
1

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

2002

Research Graduate School Committee
Under the copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

10

Data Mining with Structure Adapting

Neural Networks

by

Lakpriya Damminda Alahakoon BSc.(Hons)

A thesis submitted in fullfilment of the requirements for

the degree of Doctor of Philosophy

I School of Computer Science and Software Engineering

Monash University

March 2000

To

Amma & Thaththa

Abstract

A new generation of techniques and tools are emerging to facilitate intelligent and

automated analysis of large volumes of data and discovering critical patterns of

useful knowledge. Artificial neural networks are one of the main techniques used

in the quest for developing such intelligent data analysis and management tools.

Current artificial neural networks face a major restriction due to their pre-defined

network structures which are fixed through the life cycle. The breaking of this

barrier by models with adaptable structure, can be considered as a major contri-

bution towards achieving truly intelligent artificial systems.

~m

Kohonen's Self Organising Map (SOM) is a neural network widely used as an ex-

ploratory data analysis and mining tool. Since the SOM is expected to produce

topology preserving maps of the input data, which are highly dependent on the

initial structure, it suffers from the pre-defined fixed structure limitation even

more than the other neural network models. In this thesis, the main contribution

is the development of a new neural network model which preserves the advan-

tages of the SOM, while enhancing its usability by an incrementally adapting it's

architecture.

M
The new model, called the Growing Self Organising Map (GSOM), is enriched

with a number of novel features resulting in a mapping which captures the topol-

.11

ogy of the data, not only by the inter and intra cluster distances, but also by

the shape of the network. The new features result in reducing the possibility

of twisted maps and achieves convergence with localised self organisation. The

localised processing and the optimised shape helps in generating representative

maps with smaller number of nodes. The GSOM is also flexible in use, since it

provides a data mining analyst with the ability to control the spread of a map

from an abstract level to a detailed level of analysis as required.

The GSOM has been further extended using its incrementally adapting nature.

An automated cluster identification method is proposed by developing a data

skeleton from the GSOM. This method extends the conventional visual cluster

identification from feature maps, and the use of a data skeleton, in place of the

the complete map, can result in faster processing. The control of the spread of

map, combined with the automated cluster identification, is used to develop a

method of hierarchical clustering of feature maps for data mining purposes.

The thesis also proposes a conceptual model for the GSOM. The conceptual model

facilitates the extraction of rules from the GSOM clusters thus extending the tra-

ditional use of feature maps from a visualisation technique to a more useful data

mining tool. A method is also proposed for identification and monitoring change

in data by comparing feature maps using the conceptual model.

in

Declaration

This thesis contains no material that has been accepted for the

award of any other degree or diploma in any university or other

institution. To the best of my knowledge, this thesis contains no

material previously published or written by another person except

where due reference is made in the text of the thesis.

L D. Alahakoon

IV

Acknowledgments

I am grateful to my principal supervisor Professor Bala Srinivasan for his able

guidance and intellectual support throughout my research work. I am also grate-

ful to my second supervisor Dr. Saman Halgamuge (University of Melbourne) for

the valuable advice, guidance, moral support and friendship during this period.

They were both available whenever I needed advice and helped to maintain the

research work on a steady course over the years.

I thank Dr. Arkady Zaslavsky, Postgraduate coordinator, School of Computer

Science and Software Engineering, for providing financial support during difficult

times. I also take this opportunity to thank Ms. Shonali Krishnaswamy for the

friendship during these years we shared an office, and also my colleagues and

friends, Mr. Monzur Rahman, Dr. Phu Dung Lee, Mr. Campbell Wilson, Dr.

Maria Indrawan, Mr. Santosh Kulakarni, Mr. Robert Redpath and Mr. Salah

Mohammed. They provided a friendly and helpful atmosphere where I managed

to fit in, and made it easier to get used to the new environment. I thank Mr.

Duke Fonias for the excellent technical support and help throughout my PhD

candidature.

Finally, I am grateful to my wife Oshadhi, and daughters Navya and Laksha for

their love, kindness and tolerance during the PhD years.

AS

if
I

Contents

1 Introduction 1

1.1 Exploratory Data Analysis for Data Mining 1

1.2 Structure Adapting Neural Networks for Developing Enhanced In-

telligent Systems 7

1.3 Motivation for the Thesis 9

1.4 Objectives of the Thesis 11

1.5 Main Contributions of the Thesis 14

1.6 Outline of the Thesis 17

2 Structural Adaptation in Self Organising Maps 21

2.1 Introduction 21

2.2 Neural Networks 22

2.3 Self Organising Maps (SOM) 26

2.3.1 Self Organisation and Competitive Learning 27

2.3.2 The Self Organising Map Algorithm 31

2.4 Data Mining 36

VI

6 3

2.4.1 The SOM as a Da; >ol 37

2.4.2 Limitations of the S Data Mining 40

2.5 Justification for the Structural Adaptation in Neural Networks . . 42

2.6 Importance of Structure Adaptation for Data Mining 46

2.7 Structure Adapting Neural Network Models 47

2.8 Summary 55

3 The Growing Self Organising Map (GSOM) 57

3.1 Introduction 57

3.2 GSOM and the Associated Algorithms 60

3.2.1 The Concept of the GSOM 60

3.2.2 The GSOM Algorithm . 63

3.3 Description of the Phases in the GSOM 68

3.3.1 Initialisation of the GSOM 68

3.3.2 Growing Phase 70

3.3.3 Smoothing Phase •".• 76

3.4 Parameterisation of the GSOM 77

3.4.1 Learning Rate Adaptation 78

3.4.2 Criteria for New Node Generation 82

3.4.3 Justification of the New Weight Initialisation Method . . . 88

3.4.4 Localised Neighbourhood Weight Adaptation 90

3.4.5 Error Distribution of Non-boundary Nodes 93

vn

3.4.6 The Spread Factor (SF) 97

3.5 Applicability of GSOM to the Real World 102

3.5.1 Experiment to Compare the GSOM and SOM 102

3.5.2 Applicability of the GSOM for Data Mining 107

3.6 Summary 113

4 Data Skeleton Modeling and Cluster Identification from a GSOM115

4.1 Introduction 115

4.2 Cluster Identification from Feature Maps 118

4.2.1 Self Organising Maps and Vector Quantisation 118

4.2.2 Identifying Clusters from Feature Maps 121

4.2.3 Problems in Automating the Cluster Selection Process in

Traditional SOMs . 126

4.3 Automating the Cluster Selection Process from the GSOM 128

4.3.1 The Method and it's Advantages 128

4.3.2 Justification for Data Skeleton Building 133

4.3.3 Cluster Separation from the Data Skeleton 139

4.3.4 Algorithm for Skeleton building and Cluster Identification 142

4.4 Examples of Skeleton Modeling and Cluster Separation 145

4.4.1 Experiment 1 : Separating Two Clusters 145

4.4.2 Experiment 2 : Separating Four Clusters 149

vm

4.4.3 Skeleton Building and Cluster Separation using a Real Data

Set 154

4.5 Summary 158

5 Optimising GSOM Growth and Hierarchical Clustering 161

5.1 Introduction 161

5.2 Spread Factor as a Control Measure for Optimising the GSOM . . 164

5.2.1 Controlling the Spread of the GSOM 164

5.2.2 The Spread Factor 166

5.3 Changing the Grid Stee in SOM vs Changing the Spread Factor in

GSOM 168

5.3.1 Changing Size and Shape of the SOM for Better Clustering 168

5.3.2 Controlling the Spread of a GSOM with the Spread Factor 173

5.3.3 The Use of the Spread Factor for Data Analysis 176

5.4 Hierarchical Clustering of the GSOM 177

5.4.1 The Advantages and Need for Hierarchical Clustering . . . 178

5.4.2 Hierarchical Clustering Using the Spread Factor 181

5.4.3 The Algorithm for Implementing Hierarchical Clustering on

GSOMs 184

5.5 Experimental Results of Using the SF indicator on GSOMs 185

5.5.1 The Spread of the GSOM with increasing SF values 186

5.5.2 Hierarchical Clustering of Interesting Clusters 189

IX

5.5.3 The GSOM for High Dimensional Human Genetic Data Set 191

5.6 Summary 194

6 A Conceptual Data Model of the GSOM for Data Mining 196

6.1 Introduction 196

6.2 A Conceptual Model of the GSOM 199

6.2.1 The Attribute Cluster Relationship (ACR) Model 202

6.3 Rule Extraction from the Extended GSOM 206

6.3.1 Cluster Description Rules 207

6.3.2 Query by Attribute Rules 209

6.4 Identification of Change or Movement in Data 213

6.4.1 Categorisation of the Types of Comparisons of Feature Maps214

6.4.2 The Need and Advantages of Identifying Change and Move-

ment in Data 216

6.4.3 Monitoring Movement and Change in Data with GSOMs . 217

6.5 Experimental Results 222

6.5.1 Rule Extraction from the GSOM Using the ACR model . . 223

6.5.2 Identifying the Shift in Data values 227

6.6 Summary 233

7 Fuzzy GSOM-ACR model 237

7.1 Introduction 237

7.2 Fuzzy Set Theory 239

x

7.2.1 Fuzzy Sets 239

7.2.2 Fuzzy Logic 241

7.3 The Need and Advantages of Fuzzy Interpretation 243

7.4 Functional Equivalence Between GSOM Clusters and Fuzzy Rules 247

7.5 Fuzzy ACR model 249

7.5.1 Interpreting Cluster Summary Nodes as Fuzzy Rules . . . 250

7.5.2 Development of the Membership Functions 251

7.5.3 Projecting Fuzzy Membership Values to the Attribute Value

Range 254

7.6 Summary 256

8 Conclusion 258

a

8.1 Summary of Contributions 259

8.1.1 Growing Self Organising Map (GSOM) 259

8.1.2 Data Skeleton Modeling and Automated Cluster Separation 262

8.1.3 Hierarchical Clustering using the GSOM 262

8.1.4 Development of a Conceptual Model for Rule Extraction

and Data Movement Identification 263

8.1.5 Fuzzy Rule Generation 263

8.2 Future Research 264

Appendix A : x'he Animal Data Set 266

XI

List of Figures

2.1 A typical artificial neural network 23

2.2 Competitive learning 28

2.3 The Self Organising Map (SOM) 33

2.4 An example of oblique orientation (from [Koh95]) 41

3.1 New node generation in the GSOM 62

3.2 Initial GSOM 69

3.3 Weight initialisation of new nodes 73

3.4 Weight fluctuation at the beginning due to high learning rates . . 79

3.5 New node generation from the boundary of the network 86

3.6 Overlapping neighbourhoods during weight adaptation 91

3.7 Error distribution from a non-boundary node 95

3.8 The animal data set mapped to the GSOM, without error distribution 96

3.9 The animal data set mapped to the GSOM, with error distribution 97

3.10 Change of GT values for data with different dimensionality (D)

according to the spread factor 101

xu

3.11 Animal data set mapped to a 5 x 5 SOM (left) 10 x 10 SOM (right) 104

3.12 Kohonen's animal data set mapped to a GSOM 105

3.13 Unsupervised clusters of the Iris data set mapped to the GSOM . 108

3.14 Iris data set mapped to the GSOM and classified with the iris

labels, 1 - Setosa, 2 - Versicolor and 3 - Verginica 109

4.1 Four Voronoi regions 120

4.2 Path of spread plotted on the GSOM 132

4.3 Data skeleton 133

4.4 Initial Voronoi regions (VJ_i) 135

4.5 Incremental generation of Voronoi regions 136

4.6 Voronoi diagram with the newly added region (V/) 136

4.7 Path of spread plotted on the Voronoi regions 137

4.8 The GSOM represented by the Voronoi diagram in Figure 4.7 . . 137

4.9 Creating a dinosaur from it's skeleton 140

4.10 Identifying the POS 143

4.11 The input data set 146

4.12 The GSOM with the hit points shown as black and shaded circles 147

4.13 Data skeleton for the two cluster data set 148

4.14 Clusters separated by removing segment 10 150

4.15 The input data set for four clusters 151

4.16 The GSOM for four clusters with the hit nodes in black 151

xni

4.17 Data skeleton for four clusters , 152

4.18 Four clusters separated 154

4.19 The GSOM for the 28 animals, with SF=0.25 155

4.20 Data Skeleton for the animal data 156

4.21 Clusters separated in the animal data 158

5.1 The shift of the clusters on a feature map due to the shape and size 169

5.2 Oblique orientation of a SOM , . . . 170

5.3 Solving Oblique orientation with tensorial weights (from [Koh95]) 172

5.4 The hierarchical clustering of a data set with increasing spread

factor (SF) values 182

5.5 The different options available to the data analyst using GSOM

for hierarchical clustering of a data set 184

5.6 The GSOM for the animal data set with SF = 0.1 187

5.7 The GSOM for the animal data set with SF = 0.85 188

5.8 The mammals cluster spread out with SF = 0.6 190

5.9 The Map of the Human genetics Data 193

5.10 Further expansion of the genetics data 194

6.1 The spreading out of clusters with different SF values 200

6.2 The ACR model developed using the GSOM with 3 clusters from

a 4 dimensional data set 203

6.3 Query by attribute rule generation 1 211

xiv

6.4 Query by attribute rule generation 2 211

6.5 Categorisation of the type of differences in data 214

6.6 Identification of change in data with the ACR model 218

6.7 GMAPi - GSOM for the 25 animals with SF=0.6 with clusters sep-

arated by removing path segment with the weight difference=2.7671224

6.8 GSOM for the 25 animals with SF=0.6 with clusters separated by

removing path segment with weight difference=1.5663 228

6.9 GMAPi - GSOM for the 33 animals with SF=0.6 231

6.10 GMAP3 - GSOM for the 31 animals with SF=0.6 233

7.1 The Fuzzy ACR model 252

7.2 A triangular membership function 253

7.3 The membership functions for cluster i 254

7.4 Projection of the fuzzy membership functions to identify categori-

sation 255

xv

List of Tables

A

3.1 Kohonen's animal data set 103

3.2 Summary statistics of the iris data 108

3.3 Cluster 6 attribute summary I l l

3.4 Cluster 7 attribute summary I l l

3.5 Cluster 1 attribute summary 112

5

4.1 Path segments of two cluster data set 149

4.2 Path segments of four cluster data set 153

4.3 Path segments for animal data set 157

'1
l

6.1 Average attribute values (Avg) and standard deviations (Std) for

clusters in Figure 6.7 225

6.2 Average attribute values (Av) and standard deviations (SD) for

clusters in Figure 6.8 229

6.3 Average attribute values (Av) and standard deviations (SD) for

clusters in Figure 6.8 contd 230

xvi

6.4 The cluster error values calculated for clusters in Figure 6.9 with

clusters in Figure 6.7 232

6.5 The measure of similarity indicator values for the similar clusters

between GMAPX and GMAP2 232

6.6 The cluster error values calculated for clusters in figure 6.9 with

clusters in Figure 6.10 234

6.7 The measure of similarity indicator values for the similar clusters

between GMAPX and GMAPZ 234

XVII

Chapter 1

Introduction

1.1 Exploratory Data Analysis for Data Mining

During the last decade, there has been an explosive growth in the ability to

both generate and collect data in electronic format. Advances in scientific data

collection technology, the widespread use of bar codes in commercial products,

computerisation of many businesses and government transactions has generated

a massive amount of data. Advances in data storage technology has produced

faster, higher capacity and cheaper storage devices. This expansion and advance-

ment in technology has resulted in better database management systems and data

warehousing systems which have transformed the data deluge into massive data

stores [Fay96b], [Inm97], [Inm98]. Although advances in computer networking has

enabled large number of users to access these vast data resources, corresponding

1

advances in computational techniques to analyse the accumulated data has not

taken place [Che96], [Mat93], [Fay96a].

Raw data is a valuable organisational resource as it forms the basis for higher

level information being used for strategic decision making. In scientific activ-

ities, data may represent observations collected about some phenomena being

studied. In business, raw data captures information about the markets, com-

petitors and customer! i. In manufacturing such data may lopresent performance

and optimisation opportunities. Such information is useful for decision support,

or for exploration and better understanding of the underlying phenomena which

resulted in generating the data. Traditionally data analysis was performed man-

ually using statistical techniques. Such approaches have bee jme unusable and

obsolete as the volume and dimensionality of the data increased. The situation

is further complicated by the rapid growth and change occurring in the data.

Hence tools that can at least partially automate the analysis task have become

a necessity. The field of data mining (DM) and knowledge discovery (KD) has

emerged as an answer to this need and looks at new approaches, techniques and

solutions for the problems in anlysing large databases [Kno96], [Kei96].

There are different approaches that can be employed for data mining. Techniques

that have been popularly used are classification, clustering, estimation, predic-

tion, market basket analysis and description [Ber97b]. A number of tools such as

statistics, decision trees, neural networks, genetic algorithms have been used to

implement these techniques [Ber97c], [Ken98], [Ber97b]. In most cases a combi-

nation of such tools and techniques will be needed for achieving the goals of data

mining [Wes98j.

During a data mining operation, irrespective of techniques and tools being used,

it is generally a good practice to initially obtain an unbiased view of the data.

Unlike situations where an analyst may use standard mg/thematical and statistical

analysis to test predefined hypothesis, data mining is most useful in exploratory

analysis scenarios where an interesting outcome is not predefined [Wes98]. There-

fore data mining can be carried out as an iterative process within which progress

is defined and directed by discovery of interesting patterns. The analyst can start

by obtaining an overall picture of the available data. This overall understanding

can then be made use of to perform better directed and planned modeling and

analysis of subsets of the data. This allows the initial knowledge obtained about

the data to support better planning and utilisation of one or more data mining

tools and techniques. Therefore, whatever form the analysis takes, the key is

in adopting a flexible approach that will allow the analyst to make unexpected

discoveries beyond the bounds of the established expectations within the problem

domain [Wes98].

To achieve such flexibility and independence from pre-conceived bias on the prop-

erty of the data, we propose that the data mining task be conducted in two main

steps.

1. Initial exploratory analysis phase

2. Secondary directed analysis phase.

These steps can be used a number of times with different order of precedence,

but the data mining task should begin with an initial exploratory analysis. Even

when well defined goals and targets exist, such exploratory analysis may provide

unexpected outcomes which can result in the change or modifications to the ini-

tial plan. Due to the importance attached to the initial exploratory analysis, this

research has been focussed on the development of better and improved methods

for such analysis.

Currently the popular methods used for exploratory data analysis are visuali-

sation techniques, clustering techniques and unsupervised learning neural net-

work models. Visualisation techniques have recently become popular and a large

number of conimeicial software has appeared [Wes98]. Clustering techniques

• have been traditionally used and are still being improved and enhanced [Fis95],

[Wan97], [Zha97]. Unsupervised neural network models have been used in the

past for pattern recognition and clustering applications and recently have been

recognised for their usefulness in data mining applications [Deb98], [La\v99]. The

t ,

Kohonen Feature Map or the Self Organising Map (SOM), is currently the most

widely used unsupervised neural network model and has been used for different

applications ranging from image processing [Suk95], [Ame98], speech recogni-

tion [Kan91], [Sch93], engineering [Rit93], [koh96b], pattern classification and

recognition [Bim96], [Jou95] and recently for data mining [Deb98], [Ult92]. The

SOM generates mappings from high dimensional input space to lower dimensional

(normally two) topological structures. These mappings not only produce a low

dimensional clustering of the input space, but preserves the topology of the in-

put data structure. That is, the neighbourhood relationship in the input data is

preserved. Also it has the property that regions of high density or population cor-

responds to large parts (in terms of size) of the topological structure. Therefore

the output mapping of the SOM provides dimensionality reduced visualisation of

clusters. The relative positions and spread of the clusters provide the inter and

intra cluster attribute information which can be used to understand the data.

These properties have made the SOM an attractive tool of exploratory data anal-

ysis and mining.

Similar to the other traditional neural network models, the structure of the SOM

has to be defined at the start of training. It has been shown that a predefined

structure and size of the SOM has limitations on the resulting mapping [Pri94],

[Lee91]. If we consider the SOM as a lattice of nodes, the degree of topology

preservation depends on the choice of lattice structure [Vil97]. Therefore it may

• . 5

only be at the end of training that the analyst realises that a different shape or

number of elements would have been more appropriate for the given data set. As

such the user has to try different lattice structures and determine by trial and

error which lattice yields the highest degree of topology preservation. Although

applicable to most situations, this structure limitation is even more relevant to

data mining applications since the user is not aware of the structure in the data,

which makes it difficult to choose an appropriate lattice structure in advance.

The pre-definition of structure forces user bias onto the mapping and therefore

limits the advantages for exploratory data mining.

A solution to this dilemma is to determine the shape as well as size of the network

during training in an incremental fashion. Although the fixed structure constraint

applies to all traditional neural networks, lattice structure neural networks suf-

fer more from this limitation (discussed in section 1.2 and in chapter 5 in more

detail), and also has the potential to gain more advantages from incrementally

generating architectures. As such the incremental structure adaptation in self

organising neural networks is the main focus of this research work.

In section 1.2 we discuss the fixed structure limitation as a problem affecting

most neural networks which restrict their ability for intelligent behaviour. This

discussion is then used to highlight the proposed work on structure adapting self

organising maps as one branch of the more general problem of fixed structure

affecting most current neural network models.

1.2 Structure Adapting Neural Networks for De-

veloping Enhanced Intelligent Systems

m

Neural networks as a field of scientific research can be traced back to the 1940's.

During the early days the holy grail of neural network researchers was the devel-

opment of an artificial model which can simulate the functionality of the human

brain. After the initial euphoria died down, the goals have been re-specified,

and the main aim of the current neural network community is the development

of models which can surpass the functionality of traditional von Neumann com-

puters with the ability to learn. Such learning is expected to provide the neural

network with intelligence which can be harnessed for the benefit of human beings.

One way of measuring the intelligence of an artificial (non-human) system is the

amount and type of useful behaviour it can generate without human intervention.

This can be further interpreted as, the lesser the human intervention required by

an artificial system, the more it can be considered intelligent.

Current (traditional) artificial neural network models allow the networks to adjust

their behaviour by changing the interconnection weights. The number of neurons

and the structural relationships among the neurons have to be pre-specified by the

• 7

neural network designers, and once the structure is designed, it is fixed througn-

out the life cycle of the system. Therefore the learning ability of the system

and as such it's intelligence is constrained by the network structure, which is

pre-defined. Due to this constraint the network .designer faces the difficult, some-

times impossible task of figuring out the optimum structure of the network for a

given application. A solution to this problem is to let the neural network decide

it's own structure, according to the needs of the input data. This leads to the con-

cept of adaptable structure neural networks where the constraint of pre-specified

fixed structure is removed. Such adaptable structure neural networks requires

less human intervention and therefore can be called more intelligent compared to

their human specified fixed structure counterparts.

1

After the early days of neural network research, the development of the field was

restricted by the single layer constraint as highlighted by Minsky and Papert

[Min69]. A revival of neural network research occurred due to breaking of the

single layer barrier by developing multi layer learning algorithms. We consider

the constraint of fixed pre-definable structures as a similar barrier which needs

to be broken for the research to progress further. Therefore the concept of struc-

turally adaptable neural networks can be considered as a major leap towards

achieving the final goal of neural network researchers - viz. the development of

truly intelligent artificial systems.

8

! t i ''U

1.3 Motivation for the Thesis

The Self Organsiing Map (SOM) is a neural network model that is capable of

projecting high dimensional input data onto a low dimensional (typically 2 di-

mensional) array (or map). This non-linear projection produces a two dimensional

feature map that can be useful in detecting and analysing features in the input

data in which specific classes or outcomes are not known a priori, and hence

training is done in unsupervised mode. In data mining applications, the SOM

can be used to understand the structure of the input data, and in particular, to

identify clusters of input records that have similar characteristics in the high di-

mensional input space. An important characteristic of the SOM is the capability

to produce a structured ordering of the input data vectors called topology preser-

vation. Similar vectors in the input space are mapped to neighbouring nodes

in the trained feature map. Such topology preservation is particularly useful in

data analysis and mining applications where the relative positions of the clusters

contain information about their relationships.

The main problem that can be identified when using the SOM as a data mining

tool is the need for pre-defining the network structure and the fixed nature of the

network during its life cycle. The predefined fixed structure problem of the SOM

can be described in detail as follows.

1. One of the main reasons for using the SOM as a data mining tool is that it

is an unsupervised technique and as such does not require knowledge about

the data for training. However, the need to define the proper size and shape

of the SOM at the outset implies the need to understand the data, which

limits the advantage of unsupervised learning. Further, having to fix the

network structure in advance results in the development of non-optimal

SOMs where the ideal cluster structure may not be visible.

£11

2. To achieve proper topology preservation, the SOM has to be initially built

with appropriate length and width (in a two dimensional map) to match the

input data. When the network is not built to the ideal shape, a distorted

view of the topological relationships may occur, thus restricting its usage as

a data mining visualisation tool. Such a distorted picture can also provide

false information resulting in suboptimal or even wrong conclusions on a

data set.

3. When it is required to map an unknown data, the network designer may

have to build a large SOM which can accommodate any input set of the

application domain. Such networks usually tend to be larger than required

and result in slow processing time thereby wasting system resources.

10

U v •-¥*•

The need and timeliness of data mining is highlighted in section 1.1 and the need

for structure adapting neural networks is discussed in section 1.2. Therefore the

work towards ths development of an adaptable SOM structure can be considered

as

1. The development of a novel neural network model which preserves the ex-

isting usefulness and advantages of the SOM, but removes the major lim-

itation of pre-defined fixed structure. Such a model has advantages for all

applications of the SOM, and will have special advantages for data mining.

2. In the wider interest of the neural network community, the work towards

breaking the fixed structure barrier, thus a step in the direction of achieving

truly intelligent artificial systems.

1.4 Objectives of the Thesis

The development of structure adapting neural networks is an area of research

which has high potential for producing better intelligent systems [Qui98]. Several

developments in the area of supervised adaptable neural network structures have

been reported using derivatives of the back propagation algorithm. The main

categorisations of such work are, node removal methods from networks [Moz89],

[Bro94], [Sie91] and adding nodes and new connections between nodes [Han90],

[Han95], [Ash95a], [Hal97] and the adding and pruning of nodes [Bar94j. A for-

malisation of the concept of structure adapting neural networks is developed by

11

Lee [Lee91]. Although these models have been developed and improved during

the past decade, no major real life applications have yet been reported.

On the contrary, the developments in the area of unsuporvised models have

been mainly limited to attempts at extending the SOM [Fri94], [Lee91], [Mar94],

[Bla95]. Similar to the supervised models, none of these work has been applied

to real life applications. The main factor preventing practical applications is the

complexity of these modified algorithms which are resource intensive and do not

justify their usage with large and complex input data.

In the research described in this thesis we present a novel neural network model

which has features that can be exploited for data mining. The objectives in

developing such a new model are as follows.

1. Introduce adaptable architecture as a major step towards achieving intel-

ligent neural networks and highlight the advantages of such a structure

adapting SOM for the current needs of data mining applications.

2. Develop a neural network based on the concept of self organisation, which

can claim similar advantages as that of SOM for data mining applications,

and provide it with the ability to self generate the network during the

training phase, thus removing the necessity for the network designer to

pre-specify the network structure.

12

3. Provide the new model with flexibility to spread out according to the struc-

ture present in the data. Therefore the network has the ability to highlight

the structure in the data set by branching out in the form of the data struc-

ture.

4. Provide the data analyst with better control over the spread of the projected

input mapping.

5. Preserve the simplicity and ease of use of the SOM in the new model, such

that the new model can be used in real applications.

In addition to the n>ain objectives presented above, we explore the incrementally

generating nature of our new model to extend the traditional usage of feature

maps for data mining applications. Such extensions can be justified since the

current usage of the SOM has been limited only to providing visualisation of the

clusters whereas there is potential for exploiting the feature maps for other uses.

The thesis explores this proposed model further with the following expectations.

1. Automated cluster identification and separation over current visual identi-

fication.

2. Stepwise hierarchical clustering using the new model, providing the ability

to handle large data sets, and more flexible analysis by the user.

3. Rule generation from feature maps, thus breaking the traditional black box

limitation of neural network models.

13

4. Ability for data monitoring and identifying change in data using the new

model.

1.5 Main Contributions of the Thesis

The main contribution of this thesis is the development of a neural network

model (called the Growing Self Organising Map - GSOM) with the ability to

incrementally generate and adapt its structure to represent the input data. The

major difference of this approach with the traditional neural networks is that the

new model has an input driven architecture which has the ability to represent

the data by the shape and the size of the network itself. Therefore the network

designer does not have to predefine a suitable network since an optimal network

is self generated during the training phase. The new model not only relieves

the network engineer from the difficult task of predefining the structure, but

also produces a better topology preserving mapping of the data set due to the

network structure flexibility. Therefore the input clusters are better visible from

the map itself and the inter and intra cluster distances are topologically more

meaningful. Such better topology preservation is achieved since the clusters can

spread un-restricted by fixed borders as in the case of conventional SOM neural

networks. Several new concepts and features are introduced to achieve the self

generating ability and these are given below.

1. A new learning algorithm for weight adaptation of the (!SOM which takes

14

into consideration the dynamic nature of the network architecture thus

changing with the number of nodes in the network.

2. The introduction of a heuristic criteria for the generation of new nodes in

the network. The new nodes are added without loosing the two dimensional

representation of the map, thus maintaining the ease of visualisation.

3. A method of initialising the weights of newly generated nodes such that

they will smoothly merge with the already partially trained network.

4. A method of localised weight adaptation making use of the weight initialisa-

tion method in (3). Localised weight adaptation results in faster processing

as lesser number of nodes are considered for weight adjustment.

5. A new method of distributing the growth responsibility of non boundary

nodes such that the number of nodes in the network can proportionally

represent the input data distribution. Such proportional representation

results in a better 2 dimensional topological representation.

6. Introduction of a novel concept called the spread factor for controlling the

spread of the network. The spread factor can be provided as a parameter

and lets the data analyst decide the level of spread at a certain instance in

time.

15

In addition to the main contribution of developing a new model, the following

extensions are developed making use of the incrementally generating nature of

the GSOM. These additional contributions are

1. A new concept called data skeleton modeling which can identify the paths

joining the clusters in a network. The data skeleton is used to develop a

method for automating the cluster identification and separation process.

2. Formalisation of the spread factor as a better method of increasing the

spread of a map compared with the traditional method of increasing map

length and width.

3. The use of spread factor in developing an algorithm for hierarchical clus-

tering of the GSOM.

4. Development of a Attribute Cluster Relationship (ACR) model to provide

a conceptual model of feature maps for addressing the current problem of

comparing feature maps.

5. The use of ACR model for generating rules from the feature map clusters.

A new idea called query by attribute rule is introduced whereby the data

analyst can query the clusters and generate new rules.

6. A new method is proposed for identify movement or change in the data

using the GSOM clusters and the ACR model. Identification of such shift

16

in the data is proposed as a useful way of monitoring trends in the data

values for data mining.

7. Proposal for extending the crisp rules generated from the ACR model into

fuzzy rules for more human understandability and generalization.

1.6 Outline of the Thesis

Chapter 2 provides the background for the concepts and methods discussed in

this thesis. Since our main focus is on adaptable structure neural networks, this

concept is described in detail. Since SOM is used as a base for developing the

new neural network model, the traditional SOM algorithm is discussed at length

in this chapter. A review of past work on adaptable network models is also pre-

sented highlighting their limitations for real life applications, specially for data

mining.

Chapter 3 describes the development and implementation of the new Growing

Self Organising Map (GSOM) model. The GSOM is built usm^ the concepts

of self organisation, and also attempts to improve upon similar work in the past

to arrive at a more practically usable model. The new features of the GSOM

are described in detail with justification?- in the section on parameterisation of

the GSOM. Experimental results are presented comparing the GSOM with the

traditional SOM. Advantages of the GSOM due to it's ability to attract attention

•17

to the clusters by branching out is illustrated experimentally.

In chapter 4, the GSOM is used to develop a method for automating the cluster

identification and separation. The paths of spread of the GSOM is initially iden-

tified to develop a skeleton of the data clusters. Parts of the skeleton called the

path segments are removed to separate the clusters using inter cluster distances.

The new method provides an efficient and more accurate way of cluster identifi-

cation from feature maps compared to the traditional visualisation.

Chapter 5 highlights the usage of the spread factor for controlling the GSOM. At

the beginning of any data analysis, a low spread factor will produce an abstract

overview of the input data structure. The analyst can use such a map to obtain

an initial understanding of this data. For example, interesting regions of the in-

put space may be identified. These regions can then be further spread out for

detailed analysis with a higher spread factor. Initially the use of spread factor in

GSOMs is compared with the traditional method of network size enlargement in

the SOM. The problems with the traditional SOM is described and the use of the

spread factor is presented as a better alternative. The spread factor is then made

use of to develop an algorithm for hierarchical clustering with the GSOM. The

advantage of such hierarchical clustering for data mining applications is discussed

using experimental results.

18

Chapter 6 describes a further extension to the GSOM by developing a conceptual

layer of summary nodes on top of the GSOM. The conceptual layer is then used

as a base for an Attribute Cluster Relationship (ACR) model which provides a

conceptual view of the relationships between clusters. The ACR model addresses

the problem of changeable cluster positions of feature maps. Due to this problem

it becomes difficult to compare different feature maps. Using the ACR model,

an algorithm is developed to compare feature maps and to identify change and

movement in data. Chapter 6 also describes a method for rule extraction from

the GSOM clusters using the ACR model. Such rule generation can be consid-

ered as extending the traditional usage of feature maps, from a tool for cluster

identification, to a more complete data mining tool.

In chapter 7 the rule extraction using the ACR model is extended by interpreting

the cluster summary nodes as fuzzy rules. The extension facilitates the gener-

ation of fuzzy rules from the new fuzzy ACR model. The fuzzy rules provide

the ability for the data analyst to generate rules of a more abstract and general

nature compared to the crisp rules described in chapter 6. The fuzzy rules also

provide a more human like interpretation of the data clusters. The advantage of

the GSOM-ACR model over other neuro fuzzy models is that the initial clusters

are not biased by users, since they are self generated by the GSOM.

19

Chapter 8 provides the concluding remarks of the thesis. A summary of the work

described in the thesis is presented. Areas and problems for future work are

identified in this chapter.

20.

tefewjf

Chapter 2

Structural Adaptation in Self

Organising Maps

2.1 Introduction

The main contribution of this thesis is the development of a structure adapting

neural network model based on the SOM, which has specific advantages for data

mining applications. The purpose of this chapter is to provide the background

knowledge on the SOM and the concepts of structural adaptation in neural net-

works. A brief introduction to data mining and the use of feature maps for data

mining is also discussed. The chapter also provides a review of the past and

existing work on the development of structurally adapting unsupervised neural

network models.

21

Section 2.2 of this chapter provides a brief introduction to neural networks as

an introductory step for section 2.3 where the SOM is presented and discussed

in detail. Section 2.4 introduces the concept of data mining and discusses the

SOM as a data mining tool. In section 2.5 we present the concept of structural

adaptation in neural networks and section 2.6 describes the advantages of such

structure adapting neural networks for data mining. Section 2.7 presents a review

of past work on developing structurally adapting unsupervised neural network

models, and section 2.8 provides the summary for the chapter.

2.2 Neural Networks

Research in the field of artificial neural networks has attracted increasing at-

tention in recent years. Since 1943, when Warren McCulloch and Walter Pitts

presented the first model of artificial neurons [Ash43], new and more sophisti-

cated proposals have been made from decade to decade. Mathematical analysis

has solved some of the mysteries posed by the new models but has left many ques-

tions open for future investigations [Roj96]. A very important feature of artificial

neural networks is their adaptive nature, where learning by example replaced the

programming. This feature makes such computational models very appealing in

applications where one has little or incomplete understanding of the problem to

be solved but where training data is readily available [Has95].

22

In all neural network models, a single neuron is the basic building block of the

network. The operation of a single neuron is modeled by mathematical equa-

tions, and the individual neurons are connected together as a network. Each

neural network has its learning laws according to which it is capable of adjusting

the parameters of the neurons. This allows the neural network to learn [Sim96].

In most neural network models, the operation of a single neuron can be divided

into two separate parts as, a weighted sum and an output function as shown in

Figure 2.1: A typical artificial neural network

The weighted sum computes the activation level u of the neuron, while the output

function /(u) gives the actual output y of the neuron. The operation of the model

shown in Figure 2.1 is as follows. Initially the inputs rcj, i = 1,2,..., n are summed

together according to a weighted sum as

71

(2.1)
t = l

23

where W{ are the weights of the neuron for the ith input. Next, the activation level

u is scaled according to the output function. The sigmoid is the m:\st commonly

used output function [Loo97], [Gur97], and can be expressed as

V = f{u) =
1+e- cu

(2.2)

where c is a positive constant which controls the steepness (slope) of the sigmoid

function. The sigmoid function amplifies smaP activation levels, but limits high

activation levels. In practice, the output y has a value between [0,1]. If negative

outputs are also required, the hyperbolic tangent can be used in place of the

sigmoid function as

y = f(u) = tanh(cu) = "" - e-cu
oCU _4_ p — CU

(2.3)

The individual neurons are usually connected together as layers. The first layer

is called the input layer, the following layers are called the hidden layers and the

last layer is the output layer. The input layer does not usually process the input

signals, but rather distributes them to the next layer. Depending on the neural

network model, the number of hidden layers can vary from zero to several layers.

A neural network with no hidden layers is called a single layer network, and a

network containing at least one hidden layer is called a multi-layer network. Fi-

nally, the output layer gives the output of the network.

A neural network can either be feed forward or recurrent type network [Roj96].

The difference between these two is that the feed-forward type network has no

24

feed back connections while the recurrent type network has at least some feed

back connections. Usually the feed-back connections are made from the output

layer to the input layer.

The learning algorithms of different neural network models can be divided into

two major categories: supervised and unsupervised learning algorithms. In su-

pervised learning algorithms, the correct output is known during the training

procedure. The task of the learning algorithms is to minimise the errors between

the output of the neural network and the training data samples. In unsupervised

learning algorithms, the correct output is unknown during the training process.

After the training is over, the correct output can be used to label the neurons

of the output layer such that the network gives correct outputs during normal

operation. Unsupervised learning methods are better suited for exploratory data

analysis at the beginning of a data mining operation since they provide a method

of analysis without the bias introduced by a training data set. The Self Organis-

ing Map (SOM) is the most widely used unsupervised neural network model. In

the next section we present the SOM concepts and algorithm in detail.

25

2.3 Self Organising Maps (SOM)

One of the most significant attributes of a neural network is its ability to learn

by interacting with a source of information. Learning in a neural network is

accomplished through an adaptive process, known as a learning rule. With such

learning rules, a set of weights of the network are incrementally adjusted so as

to improve a pre-defined performance measure over time. The main categories

of such learning algorithms are supervised learning and unsupervised learning. In

supervised learning (also known as learning with a teacher), each input pattern

received is associated with a specific target pattern. Normally, at each step of

the learning process, the weights are updated such that the error between the

network's output and the corresponding target is reduced. Unsupervised learning

involves the clustering of (or similarity detection among) unlabeled patterns of

a given data set. With this method, the weights of the output network are

usually expected to converge to represent the statistical regularities of the input

data [Has95]. The self organising map (SOM) is a neural network which uses

unsupervised learning method and has become very popular in the recent past

specially for data analysis and mining applications. Since the focus of this thesis

is in the development of a novel neural network model based on the SOM, the

concept of self organisation and the SOM algorithm is presented in the next

section in detail.

26

2.3.1 Self Organisation and Competitive Learning

Self Organisation is a process of unsupervised learning whereby significant pat-

terns or features in the input data are discovered. In the context of a neural

network, self organisation learning consists of adaptively modifying the weights

of a network of locally interacting units in accordance with a learning rule until

a final useful configuration develops. By local interaction, it is meant that the

changes in the behaviour of a node only affected its immediate neighbourhood.

Therefore the concept of self organisation is related to the naturally ordered phe-

nomenon whereby global order arises from local interactions. Such phenomena

applies to both biological and artificial neural networks where many originally

random local interactions between neighbouring units (nodes) of a network cou-

ple and coalesce into states of global order. This global order leads to coherent

behaviour which is the essence of self organisation [Has95].

Unsupervised learning can be separated into two classes as reinforcement learning

and competitive learning [Roj96]. In reinforcement learning each input produces a

reinforcement of the network weights in such a way to enhance the reproduction of

the desired output. Hebbian learning [Heb49] is an example of reinforcement rule

that can be applied in this case. In competitive learning, the elements (nodes)

of the network compete among each other for the right to provide the output

associated with an input vector. The concept of self-organisation can be achieved

27

using competitive learning and the self organising map uses an extended version

of competitive learning in its algorithm. Since our focus is on the self organising

maps, we first describe the competitive learning rule before a detailed discussion

of the SOM algorithm.

Competitive learning

Let us assume a simple neural architecture considering a group of interacting

nodes. An example of such a network is shown in figure 2.2.

X

Figure 2.2: Competitive learning

Figure 2.2 has a single layer of nodes, each receiving the same input x = [xi, X2, • • • xm]

x € Rn and producing an output Yj, j = 1 . . . m. It is also assumed that only one

node can be active at any given input value. For a single input x — [xi, x2, •.. £m]>

28

the active node called the winner is determined as the node with the largest

weighted sum of input Xk, net\ (for node i and k = 1 . . . ra), as

net\ — wfz (2.4)

where T denotes the transpose operator, wi = [w^\,..., W^D] {D is the input

dimension) and Xk is the current input. Thus node i is the winning node if

W7 Xk < V? (2.5)

which may be written as

< \wj-xk\ (2.6)

if |tu,-| = 1, for all i = 1,2,..., m, then the winner is the node with the weight

vector closest (in Euclidean distance), to the input vector. For a given input xi

(where I = l..iV, N > 0, are the set of inputs) drawn from a random distribution

p(x), the weight of the winning node is updated (the weights of all other units

are unchanged) according to the following rule [Gro69], [Mal73].

i = <

p(xi — u>{) ; Wi is the weight vector of winning node
(2.7)

0 ; otherwise

where p in the learning rate. The preceding rule tilts the weight vector of the

current winning node in the direction of the current input. The cumulative effect

of the repetitive application of this rule can be described as follows [Has95].

If we view the input and weight vectors as points scattered on the

surface of a hypersphere, the effect of applying competitive learning

29 .

would be to sensitize certain nodes towards neighbouring clusters of

input data. Ultimately, some nodes will evolve such that their weight

vector points toward the center of mass of the nearest significant dense

cluster of data points.

A modified version of the above simple competitive learning rule can be used to

achieve self organisation as follows. Consider a network which attempts to map a

set of input vectors x\ (where I = L.iV are the set of inputs) in Rn onto an array

of nodes (normally one or two dimensional) such that any topological relation-

ships among the Xk patterns are preserved and are represented by the network

in terms of a spatial distribution of the nodes. The more related two patterns

are in the input space, the closer one can expect the position in the array of the

two nodes representing these patterns. In other words, if X\ and X2 are similar

or are topological neighbours in jRn, and if w\ and u>2 are the weight vectors of

the corresponding winner units in the net / array, then the Euclidean distance

\w\ — it^l is expected to be small. Also, \w\ — iu2| approaches to zero as X\ ap-

proaches x<i. The idea is to develop a topographic map of the input vectors so

that similar input vectors would trigger nearby nodes. Thus a global organisation

of the nodes is expected to emerge. Such global ordering can be defined as self

organisation and hence the self organisation can be realised by using a version of

the competitive learning rule.

30

An example of such a topology-preserving self-organising mappings that exist in

animals is the somatosensory map from the skin onto the somatosensory cortex

[Koh95]. The retinotopic map from the retina to the visual cortex is another

example [Koh95], [Rit92]. It is believed that such biological topology preserving

maps are not entirely programmed by the genes and that some sort of unsu-

pervised self-organising learning phenomenon exists that tunes such maps during

development of a child [Pur94]. Initial work on artificial self organisation was mo-

tivated by such biological systems and two early models of topology-preserving

competitive learning were proposed by von der Malsberg [Mal73] in 1973 and Will-

shaw and von der Malsberg [Wil76] for the retinotopic map problem. Although

these models attempt to simulate the biological process as closely as possible,

they were not feasible from a practical perspective, due to their complexity from

attempting to too closely resemble the real brain. A simpler practical version of

the self organisation concept was implemented by Kohonen [Koh82a], [Koh82b],

called the self organising map (SOM). The SOM, due to its simplicity, ease of use

and practicability has become the most widely used unsupervised neural network

today. In the next section we will discuss the concept of SOM and its algorithm

in detail.

2.3.2 The Self Organising Map Algorithm

In 1982 Teuvo Kohonen formalised the self-organising process defined by Mals-

berg and Willshaw into an algorithmic form that is now called the self organising

31

map (SOM) [Koh8l], [Koh90], [Koh91], [Koh96a], [Rit91]. The development of

the SOM was an attempt to implement a learning principle that would work reli-

ably in practice, effectively creating globally ordered maps of various sensory input

features onto a layered neural network. In the pure form, the SOM defines an

elastic net of points (reference vectors), that are fitted to the input signal space

to approximate its density function in an ordered way. The main applications

of the SOM are thus in the visualisation of complex data in a two dimensional

display, and the creation of abstractions as in many clustering techniques [Koh95].

The purpose of the SOM is to capture the topology and probability distribution

of input data [Koh89]. This model generally involves an architecture consist-

ing of two-dimensional structure (array) of nodes, where each node receives the

same input xi G Rn (Figure 2.3). Each node in the array is characterised by a

n-dimensional weight vector, where n is equal to the dimension of the input data.

The weight vector W{ of the iih node is viewed as the position vector that defines

the virtual position for node i in Rn.

The learning rule in the SOM is similar to that of competitive learning as in

equation 2.7 and is defined as :

Aw = p rwin)(xk - Wi) Vi = 1 ,2 , . . . (2.8)

where Aw; is the weight change, p is the rate of weight change and rWin is the po-

32

ooo
oooo

oooo

Two dimensional
layer of output
nodes

Node weights

• • •

X X 2

Input nodes

n

Figure 2.3: The Self Organising Map (SOM)

sition of the winning node. The winner is determined according to the Euclidean

distance as in equation 2.6. The main diiference between the SOM weight update

rule and that of competitive learning is the neighbourhood function £l(ri,rWin)

in the SOM. This function is critical for the success in preserving of topological

properties. It is normally symmetric (£l{ri,rWin) = (r* — rWin)) with large values

(values close to 1) for nodes i close to the winning node in the array, and mono-

tonically decreases with the Euclidean distance \T{ — rw i n j . At the beginning of

learning, Q(rf,rwjn) defines a relatively large neighbourhood whereby almost all

nodes in the net are updated for any input xk. As learning progresses, the neigh-

bourhood is shrunk down until it ultimately goes to zero, when only the winner

is updated. The learning rate also must follow a monotonically decreasing sched-

33

ule in order to achieve this convergence. The initial large neighbourhood can

be described as effecting an exploratory global search which is then continuously

refined to a local search as the variance of fi(r;, rwin) approaches zero. A possible

choice for Cl(ri,rWin) is :

Q(r. r .) — p-(l^-ru)miL\i u I win) — e (2.9)

where the variance o2 controls the width of the neighbourhood. Ritter and Schul-

tan [Rit88] proposed the following update rules for p and a.

PO T" (2.10)

ak =)
cr0J

(2.11)

where po,ao and p/,07 control the initial and final values of the learning rate

and neighbourhood width respectively, A;max is the maximum number of learning

steps anticipated. The computation by the repetitive use of the above process is

captured by the following proposition due to Kohonen [Koh89].

The Wi vectors tend to be ordered according to their mutual similarity,

and the asymptotic local point density of the wi, in an average sense,

is of the form g(p(x))} where g is some continuous, monotonically

increasing function.

Now we can present the self organising map algorithm in a summarised form as

follows :

34

1. Initialisation: Define the required size of the network and start with the

appropriate initial values for the weight vectors Wi, for each node. Random

initialisation of weights is commonly used.

2. Input data: Choose (if possible) according to the probability density P{x),

a random vector x representing a sensory signal from the input data.

3. Response: Determine the corresponding winning node wWin based on the
m r

condition

for all i £ A where A is the input space, x is the input vector, and Wi are

the weight vectors of the nodes i in the network.

4. Adaptive step: Carry out a learning step by changing the weights according

to

™ = <ld + P V(r, r'){x - w°r
ld)

where p is the learning rate adaptation and f2(r, r') is the neighbourhood

function.

5. Repeat the steps 2 thru 4 for each input until convergence (weight adapta-

tion « 0.

The mapping that is generated (<j)w) can be described as

(f>w : V »->• A , v (f>w(v) G A ,

35

•ii\

where (j)w(v) is defined through the condition

-v\= >r - v\

This constitutes the neural map of the input signal space V onto the lattice A

which is formed as a consequence of iterating steps 1 to 3 [Rit92]. Due to its

ability to map the features (or relationships) in the input data in a topology

preserving manner, such a map has been called a feature map of the input data.

2.4 Data Mining

In the recent past, the field of data mining and knowledge discovery has generated

wide interest both in the academic community and industry. Data Mining has

been denned as [Fay96b]

extraction of previously unknown, comprehensible, actionable, infor-

mation from large data repositories.

Although there has been many definitions and interpretations of the data mining

process [Ber97b], [Hol94], [Big96], [Fay97], two main categories has appeared

as, directed and undirected data mining or knowledge discovery. It can also be

seen that there is a section of the data mining community who identify data

mining solely with undirected data mining [Cab98], while categorising directed

data mining with statistical hypothesis testing. The argument being that we

mine for unknown, and unforeseen patterns and therefore if it is possible to build

36

a hypothesis of what we are looking for, it would not be data mining. The

SOM is widely used, both in industry and research, as an undirected data mining

technique for obtaining initial unbiased abstract view of unknown data sets.

2.4.1 The SOM as a Data Mining Tool

As described in section 2.3, the SOM is an unsupervised learning method which

has been used for visualising clusters in data by generating a two dimensional

map of a high dimensional data set. Clustering is a useful tool when the data

mining analyst is faced with a large, complex data set with many variables and a

high amount of internal structure. At the beginning of such a data mining oper-

ation, clustering will often be the best technique to use since- it does not require

any prior knowledge of the data. Once clustering has discovered regions of the

data space that contain similar records, other data mining techniques and tools

may be.used to uncover patterns within the clusters. As such, due to its ability

to generate dimensionality reducing clusters of a data set, the SOM is currently

a popular tool with data mining analysts. The SOM is generally considered as

an ideal tool for an initial exploratory data analysis phase in any data mining

operation. As described in chapter 1, such exploratory analysis provides the data

mining analyst with an unbiased overview of the data which can be made use of,

to carry out better targeted secondary detailed analysis.

Although a number of attempts have been made at mathematically analysing and

37

interpreting the SOM process [Fla96], [Fla97], [Bou93], [Cot86], [Thi93], [Yan92],

an accepted interpretation of the multi-dimensional case does not yet exist. But it

has been theoretically proven that the SOM in it's original form does not provide

complete topology preservation [Rit92], and several researchers in the past has

attempted to overcome this limitation [Rit92], [Vil97]. The topology preservation

achieved by the SOM, although not complete, has been widely made use of for

knowledge discovery applications since the usage of SOM in data mining is mainly

for obtaining an initial unbiased and abstract view of the data and not for highly

accurate classifications. Therefore the advantages of the SOM for data mining

applications can be listed as follows :

1. The SOM is an unsupervised technique and as such does not require previ-

ous domain knowledge, or target (expected) output to generate the clusters.

Therefore it can be used to cluster an unknown data set. The analyst can

then use these initial clusters to obtain an understanding of the data set

and plan further experiments or queries. The SOM can also be used as a

method for obtaining unbiased groupings from a data set about which some

knowledge or opinions exist. Such unbiased clusters may accept or reject

the existing knowledge. In either case it will contribute to the enhancement

of the understanding of the data.

2. As discussed in section 2.3 that the SOM is generated using a competitive

learning rule which was presented as equations 2.4, 2.5, 2.6. One of the

38

common applications of competitive learning is adaptive vector quantisa-

tion for data compression. In this approach, a given data set of x^ data

points (vectors) is categorised into m templates so that later one may use

an encoded version of the corresponding template of any input vector to

represent the vector, as opposed to the vector itself. This leads to vector

quantisation (compression) for storage and for transmission purposes (at

the expense of some distortion). Such compressions achieved by the SOM

is useful in initially observing a compressed abstract picture of a large data

set, and to obtain an overall picture of the data. Data compression can

also be made use of to initially study a small map and then select the areas

of interest for further analysis with larger maps. This will save time and

computer resources being spent on mapping un-interesting regions of the

data.

3. As described above, the SOM also achieves dimensionality reduction by

generating two dimensional map of a multi-dimensional data set. Such

a map is advantages in visualising inter and intra cluster relationships in

complex data with high dimensions.

Due to the above advantages and also the simplicity and ease of use, the SOM

has become a very popular unsupervised neural network method for data mining

[Wes98], [Big96].

39

2.4.2 Limitations of the SOM for Data Mining

As described in section 2.3, the SOM is normally represented as a two dimensional

grid of nodes. When using the SOM, the size of the grid and the number of nodes

has to be pre-determined. The need for pre-determining the structure of the net-

work results in a significant limitation on the final mapping. It is therefore only

at the completion of training steps that we realise that a different sized network

would have been more appropriate for the data set. Therefore simulations has

to be run several times on different sized networks to pick the optimum network

[Ses94]. A further limitation when using SOM for knowledge discovery occurs

due to the user not being aware of the structure present in the data. Therefore it

not only becomes difficult to pre-determine the size of the network, but it is not

possible to say when the map has organised into the proper cluster structure. In

fact finding the proper structure is one of the goals in data mining.

It has also been shown that the SOM forces a sh?.pe on to the feature map by

the shape and size of the grid. For example, when using a 2 dimensional grid of

nodes, the length and the width of the grid will force the input data to be mapped

to match the grid shape and size as shown in figure 2.4. Kohonen [Ko.h95] has

called this problem oblique orientation. Since in data mining applications the

analyst does not know the structure or shape of the data, it will not be possible

to initialise a proper grid size to match the data, and the analyst would not

40

(a) (b)

Figure 2.4: An example of oblique orientation (from [Koh95])

even be aware of the distortion to the map if and '<vhen such distortion occurs.

Kohonen has suggested a method called the tensorial weights to improve the

oblique orientation [Koh95], but this method only adjusts the map to fit into the

pre-defined grid size. We suggest that the solution should be to adjust the grid

size to match the map rather than the other way around. The distorted map

gives the analysts an incorrect picture of the data. To summarise the problems

with the SOM when used as data mining tool are :

1. the requirement of pre-defining the network structure, which is impossible

with unknown data.

2. having to train several times with different grid sizes to obtain a proper

map, even for the case of known data.

3. with unknown data, it will be impossible to identify such a proper map,

41

.' V "VV-. »•'

since the analyst is not aware of the relationships and clusters present in

the data.

4. oblique orientation forcing the map to be distorted, thus providing an in-

correct visualisation of the inter and intra cluster relationships.

One solution to the above mentioned problems would be to determine the shape

and the size of the network during the training. Several researchers have at-

tempted to develop such dynamic feature maps during the last few years. In

the next section we will introduce the concept of structurally adapting neural

networks and present the main work conducted towards developing such models.

2.5 Justification for the Structural Adaptation

in Neural Networks

In the previous section, the limitations of the SOM as a tool for data mining

applications is highlighted. It is also suggested that the structure of the SOM

can be generated during training, and such a dynamic model will provide a more

accurate representation of the data clusters. In this section we introduce the

concept of structural adaptation in neural networks and review some of the im-

portant work in the development of such models.

As described in section 2.2 the ability to learn is the most important property

42

1

of an artificial neural network. In almost all of the neural network models the

learning is done through modification of the synaptic weights of neurons in the

network. Such change is generally done using the Hebbian learning rule or one

of its adaptations. This kind of learning can be called a parameter adaptation

process [Lee91]. The network designer must specify the framework or structure in

which the parameters will reside. Specifically the network designer has to decide

the number of nodes, and the relationships between the nodes in the network.

When designing a feature map such as the SOM, the designer will also have to

pre-define the shape of the network by specifying the length and the width. Se-

lecting a suitable structure and relationships are important to the performance of

the neural network and the accuracy of the outputs produced will depend upon

such structure.

However choosing a suitable structure for the parameters is a difficult task, es-

pecially when the characteristics of the data are unknown. Even if a suitable

structure is selected at the beginning, if the input data or the requirements

of the application change, the system might not be able to produce useful re-

sults. The difficulties and limitations of neural networks due to conventional

fixed pre-defined structures can be summarised as follows.

1. Neural networks in nature are not designed but evolves, through several

generations, the system learns through interactions with the environment.

It has been found that the structure of the neural system not only hap-

43

pens in the long term evolution process but also in the development pro-

cess of an individual [Ede87]. Because the structure of the nervous system

evolves rather than pre-specified, it would be; very difficult to understand

the function-structure relationship in the brain and try to map it into an

artificial neural network design. Therefore, to build artifacts that display

more sophisticated brain like behaviour, it would be necessary to allow the

system to evolve its structure through the interaction with the environment.

Since in artificial neural networks, the environment is represented by the

input data, the structure of the neural network should be decided by the

input.

2. In a fixed structure network, the system adaptability is limited which re-

stricts the network capability. If the problem (specified by the input data)

changes in size, the network might not be able to scale up to meet the

requirements set by the new problem because the processing capability of

the network is limited by the number of neurons in the system. Even if the

problem does not change in size, it might change its context or the user

requirements which might require a different organisation of neurons to be

handled. There can be two possible solutions to this problem.

(a) To design a network which is large enough and has sufficient connec-

tions to handle all possible requirements and change in scale.

44

(b) Allow the

tics of the

id apt its structure according to the characteris-

specified by the input data.

3. Artificial neural networks have limited resources compared to their natu-

ral counterparts. Therefore the network designer has to be careful when

designing a network as to the usage of computing resources. Hence it will

be advantages if a neural network can develop its structure as required by

short term problem characteristics, rather than allocate all the resources

during the life time to the network at once.

Structurally adapting neural networks are introduced as a solution to the prob-

lems listed above. Such neural networks should adapt

1. the number of neurons in the network defined by the process of node gen-

eration and removal,

2. the structural, relationships between neurons by adding and removing con-

nections.

Therefore structure adapting neural networks remove the restriction of pre-defined

frames thus attaining the flexibility to better represent the data set. By incorpo-

rating unwanted node pruning, such networks can be further enhanced to change

structure and connections to the changes in the input [Lee91].

45

2.6 Importance of Structure Adaptation for Data

Mining

A neural network designer will consider the following when developing a new

neural network.

1. the input data set,

2. the application and

3. the requirements of the users.

The difficulty faced by the network designer in this situation is mainly due to

such dependence, since new networks will have to be built as the above specified

requirements change. As described in section 2.4, in most data mining applica-

tions, the data analyst is not aware of the structure in the input data. In such-

situations, neural networks which are capable of self generating to match the

input data have a higher chance of developing an optimal structure. We define

an optimal network as a network which is neither too big nor too small for the

specific data and application. When a network is too small there may be an

information loss. For example, a feature map may not highlight the difference

between some clusters. Alternatively, a network which is too large will result in

an over spread effect where clusters may be spread out too far for proper visual-

isation. A larger map will also require more computing and system resources for

46

building the network.

The advantages of adaptable structure neural networks have caused some interest

in the recent past. Several researchers have described such new neural architec-

tures, both in the supervised and unsupervised paradigms. Although these new

models obviously become more complex compared with their fixed structure coun-

terparts, significant advantages could be gained from such dynamic models. The

main advantage being their ability to grow (or change) the structure (number of

nodes and the connections) to represent the application better. This becomes a

very useful aspect in applications such as data mining, where it is not possible

for the neural network designer to be aware of the inherent structure in the data.

2.7 Structure Adapting Neural Network Mod-

els

Several dynamic neural network models have been developed in the past which

attempt to overcome the limitations of the fixed structure networks. Recent

work on such supervised models have been reported in [Hal95],[Hal97], [Wan95],

[Meh97]. There, has also been several extensive reviews [Qui98], [Ash94], [Ash95b]

on the supervised self generating neural architectures. Since the focus of this

thesis is on self generating neural networks based on the SOM, we only consider

47

the previous work related towards the development of such models. A review of

these models are presented below.

Growing Cell Structures (GCS)

The GCS algorithm [Pri91], [Pri94], [Pri92], [Pri96] has been based on the SOM,

but the basic 2 dimensional grid of the SOM has been replaced by k-dimensional

hypertetrahedrons being lines for k = 1, triangles for k = 2, tetrahedrons for

k = 3. The vertices of the hypertetrahedrons are the nodes and the edges rep-

resent neighbourhood relations. Insertion and deletion of nodes is carried out

during a self organising process similar to the SOM. For each new input v the

best matching unit (bmu) is found using a similar criteria as the SOM. The

weights of the bmu and its neighbours are adjusted as

w?w = en(v - wfd) (Vie

(2.12)

(2.13)

where JV&mu is the neighbourhood of the bmu, and e&mu and en are the learning

rates for the bmu and its neighbouring nodes respectively. Unlike the SOM, the

learning rates and the neighbourhood of winning node is kept constant. Therefore

only the bmu and its direct neighbours weights are adapted.

Every node has a local resource variable which is incremented when it is selected

as the bmu [Fri93]. After a fixed number of adaptation steps, the node q with the

48

highest resource value is selected as the point of insertion. The direct neighbour

of q with the largest distance in input space (with q) is selected as

l e Nq) (2.14)

where wq,Wf are the weight vectors of the highest resource node and its furthest

immediate neighbour and Nq is the neighbourhood of the node with the highest

resource value. A new node r is inserted between nodes q and / and the weight

of the new node is initialised as

Wr = Wf) (2.15)

The resource variable of the new neuron is initialised by subtracting from its

neighbours. Neurons which receive very low inputs (almost never become bmu)

are deleted from the network. After both node addition and deletion, further

edges are added or removed to rebuild the structure to maintain the k-dimensional

hypertetrahedron.

With 2 dimensional input it can easily be verified that the network accurately rep-

resents the input space by plotting the weight vectors in 2 dimensions. However

when the input is high dimensional, the structure may not be easily drawable.

Therefore visualising the clusters becomes a complex task. Also, the arbitrary

connectivity makes topological neighbourhoods ambiguous beyond directly con-

nected nodes. Any node may be connected to any number of neighbours, extract-

ing topological relationships of the input space from this structure may not be

49

easy. As such this method cannot be practically considered as a cluster identifi-

cation method for data mining.

Incremental Grid Growing (IGG)

IGG [Bla95] builds the network incrementally by dynamically changing it's struc-

ture and connectivity according to the input data. IGG network starts with a

small number of initial nodes, and generates nodes from the boundary of the

network whenever a boundary node exceeds a pre-defined error value. The error

value of a node is increased when the node is mapped by an input vector by the

square of the difference between the nodes weight vector and the input vector.

Adding nodes only at the boundary allows the IGG network to always maintain

a 2 dimensional structure which results in easy visualisation. The new nodes

generated are directly connected to the parent boundary node and their weights

are initialised as

1. if any other directly neighbouring grid spots of the node with the highest

error are occupied, then

(2.16)

where wneWtk is the kth component of the new nodes weight vector and n is

the neighbouring nodes of the new node.

2. if no direct neighbours exist other than the parent node,

l){wneWtk (2.17)

50

where wpar,k is the kth component of the parent node weight vector, and M is the

set m of existing neighbours of the parent. Connections between nodes are added

when an inter-node weight difference drops below a threshold value and connec-

tions are removed when weight differences increases above the threshold. Unlike

the GCS method, the IGG has been successfully tested on some real data [Bla96].

One of the main limitations of the IGG method is that due to the node gener-

ation only from the boundary of the network, it does not provide proportion-

ate representation of the input distribution by allocating nodes in the network.

Such non-proportionate representation may provide a distorted visualisation of

the clusters when the data is not uniformly distributed. The order of the data

presented to the network also may result in such a distorted picture. Another

limitation with the IGG is the time consuming calculations required for initialis-

ing the newly generated node weights a shown in equations 2.16 and 2.17. The

new node weight initialisation may become unacceptably time consuming when

used with real, complex data set [Bla95].

Neural Gas Algorithm

Martinetz et al. [Mar91] proposed an approach in which the synaptic weights Wi

are adapted independently of any topological arrangement of the nodes within

the neural network. Instead, the weight adaptation steps are affected by the

topological arrangement of the receptive fields in the input space. Information

51

about the arrangement of the receptive fields within the input space is implicitly

given by the set of distortions Dv = \v — Wi|, i = 1 . . . TV associated with each

input v. Each time an input v is presented, the ordering of the elements of

the set Dv determines the adjustment of the synaptic weights Wi. The weight

adaptation is carried out according to the formula

i = efi{Dv)(v - wt) (2.18)

where fi{Dv) is a function depending on the distortion Dv, which ensures higher

amount of adaptation for nodes which are further away in the distortion list and

vice versa. The formula is implemented as

w,»«» = in?1* + ce~kilx{v - wfd) (2.19)

where e £ [0,1] is the rate of weight adaptation, ki id the number of nodes which

have distortions greater than the specified node {i), and A is the number of nodes

with significant weight change.

Simultaneously with the weight adaptation, nodes i,j with receptive fields M*, Mj

adjacent on the manifold M develop connections between each other. The con-

nections are described by setting the matrix element d,j from zero to one. The

resulting connectivity matrix C{j at the end of the learning process represents

the neighbourhood relationships among the input data. The Neural Gas also

includes an aging mechanism for connections, where a connection d,j is removed

52

when a pre-specified life time T is exceeded.

Neural Gas uses a fixed number of units which have to be decided prior to training.

This again results in the same limitations as the SOM in data mining applica-

tions. The dimensionality of the Neural Gas depends on the respective locality

of the input data. Therefore the network can develop different dimensionality for

different sections, which can result in visualisation difficulties. Fritzke [Pri95a] has

developed a Growing Neural Gas method where the initial number of nodes do

not have to be specified. But the new method still has the limitation of variable

dimensionality, and as such is not used with complex data.

Other Algorithms

The SPAN algorithm [Lee91] and the Morphogenetic algorithm [Joc90] and the

Growing Grid [Fri95a], are other attempts to dynamically create SOMs thereby

reducing the limitations of the fixed structure networks. Although these algo-

rithms have been tested with low dimensional artificial data sets, no results have

been published on realistic data. The SPAN algorithm includes a node gener-

ation method where new nodes can be inserted in the middle of the network.

This method can become highly complex with real data sets due to the need for

adjusting the network structure after each new insertion or deletion. The Mor-

phogenetic algorithm generates a row or column of the network and as such has

the potential of generating a large number of unnecessary nodes. The Growing

53

Grid (GG) is developed by Pritzke [Fri95b] with similarities to the GCS method

but maintains a rectangular shape at all times by inserting and deleting whole

rows and columns. The GG also may generate more nodes than required at a

time and the rectangular grid removes the capability of the network to spread

out according to the shape of the cluster structure.

Some related work has also been conducted on motion perception with SOMs

[Mar90] [Mar95], [Sri97], temporal Kohonen maps [Cha93], and self organisation

in the time domain [Tay95]. Although this work cannot be directly categorised as

structurally adapting neural networks, they consist of modifications to the SOM

such that change in data can be identified, and visualised. Such modifications

provide the SOM with some dynamic ability and can become useful in data min-

ing applications.

The different structure adapting neural network models considered in this chapter

have been based on the SOM. Although they claim better and more accurate

topology preservation, the simplicity and the ease of use of the traditional SOM

has not been maintained. The GCS and the Neural Gas models can develop

maps with different dimensionality, which can become difficult to interpret. The

formulas used also result in high calculation overheads. Of all these new models,

only the IGG has been tested on realistic, and complex data sets. The main

reason being that the IGG always maintains a two dimensional output mapping

54

which can be easily visualised. As discussed above, even the IGG can result in

non-proportional mappings, and also high computational complexity. Another

limitation of the IGG is that due to only boundary nodes having the ability to

initiate new node growth, the order of the input data presentation may have

significant influence on the shape and the spread of the network. Our work

in this thesis has been focussed on the development of a structurally adapting

neural network, which improves on the usage of the SOM while maintaining its

practicability.

2.8 Summary

The purpose of this chapter is to provide the background knowledge required for

an understanding of structurally adapting self organising feature maps, which is

the focus of this thesis. The competitive learning rule and the concept of self

organisation is discussed in detail, and these concepts are used to describe the

SOM algorithm. The reasons for the current popularity of the SOM as a data

mining tool is presented and limitations in such usage are highlighted. Structural

adaptation is introduced as a method of obtaining a more representative mapping

of the data.

The second part of this chapter discussed the concept of structural adaptation in

neural networks and highlights the advantages of such networks for data mining.

55

A review of past work where such models have been developed based on the SOM

has been presented. The limitations of these models for realistic applications such

as data mining have been highlighted. The major limitation of such models is ei-

ther improper adaptation and/or computational complexity. We propose a novel

neural network model called the Growing Self Organising Map (GSOM) which is

also a structure adapting model based on the SOM, but overcomes the limitations

of the previous models that have been developed so far.

The next chapter formalises our proposed model and the subsequent chapters

discuss the optimisation of such a structurally adapting neural network and its

use in data mining functions.

56

Chapter 3

The Growing Self Organising

Map (GSOM)

3.1 Introduction

In the previous chapters data mining has been introduced as an useful activity

mainly in commercial, but also in various other fields of science and research.

The Self Organising Map (SOM) was presented as a useful unsupervised neural

network method for data mining by identifying clusters in a data set. Due to its

unsupervised learning ability, the SOM is used in scientific and commercial data

mining, specially as a tool for obtaining an initial understanding of a data set

about which little prior knowledge is available. Although widely being used, the

SOM has shown significant limitations for knowledge discovery applications and

these limitations are identified in chapter 2. The previous attempts in eliminat-

57

ing the limitations of the SOM with dynamic structure adapting neural networks

such as the Growing Cell Structure (GCS), Incremental Grid Growing (IGG) and

Neural Gas, are also discussed in chapter 2. The main focus of these dynamic

models has been the improvement of the topology preserving ability of the SOM

and thus obtaining an improved and more accurate mapping of the structure

present in the input data. The cost of such improved accuracy has been a signif-

icant increase in complexity of the algorithms.

Knowledge discovery is an application where large and sometimes complex data

sets have to be analysed. The usage of the SOM in such applications has been to

discover the segments in the data set with a view to obtaining an initial under-

standing. Therefore the popularity of the SOM as a knowledge discovery tool has

been due to its advantage as an unsupervised algorithm and also its simplicity

and ease of use. As such, improved accuracy achieved with increased complexity

of the algorithm will not be acceptable for data mining.

This chapter introduces the concept of the Growing Self Organising Map (GSOM)

[Ala98e], [Ala98a], [Ala98d], [Ala98b], and discusses its properties. The limita-

tions of the previous structure adapting feature maps are taken into consider-

ation when developing the GSOM algorithm. The main purpose of developing

the GSOM is to reduce the limitations faced by the SOM specially for knowledge

discovery applications. The GSOM attempts to preserve the simplicity, ease of

58

use and efficiency of the SOM, but removes the need of pre-defining the structure

and size of the network. Therefore apart from originating as a small network

and growing neurons as required, the GSOM incorporates a modified learning

rate adaptation method, a more localised neighbourhood weight adaptation, a

method for initialising newly generated nodes and also a measure for controlling

the spread of the network in terms of the spread factor.

i

As mentioned in chapter 1, the main focus of this thesis is the development of the

GSOM as a more useful and efficient tool over the SOM for knowledge discovery

applications. Therefore the GSOM concepts and algorithms presented in this

chapter can be considered as the foundation for the rest of this thesis. In section

3.2 the concept of the GSOM and the corresponding algorithms are presented

with implementation details given in section 3.3. Section 3.4 highlights the novel

features of the GSOM which develops it into a more advantageous method com-

pared to the SOM. Section 3.5 is a discussion of the advantages of the GSOM

for knowledge discovery by using two benchmark data sets. The first benchmark

is used to compare the GSOM with the SOM. The second experiment highlights

the possibilities of unsupervised clustering with a traditionally supervised data

set. Finally section 3.6 provides a summary of the contents of this chapter.

59

3.2 GSOM and the Associated Algorithms

3.2.1 The Concept of the GSOM

As described in chapter 2, the SOM is usually initialised to a two dimensional

grid of nodes with weight values randomly selected from the input data range.

The self organisation process discussed in chapter 2, orders and then adjusts the

weights to represent the input data. The GSOM can be considered as a novel

neural network model which is based on the same self organisation concept. In

the GSOM the nodes are generated as the data is input and only if the nodes

already present in the network are insufficient to represent the data. As such,

the weights as well as the network size and shape can be said to self organise in

the GSOM. Therefore the GSOM finally arrives at a map (network) which is a

better representation of the input data as well as having fewer redundant nodes

compared to the SOM. Hence GSOM has the flexibility to spread out and thus

arrive at a more representative shape and size for a given data set. In other

words instead of initially starting with the complete network as in the SOM, the

GSOM starts with a small network and generates new nodes where required, as

identified by a heuristic. Similar to the SOM and many other neural network

models, the GSOM has two modes of activation, namely the training mode and

the testing mode. The actual network construction and the weight adaptation

occurs during the training mode, while the testing mode is used to calibrate the

60

trained network with known inputs, when such inputs exist. The training mode

consists of the following three phases.

1. Initialisation phase.

2. Grpwing phase.

3. Smoothing phase.

These phases are described in section 3.3. With the GSOM, the network designer

does not have to figure out an optimum network structure at the beginning of

training phase since all GSOMs are initialised with four nodes. By defining a pa-

rameter called the spread factor (SF) at the beginning of network construction,

the user (data analyst) has the ability to control the spread of the GSOM. The

spread factor is used to calculate a growth threshold (GT) which is then used as

a threshold for initiating new node generation.

Figure 3.1 shows a few steps of how GSOM gradually forms the network as input

is presented. In figure 3.1 (i), a GSOM starts initially with four nodes, the weight

values of which are randomly initialised. This initial structure is selected since it

is the most appropriate as a starting point for implementing a two dimensional

rectangular lattice structure.

Once the network is initialised, input is presented to the network. For each input

the node with the weight vector closest to the input (measured as Euclidean dis-

61

n
6—6

(i)

High Errorn
(ii) (iii)

Figure 3.1: New node generation in the GSOM

tance) is judged as the winner and neighbourhood weights are nudged (adjusted)

closer to the input value by a factor called the learning rate adaptation. This

process is similar to the SOU, but as justified in section 3.4, localised neigh-

bourhood adaptation is sufficient in the GSOM since there is no ordering phase

as in the SOM. Bach time a node is selected as the winner, the difference be-

tween the input vector and the weight vector is calculated and accumulated in

the respective node as an error value. The network keeps track of the highest

such error value and periodically compares this value with the growth threshold

(GT). When the error value of a node exceeds the GT, a new node generation is

initiated (as indicated in Figure 3.1(ii)). New nodes are generated from all free

positions of the selected node (Figure 3.1 (iii)). This process continues until all

inputs have been presented. If the number of input is small, the same input set

is repeatedly presented several times until the frequency of new node generation

drops below a specified threshold.

62

After the above described node generation phase, the same input data is presented

to the fully developed network. On this occasion the weight adjustment of winner

and its neighbours continue without new node generation. At the beginning of

this phase the ini> vA learning rate adjustment value is reduced from the value used

ini;he node generation phase, as well as the neighbourhood for weight adjustment

is restricted to the winner's immediate neighbours. The purpose of this phase

is to smooth out any nodes which has not yet settled into a match with their

respective neighbourhoods, and can be compared to the convergence phase in the

SOM [Koh95]. This process is continued until convergence (error « 0) is achieved.

In the next sub-section, the three phases of the training mode are presented in

detail as the GSOM algorithm.

3.2.2 The GSOM Algorithm

The GSOM training algorithm is presented below according to the three phases

of initialisation, growing and smoothing. The process is started by generating

the initial network of four nodes and the user providing the parameter values

for the initial learning rate adaption, spread factor and the number of instances

(records) in the input data set. Therefore the training algorithm can be presented

as follows.

1. Initialisation Phase

63

(a) Initialise the weight vectors of the starting nodes in the initial map

with random numbers between 0 . . . 1.

(b) Calculate the growth threshold (GT) for a given data set according to

the spread factor (SF) using the formula

GT = -Dx In (SF)

where D is the dimensionality of the data set. The growth threshold

is used to identify nodes from which new nodes need to be grown. The

criteria for such node growth is presented in the next section. The

formula for GT is explained further in section 3.4.

2. Growing Phase

(a) Present input to the network.

(b) Determine the node with the weight vector that is closest to the input

vector, using Euclidean distance measure (similar to the SOM). In

other words find a node q' in the current network such that \v — wq>\

< \v — wq\ Vq = 1. . .A/* where v,wq are the input vector and weight

vector of the node q respectively, q is the position vector for nodes in

the map and J\f is the number of existing nodes in the map.

(c) The weight vector adaptation is applied only to the neighbourhood of

the winner and the winner itself. The neighbourhood is defined as a

set of nodes which are topographically close in the network up to a

64

certain geometric distance. For example, 4 neighbours are defined in

the 4 directions. In the GSOM the starting neighbourhood selected for

weight adaptation is smaller compared to the SOM (localised weight

adaptation). The amount of adaptation also known as learning rate

r

is reduced monotonically over the iterations such that the weight val-

ues will converge to the input data distribution. (Such learning rate

reduction is required for convergence in self organising system). Even

within the neighbourhood, amount of weight adaptation of a node is

in proportion to the respective node distance from the winning node,

and this will eventually result in similar input values getting clustered

(or assigned to nodes which are closer in the network) in the map.

More formerly the weight adaptation can be described as

. Wj{k) + LR(k) x (xk - Wj Nk+l

where the learning rate LR(k), k e M is a sequence of positive parame-

ters converging to 0 as k —> oo. Wj(k), Wj(k + 1) are the weight vectors

of the the node j , before and after the (k + l)th iteration, and N^+i is

the neighbourhood of the winning neuron at (k + l)tk iteration. The

decreasing of LR(k) in the GSOM, depends on the number of nodes

65

that exist in the network at a given time k (which will be described in

section 3.4).

(d) Adjust the error value of the winner (error value is the difference be-

tween the input vector and the weight vector) as :

jpnew old

\

D

t = l

where E{ is the error of node i, D is the dimension of the data and xt-

and W{ are the input and weight vectors of node i respectively.

(e) When J5,- > GT (where E{ is the total error of node i and GT is the

growth threshold), grow nodes if i is a boundary node, else distribute

the error of the winner to its neighbours if it is a non-boundary node.

The method of error distribution is described in'section 3.4.5.

(f) Initialise the new nodes weight vectors to match the neighbouring node

weights (described in 3.3.2).

(g) Initialise the learning rate (LR) to it's starting value, which is the

value provided as one of the parameters by the user at the beginning

of the initialisation phase.

(h) Repeat steps a to g until all inputs have been presented, and the fre-

quency of node growth is reduced to a low level, which can be decided

by the user by providing a threshold value (such as, stop the growing

phase when a new node added after only after 100 iterations).

66

3. Smoothing Phase

(a) Calculate new parameter values for learning rate and the starting

neighbourhood by reducing the learning rate and the starting neigh-

bourhood from respective values used in the growing phase. For exam-

ple, in the experiments with the GSOM the initial learning rate was

reduced by half in the smoothing phase and the starting neighbour-

hood was fixed at only the immediate four neighbouring nodes.

(b) Present input (same inputs as in growing phase) to the network.

(c) Find winner and adapt weights of winner and neighbours with the

changed parameter values.

(d) Repeat steps (b) and (c) until the error value (between input and

weight of the winning node) approaches zero. When the error « 0 the

weights of the nodes are converged and the GSOM creation process is

considered as complete.

From the above algorithm we can say that the SOM attempts self organise by

weight adaptation while the GSOM adapts its weights and architecture to repre-

sent the input data.

67

3.3 Description of the Phases in the GSOM

In this section we provide detailed description of each of the phases in the GSOM

algorithm. Although based on the SOM, the GSOM includes a number of sig-

nificant variations which are required to implement its adaptable structure. Sec-

tion 3.3.1 describe the starting parameters required by the GSOM. Section 3.3.2

describes the growing phase. The criteria for deciding new node growth and the

method of initialising the weights of such new nodes are described in this section.

Section 3.3.3 discuss the need and the function of the smoothing phase.

3.3.1 Initialisation of the GSOM

We initialise the network with four nodes in a two dimensional form. Such a

structure is selected because

• it is the most appropriate starting position to implement a two dimensional

lattice structure, since it is the smallest possible grid (we do not consider

initialising with one node due to implementation difficulty).

• with this initial structure, all starting nodes become boundary nodes (nodes

at the boundary of the map) which can initiate new node growth if required,

thus each node has the same freedom to grow in it's own direction at the

beginning (Figure 3.2).

The starting four nodes are initialised with random values from the input vector

value range. Since we normalise the input vector attributes to the range 0..1, the

68

Figure 3.2: Initial GSOM

initial weight vector attributes will take random values in this range. Therefore

at the beginning, we do not enforce any restrictions on the directions of the lattice

growth. Thus the initial rectangular shape with the randomly initialised weights,

lets the map grow in any direction solely depending on the input values. A

numeric variable HiErr is initialised to zero at the start. This variable will keep

track of the highest accumulated error value in the network. A value called the

spread factor {SF) has also to be specified. The SF allows the user (data analyst)

to control the growth of the GSOM, and is independent of the dimensionality of

the data set used. SF can take values in the range 0..1, and the data analyst

needs to decide an appropriate value at the beginning of the algorithm. A low SF

will result in less spread out in the map and a high SF will produce a well spread

map. SF is used by the system to calculate the growth threshold (GT). This will

act as a threshold value for initiating new node generation. The justification for

the SF and the derivation of the formula for GT is described in section 3.4.

69

3.3.2 Growing Phase

The second phase of building the GSOM is the growing phase. In this phase we

will describe the criteria used for generating new nodes and also the novel method

used in initialising the weights of the new nodes. The input vectors will be used

to grow the network as well as adapt its structure. A number of parameters that

are used in this phase will determine the final shape of the network. Both the

method of growing the network and the effect of the parameters will be described

in this section.

New node generation

In the growing phase, the GSOM needs to generate nodes to represent the in-

put data space. Therefore it is necessary to identify a criterion to initiate new

node generation. To determine the criterion, we consider the following behaviour

during training of a feature map.

If the neural network has enough neurons to process the input data then

during training the weight vectors of the neurons are adapted such that the

distribution of the weight vectors will represent the input vector distribu-

tion.

If :;he network has insufficient neurons, a number of input vectors, which

otherwise would have been spread out to neighbouring neurons, will be

accumulated on a single or a small set of neighbouring neurons.

70

Therefore we introduce a measure called the error distance (E) as

D

(3.1)

The error measure is calculated for neuron i at time (or iteration number) t, D

is the dimension (number of attributes) in the input data, and v, w are input

and weight vectors respectively. Met is a metric which measures the distance

between the vectors v and w. Thus for each winner node, the difference between

the weight vector and the input vector is calculated as an error value. This value

is accumulated over the iterations if the same node wins on several occasions.

Using Euclidean distance as the metric we can re-write equation 3.1 as

Tpnew rpold
Ei ~ Ei \

Dim

£ (vi - "0s (3-2)

A variable HiErr is used such that at each weight updating, if Efew > HiErr

then HiErr = Efew else HiErr is unchanged. Thus HiErr will always maintain

the largest error value of the neurons in the network. The error value calculated

for each node can be considered as a quantisation error for that node and the

total quantisation error would be

N

t = l

(3-3)

where N is the number of neurons in the network and E{ is the error value for

neuron i. We use QE as a measure of determining when to generate a new neuron

(or node). If a neuron i contributes substantially towards the total quantisation

error, then its Voronoi region V* in the input space is said to be under-represented

71

by neuron i. Therefore a new neuron is created to share the load of neuron i. To

determine the neuron which is being over burdened with the inputs we use the

partial differentiation of the total quantisation error by Voronoi region, there by

identifying the quantisation error for the regions. Therefore, the criteria for new

node generation becomes

dQE
Ei>GT (3.4)

where GT is the growth threshold calculated using the spread factor as described

in section 3.2. Since in our implementation HiErr contains the largest error

value for a neuron, we can re-write this equation 3.1 as

grow new nodes if HiErr > GP

New nodes will always be grown only from a boundary node. A boundary node

is a node which has at least one of its immediate neighbouring positions free.

Since we assume a 2 dimensional network and the initial network has 4 nodes

organised on a square, each node will have 4 immediate neighbouring positions.

Thus a boundary node can have fron> 1 to 3 neighbouring positions free (2 free

positions each for the initial 4 nodes). If a node is selected tor growth because

of HiErr > GP as explained above, then new nodes are created in al' it's free

neighbouring positions. We generate new nodes on all free neighbouring positions

since it is easier to implement than calculating the exact position for the new node.

This will create some redundant (dummy) nodes, but we can easily identify and

72

remove the dummy nodes after a few iterations as they will accumulate less

(almost zero) hits (or less error value).

Weight initialisation of new nodes

The newly grown nodes need to be assigned some initial weight values. Since the

older nodes would be at least partly organised at this stage (self organisation of the

existing nodes happens from the start), random initialisation of the new nodes will

introduce weight vectors which do not match their neighbourhoods. Therefore, we

need to take into consideration the smoothness already achieved by the existing

map and thus initialise the new weights to match their neighbourhoods. For the

weight initialisation of new nodes there are four different situations that need be

considered (Other situations are mirror images of these situations) as shown in

Figure 3.3. In Figure 3.3 new node is indicated by a circle while the existing

neighbouring nodes are indicated by black circles.

W2 Wl Wn

(a)

W2

Wl

0

• O w
(c)

W 1

(d)

Figure 3.3: Weight initialisation of new nodes

73

First consider the case where the new node has two consecutive old nodes, both

on one side (Figure 3.3(a)).

if iu2 > IO 1

then wncw = wl — (w2 — wl)

if wl > w2

then wnew = wl + (wl — w2)

The rationale behind this new weight calculation is to initialise the new node to

fit in with the existing weight values in a monotonically increasing or decreasing

manner. This will ensure that the weights of the map are ordered even at initial-

isation. Such order will reduce the amount of weight smoothing required and will

result in less chances of twisted (deformed) maps [Koh95].

In the second case (Figure 3.3(b)) when the new node is in between two older

nodes (with weights Wi and W2) the weight of the new node will be calculated as

Wnew =

The same rationale as in the first case of smooth merging of weights is also used

in this case.

The third case is when the new node has only one direct neighbour (the parent)

older node (Figure 3.3(c)). But the older node has a neighbour on one side which

74

is not the side directly opposite the new node itself. In this case

if w2 > wl

then wnew = wl — (w2 — wl)

if wl > w2

then wnew = wl 4- (wl — w2)

In this case, since there is no node directly in-line to measure the monotonically

increasing/decreasing nature, we take the closest neighbour on that side as an

alternative.

The fourth situation is where the new node has only one neighbouring node. This

can occur when a node which has become isolated due to node removal, initiates

growth again. Therefore this is a situation which will occur rarely due to an

unusual sequence of input presentation to the network (Figure 3.3(d)). In this

case, the weight value of the new node will be

— m where m = (rl + r2)/2

and r l , r2 being the lower and upper values of the range of the weight vector

distribution (in most applications, since the input values are scaled to the range

[0..1], r\ = 0,7*2 = 1). The rationale for calculating this value is that, since

75

sufficient neighbourhood nodes do not exist to calculate a suitable new weight for

this node> we initialise it with the middle of the weight distribution range. The

self organisation process then adjusts the weight to fit in with the global spread

of weights. This method is also used to provide initial values to the nodes when

the values calculated by the other methods (shown in Figure 3.3(a), (b) and (c))

are out of the weight range (for example < 0 or > 1).

The above weight initialisation method has been developed taking the properties

of the organised SOM into consideration. Once the weights converge the map

will achieve a state where the weight vectors of the nodes in the map will take

I
I monotonically increasing or decreasing values from end to end. This can be
\
8 described as the flow of the weight vectors in the converged map.

3.3.3 Smoothing Phase

The smoothing phase occurs after the growing phase. The growing phase is halted

| when new node growth saturates, which can be identified by the low frequency of

new node growth. Once the node growing phase is complete, the weight adapta-

tion is continued with a lower rate of adaptation in the smoothing phase. No new

nodes are added during this phase. The purpose is to smooth out any existing

quantisation error, specially in the nodes grown at the latter stages of the growing

phase.

76

During the smoothing phase the same inputs as the growing phase are input to

the network. The starting learning rate (LR) in this phase is less than in the

growing phase, since the weight values should not fluctuate too widely since this

I will hinder convergence. The input data is repeatedly entered to the network
Ml

I
I until convergence is achieved. The smoothing phase is terminated when the error

values of the nodes in the map become very small.

Therefore the smoothing phase has the following differences from the growing

phase.

1. The learning rate (LR) is initialised to a lesser value.

2. The neighbourhood for weight adaptation is constrained only to the imme-

I diate neighbourhood (even smaller than in the growing phase).
i
I
| | 3. The learning rate depreciation (rate of decrease) is smaller.

4. No new nodes are added to the network.

3.4 Parameterisation of the GSOM

In the previous section, the concept of the GSOM and its algorithm is presented

in detail. The GSOM algorithm is based on the SOM but has been extensively

modified to cater for the needs of structure adaptation by node growing. The

novel aspects of the GSOM algorithm are :

77

• The new learning rate adaptation method

• Localised neighbourhood weight adaptation
I
I

• Criteria for new node generation

• New weight initialisation method for the new nodes

• Error distribution when a non-boundary node satisfies the criteria for node

generation

• The concept cf the spread factor to control the growth (size) of the network.

In this section we analyse and justify the introduction of these new methods

and discuss the implications and methodology for choosing the values for the

parameters.

3.4.1 Learning Rate Adaptation

The use of learning rate adaptation of the GSOM is described in section 3.2.

Since the learning rate has to be provided as a parameter at die start of building

I the network from the given data, we need to consider it as part of the initialisa-

tion of the GSOM. As described in chapter 2, the learning rate should gradually

decrease with iterations, finally approaching to zero whc the node weights con-

verge. One possible formula for learning rate reduction used in the SOM is given

in equation 3.5.

LR(k + 1) = LR(k) x a (3.5)

78

I
5

where a is the learning rate reduction, and is implemented as a constant value

0 < a < 1, and LR(k) is the learning rate at the klh iteration. The use of a in the

equation 3.5 makes LR(k) to converge to 0 as t —> oo. In the GSOM, Li? is first

initialised with a high value, similar to that of SOM. However since the GSOM

has only a small number of nodes in the initial stages, completely different inputs

can be presented to the map consecutively and can be mapped to neighbouring

nodes in the network. This can occur when tlie input vectors are presented to the

network in random order. This situation can be described with figure 3.4 where

the initial GSOM is shown with the initial randomly initialised weight values.

The weight values for the nodes P, Q, R, S in figure 3.4 : e assumed to be,

WP = (1,0.85,0.7), WQ = (0.4,0.3,0.2), W* = (0.05,0.r i >}), Ws = (0.7,0.8,0.3).

winner

winner
vGc) - (0,0,0)

(a)

v(k+l) = (0.8,0.8,1)

Figure 3.4: Weight fluctuation at the beginning due to high learning rates

Assume an input v(k) = (0,0,0), then according to the rule described in section

3.2 it will be mapped to the node with weight WR because the error value will

79

be the smallest. Since there are only four nodes in the network, the whole net-

work will become the neighbourhood and the weights of the neighbours would

be adjusted towards WK- Since the inputs are randomly presented, we assume a

situation where the next input to be v(k + 1) = (.8, .8, .9), and this input vector

will get mapped to node P which will cause all the node weights to be adjusted,

now in the, opposite direction. As such due to the small network size, weight

values of the whole network will keep fluctuating in different directions until the

network is sufficiently grown such that the whole network will not be included

as the neighborhood. Therefore a modification of the learning rate formula is

required to rectify this problem, which can otherwise result in distorted maps.

The GSOM uses a similar method as SOM for initialising the LR to a high value

and letting it decrease to zero after a number of iterations. However, in the

GSOM, during the growth phase, the LR is initialised to its starting value with

each new input. Such renewing of LR is required in the GSOM to accommo-

date newly grown nodes into the existing network. Therefore with a small initial

network a high LR value is repeatedly used on all the nodes, each time a new

input is presented, and if consecutive inputs have large variation, the weights

of all the nodes can fluctuate by a large value in different directions. This has

proved to be detrimental to the generation of a well spread map, since the initial

small network should ideally provide the directions of expansion for the network

according to different clusters of similar weights. Therefore the initial indecision

80

by the small network (due to the wide fluctuation) will result in a map which

does not sufficiently separate the different regions (clusters) in the input.

One way of improving this situation is to order the data according to attribute

values, since the ordered data vectors will make the map grow in a certain direc-

tion. Therefore by the time a different type of input is presented, the map will

be sufficiently grown, such that all the nodes will not fluctuate towards the new

input. Although this method is practical with a known, small data set, it would

be impossible to order an unknown data set since the data analyst is not aware

of the relationships between the attributes.

Therefore as a solution, we have introduced a new learning rate reduction rule

which takes the number of current nodes in the neural network into consideration.

The new learning rate reduction rule is

LR(k + 1) = a x ip{n) x LR(h) (3.6)

where ip{n) is a function of n(i), the number of nodes at iteration t in the map, and

is used to manipulate the LR value. That is, ip(n) is a function which gradually

takes a higher value as the map grows and the number of nodes becomes larger.

One simple formulation for ip(n) is

= (1 - R/n{t)) (3.7)

81

and in our experiments we have chosen R = 3.5.

= (1 - 3.5/n(t))

The new formula will force the following functionality on the weight adjustment

algorithm.

1. At the initial stage of growth, when the number of nodes are few, the high

LR values will be reduced with the ip(n). This will result in reducing the

fluctuations of the weights of a small map.

2. As the network grows, the ^(n) will take gradually higher values which will

result in the LR not being reduced as much as in the situation described in

(1). Since the map is now larger, we require the high LR to self organise

the weights within the regions of the map (the high LR will not affect the

other regions at this stage due to the map being larger and the other regions

will not belong to the same neighbourhood).

Therefore the modified formula provides the GSOM with the required weight

adjustment, which results in providing a better organised set of weight values

which will then be further smoothed out during the smoothing phase.

3.4.2 Criteria for New Node Generation

The weight vectors of the nodes (neurons) in the GSOM can be considered as a

vector quantisation of the input data space. Therefore each neuron i can be said

82

to represent a region V{ where all the points in the region are closer to W{ (the

weight vector of neuron i) than any other neuron in the network. Therefore we

can say that the weight vectors partition the input space into Voronoi regions

[Oka92], with each region represented by one neuron.

In section 3.2 we described the difference between the input vectors and the

corresponding weight vectors which become the accumulated error values of each

node. Therefore the quantisation error of the S3'stem (at iteration t) can be

shown as the expectancy value of the variance between the input vectors x and

the representative vectors r by

= E[\x-r(x)\2} (3.8)

Using the weight vector w as the representative vector, equation 3.8 can be shown

as an integration

QE(t) = / \x - w\2p{x)d{x) (3.9)

where V = \Jies K' is the input data space with S input records and p(x) is

the probability distribution of the input vectors v. If a neuron i contributes

significantly to the total error (distortion) of the network, then it's Voronoi region

Vi in the input data space is thought to be under represented by the neuron i.

Therefore a new neuron is generated as a neighbour of the neuron i to achieve a

better representation of the region. Such new neuron generation is expected to

distribute the error in the region among the old and new neurons thus reducing

83

• « •

the individual node error. As explained in section 3.2, the error value of a node

can exceed the GT (growth threshold) value for growth to occur. Whenever an

input vector falls (assigned) into the Voronoi region Vi, the input is mapped to

neuron i. Therefore we can write the distortion (or quantisation error) for the

network by integrating the individual error values over the total input regions

(all Voronoi regions) as

M

= £ \x(t) - Wi(t)\2p(x)d(x)
i=ly

(3.10)

where x, w are the input and weight vectors respectively, p{x) is the probability

of the input x being assigned to Voronoi region V and t is the iteration number.

The probability of an input being assigned to neuron i (the Voronoi region K)

1
will be

i = Jp{x)d{x)

Equation 3.10 can be now replaced by

(3.11)

y.

substituting from equation 3.8 we get

(3.12)

M

QE(t) = £ E[\x(t) - w(t)\2 x e V{) P{
t=i

(3.13)

M

t = i

where e{ is the average error for neuron i.

(3-14)

84

The equation 3.14 shows that any neuron i contributes e*Pi to the total quantisa-

tion error, Therefore we can see that the total error is made up of the difference

between input and weight vectors (ej) and also the probability of the input being

mapped to a neuron (Pi). The probability of input to a region can be interpreted

as the density of input distribution for that region. Therefore we can see that the

new node generation can occur in two situations.

1. A very high number of hits in the Voronoi region of the node itself creating

a high density region.

2. A boundary node (nodes at the edge of the network) being assigned inputs

which would have been mapped to another node, if such nodes existed in

the network.

We use Figure 3.5 to demonstrate the two different instances of new node gen-

eration using Voronoi regions. Figure. 3.5 shows four nodes with weight vectors

W\ to W4 and their respective Voronoi regions in two dimension. v\ to vn+i are

the input vectors which have been assigned to the regions. i?i,i?2 and Rs are 3

Voronoi regions. We will consider the two situations (1) and (2) mentioned above

with this diagram.

In Figure 3.5(a), a large number (n) of inputs have been assigned to the node

with weight value W2 (region Ri, which is a boundary region). In this case the

error value E = £"=1 (v{ - wt)
2, can exceed the GT (Growth Threshold) value

85

(a)

Figure 3.5: New node generation from the boundary of the network

due to the high density of inputs in the region R\. Therefore new nodes will be

generated as shown in Figure 3.5(b) (regions , which will now compete

with Ri for the inputs. If the high error value in region R\ is mainly due to a

very high density in the area, further inputs will be assigned to region Ri instead

of being diverted to regions R2 and Rz (input values will be closer to Ri than R2

86

and R3). In such a case, error of region R\ will keep on accumulating without the

ability to grow new nodes {R\ is now a non-boundary region). This becomes a

major limitation as it will result in dis-proportionate map areas being assigned to

different subsets in the input. The traditional SOM relies on the self organisation

process^to smooth out this problem but we have developed a novel method which

has shown good results. The significance of this limitation of dis-proportionate

representation and our proposed measures for reducing such limitations is dis-

cussed in section 3.4.5.

I Figure. 3.5(c) illustrates the situation where region i?i, is a boundary node and

has been assigned inputs which should be mapped to further nodes if such nodes

existed. That is, the region has been assigned with inputs (vn+i,vn+2) in the

Figure 3.5(c)) which have large variances with weight W2. As such the only reason

the inputs have be.iii assigned to the region is that it is the closest available due

to the lack of suitable weight values. Since the error values for such inputs will

be high, error (E) in the region will exceed GP mainly due to the high values of

(Wi — V{) and not due to the high density in the region as discussed earlier. In

this case (Figure 3.5(d)), new regions will be generated and the newly generated

regions R2 and R3 will be assigned with some inputs (as new inputs are read

in) which were earlier assigned to region R\. Therefore, the creation of the new

region results in the network growing to better accommodate the input data. Such

growth results in the gradual generation of GSOM, where the rate of growth of

87

m

new nodes will decrease as sufficient nodes for representing the input data become

available.

3.4.3 Justification of the New Weight Initialisation Method

In the SOM, the weight values are initialised with random numbers generated

within the input range. The weight initialisation method of the GSOM is de-

scribed in section 3.2. This method has been developed for the purpose of as-

signing weight values for the newly generated nodes such that the weights of the

nodes are always in an ordered state according to their position in the network.

We describe such an ordered state below by using a one dimensional array of

nodes with position index values of 1 to n and with weight of Wi to wn respec-

tively. If Wi is the weight vector of node i, the degree of ordering can be simply

expressed by an index of disorder D as,

(3.15)
i=2

where D > 0. This one dimensional array lets us intuitively picture the ordered

state as the values W\,..., wn are ordered if and only if D = 0, which is equivalent

to saying that wx > w2 > •.. > wn or w\ < w2 < ... < wn. This can also be

described as monotonically increasing or decreasing values of W{.

- •

There are two reasons for using such a new method for weight initialisation in

the GSOM.

1. The new nodes in the GSOM are generated during the growing phase, in-

terleaved with the self organising (weight adaptation) process. In fact, it

is the weight adaptation process which decides when and where to gener-

ate new nodes. Therefore, a newly generated node will find its neighbours

(and the whole map) has been partially ordered by the weight adaptation so

^ far. Random weight initialisation at this stage would introduce unordered

weights in to the partially ordered map. Although the GSOM algorithm

has been developed to recover from such situations by initialising the learn-

ing rate (LR) for each iteration as described in section 3.4.1, unrecoverable

distortions might still occur if the new weight has a large deviation from

the neighbouring node weight values. The new weight initialisation method

uses the weights of neighbouring nodes to calculate the weight values of

the new nodes. Therefore chances of an un-recoverable distortion is greatly

reduced.

2. Kohonen has described a possible weight initialisation method called the

linear initialisation [Koh95], where any ordered initial state is described

as profitable. The profitability in such a case is considered as faster and

smoother convergence due to the ordered weight values letting the network

directly start the learning with the convergence phase, whereas randomly

initialised weights will first have to be ordered. This will allow the use

of small values for LR (0 < LR < 0.5 instead of 0.5 < LR < 1) at the

89

beginning, to approach the equilibrium smoothly. With the new weight

initialisation method, the GSOM will always have an ordered set of weights.

Therefore, once the node growing is complete, the smoothing phase will

easily smooth out any existing deviations.

The weight initialisation method of GSOM therefore imposes the one dimensional

definition of ordering in equation 3.15 to calculate the weight values for new nodes.

Since the node growth occurs according to a two dimensional axis system, the

two axis can be separately considered as two one dimensional arrays of nodes

to define their order according to the above one dimensional definition. For

example, for any node z, we consider the vertical and horizontal one dimensional

arrays to confirm their orderliness. For an grid o f n x m nodes, the confirmation

of n+ (m — 1) nodes for order can confirm the order of the whole grid. The weights

are further smoothed out by the on going weight adaptation (self organisation)

process.

3.4.4 Localised Neighbourhood Weight Adaptation

During SOM training, the neighbourhood (for weight adaptation) is large at the

beginning and will shrink linearly to one node during the ordering stage. The

ordering of the weight vectors W{ occurs during this initial period, while the re-

maining steps are only needed for the fine adjustment (convergence) of the map.

The GSOM does not require such an ordering phase, since new weight nodes are

90

initialised to fit in with their neighbourhoods, but require repeated passes over a

small neighbourhood where the neighbourhood size reduces to unity. The start-

ing (fixed) neighbourhood size can be considered small compared to that of SOM

neighborhood since the initial neighbourhood in the SOM is normally considered

to be the whole network. Therefore the GSOM achieves the convergence with

localisedjieighbourhood adaptation. During the growing pha: •, <;he GSOM ini-

tialises the learning rate and the neighbourhood size, to the starting value at each

new input. Weight adaptation is then carried out with reducing neighbourhood

and learning rate until neighbourhood is unity, and initialises again for the next

new input. It is possible that such weight adaptation will occur in overlapping

neighbourhoods for consecutive inputs as can be seen in Figure 3.6 where the

overlapping neighbourhood is shown by the shaded area.

0
0

0
0

0
0

0
0
0

0
0
0

(b)

Figure 3.6: Overlapping neighbourhoods during weight adaptation

It is important that such localised neighbourhood weight adaptation does not

create disorder among the existing ordered weights. We show that such a disorder

91

will not occur as follows. The weight adaptation of the GSOM can be considered

as

d
- — ij)(n) x LR x (v — (3.16)

for i e and

dt
- = 0 Otherwise (3.17)

An ordered set of weights iui,iu2,... iun cannot be disordered by the adaptation

caused by equation 3.16, since if all partial sequences are ordered, then equation

3.16 cannot change the relative order of any pair (wi,Wj),i ^ j . This proves

that once the weights are ordered (by initialisation and self organisation), further

weight adaptation according to equation 3.16 will not create disorder. Therefore,

we can say that weight updating in overlapping neighbourhoods (overlapping for

different inputs) will not create disorder in the map.

The outcome of the localised weight adaptation are

1. the reduction in processing speed due to the need of repeatedly initialising

the neighbourhood size of new inputs in the GSOM is offset by the small

initial neigbourhood size compared to the SOM. Having to start with a

large neighbourhood results in slow processing in the SOM.

2. the small neighbourhood also results in the need of updating weights of

fewer nodes. This also results in faster processing of inputs in the GSOM.

92

3.4.5 Error Distribution of Non-boundary Nodes

The GSOM generates new nodes only from the boundary of the network. The

advantage of this is that the resulting network is always a two dimensional grid

structure which is easier to visualise. A limitation with this method arises when

the error value of a non-boundary node exceeds the growth threshold (GT) due

to high density areas in the data. In such instances, the non-boundary node is

unable to generate new nodes. This will result in certain non-boundary nodes

accumulating a large number of hits due to high density regions in the input data

space. Therefore the resulting map may not give a proportionate representation

of the input data distribution. Such proportionate representation has been called

as the Magnification Factor [Koh95]. In biological brain maps, the areas allocated

to the representation of various sensory features are often believed to reflect the

importance of the corresponding feature sets. Although we do not attempt to

justify the GSOM with biological phenomena, such proportional representation

of the frequency of occurrence by the area in a feature map would be useful for a

data analyst to immediately identify regions of high frequency, thus giving some

idea about the distribution of the data.

Due to the restriction of only being allowed to grow from the boundary, it was

found that other than for the very simple data sets, the GSOM will stop growing

when a certain amount of spread has been achieved. This occurs when sufficient

93

nodes to map the different regions of input data has been generated depending

on the order of input presentation to the network. For example, if the data is

presented in some sorted order, the map will spread in an orderly fashion in one

direction, but when the data is presented randomly, an input data region with

high density can get caught inside the network due to being mapped to a node

has become a non-boundary node. In this case, the high density region

will keep on accumulating hits without the ability to spread out.

In the SOM this situation is left to be handled by the self organisation process,

and sufficient number of iterations will result in the map spreading out, provided

a large enough grid is created initially. In the GSOM since the requirement is

to grow nodes as and when required, there has to be a mechanism to initiate

growth from the boundary for the map to spread out. We have implemented the

following error distribution mechanism to handle such a situation.

When a boundary node is selected for growth, the error value of a non-boundary

nodes in the neighbourhood is reduced according to the equation below.

= GT/2 (3.18)

where E™ is the error value of the winner, and GT the growth threshold. The

error value of the immediate neighbours of the winner are increased as

(3.19)

94

where Ef^i = 1..4) is the error value of iih neighbour of the winner E™ and 7 is

a constant value called the Factor of Distribution (FD) which controls the error

increase and 0 < 7 < 1.

By using equation 3.18, the error value of the high error node is reduced to half

the growth threshold. With equation 3.19, the error value of the immediately

neighbouring nodes are increased, therefore the two equations produce an effect

of spreading the error outwards from the high error node. This type of spreading

out will in time (iterations) ripple outwards and cause a boundary node to increase

it's error value. This is pictorially shown in Figure 3.7.

Figure 3.7: Error distribution from a non-boundary node

Therefore the purpose of the equations 3.18 and 3.19 is to give the non-boundary

nodes some ability in initiating (although indirectly) the node growth.

The additional equations result in a better spread map which provides easier

95

visualisation of the clusters. To demonstrate the significance of this method

experimentally, we use a data set consisting of 99 animals. The data is 17 dimen-

sional and mainly consist of binary attributes, and the full data set is listed in

appendix A. For the experiments described 16 of the 17 attributes are selected,

leaving out the type. We let the unsupervised GSOM algorithm cluster the data

without introducing the pre-defined bias by providing the type as an attribute.

The non-binary attribute (number of legs) is coded to take values in the range

[0..1]. Figure 3.8 shows the GSOM generated for the data without applying the

error distribution equations 3.18 and 3.19 and Figure 3.9 shows the GSOM pro-

duced by using the formulas. It can be seen from Figure 3.8 that the map gives a

very congested view of the data. This is due to the fact that the growth can only

occur from the boundary of the map. It can be seen that the Figure 3.9 gives a

much better spread of the data set.

worm
slug

0 O
octopus 0 0 O

crab0 o 0 O

!

Otli

o
o

lobster bee, wasp

.quirrclo

0
o

1
o
0

o
o
o

J1

o
0

0

0 O

bat
o
o r>

possum
0 0
0 0
O 0
Ci O

o o
O 0
c o
o o

0 0
0 0
0 0
«>0

0

Bnguin
vulture
o o
0 O

o o
o

chicken

o

lark

o o
seasn
o o
0 O

oi0¥

peasant
spamJW

piranha
herring
catfish

&e°
o o o
o o

(1) antelope
buffalo
giraffe

(2) cheetah
leopard
lion

dove

Figure 3.8: The animal data set mapped to the GSOM, without error distribution

96

piranha
herring
batt

tuna o
pike

O O

dolphin
tealion
teal

sole

O

O

mink

haddock

O

O

O

O

toad

O

6on,woH*lynx
O leopard.puma

mongoose
O O

O O

cat O

ponjp.goat
calf.retndeei

hamster
cavy

O

newt viper

O

O

O

aardvaik o
bear
goiiHa

O

o

o
elephant deer

O antelopeI O
giraHe.buMalo

O

O

o

hog teatnakeo

O O
lobster
crab clam

octoput

o

O
.

squirrel
hare

O

on""1

O

lady*
bird

o

o

o

o

o

o

o

o

flea
termite

O

o
slug
worm

O

put

o

o

o

o

bat

O

o

wasp

O

o

gnat

O

O

o

skua.guD
skimmer

O

peng-
uin

O

lOltO"
ite

O

O

o
o

o

bee

O

moth
tit

O

o

o

o

O vt

thea

ottrich

O

O

0

O

O

O

O

O

0

o

o

o

o

* U I

o

o

0

o

o

0

o

o

o

o

0

o

o

kiwi

e

O

O

CfOW
hawk

O

flamingo O

O

O

o

o
dove o

chicken

o

o

swan

O

O

O

o

o

o

duck

O

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o
lark

wren
sparrow

O

O

O

O

O

O

O

O

O

O

Figure 3.9: The animal data set mapped to the GSOM, with error distribution

3.4.6 The Spread Factor (SF)

As described in section 3.2, the GSOM uses a threshold value called the growth

threshold (GT) to decide when to initiate new node growth. GT will decide the

amount of spread of the feature map to be generated. Therefore, if we require

only a very abstract view of the data, a large GT will result in a map with a fewer

number of nodes. Similarly, a smaller GT will result in a well spread out map.

When using the GSOM for data mining, it is a good approach to first generate a

smaller map, only showing the most significant clustering in the data, which will

give the data analyst a summarised picture of the inherent clustering in the total

97

data set.

The node growth in the GSOM is initiated when the error value of a node exceeds

the GT. The total error value for node i is calculated as

v
TF- — V^ V^ (— "I2

Hi 3=1

where -H is the number of hits to the node i and V is the dimension of the data.

(3.20)

xitj and Wj are the input and weight vectors of the node i respectively. The

requirement for new node growth can be stated as

TE{ > GT (3.21)

The GT value has to be experimentally decided depending on the requirement

for map growth. As can be seen from equation 3.20 the dimension of the data

set will make a significant impact on the accumulated error (TE) value, and as

such will have to be considered when deciding the GT for a given application or

data. Since 0 < X{j,Wj < 1, the maximum contribution to the error value by one

attribute (dimension) of an input would be :

ij — Wj\ =

Therefore, from equation 3.20 :

lmax (3.22)

Where TEmax is the maximum error value and Hmax is the maximum possible

number of hits (the number of times the particular node became the winning

98

node). If we consider H(t) to be the number of hits at time (iteration) t, the

growth threshold (GT), will have to be set such that :

0<GT.<DxH{t) (3.23)

Therefore we have to define a constant GT, depending on our requirement of the

map spread. The GT value will depend on the dimensionality of the data as well

as the number of hits. Identifying an appropriate GT value for an application

can be a difficult task specially in applications such as data mining, where it is

necessary to analyse data with different dimensionality as well as the same data

under different attribute sets. It also becomes difficult to compare maps of sev-

eral data sets since the GT cannot be compared over different data sets if their

dimensionality is different.

Therefore we define a term called the Spread Factor (SF) which can be used

to control and calculate the GT for GSOMs, without the data analyst having to

worry about the different dimensions. We redefine GT as

GT = Dx f(SF) (3.24)

where SF e R , 0 < SF < 1 and f(SF) is a function of SF, which is defined as

follows.

We know that the total error TE{ of a node i will be

0 < TEi < TE,max (3.25)

99

where TEmax is the maximum error value that can 1

equation 3.20 in equation 3.25 we get :

ed. Substituting

3 = 1

(3.26)
Hmaxj=l

Since the purpose of the growth threshold (GT) is to 1st the map grow new nodes

by providing a threshold for the error value, and the minimum error value is zero,

it can be said that, for growth of new nodes we have the relationship

D
0 < GT < (Hi ~ *>jY (3.27)

Theoretically we can assume the upper bound on the number of hits (Hmnx) to

be infinity

0 < GT < oo

Hence we need to identify a function f(SF) such that

0 < SF < 1

and

0 < D x f(SF) < oo

In other words we require a function f(x) which takes the values 0 to oo, when x

takes the values 0 to 1. Napier logarithmic function of the type y = — a x ln(l—x)

is one such function which satisfies these requirements [Hor99]. Letting x be SF

and substituting D for a,

GT=-Dx In {SF) (3.28)

100

Therefore, instead of having to provide a GT, which would take different values

for different data sets, the data analyst has to provide a value SF, which will be

used by the system to calculate the GT value depending on the dimension of the

data. This will allow different GSOMs to be identified with their spread factors,

and can form a basis for comparison of different maps.

40

35

2 25
o
in

£ 20

2
CD

15

10

5

•

•

/

/ •

/ •

/ D=16

+

/ 'D=8

- ^ D = 4

0 0.2 0.4 0.6
1 - Spread Factor

0.8

Figure 3.10: Change of GT values for data with different dimensionality (D)

according to the spread factor

The graph in Figure 3.10 shows how the GT value of data sets with different

dimensions change according to the spread factor. The SF can also be used

to implement hierarchical clustering with the GSOM by initially generating a

101

small map with a low SF and then generating larger maps on selected regions of

interest. Such hierarchical clustering will be described in detail in chapter 6.

3.5 Applicability of GSOM to the Real World

In this section we present several experiments to demonstrate the functionality

of the GSOM. Experiments are carried out with bench mark data sets. The

main purpose of these experiments is to introduce the GSOM as a novel feature

mapping method which has significant advantages over the traditional SOM. In

the first experiment, an artificial data which has been used by Kohonen [Koh95]

to demonstrate the SOM is used to compare the SOM with the GSOM. In the

second experiment, the iris data set [Bla98] is used to highlight the usefulness of

the GSOM for data mining and exploratory analysis of a traditionally supervised

data set.

3.5.1 Experiment to Compare the GSOM and SOM

Table 3.1 shows an artificial data set used by Kohonen to highlight the features of

the SOM. The data consist of 13 binary attributes on 16 well known animals. The

animals have been selected such that they belong to several clusters (groups) such

as birds, meat eating mammals, non meat eating mammals and domestic animals.

Once the feature map is produced, the clusters in the data caa be identified and

102.

also some inter and intra cluster relationships become visible from the spatial

positioning of the clusters in the map.

Table 3.1: Kohonen's animal data set

small
medium
big
2 legs

'4 legs
hair
hooves
mane
feathers
hunt
run

fly
swim

d
0

V

e
1
0
0
1
0
0
0
0
1
0
0
1
0

h
e
n
1
0
0
1
0
0
0
0
1
0
0
0
0

d
u
c
k
1
0
0
1
0
0
0
0
1
0
0
1
1

g
0

0

s
e
1
0
0
1
0
0
0
0
1
0
0
1
1

0

w
1
1
0
0
1
0
0
0
0
1
1
0

1—
1

0

h
a
w
k
1
0
0
1
0
0
0
0
1
1
0
1
0

e
a

g
1
e
0
1
0
1
0
0
0
0
1
1
0
0
0

f
0

X

0
1
0
0
1

i—
i

0
0
0
1
0
0
0

d
0

g
0
1
0
0
1
1
0
0
0
0
1
0
0

w
0

1
f
0
1
0
0
1
1
0
1
0
1
1
0
0

c
a
t
1
0
0
0
1
1
0
0
0
1
0
0
0

t
i

g
e
r
0
0
1
0
1
1
0
0
0
1
1
0
0

1
i
o
n
0
0
1
0
1
1
0
1
0
1
1
0
0

h
0

r
s
e
0
0
1
0
1
1
1
1
0
0
1
0
0

z
e
b
r
a
0
0
1
0
1
1
1
1
0
0
1
0
0

c
0

w
0
0
1
0
1
1
1
0
0
0
0
0
0

A SOM with a 5 x 5 node structure was first presented with the data. After the

organisation process the network was calibrated with the same data for the pur-

pose of identifying the distribution of the animals in the network. The resulting

output is shown in Figure 3.11 (a). A similar experiment as above is carried out

using the same data, on a SOM with a 10 x 10 node structure. The resulting

map with the animal names are shown in Figure 3.11 (b). The same data set is

used input to generate a GSOM to compare with the respective SOMs. All maps

were generated with an initial learning rate of 0.1, and the spread factor of 0.4

103

cat

dove,hen
duck,goose
owl.hawk

cow

tiger do g fox
0 0 0 0
0. 0 0
0 0 0 0 | 0 0
0 0 0 0
0 0 0 0 0 0

cat — 4 0 0 0 0 4'

0 80 0
0 0
0 0
0 0 X4 0
0 0 0
0 0 0

V

0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 4 0 \ 0 0 0 0
0 0 12 0 0 0 \ 0 0 0 0

C 0 W \ lion
horse

(b)

Figure 3.11: Animal data set mapped to a 5 x 5 SOM (left) 10 x 10 SOM (right)

for the GSOM. The GSOM is shown in Figure 3.12.

It can be seen from the 5 x 5 map (Figure 3.11 (a)) that data has been mapped

on to separate sections of the network according to the characteristics of the an-

imals. We can very roughly identify three (3) clusters as the four legged meat

eaters, birds and grass eaters. But we arrived at this conclusion only because of

our clear knowledge of the input data set. We could have otherwise concluded

that there is one large cluster (meat eaters and birds) and a small cluster of grass

eaters.

The 10 x 10 map (Figure 3.11 (b)) spread out the four legged meat eaters cluster

• 104

across the network. This spreading out is necessary to identify the differences and

similarities within the clusters (between the members of a cluster) and between

different clusters. The birds and the grass eaters clusters have not been spread

out. Once a SOM is organised the weight vectors of the nodes will represent

(by the position in the map) the inherent characteristics of the attributes of the

input data. From this experiment it can be seen that the advantage of the SOM

is partly lost if we do not use a map of the proper size, as some of the clusters

would-be piled up and mapped to the same set of nodes. This would be due to

the size of the map not being sufficiently large enough to represent the spread of

the clusters. As such, the spatial relations between and inside the clusters are

deformed when the appropriate networh shape and size is not initialised.

duck
dove o

goose
o o o
o o o

, _ owlhen ° , ,
hawk

o o o
o o eagle o o o o
o o o o o o o cat

o o o o o o o o o o o o
COW O O O O O O O O O O

horse
o o o o , 0 0 0 beer o

zebra e

o lion 0 0 0 fox

o wolf dog

Figure 3.12: Kohonen's animal data set mapped to a GSOM

The clusters in the data are more clearly visible and has meaningful groupings

105

in the GSOM (Figure 3.12). The basic cluster structure of the birds, four legged

meat eaters and grass eaters is apparent. In addition, we can distinguish that

horse and zebra has been positioned closer to the other wild animals, and away

from the cow. The horse and zebra has moved closer to the lion due to having a

mane. The eagle being a bird is positioned with the birds but has moved towards

the other meat eaters. Therefore, we can distinguish a further sub-clustering

inside the main clusters, ie meat eating birds such as (eagle, hawk, owl), grass

eating^wild animals such as (horse, zebra). The cow and the cat are two clusters

by themselves. The cat being the only small four legged animal, and the cow

being the only grass eater which does not have a mane, and not in the running

category, are the most probable reasons.

The main advantage for visualising the clusters with the GSOM is its ability

to spread outwards in a manner such that the clusters in the data dictate the

shape of the map- For example, in Figure 3.12 the final shape of the map is

generated by spreading out in all directions thus highlighting the birds, mammals,

cat, and cow groupings. Thus it can be seen that the GSOM has produced a more

informative clustering structure than that of the corresponding SOMs. Analysing

the distances between the clusters and the sub clusters in the GSOM would give

us a further understanding of the data.

106

3.5.2 Applicability of the GSOM for Data Mining

In this section we present an experiment to highlight the usefulness of the GSOM

as an exploratory data analysis tool in data mining. The data set selected is the

iris data, which is a popular bench mark data set in classification literature. The

difference in our experiment is that the data is used for unsupervised clustering

as opposed to the traditional usage of supervised classification.

In his introduction on the method of discriminant analysis, R.A. Fisher presented

an analysis of measurements on Irises [Bla98]. There were 50 flowers from each

of three species of Iris - Iris setosa, Iris versicolor, and Iris virginica. There were

four measurements on each flower - petal length, petal width, sepal length, and

sepal width. Because species type is known, the problem is one of statistical

pattern recognition, and the data can be analyzed using discriminant analysis

or a supervised learning approach. A summary of the statistics for the data set

is presented in table 3.2. In this experiment, Fisher's iris data set is used to

demonstrate the usefulness of the GSOM as an unsupervised data mining tool.

Therefore, instead of the traditional expected outcome of the accuracy of the 3

cluster identification, we are interested in finding whether there are any unfore-

seen groupings or sub-groupings in the data. The attribute values were scaled to

the range 0.0 to 1.0 for inputing to the the GSOM. Since 150 values would not

be sufficient to train the GSOM, the data set is repeated several times to make

107

Table 3.2: Summary statistics of the iris data

Sepal length

Sepal width

^Petal length

Petal width

Min

4.3

2.0

1.0

0.1

Max

7.9

4.4

6.9

2.5

Mean

5.84

3.05

3.76

1.20

SD

0.83

0.43

1.76

0.76

Class Correlation

0.7826

-0.4194

0.9490

0.9565

up the input data set. The resulting maps are shown in Figures 3.13 and 3.14.

C2o o

c u o \ o o

o o o o

C70
CG

o

o

o

o

] °

o

o

o

o

o

o

o

o

o

o

o

C1

o o

o o

o o

o o

C5

C3

Figure 3.13: Unsupervised clusters of the Iris data set mapped to the GSOM

108

o
Versicolor

Verginica

2/3) Veiticlor fc
' Veiainic1 Veiginica

Figure 3.14: Iris data set mapped to the GSOM and classified with the iris labels,

1 - Setosa, 2 - Versicolor and 3 - Verginica

Figure 3.13 shows the mapping of the number of hits when the 150 instances were

calibrated after training. The purpose of this map is to try and identify how the

instances have clustered without giving any consideration to the class of irises.

With this experiment we do not attempt to classify the inputs into the 3 classes

of irises. Since the GSOM is an unsupervised learning method, we let the network

learn the structure in the input data without using any known structure in the

input to train the network.

Figure 3.13 shows the casters which have been identified from the formed map.

The clusters are initially visually identified. Then the significant sub-clusters are

109

separated by comparing the output of nodes within each cluster. Therefore we

have used the spatial positioning of the nodes, as well as the outputs to separate

the clusters and sub-clusters. For simplicity, only those nodes which have been

mapped more than once (more than one hit), were considered for the clustering,

since our aim is to demonstrate the usefulness of the method more than to accu-

rately identify the clusters. It is seen from Figure 3.13 that 7 separate clusters

have been identified and labeled as Cl to C7.

The clusters can now be described by the max, min, mean, standard deviation

of their attribute values. This will provide an identity for the clusters since there

are no labels as in the supervised clustering methods. For example, cluster 6

(C6) and cluster 7 (C7) can be represented by table 3.3 and table 3.4. It can be

seen that clusters 6 and 7 have very small variation (6.5%-8%) in their attribute

values. A data analyst has the option of deciding whether such a difference is

significant or interesting for the application. In most data mining applications,

the analyst is initially interested in obtaining an overview of the data and as such

only require an overview of the most significant groupings. Therefore, if the small

difference in clusters are not sufficiently significant, the clusters 6 and 7 may be

merged together and considered as one cluster at this initial overview stage of

the analysis. In such a case, if the analyst decides to conduct a more detailed

analysis at a later stage, the two clusters can be considered separately.

110

Table 3.3: Cluster 6 attribute summary

Average

Max

Min

Std dev

Sepal length

6.4

6.7

6.1

0.2390

Sepal width

2.9375

3.1

2.8

0.0916

Petal length

4.4875

4.7

4.3

0.1553

Petal width

1.375

1.5

1.3

0.0707

Table 3.4: Cluster 7 attribute summary

Average

Max

Min

Std dev

Sepal length

6.82

7

6.7

0.1304

Sepal width

3.04

3.2

2.8

0.1517

Petal length

4.82

5

4.7

0.1304

Petal width

1.5

1.7

1.4

0.1225

Cluster 1 (Cl presented in table 3.5) shows significant difference from both cluster

6 and cluster 7. These results are also visually presented by the cluster positions

in the GSOM. By this type of analysis it is also identified that cluster 5 (C5)

consists of irises with sepal width significantly lower than the rest of the irises.

I l l

Table 3.5: Cluster 1 attribute summary

Average

Max

Min
_

Std dev

Sepal length

4.7

5

4.3

n.2186

Sepal width

3.02

3.2

2.3

0.2085

Petal length

1.42

1.6

1.1

0.1334

Petal width

0.18

0.3

0.1

0.0562

The analysis so far has been without considering the 3 classes of irises. When

such information is available we can make use of this knowledge to gain further

insight into the data. Figure 3.14 shows the 3 classes of irises mapped to the

GSOM. The labels 1, 2 and 3 refer to Setosa, Versicolor and Verginica respec-

tively. Setosa has been separated from Versicolor and Virginica, which have been

mapped to one large cluster. Versicolor has separated into two clusters on either

side of Virginica. Virginica has been mapped to near-by nodes except for 3 in-

stances which have been separated.

Comparing Figures 3.13 and 3.14 it can be seen that the main Setosa cluster has

two significant sub clusters. The reason for this sub clustering can be analysed

which may provide interesting information regarding such sub-groupings. It is

further possible to find the reason for the separation of Versicolor into two clusters,

112

and also the reason for 3 instances of Virginica moving away from the rest of

the instances. Such analysis can further be carried out to extract, more useful

information regarding the data set. Only some of the possible instances have

been highlighted in this analysis to demonstrate the potential that arise from

such analysis. Further detailed data analysis with the GSOM will be described

in chapter 5 and chapter 6.

3.6 Summary

In this chapter we presented the main contribution of this thesis which is a

novel unsupervised neural network model called the Growing Self Organising

Map (GSOM). Initially, the concept of the GSOM is discussed and the algorithm

is presented in detail. The GSOM has 3 main phases of generation (initialisation,

growth, and smoothing) and these phases are discussed and justified. The new

features included in the GSOM have been introduced and an analysis and justifi-

cation of the implication and methodology for choosing values for the parameters

have been presented.

The proposed structure adapting feature map has several advantages over the

traditional feature maps. The main advantage being the self generating ability

and therefore the network designer not having to pre-define the network structure.

In addition the following advantages are also present in the GSOM.

113

1. Enhanced visualisation of the clusters by spreading out the feature map in

to shapes which are representative of the inherent distribution in the data.

Therefore the GSOM has a cluster driven shape thus highlighting the data

clusters by the shape of the network itself.

2. The number of nodes in the final map is found to be less than required

for the traditional SOM. Therefore with the GSOM, it is not necessary to

process nodes which are unnecessary for representing the data set.

3. Smoother training without the need for an ordering phase due to the novel

weight initialisation method, which also reduces the possibility of twisted

maps.

4. The ability to compare and control the growth of feature maps with the use

of a o*;read factor (SF).

Experiments are carried out to demonstrate

1. the comparison of the feature maps created by the SOM and the GSOM.

2. the use of GSOM in mapping a well known benchmark data set for ex-

ploratory data analysis.

The results show the potential of the GSOM, and this will be further demon-

strated in the subsequent chapters. In the next chapter we present a novel method

of automating the cluster identification and separation using the incrementally

generating nature of the GSOM.

114

Chapter 4

Data Skeleton Modeling and

Cluster Identification from a

GSOM

4.1 Introduction

The novel self generating neural network model called the GSOM is introduced in

chapter 3. The differences between the traditional SOM and the GSOM are also

discussed, highlighting the advantages of the GSOM due to its flexible structure.

It is seen that the GSOM grew nodes and spread out, while it self organised to

generate a structure which better represents the input data. The resulting fea-

ture maps are of different shapes and sizes and it is seen that the shapes of the

maps resulted from the inherent clustering present in the data. Therefore the

115

(••/•••'••'•Jii

GSOM clusters were easier to visually identify compared to the SOM clusters by

observing the directions of growth.

In many current commercial and other applications, the clusters formed by feature

maps are identified visually. Since the SOM is said to form a topology preserv-

ing mapping of the input data, it is possible to visually identify the clusters and

some relationships among them by studying the proximity or the distance among

the clusters. Although the accuracy obtained from such visualisation is not very

high, it has proved sufficient for many applications, specially, in industry as a

tool for database segmentation [Big96], [Deb98]. It is shown in chapter 3, that

the GSOM highlights the clusters by branching out in different directions, thus

making it easier to identify the clusters visually.

Visually identifying the clusters can have certain limitations such as :

• It has been shown in [Rit92] that the SOM does not provide complete

topology preservation. Therefore it is not possible to accurately translate

the inter-cluster distances to a measure of their similarity (or difference).

Therefore visualisation may not provide an accurate picture of the actual

clusters in the data. This would specially occur in a data set with a large

number of clusters with a skewed distribution, and will result in erroneous

allocation of data points into clusters due to the inaccurate identification

of cluster boundaries.

116

In certain instances it is useful to automate the cluster identification process.

Since clusters in a data set are dependent on the distribution of data, it

would be difficult to completely automate the process unless parameters

such as the number of clusters or the size of a cluster are pre-defined.

A useful partial automation can be implemented whereby the system will

provide the analyst with a number of clustering options. For example, the

system can provide the analyst with a list of distances between groupings

in data and allow the analyst to make the final decision as to the optimal

clustering for a given situation. Having to visually identify the clusters will

be a hindrance in automating such a process.

In this chapter a method for automating the cluster identification process is pro-

posed. This method takes into consideration the shape of the GSOM, as well

as the visual separation between data to identify the clusters. The advantages

of this method are the identification of more accurate clusters, minimisation of

the possibility of erroneous allocation of data into clusters and the possibility of

automating the cluster identification process.

In section 4.2 the usefulness of an automated cluster identification for data mining

is highlighted. The methods that can be employed for automated identification

are discussed and their limitations are identified. Section 4.3 presents a descrip-

tion of the proposed method and the proposed algorithm. Artificial and real data

117

sets are used to demonstrate the applicability and usefulness of this method in

section 4.4. Section 4.5 presents a summary of this chapter.

4.2 Cluster Identification from Feature Maps

In this section we provide the basis and justification for the automated cluster

identification method from the GSOM. We first introduce the traditional SOM

as a vector quantisation algorithm which can be used to identify a set of rep-

resentative quantisation regions from a given set of data. Then we discuss the

possible methods of identifying clusters from such a quantised set of data by using

a feature map. The difficulties faced by an analyst in identifying clusters from

a traditional SOM are also highlighted and the advantage of the GSOM in this

regard is discussed.

4.2.1 Self Organising Maps and Vector Quantisation

Vector quantisation is a technique that exploits the underlying structure of input

vectors for the purpose of data compression or equivalent bandwidth compression

[Hay94]. This method supposes that the input data are given in the form of a

set of data vectors x(t), t = 1,2,3,... (generally in high dimension). The index t

identifies the attributes of the individual vectors. In vector quantisation, an input

data space is divided into a number of distinct regions and a reconstruction (ref-

erence) vector is defined for each such region. This can be considered as defining

118

a finite set W of reference vectors, such that a good approximate vector ws E W

can be found for each input data vector x(t). The set of such reconstruction

vectors is called a vector quantiser for a given input data. When the quantiser is

presented with a new input vector x(f), the region in which the vector lies is first

determined, by identifying the reference vector ws with the minimum norm of the

difference $ = |a;(t) — ws\. Prom then x(t) is represented by the reconstruction

(reference) vector ws. The collection of possible reconstruction vectors is called

the codebook of the quantiser.

A vector quantiser with such minimum encoding distortion is called a Voronoi

quantiser. When the Euclidean distance similarity measure is used to decide on

the region to which an input vector belongs, the quantiser is a Voronoi quantiser.

The Voronoi quantiser partitions its input space into Voronoi cells or regions,

and each region is represented by one of the reconstruction vectors iu;. The ith

Voronoi region contains those points of the input space which are closer (in a

Euclidean sense) to the vector Wi than to any other vector Wj,j ^ i. Figure 4.1

shows an input space divided into four Voronoi cells with the respective Voronoi

vectors shown as circles. Each Voronoi cell contains those points of the input

space that are the closest to the Voronoi vector (circle in Figure 4.1) among the

totality of such points.

The Self Organising Feature Map (SOM) , represented by the set of weight vectors

119

i

•
•

*
* *•*

*

o
>

a \
*

•* o

i

o

\ m.%. **

o

,
.
-
•
•
•
•
•
•

w

Figure 4.1: Four Voronoi regions

{wj\j = 1,2, ..N}, is said to provide a good approximation to the input data space

[Hay94]. It can be interpreted that the basic aim of the SOM algorithm is to store

(represent) a large set of input vectors by finding a smaller set of reference vectors,

so as to provide a good approximation of the input space. The basis of this idea is

the vector quantisation theory as described above and can be used as a method of

dimensionality reduction or data compression. Therefore the SOM algorithm can

be said to provide an approximate method for computing the Voronoi vectors in

an unsupervised manner, with the approximation provided by the weight vectors

in the feature map.

120

4.2.2 Identifying Clusters from Feature Maps

As described in the previous section, the SOM provides a vector quantisation of a

set of input data by assigning a reference vector for each value in the input space.

The mapping of input data to the reference vectors is a non-linear projection

of the probability density function of the high dimensional input data space on

to a two dimensional display [Koh95]. With this projection, the SOM achieves

a dimensionality reducing effect by preserving the topological relationships that

exist in the high dimensional data into a two dimensional map. Such topology

preserving ability has been described as mapping of the features in the input

data and as such these maps have been called feature maps [Koh95]. We can thus

identify the main advantages of the feature maps as two fold.

1. With the vector quantisation effect, the map provides a set of reference

vectors which can be used as a codebook for data compression.

2. The map will also result in producing a two dimensional topology preserving

map of a higher dimensional input space, thus making it possible to visually

identify similar groupings in the data.

Therefore the feature map provides the data analyst with a representative set of

two dimensional feature vectors, for a more complex and multi dimensional data

set. The analyst can then concentrate on identifying any patterns of interest in

this codebook using one or more of the several existing techniques.

121

The focus of this thesis is the GSOM, which is a neural network developed using

an unsupervised learning technique. As described in chapter 2, the advantage of

unsupervised learning is that it is possible to obtain an unbiased segmentation

of the data set without the need for any external guidance. Therefore we will

now consider some existing techniques which can be used on the feature map to

identify the clusters. We will then use these techniques as the basis for justifying a

novel method of cluster identification from the GSOM. The three main techniques,

which can be used to identify clusters from a feature map are described below.

K-means Algorithm

The K-means algorithm was first introduced by McQueen in 1967, and also as

ISODATA by Ball and Hall in 1967 [Mir96]. The steps of the algorithm are as

follows :

1. Select K seed points from the data. The value K, which is the number

of clusters expected from the data set has to be decided by the analyst

using prior knowledge and experience. In some instances the analyst may

even decide that the data needs to be segmented into K groups for the

requirements of a particular application.

2. Consider each seed point as a cluster with one element and assign each

input record in the data set to the cluster nearest to it. A distance metric

122

such as the Euclidean distance is used for identifying the distance of each

input vector from the initial K seed points.

3. Calculate the centroid of the K clusters using the assigned data records.

The centroid is calculated as the average position of all the records assigned

to a cluster on each of the dimensions, i.e. if data records for the j t h cluster

can be denoted as Xi,x2,.. - ,rcn, (each with D dimensional information),

then the centroid for the clusters is defined as

n n n

ClusterCentroid = ((£ z.\i)/n, {J2 aJi,2)/n,..., (J2 xi,D)M
t=l i=l i=l

where D is the dimension of the data.

4. Re-assign each of the data records to the cluster centroid nearest to it, and

recalculate the cluster centroids.

5. Continue the process of re-asssiging records and calculating centroids until

the cluster boundaries stop changing.

There are several approaches when applying the K-means algorithm to a feature

map.

1. Consider all the nodes (riforence vectors are represented by the nodes)

which have been assigned with at least K, where K > 0, input vectors

(records), as seed points. The value K will have to be decided by the

analyst. The other nodes are then assigned to the clusters according to the

above algorithm.

123

2. Pre-define the number of seed points with external knowledge or according

to the needs of the application and randomly assign nodes from the map as

the seed points. The rest of the nodes are then assigned to the seed points

according to the algorithm described above.

In the first approach the advantage is that the analyst uses information from the

initial mapping to decide the seed points. Hence, the decision is not completely

biased on pre-conceived ideas and opinions. The deciding of the value K as a

threshold for deciding the important nodes still can cause problems. In the second

approach, the analyst is completely depending on external knowledge which may

introduce bias and also may be difficult with unknown data.

Agglomeration methods

In the K-means method the analyst has to start with a fixed number of clusters

and gather data records around these points. Another approach to clustering, is

the agglomeration methods [Sch96]. In these methods, the analyst will start with

each point in the data set as a seperate cluster and gradually merge clusters until

all points have been gathered into one cluster (or a. small number of clusters). At

the initial stages of the process the clusters are very small and very pure, with

the members of the clusters being very closely related. Towards the end of the

process the clusters become very large and less well defined. With this method

the analyst can preserve the entire history of the cluster merging process and has

the advantage of being able to select the most appropriate level of clustering for

124

the application. The main disadvantage with this method is that, for a very large

data set, it will be almost impossible to start with each element of the data set

as a seperate cluster.

In feature maps, all the nodes with at least one input assigned to it can be

considered as an initial cluster. The nearby nodes can then be merged together

until the analyst is satisfied, or a threshold value can be used to terminate the

cluster merging. Therefore the data compression ability of the feature map will

become very useful when using an agglomeration method on a large set of data

since this will cut down the number of clusters to be processed.

Divisive methods

Divisive methods [Sch96] are similar to agglomeration methods except it uses a

top down cluster breaking approach compared to the bottom up cluster merging

method used in the agglomeration method. The advantage of this method is

that the whole data set is considered as one cluster at the beginning. Therefore

it is not necessary to keep track of a large number of seperate clusters as in the

initial stages of the agglomeration method. A distance method for calculating the

distance between clusters will have to be defined to identify the points of cluster

separation by defining a threshold of .^nration. Such a threshold will depend

on the requirements of the application.

125

4.2.3 Problems in Automating the Cluster Selection Pro-

cess in Traditional SOMs

In most applications the SOM is used as a visualisation method, and once the

map is generated, the clusters are identified visually. Visually identified clusters

have certain limitations as identified in section 4.1, but have proven to be suf-

f̂icienfc for applications with a high level of human involvement and where high

accuracy is not required.

When it is necessary for automating the cluster identification from the SOM any

of the above described methods can be used. With the K-means method, the an-

alyst will need to identify the initial seed points and then the nodes with inputs

assigned to them need to be considered as seperate data points for the process.

The main limitation is that a large amount of distance calculations have to be

performed during the processing. The SOM is normally implemented as a two

dimensional grid with each internal node having four or six immediate neighbour-

ing nodes (in the case of GSOM it is four). Therefore each node will have four

connections with other neighbours which have to be processed to determine the

closest seed point. It is an iterative process which terminates when a satisfactory

set of clusters is achieved. Hence the method can be time consuming for large

maps. A large amount of information about the neighbours need to be stored

126

throughout the process.

With the Agglomeration method, initially each of the nodes are considered as

seperate clusters. For each node, (or cluster), the neighbouring node (cluster)

distances have to be measured and the nodes (clusters) with the smallest sep-

aration will be merged together as one cluster. This process will also result in

a large amount of processing for large SOMs. The processing becomes complex

since some nodes (or clusters) may not have immediate neighbouring nodes which

have received hits. In such a situation the neighbourhood search algorithm has

to consider the next level of neighbours and the distances from these neighbours

will need to be calculated.

When considering the Divisive method for clustering a SOM, ail the used nodes

are considered as one cluster at the beginning. The distance calculations with

neighbours will have to be made to identify the largest distance where the break is

to be made. This method again has the same limitations as the K-means method.

Considering a SOM as a two dimensional grid as mentioned abovo, a node will

not be separated from the grid by just eliminating one connection. Therefore the

same node may have to be processed several times for such separation. This will

also need a large amount of information stored for processing.

•. 127

4.3 Automating the Cluster Selection Process

from the GSOM

The methods that can be used for automating the traditional visual cluster identi-

fication from feature maps were described in the previous section. The limitations

of these methods were also identified and discussed. In this section we propose a

novel method for cluster identification which takes advantage of the incrementally

generating nature of the GSOM [AlaOOc]. The advantage of the new method over

the existing methods and techniques are also highlighted in this section.

4.3.1 The Method and it's Advantages

The identification and separation of clusters from the GSOM is performed af-

ter the GSOM has been fully generated and stabilised (converged), i.e. after

the growing and smoothing phases described in chapter 3. Therefore the cluster

identification process that we propose can be considered as an utility available

to the data analyst using the GSOM. The analyst can use visualisation to iden-

tify the clusters as is traditionally done with the SOM. Another option would be

to complement the visualisation with the proposed automated cluster separation

method. The proposed method is designed such that, although the actual clus-

ter identification is automated, a high user involvement can be accommodated.

Since the main focus in developing the GSOM was data mining applications, it

is essential that the data analyst has the freedom to select the level of clustering

128

required. We use the term level as a way of referring to the value of threshold

for cluster separation. A high value of threshold is considered as a low level of

clustering where only the most significantly apart clusters are identified. A low

threshold will result in a finer clustering where even the not so obvious (sub)

clusters are separated.

The new cluster identification method is recommended for the data mining ana-

lyst in the following situations.

1. When it is difficult to visually identify the clusters due to unclear cluster

boundaries.

2. When the analyst needs to confirm the visually identifiable boundaries with

an automated method.

3. When the analyst is not confident of a suitable level of clustering, it is

possible to break the map into clusters starting from the largest distance

and progressing to the next largest. Therefore the data set is considered as

one cluster at the beginning and gradually broken into segments, providing

the analyst with a progressive visualisation of the clustering.

Before describing the method, we will define terms that are required for specifi-

cation of the algorithm. A pictorial description of the terms are provided after

the definitions.

129

Definition 4.1 : Path of Spread

The GSOM is generated incrementally from an initial network with four nodes.

Therefore the node growth will be initiated from the initial nodes and spread

outwards. A path of spread (POS) is obtained by joining the nodes generated in

a certain direction in the chronological order of their generation. Therefore all

POS will have their origin at one of the four starting nodes.

Definition 4.2 : Hit-Points

When the GSOM is calibrated using test data, the input test data values get

mapped to some nodes of the feature map. There will also be a number of nodes

in the map, which do not get mapped by any input. These are nodes which

are generated during the growing phase to preserve the distance between clusters

thus preserving the topology of the input clusters. Therefore such nodes can be

called stepping stones for spreading the map out for proper representation of the

intor cluster distances. Such nodes are not considered as representing any input

vectors, and as such will not get mapped by any inputs during the testing phase.

The nodes which get mapped with test inputs are called the hit points.

Definition 4.3 : Data Skeleton

Once all the POS are identified, it will be seen that some hit-points do not occur

on the POS. These points are then linked to the closest points in a POS (where

the closeness is calculated by the Euclidean distance between weight values of the

130

out of POS node to the nodes in the neighbouring positions in the map). All the

POS joined to the initial four nodes and the external hit-points linked will result

in the data skeleton for a given set of data.

Definition 4.4 : Path Segments and Junctions

When external hit-points are connected to the POS, if the point on the POS

which is linked is not a hit-point, it will become a junction. The link between

two consecutive hit-points, two neighbouring junctions or neighbouring junction,

hit-point pair, is called a path segment. The value of a path segment is calculated

as the Euclidean difference in weight vector value of the end points.

The basic concept of the new method is to consider the paths of spread of the

network starting from the initial square grid of four nodes. Since the GSOM

spreads out by new node generation, the paths of spread define the structure of

the data set by following the paths along which the GSOM is generated.

A path of spread is identified by joining one of the four starting nodes with the

nodes which grew new neighbours. Such joining is performed in the direction of

growth or spread of the map. Always all the paths of spread begin at one of

the four initial nodes of the map and will spread away from the initial network.

Figure 4.2 shows the initial GSOM consisting of nodes 1 to 4 and three POS

131

which terminates at nodes A, B and C.

B

Figure 4.2: Path of spread plotted on the GSOM

As described in the definitions, once the POS are identified, there may be some

hit-points which are not part of the POS. Such nodes exist due to the the POS

identification algorithm which considers a node as part of a POS, only if it gen-

erated new nodes (the algorithm is presented later). As such there may ha some

nodes in the edge (boundary) of the network, which do not initiate new node

generation, but still represent input data. Since these nodes also have to be con-

sidered while identifying the clusters, we join these nodes to the POS as shown

in Figure 4.3. The POS joined by all the remaining hit points is defined as the

data skeleton. A data skeleton is shown in Figure 4.3 where the external hit-point

connections to the POS is shown by the broken lines. We propose that the data

skeleton diagram represents the input data distribution in a skeletal form. The

data skeleton thus generated can be used to identify and seperate the clusters by

132

a progressive elimination of path segments which will be described in the next

section.

- - O

Figure 4.3: Data skeleton

4.3.2 Justification for Data Skeleton Building

The feature map generated by the SOM can be considered as a Voronoi quan-

tiser with individual nodes (represented by their weight vectors) becoming the

set of code book vectors representing the input data space (refer section 4.2).

The GSOM can be considered as an extended version of the SOM which is incre-

mentally built, and therefore, once fully built can also be described as a Voronoi

quantiser for the input data used to generate it. In the previous section we used

the incrementally generating nature of the GSOM to identify the paths of spread

(POS), which are then used to build the skeleton of the input data. Since the

POS creation process made use of the c.v..ier of the node creation, we need to

133

identify the sequence of region generation to interpret the POS. An incremental

method of Voronoi diagram construction described by Okabe ct. al [Oka92] can

be used to analyse the POS identification from the GSOM.

Incremental Method of Voronoi Diagram Construction

This method [Oka92] starts with a simple Voronoi diagram for a few points (called

generators) and modifies the diagram by adding other generators one by one.

For I = 1,2, ..,n, let Vj denote the Voronoi diagram for the first / generators

Pi,P2,... Pi. The method is used to convert T _̂i to Vt for each I. Figures 4.4,

4.5 and 4.(5 shows the incremental addition of generators. Figure 4.4 shows the

Voronoi diagram V/_i. Figure 4.5 shows the addition of generator pt to VJ_i such

that it will become Vi. First, we need to find the generator p^ whose Voronoi

region contains p/, and draw the perpendicular bisector between pi and pi. The

bisector crosses the boundary of V(pi) at two points. Let the points be yj\ and

w2 in such a way that pi is the left of the directed line segment joining the points

w1 and W2- The line segment W\W2 divides the Voronoi polygon V(pi) into two

portions, the one on the left belonging to the Voronoi polygon of pi. Thus we get

a Voronoi edge on the boundary of the Voronoi polygon of pi.

Starting with the edge wiw2, the boundary of the Voronoi polygon of pi is grown

by the following procedure, which is called the boundary growing procedure. The

bisector between pi and pi crosses the boundary of V(pi) at u>2, entering the ad-

134

jacent Voronoi polygon, say V(pj). So the perpendicular bisector of pi and pj is

drawn next which identifies the point at which the bisector crosses the boundary

of V(pj). This point is shown as w3 in the Figure 4.5. The rest of the new region

as shown in Figure 4.5 is calculated in a similar fashion. Figure 4.6 shows the

final Vi Voronoi diagram after the newly added region to Vj_i.

Figure 4.4: Initial Voronoi regions

Now in the case of GSOM when a new node is grown, the parent node becomes

a non-boundary node and therefore we apply a modified version of the above

described boundary growing procedure. In Figure 4.5, we consider point pi as the

parent, node and pi as the newly generated node. Therefore a new finite Voronoi

region is assigned to parent pi since it has now become a non-boundary node.

The child pi represents an infinite region (unbounded region) since it is in the

boundary of the network.

135

Figure 4.5: Incremental generation of Voronoi regions

Figure 4.6: Voronoi diagram with the newly added region

Consider a GSOM shown in Figure 4.8, and the corresponding Voronoi diagram

in Figure 4.7. It can be seen that the GSOM in Figure 4.8 has spread out in

one direction (to the right). In Figure 4.7 points A, B, C and D represents the

initial four regions (which represent the nodes A, B, C, and D in Figure 4.8) and

E, F and G has been identified as the path of spread from point C. The POS is

136

B

D

Figure 4.7: Path of spread plotted on the Voronoi regions

Q O O O

U
O

Figure 4.8: The GSOM represented by the Voronoi diagram in Figure 4.7

marked according to the chronological order of nodes becoming parents for new

node growth in a particular direction, i.e. from E to G. Therefore points E, F

and G represent a set of regions that are generated one after other in incremental

region generating method as described above. Since these points represent the

nodes in a feature map, their order of generation describes the direction of map

growth. Therefore we denote the line joining points E, F and G as a path of

137

spread (POS) of the feature map as shown in Figure 4.8.

Once the feature map is generated, all the POS are identified using log records

generated during the growing phase. Then the hit-points are identified by cali-

brating the map with a set of test data. It will be seen that some of the nodes

along the POS do not get mapped with inputs and thus do not become hit points.

These nodes are the stepping stone nodes which were described before, which are

generated to maintain the distance between the clusters to preserve the topology

of the input data. It also can be seen that some of the hit points do not lie

on the POS. As described before these points are the boundary of the clusters

and as such do not get included as part of the POS, since they do not generate

new nodes. Since these points have attracted inputs, they represent some part

of the input space. Therefore we have to take these points into consideration

when selecting the clusters. These points are joined to the nearest position of

the POS considering them as branches of the POS. As defined above, the posi-

tions on the POS which are joined to such external hit-points are called junctions.

All the POS connected together by the initial four nodes, and connected with the

sub branches is called the skeleton of the input data space. As described in section

4.2.1, each point (node represented by a reference vector), can be called a code-

book vector which represents the input data values around that region (Voronoi

region). Therefore, the data skeleton consists of a set of representative vectors

138

(of the input data), and the path segments along the skeleton represent the inter

and intra cluster relationships in the data set. As such the data skeleton can be

considered as a summarised view of the input data clusters and their relation-

ships. Since the data skeleton consists of the paths (links) joining the clusters,

it not only provides a summarised view, but also helps in the visualisation of

the spread of the input data structure. Visualisation of the spread may provide

a data analyst with additional information from which hypothesis can be built

about unknown data. The skeleton also provides an insight in to the order or

sequence of input data presentation to the network for generating the GSOM.

Therefore, we present the concept of the data analysis and hypothesis building

ability using the data skeleton as similar to a dinosaur expert hypothesising about

the shape and structure of a dinosaur (Figure 4.9(right)) from its skeleton as

shown in Figure 4.9(left). Therefore we propose that the structure of the input

space can be visualised with the data skeleton built using the POS from the

GSOM. The skeleton can then be used to automate the cluster identification

process as described in the next section. Further usage of the data skeleton for

data mining is described in chapter 6.

4.3.3 Cluster Separation from the Data Skeleton

One of the main uses of feature maps is to identify the clusters in a set of input

data. In current usage, cluster identification from feature maps is mainly done

139

Charging Allosaurus fragiiis/atrox, by Gregory Paul (1988) Illustration from Indianapolis Children's Museum

Figure 4.9: Creating a dinosaur from it's skeleton

using visualisation and feature maps are being called a visualisation tool. We

identified the limitations of depending solely on visualisation as a cluster identifi-

cation method and presented three methods, K-means, divisive and agglomerative

as alternative methods.

The main limitation of K-means method is that, the number of clusters K has

to be pre-defined. As we highlighted in chapter 2, the main advantage of using

the SOM or the GSOM for data mining is the unbiased nature of their unsuper-

vised clusters. Therefore, forcing a pre-defined number of clusters results in a

loss of the independence of the feature map. Such pre-defining of clusters will

introduce user bias into the clusters thus reducing the value of the feature maps

for exploratory data analysis. The divisive and agglomerative methods do not

have this limitation of pre-defining the number of clusters. Therefore the data

analyst has the option of selecting the level of clustering required according to the

needs of the application. In the agglomerative method, the analyst can watch the

140

clusters merging until the appropriate level of clustering is achieved. Similarly,

in the divisive method the analyst can decide when to stop the clusters breaking

apart. As described in section 4.2.2 the main limitation of these methods is the

number of connections that have to be considered to identify the proper clusters.

The proposed method is a hybrid of these three techniques, and the clusters are

derived using the data skeleton from a GSOM. Once the data skeleton is built

the path segments have to be identified. The distances or lengths of the path

segments are calculated as the difference between the weight values of the respec-

tive junction/ hit-point nodes. The path segment lengths are then listed out in

descending order, such that the weakest segment (in the sense of closeness of the

clusters) is listed on top. The data analyst can then remove the path segments

starting from the weakest segment. This process will continue until the analyst

decides that there are sufficient or appropriate number of clusters.

Since the method uses the data skeleton, it only has to consider a smaller number

of connections (with neighbours) compared with the agglomerative and divisive

methods. This will result in faster processing and also quicker separation of

clusters since in most cases only a single path has to be broken to seperate the

different parts of the skeleton. The method is demonstrated with an artificial and

a real data set in section 4.4.

141

4.3.4 Algorithm for Skeleton building and Cluster Identi-

fication

The steps in the algorithm for data skeleton building and cluster separation is

given below. The input to this algorithm is a fully generated GSOM.

1. Skeleton building phase :

(a) Plot the node identification numbers for each node of the GSOM. The

node numbers (l..iV) are assigned to the nodes as they are generated.

The initial four nodes have the numbers 1..4. Therefore the node

numbers represent the chronological order of node generation in the

GSOM.

(b) Join the four initial nodes to represent the base of the skeleton.

(c) Identify the nodes which initiated new node generation (from the log

file generated during the growth phase), and link such parent nodes to

the respective child nodes. This linking process is carried out in the

chronological order of node generation. The node numbers of nodes

which initiate growth are stored for this purpose during the growing

phase of the GSOM creation.

The linking process is described with Figure 4.10. Figure 4.10(a)

shows the list of node numbers which initiated new node growth. Fig-

ures 4.10(b), (c) and (d) show the process of node linking according

142

3

5

2

S
——O 5

(a) (b)

o

8

- -O

6

(c)

o
13

Figure 4.10: Identifying the POS

to the order specified by the list in 4.10(a). Therefore the process can

be described as a simulation of the GSOM generation.

(d) Identify the paths of spread (POS) from the links generated in (c).

(e) Identify the hit-points on the GSOM.

(f) Complete the data skeleton by joining the used nodes, not on the POS,

to the respective POS as sub-branches.

(g) Identify the junctions on the POS.

143

2. Cluster separation phase :

(a) Identify the path segments by using the POS, hit-points and the junc-

tions.

(b) Calculate the distance between all neighbouring junctions on the skele-

ton. Euclidean metric is used as the distance measure which is

D

DAB -

where A, B are two neighbouring hit-points / junctions and the line

joining A, B is called the path segment AB.

(c) Delete path segments starting from the largest value as :

find Dmax = DX,Y such that

Dxy > Vi, j € [l..maxnodes]

where X, Y, i, j are node numbers.

Delete segment XY.

(d) Repeat (c) until the data analyst is satisfied with the separation of

clusters in the GSOM.

The above algorithm results in a separation of clusters using the data skeleton

such that the data analyst can observe such separation. Such visualisation of the

clusters provide a better opportunity for the analyst to decide on the ideal level

of clustering for the application.

144

4.4 Examples of Skeleton Modeling and Cluster

Separation

In this section we use three data sets to demonstrate the skeleton building and

cluster separation process. The first two experiments demonstrate the process us-

ing artificial data sets generated for the purpose of describing different spreads of

GSOMs. These input data sets are selected from two dimensional space between

the coordinates (0,0), (0,1), (1,1), (1,0). The third experiment uses a realistic

data set of 28 animals (selected from the 99 animal data set given in appendix

A) to describe the same process.

4.4.1 Experiment 1 : Separating Two Clusters

In this experiment we use a set of data selected from the two dimensional region

as shown in figure 4.11. The input data are selected as two clusters from the

top right and bottom left corners of the region which are shown as the shaded

area in Figure 4.11. Each cluster consists of 25 input points which are uniformly

distributed inside the cluster.

Figure 4.12 shows the GSOM generated on this data with a SF of 0.25. The

nodes shown as black circles and the shaded nodes represent the nodes that are

mapped with inputs when calibrated with the same data. It is easy to see that

two clusters are shown separately in the GSOM and could be identified visually.

145

CM)

CM)

l) ft l)

(0.96,0.96)

(M0.4)

(014 0)

Figure 4.11: The input data set

The purpose of using this simple data set is to demonstrate the cluster separation

method, in such a way that the effect of the method could be easily seen.

Figure 4.13 is the data skeleton for the cluster data set in Figure 4.11. The broken

lines in the middle of the figure shows the initial (starting) GSOM. The thicker

lines show the paths of spread (POS) spreading outwards from the initial four

nodes of the GSOM. The thin lines are the connections from the rodes outside

the POS, which forms the skeleton. The hit nodes are shown shaded in grey and

the nodes coloured in black are the junctions. Path segments are given identifi-

cation numbers for future reference.

Once the data skeleton has been built the distances for the path segments are

146

o

o

o

Figure 4.12: The GSOM with the hit points shown as black and shaded circles

calculated. Table 4.1 shows the distances calculated for the path segments for

the data set in Figure 4.11. The third column in the table provides the value of

Ds — Ds+i, where Ds and Ds+\ are the distances of two adjacent path segments.

This value is provided for comparison by the analyst to identify significant varia-

tions in such differences. The distance values in table 4.1 are ordered in descend-

ing order for the ease of identifying the significant separations.

147

1

_ 1 ,

1

2

3

i

i

4

<

5

6

i

<

7

I

i

8

9

i

10

o

I

i

o

-9
I
I

o

15

13

21
20

0
17

16

14

12

11

18

19

Figure 4.13: Data skeleton for the two cluster data set

It can be seen from table 4.1 that segment 10 contains a large distance value

compared to the rest of the values. When this is related to Figure 4.13 it can be

seen that the segment 10 joins two clusters which corresponds with two clusters

in the input data set. The path segment will now be removed starting from the

largest value. Figure 4.14 shows the data skeleton with segment 10 being removed.

Now there are two clusters which are separated. By observing the table 4.1 values,

any further removal of path segments will not produce any significant separations

of the data points.

148

Table 4.1: Path segments of two cluster data set

Segment No.
10
13
17
20
21
19
8
12
4
5
1
9
3
6
7
14
2
16
11
15
18

1.06945733
0.0935717
0.03946001
0.03246394
0.01611298
0.00010408
0.0000797
7.88E-05
0.0000701
0.00006642
0.00006617
0.0000593
0.00005393
0.00005378
0.00005365
4.84E-05
0.00004514
3.33E-05
1.77E-05

0.00001322
1.11E-05

Difference

0.97588563
0.05411169
0.00699607
0.01635096
0.0160089
0.00002438

9E-07
8.7E-06
3.68E-06
2.5E-07

0.00000687
0.00000537
1.5E-07
1.3E-07

0.00000523
0.00000328
0.00001182
0.00001559
0.00000451
0.00000217

4.4.2 Experiment 2 : Separating Four Clusters

In this experiment, four clusters are selected similar to the the first data set

except that these clusters are selected from the corners of the square. The clusters

selected are shown in Figure 4.15. This experiment is carried out to demonstrate

the spread out of the POS's and the skeleton with a higher number of clusters.

Both previous and this experiment attempt to show the representation of the

149

<

<

>
2

3

I

1

4 (

<

>

5

6

i

7

<

>

8

S

i

0

rv

o

o

<

i

<

21

14

i

13

>
12

11

20

f
<

16

• 1 8

19

1

k

Figure 4.14: Clusters separated by removing segment 10

data set by the skeleton and to emphasize that the data skeleton provides an

initial idea of the structure of the input data set-

Figure 4.16 shows the GSOM generated with a SF of 0.05 for the four cluster

data set. In Figure 4.16, the hit nodes are shown by shaded areas, similar to

two cluster experiment. It can be seen that the GSOM has separated the four

clusters and it is possible to easily visualise the cluster separation. Now we can

build the data skeletons and use the automated cluster separation method to

separate these clusters. Figure 4.17 is the data skeleton for the four clusters with

the segments numbered with the same notation used in the first experiment.

Table 4.2 shows the path segments from the skeleton for the four cluster data.

150

(ftl)

ft aw

1) (Ipl)

1,0..%

(ft 0) (0-4 0) 0.96,0 (1,0)

Figure 4.15: The input data set for four clusters

• 6 O

O O O O O O O O O

• • O O O O O O O

o o

o o

o

o •

o o © o

o o © •

Figure 4.16: The GSOM for four clusters with the hit nodes in black

151

o o

o

31
30

33

34 « | 38| *T
•Ft ° ? '«**'*'
° 28° f Qg O O O O

O O O O 27

13 |5 |9 M i45

29

O O

O O

o

16

14

12

O €>-^-< > O • 4

13

Figure 4.17: Data skeleton for four clusters

From this table, it can be seen that the path segment distances of segments

10,27, 28,29 are significantly larger than the rest.

Figure 4.18 shows the skeleton with these segments removed. Now the re-

sulting skeleton clearly shows that the four clusters have been separated in Fig-

ure 4.18.

152

Table 4.2: Path segments of four cluster data set

Segment No.
10
28
27
29
34
35
11
36
12
42
26
38
20
18
37
19
45
30
40
17
3
41
2
24
16
6
5
15
8
25
44
13
43
9
39
4
14
22
33
23
31
1
21
32
7

X^Dim („,, ... \'£
2̂ {=1 \wi,A - U)i,B)

0.86493025
0.59618458
0.35666577
0.21922388
0.00146005
0.00078201
0.00036194
0.00034612
0.00016785
0.0001517
0.0001465
0.00012517
0.0001154
0.000106
0.00010418
9.95E-05
9.95E-05
9.09E-05
8.75E-05
8.20E-05
0.00008
7.58E-05

0.00006989
6.73E-05
6.69E-05
0.00005993
0.00005965
5.69E-05
0.00005545
5.24E-05
5.22E-05
5.19E-05
5.12E-05

0.00005045
4.84E-05

0.00004685
4.47E-05
3.25E-05
3.04E-05
0.00002689
2.38E-05
0.00002209
0.00001237
7.80E-133

0

Difference

0.26874567
0.23951881
0.13744189
0.21776383
0.00067804
0.00042007
0.00001582
0.00017827
0.00001615
5.2E-06

0.00002133
0.00000977
0.0000094
1.82E-06

0.00000472
0

0.00000856
0.00000337
0.00000553

2E-06
4.23E-06
0.00000588
0.00000264
3.6E-07
6.96E-06
2.8E-07

0.00000275
0.00000145
0.00000308
0.00000013
3.6E-07
6.6E-07
7.7E-07

0.00000203
0.00000157
0.00000211
0.00001224
0.00000206
0.00000355
0.00000311
0.00000169
0.00000972
0.00001237
7.8049E-133

153

<

• 3 1 «

• 3 3 (
34

• — - i

I

30

32

i

o

o o

35

O O O

O O M»H O
37

O O O O O

O O O O 0 O O

O O

O O

O O

o o

Figure 4.18: Four clusters separated

4.4.3 Skeleton Building and Cluster Separation using a

Real Data Set

We use a subset of the animal data set used in chapter 3, to demonstrate the

skeleton building and cluster separation process. Only 28 of the 99 animals (from

the animal data) are selected based on the following criteria.

1. Generally well known and familiar animals.

2. Belongs to four main groups (insects, fish, mammals and birds).

. 154

3. Some sub-groupings exist inside the main groups (for example, meat

mammals).

The set of animals selected are, lion, cheetah, wolf, puma, leopard, lynx, £.

lope, deer, elephant, buffalo, giraffe, seal, dolphin, pike, herring, carp, piranha,

bee, wasp, fly, gnat, pheasant, wren, sparrow, lark, dove, duck and penguin.

The initial GSOM generated with the data is shown in Figure 4.19. It can be

visualised that the GSOM has spread out mainly in four directions which corre-

spond to the four types of animals in the data set. Figure 4.20 shows the data

O

o o o
o o o

cheetah. lion
OwHpumQ

leopard biK
o o o

o
o o o

o o
o

o o
gnai O

O diu:

Figure 4.19: The GSOM for the 28 animals, with SF=0.25

skeleton mapped on to the GSOM and the POS's spreading outwards from the

155

initia) square map. It can be seen from the skeleton that the main groups have

spread out in four directions in the map. In fact, we can see that the GSOM has

been generated by spreading out in these directions. It is interesting to see that

the non-meat eating mammals have been mapped onto a different POS from the

meat eaters, but it can also be seen that both POS's move in the same direction.

It can also be identified that the sub-groups inside the main groups have been

mapped to the same POS in most cases. Table 4.3 shows the distances for the

path segments identified in the figure 4.20.

Figure 4.20: Data Skeleton for the animal data

Table 4.3 shows the distances for the path segments identified in the figure 4.20.

The data analyst can now remove segments starting from the top of the table until

the clusters formed is satisfactory or meaningful (which will depend on the ap-

156

plication at hand). It can be seen that segment 18 has a large distance compared

to the others. Since the GSOM produces a topology preserving mapping this can

be interpreted as the fish being considered as the most different cluster (group)

from the other animals. The insects (wasp, bee, gnat and fly) are separated next

by removing segment 4. Segments 13 can be removed next and this separates the

four main groups. Now further segment removal will separate the sub clusters

inside the main clusters. Figure 4.21 shows the main groups separated in the

animal data set.

Table 4.3: Path segments for animal data set

Segment No.
IB
4
13
11
7
12
8
14
5
3
10
16
2
6
17
1
9
15

Eg? («M - witBy
7.43525391
4.31007765
3.76652902
2.76706805
1.56629396
1.32260106
0.7473245
0.49138419
0.27485321
0.19083773
0.15102813
0.14247555
0.12936505
0.08565904
0.07553993
0.03097862
3.45E-06
0.00000001

Difference

3.12517626
0.54354863
0.99946097
1.20077409
0.2436929
0.57527656
0.25594031
0.21653098
0.08401548
0.0398096
0.00855258
0.0131105
0.04370601
0.01011911
0.04456131
0.03097517
0.00000344

157

si •wwwtff

Therefore it can be seen from these experiments that the segment removal method

separates the clusters and provides the analyst with independence in selecting (or

deciding) the level of clustering.

Figure 4.21: Clusters separated in the animal data

4.5 Summary

In this chapter a novel method of cluster identification from the GSOM was de-

scribed. The motivation for developing this method is to enhance the traditional

usage of feature maps from just visualisation tools for data mining to more au-

tomated method of cluster identification. Since this method made use of the

growing nature of the GSOM to build the data skeleton, we can also present this

158

method as a value added over traditional SOM's.

The other advantage of this method are

1. The ability of the data analyst to be involved in the cluster separation even

though the process is automated. The analyst can decide when to stop the

path segment removal depending on the level of clustering required. On the

other hand the analyst can let the segment removing process run from start

to end, which will provide an incremental picture of the level of clustering

present in the data.

2. It has been proved that the SOM does not provide complete topology preser-

vation. Therefore the visual separation of clusters may provide a distorted

view of the actual difference in the clusters. With the proposed method the

actual differences in weights are also considered, which combined with the

visual separation provide better understanding of the clusters.

3. The data skeleton provides the foundation for building a conceptual model

for the input data set. Such a model can then be used for mining of rules

and monitoring for changes. Chapter 6 describes such a model building

using the data skeleton.

Therefore we conclude that this chapter has described a method of building a

structure called the data skeleton and proposed a method of automated cluster

identification using the GSOM. These methods enhance the suitability of the

159

n

GSOM as a data mining tool compared to the SOM, which is currently used

mainly as a visualisation technique. In the next chapter we present a further

usage of the GSOM by manipulating the spread factor as a control measure for

hierarchical clustering.

5

160

L I

Chapter 5

Optimising GSOM Growth and

Hierarchical Clustering

5.1 Introduction

The previous chapter described a novel method of identifying clusters from the

GSOM. Initially a data skeleton is created from the GSOM and the skeleton is

separated according to the clusters by removing the path segments. The grow-

ing nature of the GSOM make it possible to identify the paths of spread, which

are then used to build the data skeleton. Therefore the data skeleton building

is value added to the feature maps due to its dynamic generation compared to

conventional SOM.

A indicator called the spread factor (SF) is derived in chapter 3, and has been

161

proposed as a parameter which provides the data analyst with control over the

spread of the GSOM. The ability to control the spread (size) of the feature map

is unique to the GSOM and could be manipulated by the data analyst to obtain a

progressive clustering of a data set at different levels. The SF can take real values

in the range of 0..1 and is independent of the dimensionality of the data. For

example, if the map generated at SF = 0.3 on a 5 dimensional data and another

map with SF = 0.3 on a 10 dimensional data has similar levels of spread, then

this provides the analyst with the possibility of visualising groupings across data

sets for comparison. The spread of the GSOM can be increased by using a higher

SF value. Such spreading out can continue until the analyst is satisfied with the

level of clustering achieved or in the extreme case, each node is identified as a

separate cluster.

For a data analyst using the SOM, the only option available for achieving such a

spreading out effect is by increasing the network size (i.e. increasing the length

and width parameters of the map). In this chapter we highlight the difference

between increasing the size of a SOM aid the spreading out a GSOM using high

SF values. The GSOM using the SF indicator is described as a method for rep-

resenting more accurate inter and intra cluster relationships, while the SOM can

provide a distorted map unless very accurate knowledge about the data pre-exist.

The use of the SF indicator also facilitates the hierarchical analysis of data. Such

162

a hierarchy will consist of a small GSOM with a lov/ spread factor at the top of

the hierarchy and gradually larger GSOMs with higher SFs at the lower levels.

Therefore the total data set is mapped at the top of the hierarchy and only the

interesting clusters can be further spread out at the lower levels thus providing

a divide and conquer method for data analysis. Such hierarchical clustering of

data and separately analysing interesting clusters is advantages in real life data

mining applications when the volume of data is one of the critical problems.

The focus of this chapter is the discussion of the usefulness of having a SF indica-

tor for controlling the GSOM, and the opportunities and advantages it provides,

specially with regard to data mining applications. In section 5.2 we describe the

spread factor in detail and it's usage as a control measure of the GSOM. Section

5.3 discusses the difference between the size increase in traditional SOMs and its

limitations compared with the spreading out of the GSOMs with increasing SF

values. Section 5.4 describes the hierarchical feature map generation using the

different values of SF. Section 5.5 provides experimental results and section 5.6

summarise the contributions of this chapter.

163

5.2 Spread Factor as a Control Measure for Op-

timising the GSOM

The notion of spread factor (SF) in GSOM was introduced and defined in chapter

3. In this section we analyse the usage of SF in detail and discusses the advantages

and opportunities presented to a data mining analyst using the GSOM with

varying spread factor.

5.2.1 Controlling the Spread of the GSOM

The traditional SOM does not provide any measure for identifying the size of the

map with regard to data set or amount of spread required. Therefore the data

analyst using the SOM for data mining has to use previous experience to create

the initial grid by defining the size as rows and columns of nodes. Once the fea-

ture map has been generated, if the spread of clusters achieved is unsatisfactory,

a larger grid has to be initialised and re-trained [Ses94]. Self generating feature

maps has been suggested as a solution to this problem. Several previous attempts

at developing such dynamic feature maps are described in chapter 2. Although

these models claimed better cluster identification, none had a feature such as the

SF to control or indicate the amount of spread of a feature map.

The identification of a cluster will always depend on the data set being used and

also the need of the application. For example, in certain instances, the analyst

164

may only be interested in identifying the most significant clusters or groupings.

Alternatively, the analyst may become interested in a more detailed separation of

clusters. Therefore the clusters identified will depend on the level of significance

required by the analyst at a certain instance in time. Such a level of significance

is even more apparent in data mining applications. Since the data analyst is not

aware of the clusters in the data, it is generally required to study the clusters

obtained at several levels of spread (or detail) to obtain an understanding of the

data. Attempting to obtain such different sized maps with the SOM can result in

a distorted view since we attempt to force a data set into a map with a pre-defined

fixed structure as discussed in chapter 2. The previous dynamic SOMs attempt

to solve limitations of the fixed grid structure but do not address the problem of

identifying a level of significance for cluster identification. In other words, they do

not recognise the need and advantages of identifying clusters at different levels of

spread. Thus these previous models assume a fixed number of clusters and usually

define a threshold for cluster separation. Cluster analysis using different threshold

values do not provide the flexibility of using the spread factor, as discussed below.

As mentioned in the earlier chapters, the GSOM was specifically developed for re-

quirements of a data mining analyst. Therefore we not only consider the different

shapes of structures in the data sets, but also consider the number of clusters as a

variable which depends on the level of significance required by the data analyst.

165

The spread factor is our solution to this issue, which provides the analyst with a

measure for controlling the map spread as required.

5.2.2 The Spread Factor

The derivation of the formula for the SF is also presented in section 3. The spread

factor can be described as an indicator of the spread of a GSOM which has the

following characteristics.

1. it takes real value in the range 0 to 1.

2. it has to be provided as a parameter to the GSOM at the start of training.

3. it is used to calculate the growth threshold (GT) according to the formula

GT = -Dx \n{SF)

A

where D is the dimensionality of the data.

As described in chapter 3, the error of a certain node has to exceed the growth

threshold for new nodes to be generated in the GSOM. A high GT will allow the

nodes to accommodate large error values thus producing a smaller map and vice

versa. The error accumulated in the nodes is dependent on the dimensionality of

the input data, according to the formula

i j=l

where X(j is the j i h attribute of the ith input, Wj is the j t h attribute of the cor-

responding weight vector of the winning node, Hi is the number of hits (number

166

of times the node is a winner) of node i, as discussed in chapter 3. The data

analyst needs to examine maps of varying spread on a data set has to consider

the dimensionality of the data when calculating the GT. The SF is introduced

as a solution whereby the values of SF, 0 < SF < 1, is used to calculate the re-

quired GT using the relevant dimensions of the data. The analyst can refer to the

amount of spread of a GSOM by it's SF value, independent of the dimensionality

of the data. Such ability becomes very useful when comparing data sets with

different dimensionality or cluster analysis using subsets of the same data only

on selected attributes. In such instances the comparison of the maps with differ-

ent dimensionality can be justified if they have been generated using the same SF.

Therefore the main purpose of the spread factor is to serve as an indicator for the

amount of spread of the GSOM. In this context we define spread a quite different

from growth in the GSOM. The growth refers to the addition of new nodes to

represent new regions of the input data space. Spread refers to a zooming up

effect on the existing map thus making any sub-groupings appear within the main

clusters. With the traditional SOM, the data analyst has to change the size of

the network (grid) to achieve a different spread of clusters. The spread achieved

by changing the network size differs from the spread of map by increasing the SF

as discussed in the next section.

167

5.3 Changing the Grid Size in SOM vs Chang-

ing the Spread Factor in GSOM

In the previous section we have highlighted the need for a data analyst to train

maps of different sizes before arriving at a satisfactory level of clustering. It is

also mentioned in chapter 2 that with the SOM this is achieved by changing the

size of the initial grid. Since the final map has to be a two dimension, the SOM

is always initialised as a square or rectangle with the length and width defined by

the analyst. With the GSOM a similar effect is achieved by generating the map

with different SF's. In this section we compare the two methods of increasing the

size of SOM and GSOM to demonstrate the advantages of the GSOM controlled

by the spread factor.

5.3.1 Changing Size and Shape of the SOM for Better

Clustering

Figure 5.1 shows the diagram of a SOM with four clusters A, B, C and D which

can be used to explain the spread of clusters due to the change of grid size in a

SOM. As shown in Figure 5.1 (a) the SOM has a grid of length and width X and

Y respectively. The intra cluster distances are x and y as shown in Figure 5.1 (a).

In Figure 5.1(b) a SOM has been generated on the same data but the length of

the grid has been increased (to Y' > Y) while the width has been maintained

at the previous value (A' = X'). The intra cluster distances in Figure 5.1 (b) are

168

X
(a)

X'
(b)

Figure 5.1: The shift of the clusters on a feature map due to the shape and size

x' and y'. It can be seen that inter cluster distances in y direction has changed

in such a way that the cluster positions have been forced into maintaining the

proportions of the SOM grid. The clusters themselves have been dragged Gut in y

direction due to the intra cluster distances also being forced by the grid. There-

fore in Figure 5.1 X : Y « x : y and X' : Y' « x' : y'. This phenomena can be

considered in an intuitive manner as follows [Koh95]:

Since we consider two dimensional maps, the inter and intra cluster distances in

the map can be separately identified in the X and Y directions. We simply visu-

alise the spreading out effect of the SOM as the inter and intra cluster distances

in the X and Y directions proportionally being adjusted to fit in with the width

169

and length of the SOM .

The same effect has been described by Kohonen [Koh95] as a limitation of the

SOM called the oblique orientation. This limitation has been observed and

demonstrated experimentally with a two dimensional grid by Kohonen [Koh95],

and we use the same experiment to indicate the unsuitability of the SOM for data

mining.

(b)

Figure 5.2: Oblique orientation of a SOM

Figure 5.2(a) shows a 4 x 4 SOM for a set of artificial data selected from a uni-

formly distributed 2 dimensional square region. The attribute values x, y in the

data are selected such that x : y = 4 : 4 and as such the grid in Figure 5.2(a)

is well spread out providing an optimal map. In figure 5.2(b) the input value

attributes x : y ^ 4 : 4 while the input data demands a grid of 4 : 4 or similar

proportions. As such it has resulted in a distorted map with a crushed effect.

Kohonen has described oblique orientation as resulting from significant differ-

170

ences in variance of the components (attributes) of the input data. Therefore the

grid size of the feature map has to be initialised to match the values of the data

attributes or dimensions to obtain a properly spread out map. For example, con-

sider a two dimensional data set where the attribute values have the proportion

x : y. In such an instance a two dimensional grid can be initialised with n x m

nodes where n : m = x : y. Such a feature map will produce an optimal spread of

clusters maintaining the proportionality in the data. But in many data mining

applications the data analyst is not aware of the data attribute proportions. Also

the data mostly is of very high dimensions, and as such it becomes impossible to

decide a suitable two dimensional grid structure and shape. Therefore initialing

with an optimal grid for SOM becomes a non-feasible solution.

Kohonen has suggested a solution to this problem by introducing adaptive ten-

sorial weights in calculating the distance for identifying the winning nodes in the

SOM during training. The formula for distance calculation is

N

(5-1)

where £,- are the attributes (dimensions) of input x, the fi{j are the attributes of Wi

and ipitj is the weight of the j t h attribute associated with node i respectively. The

values of Wij are estimated recursively during the unsupervised learning process

[Koh95]. The resulting adjustment has been demonstrated using artificial data

sets in Figure 5.3.

The variance of the input data along the vertical dimension (attribute) versus

171

" _\

(a)

nrz
i i ~i

Figure 5.3: Solving Oblique orientation with tensorial weights (from [Koh95])

the horizontal one is varied (1 : 1,1 : 2,1 : 3, and 1 : 4 in Figure 5.3(a), 5.3(b),

5.3(c), 5.3(d) respectively). The results of the unweighted map is shown on the

left and the weighted map on the right in Figure 5.3. It can be seen that the

optimal grid size, for the map for Figure 5.3(d) would have been 2 x 8 . Therefore,

the pre-selected grid size results in a distortion of the map, and that the tensorial

172

weights method adjusts the map such that it is forced into the grid proportions.

We interpret the oblique orientation as an occurrence due to the map attempting

to fit in with a pre-defined network, and resulting in a distorted structure. Tenso-

rial weights method attempts to reduce the oblique orientation but still keeping

within the network borders thus forcing the shape of the network on the data.

This is opposite to the ideal solution since it is the data which should dictate

the size and shape of the grid. By changing the size of the grid in the SOM, the

map is forced to fit in with a new network size and shape. If the data attributes

are not proportionate (in the x and y directions) to the network grid, a distorted

final map can occur. Since the SOM is generally used as a visualisation tool in

data mining, the inter and intra cluster distances will be shown distorted by the

network size and shape. Such a distorted view can be a major disadvantage in

data mining applications where the analyst is attempting to obtain an initial idea

about the data structure and distribution using visualisation.

5.3.2 Controlling the Spread of a GSOM with the Spread

Factor

In GSOM, the map is spread out by using different SF values. According to the

formula 3.28 presented in chapter 3, a low SF value will result in a higher growth

threshold (GT). In such a case a node will accommodate a higher error value

173

before it initiates a growth. Therefore we can state the spreading out effect (or

new node generation) of GSOM as follows :

The criteria for new node generation from node i in the GSOM is

GT (5.2)

where Eittot is the total accumulated error of node i and GT is the growth thresh-

old. The Ei)tot is expressed as (equation 3.20)

D

Hi j=l

If we denote a low SF and high SF values by SFlow and

= > denotes implies, then

(5.3)

\igk respectively, and

SF,low GT,high (5.4)

SFhihigh GT,low

Therefore from equations 5.3, 5.4 and 5.5 we can say that:

when the SF — SFi0W, node i will generate new nodes when

D

Ei,tot = E E (*;(*) - ™;W) > GThigh
Hj j = l ^

R,

Similarly, when the SF = SFfogh., node i will generate new nodes when

~ wk{t))
2 > GTl0W

D

Hi fc=l

(5.5)

(5.6)

(5.7)

174

where Xj G Ri and Xf. € Rs are two regions in the input data space.

It can be seen that region Ri represents a larger number of hits and accommo-

dates a larger variance in the input space. Similarly region Rs represents a smaller

number of hits and a smaller variance. Thus Ri represents a larger portion of the

input space and Rs represents a smaller portion. Therefore we can infer that in

the case of a low SF value, node i represents a larger region of the input space

and with a high SF value, node i represents a smaller region. By generalising i

to be any node in the GSOM it can be concluded that, with a small SF value,

the nodes in the GSOM represents larger portions of the input space and with

a high SF value, the nodes represent smaller portions. Therefore using the same

input data, a low SF value will produce a smaller representative map and a high

SF value will produce a larger representative map.

From the above discussion, the SF value dictates the amount of input to be rep-

resented by a node in a GSOM. Now if we visualise the map in x,y directions,

similar to that of SOM, it can be seen that the same growth criteria, dictated by

the SF applies to both directions. In other words, a node would be grown in a

certain direction only if there are sufficient inputs in that direction considering

the SF value.

In the case of the SOM, the spread of the map is pre-determined by the data

175

analyst and the input data in a certain direction is forced to fit into the available

number of nodes. As such, unless the analyst has a method of (or knowledge

of) assessing the proper number of nodes, a distorted map can occur. With

the GSOM, the input values dictate the number of nodes and the spread factor

provides, a global control of the spread of the nodes. Therefore the GSOM does

not result in the oblique orientation or distorted view of the data as in the case

of SOM.

5.3.3 The Use of the Spread Factor for Data Analysis

As described above, the ability to define a spread factor provides the data analyst

with control over the spread of the GSOM. We claim the following as advantages

due to the spread factor for data analysis using the GSOM.

1. The spread factor can be used to generate several maps with increasing SF

values. The analyst can thus observe the clusters in the map and the effect

of increasing value of SF on the clusters. Such a set of maps will provide the

analyst with an initial, unbiased view of the distribution of input data. For

example, it will be possible to see whether the data is uniformly distributed

or clustered or whether the clusters are of uniform density or non-uniform.

The series of maps with increasing SF values provide a more informative

picture than observing a single map. The visualisation is also more accurate

than attempting to visualise several SOMs with increasing grid sizes since,

176

as shown in section 5.2, the SOMs will provide a distorted picture if the

grid size and shape does not match the shape of the data distribution.

2. Once clusters are identified and one or more GSOMs have been selected

as suitably clustered by the analyst, clusters can further be spread out to

identify the sub-groupings. When the data analyst is interested only in a

subset of the data, then such relevant clusters can be selected for further

spreading out. Such cluster identification and analysis can be carried out

hierarchically and will be discussed in detail in section 5.4.

3. It is sometimes useful for a data analyst to observe the clusters in the data

using only a partial set of the attributes (clustering on partial dimensions).

The SF is independent of the dimensionality of the data and as such can be

used to generate maps which can be compared if generated using the same

SF. Such analysis will be useful in identifying non-contributing attributes

(to the clustering) or attributes which dominate in a cluster. The usefulness

of such analysis for data mining will be discussed in chapter 6.

5.4 Hierarchical Clustering of the GSOM

In chapter 4 we presented a method for automating the cluster identification pro-

cess from the GSOM. Therefore the data analyst has the ability to use either

visualisation or the data skeleton to identify the clusters. In section 5.2 we de-

scribed the concept of the spread factor in detail and introduced the value added

177

to the GSOM with the ability to generate higher or lower spread maps, as re-

quired by the analyst. So far we have been studying maps generated on a certain

fixed SF value and as such at a single level of clustering. This section highlights

the usefulness of clustering of the same data set on several SF values and thus

creating a hierarchy of GSOMs and sub-GSOMs [AlaOOb].

In section 5.4.1 hierarchical clustering is defined and the advantages of such cluster

identification is discussed. Section 5.4.2 describes how hierarchical clustering

can be achieved using the spread factor as a control measure, and section 5.4.3

presents the algorithm for hierarchical clustering of GSOMs.

5.4.1 The Advantages and Need for Hierarchical Cluster-

ing

A hierarchy is a set SH = Sh. : h 6 H of subsets Sh Q I,h € H called clusters and

satisfy the following conditions.

1. / e SH

2. For any Si,S2 £ SH, either they are non-overlapping (S\nS2 = 0) or one of

them includes the other (S\ C S2 or S2 C Si), all of which can be expressed

as Sins2e®,SuS2.

Using the definition of a hierarchy given above we can present the GSOM gener-

ated on the given data set as the root of the hierarchy. Once the clusters have

178

been identified further spreading out of these clusters can build the hierarchical

tree of GSOMs. Such hierarchical clustering of a data set has several advantages,

specially in data mining applications.

l X herarchy -corresponds to the way the human mind handles complex sit-

uations. Therefore a data analyst will be comfortable with hierarchically

analysing a data set. The SOM or the GSOM is generally used in data

mining to obtain an initial unbiased view of the data set. Therefore we

can present this situation as a data analyst attempting to understand the

structure present in a set of data, about which no current knowledge exists.

In such a situation it is better to initially study an abstract view of the data

and then gradually look at more detailed views. With a hierarchical set of

feature maps, the root will contain a small map which may disclose the most

significant groupings. Using the above definition we can denote these as the

clusters SI,S2,---,SN where N is the number of clusters identified by the

data analyst from the root GSOM. These clusters can further be expanded

into sub clusters of clusters S1U S12, • • •, S21, • • • where Sn, Sn, • • • Q Si and

£21, - • • Q $2, • • • which are not seen at the root level. Thus, analyst can

initially concentrate on the first level of clusters and attempt to understand

the overall picture and obtain an abstract understanding about the data.

The analysis of the lower levels are thus cor ducted with an understanding

of the overall picture.

2. One of the significant problems faced in data mining applications is the

179

large volumes of data that has to be manipulated. Such large volumes

not only require vast computing resources, but will make it difficult and

complex for the analyst to understand the data or recognize any patterns.

Using hierarchical GSOMs, the analyst will initially study smaller (less

spread) maps and will identify the clusters separately. Further detailed

analysis can be conducted on the individual clusters SI, S2 • • • Spj (where

S\ H 52 H . . . n SN = 0) as separate data sets. Such separate analysis does

not result in data loss since the upper level of the hierarchy maintains a

record of the positions of each cluster and their relationships with others.

During such analysis it might also become apparent that

(a) A certain cluster may not of interest to the current application. Fur-

ther analysis can thus be terminated on this cluster.

(b) A cluster might be found to have sufficiently spread, where further sub

clustering is not possible or of no interest. Further spreading out can

also be terminated in such cases.

In both the above instances a section of the data set is found which does

not require further processing (because interesting properties with respect

to the application has already been found), and can thus save time and

resources. Without hierarchical clustering such clusters would also have

been spread out unnecessarily.

180

Hence, hierarchical clustering can help in understanding complex data structure

and also can result in faster and less complex data processing.

5.4.2 Hierarchical Clustering Using the Spread Factor

In chapter 3, we derived an equation to calculate the growth threshold (GT) for

a GSOM from a given spread factor (SF). The work on dynamic feature maps

in the past has concentrated on obtaining an accurate topographical mapping

of the data. But for knowledge discovery applications it is also very important

for the data analyst to have some control of the growth (or spread) of the map

itself. Since feature maps are generally used to gain an initial idea of the data

in data mining applications, it may not be necessary to achieve high accuracy in

cluster identification and a controllable growth may become even more important.

Therefore the spread factor becomes useful for the data analyst in the following

instances.

1. Since the spread factor (SF) takes values in the range 0 to 1, where 0 is the

least spread and 1 is the maximum spread, the data analyst can specify the

amount of spread required. Generally for knowledge discovery applications,

if no previous knowledge of the data exists, it would be reasonable to use

a low spread factor at the beginning (say between 0 and 0.3). This will

produce a GSOM which may highlight the most significant clusters. From

these initial clusters the analyst can decide whether it is necessary to study

a further spread out version of the data. Else the analyst can select the

181

regions of the map (or clusters) that are of interest, and generate GSOMs

on the selected regions using a larger SF value. This will allow the analyst

to do a. finer analysis on the subsets of data of interest, which have now

been separated from the total data set. Figure 5.4 shows how this type of

analysis can produce an incremental hierarchical clustering of the data.

SF=0.3

E

Cluster A
SF=0.5

o o o o o o
.O O JO O

o o o Jo o/o o o
o y \o o o;

ClusterB
SF=0.5

o o o o
o o o o o o

o o o o o o
o o o o o o

o o o

Cluster D
SF = 0.75

o o o ^ o o
o o o o o o o o

o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o o

Total Map
JSF=0.5

o o o o o o oo
o o o o o o o o o o o o o o
o o o o o o o o o o o o o o
o o o o o o o o

o o o o o
o o o o o o
o o o o o c

o o o o o
o o o o o

Figure 5.4: The hierarchical clustering of a data set with increasing spread factor

(SF) values

2. During cluster analysis, sometimes it is necessary (and useful) for an analyst

to study the effect of removing some of the attributes (dimensions) on the

182

}

existing cluster structure. This might be useful in confirming opinions on

non-contributing attributes on the clusters. The spread factor facilitates

such further analysis since it is independent of the dimensionality of the

data. This is a very useful feature since the growth threshold (which is

derived using the spread factor) depends on the dimensionality of the data.

3. When comparing several GSOMs of different data sets it would be useful

to have a measure for denoting the spread of the maps. Since the dimen-

sions of the data sets could be different, the spread factor (independent of

dimensionality) can be used to identify the maps, across different data sets.

This also opens up very useful opportunities for an organisation that wants

to automate this process of hierarchical clustering. The system can be con-

figured to start clustering with an initial value of SF = a and gradually

continue until SF = x, where a < x .

Figure 5.5 shows different options available to the data analyst with the GSOM>

due to the control achieved by the SF. The figure shows the initial GSOM

generated with a smaller SF (in the figure SF = 0.3). The clusters are then

identified and expanded at a higher level of SF (in the figure this is 0.5). At each

level, the data analyst has the choice of expanding the whole map or expand some

of the clusters with their full set of attributes or expand using only a selected

sub-set of the attributes. In most cases the data analyst will use a combination of

these methods to obtain an understanding of the data itself. In the next section

183

Initial GSOM

Cluster 1(SF =0.5)

S F = 0 3

Cluster 2 (SF=0.5) Cluster n(SF =0.5)

1
Sub clusters using
full attribute set

SF = 0.7

SF = 0.5

1
Sub clusters using
selected attributes

SF = 0.7

Cluster 1 (SF=0.7)

SF-0.7

Figure 5.5: The different options available to the data analyst using GSOM for

hierarchical clustering of a data set

we formalise this concepts by developing an algorithm for hierarchical clustering

using the GSOM.

5.4.3 The Algorithm for Implementing Hierarchical Clus-

tering on GSOMs

The hierarchical clustering of a data set using the GSOM can be expressed as the

following algorithm.

1. Generate an initial GSOM on the total data set 5" with spread factor SF'.

Let this map be denoted as GMAPS,SF>-

2. Identify the clusters S{ where U*Li St = » S and St f] Sm = 0 V5/, Sm C S,

and Z, m G [1..N]. For the cluster identification process, the traditional

184

visualisation or the data skeleton method presented in chapter 4 can be

used.

3. Identify the clusters IC = [Sj\j e 1..N] and \IC\ = N' < N, which are of

interest for the current application.

4. Prom the clusters of interest IC, identify and remove any non-contributing

attributes, where non-contributing attributes are those attributes that do

not contribute to the clustering significantly.

5. Identify clusters Si with special attributes of interest D', where D' < D (D

is the dimension of the original data), which may justify consideration for

partial dimension analysis.

6. Generate GSOMs GMAPSUSF",SF' > SF" for cluster St selected in (4)

and (5) above.

7. Repeat from step (3) until the data set is separated into sufficiently pure

clusters.

5.5 Experimental Results of Using the SF indi-

cator on GSOMs

In this chapter we describe the usefulness of the spread factor and its usage as a

control measure in hierarchical clustering of the GSOM. In this section, we use

two real data sets to demonstrate the functionality of the spread factor. Initially,

185

an experiment is performed to demonstrate the effect of high and low SF values

in spreading out of a GSOM. A second experiment is then presented to demon-

strate the hierarchical clustering ability of the SF. Finally a third experiment is

described, where a data set of high dimension is used to highlight the potential

of the GSOM using the SF, for real applications. The data set used for the first

two experiments is the animal database (Appendix A), consisting of 99 animals

[Bla98], which has been used in chapters 3 and 4. For the third experiment, a

human genetics data set of 42 dimensions is used [Cav94].

5.5.1 The Spread of the GSOM with increasing SF values

The purpose of the first experiment is to demonstrate the effect of the spread

factor on the GSOM. Therefore we have selected 50 animals from the animal

database, and generated 2 GSOMs as shown in Figures 5.6 and 5.7. A low SF

value of (0.1) is used for the GSOM in Figure 5.6 and a high SF value of (0.85)

for the GSOM in Figure 5.6.

As stated above, Figure 5.6 shows the GSOM of the animal data with a low (0.1)

spread factor. It can be seen from this figure that the different types of animals

have been grouped together and also similar sub-groups have been mapped closer

to each other. Since we have used a very low SF value to demonstrate the dif-

ference in spread with a very high spread factor (in Figure 5.7), the clusters in

Figure 5.6 are not clearly visibe. A SF value of around 0.3 would have given a

better visual picture of the clusters. But it is still possible to see in Figure 5.6,

186

MAMMALS

/elephant, goat
calf,antelope
buflalo,girafrej
pony,deer/

Iion,mol
cheetah
bear,woIT

hare O

o tortoise o d o v s o o

BIRDS

chicken

O flamingo
lie a, gnat
heeflyflpbster fr°g o ^ o vulture o
wasp,octopus l crab swan

crow

squirrel
gorilla

dolphin
seal worm

)ike,piranha

i
ETCH

Figure 5.6: The GSOM for the animal data set with SF = 0.1

that there are 3 to 4 main groupings in the data. One of the main advantages of

the GSOM over the SOM can highlighted by this figure. The GSOM indicates

the groupings in the data by it's shape even when generated with a low SF value.

Figure 5.6 has branched out in three directions and this indicates that there are

three main groupings in the data (mammals, birds and fish). The insects have

been grouped together with some other animals but does not show significantly

separated at this low level of SF due to a lesser number of insects present in the

data set.

Figure 5.7 shows the same data set mapped with a higher (0.85) spread factor.

187

bee

o
o o
o o
D O

0

o
calf,goat
pony

o
bear

o
o

o
o
o

o

lobster
o octopus

gnat
flpa
o o
o hare
f̂ O

'antelope>\
giraffe,deer)
buffalo C ° ^
elephantj

o o
O 0

lion.wolf
cheetah

o
o
o
o

o
o
o
o
o
o
o

o

frog
crab

tortoise
O

gorilla
squirrel

O

o
o
o
o
o

mole

o
O

o

o
o
o

o
o
o
o
o
o
o

o
o
o

o
o
o

o

o
o
o

flamingo o
o

o
o
0

o

0

o
0
o
o

penguin
o

crow
hawk

gull
vulture

o
o
o
o
o

o
o
o
o
o

o
o
o
o
o

o
o
o
o
o
o
o
o

o
o
o
o
o

o
o
o
o

dolphin
sea
pik

o
o
o
o
o
o
o

1
1

o
o

herring
e carp,piranha

o
o
o

o

lark.pheasanTl
\sparrow,wren J
^ " o 0

o 0
duck swan

O

O

o
o

o 0
o
o chicken

o d o v e

Figure 5.7: The GSOM for the animal data set with SF = 0.85

It is possible to see the clusters clearly, as they are now spread out further. The

clusters for birds, mammals, insects and fish have been well separated. Since fig-

ure 5.7 is generated with a higher SF value even the sub-groupings have appeared

in this map. The predatory birds have been separated into a separate sub-cluster

from other birds. The other sub-groups of birds can be identified as airborne

(lark, pheasant, sparrow) and non-airborne (chicken, dove) and aquatic (duck,

swan). The flamingo has been completely separated due to it being the only

large bird in the selected data. The mammals have been separated into predators

and non-predators and the non-predators have been separated ;nto wild and do-

188

mestic sub-groups.

With this experiment it can be seen that the SF controls the spread of the

GSOM. An interesting observation from this experiment is, the way the GSOM

can branch out to represent the data set. Due to this flexible shape of the network,

the GSOM can represent a set of data with a fewer number of nodes (at the equal

value of spread factor) compared to SOM. This has been proved experimentally by

extensive testing on different data sets, the results of which were reported in our

previous work [Ala98e],[Ala98a],[Ala99b], [AlaOOa]. This becomes a significant

advantage when training a network with a very large data set, since the reduction

in the number of nodes will result in a reduction in processing time and also less

computing resources are required to manage the smaller map.

5.5.2 Hierarchical Clustering of Interesting Clusters

Although we could expand (spread out) the complete map with a higher SF value

for further analysis as shown in Figure 5.7, it would sometimes be advantages to

select and expand only the areas of interest as shown in Figure 5.5. The data

analyst can therefore continue hierarchically clustering the selected data until a

satisfactory level of clarity is achieved. Figure 5.8 shows the hierarchical cluster-

ing of the same data set used in the previous experiment. The upper right corner

of Figure 5.8 shows a section of the GSOM from Figure 5.6. We have assumed

that the analyst is interested in two specific clusters (as shown with circles) and

189

o

bear o

O

Section of the GSOM of
50 animals with SF = 0.1

/elephant, goat
calf.antelope
bufialo.giraiTe
pony,deer

calf
O o

The Cluster of "Land mammals'
further spread out

herring .
piranha

o o o o o o o o o

carp

The cluster of 'Fish + some
other animals'
further spread out

pike o o o

clam o

o w o m o
slug

o

o o

o

Figure 5.8: The mammals cluster spread out with SF = 0.6

requires a more detailed view of the clusters. Two separated GSOMs have been

generated for the selected clusters, using a higher (0.6) SF value. The sub clus-

tering inside the selected cluster is now clearly visible. The non-domestic and

non-predatory mammals have been mapped together because they have the same

attribute values. The predators (wolf, cheetah, lion) and the domestic mammals

190

(pony, goat, calf) have been separated. The reasons for the other separations

can also be investigated. For example, it might be important to find why bear

has been separated from the other predatory mammals. On further analysis it

was found that the bear is the only predatory mammal without a tail in this

data set. The shape of the GSOM, by branching out, clearly brought the bear

to our attention. In a more realistic data mining application we might identify

interesting outliers with this type of analysis. The mole and the hare have been

separated from their respective groups (non-domestic, non-predatory mammals

and predatory mammals) due to their smaller size.

Such analysis can also be carried out on the other cluster. The fish has been

separated from the other animals which were clustered close to fish. The reasons

for such closeness would become apparent with further analysis of the new spread

out GSOM. Since the data are already well separated, it would not be useful

to further spread out the current clusters. But in a more complex data set it

might be necessary to use several levels of GSOMs with increasing SF values to

gradually obtain a better understanding of the data set.

5.5.3 The GSOM for High Dimensional Human Genetic

Data Set

In this section we generate a GSOM for a more realistic data set with 42 dimen-

sions. We used the simpler animal data set for our earlier experiments since it

191

was better suited to explain the functionality of the GSOM and the effect of the

spread factor. The purpose of this experiment is to demonstrate the ability of

the GSOM to map a much higher dimensional and complex set of data. The

human genetics data set consists of the genetic distances of 42 populations of

the world which has been calculated using gene frequencies [Cav94]. The genetic

information is derived from blood samples taken from individuals of a population

inhabiting particular areas. The presence of certain genes have been identified in

those blood samples and these genes have been used to describe the individual.

With sufficiently large samples, the individual gene frequencies have been used

to calculate an average for each population. The data set has been generated

by selecting 42 populations from an initial 1950 populations. The genetic dis-

tance between the populations has been calculated with a measure called the Fst,

which has specifically derived to measure distances between populations. The Fst

calculation uses a form of normalization to account for frequencies that are not

normally distributed. Special terms have also been added to correct any sampling

errors. Thus Fst has been described as a better measure of genetic distance than

the Euclidean distance [Cav94].

We have used a SF=0.5 to generate the GSOM for the genetics data and this

mapping is shown in Figure 5.9. It can be seen from this figure that the map is

spread mostly according to the geographic localities. But some interesting devi-

ations could be seen, such as the Africans being separated into two sub-groups A

192

Na Dene
Eskimo

O

op o o
S.American

o o o
CAmeiind N.American

o o

Korean
Japanese
Ainu

V

O O
Iranian " ^ - ^ N.Turkic Chukchi

^ " ^ O O O
IndianDravidian \ Lapp

O O O O I O O O
Tibetan N. Eastern] Greek Danisho o o

E.African

Uralic MongulB e r b e r San
Tungus js

o o o
Basque

o cr o
English

o o o
o

S.Chinese O

O

o

Bantu
9 Mabuti

Nilo Saharan
W.African

B

O

O

o
o

o
o
oo .o.

Thai Filipino
o o o

oo o o
Mon Khmer

O O
Malaysian Indonesian

Micronesian
o o

Pojyesian Melanesian
O O

o

Australian
O ^T „ .

New Guinean
O O

o

and B.

Figure 5.9: The Map of the Human genetics Data

Figure 5.10 shows cluster A further spread out for clearer viewing or detailed

analysis. The left branch of the GSOM (cluster A) in Figure 5.9 was picked for

further spread since it showed a clustering of populations which were generally

thought to be different. The resulting GSOM with a SF=0.6 is shown in Fig-

ure 5.10.

193

Tibetan o

o Dravidian

o o

Indian Iranian o o o Korean o o

Near T_ ,. Ainu
o . o Uralic o _Eastern Japanese

Berber o o
East African

San Mongul

Figure 5.10: Further expansion of the genetics data

Figure 5.10 shows that the two Indian populations (Indian and Dravidian) are

further apart. The African populations have been mapped close together and do

not seem to have any significant sub groups among them at this level.

5.6 Summary

The main focus of this chapter is the use of spread factor (SF) in controlling the

growth of GSOM, and its value in data mining applications. The SF is provided

as a parameter at the beginning by the analyst to indicate the amount of spread

required, and is independent of the dimensionality of the data. Therefore the

194

analyst has the freedom to decide on the amount of map spread for a specific

application.

A data analyst using the traditional SOM achieves different spread of the map

by changing the grid size. We have shown that such grid size change can cause

distortion in the map, aiid considering that the SOM is used as a visualisation

tool, becomes a significant disadvantage. Therefore, by varying the SF in GSOM

provides the data analyst with a novel way of spreading the feature maps without

such distortion as in SOM. This chapter has also discussed a way of achieving

hierarchical clustering using the SF. Such hierarchical clustering is a significant

advantage when using large data sets, by enabling the analysis to be carried out

separately on clusters. Hence the SF is a unique feature of the GSOM which

enhances it's value as a data mining tool.

In the next chapter we discuss a method of extending the GSOM by developing

a conceptual layer to facilitate data mining by rule extraction from the GSOM

clusters. The conceptual layer is also used to develop a method for monitoring

change and movement in data over time.

195

Chapter 6

A Conceptual Data Model of the

GSOM for Data Mining

6.1 Introduction

The SOM has been described as a visualisation tool for data mining applications

[Wes98], [Deb98]. The visualisation is achieved by observing the two dimensional

clusters of the multi dimensional input data set and identifying the inter and in-

tra cluster proximities and distances. Once such clusters are identified, the data

analyst generally develop hypothesis on clusters and the data and can use other

methods such as statistics to test such hypothesis. In other instances, attribute

values of the clusters can be analysed to identify the useful clusters in the data

set for further analysis.

196

Therefore the feature maps generated by the SOM can be used in the preliminary

stage of data mining process where the analyst uses such a map to obtain an ini-

tial idea about the nature of the data. The current usage of feature maps in data

mining has been mainly for obtaining such an initial unbiased segmentation of

the data. Although this is a useful function, the feature maps offer the potential

of providing more informative information regarding the data. Developing the

feature maps to obtain such additional information can be thought of as a step

in the direction of developing the feature maps as a complete data mining tool.

Another limitation of feature maps is that they do not have a fixed shape for

a given set of input data. This becomes apparent when the same set of data

records are presented to the network in changed order (say, sorted by different

dimensions or attributes). Although the map would produce a similar clustering,

the positioning of the clusters would be different. The factors which contribute

to such changed positioning in SOMs are the initial weights of the nodes and the

order of data record presentation to the network, while in the GSOM only the

order of records presented to the network, since the node weights are initialised

according to the input data values.

Therefore comparing two maps becomes a non-trivial operation as even similar

clusters may appear in different positions and shapes. Due to this problem, us-

age of feature maps for detecting changes in data is restricted. A solution to

197

this problem is the development of a conceptual model of the clusters in the data

such that the model is dependent upon the inter cluster distance proportions and

independent of the actual positions of the clusters in the map.

Chapters 4 and 5 of this thesis has introduced extensions to the GSOM model.

These extensions provide value added to the original feature maps with the abil-

ity to automatically separate the clusters and allows hierarchical analysis of the

clusters using the spread factor. In this chapter, the data skeleton proposed in

chapter 4 is made use of to develop a conceptual model of the clusters present

in the data. It is shown that such a model is useful in detecting changes in data

which is an important function in data mining. A method is also proposed to

obtain rules describing the data using the clusters of the GSOM. Therefore work

described in this chapter can be considered as a shift of the usage of feature maps

from an initial data probing method for data mining to a tool that can bo used

to extract rules from a set of data.

Section 6.2 discuss the development of a conceptual model called the Attribute

Cluster Relationship (ACR) model of the GSOM. In section C.3 the ACR model

is used to extract several types of rules useful for the data mining analyst. Sec-

tion 6.4 identifies the usefulness of data shift monitoring for data mining and

introduce a method for data shift identification using the GSOM-ACR model.

Section 6.5 discusses the experimental results on our test data set (animal data)

198

to demonstrate the rule extraction and data shift monitoring methods. Section 6.6

provides a summary of the chapter.

6.2 A Conceptual Model of the GSOM

The need of a conceptual model of feature maps is highlighted in the previous

section. It is also discussed in chapters 4 and 5 that a feature map generated

b}' the GSOM can be considered as a representation of the clusters in the d.vja

at a certain spread factor. Therefore we can state that a GSOM feature map

GMAPSFX represents the clusters Ch, Cl2,.. • Clk of a data set 5*1 at a specified

spread factor SFi,which can be expressed as

GMAPSFl = Clk (6.1)

where + represents union and CliC\Clj = 0, VC/j, Clj C S\. For a spread factor

SF2, where SF2 > SFi, and for the same data set Si, the GSOM feature map

will be

GMAPSF2 = Chi +

where

Ch

+ . . . 4- CluK+Cl2i + C/22 + . . . Cl2h +...+
ci2

C/fci + C/fc2 4 - . . . + C/fc/,

+ Ch2 + ... + ClUl => Ch

C/21 + C/22 + ... + CI 2/2 cu

199

+ • • • + Clkik

and h + l2 + ... + Ik >

Figure 6.1: The spreading out of clusters with different SF values

Such spreading out of clusters can be illustrated by a diagram as shown in Fig-

ure 6.1. With spread factor SFi, let us assume that there are three clusters as in

Figure 6.1 (a). These clusters have been further spread out with the spread factor

SF2, (SF2 > SFi) and some sub-clusters in C\ and C3 can now be visualised in

Figure 6.1 (b). Cluster C\ shows two sub clusters and C3 shows three sub clusters.

C2 does not show such sub groupings and this will occur when the data points

inside the cluster has a uniform distribution. It can also be seen that the original

clustering is still apparent in the map.

200

As such the clusters appearing in a map depends on the spread factor, with

< NSF2 (6.2)

where NSFI and NSF2
 a r e t n e number of clusters for a given set of data for

spread factor values SF\ and SF2 respectively and SFi < SF2. The equality

in equation 6.2 is satisfied when the increase in spread factor is not sufficient

to spread out the clusters or when the intra cluster data points are uniformly

distributed. Since the number of clusters in a feature map depends on the spread

factor used, we now define a cluster indicator CI^SF1 to represent a cluster i of a

GSOM for a spread factor SF' as

CIiySF> = Maxii2,

>D, Maxi<D, MinitD))

where /iAik,k = 1..D represents the average attribute (dimension) value for at-

tribute k in cluster i, (i — 1..NSF>)- SD{ is the standard deviation of the intra

cluster data distribution in cluster CU and Maxitj and Miriij are the maximum

and minimum values for each attribute j for Ck, and D is the dimension of the

data set.

The average weight value is calculated as follows :

n
(6.3)

where n is the number of nodes assigned to cluster i, and Aj.Jt is the value of j t h

201

attribute (j = [!..#]) of node fc, k = [l..n], in cluster i.

Once such a set of cluster identifiers have been selected, they can be considered

as a set of conceptual identifiers for the clusters in the map, for a specific spread

factor. Such a set of identifiers are called conceptual cluster identifier since they

represent the clusters without considering their positions in the feature map.

Once the cluster identifiers have been calculated it is necessary to join them

together with the attributes into a model which can facilitate the automated

analysis of inter and intra cluster relations. The development of such a model is

described in the next section.

6.2.1 The Attribute Cluster Relationship (ACR) Model

The ACR model is developed as a method of implementing the conceptual cluster

identifiers. The model has been generated by developing two layers of nodes

on top of the GSOM and adding connections between the layers as shown in

Figure 6.2. There are three layers in the ACR model and they are

1. the physical layer or the GSOM

2. the cluster summary layer

3. the attribute layer

The GSOM clusters are linked to cluster summary nodes, which represents the

identifier for the respective cluster. Bach cluster summary node is linked to the

202

s
Si

attribute layer nodes which enables the rule generation and this will be described

in section 6.3. The GSOM represents the clusters at physical level, and as such

can represent the clusters at different shapes and positions in different maps.

The cluster summary layer and the attribute layer with the links in between

them represents the conceptual view of the clusters which will only change due

to a change in the attribute values of the data.

Attribute

Layer

Cluster Summary

Layer

Conceptual View of the
)• Attribute Cluster

Relationships

GSOM
, Physical Feature Map

with Clusters Identified

Figure 6.2: The ACR model developed using the GSOM with 3 clusters from a 4

dimensional data set

203

Cluster Summary Layer

In Figure 6.2 the cluster summary layer is built on top of the GSOM. This layer

consists of a set of nodes where each node represents a cluster in the GSOM.

Therefore the map has to be built and the clusters separated before the cluster

summary layer can be built. The nodes in this layer act as identifiers for the

clusters. Once the clusters are identified from the GSOM, the nodes in each

separate cluster are linked together. A set of cluster summary layer nodes are

generated and each cluster is linked to a summary node. The attribute values of

the clusters are calculated by averaging over all the nodes in the cluster according

to equation 6.3. The standard deviation and the maximum and minimum values

are also found across the nodes in each cluster for each attribute. These values

are then stored in the attribute cluster links between the two layers. Therefore

the summary nodes are representation of the respective cluster which not only

provide information about the average attribute values, but also can be used to

analyse the distribution of the cluster.

Attribute Layer

The attribute layer consists of a set of nodes where each node represents one

dimension (attribute) in the data set. In this model the attributes layer is gen-

erated after the cluster summary layer, and the nodes in the two layers are fully

connected. The attribute layer nodes do not store any information and only serve

as initiating points for querying or rule generation from the map. The rule gen-

204

I

eration method is described in section 6.3.

The steps in ACR model generation can be stated more formally as follows.

1. Generate a GSOM GMAPSFi for a given set of data 5i, with a spread factor

SF'.

2. Build the data skeleton and use the cluster separation method suggested in

chapter 4. Define cluster identifier CU for each of the clusters separated.

3. For each cluster C7,-, i = l..k, generate a cluster summary node Cls{.

4. Generate the attribute layer nodes Cldj, j = 1..D, where D is the dimen-

sion of the data.

5. Add the links between the two layers. Calculate the attribute average values

according to the equation 6.3 and assign the values as

I_LA.. ==> link (Clsi,Cldj). The link (Clsi,Clcij) is named as mtj (and will

be referred to as such in the rest of this chapter).

6. Identify any attributes which have a similar presence in all the clusters as

non-contributing attributes. For all non-contributing attributes Aij make

rriij = — 1, for every node i in the cluster summary layer.

7. Define a threshold of non-significance Tns for attributes whicli have a low

mean presence in certain clusters. For such non-significant attributes Aj>

in clusters Cl?, assign mtj = — 1.

205

6.3 Rule Extraction from the Extended GSOM

One of the main limitations of using artificial neural networks for data mining

is that they do not provide explainable results. This contrasts with tools such

as Decision Trees, where explainable rules are provided. Such rules are quite

important for many data mining tasks where explainability is one of the most

important requirements.

Therefore neural networks are generally used for applications where it is suffi-

cient to obtain accuracy of classification or prediction, and as such results can be

made use of without the need of explainability. For example, if a direct mail firm

develops a model that can accurately predict which group of a set of prospective

customers are most likely to respond to a solicitation, but they may not care how

or why the model works [Ber97b]. There are other applications and situations

where the ability to explain the reason for a decision is crucial. An example

is the approval of a credit application where it would be more acceptable both

to the loan officer and the credit applicant to hear a reason for the denial of a loan.

There has been several attempts at extending and enhancing current neural

network models such that rules can be extracted from them [Avn95], [Cha91],

[DeC96], [Fu 98]. Such work has mainly concentrated on enhancing the neural

networks with the supervised learning paradigm with rule extraction capabilities.

We have used the conceptual model of the GSOM as a method for extracting rules

206

which provides explainabilty to the unsupervised clusters obtained [Ala98cj. This

is achieved by obtaining a set of descriptions of the clusters, using the attributes

of the data set. Therefore, instead of the traditional manual analysis, the pro-

posed model can be used to extract rules regarding the clusters.

A rule can be generally considered as having the form :

IF condition THEN result

where the condition has to be satisfied for the result to be true. There can be

different types of rules that can be useful to a data mining analyst. We only

consider the following types of rule generation from the GSOM ACR model.

1. Cluster description rules.

2. Query by attribute rules.

In the rest of this chapter, when we refer to an attribute Aj belonging to a cluster

i, we refer to the average attribute value HA{J for the cluster, calculated as per

the equation 6.3.

6.3.1 Cluster Description Rules

Traditionally the feature maps have been used to identify clusters in a set of

data. Once the clusters are selected, the presence of the attribute values in the

clusters are used to describe each cluster. Such descriptions are then used to

obtain an initial understanding about the data. The ACR model proposed above

207

can be considered as a method for automating such traditional cluster analysis,

and rules obtained are called the cluster description rules. The initiation point

for these rules are the cluster summary nodes and the attribute links of these

nodes are searched to obtain the most significant attributes for generating the

rules. A cluster description rule is of the form

IF D At THEN Cluster = Clk
t=i

(6.4)

where Clk is the kth Cluster, Ai is the ith attribute, n^, n& < D, is the number

of significant attributes in cluster Clk- The significance of an attribute is decided

by

SDAi. > T{j 0 < Tt < 1 (6.5)

where SDA{J is the standard deviation of j t h attrihute in cluster Cl{ and J i j is a

threshold value for attribute Aj in cluster Cl{. The threshold Tij is determined for

the cluster depending on the needs of the application. Therefore if the analyst is

only interested in any attribute which has a very high significance for the cluster,

then this threshold may be set to a low value. For example, if the attributes A\,

A$ and A\Q are considered significant for cluster C/5, the rule generated will be :

IF (Ai AND A2 AND Aw) THEN Cluster = Cl5

The cluster description rules provide descriptions about the clusters using the

unsupervised groupings and as such are useful when the analyst does not have

any previous knowledge regarding the data. The data mining analyst may further

208

use these rules to obtain an unbiased opinion about data regarding which some

previous knowledge exists. Comparing the existing knowledge with the rules may

provide unforeseen and interesting facts.

6.3.2 Query by Attribute Rules

Although the cluster description rules satisfy the traditional usage of feature

maps, the same clusters can further be used to provide additional use for the

data mining analyst. The query by attribute rules provide a method by which

the data analyst can search for patterns of interest using some existing knowledge

or topic of interest. With the cluster description rules, the rule generation was

initiated from the cluster summary nodes. With the query by attribute method,

the rules are generated starting from an attribute layer node. The initiating points

(or query attribute) for these rules can be selected in the following circumstances.

1. The data analyst has certain previous knowledge, and as such would like to

obtain more information regarding one or more attributes.

2. The cluster description rules may focus interest on certain attributes, which

can be analysed using query by attribute rules.

3. One or both of the above circumstances may result in the data analyst

developing hypothesis regarding the relationship between attributes and

clusters. Such hypothesis may be confirmed or rejected using query by

attribute rules.

209

The query by attribute . be categorised into two types and they are

I

discussed in the following. .ons.

Type 1

The first type of rules provide relationships between attributes and clusters.

These rules are different from the cluster description rules since the initiating

point is one more attributes. For example, i hese types of rules can provide an-

swers for queries such as, Are there any clusters which are dominated by a high

value of attributes Ai and A4 ? As such the condition contains one or more at-

tributes with a relevant threshold value. The threshold can be adjusted by the

analyst depending on the needs of the application. Therefore these rules can be

described as :

IF f] (APOTP) THEN Cluster = \J Cl3-
P=I 3=1

(6.6)

where np is the nmnber of attributes of interest, A;' is the number of relevant

clusters and 0 is a relational operator. Figure 6.3 is an example of the initiation

and generation of the type 1 query by attribute rules. Figure 6.3 shows an

ACR model with a query initiated to identify clusters which have a high value

of attribute A2. The data analyst has to specify the threshold value for defining

high Ai values. A sorted list of HA2 values (for the different clusters) can be used

in deciding a threshold value TA2. The rule generated using the ACR model in

Figure 6.3, for T&2 = 0.75 and 0 being > is,

210

Figure 6.3: Query by attribute rule generation 1

IF (A2 > 0.75) THEN Clusters = Ch OR Cl3

0.45

a2

Figure 6.4: Query by attribute rule generation 2

211

The ACR model in figure 6.4 shows the generation of a rule for identifying clusters

with a high value of A2 and AA. If TA2 = 0.75 and TAA = 0.95 the rule will be,

IF ({A2 > 0.75) AND {A4 > 0.95)) THEN Clusters =

Type 2

Generally in cluster analysis, the analyst obtains information regarding relation-

ships between clusters or between attributes and clusters. But it may also be

possible to obtain certain relationships or patterns that exist between attributes.

Such relationships may be global, i.e. general to the whole data set, or localised,

(exist only for certain clusters). Knowledge of such relationships may prove to be

useful for a data mining analyst. The second type of rules provide relationships

between attributes. Therefore the analyst can provide the attribute or attributes

of interest with threshold values and obtain relationships with other attributes

in the data set. In other words the condition and result in this rule contains

attributes. For example, the analyst can query the ACR model to find attributes

which have a high relationship with attribute A\. For instance, such a query may

produce the result that attributes .A3 and A4 have high relationships with A\,

then a rule can be generated as :

IF (At > TO THEN ({A3 = 8.3) AND (A, = 9.2)) IN Cluster = Cl3

212

Since such rules can be used to obtain rules with multiple attributes in the con-

m
m

dition, they can be generalised as :

Tip k' V

IF 0 (4,OTP) THEN UtfK^-GTj) IN Cluster = Ch) (6.7)

where np is the number of attributes of interest in the query, np> is the number

of significant attributes in the result for a given cluster, and k' is the number of

significant clusters.

6.4 Identification of Change or Movement in Data

As described in the previous sections, feature maps have traditionally been used

to identify clusters or groupings in data sets. With the ACR model proposed

in section 6.2 it is possible to compare and identify differences in separate sets

of data. The following sections describe the implementation and the usefulness

of such ability for data mining applications. Section 6.4.1 describes the types

(categories) of differences that can occur in data sets. Section 6.4.2 discusses the

advantage of monitoring change and movement in data sets, and section 6.4.3

proposes a method of comparing GSOMs, and defines a measure for comparing

feature maps.

213

6.4.1 Categorisation of the Types of Comparisons of Fea-

ture Maps

In this section we present the concept of comparing different feature maps. We

have identified several types of differences that can occur in feature maps. For

the purpose of describing the method of identifying differences we categorise such

differences in data as shown in Figure 6.5.

Differences in Data Sets

category 1 category 2

Differences in separate data sets

selected from the same domain

Differences appearing in the same

data set in separate time frames

category 2.1

Change in the initial internal
structure

Movement within the same
internal structure

Figure 6.5: Categorisation of the type of differences in data

Category 1 consists of different data sets selected from the same domain. There-

fore the attributes of the data could be the same although the attribute values can

be different. Category 2 is the same data set but analysed at different points in

time. Therefore the attribute set and the records are the same initially. During a

certain period of time, if modifications are done to the data records, the data set

214

I

''&

may become different, from the initial set. As shown in Figure 6.5 we categorise

such differences as :

1. Category 2.1 -> change in data structure

2. Category 2.2 —> movement of data while possessing the same structure

The categories 2.1 and 2.2 are further discussed in this chapter as useful methods

for data mining. Therefore a formal definition of movement and change in data

are presented below. Considering a data set S(t) with k clusters CU at time t

where £f=1 C7t- =>• S(t), and DiLi CU = 0 categories 2.1 and 2.2 can thus be

defined more formally as

Definition 6.1: Change in structure

Due to additions and modifications of attribute values the groupings existing in

a data set may change in time. Therefore we say that the data has changed if, at

a time t' where t' > t, and k and k' are the number of clusters (at similar spread

factor) before and after the addition of records respecciveiy, if

k'

~?h(t) where k' ^ k (6.8)
t = l

In other words, the number of clusters has been increased or decreased due to

some changes in the attribute values.

Definition 6.2: Movement in data

Due to the additions and modifications of attribute values the internal content

of the clusters, the intra cluster relationships may change, although the actual

215

number of clustering remain the same. For a given data set S(t), this property

can be described as:
N

(6.9)
t = i

and 3 Aij(t') such that Aij(t') ^ Aij(t) for some cluster Cl{.

6.4.2 The Need and Advantages of Identifying Change

and Movement in Data

According to the above categorisation of the type of differences in data, category

1 simply means a difference between two or more data sets. Since the data are

from the same domain (same sets of attributes), they can be directly compared.

Such analysis provide insight into the relationships between the functional group-

ings and the natural groupings of the data. For example, in a customer database,

if the data sets have been functionally separated by region, such regions can be

separately mapped. Comparing such maps will provide information as to the

similarity/differences of functional clusters to natural clusters by region. Such

analysis may provide information which can be used to optimise current func-

tional groupings.

Category 2.1 provides information about the change in a data set over time. As

defined in the previous section the changes will be an increase or decrease in the

number of clusters in the map, at the same level of spread. Identification of such

change is useful in many data mining applications. For example, in a survey

216

f

for marketing potential and trend analysis, these would suggest the possibility of

the emergence of a new category of customers, with special preferences and needs.

Category 2.2 will identify any movement within the existing clusters. It may

also be that the additions and modifications to the data has in time resulted

in the same number of, but different clusters being generated. Monitoring such

movement will provide an organisation with the advantage of identifying certain

shifts in customer buying patterns. Therefore such movement (category 2.2) may

be the initial stage of a change (category 2.1) and early identification of such

movements towards the change may provide valuable competitive edge for the

organisation.

6.4.3 Monitoring Movement and Change in Data with

GSOMs

The GSOM with the ACR model provides an automated method of identifying

movement and change in data. The summarised and conceptual view of the map

provided by the ACR model makes it practical to implement such map compari-

son. The method of identifying change and movement in data using the GSOM

and ACR model is described in this section.

Figure 6.6 shows two GSOMs and the respective ACR models for a data set S

at two instances ti and ti in time. It can be seen from the maps that significant

217

GMAP,

Figure 6.6: Identification of change in data with the ACR model

change has occurred in the data as shown by the increase in the number of clusters.

This fact itself does not provide much useful information and the data analyst

has to identify the type of change that has occurred and if possible the reason

for such a change. In most instances, the reason can be identified from external

facts once the type of change is recognized. There are several possibilities for the

type of change that has occurred and some of them are

1. An additional cluster has been added while the earlier three clusters have

remained the same.

2. The grouping has changed completely. That is, the four clusters in GMAPt2

of Figure 6.6 are different from the three clusters in GMAPtl.

3. Some clusters may have remained the same while others might have changed,

218

thus creating additional clusters. For example, C\ and C2 can be the same

as C4 and C5 while C3 has changed. That is, C3 could have been split into

two clusters to generate clusters C& and Cj. Another possibility is that C3

does not exist with the current data and instead the two clusters C6 and

C7 have been generated due to the new data.

We propose a method to identify the differences in GSOMs by comparing the

clusters in the ACR model. First the following terms are defined considering two

GSOMs GMAP\ and GMAP2 on which ACR models have been created. These

terms are then used in the description of the proposed method.

Definition 6.3: Cluster Error ((ERRCi)

A measure called the cluster error (ERRci) between two clusters in two GSOMs

is defined as :

D

ERRCi(Clj(GMAPl),Clk(GMAP2)) = £ \Ai{Clj) - M
t=i

(6.10)

where Clj and CZ* are two clusters belonging to GMAP\ and GMAP2 respec-

tively and Ai(Clj), Ai(Clk) are the ith attribute of clusters Clj and Clk-

The ERRci value is calculated using the ACR models for the GSOMs. Dur-

ing the calculation of the ERRci, if a certain attribute which was considered

non-significant to the cluster Clj(GMAPi) is considered as a significant attribute

for Clk(GMAP2), then the two clusters are not considered to be similar. There-

fore we define a term significant non-similarity as shown below.

219

Definition 6.4: Significant-Non-Similarity

If 3 Ai(Clj), Aj(Clk) such that Aj{Clk) = - 1 and A^Clj) ^ - 1 then Clj and Clk

are significantly non-similar. The —1 above is considered since the non-significant

and non-contributing attribute cluster links (m^) are assigned —1 values as de-

scribed in section 6.2.

Definition 6.5: Cluster Similarity

We define two clusters Clj and Clk as similar when the following conditions are

satisfied.

1. Does not satisfy the significant non similarity condition.

2. ERRci{Clj, Clk) < TQE where TCE is the threshold of cluster similarity and

has to be provided by the data analyst depending on the level of similarity

required. If complete similarity is required, then TCE = 0.

We can now derive the range of values for TCE as follows.

Since 0 < v4t- < 1 Vz = 1 . . . D, using equation 6.10 we can say

0 < ERRci < (6.11)

Since the average ERRci value is D/2, if ERRci > D/2 the two clusters are

more different according to attribute values than they are equal. Since we need

the threshold value to identify cluster similarity, the maximum value for such a

threshold can be D/2. Therefore

0 < TCE < D/2 (6.12)

220

Definition 6.6: Measure of Similarity Indicator

Since the similarity between two clusters depends on the TCE value we define

a new indicator called the measure of similarity which will indicate the ~mount

of similarity when two clusters are considered to be similar. The measure of

similarity indicator (Is) is thus calculated as the fraction of the actual cluster

error to the maximum tolerable error for two clusters to be considered similar.

Max{TCE)
(6.13)

By substituting from equation 6.12 ,

Is = 1 -
D/2

(6.14)

Considering two GSOMs GMAP\ and GMAP2, the cluster comparison algorithm

can now be presented as :

1. Calculate ERRCi{CH,Clj) VCk G GMAPX with all Clj G GMAP2.

2. For each Cl{ G GMAPU find ERRCi{Cli,Clp),Clp G GMAP2, such that

ERRCi{Clh Clv) < ERRcl{Clu Clj) \fClj G GMAP2, p £ j

3. Ensure that the clusters Cl{, Clp satisfy the cluster similarity condition.

4. Assign Clp to Ck (as similar clusters) with the amount of similarity calcu-

lated as the measure of similarity value

ERRci(Ck,Clp)
D/2

221

5. Identify cluster CU in GMAPi and Clj in GMAP2 which have not been

assigned to a cluster in the other GSOM.

The cluster comparison algorithm will provide a measure of the similarity of the

clusters. If all the clusters in the two maps being compared have high measure of

similarity values, then the maps are considered equal. The amount of similarity,

or difference to be tolerated, will depend on the applications need. If there is

one or more clusters in a map (say GMAPi) which do not find a similar cluster

in the other map (say GMAP2), the two maps are considered different. The

advantage of this comparison algorithm is not only for comparing feature maps

for their similarity, but as a data monitoring method. For example, feature

maps generated on a transaction data set at different time intervals may identify

movement in the clusters or attribute values. The movement may start as a small

value initially (the two maps have high similarity measure) and gradually increase

(reduction of the similarity measure) over time. Such movement may indicate an

important trend that can be made use of, or the starting of a deviation (problem)

which needs immediate corrective action. As such monitoring the data by using

the comparison method can be beneficial for data monitoring in a data mining

system.

6.5 Experimental Results

The animal data set (Appendix A) used in the previous chapters is also used in

this chapter to demonstrate the effect of the ACR model. Subsets of the animal

222

data set are selected for the experiments such that the rule extraction and the

data change or movement identification can be demonstrated.

6.51 Rule Extraction from the GSOM Using the ACR

model

For this experiment, 25 animals out of the 99 are selected from the animal data

and these are, lion, wolf, cheetah, bear, mole, carp, tuna, pike, piranha, herring,

chicken, pheasant, sparrow, lark, wren, gnat, flea, bee, fly, wasp, goat, calf, an-

telope, elephant and buffalo. The animals for this experiment has been selected

such that they equally represent the groups insects, birds, non-meat eating mam-

mals, meat eating mammals and fish. Some sub groupings exist within those

main groups and these are shown in Figures 6.7 and 6.8. Figure 6.7 shows the

GSOM for the 25 selected animals with SF=0.6. The clusters are shown with

manually drawn boundary lines for easy visualisation.

Table 6.1 shows the mean (mu^.) and standard deviation values for the attribute?

in the five clusters identified in Figure 6.7. Since we have used the animal d&'ta

with mostly binary value attributes, and also since the number of data records

considered are small, the standard deviation values are quite high overall. There-

fore, when we refer to high or low standard deviation value*?, high or low values,

with respect to those in the table have to be selected.

From the table it can be seen that some attributes in the clusters have high stan-

223

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O I beai O mole

C3
C4

;

Figure 6.7: GMAPi - GSOM for the 25 animals with SF=0.6 with clusters sep-

arated by removing path segment with the weight difference-2.7671

dajd deviation values. The high standard deviation values show that for that

particular attribute, the input values are highly dispersed from the mean. As

such the current average attribute value does not provide a representative value

for the cluster. A solution to this problem would be the identification of the sub-

groups within the clusters and re-calculating the mean and standard deviation

values. If the standard deviation values decrease compared with the previous

values, then the subgrouping has made an improvement to the clustering. The

analyst has to decide whether the increase in the work load of handling the larger

number of clusters is sufficient compensation for the increase in accuracy.

It is also possible to generate rules from the current clusters, if the analyst is

224

Table 6.1: Average attribute values (Avg) and standard deviations (Std) for

clusters in Figure 6.7

has hair
feathered

lay-eggs
feeds-milk
airborne

aquatic
predator

toothed
has-backbone

breathes

venomous
has-fins

no-of-legs

has-tail
domestic

big

Avg

0.6
0
1
0

0.8
0
0
0
0
1

0.4
0
1
0

0.2
0

Cl
Std

0.548
0
0
0

0.448
0
0
0
0
0

0.548
0
0
0

0.448
0

Avg

0
1
1
0
1
0
0
0
1
1
0
0

0.33
1

0.2
0

C2
Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.448
0

Avg

1
0
0
1

0
0
0
1
1
1
0
0

0.67
1

0.4
1

C3
Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.548
0

Avg

1
0
0
1
0
0
1
1
1
1
0
0

0.67
0.8
0

0.8

C4

Std

0
0
0
0
0
0
0
0
0
0
0
0
0

0.448
0

0.448

Avg

0
0
1
0
0
1
1
1
1
0
0
1
0
1
0

0.4

Co

Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.548

satisfied with the level of clustering. In such a situation the analyst can se-

lect the attributes with high standard deviation values as non-significant for the

groups. For the GSOM of Figure 6.7 attributes with the standard deviation val-

ues greater than 0.4 can be selected as non-significant, and as such the attributes

has hair, airborne, venomous and domestic are non-significant for cluster 1. It is

now possible to obtain the cluster description rule for cluster 1 from the model as :

225

IF (lay eggs, breathes, has legs) AND

NOT (have feathers, feed-milk, aquatic, predator,

toothed, has backbone, has fins, has tail, is big)

THEN Cluster = Cl

Similar rules can be generated for all the other clusters. These rules provide a

description of the cluster such that the analyst can now label the cluster with an

appropriate name according to the rule.

It is also possible to consider a situation where the analyst has some un-confirmed

knowledge and/or has developed a hypothesis on some aspects of the data. The

query by attribute rules discussed in section 6.3 provides a method of querying

the data such that the uncertain knowledge or an hypothesis can be confirmed.

For example, the analyst may feel that if an animal lays eggs, then it does not

feed milk. Such a hypothesis can be confirmed by generating a query by attribute

rule of the form :

1. IF lays-eggs THEN Cluster = ?

2. IF feed-milk THEN Cluster = ?

3. IF (lays-eggs AND feed-milk) THEN Cluster = ?

(1) and (2) above will confirm the existence of egg laying and milk drinking

animals in the data while (3) will provide proof of any existence of animals who

226

satisfy both conditions. Therefore the results for the query using the ACR model

of the GSOM in Figure 6.7 is shown below.

1. Cluster = 1, Cluster = 2, Cluster = 5.

2. Cluster = 3, Cluster = 4.

3. Cluster = NIL.

As such the hypothesis can be confirmed on the given data set. If the analyst

feels that further sub clustering is required to obtain more pure clusters, this can

be achieved by removing the next largest path segment in the data skeleton as

described in Chapter 4. The resulting clusters are highlighted and labeled in

Figure 6.8. Mean (mu/i j and standard deviation values can now be calculated

as shown in tables 6.2 and 6.3.

The standard deviation values have been reduced due to the finer clustering and

as such it will be possible to obtain more accurate rules from the clusters. There-

fore the data analyst has the opportunity of deciding on the level of clustering

necessary for the application.

6.5.2 Identifying the Shift in Data values

The same set of data used in the previous experiment is used in this section to

demonstrate the data shift identification with the ACR model. The GSOM of

Figure 6.7 is considered as the map of the initial data and some additional data

227

«gwmigi^

C3

Figure 6.8: GSOM for the 25 animals with SF=0.6 with clusters separated by

removing path segment with weight difference=1.5663

records (given below) are added to simulate a new data set for identification of

any significant shifts in data.

Experiment 1 : Adding new data without the change in clusters

In the first experiment eight new animals are added to the earlier twenty five.

The new animals are deer, giraffe, leopard, lynx, parakeet, pony, puma and rein-

deer. These animals were selected such that they belong to groups (clusters) that

already exist in the initial data. As such the addition of these new records should

not make any difference to the cluster summary nodes in the ACR model. Fig-

228

Table 6.2: Average attribute values (Av) and standard deviations (SD) for clus-

ters in Figure 6.8

has hair
feathered
lay-eggs

feeds-milk
airborne
aquatic

predator
toothed

has-backbone
breathes

venomous
has-fins

no-of-legs
has-tail

domestic
big

Cl.l
Av
0
0
1
0

0.5
0
0
0
0
1
0
0
1
0
0
0

SD
0
0
0
0

0.71
0
0
0
0
0
0
0
0
0
0
0

C]

Av
1
0
1
0
1
0
0
0
0
1

0.67
0
1
0

0.33
0

1.2
SD
0
0
0
0
0
0
0
0
0
0

0.58
0
0
0

0.58
0

C2
Av
0
1
1
0
1
0
0
0
1
1
0
0

0.33
1
0
0

.1
SD
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C2
Av
0
1
1
0

1 1
0
0
0
1
1
0
0

0.33
1
1
0

.2

SD
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C3
Av
1
0
0
1
0
0
0
1
1
1
0
0

0.67
1
1
1

.1
SD
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C3
Av

1
0
0
1
0
0
0
1
1
1
0
0

0.67
1
0
1

.2
SD
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

ure 6.9 shows the GSOM for the new data set with the additional 8 animals. Five

clusters C l \ C2'...C5' have been identified from GMAP2. Table 6.4 shows cluster

error values (calculated according to equation 6.10) between the GSOMs GMAPi

(Figure 6.7) and GMAP2 (Figure 6.9). Table 6.5 shows the clusters that have

been identified as similar from GMAPi and GMAP2 with the respective mea-

sures of similarity indicator values (Is). It can be seen that the five clusters havo

not changed significantly due to the introduction of new data.

229

Table 6.3: Average attribute values (Av) and standard deviations (SD) for clus-

ters in Figure 6.8 contd..

has hair
feathered
lay-eggs

feeds-milk
airborne
aquatic

predator
toothed

has-backbone
breathes

venomous
has-fins

no-of-legs
has-tail

domestic
big

C4
Avg

1
0
0
1
0
0
1
1
1
1
0
0

0.67
1
0
1

.1
Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C4
Avg

1
0
0
1
0
0
1
1
1
1
0
0

0.67
0
0
1

L2
Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C4
Avg

1
0
0
1
0
0
1
1
1
1
0
0

0.67
1
0
0

1.3
Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

cs
Avg

0
0
1
0
0
1
1
1
1
0
0
1
0
1
0
0

.1
Std

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C5
Avg

0
0
1
0
0
1
1
1
1
0
0
1
0
1
0
1

.2
Std
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Experiment 2 : Adding new data with different groupings

In the second experiment six different birds are added to the original 25 animals.

The newly added birds are crow, duck, gull, hawk, swan, vulture. These birds

are different from the birds that exist in the original 25 animal data set as some

of them are predators and others being aquatic birds whereas these sub categories

did not exist in the birds included with the initial 25 animals. The purpose of se-

lecting these additional data is to demonstrate the data movement identification

with the ACR model. Figure 6.10 shows the clusters C l \ C2' .. C5' identified

230

o

o

o

Figure 6.9: GMAP2 - GSOM for the 33 animals with SF=0.6

with the new 31 animal data set.

The cluster error values between GMAP\ and GMAP$ are shown in table 6.6, and

the best matching clusters are given in table 6.7, with the respective similarity

indicator (Is) values. From the Is values, it can be seen that although clusters C2

and C2' are considered as similar there is a noticeable movement in the cluster.

As such the data analyst can focus attention on this cluster to identify the reason

for such change.

231

Table 6.4: The cluster error values calculated for clusters in Figure 6.9 with

clusters in Figure 6.7.

cr

C2'

C3;

C4'

C5'

Cl

0

5.00

8.17

8.88

10.4

C2

4.87

0.13

7.58

8.54

7.93

C3

8.13

7.40

0.04

1.65

8.67

C4

8.73

8.67

1.84

0.15

7.27

C5

10.4

8.07

8.71

7.27

0

Table 6.5: The measure of similarity indicator values for the similar clusters

between GMAPY and GMAP2

GMAPi

Cl

C2

C3

C4

C5

GMAP2

cr

C2'

C3'

C4'

C5'

1

0.983

0.995

0.981

1

232

o
o o
0 o

o,
heiring

01 piranha

O

O

O

O

O

mole

lion,wolf \ ^
cheetah V °

carp

Figure 6.10: GMAP3 - GSOM for the 31 animals with SF=0.6

6.6 Summary

In this chapter we have extended the GSOM by developing two layers of nodes

on the output layer (map). The purpose of this extension is to exploit the advan-

tages of using GSOM for data mining applications. Analysis of clusters obtained

from SOMs has been traditionally carried out manually by data analysts. In

thb chapter we have proposed a mode) which can automate such a process and

provide the analyst with a set of rules describing the data. Using the proposed

model it is now possible for the data analyst to initiate queries on the map (of

233

Table 6.6: The cluster error values calculated for clusters in figure 6.9 with clusters

in Figure 6.10.

Cl'

C2'

C3'

C4'

C5'

Cl

0

5.79

8.13

8.73

10.4

C2

4.87

0.93

7.56

8.56

7.9-?

C3

8.13

8.10

0

1.8

8.67

C4

8.73

8.15

1.8

0

7.27

C5

10.4

7.01

8.67

7.27

0

Table 6.7: The measure of similarity indicator values for the similar clusters

between GMAPi and GMAP3

GMAP!

Cl

C2

C3

C4

C5

GMAPZ

cr

C2'

C3'

C4'

C5'

1

0.88

1

1

1

234

the data) to confirm any hypothesis or un-confirmed knowledge.

Since the GSOM has been developed on the same unsupervised competitive learn-

ing concepts as the SOM, it inherits certain limitations that were inherent in the

SOM. One such main limitation is the possibility of different maps for the same

data when the data is presented in different order. Therefore it becomes impos-

sible to accurately compare two maps to identify any changes that has occurred

in the data. Since identifying changes or movement in data is one of the most

useful functions in data mining, we have used the additional layers to enhance

the GSOM with such ability.

The main contributions of this chapter can be summarised as follows :

1. Identification of the inability of comparing feature maps due to their dif-

fering shapes and placement of clusters, and introduce such limitation as a

significant disadvantage for data mining.

2. Developed the Attribute Cluster Relationship (ACR) model as a solution to

the problem in (1), by developing a conceptual layer on top of the GSOM.

3. Introduced a method of automating cluster analysis using feature map by

cV. eloping a rule extraction method on the GSOM using the ACR model.

4. Identification of data shift monitoring as an important function in data

235

mining and the development of a method for such shift monitoring using

the GSOM.

i

.5

236

Chapter 7

Fuzzy GSOM-ACR model

7.1 Introduction

In 1965, Lotli A. Zadeh [Zad65] proposed the theory of fuzzy logic, which is close

to the way of human thinking. The main idea of fuzzy logic is to describe human

thinking and reasoning with a mathematical framework. The main advantage

of fuzzy logic is its human like reasoning capability, which makes it possible to

describe a system using simple if then relations. Therefore it is possible to obtain

a simpler human understandable solution, to a problem, reasonably quickly. In

many applications, knowledge that describes desired system behaviour, or other

useful information, is contained in data sets. Therefore the fuzzy system designer

has to derive thrf if then rules from the, data sets manually. A problem with such

manual derivation is that it can be difficult and even impossible when the data

237

\ "5.?VB^Vffifl** '̂

sets are large and complex.

When data sets contain knowledge or useful information, neural netvorks have

the advantage because they can be trained using such daia. A major limitation

of neural networks is the lack of an easy way to interpret the knowledge learned

during training. Therefore it can be seen that neural networks can learn from

data while fuzzy logic solutions are easy to interpret and verify. Interest has been

focussed on the combination of these two techniques for achieving the best of both

worlds, which has resulted in the development of neuro fuzzy systems [Ber97a],

[Kar96].

In chapter 6 we proposed the (Attribute Cluster Relationship) ACR model which

can be used to generate rules regarding the data by using the clusters from the

GSOM. The rules generated by the ACR models contain crisp values and as such

may not represent a realistic view of actual situations. In this chapter we pro-

pose a method of extending the GSOM-ACR model such that fuzzy rules can be

generated from the ACR. model. We begin by interpreting the clusters identified

with the GSOM as fuzzy clusters, similar to the fuzzy c-means method [Bez92].

The advantage of our method is that the number of clusters do not have to be

pre-defined as in traditional fuzzy c-means, and as such our method is more suit-

able for data mining applications [Ala99a]. This extended fuzzy ACR model can

be developed into a supervised data classification system and this idea is de-

238

scribed in chapter 8 under future work.

Section 7.2 of this chapter presents the basic theory of fuzzy sets and fuzzy logic

and section 7.3 discuss the advantages of a fuzzy extension to ACR model by

comparing the rules generated by the initial ACR with the possible fu^zy versions.

Section 7.4 provides the functional equivalence between the GSOM clusters and

fuzzy rules. Such functional equivalence is used in section 7.5 to describe the

proposed extended fuzzy ACR- model. Section 7.6 provides a summary for the

chapter.

7.2 Fuzzy Set Theory

In this section we describe the basic fuzzy theory as a base for presenting the

proposed fuzzy ACR model.

7.2.1 Fuzzy Sets

Fuzzy set theory is a generalisation of the traditional set theory. A classical crisp

set is a collection of its members [Kec95]. The objects x of the universe X either

are members (belongs to the set) or are not members of a given set A. The

membership status of an object x can be expressed by a membership function

(.LA(X), which is defined as

HA(X) = 1, ifx G A

239

liA{x) = 0, ifx £ A

The difference between fuzzy sets and crisp sets is that fuzzy sets can also have

intermediate membership values [Yag94], [McN94]. In other words, the member-

ship function (J.A{X) can have any value between one and zero:

: X -> [0,1] (7.1)

Hence the object x can belong partially to a given fuzzy set A.

Classical set theory defines operations like intersection, union and complement

between different sets. In fuzzy set theory, membership values are given by mem-

bership functions. Therefore, it is natural that fuzzy set operations are also

defined by membership functions. The following basic operations are described

in Zadeh's original paper [Zad65].

The intersection of two fuzzy sets A and B is defined as

= min{fiA{x),fiB{x)} (7.2)

The union is defined as

[x) = max{fiA(x),(iB{x)}

and the complement is defined as

(7.3)

(7.4)

240

Often, the intersection operation is called t-norm (triangular norm), and the union

is called the t-conorm (or s-norm). The minimum and the maximum operations

are the most widely used.

7.2.2 Fuzzy Logic

Fuzzy set theory cau easily be applied to logic. In fuzzy logic, logical sentences can

have any truth value between zero and one, where zero corresponds to absolute

false and one to absolute truth. Basically, the truth values of fuzzy logic are

equivalent to the membership values of fuzzy set theory. Fuzzy logic is based on

linguistic variables, which are characterised by a quintuple [Ngu97], [Dri96]:

{x,T(x),U,G,M} (7.5)

where x is the name of variable, T(x) is a set of names of linguistic values of x, G

is a syntactic rule for generating the names of values of x, and M is a semantic

rule which assigns the membership value HM{X) to the variable x in a fuzzy set

of universe U.

Liniguistic variables are the building blocks of fuzzy logic. Different logical opera-

tions can be used to build logical sentences from them. There are several methods

available and we describe one of these below.

The intersection (and) operation can be defined as

fjLA(x) A fiB{y) = min{fj,A(x),nB(y)} (7.6)

241

-._.».,.HI-.i.iw».ii.iifji

The union (or) operation can be defined as

= max{fj.A(x),/iB{y)} (7.7)

The complement can be defined as

= 1 - fiA(x) (7.8)

Other definitions of the logical operations can be used, but the above defined are

the most common ones.

A fuzzy logic system is composed of several if-then fuzzy rules as :

if a; is Arand y is Bx then z is Ci,

if a; is An and y is Bn then z is Cn,

where (x is Af) and (?/ is B{) are the antecedent parts, and (z is C{) are the

conclusions. Based on the definition of the linguistic variable, each condition (x

is Ai) can be interpreted as the membership value /^(rc) of the variable x in the

fuzzy set A{.

Inference methods are used to determine the output of the fuzzy rules. Max -

min composition is the most common inference method. We will also be using

this method in section 7.5 for proposing our method. First the firing strengths of

242

the fuzzy rules (ai) are computed by combining the membership values together

according to

= nA(x) A fiB{y) = min{fj,A(x),fiB(y)} (7.9)

where i = 1,2,... ,n.

Next, the conclusion of the fuzzy rules (iici'{z)) are computed according to

= a{ A

Then the conclusions are combined together according to

V \lC2< (Z)M . . . V flCn

(7.10)

= max{fiCv{z),fic2'{z))..^iicn'{z)} (7.11)

The outputs from the fuzzy rules form a combined fuzzy set C. The fuzzy set

C is finally transformed into a crisp output value. This is called defuzzifica-

tion of the output. Center of area (of membership function) is the mostly used

defuzzification method, which can be derived as

z* =
_ Jzz- fiC'{z)dz

fzfiC'(z)dz
(7.12)

7.3 The Need and Advantages of Fuzzy Inter-

pretation

The ACR model *>. described in chapter 6. This model is then used to generate

rules from the GSOM. As explained in chapter 6, the rule generation method

243

is developed for interpreting the knowledge learnt by the neural network, thus

removing the conventional black box limitation.

We have proposed two different types of rules for the ACR model. All these

rule types have been generated on the assumption that the clusters are crisp, by

defining threshold values for rule generation. The assumption of crisp clusters

result in the following limitations.

1. Such crisp clusters will need to have uniform density of input data distribu-

tion inside the cluster and zero density outside. It is generally more realistic

to assume higher density closer to the cluster center with decu .sing density

towards the borders.

2. Providing crisp values as the threshold may result in unfair cutting off of

some useful information. For example, forcing the threshold for tall men at

six foot two inches may unfairly judge six foot one inch as medium or short.

3. Human beings find it easier to deal with fuzzy values than crisp values. For

example, using query by attribute rules, it is more human like to look for

hot, humid climate than to decide on threshold values such as hot =$>> 35

centigrades, and humid --=>•> 80% .

Examples

In this section we describe the advantages of fuzzy rules over similar crisp rules.

The 3 types of rules generated using the crisp ACR model is considered as exam-

244

pies and their fuzzy counterparts (with the proposed fuzzy model) are presented

and advantages discussed in this section.

Example 1

Cluster description rule is described in chapter 6. Such a rule can be presented

as

IF (Ai > C) AND (A2 < C") THEN Cluster = Clk

where C and C" are singletons representing average values of the attributes A\

and A2. By defining fuzzy membership functions for the clusters, the above rule

can be presented as

IF {Ai is Uiti) AND (A2 is Ui<2) THEN Cluster = Cl{

where U\ and U2 are the respective membership functions of attributes Ax and

A2 in cluster i. The advantage of the fuzzy rule is that, instead of giving a single

crisp value for the attribute values in the cluster, a membership function is given,

thus providing a more realistic interpretation.

Example 2

A type 1 query by attribute according to chapter 6 can be,

What are the clusters where attribute A\ is reported as large.

With the crisp method described in chapter 6 and assuming that threshold for

large = 0.8, we search for (Ax > 0.8) and may obtain the rule as

IF (Ai > 0.8) THEN Cluster = Cl{

245

"WtfwwwBnwOTBWswK^

With the fuzzy interpretation, large is meaningful to the system and the results

of the same query can be of the form

IFAi is large THEN Clusters = Cl{ OR Cl5

By not using a crisp threshold, we do not leave out some clusters which do not

satisfy the threshold condition, but still can be considered as good candidates for

our requirements. As such, fuzzy querying relieves the data analyst from the

burden of having to know or decide on exact (crisp) thresholds (which is difficult

or even impossible in many situations in data mining applications).

Example 3

As described in chapter 6, a type 2 query by attribute can be expressed as

Provide the related attributes for small values of A\.

With the crisp method the resulting rule can be expressed as

IF (Ai < 0.3) THEN (A3 = 9.2) AND (A, = 2.3) IN Cluster = Cl{

where small has been expressed as a threshold value < 0.3 by the user (analyst).

With the fuzzy extension, the result can be of the form

IF A\ is small THEN (A3 is large) (A4 is small) IN Cluster = ClU

The fuzzy output provides a more generalised view, which is more human under-

standable than the crisp threshold values.

246

It can be seen that the fuzzy rules provide an abstract and human understandable

interpretation of the information stored in the GSOM clusters. The crisp and

fuzzy methods can even be used to complement each other by the data analyst.

The next section provides the proof of functional equivalence between fuzzy rules

and GSOM clusters and section 7.5 uses such equivalence to propose the Fuzzy

ACR model.

7.4 Functional Equivalence Between GSOM Clus-

ters and Fuzzy Rules

As a first step in developing a Fuzzy ACR model, we have to prove that the

clusters of GSOMs can be interpreted as fuzzy rules. We use a method proposed

by Halgamuge et. al. [Hal95] as a base for our work, to prove the functional

equivalence of the cluster summary nodes of the ACR model to fuzzy rules.

Nearest prototype classifiers such as fuzzy c - means algorithm can be used to

produce a set of prototype vectors from an input data set [Bez93]. Once the

prototypes are found, they can be used to define a classical nearest prototype

classifier to classify the feature vectors x G Ci as

x — w\ < x — wA where 1 < j < k (7.13)

where k is the number of nearest prototypes, C{ is one of the I class labels and

the weight w is the nearest prototype from all the vectors Wj. Since the cluster

247

summary nodes in the ACR model represent the k clusters identified from the

GSOM, they can be described as nearest prototypes for the A: clusters. As such,

for developing the fuzzy ACR model, we need to interpret the cluster summary

nodes as fuzzy rules.

The inference process is to decide to which class C,, (where 1 < x < k) an in-

put vector x belongs to. It has to be decided whether a; E Q, i.e. Cluster Ci

(cluster summary node in the case of the ACR model), has to be found such that

the reference average weight vector Wj € d shows the least deviation (minimum

distortion) with x, considering average weight vector values of all the cluster sum-

mary nodes in the ACR model. Using equation 7.13, such Wj can be interpreted

as,

Min\x — Wj\ for 1 < j < k

Max{—\x — Wj\) for 1 < j < k

for l<j<k (7-14)

For Euclidean distance as the distance measure in equation 7.14,

=>

=>
D

tl
d=l

) f o r l < j <

f o r l < j < k

where 1 < d < D is an index for input dimensions.

(7.15)

Consider the product as T-norm (intersection), and singletons as consequent

248

membership functions from the fuzzy system point of view. Also the defuzzi-

fication can be avoided since we are considering classification. We can represent

a fuzzy rule for this case as

decide whether x G Cj

OR(AND(/i(xd)))

M a x J J (/ i i) d (x d)) / o r l < j <
3

(7.16)

By comparing (7.16) with (7.15) it can be seen that these equations are similar

when

(7.17)

Therefore it can be concluded that classifier type of fuzzy systems with product

inference and maximum composition are equivalent to the nearest prototype clas-

sifier with Euclidean distance, if the antecedent membership functions /uJ)rf of each

prototype neuron j is selected as a Gaussian function, or modified exponential

function respectively.

7.5 Fuzzy ACR model

The (Attribute Cluster Relationship) ACR model is described in chapter 6, and

its usefulness as a base for rule generation is demonstrated. In section 7.3 of this

chapter we discussed the advantages of generating fuzzy rules compared with the

traditional crisp rules. In this section we propose a method for extending the

249

initial ACR model to extract fuzzy rules, thus furthering its current usefulness.

The main steps in extending the ACR model is as follows.

1. Define the cluster summary nodes in ACR model as fuzzy rules.

2. Develop membership functions for each of the data attributes (dimensions)

for each cluster.

3. Project the membership functions to the respective attribute value ranges

to develop unsupervised categorisations of data attributes.

4. Generate rules using the fuzzy membership functions and the categorisa-

tions such that they provide a more abstract method of representing the

data.

The above steps are described in detail below.

7.5.1 Interpreting Cluster Summary Nodes as Fuzzy Rules

In section 7.4 we have shown that a nearest prototype vector is functionally equiv-

alent to a fuzzy rule. In the ACR model, the cluster summary nodes represent the

clusters in the data, and representative values such as the mean and the standard

deviation for the cluster calculated for the summary node. Therefore we con-

sider the summary node as the nearest prototype for the input vectors that are

assigned to that particular cluster. Therefore the cluster summary nodes can be

250

considered as functionally equivalent to fuzzy rules and we represent such nodes

with the following form of fuzzy rule.

if x\ is Ui,\ and x>i is L/,-,2 and...and xn is C/;>n then y is a,- (7.18)

where x — [x\,X2, • • •, ocn] is the input and y is the output of the node identifying

the cluster. Variables Uij, j = l..n are the fuzzy sets for the n dimensions of the

iih cluster. Note that the fuzzy sets are not shared by the fuzzy rules, but rather

each fuzzy rule (cluster) has a set of membership functions (fuzzy sets) associated

with each input.

Figure 7.1 shows the extended fuzzy ACR model. Each cluster summary node has

now become a fuzzy rule {R\, i^j-Ra), which contain a multi dimensional (equal

to the dimensionality of the data) fuzzy membership function /ijj where i is the

cluster (number) identifier, and j = fl.-D] represents the data dimensions. It is

now necessary to develop the membership functions for each cluster, and such a

method is proposed in the next section.

7.5,2 Development of the Membership Functions

Once the nearest prototypes (cluster summary nodes) have been identified and

assigned with fuzzy rules, it is necessary to provide values for the respective fuzzy

membership functions {fiij). There are several types of such functions and we

will describe the generation of triangular type of membership functions.

Figure 7.2 shows a triangular membership function for an input attribute (di-

251

^ . » ^

Nearest Prototypes
representing fuzzy
rules

GSOM o o o o o o o o o

o o o

Figure 7.1: The Fuzzy ACR model

mension) j of cluster i. The membership value /J-Uijfaj) of the input signal Xj in

the fuzzy set Uij is given by the triangular membership function in Figure 7.2.

Variable c$j is the center of the fuzzy set Uij and variables lij and r^- are the

left and right spreads of the same set respectively. Since each cluster summary

node represents a multi dimensional membership function (or a fuzzy rule), we

will show them separately for easy visualisation (Figure 7.3). Evanthough the

membership functions are simplified as triangles, the exact shape is determined

252

membership

0.0 •• input

Figure 7.2: A triangular membership function

by the distance selected.

Each condition (XJ is U{j) in the fuzzy rule is interpreted as the membership

value fiUi j • To obtain the membership values, the triangular membership function

can be defined as follows.

_ xj %J

Xj —

if 1 • • < r•

4 <» ^ s"» %IJ

~ rUJ

= 0 Otherwise

For the calculation of the membership values,

as follows.

= mean value of attribute j in cluster i.

= minimum value of attribute j in cluster i.

= maximum value of attribute j in cluster i.

and r ^ are assigned values

253

1.0

0.0

1.0

0.0

C i . l

A ,

U.3

1.0

0.0

1.0

0.0
i.3

A

M . 2 c i . 2 r i , 2

c i r i

Figure 7.3: The membership functions for cluster i

Another method for calculating the l{j, rt-j values is to take a fixed distance from

the cluster center in plus and minus directions [Vuo94].

7.5.3 Projecting Fuzzy Membership Values to the Attribute

Value Range

Once the membership functions have been defined and calculated, these func-

tions are used to generate the categories (or classes) for each input dimension.

The advantage of generating such categories using the membership functions is

254

that such categories will be unbiased from external opinions. Such categorisa-

tion may also result in the identification of unknown aspects about the attributes.

For example, assume that attribute A\ is conventionally categorised into small,

medium and large. By generating the membership functions, it may be apparent

that there are four identifiable categories in A\. Therefore the analyst may decide

to re-define the value range of attribute A\ into four categories as, small, medium

large and very large. The importance and advantage of the new categorisation

is that it is built using the unbiased clusters from the GSOM. Therefore can be

very useful in identifying unforeseen patterns in data.

Figure 7.4 shows the category projection of the membership functions of attribute

A\, for all the clusters with a significant representation of A\. When such clearly

1.0

0.0

small medium large veiy large

• l . l
l 1 . 2 r l . l l\,3 r l , 2 1.4 1.3 r1.4

Figure 7.4: Projection of the fuzzy membership functions to identify categorisa-

tion

255

separate membership values are present the analyst can identify these as separate

categories. It may also be possible that two or more membership values project

on top of each other. Such a result will show that the same input value regions of

attribute Ai participate in two or more clusters. Therefore the study of such cat-

egories itself provide the data analyst with more information regarding the data.

For example, if attribute Ak is represented in all the clusters in equal strength,

then Ak is not contributing to the clustering.

Therefore the advantage of generating such categories are

1. It produces an unbiased categorisation of the attribute value range. Where

categorisation is already present, it can be compared to confirm whether

any unforeseen categories exist.

2. Provide an abstract fuzzy method of querying the data instead of using the

crisp values as discussed previously in chapter 6.

7.6 Summary

Chapter 6 of this thesis presented an Attribute Cluster Relationship (ACR)

model, which provides a base for generating rules describing the data. Such rule

generation serves as a method for removing the black box limitation of conven-

tional neural networks. The ACR model uses crisp values to represent knowledge

regarding the data and their relationships, and as such the rules generated are

256

also crisp rules. Such rules contain specific values and therefore it is difficult

to arrive at a more general opinion regarding the data. The concept is fuzzy

logic and fuzzy sets provide a method of fuzzifying the crisp values such that the

knowledge can be generalised and provide a more abstract view.

In this chapter we proposed a method for extending the ACR model using the

concepts of fuzzy logic thus developing a Fuzzy ACR model. The new extended

model can be used to obtain fuzzy versions of the cluster description rules and

query by attribute rules, which can be considered as more generalised presentation

of the data relationships. A main advantage of our model is that it builds the fuzzy

rules from unsupervised clusters, and as such do not contain any pre-conceived

bias in building the rules. The Fuzzy ACR model can be further extended into

a fuzzy classifier system by considering the ACR model as two layers of a Radial

Basis Function (RBF) network. We describe such possible extensions in the next

chapter.

257

Chapter 8

Conclusion

The thesis has focused on developing a novel structure adapting neural network

model which has special significance for data mining applications. Pre-defined

fixed structure is a major limitation in traditional neural network models which

is a barrier in the quest for developing intelligent artificial systems. The research

work described is not only the development of a new neural network model with

significant advantages for data mining, but also as a step towards breaking the

pre-definable structure barrier in neural networks. In this final chapter we present

a summary of the research achievement in the thesis work and suggests some

areas and problems which have emerged from our work, with potential for further

research and expansion.

258

8.1 Summary of Contributions

The major contributions in this thesis can be divided in to five parts and they

are

1. the development of the Growing Self Organising Map,

2. data skeleton modeling and automated cluster separation from the GSOM,

3. hierarchical clustering using the GSOM,

4. development of a conceptual model for rule extraction and data movement

identification,

5. fuzzy rule generation using the extended GSOM.

Contributions in each of these parts are described in the following subsections.

8.1.1 Growing Self Organising Map (GSOM)

The main contribution of this thesis is the development of the new neural network

model called the GSOM. The GSOM encapsulates several new features to provide

it with the incrementally generating nature while preserving the advantages of

the traditional SOM. The new features introduced in the GSOM are

1. A new formula for calculating the rate of weight adaptation (learning rate)

which considers the incrementally generating nature of the network. As

such the number of nodes of a partially generated network is considered in

the learning rate calculation.

259

2. A heuristic criteria for generating new nodes is introduced. The new node

generation is restricted to the boundary of the network thus always main-

taining a two dimensional map.

3. Initialisation of the weights of the newly generated nodes (during network

growth), to fit in with the existing partially organised weights. The new

weight initialisation method introduces already ordered weights and hence

localised weight adaptation is sufficient for convergence.

4. A new method of error distribution from non-boundary nodes to maintain

proportional representation of the data distribution with in the area of the

GSOM.

5. A new parameter called the spread factor for providing the data analyst

with control over the level of spread of a GSOM.

Due to these new features, the GSOM has the following advantages over the

traditional feature maps.

1. Due to its self generating ability, network designer is relieved of the difficult

(sometimes impossible) task of predefining an optimal network structure

for a given data set.

2. A major limitation of traditional feature maps is the problem of oblique ori-

entation which results in distorted representations of the input data struc-

ture. Oblique orientation is a result of pre-defined fixed structure, and as

such does not occur with the GSOM.

260

3. The incremental network generation results in the self organisation of the

shape of the network as well as the node weights. Therefore the GSOM has

an input driven shape, which highlights the data clusters by the shape of

the network itself, thus providing better visualisation.

4. The new weight initialisation method initialises ordered new weights, thus

reducing the chance of twisted maps which is a major limitation of tradi-

tional SOMs. The ordered initial weights remove the requirement of an

ordering phase, as in the randomly initialised SOM, and thus the GSOM

achieves convergence with a lesser number of iterations compared to the

SOM.

5. The spread factor provides the analyst with flexibility of generating repre-

sentative maps at different levels of spread according to the needs of the

application. With traditional SOM, such control can only be attempted

by changing the size and shape of the two dimensional network of nodes.

We have shown that this conventional method results in the data clusters

being forced into the user defined network shape, thus providing a distorted

picture.

6. It has been experimentally shown that the GSOM provides maps with simi-

lar spread using lesser number of nodes compared to the SOM. Hence lesser

amount of computing resources are required for the GSOM.

261

8.1.2 Data Skeleton Modeling and Automated Cluster Sep-

aration

In applications using conventional feature maps, clusters are visually identified,

which can result in errors and inaccuracies. Visual cluster identification can

also become a problem when building automated systems. Therefore we have

developed a method for automating the cluster identification process from the

GSOM. The incrementally generating nature of the GSOM facilitates the building

of a data skeleton (chapter 4). The data skeleton provides a visualisation of

the paths along which the network grew thus providing further insights into the

structure of the input data. The data skeleton is also used to develop a method of

automated identification/separation of clusters, which is traditionally considered

as a visualisation task.

8.1.3 Hierarchical Clustering using the GSOM

Hierarchical clustering is an useful tool in data analysis. In this thesis a method

for hierarchical clustering of the GSOM is proposed using the control provided

by the spread factor (chapter 5). Such hierarchical clustering can be used to ob-

tain an initial abstract overview of the data, and further detailed analysis can be

carried out only on selected interesting regions. Hierarchical clustering also facil-

itates working with large data sets since the analysis can be conducted separately

on different regions of the data.

262

8.1.4 Development of a Conceptual Model for Rule Ex-

traction and Data Movement Identification

Feature maps may develop clusters in different positions of the network according

to the order of input presentation. Therefore it becomes difficult to compare maps

to identify similarity or differences in clusters. We have developed a conceptual

model of the GSOM called the Attribute Cluster Relationship (ACR) model which

provides a conceptual and summarised view of the data (chapter 6). The ACR

model further facilitates the following,

1. Extraction of descriptive rules of the GSOM clusters.

2. A new method for querying the database with unconfirmed knowledge or

hypothesis and generate query by attribute rules for confirming the hypoth-

esis.

3. Method for identifying movement and change in data which can provide a

data analyst with information on new trends.

8.1.5 Fuzzy Rule Generation

A new method is proposed for extending the Attribute Cluster Relationship

(ACR) model into a fuzzy rule generating system. The main advantage of such

a system is the ability to interpret the clusters more realistically by interpreting

the GSOM clusters as fuzzy rules and identifying fuzzy membership functions.

263

Such membership functions also provide the analyst with the ability to query the

data at a more abstract level.

8.2 Future Research

Several interesting areas of future research has opened up from the work described

in this thesis. Analysis and optimisation of the traditional SOM parameters is

still being carried out. Similar work on the GSOM needs to be conducted to en-

hance its advantages. We have shown that the self generating structure and the

use of spread factor resultr in a better representation of the data clusters. There

is potential for a rigorous mathematical analysis of this phenomena to calculate

the optimal parameters for better performance.

A very useful extension of the GSOM-ACR model will be an on-line data mon-

itoring system which can automatically update and report the changes in the

data. A method for incrementally updating the ACR model is needed to con-

tinuously monitor the movement in the data. Such a system has vast potential

for commercial organisations since it can not only identify trends and changes

in the data for competitive advantage but also provide warnings of potentially

dangerous situations before their actual occurrence.

The proposed fuzzy extension to the ACR model can also be extended to derive

a fuzzy classification system. The cluster summary nodes and their fuzzy mem-

264

bership functions can be considered as equivalent to the hidden layer of a Radial

Basis Function (RBF) network [Hal95] or a FuNel neuro-fuzzy model developed

by Halgamuge et. al. [Hal97]. These models are traditionally used for supervised

fuzzy classification, and a hidden layer self generated with the GSOM can provide

unbiased set of clusters for further supervised fine tuning.

Finally, the concept of adaptable structures provide the neural networks with

higher level of intelligence, due to the less human dependence. All conventional

neural network models can benefit from such intelligence, which has the potential

to be the next major development in artificial neural network research.

265

Appendix A

The Animal Data Set

Animal
Name

aardvark
antelope
bass
bear
boar
buffalo
calf
carp
catfish
cavy
cheetah
chicken
chub

h
a
s

h
a
i
r

rH
rH

0
r
1
1
l
0
0

i—
i

I
0
0

f
e
a
t
h
e
r
e
d

0
0
0
0
0
0
0
0
0
0
0
1
0

1
a

y

e
g
g
s

0
0
1
0
0
0
0
1
1
0
0
1
1

f
e
e
d

m
i
1
k
1
1
0
1
1
1
1
0
0
1
1
0
0

a
i
r
b
0

r
n
e

0
0
0
0
0
0
0
0
0
0
0
1
0

a
q
u
a
t
i
c

0
0
1
0
0
0
0
1
1
0
0
0
1

p
r
e
d
a
t
0

r

1
0
1
1
1
0
0
0
1
0
1
0

i—
i

t
0

0
4-

h
e
d

1
1
1
1
1
1
1
1
1
1
1
0
1

b
a
c
k
b
0

n
e

1
1
1
1
1

rH

1
1
1
1
1
1
1

b
r
e
a
t
h
e
s

1
1
0
1
1
1
1
0
0
1
1
1
0

V

e
n
0

m
0

u
s

0
0
0
0
0
0
0
0
0
0
0
0
0

h
a
s

f
i
n
s

0
0

rH

0
0
0
0
1
1
0
0
0
1

1
e
g
s

4
4
0
4
4
4
4
0
0
4
4
2
0

h
a
s

t
a
i
1

0
1
1
0
1
1
1
1
1
0
1
1
1

d
o
m
e
s
t
i
c

0
0
0
0
0
0
1
1
0
1
0
1
0

c
a
t
s
i
z
e

1
1
0
1
1

1
1
0
0
0
1
0
0

t

y
p
e

1
1
4
1
1
1
1
4
4
1
1
2
4

266

Animal
Name

clam
crab
crayfish
crow
deer
dogfish
dolphin
dove
duck
elephant
flamingo
flea
frog
fruitbat
giraffe
gnat
goat
gorilla
gull
haddock
hamster
hare
hawk
herring
honeybee
housefly

h
a
s

h
a
i
r

0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
1
1
0
0
1

H
-i

0
0
1
1

f
e
a
t
h
e
r
e
d
0
0
0
1
0
0
0
1
1
0
1
0
0
0
0
0
0
0
i
0
0
0
1
0
0
0

1
a
y

e

g
g
s

1
1
1
1
0
1
0
1
1
0
1
1
1
0
0
1
0
0
1
1
0
0
1
1
1
1

f
e
e
d

m
i
1
k
0
0
0
0
1
0
1
0
0
1
0
0
0
1
1
0
1
1
0
0
1
1
0
0
0
0

a
i
r
b
0

r
n
e

0
0
0
1
0
0
0

i—
i

1
0

H
-i

0
0
1
0
1
0
0
1
0
0
0
1
0
1
1

a
q
u
a
t
i
c

0
1
1
0
0
1
1
0
1
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0

p
r
e
d
a
t
0

r
H

-l

1
1
1
0
1
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0

1—
1

1
0
0

t
0

0

t
h
e
d

0
0
0
0
1
1
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1

T
-i

0
1
0
0

b
a
c
k
b
0

n
e

0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1

i—
i

1
1
1
1
1
0
0

b
r
e
a
t
h
e
s

0
0
0
1
1
0
1
1
1
1
1
1
1
1
1
I
1
1
1
0
1
1

rH

0
1
1

V

e
n
0

m
0

u
s

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0

h
a
s

f
i
n
s

0
0
0
0
0
1

H
-l

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0

1

e
g
s

0
4
6
2
4
0
0
2
2
4
2
6
4
2
4
6
4
2
2
0
4
4
2
0
6
6

h
a
s

t
a
i
1

0
0
0
1
1
1
1
1
1
1
1
0
0

H
-i

1
0
1
0
1
1

rH

1
1
1
0
0

d
0

m
e
s
t
i
c

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0

c
a
t
s
i
z
e

0
0
0
0
1

H
-l

1
0
0
1
1
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0

t
y
p
e

7
7
7
2
1
4
1
2
2
1
2
6
5
1
1
6
1
1
2
4
1
1
2
4
6
6

267

Animal
Name

kiwi
ladybird
lark
leopard
lion
lobster
lynx
mink
mole
mongoose
moth
newt
octopus
opossum
oryx
ostrich
parakeet
penguin
pheasant
pike
piranha
pitviper
platypus
polecat
pony
porpoise
puma
pussycat
raccoon
reindeer
rhea
scorpion

h
a
s

h
a
I
r

0
0
0

H
-i

t—
i

0
1
1
1
1
1
0
0
1

t—
l

0
0
0
0
0
0
0
1

t—
l

1
0

t—
l

1

H
-i

1
0
0

f
e
a
t
h
e
r
e
d
1
0

H
-i

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0

1
a
y

e
g
g
s

1
1
1
0
0
1
0
0
0
0

t—
l

1
1
0
0
1
1

t—
l

H
-i

1
1
1
1
0
0
0
0
0
0
0
1
0

f
e
e
d

m
I
1
k
0
0
0
1

i—
i

0
1
1

t-i

1
0
•0

0
1

t—
l

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0

a
I
r
b
0

r
n
e

0
1
1
0
0
0
0
0
0
0

H
-l

0
0
0
0
0

t—
l

0

t—
l

0
0
0
0
0
0
0
0
0
0
0
0
0

a
q
u
a
t
I
c

0
0
0
0
0
1
0

rH
0
0
0
1
1
0
0
0
0
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0

p
r
e
d
a
t
0

r

1

t—
i

0
1
1
1
1

H
-l

1
1
0
1
1
1
0
0
0
1
0
1
1
1
1
1
0
1
1
1
1
0
1
1

t
0

0

i
h
e
d

0
0
0
1
1
0
1
1
1

t—
i

0

H
-i

0

H
-l

t—
l

0
0
0
0
1
1
1
0
1
1
1
1
1
1
1
0
0

b
a
c
k
b
o
n
e

H

0
1
1
1
0
1
1
1
1
0

1-H

0
1
1
1

H
-i

1
1
1
1
1
1
1
1
1

t—
l

H
-l

H
->

H
-l

H
-l

0

b
r
e
a
t
h
e
s

1

t—
i

1
1

t—
i

0
1
1
1
1
1
1
0
1

H
-i

1
1
1
1
0
0
1
1

H
-l

1
1
1

t—
l

1
1

H
-l

H
-*

V

e
n
0

m
0

u
s

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1

h
a
s

f
I
n
s

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0

1
e
g
s

2
6
2
4
4
6
4
4
4
4
6
4
8
4
4
2
2
2
2
0
0
0
4
4
4
0
4
4
4
4
2
8

h
a
s

t
a
I
1

H

0

H
-i

1
1
0
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1

H
-l

H
-l

1

H
-l

1
1
1
1
1
1
1

d
o'x

m
e
s
t
I
c

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

T—
1

0
0
0
0
0
0
0
1
0
0
1
0
1
0
0

c
a
t
s
I
z
e

0
0
0

H
-l

1
0
1

H
-i

0
1
0
0
1
0
1
1
0
1
0
1
0
0
1
1

1—
I

H
-l

1
1
1
1
1
0

t
y
p
e

2
6
2
1
1
7
1
1
1
1
6
5
7
1
1
2
2
2
2
4
4
3

H
-*

1
1
1
1
1
1
1
2
7

268

Animal
Name

seahorse
seal
sealion
seasnake
seawasp
skimmer
skua
slowworm
slug
sole
sparrow
squirrel
starfish
stingray
swan
termite
toad
tortoise
tuatara
tuna
vampire
vole
vulture
wallaby
wasp
wolf
worm
wren

h
a
s

h
a
I
r

0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
1
1

i—
i

0
0

f
e
a
t
h
e
r
e
d
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1

1
a
y

e
g
g
s

1
0
0
0
1
1
1

H
-i

1

H
-i

1
0
1
1
1
1
1

H
-i

1
1
0
0

H
-i

0
1
0
1
1

f
e
e
d

m
I
1
k
0
1

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1

1—
1

0

H
-i

0
1
0
0

a
I
r
b
0

r
n
e

0
0
0
0
0
1
1
0
0
0
1
0
0
0

i—
i

0
0
0
0
0
1
0
1
0
1
0
0
1

a

q
u
a
t
I
c

1
1
1
1
1
1
1
0
0
1
0
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0

p
r
e
d
a
t
0

r

0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
1
0
0
1
0
0

t
0

0

t
h
e
d

1
1
1
1
0
0
0
1
0
1
0
1
0
1
0
0
1
0
1
1
1
1
0
1
0

H
-i

0
0

b
a
c
k
b
0

n
e

1
1
1
1
0
1
1
1
0
1
1
1
0
1
1
0
1

1—
1

1
1
1
1
1
1
0
1
0
1

b
r
e
a
t
h
e
s

0
1
1
0
0
1
1
1
1
0
1
1
0
0
1
1
1
1
1
0
1
1
1
1
1
1
1
1

V

e
n
0

m
0

u
s

0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0

h
a
s

f
I
n
s

1
1
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0

1
e
g
s

0
0
2
0
0
2
2
0
0
0
2
2
5
0
2
6
4
4
4
0
2
4
2
2
6
4
0
2

h
a
s

t
a
I
1

1
0
1
1
0
1
1
1
0
1
1
1
0
1
1
0
0
1

i—
i

1
1
1
1
1
0
1
0
1

d
0

m
e
s
t '
I
c

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

c
a
t
s
I
z
e

0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
I
1
0
1
0
0

t
y
p
e

4

rH

1
3
7
2
2
3
7
4
2
1
7
4
2
6
5
3
3
4
1
1
2
1
6
1
7
2

269

Bibliography

[Ala98a] Alahakoon L. D. and Halgamuge S. K. Knowledge Discovery with Su-

pervised and Unsupervised Self Evolving Neural Networks. In Proceed-

ings of the International Conference on Information-Intelligent Sys-

tems, pages 907-910, 1998.

[Ala98b] Alahakoon L.D. and Srinivasan B. Improved Cluster Formation with

a Structurally Adapting Neural Network. In Proceedings of the Inter-

national Conference on Information Technology, pages 31-34, 1998.

[Ala98c] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. A Self Growing

Cluster Development Approach to Data Mining. In Proceedings of the

IEEE Conference on Systems Man and Cybernatics, pages 2901-2906,

1998.

[Ala98d] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. A Structure

Adapting Feature Map for Optimal Cluster Representation. In Proceed-

ings of the International Conference on Neural Information Processing,

pages 809-812, 1998.

270

[Ala98e] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. Unsupervised

Self Evolving Neural Networks. In Proceedings of the Ninth Australian

Conference on Neural Networks, pages 188-193, 1998.

[Ala99a] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. Data Mining with

Self Generating Neuro-Fuzzy Classifiers. In Proceedings of The Eighth

IEEE International Conference on Fuzzy Systems, pages 1096-1101,

1999.

[Ala99b] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. A Self Generating

Neurai Architecture for Data Analysis. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, 1999.

[AlaOOa] Alahakoon L.D. and Halgamuge S. K. Data Mining with Self Evolv-

ing Neural Networks. In Hsu C , editor, Advanced Signal Processing

Technology. World Scientific Publisher, To be published in 2000.

[AlaOOb] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. Dynamic Self

Organising Maps with Controlled Growth for Knowledge Discovery.

IEEE Transactions on Neural Networks, To be published in 2000.

[AlaOOc] Alahakoon L.D., Halgamuge S. K. and Srinivasan B. Mining a Grow-

ing Feature Map by Data Skeleton Modeling. In Last M., editor, Data

Mining and Computational Intelligence. Physica Verlag, To be pub-

lished in 2000.

271

[Ame98] Amerijckx C , Verleysen M., Thissen P. and Legat J. Image Compres-

sion by Self-Organized Kohonen Map. IEEE Transactions on Neural

Networks, 9 (3):503-507, 1998.

[Ash43] Ash T. A Logical Calculus of the Ideas Immanent in Nervous Activity.

Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[Ash94] Ash T. and Cottrell G. W. A Review of Learning Algorithms that

Modify Network Topologies. Technical report, University of California,

San Diego, 1994.

[Ash95a] Ash T. Dynamic Node Creation in Backpropagation Networks. Con-

nection Science, 1:365-375, 1995.

[Ash95b] Ash T. and Cottrell G. Topology-Modifying Neural Network Algo-

rithms. In Arbib M. A., editor, The Hand Book of Brain Theory and

Neural Networks, pages 990-993. The MIT Press, 1995.

[Avn95] Avner S. Discovery of Comprehensible Symbolic Rules in a Neural

Network. In Proceedings of the International Symposium on Intelligence

in Neural and Biological Systems, pages 64-67, 1995.

[Bar94] Bartlett E. B. A Dynamic Node Architecture Scheme for Layered Neu-

ral Networks. Journal of Artificial Neural Networks, 1:229-245, 1994.

[Ber97a] Berkan R.C. and Trubatch S.L. Fuzzy Systems Design Principles -

Building Fuzzy IF THEN Rule Bases. IEEE Press, 1997.

272

[Ber97b] Berry M. J. A. and Linoff G. Data Mining Techniques. Wiley Com-

puter Publishing, 1997.

[Ber97c] Berson A. and Smith S. J. Data Warehousing, Data Mining and OLA P.

McGraw Hill, 1997.

[Bez92] Bezdek J. C. and Pal S. Fuzzy Models for Pattern Recognition : Methods

that Search for Structures in Data. IEEE Press, 1992.

[Bez93] Bezdek J. C. A Review of Probabilistic, Fuzzy and Neural Models for

Pattern recognition. Journal of Intelligent Fuzzy Systems, l (l) : l-25,

1993.

[Big96] Bigus J. P. Data Mining with Neural Networks. McGraw Hill, 1996.

[Bim96j Bimbo A. del, Corridoni J. M. and Landi L. 3D Object Classifi-

cation Using Multi Object Kohonen Networks. Pattern Recognition,

29(6):919-935, 1996.

[Bla95] Blackmore J. Visualising High Dimensional Structure with the Incre-

mental Grid Growing Neural Network. Master's thesis, The University

of Texas at Austin, 1995.

[Bla96] Blackmore J. and Miikkulainen R. Incremental Grid Growing: Encod-

ing High Dimensional Structure into a Two Dimensional Feature Map.

In Simpson P., editor, IEEE Technology Update. IEEE Press, 1996.

273

[Bla98] Blake G, Keogh E. and Merz C. J. University of Cal-

ifornia, Irvine, Dept. of Information and Computer Sci-

ences. UCI Repository of machine learning databases, 1998.

http://www.ics.uci.edu/~mlearn/MLRepository.html.

[Bou93] Bouton C. and Pages G. Self-Organisation of the One Dimensional Ko-

honen Algorithm with Non-Uniformely Distributed Stimuli. Stochastic

Processes and their Applications, 47:249-274, 1993.

[Bro94] Brown G.D.A., Hulme C , Hyland P.D. and Mitchell I.J. Cell Suicide in

the Developing Nervous System: A Functional Neural Network Model.

Cognitive Brain Research, 2:71-75, 1994.

[Cab98] Cabena P., Hadjinian P., Stadler R., Verhees J. and Zanasi A. Discov-

ering Data Mining - From Concept to Implementation. Prentice Hall,

1998.

[Cav94] Cavalli-Sforza L. L., Menozzi P. and Piazza A. The History and Geog-

raphy of Human Genes. Princeton University Press, 1994.

[Cha91] Chan L. W. Analysis of the Internal Representations in Neural Net-

works for Machine Intelligence. In Proceedings of the Ninth National

Conference on Artificial Intelligence, pages 578-583, 1991.

[Cha93] Chappell G.J. and Taylor J.G.. The Temporal Kohonen Map. Neural

Networks, 6:441-445, 1993.

274

[Che96] Chen M., Han J. and Yu P. S. Data Mining: An Overview from A

Database Perspective. IEEE Transactions on Knowledge and Data

Engineering, 8(6):866-883, 1996.

[Cot86] Cottrell M. and Fort J. A Stochastic Model of Retinotopy: A Self

Organisation Process. Biological Cybernatics, 53:405-411, 1986.

[Deb98] Deboeck G. Visual Explorations in Finance. Springer Verlag, 1998.

[DeC96] DeClaris N. and Su M. A Neural Network Based Approach to Knowl-

edge Acquisition and Expert Systems. In Simpson P. K., editor, IEEE

Technology Update. IEEE Press, 1996.

[Dri96] Driankov D., Hellendoorn H. and Reinfrank M. An Introduction to

Fuzzy Control. Springer, 1996.

[Ede87] Edelman G. M. Neural Darwinism. Basic Books, New York, 1987.

[Fay96a] Fayyad U. M., Piatetsky-Shapiro G. and Smyth P. The KDD Process

for Extracting Useful Knowledge from Volumes of Data. Communica-

tions of the ACM, 39(ll):27-34, 1996.

[Fay96b] Fayyad U.M.,Piatetsky-Shapiro G.,Smyth P. and Uthurusamy R. Ad-

vances in Knowledge Discovery and Data Mining. AAAI Press, 1996.

[Fay97] Fayyad U. M. The Editorial. Data Mining and Knowledge Discovery,

1:5-10, 1997.

275

[Fis95] Fisher D. Optimisation and Simplification of Hierarchical Clustering.

In Proceedings of the First International Conference on Knowledge Dis-

covery and Data Mining, pages 118-123, 1995.

[Fla96] Flanagan J. A. Self-Organisation in Kohonen's SOM. Neural Networks,

9(7):1185-1197; 1996.

[Fla97] Flanagan J. A. Analysing a Self-Organising Algorithm. Neural Net-

works, 10(5):875-883, 1997.

[Fri91] Fritzke B. Let it Grow - Self Organising Feature Maps with Problem

Dependent Cell Structure. In T. Kohonen and K. Makisara and O. Sim-

ula and j . Kangas, editor, Artificial Neural Networks, pages 403-408.

Elsevier Science, 1991.

[Fri92] Fritzke B. Growing Cell Structures - A Self Organising Network in k

Dimensions. In Aleksander I. and Taylor J., editor, Artificial Neural

Networks. Elsevier Science Publishers, 1992.

[Fri93] Fritzke B. Kohonen Feature Maps and Growing Cell Sructures - A Per-

formance Comparision. In Giles C. L., Hanson S. J. and Cowan J. D.,

editor, Advances in Neural Information Processing Systems. Morgan

Kaufmann, San Mateo, CA, 1993.

[Fri94] Fritzke B. Growing Cell Structure: A Self Organising Network for Su-

pervised and Un-supervised Learning. Neural Networks, 07:1441-1460,

1994.

276

[Pri95a] Fritzke B. A Growing Neural Gas Network Learns Topologies. In

Tesauro G., Touretzky D. S. and Leen T. K., editor, Advances in Neural

Information Processing Systems. MIT Press, 1995.

[Fri95b] Fritzke B. Growing Grid - A Self Organising Network with Constant

Neighbourhood Range and Adaptation Strength. Neural Processing

Letters, 2(5):9-13, 1995.

[Fri96] Fritzke B. Growing Self Organising Networks - Why ? In Proceedings

of the European Symposium on Artficial Neural Networks, pages 61-72,

1996.

[Fu 98] Fu L. Rule Learning by Searching on Adapted Nets. In Proceedings of

the Ninth National Conference on Artificial Intelligence, pages 590-595,

1998.

[Gro69] Grossberg S. On Learning and Energy-entropy Dependance in Recur-

rent and Non-recurrent Signed Networks. Journal of Statistical Physics,

1:319-350, 1969.

[Gur97] Gurney K. An Introduction to Neural Networks. London UCL Press,

1997.

[Hal95] Kalgamuge S. K. and Glesner M. Fuzzy Neural Networks: Between

Functional Equivalence and Applicability. International Journal of

Neural Systems, 06(2):185-196, 1995.

277

[Hal97] Halgamuge S. K. Self Evolving Neural Networks for Rule Based Data

Processing. IEEE Transactions on Signal Processing, 44(11):185-196,

1997.

[Han90] Hanson S.J. Advances in Neural Information Processing Networks.

In Touretzky D., editor, Meiosis Networks, pages 533-541. Morgan

kaufman CA, 1990.

[Han95] Hanson S.J. Backpropagation: some Comments and Variations. In

Chauvin Y. and Rumelhart D.E., editor, Backpropagation: Theory,

Architectures and Applications, pages 237-271. Erlbaum : Hillsdale

NJ, 1995.

[Has95] Hassoun M. Fundamentals of Artificial Neural Networks. Mas-

sachusetts Institute of Technology, 1995.

[Hay94] Haykin S. Neural Networks : A Aomprehensive Foundation. Prentice

Hall, 1994.

|Heb49] Hebb D. The Organisation of Behaviour. Wiley, 1949.

[Hol94] Holsheimer M and Siebes A. P. J. M. Data Mining: the Search for

Knowledge in Databaes. Technical Report CS-R9406, CWI, 1994.

[Hor99] Horton H. L. Mathematics at work. New York, Industrial Press, 1999.

[Inm97] Inmon W. H. Data Warehouse Performance. John Wiley, 1997.

278

if-

[Inm98] Inmon W. H. Managing the Data Warehouse. Wiley, 1998.

[Joc90] Jockush S. A Neural Network Which Adapts it's Structure to a Given

Set of Patterns, pages 169-172. Elsvier Science, 1990.

[Jou95] Joutsiniemi S., Haski S. and Larsen A. Self-Organising Map in Recog-

nition of Topographic Patterns of EEQ Spectra. IEEE Transactions

on Biomedical Engineering, 42(ll):1062-i068, 1995.

[Kan91] Kangas J- Time-Dependant Self Organising Maps for Speech Recogni-

tion. In Kohonen T., Makisara K., Simula O. and Kangas J., editor,

Artificial Neural Networks, pages 1591-1594. Elsevier Science, 1991.

[Kar96] Kartalopolos S.V. Understanding Neural Networks and Fuzzy Logic.

IEEE Press, 1996.

[Kec95] Kechris A. S. Classical Descriptive Set Theory. Springer Verlag, 1995.

[Kei96] Keim D. A. and Kriegel H. Visualisation techniques for Mining Large

Databases. IEEE Transactions on Knowledge and Data Engineering,

8(6):923-938, 1996.

[Ken98] Kennedy R. L., Lee Y., Roy B. V., Reed C. D., and Lippmann R. P.

Solving Data Mining Problems through Pattern Recognition. Prentice

Hail 1998.

279

[Kno96] Knorr E. M. and Ng R. T. Finding Aggregate Proximities and Com-

monalities in Spatial Data Mining. IEEE Transactions on Knowledge

and Data Engineering, 8(6):884-897, 1996.

[Koh81] Kohonen T. Automatic Formation of Topological Maps of Patterns

in a Self Organising System. In Proceedings of the 2nd Scandinanvian

Conference on Image Analysis, pages 214-220, 1981.

[Koh82a] Kohonen T. Analysis of Simple Self-Organising Process. Biological

Cybernatics, 44:135-140, 1982.

[Koh82b] Kohonen T. Self-Organised Formation of topologically Correct Feature

Maps. Biological Cybernatics, 43:59-69, 1982.

[Koh89] Kohonen T. Self-Organization and Associative Memory. Springer Ver-

lag, 1989.

[Koh90] Kohonen T. The Self Organising Map. Proceedings of the IEEE,

78(9):1464-1480, 1990.

[Koh91] Kohonen T. Self Organising Maps: Optimisation Approaches. In Ko-

honen T., Makisara K., Simula 0 . and Kangas J., editor, Artificial

Neural Networks, pages 981-990. Elsevier Science, 1991.

[Koh95] Kohonen T. Self-Organizing Maps. Springer Verlag, 1995.

280

[Koh96a] Kohonen T. Things You Haven't Heard About the Self Organising

Maps. In Simpson P., editor, IEEE Technology Update, pages 128-137.

IEEE, 1996.

[koh96b] kohonen T., Oja E., Simula O., Visa A. and Kangas J. Engineering

Applications of the Self-Organising Map. Proceedings of the IEEE,

84(10):1358-1384, 1996.

[Law99] Lawrence R. D., Almasi G. S. and Rushmeier H. E. A Scalable Parallel

Algorithm for Self Organising Maps with Applications to Sparse Data

Mining. Data Mining and Knowledge Discovery, 3(2):171-195, 1999.

[Lee91] Lee T. Structure Level Adaptation for Artificial Neural Networks.

Kluwer Academic Publishers, 1991.

[Loo97] Looney, C. G. Pattern Recognition Using Neural Networks : Theory

and Algorithms for Engineers and Scientists. New York : Oxford Uni-

versity Press, 1997.

[Mal73] Malsberg von D. Self-Organisation of Orientation Sensitive Cells in the

Striate Cortex. Kybernatics, 14:85-100, 1973.

[Mar90] Marshall A. M. Self Organising Neural Networks for Perception of

Visual Motion. Neural Networks, 3:45-74, 1990.

[Mar91] Martinetz T. M. and Schultan K. J. A Neural Gas Network Learns

Topologies, pages 397-402. Elsvier Science, 1991.

281

[Mar94] Martinetz T. M. and Schultan K. J. Topology Representing Networks.

Neural Networks, 7(3):507-522, 1994.

[Mar95] Marshall A. M.. Motion Perception: Self Organisation. In Arbib M. A.,

editor, The Hand Book of Brain Theory and Neural Networks, pages

589-591. The MIT Press, 1995.

[Mat93] Matheus J. M., Chan P. K. and Piatetsky-Shapiro G. Systems for

Knowledge Discovery in Databases. IEEE Transactions on Knowledge

and Data Engineering, 5(6):903-913, 1993.

[McN94] McNeill F. M. Fuzzy logic : A Practical Approach. Boston : AP

Professional, 1994.

[Meh97] Mehnert A. and Jackway p. An improved Seeded Region Growing

Algorithm. Pattern Recognition Letters, 18:1065-1071, 1997.

[Min69] Minsky M. and Papert S. Perceptrons. MIT Press, 1969.

[Mir96] Mirkin B. Mathematical Classification and Clustering. Kiuwer Aca-

demic Publishers, 1996.

[Moz89] Mozer M.C. and Smolensky P. Using Relevance to Reduce Network

Size Automatically. Connection Science, 1:3-16, 1989.

[Ngu97] Nguyen H.T. and Walker E.A. Fuzzy Logic. CRC Press, Florida, 1997.

[Oka92] Okabe A., Boots B. and Sugihara K. Spatial Tesselations, Concepts

and Applications of Voronoi Diagrams. John Wiley and Sons, 1992.

282

[Pur94] Purves D. Neural Activity and the Growth of the Brain. Cambridge

University Press. 1994.

[Qui98] Quinlan P. T. Structural Change and Development in Real and Arti-

ficial Neural Networks. Neural Networks, 11:577-599, 1998.

[Rit88] Ritter H. and Schulten K. Kohonen's Self Organising Maps : Exploring

their Computational Capabilities. In Proceedings of the IEEE Interna-

tional Conference on Neural Networks, pages 109-116, 1988.

[Rit91] Ritter H. Learning with the Self Organising Maps. In Kohonen T.,

Makisara K., Simula 0 . and Kangas J., editor, Artificial Neural Net-

works, pages 379-384. Elsevier Science, 1991.

[Rit92] Ritter H., Martinetz T. M. and Schulten K. Neural Computation and

Self-Organizing Maps. Addison Wesley, 1992.

[Rit93] Ritter H. Parameterised Self Organising Maps. In Gielen S. and Kap-

pen B., editor, Artificial Neural Networks 3. Elsevier Science, 1993.

[Roj96] Rojas R. Neural Networks. Springer, 1996.

[Sch93] Schomaker L. Using Stroke or Character BAsed Self Organising Maps

in the Recognition of On-line, Connected Cursive Scripts. Pattern

Recognition, 26(3):443-450, 1993.

[Sch96] Schurmann J. Pattern Classification - A Unified View of Statistical

and Neural Approaches. John Wiley and Sons, 1996.

283

[Ses94] Sestito S. and Dillon T. S. Automated Knowledge Acquisition. Prentice

Hall, 1994.

[Sie91] Sietsma J. and Dow R.J.F. Creating Artificial Neural Network that

Generalise. Neural Networks, 4:67-79, 1991.

[Sim96] Simpson P. K. Foundatins of Neural Networks. In Simpson P. K.,

editor, Neural Networks Applications, pages 1-22. IEEE Press, 1996.

[Sri97] Srinivasa N. and Sharma R. SOIM: A Self-Organising Invertible Map

with Applications in Active vision. IEEE Transactions on Neural Net-

works, 8(3):758-773, 1997.

[Suk95] Suk M., Koh J. and Bhandarkar S. M. A Multilayer Self-organising

Feature Map for Range Image Segmentation. Neural Networks,

30(2):1215-1226, 1995.

[Tay95] Taylor G. J. Self-Organsation in the Time Domain. In Arbib M. A.,

editor, The Hand Book of Brain Theory and Neural Networks, pages

843-846. The MIT Press, 1995.

[Thi93] Thiran P. and Hasler M. Self Organisation of a One Dimensional Ko-

honen Network with Quantised Weights and Inputs. Neural Networks,

7(9):1427-1439, 1993.

284

[Ult92] Ultsch A. Knowledge Acquisition with Self-Organising Neural Net-

works. In Aleksander I. and Taylor J., editor. Artificial Neural Net-

works 2, pages 735-739. Elsevier Science, 1992.

[Vil97] Villmann T., Der R., Hermann M. and Martinetz M. Topology Preser-

vation in Self-Organising Feature Maps: Exact Definition and Mea-

surement. IEEE Transactions on Neural Networks, 08:256-266, 1997.

[Vuo94] Vuorimaa P. Fuzzy Self Organising Map. Fuzzy Sets and Systems,

66:223-231, 1994.

[Wan95] Wang L. and Alkon D. L. An Artificial Neural Network Sys-

tem for Temporal-Spatial Sequence Processing. Pattern Recognition,

8:1267-1276, 1995.

[Wan97] Wann C. and Thomopoulos S. C. A. A Comparative Study of

Self-organising Clustering Algorithms Dignet and ART2. Neural Net-

works, 10(4):737-753, 1997.

[Wes98] Westphal C. Data Mining Solutions. Wiley Computer Publishing, 1998.

[Wil76] Willshaw D. J. and Malsberg von D. How patterned neural connections

can be set up by self-organisation. Proceedings of the. Royal Society of

London, B194:431-445, 1976.

[Yag94] Yager R. R. Essentials of fuzzy modeling and control. John Wiley,

1994.

285

[Yan92] Yang H. and Dillon T. S. Convergence of Self Organising Neural Algo-

rithms. Neural Networks, 5:485-493, 1992.

[Zad65] Zadeh L.A. Fuzzy Sets. Information and Control, 8:338-353, 1965.

[Zha97] Zhang T., Ramakrishnan R. and Livny M. BIRCH: A New Data Clus-

tering Algorithm and its Applications. Data Mining and Knowledge

Discovery, 1(2):141-182, 1997.

"J;

286

