
ON

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

22 July 2003

Sec. Research Graduate School Committee
Under the CopjTight Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

m
ryrv

Towards Robust Discovery Systems

By Murlikrishna Viswanathan

B.Sc. Honours (Deakin Univ.)

This thesis is submitted in fulfillment of the requirements

for the Doctor of Philosophy

School of Computer Science and Software Engineering

Monash University, Melbourne, Australia

July 2003

MONASH
L-l V I K S

Contents

1 Introduction 1

1.1 Introductory comments 1

1.1.1 Gyaanaarjanam (Knowledge Acquisition) 2

1.1.2 Automated Inductive Inference 3

1.2 Minimum Message Length Inference 4

1.3 Scientific Discovery 5

1.4 Machine Discovery . . . 6

1.5 Autonomous Discovery and the BODHI project 7

1.6 Objectives and Contributions 8

1.7 Thesis Overview 9

2 Machine Learning - A Survey of Relevant Issues 11

2.1 Learning - In the Generic Sense 12

2.2 Learning from Examples 13

2.3 Knowledge Representation 15

2.3.1 Effect of Representation Language on the Instance Space 17

2.4 Data Domains and Noise 17

2.5 Techniques in Computational Learning 19

2.5.1 Parametric and Nonparametric Regression 19

n

2.5.2 Support Vector Learning 21

2.5.3 Other Methods 21

2.6 Computational Learning Theory 23

2.6.1 Learning in the Limit 23

2.6.2 PAC Learning 23

2.6.3 Bias in Machine Learning Systems 24

2.7 Minimum Message Length Inference for Model Estimation and

Selection 28

2.8 Recapitulation 31

3 Machine Discovery 32

3.1 Philosophical Aspects 34

3.2 Creative thinking: Psychological Aspects 34

3.3 Models of the Creative Process 35

3.3.1 Wallas model - the psycological perspective 35

3.3.2 An Integrated Model of Creativity 36

3.4 Computational Discovery 38

3.4.1 Generic Steps in the Discovery Process 38

3.4.2 The Learning Framework 39

3.4.3 Discovery Systems 41

3.5 Hybrid Models for Integrated Discovery 50

3.5.1 IDS 50

3.5.2 ABACUS 51

3.5.3 49er 51

3.6 Limitation of Bacon-like systems 53

3.6.1 Re-discovery 53

in

3.6.2 Noisy Data 54

3.6.3 Search Efficiency and Irrelevant variables 54

3.7 Model Selection in Discovery Systems 55

3.7.1 A General Basis for Model Preference and Validation . 56

3.7.2 Justifying the MML Heuristic 57

3.8 Summary 58

4 Minimal Length Encoding for Model Selection 60

4.1 Introduction 61

4.2 Foundations and Background 63

4.2.1 Randomness 64

4.2.2 Solomonoff and Algorithmic Probability 65

4.2.3 Computable Approximations 67

4.3 Model Preference in Inductive Learning 70

4.4 The MML Approximation . 72

4.4.1 Notes from Coding Theory 74

4.4.2 The Minimum Message Length Criterion 75

4.5 The Bayesian Connection 79

4.6 A Better Ockham's Razor 82

4.7 Summary 83

5 Polynomial Regression 84

5.1 Introduction 84

5.2 Background 85

5.2.1 Prominent Methods for Model Selection 87

5.2.2 VC Dimension and Structural Risk Minimization . . . 88

5.2.3 Minimum Message Length Principle 90

IV

5.3 Experimental Evaluation 94

5.4 Analysis of Results , 96

5.4.1 Target Functions 98

5.4.2 The "Guaranteed" SRM Bound: Is it Loose ? 98

5.5 Summary 100

6 Segmentation of Binary Sequences 113

6.1 Introduction 113

6.2 Definitions 116

6.3 Kearns's Intervals Model Selection Problem 117

6.4 The KMDL method 118

6.5 The CMDL method 120

6.6 The Flaw in KMDL 120

6.7 MML Based Model Selection 122

6.7.1 Encoding the Estimated Probability 122

6.7.2 Encoding the Outpoints 123

6.7.3 Encoding the Data 126

6.7.4 The total message 126

6.8 Experimental Protocol 127

6.9 Analysis of Results 127

6.9.1 Randomly-spaced Outpoints 128

6.9.2 Estimating the Number of Outpoints 129

6.9.3 Expected Prediction Error 129

6.9.4 Evenly-spaced Outpoints 130

6.9.5 Tabulated Results 130

6.10 Discussion 131

v

7 Conclusions 147

7.1 BODHI Project 148

7.2 Future Research 148

7.3 Remarks 149

VI

till

List of Figures

1.1 A Generic Learning System 3

2.1 A Generic Learning System 15

2.2 Effect of Different Representation Languages 18

3.1 Creativity with reference to the Wallas model 37

5.1 Plots of Target Functions 101

5.2 Plots of Target Functions 102

5.3 Comparing methods on Squared Prediction Error (SPE) . . . 103

5.4 Comparing Methods on Squared Prediction Error 104

5.5 Comparing Methods on Squared Prediction Error 105

5.6 Comparing Methods on Squared Prediction Error 106

5.7 Comparing Methods on Squared Prediction Error 107

5.8 Comparing Methods on Squared Prediction Error 108

5.9 Standard Deviation of Squared Prediction Error 109

5.10 A Comparison of the SPE (test data) and SE (training data)
of the Worst Models Selected by SRM and MML 110

5.11 Comparing MML and Piecewise Polynomial Fitting on a Low

Order Polynomial. X axis represents the run count (up to 100)

while on the Y axis we have the squared prediction error (SPE).Ill

vn

5.12 Comparing MML and Piecewise Polynomial Fitting on a High

Order Polynomial. X axis represents the run count (up to 100)

while on the Y axis we have the squared prediction error (SPE).112

6.1 An Illustration of the Learning Task 115

6.2 Evaluation of Different Methods with Random Outpoints . . . 133

6.3 Evaluation of Different Methods with Random Outpoints . . . 134

6.4 Evaluation of Different Methods with Random Outpoints . . . 135

6.5 Evaluation of Different Methods with Random Outpoints . . . 136

6.6 Evaluation of Different Methods with Random Outpoints . . . 137

6.7 Evaluation of Different Methods with Evenly-spaced Outpoints 138

6.8 Evaluation of Different Methods with Evenly-spaced Outpoints 139

6.9 Evaluation of Different Methods with Evenly-spaced Outpoints 140

6.10 Evaluation of Different Methods with Evenly-spaced Outpoints 141

6.11 Evaluation of Different Methods with Evenly-spaced Outpoints 142

6.12 Comparison of Estimated p with Random Outpoints 143

6.13 Comparison of Estimated p with Evenly-spaced Outpoints . . 144

6.14 Comparison of Methods on EPE with Random Outpoints . . . 145

6.15 Comparison of Methods on EPE with Random Outpoints . . . 146

vm

List of Tables
lit-

6.1 TV = 200 and p = 0.2 131

6.2 N = 600 and p = 0.2 131

6.3 N = 1000 and p = 0.2 132

6.4 N = 1500 and p = 0.2 132

IX

Abstract

Inductive learning — learning about the world we are in — is fundamental

and pervasive. And amongst the plethora of learning activities, scientific

induction stands out as the crown jewel of intellectual enquiry, and so the

natural aim of machine learning would be to produce it. However, it has

long been held by prominent philosophers of science that scientific reasoning

is actually impossible to automate. Hans Reichenbach's view [81] was that,

whereas there may be a logic of justification for deciding which theories, once

proposed, are right and which wrong, there could be no logic of discovery.

Popper [78], and the other logical positivists, concurred, holding discovery to

be within the realm of psychology, if not mysticism (despite the misleading

title of his bock, Logic of Scientific Discovery, as translated into English).

That view (and positivism generally) is on the retreat. On the one side, it

has been undermined by Bayesian philosophies of science, which hold that

the origin of a theory has much to do with its plausibility (prior probability)

and so with its ultimate justification. On the other side, AI researchers have

been actively developing algorithms for generating scientific theories, wherein

claims of success have often been grossly exaggerated. Nevertheless, we find

that the prospects for automating scientific discovery in the long run are

encouraging, and in particular, we present algorithms that provide robust

model selection in the domains of curve-fitting and analysis of time-series

data.

The history of science reveals at least five stages in scientific discovery:

concept/taxonomy formation, discovering qualitative laws, discovering quan-

titative laws, discovering structural models and discovering temporal models.

Recent research in computational discovery has addressed all the five stages

of the discovery process. Clustering systems like Cluster/2, SNOB, AUTO-

x

CLASS and others deal with the task of taxonomy formation, whereas sys-

tems like NGLAUBER search for qualitative relations. Starting with BA-

CON, researchers have developed a great variety of systems that discover

numeric laws. Systems like DALTON, STAHLP, and GELL-MANN formu-

late structural models; some others, such as TETRAD II, generate specifically

causal models. Researchers have also tried to integrate the different stages

of discovery as found in systems like Falkenhainer and Michalski's ABACUS,

Nordhausen and Langley's IDS, and Kulkarni and Simon's KEKADA. [59]

Despite a dearth of real applications to which any of these systems have

been put, we believe that the general project of automating scientific discovery

is promising for the long term. One serious flaw which all of the above sys-

tems share is an overblown respect for Reichenbach's discovery-justification

distinction. Whereas they all take seriously the attempt to furnish heuristics

for discovering scientific theories, none of them makes a serious attempt to

integrate the contexts of discovery and justification. There are two specific

failings in this reseauh tradition: the failure to apply any principled metric

for directing the discovery process; the failure to apply any principled metric

for evaluating the theories produced by the discovery process.

The Minimum Message Length principle (MML) [122, 127] defines an

information theoretic Bayesian approach to assessing the probabilities of the-

ories relative to some data. By preferring theories which minimize the joint

encoding of the theory itself and the data relative to that theory it plays

a trade-off between theoretical simplicity and fit to the data which demon-

strably favors the most probable hypothesis a posteriori. The MML derived

metric is useful not just for a final evaluative step, but also for directing dis-

covery towards the most promising regions of the space of theories. MML

is especially amenable to incorporation into computer programs and has al-

XI

ready been applied to a variety of important classes of inductive inference

problems, including concept and taxonomy formation, polynomial curve fit-

ting and causal model discovery. The novel contributions of this dissertation

include the design of MML-based systems including empirical studies that

demonstrate the plausible performance of the MML principle in comparison

to several well-known metrics. These MML-based systems developed for the

domains of polynomial curve fitting [115] and time series analysis [116] with

noisy data, which form the core contributions of this dissertation, have shown

performance clearly superior to its main statistical competitors.

xn

Declaration

This thesis contains no material which has been accepted for the award of

any other degree or diploma in any university or other institution.

To the best of my knowledge, this thesis contains no material previously

published or written by another person, except where due reference is made

in the text of the thesis.

Where the work in this thesis is based upon joint research, this thesis discloses

the relative contributions of the respective authors.

Murlikrishna Viswanathan

July 2, 2003

xin

Acknowledgments

I am grateful to my supervisors, namely Dr. Kevin Korb and Dr. David

Dowe for providing all the motivation and support over the last three years.

They have provided excellent supervision and have been instrumental in my

acquiring good research skills. I am also obliged to Professor Chris Wallace

who has been informally finding problem areas and guiding my efforts to find

solutions.

I would also like to express my gratitude to Dr. Guoqi Qian, Dr. Rohan

Baxter, Dean McKenzie, for extensive comments on papers submitted earlier.

And finally I would like to dedicate this thesis to my wife Ramya and our

eight-month old Brinda, for the love, patience and support in this endeavour.

xiv

Chapter 1

Introduction

Keep on the lookout for novel ideas that others have used success-

fully. Your idea has to be original only in its adaptation to the

problem you're working on. Results! Why, man, I have gotten a

lot of results. I know several thousand things that won't work.

- Thomas Edison (1847-1931)

1.1 Introductory comments

Inspired by the encouraging words of Thomas Alva Edison I present here my

dissertation. Herein I have attempted to present an account of my journey

through the different research fields of automated discovery and inductive

inference, and the "tiny" contributions that I have so far been able to make.

The novel contributions of this dissertation are encapsulated in chapters 5

and 6 while the rest of the chapters describe some relevant literature and a

schematic framework.

1.1.1 Gyaanaarjanam (Knowledge Acquisition)

The word "Gyaanaarjanam" is a synonym for the acquisition of knowledge

in one of the oldest languages of the world, namely, Sanskrit. Knowledge

acquisition or learning has hundreds of definitions reflecting the fact that the

human intellect has yet to formalize this innate phenomenon clearly. Learning

can be described as a process that reduces our uncertainty about the nature

of the object/subject we are trying to understand. But whether we define it

or not, learning is fundamental to our existence.

Learning can be understood via the processes of Induction, Abduction

and Deduction. The American philosopher Charles Sanders Peirce offers us a

classification of these reasoning forms in terms of the function they perform

in science. Three stages are discerned: (1) formulating a hypothesis, (2)

drawing predictions from the hypothesis, (3) evaluating these predictions.

The first stage, coming up with an explanatory hypothesis, is what Peirce calls

abduction. Predictions are drawn by deduction; and assessing a hypothesis

by testing these predictions in the real world is what Peirce calls induction.

The goal of this dissertation is the design and development of theory and

software for the inductive inference of models. As science progresses there

is a growing need for the development of inductive systems to understand

large and complex, information-rich data from virtually all fields of business,

science and engineering. Examples include medical diagnosis, analysis of as-

tronomical data, weather forecasting, corporate data analysis, DNA sequence

analysis, etc. The ability to extract useful knowledge hidden in these data

and to act on that knowledge is becoming increasingly important.

1.1.2 Automated Inductive Inference

Inductive inference thus primarily refers to acquiring general knowledge from

a set of specific examples. Machine Learning is the area of Artificial Intel-

ligence that focuses on developing principles and techniques for automating

inductive inference. The study and computer modelling of knowledge ac-

quisition in its multiple manifestations is encompassed by machine learning.

Machine learning is often distinguished on the basis of the underlying learn-

ing strategies where each strategy corresponds to a specific technique that

can be applied to a particular domain using a distinct knowledge represen-

tation. Some machine learning methods can dramatically reduce the cost of

developing knowledge-based software by extracting knowledge directly from

existing databases. Other machine learning methods enable software systems

to improve their performance over time with minimal human intervention. A

generic model for a typical learning system to this effect is depicted in the

following figure.

Domain
Examples

Learning
Mechanism

Symbolic
Representation

Figure 1.1: A Generic Learning System

Based on this fundamental framework, the field of machine learning has

spawned a number of approaches. Some of these include Decision tree learn-

ing, Rule induction, Bayesian methods, Neural computing, Lazy learning,

Rough and Fuzzy sets and Support Vector learning. In the long-term it

is expected that these approaches will lead to the development of effective

software for autonomous systems that must operate in poorly understood

environments. This dissertation will focus on Bayesian methods, although

comparisons will be made with a wide spectrum of approaches.

Research in machine learning has thus focussed on the design and devel-

opment of learning algorithms that perform increasingly well on a variety of

real-world domains. Several systems have been developed with a good degree

of predictive accuracy in real-world domains, examples being Quinlan's C5

[80], Breiman, Friedman, Olshen and Stone's CART [9], Wallace's Snob [126],

Michalski's AQ family [64] and more recently Webb's COVER [133].

1.2 Minimum Message Length Inference

The Minimum Message Length (MML) [122,127] principle for inductive infer-

ence was pioneered by Wallace and Boulton in the 1960's. Founded on funda-

mental ideas from information theory, coding theory, and Bayesian learning,

the MML principle suggests that the best theory or explanation (in some for-

mal language) for a body of data is the one that best compresses a two-part

encoding of the theory and data (assuming the theory is true) under an opti-

mal encoding scheme. Information compression has been a significant theme

in research on inductive inference including inference of grammars under the

banner of Minimum Length Encoding (MLE) pioneered by Solomonoff [98],

Wallace and Boulton, Rissanen [87] and others. MLE is an umbrella term

covering the closely-related concepts of Minimum Message Length encoding

(MML) and Rissanen's Minimum Description Length encoding (MDL) [84].

I. ' ,. »J

The key idea in MLE is that in inductive inference, one should seek to

minimise (s(T) + s (£>)), where s(T) is the size of the pattern, theory, or

grammar (in bits or comparable measure) and s(D) is the size of the raw

data from which the grammar is derived, after the raw data has been encoded

in terms of the grammar. This idea produces a happy compromise between

grammars that are, at one extreme, very small but are inefficient for encoding

data and, at the other extreme, grammars that are very efficient for encoding

data but are excessively large.

An analogy of this idea can be seen in the behaviour of children who make

grammatical generalisations and eventually correct their erroneous 'over' gen-

eralisations (e.g. "He aitted me", "Look at those mouses") without appar-

ently needing explicit correction from other people. Both kinds of generali-

sation, by definition, have zero frequency in the child's experience but MLE

provides a means of distinguishing 'good' ones from 'bad' ones without ex-

ternal supervision of the learning process.

1.3 Scientific Discovery

Scientific discovery has always enjoyed the highest reputation among creative

intellectual pursuits. However, creative intelligence has yet to be defined

and as a result it has seemed to be an unlikely candidate for automation.

But as Langley suggests [59], researchers in AI have questioned this atti-

tude by developing artifacts that replicate the act of discovery (at least in

a restricted sense). This section provides brief summaries of the scientific

discovery process, its philosophy and a historical survey of computational

scientific discovery systems.

The history of science has revealed the following definitive stages in sci-

entitle discovery. It is important to note that these stages of discovery may

not be purely sequential.

1. Taxonomy formation. Prior to establishing theories it is necessary to

categorize or classify concepts from the domain under study.

2. Discovering Qualitative laws. The discovery of qualitative laws helps to

characterize the behaviour or determine the correlations between a set

of entities.

3. Discovering Quantitative laws involves stating mathematical relations

between numeric variables representing a set of entities.

4. Discovering Structural Models. Scientists often use structural models

which incorporate unobserved entities to explain phenomena that are

inexplicable by empirical summaries.

5. Discovery Process Models. Process models help to explain phenomena

in terms of models that involve temporal changes.

1.4 Machine Discovery

The computer-aided discovery of scientific knowledge has spawned a field

for itself, known as machine discovery. According to Darden [27], the study

of computational scientific discovery emerged from the view that science is a

problem solving activity, that heuristics for problem solving can be applied to

the study of scientific discovery in either historical or contemporary cases, and

that methods in artificial intelligence provide techniques for building compu-

tational systems. Early research in scientific discovery focused on replicating

discoveries from the history of disciplines as diverse as mathematics [62],

physics [57], chemistry [143] and biology [55].

6

Recent research in computational discovery has addressed all five stages

of the discovery process. Clustering systems like Cluster/2 [65], AUTO-

CLASS [17], Snob [126] and others deal with the task of taxonomy formation,

whereas systems like NGLAUBER [50] search for qualitative relations. Start-

ing with BACON [57], researchers have developed a great variety of systems

that discovery numeric laws. Systems like DALTON [75], STAHLP [89], and

GELL-MANN [139] formulate structural models, whereas a smaller group,

like MECHEM [107] and ASTRA, instead construct process models.

Researchers have also tried to integrate the different stages of discovery as

found in systems like Lenat's AM, Nordhausen and Langley's IDS [72], and

Kulkarni and Simon's KEKADA [55].

1.5 Autonomous Discovery and the BODHI

project

Discovery systems such as the Bacon family and its successors like Abacus,

Coper, Kepler and others were designed to find functional relationships of

scientific significance in numerical data. Bacon and its sister programs have

been widely critisized for the following reasons:

• results published from the application of these systems were based on

the replication of previous scientific discoveries,

• a systematic and principled approach to handling noisy data was lack-

ing, and,

• there was a lack of a well-founded induction principle to guide the search

and evaluation of models,

The research towards this dissertation originally commenced with the aim

of integrating the several processes involved in the discovery process through

the Bayesian-Oriented Discoverer of Heterogeneous Information-structure (BO-

DHI) system. The idea with BODHI is to search a variety of model spsr.es

guided by domain heuristics and the Minimum Message Length (MML) method-

ology to find a model that best explains the data at hand. The end-product

would be a modular environment for automated discovery. While preliminary

investigations towards the larger aim of developing a system for the system-

atic discovery of quantitative and qualitative knowledge from real world data

were conduted, the immediate aim was to test the plausibility of the MML

methodology for model selection. So the research headed in the direction of

developing systems for robust learning in the domains of polynomial regres-

sion and binary sequence segmentation by employing the MML principle to

guide the search and selection process.

1.6 Objectives and Contributions

This research work originally commenced with the aim of achieving three

major goals.

• To study the process of automating scientific discovery;

• To demonstrate the plausibleness of the Minimum Message Length prin-

ciple in model selection and

• Investigate the modular development of a Bayesian-Oriented Discoverer

of Heterogeneous information structure (BODHI). The BODHI project

will culminate in the development of an integrated system for scientific

discovery.

8

The PhD work aimed at the above has resulted in the following contributions.

• A polynomial function discovery module based on the MML method-

ology which can be integrated within a larger discovery system. This

function discoverer has been compared and benchmark tested against

standard approaches. The system is robust in the presence of noisy data

and significantly better in its performance in comparison to standard

tecnhiques.

• A system for the segmentation of binary sequence data. The module

also based on the MML principle and designed with a larger framework

in mind learns Boolean models from binary data. The system has been

shown to offer robust inference in the presence of erroneous data.

• A brief review of systems for automating scientific discovery.

1.7 Thesis Overview

Chapter 2 presents the general literature review of the machine learning area

with relevance to this work. The chapter also offers a formal survey of bias

in machine learning.

Chapter 3 provides some background literature in machine discovery and a

review of automated discovery systems.

Chapter 4 introduces model selection methods based on the principles of Min-

imal Length Encoding. The origins of the MML principle are traced along

with the practical techniques used in applying the methodology.

Chapter 5 describes a system for learning univariate polynomial models from

noisy observations. The chapter presents one of the two novel contributions

of this dissertation. One highlight of this chapter is the empirical analysis of

a classical bound on prediction error. The results from this chapter demon-

strate the weakness of this bound and the plausible performance of the MML

metric. The chapter includes a detailed empirical evaluation of the MML

approach with standard benchmark methods.

Chapter 6 presents a system for learning segmentation models from binary

sequence data. This chapter highlights another significant contribution of this

thesis. A comparative evaluation of the system with standard approaches is

included. The chapter offers an important lesson in applying minimum length

encoding methods for model selection by demonstrating the problems with

sub-optimal coding schemes. Results from empirical evaluation are analysed.

Finally, chapter 7 summarizes the findings of this study and provides direc-

tions for future work.

10

Chapter 2

Machine Learning - A Survey of

Relevant Issues

Learning is a many-faceted phenomenon. The ability to learn from observa-

tions and experience is crucial for any intelligent being. Knowledge acqui-

sition in this light is the process of acquiring knowledge from one or more

sources and passing it in a suitable form to some entity or system. Machine

learning within this context can be defined as the transfer and transformation

of problem-solving expertise from some knowledge source to a program.

Research in machine learning has been primarily concerned with building

computer programs able to construct new knowledge or to improve already

existing knowledge from evidence. Besides the fact that learning is a part of

any kind of problem solving or process, a diversity of research tasks and test-

ing grounds are available to researchers. Machine learning has become central

to the development of artificial intelligence owing to its importance in several

areas, including expert systems, problem solving, computer vision, speech

understanding, autonomous robotics, conceptual analysis of data bases, and

intelligent agents [66].

11

Bill

The purpose of this section is to provide a general and personal overview

of the machine learning area. In the following sections I aim to provide

summarized descriptions of the different components of a learning system,

focusing on the areas which are relevant to this research work.

2.1 Learning - In the Generic Sense

According to Michalski, the learning strategy or technique refers to the type of

inference employed by a system during learning [30]. Based on this principle

several strategies have emerged:

• Rote learning, which does not require any inference on the part of the

learner and the learning system directly accepts information from the

supervisor. Memorizing the multiplication table is an example.

• Learning from instruction (or learning by being told), where the learner

performs some inference but is guided with background knowledge from

the supervisor and the learning system in this case just reformulates

the background knowledge. This is akin to a student who memorizes a

formula or law and then goes on to understand its true meaning when

she/he realises how it fits her/his prior knowledge.

• Learning by analogy involves the acquisition of new and useful facts

or skills by transformation of existing knowledge which is similar to

the desired concept and is a combination of induction and deduction

requiring strong inference on the learner's part. Kekule's discovery of

the structure of the benzene molecule after dreaming about a snake

biting its tail is a good example of this aspect of learning.

12

• Inductive learning, which can be distinguished into learning by exam-

ples, the most investigated area of machine learning and learning by

observation and discovery. In learning by observation and discovery

the learner performs inference without the help of a supervisor (no ex-

amples to guide the inference process). Inductive learning from exam-

ples or supervised learning is the focus of this dissertation and will be

extensively discussed in the following chapters.

• Discovery, both inductive and deductive learning in which an agent

learns without help from a teacher. It is deductive if it proves theorems

and discovers concepts about those theorems; it is inductive when it

raises conjectures.

2.2 Learning from Examples

Inductive learning from examples can be technically defined as the process in

which the learner produces a representation of a target mapping (e.g., a set of

rules) using a learning strategy (e.g., heuristic search) from training informa-

tion (e.g., positive instances) derived from some environment (domain) [66].

A more relevant definition for this thesis is that induction can be defined as a

process by which a system develops an understanding of principles or theories

that are useful in dealing with a domain by generating accurate models from

the specific examples or instances presented to it. This includes the process

of experimentation and discovery; that is, searching for hypotheses and then

employing a principled metric evidence to confirm or deny their validity.

More formally, an example is a pair (x,f(x)), where x is the input and

f(x) is the output of the function applied to x. The task of pure inductive

inference (or induction) is, given a set of examples of (x,f(x)), to find a

13

hypothesis h that approximates / .

Most inductive learning algorithms are supervised. That is, pre-classified

examples are supplied by an external source to the learning algorithm. These

examples typically consist of initial conditions and resulting actions or deci-

sions (attribute-value vectors), thus similar to having a teacher who provides

a correct set of answers. On the other hand, one can remove the teacher

entirely and use the external world as a source of data. In unsupervised learn-

ing the learner is presented with unclassified data and is expected to form

explanatory theories, such as classification schemes. Computational methods

for learning from examples have been mainly distinguished into two families:

classification when the number of classes or concepts is discrete and regression

when the number of classes is continuous.

A Generic Model

Four questions are sufficient to design or distinguish a system that learns

from examples.

1. What do you want to learn or, what is the nature of the learning task?

2. What is the nature of the existing background knowledge?

3. How do you want to represent the learned model?

4. What is your preference criterion for model selection?

By specifying the nature of the learning task we are explicitly defining the

hypothesis (model) space. Our existing domain knowledge could consist of

real/discrete valued attributes or both. The data could be erroneous. Every

representational language defines a distinct partitioning of the instance space.

It is thus important to employ a representational scheme that captures the

14

INSTANCE
SPACE

PREFERENCE
CRITERION

j

i

INFERENCE
MECHANISM

HYPOTHESIS
SPACE

MACHINE
LEARNING

Figure 2.1: A Generic Learning System

intended model. Of equal importance is the question of model selection.

Figure 2.1 presents a simple view of machine learning based on the above.

Based on this generic model, machine learning can be distinguished along

three main branches, the underlying learning techniques implemented by the

learning algorithms, the representation language used to present the knowl-

edge acquired by the system and finally the application domain from which

the training data has been extracted.

2.3 Knowledge Representation

Every learning system needs a language for representing knowledge acquired

during the application of learning techniques. Thus machine learning can

be classified on the basis of the representation language used. Several such

knowledge representation formalisms exi^t such as:

• Linear and non-linear functions in various manifestations stand out as

some of the earliest representation schemes. This dissertation presents

15

experiments with learning polynomial and Boolean functions from data.

• Production rules [64], which is one of the most commonly used for-

malisms and consists of condition-action pairs. For example, IF X

THEN Z.

• Splines [28] are systems of piecewise polynomial functions with the

pieces smoothly connected together.

• Decision trees [9] are directed graphs whose nodes are tests, branches

are outcomes and the leaves represent the classes. An object or example

is classified by tracing out a path from the root of the decision tree to

one of its leaves after being subject to the conditions associated with

the intermediate nodes if there are any.

• Frames [67], which are data structures for the representation of stereo-

typical (normal) situations.

• Formal logic-based representation [79], which uses formal logic expres-

sions (e.g., predicate calculus) to represent acquired knowledge.

• Bayesian networks [76] are directed acyclic graphs representing proba-

bility distributions. The nodes in a Bayesian network represent random

variables, and the arcs represent conditional probabilistic relations be-

tween the variables.

This research work primarily investigates the learning systems which use

polynomial functions and Boolean functions as their knowledge representation

schemes. Therefore discussion in the further sections will be restricted to these

two specific formalisms.

8

16

2.3.1 Effect of Representation Language on the Instance

Space

This section looks at the effect of different representational languages on the

partitioning of the instance space. An instance or example described by n

attributes corresponds to a vector in an n-dimensional Euclidean space. The

learning task in this context is to find the function that best describes the

training instances and partitions the instance space.

As mentioned earlier models partition the instance space based on their

representation languages. Polynomial functions which are of primary impor-

tance to this research work produce curved partitions of the instance space.

Decision trees and rules partition the instance space with hyper-planes. Other

classifiers based on discriminant functions and K-nearest neighbour represen-

tation schemes produce polygonal partitions of the instance space. Figure 2.2

illustrates the partitioning of an instance space defined by the attributes X

and Y, with '+ ' and '-' signs representing positive and negative instances; the

dotted lines denote the partitioning of the instance space by the respective

representation language.

2.4 Data Domains and Noise

In its early years machine learning was classified on the basis of the appli-

cation domain in which it was applied. Several systems were developed that

were specific to particular domains, like decision making, problem solving,

image processing, task execution and, planning. But in recent years most

machine learning systems developed have been independent of any domain.

Although the systems based on different approaches are applicable to many

domains, empirical comparison has shown that each performs best in some,

17

+ • + + +
+ . i +

+ + - + +

X

r

• /

i +
: - : / • • • +

- • / * • -
/ +* +

' + +

X

Y

\ • - > ++

-J - • * < +

" - . / - . . / .

+ + "J +
+

+

X

A decision tree or rate based classifier's A linear discriminant function's A k-nearest neighbour's
partitioning of the two-dimensional partitioning. partitioning of the domain
space of domain examples. examples.

Figure 2.2: Effect of Different Representation Languages

but not all domains. This performance variation among different systems has

been termed as the "selective superiority" problem [10]. As mentioned in

the introduction, this raises the question of how to determine the suitability

of a data domain to a particular inductive learning system, known as the

meta-learning problem.

Supervised learning systems have also been classified on the basis of the

type of examples supplied to the learner. This is because certain learners

may use only positive examples (i.e., examples describing the target concept)

while others may employ both positive and negative examples (i.e., examples

that do not belong to the target concept).

Typically, the data to be analysed is a flat file containing a number of

examples. In learning from examples or supervised learning, each example

or instance is a vector of attribute values and a class representing the de-

cision. Attribute values may be discrete or continuous. Unfortunately, real

world data domains suffer from two major complications, noise and missing

18

attribute values. Noise is essentially caused by examples being described by

incorrect attribute values and due to examples being misclassified (i.e. as-

signed incorrect classes). This often results in the inadequacy of attributes

or generation of unnecessarily complex classifiers. Missing attribute values

within data domains often occur due to discrepancies in data entry or data

collection. Most systems therefore have to be modified in order to tolerate

missing values.

2.5 Techniques in Computational Learning

This section presents a cross-section of approaches to inductive learning from

examples.

2.5.1 Parametric and Nonparametric Regression

The most common approach to learning in statistical data analysis has been

to fit a global parametric function y = f(x,6), with finite length parame-

ter vector 6 to the data (x,y). The fitting procedure minimizes some error

function over all the data pairs (rr, y) in the training set so as to yield the

optimal set of parameters 0. The criterion used to minimize is often a least

squares criterion. If / is linear in the parameters #, least squares regres-

sion corresponds to linear regression and the parameters can be calculated in

closed form. In more interesting applications, however, / is nonlinear in the

parameters and the error function must be minimized iteratively. Parametric

methods are very successful if the assumed structure of the function f{x10)

is sufficiently close to the function which generated the data to be modeled

[92].

19

Nonparametric regression has no formal definition. The name nonpara-

metric indicates that the function to be modeled consists of very large families

of distributions which cannot be indexed by a finite-dimensional parameter

vector in a natural way [47]. Hence, the nonparametric estimation of the

input-output correlation is often called "distribution-free", implying that no

assumptions about the statistical structure are made.

There are many methods in the statistical literature that can be used for

flex;' :le parametric and nonparametric modeling. These methods include:

• Polynomial regression [36]

• Fourier series regression [36]

• Wavelet smoothing [32]

• K-nearest neighbor regression and discriminant analysis [48, 83]

• Kernel regression and discriminant analysis [36, 83]

• Local polynomial smoothing [130, 36]

• Locally-weighted regression, or loess [21], is a procedure for estimating

a regression surface by a multivariate smoothing procedure: fitting a

linear or quadratic function of the independent variables in a moving

fashion that is analogous to how a moving average is computed for a

time series

• Smoothing splines (such as thin-plate splines) [36, 23]

• B-splines [36]

• Tree-based models (CART, AID, etc.) [9]

• Multivariate adaptive regression splines (MARS) [42]

20

Projection pursuit [43, 83]

Group Method of Data Handling GMDH [38]

,5.2 Support Vector Learning2 R

Support Vector Machines (SVM) are learning systems that use a hypothesis

space of linear functions in a high dimensional feature space, trained with a

learning algorithm from optimisation theory that implements a learning bias

derived from statistical learning theory [24]. In very simple terms an SVM

corresponds to a linear method in a very high dimensional feature space that

is nonlinearly related to the input space. Even though we think of it as

a linear algorithm in a high dimensional feature space, in practice, it does

not involve any computations in that high dimensional space. By the use of

kernels, all necessary computations are performed directly in input space.

SVMs deliver good performance in real-world applications such as text

categorisation, hand-written character recognition, image classification, biose-

quences analysis, etc. Their first introduction in the early 1990s lead to a

recent explosion of applications and deepening theoretical analysis, that has

now established Support Vector Machines along with neural networks as one

of the standard tools for machine learning and data mining.

2.5.3 Other Methods

Decision Tree Learning

Being robust to noisy data, decision tree learning, a method for approximating

discrete-valued target functions, is one of the most widely used and practical

methods for inductive inference. Benchmark systems that employ decision

trees as the description language include CART [9] and C4.5 [80].

21

Instance-based Learning

Instance-based learning, a recent approach is based on the application of the

similarity assumption. Instance-based learning algorithms assume that simi-

lar instances have similar classifications. As opposed to most other supervised

learning methods instance-based learners don't construct explicit abstractions

such as decision trees or rules [1]. In typical instance-based learning systems

the entire training data or a subset is retained.

A new example is classified by rinding the nearest stored example from

the training data based on some similarity function, and assigning its class

to the new example. Basically the performance of an instance-based learner

depends critically on the metric used to compute the similarity between the

instances.

Rule-based Learning

The covering technique for the induction of classifiers from examples has

been a popular generic approach among rule-based induction systems. The

significance of the covering strategy is that it forms a class description by

constructing a rule that covers many positive examples, and few or no negative

examples; it then separates the covered examples and starts again on the

remainder.

Rule-based covering algorithms [64, 133] typically represent classification

knowledge as a set of disjunctive logical expressions, one defining each class.

Some popular systems under this class include systems like AQ [64], CN2

[20], and Foil [79].

22

2.6 Computational Learning Theory

Computational learning theory is a branch of theoretical computer science

that formally studies how to design computer programs that are capable of

learning, and identifies the computational limits of learning of machines. It

provides a framework in which to precisely formulate and address questions

regarding the predictive power and computational efficiency of learning al-

gorithms. In this section I will summarize two well-known approaches and

expose their shortcomings.

2.6.1 Learning in the Limit

The first theoretical study of machine learning commenced with the formal

definition of learning given by Gold [44]. In Gold's model, the learner receives

a sequence of examples and is required to make a sequence of guesses as to

the underlying concept such that this sequence converges at some finite point

to a single guess that correctly names the unknown rule. Gold's model avoids

the question of computational feasibility.

In Gold's framework a learning algorithm is viewed as having successfully

solved a learning problem (in an infinite instance space) if, after seeing a

certain sequence of training pairs, it settles on the correct hypothesis and

never changes its mind thereafter. The learning algorithm in this case is said

to have identified the target concept in the limit.

2.6.2 PAC Learning

More recently, Valiant [109] introduced the PAC (probably approximately

correct) learning model. In this model a learning mechanism is said to have

23

learned a concept if the hypothesis it has settled on returns an output which

is probably approximately correct for any given input.

A class of concepts C is efficiently PAC-learnable if and only if any concept

c € C can be learned from m training examples within error bound 0 < e < 1

with reliability 0 < (1 — S) < I, where m is a polynomial function of e and 5.

According to Chris Wallace [114], the theories of computational learning

outlined above have provided little insight into human or machine learning.

Some apparent limita,tions of their approach are:

• In both frameworks learning is possible only if the necessary model is

known to be in a restricted set.

• Neither of the theories provide inherent model-selection.

• There is only a limited consideration of noisy or erroneous data.

• The only well-proven inductive theory, statistical inference, is neglected.

2.6.3 Bias in Machine Learning Systems

Bias is an essential component of every supervised concept learning system.

The term bias embodies a multitude of definitions. Mitchell [68] refers to bias

as the choices made in designing, implementing and setting up an inductive

learning system that lead the system to learn one generalization instead of

another. A more general definition of bias is defined by Utgoff as the set of

all factors that collectively influence hypothesis (model) selection, given a set

of training instances.

A 'model', 'concept description', 'hypothesis' and 'classifier' are synony-

mous with a function that partitions a domain of instances into those that

belong to the class (concept) represented by the function and those that do

24

not. In revision, the objective of every concept learning system is to infer

a model from a set of known examples and counterexamples of the target

concept, that describes the target concept. Learning from examples can be

described as a function of the training instances and the induction principle

for hypothesis preference [105].

Need for a Principled Preference Criterion in Model Construction

For most domains, examining the entire space of possible hypotheses is either

infinite or computationally intractable. Furthermore, any learning system

that learns concepts from examples has to make a satisfactory selection from

among the available hypotheses [105]. Finally, the presence of noise in the

data further complicates the accurate selection of models. Therefore to find

an accurate hypothesis in a reasonable amount of time, learning algorithms

employ a restricted hypothesis space bias and a preference ordering bias for

hypotheses in that space.

Characteristics of Bias

As mentioned earlier, bias is a set of non-empirical factors that collectively

influence the selection of hypothesis. Although the training data introduces

its own implicit bias the techniques needed in determining the extent to which

it affects the learning task are yet unknown. Two major sources of bias are

the concept description language and the concept learning algorithm.

Specifically, factors constituting bias include, the representation language

in which the induced hypotheses are described, the search space of possible

hypotheses that the algorithm needs to consider, and the preference crite-

ria that defines when a search procedure should stop searching for better

hypotheses [106].

25

Utgoff [105] characterises bias along the dimensions of strength and cor-

rectness:

• A strong bias is one that enables the learning system to focus on a

relatively small number of hypothesis. Conversely, a weak bias is one

that allows the learning system to consider a relatively large number of

hypotheses.

• A correct bias is one that allows the concept learner to select the target

concept while an incorrect bias is one that prohibits the concept learner

from selecting the target concept.

Both these characteristics imply that a strong and correct bias simplifies

the concept learner's task by allowing it to easily induce the target concept

while a weak and incorrect bias make the learning task extremely difficult by

not providing a proper guidance regarding hypothesis selection.

Kinds of Bias

Other researchers have categorized bias in different ways. In addition to

Utgoff's strength and correctness, Rendell [82] differentiates between exclusive

and preferential bias. An algorithm having an exclusive bias against a certain

class does not consider any of the concepts in that class while a preferential

bias influences an algorithm to prefer one class of concepts over another.

Many researchers distinguish bias as representational and procedural and most

of the bias implementations fall under these categories. Both representational

and procedural biases are examined in detail within this section.

Representational and Procedural Bias

The states in a search space of hypotheses are defined by a representa-

tional bias [45]. In other words, a representational bias constrains the rep-

26

resentational language from considering certain concepts (since they cannot

be expressed in the language), and in this sense it is a form of an exclusive

bias. A representational bias defines the set of states in the search space by

specifying the language (e.g., Polynomial functions, Boolean functions), its

implementation (e.g., the classes of functions searched), and a set of primi-

tives (the admissible features, their types and their range of values).

In view of Utgoff's framework, if a representational bias is strong (i.e. the

language for expressing the classifiers is powerful) the space of hypotheses

becomes small while a weak representational bias implies a large hypothesis

space. A correct representational bias defines a hypothesis space that includes

the target concept while an incorrect bias fails to do so.

The order of traversal of the states in the hypothesis space defined by

a representational bias is determined by the Procedural Bias or algorithmic

Bias [45]. Procedural bias is a form of preferential bias. Common examples

of procedural bias include the beam width in a beam search and preference

for simpler hypotheses (e.g., Minimum Message Length principle(MML) [122,

127]) and Occam's Razor [7].

A procedural bias thus helps to restrict the space of hypotheses through

which the learning algorithm conducts its search.

Static and Dynamic Biases

Biases have also been classified on the basis of their implementations

within learning programs. Bias in a learning program is static if it remains

fixed throughout the learning process. A dyna nic bias can be altered during

the learning process. Most of the machine learning systems primarily use a

static bias. Examples of programs using a static bias include Quinlan's C4.5,

Michalski's STAR, Clark and Niblett's CN2. Utgoff's STABB (Shift to a

Better Bias) system and Brodley's Model Class Selection (MCS) system are

27

examples of systems that embody a dynamic bias.

Limitations of Bias In Model Selection

Searching the entire space of possible hypotheses for any domain has been a

daunting task. As consequence learning algorithms employ a restricted hy-

pothesis space (representational) bias and a preference ordering (procedural)

bias in order to find an accurate hypothesis in a reasonable amount of time.

Empirical comparisons among algorithms illustrate that no single bias exists

that performs well for all learning tasks. Each algorithm is found to be better

than the other for certain kinds of tasks.

Furthermore, selecting an appropriate bias is complicated since different

learning tasks or subtasks are suited to different representation languages. For

example, if the learning task represents an inst'jj^e space that is obliquely

partitioned, a classifier based on an axis-orthogonal partitioning would per-

form poorly. Another unexamined area is that of bias interaction. A repre-

sentational and procedural bias may interact with each other in synergy or

conflict.

2.7 Minimum Message Length Inference for

Model Estimation and Selection

The Minimum Message Length principle (MML) [122, 127, 125] is a Bayesian

information-theoretic approach for the estimation and selection of models.

Given some data and optional prior knowledge, the most probable theory

or explanation for the data according to MML is the theory that has the

shortest encoding of the theory and data combined. Consider the example of

the Identi-Kit system which contains pictures of facial parts that are used to

28

1
I

construct facial images. By providing a small number of "standard" chins,

mouths, and eyes enormous data compression is achieved as opposed to stor-

ing actual photographs. The standard components are models abstracted

from previous examples (the collection of facial features). If a new example

(such as a cat's face) is sufficiently different from all-existing examples, then

there may be no compact encoding in the Identi-Kit system. It may be sim-

pler to describe the new example directly. In such cases, MML indicates that

the new example is very surprising relative to abstractions over the previous

examples [16].

Let us consider a fundamental issue in inductive learning. Given that one

has a number of different theories (models) for a set of data (observations),

how do we select the "best" theory. It is well known that one can find a

sufficiently complex theory to fit exactly any finite set of observations. For

example, a set of N points can always be fitted by a polynomial of order N.

However, if there is measurement error in the collection of these points then

we are in fact fitting the noise in the data. The solution to this problem of

overfitting is to find a suitable trade-off between the complexity of a model

and its fit to the data. An overly complicated model may fit the data well

but offers very little predictive value which a model with little structure does

not explain the given data sufficiently. MML, and the similar Minimum

Description Length (MDL) [84] principle, aims to achieve this trade-off.

29

Joint
Message
Length

max

Model Complexity

The picture above shows how MML avoids overfitting . A highly complex

model increases the encoding length of the model while an overly simple model

increases the cost of encoding the data.

How to apply MML

• Provide a two-part message describing a given set of data, M(9) -f

M{D\9) .

• These optimally encode model parameters 9 and. data D assuming

model to be true. (We only need to calculate the message lengths,

rather than actually produce the messages.)

Specify real-valued parameters to precision 5 where S — 1
fkdF{0)

.F(9)

is expected "Fisher information" and kd is a dimensionality constant.

• Compute the message length using - logp(0)-log /(a;|0)+Q.5 log F{9)~

0.5 log 12 + 0.5 where g(9) is the prior density on 9, f(x\9) is the likeli-

hood of data x given 9 and F{9) is the ''Expected Fisher Information".

30

• According to the MML principle, the best model is one that enables the

shortest two-part encoding of the model and the data, given the model.

That is, Best model =^ Maximum two-part data compression.

The MML principle has been employed to a variety of domains. Recent

MML work includes single factor analysis [128], multiple factor analysis [119],

von Mises circular distributions [124, 126], causal modelling [11], spherical

Fisher distributions [34], mixture modelling [126, 121, 35], segmentation of a

binary sequence [116] and general surveys [127, 125].

2.8 Recapitulation

This chapter provides a review of the literature relevant to this research.

We have reviewed the machine learning field, classifying it across different

dimensions. Issues of special importance, for example, the effect of the rep-

resentation language on the instance space were included in order to provide

an understanding of the problem area.

31

Chapter 3

Machine Discovery

Prom 1600 to 1619 Johannes Kepler, working on astronomical data accu-

mulated by astronomer and nobleman, Tycho Brahe, published in sequence

the famous laws of planetary motion. Kepler's laws allowed the positions of

planets to be predicted with accuracies ten times better than Ptolemaic or

Copernican models. They also set the stage for Newton's discovery of univer-

sal gravitation. The tortuous way in which Kepler approached his insights is

well documented. Inspite of making these discoveries, Kepler was still com-

mitted to his older erroneous spheres theory which made more sense to him at

that time. Kepler's scientific achievement was immense, as he had uncovered

the fundamental regularities of planetary motion and thus set the stage for

Newtonian physics. However, Kepler's exploits seem to undermine the idea

that the process of learning - individual or communal - might be carried out

in any automatic fashion. If the story of Kepler tells us anything, it is that

unpredictability and audacity are the key [104].

The processes of discovering new scientific laws and concepts have been

a topic of AI research spanning several decades. Research in this area has

been directed at two goals: namely, understanding human scientific reason-

32

ing, and secondly developing systems which autonomously, or collaboratively

with the expert, contribute to scientific knowledge. These independent yet

complementary goals have been intermingled in a way such that ideas derived

from research on human scientific discovery have been applied in developing

systems while the design of discovery systems has provided insights into the

cognitive processes employed by humans [97].

As stated by Herbert Simon, scientific discovery entails a variety of pro-

cesses. Research problems must be identified and representations that de-

scribe them and their potential solutions must be formulated. Data must be

gathered by making observations and carrying out experiments. Instruments

must be developed for carrying out observations and experiments. Regulari-

ties and patterns, that is to say, generalizations (laws) and concepts, must be

sought to describe the data parsimoniously; once the initial laws have been

formed, the observations are often then explained at a more detailed level

where each of the substages are sometimes given a causal explanation. Laws

and concepts must be generalized for use in creating more comprehensive

theories. Inferences must be drawn from theories and empirical predictions

made that can be tested by new observations and experiments [97, 141].

The machine learning methods outlined in the previous chapter provide

for generic analysis of data. These methods often form the core of automated

discovery systems. However, creative discovery entails far more than just a

data-driven analysis. This chapter thus explores the process of discovery from

psychological and computational perspectives. A study of computational dis-

covery systems is offered.

33

3.1 Philosophical Aspects

The philosophical aspects of scientific discovery are depicted in the following

historical survey based upon [70]. In the first half of the century, most philoso-

phers concentrated on the logical analysis of science and set aside the problem

of discovery. Logical positivists like Reichenbach distinguished the context of

discovery from the context of justification and excluded the former from then-

logical analysis. Although Popper criticised their deductivism and suggested

systematic falsification as an alternative, he also left the elucidation of discov-

ery to psychological inquiries. The problem of scientific discovery was finally

addressed by the reaction to logical positivism in the 1960's. N.R. Hanson

introduced the method of "retroduction" on the basis of Peirce's logical the-

ory. Thomas Kuhn's paradigm theory located (fundamental) discoveries in

the context of scientific revolutions and emphasized the function of metaphor

in scientific discoveries. Metaphorical use of existing terms and concepts to

overcome theoretical difficulties often plays an important role in developing

new ideas.

3.2 Creative thinking: Psychological Aspects

Many people have studied the phenomenon of creative thinking. Some psy-

chologists devote a substantial part of their careers trying to understand what

distinguishes the creative person from the individual who rarely, if ever, comes

up with a new idea. There are no definitive answers, but there are at least

some indications of factors that appear to affect our creativity. And as Mar-

garet Boden puts it [8], creativity seems to materialize from composers to

chemists, cartoonists to choreographers. At the same time, creativity seems

puzzling and mysterious, and often inventors, scientists, and artists fail to ex-

34

f
press how their original ideas arise. While intuition is often credited, nobody

can explain how it works. Thus, the apparent unpredictability of creativ-

ity seems (to many people) to rule out any systematic explanation, whether

scientific or historical.

3.3 Models of the Creative Process

Psychological literature presents a variety of models describing the creative

process. These are not rigid models; the steps may come out of order, be

skipped entirely, or be revisited.

3.3.1 Wallas model - the psycological perspective

The early twentieth-century reformer Graham Wallas, got somewhat nearer

the source of the creative process, which he outlines in his book, The Art of

Thought [129]. Summarising his own and other people's work in this area,

Wallas described four stages of creation. This is a four-step model originally

proposed in 1962.

1. Preparation: In the preparation stage, we define the problem, need,

or desire, and gather any information the solution or response needs to

account for, and set up criteria for verifying the solution's acceptability.

The person expecting to gain new insights must know his field of study

and be well prepared. And yet, although a certain threshold level of

knowledge seems necessary for creativity, creative breakthroughs are

not always the product of the most expert thinkers in a discipline.

2. Incubation: In the incubation stage, we step back from the problem

and let our unconscious minds contemplate and work it through. This

35

is the formative stage which takes place while the mind is relaxed and

the individual is engaged in an unrelated activity which frees up the

conscious and perhaps unconscious mind to be in a receptive mode.

3. Illumination: In the illumination stage, ideas arise from the mind to

provide the basis of a creative response. This is the conscious recogni-

tion of the new idea, the so-called "Eureka" phenomenon. These ideas

can be pieces of the whole or the whole itself, i.e. seeing the entire con-

cept or entity all at once. Unlike the other stages, illumination is often

very brief, involving a tremendous rush of insights within a few minutes

or hours. This was certainly the experience of Archimedes when he got

his idea of displacement in the public bath.

4. Verification: In verification, the final stage, one carries out activities

to demonstrate whether or not what emerged in illumination satisfies

the need and the criteria defined in the preparation stage. In this final

step, efforts are made to see if the "happy idea" actually solves the

problem. Since "great" ideas don't always work out in actual practive,

this final step is vitally important to the success of any project.

3.3.2 An Integrated Model of Creativity

Klaus Schmid [95] presents an integrated model of the creative process with

reference to the wallas model. An adaptation of the model is presented in

Figure 3.1.

38

Environment

External
stimuli

External
knowledge

• • • . .

• . - -

Background
Knowledge

search for
knowledge

Active Knowledge

Domain Knowledge
facts, rules, etc.

(experiments j (association J (illumination)

(adaptation J (reindexing

Problem
Recognition

Preparation

c

a stage

a process

KNOWLEDGE

INFORMATION FLOW

PROCESSES/
OPERATORS

Incubation

denotes a process
active during this stage

an operator

data-flow

Verification/
Elaboration

possible control flow
between stages

sources and deposits
of knowledge

STAGES

CONTROL

CD

CO

CD

I
H
CDw
i
CD
O

t

I
CD

3.4 Computational Discovery

As early as 1960, Hoveland and Hunt presented a system that tried to sim-

ulate human concept learning by inducing simple concepts from examples.

Three decades of research has spawned a huge variety of automated discovery

systems. While some aim to replicate historical discovery others offer novel

contributions to specific domains. According to Valdes Perez [108], the goal

of discovery is to find knowledge that is novel, interesting, plausible, and un-

derstandable. Thus, a discovery program that too often leads to familiar,

dull, wrong, or obscure knowledge won't be used.

Automated discovery systems can be distinguished on the basis of whether

the discovery process is data-driven or theory-driven. In parallel, they can

also be distinguished by the method of reasoning involved, namely, induction,

abduction or deduction. The primary distinction between scientific discovery

and other forms of learning is that while learning defines a mapping between a

language and the environment, scientific reasoning extends learning by defin-

ing newer languages.

3.4.1 Generic Steps in the Discovery Process

Scientific Discovery involves some or all of the following:

1. Discovery of Empirical Laws

2. Qualitative Modeling

3. Discovery of Taxonomies / Concept Hierarchies

4. Discovery of Structural Models

5. Discovery of Process (Temporal) Models

38

3.4.2 The Learning Framework

When making a comparative study of discovery systems several characteristics

may be observed.

Search/solution Method

Since discovery-oriented workers (discoverers, for short) undergo a long ap-

prenticeship to become experts in their field, one might conclude that a dis-

coverer's reasoning process resembles expert reasoning that is based on recog-

nition, for example, the chess grandmaster who chooses a strong move after

a glance at the board , or the physician who quickly selects a likely diagnosis

based on the first few symptoms. If discovery is like such expert reasoning,

then pattern-recognition approaches such as neural nets or discrimination

trees - that match a current problem against previous experiences - would be

the methods of choice for computerizing most discovery tasks. However, by

definition discovery happens at the frontiers of knowledge where nobody is an

expert, so the better analogy is to chess beginners or to physicians in-training,

whose reasoning is based partly on trial-and-error, or heuristic search, as it

is known in artificial intelligence. The basic idea of heuristic search is that

the solving of many reasoning tasks can be well viewed as a search within a

large combinatorial space. We say the space is combinatorial because at each

choice point there are many choices, and this often results in the creation of

notoriously large spaces. In many practical tasks, people cannot search the

entire space in their heads, so we must focus on some subspaces in prefer-

ence to others. The knowledge that permits such focusing is called heuristics.

Heuristics can be absolutely reliable or they can be rules-of-thumb; the key

point is that they direct one's scarce resources toward more promising av-

enues. In chess, for example, a beginner's heuristic is "consider moves that

39

check the opposing king first".

Data-driven versus theory-driven discovery

A program or approach is theory-driven if it uses relatively general knowledge

(including knowledge of how to search combinatorial spaces) as a main source

of power. A data-driven program instead relies on specific measurements,

statistics, or examples. Most approaches are some combination of both. A

same task might be approached in either way: consider that a chess program

could base its next move either on matching against a large database of

examples of previous positions and good moves, or on general heuristics about

strategy and tactics combined with a search over possibly successive moves.

The input to a data-driven program can be megabytes of data, whereas the

input to a theory-driven program could be a mere few lines. Depending on

the specifics of the problem, either might take longer to run.

Assessing machine discoveries

Often, the generation of models is the easy part of automated creativity in

science. Programs can produce a plethora of models which satisfy the criteria

for a solution to the problem, and some pruning of the models is necessary

to save the user from having to deal with a deluge of information. As the

implementation of a discovery program progresses, the pruning measures can

often evolve into rules to guide heuristic search, and can sometimes specify

the search space itself. Hence, how programs assess their results internally is

an important part of machine creativity in science.

40

>-A

3.4.3 Discovery Systems

Numerical Law Discovery

Numerical law discovery systems try to tackle the problem of model discovery

when the hypothesis space is not well defined. Systems under this family can

be categorised into three types based on the nature of search involved. These

include the heuristic, exhaustive and contextual approaches. After a brief

definition of all approaches I present a table of discovery systems belonging

to the different categories.

The heuristic approach attempts to employ heuristics able to guide this

search efficiently, and tries to simulate human experts solving similar prob-

lems. These simple heuristics help to build the model iteratively and signifi-

cantly reduce the size of the search space. The main principle in this category

of systems is to discover the law step by step.

The second, and more recent, exhaustive approach does not attempt to

discover the law by decomposing it, but explores exhaustively a solution space

bounded by some parameters. This approach relies on brute computational

force and yields no cognitive explanation. It is based on statistical regression

and a law is simply an instantiation of a regression model.

The final approach, which I call contextual, solves the problem of model

selection by constraining the search space by specifying a list of prototypical

functions. The prototypes can also be considered as background knowledge.

Thus the goal is to discover laws by efficiently search a constrained space.

A Review of Various Numerical Discovery Systems

In general any discovery system can be distinguished on the basis of the

problem/hypothesis space, the search technique and the evaluation/model-

selection criterion. Current function finding systems using regression can be

41

loosely categorised into three families. In the first group are BACON-like sys-

tems such as ABACUS and ARC.2 which use heuristics in an iterative fashion

to search the problem space. The second group of systems such as Equation

Finder and LAGRANGE, perform systematic regression over a large space of

models using some statistical criteria to guide the search/model selection. Fi-

nally, systems like E* and KEPLER only consider a pre-defined set of models.

Here I provide a brief summary of some of these popular discovery systems.

BACON

The BACON system by Langley et al. [58, 75] iteratively builds models using

heuristics to guide/constrain the search. Given two variables, BACON looks

for a constant or linear relationship between them. When unsuccessful, it

tries to define higher order terms and continues the regression. In its test

for constancy it uses pre-defined error values in order to create intervals for

measuring constancy. It also allows users to specify some arbitrary functional

forms and then tweaks the parameters of the functions until the correlation

between the predicted and actual values of the dependent variable is strong.

BACON can also find complex relations between more than two variables.

Given some data with four variables, BACON starts by varying one variable

at a time and keeping the other variables constant. It finds simple relations

between different combinations of the four variables which the user can then

put together. BACON can also postulate intrinsic properties.

BACON has very limited noise-handling capabilities and uses user-defined

tolerance parameters that allow it to deal with inexact laboratory data. Ac-

cording to Cullen Schaffer [94, 93], relevant information external to the data

was communicated to the program (for example, the noise tolerance thresh-

42

olds) and this information, rather than the data, principally accounts for its

discoveries.

ABACUS

The ABACUS [37] system of Falkanheiner is a direct descendant of BACON,

but incorporates some clustering. Given a set of data measuring some vari-

ables ABACUS builds different clusters. In a manner similar to BACON, it

studies the monotonic dependencies between variables and produces arith-

metical combinations of the initial variables (for example x/y and x*y). The

system studies the dependency only on groups of examples such that all the

variables but the two under study remain constant. The set of these groups

of examples is called the projection on the variables. The new combinations

of the initial variables are then sorted according to an evaluation function

and are separated into 2 sets: active nodes and suspended nodes. The pro-

cess is repeated iteratively until a combination has a constancy higher than

the required threshold constancy. The constancy is defined as the percent-

age of examples which have the same value for this variable or which can be

clustered according to their value.

ABACUS deals with noise through a user-set parameter which represents

the maximum relative error of any numerical value, and by default equals 2

ARC.2

The ARC.2 system [69] of Majourie Moulet is the similar to ABACUS. BA-

CON has a major limitation of requiring the user to order the variables and

to carry out a potentially large set of experiments. ABACUS drops these

constraints, but remains limited to a hypothesis space which is a subset of

polynomials. In particular, ABACUS cannot find polynomials with real pa-

43

"rameters since it replaces regression by -+• and - operators. ARC.2 employs

a method that merges BACON and ABACUS. Thus, in ARC.2 the model

is built iteratively by generalising an n-dimensional relation to an n + 1 di-

mensional one, using a less severely constrained dataset like ABACUS does.

Thus, ARC.2 extends BACON and ABACUS by incorporating polynomial

regression and using the clustering advantage.

Equation Finder

The EF system [138,135] of Zytkow automatically explores a space of models

until it finds a satisfactory one. EF only applies to two numerical variables.

Its input is a list of triples (x,y,g) where g is the uncertainty of the dependent

variable. First, EF generates the list of all polynomials of the form y = P(x)

up to the given degree limit d. If none of the models satisfy the given sta-

tistical criterion, x and y are transformed in order to create new terms using

operators such as log, exponentiation, square root and inverse and multipli-

cation and division. This is iteratively repeated until the best model based

on the statistical criterion is found. The statistical criterion is subjected to

a chi-square test and each best-fit model is assigned a probability that its

chi-square p value would have been reached by chance. And finally a model

is acceptable if its Q value is higher than some pre-defined Q value.

E*

The E* system [94, 93] of Cullen Schaffer only considers two variables and

eight possible functional forms, the linear relationship y — kxi + k2, six power

proportionalities, y ~ kxnfor n G {—2, —1, —0.5,0.5,1,2} and the "no rela-

tionship" case. For each of the six proportionalities E* computes a measure

of fit, which is basically a correlation function. It selects the proportionality

44

with the best MF. The system also note the ration of the model with the

highest MF with the next best. The system then looks at y = kxi -f- k2 for the

best model and computes k2. It then calculates the t-statistic for k2. Using

the D and t values the systems decides on further searching. The following

table offers a chronological listing of numerical law discovery systems.

Author

D. Gerwin

Langley et al.

Falkenhainer et al.

M. Moulet

Zembowicz et al.

J. Zytkow

Dzeroski et al.

Y. Wu

C. Schaffer

Y. Wu & S. Wang

System

MODEL

BACON 1-6

ABACUS

ARC.2

EF

FAHRENHEIT

LAGRANGE

DISCOVERS

E*

KEPLER

Year

1974

1986

1986-1990

1993-1994

1991-1992

1990

1993

1988

1990

1991

Type

Heuristic

Heuristic

Heuristic

Heuristic

Exhaustive

Exhaustive

Exha;istive

•Contextual

Contextual

Contextual

Mathematical Conjecturing

Mathematics comprises various activities. The end products are familiar:

things like calculus books used to train engineers in various abilities useful

in their work. The fundamental results in any mathematical text include its

theorems, mathematical propositions that have been proved. The existence of

a theorem rarely begins with the last line of a proof. Rather a mathematician

conjectures that some mathematical proposition is true or it is not. He, or

other mathematicians, may try and prove or disprove the proposition. In

45

working on a proof, a mathematician may introduce a new concept in the

belief that it will assist his work. Conjecture-making, theorem-proving, and

concept formation are three of the central activities in mathematics and the

ones researchers have attempted to automate. Much less work exists in the

other two areas. In automated conjecture-making, perhaps two dozen papers

have been published. Researchers in this field have written the following

programs. (The researcher's name is followed by the name of the program

and then by the year of its first published description.)

Authors

D. Lenat

D. Lenat

E. Morales

K. Haase

S. Fajtlowicz

W. Shen

S. Epstein

M. Sims

R. Bagai e£ al

S. Colton et al.

System

AM

EURISKO

DC

CYRANO

GRAFITTI

ARE

GT

IL

GTP

HR

Year

1976

1983

1985

1986

1986

1987

1987

1990

1993

1999

Taxonomy and Concept Formation

Concept discovery systems can be categorized into three groups, based on

their degree of autonomy. Concept learning systems are "supervised" by

a teacher and restricted by the assumption that all examples are covered

by one concept. Conceptual clustering systems are "unsupervised" and au-

tonomously partition a set of examples using multiple concepts. Exploratory

approaches are not necessarily guided by examples, and must explore the

46

incoming data or hypothesis space autonomously.

UNIMEM The UNIMEM system of Lebowitz [61], like COBWEB, ad-

dresses the problem of incremental conceptual clustering in an attributevalue

hypothesis space. UNIMEM has an interesting evaluation scheme for con-

cepts, based on a predictability analysis [60]. Similar to COBWEB, this is

based on how well inferences about missing features can be made using a dis-

covered concept. For each feature (unary literal) in a concept, a confidence

score says how many times that feature had been confirmed or disconfirmed

by examples in the past. Wasserman's MERGE system [132] extends the

UNIMEM system to deal with multilevel structured objects and binary rela-

tions.

CLUSTER/2 As discussed earlier, the CLUSTER/2 system of Michal-

ski and Stepp [65] transforms the abstract conceptual clustering task into a

series of supervised learning problems. Unlike all of the systems surveyed

above, CLUSTER/2 uses background knowledge. This is expressed as a net-

work of determination rules between attributes. Examples are not completely

saturated with the background knowledge, rather, the network directs the

partial saturation process by inspecting the set of attributes present in an

example. The intuition behind this restricted saturation process is that not

all background knowledge will be relevant to a given clustering task [26] .

CLUSTER/2 uses a complex evaluation function to drive its search over clus-

terings: this is roughly based on the simplicity of cluster descriptions and the

fit of the clustering to the examples.

Qualitative and Structural Models

Discovery of hidden structure has been the subject of various case studies

in the field of chemistry that led to the development of a several discovery

47

systems."

Much of chemistry is concerned with the following questions:

• What substances exist in nature (elements, atoms,...), and in what

structures are they to be found (molecules, polymers, hydrates, ...) ?

• What are the properties of these substances, and structures ?

• What are the mechanisms for combining/breaking apart such subs-

tances, structures and sub-structures ?

Previous work in computational scientific discovery has addressed how

each of these types of chemical knowledge can be used to elucidate the others.

For example, the STAHL and DALTON systems [144,143, 75] use the concept

of chemical reaction to determine the components of a substance (STAHL),

and its molecular composition (DALTON).

Related systems are Rose and Langley's REVOLVER [89, 90], BR3 by

Kocabas [52] and Fischer and Zytkow's GELL-MANN [140, 142]. These sys-

tems all use a different mechanism, the use of collisions to produce sub-atomic

particles, to establish quark models of the fundamental particles in physics.

Unlike the previous systems, which used only very general heuristics, RE-

VOLVER uses domain specific knowledge in evaluating the models that it

generates and deals with revision of beliefs about hidden structure. GELL-

MANN uses an additivity principle (in which properties of an object must be

the sum of the contributions of the structures from which it is formed) and

a combination and conservation principle (in which the same fundamental

structures must appear on either side of a reaction) to generate and verify

models.

BR3 is unique in proposing new quantum properties, together with a

general conservation of properties principle, to account for observed particle

48

reactions. BR3 demonstrates how hidden properties can be postulated for

observable objects. Each of the systems just described assumes that a single

mechanism is operating for combining objects, structures or substructures or

breaking them apart. In STAHL and DALTON, the mechanism was chemical

reaction, in the other systems the mechanism involved the use of high energy

collisions to produce sub-atomic particles.

Process Models

A recurring problem in catalytic chemistry has been to formulate the sequence

of steps, known as the reaction pathway, for a given chemical reaction. In

addition to the reactants and products of the reaction, this inference may also

be constrained by information about intermediate products, concentrations

over time, relative quantities, and many other factors. Even so, the great

number of possible pathways makes it possible that scientists will overlook

some viable alternatives, so there exists a need for computational assistance

on this task. Valdes Perez [107] developed Mechem with this end in mind.

The system accepts as input the reactants and products for a chemical re-

action, along with other experimental evidence and considerable background

knowledge about the domain of catalytic chemistry. Mechem lets the user

specify interactively which of these constraints to incorporate when gener-

ating pathways, giving him control over its global behavior. The system

carries out a search through the space of reaction pathways, generating the

elementary steps from scratch using special graph algorithms. Search always

proceeds from simpler pathways (fewer substances and steps) to more com-

plex ones. Mechem uses its constraints to eliminate pathways that are not

viable and also to identify any intermediate products it hypothesizes in the

process. The final output is a comprehensive set of simplest pathways that

49

in ^

explain the evidence and that are consistent with the background knowledge.

This approach has produced a number of novel reaction pathways that have

appeared in the chemical literature.

3.5 Hybrid Models for Integrated Discovery

3.5.1 IDS

Nordhausen and Langley's IDS system [71, 72] takes as input an initial hierar-

chy of abstracted states and a sequential list of "histories" (qualitative states,

see Hayes [49] or Forbus [41]). Using each history IDS modifies the affected

nodes of the abstracted state tree to incorporate any new knowledge gained

from that history. Its output is a fuller, richer hierarchy of nodes represent-

ing history abstractions. Qualitative and quantitative state laws are grouped

under individual nodes, and, transition orderings, transition conditions and

transition constraints are placed between nodes.

The initial hierarchy of abstracted states represents states of the system

under study. Knowledge is in an is-a hierarchy where nodes may have more

than one parent.

Knowledge of the system under study comes to IDS as histories, which

are sequences of qualitative states that the system under study is in. Each

state specifies values of variables of the system under study that are held for

the duration of the state. The boundaries between states are given by sign

changes of a derivative of a system variable.

Upon seeing the next state in the sequence, IDS walks from the tree's root

to its leaves and makes the state a leaf of an abstracted state. The hierarchy

may be modified during the traversal by adding a new abstracted state if

50

the new instance will not fit tinder existing ones. Similar states may also be

merged.

All nodes in the hierarchy have one or more successor links that tell how

one state is changed into another, what must be true for the transition to

happen, and, constraints that hold between the transitions. States also hold

constraints that are valid within that state which are used to define that

state. Inter- and intra-state information is updated when new states are

incorporated into the tree. The information may be in the form of equations

or conjunctions of predicates.

IDS can predict a sequence of states and give qualitative and quantitative

information about them given an initial state and a learned annotated state

hierarchy.

3.5.2 ABACUS

The ABACUS system [37] aims to integrated quantitative and qualitative

discovery. Specifically, given data consisting of numeric and possibly also

symbolic characterizations of some phenomenon (an object, a process, a sys-

tem), ABACUS will generate mathematical equations characterizing this phe-

nomenon and qualitative conditions under which these equations apply. These

equations can then be used for predicting the behavior of this system or pro-

cess. For example, given data characterizing an electric circuit (voltage, cur-

rent, resistance, and any other relevant or irrelevant properties, ABACUS

will generate the Ohm's Law)

3.5.3 49er

Zytkow and Zembowicz's 49er.b [136, 137] was designed as a general knowl-

edge discovery tool that can find regularities in scientific and other domains.

51

It has a two stage search process for regularities. The first stage, done by

module 1, looks for contingency tables between two attributes to be com-

pared. The second stage, done by module 2, uses the contingency tables to

look for other regularities like equations. Users may intervene and refine the

searching in both modules if they notice interesting patterns.

For relational data with attributes X, Y, and perhaps others, a contin-

gency table of X and Y is a table that has all of the values occurring under

the X attribute along one axis and all of Y along the other. If either at-

tribute has many values, values may be grouped by intervals. Each table

element (Xi, Yj) holds the count of how many times the pair X{, Yj appeared

in the data.

Module 1 uses domain knowledge to constraint which attributes it looks

for contingency tables between. Statistical tests are conducted on contin-

gency tables, including a test for statistical equivalence between two variables.

Equivalence relations allow the further pruning of the search space because

one of the variables drops out of the analysis.

Module 2 uses the results of module 1 and continues the search for higher-

order patterns. It can combine results across dimensions. For example, it can

use equivalence relations to form taxonomies by the joining shared values.

Module 2 can also improve ranges and find equations and further refine them.

Both modules allow users to control the search. Both modules have built-

in mechanisms for deciding search thresholds and parameters. Users may tell

49er.b to search more deeply in an area of the search space than it would

naturally if an interesting pattern catches the user's eye.

The output of 49er.b is a set of assertions (e.g. contingency tables, equiv-

alence relations, taxonomies and equations) from which predictions can be

made, and, which give explanatory insight into the system under study.

52

3.6 Limitation of Bacon-like systems

Programs like Bacon, Abacus, Coper, Kepler and others are designed to find

functional relationships of scientific significance in numerical data without

relying on the deep domain knowledge scientists normally bring to bear.

Each program accepts numerical data and attempts to perform domain-

independent function finding.

While a great deal of effort has been extended in designing function find-

ing systems, little has been done to evaluate them. Researchers have nearly

always relied on anecdotal evidence, reported the successes of their programs

on a few hand-selected cases, most of which have consisted of artificial data

generated to conform almost exactly to a functional relationship. It is impor-

tant to know the likelihood of a program's success on a new problem involving

real scientific data.

Criticisms of Bacon-like systems come from following directions.

3.6.1 Re-discovery

A view criticizing Bacon for defining its task in a trivial way describes Bacon's

task as follows: Given all the right data, and only the right completely noise-

free data, find previously known relationships involving products, ratios, or

simple arithmetic relations. Not surprisingly, this task can be done; the

program clearly does not deal with problems of selecting which variables

to examine, noisy data, and so on. A specific point in this case was that

artificial data used as input for Bacon always conformed to the relationship

the program was desired to find. The data were not merely artificial, but

exact.

53

3.6.2 Noisy Data

While Bacon's authors acknowledge that real scientific data are noisy, they

did not make any attempt to reflect this aspect of reality in constructing

artificial test problems. This issue provides an important insight. Implicitly,

these researchers suggest that they consider noise a detail of function finding

rather than a central issue. This can be contrasted with that of statisticians,

who predicate their very existence as a discipline on the ubiquity of noise and

other random effects. The main point here is that demonstrating Bacon's

performance on exact artificial data provides no evidence regarding its likely

performance on real-world type noisy data.

3.6.3 Search Efficiency and Irrelevant variables

Another area of criticism relates to the presence of irrelevant variables. It

is known that chemists made little progress until they decided to turn their

attention to the weights and volumes of elements and compounds. One can

easily imagine a Bacon-like system methodically considering and rejecting

variables in a noise-free environment. However, the dual presence of irrelevant

terms and noise makes the task much more difficult, since one can never be

entirely sure that an independent variable is irrelevant. Search efficiency is

another serious issue. Early Bacon runs took hours for a database of four or

five variables and 70 observations. Runtimes would be orders of magnitude

greater, were the program to deal with noisy-data, more variables, irrelevant

variables, and the additional rules about combining and examining variables.

54

3.7 Model Selection in Discovery Systems

Several criteria have been proposed by philosophers of science for compar-

ing competing hypotheses. Among them are accuracy (empirical support),

simplicity, novelty and cost (utility). Most automated approaches consider

accuracy and simplicity [77].

IDS by Nordhausen and Langley was perhaps the first general program for

scientific discovery. IDS takes as input an initial hierarchy of abstracted states

and a sequential list of "histories" (qualitative states). Using each history,

IDS modifies the affected nodes of the abstracted state tree to incorporate

any new knowledge gained from that history. Its output is a fuller, richer

hierarchy of nodes representing history abstractions.

Thag&rd introduced Processes of Induction (or PI), as a computational

scheme for scientific reasoning and discovery, but not as a working discovery

tool. PI represents models as having theories, laws and data. It evaluates

scientific models by multiplying a simplicity metric by a data coverage metric.

The simplicity metric is a function of how many facts have been explained and

of how many co-hypotheses were needed to help explain them. The evaluation

scheme is fixed and has no notion of degree of inaccuracy.

Zytkow and Zembowicz developed 49er, a general knowledge discovery

tool. It has a two stage process for finding regularities in databases. The first

stage creates contingency tables (counts of how often values of one attribute

co-occur with those of another) for pairings of database attributes. The sec-

ond stage uses the contingency tables to constrain the search for other, higher

order, regularities (e.g, taxonomies, equations, subset relations, etc.). Valdes-

Perez has suggested searching the space of scientific models from the simplest

to ones with increasingly more complexity, stopping at the first that fits the

data. MECHEM uses this approach to find chemical reaction mechanisms.

55

Such orderings would be easy to encode as heuristic functions. The MML

theory extends these approaches by providing for adjustable heuristic func-

tions that not only result in robust model selection but also allow for the

encapsulation of domain knowledge through priors.

3.7.1 A General Basis for Model Preference and Vali-

dation

Machine discovery is progressing towards general programs that will assist

scientists in creating and improving scientific models. Realizing this goal re-

quires progress in machine learning, knowledge discovery in databases, data

visualization and search algorithms. Most importantly, it requires progress

in scientific model selection. The scientific model preference problem is com-

pounded by the fact that several scientists with very similar background

knowledge may see the same data but may prefer different models.

The minimum message length (MML) criterion is a mathematically well-

grounded approach for choosing the most probable theory from given data.

Inspired by information theory and Bayesianism, the criterion states that

the most probable model has the smallest encoding of both the theory anO.

data. Ideally, the theory's encoding results from an estimation of its prior

probability. The encoding of the data is also probabilistic: a function of the

given theory.

Despite its generality and power for finding parameters in single classes

of models (e.g., the class of polynomials), many have expressed skepticism

about whether MML may meaningfully be applied to model selection in het-

erogeneous model spaces (e.g., general scientific discovery). This leads to the

general issue of learning versus prediction. The goal of inductive inference as

expressed by the MML principle is the need to provide a plausible explana-

56

tion for some observational data. A plausible and accurate explanation is a

natural predictor.

Our immediate, limited goal is to devise a heuristic function that can help

users in large and heterogeneous model spaces. Ideally, a search algorithm

that is informed with our heuristic will return several regions in the model

space that contain promising models, some known and some novel. Our

approach is to use MML in an effective manner. The following chapters

describe systems that employ the MML principle in model discovery. The

results from those chapters offer a strong justification for the use of the MML

method in model search and estimation.

3.7.2 Justifying the MML Heuristic

We do not claim to have an optimal heuristic function in terms of return-

ing the truly "best" model. Rather, our goal is to use MML as the preferred

heuristic that can be incorporated into the discovery framework. Good heuris-

tics for real-world problems are often tricky to design. The MML approach

can be justified through the following criteria.

1. Generality of model space: We seek a function that is applicable to both

primarily conceptual models as well as primarily numeric. The MML

metric can be applied for model preference over structurely different

model spaces.

2. Robust to noise: Discovery systems need to be robust in the present

of noisy data. Unlike maximum likelihood models, the MML function

takes into account the noise factor.

3. Simplicity of form: There are several competing beliefs for how scientific

57

,,

models should be evaluated. The function's design should be as trans-

parent as possible so that its assumptions are readily comprehended.

4. Consistency: The function should provide for an increase in the ac-

curacy of models selection as more data is accumulated. The MML

approach has been proven to be statistically consistent.

Some minor issues that arise in efforts to apply MML to general scientific

discovery need mention. Among them are the specification of the initial

theory prior probabilities, the inherently iterative nature of MML, and the

difficulty in searching this space for a true "highest probability" theory. Like

other MML efforts, there is no good rule for specifying an initial set of prior

probabilities. Although Cheeseman and others warn about using syntactic

features, this may be the easiest approach to try in a new domain. MML is an

inherently iterative process of redefining theory spaces and prior probabilities.

3.8 Summary

As Joseph Phillips explains in [77], we are at the dawn of a new scientist-

computer partnership. Previously, computers have been used by scientists to

calculate parameters of particular models. Examples include the multitude

of numerical methods that find the vector that best fits given constraints,

e.g. least-square fitting and Fourier transforms. This relationship began

to change, however, with the introduction of systems like Nordhausen and

Langley's IDS. IDS was among the first programs to build heterogeneous

models (models containing class hierarchies, and qualitative and quantitative

relations) from scientific data.

At least two ramifications follow from the very explicit nature of writing

these programs. One is that developing them will tell us where the study

58

of scientific discovery needs more work. The second is that developing them

will give us pragmatic suggestions for the development of the philosophy of

science. For example, precise definitions to terms like "model" and "theory"

currently have no agreed meaning. A third implication is that because these

systems codify knowledge and technique, they can serve as controlled testbeds

to compare the effectiveness of proposed models of scientific discovery.

59

Ilftf

Chapter 4

Minimal Length Encoding for

Model Selection

Since the late 1960's minimum length encoding techniques for model estima-

tion and preference have gained popularity and accuracy in their applications

to inductive inference. The following "minimum-length" description by Chris

Wallace [117] describes the essence of inductive learning and the place of

minimal length encoding methods.

There is ample evidence that a well-accepted scientific the-

ory has great explanatory power. Much of what is observed is

deducible from the theory, so the observed data may be recon-

structed from a statement of the theory and a detailing of the

undeducible residuum. Typically, the statement of theory and

residuum is far shorter than a plain statement of the data.

Most accounts of scientific method emphasise predictions and

the experimental checking of these. But predictive ability (al-

though often justifying a society's investment in science) is not

the touchstone of scientific enquiry. Quite accurate prediction of

60

eclipses was achieved by several societies with little understanding

of their cause, and as is shown by Solomonoff, the best possible

prediction explicitly avoids commitment to any theory. In fact,

however, human science seeks understanding, usually couched as

a theory, and prediction is an economically-valuable by-product

more often than the primary goal.

If we turn this descriptive account of science as finding concise,

theory-based explanations of observed data into a prescription for

how to handle data, we get various flavours of inductive inference

techniques based on measures of information: Solomonoff predic-

tion, MML and MDL theory selection, MML and BIC estima-

tion. The differences reflect independent and near-simultaneous

development, and are in practice far less important than the sim-

ilarities. They use Shannon and Kolmogorov measures of "infor-

mation" . Formally, if not always philosophically, they are closer

to Bayesian statistical inference than to classical methods. All

rely on a fundamental trade-off between complexity of theory and

fit to data encapsulated in the length of a message stating both

theory and data.

4.1 Introduction

Between 1960 and 1964 Ray Solomonoff [99], a mathematical physicist at

Cambridge in Massachusetts,U.S.A., was interested in the inductive problem

of finding an algorithm for discovering the "best" grammar for a given set

of acceptable sentences. One of his primary concerns was : Given a set of

positive cases of acceptable sentences and several grammars, any of which is

able to generate all of the sentences - what goodness of fit criterion should be

61

r

used? Solomonoff realized that the existence of the Universal Turing Machine

implies the existence of universal methods of inductive inference, meaning

methods which given enough data will find the true model. The universal

methods are not Turing computable, but one can look for computable ap-

proximations. Solomonoff independently realised and formally expressed in

his paper [99] that the models that provided the shortest explanation for a

given finite string could be construed as more probable. Thus arrived the

concept of algorithmic probability.

Andrei Nikolaevich Kolmogorov, born 25 April 1903 in Tambov, Rus-

sia, was perhaps the foremost recent Soviet mathematician and counts as

one of the great mathematicians of the 20th century. His many creative

and fundamental contributions to a vast variety of mathematical fields are so

wide-ranging and profound that it is impossible to describe them even briefly.

Following a fo'ir decades long controversy on von Mises's definition of an in-

finite random sequence, in a 1965 paper [53] Kolmogorov used the theory of

algorithms to describe the complexity of a finite object as the length of its

smallest description (program to reconstruct it). This makes the definition

of complexity depend on the programming language used. However, it turns

out that there are universal methods for which the complexities of the ob-

jects described are asymptotically optimal. Algorithmic information theor3',

or "Kolmogorov complexity theory", originated with the discovery of univer-

sal descriptions of finite objects, and a recursively invariant approach to the

concepts of complexity of description, randomness and a priori probability.

In this chapter we reflect on the historical foundations of the Minimum

Message Length principle for inductive inference. The roots of MML-based

62

inference in the definitions of algorithmic probability and Kolmogorov com-

plexity are briefly investigated. The chapter serves as a prelude to the appli-

cations of the MML methodology described in the following chapters.

4.2 Foundations and Background

Historically, Kolmogorov's motivation for the, development of the complexity

measure was firmly rooted in von Mises' notion of random infinite sequences,

proposed in 1919 as the foundation for the frequency interpretation of prob-

ability. Von Mises's formulation of the notion of randomness was based on

the intuition of 'the impossibility of a gambling system'. In his own words,

randomness in a sequence lies in the "impossibility of devising a method of

selecting the elements so as to produce a fundamental change in the relative

frequencies". Thus, according to the axiom of randomness the limiting value

of the relative frequency must be the same for all possible infinite subse-

quences of trials chosen solely by a rule of place selection within the sequence

(i.e., the outcomes must be randomly distributed among the trials). Here

an admissible place selection is a procedure for selecting a subsequence of a

given sequence £ in such a way that the decision to select a bit £[n] does not

depend on the value of £[n] or any later value [131]. Von Mises's, however,

left open the question of what selection functions should be admitted, with

the consequence that nothing could be counted as being random due to non-

computable place selections. In 1939 Wald proved that random sequences

exist relative to any countable class of selection functions. Based on Wald's

work, in 1940 Church [19] suggested that randomness in the intuitive sense

should be viewed as algorithmic randomness and he proposed to call a se-

quence random if it is random relative to the class of computable selection

functions. Kolmogorov felt that the frequency concept, based on the notion

63

r

of limiting frequency as the number of trials increases to infinity, did not.

contribute anything to the application of the results of probability theory to

real practical problems where we always have to deal with a finite number of

trials. With the advent of electronic computers in the 1950's, a new emphasis

on computer algorithms, and a maturing general recursive function theory,

ideas tantamount to Kolmogorov complexity came to many people's minds.

Thus, R. SolomonofF in Cambridge, Massachusetts, had formulated similar

ideas in 1960 and published his truly innovative work [99] on the subject in

1964 in Information and Control.

4.2c 1 Randomness

The five years following the 1964 publications of Solomonoff was a time of

much activity in this field. Kolmogorov and a number of other researchers

were interested in randomness and complexity of one string with respect to

another, as well as the development of information theory and probability

based on lengths of codes. However, they appeared to be more interested in

various aspects of randomness as opposed to inductive inference.

The algorithmic complexity of a string was defined to be the length of the

shortest code needed to describe it. A random string was one whose com-

plexity was about as large as its length. A completely different approach to

the definition of random sequences was proposed by Martin-L6f [63] in 1966.

He developed a quantitative (measure-theoretic) approach to the notion of

random sequences. This approach was free from the difficulties associated

with the frequency approach of von Mises. Around the same period and

again independently of Solomonoff and Kolmogorov, Chaitin published pa-

pers [14, 15] defining randomness in terms of program-length. He informally

suggested that the shortness of a program that describes a sequence might

I

64

be an index as to how good a theory that program represents. Later it was

shown by Levin, Gacs and Chaitin that one can refine the notion of algorith-

mic complexity by defining it relative to a set of admissible descriptions. If

admissible descriptions are restricted such that no description is a proper pre-

fix of any other description, then an infinite sequence is Martin-L6f random

if and only if each of its finite initial sequences has a complexity that equals

(up to a fixed constant) its length.

4.2.2 Solomonoff and Algorithmic Probability

Borrowing the definition from Griinwald [46], the Kolmogorov complexity of

a sequence can be defined as the length of the shortest program that prints

the sequence and then halts. The lower the Kolmogorov complexity of a

sequence, the more regular or, equivalently, the less random or, yet again

equivalently, the simpler it is. Measuring regularity in this way confronts us

with a problem, since it depends on the particular programming language

(UTM) used. However, in 1964, Solomonoff proved the invariance theorem,

which roughly states that it does not matter much exactly what programming

language one uses, as long as it is universal. More precisely, for any two

general-purpose programming languages A and B, there exists a constant c

such that, for every data sequence D, the length of the shortest program for

D written in language A and the length of the shortest program for D written

in language B differ by no more than c. Here c may depend on the languages

A or B, but it is constant in that it does not depend on the size of D: if

the data set D is large enough, then the difference in length of the shortest

programs according to A and B is very small as compared to the length of

the data set.

Consider the following definition of algorithmic probability from Solomonoff

65

[101]:

P{x) is the Algorithmic Probability of finite string x where l{ is the length of

the i-th description of string x summed over all such descriptions. That the

sum is noncomputable, is associated with the fact that it is often impossible

to verify in finite time, whether a particular string is a description of x or

not. Willis [134] tried to deal with this "halting problem" by defining com-

putationally limited Turing machines. The machines were chosen such that

they had no halting problems. Prom these machines, he was able to define

probabilities in an exact manner. By raising the computational limits on his

machines, they approached the behaviour of universal machines.

Solomonoff's theorem on the convergence of algorithmic probability [100]

makes Algorithmic Probability look very attractive as a means of induction.

In his own words,

It is the only induction system we know of that is "complete".

By this we mean that if there is any describable regularity in a

body of data, Algorithmic Probability is guaranteed to discover

it using a relatively small sample of the data. It is the only prob-

ability evaluation method known to be complete. As a necessary

consequence of its completeness, this kind of probability must be

incomputable. Conversely, any computable probability measure

cannot be complete.

The term "incomputable" is used here in a rather special way.

Algorithmic Probability is as "computable" as the value of PI -

but with one important difference; when we make successive ap-

proximations to the value of PI, we know how large the error in

each approximation can be. In the case of Algorithmic Proba-

66

I

bility, we have a procedure for successive approximations that is

guaranteed to converge to the right value. However, at no point in

the calculation can we make a useful estimate of the error in the

current approximation. This might be regarded as a serious criti-

cism of the use of Algorithmic Probability or approximations to it,

to solve practical problems, but it is not. It is a difficulty shared

by all probability evaluation methods. If they are complete, then

they are incomputable. If they are computable, (either as inde-

pendent probability measures or as approximations to Algorithmic

Probability) then they must be incomplete. This incompleteness

implies that there have to be regularities that are invisible to

them. When used with data having regularities of these kinds,

computable methods will have errors of unknown size.

In spite of its incomputability, Algorithmic Probability can serve as a kind

of "Gold Standard" for induction systems - that while it is never possible to

tell how close a particular computable measure is to this standard, it is often

possible to know how much closer one computable measure is to the standard

than another computable measure is. Over the years there has been a general

impression in the scientific community that this incomputability would make

it impossible to use Algorithmic Probability as a tool for statistical prediction.

Prom the beginning, however, this difficulty was recognised and methods for

dealing with it were proposed.

4.2.3 Computable Approximations

As mentioned earlier the Kolmogorov complexity or algorithmic probability

as such cannot be computed - there can be no computer program that, for

every set of data D, when given D as input, returns the length of the shortest

67

, \>

program that prints D: assuming such a program exists leads to a contradic-

tion. Another problem is that in many realistic settings, we are confronted

with very small data sets for which the invariance theorem does not say much.

One approach to overcome this problem of incomputability, termed "Re-

source Bounded Algorithmic Probability" by Solomonoff, was formalised by

Willis in 1970 [134]. The most efficient way to implement Resource Bounded

Algorithmic Probability is to approximate equation (4.1) by the largest lower

bound on P(x) that can be demonstrated in time, T. This is usually done by

finding many short codes for x that give terms summing to that bound. This

kinu of approximation to Algorithmic Probability is an example of a "time

limited optimisation problem". By getting as large a value of the sum as

we can, we get as close as possible to Algorithmic Probability in the allotted

time.

There are theoretical reasons for believing that the error may be small if

the shortest code one has found thus far were indeed the shortest code for the

data. However, for induction problems in which one is uncertain as to the class

of stochastic functions that generated the data (as in all empirical sciences),

one cannot know if one has the shortest code and the amount of accuracy

lost must remain unknown. There have been several effective approximations

to Algorithmic Probability. One of the earliest is that of Van Heerden [110],

who considered the prediction of binary sequences by Boolean functions. His

criterion for the best function to use: Add the length of the description of

each function to the number of errors it made in prediction. The function

minimising total length is best. This technique according to Solomonoff can

be regarded as approximating the sum in equation (4.1) by the single largest

term we can find.

In 1968 Wallace and Boulton [122] proposed the Minimum Message Length

68

(MML) principle that suggested a Bayesian information-theoretic approxima-

tion to algorithmic probability. The idea behind the independently pioneered

MML principle was to scale down Solomonoff's approach so that it does

become applicable: iustead of using a code based on a universal computer

language, they suggested using description methods M which still allow us to

compress many of the intuitively regular sequences but which are neverthe-

less such that for any data sequence d, we can always compute the length of

the shortest description of d that is attainable using a method from M. The

price we pay is that, using the practical MML principle, there will always be

some regular sequences which we will not be able to compress. But this is not

an objection, since it is a known that there can be no method for inductive

inference which will always give us all the regularity there is - simply because

there can be no automated method which for an}r sequence d finds the short-

est computer program that prints d and then halts. Moreover, it will often

be possible to guide a suitable choice of M by a priori knowledge we have

about our problem domain. For example, it is possible to pick a description

method Mp that is based on the class of all polynomials P, such that with the

help of Mp we can compress all data sets which can meaningfully be seen as

points on some polynomial. Wallace and Boulton [122, 123, 127] considered

various functional forms to assign probabilities to a sequence of data symbols.

The function selected was the one for which the length of description of the

function minus the logarithm of the probability assigned to the data by the

function, was minimal.

In the following sections we will aim to describe the theory behind the

development of the Minimum Message Length Principle. The MML approx-

imation as developed for the problem of inductive inference will be derived

and discussed in greater detail.

69

4.3 Model Preference in Inductive Learning

When learning a function h : X —> Y from random training examples

{^lj2/i)j - - - ? {zuVt), there is a well-known tradeoff between the size of the

data description and the complexity of the function class being considered:

If the class is too complex for the sample size, there is a risk of "overfitting"

the training data and guessing a function that performs poorly on future

test examples. On the other hand, an overly restricted class can prevent us

from considering any good candidate functions. The most common strategy

for coping with this dilemma in practice is to use some form of automatic

model selection, such as complexity-penalization or repeated holdout testing,

to balance complexity and goodness of fit. Under the simplest formulation

of model selection, the idea is to first stratify the hypothesis class H into a

sequence of nested subclasses HQ C H\ C . . . ordered by complexity and then

(somehow) choose a class which has the appropriate complexity for the given

training data. To understand how we might make this choice, note that for

a given training sample S = (rci, y\),..., {xt,yt) we obtain a corresponding

sequence of empirically optimal functions /IQ, h\,..., one from each subclass,

that achieve minimum average error e on the training set S. The essence of

the model selection problem is to choose one of these functions based on their

observed empirical errors err{h^, S), err(h\, 5) , . . . However, these errors are

monotonically decreasing, and therefore choosing the function with minimum

training error simply leads to choosing a function from the largest complexity

class. Therefore, the trick is to invoke some other criterion beyond empirical

error minimisation to make this choice. Currently, three basic model selection

strategies predominate [25].

The most common strategy is complexity-penalization. Here one assigns

increasing complexity values CQ, C\, . . . , to the successive function classes, and

70

then chooses the hypothesis from the class h*, that minimises some com-

bination of complexity and empirical error (e.g., the additive combination

Ci + err (ho, S)). There are many variants of this basic approach, includ-

ing the Akaike Information Criteria [2], "Bayesian" Information Criteria [96],

Structural Risk Minimization [112], and "generalized" cross validation [23].

These strategies differ in the specific complexity values they assign and the

particular tradeoff function they optimise, but the basic idea is still the same.

The other most common strategy is hold-out testing. Here one asks: for

the given set of training data, which hypothesis class Hi generalises best? We

answer this by partitioning the training set, 1 , . . . , t, into a pseudo-training

set, l,...,k. and a hold-out test set, k + 1 , . . . , i, and then using the pseudo-

training set to obtain a sequence of hypotheses ho,hi,..., etc. We then

use the hold-out test set to obtain an unbiased estimate of the true errors

of these hypotheses. (Note that the training set errors tend to be gross

underestimates in general.) Prom these unbiased estimates, we can simply

choose the hypothesis class H{ that yields the hypothesis hi with the smallest

estimated error. Once Hi has been selected, we return the function h*Q G Hi

that obtains minimum empirical error on the entire training sequence. Again,

there are many variants to this basic strategy—having to do with repeating

the pseudo-train pseudo-test split many times and averaging the results to

choose the final hypothesis class; e.g., 10-fold cross validation, leave-one-out

testing, bootstrapping, etc.

Finally, the third class of model selection techniques have been inspired

by the notion of Kolmogorov complexity and Algorithmic Probability result-

ing in the computable approximations well-known as the Minimum Message

Length [125] and Minimum Description Length [87] principles. While the

value of Algorithmic Probability is clearly defined in a mathematical sense,

71

it is incomputable. Approximations usable from an inductive learning point-

of-view depend critically on three major factors:

1. The data.

2. The a priori information — which is uniquely characterised by our choice

of universal reference machine.

3. The resources available for computation - time and memory.

An}' failure to specify each of these arguments exactly can lead to gross ambi-

guities in the value of the probability. Thus, the defining feature in this third

class of model inference/selection procedures is the interpretation of algorith-

mic probability as a part of a two-stage coding process. The code length of

the model's specification is an approximation of its algorithmic probability.

The essence of this approach is that all models are encoded using an efficient

coding scheme along with the model's unexplainable residuum on the training

data. Models that minimise such an encoding scheme are preferred.

4.4 The MML Approximation

The Minimum Message Length principle pioneered in 1968 by Wallace and

Boulton is based on the correspondence between compression and regularity.

The idea being that the more one is able to compress a set of data, the

more regularity one can detect in the data. The relationship between this

and the concepts of Kolmogorov complexity and algorithmic probability are

obvious. Consider the following example from Griinwald [46] that illustrates

the essence of this method. Suppose, for the moment, that our data are a

finite sequence of bits (zeroes and ones), and consider the following three

72

T

sequences. We assume that each sequence is 10,000 bits long, and we just list

the beginning and the end of each sequence.

1. 000100010001000100010001 0001000100010001000100010001

2. 011101001101000010101010 1010111010111011000101100010

3. 111001111110100110111111 0111101111101111100111101111

The first of these three sequences is a 2500-fold repetition of 0001. Intu-

itively, the sequence looks regular; there seems to be a simple lav/ underlying

it and it might make sense to conjecture that future data will also be subject

to this law. The second sequence has been generated by tosses of a fair coin;

this means that there is definitely no law or regularity underlying it. The

third sequence contains exactly four times as many Is as it contains 0s. In

contrast to sequence (2), there is more discernible regularity in this data, but

of a statistical rather than of a deterministic kind. Again, it seems sensible

to note that such a regularity is there and to predict that future data will

behave according to it.

The fundamental insight which leads to the MML principle is that any

regularity in the data can be used to compress the data, i.e., to describe it

in a shorter manner, assuming the regularity is there. Such a description

should always completely determine the data it describes. Hence, given a

description or encoding d of a particular sequence of data D, we should always

be able to fully reconstruct D on the basis of d. A particularly versatile

description method is a general-purpose computer language like C or Pascal.

A description of D is then any computer program that prints D and then

halts. Let us see whether our insight works for the three sequences above.

Using a language similar to Pascal, we can write a program

for i=l to 2500; pr in t '0001 ' ; next; hal t

73

till

r
which prints sequence (1) but is clearly a lot shorter than it. The shortest pro-

gram (program length measured by number of characters) printing sequence

(1) is at least as short as the program above, which means that sequence

(1) is indeed highly compressible. On the other hand, we will show in the

next section that, if one generates a sequence like (2) by tosses of a fair coin,

then, with extremely high probability, the shortest program that prints (2)

and then lialts will look something like this:

print

'011101001101000010101010.

halt

1010111010111011000101100010'

This program has size equal to the length of the sequence plus a constant.

Clearly, it is does nothing more than repeat the sequence. It is easy to show

that there exists quite a short program generating sequence (3) too.

4.4.1 Notes from Coding Theory

The MML methodology provides a general expression for computing the mes-

sage length of models and data. However, before we go on to derive this

expression, it is important to note the correspondence between codes and

probability distributions. The theory of optimal codes is well developed and

based on Shannon's theory of information.

For our purposes, we need to know that:

• A string optimally encoding a datum of probability p has length — log2 p,

neglecting the fractional parts;

• A string optimally encoding a set of data drawn from the probability

distribution assumed in constructing the optimal code has the statistical

properties of a random binary stream;

74

§sf

I
• Well-known techniques exist for the construction of an optimal code

for any given probability distribution. These techniques produce code

strings at most one digit longer than the theoretical optimum of — \og2p.

Common techniques are Huffman codes and arithmetic codes. It is very

important to note that we are interested in these techniques only for

obtaining code-lengths for our models and data, as opposed to building

actual messages.

4.4.2 The Minimum Message Length Criterion

Let us now consider the concept of an "explanation" (borrowed from Wallace)

which yields a better understanding of the two-stage MML encoding. Also

assume that the available data is encoded as a binary string. An explanation

of the data is another "two-part" binary string which encodes the data but

embodies a certain structure. The first part E\ encodes a model or theory 6.

The second part E2 encodes the data using a code which would be optimal

were 0 true. The optimality is in the sense of minimising the expected length

of E2.

The MML principle suggests that one prefer the hypothesis that gives the

shortest "explanation" of the data. We now consider the two parts of the

coding scheme in greater detail. It is clear from auO'r'3 that the length of the

second part E2 of an explanation is

— \og[Probability of data assuming 6 is true] = — log P{D\9) (4.2)

where 6 is the "model" asserted in the first part E\. An important observation

here is the relationship between the length of E2 and 8. If $ fits the data well

then the length of E2 is small, otherwise it increases as the goodness-of-fit

diminishes.

75

I
Ihe encoding of part E\ of the explanation requires more attention. The

MML methodology emphasizes the importance of prior knowledge and its use

in devising optimal encoding schemes. Let us then define Prior (6) to be the

probability that we would assign to a model 0 before the data is seen. The

length of Ei using an optimal code is given by

length(Ei) = - log P;ior(9)

The total length of our "explanation" E is then

length(E) = -log Prior {9) - logP{D\0)

= — log Probability [9 and D)

(4.3)

(4.4)

The importance of prior probabilities and the difficulties in assigning them

to competing models in practice is well-known. This problem is further ex-

aggerated if the models under consideration include continuous parameters.

For example, consider a polynomial family of models where each parameter is

a coefficient, in such a case it is hardly obvious that a particular model with

a set of coefficients can be assigned any prior probability at all.

However, as Wallace points out, instead of asking how to assign prior prob-

abilities to models, we look for different ways of describing a model. Specif-

ically, what kind of language would be reasonable for describing a model?

Consider for example (taken from Wallace [117]) that we are trying to learn

a Boolean function. We might reasonably decide that the model or hypoth-

esised function, could be represented in a code more or less as we would

represent it on paper: as a string of variable labels and Boolean operators:

A.B or [(not C or D). not A]

It is quite easy to see how, knowing the number of variables on which the

function might depend, a fairly efficient binary encoding of such formulas

76

T
can be designed. We could take such a code as defining a prior probability

distribution over functions. In effect, the code assigns a low probability to

functions represented by long, complex formulae, and high probability to

functions having simple formulae. That is, we can substitute a complexity

order implied by a language (or Universal Turing Machine) for our missing

prior.

When the hypothesised model has one or more real-valued parameters,

prior expectations will not usually assign finite prior probability to any spe-

cific value. Rather, the available domain knowledge will define a prior prob-

ability density over the continuum of possible values. Often the lack of prior

knowledge together with arguments about symmetry lead to the adoption of

some form of non-informative prior density. Having defined a prior density,

the coding of a parameter value in E\ of the explanation involves a compro-

mise. Typically, the length of E2 will be minimised by some single value of

the parameter, so we would like Ei to state this value. If the value is stated to

high precision resulting in many binary places, the length of E2 is minimised,

but the coded value in E\ will be long. If we state it imprecisely, rounding

off to a few binary places, A becomes short but in general E2 will be longer

than its minimum possible length.

We shall illustrate the treatment of real valued parameters by considering

a simple model with one parameter 6 which determines the probability for

the observation x from D. The probabilities p(x\6) and p(9) are assumed to

be specified. Then we ask how, using the given model, we can encode x into

a message using the least amount of bits. Assume that we require x to be

encoded with the precision 6X. The purpose is not actually to encode x or send

a message to someone, but to learn about 6 by developing a coding scheme.

Wallace and Boulton [122, 123] suggested the following two-part message:

77

first encode 9 discretised with precision Sg using the prior probability Prior (9)

and then encode x using the likelihood p(x\9) and the encoded 9. This will

produce a code with (ength(E) as defined earlier. If Sg is small, the number

of bits used for the first part of the message is approximately

length^) = L{9) « - \og\p{9)5e) (4.5)

The number of bits used for the second part of the message depends on

the discretised value of 9. Assuming that the true value of 9 was 0, the

discretised value lies between 9 — Sg/2 and 9 -f Sg/2 with roughly uniform

probability. This means that the expected number of bits used for the second

part is approximately

rO+Sg/2

length(E2) = L(x\9) = / - hg\p(x\9)ex] (4.6)
Je-se/2

If Sg is small, it is possible to approximate the length of the second part of

the message by using a second-order Taylor series expansion of — log[p(a;|#)

about 9.

Given x, the total message length is a function of 9 and Sg. The result of

learning is the optimal value for both, which minimises the message length.

Looking at the equations for L{9) and L(x\9), it is evident that there is an

optimal value for Sg, because increasing the size of the discretisation bins will

decrease L(9) due to the term — log Sg, but it will increase the term L{x\9)

because the discretisation errors will increase and the expected deviations

from the optimal 9 grow larger. The optimal value for Sg depends on how

quickly p{x\9) drops as 9 is moved further away from the optimal value, and

it turns out that the optimal Sg is linearly dependent on the width of the

maximum peak of p(x\9). Therefore the optimal 9 will give us the most

plausible value for the parameter, and Sg tells us how uncertain the value is.

78

According to Wallace [127] the best ompromise states a parameter value

to a precision S$ or maximum roundoff error 5o/2, where

1 (4-7)

where F is the Fisher information, or the expected value of the second deriva-

tive of — log Probability(D\9) with respect to the parameter, and Kk depend-

ing on the dimensionality h of the parameter (i.e., on the number of free

scalar parameters). This choice of precision as discussed earlier is essentially

the precision to which we expect to be able to estimate the parameter.

In general terms, given data D, a family of possible theories parameterised

by the k-dimensional parameter 9i and a prior density p(9), the length of an

explanation asserting model 9 is

P0)
TotalLength(E) = - log \ogP{D\9) (4.8)

where K^ is a geometric constant, the last term arises from round-off error in

stating 9, and logs are to base e. The message length is in units of Iog2(e)

binary digits.

4.5 The Bayesian Connection

Let us now note some important relationships between the MML method

and Bayesian inference. Information theory can offer a simple, intuitive point

of view to inductive learning. Message length and probability are tightly

linked. According to Shannon's coding theory, the shortest expected descrip-

tion length for a proposition equals tho negative logarithm of the probability

of the proposition. In this context, the information-theoretic approach to

learning is akin to using a different scale for measuring the beliefs, and any

79

! I

T
learning method derived in the information-theoretic context can be read-

ily translated into the Bayesian context by a simple transformation of scale.

Concepts from the Bayesian framework often have intuitive interpretations

in the coding context. The prior probabilities, for instance, translate into the

specification of a coding scheme. Optimal encoding of an observation into

a binary string produces a seemingly random string of ones and zeros and

some prior knowledge is needed about the instructions for decoding. This

corresponds to the Bayesian prior. Another example is that slight approx

imations to the exact Bayesian learning translate into slightly non-optimal

coding schemes.

Under one popular interpretation the goal of Bayesian learning is to find

the most probable hypothesis given the data at hand. This is also well-

known as the Maximum A Posteriori (MAP) method. Let hmap be our MAP

hypothesis. Consider the following standard definitions:

• P(h) = prior probability of hypothesis h

• P{D) = prior probability of training data D

• P(h\D) = probability of h given D (posterior density)

• P{D\h) = probability of D given h (likelihood of h given D)

From the above definitions we can derive hmap as follows:

= arg max P{h\D)

P(D\h)P(h)
P(D)

= arg max P(D\h)P(h)

This definition of the MAP hypothesis can be interpreted in terms of the MML

principle. Information theory tells us that the optimal (shortest expected

— arg max

80

coding length) code for an object (event) with probability p is — log2p bits.

According to the MML principle the best hypothesis is one that minimizes

the joint encoding (MessLength) of theory and data. That is:

Besth = min-log2P(£>|/i)-log2P(/i)

- maxlog2 P(D\h) + log2 P(h)

= max P(D\h)P(h)

— h
— '''map

Specifically, let us now consider the expression for message length de-

scribed in equation 4.8. Choosing the theory 9 to minimise TotalLength is

equivalent to maximising

-..P(D\9)

Now p(9)5e is approximately the total prior probability mass assigned to all

theories within ±5o/2 of the stated model 6. Since the data does not allow

us to distinguish among these models, we may regard p(9)Se as being the

finite prior probability of 0, and indeed the length of E\, stating #, is just

Thus, minimising TotalLength is equivalent to choosing 0 to maximise

P{6).P{D\6) = P(D).P(§\D) (4.9)

In other words this is equivalent to choosing 9 to maximise the Bayesian pos-

terior probability P(9\D). The minimum message length criterion is quite a

close parallel to Bayesian statistical inference. Conventional Bayesian analy-

sis as such has no standard method for prior selection. Different versions of

Bayesianism have applied different priors, like maximum entropy, empirical

Bayes or others. The MML methodology advocates using coding theory to

assign prior probabilities to models.

81 m
mmIII

4.6 A Better Ockham's Razor

Ockham's Razor is the principle proposed by William of Ockham in the four-

teenth century that "Pluralitas non est ponenda sine neccesitate", which

translates as "entities should not be multiplied unnecessarily". In more mod-

ern terms, if you have two theories which explain the observed facts equally

well then you should use the simplest until more evidence comes along.

As physicist Anthony Garrett1 explains, although. William of Ockham of-

ten wrote of the idea, he was certainly not its inventor. Later writers attached

his name to it, but the idea was common among scholastic theologians, and

goes back much further. Here is a quote from Ptolemy, writing in 2nd cen-

tury Alexandria about changes in the earths solstices and equinoxes, called

Procession. "It is a good principle to explain the phenomena by the simplest

hypotheses possible, insofar as there is nothing in the observations to provide

a significant objection to such a procedure".

Ockham's Razor is often disputed by showing that a more complicated

theory was true and the simpler hypothesis was falsified. This is a strawman

argument. The Razor doesn't tell us anything about the truth or otherwise

of a hypothesis, but rather it tells us which one to test first. The simpler the

hypothesis, the easier it is to shoot down. The physicist Richard illustrating

the phenomenon of "overfitting" once said that, given enough parameters he

could fit an elephant to the curve. So intuitively, there is going to be a trade-

off between how well you can fit the data and how complicated the theory is.

This trade-off between goodness of fit to the observations, and how simple

the theory you're using is, is precisely what the razor suggests. So Ockham's

Razor is not just "choose the simplest theory that fits the facts", but "choose

the simplest theory that fits the facts well", and there is a measurable trade-

1refer to http://www.abc.net.au/rn/science/ockham/stories/sl 18778.htm

82

off, between goodness of fit and simplicity of the theory; a trade-off between

flexibility and economy.

In the Minimum Message Length principle we see one possible realization

of this razor. The MML principle of Wallace is thus an attempt at perfecting

the balancing act between the complexity of a model and its fit to the available

observations. In other words, the MML principle sharpens the razor of the

William of Ochkam.

4.7 Summary

The foundations of the MML principle for inductive inference independent

from the work of Solomonoff and developed using coding theory, were de-

scribed in this chapter. In the following chapters we go on to demonstrate

the practical applicability of the MML methodology. In chapter 5, the MML

methodology is used to derive a metric for model selection in the domain

of univariate polynomial regression, and in chapter 6, the MML approach is

applied to the domain of segmentation.

83

Chapter 5

Polynomial Regression

This chapter describes the design and development of a system for learn-

ing univariate polynomials based on the MML methodology. The system is

empirically evaluated by including several well-known criteria for model se-

lection. The system was originally conceived as a module which could be

encapsulated within a general discovery framework.

5.1 Introduction

In this study we focus on learning among competing models from a family of

polynomial regressors. A diverse number of well-known techniques are avail-

able for the selection of models in polynomial regression, namely, Finite Pre-

diction Error (FPE) [2], Akaike's Information Criterion (AIC) [3], Schwartz's

criterion (SCH) [96] and Generalized Cross Validation (GCV) [23]. Wallace's

Minimum Message Length (MML) principle [122, 127, 125] and also Vap-

nik's Structural Risk Minimization (SRM) [112, 113] - based on the theory of

VC-dimensionality - are plausible additions to this family of model-selection

principles. SRM and MML are generic in the sense that they can be applied

84

to any family of models, and similar in their attempt to define a trade-off

between the complexity of a given model and its goodness of fit to the dat,

under observation - although they do use different trade-offs, with MMLs

being Bayesian and SRMs being non-Bayesian being only one of the differ-

ences. Recent empirical evaluations [190,115, 39] comparing the performance

of several methods for polynomial degree selection provide strong evidence in

support of the MML and SRM methods over the other techniques.

In this study we consider a simple domain where the x data are randomly

selected from the interval [—1,1] and the y values &xe derived from a univari-

ate function, y = t(x), corrupted with Gaussian noise having a zero mean.

Least-squares approximations of polynomials of degree up to 20 are derived

from the data generated. These univariate polynomials of varying orders gen-

erated by our system is then offered to the five model selection methods and

the performance of the preferred polynomials are evaluated by their predic-

tive accuracy on test data, similarly generated. This work presents a system

for univariate polynomial function learning and includes an extensive em-

pirical evaluation of five polynomial selection methods - FPE [2], SCH [96],

GCV [23], MML and SRM. (In unreported results, we have found that AIC [3]

performs almost identically to FPE.) The chapter provides an analysis of the

behaviour of these five methods with respect to variations in the number of

training examples and the level of noise in the data.

5.2 Background

The target problem is the selection of a univariate polynomial regression func-

tion. In this section we aim to summarize the two major approaches based on

85

the minimum message length (MML) and structural risk minimization (SRM)

principles. Let us assume that we have a finite number N of observations of

a function t(x) corrupted with additive noise e,

y{ = t(xi) + Si for i = 1,...,JV.

Our approximation of the target function is based on the training set of

N observations, where the values, X{, of the independent variable x are in-

dependently and uniformly distributed in the interval [—1,1] and the noise

values Ej = yi — tfa), are independently and identically distributed by a Nor-

mal density with zero mean and unknown variance. The framework of the

problem follows Cherkassky et al. [18], and has been repeated using MML

in Wallace [120] and Viswanathan and Wallace [115]. The values, Xi, of the

independent variable x are randomly selected from the uniform distribution

on the interval [—1,1].

The task then is to find some polynomial function, f(x) = i(x), of degree

d that may be used to predict the value of t(x) in the interval, —1 < x < 1.

In our evaluation we only consider polynomials /(•) of degrees up to 20 and

for any given degree d, we select the polynomial f(d, x) that minimizes the

squared error SE on the training data,

N

(5.1)
t = i

The performance or prediction risk is the expected performance of the chosen

polynomial for new (future) samples. This is measured by its Squared Pre-

diction Error SPE, which is estimated using a simple Monte Carlo method:

SPE (f(d, i)) = i (5.2)

86

where t(x) is the target function and m is max(iV, 50) and the test data (i =

1 to m) are randomly selected from a uniform distribution in [-1,1].

5.2.1 Prominent Methods for Model Selection

Among the standard methods compared in this work two general approaches

can be observed. While Generalized Cross-Validation (GCV) [23] is based on

data re-sampling, Finite Prediction Error (FPE) [2] and Schwartz's Criterion

(SCH) [96] attempt to penalize model complexity. The use of FPE as opposed

to the Akaike Information Criterion (AIC) [3] is justified since FPE is specially

derived under the assumption that th/1 distributions of the predictors used in

learning and prediction, is identical. Furthermore, FPE and AIC give almost

the same inference for this class of problem [91, section 8.4], as borne out by

some unreported results of our own. As described in Wallace [120] (replicating

the problem framework from Cherkassy et al. [18]), the selection process for

these model-selection methods is to choose the polynomial which minimizes

g(p,N)*SE(f(d,x))

where p — (d + l)/N, and #(•,•) is a function characteristic of the given

method of inference. The function g(-, •) is known as a penalty function since

it inflates the training error (average residual sum of squares). The following

characteristic penalty functions are derived from these benchmark approaches

used in this comparative study:

1. Finite Prediction Error (FPE), g(p,N) = (1 - p)

2. Schwartz's Criterion (SCH), g(p, N) = l + 0.51og(iV) *p/(l-p)

3. Generalized Cross Validation (GCV), g(p,N) = 1/(1 -p)2

87

5.2.2 VC Dimension and Structural Risk Minimization

As defined earlier in section 5.2 (from equation 5.2), the prediction risk is

the expected performance of an estimator on new samples. The Vapnik-

Chervonenkis theory [112] provides non-asymptotic "guaranteed" bounds for

the prediction risk of a model based on the concept of the VC-dimension [113].

Generally speaking, the VC-dimension [112, 113] is a measure of model com-

plexity. For a given set of functions the VC-dimension is the number of in-

stances that can be "shattered" - i.e., all possible subsets of the instances (from

some data domain) being partitioned from their complement subset by func-

tions from this set. For example, in the binary classification case, the VC-

dimension is the maximum number of instances m which can be separated

into two classes in all possible 2m ways by using functions from the hypothesis

space. The VC-dimension for the set of polynomial functions of degree d can

be shown [113] to be equal to (d + 1) .

The Structural Risk Minimization (SRM) principle [113, 114] is based on

the well-known assumption that, in order to infer models with high general-

ization ability, we need to define a trade-off between the model complexity

and goodness of fit to the data. Employing the VC-dimension as the measure

of model complexity the SRM principle attempts to achieve this trade-off and

avoid over-fitting.

According to Vapnik [113], in order to choose the polynomial f(d, x) of the

best degree d, one can minimize the following function based on the Struc-

tural Risk Minimization principle:

88

I
R(a d\ - ^K{a, a) -

(1 -
(5.3)

where

In the expression above, R(a, d) is the estimate of the prediction risk of a

polynomial of degree d and coefficients a. The numerator of the Right Hand
N

Side of (5.3) is the average squared error, namely (1/iV) 2

i l

achieved by a polynomial of degree d and set of co-efficients a —< ao> •••, a<i >

on N training examples, and the denominator is 1 — c^/^j. £N is the error

term where N is the number of examples, c is a constant that reflects the

tails of the training error distribution and V is the VC dimension for f(d, x).

This approach also takes into account the confidence interval for the predic-

tion. Specifically, it provides an upper bound for the estimate, R(a, d), of the

prediction risk. The inequality in Equation (5.3) then holds with probability

(1-77), where 77 represents a confidence interval for the prediction [113]. In our

empirical evaluation we have used V = (d+ 1), since the VC dimension for a

polynomial of degree d is (d + 1) and, as suggested in [114], we have elected

to use c = 1. In this evaluation we employ the error term £N as described

in equation (5.3) with 77 = 0.125 (this value of 77 was derived from Vapnik's

book [113]). In empirical comparisons done by Wallace [120] the confidence

interval 77 was implemented as a function of the sample size (77 = -7=). The

recent version [114] from equation (5.3) employs a fixed user-defined value.

This application of a fixed confidence interval improves the predictive perfor-

mance of the older approach [113, 120, 115] at least in specific cases.

89

.•am

5.2.3 Minimum Message Length Principle

Minimal Length Encoding techniques like the Minimum Message Length

(MML) [122, 127, 125] and Minimum Description Length (MDL) [84, 86, 87]

principles have been popular due to their successful application in model se-

lection. MML is an invariant Bayesian principle [123, 127, 125] based on the

information-theoretic assertion that the best model for a given set of data is

one that allows the shortest joint encoding of the model and the data, given

the model. MML seeks to minimize the length of a "message" which encodes

the data (in this problem the training y-values) by first stating a probabilistic

model for the data,, and then encoding the data using a code which would be

optimal were the stated model true. MML has been shown to provide robust

and highly competitive model selection in comparison to various standard

model selection criteria (including AIC) within the polynomial degree selec-

tion framework [5], although we improve this even further here by our use of

an orthonormal basis. A comparison with the MDL [87] principle of Rissanen,

with A. N. Kolmogorov's notion of complexity [53], and with Chaitin's notion

of algorithmic information theory [13] is given in Wallace and Dowe [125].

In our case, since the model is assumed to be a polynomial function with

Gaussian noise, the model description need only specify the degree of the

polynomial, the co-efficients of the polynomial, and the estimated variance

(or, equivalently, SD) of the noise. In the general case, the best MML polyno-

mial for any degree is the one that has the shortest two-part message length,

of which the first part describes the polynomial in terms of its degree d,

co-efficients a and estimated variance v, while the second part describes the

data (via the £*) using the given polynomial. An important point to note

is that our encoding system uses the degree of the polynomial rather than

the number of non-zero coefficients. One reason for this is that the num-

90

ber of non-zero coefficients will depend upon whether we choose the basis

1, x, x2, x3,..., the orthonormal basis for integration over the region [—1,1] or

another basis. However, the degree of the polynomial will remain the same

regardless of this choice of basis.

In the current experiment, the coefficients are estimated using the maxi-

mum likelihood technique, since the difference from MML estimation is small

for this problem and the other methods all advocate using the maximum

likelihood estimate. (For examples of problems where MML and maximum

likelihood estimation are substantially different, see, e.g., Wallace and Free-

man [128], and Wallace [119].) The following sections provide details of the

actual MML encoding scheme.

Encoding the Model with Prior Beliefs

MML is a Bayesian principle and thus requires the formal specification of

prior beliefs. We start by considering the degree of our polynomial models.

All degrees from 0 to 20 are considered equally likely a priori, so each degree

is coded with a code word of length log(21) nits, or natural bits. On our

assumption, the coding of the model degree has no influence on the choice of

model as all degrees have the same code length .

In coding estimates of the noise variance v, and the polynomial coefficients

a, some scale of magnitude may be assumed. Here, we use the second order

sample moment of the given y-values to determine such a scale by defining

(5.4)

In encoding a polynomial model of degree d, we suppose that the noise

and each of the {d+1) degrees of freedom of the polynomial may be expected

91

T

a priori to contribute equally (in very rough terms) to the observed variance

tf of the y-values. Defining

u = \

N

Ew?
(5.5)

we assume the Standard Deviation s, of the "noise" i>, where s = y/v, has

a Negative Exponential prior density with mean u, and that each of the co-

efficients (ao,..., a,-,..., a^ of the polynomial has independently a N (0, u2)

prior density. If the coefficients were the usual coefficients of the successive

powers of x, the latter assumption would be unreasonable, and highly infor-

mative. Instead, we represent a d-degree polynomial as

a,jQj(x)) (5-6)

where the set Qj(') : j = 0 . . . d is a set of polynomials, (5j(") being of degree

j , which are orthonormal under integration on the interval [—1,1]. The or-

thonormal polynomials represent effectively independent modes of contribut-

ing to the variance of f(d, •), and therefore it seems reasonable to assume in-

dependent prior densities for the co-efficients {CLJ : j = 0 , . . . , d}. With these

assumptions, the overall prior density for the unknown parameters {s, {aj

is

* n (5.7)

The amount of information needed to encode the estimates s and a de-

pends on the precision to which these are stated in the "message". Specifying

the estimates with high precision leads to an increase in the model part of

92

the message length while lower precision leads to lengthening of the data part

[127, 124, 125]. The optimum precision, as described in [127], is inversely pro-

portional to the square root of the Fisher information F(s,a), which in this

case is given by [120, 115]

(d+2)

\M\ (5.8)

where M is the co-variance matrix of the orthonormal polynomials evaluated

at the given x-values:

N

(5.9)
t = i

Encoding the Data

Once the model polynomial f(d, •) and the noise standard deviation s have

been stated, the given y-values can be coded simply by their differences from

f(d, •), these differences being coded as random values from the Normal den-

sity N(0>v). The message length required for this is then given by [120, 127]

DataMessLen = (— j log(2?r?;) + (l /2v) * SE(f(d, •)) (5.10)

The Total Message Length

The total message length is approximately given by [127, 125]

MessLen = — log h(s, a) + 0.5 log F(s, a) + DataMessLen

- ((d + 2)/2) log(27r) -I- 0.5 log((oJ + 2)TT) (5.11)

93

T
where the last two terms arise from the geometry of an optimum quantizing

lattice in (d + 2)—space. The noise variance v = s2 is estimated as

VMML = I

and the co-efficients of a are estimated by conventional least-squares fit. These

estimates do not exactly minimize the message length MessLen, but, for this

problem the difference is small. The MML method selects that degree d

which minimizes MessLen as calculated above in equation (5.11). Recent

theory [33] suggests that the MML estimator will closely approximate the

estimator minimizing the expected Kullback-Leibler distance.

5.3 Experimental Evaluation

The following discussion outlines the experimental procedure employed in

this empirical evaluation. For each experiment a target function is selected

in the required interval [-1,1]. The noise is defined in terms of the "signal-to-

noise ratio" (SNR), where SNR is defined as the second moment of the target

function, t(x), about zero, divided by the noise variance v. The number of

training data points TV and the number of evaluations (training and test runs)

are specified.

An experiment consists of (averaging over) 10000 evaluations. In each

evaluation or "case", TV training examples and m = max(TV, 50) test examples

are generated. For each "case", all least-squares polynomial approximations

of degrees up to 20 are found by standard techniques, and the training error,

SE(d), computed for each of the 21 polynomials. These training error values

are then given to each of the model selection methods being compared and

94

each method selects its preferred choice among the polynomials.

The prediction risk for a method in the current case is then the average

squared prediction error (SPE) achieved by the polynomial chosen by the

method on the test data. Note again that all selection methods must choose

from the same set of 21 polynomials, and their choices are evaluated on the

same set of test data. Thus if two selection methods choose the same degree

in some case, they are choosing the same polynomial and will incur the same

SPE for this case.

After the 10000 cases of an experiment have been completed, we obtain

for each selection method:

• its Squared Prediction Error (SPE), averaged over all cases (10000);

and,

• the Standard Deviation of its SPE.

The five selection methods - namely, MML, SRM, FPE, SCH and GCV - were

evaluated on six target functions t(x) in the interval [-1,1]. The methods were

tested under different scenarios. First, the noise level was kept constant with

varying numbers of training points and, then the noise levels were varied with

a fixed number of training points. For each method evaluated under a par-

ticular scenario, comparisons were made on the basis of squared prediction

error (SPE) and standard deviation of the SPE. As an artificial yardstick,

we also include a method called "BEST". The "BEST" polynomial is ob-

tained by selecting from the 21 candidate least-square fit polynomials the

polynomial which would give the smallest SPE as calculated on the test data.

Thus, BEST shows the best performance which could possibly be obtained

95

in principle; but these results are of course unrealizable, as they are based on

knowledge of the noise-free values of the target function at the test x^s.

5.4 Analysis of Results

In the experimental evaluation we consider two sets of target functions. In

the first the target functions belong to the family of polynomials of maximum

degrees of 20, while the second set consists of non-polynomials. Figures 5.3-

5.8 include plots of results from experiments with six target functions. Each

figure presents two scenarios. In the first case the sample size is increased

and the standard deviation of the noise is kept constant, and vice versa in

the second case. Some of the prediction methods can be seen to have a

squared prediction error typically of the order of 100 times that of MML. Due

to this relatively poor performance of those estimation techniques, squared

prediction error is plotted on a logarithmic scale. As mentioned in section 5.3,

we also plot the standard deviations from some of these simulation runs with

sample size fixed at N = 40 and noise varying. Of the six target functions

considered (see section 5.4.1), when N — 40, we found the ratio of FPE

squared error to MML squared error to be the smallest for the smooth SIN

function, closely followed by the discontinuous function. We found the ratio

to be largest for the low order polynomial. In Figure 5.9, we plot results

comparing the standard deviation of SPE of all methods on the SIN function

and the low-order polynomial.

In general, from the examples included in this study and other tests it

can be observed that MML and SRM give lower errors than other methods in

most cases. The results clearly show that none of the methods FPE, SCH, or

GCV is competitive with SRM or MML, except under conditions of low noise

and large N, when all methods give similar results. An interesting observation

96

is that the SRM method is based on theory which does not assume that the

target function belongs to the model family from which the approximation is

drawn (in this case, the polynomials). MML, however, is in part motivated

by theory which does make this assumption. It is curious that the only

target/test conditions under which SRM performs comparably with MML

are ones where this assumption is largely valid. Furthermore, an examination

of the percentiles of the error distribution suggests that the MML and SRM-

based methods usually have similar median errors. The high SPE of the

SRM method seems to be the result of occasional very large errors using the

selected model. Evidence of this is given in Figure 5.10.

Denison et al. [29] present a Bayesian approach to estimating a variety

of curves using piecewise polynomials. Some reviewers suggested a compar-

ison with their method. Although their approach is far more flexible due to

the generality of the model class and the resulting variety of functions that

their system can fit, we offer a limited comparison1 with our MML-based or-

thonormal polynomial approach. The comparisons are not equivalent since in

our approach the squared prediction error is computed from test data while

Denison et al. take a posterior sampling approach.

*In Figure 5.11, we compare MML with the piecewise polynomial fitting (PP) on the

low order polynomial. The samplesize is N = 200, the SNR is 150 (recall Section 5.3)

and the standard deviation of the noise is s = 0.317. The plot presents the SPE achieved

by both methods for each of 100 runs of the experiment. Figure 5.12 presents a similar

scenario for the high order polynomial. The samplesize is 200, the SNR is 100 and the

standard deviation of the noise s = 0.724. The MML fit was clearly better that the PP fit

for these two polynomial cases, especially for the high-order polynomial, where the squared

prediction error was more than a hundredfold worse for PP than for MML.

97

5.4.1 Target Functions

In evaluating the five polynomial selection methods we consider the following

two polynomial and four non-polynomial target functions. The following

polynomial target functions are presented in Figure 5.1.

1. A Higher-order Polynomial: y = 0.623a;18 - 0.72a;15 - 0.801a;14 +

9.4a;11 - 5.72a;9 + 1.873x6 - 0.923a;4 + 1.826a: - 21.45;

2. A Lower-order Polynomial: y = 9.72a;5 + 0.801a;3 + 9.4x2 - 5.72a; -

136.45;

Non-polynomial Target Functions

It is interesting to observe the performance of the different methods when

the target function are not polynomials. The task here is challenging as we

seek the best polynomial approximation. The following target functions were

utilized in the comparison, with — 1 < x < 1, and are plotted in Figures 5.1

and 5.2.

1. SIN: y = (sin(7r(a; + I)))2;

2. LOG: y =

3. FABS: y=\x + 0.3| - 0.3; and,

4. DISC: if (a; < 0.0) y = 0.1; else y = 2a; - 1.0.

5.4.2 The "Guaranteed" SRM Bound: Is it Loose ?

In this section we raise some issues about the application of the Structural

Risk Minimization Principle (SRM) to the current problem framework. The

98

model selection methods based on the SRM principle define a "guaranteed"

bound on the prediction risk of a model, where the prediction risk, as de-

fined earlier, is the expected squared prediction error achieved by the selected

model. The SRM bound states that the prediction risk for a chosen model

will not be exceeded with probability of at least 1 — 77. In our case, equation

(5.3) is the upper bound on the prediction risk and it is "guaranteed" [113]

with a probability of 1 — 7/ = 1 — 0.125 = 0.875 (see section 5.2.2). Based on

our empirical analysis we find that this bound is not exceeded, with probabil-

ity greater than 1 — 77, for any fixed order of polynomial and any sample size,

noise ratio or target function. In fact, the probability of bound violations is

usually much less than 77.

However, the polynomial model selected by the SRM method from the

21 families of polynomial often exceeds the bound with a probability greater

than 77. For example, the bound is violated in 96.5% of the cases of an ex-

periment on the smooth target function with a sample size and SNR ratio

(see section 5.3) of 10. This is a typical result for model selection with small

sample sizes. Thus the SRM bound seems to be plausible only when applied

to selecting models from the same family. Once this assumption is relaxed,

the SRM measure cannot be guaranteed to provide an upper-bound on the

prediction risk. In this context another important observation is that the VC

theory does not provide any information on the magnitude of the prediction

error when this upper-bound is exceeded.

Finally, we find that, in its application to the current model selection

framework, the SRM principle is not paying any attention to the variance of

the selected model. On an examination of the cases where the performance of

the SRM-based models is worse than usual we find that the estimated variance

99

of the approximating polynomial is orders of magnitude larger than the second

moment of the training samples. Thus the SRM principle is accepting some

clearly unreasonable: models. As an example, the plots in Figure 5.10 present

a comparison of the variance of the worst model (in terms of SPE) selected by

the SRM and MML methods over the 10,000 runs with their average training

errors. The model selection methods were evaluated on the sine function from

Section 5.4.1 with a fixed SNR ratio and variable sample size.

5.5 Summary

This chapter presents a system for learning polynomial functions from noisy

datasets. The empirical studies demonstrate the plausible performance of the

Minimum Message Length principle in comparison to other methods. Based

on our empirical evaluation we find that the MML approach in general pro-

vides more robust and accurate model selection than the other methods in

the current problem framework, especially FPE (and AIC), SCH and GCV.

Finally, we have provided some analysis of the different model selection meth-

ods under varying scenarios. It is essential to note that the comparison with

the polynomial splines (Denison et al.) is not exhaustive in any sense.

100

Figure 5.1: Plots of Target Functions

High Order Polynomial

Low Order Polynomial

-1 0.5

Smooth Function (SIN)

101

Figure 5.2: Plots of Target Functions

Logarithmic Function (LOG)

0.5

Absolute Value Function (FABS)

Discontinuous Function (DISC)

0 0.5

102

Figure 5.3: Comparing methods on Squared Prediction Error (SPE)

Comparison of Methods on a High Order Polynomial.

LJJ

100000

10000

1000

100

10

LLJ
Q .
CO

i i i i i \ i r
BEST — i -
MML —*•
SRM
FPE
SCH
GCV

J I I I I I I I I I

10 20 30 40 50 60 70 80 90 100

Sample Size (noise SD = 8.254)

Comparison of Methods on a High Order Polynomial.

20.63 5.8 3.43 2.42 1.87 1.52 1.29 1.11

Noise SD (Sample Size = 40)

103

Figure 5.4: Comparing Methods on Squared Prediction Error

Comparison of Methods on a Low Order Polynomial.

HI

CO

1e+06

100000 r

10000 r

1000 r

100 r

10

1e+06

100000

10000

ill

§5 1 0 0 °

100

10

1

10 20 30 40 50 60 70 80 90 100

Sample Size (noise SD = 26.672)

Comparison of Methods on a Low Order Polynomial.

66.6 19.0511.11 7.85 6.06 4.93 4.16 3.60

Noise SD (Sample Size = 40)

104

Figure 5.5: Comparing Methods on Squared Prediction Error

Comparison of Methods on a Smooth Sine Function (SIN).

HI
o.
co

LU
a.
CO

100

10

0.1

0.01

0.001

10

i i i r i i i i
BEST —+-
MML —*-
SRM —*-
FPE — B -
SCH —m-
GCV —e-

10 20 30 40 50 60 70 80 90 100

Sample Size (noise SD = 0.122)

Comparison of Methods on a Smooth Sine Function (SIN).

1 -

0.1 r

0.01 :

0.001 r

0.0001
0.30 0.08 0.05 0.03 0.028 0.023 0.019 0.017

Noise SD (Sample Size = 40)

105

Figure 5.6: Comparing Methods on Squared Prediction Error

Comparison of Methods on a Logarithmic Function (LOG).

IK
o_

LJJ
o_

100

10

0.1

0.01

0.001

100

10 r

1 r

0.1 r

0.01 r

0.001

i \ i r i i i r
BEST —+-
MML —*•
SRM —*•
FPE —e-
SCH —«-
GCV —e-

J I I I I I I I

10 20 30 40 50 60 70 80 90 100

Sample Size (noise SD = 0.193)

Comparison of Methods on a Logarithmic Function (LOG).

0.48 0.13 0.08 0.05 0.04 0.036 0.03 0.026

Noise SD (Sample Size = 40)

106

Figure 5.7: Comparing Methods on Squared Prediction Error

Comparison of Methods on an Absolute Function (FABS).

LJJ
o_
CO

LLJ
a.
CO

10

0.1 r

0.01 r

0.001 r

0.0001

10

1 :

0.1 r

0.01 r

0.001 r

0.0001

10 20 30 40 50 60 70 80 90 100

Sample Size (noise SD = 0.086)

Comparison of Methods on a Absolute Function (FABS).

0.21 0.06 0.03 0.025 0.02 0.016 0.013 0.012

Noise SD (Sample Size = 40)

107

Figure 5.8: Comparing Methods on Squared Prediction Error

Comparison of Methods on a Discontinuous Function (DISC).

100

10

LU
0- 1
CO

0.1

0.01

LU
Q.

10

1 r

0.1 r

0.01

i i i i i i r
BEST —4-
MML —x-
SRM —*-
FPE —B-
SCH
GCV —e-

10 20 30 40 50 60 70 80 90 100

Sample Size (noise SD = 0.083)

Comparison of Methods on a Discontinuous Function (DISC).

0.20 0.05 0.03 0.02 0.019 0.015 0.013 0.011

Noise SD (Sample Size = 40)

108

Figure 5.9: Standard Deviation of Squared Prediction Error

Comparison of Methods on a Low Order Polynomial.

1e+07

1e+06

100000

§5 10000

"5
Q 1000
CO

100

10

1

HI
Q.
CO
o

Q
CO

100

10 r

1 r

0.1 r

0.01 r

0.001

66.6819.0511.11 7.85 6.06 4.93 4.16 3.60

Noise SD (Sample Size = 40)

Comparison of Methods OR a Smooth Function (SIN).

0.306 0.087 0.051 0.036 0.028 0.023 0.019 0.017

Noise SD (Sample Size = 40)

109

Figure 5.10: A Comparison of the SPE (test data) and SE (training data) of

the Worst Models Selected by SRM and MML

§
T3

CD

CO

a-
V)

UJ
T3
Q

CO

10000

1000

100

10

1

0.1

0.01

0.001

10000

1000

100

10

0.1

0.01

0.001

Smooth Function: Sample Size = 10-55, SNR = 5

"Worst SRM-SPE"
Average SRM-SE"

10 15 20 25 30 35 40 45 50 55
Sample Size

Smooth Function: Sample Size = 10-55, SNR = 5

"Worst MML-SPE"
"Average MML-SE"

10 15 20 25 30 35 40 45 50 55
Sample Size

110

;' I

10

Figure 5.11: Comparing MML and Piecewise Polynomial Fitting on a Low

Order Polynomial. X axis represents the run count (up to 100) while on the

Y axis we have the squared prediction error (SPE).

I l l

.

0.001

0.01 -

Figure 5.12: Comparing MML and Piecewise Polynomial Fitting on a High

Order Polynomial. X axis represents the run count (up to 100) while on the

Y axis we have the squared prediction error (SPE).

112

Chapter 6

Segmentation of Binary

Sequences

The chapter describes another significant contribution of this thesis. That is,

the development of a system for learning from binary sequences. A specialised

framework is used in defining the problem domain. The MML principle is

employed in deriving an efficient scheme for model selection. The learning

technique is again presented in the context of a comparison with other modern

methods, including a detailed empirical evaluation.

6.1 Introduction

The segmentation problem occurs when there is a need to partition some data

into distinct homogeneous regions. The specialized segmentation framework

considered in this work was introduced by Kearns et al. [51] and employed in

an empirical and theoretical comparison of model selection methods. Their

motivation for selecting this problem was that, while being non-trivial, it

appeared to Kearns et al. to permit exact solution of the optimizations re-

113

quired by the different methods and hence seemingly offered a comparison of

the methods untainted by questionable mathematical approximations. The

development of our technique for this specialised segmentation problem re-

sulted in two primary conclusions:

• The earlier application of the Minimum Description Length (MDL)

principle as employed by Kearns et al. in their empirical evaluation

was sub-optimal.

• Optimal coding resulted in the superior performance of two methods,

the former based on a revised version of the MDL method (from [51])

and the latter based on the Minimum Message Length (MML) principle.

We commence with a brief summary of the problem. An unknown Boolean

function f(x) is defined on the real interval 0 < x < 1. The interval is parti-

tioned into (k + 1) sub-intervals by k "cut points"

{CJ : j = 1..&} which are uniformly and randomly distributed in [0,1] and

indexed so that Cj < cJ+i, (j = l..fc — 1). The function f(x) is defined to

be 0 in even-numbered sub-intervals, and 1 in odd-numbered sub-intervals;

the sub-intervals are numbered from 0 to k so that cutpoint Cj separates sub-

intervals j — 1 and j . Data is generated from this model at iV sample points

{xi : i = 1..N}. The Boolean datum yi generated at Xi differs from f(xi) with

probability p < (1/2). Thus, the probability that yi = 1 alternates between

p and (1 — p), depending on whether Xi lies in an even or odd sub-interval.

The inference task, termed the "intervals model selection" problem by

Kearns et al. [51], is to infer an approximation to the function f(x) from the

data {x{, yi : i= 1..N}. That is, we wish to infer the number and position

of the cutpoints (and, incidentally, estimate the unknown "noise" rate, p).

The intervals model selection problem was originally employed by Kearns

et al. [51] in their evaluation of different model selection methods. These se-

114

Figure 6.1: An Illustration of the Learning Task

p 0.2 0.8 0.2 0.8 0.2 Prob(y = l)

o i o f o o o o q o o i I I I I I l d i o o o o j i o i Ia ib66ooo~o6oTI I y-vaiues

I—•_.». •.._.*>*«• •_._ . .» ,_ .«

0.2 0.4 0.6" "0.8
1

0.04,0.12.... 0.21,0.34... 0.51,0.579.. 0.634,0.72.. 0.81,0.97...

k outpoints: 0.2,0.4,0.6, 0.8

Noise Probability p alternates between 0.2 and 0.8

y = f(x) XORran(p),

where ran(p) is 1 with probability p

x-values

lection methods included the two penalty-based methods — Vapnik's Guaran-

teed Risk Minimization (GRM) [114] and a version (we designate KMDL) [51]

of Rissanen's Minimum Description Length (MDL) Principle [85,12], and also

Cross Validation (CV) [103]. Kearns et al. [51] reported that MDL performed

no better than cross validation in this task.

This chapter presents a novel technique applying MML for binary seqmen-

tation. The experiments of [51] are replicated, omitting their implementation

of Vapnik's method. The chapter also corrects an approximation in KMDL,

obtaining a slightly improved method which we term "CMDL", although

it is still a sub-optimal application (see section 6.6) of the MDL principle.

Consistent with [51], we find both KMDL and CMDL to perform relatively

poorly unless the sample is large (with CMDL somewhat superior). Finally,

we develop a more correct MDL method, using the theoretical framework of

the Minimum Message Length principle [122, 127, 125], with which we are

more familiar. Our results confirm the poor behaviour of KMDL as seen in

[51], but the MML method works well, and compares well with the cross-

validation (CV) method which we implement in the same form as was done

115

~T
in [51]. Readers interested in a comparison of MML, CV [103], and Vapnik's

Structural Risk Minimization (SRM) [114] applied to univariate polynomial

regression are referred to work by Wallace and Viswanathan [120, 115]. The

MML principle has been previously applied to the problem of linear segmen-

tation [6, 4, 73, 74, 56] and also in a different context (that of identifying

superior sports performance) to segmentation of binary sequences [102, 54].

6.2 Definitions

This section presents standard definitions for all the terms used in this chap-

ter.

1. S : training set, (xi, yi)i = 1, . . . , iV.

2. N : size of S.

3. p : true probability (noise rate).

4. k : number of cuts.

5. d : number of alternations of label in S (d = k •+• 1).

6. m : number of sample points at which h(x) differs from f(x).

7. f(x) : true Boolean function from which S is generated.

8. h{x) : learning algorithm's estimate of f(x) from S.

9. H(x) : binary entropy function given by —(xlogx + (1 — a;) log(l — x))

10. e(h) represents the generalization error of a hypothesis h{x) with respect

to the target function f(x). e(h) = KL(f(x) || h(x)), which is the

Kullback-Leibler distance from f(x) to h(x).

116

I
11. i(h) denotes the training error of h on sample S.

|(ariiW)e S : h(x{) ^ f(Xi)\/N.

6.3 Kearns's Intervals Model Selection Prob-

lem

To test the various methods, Kearns et al. [51] chose a function f(x) with 100

intervals each of length 0.01 (99 equally-spaced cutpoints). This function is

the easiest to learn among all such functions with 99 cuts. A randomly spaced

set of cuts would increase the chance that some subintervals would contain few

(or no) sample points, making them much harder to detect. In our study, we

employ generating functions with randomly-placed cuts — as in the original

problem specification [51]. Note that none of the learning methods themselves

assume approximate or exact equality of subinterval lengths: they all assume

the locations of the cuts to be random.

A single test problem is generated from f(x) by fixing a sample size N

and a noise probability, p. Then, N x-values are selected from the uniform

distribution in (0,1), and for each Xi a Boolean datum yi is generated as

f{xi) XOR ran(p), where ran(p) is a random noise bit with probability p of

being 1. In other woroh, y{ = f(xi) with probability 1 — p and 2/i = 1 — f{x{)

with probability p. Many replications of a problem with given N and p are

generated by making different random selections of the sample points and

noise bits.

For a given sample 5, Kearns et al. [51] see the "essence" of the learning

problem as being the selection of a model class, where a class F;. is the set

of all alternating functions with k cuts. That is, the essence is, to them, the

estimation or selection of the number of cutpoints k. Within a class Fk, a

117

simple dynamic programming algorithm suffices to find the model function

h'k(x) with maximum likelihood, i.e. with minimum training error i(h'k). Of

course, the locations of the cutpoints of h'k(x) are determined only to within

the interval between two adjacent sample points. In this work, we take the

cutpoint of h'k{x) which lies between Xi and Xi+\ to be midway between the

sample points.

The learning task thus reduces to selecting a model from the set of model

functions {h'k{x)\ k = l..kmax}, where kmax is the largest number of cuts

resulting in any reduction in training error. This set of models was then

given to the two model selection methods based on GRM [114] and a version

(KMDL [51]) of the MDL [85] principle. For the cross-validation method,

the protocol was slightly different. The sample S was divided randomly into

a 90% training set and a 10% validation set. A set of maximum-likelihood

models {hk(x); k = l--kfnax} was developed from the training sample, and

the cross-validation method selected from that set, the model with the low-

est error on the validation sample. It was claimed that this represents an

optimal cross-validation, but it was chosen as a simple and representative ap-

plication of the method [51]. The generalization error for the model selected

by each method was computed with respect to the problem target function

f{x). Having summarized the study done by Kearns et al. [51], we proceed

to introduce the KMDL version [51] of MDL (see sections 6.4 and 6.6), a

'corrected' version - CMDL (see section 6.5), and Minimum Message Length

(MML) (see section 6.7). We then present empirical results and discuss these.

6.4 The KMDL method

We replicate the MDL encoding scheme employed by Kearns et al. in their

study. To distinguish it from a modified method we consider later (see section

118

6.5), we term it KMDL. According to Kearns et al., MDL [85] is a broad class

of algorithms with a common information theoretic motivation and each MDL

algorithm is determined by a specific encoding scheme for both functions and

their training errors. Kearns et al. [51] present one such encoding scheme for

the binary sequence problem, although this is far from an optimal code.

Let h be a function with exactly k cut points. Description of h(-) first

requires specification of its number k of cutpoints. The length of this de-

scription is neglected in KMDL. Given k, we can sufficiently describe h(-) by

specifying the k sample points immediately before which h(-) changes value.

Note that it makes sense for h(-) to have a cutpoint before the first sample

point x\ (because as in section 6.1, /(re) is defined to be 0 in even-numbered

sub-intervals), but not after the last, x^. Thus, there are N places where h(-)

may have cuts. Assuming, as in [51], that the cuts are equally likely to occur

in any of these places, specifying their locations takes log2 (^) bits. Given

h(-), the training samples can simply be encoded by correcting the mistakes

implied by h(-). Suppose h(x) differs from f(x) at m sample points, where

m = N x e(h). (KMDL neglects the cost of describing m.) Given m, the

identity of the m sample points where yi differs from h{x{) can be specified

with log2 (^) bits. Thus, KMDL arrives at a total description length of

COx C =***CO CC w t s

In [51], expressions such as log2 (̂ [) are approximated by N x H(m/N) where

H(-) is the binary entropy function from section 6.2. Dividing by N leads to

the KMDL choice of k:

k = argmink{H(k/N) + H(e{tik))} (6.1)

119

6.5 The CMDL method

We attempt a modest correction to the KMDL method, which we term

CMDL. The CMDL encoding scheme includes the lengths needed for the

description of k and m. An important point that we note in developing our

MDL approach is that, as we are only considering the maximum-likelihood

model in each class, there cannot be any misses adjacent to a cutpoint. It

then follows that we can safely assume that the number of cuts k < N — 2m.

The training error count m can certainly not exceed iV/2, so the cost of encod-

ing m is N/2 bits. The cost of specifying a cutpoint from N — 2m potential

cuts is log(iV — 2m) bits. Although the simplifications of KMDL relative

to CMDL appear to be typical of much of the use of MDL in practice, the

refinements of CMDL are similar to the complete coding advocated by Ris-

sanen and Dom [88, 31, 118] and are justified (for this problem) by superior

performance in practice, as demonstrated by our results. We also replace the

binary entropy approximation in KMDL by the accurate log-combinations

expression. Thus, CMDL selects

k = argmink \ \og(N/2) + log(iV - 2m) + log f j + log (™ J >

(6.2)v

6.6 The Flaw in KMDL

While the minor correction of KMDL to CMDL has a clear beneficial effect,

there remains a serious flaw in the coding scheme used in both methods. The

use of a Minimum Description Length principle to select among competing

model-based encodings of the data can make sense only if the coding scheme

120

used with each competing model indeed minimizes the length of the descrip-

tion employing that model. The schemes used in KMDL and CMDL do not

come close.

These methods specify the location of the cutpoints of a model to within

the interval between adjacent sample points. On average, this is a precision

of about {1/N). Except for very low noise rates, such precise specification is

unwarranted (see section 6.7.2 and below), leads to an over-long description,

and vitiates the comparison of competing models.

It is an essential feature of efficient model-based coding (whether MDL

or MML) that no estimated parameter be specified more accurately than it

can be estimated. To illustrate this point, suppose, in this problem, that we

decide to encode the cutpoints so that they are always required to precede

an odd-numbered sample point. That is, we encode them to an average pre-

cision of (2/iV). What effect will this have on the description length? First,

we save approximately k bits, because for each of the k cutpoints there are

now only N/2 possible locations to be selected among. Second, for each cut-

point, there is a probability (1/2) that it is where we wanted it to be. If it is

not, then one y-va\\ie will be encoded using probability p instead of (1 — p)

or vice-versa. The final result is that the description length is increased on

average by k{\ log2 ^ — 1) bits. This quantity is negative for p > 0.2, so

by lowering the precision of cutpoint specification we actually shorten the

description unless the noise rate is less than 0.2. In other words, unless the

noise is low, even the arbitrary decision to rule out N/2 possible cutpoints

will actually improve the minimum description length achieved over the faulty

method of assuming an exact specification of cutpoints. The MML method

now described generalizes this point. (For a detailed recent comparison be-

tween xvlML and MDL, and their relation to the works of SolomonofF [98],

121

Kolmogorov [53] and Chaitin [13] on algorithmic probability and algorithmic

information theory, see Wallace and Dowe [125] and other articles in that

special issue of the Computer Journal.)

6.7 MML Based Model Selection

In essence, MML [122, 127, 125] seeks to minimize a message length defined

by the joint encoding of the model and the data given the model. The MML

principle aims to find a specific model that explains the data — as opposed

to MDL-based methods that prefer to infer a model class. It will be more

convenient now to measure lengths in nits rather than bits (1 nit = log2e

bits), so we now switch to natural logs. (Henceforth, we use k and p to

denote the estimated model quantities.)

The MML principle [127, 125] offers the following general expression for

computing the MML message length for parameter vector 9 and data x:

MessLen = - log g{$) - log f{x\9) + 0.5 log F(9) - ^ log 12 + ^ (6.3)

where g{6) is the prior density on 6, f(x\6) is the likelihood of data x given
—* —•

9, D is the number of parameters and F(9) is the "Fisher Information".

(Slightly better approximations exist [125], but the above should suffice for

this problem.)

6.7.1 Encoding the Estimated Probability

In our encoding scheme we include a statement of p, the estimated noise rate.

This value determines that /̂-values agreeing with h(x) will be encoded with

length — log(l —p) each, and those disagreeing, with length —logp.

122

In this application of the MML principle, the parameter p is one element

of 9 and it is the parameter p of a binomial sequence with N trials and m

disagreements, so the relevant likelihood function is

f{m\p)=pm(l-p)N-m (6.4)

Since we assume 0 < p < 0.5 but have no other prior information, we assume

a uniform prior g(p).

The Fisher information F{p) is easily shown [127, 126] to be

The value of p that minimizes the message length can be derived [127,

126, 122] by differentiating the expression for MessLen to obtain,

1.0) (6.6)

6.7.2 Encoding the Outpoints

In specifying the encoding for the number of estimated cuts k we note an ear-

lier observation that, since we are only considering the maximum-likelihood

model in each class, there cannot be any misses adjacent to a cutpoint. There-

fore, we can safely assume that the number of cuts k < N — 2m. This results

in a codelength of log(iV — 2m) nits. The training error count m certainly

cannot exceed iV/2, so the cost of encoding m is N/2 nits.

As the cutpoints are real-valued, it would require an infinite number of

bits to specify them precisely. Thus, we need to find an optimal precision for

these parameters — recall section 6.6. Let S be the precision (range) with

which we want to specify a cutpoint. We assume that the true cutpoint is

uniformly distributed within this range. Let e be the difference between the

123

true cutpoint and the estimated one. Since we assume that our outpoint is

uniformly distributed in 5, the difference e is uniform in [— | , + |] .

The expected number of data points in a region of width S is given by N5.

Since our training values are uniformly distributed, the expected number of

data points coded with the wrong probability (put on the "wrong" side of the

cutpoint) is given by N • -E(|e|). The expected value of |e| can be derived as

2 f6'2 . 2
= , | . a ; 2/ M i j (

6/2 2 S2

o

- I
The expected excess cost (in message length) of encoding a single data

item with the wrong probability can be calculated by computing the difference

between the expected cost of encoding the data item with the correct and

incorrect probabilities. Thus, from section 6.6, the expected excess cost per

wrong item Cn can be derived as follows, noting that the code words of length

— logp and — log(l — p) are interchanged for each wrong item.

Cn = (~plog(l-p)-(l-p)\ogp)-(-plogp-{l-p)log(l-p))

= P(log(p) - log(l - p)) + (1 - p)(log(l -p)- log(p))

+ (l p) l o g
i —p p

(6.8)

which is, as we would expect, symmetrical between p and (1 - p).

Prom (6.7) and (6.8), the total increase in the cost Ct of encoding the

NS/4 y-values expected to be encoded with the "wrong" probability is

^ (6.9)

124
i

The cutpoints of h(-) are parameters of the model and so must be encoded.

To encode the position of a cut to precision 8 within the range (0,1) requires

length —log 8. Hence, from (6.9), for each of the k cutpoints, the total excess

cost Cfc incurred by encoding its position to precision 8 is

Ck =-\og8+ Ct =-logo , ^-(2p-l)log-^- (6.10)
4 1 — p

Differentiating Cfc from (6.10) and setting the result to zero, we find the

value of 8 that minimises Ck and hence the message length as follows:

Hence,

With this choice of 8, from (6.9) and (6.11), the expected excess cost is

Ct = 1, just one nit per cutpoint. Given m, from (6.10) the total cost of

encoding all k cutpoints to precision 8 is

log(iV - 2m) + k(l- log 8) - log(k\)

since k < (N — 2m) and the order in which the k cutpoints are specified is

immaterial. As mentioned earlier in section 6.6, the use of an overly precise

specification for 8 is only justified when the noise rate p is low. How low p

must be to justify Kearns et al's exact specification we can find by substituting

1/N for 8 in expression (6.11) above, obtaining p « 0.018. In other words,

the precision specified by Kearns et al. [51] is only justified when the noise

parameter is an extremely low value, less than 2%!

125

6.7.3 Encoding the Data

Given m, the identity of the m sample points where yi differs from h(xi) can

be specified with code length log (^), which is included in the data part of

our message.

6.7.4 The total message

The length of the entire MML message can now be computed. The compo-

nents of the message are

• the statement of k and m,

• the statement of p to precision \fY2/F(p) within the range (0,1/2),

• the positions of the cutpoints to precision d, and finally,

• the encoding of the data.

In estimating the noise parameter p, the number of mistakes m made by

the maximum-likelihood model h'k{x) is increased by the expected additional

number of disagreements resulting from the imprecision of cutpoints. The

resulting estimated error count is used in place of m in estimating p, which

affects the choice of 6 (from equation (6.11)), and hence in turn the estimated

error count (from equation (6.7)). A few iterations of these calculations con-

verge quickly. As a result, our estimate of the noise rate exceeds m/N. The

effect seems to correct for the overfitting of the maximum-likelihood model

which, in KMDL and CMDL, leads to an underestimate of p. Figures 6.11 and

6.12 plot the noise rate or probability as estimated by the different methods

from the data when the cutpoints are evenly-spaced and random respectively.

126

6.8 Experimental Protocol

A dynamic programming algorithm was used to find the maximum-likelihood

model for each value of the k classes of cutpoints. The estimated k and

training error count m for each class was then supplied to the MML, KMDL

and CMDL methods and the cutpoint model preferred by each method was

noted. All four methods — MML, KMDL, CMDL and CV — were compared

on noise rates of p = 0,0.1,0.2,0.3,0.4 with sample sizes ranging from iV =

100 to 3000 in steps of 100. For each choice of p and N, 100 replications were

performed. Our true cutpoint models consisted of 100 either evenly-spaced

or randomly generated cutpoints.

All methods were compared on the basis of

• the number of estimated cuts,

• the Kullback-Leibler (KL) distance between the true and estimated

model, and,

• the expected prediction error (EPE).

The Kullback-Leibler distance (also known as the "relative entropy") mea- '

sures the expected excess cost of using an encoding based on the estimated

model rather than the true model. Formally, the Kullback-Leibler distance

between the true distribution p{y) and the estimated distribution q(y) is:

KL (p\\q) = Tp(y)log^l (6.12)

6.9 Analysis of Results

Although the original cutpoint problem analysis by Kearns et al. [51] from

section 6.3 employs evenly-spaced cutpoints, it is important to remember that

127

the original statement of the problem [51] and all the models implicitly as-

sume that the cutpoints are randomly distributed. The problem of learning

evenly-spaced cutpoint models is relatively easy since there is then no need at

all to specify the location of the cutpoints. Since in fact none of the learning

models were optimized for that easier problem, it was entirely inappropri-

ate for Kearns et al. to employ it in their empirical analysis. Therefore,

we address the original problem of inferring models of data generated from

randomly generated cutpoints.

6.9.1 Randomly-spaced Cutpoints

Figures 6.2-6.5 include comparisons of the KL distance and the number of

estimated cuts for noise rates of 0, 0.1, 0.2, 0.3 and 0.4 respectively. Each

figure plots the generalization error as measured by the KL distance and

the estimated number of cuts collated. All plots represent averages over

100 replications. With no noise (i.e., p = 0), all methods understandably

performed well.

The robust performance of MML for small and medium sample sizes in the

presence of increasing noise values can be observed plainly in Figures 6.2-6.5.

There is clear statistical significance in the superior performance of MML in

comparison to the KMDL and CMDL methods (e.g., with sample sizes from

200 to 1000 computed p-values (from classical statistical significance testing)

for KL distance were always less than 0.05 and usually less than 0.0001). The

superiority of MML to CV in the KL-distance metric, despite not generally

being statistically significant at individual points (of noise level and sample

size), is consistent and enduring across noise levels and most sample sizes

examined. Thus, in general, it is clear that the MML approach performs

better than all the other methods evaluated when the cutpoints are randomly

.

128

distributed (as assumed in the problem framework).

6.9.2 Estimating the Number of Outpoints

Despite this evident superiority in the KL-distance metric, it can be observed

that MML tends to be slightly conservative in estimating the number of cuts

in comparison with CV. This conservatism of MML is due in large part to the

fact that the MML technique we have employed here is directed at finding

the simplest model for explaining the data at hand and is not specifically

directed at estimating the number of outpoints. In particular, our MML

program ignores the possibility that two or more cutpoints may fall between

adjacent data values, since any even number of cuts between two adjacent

data points will show no discernable cut, and any odd number (1,3,5,7,...)

of such cuts will show as only one cut. If we really wanted to estimate the

number of cutpoints, then — noting that we can add any arbitrary even

number of cutpoints to the MML model without any discernable difference

— we would use a Bayesian integration along the lines of those in linear

Gaussian segmentation work [74, 40]. (See also section 6.9.3 and discussion

comments in section 6.10.)

6.9.3 Expected Prediction Error

Figures 6.14 and 6.15 present comparisons of all methods based on the ex-

pected prediction error (EPE) 1 for random cutpoint models. The expected

prediction error measures the "right" / "wrong" predictive accuracy of the dif-

ferent methods. It is important to note that the MML method does notably

better at minimizing the KL-distance than expected prediction error in com-

parison with the other methods. This implies that even if the other methods

*A similar measure, called the 'generalization error', was examined by Kearns et al.[51].

129

.

are sometimes more accurate in estimating the number of cuts, the other

methods must then certainly be putting the cuts in the wrong places. The

conservatism on small data-sets of the MML method in estimating cutpoints

is warranted by the above results in the sense that the MML method is trying

to get closer to the true model (including the location of cutpoints as well as

the noise rate, p) as opposed to finding incremental improvements in predic-

tion error. Ironically enough, this holds even though (as in sections 6.6 and

6.7.2) MML encodes cutpoints more cheaply than KMDL. Figures 6.12 and

6.13 compaie the different methods in their ability to estimate the noise rate

p with random and evenly-spaced cutpoints. The MML and CV methods

seem to converge faster to the true noise rate.

6.9.4 Evenly-spaced Cutpoints

For completeness, Figures 6.7-6.11 present comparisons of the KL distance

and estimated cutpoints when the true cutpoint model is evenly-spaced, al-

though, as discussed, the original problem specification was for randomly-

spaced cuts. Our results replicate the performances of KMDL and CV as

discussed by Kearns et al. [51].

8.9.5 Tabulated Results

This sectior includes some results from the experimental runs. The following

tables present comparisons of the different methods for varied sample sizes

with a noise rate of p = 0.2. All the tables include for each method the

number of cutpoints estimated Ek, the training error count Em, the estimated

probability Ep and the Kullback-Leibler distance KLD — all averaged over

100 runs. The true cutpoint model consists of 100 randomly-spaced cutpoints.

130

Method

KMDL

CMDL

MML

CV

Ek

72.67

43.11

1.39

21.60

Em

10.23

40.74

90.44

48.54

Ep

0.056

0.207

0.453

0.245

KLD

1.3800

0.9068

0.1903

0.3125

Table 6.1: N = 200 and p = 0.2

Method

KMDL

CMDL

MML

CV

Ek

219.05

193.06

26.55

65.92

Em

0.00

17.73

150.30

104.65

Ep

0.002

0.031

0.251

0.175

KLD

1.7186

1.5182

0.1505

0.2586

Table 6.2: N = 600 and p = 0.2

6.10 Discussion

The results shown here demonstrate that the poor behaviour of the "MDL"

method reported by Kearns et al. (KMDL) [51] was not inherent in the MDL

principle or the MML principle. Rather, it was caused by a failure properly

to consider the minimization of the description lengths for each model, and

in particular the need to encode estimates (here, the cut positions) to an

appropriate precision.

The MML method developed here (which may equally well be considered

an MDL method) improves dramatically upon the performance reported by

Kearns et al., in general outperforming all of the other methods in the true

131

Figure 6.2: Evaluation of Different Methods with Random Outpoints

Noise = 0.0, Cuts = 100, Each point represents an average of 100 trials.

a
'm

a
3

500 1000 1500 2000

Sample Size

Noise = 0.0, Cuts = 100, Each point represents an average of 100 trials.

2500 3000

500 1000 1500

Sample Siw

2000 2500 3000

133

Figure 6.3: Evaluation of Different Methods with Random Outpoints

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

500 1000 1500

Sample Size

2000 2500 3000

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

1000 1500

Sample Size

2000 2500 3000

134

Figure 6.4: Evaluation of Different Methods with Random Outpoints

Noise = 02, Cuts =100, Each point represents an average of 100 trials.

500 1000 1500
Sample Size

2000 2500 3000

Noise = 02, Cuts = 100, Each point represents an average of 100 trials.

1000 1500

Sample Size

2000 2500 3000

135

Figure 6.5: Evaluation of Different Methods with Random Outpoints

Noise = 0.3, Cuts = 100, Each point represents an average of 100 trials.

s
a

500 1000 20001500

Sample Size

Noise = 0.3, Cuts = 100, Each point represents an average ol 100 trials.

2500 3000

500 1000 1500

Sample Size

2000 2500 3000

136

Figure 6.6: Evaluation of Different Methods with Random Outpoints

Noise = 0.4, Cuts = 100, Each point represents an average of 100 trials.
2.5

2
<9

0.5

KMDL
CMDL

MML
CV

—-
1000 20001500

Sample Size

Noiso = 0.4, Cuts = 100, Each point represents an average of 100 trials.

2500 3000

1000

1000 1500
Sample Size

2000 2500 3000

137

Figure 6.7: Evaluation of Different Methods with Evenly-spaced Outpoints

Noise = 0.0, Cuts = 100, Each point represents an average of 100 trials.

500 1000 20001500

Sample Size

Noise = 0.0, Cuts = 100, Each point represents an average of 100 trials.

B B i a > • i

2500 3000

500 1000 1500

Sample Size

2000 2500 3000

138

Figure 6.8: Evaluation of Different Methods with Evenly-spaced Outpoints

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

500 1000 20001500

Sample Size

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

2500 3000

1000 1500

Sample Size

2000 2500 3000

139

Figure 6.9: Evaluation of Different Metl • v with Evenly-spaced Cutpoints

Noise = 02, Cuts = 100, Each point represents an average of 100 trials.

500 1000 1500

Sample Size

2000 2500 3000

Noise = OX, Cuts = 100, Each point represents an average of 100 trials.

700 r—

1500

Sample Cize

2000 2500 3000

140

I

Method

KMDL

CMDL

MML

CV

Ek

324.94

143.28

40.21

70.24

Em

14.81

133.68

223.97

181.11

Ep

0.016

0.134

0.225

0.182

KLD

1.7011

0.7230

0.1161

0.1706

Table 6.3: N = 1000 and p = 0.2

Method

KMDL

CMDL

MML

CV

Ek

225.72

49.67

52.39

68.34

Em

186.20

294.48

319.90

287.17

Ep

0.125

0.197

0.214

0.192

KLD

0.8160

0.1000

0.0911

0.1207

Table 6.4: N = 1500 and p = 0.2

problem environment. Despite that, this implementation of MML is itself

only a rough application of the principle, and still uses a sub-optimal coding

scheme. In particular, it uses a constant cutpoint precision 6 for all cutpoints

of the model, whereas our derivation of 8 clearly implies that the precision

used for each cutpoint should reflect the local density of sample points near

the cut. A more carefully optimized MML method making proper use of

knowledge of the sample point locations would improve results, especially

perhaps in small samples. Previous experience with MML leads us to expect

that such a development would lessen the over caution of the present method

in finding cuts in small samples.

132

Figure 6.10: Evaluation of Different Methods with Evenly-spaced Outpoints

Noise = 0.3, Cuts = 100, Each point represents an average of 100 trials.

2.5

I 1.5
ID

0.5

KMDL
CMDL

MML
CV

500 1000 1500 2000 2500

Sample Size

Noise = 0.3, Cuts = 100, Each point represents an average of 100 trials.

3000

1400

1200

1000 1500

Sample Size

2000 2500 3000

141

Figure 6.11: Evaluation of DiflFerent Methods with Evenly-spaced Outpoints

Noise = 0.4, Cuts = 100, Each point represents an average of 100 trials.

B B^-8 B—B-"e~~fl—B—S 1

500 1000 20001500

Sample Size

Noise = 0.4, Cuts = 100, Each point represents an average of 100 trials.

2500 3000

1400

1200

1000

800

600

400

200

KMDL
CMDL
MML

. CV

1000 1500

Sample Size

2000
* * X M X « -

2500 :ooo

142

Figure 6.12: Comparison of Estimated p with Random Outpoints

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

500 1000 1500

Sample Size

2000 2500 3000

Noise = 02, Cuts = 100, Each point represents an average of 100 trials.

3000

Figure 6.13: Comparison of Estimated p with Evenly-spaced Cutpoints

i

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

1000 1500

Samole Size

2000 2500 3000

Noise = 0.2, Cuts = 100, Each point represents an average of 100 trials.

500 1000 1500

Sample Size

2000 2500 3000

144

Figure 6.14: Comparison of Methods on EPE with Random Outpoints

Noise = 0.1, Cuts = 100, Each point represents an average of 100 trials.

0.45

500 1000 1500

Sample Size

2000 2500 3000

Noise = 0.2, Cuts = 100, Each point represents an average of 100 trials.

1000 1500

Sample Size

2000 2500 3000

145

Figure 6.15: Comparison of Methods on EPE with Random Outpoints

I
I

Noise = 0.3, Cuts = 100, Each point represents an average of 100 trials.

z: yyw: /

500 1000 1500 2000 2500

Sample Size

Noise = 0.4, Cuts = 100, Each point represents an average of 100 trials.

3000

0.6

0.58

0.56

ui
c 0.54

5

a- 0.52

0.5

0.48

0.46

/

i—t—-ja—a—ffl—ffl—B—a—ffi—ffi—ffl—ffl—ffl—p—ill—•—•—•—•—m-—8—^

•—tf—X X X X X X X—X X—X X—X K \ f X X X X X X *—X-

-m—•—i

KMDL
CMDL

MML
CV

500 1000 1500

Sample Size

2000 2500 3000

146

Chapter 7

Conclusions

The primary aim of this research endeavour is to present a methodology

for model estimation and inference. The methodology commonly known as

the Minimum Message Length is used to develop systems for learning from

noisy data. The performance of these systems in the domains of polyno-

mial regression and binary sequence segmentation is demonstrated through

a comprehensive empirical study with other well-known approaches. In this

process the research work also demonstrates the effectiveness of the Mini-

mum Message Length principle as a principled metric for model preference.

Based on our empirical evaluation we find that the MML approach in gen-

eral provides more robust and accurate model selection than the other model

selection metrics like Akaike's information criterion, Swartz's criterion, gen-

eralized cross-validation and the Minimum Description Length principle.

Chapters five and six presented novel systems for univariate polynomial

discovery and binary segmentation. In addition to these contributions it is

also important to consider the significance of the empirical results presented

in these chapters. The empirical analysis of the bound on prediction error in

chapter five and the demonstration of its looseness is a significant result. In a

147

similar manner chapter six points out the failure of minimum length encoding

schemes that often lead to poor performance.

7.1 BODHI Project

The initial stages of this research were aimed at a system for integrated dis-

covery (named BODHI) from noisy real-world data. The integration was in

the context of covering all the stages of the discovery process discussed in

chapter 3. While a basic schematic architecture was developed towards this

aim the grander objective of building a system for automating the various

stages of discovery needs time and future research. Stand-alone systems for

univariate polynomial regression and the analysis of binary sequeces were

developed as modules that could be integrated into such a larger system. Al-

though component modules (from chapters 5 and 6) demonstrated plausible

performance in learning models from noisy datasets the integration of these

modules and others remains to be implemented. The Core Data Mining Soft-

ware (CDMS) package, currently under development at Monash University,

aims at the integration of such models together in a discovery environment.

There is a substantial amount of scope for further research and development

towards the BODHI system.

7.2 Future Research

Structural Risk Minimization and Minimum Message Length have been shown

to be plausible inductive principles. The support vector machine (SVM) is

a universal constructive learning procedure based on the statistical learning

theory of Vapnik [112, 113]. The term "universal" implies that the SVM can

be used to learn a variety of representations including polynomial estimators,

148

radial basis functions, decision trees, neural networks and splines [22, 111].

MML is also universal in this sense [125]. One of our research efforts in

progress is to extend the current univariate regression problem presented

here to a multivariate design, thus enabling a direct comparison of MML

with support vector machines and classical multivariate approaches.

Piecewise polynomials and splines are popular representation schemes

which offer a greatly flexible model space. One apparent idea is to extend

the MML univariate polynomial model discussed in chapter four to an MML

piecewise model for application in non-linear and non-parametric data anal-

ysis.

7.3 Remarks

What directions show promise for pragmatic automated discovery ? First,

we must further elaborate discovery methods. Systems like Bacon, AM, IDS,

Prospector, etc have only considered a handful of techniques. What other

knowledge, search strategies, and other means for generating and testing hy-

potheses could have been used ? We need better ways to represent and reason

with the knowledge used to make discoveries. With current methods much

useful knowledge is difficult to represent in a computer. For example, how

should we represent and use the three-dimensional structure of proteins to

determine their behavior ? How do we replicate human visual reasoning ?

Second, we must further demonstrate the scientific feasibility of automated

discovery by replicating more discoveries - particularly discoveries of different

types. Can we replicate Bohr's formulation of atomic structure, for example,

or the design of previously unknown computer algorithms, or Mendel's dis-

covery of genetical laws? These appear to be qualitatively different types of

149

discovery. Can computers be taught more of the steps involved in scientific

method - to observe, classify, quantify, hypothesize, and experiment ? Sys-

tems like IDS and BODHI are attempts to develop such integrated programs.

Third, we must seek practical applications of automated discovery. Pros-

pector has indicated the potential. How can the techniques found so far be

applied to other problems for economic payback? If we can explain techniques

and problems in automated discovery in an explicit fashion, others may find

applications and solutions.

Fourth, we must substantially improve our methods for knowledge ac-

quisition and knowledge-base management. The cost of building knowledge

bases greatly impedes automated discovery program development. The data

warehousing technologies available today are a positive step in this regard.

Making automated discovery economically feasible is difficult when knowledge

bases require so much effort to build. This is particularly true of discovery

knowledge bases, which ideally should contain much expert knowledge in the

scientific subject area. Research leading to better knowledge acquisition and

knowledge management can contribute substantially to bringing about auto-

mated discovery.

Finally, we must explain that discovery results from a set of principles

that have been at least partially articulated - that discovery can result from

a planned sequence of steps - to dispel the myth that it is a magical, incom-

prehensible event.

150

Bibliography

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning

algorithms. Machine Learning, 6(l):37-66, January 1991.

[2] H. Akaike. Fitting autoregressive models for prediction. Annals of the

Institute of Statistical Mathematics, 21:243-247, 1969.

[3] H. Akaike. Statistical predictor information. Annals of the Institute of

Statistical Mathematics, 22:203-217, 1970.

[4] R. Baxter. Minimum Message Length Inductive Inference - Theory and

Applications. PhD thesis, Dept. Computer Science, Monash University,

Australia 3168, 1996.

[5] R.A. Baxter and D.L. Dowe. Model selection in linear regression us-

ing the MML criterion. In J.A. Storer and M. Cohn, editors, Proc. 4 'th

IEEE Data Compression Conference, page 498, Snowbird, Utah, March

1994. IEEE Computer Society Press, Los Alamitos, CA. Also TR 276

(1996), Dept. of Computer Science, Monash University, Clayton, Vic-

toria 3168, Australia.

[6] R.A. Baxter and J.J. Oliver. The kindest cut: minimum message length

segmentation. In S. Arikawa and A.K. Sharma, editors, Proc. of the 7th

151

I

Int. Workshop on Algorithmic Learning Theory, pages 83-90. Springer-

Verlag Berlin, 1996. Lecture notes in computer science; Vol. 1160: Lec-

ture notes in artificial intelligence.

[7] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

Warmuth. Occam's razor. In Jude W. Shavlik and Thomas G. Diet-

terich, editors, Readings in Machine Learning, pages 201-204. Morgan

Kaufmann, 1990.

[8] Margaret A. Boden. The Creative Mind: Myths and Mechanisms. Basic

Books, New York, 1990.

[9] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifi-

cation and Regression Trees. Statistics/Probability Series. Wadsworth

Publishing Company, Belmont, California, U.S.A., 1984.

[10] Carla E. Brodley. Recursive automatic bias selection for classifier con-

struction. Machine Learning, 20(l/2):63-94, 1995.

[11] K. Korb C. Wallace and H. Dai. Causal discovery via mml. Technical

Report 96/254, Dept. Computer Science, Monash University, Australia

3168, Feb 1996.

[12] R. M. Cameron-Jones. Minimum description length instance-based

learning. In 5th Australian Joint Conference on Artificial Intelligence,

pages 369-373, 1992.

[13] G.J. Chaitin. On the length of programs for computing finite sequences.

J.A.C.M., 13:547-549, 1966.

[14] Gregory J. Chaitin. On the length of programs for computing finite

binary sequences. Journal of the ACM, 13(4):547-569, October 1966.

152

[15] Gregory J. Chaitin. On the length of programs for computing finite

binary sequences: Statistical considerations. Journal of the ACM,

16(1):145-159, January 1969.

[16] P. Cheeseman. On finding the most probable model. In J. Shrager and

P. Langley, editors, Computational Models of Scientific Discovery and

Theory Formation., pages 73-95. Morgan Kauffman, 1990.

[17] P. Cheeseman et al. Autoclass: A bayesian classification system. In

Fifth International Conference of Machine Learning, 1988.

[18] V. Cherkassky and M. Mulier. Learning from Data: Concepts, Theory,

and Method, chapter 4, pages 119-127. Wiley and Sons, 1998.

[19] A. Church. On the concept of a random sequence. Bull. Amer. Math.

Soc, 1940.

[20] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine

Learning, 3:261, 1988.

t
i

|

[21] Cleveland and Grosse. Computational methods for local regression.

Statistics and Computing, l(l):47-62, 91.

[22] Corinna Cortes and Vladimir Vapnik. Support vector networks. Ma-

chine Learning, 20:273, 1995.

[23] P. Craven and G. Wahba. Smoothing noisy data with spline functions:

Estimating the correct degree of smoothing by the method of general-

ized cross-validation. Numerical Math., 31:377-403, 1979.

[24] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector

Machines (and Other Kernel-Based Learning Methods). CUP, 2000.

153

[25] L. H. Ungar D. E. Schuurmans and D. P. Foster. Characterizing the

generalization performance of model selection strategies. In Proceedings

of the Fourteenth International Conference on Machine Learning, 1997.

[26] M. J. Pazzani D. H. Fisher and P. Langley. Concept Formation: Knowl-

edge and Experience in Unsupervised Learning. Morgan Kaufmann,

1991.

[27] Lindley Darden. Recent work in computational scientific discovery. In

Nineteenth Annual Conference of the Cognitive Science Society, 1997.

[28] Carle de Boor. A Practical Guide to Splines. Number 27 in Applied

Mathematical Sciences. Springer-Verlag, New York, 1978.

[29] D.G.T. Denison, B.K. Mallick, and A.F.M. Smith. Automatic Bayesian

curve fitting. J. Roy. Statist. Soc. Series B, 60:333-350, 1998.

[30] T. Detterich and R. Michalski. A comparative review of selected meth-

ods for learning from examples. In Machine Learning: An Artificial

Intelligence Approach, pages 41-81. Tioga Publ. Co., 1983.

[31] B. Dom. MDL estimation with Small Sample Sizes including an applica-

tion to the problem of segmenting binary strings using bernoulli models.

Technical Report RJ 9997 (89085) 12/15/95, IBM Research Division,

Almaden Research Center, 650 Harry Rd, San Jose, CA, 95120-6099,

1995.

[32] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard.

Wavelet shrinkage: Asymptopia? J. R. Statist. Soc. B., 57(2):301-

337, 1995.

154

[33] D.L. Dowe, R.A. Baxter, J.J. Oliver, and C.S. Wallace. Point Estima-

tion using the Kullback-Leibler Loss Function and MML. In Proc. 2nd

Pacific Asian Conference on Knowledge Discovery and Data Mining

(PAKDD'98), pages 87-95, Melbourne, Australia, April 1998. Springer

Verlag.

[34] D.L. Dowe, J.J. Oliver, and C.S. Wallace. MML estimation of the

parameters of the spherical Fisher distribution. In A. Sharma et al.,

editor, Proc. 7th Conf. Algorithmic Learning Theory (ALT'96), LNAI

1160, pages 213-227, Sydney, Australia, October 1996.

[35] T. Edgoose and L. Allison. MML Markov classification of sequential

data. Statistics and Computing, 9:269-278, 1999.

[36] R. L. Eubank. Spline smoothing and nonparametric regression. Dekker,

New York, 1988.

[37] Brian Falkenhainer and Ryszard S. Michalski. Integrating quantitative

and qualitative discovery, the ABACUS system. Machine Learning,

1986, l(4):367-401, 1986.

[38] S. J. Farlow, editor. Self-organizing Methods in Modelling (Statistics:

Textbooks and Monographs, vol.54- Marcel Dekker Inc., 1984.

[39] L. J. Fitzgibbon, D. L. Dowe, and L. Allison. Univariate polynomial

inference by Monte Carlo message length approximation. In Proceed-

ings of the Nineteenth International Conference on Machine Learning

(ICML-2002), July 2002.

[40] Leigh J. Fitzgibbon, Lloyd Allison, and David L. Dowe. Minimum mes-

sage length grouping of ordered data. In Algorithmic Learning Theory,

155

8

i. '.

M

International Conference, ALT 2000, Sydney Australia, December

2000, Proceedings, volume 1968 of Lecture Notes in Artificial Intelli-

gence, pages 56-70. Springer, Berlin, 2000.

[4?.] Kenneth D. Forbus. Qualitative process theory. In D. Bobrow, editor,

Qualitative reasoning about physical systems. MIT press, 1985.

[42] J. H. Friedman. Multivariate adaptive regression splines. Annals of

Statistics, 19(l):l-67, 1991.

[43] Jerome H. Friedman and Werner Stuetzle. Projection pursuit regres-

sion. Journal of the American Statistical Association, 76(376):817-823,

December 1981.

[44] E. Gold. Language indentification in the limit. Information and Control,

10:447-474, 1967.

[45] Diana F. Gordon and Marie desJardins. Evaluation and selection of

biases in machine learning. Machine Learning, 20(1/2):5-22, 1995.

[46] P. Griinwald. Model selection based on minimum description length.

Journal of Mathematical Psychology, 2000.

[47] J. Hajek. A Course in Nonparametric Statistics. Holden-Day, San

Francisco, CA, 1969.

[48] D. J. Hand. Kernel Discriminant Analysis. Research Studies Press,

Chichester, 1982.

[49] P. J. Hayes. The naive physics manifesto. In D. Michie, editor, Expert

Systems in the Electronic Age, pages 242-270. Edinburgh University

Press, Edinburgh, Scotland, 1979.

156

[50] R. Jones. Generating predictions to aid the scientific discovery process.

In Fifth National Conference on Artificial Intelligence, 1986.

[51] Michael Kearns, Yishay Mansour, Andrew Y. Ng, and Dana Ron. An

experimental and theoretical comparison of model selection methods.

Machine Learning, 27:7-50, 1997.

[52] Sakir Kocabas. Conflict resolution as discovery in particle physics. Ma-

chine Learning, 6:277-309, 1991.

[53] A.N. Kolmogorov. Three approaches to the quantitative definition of

information. Problems of Information Transmission, 1:4-7, 1965.

[54] K. Korb and M. Stillwell. The story of the hot hand: Powerful myth

or powerless critique, under submission, 2002.

[55] D. kulkarni and H.A. Simon. Computational models of scientific dis-

covery and theory formation, chapter Experimentation in Machine Dis-

covery. Morgan Kaufmann, 1990.

[56] D. L. Dowe L. J. Fitzgibbon and L. Allison. Change-point estimation

using new minimum message length approximations. In Proceedings of

the Seventh Pacific Rim International Conference on Artificial Intelli-

gence (PRICAI-2002), LNAI. Springer-Verlag, August 2002.

[57] P. Langley. Data-driven discovery of physical laws. Cognitive Science,

1981.

[58] P. W. Langley. BACON: A production system that discovers empirical

laws. In Raj Reddy, editor, Proceedings of the 5th International Joint

Conference on Artificial Intelligence, pages 344-344, Cambridge, MA,

August 1977. William Kaufmann.

157

[59] Pat Langley. The computer-aided discovery of scientific knowledge. In

First International Conference on Discovery Science, 1998.

[60] Michael Lebowitz. Not the path to perdition: The utility of similarity-

based learning. In Tom Kehler and Stan Rosenschein, editors, Proceed-

ings of the 5th National Conference on Artificial Intelligence. Volume 1,

pages 533-537, Los Altos, CA, USA, August 1986. Morgan Kaufmann.

[61] Michael Lebowitz. Experiments with incremental concept formation:

UNIMEM. Machine Learning, 2:103-138, 1987.

[62] D. B. Lenat. Automated theory formation in mathematics. In Fifth

International Joint Conference on Artificial Intelligence, 1977.

[63] Per Martin-L6f. The definition of random sequences. Information and

Control, 9(6):602-619, December 1966.

[64] R. S. Michalski. A theory and methodology of inductive learning. In

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine

Learning: An Artificial Intelligence Approach, volume I, pages 83-134,

Palo Alto, CA, 1983. Tioga.

[65] R.S. Michalski and R. Stepp. Machine Learning: An artificial intelli-

gence approach, chapter Learning from observation: Conceptual Clus-

tering. Morgan Kaufmann, 1983.

[66] Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell. Ma-

chine learning : an artificial intelligence approach, vol.1, (ed.). Palo

Alto, Calif.: Tioga Pub. Co., 1983, CALL NUMBER: Q325 .M32 1983,

1983.

158

1

[67] Marvin L. Minsky. A framework for representing knowledge. In

Patrick Henry Winston, editor, The Psychology of Computer Vision,

pages 211-277. McGraw-Hill, New York, 1975.

[68] Tom M. Mitchell. The need for biases in learning generalizations. Tech-

nical Report CBM-TR-117, Department of Computer Science, Rutgers

University, New Brunswick, New Jersey, May 1980.

[69] M. Moulet. The role of measurement uncertainty in numeric law induc-

tion. Lecture Notes in Computer Science, 945:619-??, 1995.

[70] Keiichi Noe. Philosophical aspects of scientific discovery: A historical

survey. In Discovery Science, First International Conference, 1998.

[71] B. Nordhausen and P. Langley. An integrated discovery system.

In Qualitative Reasoning Workshop Abstracts. Qualitative P.easoning

Group, University of Illinois at Urbana-Champaign, 1987.

[72] Bernd Nordhausen and Pat Langley. An integrated framework for em-

pirical discovery. Machine Learning, 12:17-47, 1993.

[73] J. J. Oliver, R. A. Baxter, and C. S. Wallace. Minimum message length

segmentation. Res' and Dev' in Knowledge Discovery and Data Mining

(PAKDD-98), pages 222-233, 1998.

[74] J. J. Oliver and C. S. Forbes. Bayesian approaches to segmenting a

simple time series. Technical Report 97/336, Dept. Computer Science,

Monash University, Australia 3168, dec 1997.

[75] Jan Zytkow Pat Langley et al. Computational Explorations of the Cre-

ative Processes. MIT Press, Cambridge, 1987.

i

159

[76] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks

of Plausible Inference. Morgan Kaufmann, 1991. (Revised 2nd Edition).

[77] Joseph Phillips. Towards a method of searching a diverse theory space

for scientific discovery. Lecture Notes in Computer Science, 2226:304-

??, 2001.

[78] Karl R. Popper. The Logic of Scientific Discovery. Basic Books, New

York, 1959.

[79] J. R. Quinlan. Learning logical definitions from relations. Machine

Learning. 5(3):239-266, ? 1990.

[80] J. R. Quinlan. C4-5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo, CA, 1993.

[81] H. Reichenbach. Experience and Prediction. University of Chicago

Press, 1938.

[82] L. Rendell. A general framework for induction and a study of selective

induction. Machine Learning, 1(2): 177-226, 1986.

[83] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge

University Press, Cambridge, 1996.

[84] J. Rissanen. Modeling by shortest data description. Automatica,

14:465-471, 1978.

[85] J. Rissanen. Stochastic complexity and modeling. Ann. of Statist,

14(3):1080-1100, 1986.

[86] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scien-

tific, N.J., 1989.

160

[87] J. Rissanen. Hypothesis selection and testing by the MDL principle.

The Computer Journal, 42(4):260-269, 1999.

[88] J. J. Rissanen. Fisher Information and Stochastic Complexity. IEEE

Trans on Information Theory, 42(l):40-47, January 1996.

[89] Donald Rose and Pat Langley. Chemical discovery as belief revision.

Machine Learning, 1:423, 1986.

[90] Donald Rose and Pat Langley. Chemical discovery as belief revision.

Machine Learning, 1:423-451, 1986.

[91] Y. Sakamoto et al. Akaike information criterion statistics, pages 191—

194. KTK scientific publishers, 1986.

[92] S. Schaal. Nonparametric regression for learning. In J.A. Storer and

M. Cohn, editors, Proc. Conference on Adaptive Behavior and Learning,

pages 123-133. University of Bielefeld, Bielefeld, Germany, 1994.

[93] Cullen Schaffer. A proven domain-independent scientific function-

finding algorithm. In William Dietterich, Tom; Swartout, editor, Pro-

ceedings of the 8th National Conference on Artificial Intelligence, pages

828-833, Hynes Convention Centre?, July 29-August 3 1990. MIT

Press.

[94] Cullen Schaffer. Bivariate scientific function finding in a sampled, real-

data testbed. Machine Learning, 12:167-183, 1993.

[95] Klaus Schmid. Creative problem solving and automated discovery — an

analysis of psychological and AI research. Technical Memo TM-95-04,

Deutsches Forschungszentrum fur Kiinstliche Intelligenz, 1995.

161

[96] G. Schwarz. Estimating the Dimension of a Model. Ann. Stat, 6:461-

464, 1978.

[97] Herbert A. Simon, Valdes-Perez, and Sleeman. Scientific discovery and

simplicity of method. Artificial Intelligence, 91(2):177-181, 1997.

[98] R. Solomonoff. A formal theory of inductive inference, I and II. Infor-

mation and Control, 7:1-22 and 224-254, 1964.

[99] R. J. Solomonoff. A formal theory of inductive inference. Information

and Control, 7:1-22, 224-254, 1964.

[100] R. J. Solomonoff. Complexity-based induction systems: Comparisons

and convergence theorems. IEEE Trans, on Information Theory, 1978.

[101] Ray J. Solomonoff. The discovery of algorithmic probability. Journal

of Computer and System Sciences, 55(1): 73-88, August 1997.

[102] M. Stillwell. Investigating the "Hot Hand" Phenomenon. PhD thesis,

Dept. Computer Science, Monash University, Australia 3168, 1998.

[103] M. Stone. Cross-validatory choice and assessment of statistical predic-

tions (with discussion). Journal of the Royal Statistical Society series

B, 36:111-147, 1974.

[104] C. J. Thornton. Truth from Trash: How Learning Makes Sense. MIT

press, Cambridge, MA, 2000.

[105] P. E. Utgoff. Machine learning of inductive bias. Kluwer, Hingham,

MA, 1986. Reviewed in IEEE Expert, Fall 1986.

[106] P. E. Utgoff. Shift of bias for inductive concept learning. In R. S. Michal-

ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An

162

Artificial Intelligence Approach, volume II, pages 107-148, Los Altos,

CA, 1986. Morgan Kaufmann.

[107] R. E. Valdes-Perez. Machine discovery in chemistry: New results. Ar-

tificial Intelligence, 1995.

[108] R. E. Valdes-Perez. Principles of human computer collaboration for

knowledge discovery in science. Artificial Intelligence, 1999.

[109] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134-1142, 1984.

[110] P. J. van Heerden. A general theory of prediction. Technical report,

Polaroid Corp., 1963.

[Ill] V. Vapnik, S. Golowich, and A. Smola. Support vector method for

function approximation, regression estimation, and signal processing.

In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neu-

ral Information Processing Systems 9, pages 281-287, Cambridge, MA,

1997. MIT Press.

[112] V. N. Vapnik. Estimation of Dependencies Based on Empirical Data.

Springer-Verlag, New York, 1982.

[113] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,

New York, 1995.

[114] V. N. Vapnik. Computational Learning and Probabilistic Reasoning,

chapter Structure of Statistical Learning Theory. Wiley and Sons, 1996.

[115] M. Viswanathan and C. Wallace. A note on the comparison of poly-

nomial selection methods. In Proc. 7th Int. Workshop on Artif Intell.

and Stats., pages 169-177. Morgan Kauffman, January 1999.

163

[116] M. Viswanathan, C.S. Wallace, D.L. Dowe, and K. Korb. Finding cut-

points in noisy binary sequences - a revised empirical evaluation. In

Proc. 12th Australian Joint Conference on Artificial Intelligence, pages

405-416, Sydney, Australia, December 1999.

[117] C. S. Wallace. Computational Learning and Probabilistic Reasoning,

chapter 3, pages 43-66. Wiley, 1996.

[118] C. S. Wallace and D. L. Dowe. Refinements of MDL and MML coding.

The Computer Journal, 42(4):330-337, 1999.

[119] C.S. Wallace. Multiple Factor Analysis by MML Estimation. Technical

Report 95/218, Dept. of Computer Science, Monash University, Clay-

ton, Victoria 3168, Australia, 1995. Accepted, to appear in J. Multiv.

Analysis.

[120] C.S. Wallace. On the selection of the order of a polynomial model.

Technical report, Royal Holloway College, London, 1997.

[121] C.S. Wallace. Intrinsic Classification of Spatially-Correlated Data.

Computer Journal, 41(8):602-611, 1998.

[122] C.S. Wallace and D.M. Boulton. An information measure for classifica-

tion. Computer Journal, 11 (2): 195-209, 1968.

[123] C.S. Wallace and D.M. Boulton. An invariant Bayes method for point

estimation. Classification Society Bulletin, 3(3): 11-34, 1975.

[124] C.S. Wallace and D.L. Dowe. MML estimation of the von Mises concen-

tration parameter. Tech Rept TR 93/193, Dept. of Computer Science,

Monash Univ., Clayton, Victoria 3168, Australia, 1993. prov. accepted,

Aust. and N.Z. J. Stat.

164

[125] C.S. Wallace and D.L. Dowe. Minimum message length and Kolmogorov

complexity. Computer Journal, 42(4):270-283, 1999.

[126] C.S. Wallace and D.L. Dowe. MML clustering of multi-state, Poisson,

von Mises circular and Gaussian distributions. Statistics and Comput-

ing, 10(l):73-83, 2000.

[127] C.S. Wallace and P.R. Freeman. Estimation and inference by compact

coding. J. R. Statist. Soc B, 49(3):240-265, 1987.

[128] C.S. Wallace and P.R. Freeman. Single factor analysis by MML esti-

mation. Journal of the Royal Statistical Society (Series B), 54:195-209,

1992.

[129] G. Wallas. The AH of Thought. Harcourt-Brace, New York, 1962.

[130] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman &; Hall,

London, 1995.

[131] Yihsiao Wang. Randomness, stochasticity, and approximations. Theo-

retical Computer Science, 32:517-529, 1999.

[132] Kenneth H. Wasserman. Unifying Representation and Generalization

Understanding Hierarchically Structured Objects. PhD thesis, Columbia

University, 1985.

[133] G. Webb. A heuristic covering algorithm outperforms learning all rules.

In Proceedings of ISIS'96: Information, Statistics and Induction in Sci-

ence, pages 20-30. Singapore: World Scientific, 1996.

[134] D. G. Willis. Computational complexity and probability constructions.

Journal of the Assoc. of Comp. Mach., 1970.

165

[135] R. Zembowicz and J. M. Zytkow. Automated discovery of empirical

equations from data. Lecture Notes in Computer Science, 542:429-??,

1991.

[136] R. Zembowicz and J. M. Zytkow. Automated discovery of empirical

equations from data. In M. Ras, Z.W.; Zemankova, editor, Proceedings

of the 6th International Symposium on Methodologies for Intelligent

Systems (ISMIS}91), volume 542 of LNAI, pages 429-440, Charlotte,

N.C., USA, October 1991. Springer Verlag.

[137] R. Zembowicz and J. M. Zytkow. Recognition of functional dependen-

cies in data. In J. Komorowski and Z. W. Ras, editors, Proceedings of the

7th International Symposium on Methodologies for Intelligent Systems

(ISMIS'93), volume 689 of LNAI, pages 632-641, Trondheim, Norway,

June 1993. Springer Verlag.

[138] Robert Zembowicz and Jan M. Zytkow. Discovery of equations: Ex-

perimental evaluation of convergence. In William Swartout, editor,

Proceedings of the 10th National Conference on Artificial Intelligence,

pages 70-75, San Jose, CA, July 1992. MIT Press.

[139] J. M. Zytkow. Incremental discovery of hidden structure: Applications

in the theory of elementary particles. In Thirteenth National Conference

on Artificial Intelligence, 1996.

[140] J. M. Zytkow and P. J. Fischer. Constructing models of hidden struc-

ture. In M. Ras, Z.W.; Zemankova, editor, Proceedings of the 6th In-

ternational Symposium on Methodologies for Intelligent Systems (IS-

MIS'91), volume 542 of LNAI, pages 441-449, Charlotte, N.C., USA,

October 1991. Springer Verlag.

166

[141] Jan Zytkow, editor. Machine Discovery. Kluwer Academic, Boston,

USA, 1997.

[142] Jan M. Zytkow and Paul J. Fischer. Incremental discovery of hidden

structure: Applications in theory of elementary particles. In Proceed-

ings of the Thirteenth National Conference on Artificial Intelligence and

the Eighth Innovative Applications of Artificial Intelligence Conference,

pages 750-756, Menlo Park, August 4-8 1996. AAAI Press / MIT Press.

[143] Jan M. Zytkow and Herbert A. Simon. A theory of historical discovery:

The construction of componential models. Machine Learning, 1:107,

1986.

[144] Jan M. Zytkow and Herbert A. Simon. A theory of historical discovery:

The construction of componential models. Machine Learning, 1:107-

136, 1986.

167

