52%
45.11%

1 solutions'

SK&SHK

subsidies
9.2188
0.1890
5.9396
50.09%
49.91%
2.99%
9.98%

27.01%
32.07%
3.5938
6.93%

24.40%
18.41%
50.26%

Sx, Sy & SHX

subsidies
9.2188
0.1890

I 2.8815
50.09%
49.91%
2.99%
9.98%

27.01%
29.56%
3.7269
3.49%

25.31%
19.09%
52.12%

sK only
subsidy
24.7205
0.1225

| 19.4844
74.41%
25.59%
1.54%
5.61%

31.12%
35.50%
5.2631
6.37%

24.55%
18.52%
50.56%

SAK only
subsidy
2.4150
0.4096
7.6224
50.09%
49.91%
2.99%
9.98%
14.59%
28.65%
1.7419
16.46%
21.90%
16.52%
45.11%

Notes: a

b

d:\phd\chapt5\Sub_sens.xlw
For the benchmark parameter set the optimum subsidy levels are approximately: SK = 85%, SAK = 62%, Sx = 46%,
SAX = 30%, sy = 85%, s,K = 165%, and s a = 43%.
The optimum subsidies sK and sA are quite insensitive to changes in the benchmark parameter values: sK changes
only in response to y (but with an elasticity of -2.2); and the largest elasticities of SAK are -0.61 (with respect to
y) and -0.25 (with respect to a), all others being less than ±0.03.

Table 5.5 also indicates (as mentioned before in Section 5.2.1.2) that it is not possible to
replicate the social optimum steady-state through a subsidy to research wages,
subH=l+SH- This is true irrespective of which production-side subsidy (SK, SX, or sy) it is
combined with. While it is possible to replicate the social planning allocation of human
capital, the growth and interest rates, the resources devoted to each type of specialised
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capital, and the consumption-capital ratio, a 'research wages' subsidy fails to reproduce
the social optimum steady-state price of technology (or any other variables that depend
upon it). Details of the subsidisation schemes are at Appendix 5.5.

Finally, the effects of introducing the optimum subsidies SK and SAK independently are
also shown in Table 5.5. Since the steady-state formulations for H y ^ H ^ , r^,org s

(equations (5.34) to (5.37)), contain only the subAK subsidy parameter and not subK,
they all remain equal to their market levels when only the capital subsidy is introduced,
whatever its level (see Table 5.4). And they are all converted to their social optimum
levels when only the optimum subsidy subAs is imposed.30 Combining this with the
findings from Section 5.1.2 on the relative magnitudes of these variables:31

vM = < V ° = V S A K

^ Tss Tss
for v s s=HA s s ,r s s ,g

and
HM _ XjSK

Yss ~~ " Y s s Yss

Because of the effects of these subsidies on the growth rate, SK may be thought of as
correcting for static distortions, and SAK as correcting for dynamic ones. Despite this,
neither of these 'partial subsidisations' can be considered to move the system from its
sub-optimal state unambiguously closer to its optimum.32 Consider the capital-
technology ratio Tss (or equivalently, the number of specialised capital units of each
design Xss). Comparing the formulations for SPss from the market, social-optimum, and
subsidised solutions (equations (2.58), (5.14), and (5.39) respectively), it is apparent
that:

ss '
jO
• ss

Thus, either [*¥ or [*¥ * <¥**] , which means

that partial subsidisation with either SK or SAK will either over-correct for this sub-
optimality of the market, or potentially worse, directly increases its divergence from the
optimum. For the benchmark parameter set SK results in Tss moving towards its optimum
level but overshooting it, while SAK moves it in the opposite direction to its optimum
(Table 5.5). Thus it is the first set of inequalities in square bracket above that prevails.

These issues are of course, highly relevant to the actual implementation of policy.
Chapter 6 includes some further discussion of them.

30 The steady-state income shares SHA, SL, SHY, and SK are also invariant to changes in subK since it
cancels in their numerators and denominators. Similarly, these income shares also attain their social
optimum levels when the optimum subAK is imposed alone. However, the steady-state levels of all the
other economic variables examined throughout this paper - the principal dynamic variables T , O, and
PA; the savings rates sN and sB; and the capital-output ratio koP -change from their market levels under
both subK and subAK (a fact that was also apparent from Table 5.4).
31 Here 'S K ' and 'SAK' super-scripts are used to denote the imposition of the optimum subsidies sK and

SAK respectively.
3 2 The Theory of the Second Best (Lipsey and Lancaster, 1956) taught us that the correction of some
market distortions while others remain extant may increase the divergence of an economy from its
optimum. See Bhagwati (1971) for a comprehensive theoretical treatment.
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5.3 Adjustment to the social optimum steady-state

Implementation of the subsidisation policy identified in the previous section will shift the
system away from whatever state it was previously in, or whatever dynamic path it was
following, onto a new transitional adjustment path towards the social optimum steady-
state. While it is easily possible to calculate the transitional dynamics from any (arbitrary)
initial position, in the analysis here the system will be considered to be initially in the
decentralised market equilibrium defined by the benchmark parameter set. The
subsidisation policy will then be implemented in various ways, and the resulting
adjustment path computed in much the same way as was done for the various shocks to
market equilibrium that were examined in Section 4.5 of Chapter 4.

For this analysis the basic dynamic system is the subsidised one given by equations (5.28)
to (5.32). The subsidy rates sK and sA are both initially set at zero to generate the
decentralised market equilibrium, and then raised to the levels given by equation (5.41)
to produce a dynamic system with an identical steady-state to that of the social optimum.
The two-point boundary value problem is the same as that confronted in Chapter 4 and,
as there, finite differences implemented through the GEMPACK software suite is the
method of solution. With the dynamic system considered to be initially in the
decentralised market steady-state pertaining to the benchmark parameter set, this set can
now be taken to include subK=l and subA=l.33 The subsidisation policy necessary to
replicate the social optimum steady-state is then implemented by imposing the sustained
shocks necessary to take the subsidy parameters to their optimum levels as defined by
equation (5.41). For the benchmark parameter set, since 100sK=85 per cent; and
100SAK=62 per cent, the (overall) shock to subK is a rise of 85 per cent and to subA a
reduction of 62 per cent.34 There are, of course, a great many different ways in which
these overall or 'optimum' subsidy le -jls could sensibly be implemented. In the following
just a few of the possibilities are considered and analysed.

5.3.1 Unanticipated/single point of time imposition of
the optimum subsidies

In this simulation both the subsidy tc the rentals received for general-purpose capital sK,
and the subsidy to the purchase of technology or designs SAK, are assumed to be instantly
applied at their foil 'optimum' levels with no prior announcement, and without the
market anticipating their introduction in any other way. The results are shown in Figure
5.8 to Figure 5.15. In order to indicate the full adjustment of the system, the first of these

33 The use of these parameters and their benchmark levels in preference to simply sK=0 and sA=0 was
discussed in Section 5.2.1.4 (see footnote 27 in particular).
34 Because these changes are quite large it was thought prudent to employ a more powerful GEMPACK
configuration than used previously (see Section 4.4.3). Accordingly, the shocks were divided into 8 sub-
intervals (see Harrison and Pearson 1994 & 1996b) and the results calculated from a Gragg integration
technique extrapolated from 8, 16, and 24 steps across each sub-interval. In addition, the 4th order
Runge-Kutta finite differencing grid was extended from 350 grid points covering 250 years, to 375 grid
points covering 500 years by the addition of 25 steps of 10 years each. Despite all this extra power,
changes to the estimated results were minimal.
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graphs (for the 'principal' dyn&'uic variables ¥ , G>, and pA) extends into the distant
future, covering 100 years. To clarify the asymptotic behaviour of the convergence
coefficients p, the last of the graphs also covers 100 years. The remainder of the graphs,
by covering only 25 years, show more detail in the less distant and more policy relevant
future. . . .

The dynamic impact of introducing both subsidies is obviously a combination of the
effects from each individual subsidy. Both the quantitative results and the associated
qualitative explanations of the individual subsidy simulations are at Appendix 5.6. It is
apparent from these results, together with those below, that the adjustment to the steady-
state from the joint subsidy simulation more closely resembles that of the subsidy to
savings than that to the purchase of designs.35 This is despite the fact that application of
the 'designs subsidy' alone results in many variables (namely, the allocation of human
capital, the growth rates, the interest rate, and the gross income factor shares) attaining
their socially optimum levels, as opposed to the 'savings subsidy' leaving them
unchanged.

Figure 5.8: Transitional dynamics of moving from the free market to the social
optimum ss: effects on ¥ , O, and pA (over 100 years); unanticipated
introduction of the 'optimal subsidies' from time zero, benchmark
parameter set

Romer Model Dynamics: Optimally Subsidised Solution
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35 The principal exceptions to this are the initial jumps in pA, gA, HA, kop, and the gross income factor
shares, which all have the same sign in the joint subsidy simulation as for the simulation of imposing
optimum subsidy SAK alone.
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Figure 5.9: Transitional dynamics of moving from the firee market to the social
optimum ss: effects on T , 3>, and pA (over 25 years); unanticipated
introduction of the 'optimal subsidies' from time zero, benchmark
parameter set

Romcr Model Dynamics: Optimally Subsidised Solution
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Figure 5.10: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the growth rates; unanticipated introduction
of the 'optimal subsidies' from time zero, benchmark parameter set
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Figure 5.11: Transitional dynamics of moving from the free market to the social
optimum ss: effects on r and HA; unanticipated introduction of the
'optimal subsidies' from time zero, benchmark parameter set
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Figure 5.12: Transitional dynamics of moving from the free market to the social
optimum ss: effects on sN, SB, and kGp; unanticipated introduction of
the 'optimal subsidies' from time zero, benchmark parameter set
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Figure 5.13: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the factor shares of gross income;
unanticipated introduction of the 'optimal subsidies' from time zero,
benchmark parameter set
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Figure 5.14: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 25 years);
unanticipated introduction of the 'optimal subsidies' from time zero,
benchmark parameter set
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Figure 5.15: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 100 years);
unanticipated introduction of the 'optimal subsidies' from time zero,
benchmark parameter set
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Observation of the asymptotic behaviour of the convergence coefficients for this
optimally subsidised benchmark Romer system (Figure 5.14 and Figure 5.15), indicates a
'steady-state' level of around 5.8 per cent. This is significantly less than the asymptotic
rate of convergence for the benchmark social optimum system, which was calculated in
Appendix 5.1 as p^ = 6.80 per cent (also see Figure 5.6 and Table 5.3). The current
result may be verified by linearising the subsidised system and computing the eigenvalues
of its coefficients matrix in exactly the same way as was done for the free market and the
social optimum systems (Appendices 3.1 and 3.5 and Appendix 5.1). When this is done
by log-linearisation the resulting coefficients matrix Q^L is:

subKy2

l - cc ( l -y )

subKy2

l -a( l -y)

1
subKY2 cr l -a ( l -y) subKY2 l~aQ~Y).

l-a(l-y)
0

1
YSubA

-a]

l-a(l-y)
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It is easy to verify that if subK and subA are both set at unity, the coefficients matrix
becomes identical with that for the free market (equation (A3.5.11)). It is also easy to
show that if subK and subA are set at their optimum levels as defined by equation (5.41),
while the coefficients matrix becomes very similar to that for the social optimum
(equation (A5.1.42)), it is not identical to it. The only differences He in the <XF and pA

coefficients of the linearised PA differential equation' - coefficients Q31 and Q33. In the
optimally subsidised system these coefficients are:

l-a(l-y)
and

s C( l -«)H Y s s /a -a( l -Y)( r s s +5)=
l - a ( l - y )

Comparison of these with Q%h in (A5.1.42) shows that the first contains the extra term
"-y£H"; and the second the extra term "+<£H". As a result, when me eigenvalues of Q^L

above are computed they generate the steady-state speed of convergence p=5.804 per
cent, as observed in Figure 5.14 and Figure 5.15. Thus, while implementation of the
optimum subsidies shifts the free market system towards a steady-state which seems
identical to that of the social optimum, it does so at a somewhat slower asymptotic rate
than the dynamic social optimum system itself. Curiously, this means that the steady-
states are actually not identical after all!

5.3.2 Unanticipated imposition of sK;
and delayed, anticipated implementation of SAK

Here, as in Section 5.3.1, the subsidy to the rentals received for general-purpose capital
SK, is instantly applied at its full 'optimum' level with no prior announcement. However,
unlike the previous simulation it is assumed here that at the time of implementation of SK,
it is announced that a subsidy to the purchase of technology or designs SAK, set at a level
corresponding to the 'optimum', will be implemented in exactly five years time. This
latter shock is therefore anticipated by the market. The results are shown in the now
familiar format of charts (Figure 5.16 to Figure 5.23).

Compared with the previous simulation (in which both subsidies wsre implemented
unannounced), when the implementation of the 'designs subsidy' is announced in
advance significant differences arise - mostly only over the (five year) period until the
subsidy is actually introduced. It is the growth rates and convergence coefficients that
exhibit the most dramatic differences (compare Figure 5.10 with Figure 5.18; and Figure
5.14 with Figure 5.22). Significant differences are also generated between the simulation
results over this period for the price of technology pA (Figure 5.9 and Figure 5.17); and
for the allocation of human capital to research, HA (Figure 5.11 and Figure 5.19). For the
capital-gross product ratio, kop, the differences persist for considerably longer (Figure
5.12 and Figure 5.20).
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Figure 5.16: Transitional dynamics of moving from the free market to the social
optimum ss: effects on *P, O, and p* (over 100 years); unanticipated
introduction of SK from time zero, anticipated introduction of
from time t=5 years, benchmark parameter set
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When the 'designs-subsidy' is anticipated by the market the future prospect of cheaper
prices causes some purchases of designs to be postponed. This reduced demand over the
period to implementation results in a slower growth of designs (gA), less human capital
(HA) necessary to generate them, and lower design prices (pA) than when the subsidy was
implemented unannounced (Figure 5.10 & Figure 5.18; Figure 5.9 & Figure 5.17; and
Figure 5.11 & Figure 5.19 respectively).

Savings are also switched from research to capital accumulation until the subsidy is
introduced. In comparison with the previous simulation the growth of capital gK is
substantially higher (Figure 5.10 and Figure 5.18); an increased share of gross income
goes to capital, while the share to research is smaller (Figure 5.13 and Figure 5.21); and
the broad measure of savings SB (which includes savings in the form of research) is less,
while the narrow measure SN (from which research savings are excluded) is higher
(Figure 5.12 2nd Figure 5.20). Higher demand for capital also raises its rental rate and
with it the interest rate over this intermediate period (Figure 5.11 and Figure 5.19).

With more resources being directed to capital savings both *¥ and kop are higher than
before (Figure 5.9 & Figure 5.17; and Figure 5.12 & Figure 5.20). Because broad
savings remain less than before, there are relatively more resources being devoted to
consumption. But since more of the loss of research resources go to capital accumulation
than to consumption, the capital-consumption ratio <1> is lower than before (Figure 5.9
and Figure 5.17).
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Figure 5.17: Transitional dynamics of moving from the free market to the social
optimum ss: effects on *F, 4>, and PA (over 25 years); unanticipated
introdnction of sK from time zero, anticipated introdnction of
from time t=5 years, benchmark parameter set
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Figure 5.18: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the growth rates; unanticipated introduction
of SK from time zero, anticipated introduction of SAK from time t=5
years, benchmark paraueter set
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Figure 5.19: Transitional dynamics of moving from the free market to the social
optimum ss: effects on r and HA; unanticipated introduction of sK

from time zero, anticipated introduction of SAK from time t=5 years,
benchmark parameter set
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Figure 5.20: Transitional dynamics of moving from the free market to the social
optimum ss: effects on SN, SB, and kep; unanticipated introduction of
SK from time zero, anticipated introduction of SAK from time t=5
years, benchmark parameter set
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Figure 5.21: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the factor shares of gross income;
unanticipated introduction of SK from time zero, anticipated
introduction of SAK from time t=5 years, benchmark parameter set
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Figure 5.22: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 25 years);
unanticipated introduction of SK from time zero, anticipated
introduction of SAK from time t=5 years, benchmark parameter set
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Figure 5.23: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 100 years);
unanticipated introduction of SK from time zero, anticipated
introduction of SAK from time t=S years, benchmark parameter set"
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Note: a The difference between the convergence coefficients calculated over annual time intervals and those
calculated quarterly is due simply to the feet that they are measured over different time point abscissae. For
example, die annual calculation measures ( V at t=4, and t=5 years 'while the quarterly calculation measures
it at t=4.25,4.5 and 4.75 years as well. And in this case, Pp* continues to increase -jridly over the interval
t»[4,5).

5.3.3 Unanticipated imposition of $AK;
and delayed, anticipated implementation of SK

This simulation is simply the mirror image of that of the previous seciion. Now it is the
designs subsidy SAK which is fully implemented unannounced (at time t=0); and the
capital rentals subsidy SK, whose full implementation at time t=5 years is announced in
advance - at the same time as the designs subsidy is being introduced. Once again the
results are presented in the standard format (Figure 5.24 to Figure 5.31).

Here the divergence of the transitional dynamics from the case when neither subsidy is
anticipated is greater than was the case when only the designs-subsidy was expected.
This is due to the fact that the capital-subsidy has the greater general impact. The growth
rates and convergence coefficients continue to exhibit large (and somewhat eccentric)
differences, most significantly over the period to implementation. The allocation of
human capital to research HA and the interest rate r, also exhibit large differences over
that initial period, as do the narrow savings measure SN and the capital-gross product
ratio kop, albeit to a somewhat lesser extent. Unlike the case when it was the designs
subsidy that was anticipated (Section 5.3.2), many of the economic variables now show
significant differences from the 'unanticipated subsidies simulation' (Section 5.3.1) for
much longer periods than the five years to implementation. Prime examples
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are the price of designs pA, the consumption-capital ratio G>, and the capital-technology
ratio *P (Figure 5.9 and Figure 5.25); the allocation of human capital to research HA
(Figure 5.11 and Figure 5.27); and the capital-gross product ratio kcp (Figure 5.12 and
Figure 5.28).

Figure 5.24: Transitional dynamics of moving from the free market to the social
optimum ss: effects on *F, <f>, and PA (over 100 years); unanticipated
introduction of SAK from time zero, anticipated introduction of SK
from time t=S years, benchmark parameter set
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Knowledge that the rentals received for general-purpose capital will soon be subsidised,
causes some postponement of capital accumulation: The growth of capital gK is less than
before (Figure 5.10 and Figiure 5.26), and so is the investment savings rate SN- (Figure
5.12 and Figure 5.28). The^e is also a temporary switch from this form of saving to that
of research. The capital share of gross income SK is much lower, and the research share
SA much higher than when the savings subsidy was not foreseen (Figure 5.13, Figure
5.21 and Figure 5.29). However, extra savings in the form of research do not fully make
up for the decline in capital savings over the period before the saving subsidy is
implemented. This is reflected by the fact that the broad measure of savings SB is also
lower than before over that period (Figure 5.12 and Figure 5.28). Also, with relatively
more resources devoted to consumption and research, *F and kop are lower, and $ is
higher (compare Figure 5.9 with Figure 5.25; and Figure 5.12 with Figure 5.28). Finally,
as may readily be seen from equations (5.19) and (5.20), the big rise in rental rates and
the interest rate r, is delayed until the subsidy is actually implemented (Figure 5.11 and
Figure 5.27).

338 Chapter

Figure 5.25: Transitional dynamics of moving from the free market to the social
optimum ss: effects on Y, O, and p \ (over 25 years); unanticipated
introduction of SAK from time zero, anticipated introduction of sK

from time t=5 years, benchmark parameter set,
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Figure 5.26: Transitional dynamics of moving from the free market to the social
optimum ss; effects on the growth rates; unanticipated introduction
of SAK from time zero, anticipated introduction of sK from time t=5
years, benchmark parameter set
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Figure 5.27: Transitional dynamics of moving from the free market to the social
optimum ss: effects on r and HA; unanticipated introduction of SAK
from time zero, anticipated introduction of sK from time t=5 years,
benchmark parameter set
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Figure 5.28: Transitional dynamics of moving from the free market to the social
optimum ss: effects on SN, SB, and kep; unanticipated introduction of
SAK from time zero, anticipated introduction of sK from time t=5
years, benchmark parameter set
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Figure 5.29: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the factor shares of gross income;
unanticipated introduction of SAK from time zero, anticipated
introduction of sK from time t=5 years, benchmark parameter set
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Figure 5.30: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 25 years);
unanticipated introduction of SAK from time zero, anticipated
introduction of sK from time t=5 years, benchmark parameter set"
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Note: a The negative portions of the convergence coefficients reflect temporary movements away from the new
steady-states for the relevant variables.
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Figure 531: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 100 years);
unanticipated introduction of SAK from time zero, anticipated
introduction of SK from time t=5 years, benchmark parameter set."

Homer Model Dynamics: Optimally Subsidised Solution

20

ConvttSEncc coeffs.
(ptrnat)

-20

-40

-60

-80

-bpU(l)

-bpA(t)

-10 10 20 30 40 50 60 70 80 90 100

Time (Van)

d:\phd\ganpack\subn>m\sub_sK\sKSsA0\sK5AQsim.xlw(bclas)

Note: a The negative portions of the convergence coefficients reflect temporary' movements away from the new
steady-states for the relevant variables.

5.3.4 Dynamic effects of different methods of implementation

The 'method of implementation' is meant here to refer to both the timing of any
announcement of the prospective introduction of the optimum subsidies36, and the timing
of the introduction itself- which may be a full implementation at a single point of time,
or a phased implementation over a number of different time points. Only three simple
methods were considered in the preceding sections. Nevertheless, it is clear from the
results of these that alternative methods of implementing the optimum subsidies can
produce significant differences in the adjustment paths by which the social welfare
maximising equilibrium is approached (compare Figure 5.9, Figure 5.17 and Figure 5.25;
Figure 5.10, Figure 5.18 and Figure 5.26 etc.).

Large differences are generally confined to the early period of adjustment, often only
until both subsidies are implemented or not long afterwards. However, in some cases and
for some variables large differences can persist for considerably longer periods. For
example, compare the behaviour of the interest rate r when it is announced in advance
that the capital subsidy will be implemented after 5 years, with its behaviour either when
it is the designs subsidy that is delayed, or when both subsidies are implemented
unannounced. That is, compare Figure 5.27 with Figure 5.11 and Figure 5.19. Naturally,
these are issues with which policy makers would need to be aware before selecting the
method of implementing the optimum subsidies.

36 Or, to refer to the timing of any other means by which the subsidies might be anticipated.
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Appendix 5,1

A social planning solution to the Rouaer Model

A5.1.1 Derivation of the dynamic system and its steady-state

The decentralised or market equilibrium for the Romer model, necessarily incorporates
certain market imperfections (see Section 5.1). These dictates would not be followed by
a social planner, who could allocate resources by administrative fiat. Thus, the social
planning problem in the 'Romer economy' is to maximise the discounted sum of all
future aggregate utility, subject to the production and research technologies and to the
economy's aggregate resource constraint (that consumption and savings together must
equal total income). Formally, the problem is:37

Maximise Ju{C(t)}e-
ptdt

subject to K(t) = Y(t) - C(t) - 8K(t)

A(t) = gHA(t)A(t)

K(0),A(0) given; K(t),A(t) > 0 (A5.1.1)

where U{C(t)} = [C^)1"" -1] / (1 - &) for a > 0

Y(t) = VHY(t)a(1-T)L(1-aX1-r)K(t)T A(t)( l-'}

HA(t) + HY(t) = H

Then as before in Chapter 2 (Appendix 2.2 in particular), proceeding according to the
Maximum Principle of Pontryagin et al (1962), the (present valued) Hamiltonian, &, is
formed and the first-order conditions for a maximum are applied:

Mt)[Y(t) - C(t) - 8K(t)] - HY (t)]A(t)

where X(t) and |i(t), the dynamic multipliers, are shadow prices of capital K(t), and
output A(t) respectively.

The first-order conditions for the problem (A5.1.1) are given in equations (A5.1.2) to
(A5.1.6) as follows:

ec(t)
= 0=> -a -pt

5HY(t)
= 0:

MO _
u(t) a(l-Y)Y(t)

(A5.1.2)

(A5.1.3)

37 Romer (1990b), and Chiang(1992) in reporting Romer's work, both solve this problem, but only to
the point of the (posited) balanced growth equilibrium that results. The addition here is the explicit use
of the transversality conditions, and the derivation of the full dynamic system.
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tit)=-
K(t) (A5.1.4)

(A5.1.5)

and the transversality conditions:

limji(t) >• 0 and limu(t)A(t) = 0

and
limA.(t) > 0 and lim X(t)K(t) = 0

(A5.1.6)

The dynamic system for the social optimum solution to the Romer model may now be
derived from problem statement (A5.1.1) and its first-order conditions (A5.1.2) to
(A5.1.6) as follows. First, (A5.I.2) is differentiated with respect to time and re-arranged
to produce:

C(t) / C(t) = [-i(t) / X(t) - p] / a (A5.1.7)

At this point the interest rate variable r(t) is introduced. It is still related to the rental rate
on capital rK(t) by the logic of Section 2.2.5 and by equation (2.12) specifically. That is:
r(t) = rK(t)-8; but in this Pareto optimal solution to the model, where there are no market
distortions, the rental rate on general-purpose capital is now equal to the value of its
marginal product:

K(t)
(A5.1.8)

so from equation (A5.1.4) the interest rate is given by:

(A5.1.9)

Equations (A5.1.4) and (A5.1.9) also generate the following alternative expression for
output which will prove useful:

(A5.1.10)

A dynamic equation for the growth of technology may be written directly from the
conditions of the problem statement (A5.1.1):

A(t)=;[H-HY( t ) ]A(t) (A5.1.11)

Then the capital accumulation equation, also from the problem statement (A5.1.1), i
transformed via (A5.1.10) to produce: is

r(t) + 5
K(t) = — K(t) - C(t) - 5K(t) (A5.1.12)
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Next, the consumption growth equation is obtained from (A5-1.7) and (A5.L10):

LC(t)
o

And combining (A5.1.13) and (A5.1.5) generates a dynamic equation for \i:
r a - l ) H Y |

(A5.1.13)

(A5.L14)

The preceding algebra has now generated a system of four first-order ordinary
differential equations, (A5.1.11) to (A5.1.14), in the four variables A(t)5 K(t), C(t) or
A.(t), and u(t). While there are actually six variables involved in the above ODEs, the two
'extra' variables r(t) and Hy(t) could readily be eliminated since they are both functions
of the other dynamic variables. Substituting for the production function Y(t) from
(A5.1.1) into (A5.1.3) and into (A5.1.10) generates expressions for Hy(t) and r(t)
respectively:

HY(t) =

r(t) =

KCt) / A(t)]T [Hi) I |i(t

1 - 5

(A5.1.15)

(A5.1.16)

The four boundary conditions necessary to integrate such a system are provided by the
given initial values A(0) and K(0) from the dynamic optimisation problem statement
(A5.1.1), and by the transversality conditions (A5.1.6). As usual, the transversality
conditions ensure that in order to achieve the social optimum, the correct trajectory (that
is, the saddle-path) is the one attained from amongst the infinite number of possible
dynamic paths allowed by the initial conditions and differential equations only. Thus, at
this stage the complete dynamic system for the social optimum solution to the model
comprises equations (A5.1.11) to (A5.1.16) together with the initial and transversality
conditions.

Comparison with equations (2.30) to (2.38) from Chapter 2 reveals that this social
optimum solution system is extremely similar to that of the market solution to the model.
Moreover, the procedures for determining the asymptotic dynamics and the steady-state
equilibrium for the social optimum solution follow exactly those used in Section 2.3.3 for
the market solution.38 In particular, it follows from the transversality conditions that the
following four growth rate limits must all be constants:

limjl(t) / X(t)], lim[K(t) / K(t)], , and }im[A(t) / A(t)].

Combining this constancy with the necessary conditions for the dynamic optimisation and
the consequent dynamic equations above, ensures the system will tend asymptotically to
a balanced growth equilibrium in which technology, capital, consumption, and output all
grow at the same constant rate:

lim[A(t) / A(t)] = lim[K(t) / K(t)] = lim[C(t) / C(t)] = lim[ Y(t) / Y(t)] = g°
t-»°o

38 The only difference is that the ratio of the two shadow prices \i and X is considered in place of the
price of technology variable pA.
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And where:

lim[fi(t) / n(t)] = lim[i(t) / X(t)] = - iimr{t) = - r °
t-KO t-»W t-»»

lim[K(t)/A(t)J = ̂ ; lim[C(t)/K(t)j = O°;

limHA(t) = H A ° ; limHY(t) = HY2

for g° ,T° ^^ •,$>%.,$%,., and HYss all constants of the balanced growth equilibrium.

Continuing to follow the approach of Section 2.3.3, the dynamic system is next
transformed so that it yields a stationary equilibrium or steady-stafe rather than the
balanced growth equilibrium described above. For this purpose three new dynamic
variables are defined. The first two are the same as those used in the market solution of
Section 2.3.3, namely ¥(t)=K(t)/A(t) and 3>(t)=C(t)/K(t). The third, necessary to
eliminate the shadow price terms u.(t) and X(t), is the ratio of these terms. Now since JJ. is
the shadow price of technology A, measured in utils; and X is the shadow price of capital
K, which is equivalent to that of output Y, and is also measured in utils, then the ratio
uA. is the price of technology measured in units of output.39 It is therefore equivalent to
the variable pA in the market version of the model. Hence, the third 'not-so-new'
dynamic variable to be defined is pA(t)=p.(t)/A.(t), and with this definition equation
(A5.1.3) can be seen to be simply a restatement of equation (2.45).

Taking logs and derivatives, and substituting from equations (A5.1.11) to (A5.1.16)
generates the three-variable stationary steady-state dynamic system:

- <D(t) - 5 - (t)TP(t)

where:

r(t) = yTi-Y

(A5.1.17)

(A5.1.18)

(A5.1.19)

(A5.1.20)

(A5.1.21)

and for which the boundary conditions easily transform to:

¥(0) given; (A5.1.22)

3 9 Since it is utility which is being maximised, shadow prices will be expressed in terms of the units in
which utility is measured (these are termed utils).
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and

(A5.1.23)

(A5.1.24)

Finally, the steady-state equilibrium of the dynamic system (A5.1.17) to (A5.1.21),
equivalent to the balanced growth equilibrium of (A5.1.11) to (A5.1.16), is then
computed by taking limits and setting each of (A5.1.17) to (A5.1.19) to zero and
solving.

r°+8 (A5.L25)

(A5.1.26)

(A5.1.27)

Adding equations (A5.1.25) and (A5.1.26) and substituting for r ° from (A5.1.27)
generates the social optimum steady-state allocation of human capital to output
production as:

TTO _
lYss (1 - a ) + aar

(A5.1.28)

And using H = H ^ + H?B and (A / A)° = g° = ^ H ^ , the equilibrium levels of human

capital in research, and the growth rate are obtained as:

Ql-ap
o

H A« = — and g = (A5.1.29)

Then, substituting the result for HYss back into (A5.1.27) generates the steady-state

interest rate:

q-cQp

Next, the steady-state ratio of consumption to capital is obtained from the capital
accumulation relation (K / K)° = g° = (r° + 5) / y - <X>° - 8; and the steady-state levels
of capital intensity of technology and the technology price level from (A5.1.21):

/O _ r
•ss L

, . n O «(1-Y)T (1-aXl-T) •

and

H

(A5.1.32)

(A5.1.33)

YSS
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A5.1.2 Calculation of the speed of convergence through linearisation

The sole purpose of this section is to obtain numerical estimates of the asymptotic speed
of convergence of the social optimum system towards its steady-state. As discussed in
Section 3.2.3, this is given by the so-called convergence coefficient p, which is equal to
the absolute value of the negative eigenvalue from the coefficients matrix of the
linearised system, whether it is ordinariry-linearised or log-linearised. In terms of the
Chapter 3 notation:

Here the system is log-linearised since it is notationally a little simpler. The procedures of
Appendix 3.5 are followed exactly: First, the dynamic equations (5.2) to (5.4) are written
as:

= i e
l n [ r ( t ) + 6 ]

go(0 = (---)e ln[

a y

g P A ( t ) = eln[r(t>+5> -

CT CT

_ (5

(A5.1.34)

(A5.1.35)

(A5.1.36)

Logs of equations (5.5) and (5.6) are then taken:

lnHY(t) =
l - a ( l - y )

ln[r(t) + 8] = -

constant (A5.1.37)

£ 1 ̂  ^ lnpA (t) + constant (A5.1.38)

and these are used to linearise (A5.1.34) to (A5.1.36) above by first-order Taylor series
expansions about the log of the steady-state. In order to simplify the notation, the time
argument is omitted from this point onwards; and the term [l-ct(l-y)]"1 is written as A.
Thus, linearising g^:

g , =

That is:
'Ass

(A5.1.39)

PAS
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figure 5.23: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 100 years);
unanticipated introduction of SK from time zero, anticipated
introduction of SAK from time t=5 years, benchmark parameter set*
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Note: a The difference between the convergence coefficients calculated over annual time intervals and those
calculated quarterly is due simply to the feet that they are measured over different time point abscissae. For
example, the annual calculation measures (V at t=4, and t=S years while the quarterly calculation measures
it at t=425, 4.5 and 4.75 years as -well. And in this case, (JpA continues to increase rapidly over the interval

5.3.3 Unanticipated imposition of SAK;
and delayed, anticipated implementation of sK

This simulation is simply the mirror image of that of the previous section. Now it is the
designs subsidy SAK which is fully implemented unannounced (at time t=0); and the
capital rentals subsidy sK, whose full implementation at time t=5 years is announced in
advance - at the same time as the designs subsidy is being introduced. Once again the
results are presented in the standard format (Figure 5.24 to Figure 5.31).

Here the divergence of the transitional dynamics from the case when neither subsidy is
anticipated is greater than was the case when only the designs-subsidy was expected.
This is due to the fact that the capital-subsidy has the greater general impact. The growth
rates and convergence coefficients continue to exhibit large (and somewhat eccentric)
differences, most significantly over the period to implementation. The allocation of
human capital to research HA and the interest rate r, also exhibit large differences over
that initial period, as do the narrow savings measure SN and the capital-gross product
ratio ICGP, albeit to a somewhat lesser extent. Unlike the case when it was the designs
subsidy that was anticipated (Section 5.3.2), many of the economic variables now show
significant differences from the 'unanticipated subsidies simulation' (Section 5.3.1) for
much longer periods than the five years to implementation. Prime examples

Chapter 5 337



are the price of designs PA, the consumption-capital ratio O, and the capital-technology
ratio *F (Figure 5.9 and Figure 5.25); the allocation of human capital to research HA

(Figure 5.11 and Figure 5.27); and the capital-gross product ratio kcp (Figure 5.12 and
Figure 5.28).

Figure 5.24: Transitional dynamics of moving from the free market to the social
optimum ss: effects on *F, <D, and DA (over 100 years); unanticipated
introduction of SAK from time zero, anticipated introduction of SK
from time t=5 years, benchmark parameter set.
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Knowledge that the rentals received for general-purpose capital will soon be subsidised,
causes some postponement of capital accumulation: The growth of capital gK is less than
before (Figure 5.10 and Figure 5.26), and so is the investment savings rate SN. (Figure
5.12 and Figure 5.28). There is also a temporary switch from this form of saving to that
of research. The capital share of gross income SK is much lower, and the research share
SA much higher than when the savings subsidy was not foreseen (Figure 5.13, Figure
5.21 and Figure 5.29). However, extra savings in the form of research do not fully make
up for the decline in capital savings over the period before the saving subsidy is
implemented. This is reflected by the fact that the broad measure of savings SB is also
lower than before over that period (Figure 5,12 and Figure 5.28). Also, with relatively
more resources devoted to consumption and research, ¥ and kop are lower, and O is
higher (compare Figure 5.9 with Figure 5.25; and Figure 5.12 with Figure 5.28). Finally,
as may readily be seen from equations (5.19) and (5.20), the big rise in rental rates and
the interest rate r, is delayed until the subsidy is actually implemented (Figure 5.11 and
Figure 5.27).
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Figure 5.25: Transitional dynamics of moving from the free market to the social
optimum ss: effects on *F, O, and PA (over 25 years); unanticipated
introduction of SAK from time zero, anticipated introduction of SR
from time t=5 years, benchmark parameter set
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Figure 5.26: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the growth rates; unanticipated introduction
cf SAK from time zero, anticipated introduction of sK from time t=5
years, benchmark parameter set.
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Figure 5.27: Transitional dynamics of moving from the free market to the social
optimum ss: effects on r and HA; unanticipated introduction of SAK
from time zero, anticipated introduction of SK from time t=5 years,
benchmark parameter set.
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Figure 5.28: Transitional dynamics of moving from the free market to the social
optimum ss: effects on sN, SB, and kep; unanticipated introduction of
SAK from time zero, anticipated introduction of sK from time t=5
years, benchmark parameter set
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Figure 5.29: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the factor shares of gross income;
unanticipated introduction of SAK from time zero, anticipated
introduction of sK from time t=5 years, benchmark parameter set
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Figure 5.30: Transitional dynamics of moving from the free market to the social
optimum ss: effects on the convergence coefficients (over 25 years);
unanticipated introduction of SAK from time zero, anticipated
introduction of sK from time t=5 years, benchmark parameter set*
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Note: a The negative portions of the convergence coefficients reflect temporary movements away from the new
steady-states for the relevant variables.
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Figure 5.31: Transitional dynamics of moving from the free market ito the social
optimum ss: effects on the convergence coefficients (over 100 years);
unanticipated introduction of SAK from time zero, anticipated
introduction of sK from time t=5 years, fc jnchmark parameter set*
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Note: a The negative portions of the convergence coefficients reflect temporary movements away from the new
steady-states for the relevant variables.

5.3.4 Dynamic effects of different methods of implementation

The 'method of implementation' is meant here to refer to both the timing of any
announcement of the prospective introduction of the optimum subsidies36, and the timing
of the introduction itself- which may be a full implementation at a single point of time,
or a phased implementation over a number of different time points. Only three simple
methods were considered in the preceding sections. Nevertheless, it is clear from the
results of these that alternative methods of implementing the optimum subsidies can
produce significant differences in the adjustment paths by which the social welfare
maximising equilibrium is approached (compare Figure 5.9, Figure 5.17 and Figure 5.25;
Figure 5.10, Figure 5.18 and Figure 5.26 etc.).

Large differences are generally confined to the early period of adjustment, often only
until both subsidies are implemented or not long afterwards. However, in some cases and
for some variables large differences can persist for considerably longer periods. For
example, compare the behaviour of the interest rate r when it is announced in advance
that the capital subsidy will be implemented after 5 years, with its behaviour either when
it is the designs subsidy that is delayed, or when both subsidies are implemented
unannounced. That is, compare Figure 5.27 with Figure 5.11 and Figure 5.19. Naturally,
these are issues with which policy makers would need to be aware before selecting the
method of implementing the optimum subsidies.

Appendix 5.1

A social planning solution to the Romer Model

A5.1.1 Derivation of the dynamic system and its steady-state

The decentralised or market equilibrium for the Romer model, necessarily incorporates
certain market imperfections (see Section 5.1). These dictates would not be followed by
a social planner, who could allocate resources by administrative fiat. Thus, the social
planning problem in the 'Romer economy' is to maximise the discounted sum of all
future aggregate utility, subject to the production and research technologies and to the
economy's aggregate resource constraint (that consumption and savings together must
equal total income). Formally, the problem is:37

CO

Maximise |u{C(t)}e"ptdt
0

subject to K(t) = Y(t) - C(t) - 5K(t)

A(t)=CHA(t)A(t)
K(0),A(0) given; K(t),A(t) > 0 (A5.1.1)

where U{C(t)} =[C( t ) ' - ° - l ] / ( l -a ) fora>0

Y(t) = T p H y C t r ^ L ^ x ^ K O ) 7 A(t)(Hr)

HA(t) + HY(t) = H

Then as before in Chapter 2 (Appendix 2.2 in particular), proceeding according to the
Maximum Principle of Pontryagin^et al (1962), the (present valued) Hamiltonian, •&, is
formed and the first-order conditions for a maximum are applied:

where X(t) and jx(t), the dynamic multipliers, are shadow prices of capital K(t), and
output A(t) respectively.

The first-order conditions for the problem (A5.1.1) are given in equations (A5.1.2) to
(A5.1.6) as follows:

5C(t)
= 0:

5HY(t)
= 0

= C(t)"°e~pt

CA(t)HY(t)
"a(l-y)Y(t)

(A5.1.2)

(A5.1.3)

36 Or, to refer to the timing of any other means by which the subsidies might be anticipated.

37 Romer (1990b), and Chiang(1992) in reporting Romer's work, both solve this problem, but only to
the point of the (posited) balanced growth equilibrium that results. The addition here is the explicit use
of the transversality conditions, and the derivation of the full dynamic system.
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SK(t) K(t)

M=-lm~

(A5.1.4)

(A5.1.5)

and the transversality conditions:

limn(t)>0 and limu(t)A(t) = 0

and
lim)i(t)>0 and limA.(t)K(t) = 0

(A5.1.6)

The dynamic system for the social optimum solution to the Romer model may now be
derived from problem statement (A5.1.1) and its first-order conditions (A5.1.2) to
(A5.1.6) as follows. First, (A5.1.2) is differentiated with respect to time and re-arranged
to produce:

C(t) / C(t) = [- - p] / o- (A5.1.7)

At this point the interest rate variable r(t) is introduced. It is still related to the rental rate
on capital rK(t) by the logic of Section 2.2.5 and by equation (2.12) specifically. That is:
r(t) = ric(t)-5; but in this Pareto optimal solution to the model, where there are no market
distortions, the rental rate on general-purpose capital is now equal to the value of its
marginal product:

(A5.1.8)

(A5.1.9)

so from equation (A5.1.4) the interest rate is given by:

r(t)=-i(t)/Mt)

Equations (A5.1.4) and (A5.1.9) also generate the following alternative expression for
output which will prove useful:

A dynamic equation for the growth of technology may be written directly from the
conditions of the problem statement (A5.1.1):

A( t )=gH-H Y ( t ) ]A( t ) (A5.1.11)

Then the capital accumulation equation, also from the problem statement (A5.1.1), is
transformed via (A5.1.10) to produce:

(A5.1.12)

344 Chapter 5

Next, the consumption growth equation is obtained from (A5.1.7) and (A5.1.10):

r(t) — p
C(t) (A5.1.13)

And combining (A5.1.13) and (A5.1.5) generates a dynamic equation for \i:
f a- l )H Y ( t )+£H]n( t ) (A5.1.14)

The preceding algebra has now generated a system of four first-order ordinary
differential equations, (A5.1.11) to (A5.1.14), in the four variables A(t), K(t), C(t) or
A,(t), and |i(t). While there are actually six variables involved in the above ODEs, the two
'extra' variables r(t) and HY(t) could readily be eliminated since they are both functions
of the other dynamic variables. Substituting for the production function Y(t) from
(A5.1.1) into (A5.1.3) and into (A5.1.10) generates expressions for HY(t) and r(t)
respectively:

HY(t) =

r(t) = yTi-rHY(t)a(1-T)L(1-a)(1-T)[K(t) / ACt)]7"1 - 5

(A5.1.15)

(A5.1.16)

The four boundary conditions necessary to integrate such a system are provided by the
given initial values A(0) and K(0) from the dynamic optimisation problem statement
(A5.1.1), and by the transversality conditions (A5.1.6). As usual, the transversality
conditions ensure that in order to achieve the social optimum, the correct trajectory (that
is, the saddle-path) is the one attained from amongst the infinite number of possible
dynamic paths allowed by the initial conditions and differential equations only. Thus, at
this stage the complete dynamic system for the social optimum solution to the model
comprises equations (A5.1.11) to (A5.1.16) together with the initial and transversality
conditions.

Comparison with equations (2.30) to (2.38) from Chapter 2 reveals that this social
optimum solution system is extremely similar to that of the market solution to the model.
Moreover, the procedures for determining the asymptotic dynamics and the steady-state
equilibrium for the social optimum solution follow exactly those used in Section 2.3.3 for
the market solution.38 In particular, it follows from the transversality conditions that the
following four growth rate limits must all be constants:

limjl(t) / X(t)], lim[K(t) / K(t)], lim[jx(t) / u<t)], and lim[A(t) / A(t)].
t->°0 t»«> t>«> t + »

Combining this constancy with the necessary conditions for the dynamic optimisation and
the consequent dynamic equations above, ensures the system will tend asymptotically to
a balanced growth equilibrium in which technology, capital, consumption, and output all
grow at the same constant rate:

lim[A(t) / A(t)] = lim[K(t) / K(t)] = lim[C(t) / C(t)] = lim[Y(t) / Y(t)] = g°
t->oo t->00 t->oo

38 The only difference is that the ratio of the two shadow prices
price of technology variable pA.

and A, is considered in place of the
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And where:

limLji(t) / u<t)] = lim[i(t) / A.(t)] = -limr(t) = - r °

lim[K(t)/A(t)]==*F°; lim[C(t) / K(t)] = <D°; lim[n(t) / X(t)] = p ^

limHA(t) = HA°; limHY(t) = HY°
t->oo t—•<*>

for g 0 , ^ , ^ , ^ ) ^ , ? ^ , andHYss all constants of the balanced growth equilibrium.

'Ass

Continuing to follow the approach of Section 2,3.3, the dynamic system is next
transformed so that it yields a stationary equilibrium or steady-state rather than the
balanced growth equilibrium described above. For this purpose three new dynamic
variables are defined. The first two are the same as those used in the market solution of
Section 2.3.3, namely ¥(t)=K(t)/A(t) and O(t)=C(t)/K(t). The third, necessary to
eliminate the shadow price terms u.(t) and A,(t), is the ratio of these terms. Now since p. is
the shadow price of technology A, measured in utils; and X is the shadow price of capital
K, which is equivalent to that of output Y, and is also measured in utils, then the ratio
u/X, is the price of technology measured in units of output.39 It is therefore equivalent to
the variable pA in the market version of the model. Hence, the third 'not-so-new'
dynamic variable to be defined is pA(t)=u(t)A,(t), and with this definition equation
(A5.1.3) can be seen to be simply a restatement of equation (2.45).

Taking logs and derivatives, and substituting from equations (A5.1.11) to (A5.1.16)
generates the three-variable stationary steady-state dynamic system:

(A5.1.17)

(A5.1.18)

(A5.1.19)

CJ

where:

r(t) = - 5

(A5.1.20)

(A5.1.21)

and for which the boundary conditions easily transform to:

¥(0) given; (A5.1. 22)

39 Since it is utility which is being maximised, shadow prices will be expressed in terms of the units in
which utility is measured (these are termed utils).
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limO(t) = O°;
t->to

and

(A5.1.23)

(A5.1.24)

Finally, the steady-state equilibrium of the dynamic system (A5.1.17) to (A5.1.21),
equivalent to the balanced growth equilibrium of (A5.1.11) to (A5.1.16), is then
computed by taking limits and setting each of (A5.1.17) to (A5.1.19) to zero and
solving.

r°+8

rf'+S

(A5.1.25)

(A5.1.26)

(A5.1.27)

Adding equations (A5.1.25) and (A5.1.26) and substituting for r° from (A5.1.27)
generates the social optimum steady-state allocation of human capital to output
production as:

Ho _
LYss

(1 - a) + oca
(A5.1.28)

And using H = H° , + HYss and (A/ A)° = g° = £HJ,, the equilibrium levels of human
capital in research, and the growth rate are obtained as:

and
- a ) + aa

(A5.1.29)

Then, substituting the result for H?^ back into (A5.1.27) generates the steady-state
interest rate:

(A5.1.30)
(1 - a) + aa

Next, the steady-state ratio of consumption to capital is obtained from the capital
accumulation relation (K / K)J = g° = (r£ + 8) / y - O j - 8; and the steady-state levels
of capital intensity of technology and the technology price level from (A5.1.21):

VTT0 «
Vi/O _ rY^Yss
Tss L _y

and

PASS = T T O
" Y s s

• ss

(A5.1.32)

(A5.1.33)
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A5.1.2 Calculation of the speed of convergence through linearisation

The sole purpose of this section is to obtain numerical estimates of the asymptotic speed
of convergence of the social optimum system towards its steady-state. As discussed in
Section 3.2.3, this is given by the so-called convergence coefficient P, which is equal to
the absolute value of the negative eigenvalue from the coefficients matrix of the
linearised system, whether it is ordinarily-linearised or log-linearised. In terms of the
Chapter 3 notation:

P = ~ ^ R I = ~~^RLI

Here the system is log-linearised since it is notationally a little simpler. The procedures of
Appendix 3.5 are followed exactly: First, the dynamic equations (5.2) to (5.4) are written
as:

g,(t) =-e In [ r ( t )+6] -eto<I>{t)

y

)(t) = (---)e t a [ r ( t )+5]

a y

g (t) = e
hlIr<t)+*1 -PA

a

(A5.1.34)

(A5.1.35)

(A5.1.36)

Logs of equations (5.5) and (5.6) are then taken:

y . ._. 1
lnHY(t) =

l -a ( l -y) l - a ( l - y )
lnpA(t)+ constant (A5.1.37)

"ff I ) l ny - 1
C t ^ Y ^ lnp A ( t )+ constant (A5.1.38)

l-a(l-y) l-a(l-y)

and these are used to linearise (A5.1.34) to (A5.1.36) above by first-order Taylor series
expansions about the log of the steady-state. In order to simplify the notation, the time
argument is omitted from this point onwards; and the term [l-a(l-y)]"1 is written as A.
Thus, linearising gy:

- [ a ( 1 ~ Y ) A e l n ( r s s + S )

Y
That is:

PA*

(A5.1.39)

PAS
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Similarly, linearising go produces:

and finally, linearising gpA generates:

gPA = -A(i -
Yss

/ a]lnJL

-a)HYss / a - a ( l - 8)]ln PA

PASS

(A5.1.40)

(A5.1.41)

Equations (A5.1.39) to (A5.1.41) then express the growth rates of the dynamic variables
as linear functions of the logarithms of the ratios of the variables to their steady-state
levels:

gR=Q°[ln(R(t)/Rj

where gR; and !n(R(t)/Rss) are the column vectors: [gy, gd>, gPA]T; and [(lnOF^AFss),

ln(O(t)/Oss), lnpA(t)/pAss)]T respectively; and where Q ^ is the desired coefficients

matrix:

Qo _ 1 1
Ly a1

(l-a)(l-y)(rss

l -a ( l -y)

- ( 1 - a ) -
l -a( l -y)

0

l -a( l -y)

l _ l
Ly cJ l -a ( l -y)

a
l -a( l -y)

(A5.1.42)

When this is evaluated for the benchmark parameter set it generates a single negative
eigenvalue (as expected) of: XRLi= -0.0681. The speed of convergence of the social
optimum system in the neighbourhood of its benchmark steady-state is therefore 6.81 per
cent a year. When the output elasticity of capital (that is parameter y) is raised by 10 per
cent, as in the simulation conducted on this system, the convergence coefficient falls to
5.60 per cent a year. These are the steady-state values shown in Figure 5.6.
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Appendix 5.2

TABLO input files for the 'social optimum9 and the
'subsidised market' Romer systems

As already discussed in Chapter 4, TABLO input files are the key to implementing the
finite differences-GEMPACK method of numerical integration. This appendix records
the TABLO files used to conduct simulations on the social optimum and the subsidised
market systems via a 4th order Runge-Kutta numerical integration procedure. Both were
derived by amending the corresponding file for the free market dynamic system,
MKTRK4.TAB, from Table A4.3.4 of Appendix 4.3.

Table A5.2.1 TABLO input file specifying a 4th order Runge-Kutta finite differencing
integration method for modelling the dynamics of the social optimum solution to the Romer model
(fileOPTRK4.TAB).

! ROMER MODEL DYNAMICS: SOCIAL OPTIMUM SOLUTION

! GORDON SCHMIDT, 26 JANUARY 1998.

Solution of the "two-point boundary value problem" posed by the social optimum
solution of the Romer model of endogenous growth:

The base case is a steady-state solution of the model, with the value of
the capital/technology stock ratio equal to the desired initial level.
The model is implemented in its "levels" form.
Finite differencing is by the "4th order Runge-Kutta" method.

! Defaults for "levels model"

EQUATION(DEFAULT=LEVELS);
VARIABLE(DEFAULT=LEVELS);
FORMULA(DEFAULT=INITIAL);
COEFFICIENT(DEFAULT=PARAMETER);

! Number of grid intervals - representing the overall time horizon in years. To be

I read from a file of logical name "tperiods"
FILE (TEXT) tperiods;
COEFFICIENT (INTEGER) NINTERVAL ;
READ NINTERVAL FROM FILE tperiods ;
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! Sets for describing periods

SET (TNTERTEMPORAL) alltime # all time periods # MAXIMUM SIZE
2001 (p[0] - p[NTNTERVAL]) ;
SET (INTERTEMPORAL) fwdtime # domain of fwd diffe # MAXIMUM SIZE
2000 ( p[0] - p[NTNTERVAL - 1] ) ;
SET (INTERTEMPORAL) endtime # ending time # SIZE 1 (pfNTNTERVAL]);
SUBSET fwdtime IS SUBSET OF alltime;
SUBSET endtime IS SUBSET OF alltime;

! Time intervals: grid points, representing years, to be read from a file
! of logical name "time".

FILE (TEXT) time;
COEFFICIENT (alLt,alltime) year(t);
READ year FROM FILE time;
COEFFICIENT (alLt,fwdtime) dt(t);
FORMULA (all,t,fwdtime) dt(t) = year(t+l) - year(t) ;

! Variables

VARIABLE (alLt,alltime) psi(t)
VARIABLE (all,t,alltime) phi(t)
VARIABLE (alLt,alltime) pA(t)
VARIABLE (all,t,alltime) HY(t)
VARIABLE (alLt,alltime) HA(t)
VARIABLE (alLt,alltime) r(t)
VARIABLE (all,t,alltime) H(t)
VARIABLE (alLt,alltime) L(t)

# capital/technology ratio # ;
# consumption/capital ratio # ;
# price of technology # ;
# human capital in mfg # ;
# human capital in research # ;
# interest rate # ;
# total human capital # ;
# total ordinary labour # ;

! Intemediate variables: used in the RK4 finite differencing and, since their base

! levels are zero, declared such that their linear equivalent
! is a 'change' variable rather than a 'percentage change' one.

VARIABLE (CHANGE) (alLt,fwdtime) psiRl(t)
VARIABLE (CHANGE) (alLt,fwdtime) phiRl(t)
VARIABLE (CHANGE) (alLt,fwdtime) pARl(t)
VARIABLE (CHANGE) (alLt,fwdtime) psiR2(t)
VARIABLE (CHANGE) (alLt,fwdtime) phiR2(t)
VARIABLE (CHANGE) (alLt,fwdtime) pAR2(t)
VARIABLE (CHANGE) (all,t,fwdtime) psiR3(t)
VARIABLE (CHANGE) (all,t,fwdtime) phiR3(t)
VARIABLE (CHANGE) (alLt,fwdtime) pAR3(t)
VARIABLE (CHANGE) (alLt,fwdtime) psiR4(t)
VARIABLE (CHANGE) (aU,t,fwdtime) phiR4(t)
VARIABLE (CHANGE) (all,t,fwdtime) pAR4(t)
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! Parameters: declared as variables, and as functions of time, in order to examine
! the dynamics of changes 'between' equilibria.

V A R I A B L E (all,t,alltime) a(t)
V A R I A B L E (all,t,alltime) g(t)
V A R I A B L E (all,t,alltime) z(t)
V A R I A B L E (all,t,alltime) e(t)
V A R I A B L E (all,t,alltime) rho(t)
V A R I A B L E (all,t,alltime) s(t)
V A R I A B L E (all,t,alltime) d(t)

# human cap productivity param # ;
# capital productivity param #;
# research productivity param # ;
# specialised cap cost param # ;
# consumers' discount factor # ;
# inter-temporal substn param # ;
# depreciation rate on capital # ;

! Base case: established by a combination of READ statements from a file of logical
! name "basedata", and dependent FORMULA(INITIAL) statements.
FILE (TEXT) basedata;
READ H FROM FILE basedata;
READ L FROM FILE basedata;
READ a FROM FILE basedata;
READ g FROM FILE basedata;
READ z FROM FILE basedata;
READ e FROM FILE basedata;
READ rho FROM FILE basedata;
READ s FROM FILE basedata;
READ d FROM FILE basedata;

FORMULA (all,t,alltime)
HY(t) = [a(t)*(s(t)-l)*H(t)+a(t)*rho(t)/z(t)]/[l-a(t)+a(t)*s(t)];

FORMULA (all,t,alltime)
HA(t) = H(t)-HY(t);

FORMULA (all,t,alitime)
r(t) = [s(t)*z(t)*H(t)+(l-a(t))*rho(t)]/[l-a(t)+a(t)*s(t)];

FORMULA (aU,t,alltime)
psi(t) = [g(t)/e(trg(t)/{r(t)+d(t)}*HY(tr{a(t)*(l-g(t))}

FORMULA (all,t,alltime)
phi(t) = {r(t)+d(t)}*/g(t)-z(t)*HA(t)-d(t);

FORMULA (all,t,alltime)
pA(t) = a(t)*{l/g(t)-l}/z(t)*{r(t)+d(t)}/HY(t)*psi(t);

FORMULA (all,t5rwdtime)
psiRl(t)=O;

FORMULA (all,t,rwdtime)
phiRl(t)=0;

FORMULA (all,t,rwdtime)
pARl(t)=0;

FORMULA (all,t,fwdtime)
psiR2(t)=0;
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FORMULA (alUfwdtime)
phiR2(t)=0;

FORMULA (all,t,fwdtime)
pAR2(t)=0;

FORMULA (all,t,rwdtime)
psiR3(t)=0;

FORMULA (all,t,rwdtime)
phiR3(t)=0;

FORMULA (all.t^dtime)
pAR3(t)=0;

FORMULA (all,t,fwdtime)
psiR4(t)=0;

FORMULA (all,t5fwdtime)
phiR4(t)=0;

FORMULA (alUrwdtime)
pAR4(t)=0;

! Dynamic equations: relating variables at adjacent time points.

EQUATION psiincr (all,t,rwdtime)
psi(t+l)=psi(t)+psiRl(t)/6+psiR2(t)/3+psiR3(t)/3+psiR4(t)/6 ;

EQUATION phiincr (all,t,fwdtime)
pmXt+l)^mXt)+phiRl(t)/6+phiR2(t)/3+phiR3(t)/3+phiR4(t)/6 ;

EQUATION pAincr (all,t,fwdtime)
pA(t+l) =pA(t)+pARl(t)/6+pAR2(t)/3+pAR3(t)/3+pAR4(t)/6 ;

! where the RK4 variables are defined by the time derivative functions of the main
! dynamic variables as follows:

EQUATION psiRKl (alLt,fwdtime)
psiRl(t)^t(t)nz(t)ni+pA(t)/psi^^^^

L(tr{(l-a(t))*(l-g(t))}*psi(t)-g(t)/pA(t)}^[l/(l-a(t)*(l-g(t)))]-
phi(t)-d(t)-z(t)*H(t)]*psi(t);

EQUATION phiRKl (alLt,twdtime)
phiRl(t)=dt(t)*[(g(t)/s(t)-l)*z(t)/a(t)/(l-g(t))*pA(t)/psi(t)*

{a(t)*(l-g(t))/z(t)/e(t)^g(t)*
L(tr{(l-a(t))*(l-g(t))}*psi(t)^g(t)/pA(t)}^[l/(l-a(t)*(l-g(t)))]
+phi(t)+{d(t)*(s(t)-l)-rho(t)}/s(t)]*phi(t);

EQUATION pARKl (all,t,rwdtime)
pARl(t)^t(t)nz(t)*g(t)/a(t)/(l-g(t))%A(t)/psi(t)-(l-a(t))^l-g(t))/g(t)]*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(t)A{(l-a(t))*(l-g(t))}*psi(trg(t)/pA(t)}^
[l/(l-a(t)*(l-g(t)))]-(z(t)*H(t)+d(t))]*pA(t);

EQUATION psiRK2 (all,t,rwdtime)
psiR2(t)=dt(t)*[z(t)*{l+[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]/

a(t)/(l-g(t))}*{a(t)*(l-g(t))/z(t)/e(t)^g(t)*L(t)^{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]>A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiRl(t)/2]-d(t)-z(t)*H(t)]*[psi(t)+psiRl(t)/2];
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EQUATION phiRK2 (all,t,fwdtime)
phiR2(t)^t(t)*[(g(t)/s(t)-l)Mt)/a(t)/(l-g(t))*[pA(t)^ARl(t)/2]/|p^

{a(t)*(l-g(t))/z(t)/e(t)^g(t)*L(tr{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]^g(t)/[pA(t)+pARl(t)/2]}A[l/(l-a(t)*(l-g(t)))]+
IpW(tHpMRl(t)/2]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiRl(t)/2];

EQUATION pARK2 (all,t,fwdtime)
pAR2(t)^t(t)nz(t)*g(t)/a(t)/(l^^

(l-a(t))ni-g(t))/g(t)]*{a(t)*(l-g(t))/Z(t)/e(t)Ag(t)*L(tr{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A

[l/(l-a(t)*(l-g(t)))]-(z(t)*H(t)+d(t))]*[pA(t)+pARl(t)/2];

EQUATION psiRK3(all,t,fwdtime)
psiR3(t)=dt(t)*[z(t)*{l+[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(tr{(l-a(t))*(l-g(t))}*
[psi(t)+psiR2(t)/2]Ag(t)/[pA(t)4pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiR2(t)/2]-d(t)-z(t)*H(t)]*[psi(t)+psiR2(t)/2];

EQUATION phiRK3 (all,t,fwdtime)
phiR3(t)^t(t)n(g(t)/s(t)-l)*z(t)/a(t)/(l-g(t))%A(t)+pAR2(t)/2]/[p^^

{ ( t ) n i ( ) ) / ( ) / ( r ( ) * L ( {g ( ) ( ) ( r g ( ) ( r { ( ( ) ) ( g ( ) ) } [ p ( ) p s
[pA(t)+pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]+[phi(t)+pbil2(t)/2]+
{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiR2(t)/2];

EQUATION pARK3 (all,t,fwdtime)

pAR3(t)^t(t)nz(t)*g(t)/a(t)/(l-g(tM
(l-a(t))*(l-g(t))/g(t)]*{a(t)*(l-g^
[psi{t)+psiR2(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A

[l/(l-a(t)*(l-g(t)))]-(z(t)*H(t)+d(t))]*[pA(t)+pAR2(t)/2] ;

EQUATION psiRK4 (all,t,rwdtime)
psiR4(t)=dt(t)*[z(t)*{H-[pA(t)+pAR3(t)]/[psi(t)+psiR3(t)]/a(t)/(l-g(t))}*

{a( t )*( l -g( t ) ) /z ( t ) /e ( t r g ( t )U( t r{^
[pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]-[phi(t)+phiR3(t)]-
d(t)-z(t)*H(t)]*[psi(t)+psiR3(t)];

EQUATION phiRK4 (alU,fwdtime)
phiR4(t)=dt(t)n(g(t)/s(t)-l)*z(t)/a(t)/(l-g(t))*^A(t)+pAR3(t)]/[psi(t)+PsiR3(t)]*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(t)A{(l-a(t))*(l-g(t))}*|psi(t)+psiR^
[pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]+[phi(t)+phiR3(t)]+
{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiR3(t)];

EQUATION pARK4 (all,t,fwdtime)

[z ( t )*g ( t ) / a (^
[[pA(t)+pAR3(t)]/[psi(t)+psiR3(t)]-(l-a(t))*(l-g(t))/g(t)]*
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(i-g(t))}*lpsi(t)+psi^
|pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]<Z(t)*H(t)+d(t))]*[pA(t)+pAR3(t)];

! Other intraperiod equations: relationships existing over all points of time.

EQUATION humcapA (aU,t,alltime)
HA(t)=H(t)-HY(t);

EQUATION irate (all,t,alltime)
r(t)=[z(t)*g(t)/a(t)/(l-g(t))]*HY(t)*pA(t)/pSi(t)-d(t);

Boundary conditions:
1. Initial capital/technology ratio fixed at its immediate pre-shock level:

psi(O)=psiO. Implemented simply by declaring psi(O) exogenous,
and setting its shock to zero.

2. 'Final' value of the consumption/capital ratio set at its market solution
steady-state level: phi(T)=phiMss.

3. 'Final' value of the price of technology set at its market solution
steady- state level: pA(T)=pAMss.

EQUATION phiMss (all,t,endtime)
phi(t) = {r(t)+d(t)}/g(t)-z(t)*HA(t)-d(t) ;

EQUATION pAMss (all,t,endtime)
pA(t) = a(t)*{l/g(t)-l}/z(t)*{r(t)+d(t)}/HY(t)*psi(t);

Table A5.2.2 TABLO input file specifying a 4th order Runge-Kutta finite differencing
integration method for modelling the dynamics of the subsidised market solution to the Romer
model (file SUBRK4.TAB).

! ROMER MODEL DYNAMICS: SUBSIDISED MARKET SOLUTION !

! GORDON SCHMIDT, 11 NOVEMBER 1998. !

Solution of the "two-point boundary value problem" posed by the (optimally)
subsidised market solution of the Romer model of endogenous growth:

The base case is a steady-state solution of the model, with the value of the
capital/technology stock ratio equal to the desired initial level.
The model is implemented in its "levels" form.
Finite differencing is by the "4th order Runge-Kutta" method.

EQUATION humcapY (all,t,alltime)
HY(t)=[a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(tr{(l-a(t))*(l-g(t))}*

psi(t)Ag(t)/pA(t)]A{l/(l-a(t)*(l-g(t)))};

! Defaults for "levels model"

EQUATION(DEFAULT=LEVELS);
VARIABLE(DEFAULT=LEVELS);
FORMULA(DEFAULT=INITIAL);
COEFFICIENT(DEFAULT=PARAMETER);
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! Number of grid intervals - representing the overall time horizon in years. To be
! read from a file of logical name "tperiods"

FILE (TEXT) tperiods;
COEFFICIENT (INTEGER) NINTERVAL;
READ NINTERVAL FROM FILE tperiods;

! Sets for describing periods

SET (INTERTEMPORAL) alltime # all time periods # MAXIMUM SIZE ~
2001 ( p[0] - p[NINTERVAL]);
SET (INTERTEMPORAL) fwdtime # domain of fwd difife # MAXIMUM SIZE
2000 (p[0] - p[NINTERVAL - 1 ] ) ;
SET (INTERTEMPORAL) endtime # ending time # SIZE 1 ( pjMNTERVAL] ) ;
SUBSET fwdtime IS SUBSET OF alltime;
SUBSET endtime IS SUBSET OF alltime;

! Time intervals: grid points, representing years, to be read from a file !
! of logical name "time". !

FILE (TEXT) time;
COEFFICIENT (alLt,alltime) year(t);
READ year FROM FILE time;
COEFFICIENT (all}t,fwdtime) dt(t);
FORMULA (alLt,fwdtime) dt(t) = year(t+l) - year(t) ;

! Variables

VARIABLE (alLt,alltime) psi(t)
VARIABLE (all,t,aUtime) phi(t)
VARIABLE (alLt,alltime) pA(t)
VARIABLE (all,t,alltime) H(t)
VARIABLE (alLt,alltime) L(t)

# capital/technology ratio # ;
# consumption/capital ratio # ;
# price of technology # ;
# total human capital # ;
# total ordinary labour # ;

! Intemediate variables: used in the RK4 finite differencing and, since their base
! levels are zero, declared such that their linear equivalent
! is a 'change' variable rather than a 'percentage change' one.

VARIABLE (CHANGE) (all,t,fwdtime)psiRl(t) ;
VARIABLE (CHANGE) (all,t,fwdtime) phiRl(t) ;
VARIABLE (CHANGE) (all,t,fwdtime)pARl(t) ;
VARIABLE (CHANGE) (all,t,fwdtime) psiR2(t) ;
VARIABLE (CHANGE) (all,t,fwdtime) phiR2(t) ;
VARIABLE (CHANGE) (all,t,fwdtime) pAR2(t) ;
VARIABLE (CHANGE) (all,t,rwdtime) psiR3(t) ;
VARIABLE (CHANGE) (all,t,fwdtime) phiR3(t) ;
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VARIABLE (CHANGE) (alLt,fwdtime) pAR3(t) ;
VARIABLE (CHANGE) (alLt,fwdtime) psiR4(t) ;
VARIABLE (CHANGE) (alLt,fwdtime) phiR4(t) ;
VARIABLE (CHANGE) (alLt,fwdtime) pAR4(t) ;

! Parameters: declared as variables, and as junctions of time, in order to examine
! the dynamics of changes 'between' equilibria.

VARIABLE (alLt,alltime) a(t)
VARIABLE (all,t,alltime) g(t)
VARIABLE (alLt,alltime) z(t)
VARIABLE (alLt,alltime) e(t)
VARIABLE (alLt,alltime) rho(t)
VARIABLE (alLt,alltime) s(t)
VARIABLE (alLt,alltime) d(t)
VARIABLE (all,t,alltime) subK(t)
VARIABLE (all,t,alltime) subA(t)

# human cap productivity param # ;
# capital productivity param # ;
# research productivity param # ;
# specialised cap cost param # ;
# consumers' discount factor # ;
# inter-temporal substn param # ;
# depreciation rate on capital # ;
# power of capital subsidy # ;
# power of designs subsidy # ;

! Base case: established by a combination of READ statements from a file of logical
! name "basedata", and dependent FORMULA(INITIAL) statements.

FILE (TEXT) basedata; ~
READ H FROM FILE basedata;
READ L FROM FILE basedata;
READ a FROM FILE basedata;
READ g FROM FILE basedata;
READ z FROM FILE basedata;
READ e FROM FILE basedata;
READ rho FROM FILE basedata;
READ s FROM FILE basedata;
READ d FROM FILE basedata;
READ subK FROM FILE basedata;
READ subA FROM FILE basedata;

FORMULA (alLt,alltime)
psi(t) = [g(t)A2/e(t)Ag(t)*subK(t)/[{[s(t)*z(t)*H(t)+rho(t)]/

[l+subA(t)*a(t)*s(t)/g(t)]}+d(t)]*
{[a(t)*s(t)/g(t)*H(t)+a(t)*rho(t)/g(t)/z(t)]/
[l/subA(t)+a(t)*s(t)/g(t)]}A[a(t)*(l-g(t))]*

FORMULA (aU,t,alltime)
phi(t) = [{[s(t)*z(t)*H(t)+rho(t)]/[l+subA(t)*a(t)*s(t)/g(t)]}+

d(t)]/subK(t)/g(t)A2-z(t)*[H(t)-{[a(t)*s(t)/g(t)*H(t)+a(t)*
rho(t)/g(t)/z(t)]/[l/subA(t)+a(t)*s(t)/g(t)]}]-d(t);

FORMULA (alLt,alltime)
pA(t) = [l/g(t)-l]/subK(t)/subA(t)*[l+d(t)/{[s(t)*z(t)*H(t)+rho(t)]/

[l+subA(t)*a(t)*s(t)/g(t)]}]*psi(t);
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FORMULA
psiRl(t)=O

FORMULA
phiRl(t)=O

FORMULA
pARl(t)=0

FORMULA
psiR2(t)=0

FORMULA
phiR2(t)=0

FORMULA
pAR2(t)=0

FORMULA
psiR3(t)=O

FORMULA
phiR3(t)=0

FORMULA
pAR3(t)=0

FORMULA
psiR4(t)=0

FORMULA
phiR4(t)=0

FORMULA
pAR4(t)=0

(aILt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)
;
(alLt,fwdtime)

! Dynamic equations: relating variables at adjacent time points.

EQUATION psiincr (all,t,fwdtime)
psi(t+l)=psi(t)+psiRl(t)/6+psiR2(t)/3+psiR3(t)/3+psiR4(t)/6 ;

EQUATION phiincr (alLt,fwdtime)
pW(t+l)^ru(t)+phiRl(t)/6+phiR2(t)/3+phiR3(t)/3+phiR4(t)/6 ;

EQUATION pAincr (alLt,fwdtime)
pA(t+l) =pA(t)+pARl(t)/6+pAR2(t)/3+pAR3(t)/3+pAR4(t)/6 ;

! where the RK4 variables are defined by the time derivative functions of the main
! dynamic variables as follows:

EQUATION psiRKl (all,t,fwdtime)
psiRl(t)=dt(t)*[z(t)*{l+pA(t)/psi(t)/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(t)-g(t)*L(t)^(l-a(t))*(l-g(t))}*
psi(trg(t)/pA(t)}^[l/(l-a(t)*(l-g(t)))]-
phi(t)-d(t)-z(t)*H(t)]*psi(t);

EQUATION phiRKl (alLt,fwdtime)
phiRl(t)=dt(t)*[(g(t)A2/s(t)*subK(t)-l)*z(t)/a(t)/(l-g(t))*

pA(t)/psi(t)*{a(t)*(l-g(t))/z(t)/e(trg(t)*L(t)A{(l-a(t))*(l-g(t))}*
psi(t)Ag(t)/pA(t)}A[l/(l-a(t)*(l-g(t)))]+
phi(t)+{d(t)*(s(t)-l)-rho(t)}/s(t)]*phi(t);
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EQUATION pARKl (all,t,fwdtime)
PARl(t)=dt(t)*[z(t)*g(t)/a(t)*subK(t)*{g(t)/(l-g(t))*pA(t)/psi(t)-l/subK(t)/subA(t)}*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(t)A{(l-a(t))*(l-g(t))>*
psi(t)Ag(t)/pA(t)}A[l/(l-a(t)*(l-g(t)))]-d(t)]*pA(t);

EQUATION psiRK2 (all,t,fwdtime)
psiR2(t)=dt(t)*[z(t)*{l+[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(tr{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiRl(t)/2]-d(t)-z(t)*H(t)]*[psi(t)+psiRl(t)/2];

EQUATION phiRK2 (alLt,fwdtime)
phiR2(t)=dt(t)*[(g(t)A2/s(t)*subK(t)-l)*z(t)/a(t)/(l-g(t))*

[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]*
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A[l/(l-a(t)*(l-g(t)))]+
[pW(t)+phiRl(t)/2]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*|phi(t)+phiRl(t)/2];

EQUATION pARK2 (alLt,fwdtime)
PAR2(t)=dt(t)*[z(t)*g(t)/a(t)*subK(t)*{g(t)/(l-g(t))*

[pA(t)+pARl(t)/2]/[psi(t)+psiRl(t)/2]-l/subK(t)/subA(t)}*
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiRl(t)/2]Ag(t)/[pA(t)+pARl(t)/2]}A

[l/(l-a(t)*(l-g(t)))]-d(t)]*[pA(t)+pARl(t)/2];

EQUATION psiRK3 (alLt,fwdtime)
psiR3(t)=dt(t)*[z(t)*{l+[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))>*
[psi(t)+psiR2(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiR2(t)/2]-d(t)-z(t)*H(t)]*[psi(t)+psiR2(t)/2];

EQUATION phiRK3 (alLt,fwdtime)
phiR3(t)=dt(t)*[(g(t)A2/s(t)*subK(t)-l)*z(t)/a(t)/(l-g(t))*

[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]*
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*[l/(l-a(t)*(l-g(t)))]+
[psi(t)+psiR2(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A

[pM(t)+priiRr;t)/2]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+phiR2(t)/2];
EQUATION pARK3 (aU,t,fwdtime)

PAR3(t)=dt(t)*[z(t)*g(t)/a(t)*subK(t)*{g(t)/(l-g(t))*
[pA(t)+pAR2(t)/2]/[psi(t)+psiR2(t)/2]-l/subK(t)/subA(t)}*
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiR2(t)/2]Ag(t)/[pA(t)+pAR2(t)/2]}A[l/(l-a(t)*(l-g(t)))]-
d(t)]*[pA(t)+pAR2(t)/2] ;

EQUATION psiRK4 (all,t,fwdtime)
psiR4(t)=dt(t)*[z(t)*{l+[pA(t)+pAR3(t)]/[psi(t)+psiR3(t)]/a(t)/(l-g(t))}*

{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*
[psi(t)+psiR3(t)]Ag(t)/[pA(t)+pAR3(t)]}A[l/(l-a(t)*(l-g(t)))]-
[phi(t)+phiR3(t)]-d(t)-z(t)*H(t)]*[psi(t)+psiR3(t)];

EQUATION phiRK4 (alLt,fwdtime)
phiR4(t)=dt(t)*[(g(t)A2/s(t)*subK(t)-l)*z(t)/a(t)/(l-g(t))*

[pA(t)+pAR3(t)]/[psi(t)+psiR3(t)]*
{a(t)*(l-g(t))/z(t)/e(t)Ag(t)*L(t)A{(l-a(t))*(l-g(t))}*[l/(l-a(t)*(l-g(t)))]+
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[psi(t)+psiR3(t)]^g(t)/[pA(t)+pAR3(t)]}A

[PM(t)+pniR3(t)]+{d(t)*(s(t)-l)-rho(t)}/s(t)]*[phi(t)+PhiR3(t)];
EQUATION pARK4 (all,t,fwdtime)

PAR4(t)=dt(t)*[z(t)*g(t)/a(t)*subK(0*{g(t)/(l-g(t))*
jpA(t)+pAR3(t)]/[psi(t)+psiR3(t)]-l/subK(t)/subA(t)}*
{a(t)*(l-g(t))/z(t)/e(trg(t)*L(tr{(l-a(t))*(l-g(t))}*

d(t)]*[pA(t)+pAR3(t)];

Boundary conditions:
1. Initial capital/technology ratio fixed at its immediate pre-shock level:

psi(O)=psiO. Implemented simply by declaring psi(0) exogenous,
and setting its shock to zero.

2. 'Final' value of the consumption/capital ratio set at its market solution
steady-state level: phi(T)=phiMss.

3. 'Final' value of the price of technology set at its market solution
steady- state level: pA(T)=pAMss.

EQUATION phiMss (all,t,endtime)
phi(t) = z(t)*[pA(t)/psi(t)/a(t)/(l-g(t))+l]*

{a(t)*(l-g(t))/z(t)/e(trg(t)*L(tr{(l-a(t))*(l-g(t))}*
psi(trg(t)/pA(t)}A[l/(l-a(t)*(l-g(t)))]-[z(t)*H(t)-»-d(t)];

EQUATION pAMss (all,t,endtime)
pA(t) = (l/g(t)-l)/subK(t)/subA(t)*

{l+d(t)/[z(t)*g(t)A2/a(t)/(l-g(t))*subK(t)*pA(t)/psi(t)*
{a(t)*(l-g(t))/z(t)/e(trg(t)*L(tr{(l-a(t))*(l-g(t))}*
psi(t)^g(t)/pA(t)}-[l/(l-a(t)*(l-g(t)))]-d(t)]}*psi(t);
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Appendix 5.3

Limiting levels and shares of human capital

In the market solution to the Romer model the steady-state allocation of human capital
to research is given by equation (2.55) of Chapter 2 as:

M
HAss = 1 + a a / y

Since a, y, £, p, a and H are all positive and H ^ must be non-negative, the derivative

of H ^ with respect to H is less than unity and H ^ is zero up to a certain critical
minimum level of H:

1
dU 1 + aa/y

<1

and (A5.3.1)

The graph of H ^ against H is shown in Figure A5.3.1. This is similar to the graph
"Figure 2", presented by Romer (1990b). The feet that there is a range of H for which
the non-negativity constraint on H ^ binds is appealing. As Romer says: It indicates that
"all the feasible growth rates for A are too small relative to the discount rate to justify
the sacrifice in current output necessary for growth to take place ". Even more appealing
is the feet that the slope of the H ^ = H ^ ( H ) function is less than unity. This ensures
that the obvious constraint of the steady-state amount of human capital devoted to
research being less than the total human capital available ( H ^ < H), is satisfied for all
valid parameter values.

Figure A5.3.1: Steady-state allocation of human capital to research
under the market solution of the Romer Model

H M
Ass

0 H
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This property is not necessarily met in the case of the social planning solution. From
equation (A5.1.29), the socially optimum allocation of human capital to research is given
by:

_ H
*" (l

so the sign of the derivative of H ^ with respect to H depends on the magnitude of the

consumer preference parameter c. Specifically:

_̂ * 1 -frMT *T **s. 1 I'M it1

(A5.3.2)dH l + ct(or-l)
fo ra> l but

> 1 for a < 1
Also:

3 H° such that: H ° , = 0 for H e (0 ,Hi , =ap/Q

Figure A5.3.2: Steady-state allocation of human capital to research
under the social optimum solution of the Romer Model,
for a<l.

(A5.3.3)

For CT >1 (as is the case for the benchmark parameter set) the position is much the same
as for the market solution. However, when cKl the slope of the H^SS = H^SS(H)
fiinction is greater than unity and the graph looks like that shown in Figure A5.3.2. In
this case there appears to be a critical maximum level of overall human capital H ^ , for
which it is optimal for none to be allocated to the production of goods, and beyond
which no further output would therefore be possible! By equating H^. with H, this level
is found to be given by:

•a) (A5.3.4)
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The constraint imposed by this limiting level of human capital, is equivalent to that of
what I shall call a boundedness condition associated with the dynamic maximisation of
consumer utility (Appendix 5.1). In particular, the maximisation problem in equation
(A5.1.1) is only possible and valid if the integrand remains bounded. This imposes the
condition that the limit of the rate of growth of current utility, given by
U(t) = [C(t)'"a - l ] / ( l - c ) , must be less than the discount rate, p. Since the limiting
growth rate of current utility is:

the boundedness condition is:40

(A5.3.5)

With a>l , as in the benchmark data set -iiis requirement is automatically satisfied since
g° is non-negative and p is positive. However, for 0<c<l, (A5.3.5) imposes a binding
restriction on the other parameter values. Substituting for the social optimum steady-
state growth rate g° from equation (A5.1.29):

( l - a ) g ° < p => (1 -a )

=> H <

CH-ap
l-a(l-c)

P

<P
(A5.3.6)

o

Of course the boundedness condition also applies to the consumer utility maximisation
problem in the free market (Appendix 2.2). Consequently, for 0<CJ<1, it also imposes an
upper limit constraint on the level of human capital in the market solution. As above,
substitution of the expression for the market steady-state growth rate gM from equation
(2.55) into the boundedness condition identifies this constraint as:

( l -a)g M <p

H <

1 + aor/y

+ a / y )
(A5.3.7)

Both the market and social planning solutions produce steady-state allocations of human
capital to research which take the form HAss = a.H - b, where b is positive. For this
reason, as the total level of human capital rises the overall share allocated to research
rises monotonically for both solutions to the model. The relationships are:

TTM
HAss_

H
1

1 + ao / y H
(A5.3.8)

40 That this condition is consistent with the transversality conditions may be demonstrated in the
following way. From equations (A5.1.6) and the derived features of the balanced growth equilibrium,
satisfaction of the transversality conditions requires that g° < r° . Substituting the steady-state relations

r° = CTg° + p then reproduces the boundedness condition.
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H L _ I
H 1-a+aa H

(A5.3.9)

If the total level of human capital were unconstrained (as would be desirable and is
indeed the case when a>l), the limiting values of these shares would simply be:

1
"->•*> H 1 + a a / y

and lim
H° 1

H-»" H 1 - a + a a
(A5.3.10)

(which evaluate under the benchmark parameter set to 29.5 per cent and 53.8 per cent
respectively). However, given that the boundedness condition limits total human capital,
when it binds it imposes different limits on the steady-state shares of human capital
allocated to research. These are obtained from (A5.3.8) and (A5.3.9) simply by
evaluating H at H j ^ and H ^ respectively in the two equations to produce:

rM
LAss _
rM

1

ICC 1+a/y
and

T T
(A5.3.11)

Interestingly, these are the same results that would obtain in the unconstrained case with
o=l - the value of the elasticity of intertemporal substitution of consumption in the utility
function U(t) = logC(t).41

As was seen before, with cKl the human capital share to research in the social optimum
solution is effectively unlimited - all the human capital ends up in the research sector and
none in manufacturing! The more appealing result is for the market solution. Here the
limiting steady-state share of human capital when the boundedness condition binds is less
than 100 per cent (for the benchmark parameter set it evaluates to 55.7 per cent).
Moreover, though the constraint binds only when a<l , and then H j ^ itself depends on
a; the research sector share of this limiting level of human capital is nevertheless
independent of a.

It would surely be wrong to interpret the boundedness condition as a constraint upon the
other parameters with the total level of human capital as given. For one thing, these
parameters are determined independently; and for another, a more realistic model would
include the endogenous generation and accumulation of human capital, which would thus
quickly reach the limiting levels. In that case, for the model to continue 'to work',
changes to other parameters, possibly contrary to empirical evidence, would be
necessary. Thus, it seems that there is a deficiency in the model, manifested whenever the
elasticity of intertemporal substitution of consumption (the reciprocal of a) is greater
than unity. In this sense it is just good luck that o>l is preferred (see Section 2.4.1.1);
for then no constraint is imposed by the boundedness condition and there is no deficiency
for any of the parameterisations used in this paper. The question of how to overcome this
deficiency is left as a topic for future research.

41 As a->l, the current utility function U{C(t)} = [C(t)'"° -1] / (1 - a)
Barro and Sala-i-Martin, 1995).

log[C(t)], (see, for example
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Appendix 5.4

Interest rates, capital goods intensities, and technology
prices in the market and optimal steady-states

A5.4.1 Interest rates

It was shown in the text that both the allocation of human capital to research and hence
the steady-state growth rate, were lower in the market solution to the Romer model than
was socially optimal. By utilising this result for the growth rate, the market interest rate
was also shown to be 'too low'. However, because it was felt preferable to regard the
growth rate result as being a consequence rather than a cause of the interest rate result,42

a proof of the interest rate being 'too low' which was independent of the previous
growth rate result was sought. Such a proof is provided here:

The steady-state market and social optimum interest rate are given by equations (2.56)
and (5.12). These results are:

affl + p
1+aa/y

and
a c

(A5.4.1)

Two differences in these formulations are apparent: First, is the presence of the term y in
the denominator of the market rate as opposed to a unitary term in the optimal
formulation. Ceteris paribus, this will tend to make the market rate the lesser of the two.
The second difference is the term (1-cc) which appears in both the numerator and
denominator of the optimal formulation in place of a corresponding term of unity in the
market expression. Since (l-a)<l, moving from the optimal to the market expression is
equivalent to raising (1-a). Thus, this difference in the formulations will also tend to
make the market determined interest rate the lower one if dr° / 3 ( l - a ) < 0 . This is
indeed the case since:

- a + a a ] 2

1-a + aa [ l - a + aa]

1-a + aa 1-a + aa

apa-ap affl-ap
~ [ l - a + aaf [1-a + aa]2

a
; [(l-a) + aa]2

and, since H ^ >0, equation (5.11) impHes (ap-8H) <0. Thus, drj /9(1 - a ) < 0, and

it has been proved that r̂ 1 < r°.

42 It is because consumers face too low a return from savings that the growth rate of capital is sub-

optimal.
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A5.4.2 Capital goods intensities

As argued in the text, while cursory intuition may lead to the expectation that the capital
goods intensity ¥ , or equivalently the steady-state level of specialised capital X, would
be lower in the free market than under a social planning optimum, the result actually
turns out to be ambiguous. Here the question of when the market level is the lower, and
when it is the higher is investigated by evaluating and plotting the ratio ¥ ° / ^ for a
variety of parameter values.43

with Figure A5.4.2; Variation of ¥ ° / Y * withFigure A5.4.1: Variation of i
parameter a, other parameters at benchmark. parameter y, other parameters at benchmark.
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Figare A5.4.3: Variation of with Figure A5.4.4: Variation of with
parameter C,, other parameters at benchmark. parameter p, other parameters at benchmark.
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4 3 The analysis is confined to the parameters a, y, £, p, a, and 5 since neither r| nor L affect the ratio
/ *F™ and since the effect of H is the same as that of C,.
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Figure A5.4.5; Variation of with Figure A5.4.6: Variation of with

parameter a, other parameters at benchmark. parameter 5, other parameters at benchmark.
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with Figure A5.4.8; Variation of < F l ° /1 '" withFignre A5.4.7; Variation of *P°/
parameter a, other parameters set at: y=0.72, parameter y, other parameters at: a=0.6,
£=0.08, a=2.0, S=0.03, rest at benchmark. £=0.08, tr=2.0,8=0.03, rest at benchmark.
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with Figure A5.4.10: Variation of withFienre A5.4.9: Variation of ¥

parameter £, other parameters set at: a=0.6, parameter a, other parameters set at: a=0.6,
y=0.7, a=2.0,5=0.03, rest at benchmark, 7=0.7, £=0.08,5=0.03, rest at benchmark.
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A5.4.3 Price of technology

The story of the relative magnitude of the equilibrium price of technology under the free
market Romer economy and the social planning optimum, mirrors that of the capital
goods intensity: As argued in the text, while the a priori intuition may seem to lead to an
expectation that the market outcome is 'too low* in a Pareto optimal sense, it turns out
that either the market or the optimum level may be the greater, the result depending on
parameter values. Like before, this is assessed by evaluating and plotting the ratio
PASS / PAL f° r a variety of parameter values.

Figure A5.4.11: Variation of p ^ / p ^ with Figure A5.4.12: Variation of p ^ , / p " s with

parameter a, other parameters at benchmark. parameter 7, other parameters at benchmark.
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Figure A5.4.15: Variation of with Figure AS,4.16: Variation of with

parameter a, other parameters at benchmark parameter 5, other parameters set at:
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Fignre A5.4.17: Variation of with Figure A5.4.18: Variation of with

parameter a, other parameters set at: 7=0.7, parameter y, other parameters set at:
£=0.15, a=5.0,8=0.03, rest at benchmark. £=0.15, CT=5.0, 8=0.03, rest at benchmark.
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Appendix 5.5

Alternative subsidisation strategies to attain the
social optimum steady-state

It was demonstrated in Section 5.2 that within the Romer model economy the
implementation of an appropriate subsidisation policy makes it possible to transform the
sub-optimal equilibrium resulting from a decentralised market, into the Pareto optimum
equilibrium that would be achieved by a social planner. The subsidisation policy needed
to redress several distortions of the free market: Namely, an under-valuation of capital;
monopolistic behaviour by capital goods producers; and spillover benefits associated
with research output. The particular policy identified was to subsidise the rentals
received for general-purpose capital at the rate IOOSR per cent, and to subsidise the
purchase of designs at a rate of IOOSAK per cent where, re-writing equation (5.41):

sK = s u b K - l = l / y - l ;and

=l - subA K =1 —
(A5.5.1)

a rAss

Here some alternative subsidisation strategies are considered.

Figure A5.4.19; Variation of p ^ / p ^ , with Figure A5.4.20; Variation of p £ , / ? £ , with
parameter £, other parameters set at: a=0.65, parameter a, other parameters set at: a=0.65,
7=0.75, a=5.0,8=0.03, rest at benchmark. 7=0.75, £=0.15,8=0.03, rest at benchmark.
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A5.5.1 The production side distortions

Instead of approaching the production side distortions by correcting for the under-
valuation of capital, consider an approach designed to correct for the monopoly pricing
mark-up on specialised capital. Two methods suggest themselves: direct subsidisation of
the rental costs of specialised capital goods faced by final output producers; and
somewhat less directly, subsidisation of final output.

A5.5.1.1 Subsidising the rental costs of specialised capital

With a subsidy to the user costs of specialised capital set at the rate lOOsx per cent,
purchasers' rental prices for capital goods are:

ps
x(i,t) = p x ( i , t ) ( l - s x ) (A5.5.2)

Final goods producers' maximise profits based upon this subsidised price rather than on
the original price px and accordingly (see Section 2.2.4) generate the demand function:

p x (i,t) = YH Y (t) "™ - s (A5.5.3)

And following Section 2.2.5 as before for the 'capital savings' subsidy (sK), when capital
goods producers take this demand function as given and maximise their own profits,
results analogous to the pure market conditions (2.13) to (2.15); and to the 'capital
savings' subsidy conditions (5.21) to (5.23) are generated. Then, when the purchase of
designs is subsidised in exactly the same way as for the (sK,SAK)-subsidy scheme (see
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Section 5.2.1.2), the same result as equation (5.27) is obtained.44 The complete dynamic
system for this (sx,SAx)-subsidy scheme may then be derived as before. It turns out that if
(1-SX)=1/(1+SK) this system is, with only one exception, identical to that for the (SR,SAK)-

scheme as given by equations (5.21) to (5.32). The only variation is the differential
equation for PA- In the new scheme equation (5.30) is replaced by:

= r(t)pA(t)- -Y) r(t) + 5

Y 0-SAX)

(A5.5.4)

Now the purpose of the sx subsidy was to correct for the distortion due to the monopoly
pricing mark-up on specialised capital over its marginal cost. From Section 2.2.5 (see
Figure 2.2 in particular), it is known that the marginal cost of a unit of specialised capital
is [r(t)+8]Tj while its market price is [r(t)+6]r|/y. Thus, p x = (l/y)MCx and the monopoly
price mark-up is the factor 1/y. It is then apparent from (A5.5.2) that in order to equate
users' prices to the levels which would be faced in a competitive market (or in the social
optimum), subX=(l-sx) must be set to the value y. The rate of subsidy is then
lOOsx =100(1 -y) per cent. Finally, the optimum level of the other subsidy of this scheme,
SAX, may be determined in the same way as before for SAK in Section 5.2.2. The optimum
subsidies of this (sx,SAx)-subsidy scheme are thus found to be:

sx = l - s u b X

S.v = 1 -

= ( l - y ) ;and

I 4> x*Yss _ i (A5.5.5)

A5.5.1.2 Subsidising the manufacture of final output

Now consider a subsidy to final output manufacturers. With such a subsidy set at sY the
return to manufacturers per unit of output (the unsubsidised price of which is unity)
becomes SUDY=(1+SY). Thus, following the same procedures as in Section 2.2.4, the
optimisation problem for final goods producers is:

A(t)

fMax. sY)N(HY(t),L)HrX(i,t)T -px(i,t)X(i,t)]di

yielding the demand function:

sY)yHY(t)o(1-T)L(I-a)(1-1')X(i,t)Y-1 (A5.5.6)

The monopoly profits maximisation problem of the capital goods producers may be
solved as before to generate results analogous to equations (5.21) to (5.23) et cetera of
the text. But it is already apparent from comparison of equations (A5.5.6) and (A5.5.3).
that the dynamic system applying to a scheme of subsidising final output and the
purchase of designs (an (sY,SAv)-subsidy scheme), will be equivalent to that derived from
the (sx,SAx)-subsidy scheme provided the respective rates of production side subsidy are

4 4 The only difference is one of notation. Here the subsidy to designs is denoted by SAX to indicate its
combination with sx rather than with sK.
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related by subY=l/subX; and that the associated designs subsidies satisfy subAY=subAx,
or SAY = SAX- Thus, the optimum subsidies of this (sY,sAY)-scheme are given by:

sY = s u b Y - l = l / y - l ;and

S A Y = 1 -

(A5.5.7)

a rAss

That all these schemes (A5.5.1), (A5.5.5) and (A5.5.7) do indeed generate the social
optimum steady-state is confirmed numerically, for the case of the benchmark parameter
set, in Table 5.5 of Section 5.2.2.

A5.5.2 The research externality distortion

A5.5.2.1 Subsidising the wages of researchers

All the designs are produced by human capital in the form of researchers. Because of the
externality associated with these designs the researchers are not fully remunerated and so
from a socially optimum perspective too few are employed. From this it may seem
natural to use subsidisation of research wages to correct for the distortion. Such a
subsidy would draw human capital out of the final output producing sector and into
research. The amount of human capital involved in final goods production would fall
until its marginal product rose to the level of the subsidised wage rate in the research
sector, thereby re-equating wages in the two sectors. With the subsidy set at the rate
IOOSHK per cent subsidised wages for human capital are:

(t) = SHK ) w HA ( t) = subH K .w KA ( t ) (A5.5.8)

Following Section 2.2.7, unsubsidised wages in each sector are given by the value of the
marginal product of the human capital employed there.45 Thus:

wHA(t) = VMPHA(t) = = CA(t)pA (t)

wHv(t) = VMPHy(t) = -.1
5HY(t)

H Y (t)a (1- rH L(lHlXHr)

(A5.5.9)

(A5.5.10)

Then, substituting (A5.5.9) into (A5.5.8) and equating the result with (A5.5.10)
determines the allocation of human capital between the sectors. Specifically, HY(t) is
determined as:

(A5.5.11)

4 5 There is no proviso to this in the competitive output sector; but in the research sector it must be
understood that it holds only when the marginal product of human capital is valued at the market price
of designs pA (see Section 2.2.7).
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Accounting for the modifications to the free market system equations that result from
introducing the capital savings subsidy SK, then allows the stationary dynamic system for
this (sK,SHK)-subsidy scheme to be derived and for its steady-state to be equated with that
of the social optimum as before. This defines the condition:

subHK=
K lYss subA,

(A5.5.12)

So the optimum subsidies in this (sK,SHK)-scheme are:46

sK =subK— 1 = 1/y — 1 ;and
_. _o

S H K — -1
(A5.5.13)

However, as mentioned before in Section 5.2.2, this scheme fails to replicate completely
the socially optimum steady-state. While it generates the socially optimum levels for the
allocation of human capital, the growth and interest rates, the resources devoted to each
type of specialised capital, and the consumption-capital ratio, it fails to reproduce the
social optimum steady-state price of technology (or any other variables that depend upon
it). This remains the case for a 'research wage' subsidy in combination with other
production side subsidies, sx, or sy in particular (Table 5.5 demonstrates numerically the
case for the benchmark parameter set). It seems that the reason for the failure of this
method to correct for the research externality distortion is that although human capital is
the only remunerated factor producing designs, there is anoiher input - the existing stock
of designs - and omitting to subsidise all factors equally introduces another distortion.

A5.5.2.2 Subsidising the 'accumulate 3 of research'

The precise basis of a subsidy to the 'accumulation of research' is not immediately
^bvious. Nor is it clear to whom the subsidy payments would be made. To help clarify
aatters consider the introduction of another group of economic agents: research

entrepreneurs who employ researchers and who sell the designs they produce to the
manufacturers of specialised capital goods. These agents will then be the recipients of the
subsidy, which can be based upon either the prices they receive for designs or the (wage)
costs they incur in producing them. But in order to maintain the existing economics of
the model these agents would need to be considered as part of the exogenous stock of
human capital, and to receive the same wages for their efforts as the researchers they
employ.

The research entrepreneurship market is assumed to be competitive so the usual zero
pure profits condition applies, revenue being equated with costs. In the free market
aggregate revenues are pAA and aggregate costs WHA HA SO research wages are, as in
Section 2.2.7, WHA =

4 6 It is also easy to calculate the optimum research wage subsidies necessary in combination with other
production side subsidies. For example, in either an (SX,SHX)- or a (sy,SHY)-subsidy scheme the optimum
subHx =subHY=1 /subAx.
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For a subsidy to the 'accumulation of research' based upon the price of designs at the

rate 100sD per cent, the subsidised price received is pA(t) = (l + sD)pA(t) , aggregate

revenues and costs are (l + sD)pA(t)A(t) and wHA(t)HA(t) respectively, and research

wages in the subsidised system are:

WS
HA (t) = (1 + sDKA(t)pA (t) = (1 + SD)WHA (A5.5.14)

Thus, this form of subsidisation is equivalent to subsidising research wages - as in
equation (A5.5.8) - and would therefore also fail to achieve the social optimum.

Similarly, for a subsidy based upon research costs at the rate lOOsc per cent, subsidised

costs are cA (t) = (1 - sc)cA (t) = (1 - SC)WH A (t)HA ( t) , and from the zero pure profits

condition wages in this subsidised system are:

1 • " " > A ( t ) = l l + sc.)wHA (A5.5.15)w HA 1 — S r

where Sc = Sc/(1-Sc), and once again this form of subsidisation policy is equivalent to
subsidising research wages and so fails to achieve the social optimum.
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Appendix 5.6

Dynamic impact of the optimum subsidies

A5.6.1 Savings and designs subsidies: (sK,

Here the fundamental dynamic impacts of the two individual optimum subsidies,
s K = ( l - y ) / y and s ^ = [ l - y ^ H ? s s

/ a r ° ] ' me examined by conducting two
simulations. Following Section 5.3, introduction of the subsidy to the rental price of
capital is simulated by raising the variable subK from its initial value of unity to its
benchmark optimum value of 1.852. Similarly, introduction of the subsidy to the
purchase price of designs is simulated by lowering the variable subA from unity to 0.378.
In both simulations the shocks are applied instantly and are considered to be
unanticipated by the market. The results of the simulations are reported in Figure A5.6.1
to Figure A5.6.8 below. As for the simulations reported in Chapter 4, qualitative
explanations of the economic mechanisms behind these quantitative results are also
offered. In respect of these explanations it should be emphasised again that the economic
mechanisms at work are often complex and ambiguous and that while the interplay of the
economic forces are accurately captured by the economic model, a full a priori
explanation is often difficult. Thus, the qualitative comments presented below are (again)
something of a verification of the quantitative results.

Figure A5.6.1 Dynamic effects on T, O, and pA of the separate and unanticipated
introduction of the 'optimum' subsidies sK and SAK from time zero,
benchmark parameter set
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A5.6.1.1 Impact of optimum subsidy sK

As intended, the subsidy sK raises savings and investment. Both savings rate measures in
the model, SN and SB, as well as the rate of growth of capital gK, exhibit large upward
jumps due directly to the sudden imposition of the subsidy (Figure A5.6.6 and Figure
A5.6.2). Similarly, the return to savings, measured by either the subsidy inclusive rental
rate TRS, or the interest rate r, also rises suddenly (Figure A5.6.4 and Figure A5.6.5). The
subsidy has such a large immediate impact on the attractiveness of saving in the form of
capital accumulation, that for a short while this replaces research, the other form of
saving in the model. Human capital HA is diverted from the research sector to the output
sector for the manufacture of both consumption goods and (general-purpose) capital.

Figure A5.6.2 Dynamic effects on the growth rates gA, gK and gy of the separate
and unanticipated introduction of the 'optimum' subsidies SK and
from time zero, benchmark parameter set
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In terms of the 'usual' partial equilibrium demand-supply diagram the subsidy shifts the
supply schedule for capital outwards, reducing user prices and stimulating greater usage
of capital. However, as a stock variable, increases in capital take time to achieve. As
more capital is accumulated and brought into use, its price gradually declines (along with
its marginal product) to the new equilibrium. This applies to both the rental price rjc, paid
by specialised capital goods producers for general-purpose capital; and consequently, to
the subsidised rentals r̂  received by households as the owners of this general-purpose
capital. It also explains the gradual declines of the interest rate and the investment-output
ratio, or narrow measure of savings, SN (Figure A5.6.4, Figure A5.6.5 and Figure
A5.6.6).
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However, for the broad measure of savings sB, this influence is counterbalanced by the
effect of increased savings in the form of research. As physical capital becomes cheaper47

producers substitute it for their other variable factor, human capital Hy, which is thus
gradually re-diverted back to the research sector. Human capital in the form of
researchers HA rises gradually, as does the growth of designs gA; both returning to their
pre-shock levels (Figure A5.6.5 and Figure A5.6.2).48 But since A grows more slowly
than K, the ratio ^=K/A also rises gradually to its new steady-state equilibrium (Figure
A5.6.1). This accords with optimising behaviour since it is productively more efficient to
spread K over a greater number of designs. Thus, as K grows the demand for designs
increases and with it, their price pA (Figure A5.6.1).

Figure AS.6.3 Dynamic effects on the growth rates gc and gcp of the separate and
unanticipated introduction of the 'optimum' subsidies,sK and SAK
from time zero, benchmark parameter set.
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The initial downwards jump in the consumption-capital ratio (Figure A5.6.1), is the
obverse of the initial sharp rise in the savings rate SN (Figure A5.6.6). Since the growth
of designs, output and consumption are each secondary effects of the growth in capital
brought on by the subsidy, they are all lower than it (Figure A5.6.2 and Figure A5.6.3).
Though of course, they all approach the same (unchanged) steady-state rate.
Nevertheless, as a result of these 'earlier' post-shock differences in the growth rates,
4/=K/A and kGp=K/GP both rise to their new equilibria, while O=C/K declines towards
its (Figure A5.6.1 and Figure A5.6.6). The initial fall in the allocation of human capital to
research is reflected in its share of total income (gross product), which is temporarily

47 As the rentals rK decline and general-purpose capital becomes cheaper, so too does specialised capital.
Its rental price px can be readily seen - from equations (5.19), (5.20) and (5.22) - to follow rK.
48 Recall that the equilibrium growth rate g s and its associated variables HAJS, HYSS and
independent of the subsidy sK (equations (5.34) to (5.37)).

are

redistributed to the other factors of production. Eventually however, the snares of all
factors revert back to their pre-shock levels (Figure A5.6.7).49

A5.6.1.2 Impact of optimum subsidy

The subsidy-induced reduction in the user price of designs raises the demand for them by
the capital goods producing sector. This increase in demand is immediate. But because
designs are a stock variable they cannot be increased instantaneously. Thus, the
immediate impact of the subsidy is to generate an excess demand for them. As a result,
the price of designs received by researchers (pA) jumps upwards. As the supply of
designs expands and the excess demand is gradually eliminated, this price declines
towards its new equilibrium - where the growth of designs exactly satisfies the growing
demand for them (Figure A5.6.1).50

Figure A5.6.4 Dynamic effects on capital rentals (rK and TKS) of the separate and
unanticipated introduction of the 'optimum' subsidies SK and
from time zero, benchmark parameter set
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Generation of more designs requires more human capital in the research sector HA
which, (as a flow variable) thereby jumps upwards instantly. Subsequently, as the initial
excess demand is gradually eliminated, the need for researchers declines and HA slowly

49 As discussed in footnote 30, the subsidy sK has no influence on steady-state factor shares.
50 The usual partial equilibrium demand-supply diagram would suggest that while the subsidy lowers
the user price of capital, the expansion of demand that it induces will eventually raise the price received
for designs. In fact, as the numerical analysis here indicates, the new equilibrium price of designs is
lower than the pre-subsidy level. As discussed in Section 5.1.2 the issues are more complex than can be
validly handled by a simple partial equilibrium analysis. Once again this emphasises the value of the full
general equilibrium dynamic analysis furnished by the model.
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fells away towards its new (higher, and in fact socially optimum) equilibrium (Figure
A5.6.5). The rate of growth of designs gA naturally follows these movements (Figure
A5,6.2). Increased savings in the form of research causes an immediate rise in the broad
measure of savings SB- However, because less savings by the utility maximising
consumers are then required from capital accumulation, the narrow measure of savings
SN fells correspondingly (Figure A5.6.6). This savings measure is equivalent to the
investment-output ratio, and its fell is also reflected in the initial fell in the rate of growth
of capital gK (Figure, A5.6 2).

Figure A5.6.5 Dynamic effects oa r and HA of the separate and unanticipated
introduction of the 'optimum' subsidies sK and SAK from time zero,
benchmark parameter set.
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Since the total supply of human capital resources (H) is fixed in the model, changes in
the amount devoted to output production (HY) are the exact opposite of the changes in
HA. Thus, HY first jumps downwards and then gradually rises. As a result, the growth
rates of output and consumption dip momentarily while that of capital drops
substantially. Subsequently they all increase steadily towards their new common and
higher steady-state rate (Figure A5.6.2 and Figure A5.6.3). These growth rates all reflect
the feet that the subsidy to designs induces more resources to be devoted to research and
to the production of output for consumption than for capital formation. Their relative
magnitudes also mean that *F and kop decline while O increases (Figure A5.6.1 and
Figure A5.6.6). To support the higher growth of consumption, the return to savings and
hence the interest rate r, must also rise (Figure A5.6.5). Finally, the increase in human
capital resources devoted to research, and the complementary reduction in those for the
production of goods, means that the share of gross income to researchers SHA increases
significantly while the shares to the other fectors (SHY, SL, SK) decline (Figure A5.6.8).

Figure A5.6.6 Dynamic effects on SB, SN and kep of the separate and unanticipated
introduction of the 'optimum' subsidies sK and SAK from time zero,
benchmark parameter set
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Figure A5.6.7 Dynamic effects on the factor shares of gross income, of the
unanticipated introduction of the 'optimum' subsidy sK from time
zero, benchmark parameter set
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Figure A5.6.8 Dynamic effects on the factor shares of gross income, of the
unanticipated introduction of the 'optimum' subsidy SAK from time
zero, benchmark parameter set
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A5.6.2 Monopoly correction and designs subsidies: (SX,SAX) or (SY,SAY)

While the final steady-states of these alternative subsidisation systems are the same as
that of the (sK,SAK)-scheme, the dynamic paths they take to attain their common steady-
state differ. From the appiopriate dynamic equation systems it is easily inferred that the
dynamics for the (SX5SAX)- and (sy,sAY)-subsidy schemes are identical to one another, but
differ from those of the (sK,sAK)-scheme.

The transitional dynamics of the individual optimum subsidies sK and SAK were examined
in the previous section. Here the corresponding dynamics for the individual optimum
subsidies s x = ( l - y ) s x , and s ^ = l - ^ H ? I I / a r ° are presented. Figure A5.6.9 to

Figure A5.6.15 record these dynamics. From them, the two schemes can be seen to
differ, but also to be very similar.
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Figure A5.6.9 Dynamic effects on % O, and pA of the separate and unanticipated
introduction of the 'optimum' subsidies Sx and SAX from time zero,
benchmark parameter set
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Figure A5.6.10 Dynamic effects on the growth rates gA, gK and gy of the separate
and unanticipated introduction of the 'optimum' subsidies s x and SAX
from time zero, benchmark parameter set
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Figure A5.6.11 Dynamic effects on the growth rates gc and gGp of the separate and
unanticipated introduction of the 'optimum' subsidies sx and SAX
from time zero, benchmark parameter set
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Figure A5.6.12 Dynamic effects on r, i* and HA of the separate and unanticipated
introduction of the 'optimum' subsidies sx and SAX from time zero,
benchmark parameter set
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Figure A5.6.13 Dynamic effects on su, sN and kep of the separate and unanticipated
introduction of the 'optimum' subsidies S\ and SAX from time zero,
benchmark parameter set

iB(t),»N(0
(percent)

Romer Model Dynamics: Optimally Subsidised Solution

10

kGP(t)

40 50 60 70 80-10

d:\Dhd\getnpack\subn>m\sXOj(ls(sBJcGP)

Figure AS.6.14 Dynamic effects on the factor shares of gross income of the
unanticipated introduction of the 'optimum' subsidy s x from time
zero, benchmark parameter set
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Figure A5.6.1S Dynamic effects on the factor shares of gross income of the
unanticipated introduction of the 'optimum' subsidy SAX from time
zero, becchmark parameter set.
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Chapter 6

6 Concluding Remarks

ITiis chapter covers three issues. Some conclusions are first drawn from the principal
content of the dissertation - the transitional dynamics of endogenous growth. Second,
some important practical policy implications to emerge from the work are identified and
discussed. And third, some unresolved issues and other matters for further research are
examined, including the possibility of incorporating endogenous growth modelling into
a large scale general equilibrium model such as "Monash", the original idea for a PhD
topic (see Chapter 1).

6.1 Conclusions regarding the dynamics

The dissertation has focussed upon the problem of obtaining actual numerical estimates
for the transitional dynamics of endogenous growth (witk the Romer, 1990b model as
the case study). Issues concerning the technical methods to employ to achieve this were
first addressed. Then t te question of analysing and evaluating the results of particular
applications of the chosen technique in simulating various forms of economic change
was confronted- Concluding remarks concerning both these areas are offered.

Technical methods

The first thing that ought to be noted in terms of assessing the performances of the
different techniques is that they are all approximations of one sort or another, an
analytic solution of the complete dynamic system simply not being possible. In
particular: While it may be solved analytically, the linearised model is >m ipproximatioii
that is strictly only valid in the neighbourhood of the linearisation point. AVMI while the
Solowian-Romer model preserves the non-linearity of the fill! model, by exc genising the
consumption-savings choice it too is only an approximation to the full model.
Moreover, numerical approximation methods are required for its solution. Finally, direct
solution of the full non-linear model of course also relies necessarily on numerical
approximations. Nevertheless, it has been shown that varying degrees of confidence
may be held for each of these methods.

For a specific, but varied set of simulated economic shocks, both the linearised model
and the Solowian-Romer model furnished tolerably good approximations to the non-
linear model dynamics computed by the preferred numerical technique. This was
particularly true for the medium to longer term of about 10 years or more; but
sometimes broke down over shorter periods (though never catastrophically), especially
when variables exhibited discontinuities or jumps, or when their early adjustment was
rapid. Properties of the simulations and the models themselves that tended to make the
'approximations' good ones were:

• since the steady-states for each of the three models were exactly the same, their
asymptotic dynamics were almost identical;
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• because the shocks for the evaluation-simulations were not 'too big*, the linearised
dynamic system was not shifted 'too far away' from its (initial steady-state)
linearisation point; and the exogenous savings rate in the Solowian-Romer model
did not have to be shifted 'too much';

• since the benchmark parameter set, under which the simulations were run, was such
that the savings rate in the non-linear model tended to adjust rapidly to new levels,
the instantaneous adjustments of the Solowian-Romer model were good
approximations1; and

• because of the reduced dimension of the model achieved in the Solowian-Romer
formulation, it was possible, indeed easy, to solve the latter with a high level of
precision by the numerical integration technique of shooting.

While numerical integration of the Solowian-Romer model is undoubtedly simpler (and
probably more accurate) than for the full model, the real value of its construction is that
it allows the phase-space to be reduced to two dimensions, to a phase-plane which can
readily be studied and analysed, greatly facilitating understanding of the model
dynamics. Furthermore, with the Solowian-Romer model generating good
approximations, some confidence can be placed on the accuracy of this phase-plane
analysis in characterising that of the abstruse three-dimensional phase-space of the full
model.

Notwithstanding the preceding comments, the main conclusion to draw in respect of the
technical methods is how powerful a solution method is the finite differences-
GEMPACK technique used to solve the full non-linear Romer model. It delivers
adjustment paths over time directly, avoiding the need to solve a second initial value
problem (which tends to be unstable) as is the case with the time elimination method.2

Once some fairly simple model specific algebraic code has been written it is fast and
provides enormous flexibility for different simulations. And most tellingly, it easily
surmounts the two-point boundary value problems faced by other methods in the
simulation of anticipated and temporary shocks, these being just as easy to conduct
under the finite differences/GEMPACK technique as for unanticipated shocks.3

Dynamic results

The response of growth models to economic change may be analysed in two
fundamental ways. Comparative statics considers only the equilibrium or steady-states
of the models, comparing final (post-shock) equilibria with initial (pre-shock) ones to
determine the changes that would eventually arise if the system were allowed to adjust
fully to the shocks being analysed. Dynamic analysis takes this a step further. Not only
do such analyses compute and compare pre- and post-shock equilibria, they also

' Recall from Appendix 3.7 that there are man} vameter sets which generate 'constant transitional
savings' in the full Romer model, and for which the Solowian-Romer and the full models are therefore
equivalent The benchmark parameter set is 'close to' one of these equivalence-generating sets. Also, the
fact that the benchmark set is empirically based provides further assurance in the validity of the the
relatively close approximation of the Solowian-Romer model.
2 The 'eigenvector-backwards integration' also avoids mis problem
3 Both the 'time elimination' and the 'eigenvector-backwards integration' methods faced these problems.
While the 'shooting' method avoids them, it is difficult to apply to highly non-linear dynamic systems of
more than two differential equations. Also, Judd (1985b and 1987) has devised and applied a technique of
converting the differential equations of dynamic systems to algebraic ones via Laplace transforms, which
also avoids the problems. However Judd's methods appear to require the system of differential equations
to be linear, though they have not been closely studied here.

compute the transitional adjustment paths that would be followed from the former to the
latter if systems were allowed to adjust fully. From this description one might wonder
why analyses are ever confined to comparative statics. The answer is that the problems
of computing entire adjustment paths are much the more difficult, and can become
intractable for large complex models. Thus, there are trade-off issues between the
complexity (and realism) of models and their dynamics. Such distinctions underlay the
capital controversy of the late 1960s and early 1970s.4 However, they are not relevant
here and nor are they for most growth models.

It has been amply demonstrated here (in respect of the Romer model), that dynamic
analysis is extremely important and revealing. The short and medium run dynamics can
reveal movements that are quite unexpected from a comparative statics perspective:
They are frequently complex, often 'asymptotically perverse', sometimes counter
intuitive, and often of relatively large magnitudes compared to the overall adjustments.
Also, adjustment periods are usually lengthy, the 'short and medium terms' persisting
for long periods. The policy implications of these issues are examined in the next
section. Here they are simply enumerated with reference to examples drawn from the
previous chapters.

The first example of how much short term change may be concealed by comparative
static analysis was demonstrated in Appendix 2.6, where changes to the rate of
depreciation 8, the cost of specialised capital x\, and the exogenously given endowment
of ordinary labour L, were simulated. Comparison of the pre- and post-shock equilibria
for these shocks indicated no change to have occurred for many variables (Table 2.3).
Bui dynamic analysis revealed a great deal of transitory change.5 For example, although
the pre- and post-shock steady states are identical:

• the 25 per cent rise in 8 caused the allocation of human capital to research HA to first
rise steeply by 15 per cent, and to still be some 11 per cent above its equilibrium
after 20 years (Figure A2.6.3);

• similarly, the 20 per cent rise imposed on L produced an initial rise of about 18 per
cent in the interest rate r, which after 15 years had adjusted back to be only about 5
per cent above its equilibrium (Figure A2.6.8); and

• the 10 per cent increase in T] induced an immediate and precipitous fall of 28 per
cent in the rate of growth of capital gic which remained 11 per cent below its
equilibrium after 15 years (Figure A2.6.6).

These sorts of movement occurred for every simulation undertaken. In Section 4.5.1,
where the output elasticity of capital was shocked by 10 per cent, it was noted that only
a single one of the "jumping variables" analysed followed a monotonic path towards the
new equilibrium. For all of the other such variables the initial jumps weie in the
opposite directions to that of the subsequent adjustment paths. For about a half of these
the initial jump was perverse, but the subsequent adjustment accorded with the
direction of change from the comparative statics. For the other half, while their initial
jumps took them away from their pre-shock levels in the direction of their post-shock

4 As a result Cambridge UK tended to focus on comparative static analyses of disaggregated capital
models, while Cambridge USA tended to concentrate more on dynamic analyses of aggregate capital
growth models (see Dixit, 1990).
5 A similar situation arises for exogenous changes to the elasticity of capital (y) in the social optimum
dynamic system, where that parameter has no permanent but considerable transitory impact on the
allocation of human capital, the interest rate, or the growth rates (Section 5.1.1).
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steady-states, they overshot their new equilibrium levels, resulting in their subsequent
adjustment being perverse in terms of the comparative statics. From the results of all the
simulations conducted it seems that non-monotonic adjustment paths may be more
common than monotonic ones. Short run dynamics exhibit greater complexity and an
even larger departure from monotonicity in response to shocks that are anticipated and
temporary, than for those that are completely unforeseen by the market. Relatively large
jumps in one direction, arising at the point of time at which the 'information' about a
prospective shock arrives at the market (say at the announcement of some government
policy change), are often followed by similarly large jumps in the opposite direction
when the shock actually takes place (when the policy is implemented). Examples of this
type of dynamic behaviour arose in the simulations of Sections 4.5.2, 4.5.3, 4.5.5 and
4.5.7.

Steady-state analysis, whereby only the initial position and the final position are given,
is clearly not capable of identifying non-monotonic adjustment paths. Furthermore,
since it is not possible to determine either the extent or direction of the discontinuities
from such analysis, neither is it even possible to describe the direction of the smooth,
asymptotic adjustment. However, it was shown that by considering the economic
mechanisms at work, qualitative reasoning could sometimes enable both the directions
of the discontinuities and of the subsequent smooth adjustment to be explained. So, it
appears that to some degree qualitative descriptions of the transitional dynamics are
sometimes possible. However, in the complete absence of any model results such
theorising is extremely difficult. Moreover, it is not always possible. Because there are
often opposing influences acting on economic variables, merely qualitative economic
reasoning must leave many ambiguities.6 Empirical results from the dynamic model are
then necessary to resolve them. In any case, quantitative measures are important.7

In addition to their magnitude and complexity, the importance of transitional dynamics
depends on their 'longevity'. In adjusting to economic shocks, the longer it takes
economies to closely approach their new growth equilibria, the greater is the importance
of the adjustment paths. Conversely, it must be the case to at least some degree that the
longer it takes to 'reach' these (asymptotic) steady-state equilibria, the less relevant they
become.

Measures of the rate at which the linearised Romer model approaches its steady-state
were developed in Section 3.2.3. For the benchmark parameter set the speed of
convergence (p) was calculated at almost 5 per cent. That is only some 5 per cent of the
gap between the current position of the system and its steady-state is closed in a year.
This meant that the half-life of the system (the time taken to close half of the current
gap) was almost 15 years, and the three quarter-life almost 30 years. These figures were
confirmed for the full non-linear model by the simulations reported in Section 4.5,
which indicated that the system could be expected to take almost two decades to
complete half of its adjustment, and three to four decades before three-quarters of the
change had eventuated. These are long periods of time and suggest that it is unlikely for

6 Appealing to the quantitative results was precisely the way ambiguous outcomes were resolved in the
simulation explanations given here. For example, see 'last paragraph page 211'; 'last paragraph page
218'; 'first paragraph page231'; and 'first dot-point page238').
7 For example, if careful modelling produces the result that a variable will rise by 20 per cent, one may
have considerably more confidence that in the real world the variable will indeed rise, than if the
computed result had been for an increase of only 2 per cent

economies ever to be in steady-state equilibrium, some new shock being highly likely to
arise before even 10 or 15 per cent of the total potential adjustment to the previous
shock is completed.

The generalised conclusion from all this must surely be that dynamic analysis of growth
models provides much more useful information and is a far more powerful tool than
steady-state analysis. Neither the pattern nor the speed of adjustment of the transitional
dynamics can be captured with a static model, particularly in response to shocks that are
correctly foreseen by the market. Nor, in general, can they be identified qualitatively,
merely by a priori theorising about the underlying economics. Also, it is only through
the dynamic vehicle that quantitative measures of the adjustment path are available.

6.2 Policy implications

It is the sub-optimality of the free market solution of the Romer model and, no doubt, of
other endogenous growth models also, that raise the most significant implications for
policy. However, before these matters are examined some policy implications arising
from the concluding remarks of the last section are briefly addressed.

Policy implications from the transitional dynamics

Because of the non-monotonic nature of adjustment processes, some of the shorter-term
effects of economic change, whether policy induced or otherwise, may have the
opposite sign to their longer-term impacts. As a result, it appears that there may be
short-term adjustment costs that could be addressed by policy makers. For example, if
the overall change in some variable from its initial level to its final steady state is
considered beneficial, then an immediate post-shock jump in the opposite direction to
this change would presumably be considered deleterious. Or, if the overall change in a
variable is thought to represent an acceptable trade-off cost for other perceived benefits
of economic change, then an initial jump in this variable that significantly overshoots its
new steady-state level will produce even higher trade-off costs. It would seem that such
adjustment costs, to be borne in the shorter term, ought to be taken into account in any
policy assessment of the overall efficacy of the economic change.

It may be argued however, that since the model is founded upon economic agents who
optimise their decision making, the dynamic outcomes represent the best that can be
done and so no policy action is warranted. However, in a richer, more disaggregated
model with different industrial sectors and different classes of consumers (such as
lenders and borrowers), there would be trade-off issues concerning the income
distribution effects of economic change.

A second policy issue arising from the conclusions on the importance of the transitional
dynamics is that the shorter and medium terms would seem to warrant the greater policy
emphasis. This follows directly from the fact that the transitional dynamics over these
periods are often characterised by large discontinuities and complex adjustment paths;
while adjustment to points which may be considered as approaching equilibria relatively
closely, require such long periods of time that, they are unlikely ever to be realised.
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Aghion and Howitt (1998) argue that 'because innovations may take decades to take
effect, they are primarily interested in the long-run' and this justifies their focus on
steady-state analysis.8 This could be taken to suggest that policy should also be
'primarily interested' in the longer run and steady-state analysis. However, the opposite
view is taken here. While it is important to know where the economy is eventually
headed,9 it seems clearly more important to know, at any point of time, in which
direction it is heading, particularly since the former is unlikely ever to be attained, and
the latter is highly variable. The policy implication is that the greater focus would seem
to be due to transitional issues than to steady-state ones.

Another important implication of the transitional dynamics is perhaps more relevant to
economic analysts and advisers than to policy makers themselves, though the indirect
link is obvious. Since adjustment takes so long, observed economic data are unlikely to
reflect (theoretical) equilibrium levels, so should not be fed into equilibrium models.
This raises a general problem for all empirical equilibrium modelling, such as balanced
growth analysis, and for econometric work also. The feet that initial jumps for many
variables can be in the opposite direction to that implied by differences in their pre- and
post-shock equilibria, and can be large in comparison with these differences,
exacerbates the problem. It means that observed responses and correlations may not
even have the correct long-term signs. Using observed data and correlations to
formulate equilibrium theories, and then using more such data to test/confirm them, may
easily give spurious results. Alternatively, such transient dynamics could explain why
certain observed correlations cannot be made to fit what seem to be otherwise sensible
equilibrium models.

Policy implications from the sub-optimality of the model

Many of the implications arising from directing policy prescriptions towards the sources
of sub-optimality of the Romer model have already been explicitly addressed in Chapter
5. Two of the distortions present in the model, market power pricing effects by
innovators, and spillover benefits from research, are widely recognised as being closely
associated with technological, and thereby economic growth. And the third source of
divergence from Paretian optimality, the so-called 'specialisation divergence' (which
derives from the old 'extent of the market - increasing returns from specialisation -
external economy' ideas of Adam Smith, Alfred Marshall and Allyn Young), is
becoming increasingly relevant as specialisation is rediscovered as a source of growth
(for example, see Helpman and Krugman, 1985; and Grossman and Helpman, 1991,
Chapter3). Thus, the policy implications arising from the model may be taken as
conforming with modern views of the processes of growth.

8 Nevertheless, Aghion and Howitt concede later that "if, as several writers have contended, an economy
spends most of its time a long way from a steady-state, then it is important also to analyze nonsteady-state
behaviour" (p. 109), which they then go on to examine.
9 One of the reasons for this would be to make judgements about the welfare efficacy of potential policy
changes. In this and in most other endogenous growth models, agents are taken to maximise welfare in a
dynamic context. But in the real world (and in detailed models with many different categories of agents),
mere are many market interventions already extant and great scope for inefficient allocations of resources
and inequitable distributions of income. As shown in Chapter 5, the market solution of the Romer model
exhibits such inefficiencies, insufficient human capital being allocated to research for example. And, to
assess the desirability of any policy intervention intended to correct mis sub-optimality it is necessary to
compare the steady-state equilibria of the pre- and post-policy intervention scenarios.

It was shown that all these divergences could be corrected by subsidisation polices.10

Various 'subsidy packages', each capable of converting the sub-optimal market steady-
state outcomes to the socially optimum ones, were identified. In particular, this was
found to be possible by combining a subsidy to the purchase of designs with a
(production-side) subsidy to either savings, the purchase of specialised capital, or to
final output Of course such subsidies had to be set at different specific levels, and it
was a condition that no new distortions were introduced by the taxes necessary to
finance them. For certain other 'potentially optimal* subsidy schemes it was
demonstrated that it was not in feet possible to replicate completely the socially optimal
steady-state. Specifically, while the socially optimal growth rates could be achieved via
the subsidisation of research wages (or equivalently, research incomes or expenditure),
other steady-state levels could not be replicated. This was the case irrespective of which
production-side subsidy it was combined with. However counter-intuitive it may seem,
the obvious policy implication from the model is that direct subsidisation of research
(whether based upon income, expenditure or wages) is inappropriate.

Another point that it seems ought to be emphasised in respect of the possible
implementation of these subsidies, is that they come as policy packages.
Implementation of only one of the 'optimum subsidies' of a pair may turn out to
increase the divergence of an economy from its social optimum rather than reduce it.
While some variables may end up closer to their optimum levels, others will be further
away. For example, if the purchase of designs is subsidised at its 'optimum rate' in the
scheme in which it. is combined with the subsidisation of savings, the so-called (SK,SAK)-
scheme, but savings remain unsubsidised, then:

• while the socially optimal steady-state levels for the allocation of human capital, the
interest rate, the growth rates, and the factor shares of total income would all be
attained precisely;

• the percentage divergences of the capital-technology ratio, the consumption-capital
ratio and the capital-gross product ratio would increase from (—30 to —74), (45 to
117) and (-12 to-46) respectively.

And if instead, savings were subsidised at the 'optimum rate' in the (sK,SAK)-scheme,
but the purchase of designs remained unsubsidised, then:

• while there would be no change in the allocation of human capital, the interest rate,
the growth rates, nor the factor shares of total income;

• the divergences for the investment-output ratio and the broad savings rate would be
reduced from (-38 to 15) and from (—43 to -9) respectively.

The transitional dynamics of the conversion from the market steady-state to that of the
social optimum also raise significant implications for policy. First, there are short-term
adjustment cost and trade-off issues of the kind discussed at the beginning of this
section, and which policy makers may wish to address. Second, the manner in which an

10 Common policy responses aimed at correcting for die market power and research externality distortions
face inconsistent outcomes. Anti-monopoly policy is intended to reduce the static inefficiencies of having
prices exceed marginal costs. But by removing the incentives from prospective monopoly profits, such
policies produce the unintended side effect of discouraging innovative activity and thereby reducing the
dynamic gains it generates. And enforceable property rights, which aim to raise dynamic efficiencies by
ensuring the incentives are high enough to generate the optimum level of research, unintentionally
establish static inefficiencies by encouraging the holders of the property rights to set prices higher than
marginal costs.
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'optimum subsidy package' is implemented can have profound effects on the
transitional dynamics of economies; and there are, of course, a great many different
implementation possibilities. For example, either or both of the optimum subsidies may
be implemented unannounced and so surprise the market Or they may be announced in
advance, with the time interval to implementation a matter of choice. They may even be
phased-in with installments announced or unannounced, and with variable phasing
intervals. Only three alternative methods of implementation were examined in the text,
but these were enough to demonstrate that the short run dynamics were highly
dependent upon the method of implementation. Differences in these dynamics feed back
into the issues of adjustment costs and policy responses. Certain methods of
implementation may generate short-term adjustment costs perceived as significant
enough to warrant some policy intervention, while alternative methods may not And in
richer models the adjustment costs may vary across different economic agents, with
further implications for policy. In any event these issues indicate that policy makers
may face a great deal of choice.

The third policy issue raised by the transitional dynamics of the conversion from the
market steady-state to that of the social optimum involves another choice. Although the
alternative 'optimum subsidy schemes' all end up with the economy asymptotically
approaching the social optimum steady-state, the dynamics of the transition depend
upon which scheme is adopted. The (SX,SAX)- and the (sY5SAv)-schemes produce exactly
the same dynamics, but these differ from those of the (sK,SAK)-scheme. The
computations and graphical analysis demonstrating this from the optimum subsidy
packages have not been reported here. Nevertheless, an idea of the extent of the
differences may be obtained by comparing the dynamics resulting from the simulated
imposition of each of the individual 'optimum subsidies' SR, SAK, SX, and SAX, as
reported in Appendix 5.6.11

The theoretical argument in favour of the Government implementing a subsidisation
policy package in order to convert the free market equilibrium into the one that would
result from a social planner allocating resources by administrative fiat, is simple and
compelling: It generates greater welfare for the community as a whole. However, there
are considerable practical difficulties in getting such a subsidisation scheme 'right'. To
begin with, the Government would have to choose the correct subsidies and avoid
introducing any further distortions in financing them, or in addressing perceived short-
run adjustment costs. Once established the subsidy scheme would require ongoing
management since any shock to the economy would alter the target social optimum
steady-state, thereby necessitating adjustments to the optimum subsidies. In the model,
the only way for this to arise is through one of the parameters that define the optimum
subsidies (and then only a change to y affects SK, and only changes to a, <£, p, CT, and H
affect SAK)- In a richer model, and in the real world, the situation would be far more
complex. There would be many other parameters, including tax rates; and probably
many more subsidies as welL The 'optimum subsidy scheme' might well comprise more

11 Simulations of the imposition of the (sx,SAx)-subsidy scheme in exactly the same three ways as reported
in Section 5.3 for the (sK,sAK)-scheme were however, conducted. Comparison of these sets of results
showed little differences when iboth optimum subsidies of each scheme were implemented unannounced
and at the same time - the method reported in Section 5.3.1. But significant differences emerged when the
imposition of corresponding subsidies was announced in advance - as in the methods reported in Sections
5.3.2 and 5.3.3. Predictably, most of the differences arose in the period between announcement and
implementation. Also, the largest divergences were for the prices of technology, the growth rates, the
allocations of human capital, and the interest rates.
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than two general subsidy types.12 And any such multiplicity could be extended by a
need to vary subsidy rates at a disaggregated level - to account for differentials in the
external benefits generated by research,13 or for variable degrees of monopoly power
associated with the sale of specialised capital for example. Hopenilly, any variability of
subsidy rates would be objective, based on carefully measured data. In practice
however, data would be limited, subsidy funds would be scarce, judgements would have
to be made, and Governments would end up 'picking winners' in the sometimes
politically motivated, often arbitrary, and largely unsuccessful manner that has often
characterised this sort of activity.14 And these problems are additional to the fact that
taxes are never raised in a completely non-distoirtionary manner in real economies.

6.3 Directions for further research

Possible directions for further research are discussed here in three broad classes. First,
there are some issues that arose directly out of the work on this thesis. Second, there are
possibilities for relaxing the specific simplifying assumptions that underlie Romer's
(1990a and 1990b) model. And third, there is the grander question of developing the
model for use as an empirical policy analytic tooL

Issues from the research of the thesis itself are a small and eclectic group. They were
mentioned in the dissertation as they arose and are simply listed below with references
back to those points:

• The general point of extending the dynamic analysis to other models of endogenous
growth is perhaps the most obvious gap in the research here (Chapter 1: p.3.
footnote 5). Other matters are:

• Formally establishing the equivalence between the full Romer model and the
abridged Solowian-Romer model when the broad measure of savings, SB, is used in
place of the narrow measure, SN (Chapter 3: pp.113 and footnote 20).

• Explaining the economic reasoning behind the fact that the allocation of human
capital, the interest rate and the growth rate in the steady-state of the social optimum
system do not depend on the capital productivity parameter y (Chapter 5: p.299).

• And, resolving the Issue of the "finite limiting value of human capital", giving
attention to alternative modelling in which the supply of such human capital is

12 Recall that the production function used here had the special property of generating exactly offsetting
effects from the specialisation divergence and the monopoly pricing distortion (Romer, 1987b). With
other production functions individual subsidies may be necessary. Also, for the same production function,
Barro and Sala-i-Martin (1995) have shown that an extra subsidy is required once allowance is made for
the erosion of monopoly power.
13 Which could be negative if too many resources (from a social planner's perspective) are devoted to
research. This could happen if the advantages from being the first to discover new products and processes
induce researchers to race one another.
14 This sort of selective provision of Government assistance has been widely discredited around the
world, both in terms of the 'theoretical' arguments mounted to support it, and in terms of its practical
record. For example, see Bureau of Industry Economics (1987 & 1988), Council of Economic Advisers
(1984), Gannicott (1979), Krugman (1983), Schmidt (1984), and Schultze (1983).
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endogenous and can grow (Chapter 5: p.313, footnote 14; and Appendix 5.3
p.361).15

Incomplete excludability, non-rivalry, externalities, market power, specialisation,
increasing returns and the accumulation of both knowledge and capital have all long
been recognised as important ingredients in the processes of technological change and
therefore of economic growth. But up until Romer's work, culminating with his 1999a
and 1990b papers, they have never all featured as a complete package in a model that
could be analysed quantitatively. Since he only sought to 'highlight the effects of
interest' at an 'aggregate level and over long time periods', using the model mostly to
just 'sign the effects that various interventions have on the rate of growth', Romer made
a number of simplifying assumptions. In particular he assumed:

L the population and labour supply are both constant, thereby abstracting from
questions of fertility, unemployment, and labour participation (and issues of the
trade-off between work and leisure in particular);16

ii. the total stock of human capital in the population, and the proportion supplied to
the market are both fixed;

iii. research output (designs) are infinitely divisible, so there is a constant flow of such
output rather than having indivisible lumps arriving at distinct points of time;

iv. the process of generating research output is deterministic (that is, there are no
uncertainties);

v. the desired intensive usage of human capital and of the existing stock of
knowledge in research are manifested in a research production function in which
these are the only factors, and for which dependence on each is linear;

vL the use of technological products, the specialised capital goods, in the production
function produce additively separable effects (innovation is purely capital-
widening not deepening), which therefore rule out the possibility of obsolescence,
irrespective of differences in capital vintages;

vil there are no adjustment costs associated with the formation, installation or
decommissioning of capital - specialised capital can be costlessly produced out of
general-purpose capital arid, more importantly, it can just as costlessly be
reconverted back to it (the putty-putty nature of specialised capital);17

viii. there is no erosion of the monopoly power of the producers of technological
products over time, neither from patent narrowing or expiry, nor from imitation or
the development of substitute products by competitors;

ix. research only generates new producer goods, not new consumer goods; and
x. the economy is 'closed', there being no trade in either goods or ideas, and no

international diffusion or imitation of technology.

15 The exogeneity of aggregate human capital is identified as a simplifying assumption of the model that
could be relaxed with further research (also see Chapter 2: p.36, footnote 18).
16 Sala-i-Martin (1990a) and Jones (1995) both raise problems faced by endogenous growth models when
the population growth rate is positive; namely, because of scale effects in the rewards to innovation,
rather than being constant the growth rate of the economy increases over time counterfactually.
17 This issue was discussed in Appendix 2.1 (pp.62-64). It might seem to be a more serious issue for the
analysis of transient dynamics than for balanced growth analysis because on balanced growth paths the
number of types of specialised capital is constant (X(t)=X). This means there is no disinvestment and
hence no need for any reconversion of units back to general-purpose capital. However, it becomes a
problem, even for comparative statics, whenever any exogenous shock reduces X. The transient dynamics
exist whether they are computed or not.
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All of these 'simplifying assumptions* offer prospects for further research. Many of
them have been addressed in other models, with their own sets of (different) simplifying
assumptions.18 They represent opportunities to set tb'j model on more realistic
foundations. The development of ways of relaxing any of the individual simplifying
assumptions above would be significant in this respect But many of the issues are
related, the erosion of monopoly power and obsolescence for example. Thus, well
the aght-out refinements to the model could replace more than one simplifying
assumption at a time. Nevertheless, the next step, that of attempting to put the whole
model on a realistic footing and so develop it to a point from which it might be capable
of being used empirically and in a policy relevant way, is a far more difficult task.

For it to be achieved, it would have to be possible to implement the model with a fair
degree of sectoral disaggregation. This is because the ability to answer questions
concerning the resource and income re-aJlocative impacts of economic changes must
surely be considered as central to policy analysis. As mentioned in Chapter 1, some
modest work of this sort was the original idea for a PhD topic. In particular, the idea
was to investigate the 'new growth theory' with a view to incorporating some of its
insights into a large computable general equilibrium model of the Australian economy -
the'MONASH Model'.

MONASH is the latest stage in the evolution of the 'ORANI Model' (see Dixon et aL,
1982). Whereas ORANI is basically a comparative statics model19, MONASH includes
some dynamics, principally for the accumulation of certain stock variables like capital
and foreign debt. The treatment of technological change in ORANI, where it was mostly
simply exogenous, was also an area that was intended to be improved upon in
MONASH. Thus, the possibility of introducing some practical modelling of endogenous
growth theory (involving accumulation dynamics for the stock of technology or
knowledge) to the treatment of technological change in MONASH seemed appealing.
However, the task is a very big one:

• The MONASH Model is greatly disaggregated. For example, it has 113 industries,
115 commodities, and some 300 occupations. Implementation of any form of
endogenous growth modelling, would require the specification of appropriate

18 For example see the references below for the corresponding point numbers beginning on page 396:
i. Young (1995a), Barro and Sala-i-Martin (1995, Chapter 9), and Aghion and Howitt (1998, Chapters 3

&12);
ii. Lucas (1988), Azariadis and Drazen (1990), Laitner (1993), and Aghion and Howitt (1998, Chapter

10);
iv. Aghion and Howitt (1992) and (1998, Chapter 2);
vi. Segerstrom, Anant and Dinopoulos (1990), Grossman and Helpman (1991a), (1991b), and (1991d,

Chapter 4), Aghion and Howitt (1992) and (1998), Barro and Sala-i-Martin (1995, Chapter 7);
vii. Abel and Blanchard (1983), King and Rebelo (i993), 'vintage capital models' such as those cited in

Appendix 2.1;
viii. Judd H985a), Barro and Sala-i-Martin (1995, Chapter 6), as well as the references for vi above;

ix. Eterro and Sala-i-Martin (1995, Chapter 6); and
x. Yarri (1965), Blanchard (1985), Weil (1989), Grossman and Helpman (1989a), (1989c), (1991c) and

(1991d, Chapters 6 &7), Rivera-Batiz and Romer 1991b), Lucas (1993), Barro, Mankiw and Sala-i-
Martin (1995), Barro and Sala-i-Martin (1995, Chapters 3 & 8) and Aghion and Howitt (1998,
Chapter 11).

19 There are no explicit dynamics but a broad implicit time dimension exists in that the model results can
be interpreted as referring to either the 'short term' or the 'long term' according to its 'closure' (that is its
split between endogenous and exogenous variables).
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production functions for each industry. While the analytical form of all these might
be identical, significant effort would be necessary to establish sensible
paramaterisations for different industries (econometric estimation probably being
desirable).

• The concept of human capital involved in endogenous growth modelling would
have to be reconciled with the occupational disaggregation, both theoretically and
empirically.

• While many different forms of endogenous growth model already exist, they have
only been specified indicatively - to illustrate broad economic ideas at a macro level.
Also, there has been little empirical testing of such models. Thus, much greater care
would be necessary in the specification of an operational disaggregated module for
MONASH, and at least some empirical validation would be desirable.

• Theoretical solutions for the growth equilibria would also have to be found for any
new specifications before they could be implemented.

• There may also be a strong case for having different modelling for different classes
of industry. For example, for 'producer goods' and 'consumer goods' sectors.

• Also, in order to include transitional dynamics, the entire MONASH Model would
have to be re-specified as dynamic, with each of its several million variables
requiring a time dimension.

While it soon became apparent that such a task was not a viable one for a PhD topic, it
might at some stage in the not too distant future be feasible for a modelling
development team. Obviously a great deal more thought would have to be devoted to
the problem than the superficial points made here, but it is at least a potential area for
further research.
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