W

e
S et TR

< 3

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ONL.vvernn ber 2003c.....

Sec. Research Graduate School Committee

Under the Copyright Act 1968, this thesis inust be used only under the
nommal conditions of scholarly fair dealing for the purposes of
research, criticism or review, In particular no results or conclusions
should be exwacted from it, nor should it be copicd or closely
paraphrased in whole or in part without the writien consent of the
avthor, Proper written acknowledgement should be made for any
assistance obtained from this thesis,

/

(S LN

© Copyright

by

Simon Cuce

2003

GLOMAR: A Component Based Framework for
Maintaining Consistency of Data Objects within a

Heterogeneous Distributed File System

by

Simon Cuce, BComp(Hons)

Dissertation
Submitted by Simon Cuce
for fulfiliment of the Requirements

for the Degree of

Doctor of Philosophy
in the School of Computer Science and Software Engineering at

Monash University

4

Monash University

January, 2003

Contents

Listof Tables 0. v.... e ... viii
Listof Figures i, X
Abstract e e e e e e e e e e e e e e xiii
Acknowledgments xv
Outcomes e i e xvii
1 Introduction i ininann 1
1.1 Distributed FileSystem 1
1.2 ReplicationBasics 0. 3
1.3 Support for Heterogeneity 4
14 ThesisFocus iy 5
15 GLOMAR Coneept o v it i v v it i e 6
1.6 Gutline of the Dissertation. 7

2 Consistency Models, 8
2.1 Replication within a Distributed System 8
2.2 Concurrency Control and Consistency Maintenance 9
2.2.1 Serialisation Conflicts 11

2.2.2 One-copy Equivalence Conflicts 12

2.2.3 Pessimistic and Optimistic Approaches 13

2.3 Consistency Model Taxonomy 14

iii

2.3.1 Polling based Consistency Model 15

35 Related Work 56
2.3.2 Token based Consistency Model 17
36 Sommary e e e 57
2.3.3 Voting based Consistency Model 19 ?
2.34 Available Copies based Consistency Model 21 4 The Relationship Component 59
24 Designlssues 25 -'{;:.'::; 4.1 Relationship Component Design Origin 59
2.4.1 ImplicationsofaDFS 26 4.2 Relationship Component Design 62
2.4.2 Application, User and Environmental Requiremenis . . . 29 . 43 Relationship Component Structure 63
243 Models 31 - | 431 Consistency Model, 63
244 Client/Server 32 ' 43.2 RelationshipScope 66
245 Peerto-Peer. 33 433 CloneList. 67
2.4.6 Environmental Hardware 34 _ 4.4 Relationskip Component Issues 71
2.5 Aspects of Heterogeneity 39 44,1 Imstantiation i it i i s e e e 72
2.6 Research Area targeted by this Dissertation 39 N 4.4.2 Threading Model b e 73
27 Summary ... L. 40 443 LifeCycle v i i e e 74
45 SUmMmATY it e e e e e e e e e e 76
3 GLOMAR Design Rationale 41
3.1 GLOMAR Motivation a '. ¢ GLOMAR Middleware Layer 77
3.L.1 Support for Heterogeneous Environments 42 Sl AImS. ... 7
3.1.2 Consistency Model Development 44 ' 5.2 GLOMAR Middleware Layer Design 78
313 DFSFlexibility 44 - 5.2.1 Local Operation Interface 79
32 GLOMARAImMS 45 5.2.2 Remote Operation Interface « . . v e ... 81
3.3 Proposed Architecture of GLOMAR 46 5.2.3 Clone Distribution Manager 82
3.3.1 How Heterogeneity is Supported 46 524 ServiceManager e 83
3.3.2 Streamline Creation of Consistency Models 48 5.2.5 System Grader 0. 84
3.3.3 Abstracting DFS Complexity 49 5.2.6 Relationship Componant Repository 86
334 Flexibility 50 527 Executiveo g1
34 GLOMAR Overview 51 53 Summary e 94
34.1 Relationship Component . , 51 6 GLOMAR Implementation oo oo ovsennn. . 97
342 GLOMAR Middleware Layer 53 6.1 Development Platform 97
3.4.3 ImplementationIssues 55 6.2 Relationship Component Implementation 99
iv v

6.2.1 IConsistencyModel interface 99

7.4.5 Outlook 2002 Relationship Component Implementation . 154
6.2.2 IRelationshipScope interface 101 7.4.6 Analysis of Outlook 2002 Relationship Component 162
6.2.3 RelationshipComponent class 103 :' 7.5 Aggregated Analysis of the Case Studies 163
6.3 GLOMAR Middleware Layer Implementation 105 76 SUMMATY . . o v v ettt e e e e e 164
6.3.1 Local Operation Interface 105 :)
6.3.2 Remote Operation Interface 107 | 8 GLOMAR Bvaluation0 170
6.3.3 Clone Distribution Manager 1ﬁ8 81 Infroduction. . ..o 170
6.3.4 ServiceMamager 109 8.2 Aim and Experimental Methodology 171
6.3.5 System Grader 112 8.2.1 Evaluating the Initiation of the GLOMAR middleware layer173
6.3.6 Relationship Component Repository 118 8.22 Evaluating Processing an Operation i
6.3.7 Bxecutive_ 121 8.3 Initiation of the GLOMAR middleware layer: Results and Dis- 176
CUSSIOIL o & v v v i v v e v o v bt a e ot e e e e e e e e
6.3.8 Administration Console 123 8.3.1 Scaling the number of Clomes v v vt rnt .. 176
6.4 Running the GLOMAR System 123 8.3.2 Scaling the number of Relationship Components 178
65 Summary L 125 8.4 Processing an Operation: Results and Discussion 181
T CaseStudies 127 | 841 Scaling the number of Clones 181
Tl o Ams .. 127 8.4.2 Scaling the number of Relationship Components 183
7.2 Notepad Relationship Component, 128 85 Conclusion i e 130
7.2.1 Notepad Relationship Components Design 128 8.5.1 Initiation of the GLOMAR middleware layer 190
7.22 Notepad Relationship Components Implementation 129 8.5.2 Processingan Operation 190
7.23 Analysis of Notepad Relationship Components 135) 86 Overall. e e 192
7.3 Twin Transaction Model Relationship Component 136 ': 87 Bummary 192
7.3.1 TTM Relationship Component Design 137 9 C onelUSIon s e e 193
7.3.2 TTM Relationship Component Implementation , 147 9.1 Contribution of this Dissertation . . . - « . « o+ o oo 194
7.33 Analysis of TTM Relationship Component 150 _. 9.2 Future Work . . o o v o, 197
7.4 Qutlook 2002 Relationship Component 150 9.3 Final Remarks . . v o v oo e e e e e e e 198
7.4.1 Sent Mail, Draft Mail and Inbox Consistency Model . . . 151
742 Calendar Consistency Mode! 152 Glossary « v 199
743 Contacts Consistency Model 153
744 Tasks Consistency Model 154 (

List of Tables

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3

8.4
8.5

8.6

Specific information collected by the Local Operation Interface . 79

Context Provider Taxonomyo i o v v v v 86
CloneList Tags v, 104
Clone Distribution Manager’'s AP 110
UserProfilelnfo Keys oo v v i i i v i, 114
FileProfilelnfo Keys v v it 115
SystemProfileInfo Xeys based on figure 6.9 117
Sent Mail, Draft Mail and Inbox DataItems. 152
CalendarDataltems 153
Contact Dataltems 154
Task Dataltems v i ... 155
Outlock Information passed via the tag paraemter 158
Supplied Context Providers 164
Experimental Input Parameter 173
Experimental Environment Configuration 174

Initiation of the GLOMAR middleware layer Memory Consump-
tion Table (Clones) 176

Initiation of the GLOMAR middleware layer Times (Clones) . . 177

Initiation of the GLOMAR middleware layer Times (Relation-
ship Components) 179

Average Time per Operation Linear Functions (Clones} 182

viii

8.7 Average Time per Operation for the Clone Distribution Manager
Linear Function (Clones}

8.8 Average Time per Operation for Singleton and New Instance
Relationship Componentso,

8.9 Average Time per Operation Exponential Functions (Relation-
ship Components),

8.10 Time of Relationship Component Processing for both Singleton
and New Instance Relationship Components

8.11 Average Time of Relationship Cemponent Processing per Oper-
ation, Exponential Functions (Relationship Components)

8.12 Average Time per Operation Equations when only Partial Relo-
tionship Component Processing isinvoked

ix

List of Figures

2.1
2.2
2.3
24

3.1
3.2

3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5

One-copy Equivalence 10
Optimistic and Pessimistic Approaches 14
Matrix of Relationships 17
Quorum Imtersection 20
A Heterogeneous Environment 43

Single Consistency Model and Multiple Consistency Model Ap-

Proaches . . . ¢ . . L . e e e e e e e 47
Relationship Component [52
GLOMAR Middleware Layer 53
UML Diagram of the Consistency Model, 64
Local and Remote Operations 65
UML Diagram of the Relationship Scope 66
Relationship Scope Invocation 67
Clone Types e e e e e e e e e e 68
Relationship Component Instantiation Model, . 73
Relationship Component Threading Issues . . ., 74
Local Operation Interface 80
Remote Operation Interface 82
Service Manager,, 83
System Grader’s pickup Approach 85
System Grader Taxonomy Structure 87

5.6 Extending Relationship Coxponents 88
5.7 Relationship Component Processing 95
5.8 File Operations wﬁhin the Executive 96
6.1 IConsistencyModel Interface 100
6.2 IRelationshipScope Imterface 102
63 CloneList XMLFile, 103
6.4 Local Qperation Interface Implementation 106
6.5 Local Operation Interface Entry Point, 107
6.6 Remote Operation Interface Entry Point 108
6.7 Service Manager XML File 111
6.8 IGlomarServiceinterface, 111
6.9 SystemGrader XML File 113
6.10 GLOMAR Administraticn Console 124
6.11 GLOMAR’s Console Driver 125
6.12 GLOMAR’s Windows Service 126
7.1 Notepad Get Latest Relationship Component 129
7.2 Notepad ROWA Relationship Component 130
7.3 Notepad Application oo oL, 131
7.4 Notepad RelationshipScopes 132
7.5 GLOMAR's XML Web Service 133
76 Twin Transaction Model . . ., 139
7.7 Twin Transaction Model Implementation Architecture 148
7.8 Qutlook Relationship Component Design 156
7.9 OutlookCOMAdd-In, 157
7.10 GLOMAR Operation Failing within Outlook 159
7.11 IOutlookProcessing Interface 166
7.12 Outlook Consistency Model, 167
713 MaillLog XML File. i i i i o e 167
7.14 Calendar Two Phase Commit Protocol 168
xi

7.15 Contact XML Web Service o v v it v v vt v e e 169
7.16 Task XML Web Service v v v v i i e e e e, 169

8.1 Experimentstructure., 173

8.2 Initiation of the GLOMAR middleware Jayer Memory Consump-
tion (Clomes) e 177

8.3 Initiation of the GLOMAR middleware layer Times, Based on
Stages (Clones) i i i et i i e 178

8.4 Initiation of the GLOMAR middleware layer Memory Consump-

tion (Relationship Components). 179
8.5 Initiation of the GLOMAR middleware layer Times Based on

Stages (Relationship Components) 180
8.6 Average Time per Operation (Clones) 181

8.7 Average Time per Operation for the Clone Distribution Manager
(Clones) e 183

8.8 Percentage of Average Operation Time taken by the Clone Dis-
tribution Manager o0 oL 184

8.9 Average Time per Operation for Singleton Relationship Compo-

8.10 Average Time per Operation for New Instance Relstionship Com-
PORENES . . o v v it st e et e e e e e e e e e 185

8.11 Average Time per Operation for Singleton Relationship Compo-
nents when only Partial Relationship Component Processing is
e N 188 ;'..__.;3_:

8.12 Average Time per Operation for New Instance Relationship Com-
ponents when only Partial Relationship Component Processing is
invoked L 188

8.13 Instantiation Time with Singleton and New Instance Relation-
ship Components within a. Rendom Case Scenario 189

GLOMAR: A Component Based Framework for
Maintaining Consistency of Data Objects within a
Heterogeneous Distributed File System

Simor: Cuce, PhD
Monash University, 2003

Supervisor: Arkady Zaslavsky

Ahsiract

Maintaining one-copy equivalence of replicated data is one of the primaxry tasks
of any distributed file system (DFS5). This involves ensuring that the results of
concurrent operations are made consistent between all replicated data objects.
Current mechanisms used to maintain consistency between replicated data ob-
jects are usually highly focused towards a strict set of constraints, like hardware,
timeliness, correctness, availability and/or reliability. However, with current
DFS environments exhibiting a multitude of different constraints and scenar-
ios, current concurrency control and consistency maintenance mecharisms ax
unable to adequately alapt to all possible constraint variations that can be
experienced.

The proposed and developed GLOMAR framework resolves this lack of adapt-
ability. This framework allows for the creation, co-existence and management of
different concurrency control and consistency maintenance mechanisms under
a single DFS implementation.

GLOMAR achieves this by abstracting the concurrency control and consistency
maintenance functionality from the operating system and/or application and
re-implementing it using a component-oriented architecture. This abstraction
is referred to as the Relationship Component and is responsible for encapsulat-
ing actual concurrency control and consistency maintenance functionality, the
context of a particular component and what replicas (files) are governed.

GLOMAR also provides a middleware layer for handling run-time management
of Relationship Component implementagtions. The primary purpose of the mid-
dleware layer is to select the “mest appropriate” Relationship Component to
handle consistency maintenance of replicas, based on the current scenario and
constraints exhibited by the DFS,

As part of determining the feasibility of GLOMAR, a full implementation was
built. Included within this implementation were a number of Relationship Com-
ponent implementations, including components for handling the constraints of
mobility-enabled environments. The resulting system illustrated how a com-
ponent based framework for maintaining consistency of data objects within a
heterogeneous DFS was achieved.

GLOMAR: A Component Based Framework for
Maintaining Consistency of Data Objects within a
Heterogeneous Distributed File System

Declaration

I declare that this thesis is my own work and has not been submitted in any form
for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of
others has been acknowledged in the text and a list of references is given.

Simon Cuce
September 4, 2003

xiv

Acknowledgments

The enormity of a PhD is not something that can be completed alone. The
influence and sacrifice of 'friends and family owe much to the success of this
work. For this reason, I would like to thank the people who made this possible.

Firstly, much of my gratitude goes to my supervisor Arkady Zaslavsky. Not
only did he give me insight and direction into the academic process, but whose
personal crusade to ensure I finished was the primary reason why this work was
completed. For this I am eternally grateful.

I would also like to thank peers and staff members of the University for their
support. Firstly, I would like to thank Christine Mingins for all her work
during the latter stages of my thesis submission. I would also like to thank
Dean Thompson whom could only be described as Mr Reliable, My thanks
goes out to my office mates, past and present, including, Chee Yeen Chan,
Nick Nicoloudis, Troy Milner and the irrepressible Daniel May. Not only do I
thank them for their support, but also their friendship. Others whom I cannot
afford to forget include, Damien Watkins, Trent Mifsud, Megan Seen, Shonali
Krishnaswamy, Hugo Leroux and Peter Stanski. You made the process and
pain of a PhD} bearable. Finally, of the University people I want t¢ thank, one
can never forget the Administration and Technical staff, past and present. In
particular, I would like to thank Michelle Ketchen, who always made the time
to personally handle any issues that arose. Thanks so much.

I would like to thank Jignesh Rambhia and Bing Hu for their work on the Twin
Transaction Model implementation, Also I would like to thank Dan Fay of
Microsoft Research for his support of my work. My thanks goes to Carolyn and
Bryan Payne, who through their gencrosity, allowed me to utilise their holiday
home for periods of uninterrupted writing. Without this, I am sure 1 would not
have done as much vr as well.

However, the biggest thanks goes equally to three people. These people were
instruraental in e undertaking this adventure and ensuring I completed. These
people include my Mum and Dad, who supported me longer than they had too.
Without their support I would have never gone down this road. The third

xv

person I must thank is Sonja Paype. Her sacrifice has made this work possible.
My loving thanks goes to all of you.

Simon Cuce

Monash University
January 2003

xvi

Outcomes

Journal arising from this thesis include:

Cuce, § and Zaslavsky, A. (2003) Supporting Multiple Consistency Mod-
els for a Mobility Enabled File System using a Component Based Frame-
work. Special Issue of MONET on Mobile and Wireless Data Management
{Accepted for Publication) Vol 8, No. 4. August 2003.

Award arising from this thesis include:

Cuce, 5 (2002) GLOMAR: Adaptive Consistency Control for Distributed File
Systems. 3rd Place in the The ACM International Post Graduate Compe-
tition. Held at SIGCSE 2002. February 27th - March 3rd, 2002. Northern
Kentucky - The Southern Side of Cincinnati, USA.

Publications arising from this thesis include:

Cuce, S and Zaslavsky, A. (2002) Adaptable Consistency Control Mecha-
nism for Mobility Enabled File System. $rd Internationel Conference on
Molbile Data Management (MDM 2002), 8th to 10th of January 2002
Singapore.

Cuce, 8. Zaslavsky, A. Hu, B. and Rambhia, J. (2002) Maintaining Con-
sistency of Twin Transaction Model Using Mobility-Enabled Distributed
File System Environment. &th International Workshop on Mobility in
Databases and Distributed Systems in conjunction with the 13th Interne-
tional Conference on Database and Expert Systems Applications (DEXA’2002).
September 2nd to 6th, 2002. Aix-en-Provence, France

Cuce, S and Zaslavsky, A. (2002) Run-Time File System Consistency Sup-
port in Mobile Computing Systems. 2nd Asian International Mobile Com-
puting Conference. (AMOQCO02) 14th to 17th of May, 2002. Langkawi,
Malaysia

Cuce, S (1999) Conflict Avoidance within a Disconnected Mobile Environ-
ment, Proceedings of the 6th Australian Conference on Parallel and Real-
Time Systems (PARTS99). 29th November to 1st December, 1999. Mel-
bourne, Australia.

xvii

Cuce, S and Zaslavsky, A.(1998) Adaptive Cache Validation for Mobile File
Systems. Advances in Datebase Technology, Y. Kambayashi, K.Lee, E.P.Lim,
M.Mohania, Y.Masunaga (Eds), LNCS 1552, Springer-Verlag, p.181-192,
1998.

Cuce, S and Zaslavsky, A.(1998) Partially Consistent Cache Management
Model for a Mobile Environment. st Annual South Africen Telecornmu-
nicafions, Networks and Applications Conference (SATNAC 98). 7th to
10th September, 1998. Cape Town, South Africa.

Presentations arising from this thesis include:

Cuce, S (2002) GLOMAR: Adaptive Consistency Control for Mobile Enabled
File Systems. The Coda Research Group, Carnegie Mellon University, 6th
March 2002. Pittsburgh, USA.

Cuce, 5 (2001) A Component Based Framework for Maintaining Consistency
of Data Objects within a Heterogeneous Distributed File System. Dis-
tributed System Technology Centre (DSTC CRC). 6th December 2001,
Melbourne, Australia.

Cuce, S (2000) GLOMAR: Adaptive Consistency Control for Mobile Enabled
File Systeras. School of Computer Science and Software Engineering,
Monash University. 10th August 2000. Melbourne, Australia.

Permanent Address: School of Computer Science and Software Engineering
Caulfield Campus
Monash University
Australia

This dissertation was typeset with INTEX 2¢' by the author.

'BTEX 2 is an extension of ¥TEX. I¥TEX is a collection of macros for TEX. TEX is
a trademark of the American Mathematical Society. The macros used in formatting this
dissertation were written by Glenn Maughan and modified by Dean Thompson of Monash
University.

xviii

Chapter 1

Introduction

This dissertation explores the issues of concurrency control and consistency
maintenance within a distributed file system (DFS). It argues that current
concurrency control and consistency maintenance mechanisms are too strict
and inflexible in their design rationale to exist within current and future DFS
environments.

The premise for this lore arises from the inadequacies of existing concurrency
control and consistency maintenance mechanisms to fully support heterogene-
ity. This is due to current environments on which DFSs exist being a collection
of varying hardware, software and user requirements, rather than static envi-
ronments exhibiting predictable behaviour,

This dissertation asserts that multiple concurrency contrel and consistency
maintenance mechanisms should be constructed and scoped to specific scenar-
ios, each existing concurrently and implemented when appropriate. The contri-
bution of this dissertation is a proposed, developed and implemented working
system that supports this dectrine.

1.1 Distributed File System

The paradigm known as distributed systems has emerged as a combination of
personal computing, time shoaring computing and interconnecting communica-
tion infrastructure (Satyanarayanan 1990). Personal computing gave users au-
tonomous access to resources. Time sharing computing gave users the ability to
share resources and information easily. Interconnecting communication infras-
tructure allowed for the communication between nodes to take place. When

2

combined, the result gave userz the ability to easily access many shared re-
sources and information, regardless of physical location, however still providing
a level of autonomous support. The basic architecture of a distributed system
comprises a number of computing nodes connected via a communication net-
work, each with a supportive operating system (Levy and Silberschatz 1990).
Messages are then passed between nodes to facilitate the sharing of resources.

The file system is a collection of data objects that are persistent until explicitly

destroyed. File systems support four fundamental issues, naming siruciure,

programming interfoce, physical mapping and integrity (Satyanarayanan 1990).
The naming structure within a file system allows for the indexing and navigation
of file objects. The programming interface provided by the file system allows
applications to access a file via a standard set of file system primitives. The
physical mapping provides the functionality to ensure a continuous view of a file
object is available regardless of the physical storage or media. Integrity ensures
that consistency of a file object is maintained regardless of failures, whether
hardware and/or software.

Originally, file systems supported a single user performing operations at a stand-
alone node. Such systems as IBM PC-DOS {DOS 1983) and the Apple Mac-
intosh (Apple Computer 1985) are examples of these sysiems and best define
the personal computing paradigm. However, as the need to share resources
and information increased, so did the importance of time sharing computing.
Systems like Unix (Ritchie and Thompson 1978} allowed multiple users to ac-
cess a single file concurrently. As a result, file systems were required to ensure
that integrity of the file was preserved in the face of possible modifications by
concurrent operations. Thus, the process of maintaining integrity became more
than just a failure resolution mechanism (as it was with personal computing).
However, classic time sharing systems still centralised the storage of file system
objects and did not offer autonomous interaction (Satyanarayanan 1990).

The DFS was the merging of the two (distributed systems and file systems),
with many distributed users able to share a single file object regardless of their
location, but bhave access to their own processor and permanent storage. By
distributing file objects throughout the network, the chance of being partitioned
from them due to a communication failure increased. DFS8s resolved this by
improving the availability of files through replication (Berstein, Hadzilacos, and
Goodman 1987).

1.2 Replication Basics

Replication is the placement and management of replicated file objects for the
purpose of improving the availability, performance and usability of file objects
(Helal, Heddaya, and Bhargava 1996). This is achieved by replicating file ob-
Jjects throughout the network so that when the primary file objects cannot be
accessed, the secondary replicas can be used to service the request.

This series of events are masked from the originator of the request, resulting in
the perception that the operation was successful. The replication mechanism
then assumes responsibility for ensuring the operations (or result of operations)
are propagated to other replicas. Thus, replication is in most cases a hidden
process that is responsible for Replica Placement and Consisiency Maintenance
between replicas. This thesis is solely concerned with consistency maintenance
of replicas within a DFS,

Consistency Maintenance

W1 e replication improves availability and performance (via replica placement
{Kuenning 1994; Lei and Duchamp 1997; Liu and Maguire 1994; Tait et al.
1995)), it also supports how consistency between replicas is maintained. Con-
sistency between replicas is guaranteed through consistency maintenance. Con-
sistency maintenance is the process of ensuring that events that manipulate data
on one replica are visible on al others, thus making them correct.

However, availability and consistency are competing objectives, as an increase
in the level of consistency will result in a reduction of availability and vice versa.
Thus, for a replication mechanism to find a balance, a trade-off between the
two is required. The resulting trade-off thus encapsulates the functionality used
to provide consistency maintenance, as well as supporting availability.

A trade-off is determined by evaluating the consistency and availability needs
of the DFS. In other words, this is done by determining the needs of the user,
application and/or hardware constraints. In most cases, a compromise can be
found between two extremes, pessimistic and optimistic concurrency control.
With a pessimistic approach, availability is constrained in favour of consistency,
as operations must be committed on all replicas prior to being completed. Such
an approach does provide the highest level of consistency, but reduces the avail-
ability as one failed operation can force the rollback of the operation. This is
apposed to a system that supports availability in favour of consistency, (an opti-
mistic approach). With an optimistic approach, operations can concurrently be

4

performed on separate replicas, regardless of the inconsistency that may arise.
Only after the operation is complete does the replica’s consistency maintenance
mechanism attempt to achieve correctness across replicas.

One could argue strongly for each approach and would be justified in their
argument. Primarily, this is becanse the design constraints of the required
consistency maintenance mechanism dictates which approach is the most suited.
In some cases, availability is fundamental for the system to achieve its design
goals, this is the case with mobility-enabled DFSs (Kistler and Satyanarayanan
1991; Tait and Duchamp 1991; Ratner 1998). However, there are cases where
correctness is paramount, this is the case with systems that support a high level
of file sharing (as shown by the case study (Gill et al. 1994)). Thus, no single
approach can suit the multitude of scenarios that can exist. The numerous
scenarios generated by heterogeneous systems and applications also compound
this.

1.3 Support for Heterogeneity

Originally, DFSs existed on static environments that implemented standardised
components, which in turn exhibited predictable behaviour. Such systems were
homogeneous with certain characteristics assumed. Consistency maintenance
mechanisms when built for these environments assumed the characteristics of
the DFS were static, for example, a DFS would exist within a wired network,
connecting numerous similar computers. As a result, ‘the underlying consistency
maintenance mechanism would be tailored to that environment.

As interconnecting protocols have been standardised {e.g. TCP/IP (Comer
1995)) and the cost of computing power and storage decreased, the degree of
homogeneity within current environments has lessened. What resulied were
different computing configurations, using different network infrastructures, ser-
vicing all types of users, rather than highly specific networks, servicing a par-
ticular need. For example, with portable computers, it is not uncommeon to use
both a modem (when at home), as well as an Ethernet connection (when at
work} to access a DFS.

The ramification of increased heterogeneity has meant that the task of building
consistency maintenance mechanisms is more complex. This is illustrated by
the increase in wireless technology and the incorporation of different comput-
ing devices (PDA, Handheld, etc) into the DFS. Each variation increases the

5

constraints that must be considered when building consistency maintenance
mechanisms,

The problem is that current DFSs are faced with a multitude of different scenar-
ios (devices, users, communication infrastructure and applications), all exist-
ing within the one environment. However, existing approaches for consistency
maintenance are mostly focussed on a small subset of these scenarios. Thus,
existing consistency maintenance mechanisms fail to fully exploit the opportu-
nities of the true heterogeneous DFS.

1.4 Thesis Focus

“How to manage the replicated dats, providing the levels of consistency, dura-
bility and avatlability needed”

Barbara-Milla and Garcia-Molina {1994}

“Replicated Data Management in Mobile Environments:
Anything New Under the Sun?”,

IFIP Working Conference on Applications in

Parallel and Distributed Computing,

Page 237.

Research into consistency maintenance within a DFS has focussed on the trade-
off between availability and consistency. Many of these systems implement a
specific approach to suit a target system. Recently, a lot of work in the handling
of the characteristics of mobility has been done (Zaslavsky and Tari 1998; Satya-
narayanan 1996; Mukhberjee and Siewiorek 1994; Liu and Jr. 1895; Badrinath
et al. 1993). However, the narrow scoping of these implementations means that
the trade-off between availability and consistency is mostly suited for mobility.
Thus, the flexibility and portability of these approaches are limited.

This dissertation claims that rather than creating a consistency maintenance
and concurrency control mechanism for a generic scenario, it is preferable to
create a number of consistency maintenance and concurrency control mecha-
nisms scoped for specific scenarios all existing concurrently. This claim is based
on the following motivations

o Limited support for fine granularity consistency maintenance.
The structure of existing systems is one that supports a generic approach
to maintaining consistency of replicas. Primarily, these systems focus on

-

.~

a coarse level of granularity, thus ignoring the consistency requirements of
devices, environments, applications and users. Thus, this results in con-
sistency for some applications being degraded in favour of others. What
is required is an approach that allows granularity to be programmatically
defined (whether coarse or fine}.

e Streamline the process of creating consistency maintenance and
concurrency control mechanisms. The process of creating and im-
plementing concurrency control and consistency maintenance mechanisms
is made complex by the tight integration with the DFS. Much of ihe
functionality is implemented at the system level, with developers not en-
couraged to modify or create different mechanisms. Thus, this limitation
reduces the effectiveness of a concurrency control and consistency main-
tenance mechanism, as modification for a specific scenario is difficult.

o The failure to provide transparent consistency mainfenance that
is effective and efficient. Much of the work to provide scenario based
consistency maintenance is via an application-aware approach {Satya-
narayanan, Noble, Kumar, and Price 1995). For this to work, applications
are required to utilise an additional API. As a result, such approaches do
not offer support for fine grain consistency maintenance for legacy sys-
tems.

Therefore:

For a DFS lo effectively and efficiently support true heterogeneity (whether be-
ing hardware, software or user), requires a scenario based approach that can
encapsulate multiple concurrency control and consistency maintenance mech-
anisms concurrently. This disserlation proposes, develops and illustrates the
ability to apply a component-oriented architecture to concurrency conirol and
consistency maintenance functionality within ¢ DFS, such that the scope end
granularity of consistency can be adjusted accordingly.

1.5 GLOMAR Concept

The GLOMAR framework! is the component-based approach that supports
consister oy of data objects within a heterogeneous DFS. GLOMAR provides

1The genesis of the name originated from the deep-sea mining ship the Glomar Explorer.
It was a joint CLA/Howard Hughes project to build a ship capable of retrieving a Soviet Golf
Il-class ballistic missile submarine that sank off the Hawali coast in 1968,

el

7

the framework required to encapsulate concurrency control and consistency
maintenance functionality within a component-oriented architecture (Szyperski
1997), focusing on the maintenance correctness of file replicas.

GLOMAR makes three major contributions:

o The ability to abstract concurrency control and consistency maintenance
functionality into a single component.

» A framework that handles component selection and concurrent implemen-
tation.

* A development methodology to facilitate component creation.

A complete design and implementation of GLOMAR was produced, with a live
production system running on a number of computing nodes. The system was
evaluated to provide a set of quantitative and qgualitative results that validates
this thesis.

1.6 Outline of the Dissertation

The remainder of the Dissertation is organised as follows. Chapter 2 provides
background on the issues of replication, concurrency conirol and consistency
maintenance within a DFS. It also discusses inadequacies of current systems
with their support for highly heterogeneous distributed file systems. Chapter
3 discusses the design rationale for GLOMAR. Arcas covered include the aims,
an in-depth discussion of the motivation and the design evolution. This chapter
also introduces major achievements, the concept of the Relationship Compo-
nent, the middleware layer and the development methodology. Chapters 4 and
5 discuss these major contributions in more detail. Chapter 6 discusses GLO-
MAR’s implementation, including issues and constraints, Chapters 7 and 8
evaluate GLOMAR. by detailing the impiomentation of a number of Relation-
ship Components and determining the impact upon performance and resources
the middleware layer imposes. Chapter 9 concludes the thesis, with a summary
and possible future work.

Chapter 2
Consistency Models

This chapter encompasses a detailed discussion on the purpose of replication,
the need for concurrency control and the num . aus techniques used {0 maintain
consistency (referred to as consistency modelk ; between replicas. Following this
will be a discussion of the issues that affect the design and structure of a con-
sistency model within the context of a DFS. These include issues like transac-
tions, sessions, appiication requirements, communication schemes and devices.
Finally, the implications of each of the issues in relation to consistency model
construction will be addressed within the context of mobility. This will form
the motivation of this dissertation, focusing on how heterogeneity influences
consistency maintenance within current DFS implementations.

2.1 Replication within a Distributed System

The primary motivation for replication {Berstein et al. 1987) within a dis-
tributed system arose from the need to improve the availability of data objects.
The necessity for this improvement was the inevitability of segments within
the distributed system failing. These failures can be in the form of sofiware
bugs, human error, overloaded resources and/cr media failure. When failures
occur, they can result in fail-stops (Schlichting and Scheider 1983), where all
operations are required to either wait indefinitely or be aborted as the opera-
tions destination is no longer contactable. Such events decrease the reliability
of a system, especially when the resources are highly shared. As a result, by
using replication, distributed systems were able to mask and manage failures
gracefully.

L
: ;;’E
§
.
gL
i

Lot e s e e £

S

N e e Tt s il
A S S T AR S B e R

9

Replication is achieved by implementing redundancy via replicating data ob-
Jects throughout a distributed system. During periods of failure, when the
primary replica is no longer contactable, secondary replicas are used until the
failure js resolved. As a result, regardless of the failures that can exist within
a distributed system, the repercussions can be masked transparently to the
application, improving the availability of data objects.

In addition to improved availability, replication improves performance. This
is achieved through the underlying mechanisms having the ability to detect

bottlenecks, routing operations to appropriate replicas and allowing many sites
to serve data simultaneously.

Within the distributed system domain, replication can be found in distributed
systerns such as DFS (Levy and Silberschatz 1990; Satyanarayanan 1990; Borghoff
and Nast-Kolb 1989), Distributed Database Management Systems (DDBMS)
(Ozsu and Valduriez 1991) and Distributed Shared Memory (DSM) (Galli 2000).
However, this thesis will focus upon replication within a DFS.

Replication is responsible for both Replica Placement and Consistency Mainte-
nance. Replica placement is the process of creating, propagating and destroying
replicated data within the distributed system. Initially these processes were
manual or automated (Howard 1988), explicitly for performance benefits. More
recently these processes have been used to improve availability (Kuenning 1994;
Satyanarayanan et al. 1990). However, replica placement issues are outside the
scope of this thesis and therefore will not be addressed. What will be detailed,
is how concurrency control and consistency maintenance are achieved within a

DFS.
2.2 Concurrency Control and Consistency Mainte-
nance

The distributed nature required for availability and the centralised storage of
file system objects generates a conflict when combined within a DFS. This

is because file system activities are built around a centralised storage device,
whereas availability requires that data objects be distributed. The result of
this combination, is that the data object must be perceived as centralised,
but implemented distributed (figure 2.1}. This concept is known as one-copy
equivalence (Berstein et al. 1987) and is the source of most of the complexity

within a DFS.

10

Logical Data
Object (D)

Distributed File System

Physical Physical
Storage 1 Storage 2
(g, (@

Figure 2.1: One-copy Equivalence

To illustrate one-copy equivalence, consider a data object D! which is logically
viewed as a single data object. However, physically the data object consists of a
number of distributed objects dy, {thus D = {dy,ds,... ,dr}) whose actual im-
plementation is hidden from the application’s view. If an application performs
a write operation, referred to as w (thus a transaction would be T; = {w[D]}),
the resulting physical transaction to preserve one-copy equivalence would be
T, = {wldi), wldsl, .. , wldal}.

Concurrent operations compound the cost of achieving one-copy equivalence.
The reason is that orrations perform medification, insertion or deletion oper-
ations (so called updite operations) on physically separated replicas simultane-
ously. As one-copy equivalence is required so that all replicas remain correct,
a means of maintaining an acceptable view of the data is necessary. Concur-
rency Control and Consistency Maintenance nim to manage these concurrent
operations, such that conflicts between repliras -re avoided or masked from the
application, with correctness maintained.

1The formalisms used are based on Bernstein and Goodman (1986} description of seriali-
sation theory

e ig 2 E

R A

_@

11

Without some form of concurrency control and consistency maintenance, the
DFS is not able to handle or resolve concurrent operations that place replicas in
conflict with each other. The types of conflicts that can occur fall into two cate-
gories; operations that affect the correctness of a data object (serialisation) and
operations that compromise the consistency of replicas (one-copy equivalence).

2.2.1 Serialisation Conflicts

Primarily, seriakisation conflicts result out of a failure to serialise operations,
such that correctness of a data object is maintained. For zxample, two con-
current applications modify the contents of the data object, regardless of each
other’s own consistency needs. This form of conflict does not solely arise out
of replicating data objects throughout a distributed system. Rather, it is be-
cause of concurrent operations being performed unchecked and unmanaged on
a data object. In most cases, serialisation of concurrent operations is managed
by the local file service, as part of maintaining the integrity of the data objects.
However, this does not mean that these types of conflicts should be ignored
by the DFS. Instead, the distributed nature just complicates the resolution of
these conflicts when they do occur. The two basic conflicts that can effect
serialisation include:

o Dirty read

o Over writing of uncommitted date

The dirty read conflict (Coulouris, Dollimore, and Kindberg 2001) arises out
of a concurrent operation reading data that is later aborted by the originator
of the data. For example, consider two transactions (7} and T;) that process
a data object ¢ (T} = {r{z],wly],c} and Tj = {w(r],a}). A history {H) of the
two concurrent transactions illusirated that the value committed to y by T; was
based on data (z) that was aborted.

H = nfg] - wly] = o
t (2.1)

wilz) = e

The second form of conflict is over writing of uncommitted data (Coulouris,
Dollimore, and Kindberg 2001). In this situation, a concurrent transaction
over writes the value of a data object which has yet to be committed (and thus

12

achieve atomicity) by the originator of that operation. For example, consider
two concurrent transactions (T and Tj) that consist of a number of read and
write operations (T} = {r[z],w(z],¢} and Tj = {w[z],7[y],c}). A history (H)
indicated that before T; has committed the changes to z, T; has modified the
same data object. Thus when T} commits, the value of z will be different to
the actual value.

H = rz] - wilz] = ¢ (22)
wilzl = 7l ¢

2.2.2 One-copy Equivalence Conflicts

One-copy equivalence conflicts result as the distributed system is unable to ex-
hibit one-copy equivalence of a replicated data object. This type of corfiict
exists because of concurrent operations being performed on different physical
replicas indiscriminately. The difficulty with one-copy equivalence conflicts is
that in most cases the operations (transactions) have adhered to all the local
serialisation constraints. However, the giobal implications have not been con-
sidered, resulting in the failure to maintain one-copy equivalence. The basic
types of conflicts that can arise include:

+

o Write-urite conflicts

o Read-write conflicts

A write-urite conflict (Coulouris, Dollimore, and Kindberg 2001) results when
a number of concurrent operations write to separate replicas, with no concern
for consistency amongst all replicas. What makes this conflict different to a
write of uncommitted data is that serialisation might have been achieved for
each of the operations. However, since they never intersect, the impiications of
their actions are not known. For example, a data object I is replicated over
two physical sites, d; and dz (D = {d),d3}) and two transactions (T} and T})
modify each replica concurrently (T; = {w[dy],c} and T; = {w[dz],c}). The
history (H) of the concurrent transactions illustrated that the replicas are no
longer one-copy equivalent {d # do).

H = 'w;‘[dI] -+ &

wild)) = ¢ @3)

13

Read-write conflicts {Coulouris, Dollimore, and Kindberg 2001) arise where data
read by one operation is invalidated by another operation on another replica. As
a result, operations are unaware that out of date data is being used as a basis for
their operations. For example, two transactions T; and Tj perform concurrent
operations on data object D (object D is replicated over two physical sites,
D = {d;,d2}). Transaction T} consists of reading from ds, writing the results
to non replicated data objects (z and y) and then comm*ting the changes
(T; = {rlch], wiz], wly),¢}). Transaction T; concurrently performs a read of z,
then the results are written to d; and committed (Tj = {r[z], wld1],c}). As the
history (H) shows, the values T; committed to = and y were based on a value
that were modified by 7.

H = njd)) = wiz] = wfy] - o
rifal = wifd) - 24

2.2.3 Pessimistic and Optimistic Approaches

There are many approaches to concurrency control and censistency mainte-
nance within a distributed system, so that replica confiicts are avoided, one-
copy equivalence is maintained and serialisation of data is achieved. Thesr
can be categorised into two extremes, Pessimistic and Oplimistic approaches
{Saito and Shapiro 2002). This taxonomy is based on the trade-off betwesz wue
availability of replicas and the level of consistency.

In certain situations, there is a need for data to be correct and for integrity to be
timely preserved. For this to be achieved, a pessimistic spproach would be more
suitable. The nature of a pessimistic approach ensures that the validation phase
occurs early in the execution’s life cycle. In other woids, the validation of the
data correctness is performed prior to any eperaticog being persisted. Figure
2.2 illustrates the phases of execution for an operation within a pessimistic
approach,

The benefit of such an approach iz the reduction in the probability ~f conflicts
arising, However, as a result this reduces the ewailability of the replicas. For
example, if the validation process is not alloved to complete, due to a network
partition (certain replicas were non-contactsbie), ther. the cperation would not
be allowed to complete or was blocked unti! the connection was restored. Such
an approach is suitable for application domeins that require a high-level of
consistency, but not suitable for systems thak require availability of replicas.

14

Pessimistic

. V;':xltdatipr; Operations (R and/or W)

Optimistic

Operations (R andfor W) §8 'Véu,g,étiqn_ -

Time
Figure 2.2: Optimistic and Pessimistic Approaches

Optimistic approaches (Davidson 1982; Kung and Robinson 1981) improve
availability in favour of correctness. This is achieved by reordering the phases
of execution such that validation takes place after the operation has been com-
mitted locally. For example, concurrency control and consistency maintenance
mechanisms do not nieed to contact all other replicas to commit an operation.
Rather, the validation process occurs after the operation has been persisted.
Figure 2.2 illustrates the phases of execution for an operation within an opti-
ristic approach.

The benefit of improved availability of replicas means that operations can be
executed concurrently on other replicas. This is especially useful for systems
that exhibit frequent partitioning. However, the negative aspect of postponing
the validation process until after execution has completed, is the cost of main-
taining one-copy equivalence. In most cases the conflict resolution mechanism
is complex (Kumar 1994) because conflicts are compounded. The longer the
replicas exist partitioned, the increase in the complexity of the actual conflict.

2.3 Consistency Model Taxonomy

The implementation of how concurrency control and consistency maintenance is
achieved within a DFS (or any distributed system} is described as a consistency
model (Galli 2000). The consistency model details hiow concurrency control and
consistency maintenance handle certain aspects of the DFS, such that a suitable
level of consistency and availability is attained.

The following sections present a taxonomy of consistency models, based on how
operations are managed (read and write operations) and the degree of trade-off

e B R S e 1 T L R e

SRR

P S

Stk O e e B e i

15

that is achieved between availability and consistency. The categories include
Polling, Token, Voting and Available Copies methods (Honeyman and Huston
1995; Helal et al. 1996). However, not all variations are covered here, for exam-
ple, approaches not detailed include; Differential File (Severance and Lohman
1976), PCCM2 (Cuce and Zaslavsky 1998b; Cuce and Zaslavsky 1998a; Cuce
1999), Tree Quorums (Agrawal and Abbadj 1990), Virtual Partitions (Abbadi
et al. 1985), Virtual Primary Copy (Faiz 1995), etc.). For more details see Ceri

et al. (1991) and Helal et al. (1996), which give an excellent overview of the
major consistency models.

2.3.1 Polling based Consistency Model

Read Once Write All (ROWA) (Bernstein and Goodman 1984) is a simple
approach that attempts to provide one-copy equivalence of the results of opera-
tions. With this approach, an application can read from any replica. However,
an update operation is required to be propagated to all replicas before it is
aliowed to be committed. In other words, a logical read can read any physical
data object, whereas a logical write must perform writes on all replicas. If a
wrile operation fails to be commitied on any replica, the operation is aborted
or blocked indefinitely until the replica becomes available {depending on the
variation of the implementation). By enforcing this constraint, the distributed
system can ensure that all the rcplicas have the most up-to-date view of the
data.

The benefit of ROWA is that the cost to read a data value requires only contact-
ing a single replica, rather than the entire collection. Much of this is based on
the concept that read operations out number write operations (Burrows 1988;
Roselli et al. 2000; Kistler 1993). However, the benefit of maintaining consis-
tency comes at a cost of replica availability, as a single site failure can affect
the distributed system’s ability to support update operations on all replicas.

The Primary Copy (Alsberg and Day 1976; Stonebraker and Neuholf 1879; Oki
and Liskov 1988) approach differs to that of ROWA by forcing operations to use
a centralised replica {primary copy), with the remainder of the replicas used as
backups., For example let D represent a data object replicated on a number of
sites (D = {d1,dz, ... ,dn}). One of these sites will be defined as the primary
copy p (p € D) and let the remainder be backups b, ensuring that:

t@

16

bC D 2.5)
jbl|=] D] -1 (2.6)
pF#Fb (2.7)

To perform a read, the operation must be performed on the replica designated
as the primary copy (r[D] — r[p]). Where as a write operation has to write to
the primary copy and all backups (w[D] — wip} and wib]) before the operation
is complete,

The motivation for the Primary Copy approach is to improve the handling of
network partitioning, compared to that of ROWA. As a result, replica availabil-
ity is improved by allowing a backup to be upgraded to a primary copy. For
example, consider the scenario of a network made up of five nodes, with one of
those nodes deemed as the primary copy. Due to a communication failure, two
of the five nodes are disconnected from the primary copy. Rather than block or
abort an operation, one of the backups in the partitioned segment is upgraded
10 a primary copy, by either a line of succession or a voting approach. Thus,
there exist two primary copies, in two different segments of the network. As a
result, update operations are allowed to continue even when partitioning within
the system has occurred. .

An example DFS implementation of a Primary Copy approach is the Harp
(Liskov et al. 1991) system. Harp implements a write back strategy for update
propagation, utilising a modified primary copy method. For a client to process
an operatiot1, the request must go via the replica designated as the primary
copy. However, what makes Harps implementation of primary copy different
is that the primary copy (rather than the client) manages the modification
operations and the subsequent calls to backups. For example, a write operation
generated by a client is performed on the primary copy (operations are stored
in a log in volatile memory until committed). Prior to the commii request
being returned to the client, each backup will acknowledge the request {but
not actually committing changes to persistent storage). Requests are then sent
back to the primary copy indicating that the backup bas received the operation.
The primary copy then returns a commif message to the client adjusting the
primary copy’s value to match. A background process is then started to inform
each backup that they are now able to commit their logs.

gt

AR

-
oF:

i

3

Y

"

17

A different approach to how consistency is maintained is Quasi- Caching (Alonso
et al. 1988; Alonso et al. 1990). With existing systems, validation events take
place when either a read or write operation occurs, regardless of the data being
used and its consistency requirements. Within the Quasi-Caching approach, a
coherency condition determines when the validation between the central site and
remote sites occurs. This coherency condition is a user specific criterion (usually
based on time, version or value) that defines an allowable deviation between
physical copies (quasi copies). For example, a data object can be modified on
a remofe site without being propagated to the central site, as long as it does
not invalidate the coherency condition. Such an approach takes advantage of
application semantics, reducing the cost of an update operation. However, this
is offset by the additional overheads required to determine when validation is
necessary.

2.3.2 Token based Consistency Model

With the True Copy Token (Minoura and Wiederhold 1982} approach, consis-
tency is maintained by assigning a matrix of relationships (lock types) that can
coexist (figure 2.3). For any data item that exists, an exclusive lock or many
shared locks can be held. An exclusive lock ensures that whoever holds that
lock has exclusive control of the data item. Thus, no other locks are allowed.
Shared locks indicate that the holder of the lock has shared contro] of the data
item. Therefore, more than one shared lock may exist on a single data item.
With the True Copy Token approach only when an exclusive lock is held can
a write operation be performed on a data item. Whereas a read operation is
allowed to take place if a shared or exclusive lock is held.

Read Lock Write Lock
(shared) {exclusive)
Read Lock
No
(shared) Yes
Write I.‘ock No No
{exclusive)

Figure 2.3: Mairix of Relationships

The benefit of a True Copy Token approach is its ability to maintain a high-
level of consistency in a volatile environment. This is achieved by controlling

“

18

the npumber and type of locks that can exist. For example, by restricting the
number of exclusive locks that exist, partitioning will not result in concurrent
update operations. If a segment does not host an exclusive token, then no write
operations are allowed to proceed. However, there are situations where locks
need to be generated for the sake of replica availability. In this case, token
regeneration protocols are used. For example, creating an exclusive lock on a

data item requires that all shared locks be invalidated. However, the process

and rules regarding this regeneration need to be specific to the consistency and
availability requirements of the distributed systems.

The Echo (Mann et al. 1994) implementation of a DFS is an example of the
use of True Copy Tokens to ensure replica coherence. As one of the design
goals was to achieve one-copy equivalence, a strict (pessimistic) consistency
maintenance protocol was enforced. The Echo topology consists of stateful
servers, that control and manage replica coherence (via a delayed write back
approach) and clients (clerks), caching local data in memory. For a clerk,
performing an operation on behalf of an application requires the acquisition of a
specific token. Primarily, two basic tokens exist; a read foken and a write token.
These follow the same rules defined within the True Copy Token approach. For
example, when a read foken is allocated, the clerk is then able to only read the
contents of the cache. When a write foken is held, this gives permission for the
clerk to modify the cached version of the data, However, for the actual UNIX
implementation, this simplistic approach was extended for security reasons.
Rather, than a single token used for a resd operation, it is divided into sub
operations (eg OpenToken, SearchToken and ReadToken). Thus an extension
to the relationship matrix was defined (refer to Mann et al. (1994} for more
details).

One of the interesting aspects of Echo is the process of allocating tokens, Pri-
marily, Echo is a stateful system, with the server monitoring the number of
tokens that exist and the owners of the tokens. Thus, for a clerk to gain a
token, & remote procedure call to the server is required to fulfil the request.
However, there maybe concurrent operations that place the system into dead-
lock. For example, two clerks hold write locks on two separate data files. For
them to proceed, they require additional tokens on each other’s data. Thus, a
deadlock arises. To avoid this, Echo structures the allocation of locks, based on
the operation’s eperands. Another implementation detail is that tokens cover
whole files, rather than blocks. Leases (Gray and Cheriton 1989) (an agreed
time out period) are then used to determine when the server should reclaim a
token from a clerk.

19

Another example of a DFS implementatior of True Copy Token is Tait’s Mobile
File System (Tait 1993; Tait and Duchamp 1992; Tait and Duchamp 1991}.
What makes Tait’s approach different to other DFS implementations is that
read operations are divided into strict-reads and loose-reads (referred to as the
Dual-Read-Call Interface). Strict-reads enforce a high-level of correctness by
contacting all replicas and determining the most up-to-date data value. On the
other hand loose-reads return the most convenient value.

Within Taits system, tokens are used to illustrate to a client that the data
they are reading is the most up-to-date. This is done by defining the source of
frequent updates and strict-reads. Clients are defined as Potential Consistent
Writers (PCW) and receive a Currency Token {CT) illustraling that no other
client is performing strici-reads on the same data. Only when a PCW has a
CT can strict-reads be performed. Qtherwise, a series of complex tasks are
initiated to gain the CT for the PCW. Unlike other file systems that implement
write tokens, Tait focuses on using tokens to define the level of correctness of
read operations,

There are many other examples of DFS that use a True Copy Token approach.
These include AFS (Howard 1988) (referred to as callbacks), Decent (Marzullo
and Schmuck 1988), Sprite (Qusterhout et al. 1988; Nelson et al. 1988} and
MFS (Burrows 1988). However, much of the differences are not related to the
token implementation, but rather to implementation of other aspects of the
DFS.

2.3.3 Voting based Consistency Model

Voting approaches for concurrency control and consistency maintenance are
achieved by performing operations only if permission is granted from a set of
replicas (the quorum). Thus resd or write operations can continue only when
a consensus is achieved within the quorum. Voting approaches improve the
support for write operations and handle failures gracefully. This is different
to polling approaches that favour read operations and manage communication

failures poorly.

The basic architecture of a voting approach revolves around replicas being mem-
bers of quorum sets. A quorum set is a collection of replicas that must all be
satisfied prior to allowing an operation to commit. In most cases two sets exist,
the read quorum (RQ) and the write quorum (WQ). As the name suggests, for
each specific operation to be successful, these quorums (specific replicas) must

be accessible.

20

Replicas

Read Quorum Quomm

(RQ) Intersection (Qn) e Quorum (WQ)

Figure 2.4: Quorum Intersection

Consistency is maintained by ensuring that the quorums (read and write) inter-
sect, referred to as a quorum intersection (QJ) (figure 2.4, or RQNWQ = QI)
and that a write quoryum must have a common member, so that write operations
are not executed concurrently.

One of the simplest implementations of voting is the Uniform Majority Quorum
Consensus (Thomas 1979; Kumar and Segev 1988) approach. In this approach,
a majority of the sites must be contacted for an operation to be committed.
Thus only when half or greater approve of the operation, can the operation be
completed. However, not all members ‘need to modify their local copy. They
are just required to vote. For example, only one copy needs to be contacted to
read data, whereas half or greater of the replicas need to be accessed to perform
a write operation. The benefit of such an approach is simplicity. However, the
cost associated with contacting the quorum for every operation becomes high.
For this reason a weighted majority approach was developed.

Weighted Majority Quorum Consensus (Gifford 1979) allows each replica to
have more than a single vote. A non-negative integer is assigned to each replica
(d, where v = 1,2,...,n) to define its weight. Then a threshold is defined
for both read rg and write wg. Only when the sum of the total weight (t =
2 =1 dv) is greater than the threshold, is quorum achieved and the operation is
allowed to complete. The validation process is satisfied only when the following
constraints are met:

rg+wg >t (2.8)
wq > tf2 (2.9)

B AT L SR Y g

e B A e

21

The benefit of a Weighted Majority Quorum Consensus approach is the fact
that weight and threshold can be adjusted in such away that consistency or
replica availability are favoured. For example, by adjusting the weight of the
write quorum to equal the same of all weights (wg = t) and the read quorum
only requiring one replica (rg < 1), then a model similar to ROWA (section
2.3.1) is achieved. If however the write quorum is adjusted to only require a
single copy to be accessed to achieve quorum consensus (wg < 1), then an
approach that is highly available becomes feasible. However, as the process
of allocating weights is difficult, there are approaches that automate this task.
One such method is Annealing (Kumar 1991), in which a process adjusts the
weight, so that an optimal threshold is found.

An example of a systemn that dynamically adjusts weight and threshold is the
Missing Write approach (also referred to as the Hybrid ROWA/QC) (Eager
and Sevcik 1983). Primarily, the system exists as either a ROWA or a Uniform
Majority Quorum Consensus approach, depending upon the status of the sys-
tem. When no failures are detected, the system exists in normal mode. Within
this mode, a ROWA approach is implemented. When it has been detected that
an update operation is non-serialisablt [unable to write-to-all}, then the system
enters a failure mode. Within this mode a Uniform Majority Quorum Consen-
sus approach is used, as this ensures that members of the quorum will at least
see the update operation.

2.3.4 Available Copies based Consistency Model

ROWA-Available (Goodman et al. 1983; Bernstein and Goodman 1984; Berstein
et al. 1987) is an altered version of the ROWA that improves the availability of
update operations such that they are not blocked if some of the replicas are not
contactable. Read operations are managed in the same way as ROWA, with any
available replica able to handle the request. The difference with ROWA-4 is
that write operations only have to be committed at all available copies, rather
than every replica. In other words, update operations can still be performed
with N-1 site failures.

Reducing the need for all replicas to see the committed changes, improves the
availability of wrii. operations to be performed in the face of site failures.
Rather than being a full pessimistic approach, ROWA-A offers a relaxed pes-
simistic approach, which reduces the serialisability of operations. For example,
some replicas might contain stale data as they are partitioned from the write
operation. Inconsistencies are avoided by allowing stale data replicas to be

22

deemed available only after they have synchronised with an up-to-date replica.
Only then a replica is deemed as avajlable and able to accept read and wrile
operations. Unlike other non-blocking approaches, this approach does not allow
operations to be performed on stale data.

As Soon As Possible (ASAP) (Berstein et al. 1987; Bernstein and Goodman
1984} is a variation of the Primery Copy approach (section 2.3.1)}, that relaxes
the constraints placed against write operations. In the Primary Copy approach,
write operations must be committed on all backups before committed on the
primary copy. However, this approach does reduce the replica availability for
write operations when faced with network partitioning. For this reason ASAP
was created to allow write operations to be committed to the primary copy
without all backups having to be available. Update operations are sent to
the primary copy, where they are processed and committed. Another process
informs all backups that the primary copy has changed. Accompanying this
message is the actual results of the update operation.

The benefit of such an appreach is that the replica availability for wrife opera-
tions is improved as only the primary copy needs to be available for an operation
to be committed. However, this lack of consiste:cy between the primary copy
and the backups may result in the usage of stale data. If for example a com-
munication failure occurs prior to an update operation being propagated to a
backup, when the backup within the partitioned segment upgrades to a primary
copy, the data it uses will be stale. However, the motivation for this approach
is based on the idea that there are low write-write conflicts when data sharing,
and the need for replica availability outweighs the possibility of inconsistencies
arising.

The above mentioned approaches { ROWA-Available and ASAP) might improve
the availability of replicas for certain operations. However, the order in which
validation occurs defines them as pessimistic approaches. There are a series
of approaches that are optimistic, as they perform the validation phase after
the operation has been persisted. These are referred to as Available Copies
Algorithms (Bernstein and Goodman 1984; Saito and Shapiro 2002). The pri-
mary difference between these and other approaches is the burden placed upon
the validation to ensure correctness. For example, operations (whether read or
wrile) are perfcrmed on any available replica, regardless of the availability or
consistency requirements. After the operations have been committed to per-
sistent storage, an additional process is used to synchronise the replicas when
appropriate.

Lahiilind

v
CH
g
S
*
2B

S

S

- ‘;;._ "LT: i, “L - .‘_ i

23

The Little Work (Honeyman and Huston 1995; Huston and Honeyman 1993)
project was an attempt to improve the support for nomadic computing within
an operating system and demonstrate an Available Copies Algorithms approach.
The final implementation was an extension to AFS (Morris et al. 1986) that
relaxed the consistency to a more optimistic approach when partially conuected
or disconnected. By modifying the V-node interface (Rosenthal 1990) of an AFS
client and implementing whole file caching (in this case extending the block
size to 1 Mbyte), they were able to achieve support for disconnected operations
within an AFS network. This was achieved by allowing a client to exist in four
different states depending on the state of the connection. These are:

* Connecled
e Disconnected
e Fetch-Only

e Partially Connected

When connected, the client acts as a normal AFS client, using callbacks to in-
validate stale data, When a connection with a server is lost, the client changes
to a disconnected mode, where operations can still be performed, writing to a
cached version of the data. Each operation would be recorded within a replay
log to be used upon reintegration. To assist in the reintegration of data with
the server (bidirectional propagation), the client enters a fetch-only mode. This
mode allows for synchronisation of data and resolution of conflicts (only a sim-
plified approach is implemented). Finally, if a connection with the server exists,
however, the limited bandwidth does not allow for normal AFS callbacks, the
client enters a partially connected mode. In this mode, operations are allowed
to be performed. However, to achieve some level of cache coherence, priority
based queuing of operations is used.

Coda (Satyanarayanan et al. 1990; Kistler and Satyanarayanan 1991; Satya-
narayanan 1989; Kistler 1993} is a classic example of a DFS implementation
of an Available Copy Algorithms approach. The aim of this DFS is to support
availability of replicas efficiently and thus allow for disconnected operations
(Kistler and Satyanarayanan 1991). This is achieved by exploiting persistent
storage, non-blocking operations and a complex conflict resolution implementa-
tion (Kumar and Satyanarayanan 1995}, such that failures and elective discon-
nections are masked effectively. By doing this, Coda can perform file operations

in two states, connected and disconnected.

24

The Coda topology consists of a number of replicas mapped to a Coda names-
pace, called volumes. These volumes are perceived as one-copy equivalant, but
are physically distributed. A set of replica sites that house a volume is referred
to as a volume storage group (VSG). A subset of the VSG that is available is
referred to as an Accessible VSG (AVSG). Counsistency is maintained between
replicas via the server replication mechanism (Satyanarayanan et al. 1990).
This mechanism implements a callback approach, such that when an oper: op-
eration is requested by an application, the servers notify all other replicas that
their version of the replica is no longer valid. Only after the operation has
completed does an additional process propagate changes to all members of the
AVSG.

When a client is discounected from the network and unable to rely upon the
AVSQ, the contentis of a local cache are used. Unlike the members of the
VSG that implement first class replication, the cached version is a second-class
replica, only containing the data specific to the client. The process used to
govern cached data and manage client file operations is called the Venus. The
Venus has three states:

¢ Hoarding
o Emulation

e Reintegration

When connected, the Venus process is in a hoarding state. Within this state, the
contents of the cache are fetched from the server. When disconnected, the Venus
moves into the emulation state. This state emulates the existence of a network
connection {pseudo-server) using the cache as the data source for operations to
perform upon. By doing this, data becomes available as operations are allowed
to continue regardless of the connection (this assumes that the data required is
present locally). Update operations are catered for in this state by recording
the events in a replay log. This log is used during the reintegration state so
that operations can be executed on the AVSG upon reconnection.

Coda handles conflicts by initiating an additional mechanism that detects and
resolves them. Application-specific resolvers {Kumar and Satyanarayanan 1995;
Kumar 1994} are used by Coda to resolve specific conflicts defined by users. For
example, conflicts within a Concurrent Versioning System (CV8) are resolved

by recompiling source code such that object files are valid. Once conflicts have .

been resolved (automatically and/or manually), then the Venus returns to the
hoarding state allowing normal operations to continue.

e

L Ve A B AT i e A A B e

25

Another major DFS implementation of an Avaslable Copies Algorithm approach
is Ficus (Page et al. 1998; Guy et al. 1990) (influenced by Locus (Popek and
Walker 1985)). Unlike other approaches, Ficus supports replica availability
within & peer-to-peer model. As with all available copies approaches, seriali-
sation is not guaranteed. Ficus rather ensures that modifications are not lost
due to concurrent operations. When a replica is modified, it is not immedi-
ately propagated to other replicas. Rather, replicas periodically consult other
available replicas to determine if propagation is necessary. When a difference
between replicas is detected, Ficus enters a Reconciliation phase. This phase
determines what is required to bring all replicas to a correct state. This is done |
by consulting the version vector (Parker et al. 1983; Rainer et al. 1997) of
each replica. Using this information, the reconciliation process can determine
if one replica “dominates” another replica. If so, then the dominating replica
is used as the primary data source for propagation. If however Ficus is unable
to determine the dominate replica ther manual intervention is required (there
are also automated tools to resolve certain conflicts (Reiher et al. 1994})).

Rumor (Guy et al. 1998) is a user-level implementation of Ficus. Like Ficus,
it shares the same design philosophy (omne-copy equivalence and no lost up-
date guarantees). However it has two additional aspects: selective replication
and gossip (improved replica related metadata sharing). Selective replication
(Ratner 1995) ic the ability to adjust the consistency granularity within the
replicated volume. In other words, Rumor has the ability o selectively adjust
what is replicated to each physical site. Gossiping is the ability to share update
information regardless of who actually owns a replica. For example, two rarely
connected machines can learn replica status via a mutually accessible third
inachine. An extension to Rumor is Roam (Ratner 1998; Ratner et al. 1996;
Ratner et al. 1996). Roam improves the scalability of Rumor, by improving
the gossip and selective replication mechanisms.

2.4 Design Issues
Whether designing, modifying or selecting an appropriate consistency model
within a DFS, many design issues (beyond that briefly discussed in section 2.3)

need to be addressed. This section looks at these, including:

o Implications of a DFS. The effect of transactions, sessions and the

basic unit as implemented within a DFS,

.

26

e Application, User and Environment requirements. The effect of
file access patterns, scalability and conflict resclution within & DFS.

*» Models. The «ifferent models that exist within DFSs.

¢ Environment Hardware. The effect of communication infrastructure
and devices on consistency model development.

All of these issues are pivotal when trying to support consistency maintenance
and concurrency control.

2.4.1 Implications of a DFS

The DFS domain imposes specific constraints that are unique to its environ-
ment. These constraints can restrict aspects of a consistency model. One such
constraint is how transactions and sessions are understood and handled within
a file system. Another constraint is the basic unit (blocks, files, directories and
volumes) a consistency model uses.

These are of particular importance within the DF$ environment as many of the
fundamental design features and approaches found within existing consistency
models are derived from Distributed Database Management System (DDBMS)
environments. Handling these consiraints, within a DFS, becomes a major issue
as a DDBMS environment perceives them differently.

Transactions

Traditionally, the concept of a transaction is a collection of basic operations
denoted by a beginning and an end operation. Each transaction is considered
a single unit that can succeed or fail (Ozsu and Valduriez 1991). By defining a
structure for basic operations to exist within, properties can also be defined that
indicate details about the transaction. For example, the mnemonic “ACID"
(Haerder and Reuter 1983}, indicates that a transaction must be atomic, pre-
serve data consistency, isolated and durable. However, the implementation of
transactions and these properties in a file system domain is more difficult.

Within the DDBMS domain, the concept of a transaction is intertwined with
its functionality (for example, queries). However, within existing (common)
file system implementations, there is no explicit definition of a transaction.
Rather, file systems are more general than a database, thus are not ecnstrained
to a detailed abstraction. To achieve a pseudo-transactional model, either file

DNCAEL N _:.=!-L- e

27

system primitives have to be substituted to indicate the beginning and the end
of a transaction or an extension to a file system is required.

The simplest approach for achieving a pseudo-transactional model is to substi-
tute the open and close file primitives as the start and end of a transaction.
The benefit of such an approach is that applications can transparently create
transactions without actually being aware they are doing so. However, the
negative aspect of the tight coupling between the boundaries of a transaction
and file system operations is that transacticas are restricted to a single data
object. Also there is no control over whether the transaction succeeds or fails.
The main reason for using this approach is to guarantee tb< correceness of a
transaction. If an open function is called on a file, then a locking approach
could be used (section 2.3.2) ensuring that other transactions do not attempt
to intercede prior to the original transaction committing.

The second approach for achieving a pseudo-transactional model is to extend
the set of file system primitives so that applications are aware of the file systems
transactional capabilities. For example, there are implementations of file sys-
tems that exploit a transactional approach (XDFS (Mitchell and Dion 1982)).
The benefit of this approach is that fine grained transactional control can be
achieved, However, applications have 1o be explicitly aware of this interface to
take advantage of transaction semantics.

Coda’s implewantar = of Isolation Only Transaction mechanism (Lu et al.
1997) is an ext-rsion to file system primitives to improve the transactional
capabilities of a file system, Rather than operations being ungrouped, an ad-
ditional mechanism within Coda allows applications to encapsulate operations
between a begin_iot and end_iot operation. As a result, reed-write conflicts can
be detected and flexible conflict resolution strategies can be employed.

Sessions

Sessions are an abstraction of multiple reed and write operations. However,
unlike a transaction, atomicity and serialisability are not the primary intention.
Rather, prior to a session being invoked, a guarantee from the system is obtained
by the application. This guarantee ensures that the view of the data object
remains consistent for the operations performed by a single application. An
implementation of session guarantees is illustrated in Bayou (Terry et al. 1994;
Demers et al. 1994; Edwards et al. 1997). Bayou allows an application to
us ; four different guarantees, including Read Your Writes, Monotonic Reads,

28

Writes Follow Reads and Monotonic Writes. Each approach ensures different
levels of consistency and availability.

The implication of implementing sessions is similar to transactions, as most
DFSs have no implicit support for session guarantees. As a result, the solution
is similar to how file systems support transactions, that being either transpar-
ently implementing session boundaries based on overloading existing operations
or non-tsansparently extending the file system. Overloading existing operations
to define the boundaries of a session, restricts the scope of a guarantee and fails
to offer the ability to select different session guarantees. Where as, extending file
system operations fails to offer transparent support, only supporting applica-
tions that are explicitly aware of the file system extension. As a result, defining
session guarantees within a DFS is complex, with the resulting implementation
solely based on a balance of the benefits against the constraints.

Basic Unit

The primary purpose of the file system is to store file objects in an ordered
manner to a persistent storage for future accessing. Since it is only a service,
it has no need to be aware of the contents of the file. In other words, to service
the needs of the file system, a generic service, based on a coarse grain unit is
used. This is differeni to Database Management System, as the basic stored
unit is fine grain and explicitly defined (Ozsu and Valduriez 1991).

The implication is that DDBMS has the ability to maintain consistency of a
much finer grain data object, compared to a DFS, which has a file (or encapsu-
lating types, like directories and volumes) available o it. Thus, a consistency
model is constricted by a DFS, as it uses a course grain unit as the basic unit
for all consistency maintenance events. The ramification of using a course grain
unit is that the file must be propagated in its entirety, even when a minor por-
tion of it has been modified, This is because the file system does not persist the
specifics of an operation, only the effects of the operation. The result of whole
file propagation is inefficient utilisation of resources, in particular bandwidth.,
This is a major implication when building consistency models within a DFS.

A solution to inefficient utilisation of resources is to impose an additional unit
on top of the file system. Traditionally, this has taken the form of file blocks
(Dwyer 1998b). In other words, files can be broken into sub elements, which can
be treated as units in their own right. For example, blocks can take the form of
static and dynamic partitions (Dwyer 1998b}, or computed deltas (Burns and
Long 1997). The benefit of this approach is that utilisation of resources can be

29

better allocated. However, the negative aspect is that the consistency model is
required to manage, monitor, define and implement the file blocks, independent
of the file system. Thus, when considering file blocks as the basic unit, the
benefit of efficient utilisation of resources might be offset by the additional cost
of implementing the necessary infrastructure.

2.4.2 Application, User and Environmental Requirements

One of the primary reguirements that must be considered in the selection or
design of a ccnsistency model is the minimal level of consistency an application,
user and environment requires. In other words, whether an application, user
and environment are dependant upon achieving one-copy equivalence and seri-
alisation, or whether a relaxed form of consistency maintenance is acceptable.
This concept can be described as uniformity (Saito and Shapiro 2002}, meaning
the demand that replica content must eventually converge. How they converge
and the timeliness of the convergence is partly dictated by the foliowing areas:

PFile Access Patterns
e Conflict Resolution

o Scalability

Pile Access Patterns

When designing or selecting a consistency model, the file access patterns of
an application, user and/or environment can be used to configure the imple-
mentation to more effectively service consistency and availability requirements.
For example, if implementing an approach tailored to a CVS, then the ratic
of write to read operations would prompt the implementation of an approach
that favours write operations over reed operations. For this reason, the file
access pattern of a DFS, user and/or application are one of the major factors
determining the type of consistency model to implement.

Traditionally, defining a level of consistency and availability (within a consis-
tency model) has been based on well-known and general accepted assumptions
about file access patterns. For example, numerous and extensive studies into
file access patterns (Kistler 1093; Burrows 1988; Roselli et al. 2000; Qusterhout
et al. 1985) have consistenily confirmed that read operations out number write
operations 5 (or 10) to 1 and that concurrent modifications are rare, equating

“ﬁ

30

to only 1% of all operations. Many current consistency models are built upon
these assumptions, as they are assumed adequate in real world systems.

However, there are situations where this generalisation does not adequately
exploit the needs of the application, user or environment. For example, the
discussion found in Gill, Zhou, and Sandhu {1994) illustraies that files within
an academic environmecats are smaller in size and exhibit less sharing. This
is compared to commercial environments where files are larger and exhibit a
higher degree of sharing. Thus, the implementation of a consistency model has
many of its goals based on the file access patterns of the application, user or
environment in which it is attempting to service.

Much of the difficulty associated with using file access patterns, as a major
criteria for the final design or selection of a consistency model, stems not from
the ratio of read to write operations, but rather the complexity associated
with the frequency of concurrent write operations (write-sharing). As the BSD
study showed (Ousterhout et al. 1985) {more recently (Baker et al. 1991)},
the likelihood of write-sharing operations occurring is minimal. However, this
might not be the case in all situations. Rather, the frequency needs to be
determined so the criteria of performance, availability and consistency can be
satisfied.

Conflicts Resolution

It is inevitable that concurrent operaotions on replicated data objects we'l result
in conflicts that break one copy-equivalence. With a pessimistic approach,
conflicts are avoided up front, as the validation phase is prior to all read or
write operations. However, the cost associated with the validation phase can
place unnecessary burden on a system, if the nature of the conflicts can be
resolved easily.

Within an optimistic approach, as the validation phase is after read and/or
write operations, the likelihood of two replicas no longer being valid is high.
However, the benefit is that the cost per operation is raduced, as validation is
no longer directly part of the transaction’s life cycle.

Determining which approach to choose can be based on the complexity to re-
solve conflicting replicas. For example, some conflicts can be resolved manu-
ally, where as others can be resolved automatically. Manually conflicts can be
time consuming. Whereas, automaticz!ly resolved conflicts might require less

o
)

s pm——

e nilinn H,
T

P

31

intervention of the user, however are limited by the implementation of the au-
tomatic resolvers. For example, the implementation of the Application Specific
Resolvers in Ficus (Guy et al. 1990) and Coda (Kistler and Satyanarayanan
1991) demonstrate how simplistic conflicts are managed well. However, these
systems become less appealing as the complexity of the conflict increases.

Thus, when determining which consisterscy model to implement, the possibility
of conflicls needs to be evaluated. The extent of the conflicts needs to be mea-
sured and the cost associated with resolving the conflict {(whether automated
or manual) needs to be reviewed. Each of these aspects can have implications
on the consistency mode! chosen.

Scalability

The DFS (or any distributed system) can attribute the beneficial qualities of
performance and availability improvements directly to its distribution of data
and functionality throughout the network. However, the scale of this distri-
bution can effect consistency model development. As the number of replicas
increase, so does the likelihood of concurrent accesses, the increase in cost
overheads associated with propagating updates and the increase in conflicts
occurring (Saito and Shapirc 2002). For example, implementing a pessimistic
approach within a large scale DFS would avoid conflicts, but would create ad-
ditional overheads and greatly reduce availability. Whereas, implementing an
optimistic approach would reduce the overheads associated with propagating
updates {as they are moved t¢ a background process) and increase availabil-
ity, but allow for conflicis between replicas to arise. Thus, choosing a consis-
tency model when scalability is an issue, is highly dependent on what issues are
deemed important for the consistency model to service.

2.4.3 Models

An important aspect of any DF3 implementation is the model defining the
structure and velationship of file replicas. As has been illustrated with some of
the existing iraplementations of DFSs, the relationship between replicas has far
reaching implications for consistency models. Currently, the two most dominate
models are thz clieri/server model and the peer-to-peer model.

e e p——

32
2.44 Client/Server

The client/server model is one form of defining relationship between replicas.
The basic design consists of a server element, managing resources and a client
element, interacting with the server, Commonly the client/server model is
referred to a second class replication. The reason is that the clients replica is
always second class compared to the replica held by the host designated as the
server,

The motivation for this model within the DFS domain stems from two major
aspects, the ability for these systems to scale easily (compared to a Peer-to-
Peer systems) and to provide an elegant model to manage files in a centralised
manner.

Scalability within a client/server model is highly dependant on the specific ap-
proach implemented. Within client/server model implementations, there can
exist two different approaches; stateful and stateless. A stateful approach re-
quires the server to maintain some form of state relating to the relationship
between a clienf anc a server. For example, when a client replica is created,
the server keeps a record, using callbacks (Satyanarayanan 1989) to inform the
client when the server version of the replica has changed. Such approaches
are appropriate when the consistency maintenance techniques are server cen-
tric. However, this statefulness of the server does limit the scalability of a file
systern, as only a finite number of clients can be serviced by a server at any
particular time, Rather, with stateless implementations,’the server is not con-
cerned for the clients that call upon its services. The server merely provides a
service to the clients, regardless of who they are. The benefit is that such sys-
tems can scale easily as the server is not required to keep track of the number of
client replicas. This lack of tracking means that informing clients of change to a
servers replica can not be disseminated, unless some form of broadcast messag-
ing approach is used. Thus, clients must assume responsibility of consistency
maintenance of replicas. However, since the server is known to the client, the
client has a known location to determine the consistency of a replica.

The other beneficial aspect of the client/server model is that the server offers a
centralised point of control for all ciients. The obvious benefit of this structure
is that many of the management techniques employed to ensure consistency
between replicas can be centralised at the server, Thus concurrency issues can
be managed in an ordered and serialised manner, as all requests must go via
a server, Primarily, for this reason, many existing implementations of DFSs
employ a client/server model.

33

However, the main negative aspect of the clieni/server model is that a server
is the central point of failure. Therefore, if a server is not contactable, then
the functionality of the client is restricted. Of course, the level of restriction
is dependent on the specifics of the implementation, for example implementing
optimistic consistency maintenance on a client. However, this trade-off does
come at a cost, as detailed in section 2.2, Solutions have been emploved to
improve this negative aspect through the implementation of fault tolerance
mechanisms. In many implementations, like CODA (Satyanarayanan 1989},
multiple servers are deployed, thus reducing the disruption of the client as a
result of the primary server failing. However, this does result in a cost, as the
mechanism to update servers becomes more complex.

2.4.5 Peer-to-Peer

With the advent of Peer-to-Peer (P2P) (Fienner 2002) file sharing systems {(e.g.
Gnutella (GNUTELLA. 2002)), Peer-to-Peer has emerged as a viable method
of defining replica relationships within DFSs. The basic elements of a peer-to-
peer model include three aspects; firstly, all nodes within a network are equal
members. Secondly, nodes within the system are autonomous, providing both
the facilities to consume resources and expose them {thus simultaneously being
a client and a server). Finally, much of the communication is unidirectional.

The implications of a Peer-to-Peer model in a DFS primarily focused on the
equality of nodes. As there is no implied structure between replicas; each replica
has the same weight. As a result, such systems refer to replica with a peer-
to-peer implementation as first class replication. The benefit of not having an
implied structure is that replicas can synchronise between peers, rather than
with a server. This results in adhoc networks forming, with members able to
synchronise replices regardless of whether they are attached to a server or not.
In some respects, this improves the dissemination of replica information within
a network, however, this improvement does come at a cost.

This cost is that there is no centralised arbitrator to resolve replica consis-
tency issues. For example, two peers attempt to synchronise their replicas
and a conflict results. Since both carry the same weight, as a result, the sys-
tem has trouble determining which replica is the most up-to-date. Within a
client/server implementation, either this conflict would have been avoided or
when resolved, the entire network would be made aware of the changes, not
just two peers. Such conflict issues lead to the assignment of weights to replicas
to define the relationship between peers {e.g. version vectors (Parker, Popek,

—O———_——————

E _

34

Rudisin, Allen Stoughton, Walton, Chow, Edwards, Kiser, and Kline 1983)).
However, even with the assignment of weights, ensuring that all changes made
by all users on shared data are made visible requires a complex conflict resolu-
tion system.

Thus, when designing a DFSs and associaied concurrency control and consis-
tency maintenance, a choice between the client/server and peer-to-peer models
has a lot to do with which model best describes the interaction between repli-
cas, the issues of scalability, the need for fault tolerance and the complexity
associated with resolving conflicts that may arise.

2.4.6 Environmental Hardware

The mechanisms of the consistency model are highly dependent on the envi-
ronmental hardware of a DFS. In other words, the choice of consistency model
must take into consideration the environment in which it exists. Primarily,
this means that the constraints of the communication infrastructure and de-
vices that make up a DFS need to be evaluated as part of consistency model
development.

Communication Infrastructure

Constraints of the communication infrastructure effect many aspects of con-
sistency model development. These unique constraints are important as they
affect specific design characteristics of the consistency model. For example,

issues that are affected by the type of communication infrastructure include

timeliness of update propagation, update strategies and the actual implemen-
tation of the mechanism used to service the consistency needs of the application
and/or user.

Communication infrastructure can be categorised into a simple taxonomy; High
Throughput Wired, Low Throughput Wired and Wireless connection. This is
by no means a definitive classification, but is acceptable for consistency model
development.

High Throughput Wired Connection

High throughput wired connection exhibit the characteristics of stable connec-
tivity and low bit error rates. As a result, consistency model implementations
built upon these systems can place less emphasis on availability issues, focusing
rather upon improving performance time to access a replica and /or maintaining

35

consistency of the replicas. This is because stability of the wired connection
implies lesser need for replication.

In addition these connections provide high throughput {Ethernet at 10/100
Mbps and ATM at 155 Mbps). With access to ample resources {in this case
bandwidth), a consistency model has more flexibility in how consistency be-
tween replicas is maintained. For example, a bandwidth intensive approach to
malntaining consistency can be employed without greatly affecting the available
resources. The benefit is that such resource intensive approaches can reduce
the time for replica synchronisation, as updates are propagated to all repli-
cas a8 they oecur. This is in contrast to resource-constrained approaches that
prioritise propagating updates, such that bandwidth utilisation is improved.

Low Throughput Wired Connection

Low throughput wired connections exhibit some of the behaviour of high through-
put wired connections, but with some additional characteristics that are unique
to only this connection type. As the name suggests, the main characteristic
difference is throughput. As a result, mechanisms implemented within a consis-
tency mode] and their usage of bandwidth to maintain consi-ie..cy becomes a
critical issue within the DFS. A classic example of a low throughput wired con-
nection would be a connection established using a traditional telephone based
modem.

One of the major differences is the characteristic of disconnections. With high
throughput wired cennections, disconnection events are mainly the result of
failures. However, with some low throughput wired connections, disconnection
events could also be elective, This means that nodes of the DFS can choose
when to connect and disconnect from the network. Not all low throughput
wired connections have elective disconnection events as a characteristic. How-
ever, within the context of consistency model development, it is assumed that
most low throughput wired connections exhibit voluntary disconneciion as a
characteristic.

The implication for consistency model development when faced with the issue
of disconnection events, is whether the event was elective or a result of a failure.
As a result, availability becomes an important issue, as support for disconnected
operations (the ability to interact with the DFS while disconnected from the
network) (Kistler and Satyanarayanan 1991) might be required to ensure the
availability requirements of an application and/or user are met.

Wireless Conneclion

——_

36

Wireless communication creates an afditional set of constraints for a consis-
tency model. One of these is the nature of the connection. Rather, than hav-
ing a connection that has two states (connected or disconnected), the actual
throughput can fluctuate due to environmental factors. This fluctuation is not
a rare occurrence, but rather a common characteristic of wireless communica-
tion. The implication is that the underlying bandwidth can never be assumed.
This results in consistency maintenance approaches that must prioritise events
(for example, update notification), as no level of service or future service can
be assumed.

Nodes of DFS using this type of connection might disconnect and connect ran-
domly. Rather than being a critical failure or an elective event, disconnection
events within a wireless connection infrastructure can also be temporary occur-
rences. For example, loss of connection can be as a result of being out of range
or moving into a “black spot” within a radio network. A consistency model
needs to cater for this unpredictable behaviour. This might take the form of
a more robust consistency maintenance mechanism that makes no assumptions
about the longevity of a connection or the available bandwidth.

Devices

The capabilities and constraints of devices that are members of a DFS can affect
the implementation of certain aspects of a consistency model. In the context of a
DFS, these constraints primarily focus on the processing and storage capabilities
of a device, more than the type of input/output devices and other physical

characteristics. A simple taxonomy is defined for devices, including Deskiop -

and Server, Portable and Handheld. Like the communication infrastructure
taxonomy (section 2.4.6), this is not a definitive classification. Rather, it is an

adequate classification within the context of a consistency model development
for a DFS.

Desktop and Server

With the decrease in the cost of processing and storage capabilities, the dif-
ference between servers and desktop devices within the context of consistency
model development becomes minor. Both devices have access to ample re-
sources and are stable members of the network. The major difference is not in
the actual architecture of the device, rather the task performed. For example,
it is common for the average desktop device to be equal with small to m~ 'um
enterprise servers.

37

Wher developing consistency models intended for the use on these devices, im-
plementations can exploit ample resources in order to improve performance. For
example, access to abundant storage allows these devices io house all elements
of a replica (e.g. whole volumes), rather than storing a partial copy (blocks).
The ability to house more of the replica locally reduces the need to search the
network for a particular file object, in turn improving performance.

The stability of servers and desktop devices reduces the need for software sup-
port for availability. This is because the responsibility for reliability rests with
the stability of the actual device and not any underlying replication subsys-
tem. Thus, approaches that favour consistency over availability can be em-
ployed. This is illustrated in early DFSs (NFS (Sandberg et al. 1985) and AFS
(Howard 1988)), as they existed on networks containing abundant resources
{this is relative) and implemented pessimistic approaches for concurrency con-
trol and consistency maintenance.

Portable

Unlike desktop and server devices, portable devices are built to be mobile (for
example laptop computers). The actual architecture of these devices is similar
to desktop devices. However, their portability means that their processing
and storage capabilities are reduced. From a consistency model point of view,
awareness of the available resources is important. For example, replicating
whole volumes might not be physically feasible on a portable device. Rather
replicating only the files a user requires would be sufficient.

The nature of portable devices creates a number of issues relating to availability.
As portable devices are designed to be mobile, the issues of connection and
disconnection become important. Section 2.4.6 has already briefly discussed
that the ability to connect and elective disconnect creates issues for consistency

model implementations.
Handhelds

Handheld devices (Paim (Rhodes and Mckeehan 1999), PocketPC (Boling 1998),
Pison (Psion 2002)) might exhibit some of the same characteristics of portable
devices (namely mobility). However, they are architecturally different. Primar-
ily, handheld devices are extensions of the desktop, storing user specific data
in an easy to access format. What makes these devices different to portable
devices is the varying nature of their underlying hardware and their design pur-
pose. Unlike portable devices which replicate desktop functionality, these units

——_

38

have more specific aims. Their generality is reduced in favour of horizontal ap-

plication support, with each variation of handheld device varying greatly from
one another.

This architectural difference has many implications for consistency models, be-
yond just the issue of mobility. These implications include; the need for avail-
ability, the limiied resources exhibited by these devices, the siorage mechanism
and the integration with the DFS.

¢ Availability. Much of the life of these units is spent disconnected from
the desktop (network). As a result, availability is an important aspect, as
the unit needs to operate in a disconnected mode for extended periods.

¢ Limited Resources. Unlike other devices, the resources of these units
are very limited. For instance, storage, processing capabilities and power
supply are reduced. As a result, addressing these concerns is essential. In
turn, performance of the consistency model implementation is paramount
with these devices, as inefficiency can adversely affect all aspects of the
device.

o Storage Mechanism. The concept of storage usually conforms to a
hierarchical file system model {of course, other implementations do exist).
However, due to the varying design goals and underlying hardware, the
concept of storage is different within handheld devices. For example, Palm
uses a database model to store data object {Rhodes and Mckeehan 1999),
whereas Pocket PC has a hierarchical file system, coupled with a universal
Database Management System for its storage needs (Boling 1998).

» Integration. The connectivity of handheld devices is varied, with either
batch (referred to as synchronisation) or on-line processing. However,
much of this is based on the supported communication infrastructure.
For example, using an IrDA (IRDA 2002) or serial connection facilitates
synchronisation, whereas on-line support is achieved with cellular modems
and more traditional approaches (Wireless or Ethernet).

Current DFSs may contain various combinations of devices (server, desktop,
portable and handheld) and communication infrastructure (wired, wireless,
etc). They also service different users and different applications. This land-
scape creates new issues for consistency model development, as not only the
effects of individual elements help determine design choices, but when fully in-

tegrated simultaneously (the heterogeneous system) into the single DFS, these
issues are compounded.

Tiimay sl

SFER T SR

L Sy

39

2.5 Aspects of Heterogeneity

The issues that arise from mobility 2 enabled systems are an excellent real life
illustration of heterogeneity within the context of a DFS. The rise of mobilicy
occurred with the expansion of portable devices and wireless communication
infrastructures. However, the introduction of mobility enabling devices did not
mean that existing infrastructure (wired connection and desktop-server devices)
were no longer part of the DFS. Rather, it resulted in a mixture of static and dy-
namic infrastructure using different communication mechanisms, all sharing the
same resources. Thus, mobility and all the associated devices and constraints
lessen the homogeneity of a DFS.

Much research has been done into a DFS8’s ability to effectively handle mobil-
ity (Satyanarayanan 1989; Tait 1993; Dwyer and Bharghavan 1997; Guy et al.
1998). However, solutions developed are merely scoped to handle mobility, and
not support for heterogeneity. Mobility thus illustrates the need and possibili-
ties of heterogeneity, rather than solves it.

True heterogeneity, with respect to concurrency control and consistency main-
tenance within a DFS, is creating an approach suitable for all devices, communi-
cation infrastructure, users and applications (beyond support for just mobility}.
Thus, how can true heterogeneity be supported in a DFS?

2.6 Research Area targeted by this Dissertation

When determining a consistency model to implement within a DFS (or any
distributed system), the decision process consists of evaluating the application
requirements (numerous applications and urer needs) and distributed topology
{(devices and communicatiot infractructure). Resalting from this evaluation
is a number of scenarios, each with a specific need. Scenarios thus define a
problem space for which a consistency model will attempt to solve. For example,
scenarios can be the need to support a wireless infrastructure or the level of

consistency required for a specific appiication.

Traditionally, serving all these scenarios has resulted in a balance being found
between consistency and availability (Saito and Shapiro 2002). The resulting
solution is a single consistency model that “as best as possible” handles the
constraints of all the scenarios. However, providing a generic approach has

*Mobility in this context refers to the effect of mobility enabling hardware, rather than
actual movement of a device.

40

major implications, as certain applications, users and hardware might not be
served effectively and efficienily. As a result, the cost of generality is a lack of
fine grain support for certain scenarios by a consistency model.

Many current implementations of DFSs illustrate specific scoping of consistency
models to support specific scenarios. For example, early DFSs were built upon
stable, high throughput wired network infrastructure. As a result, many as-
sumptions were made about the underlying consistency model implementation.
‘These systems supported users and applications well when these assumptions
held true, but failed when the assumptions changed. A classic example of this
failure was Coda’s inability to adapt to a limited bandwidth infrastructure
(Mummert et al. 1995). As a result, Coda had to be re-engineered to cater for
the new communication infrastructure,

Thus, as the hetercgeneity and complexity of a DFS increases, the effectiveness
and efficiency of a single consistency model approach is reduced. As a result, a
new approach is required to give the DFS the ability to support heterogeneity
in relation to concurrency control and consistency maintchance. This research
is targeter by this dissertation.

2.7 Summary

Pl

This chapter has detailed the fundamental issues surrounding concurrency con-
trol and consistency maintenance within the context of a DFS (the consistency
model). This chapter has also detailed how consistency models address issues
like transactions, sessions, application requirements and hardware elements.
Based on the research, the inability of curreni consistency models to cater for
the unique and variable nature of heterogeneous DFS was identified.

The next chapters outline GLOMAR, an approach to provide a workable so-
lution so that an additional level of adaptability can be added to a DFS's
impiementation for concurrency control and consistency maintenance.

41

Chapter 3

GLOMAR Design Rationale

GLOMAR provides a component framework for the maintenance of data objects
within a heterogeneous DFS. This chapter describes the motivation, aims and
high-level design of GLOMAR. The issues that are discussed in this chapter
include;

o Why support for 1eterogeneity is important.

e Why streamlining processes for consistency model development is re-
quired.

¢ And why flexibility of DFSs needs to be improved.

These issues are then addressed in the context of GLOMAR's aims and de-
sign, This chapter is the precursor to detailed discussions regarding the system
implementation presented ip. further chapters.

3.1 GLOMAR Motivation

The motivation for GLOMAR, (Cuce and Zaslavsky 2002a; Cuce and Zaslavsky
2002b) evolved out of three major issues within distributed system develop-
ment. The first is the difficulty for existing consistency models to support
heterogeneous environments. This is because currest DFS implementations
make assumptions about the target platforin, specizically scoping functionality
to that platform only. For example, some implementations assume abundant
resources {wired connections), whereas others assume resources are tightly con-
strained {wireless connections). Thus, by assuming the target platform, the

42

DFS’s ability to adapt to the elements that make-up a heterogeneous environ-
ment is reduced.

The second issue relates to the failure of some distributed system developments
to adhere and benefit from commonplace software engineering practices. Exist-
ing approaches incorporate all facets of DFS functionality into a single system.
Consequently, these systems are difficult to configure, complex to extend and
static in their ability to adapt. For example, when a DFS implementation pack-
ages all the concurrency control and consistency maintenance mechanisms in an
ad-hoc manner, extending the existing code base is subsequently more difficult.

The third issue is the lack of flexibility associated with development of con-
sistency models, configurability of these consistency models and the ability to
define specific heuristics custom-built for different target platforms. Current
DFS implementations do not offer broad flexibility in relation to the tasks they
perform. For example, installing a new heuristic {in this case packet loss in-
formation) into an existing DFS cannot be easily accommodated. Rather, the
existing heuristics found within the DFS are the only ones available to he used.
In soine cases, the existing heuristics might not service a particular purpose as
well has a custom-built heuristic. This lack of flexibility is common in many
existing DIS implementations.

3.1.1 Support for Heterogeneous Environments

It is common for heterogeneous environments to consist of éervers, desktops,
laptops and handheld davices, all running different applications and servicing
different users. These might be interconnected via different network infrastruc-
tures, including broadband, wireless and infrared (figure 3.1). Applications run-
ning within this environment might require a high level of consistency, whereas
others might not. The type of user that can exist may vary from transient (con-
necting and disconnecting at random intervals) to more stationary. All these
variations and many others can coexist within the one heterogeneous environ-
ment. Thus, the primary motivation for GLOMAR lies with the narrow scoping
of existing DFS implementations to cater to the variety of different hardware
elements, application domains and user requirements, which exist concurrently
within a heterogeneous environment.

The term scenario is used to describe a single variation of hardware, software
and user that can exist. Within a heterogeneous environment, many scenarios
can coexist concurrently. The problem with existing DFS’s is that if a num-
ber of scenarios are experienced, only a single scenario will be effectively and

il

= T s

S '-55:“."._.';

43

Laptop

Handheid

Figure 3.1: A Heterogeneous Environment

efficiently supported. Consider a DFS built upon a network where the connec-
tivity is unstable. Such a system would implement appropriate mechanisms for
that scenario only, for example, optimistic concurrency control with periodic
updates. These chosen mechanisms are specifically suited to this scenario only.

However, when implementing a mechanism on a system where the underlying
assumptions are different to which it was designed, the issue of effective and
efficient support becomes apparent. For example, consider the mechanisms
tailored for an unstable network implemented on a stable network connection
(previous example). The result is not a total failure of the DFS, but rather a
failure of the DFS to take advantage of the stable network, as an cptimistic
concurrency control approach is not the most effective method of maintaining
consistency in this scenario. As a result, the features that were a benefit in an
unstable network become a burden in a stable network.

Thus, making assumptions about the underlying constraints that a DFS exists
within hinders its ability to provide an effective and efficient level of service.
This in turn results in a failure to support the needs of a truly heterogeneous

system.

3.1.2 Consistency Model Development

If one wishes to create a consistency model to be used in a DFS, he/she will find
a number of issues that would make the process difficult. The first and most
difficult issue is how the consistency model code is embedded within an appli-
cation or operating system. In most cases, much of the concurrency control and
consistency maintenance functionality is tightly coupled to the file system mod-
ule, which is entrenched in the oprrating system. To integrate new consistency
models into an existing DFS requires some system level programming, which
can be an extremely difficult and t v ~onsuming task (in particular when the
operating system is proprietary).

In the case of a Distributed Database Management System (DDBMS), the
code responsible for the concurrency control and consistency maintenance is
in most cases tightly coupled to the DDBMS core. To gain access to this
functionality for the purpose of implementing a new approach, requires access
to the original source code. Such is the nature of concurrency control and
consistency maintenance that even if the source code is available, defining where
the consistency model portion of the DDBMS core begins and ends is difficult.
In other words, rarely is the process of concurrency control and consistency

maintenance abstracted into a single module for easy modification within the
DDBMS or DFS.

Why consistency mode] development fails to adhere to a unified and compart-
mentalised approach is because one does not exist. Many of the existing DFS’s
have just focused on “getting it working”, rather than defining good specifi-
cations and exploiting good software engineering practices. In turn, the code
associated with consistency models is hard to create, difficult to port, convolute
to modify and unable to be extended easils.

3.1.3 DFS Flexibility

Current DFS's provide limited flexibility to configure, extend and adjust many
elements of their implementation easily. For example, what events constitute a
disconnection operation cannot be easily changed within an existing DFS.

The benefit of limited flexibility is that the complexity of certain tasks is hidden
from the user. However, this restricts a DFS’s ability to adapt. An example of
this is the difficulty associated with modifying a DFS’s consistency model for a
new scenario. Rather than promoting a structure that allows any variation of
consistency model to exist, many DFSs, by their inflexible nature restrict the

AT R e TR

45

implementation possibilities. In other words, the DFS’s inability to adapt is
due in part to the inflexibility of its implementation.

3.2 GLOMAR Aims

The aims of GLOMAR are to:

¢ Create a framework that supports existing and future hetero-
geneous environments. This means for GLOMAR, to support a truly
heterogeneous envir-. nent, it must provide an open specification to allow
for new and different s .enarios to be expressed, built with few unclerlying
assumptions about the target platform and allow many different ccusis-
tency maintenance and concurrency control approaches to be supporuvod,

¢ Provide a formal specification for the creation of consisiency
models. The process of creating consistency models has been ad-hoc,
with no formal approach or specification available. GLOMAR attempts
to rectify this by defining a development process, where interfaces and
well defined formal specifications determine the structure of the consis-
tency model. This will improve the software engineering practices associ-
ated with cousistency model creation and offers greater reusability across
platforms and scenarios.

« Focus developments on the differing aspects of a distributed file
system. When studying the different DFSs, much of the functionality
and practices are shared across implementations. Thus, when developing
a DFS, a more effective approach is to reuse existing systems and change
only the parts where one wishes different functionality. GLOMAR at-
tempts to provide this by exposing the basic functionality of a DFS via
a number of services. As a result, GLOMAR only requires new function-
ality to be implemented in relation to consistency model creation. Thus,
GLOMAR aims to reduce the development burden, since much of the
functionality will be already available. This is similar in concept to how
the CORBA ORB (Object Management Group 1999} manages communi-
cation independent of CORBA objects.

¢ Allow highly configurable consistency model implementations.
In keeping with the aim of supporting heterogeneous environments, GLO-
MAR will incorporate an advanced dynamic configuration mechanism for

46

consistency models. This provides the flexibility to define when a con-
sistency model is activated and what data objects it governs. Such a
niechanism is easily adapiable and flexible enough to add new constraints
when they become available.

¢ Provide enough flexibility to ensure that any slternative ap-
proaches can be supported within GLOMAR. As Chapter 2 has
illustrated, there are many approaches to maintaining consistency and
controlling concurrency within a DFS. No one approach is better than
others in all aspects. Rather, they each have unique properties that ser-
vice a particular need. For GLOMAR to exploit alternative approaches,
the mechanism that houses them will need to be flexible enough not to
restrict their objectives. Thus, GLOMAR will provide a balanced ap-
proach, one that promotes formal specification in relation to consistency
mode] creation, but be open and flexible enough to accommodate casily
legacy and differing approaches.

3.3 Proposed Architecture of GLOMAR

3.3.1 How Heterogeneity is Supported

To support the multitude of scenarios that can exist within a truly heteroge-
neous environnient, the DFS is required to be adaptive. This adaptation is
achieved either as a result of a single mechanism that adapts based on a par-
ticular constraint (the single consistency model approach) or one that has a
multitude of solutions available to it, for which it can select and use the most
appropriate (the multiple consistency model approach).

The purpose of the single consistency model approach (figure 3.2) is to be adap-
tive by defining a semantic space thai encompasses all the foreseen consistency
and concurrency requirements. Such a mechanism would define a semantic
space, with each end corresponding to an extremity, in this case, pessimistic
and optimistic concurrency control. Depending on a number of triggers (e.g.
number of read versus write operations) the consistency level provided at a par-
ticular point of time is defined within this semantic space. Such an approach
provides an elegant mechanism for consistency maintenance and concurrency
control. However, the type of service provided can only be somewhere within
this semantic space. Essentially, a single consistency model approach imposes a

e s i

47

level of generalisation for the sake of elegance and simplicity. This does not pro-
vide the fine grain consistency maintenance, concurrency control and flexibilit:
that a truly heterogeneous system requires.

The other approach is the multiple consistency model approach (figure 3.2).
Unlike the single consistency model approach, the multiple consistency model
approach entrusts responsibility for concurrency control and consistency main-
tenance 10 other modules. Such an approach is similar to plug-in architectures
{Netscape 1998; UPNP 2002), where tasks are delegated to external modules
containing the majority of the functionality. The benefit of this approach is that
a number of consistency model modules are potentially available, allowing very
specific implementations for unique events. This results in a level of flexibility
that is not possible with the single consistency model approach.

- Coré MOd_U |E PR Plug'in Modules

Multiple Consistency
Model Approach
.ﬂ
N Core f‘»ﬂ'oﬁult;_;
Single Consistency
Model Approach

Figure 3.2: Single Consistency Model and Multiple Consistency Model Ap-
proaches

One negztive aspect of the multiple consistency model approach is that the
effectiveness of consistency maintenance and concurrency confral is only as good
as the available modules. For example, consider a scenario for* ™ich no available
consistency model module was present. Within the multiple consistency model
approach, the event would fail, as the event could not be serviced. Of course a
generic module could be implemented to reduce the repercussions of the failure
to find a suitable model. But it would experience the same negative aspects
of a single consistency model approach as a result. However, within a single
consistency model approach, an attempt would be made to manage this event,

48

Thus, the success of the multiple consistency model approach is solely based on
the modules at its disposal.

Another major concern with the multiple consistency model approach is the
performance cost associated with implementing this approach. It is inevitable
that an additional management layer is required to manage multiple consistency
models. As a result, every event is required to pass through a middleware layer
before being processed. This adds a cost factor, in addition to the file system.

The approach chosen for GLOMAR is the multiple consistency model approach,
as it best fits with the aims of GLOMAR. Some of the motivation behind select-
ing the multiple consistency model approach for GLOMAR is that it offers the
flexibility required to service the needs of a truly heterogeneous environment.
For example, with the single consistency model approach, the ability to adapt is
based on definable constraints. However, with the multiple consistency model
approach, there is the ability for future scenarios to be addressed through the
implementation of multiple consistency models.

The negative aspects of the multiple consistency model approach were also
considered in this selection. As these negative aspects are inevitable within the
multiple consistency model approach, GLOMAR will firstly aim to streamline
the creation process of consistency models. Thus, this will improve the likeli-
hood of many consistency model implementations being available. Secondly, is
foresecable that the multiple consistency model approach will impose an addi-
tional cost. However, these are estimated as minor, compared to the flexibility
that this approach will provide.

3.3.2 Streamline Creation of Consistency Models

GLOMAR intends to streamline the development process associated with the
creation of consistency models, by applying a specification and using a component-
oriented architecture (Szyperski 1997). This allows GLOMAR to provide the
benefits of software reuse, easy deployment and an improved ability to extend
existing consistency models. The solution chosen is to implement a compo-
nent approach, with the consistency model functionality encapsulated behind
a custom-built interface.

A component-oriented architecture was chosen as a means of streamlining the
encapsulation of consistency model functionality. This choice stems from the
ability to provide a unit of abstraction that embodies all elements of consistency
maintenance and concurrency control. Primarily, this allows for the flexibility

49

required to house different and varying consistency models and the use of meta-
data to describe the scenario a consistency model is best suited.

A component-oriented architecture also promotes good software engineering
practices, including the improved deployment and management of resulting

components. This is essential for consistency models to fit within the multiple
consistency mode] approach.

Finally, the component approach offers the framework to define a specification
and development methodology for the creation of consistency models. The
result is an encapsulation of consistency functionality and context such that
they are easily created, easily deployed and easily managed.

3.3.3 Abstracting DFS Complexity

GLOMAR takes the point of view that time and effort should be spent on the
creation of the differing aspects of a DFS, rather than the creation of existing
techniques and methods. In GLOMAR's case, this is how concurrency control
and consistency maintenance are handied. As a result, much of the complexity
of the DFS is abstracted into purposely built services. This means a DFS
developer need not be concerned about the minor aspects of a DFS, but rather
can concentrate on the consistency model portion of the DFS solely, using these
services when necessary.

However, beyond just providing services to be consumed by consistency models,
the issue of their management needs to be addressed. For example, with a
multitude of consistency models, there requires a process to determine which
model is more appropriate for a particular scenario. Thus, GLOMAR also
needs to provide a service that is responsible for the run-time management of
consistency models. The GLOMAR middleware layer does this and is similar
to other middleware implementations (CORBA (Object Management Group
1999) and DCOM (Prown and Kindel 1998)) where a set of standard services
and management t0ols are provided. In the case of GLOMAR, the services that
will be provided include naming, resource evaluation, operating system and/or
application integration and consistency model management. This results in a
centralised system that coordinates and manages all concurrency cortrol and
consistency maintenance activities, appropriately.

50
3.3.4 Flexibility

One of GLOMAR's design objectives is to support many variations of consis-
tency models to service a truly heterogeneous environment. Such a task is
a difficult one and is the crux of this dissertation. The solution proposed at-
tempts to provide the flexibility necessary to handle as many consistency model
variations as possible. This is achieved by focusing on three areas:

o The creation of an open non-restrictive architecture, which is the basis

for consistency model implementations.

¢ Improve the extendibility of middleware layer services, such that new and
unique services can be added easily.

¢ Provide a level of configurability, such that many aspects of the GLOMAR
system can be adjusted and modified.

As stated earlier, the use of a component-oriented architecture promotes im-
proved software engineering practices (Szyperski 1997). In addition, the nature
of a component is such that any functionality can be bound to it, but still
offering a single unit of representation. Thus, the component itself does not
restrict the flexibility of the concurrency control and counsistency maintenance
functionality.

For unique consistency models to be supported within GLOMAR, might require
that additional support services be available. For example, a consistency model
might require packet loss information to determine the scenario for which it is
valid. Many existing DFSs do not provide this packet loss information, let alone
a mechanism to insert a purposely built module that derives this information.
GLOMAR cnhances this aspect of a DFS by providing a mechanism to improve
its extendibility, by allowing new services to be added to the middleware layer
casily. Such services might include specific modules targeted at a particular con-
sistency madel, or more general services that provide a service to all consistency
models. This is achieved by exploiting a plug-in architecture, where external
functionality can be inserted into GLOMAR. These services can be accessed
easily by any or a particular consistency model. The specific implementation
of this approach is detailed in Chapter 5.

GLOMAR also promotes a high level of configurability of all its components.
For example, GLOMAR has the ability to set specifically what data objects,
users and applications a consistency model can govern. Specific details on how

i
b
Fcr
PAY

It

i

o IR i S R T
P i i e R S R S

AT et 20

RS ":-?-.&.:,';.:?;“'i-én"‘:ds—".‘."_'.'-v.;a'.idl'u';--\.n:x“,n".'--'i

PN

R\

WTIETR
St]

R AR

R A TR

51

this and other configuration features are achieved are outlined in later chapters
{4 and 5).

3.4 GLOMAR Overview

GLOMAR supports multiple concurrency control and consistency maintenance
mechanisms under a single system. These mechanisms are defined as a con-
sistency model and are coupled with metadata within a housing component,
referred to as a Relationship Component. Depending upon the current scenario,
GLOMAR. determines via a middleware layer, which Relationship Component
18 best suited to effectively and efficiently service the consistency needs of the
application, user, data and the DFS.

The contribution of GLOMAR consists of three elements, the component based
methodology in relation to the creation, usage and implementation of concur-
rency control and consistency maintenance mechanisms, the design and struc-
ture of the compomn nts that houses the concurrency control and consistency
maintenance functionality and the middleware layer used to manage run-time
activities.

3.4.1 Relationship Component

The concept of the Relationship Component stems from the need to provide a
framework that can encapsulate different concurrency control and consistency
maintenance mechanisms. However, the structure of the Relationship Compo-
nent is more than just a component-based wrapper around a consistency model.
Additional functionality is required to help describe the context for which the
consistency model is snited. Thus, the make up of the Relationship Compo-
nent is one that contains the functionality to control concurrency and define its

context,

These elements are implemented by delegating each specific area (functionality
and context) into sub-components within the Relationship Component. These
sub components include the Consistency Model, which contains a single concur-
rency control and consistency maintenance mechanism; the Relationship Scope,
which defines the context for which it is valid; and the Clone List, which defines
the data objects the Relationship Component will govern (figure 3.3).

52

Relationship
Consistency Model Component
g ‘ T
2| |
] 1
Relationship Scope Clone List

Figure 3.3: Relationship Component

Consistency Model

The erux of managing concurrency control and consistency maintenance is en-
capsulated in the Consistency Model. The Consistency Model is the packaging
of functionality associated with the maintenance of counsistency between repli-
cas within & DFS, Much of the complexity and development time in creating
the Relationship Component is associated with the Consistency Model. Spe-
cific details of the nature, interface and structure of the Consistency Model are
provided in Chapter 4.

Relationship Secope

With the multiple consistency model approach, a variable number of consis-
tency models can co-exist. This in turn requires that a process be used to
determine which model is the most appropriate at a particular point in time.
As a result, determining the most appropriate consistency model relies on de-
tailed information used to describe the current scenario. GLOMAR. achieves
this by defining the Relationship Scope. The Relationship Scope is a set of
rules that define when a Relationship Component is invoked. The legitimacy of
the Relationship Corvponent is determined by evaluating its Relationship Scope
against the current scenario. For example, if a Relationship Component is to
be invoked only when a network partition occurs, then the current status of the
netwerk will be the primary factor when determining whether this Relationship
Component is invoked or not. Essentially, the Relationship Scope facilitates
this by providing a simple interface that can be implemented as needed.

AR b

21 tel

GAEU

it 5

g VB [b byt R L

Clone List

The purpose of the Clone List is to define what physical replicated data ob-
jects (Clones) this Relationship Component will govern. The Clone List is a
configurable mechanism used to define the relationship between one or many
data objects to one or many consistency models. As a result, the Clone List

is used as part of the decision making process to determine which Relationship
Component to invoke and when.

3.4.2 GLOMAR Middleware Layer

Managing and servicing of Relationship Components is handled by the GLO-
MAR’s middleware layer. Within the middleware layer, there are a number of
services required to operate GLOMAR smoothly. These include Local Opera-
tion Interface, Remote Oneration Interface, Clone Distribution Manager, Ser-
vice Manager, System Grader and Relationship Component Repository. Each
of these are used or governed by the Ezecutive (figure 3.4).

Application Module 1
_ 1| System el |
Local File Executive Grader Module 7
Operation A -
Implemented |
Refationship | .
Comp i Service Service 1
Local Operation {~~—"=-=="m==""" RIR]
Interface Manager | Service 1t
1
Remote
l' -I] Operation | | <
Interface Remote File
Gperation
Relationship —
Clone
[Camponent Repository Pistributior]
RCI H rcz || nee [Manager
L ¥ T |

Figure 3.4: GLOMAR Middleware Layer

Local Operation Interface

The purpose of the Local Operation Interface is to capture all Jocal file op-
erations and forward them to GLOMAR for further processing. The Local

54

Operation Interface has two interfaces, a transparent {for operating system in-
tegration) and a non-transparent (for direct application invocation) interface.
The Local Operation Interface works by intercepting an operation and redirect-
ing it to GLOMAR. Only when GLOMAR deems the operation a success (the
Relationship Component has successfully performed the operation remotely),
can the file system allow the changes 10 be stored on the local stable storage.

Remote Operation Interface

Not all file operations, handled by the Executive, are a result of local file op-
crations. Some operations originate from remote sources. To ensure that these
operations are handled appropriately, the Remote Operation Interface is used
to manage these operations.

Clone Distribution Manager

The purpose of the Clone Distribution Manager is to provide the Executive
with information about a Clone. For exampie, this inciudes resolving the ID
of a file to its absolute address. The neced for such a mechanism is necessary
as name resolution is made more difficult with replicas distributed in different
parts of the network and in different parts of the file system’s hierarchy.

Service Manager

Beyond the default services provided by GLOMAR. (in particular the Clone
Distribution Manager), additional services may be required to deal with the
specific needs of some Relationship Componenis. For example, a Relationship
Component may require a transaction management service. For this reason,
GLOMAR, provides a Service Manager that is responsible for the implementa-
tion of user-specific services.

System Grader

Within the GLOMAR middleware layer, the System Grader is used to derive
the information to describe the current scenario. This is used for selecting a
Relationship Component or re-evaluating its legitimacy. The unique aspect of
the System Grader is its ability to describe any type of scenario. Traditionally
similar systerns have proviaed only a standard set of heuristics (e.g. storage size,
cpu speed, bandwidth) to describe the current scenario (Noble 2000; Yu and

ety

55

Vahdat 2006a). However, there are situations where purposely built Conteszt
Providers are required to derive information that is not intrinsically supplied by
GLOMAR. In keeping with the component-oriented architecture, the System
Grader acts 25 a container for third party Context Providers to be plugged in.

This provides the flexibility to add new mechanisms to describe a scenario for
which a Relationship Component is valid,

Relationship Component Repository

The purpose of the Relationship Component Repository is to manage the run-
time selection of Relationship Components. For example, the Executive requires
a Relationship Component be selected due to a change in the current scenario.
The Relationship Component Repository ultimately compares the new infor-
mation collected by the System Grader, with the Relationship Scope of each
installed Relationship Component to determine which Relationship Component
is valid. However, the process is more complex than this (Chapter 5), but es-
sentially its purpose is to provide the tools to manage multiple Relationship
Components.

Executive

The purpose of the Executive is to manage all services and events within GLQ-
MAR. For instance, the Executive is responsible for calling the services within
the middleware layer to derive such things as the current scenario (via the
System Grader) and the valid Relationship Component {via the Relationship
Component Repository). It is also responsible for handling file operations that
are passed to it by the Local Operation Interface and Remote Operation Inter-
face. Thus, the Executive binds all services and events, such that the aims of
GLOMAR are met.

3.4.3 Implementation Issues

Much of the design of GLOMAR has focused on providing a system that is in-
dependent of a particular platform or distributed system implementation. Pri-
marily, it was designed to be able to service the needs of multiple distributed
system platforms, with much of the ideas independent of a specific implemen-
tation. However, as the design advanced, there was this need to define a par-
ticular distributed system implementation. The choice made was (o implement

56

GLOMAR as part of a DFS. As a result, some of the system design has been
customised to service the needs of a file system.

The choice of implementing GLOMAR as a DFS stemmed not from any specific
reason. Rather, a DFS offered more challenges in relation to support of flexibil-
ity, concurrency control and consistency maintepance. This is not to say that
this approach could not be ported to other distributed systems. However, the
vast collection of constraints and possible scenarios make a DFS an appropriate
choice to demonstrate the feasibility of GLOMAR’s approach.

3.5 Related Work

Much of the motivation of GLOMAR stems {rom the inadequacies of existing
DFS designs ¢~ *mplementations, However, some aspects of GLOMAR’s final
design are de:%::+' om existing work. This section details the genesis of GLO-
MAR in relation tu the existing work currently tasked with the management of
consistency maintenance and concurrency control within a DFS.

TACT (Yu and Vahdat 2000a; Yu and Vahdat 2000b) is an implementation
of a distributed systemn that adapts it consistency model at run-time. TACT
shares much of the same aims as GLOMAR, with both systems focusing on the
conezpt that different applications can have different consistency needs. TACT
implements different levels of consistency by using metric information to deter-
mine where within the consistency-availahility semantic space a replica should
be positioned. TACT differs in that it chooses consistency based on events (sin-
gle consistency model approach), whereas GLOMAR chooses consistency based
on rules (multiple consistency model approach). The TACT design was one of
the catalysts for the final approach undertaken within GLOMAR.

The Teapot (Chandra and Larus 1993) approach demonstrates a similar ap-
proach to GLOMAR. with respect to how consistency models are created. Teapot
implements a domain specific language used in the creation of consistency mod-

els for parallel and distributed systems. However, the resulting cache coherence
protocols produced by Teapot are implemented as a single general-purpose ap-
proach. This is different t0 GLOMAR, which promotes many Relationship
Components within a single DFS. In addition, the constraints of the language
restrict the development of consistency models that are unique. For this reason,
the design choice made by GLOMAR was to support domain specific implemen-
tations, rather than a domain specific language.

sagdng

F"':\ ";'g'*';‘_" 3

4l

i TR AR
LAy

ey g it A i Bt i S WS

BN

e o

S o e

=

97

The ability to select and use multiple consistency models to govern a file has
been attempted before. Tait (Tait 1993) implements a fwo-read approach. In
this approach the application has the ability to determine which type of read
would best serve its purpose. This concept has been enhanced again with MFAS
(Dwyer 1998a}, which extended the basic file primitives to include information
regarding the consistency requirements of the operation. Both Tait’s system
and MFAS require applications to be made aware of the additional APIs to
exploit this functionality. Also the types of consistency models available were
restricted, as only a number of static implementations were available. For this
reason, GLOMAR. chooses to implement a transparent approach, allowing for
multiple pluggable consistency models.

The concept of a framework that manages consistency models and implements a
design methodelogy can te found in how Pocket PC (Boling 1998) and the Palm
operating system (Rhodes and Mckeehan 1999) implement Conduits (Rhodes
and Mckeehan 1999; Microsoft 1998). Consistency models are implemented
behind a simplified interface, with a manager deciding when to implement the
models. However, where they differ to GLOMAR is that Conduits are highly
focused to offer one-to-one interaction between desktop and handheld devices.
Thus, there is no mechanism to determine the current scenario. In contrast,
GLOMAR aims are more general, with fewer assumptions made about the
underlying platform. Thus, this means GLOMAR attempts to be more flexible
in the target platforms it supports.

3.6 Summary

This chapter describes different issues that affect the efficiency and effectiveness
of consistency maintenance (via the control of concurrency) within a distributed
system. Of particular interest is how current implementations of consistency
maintenance mechanisms are inherently complex to create and inflexible when
faced with heterogeneous environments.

Emerging from these constraints is GLOMAR’s approach to managing con-
currency control and consistency maintenance. The crux of GLOMAR is the
combination of multiple consistency models (coupled with metadata) and mid-
dleware layer working collectively. This attempts to expleit the current scenario
to efficiently and effectively service the consistency needs of the resources, users,
data and applications.

58

The next chapters (4 and 5) focus specifically on the major contributions, in-
cluding the Relationship Component approach to packaging concurrency control
and consistency maintenance functionality and the middleware layer used in the
effective and efficient management of these components.

Chapter 4

The Relationship Component

One of the contributions of GLOMAR is the ability to encopsulate alternative
consistency models within a general-purpose component called the Relationship
Component. This chapter discusses the Relationship Component, its purpose,
motivation, aims and outlining in detail why certain design choices were made.
This chapter also looks at the three sub-components within the Relationship
Component, outlining the purpose and structure of each. Finally, this chapter
concludes with a discussion on the issues that arise from a component-oriented
architecture.

4.1 Relationship Component Design Origin

Existing implementations of concurrency control and consistency maintenance
mechanisims are said to be either fine grain (application level (Horton and
Adams 1995; Stonebraker and Neuholf 1979)) or coarse grain (operating sys-
tem level (Kistler and Satyanarayanan 1991; Guy et al. 1998)). Fine grain
concurrency control and consistency maintenance mechanisms attempt to pro-
vide one-copy equivalence by tightly coupling specific functionality to a single
application. As a result, this allows application specific data to be exploited to
achieve a very precise mechanism to control concurrency and maintain consis-
tency. However, due to the specific scoping of these systems, they are complex
to create, difficult to maintain {and improve) and are not easily ported across
application domains.

Coarse grain concurrency control and consistency maintenance mechanisms on

the other hand, aim to provide one-copy equivalence to all elements within the
scope of a distributed system, rather than a specific application. In other words,

60

they provide a cross domain generic approach, which chooses not to exploit spe-
cific data and structures, preferring to use a coarse grain unit (for example, file
objects or operations) on which any concurrency control and consistency main-
tenance event is based. The negative aspect of coarse grain mechanisms is
that concurrency control and consistency maintenauce is static across different
applications and users. In addition, coarse grain concurrency control and con-
sistency maintenance mechanisms are difficult to extend and inflexible when
ported to different platforms and environments.

What is required is an approach where the benefits of both fine and coarse
grain mechanisms can be uiilised concurrently. In other words, a balance be-
tween the two approaches is required, such that the resulting mechanism can be
exierded easily, be more adaptive to platform and envircnmental change, but
not reduce its functionality capabilities. This balance can be achieved {and is
the crux of this dissertation) by decoupling the concurrency control and consis-
tency maintenance mechanism from the operating system and/or application,
re-implementing it within a reusable component.

The primary motivation for using a component-oriented architecture to encap-
sulate concurrency centrol and consistency maintenance functionality is that it
provides:

* A single unit. Rather than concurrency control and consistency mainte-
nance functionality embedded within the operating system and/or appli-
cation, all the functionality is compartmentalised and centralised within
a single unit {a component). One of the benefits of using a component is
that deployment is simplified, as the costly process of migrating function-
ality is reduced. Another benefit of using a component is that concurrency
contrel and consistency maintenance functionality can exist side-by-side,
concurrently and independent of each other.

¢ Improved maintenance and extendibility. The process of decoupling
consistency maintenance and concurtency control functionality from an
operating system and/or application decreases the complexity associated
with maintaining and extending it. This is because only the component
needs to be moditied {or extended), not any external modules.

¢ Implementation independent of interface. Ry using a component to
encapsulate concurrency control and consistency maintenance functional-
ity, an interface for that component can be defined. As a result, regardless
of the development type, language of choice or motivation, as long as the

i At ok Dm0 b e B P e

ik TG

61

interface is met, then additional components can be created simply and
easily. Why this is important is the component-orientated architecture
supports flexibility, as the specifics of the concurrency control and con-

sistency maintenance functionality are independent of the interface that
defines the component.

Even though the component-orientated architecture is flexible enough to sup-
port different and unique implementations, there still needs to be guidelines
on the structure of the components to ensure that the aims of GLOMAR are
met. In this case, all components need to service and support the concurrency
control and consistency maintenance needs of the DFS. To achieve this, minor
restrictions have been placed on the nature, structure and scope of the Rela-
tionship Component and sub-components. An example of one such resiriction
is that all interaction is based on file system operations {e.g. read, write, etc).
This has ramifications, because operations are stateless. Why this restricts the
Relationship Component is that traditional transactional models (section 2.4.1)
do not lend themselves well to a file operation based systems. More of these
minor restrictions will be made apparent during this and latter chapters. How-
ever, it should be noted, that effort has been made to achieve a balance with
the objectives of GLOMAR.

With all the benefits that a component-orientated architecture brings, there
are some negative aspects why this approach has not been attempted earlier.
Two aspects in particular are the costs associated with a component-oriented
architecture and that this level of flexibility and expandability was not deemed
necessary within the DFS domain.

The cost associated with existing component-oriented architectures are well doe-
umented (Szyperski 1997). This essentially indicates that the cost of metadata
processing and late binding make component based programming more expen-
sive than inline functional programming. This issue is of particular importance
for DFSs and file systems, as performance is critical for providing an acceptable
level of service. Thus, the merging of a performance dependent system and a
potentially expensive programming approach would seem unacceptable.

However, the benefits of a component-orientated architecture in this situation
(the need to support heterogeneity within a DFS} far outweighs the cost over-
heads. The motivation for this statement stems from observing performance
dependent systems that implement a component-oriented architecture. One
such system is the Windows NT operating system (Solomon and Russinovich

ﬁ

62

2000), which employs a component-oriented like architecturel. This system ijl-
lusirates an approach that can be more extendable and flexible, without greatly
compromising efficiency. An example of this is how developing sysiem level
modules (device drivers) for Windows NT (Nagar 1997) is far simpler and more
powerful than for Windows 95/98/ME (Oney 1999}, which does not follow a
component-oriented design.

This argument applies to GLOMAR also, as the need for flexibility outweighs
the need for performance (however, this does not mean performance issues
are ignored). By utilising appropriate concurrency approaches to manage con-
sistency, GLOMAR ensures that resources and users are serviced adequately.
Thus, the potential degradation of performance experienced by the implemen-
tation of GLOMAR. would be offset by the efficient and effective utilisation of
other more critical resources. '

4.2 Relationship Component Design

The actual design of the Relationship Component stems from a number of
issues that are intrinsic to DFS implementations and the requirements that a
multiple consistency model approach imposes. The first issue is how best to
abstract the concurrency control and consistency maintenance functionality into
a single module. The second issue is how to define the context of a consistency
model. .

The actual design of the Relationship Component abstracts these two issues
into an element that contains the specific concurrency control and consistency
maintenance functionality and an element that defines the context for which
it is valid. In other words, the Relationship Component partitions code and
confext.

The need to partition the Relationship Component into two elements stems
from the necessity to simplify development. In other words, packaging code and
context in an ad-hoc manner does not allow for element sharing and independent
development. For example, the implementation of & context element can be
casily shared across diflerent Relationship Component implementations.

INT implements an object oriented model, written in C

T

W“‘ Z

PR

X

e e s e T T T L

R CXNE RN

-

63
4.3 Relationship Component Structure

The structure of the Relationship Component is more complex than simply

partitioning code and context. Asa result, the Relationship Component consists
of three coarse grain sub-components;

s Consistency Model. A sub-component responsible for the encapsula-
tion of concurrency control and consistency maintenance functionality.

* Relationship Scope. A sub-component responsible for defining context,
that being the scenario a component is valid.

e Clone List. Another sub-component responsible for defining context,
that being data objects a component governs,

The choice of this structure was deemed the best balance between functionality,
interface, flexibility and complexity.

4.3.1 Cousistency Model

The functionality of the Consistency Model® sub-component is to manage an
appropriate level of concurrency and maintain an acceptable level of consistency.
The interface of this sub-component is based on file system operations (figure
4.1). It reflects the basic operations available to a file system. The reason
for using file system operations is due to a number of benefits. These include
compatibility with existing file system implementations (heterogeneity), the
ability to support fine grain consistency models and provide flexibility when
implementing solutions.

The motivation for using file system operations as the basis for the Consistency
Model interface is that this approach becomes highly portable to other platforms
and DFS implementations. For example, systems such as the Vnode interface
in Unix (Rosenthal 1990) and the Filter Drivers in Windows NT (Nagar 1997)
allow for intermediate layers to be inserted into the file system call stack. Since
their interfaces are based on file system operations, GLOMAR'’s approach fits
elegantly into these systems.

The Consistency Model interface is low level intentionally. It deals with specific
operations, rather than an abstracted high-level concept {like a transaction).

2The uncapitalised consistency model term refers to a description of concurrency cont ol
and consistency maintenance functionality. The capitalised Consistency Model term is used
to describe GLOMAR’s component implementation of a consistency model.

64

<<interface>>
IC onsistencyMode)

‘OpenCM(hanu'la : FHANDLE) : OperationStatus

“CleanEndCM(handie : FHANDLE) : OperationStatus

$Openthandle : FHANDLE; : OperationStatus

*Createhandle : FHANOLE) : OperationStatus

Stiase(handle : FHANDLE) ; QperstionSiats

$Readhandle : FHANDLE, length ¢ Long, ofisel * Long, buffer ; Long) : OperationSiztus
W¥rite(handle : FHANDLE, length Long, ofiset : Long, buffer : Long) : OperationStatus
“GetAttrthandle | FHANDLE, fileattr : FILE_ATTR) : OperationSiatus

Agelatirthandle : FHANDLE, fileattr : FILE_ATTR) : OperationStatus

$Rensme(handle « FHANDLE) : OperationStalus

*hemova(handle : FHANDLE) : OperationStatu

*RamoteOpen(handle : FHANDLE) : OparationStatus

*RemotaCreatethandle : FHANDLE) : OperationStatus

*RamoteClosethandls : FHANDLE) : OperationSialvs

SRemoteRead(handle : FHANDLE, langth : Long, offset : Long, buffer ; Long) : OperationStatus
SRemoteWrile(handie : FHANDLE, lengih : Long, ofset : Long, buffer : Long) : OperationStatus
SRemoteGetAlirfhandle : FHANDLE, fileattt : FILE_ATTR) : OperationStatus
*RemoteSaAttr(handie : FHANDLE, fileattr : FILE_ATTR;) : OperationStatu
“*RemoteRename(handle ; FHANDLE} : OperationStalus

“RemoteRemovethandie : FHANDLE) : OperationStatus

Figure 4.1: UML Diagram of the Consistency Model

The benefit of such a low-level interface is the fine grain control available for
a file operation. For example, consistency maintenance can be tailored for an
individual wriie operation, rather than a high-level seve event (containing many
write operations). This fine grain level of control is a feature of using file system
operations as the basis of the interface.

The Consistency Model interface by its nature is very generic, consisting of
basic operations, with basic known types used as parameters. In some respects
this same interface design is a quasi-standard for interacting with a file system
{Nagar 1997; Huston and Honeyman 1993). Such an interface design results
in improved flexibility, as the interface uses basic types and has file system
events clearly defined. However, it has the greatest impact for housing existing
approaches, as the interface is similar to others used in existing systems.

The negative aspect of using file system operations is the loss of application-
specific information pinned to an operation. Most file systems are not concerned
with specific information other than the details of the request for it to service.
As a result, additional information that could be used to improve the concur-
rency control and consistency maintenance process is not available. For this
reason, the signature for each file system primitive is extended to include a
tag string parameter 3. The fag string parameter can contain information that
an application might deem uvseful to a Consistency Model. However, there are
some restrictions on its usage. If the Consistency Model is implemented trans-
parently, then there is no way for this information to pass. This is because

The ieg string parameter is a member of the FHANDLE type

PR L)

e

Fost b 2 I T LA A

S PR,

R,

RSP

RN ET S P TN W LSRR

e A i B e e g P el e s Wi e Lo @B B et b s s e Fes -

65

the file system has no explicit knowledge of the tag string. The reason for
this is the underlying file system implementations have no facilities to handle
or pass parameters, which are not directly related to the defined interface or
interaction of the file system. If GLOMAR is called explicitly by an applica-
tion, the tag parameter can be handled, as GLOMAR has the facilities to pass
the tag parameter in addition to file operation information. Thus, a trade off

between transparency and the ability to pass application-specific information is
achieved.

One of the unique aspects in the design of the Consistency Model interface is
the partitioning of file system operations into two types of operations, Local
and Remote. This is done in order to identify the origin of an operation. The
distinction between the origins of an operation is important for Consistency
Models, as it reflects the nature of the operation. For example, local operations
originate as a result of an application generating an operation locally. These
types of operations are usually the catalyst for some form of consistency main-
tenance event. On the other hand, a remote operation is usually as a result of
a consistency maintenance event (figure 4.2).

Application

Local
Operation

Consistency | +—

Model
Rernote\\ Consistency
\ Qperation Model

Unit 1 Unit 2

Figure 4.2: Local and Remote Operations

To ensure that local operations are handled differently to remote operations, the
Consistency Model rigorously enforces an interface for both local operations and
remote operations. A by-product of this distinction is that specific functionality
based on the type of operation can be defined, thus giving another level of

flexibility in relation to consistency management.

<————

4.3.2 Relationship Scope

The Relationship Scope sub-component is one way (the other way is via ilie
Clone List) of defining the context of the Relationship Component. Thus, the
purpose of the Relationship Scope is to inform GLOMAR if a Relationship
Component is best suited to a particular scenario or not.

The concept of defining a scenario for a Consistency Model is new in relation to
DFSs and is one way of improving the configurability of Consistency Model im-
plementations. The reason scenarios has not been formally defined is that most
systems implement a single consistency model approach. Fowever, with imple-
mentations that use multiple consistency models {Tzit 1993; Dwyer 1998a), the
criteria for determining the scenario is usually set within the DFS itself. These
criteria are mostly concerned with static properties that are not easily adapted
or changed. For example, a system might define available bandwidth based on
packet loss, regardless of whether a more appropriate approach is available.

The interface of the Relationship Scope (figure 4.3) consists of four methods,
The methods are simplified, with only a Beolean result indicating success or
failure. This aids in the quick and efficient determination of context. The mo-
tivation for using a Boolean result was based on two specific reasons. Firstly, a
Relationship Component is only valid or invalid for a scenario. It is unlikely that
a Relationship Component would be partially valid for a scenario. Secondly,
the methodology of the Relationship Scope implies that xl! the processing to
detevmine the validity of a Relationship Component should be done within the
context of the Relationship Scope.

<<Interface>>
IRelationshipScope

“EvaluateRules(spinfo : Environment) : Boolean
*SystemProfileRule(spinfo : SystemProfilelnfo) : Boolean
SUserProfileRule{upinfo : UserProfileinfo) ; Boolean
*FileProfileRule(fpinfo ; FileProfilelnfo) : Boolean

Figure 4.3: UML Diagram of the Relationship Scope

The most important method of the Relationship Scope interface is the Eval-
uateRules method. This is the entry point used by GLOMAR into the Rela-
tionship Scope. The results from this methed determine if the Relationship
Component is valid or not. Implementing the Relationship Scope is done by
either implementing the functionality for determining the scenario within the

N
T
3
S
M
g
y
.Z“.

v2 e e B Lo B e e L e

e

67

EvaluateRules method or using syster generated information, delegating the
processing to other methods. GLOMAR favours using system generated in-
formation, as the resulting cost of processing the Relationship Scope is less
expensive than implementing the functionality independently.

Determining the scenario is done by evaluating the system generated informa-
tion returned from the System Grader (section 5.2.5), which is passed into the
Relationship Scope. However, the information being passed in might be too de-
tailed for the needs of most Relationship Components. Thus, this information
can be passed to other specific methods (that also make up the Relationship
Scope interface} to be broken into a more consumable format.

These methods consist of UserProfileRule, FileProfileRule and SystemProfileRule.
They are meant to decentralise the processing of determining the scenario, based
on a simplified taxonomy (section 5.2.5 for details). To consume the information
generated by the System Grader requires that these methods be implemented
and be explicitly invoked by the FvalugteRules method (figure 4.4). If they are
not, then they are never called. Only the EvelugteRules method is implicitly
called by GLOMAR.

GLOMAR

Environment II BoolResult

EvalyateRiles

SvsternProﬂIeInfo] I BoolResult FileP:oﬂIelnfoI I BoolResult

Usel‘Prm'lleInfoI I BooResult

SystemProfileRule UserProfileRule FileProfifeRule

Figure 4.4: Relationship Scope Invocation

The Relationship Scope can now determine its validity. This interface thus pro-
vides the structure required to define the conditions for which this Relationship

Component is valid.

4.3.3 Clone List

The Clone List provides a mechanism to map a Relationship Component to a
data object {or set of data objects). In cther words, the Clone List defines which
Relationship Components govern which data objects. As a result, the Clone

ﬂ

68

List provides another mechanism to define the contexi of which a Relationship
Component is valid.

The reason for using the term Clone List is that within GLOMAR, data objects
{files) and encapsulating types (directories, volumes) are referred to as Clones.
These Clones are not physical objects, but are rather references to files, directo-
ries and volumes within a file system. The motivation for using the term Clones
is that GLOMAR views distributed data objecto as clones of each other.

Prior to mapping Clones to Relationship Components within the Clone List,
it is essential that Clones are firstly defined. Within GLOMAR, a Clone can
be defined as one of four possible types; files, directories, volumes and systems
{figure 4.5). As their name suggests, each Clone types maps directly to a
corresponding type within a file system. The only major difference is that a
file Clone type references a physical file object, where as a directory, volume
and system Clone type encapsulate other Clone types. This is analogous to
how directories contain files and volumes contain directories within existing file
systems. These encapsulating types allow a hierarchical relatiunship between
Clones to be expressed within GLOMAR.

System : diski

Directory : Jdirectoryl

File : file2

File : file

Volume ; volumel
System : disk2

Figure 4.5: Clone Types

U) ol T AT L T 3 LA AE o e ey

;= sl Ernd i VAT 0

File Types

The file type is the base Clone type. Unlike other systems where the base type
can be a block of a file, it was felt that 2 whole file approach for GLOMAR was
more appropriate. Thus a file type maps directly to a whole file object.

This decision arose from experience with disconnected systems (Huston and
Honeyman 1993). A block approach during network partitioning is more dif-
ficult to maintain and adversely effects rescurce processing. Experience also
shows that whole files on average are small in size and that current bandwidth
is adequate for most needs (Ousterhout et al. 1985; Baker et al. 1991). For
example, a Consistency Model is created for a disconnection environment, for
which clients are disconnected from the network for extended periods. Using
a block approach reduces the availability of the replica, as not all elements of
the file might be preseni locally when disconnected from the server. Thus, a
situation might arise where an operation is to be performed on part of a file
that is not available. This situation would not arise if a whole file was available
and thus is the motivstion for using whole files rather than blocks.

Defining the file type within the Clone List only requires creating an entry,
assigning a globally unique identifier to it and referencing the physical file object
from the local file system.

Encapsulating Types

As stated, the directory, volume and system types are used to encapsulate other
Clone types. The main purpose for providing encapsulation Clone types is to
simplify the representation of a large set of files. For example, it is far simpler
to allocate a single directory tu a Relationship Component than individually
assigning every file object within a specific directory.

However, the three encapsulating types cannot be used indiscriminately to Tep-
resent any clones. Each type has specific purposes and rules. For example, the
directory types purpose is to reference a number of files within a single directory.
The volume types purpose is to encapsulate any number of files and directories.
Finally, the system type is the all encapsulating type that can contain volumes,
directories and files.

Defining the encapsulating types within the Clone List only requires creating
an entry, assigning a globally unique identifier to it and referencing all the
appropriate Clones types within it.

70

Clone Assignment

Once Cloves "izve be:zn defined, the process of assigning them to Relationship
Components s str-..ght forward. For each Relationship Component entry within
the Clone List, an unlimited number of Clone types can be added. For file Clone
types, the relationship is straightforward, a Relationship Component governs a
specific file. When assigning an encapsulating Clone type (either a directory,
volume or system) to a Relationship Component, the Relationship Component
governs all Clones defined within that encapsulating Clone type.

The benefit of being able to represent large file sets using encapsulating Clone
types within GLOMAR results in improved flexibility in relation to configura-
bility. For example, a Relationship Component can be implemented as a coarse
grain approach (governing all files witkin a system} by using the system type
(as it represents the whole system). On the other hard, a Relationship Com-
ponent can be implemented as a fine grain approach (governing only a subset
of the file system), using the file type, as it represents a particular Clone. The
Clone List mechanism allows for both of these cases to be supported concur-
rently within the same system. Thus, allowing GLOMAR to support both fine
grain consistency control and corse grain consistency control simultaneously.

However, the benefit of being able to utilising encapsulating Clone types creates
problems when determining the appropriate Relatibnship Component to invoke
when an operation occurs on a Clone governed by two Relationship Compo-
nents, For example, a coarse grain Relationship Component is set to govern
a directory. Within that directory is a file for which a fine grain Relationship
Component is already assigned. To GLOMAR, both Relationship Components
have an equal level of ownership for that particular Clone. Thus, how does
GLOMAR resolve which of the Relationship Components has more ownership
of that Clone, when an operation for that Clone occurs?

It is assumed in GLOMAR that Relationship Components that directly refer-
ence an individual Clone have a higher priority than ones that indirectly refer-
ence a Clone. In other words, a Relationship Component that references a file
Clone type has more ownership than a Relationship Component that references
a file via a directory Clone type. The justification for this is that in reality,
the fine grain Relationship Component is more suited to the Clone than the
coarse grain Relationship Component. The reason is that its implementation is
better suited and more specific to a particular file than a generic coarse grain
Relationship Component.

[it et g RS R A e

P

IR PN S Dt el o EERE S i I RO)

A s m LM W e W

71

To define this ownership, a classification is assigned detailing the ownership
hjerarchy based on how a Relationship Component references a Clone within
the Clone List. Thus, each Clone within the Clone List is tagged as either
being ezplicitly or implicitly referenced by a Relationship Compenent. Clones
that are referenced directly are said to be explicit, whereas Clones that are
referenced indirectly are said to be implicit. GLOMAR uses this information
in determining which Relationship Component to use for a particular Clone.

Clone List Implementation

The reason Clone assignment (as defined within the Clone List) is not packaged
with the Relationship Scope is due to its nature, its purpose and how it is used.
For example, the Clone List and Relationship Scope are both used to determine
when to implement a Relationship Component, However, the process used to
discover context within the Relationship Scope is different to that used within
the Clone List. The basic difference is that information generated from the
Relationship Scope is computed at run-time, based on rules. Whereas the
information generated from the Clone List, is static and defined upfront. For
this reason, system generated information is partitioned in the Relationship
Scope and file system specific information is defined within the Clone List.

Unlike the Consistency Model and Relationship Scope, the Clone List is con-
ceptually only a sub-component. In reality, since the modification of the Clone
List js tailored to individual systems, the data store holding the relationships
is external to the actual component itself. This loose coupling improver a Rela-
tionship Component’s configurability, as system specific elements (like physical
addresses of files) can be adjusted and modified on a per system basis. Thus,
changes to the Relationship Component itself are unnecessary. The specific
details of the Clone List are in Section 6.2.3.

4.4 Relationship Component Issues

The Relationship Component is more than the three sub-components packaged
together. It also includes additional metadata to define how GLOMAR imple-
mentation issues are handled. The issues that are addressed with the Relation-
ship Components metadata include the instantiation model, threading model
and component life cycle. The reason these issues are addressed at this level is
for simplicity. Also the cost of dealing with such issues at the sub-component

72

level was unfeasible and unnecessary for the needs of concurrency control and
consistency maintenance functionality.

4.4.1 Instantiation

One of the limitations of the majority of file systems is that file operations
are stateless. However, some concurrency control and consistency maintenance
mechanisms need statefulness, for example a transactional model. GLOMAR is
able to instantiate Relationship Components that are either stateful or stateless.
GLOMAR determines the appropriate instantiation model to implement by
inspecting the Relationship Component’s metadata. This describes the model
to implement.

In GLOMAR there are two models of instantiation, the singlefon or new in-
stance (figure 4.6). The singleton model {Gamma et al. 1995) is the stateless
model. Operations are directed to a specific Relationship Component, which
is selected from an already instantiated component. Since there is no direct
linkage between the component and operation, no state information can safely
exist, as potentially countless numbers of other operations for different files
will use this same Relationship Component instance. In GLOMAR, there is
a need for such an approach, as not all concurrency control and consistency
maintenance implementations require state information. For example, some
implementations might treat each operation as a single entity and have no need
for state information to be stored. In addition, the singleton model is more
efficient as the appropriate Relationship Component is already instantiated,
with no need to incur the additional overheads associated with creating a new
instance,

Nevertheless, there may be situations where the need for statefulness outweighs
the cost overheads of the new instance approach. With this approach, a new in-
stance of the specific component is created for that particular operation. How-
ever, instantiating a new instance for each operation does not provide state
information across multiple operations. For this reason, when a Relationship
Component specifies that the instantiation type is a new instance, this indicates
that a new instance of the component will be available for the duration of its
scenaric. In other words, this instance will be used for all operations until it
is deemed invalid. Once the scenario of a Relationship Component is over, the
instance is destroyed. For example, consider a series of open, reads, writes, and
close cperations on a file. The open operation triggers GLOMAR to create a

o TinA LIt e s e L UL

PR R R

Erkpaeoph S 0

73

new instance of the specific Relationship Component. As the operations con-
tinue, they are directed to use this instance. Within this instance, some form
of state information is being stored. From operation tc operation, this state
information is available. However, it is destroyed when the scenaric changes.

New Instance Singleton
Operation . Operation
Selection Selection

| RCInstantiation |

!

+

RC RC1{RC2|RC3]RC4|RCA

Heap RCx] ||Collection

Figure 4.6: Relationship Component Instantiation Model

4.4.2 Threading Model

With the ability to create instances of a Relationship Component, the possihility
of concurrent operations performing in a non-serialised manner arises (this is
assumed normal in a singleton Relationship Component). For example, consider
two instances of the same Relationship Component performing operations on
the same Clone. Without knowledge of each other and assuming exclusive
control of the Clone, both Relationship Component instances are affecting each
other’s effort to maintain consistency. Figure 4.7 illustrates some of the issues
that can arise from lack of concurrency control at the Relationship Component
level. As a result, there was a need to control the conditions for the successful
instantiation and management of Relationship Components. For this reason,
the Relationship Component has the ability to define the threading model best
suited to its needs. However, this threading modei is far simpler than other
component threading models (e.g COM (Box 1998)), as it was designed for
the purpose of Relationship Component management and the unique nature of
GLOMAR.

The three threading models defined within GLOMAR are:

74
Application 1 Application 2 Application 1 Application 2
| | j !
P
RC1 RC2 RC1]
S
Clone
Twe different Relatlonship Two (or more) instances of tha scame
Components govern a single clane R;elatiOnship Compapent govern 2 single
L tiong

Figure 4.7: Relationship Component Threading Issues

¢ Single Instance, Exclusive Lock - A component defined as a Single
Instance identifies that it is to be the only instance running within GLO-
MAR. This ensures that other instances do not interfere with the task
of this Relationship Component. The Exclusive Lock specifies no other
Relationship Component holds a reference to the particular Clone. This
component will fail to create, if any of these conditions are not met.

s Single Instance, Non Exclusive Lock - This instance of the Relation-
ship Component must be the only instance running within GLOMAR.
However, other Relationship Components can have a reference to the
Clone. If however an Exclusive lock is found for one of the Clenes, then
this operation fails. Only Non Exclusive locks can be shared.

» Multiple Instance, Non Exclusive Lock - Any number of instances
can exist for this instance to be created. Other Relationship Components
can have a reference to a Clone. If however an exclusive lock is found for
one of the Clones, then this operation fails. Only Non Exclusive Locks
can be shared.

4.4.3 Life-Cycle

As a consequence of the multiple consistency model approach, Relationship
Component instances will be starting and stopping based on different scenarios
during the life time of GLOMAR. Predicting when these events will oceur is
impossible as they are based on the scenario of the Relationship Component.

T e .74 Tt et b e e L

75

Thus, there needs to be an elegant solution to handle these events when they
occur. The most appropriate approach is to mirror the constructor/destructor
mechanism within object-oriented programming. For example, when a Rela-
tionship Component is instantiated, a consiructor like method is called, which
starts all the necessary functionality. When a Relationship Component is invai-
idated, prior to it being destroyed, a destructor like method is called, invoking
the functionality associated with finalising the component.

Since such events are tightly coupled-to the functionality of the Consistency
Model, the Consistency Model interface has been extended to include two ad-
ditional methods; the OpenCM method and the CleanEndCM method. The
OpenCM method acts much like a constructor, as it is always the first method
called. It is called only once and only upon the invocation of a new Relation-
ship Coraponent. The benefit of this method is that code placed inside can be
invoked before any operation has been performed. For example, the OpenCM
could be used to replay a log of cperations recorded while in a disconnected
mode.

The CleanEndCM method has a more important task, as it is invoked be-
canse of the Relationship Component being invalidated. Thus, code wiii:in this
method attempts to generate a consistent state, ensuring that operations are
not lost and that they can be recovered easily. However, the nature of this
method is blocking, thus the system will wait until the CleanEndCM method is
finished before proceeding. As performance is an issue, a Relationship Compo-
nent should avoid creating procedures that block indefinitely. For this reason,
each Relationship Component is given a timeout period. When that period
expires, regardless of the CleanEndCM method state, the Relationship Com-
ponent instance is destroyed.

By including the ability to define a threading model, instantiation model and
life-cycle in GLOMAR. improves the manageability of Relationship Compo-
nents. In the attempt to cater for the differing needs of Relationship Com-
ponents, a balance between functionality and cost has been achieved. However,
a deep understanding of the ramifications of these properties is necessary, as
implementations might fail to perform as intended. Thus, ensuring Relation-
ship Component issues are addressed is just as important as the functionality
itself.

76

4.5 Summary

This chapter details the approach used to encapsulate the concurrency control
and consistency maintenance mechanism into a single unit, the Relationship
Component. The motivation, the structure and the design decisions have also
been discussed.

The Relationship Component consists of three sub-components:

s Consistency Model. This sub-component houvses the concurrency con-
trol and consistency maintenance functionality.

» Relationship Scope. This sub-component describes the scenario used
to define when to implement a component.

s Clone List. This sub-component defines the files, directories and vol-
umes it governs.

The actual Relationship Component was discussed, focussing on issues that
arise from being implemented within the multiple consistency model approach.

The next chapter (Chapter 5) discusses the GLOMAR middleware layer, de-
tailing how it manages and supports the Relationship Compone..'s.

Chapter 5

GLOMAR Middleware Layer

This chapter discusses the mechanism {(the GLOMAR middleware layer) re-
sponsible for the handling of file system operations, as well as managing and
servicing Relationship Components. The proposed middleware layer is highly
detailed and is one of the major contributions of this dissertation. This chapter
details the aims of the GLOMAR middleware layer, the motivation for using a
middleware layer approach, the justification for the final design and the specific
details of each service of the GLOMAF, middleware layer.

5.1 Aims

The primary aim of the GLOMAR middleware layer is to manage the interaction
between the operating system and Relationship Components on one hand and
between multiple applications and Relationship Components on another. This
is achieved by creating a brokering system between file operations and a variety
of different concurrency control and consistency maintenance meclhianisms.

In addition to managing and servicing file operations, the GLOMAR middle-
ware layer is flexible enough to provide a constantly adapting level of service, for
existing and new Relationship Components. This means new and unique Re-
lationship Components are not restricted by the GLOMAR middleware layer.
This is of particular importance because future scenarios can be catered for
easily.

An important aim of the GLOMAR middleware layer is efficiency. This is be-
cause file operations occur frequently and whose latency is critical. For this

78

reason, the GLOMAR middleware layer implements a balanced approach, con-
sidering the imposed constraints. The specifics of these constraints are detailed
within this chapter. '

The final aim of the GLOMAPR. middleware layer is to improve the process
of concurrency control and consistency maintenance mechanism development.
This is done by streamiining Relationship Component creation via the GLO-
MAR middleware layer providing services that are commonly found within
commonplace DFS implementations. As a result, rather than creating com-
mon services for specific implementations, they are provided as part of the
proposed framework. In addition, the GLOMAR middleware layer allows for
the creation, modification and extension of these services easily.

5.2 GLOMAR Middleware Layer Design

Achieving the aims of the GLOMAR middieware Jayer requires a design that is
flexible, extendible, manageable and efficient. The choice undertaken by GLO-
MAR, was to follow the bridge software pattern (Gamma, Helm, Johnson, and
Vlissides 1995). The justification for this design stems from similar sysiems,
including plug-in architectures like Netscape plug-ins (Netscape 1998) and Uni-
versal Plug and Play (UPNP 2002).

Within the GLOMAR middleware layer, areas of responsibility are assigned
particular services, The first set of services is responsible for providing the
interface into the GLOMAR middleware layer. These services are:

e The Local Operation Interface

e The Remote Operation Interface

The second set of services is responsible for providing additional GLOMAR
specific functionality for use by any Relationship Component, These are:

e The Clone Distribution Maneger (for name resolution of data objects)

o The Service Manager (houses additional Relationship Component user-
specific services)

The third set of services is responsible for the assignment of Relationship Com-
ponents at run-time. Due to the complexity of this task, the functionality is
divided into two services. These are:

Parameter Description and Purpose

File Name The file name is used to not only point
GLOMAR to the correct data object, but
also used for determining Relationship
Components during the selection phase.
Operation Type | Indicates the type of operation be-
ing performed by the operating sys-
tem. GLOMAR supporis the following
types: READ, WRITE, OPEN, CLOSE,
GETATTR, SETATTR, CREATE, RE-
NAME, REMOVE.

Offset A position within a file an operation is re-
ferring to. This is only valid for READ
and WRITE operations.

Bufler The data structure used to carry modifi-

cations as a result of an operation. For
example; READ operations would pass in
an empty buffer, expecting it to be filled,
whereas WRITE operations would contain
a value to write at a particular offset.
Length The length of the actual value within the
Buffer.

Application ID | This is the identification of the application
actually invoking the operation. This data
is used as the basis for indexing,

Table 5.1: Specific information collected by the Local Operation Interface

e The System Grader (which determines the current scenario of the system)

e The Relationship Component Repository (handles Relationship Compo-
nent management and selection)

All these services, in turn, are managed by the Ezecutive (figure 3.4).

5.2.1 Local Operation Interface

The Local Operation Interface is solely responsible for capturing local file op-
erations and operation specifi~ information (in this case, file details). These
operations and associated information are then forwarded to the Executive for
further processing. See table 5.1 for details on the file information the Local

Operation Interface collects.

80

Since application transparency is one of GLOMAR’s aims, a user should not
be explicitly aware of the activities of GLOMAR. For this to be achieved, part
of the Local Operation Interface is designed as an additional layer that ex-
ists within a file system’s Input/OQutput stack. Its purpose is to intercept file
operations prior to completion by the file system. However, the Local Oper-
ation Interface does not replace the file system. Rather, it resides within the
file system, forwarding operations to GLOMAR for further processing. When
GLOMAR finishes with an intercepted operation, that operation is then passed
back to the Local Operation Interface, whick returns it into the file system.
The operation is then allowed to continue its execution to lower level drivers
within the file system.

The Local Operation Interface consists of two elements: the operating system
specific functionali y and the bridge that connects it with GLOMAR (figure
5.1). For example, the implementation of the operating system specific func-
tionality can be a Filter Driver in NT {Nagar 1997) or a Vnode module within
UNIX (Rosenthal 1990). The similarity between these approaches and GLO-
MAR’s interface design means that implementing the operating system specific
functionality is made easier, as they both employ a file operation based inter-
face.

| Avpiication
1 GLOMAR

Operating System Bridge

User Level
System Level

: bttt
of LOT doas not
IO Subsystem the abity to pass o6

sdditional infermartion Lo
I GLOMAR, 35 the

05 does not
have the ity thi
Specific Elemen mmgoabltv s

Figure 5.1: Local Operation Interface

However, not all situations require that a transpareut approach be used. There
are situations where a non-transparent approach would be suited, as illustrated
by Odyssey (Noble 2000). Odyssey showed the benefits of a concurrency control

81

and consistency maintenance mechanism exploiting application-specific infor-
mation, using a non-transparent interface. For GLOMAR to provide a simijlar
service, the bridge element of the Local Operation Interface is visible to appli-
cations at the user level (rather than solely at the system level). However, no
benefit would be gained if the interface remained the same between the user
and system levels. Thus, the bridge interface is extended for applications that
directly communicate with GLOMAR (figure 5.1). As part of the design, an
application can pass any meaningful information to a Relationship Component,
via the lag parameter (As was discussed in section 4.3.1).

Therefore, the Local Operation Interface provides not only a transparent ap-
proach for processing file operations, but also a non-transparent approach that
allows applications to explicitly pass meaningful information. In addition, both
approaches are implemented simultaneously.

5.2.2 Remote Operation Interface

The nature of a DFS (or any distributed system) is that operations (or results
of operations) will be propagated to other members of the network. For this
reason, GLOMAR has a specific interface that handles requests that originate
from remote sources. The Remote Operation Interface provides this service. Its
purpose is to handle remote file operations and ensure that they are forwarded
to the appropriate Relationship Component. Within GLOMAR, the Remote
Operation Interface ensures that the operations are directed to the remote in-
terface within the Consistency Model sub-component (figure 5.2). Operation
partitioning based on the origin is detailed further in section 4.3.1.

The Local Operation Interface and Remote Operation Interface both handle
inbound file operations. As a result, they have some similarities, including
stateless event based interaction, data types used and that results from the
operation are returned to the caller. However, there are some differences with
the Remote Operation Interface, due to the type of file operations managed.
Primarily, the Remote Operation Interface is to be called only by remote Re-
lationship Components and is not meant for direct use by applications. In
addition, the information that is passed to the Remote Operation Interface is
more detailed than the information passed to the Local Operation Interface.
In the Remote Operation Interface, two additional parameters are passed, the
Relationship Component ID and Clone ID.

These two additional parameters are passed into the Remote Operation Inter-
face to avoid any ambiguity between the interaction of a local operation and a

82

remote operation. The Relationship Component ID is passed with an operation
from the remote source. The Relationship Component ID informs the Remote
Operation Interface that this operation was generated by a particular Relation-
ship Component. The Remote Cperation Interface then ensures this operation
is forwarded to the same Relationship Component locally. As a result, any
ambiguity is removed in relation to handling remote operations.

A Clone ID is also passed to determine which Clone (file) this operation is in-
tended. The reason for using an ID rather than a name and absolute address
{which is used in the Local Operation Interface) is that some files might have
different absolute addresses. Thus using IDs (similar to a File Handle) en-
sures that operations reach their destination Clone, without having to enforce
a rigorous addressing and naming scheme.

GLOMAR
Remgte Operation
Interface
An 10 operation
resulting from a | 3
remote Reiationship
Component l
| Relationship Component |
!
, .
Local Storage

Figure 5.2: Remote Operation Interface

5.2.3 Clone Distribution Manager

In keeping with the aims of GLOMAR, much of the common functionality is
provided by the GLOMAR middleware layer. One such example is the Clone
Distribution Manager, which is responsible for the management of files. The
purpose of the Clone Distribution Manager is to hide some of the complexity
associated with DFS interaction. In a DFS, naming of replicated data objects
becomes more complex when implemented within a distributed environment.
For example, replicated files might be implemented within different branches
of a local file system hierarchy. The Clone Distribution Manager provides a
service to extract this information.

o
A
5
T
3

NP

e —
QI E P AN TR

33

i
g
¥

—_—_—‘

83

The Clone Distribution Manager is only tasked with providing simplistic func-
tionality. More complex approaches can be created using the Service Manager
(section 5.2.4). The Clone Distribution Manager is not implemented as a ser-
vice within the Service Manager as much of the functionality is intrinsic to the

operations of GLOMAR, in particular, to the decision making portion of the
GLOMAR middieware layer.

5.2.4 Service Manager

In some situations, the Relationship Component methodology does not provide
the requirements needed to service the concurrency and consistency needs of
an application, user or device. For example, an external server process might
be required to complement a Relationship Component. Imple.aenting such a
server process could be achieved by developing another mechanism that runs in
conjunction with the Relationship Component. Thus, the GLOMAR . provides
for user-specific services to be added to the middleware layer. The Service
Manager is the service that handles the instantiation and management of these
user-specific services (figure 5.3).

Collect the !nformation

Service File| relating to instailed services Glomar’s Process
n Service 1
Service Manager Service 2

Service 3's Process

* Service3

Service 4's Process

3

Serviced

Figure 5.3: Service Manager

The Service Manager handles three types of services;

84

e External. These services run within their own process for the duration
of the system.

s Instantiated. These services run for the duration of GLOMAR within
GLOMAR’s process. They start and stop depending on the lifetime of
tiie GLOMAR iustance.

» Remoted. These wervices expose their functionality via the GLOMAR
communication chatnel and run for the duration of GLOMAR. within
GLOMAR'’s pracess. This is how intrinsic services (like the Clone Distri-
bution Manager} :we exposed.

Inclusion of a service inte the Service Manager is done by editing a Service File.
Within this Service File, the physical location of the service is indicated, as well
as the entry point und vhe service type. Upon the start-up of GLOMAR, this
file is read and the appropriate services started.

Unlike the Relationship Component, which must adhere to a detailed interface,
a simple interface is defined for user-specific services. This interface consists
only of a start and stop method. Within these methods, the functionality of
the service is placed.

5.2.5 System Grader

+

Before selecting a Relationship Component or re-evaluating the legitimacy of
a currently implemented Relationship Component, the Executive invokes the
System Grader to collect information about the current scenaric. Since this
information is used to direct file operations, GLOMAR refrains from imple-
menting a definitive mechanism for determining the legitimiacy of a Relation-
ship Component. Rather, GLOMAR emphasises that the evaluation process is
“as acrurate as possible” in the face of strict time constraints. This is achieved
by provid.ng a passive process for deriving information. Rather than every file
operation resulting in a call to a set of system metric routines, every file opera~
tian performs a “pickup” of a shared data structure. This shared data structure
contains a collection of scenario types and actual values, which are then passed
into the Relationship Scope of each Relationship Component {figure 5.4).

GLOMAR maintains this information via an additional process (existing as a
separate thread), which invokes specific functionality based on a defined set
period. As a result, the shared data structure is constantly being updated,
independent of the events occurring within the Executive.

85
]
1 10 Operation | Context Provider
1
/ Contex: Provider
RC Selections / 2
o | Metric | Meric
Neme Va:ue/ /
) Context Provider
l 4 - P
Cnn?:onszriﬂ The System Grader controls the
frequency of update invocations
per Context Provider
GLOMAR Thread System Grader Thread

Figure 5.4: System Grader’s pickup Approach

Traditionally, only a standard set of information (e.g. storage size, cpu speed,
bandwidth) was available to describe a scenario. However, there are situations
where specific information that is not part of the current set of information is
required to define the scenario. One unique aspect of the System Grader is its
ability to derive such specific information, by allowing additional scenaric de-
riving mechanisms {Context Providers) to be added. These Context Providers
are installed into the System Grader by editing the System Grader File. This
file is used to inform the System Grader what values are to be inserted into
the shared data structure. These values are only available after a restart of
GLOMAR has occurred.

The process of updating the shared data structure is performed in two ways, by
statically setting a value or by providing a pointer to a Context Provider. From
this point, the System Grader takes responsibility for ensuring that the shared
data structure is maintained in accordance with the System Grader File,

For classification purposes, scenario information is divided into a taxonomy
based on the User Profile, the File Profile and the System Profile. The User
Profile details possible interaction patterns of a user on a file. The File Profile
details the type of file being processed. The System Profile is an abstraction
of the current status of the hardware, software and location. This information
is stored in a hierarchy, with the taxonomy defined as the root elements (table

5.2 and figure 5.5).

Both the System Profile and the File Profile allow for complex structures that
mirror files systems and context providers to be represented. For example, a

86 87

Profile | Sub Branch | Profile

System | Hardware Contains all Context Providers that eval-
uate the hardware elements of a system. TRl T Type | Stotie Vatue
For example, CPU, Networking, Storage, Class [gratic vatue /
Power. - System Hardwa Stovage /

Software Contains all Context Providers that relate - Network '
to the software elements of a system. For Software | static Valve et use
example, Operating System, Applications Location —L / created modules
installed, etc. — User Current Address

Location Contains all Context Providers that relate 7 A
to physical location. This is applicable to / \
mobility-enabled applications. Value of metric Is mmﬁﬁfﬁ SI e

File Class Contains all Context Providers that are ongane T frequency for which this module
N shoutd bie invoked
specific for a file within the Clone list. In
most cases illustrating the Operating Type

(READ, WRITE or READWRITE) and Figure 5.5: System Grader Taxonomy Structure

Operation Action (STREAM, RANDOM,
UNIFORMED, NOTHING).
Type Contains all Context Providers that relate

Relationship Component Instantiation

to the type of file. This might include the
nature of the file (text, database, multi-
media, etc).

User

User

Contains all Context Providers that relate

The ability to add different Relationship Components into GLOMAR is based
on the decoupling of the Relationship Component functionality and middleware
layer. However, as a result, this decoupling means the GLOMAR middleware

laver has to actively seek out Relationship Components and assume responsi-
to the user of the system and how they ay y P P P

might behave. bility for their creation and run-time storage.

Table 5.2: Context Provider Taxonomy The Relationship Component Repository creates and storfes uista'noes of all
Relationship Covaponents when it is started, rather than “just-in-time”. The
reason for doing this stems from the aim of the GLOMAR middleware layer
to be as efficient as possible, as the selection phase has only to traverse the

data store containing the instances of Relationship Components, rather than

tree structure that mirrors the files and direciories on a file system. However,
the User Profile does not have this facilitate. Rather simaple, yet suitabls eniries
within the User Profile adequately represent user details, without the need to
resort to complex structures.

creating them each time.

However, this eagerness to instantiate Relationship Components does reduce the
middleware layers ability to dynamically install new components at run-time.
This design choice stems from the need to selectively determine the life-cycle op-
erations of Relationship Component instances, by eliminating the ability of the
middleware layer to add and remove Relationship Component instances. This
improves the consistency of available Relationship Components to be used and
fits within the install philosophy of Relationship Components administration
as the possibility of Relationship Components not being available on remote

5.2.6 Relationship Component Repository

The Relationship Compenent Repository is responsible for the management of
Relationship Components. This responsibility is divided into two areas;

® The creation and verification of a Relationship Component and

» The run-time selection of a Relationship Component based on the current nodes is reduced.

scenario

88

The events that make up the instantiation phase of the Relationship Component
Repository include:

* Finding all Relationship Component files. All files found within a
specific directory are loaded.

¢ Each class within the files is checked for the correct interfaces
and the correct parent object. A Relationship Component is deemed
valid only if the supplied base class RelationshipComponent is found
within the inheritance tree, regardless of its depth. This primarily en-
sures the safety of the component being instantiated. Secondary to this,
existing Relationship Components can be extended upon and still be valid
Relationship Components {figure 5.6). For example, by inheriting func-
tionality from an existing Relationship Component and adding additional
functionality, results in a new component that has exploited code reuse

and is valid.
Relationship | x|
Component R
Repository [, Bar
- Foo

Public class Foo /Publi.c class Bar :Foo
:RelationshipComponent {

{

}
}

Figure 5.6: Extending Relationship Components

* Create and store Relationship Component instances. Once the
validity of a class has been determined, an instance is created. This
instance is stored within the Relationship Component Repository, using
the class name as the index.

89

The result from these events is that all valid Relationship Components within
a specific directory are instantiated, stored and available to be used.

However, having an already instantiated instance would seem to force all Re-
lationship Components to appear as singleton objects (Gamma et al. 1995).
As section 4.4.1 details, not all objects exhibit this instantiation model. The
reason for implementing all instances as singleton (at this stage) is solely for
accessing the Relationship Scope portion of the Relationship Component faster.

Since state information is not necessary for a Relationship Scope implementa-
tion {internai processing is static), it was determined that for efficiency reasons,
a singleton design pattern would be used for accessing Relationship Scope func-
tionality. However, the implementation of the Consistency Model portion of a
Relationship Component is handled differently (section 6.3.6 for details).

Relationship Component Processing

When required, the Relationship Component Repository is asked to return the
“most valid” Relationship Component depending on the current scenario. This
involves evaluating all aspects of each Relationship Component, including each
Relationship Scope and Clone List.

Since this evaluation event is a result of a file operation, an exhaustive process
would adversely affect the system’s performance. As a result, an efficient and
yet rigorous evaluation process is required.

The solution is an evaluation process that exploits the frequency of certain
events, so that events that are more frequent are tested early. This results in
the evaluation process being divided into three sub-processes { Eristing, Parade
and Jnvestigation), with each process imposing another level of complexity and
another level of cost (fgure 5.7). Such an approach ensures that efficiency is
compromised only when deemed necessary.

The Existing Process

The first process of Relationship Component Processing consists of ensuring
that the currently invoked Relationship Component is still valid (figure 5.7).
Prior to an operation being performed on a Clone, the status of the governing
Relationship Component is evaluated. Since the only criterion for changing a
Relationship Component is a change in the scenario, the Relationship Scope is
checked. If the current scenario is valid for the invoked Relationship Compo-

nent, “hen it is used.

90

However, if the scenario has changed, therefore rendering the Relationship Com-
ponent invalid, the second process (the Parade process) is invoked. Also, if a
Cione does not have an invoked Relationship Component governing it, this
process is by-passed and the evaluation process is moved directly to the Parade
Process.

The Parade Process

The Parade process promptly creates a list of suitable Relationship Components
based on the set of Clones that they govern (figure 5.7). In other words, if
an operation is about to be performed on file z, then only the Relationship
Components that define file £ in their Clone List are deemed suitable. The
resulting list can either be:

» Only one Relationship Component matches the Clone

¢ Many Relationship Componenis match the Clone

If ouly one Relationship Component is selected, then it is assigned. There
is however, a problem with this process. For example, if one Relationship
Component is returned, but its Relationship Scope ipdicates that it is invalid,
it still can be used. This is because the process that evaluates the Relationship
Scope happens after this process. This is a constraint of the system and will be
addressed in future work (section 9.2).

The Parade process becomes more complex when a number of Relationship
Components are returned. In this case, an additional process is required to
evalnate each of the Relationship Components in more detail to determine the
“most valid”. This is handled by the Investigation process.

The reason for evaluating the Clone List of a Relationship Component first, is
that much of the processing to determine the appropriate Relationship Com-
ponent to invoke would be done at this stage. In addition, the likelihood of
multiple Relationship Components per Clone is low. For example, a Clone in
most cases will have only one Relationship Component. Thus, evaluating the
Clone List prior to evaluating the Relationship Scope means the majority of
processing would be resolved early within Relationship Component Processin2.

YRS

e
e ufig

iz me o S i a0 W B

R8s i gl

91

The Invastigation Process

The first step of the Investigation process is to evaluate in detail each of the Re-
lationship Components considered valid from the previous process (figure 5.7).
This involves invoking the Relationship Scope of each Relationship Component
and determining their validity. The time to complete such a task is highly de-
pendent on the implementation of each Relationship Scope. The results from
ihis process can be one of the lollowing:

¢ No Relationship Components were valid
+ One Relationship Component was valid

+ Many Relationship Components were valid

If no Relationship Components were valid, the operation is aborted. If one Re-
lationship Component is the result of the investigation, it is instantly returned
and invoked. However, if more than one Relationship Component is returned,
the Investigation process further evaluates the list of Relationship Components
to select the most suited one.

The second and final step involves the use of the Clone List. Each Clone within
the Clone List of a Relationship Component is referenced either implicitly or
explicitly (section 4.3.3). The Clone’s reference is based on whether the Re-
lationship Component directly references the current Clone (explicit) or it is
inferred as a result of a directory Clone implying ownership (émplicit). Using
this reference, the Relationship Component Repository lists explicitly refer-
enced Clones over the implicitly referenced ones. The Relationship Component
that is listed first is returned and invoked.

5.2.7 Executive

The Executive’s purpose is to manage all GLOMAR middleware layer services
and handle every file operation, The Executive acts as a file operation dis-
patcher, ensuring that file operations are directed to appropriate Relationship
Components. The life-cycle of the Executive (figure 5.8) consists of:

o The Local Operation Interface passes in a file operation

o Determine if the Clone is being governed by GLOMAR

o Determine if the existing Relationship Component is still valid

92

» Ask the Relationship Component Repository for new Relationship Com-
ponent

o Implement new Relationship Component

The initial step is to determine if the Clone being accessed is governed by
GLOMAR. If not, the file operation is returned and allowed to continue. If 8o,
then the Executive must determine if an existing Relationship Component is
currently invoked or a new one has to be instantiated. This is done by searching
a stored collection of Relationship Component instances, indexed on the Process
ID {(GLOMAR allows only one Relationship Component instance per process).
This stored collection is not to be confused with the collection of Relationship
Component instances owned by the Relationship Component Repository.

The Executive then passes the results from this search to the Relationship Com-
ponent Repository, which determines the legitimacy of the existing Relationship
Component and /or initiates Relationship Component Processing (section 5.2.6).
The results from this process can be;

¢ A failed operation
o The invoked Relationship Component is still valid

* There is no invoked Relationship Component, thus a new Relationship
Component is returned

¢ A new Relationship Component is returned to replace an invoked compo-
nent.

If the operation fails, the Excoutive redurns this failed operation $o the caller
application. If however, the invoked Relationship Component is still valid, the
Executive finds the Relationship Component instance within its own stored col-
lection and invokes the method corresponding to the operation. From this point,
control of the operation is handled by the appropriate Relationship Component,

However, when a new Relationship Component is returned, regardless of whether
it’s a new component or a replacement, the Executive implements a number of
additional steps, referred to as Relotionship Component Implementation.

Relationship Component Implementation

The process of Relationship Component Implementation involves either assign-
ing the Relationship Component Repository selection to a non-governed Clone,

93

or dynamically changing the currently invoked Relationship Component to a
more suitable one. The process of assigning a Relationship Component to a
Clone that has no governing Relationship Component is straightforward. All
operations are redirected to this Relationship Component from this point on-
wards. However, the assigning of a Relationship Component to a Clone that
has an invoked Relationship Component is more complex. The Executive shuts
down the currently invoked Relationship Component and assign its replacement.

The process of changing to a new Relationship Component is done by call-
ing the method CleanEndCM (member of the Consistency Model interface, see
section 4.3.1}, which is a blocking call that attempts to maintain consistency
in preparation for the Relationship Component being shutdown. If the Clea-
nEndCM method has failed to return within a set time (set time defived within
the metadata of the Relationship Component), the methed is aborted and the
Relationship Component is shutdown.

The Executive then asks the ntwly selected Relationship Component whether it
can coexist with other Relationship Components. In other words, the thread-
ing model for the Relationship Component is inspected. Depending on the
Relationship Components already invoked, the Executive can choose whether
to invoke the newly selected Relationship Component or not. If approval is
given, the Relationship Component is asked what type of instantiation model
it prefers.

Finally, the Relationship Component is either instantiated as a singleton or
new instance (section 4.4.1). If the Executive determines that a Relationship
Component prefers a singleton approach, a reference from a list of already in-
stantiated components is returned {which reside in the Relationship Component
Repository). If however, the Executive determines that a Relationship Com-
ponent prefers a new instance of the object to be created, a new instance of
the Relationship Component is created dynamically. This new instance is then
stored in-memory within the Execute for future access. This then concludes
the process of implementing 2 new Relationship Component.

Handling Failures

The Executive’s primary role is to dispatch file operations, with no concern
for the results returned from a Relationship Component. However, there are
situations were the Executive (and GLOMAR) would benefit from knowing the
status of an operation. For example, consider a disconnection occurring mid
operation. As the remote host cannot be contacted, the operation would fail

!

as the appropriate Relationship Component (built for connectivity) would time
out. However, why should the operation fail when a Relationship Component
built for disconnection is available? The solution is for the Executive to monitor
the results returned from a Relationship Component and replay the operation
if a failure occurs. Prior to the operation being replayed, the Executive again
calls the Relationship Component Repository and retrieves the most valid Rela-
tionship Component. In the case of loss of connectivity (the previous example},

the second call to the Relationship Component Repository would result in the

appropriate Relationship Component (disconnection) being returned and used.
By allowing the process to feedback on itself, the operation that would have
been lost due to a disconnection would be processed eflectively.

5.3 Summary

This chapter has detailed the approach used to manage Relationship Compo-
nents, including the aims, the design and the decision making process of the
GLOMAR middleware layer. This chapter has focussed on the ajms of the
GLOMAR middleware layer, in particular managing interaction, flexibility, ef-
ficiency and streamlining Relationship Component development.

The resulting GLOMAR. middleware layer design was divided into threc areas
of responsibility: the interfaces for the operé.ting systems and applications (Lo-
cal Operation Interface and Remote Operation Interface); the support services
to improve the task of creating Relationship Components {Clone Distribution
Manager and Service Manager); and the components that provide the man-
agement of Relationship Components at run-time (Reiationship Component
Repository, System Grader and Executive).

The next chapter discusses the implementation of GLOMAR, iacluding the
implementation of the Relationship Component and the GLOMAR middleware
layer.

string RCRSelection {ClonelD, CurrentSsenario)
i

// the Parade process returns all Relationship
// Componepts that can govern this Clons.

RCList = GetSuitableRC(CloneID);

it (RCList.Count == 0)
return "failed"; // Clome camnot be governed.
elseii (RACList.Couny == 1)

retuzn RCList(0); // Reiationship Component found and returned.
elza

{

/{ the Investigation process

SuitableACList = pull;

whkile (ACList.Count > counter)

{

// the Relationship Scope of each
f/ Relationship Component is checked

i? (CheckRS(RCList{comter), CurrentScenaric) == true)
Suita¥leRCList . Add{RCList{counter));

counter = counter + 1;

3}

if (SuitableRCList.Count < 1)
return “"failed";

elseif (SuitableRCList == 1)
return SuitableRCList(0);

else

1

// the hdvanced Investigation process

{
// return the Relationship Component that
// is defined as EXPLICIT

if (CheckGCloneType(SuitableRCLiat(counter2)) == EXPLICIT)
return SuitableRCList{counter2);

counter? = cournter2 + 1;
}
return SuitableRCList{(0); // Return the first instance
}
}

Figure 5.7: Relationship Component Processing

95

96
97

Chapter 6

GLOMAR Implementation

10 Cperation)
—

Evaluate RC

This chapter details the full-scale implementation of the GLOMAR framework
within a DFS. The GLOMAR frame work implementation is comprised of ap-
proximately 6000 lines! of .INET (Watkins, Hammond, and Abrams 2003)2 code,
consisting of a mixture of C#, Managed C++ and Visual Basic.NET. This
chapter also examines the target development platform, the implementation
of the Relationship Component and the internal particulars of the GLOMAR
middleware layer.

Use Exsting

'} ') 3 * +

mﬂ@&@wwmﬂ

I

6.1 Development Platform

By understanding the constraints of many file systems and using commeon ele-
ments of lauguages (and component technologies), the final design of GLOMAR
is as platform independent as possible. Nevertheless, the development platform
chosen for the full-scale implementation of the GLOMAR framework is .NET.
This decision was made due to three critical factors, namely:

Operation Cornplele

* 10 Operation_
Exits Executive

Figure 5.8: ¥ile Operations within the Executive

s Cross Language Support
e Advanced Component Architecture

¢ Multiple Platform Support

Cross language support is achieved within the .NET framework, as ali code is
compiled and emitted into an Intermediate Language (IL) (ECMA 2001). This

1This figure excludes lines of code that make up individual Relationship Components and

Context Providers.
*The description the .NET implementation makes use of some .NET specific terminology.

For details on their meaning, refer to the Glossary.

98

is similar to the byte code approach used in Java (Gosling et al. 2000). However,
unlike Java, which implements one langusge for many platforms {though other
languages have been ported to emit Java byte code (Gough and Corney 2000)),
.NET has a number of compilers that emit IL. This is critical for the GLOMAR
framework, as it allows legacy code from existing concurrency control and con-
sistency maintenance implementations to be integrated into GLOMAR easily.
For example, a concurrency control and consistency maintenance mechanism
written in C++ could be incorporated (with osly some minor alterations nec-
essary) into the Relationship Component, as .NET provides a C4-+ compiler
that emits IL code.

Ceniral to the GLOMAR philosophy is the concept that components are the
foundation of its implementation, whether being the implementation of a Re-
lationship Component or the services that make up the GLOMAR middleware
layer. Current component technologies implement approaches that are difficult
to manage (COM (Box 1998)), fail to offer the native support for common com-
ponent functionality (in the case of Dynamically Linked Libraries) or are too
tightly coupled with a platform or language. The .NET componezt approach
offers the GLOMAR framework the best balance between complexity and flex-
ibility. For example, the interfaces and metadata that make up a Relationship
Component can be rigorously defired and controlled. Also the advanced ZRe-
fection (Watkins, Hammond, and Abrams 2003} library supplied by the NET
framework offer a simplified method of handling dynamic invocations required
for late binding of a Rsiationship Component.

Az stated in Chapter 3, GLOMAR’s design is platform independent. To il-
lustrate this requires a system that targets a number of platforms. Unfortu-
nately, the number of supported operating systems and hardware platforms
available for .NET is limited. For example, currently .NET provides produc-
tion quality support for Windows (98, ME, NT4, 2000, XP} only. However,
there are other platforms were support is available. These include Linux (The
Mono-project (Ximian 2002)), FreeBSD, Mac OS X 10.2 (Rotor (Whitting-
ton 2002)} and the Pocket PC/WinCE (The Compact Framework (Microsoft
2002b)). The current implementation of GLOMAR is built on the Windows
platform only. However, porting to other non-Windows platforms is trivial, as
much of the implementation of GLOMAR is platform independent and because
all the non-Windows implementation of NET comply with the European Com-
puter Manufacturer’s Association (ECMA) Common Language Infrastructure
(CLI) standard (ECMA 2001). A Java implementation was considered early in

99

the project based on the multiple platform support. However, it was not chosen
because of the lack of multiple langnage support.

6.2 Relationship Component Implementation

This section details the proposed and developed interfaces, as well as the base
class that make up the implementation of the Relationship Component. Also
discussed is how a Relationship Component is built, including how the Consis-
tency Model and Relationship Scope are developed and how the Clone List is set
and utilised. The unique interfaces and base class as defined within GLOMAR
are exclusively for the implementation of concurrency control and consistency
maintenance within the multiple consistency model approach.

6.2.1 IConsistencyModel interface

The implementation of the IConsistencyModel interface (figure 6.1) facilitates
the creation of a Consistency Model. This interface consists of 20 methods,
each relating to an operation (both local and remote), as well as a start-up and
a shutdown method.

Implemented in each method is the code responsible for handling specific op-
erations and/or events associated with concurrency control and consistency
maintenance. For example, the Read method encapsulates all the concurrency
control and consistency maintenance functionality built for handling a read op-
eration,

For each method defined within the IConsistencyModel interface, a FHA NDLE
structure parameter is passed. The purpose of the FHANDLE structure is %o
package information about:

o CloneName. An object representing the file being accessed.

e RCinfo. The details of the Relationship Component housing this Con-
sistency Model.

o Source. Whether the operation is local or remote.
e AppID. The process ID of the application generating the operation.

e Tag. A string containing any additional information passed in by an
application. All members (excluding the tag meinber) are filled by GLO-
MAR.

100

Publiec Interface IConsistencyModel

Function DpenCM{(ByVal handle Az FHANDLE) As OperationStatus
Function CleanEndCH{ByVal bandle As FHANDLE) As OperationStatus

Fupnction Create(ByVal handls As FHANDLE) As OperationStatus
Function Open{ByVal bandie As FHANDLE) As OperaticnStatus
Function Clese(ByVal handle As FHANDLE) Ae OperationStatus
Function Read(ByVal handle is FHANDLE, ByVal length As Long,
ByVal offset As Long, ByRef buffer As Long)
Ag DperationStatus
Function Write(ByVal handle As FHANDLE, ByVal length As Long,
ByVal cffset As Long, ByVal buffer Am Long)
As OperationStatus
Function Getittr{ByVal handle As FHANDLE, ByRef fileattr As FILE_ATTR)
As OperaticnStatus
Functior SetAttr{ByVal handle Az FHANDLE, ByVal fileattr As FILE_ATTR)
As OperaticnStatus

Function Rename{ByVel handis As FHANDLE) As OperationStatus
Function Remove(ByVal handle As FHANDLE) As OperationStatus
Function Remotelpen{By¥al bandle As FHANDLE) As QperationStatus
Function RemoteCreate(ByVal handle As FHANDLE) As OperationStatus
Function Remotellose(ByVal handle Az FHANDLE) As OperationStatus
Function RemoteRead(By¥al handle As FHARDLE, ByVal length As Long,
By¥al cffset Aa Long, ByRef buffer As Leng)

As OperationStatus
Functica RemoteWrits{ByVal handle As FHANDLE, ByVel le.zth As Long,
ByVal offset As Long, ByVal buffer As Long)
As QperationStatus
Function RemoteGetAttr(ByVal bandle As FHANDLE, ByRef fileattr As FILE_ATTR)
As OperationStatus
Function RemoteSetAttr(ByVal handle As FHANDLE, ByVal fileattr is FILE_ATTR)
As OperationStatus
Function RemotoRename(ByVal handle As FHANDLE)} Az DperationStatus
Function RemoteRemove{ByVal Landle As FHANDLE) As OperatienStatus

End Interface

Figure 6.1: IConsistencyModel Interface

The return value from all the methods defined within the IConsistencyModel
interface is an enumerated value called OperationSiatus. This value is used to
indicate the success or failure of an operation. The state of the OperationStatus
value can be:

¢« FAILED. The operation has failed.
¢ SUCCEEDED. The operation has succeeded.

s COMPLETED. The operation has completed remotely, but not re-
quired to complete locally.

¢+ OPERATIONFAILED. The operation failed, but can be replayed within
the Executive,

101

For the methods Rcad, Write, RemoteRead and Remote Write, an additional
three parameters are passed. These parameters include length, offset and buffer.
This complies with the standard approach used to read and write to buffers
(passing by reference for reads and by value for writes) and is commonly used
within file system implementations (Huston and Honeyman 1993). Each of
these additional parameters is a 64-bit integer ((NET long).

For methods responsible for handling file attribute requests (SetAttr, GetAttr,
RemoteSetAttr and RemoteGetAttr), a FILE_ATTR structure parameter is
passed. This structure contains:

o LENGTH. The length of a file.
o LASTWRITE. The date/time of the last write.
o LASTACCESS. The date/time of the last access.

¢ CREATIONTIME. The creation date/timr of the file.

For consistency, each member of the structure is a ,4-bit Integer. As a result, to
pass an attribute requires the specific informatic 2 be marshalled into a 64-bit
value. For example, if creation time was being pssed, it must be converted to
a 64-bit representation of the time to fit within the FILE.ATTR structure.

6.2.2 IRelationshipScope interface

The scenario for which a Relationship Component is valid is defined by imple-
menting the IRelotionshipScope interface (figure 6.2). This interface has four
methods EveluateRules, SystemProfileRule, UserProfileRule, FileProfileRule.
The top level rmethod (EvaluateRules) is responsible for determining the valid-
ity of a Relationship Component. The other three methods (SystemProfileRule,
UserProfileRule, FiteProfieRule) are responsible for evaluating different aspects
of the current scenario fur the purpose of supporting the top level method.
These three supporting methods are based on the taxonomy defined in section
5.2.5.

Creating a Relationship Scope requires implementing scen aric defining rules
withir the three supporting methods and implementing a me-hanism within the
top level method, to derive an overall decision on the validity of the Relationship

Component.

102
Public Interface IRelationshipScope .,1 6.2.3 RelationshipComponent class
Function EvaluateRules (B::a;:;::fno Az Envircnment) The foundation of any Relat.ionship Component is the RelationshipComponent
Function SystezProfilefule (:zv;ioizi:“ As Environment.SystemProfilelafs: r class. All Relationship Components are built on this base class. The Relation-
Function UserPro:EileRule(iﬁ\';];o:z::fo As Enviromment,lUserPyofilelnfo) w; shipComponent class is an abstract base class, meaning that it can never exist
Function FileProfileRuie(ii\':];o:z:nnfo As Environment.FileProfileInfo) as an independent instance unless it is inherited.
End Interface : The RelationshipComponent class not only includes the functionality to house
[the Relationship Scope and Consistency Mode! implementations, but also the
))) A functionality associated with Clone List management and setting up Relation-
Figure 6.2: IRelationshipScope Interface :; ship Component metadata.
5
The unique aspect of the Relationship Scope is that each method is passed é Clone List Managerment
a specialised shared data structure (section 5.2.5) containing the status infor- &
mation of the system, for the explicit purpose of helping the scenario defining f The Clone List is separated from the actual Relationship Component to allow
process. This shared data structure (referred to as the Environment object) 4 easy modification. This means that the Clone List is actually a XML file con-
contains three hashtables. These hashtables include: taining the relationships between particular files and Relationship Components.
} Figure 6.3 shows an extract of one such file and table 6.1 details each XML tag.
o UserProfileInfo. This hashtable contains all the scenario information &
referring to the current user. ? <CloneList>

<RelationshipComponent name="Outlook Connection RC"
o FileProfileInfo. This hashtable contains all the scenario information id="0utlookConnectionRC">
referring to the current file being accessed.
<Clone localpath="c:\temp\outlook.pst"
name="outlook file" id="outlook" type="file" />
</RelationshipComponent>
<RelationshipComponent name="Connection" id="444444">
<Clone localpath="C:\temp\testl.txt"
name="testi" id="test1" type="file" />
</RelationshipComponent>
</CloneList>

o SystemProfileInfo. This hashtable contains all the scenario information
referring to the hardware, software and location of the current system.

Accessing specific information within the shared data structure requires an ap-
propriate key for the appropriate hashtable. This key is a string that defines
a particular environmental variable. For example, to access the current band-
width metric, the key “hardware.network bandwidth” would be used. This key
gives access to the actual value, which can be used to determine the validity Figure 6.3: Clone List XML File
of a Relationship Component. Section 6.3.5 details the Environment object, in

particular how it is used by the System Grader. The structure of the Clone List contains a parent tag that defines a Relationship

Component. Child nodes under the parent tag represent files or encapsulated
types for which this Relationship Gomponent can govern. The resulting XML
file is thus a description of the Clone-to-Relationship Component relationship,
which can be modified independently (via any text editor) of the Relationship

The return type from each method is a Boolean type. Thus, if true is returned,
the scenaric for this Relationship Component is valid. If felse is returned, the
scenario for this Relationship Component is invalid.

Component,
The Clone List is used by an already implemented method supplied with the
RelationshipComponent base class. Its purpose is to determine if a particular

104

Clone Tag Description

Type

Relationship This tag encapsulates all
Component Clone types. It directly

<RelationshipComponent
name="Testerl”
id="Testeri"/>

references an existing Re-
lationship Component via
the ID.

Volume This tag is used to bind
both directories and files,
and is used solely for order-
ing and Clone bundling

<Clone name="PIM Volume"
id="voll" type="volume" />

Directory This tag is used to reference
files within a directory. The
filter defines the extension
of files that should be in-
cluded. The recursive at-
tributes indicates weatner
to include all sub directo-
ries or not (irue or faise).

<Clone localpath="c:\temp"

name="Temp" id="temp"
type="directory"
filter="=.mpg"
Recursive="false" />

File This tag represents the ac-
<Clone tual file.

localpath="c¢:\temp\test.txt|'
name="test.txt" id="test21"
type="file" />

.

Relationship Component can govern a particular Clone. The IsSuiteble method
is called by the Relationship Component Repository during the Perade process
(section 5.2.6) on each Relationship Component. The Clone ID of a partic-
ular Clone is passed in. The Clone List is then searched with the results of
the cearch informing the Relationship Component Repository if the particular
Relationship Component can govern the particular Clone, Thus, all the func-
tionality associated with managing the Clani: Iist is implemented within the
RelationshipComponent base class.

105

Relationship Component Metadata

The process of creating a Relationship Component not only consists of creating
and setting up the three major sub-components (the Consistency Model, Rela-
tionship Scope and Clone List), but also setting up the metadata to describe the
Relationship Component itself. This is performed by forcing the constructor of
the base class to sccept an object containing all the appropriate metadata for
the Relationship Component. The RCInformation object encapsulates all the
details describing the Relationship Component. These details include:

e Name. A literal string of the name of the Relationship Component.
o Author. Name of the author of the Relationship Component.
¢ ID. A literal string of a unique identifier for the Relationship Component.

e InstanceType. An enumerated type that describes the two instance
types an Relationship Component can be (section 4.4.1).

+ ConcurrencyState. Anenumerated type that describes the three thread-
ing models that a Relationship Component can be (section 4.4.2).

o Shutdowntime. An integer value that describes how long the Clea-
nEndCM method is allowed to run in milliseconds (section 4.4.3).

The creation of the Consistency Model and Relationship Scope classes, coupled
with setting up the Clone List and metadata information results in a fully
functional Relationship Component. This can be added to into the GLOMAR.
middleware layer, ready to be used when required.

6.3 GLOMAR Middleware Layer implementation

6.3.1 Local Operation Interface

The implementation of the Local Operation Interface consists of three modules,
including a filter driver {transparent) and two bridges (non-transparent) for
COM (Box 1998) and .NET (figure 6.4).

Filter Driver

The transparent module used in the GLOMAR implementation is a Windows
NT /2000 filter driver (Nagar 1997), that intercepts file operations from the

106

COM NET
Bridge Bridge
3 GLOMAR
" .
Filler Driver LO!

Figure 6.4: Local Operation Interface Implementation

input/output subsystem. These operations are then forwarded to the COM
bridge, which in turn forwards them on to the Executive (via the .NET bridge).
Once the Executive finishes with these operations, they are returned, with the
filter driver re-entering the operations back into the input/output subsystem.
The filter driver prototype demonstrated the feasibility of the transparent mod-
ule. However, for the sake of the GLOMAR implementation, attention was
focused upon the non-transparent modules.

COM Bridge

Fl

The purpose of the COM bridge is to allow non .NET applications {and the filter
driver) to pass operations to the Local Operation Interface (and Remote Opera-
tion Interface). The COM bridge consists of a .NET component, which exposes
four methods® (LocalOperation32, RemoteOperationd?, LocelOperation6f and
RemoteOperation6) via COM. In addition, the COM bridge exposed a number
of specially designed classes that can be used by COM compliant applications.
These methods process parameters passed in and make appropriate calls to the
.NET bridge, via the .NET remoting infrastructure (Srinivasan 2001).

NET Bridge

NET applications (and the COM bridge) communicate with GLOMAR using
the .NET bridge (figure 6.5). The .NET bridge interfuce ronsists of a single

332 bit and 64 bit interfaces are required because some COM compliant languages (e.g.
VDB6) do not natively support 64 bit integers :

ot ebaratrtopbbzel

s e)

TR

107

method that receives eight parameters and returns the OperationStatus enu-
merated type. The eight passed in parameters include:

s filename. The name of the file being access.

application. The application ID.

operation. The operation being performed (this is a string representa-
tion, e.g. “read™) .

length. The length of the data within the buffer.

file_attr. The file attribute details (by reference).

offset. The offset within the huffer.

buffer. The actual buffer (by reference).

» tag. The optional tag parameter (only used when required).

Public Function Locallperation(ByVal filename As String, _
ByVal application As String, _
ByVval operation As String, .
ByVal length As Long, _
ByRef file_attr Ac FILE_ATTR, _
ByVal offset As Long, _
ByRef buffer As Long, .
Optional ByVal tag As String = "

As OperationStatus

Figure 6.5: Local Operation Interface Entry Point

To communicate with the .NET bridge, an application must use the .NET re-
moting infrastructure. The URI to this particular remoted service is tep://locathost: 9999 /1oi.
The .NET bridge functionality consists of processing the operation passed to
it and then forwarding it onto the Executive. This call to the Executive is

synchronous.

6.3.2 Remote Operation Interface

The Remote Operation Interface suppi..8 an entry point into GLOMAR via
the .NET remoting infrastructure (the URI is tep: //hostname:9999/rot). The
Remote Operation Interface differs from the Local Operation Interface due to

108

its ability to accept two additional parameters. These additional parameters
define the ID of the Relationship Component (reid) that made the request and
the ID of the Clone (cloneid) that the operation is intended. Figure 6.6 details
the Remote Operation Interface implementation interface.

Public Function RemoteOperation(ByVal rcid As String, .
ByVal cloneid As String, _
ByVal appid As String, _
ByRef buffer As Long, .
ByRef attr As FILE_ATTR
ByVal length As Long, _
ByVal offset As Leng, _

ByVal fileoperation As FileOperatiom, _
Optional ByVal tag As String = “") _

As OperationStatus

Figure 6.6: Remote Operation Interface Entry Point

Since the rcid and cloneid are passed in as parameters, there is no need to
enter the remote operation into the Executive, as this information makes the
Executive’s evaluation process redundant. As a result, the Remote Operation
Interface directly invokes the remote interface of the specific Relationship Com-
ponent.

The implication of bypassing the Executive is that an operation is only able to
use the singleton instance of a Relationship Component {as only the Executive
exploits a Relationship Component’s instantiation model). Thus, sharing state
information between remote operations is unsafe, as other remote operations
{from other processes) might access the same instance.

6.3.3 Clone Distribution Manager

The Clone Distribution Manager processes the Clone List and provides an API
for querying this information. This service is used by other GLOMAR middle-
ware layer services and Relationship Components.

During initiation of the Clone Distribution Manager, the location of the Clone
List is passed in. This XML file is opened and read, with an in-memory Clone
List (XML DOM) created. Some additional precessing of the Clone List is
done, prior to making it available via the Clone Distribution Manager's API.
This processing includes:

aol
3
]
3
i
&

e PG

109

» Expanding Directories. All Clone tags specified as directories are read
(the volume tags are ignored, as they are an encapsulating type with no
direct reference to Clones). Based on the filter and recursive atiributes,
a list of files is returned. For example, if *.izt is defined as the filter,
then the list of files for this directory weculd inciude all .tzt files. For each
returned file, a unique 1D is created. This ID is prefixed with the ID of
the directory, thus directly binding the file to any event that affects the
directory.

¢ Determine Clone Reference Type. Determining the reference type
for each Clone depends on the source of its reference. Thus, each file
entry within the Clone List is extended to include a property indicating
its reference type (esplicitly or implicitly).

The Clone Distribution Manager’s API facilitates the querying of this in-memory
Clone List (table 6.2). It is implemented as a singleton (Gamma et al. 1995),
with it exposed via the .NET remoting infrastructure. The URI of this remoted
service is tcp://localhost: 9999/ clonemanager. A benefit of using the .NET re-
moting infrastructure is that since the service is available via TCP/IP, it can
be used by remote nodes.

6.3.4 Service Manager

The implenientation of the Service Manager provides the ability to implement
any additional functionality external to a Relationship Component. This is
done by the Service Manager reading an XML file (Service Manager XML File;
figure 6.7) containing the physical location and instantiation type (a remoted,
an instantiated and an exiernal service) of all services. Once read, the services
are dynamically instantiated and started by using the .NET Reflection library.

All services (excluding the external services) are required to implement the
IGlomarService interface (figure 6.8). This interface consists of a StartService
method and a StopService methed. The motivation for this interface is to allow
any service to be created. The Scrvice Manager starts all services by asyn-
chronously invoking the StartService method of each implementation. When
GLOMAR is stopped, the Service Manager stops all services by invoking the
StopService method.

To add a new service to the Service Manager XML file requires adding a service
node. The attributes of this node are:

110

Interface Parameters Return Description
Type
GetCloneList Relationship Array This method. returns
Component of Clone | a list of all Clones
ID Details that are Relationship
Component govern
GetCloneDetails Clone ID Clone De- | This method gets the
' tails Clone Details from
the Clone ID
GetCloneDetails Clone ID and | Clone De- | This method gets
Relationship tails the Clone Details
Component from the Clone ID
ID and the Relationship
Component ID
ClonenameToClonelD | Clonename Clone ID | This method gets the
Clone ID from the
Clone Name
IdToLocation Clone ID Clone Lo- | This method gets
cal Path the Clone Local path
from the Clone ID
IdToCloneaaiws: Clone ID Clone This method gets the
Naie Clone name from the

Clone ID

Table 6.2: Clone Distribution Manager’s API

B S,

-~

A Sl R A et Ll e o

ki

ke o Y ot P CRE L]

<services>
<service name="t{ransaction_log" source="trans.dll"
classname="glomar.transaction”
remoted="true" />
<service name="updater" source="update.dll"”
classname="glomar.update”
remoted="false" />
<service name="proprogater" source="prop.exe"/>
</services>

Figure 6.7: Service Manager XML File

Public Interface IGlomarService
Public Sub StartService()
Pubic Sub StopService()

End Interface

Figure 6.8: IGlomarService interface

¢ uname, The name of the service.

¢ source. This attribute is the physical location of the service, which is
relative to the Service Manager directory.

s classname. 'This attribute is the class name of the service. This attribute
should include any namespaces this class exists within,

s remoted. This attribute is a Boolean value, indicating whether the ser-
vice is to be remoted on the GLOMAR communication channel or not. If
true is set, the resulting URI for this service is tcp://localhost: 9999 /< name>.
If false is set, the service starts, but is not added to the GLOMAR com-

munication channel.

As GLOMAR aims to support legacy systems, there is a need to support exter-
nal functionality not directly coupled to the concurrency control and consistency
maintenance mechanism. These might £zke the form of stand-alone executables.
To allow for such an implementation {»:0n NET object) within GLOMAR, the
System Grader allocates and runs the executable within a new process. The
Service Manager determines this is an executable by the classname attribute
being set to nuil. Else, all other services run within GLOMAR’s process.

112
6.3.5 System Grader

The System Grader implementation is responsible for two tasks: constructing
the Environment object and running the process to update the contents of the
Environment objecl.

Constructing the Environment Object

The unique approach to dynamically describing a scenario is achieved by the En-
virenment object defining three hashtables, namely, UserProfileInfo, FilePro-
fileInjo and SystemProfileInfo. In other words, these are the in-memory rep-
resentation of the information used in defining the context of a Relationship
Component. Each profiles directly maps to each element of the predefined
context defining taxonomy.

Upon the start-up of the System Grader, these hashtables are initiated to store
the environmental information defined within the System Grader XML File
(figure 6.9). To define the environmental information available via the hashta-
bles and detailing how they are to be updated is done by adding nodes to the
System Grader XML File. This ability allows new and unique mechanisms to
be added to GLOMAR. to describe existing and future scenarios. This in enl-
laboration with Relationship Components provides the capabilities to not vx -
describe scenarios, but also apply concurrency control and consistency mainte-
nance mechanisms to them.

UserProfileInfo

To insert a new user, a node is added to the resource tag defined as user. The
user node consists of four attributes, including:

s username. The username must be unique.
¢ name. For display purposes only.

o type. This attribute reflects the user type. The classification of the
user type can be user-defined and has no direct linkage to the user types
defined within an operating system. For example, a user can be *Admin”,
“Workgroup”, etc. This means the classification of user types can be more
detailed than what might be offered by an operating system.

s operation. This attribute reflects the user role. For example, a user
might be defined as a “Power User”, thus have a higher level of privilege
than a “Passive User”. This classification of user role is user-defined and

<rezource type="System">
<hardvare>
<pref names"procegsor" >

<pre! name="speed" source="SysInfo.dll"
method="getCpuSpeed” object="ManagedSysInto"
poll="1000"/>
</pref>
<pref namez"storage” valne="2000000"/>
<pref names“pstwork“» ’
<pref name='conmection" scurce="pMetric.dll"
methed="connectien" objectw"prefMetric"
poll="1000"/>
<pref names"type" values'Wireloss'/>
{pref names"bandwidth” value="234234" (>
<prei names"packet_loss" values"2342342"/>
<fpref>
</hardware>
<softuare>
<pref mames"filesystem" value="NTFS5.Q"/>
</softuare>
<location/>
<fresource>

<resource types“User">
<user ussrpames"simonc® name="Simon Cuce"
type="ADMIN" operation="High"/>
</resource>

<rescourte typs="File">
<file id="test" operationtype="READWRITE"
operationactions"strean" />
<typs id="12312" usernames"simon"
description="multimedia_simon" extension=".mpg"
operationtype="READ"
operationaction="strean" />
</resource>

Figure 6.9: System Grader XML File

is highly dependent on the specific constrainis, but independent of an

operating system.

During start-up of the System Grader, information about the currently logged
in user is extracted from the operating system and matched to the user defined
within the System Grader XML File. When a match is found, the details are
extracted and inserted in the UserProfileInfo hashtable. If, however, no match
is found, the contents of the UserProfilelnfo hashtable are set to null. The
hashtable key to the actual values are detailed in table 6.3.

FileProfilenfo

The resource tag defined as file allows for two types of entries. One type defines
details about a particular Clone, the other defines details about the Clone's

114
Entry Attribute | Key
username username
name displayname
type usertype
operation operation

Table 6.3: UserProfileInfo Keys

type. Details rel=:::v to a particular Clone are defined by adding a file node.
The attributes of she file node are:

» id. This attribute must correspond to the ID of a Clone within, at least,
one Clone List.

» operationtype. This attribute defines the type of access expected for a
Clone. For example, readonly, readwrite or update. This attribute can be
extended to create access types more intuitive to the specific needs of the
system.

e operationaction. This attribute defines how a Clone is used by an
application. For example, a Clone is read as a stream (as is the case with
multimedia files). This attribute can be extended also to suit a particular
need.

The second type of entry that can be added is the fype node. This defines
similar attributes as the filfe node, however defines additional details relating
to the Clone type. For example, all .jpg files (which are image files) can have a
single set of operationtyp= ~nd operationaction attributes assigned to them.

In addition, the fype node allows a username attribute to be added. This allows
particular users to specify fype nodes relating to Clone types. For example,
userd uses .izt files differently from userf. The username attribute allows this
to be expressed, as different details relating to a Clone type can be assigned to
different users. This feature allows additional flexibility for describing details
relating to Clones or Clone types. The attributes of the {ype node are:

¢ id. This attribute must be unique.

e username. This attribute is used to couple a particular type with a
particular user. This is a non-mandatory attribute.

| Entry Attribute [Key

File Entry
id filename (converted internal)
operationtype operationtype
operationaction operationaction
Type Entry
id value not available
username value not ovailable
description description
operationaction ext.operationaction
operationtype ext.operationtype
extension not available

Table 6.4: FileProfileInfo Keys

o description. This attribute is a description of the type.

o extension. This attribute contains the file extension. In many file sys-
tems, the file extension is used to detail the type of a file.

e operationtype. This attribute defines the type of access expected for a
Clone. For example, readonly, readuwrite or update. This attribute can be
extended to create access types more intuitive to the specific needs of the
system.

¢ operationaction. Thisattribute defines how an application uses a Clone.
For example, a Clone is read like a stream (as is the case with multimedia
files). This attribute can be extended also to suit a particular need.

When updating the contents of the FileProfileInfo hashtable, there is no need
to have every different Clone and Clone type available. Rather, a Relationship
Scope is only concerned with the Clone and Clone type that is being accessed.
For this reason, only the details that refer to the current Clone being accessed
are stored. This means a “pickup” is done on a per operation basis within
the Executive (section 6.3.7), updating the FileProfileInfo hashtable to reflect
the current Clone. Table 6.4 details keys for accessing Clone and Clone type

information.

SystemProfileInfo

The resource tag defined as system is responsible for containing all the envi-
ronmental information relating to the hardware, soffware and location of the

p—

116

system. However, unlike the file and user podes, the structure of the system
node is not predefined. Rather, static environmental information, parental tags
and Context Providers can be added into the system node as needed.

Defining environmental informasion consists of adding 4 pref node to the hard-
ware, the software or the location nodes. The pref tag can have three states: a
reference to static environmental information, a parental tag or a reference to

a Context Provider. The simplest of these tags is a reference to static environ- “

mental information. Such cnvironmental information remains constant for the
duration of a GLOMAR session, for example, the version of an operating sys-
tean. The attributes of the pref tag to define static environmental information
are:

e name. The name of the static environmental information.

» value. The value of the static environmental information.

GLOMAR facilitates easy classification of different environmental information
by allowing parental tags to be defined for the system node. This allows different
environmenta) information to be encapsulated within a single node. An example
of a parental tag can be found in figure 6.9. The attribute of the pref tag to
define a parental tag is:

’

e name. The name of the parental tag.

Since Context Providers are external modules that generate environmental in-
formation independent of GLOMAR. The pref tag must contain enough infor-
mation so that GLOMAR can create an instance of the module (via the NET
Reflection library) and extract the resulting data. Thus, the attributes of the
pref tag to define a Context Provider are:

¢ name. The name of the Context Provider.

¢ source. This attribute references the actual file containing the Context
Provider. Only a relative address is required, as by default, all Context
Providers reside within a providers directory.

e object. This attribute references the actual object within the file. This
value should include any namespaces that this object exists within.

« method. This attribute defines the method to be invoked. The results
from this method call will be the environmental information.

Provider Name Key J

Processor Speed hardware.processor.speed
Hardware Storage hardware.storage

Network Connection | handware.network.connection
Network Type hardware.network.type
Network Bandwidth | hardware.network.bandwidth
Network Packet Loss | hardware.network.packet-loss
File System software filesystem

Table 6.5: SystemProfileInfo Keys based on figure 6.9

o poll. This attribute defines when this Context Provider is invoked. If
the value is 0, the method will be called once, with the resulting value
remaining static for the duration of a GLOMAR session. If, however, the
poll value is greater than 0, this then defines in milliseconds the frequency
for which this method should be invoked.

Environmental information is addressed within the SystemProfileInfo hashtable
by flatiening the system node XML structure and separating nodes with full
stops. For example, in figure 6.9, the Processor Speed Context Provider would
have a key “hardware.processor.speed”. This addressing approach allows for
any structural variation within the System Grader XML file, regardless of the
depth and defined structure of the node. Table 6.5 details the keys generated
as a result of processing the System Grader XML File illustrated in figure 6.9.

Updating Values

The other activity of the System Grader is to constantly update values within
the Environment object with information retrieved from the Context Providers.
During the initiation of the System Grader, all Context Providers are passed
onto an additional subsystem that manages their invocation.

Each Context Provider is allocated a threa’ (independent of the Executive’s
thread) within which a delegate (Watkins, *“ymmond, and Abrams 2003) is
assigned. These delegates point to defined methods for each Context Provider.
When the threads are started, an infinite loop is initiated, calling the delegate.
Once the call is made and the results from the invocation are added to the
Enuvironment object, the thread is made to sleep for the duration defined within
the poll attribute. This process continues for the duration of a GLOMAR

gession.

118
6.3.6 Relationship Component Repository

The purpose of the Relationship Component Repository is to manage Rela-
tionship Components, determine the validity of a Relationship Component and
supply the Executive with Relationship Componeni instances. The Relation-
ship Component Repository does this by dividing processing into three distinct
areas; '

¢ Relationship Component Initiation

e Relationship Component Processing

¢ Relationship Component Implementation

Relationship Component Initiation

All Relationship Components are initiated when the Relationship Component
Repository is started. This process involves a number of steps, exploiting the
dynamic invocation functionality of the .NET Reflection library. These include:

¢ Finding ali Relationship Components. The initial step is to inspect
the Relationship Component directory for all .dil files. This results in a
list of files being returned.

¢ Select only .NET files. The next step determines which files are .NET

compliant components. The reason for this step is that many component
implementations share the .dll extension (e.gz COM and Dynamically
Link Libraries).

» Finding the Relationship Components. Once the list of files has
been reduced to only NET components, then cach is searched to find the
classes that are inherited from the RelationshipComponent class. This
involves a recursive process that traverses the inheritance hierarchy of
each class stopping when the RelationshipComponent class is found. The
reason for this rigorous process is to allow for inheritance from existing
Relationship Components. As long as the RelationshipComponent class is
found within the inheritance hierarchy, the class is deemed a Relationship
Component,. ‘

s Creating and Storing instances of the Relationship Components.
Once the Relationship Component is found, the NET Reflection library is

11¢

used to dynamically create a new instance of the Relationship Component.
These instances are added to an in-memory storage container and used
from that point onwards by the Relationship Component Repository.

Relationship Component Processing

All the complexity defined within section 5.2.6 regarding Relationship Compo-
nent Processing is encapsulated into a single method. For the Execative to
request a valid Relationship Component, requires cailing the Evaluate method,
which takes in a single parameter (defining the current operation and scenario)
and returns a string (defining the “most valid” Relationship Component}. The

parameter passed in is called the CloneOperationDetails and contains the fol-
lowing members:

¢ Appld. This is the currert application ID of the originator of the oper-
ation.

¢ Status. This refers to the Environment object, with the UserProfilelnfo,
FileProfileInfo SystemProfileInfo hashtables filled by the Executive.

» Clene. This object represents the Clone targeted by this operation.

o Operation. This enumerated value represents the operation being per-
formed.

» AssignmentList. This object contains a list of existing Relationship
Component instances that currently govern this Clone. In most cases,
there will only be a single eatry, as usually only a single Relationship
Component will govern a Clone at anytime.

Upon receiving the CloneQperationDetails parameter, the Eveluate method
firstly ensures that the existing Relationship Component is still valid. This
requires extracting the currently implemented Relationship Component for the
Clone from the Assignmentlist. The Relationship Component currently being
evaluated is found within thig list. If no Relationship Component is found in this
list, then the Parade method is called. This returns a Relationship Component
ID, which is then passed back to the Executive.

If, howevet, a Relationship Component is found within the AssignmentList, its
validity is firstly checked. The method EvaluateRules which isa member of the
Relationship Scope is called (section 6.2.2), passing in the current Environment

120

object. If the result from this method is frue, then the component is still vaiid
for this scenarip. This results in the string “current” being returned to the
Executive.

If the Relationship Component is invalid, as indicated by a false being returned,
the Relationship Component Repository calls the Parade method. The result
from this method is an ID of the most appropriate Relationship Component
based on the current scenario. This Relationship Component is evaluated to
determine if the current threading model and instantiation type defined are
compatible for its implementation. A failure of this process results in the string
“failed” being returned. Success prompts the return of the Relationship Com-
ponent ID to the Executive.

The Parade Method

The implementation of the Parade method {section 5.2.6) determines which Re-
lationship Component should govern a specific Clone. This is done by calling
the IsSuitable method for each Relationship Component. The successful re-
sults from this query are added to a list of suitable Relationship Components.
Depending upon the count of this list:

» Count equal to zero. The string “failed” is returned to the Executive.

¢ Count equal to one. An actual Relationship Component ID is returned
to the Executive.

¢ Count greater than one. A list of Relationship Components is passed
onto the Investigation method.

The Investigation Method

The functionality of the Investigation method firstly involves receiving a list
of Relationship Components from the Porade method. The list of suitable
Relationship Components is reduced by querying the Evaluate Rules method of
each Relationship Component’s Relationship Scope. This determines which of
the resulting Relationship Components can exist within the current scenario.

The count of the resulting list is tested. If the count is zero, the Relationship
Component Repository returns “failed” to the Executive. If the count is equal
to one, then the Relationship Component ID is returned to the Executive.
If, however, the count is greater than one, the list of suitable Relationship
Components is passed to the Advancedinvestigation method, which attempts
to find the most suitable.

21

The purpose oi the AdvancedInvestigation is to determine the priority of the se-
lected Relationship Components based on the referencing of a particular Clone.
Each Clone can be referenced explicitly, meaning it is singularly referenced to
a particular Relationship Component or implicitly, meaning it is part of an ag-
gregate collection of references to a particular Relationship Component. Two
lists are created, one for explicitly referenced Clones and one for implicitly refer-
enced Clones. Each suitable Relationship Component is evaluated and assigned
to the appropriate list. When complete, the first item in the explicit list is re-
turned. If, however, the count of the explicit list is zero, then the first item in
the implicit list is returned.

Relationship Component Implementation

When the Executive needs to invoke a Relationship Component, the Relation-
ship Component Repository is used. It supplies two methods to return a Re-
lationship Component instance, one for a new instance and one for a singleton
Rela.ionship Component. The approach employed is similar to a factory pat-
tern (Gamma et al. 1995).

If the Executive needs a new instance of a particular Relationship Component,
it calis the GeiRCinRCID method, This method takes the ID of the required
Relationship Component and returns a new instance of that component. Before
a new instance of the component is returned, the Relationship Component
Repository’s list of stored components is searched. When found, the properties
are queried to determine if this Relationship Component can exist as a new
instance. If 50, a new instance is dynamically created using the NET Reflection
library. ‘This instance is then returned to the Executive.

If, however, a singleton instance of the Relationship Component is needed, the
Executive calls the GetRCinRCIDStatic method. The Relationship Compo-
nent Repository’s list of stored Relationship Components is searched using the
Relationship Component ID. When found, a reference from the Relationship
Component Repository’s list is returned to the Executive.

6.3.7 Executive

The primary purpose of the Executive is o manage file operations from the
Local Operation Interface and coordinate this with the Relationship Compo-
nent Repository, so that it can dispatch operations to appropriate Relationship

Components. This is performed within the Executive by the method FileSys-
temEBvent. As this method only receives primitive information from the Local
QOperation Interface, its first task is to refine this information in preparation for
its usage.

Initially, the absolute address of the target Clone is resolved via the Clone Dis-
tribution Manager. If this fails, then it is assumed that this Clone is not meant
for governing by GLOMAR. This happens early within the FileSysiemEvent
method to ensure that operations not destined for GLOMAR incur minimal
cost. If a reference is found within the Clone List, then the details for that
Clone are retrieved.

Next, a list of existing Relationship Components (in relation to the Clone} is re-
trieved. All relationships between Clones and implemented Relationship Com-
ponents are recorded within an AssignmentList. This AssignmentList contains:

¢ ApplicationID. This is one of the index values.
&« ClonelD. This is the other index value.

¢ RelationshipComponent. This is a collection of references to Relation-
ship Component instances that are currently governing this application
and Clone.

Following this, the FileProfileInfo hashtable within the Environment object is
set. As stated in section 5.2.5, file information is set on a per operation basis.
This requires making a call to the System Grader and passing in the Clone ID.
The details stored within the System Grader XML File are examined and the
appropriate information is set within the Environment object.

The final stage involves invoking the Eualuaie method of the Iielationship Com-
ponent Repository. As stated (section 6.3.6), the results can either be, “cur-
rent”, “failed”, or a Relationship Component ID. If “failed” is returned, then
the operation is aborted. If “current” is returned, then the operation is allowed
to continue using the locally stored Relationship Component instance fetched
from the AssignmentlList,

However, if a Relationship Component ID is returned (indicating a change in
governing Relationship Components), then a series of steps t0 manage the life-
cycle of the existing Relationship Component are implemented. The first of
these steps is to shutdown the existing Relationship Component. The imple-
mentation of this is done by asynchronously calling the CleanEndCM method
of the existing Relationship Component. While this is occurring, the current

123

thread is made fo sleep for the duration defined by the shutdown time within
the metadata of the Relationship Component. When the thread is awoken, it
checks whether the asynchronous call to the CleanFndCM method has com-
pleted. If so, the Executive continues. If however the thread is still busy,
because the method has yet to complete, {hen the thread is terminated, regard-
less of the state of the CleanEndCM method. The Relationship Component is
consequently removed, with control returned to the Executive.

The next step is to retrieve the new Relationship Component instance from the
Relationship Component Repository and invoke the OpenCM method on the
Consistency Model object. This is performed prior to any other operation and
is only done when a Relationship Component has been replaced. The final step
is to update the AssignmentList of the changes.

Once the processing of the Executive is complete, the operation can be directed
to the appropriate method within the Relationship Component. This involves
entering the operation into an error handling loop (section 5.2.7). The resulis
from the method determine if this operation is to be replaycd or not. This
loop is however only performed once, regardless of the number of failed results.
Once complete, the results from the method are returned to the Local Operation
Interface.

6.3.8 Administration Cousole

The Administration Console {figure 6.10) serves two purposes, to view and to
edit elements of the actual GLOMAR implementation via a graphic user inter-
face. It includes the ability to view the details of all the invoked Relationship
Components, all the Context Providers and Clones. It also supports the cre-
ation of new Clones (including Volumes, Directories and Files), defining their
relationship with each other, assigning these Clones te Relationship Compo-
nents (via a drag-and-drop) and updating GLOMARs settings (including port

number and directories).

6.4 Running the GLOMAR System

There exists two versions of GLOMAR, the Console Application (figure 6.11)
and the Windows Service Application (figure 6.12). The purpose of the Console
Application is to provide a debuggable version of the implementation, specifi-
cally suited to development of Relationship Components. The Windows Service

124

Figure 6.10: GLOMAR Administration Console

Application on the other hand allows for a transpavently running implementa-
tion of the GLOMAR system, suited to production implementations.

The actual implementation for both vetsions is the same (some additional code
has been added to enable it to run as a Windows Service and it was not compiled
in debug mode}. The structure consists of instantiating all middleware compo-
nents, registering a channel with the NET remoting infrastructure {by default
port 9999) and assigning the Remote Operation Interface, Local Operation In-
terface and Clone Distribution Manager to that channel. Also all middleware
components are installed into the Global Assembly Cache (GAC) (Macdonald
2001). This is due to the necessity of the COM bridge to be registered in a
universally accessible location.

wirnnnens Obiect
' Darader

areoiedd

BClormar runming

Figure 6.11: GLOMAR’s Console Driver
6.5 Summary

This chapter has detailed the actual implementation of GILOMAR, discussing
the implementation of the Relationship Component and the GLOMAR mid-
dleware layer. This implementation was written in .NET using a mixture of
languages and techniques. The approach targeted the Windows platform, but
was designeqa so that much of the underlying techniques are platform indepen-
dent. However, where platform specific elements were used, they were kept to

a minimum.

The next chapter details three Relationship Component implementations. Each
example illustrate through implementation the flexibility of GLOMAR. The
first implementation is an approach to handling disconnected operations. The
second is a full scale implementation of an existing concurrency control mech-
anism targeted at a mobile environment. The third and final implementation
provides fine grain consistency maintenance for a Personal Information Man-

ager.

124

&7 Glorhar Adimiriistration Conisole "~

Assignment | GLOMAR | Retationship Components | Settings |

Relationship Components _ Clones

BEIES:‘%’ 87654321 é"a’ Volumes

E]]:-;.’a‘i 555555 i Ditectories

- Thumez & ¢ Fies

@ i 666666 R

B B 1234567 g
ol] 23044

Figure 6.10: GLOMAR Administration Console

Application on the other hand allows for a transparently running implementa-
tion of the GLOMAR system, suited to production implementations.

The actual implementation for both versions is the same (some additional code
has been added to enable it to run as a Windows Service and it was not compiled
in debug mode). The structure consists of instantiating all middleware compo-
nents, registering a channel with the .NET remoting infrastructure (by default
port 9999) and assigning the Remote Operation Interface, Local Operation In-
terface and Clone Distribution Manager to that channel. Also all middleware
components are installed into the Global Assembly Cache (GAC) (Macdonald
2001). This is due to the nccessity of the COM bridge to be registered in a
universally accessible location.

M Select £:\My Dacuments'\phdiglomar\core\Driver\bin\driverisee,
Loading S&prvicves . —
Executive : Setting Up Fnuirnnhent Ohject
Exicutive f loading Sycten Crader
Fuecutive : Camplele

: Luading HC »c#d

: Loading BC ecd

: loading RC rr2

} ¢ Loadiny IC 1ce3

t Ludding RC red
Execttlve .7 RCH Londed,
RO] : Starved .
LOI @ Started

Glormar running

Figure 6.11: GLOMAR’s Console Driver
6.5 Summary

This chapter has detailed the actual implementation of GLOMAR, discussing
the implementation of the Relationship Component and the GLOMAR mid-
dleware layer. This implementation was written in .NET using a mixture of
languages and techniques. The approach targeted the Windows platform, but
was designed so that much of the underlying techniques are platform indepen-
dent. However, where platform specific elements were used, they were kept to

a minimum.

The next chapter details three Relationship Component implementations. Each
example illustrate through implementation the flexibility of GLOMAR. The
first implementation is an approach to handling disconnected operations. The
second is a full scale implementation of an existing concurrency control mech-
anism targeted at a mobile environment. The third and final implementation
provides fine grain consistency maintenance for a Personal Information Man-

ager.

126 197

Chapter 7

Case Studies

Manages n... Automatic LocalSystem
SByDistributed File Syst... Managesk... Stated Automatic LocatSystem
1@ Distribted Link Tra,.. Sends notif... Stated Automatic LocalSystem

GLOMAR’s major contribution is the abilify to support flexibility, by allow-
ing multiple consistency maintenance and concurrency control mechanisms to

' %mm:: '1-_'::;': z::’;;t‘; sated z:t";”r:'atit tzzﬁ;':tx be concurrently invoked at run-time. This chapter demonstrates this flexibil-
& DS Client Resolves a... Stated Automatic LocalSystem ity via three different implemented Relationship Components (case studies).
%E\'ﬂlﬂo fevent--- Started :Utm?tk 'l-oci?‘i:em The first implementation (notepad application) demonstrates a simplified con-

g ax Service Ps Yo ... Anus OCaaysiem

[8aFite Rephcation Maintains fi... Manual LocalSystem sistency maintenance mechanism that handles d ~connected operations. The
' : e second implementation (the T'win Transaction Moc:l (Rasheed 1999)) demon-

“Marual 1 LocalSystem

1IS Admin Service &llows adm... Start Autematic LocalSystem

%Indexing Service Indexes ca... Marweal LocalSystem . strates a more complex model for handhng mobility in a transaction based
%Internet Connectio... ;ovides N Manual LocalSystem processing system. The final implementation (Qutlook 2002) demonstrates a
Intersite Mezcaging ows sen.., Disabled L
s Polcy Agent MonagesT... Stated Automatic L::m Relationship Component that handles the maintenance of data for a Personal
‘PEaKerberos Key Distri... Genesates ... Disabled LocalSystem Information Manager (PIM).
%Lkense Logging Ser... Started Automatic LocalSystem ’
|togcel Disk Manager LogcalDisk,.. Stated Automatic LocalSystem
|%Ratogical Disk Manage... Administrat. .. Manual LocalSystem .
amachine Debug Man... Supportslo... Started Automatic LocalSystem 7.1 Aims
RaMessenqer . Sends and ... Started Automatic LocalSystem ..‘.'_I

The chapter aims to:

Figure 6.12: GLOMAR’s Windows Service . : ;
« Demonstrate the creation process for a consistency maintenance and con-

currency control mechanism.

e Demonstrate flexible and application-specific solutions within Relation-

ship Components.
¢ Demonstrate effective support for heterogeneity issues within a DFS.
Evaluating effective support for flexibility and heterogeneity is usually associ-

ated with a criterion that has no uniform basis, that may introduce bias and
lacks quantitative metrics. Therefore, analysing and observing Relationship

128

Component implementations for different classes of scenarios are considered
sufficient in this dissertation. As a result, the ability to service different con-
currency and consistency needs of a device, application and user are illustrated
within this chapter through actual Relationship Component implementations.

7.2 Notepad Relationship Component

The first implementation of a Relationship Component manages connected and
disconnected operations for a text editor. In other words, this implementation
supports a seamless transition from a connected to disconpected state for a
notepad like application, preventing lost updates upon distributed replicas.

The main aim is to illustrate how mnore than one Relationship Component
can be used to govern a single Clone. Within this implementation, the two
connectivity states are divided into two external Relationship Components, one
for connected and another for disconnected.

7.2.1 Notepad Relationship Components Desizn

Two approaches were designed to illustrate different methods of handling dis-
connected operations. These include an optimistic approach (Get Latest) and
a pessimistic approach (flead Once, Write All). Since much of the design and
implementation of this case study is restricted, it primarily demonstrates the
feasibility of GLOMAR in handling consistency maintenance and concurrency
conirol within a DFS.

Get Latest

The Get Latest approach has two modes, disconnected and connected. When
disconnected, all operations are performed locally, regardless of their consis-
tency requirements, When connected, prior to a file being opened, the times-
tamp of all connected nodes is checked. Whichever node has the latest version
of the file (based on a timestamp) is considered the most up-to-date. If the local
node contains the most up-to-date file, then it is used. However, if a remate
node contains the most up-to-daie file, then it is copied over the network {figure
7.1) and made available locally.

129

Qpen Operation 4 While Connected
Gelhttr

| Get Latest 2
! —

Time3tamp
Open
‘l 5

3
Read(s)

Figure 7.1: Notepad Get Latest Relationship Component

Read Once, Write All

The Read Once, Write All (ROWA, section 2.3.1} approach focuses on the han-
dling of disconnected operations in a pessimistic manner. Again the model is
split into two modes, connected and disconnected. When disconnected, rather
than allowing operations to proceed unchecked, all modification (write) oper-
ations are written to a persistent log. Within each entry, the details of the
operation are included (length, buffer and offset).

Upon reconnection, the contents of the log are replayed prior to allowing normal
operations to resume. As each logged operation is successfully performed re-
motely, it is removed from the log. This allows a disconnection to occur during
log play back, without the risk of losing logged operations. Normal modification
operations that occur while connected must be propagated to all remote nodes
prior to being committed locally. Figure 7.2 details the ROWA design which
is similar to Coda’s approach (Kistler and Satyanarayanan 1991), though less
sophisticated.

7.2.2 Notepad Relationship Components Implementation

The implementation of these two approaches (Read Once, Write All and Get
Latest), requires:

» The implementation of the notepad application.

o The creation of the Context Providers to determine connectivity.

o The creation of the Relationship Scope for each Relationship Component.

130

Open Operation While Connected
1 2
Operations
ROWA
o 3
op;;;,nl @’
7 e —. Lag

4

- _.
Open Operation q

Wita Operation l 1 While Disconnectad

ROWA J
Wile 1 2 Write 1 3
Operation Gparation

- R <
=

Figure 7.2: Notepad ROWA Relationship Component

o The implementation of an XML Web Service used to communicate infor-
mation between GLOMAR nodes.

¢ The implementation of the Consistency Models for both the Gei Latest
and ROWA.

Notepad Application

The notepad application supports the opening, editing and closing of ASCIL
plain text files (figure 7.3). However, the unique element of this application is
associated with how operations are managed.

Traditional text editor applications follow session semantics {Coulouris, Dol-
limore, and Kindberg 2001) to persist data. The developed notepad applica-
tion exhibits a more interactive approach. For example, existing text editors
adjust an in-memory representation of the data, only saving the changes to disk
when all modifications are finished. Within the developed notepad application,

131

keystroke events are captured (extracting the keyboard item and its location
within text string), then immediately saved on disk. Using this level of granu-
larity means the application exhibits the behaviours of a traditional file system
(frequent and unstructured operations}, making it a suitable test bed.

IHpicaﬁpn that persisted data per keystioke {Figue 8). father than upon a save event. ;I
Using this combination of driver application, GLOMAR, two RCs and the Monash University
Wileless Network we tested this solution. As a result, this paper was created on diferent

fecomputers, in different parts of the: Universty, without loss of updates or noticeable
Joerformance issue as atesult of changing network conditions,

{Figure 8: GLOMAR Notepad Application
8. Related Waik

JEristing DFS developments are constructed from the ground up, with highly focused aims

and constraints. For example, the Coda {Satyanarayanan98] and Bumor [Guy98] file systems

were developed to handle the unique environments thal wireless hardware and mobile :

constaints exhibit [Cuce98). However, these systems handle the migration to dfferent -

network erwitonments poorly. This i flustrated by the problems (aced when Coda was

ported to use a SLIP connection [Mumment3S] What is required is a distributed file spstem

that can easily adapt to different environments. The requirements for such a system would

be a design methodology that allwed for a component-based approach, similar to the

InterMezzo [Bramm89b] file system. This proposes that DFS development be less of the

ground up” development, buk more reuse of existing components. As such, have the abiity

ta add of remove components and adapt as a resuk. An approach we miror with ous
tramewaork. However, where our approach differs, is that we focus the developers towards

the development of the differing components (concurrency control) of existing DFS, notthe
whole DFS itsef. :]

A

Figure 7.3: Notepad Application

The other unique aspect of the notepad application is that all operations are
dispatched to GLOMAR. Thus, all operations including open, close, write and
read are redirected to the Local Operation Interface’s .NET bridge (section
6.3.1). Depending upon the results from GLOMAR, the operation will or will
not be completed.

Context Provider and Relationship Scope

The implementation of the Context Provider consists of a single method that
derives the number of packets per second sent from remote nodes, This is done
by calling the Windows Performance Counter {Microsoft 2000). If the current
result from the counter is zero, then connection is assumed lost. However, if

132

the result is greater than zero, then connection is assumed active. The Con-
text Provider extracts this information into a form that can be used by the
Relasionship Scope. Thus, the results from this Context Provider can be ei-
ther, “connected” or “disconnected”. See figure 7.4 for the source code of the
Relationship Scope.

Public Class No_Connection_RelationshipScops
Inplements IRelationshipScepe

Public Function EvaluateRules(ByVal info As Envirenment)
Az Boolean Implements IRelationshipScope.EvaluateRules
Return SystemProfileRule{info.m_SystenProfilelnfa)
Ead Function

Public Function SystemProfileRule(ByVal spinfo As Environment.SystenProfilelnfo)
ks Boolean Implements IRelationshipScope.SystemProiileRule
If spinfe,Item("hardware.netvork.connection”) s "disconnected" Then
Return True
Else
Return False
End If
End Function
End Class

Public Class Connection_RelationshipScope
Ioplements IRelationshipScope

Public Function EvaluateRules{ByVal info As Envirenment)
Az Beolean Implements IRelationshipScope.EvaluateRules
Return SystemProfilelule(info.m SystemProfilelato)
End Function ’

Public Function SystemProfileRule(ByVel spinfo As Environment.SystemProfilelnfo)
As Boolean Inplements IRelationshipScope.SystemProfileRule
If spinfo.Item{"hardvare.network.connestion”) = “connected” Then
Return True
Else
Return False
End If
End Function
End Class

Figure 7.4: Notepad Relationship Scopes

XML Web Service

To facilitate the communication between GLOMAR nodes, an XML Web Ser-
vice (Caron 2002) was created (figure 7.5). This XML Web Service exposes the
Remote Operation Interface (section 6.3.2), using SOAP envelopes over HTTP.

For a Relationship Component to use this XML Web Setvice, a proxy class is
required.

133

The motivation for using a XML Web Service to facilitate communication was
to illustrate the flexibility and capability of Relationship Component implemen-
tations to house different and unique implementations. In addition, it offered an

elegant approach, whereby much of the details of communication infrastrocture
were hidden from the developer,

| A;[dress IE] http: ;ﬂocamost.u‘glomarwebsemce!gomar asmx

Gloma rWebSerwce

The following operations are supported, For a formal definition, please review the
Service Description,

e Operation

: GO_QS]@_:_I o J@bSe&rchWeb QS&arch"”te |F,_'_—_£__-.=f‘

IE ._ : r-r_r_wmm _

Figure 7.5: GLOMAR’s XML Web Service

Get Latest Relationship Component Implementation

With the Get Latest implementation, all the functionality is contained within
the Consistency Model responsible for connected operations. The reason the
Consistency Model responsible for disconnected operations has no implementa-
tion is that no additional value adding processing is required when disconnected.

Within the Consistency Mode! responsible for connected operations, the bulk
of the complexity is found within the open method. The implementation of
this method consists of firstly calling the GetA#ir method on the remote node.
The RemoteGetAttr method queries the file system to derive the timestamp of
the “last write access”. Once the timestamp of the remote version of the file is
retrieved, then a comparison is performed with the local version’s timestamp.

134

If ihe local version’s timestamp indicates it is the most up-to-date, then the
open method is finished and control returned to the system.

However, if the remote version’s timestamp is the most up-to-date, then the
open method downloads the contents of the remote version of the file. This
is done by calling the Read method of the remote node {in other words He-
moteRead method). The previously called GetAtr method not only retrieves
the timestamp, but also the length of the file (the number of ASCII characters
within the file). Thus, the download process consists of multiple calls to the
RemoteRead method. With each call, a singic character is downloaded. The
position of this character within the file is passed as the offset value. The results
from each subsequent request are incorporated in a temporary file. Once all
characters of the file have been successfully downloaded, then the newly cre-
ated file replaces the local version. When complete, control is returned to the
system.

ROWA Relationship Component Implementation

The implementation of the ROWA approach consists of capturing all modifica-
tion operations within a log while disconnected, then posting the contents of
the log and subsequent operations while connected. ‘The implementation of the
Consistency Model responsible for disconnected operations intercepts all write
operations, saving them to disk. This is done by writing a 192-bit value (64-bit
x 3) that stores the length, offset and buffer values. Each entry is added to the
tail of the file, implementing a queue structure.

When the scenaric changes and the Consistency Model responsible for con-
nected operations is invoked, GLOMAR firstly invokes the Consistency Model’s
OpenCM method. Within this method, operations captured within the log
are replayed. This involves posting these operations to the remote node via
GLOMAR’s XML Web Service. This method loops through the log, reading
the Jength, offset and buffer of each operation. On the remote node, these
operations are processed by the RemoieWrite method. The result from the
RemoteWrite method is returned to the OpenCM method. If successful, the
posted operation is removed from the log. The benefit of this approach is that
even if a disconnection occurs during a log replay, the stored operations are not
lost. When the log has been fully replayed (the queue is empty), the original
operation that invoked GLOMAR is performed. While connected all open, close
and write operations are posted via GLOMAR's XML Web Service for remote

135

processing. Only success on the remote node will result in the operation being
commitied locally.

7.2.3 Analysis of Notepad Relationship Components

The aim of this implementation was to create a number of Relationship Compo-
nents that mask the issues associated with disconnected operations, such that
operations on Clones were not lost due to a loss of connectivity, The results

of this implenientation demonstrated this, a3 operations were not lost due to
disconnections.

Get Latest

In particular the Getf Latest Relaticuship Component allows for a number of
plain text file (in this case Latex files) to be shared between a deskiop and
laptop. As the usage pattern was such that only a single user was ever editing
a file at one particular time, there were no version conflict issues. However,
this Relationship Component did allow the user to move seamlessly between
processing units, ensuring the latest copy was available.

This approach did have some issues resulting from the lack of sophistication and
the reliance upon the operaiing sysiem’s clock for determining a file’s validity.
For example, in one particular episode, the user was unaware that the laptop’s
clock had been turned back. As a resuit (and as expected), modifications were
lost during the synchronisation stage, as data that was more timely was not
assigned the appropriate timestamp.

ROWA

The results from the ROWA Relationship Component illustrated an approach
that handled the constraints of a disconnection environment well. ROWA'’s
pessimistic nature meant scaling was improved compared to that of the Get
Latest. This was due in part to the reduced likelihood of concurrent operations
causing conflicts. However, when conflicts did arise, the ROWA implementation
poorly managed conflict resolution.

There were additional limitations relating to some of the implementation choices
made. The usage of a 64-bit structure to house a cingle character meant that
communication was inefficient. This inturn then affected the responsiveness of
the notepad applicationp.

136

The results from both Relationship Component implementations illustrated the
aims of GLOMAR, namely, the handling of a semantically similar approach to
a file system and the flexibility to implement a unique solution for consistency
maintenance and concurrency control.

Onue of the benefits of this implementation is the idea that normal applications
could be converted into distributed applications with little modification. Within
this example, the notepad application was designed to act much like a normal
text editor (in stand-alone mode). However, with only minimal code to integrate
it into GLOMAR, it became distributed. This can be directly attributed to the
decoupling of the concurrency control and consistency maintenance mechanism
from the application and/or operating system.

The reason for this can draw parallels with the beneficial qualities of object-
oriented middlewares in the creation and implementation of a distributed sys-
tem. As the concurrency control functionality was decoupled into separated
components, managed by the GLOMAR middleware layer, the notepad appli-
cation was only required to interact with GLOMAR via a predefined interface,
to become a distributed application. This demarcation and delegation of func-
tionality meant that to achieve the look rnd feel of a distributed application
only required creating the linkage between GLOMAR and the notepad appli-
cation. As shown, this linkage between GLOMAR and the notepad application
was trivial and relativoly seamless.

4

This case study demonstrated two simple sclutions for providing a suitable level
of consistency within a DFS ibat handles disconnected operations. While the
feasibility to handle this situation was illustrated, it was recognised that to
demonstrate fully the true potential of GLOMAR required a more complex and

sophisticated system. The next case study demonstrates such an implementa-
tion.

7.3 Twin Transaction Model Relationship Compo-
nent

To enhance support for handling the constraints of a mobile environment (be-
yond the previously demonstrated case study) and demonstrating a sophisti-
cated Relationship Component, the Twin Transaction Model (TTM) (Rasheed
1999; Cuce, Zaslavsky, Hu, and Rambhia 2002) Relationship Component was
developed. This implementztion illustrates two of GLOMAR's aims, flexibility
and the ability to port existing consistency models to the GLOMAR framework.

137

The TTM implementation offers a means of demonstrating the fexibility of a
Relationship Component and evaluating the process of porting a system that
was never initially intended for GLOMAR.

Another motivation for implementing TTM, was that much of the design is
based upon transaction semantics within a Distributed Database Management
System. T'TM implementation within GLOMAR offers a suitable case study to
demonstrate how transaction semantics are implemented within a DFS. This
factor is important, as many concurrency control and consistency maintenance
mechanism are based on transaction semantics and are designed for Distributed
Database Management System environments.

7.3.1 TTM Relationship Component Design

The TTM defines transaction execution mechanisms to cater for connected and
disconnected modes of operation (Rasheed 1999). A defined resynchronisation
mechanism achieves a consistent state on reconnection of a mobile host. The
TTM consists of transaction executions/management, concurrency control and
resynchronisation parts. These different parts work together to maintain the
consistency of the local (a mobile host) and global (all mobile hosts) system
states. A brief summary of the TTM follows.

Transaction Execution/Management

TTM implements transaction management using a set of mobile transaction
managers (MTMs), as well as a fized transection manager (FTM). The MTMs
are responsible for handling transaction requests on each of the mobile hosts,
while FTM handles requests from hosts on the fixed network and from MTMs.
A set of global reconciliation algorithms is used between MTMs and FTM to
detect any conflicts/inconsistencies that may arise and resolve them.

Unlike classical transactions, T'TM has no simple correctness criterion. Each
MTM decides what is its appropriate behaviour (serialisable or not). The cor-
reciness of execution of transactions is relative to these individual behaviours.
The consistency of FTM (and MTMs) is tentative most of the time (unless
all the MTMs have connected and have gone through the resynchronisation

process).

TTM relies on resyrchronisation process and transaction conflict resolvers to
keep data consistent. The resynchronisation process is necessary to maintain
the consistency of data. The local state of MTM and local state of FTM evolves

138

along their own courses (different transactions take them to different states from
an initial consistent state). The resynchronisation process is responsible for the
combination of the two local states and making the data consistent. To achieve
this goal, the resynchronisation process needs a record of {ransactions that are
executed on both MTM and FTM. This record is termed as Transaction History
Log. Apart from transaction history log, the transactions in pending state on
MTM and FTM are also needed to ensure that no inconsistent data access was
allowed.

The resynchronisation process is executed whenever an MTM connects with
FTM and information exchange takes place (pending transactions and their
transaction execution history). On re-connection, the resynchronisation process
will make sure that replicated data items on MTM reflect the updates on the
FTM. The resynchronisation process can be divided into the following tasks:

¢ Propagation of resolved transactions from FTM te MTM, which transit
transactions from fenfeiive-commit to commit state.

¢ Propagation of pending transactions from MTM to FTM for resolution.

TTM defines a twinning process, which is applied to each transaction. The
application of the twinning process to a transaction creates two transactions,
called twin-transactions. Thus, for a transaction T, two twin transactions To
and TS are created (thus the name Twin Transaction Model). The twinning
process is applied in both connected and disconnected modes of operation.
The a-twin of the transaction is executed locally and B-twin is executed on
FTM. Detection and resolution of conflicts is performed using both twins of
a transaction. The twinning of a transaction is implicit and is performed for
each transaction. Explicit twinning of a transaction is also allowed, where
the application can submit the two twin transactions (& and). This is not
implemented in the Relationship Component implementation.

The two twins of a transaction undergo a number of states before reaching their
final state. The transition of states is dependent on connected or disconnected
mode of operation. These states and their valid transitions in connected and
disconnected modes are depicted in figure 7.6.

The twin transaction execution is different in connected and disconnected mode.
In the disconnected mode: ’

e Twinning process generates two transactions Ta and TS.

139

Discornecied Operation
T — L
'@ Panding
Twin Ta
Tu aboried
abort
o

Wit tor
other
BT
Resolving

All MTHIS have
resynchronised
or resynchronise
limasange have

slapsed

A MTMs have
carnmil resynchronised
or resynchronise
time-range have
elapsed

Figure 7.6: Twin Transaction Model

e Transaction To is executed and results are committed (locally).
e Transaction Te is placed in a tentative-commit state.
e Transaction Tf is placed in a pending state.

» On reconnection transaction T/ is reconciled with FTM. It is placed in a

resolving state.

e On FTM transaction T# reaches resolved state when all MTMs have
resynchronised or time range 4t have elapsed.

e Transaction To reaches a committed state when transaction T3 reaches
a resolved state.

In the connected mode:

e Twinning process generates two transactions Ta and TS.

o Transaction T/ is submitted to FTM for execution. On FTM it goes
through the following process:

140

- Twinning process generates o« and 3 twins of transaction To. The
MTM that submits transaction T/ explicitly defines & and S twins to
be semantically equivalent to o and 3 twins of original transaction.

— The a-twin of transaction T/ is executed. It is placed in a tentative-

commit state and results are committed on FTM.

— The S-twin of transaction TS is placed in a pending state.

- Transaction T reflects the state of it’s S-twin.

~ On FTM S-twin of transaction T3 reaches a resolved state when all
MTMs have resynchronised or time-range 8t has elapsed

o Transaction Ta is executed and results are committed (locally). Trans-

action Ta is placed in a tentative-commit state.

o Transaction Tea reaches a committed state when transaction TS reaches
a resolved or commitied state.

Any subsequent transactions that operate on results produced by a pending
transaction T will become dependent on the success of transaction T. There
can be multiple pending transactions creating possible dependencies among
themselves. This inter-dependency of transactions (twin-transactions) must
be captured to eliminate any inconsistent operationg/transactions. This will
include read and write dependencies. The read dependency occurs when a
transaction T’ reads a data item written by a pending transaction T and write
dependency occurs when a transaction T writes a data item written by a pend-
ing transaction.

A transaction T reaches its resolved state when all the transactions on which
transaction T is dependent have reached their resolved states. Since, MTMs
are operating in disconnected mode, the transaction T cannot reach its resolved
state unless all the MTMs have connected with FTM and have gone through the
resynchronisation process. This is necessary to ensure that every transaction
that was executed during disconnection has been taken into account. However,
it is possible that some MTMs will not connect. In such a case, the FTM
will always be in a tentative state and none of the transactions will reach their
resolved state. A time out period for each MTM is required to avoid waiting
for connection indefinitely. If an MTM connects after the time out period, the
transactions executed on that MTM are resynchronised after all the resolved
transactions in the FTM are complete.

e’

141

Consistency Model

TTM has relaxed the ACID (Haerder and Reuter 1983) properties of a trans-
action for the following reasens:

» Transactions are kept in a pending state.

o The results produced by a transaction in a pending state are made visible
to other transactions.

» The transactions produce results that are tentative until the transactions
on which these results are dependent are reconciled /synchronised.

e A transaction in a pending state is resynchronised and reaches its resolved
state during the resynchronisation process. The transaction might be
aborted or compensated during this process.

The consistency of data items is guaranteed if a transaction transforms a data
item from one consistent state to ancther consistent state. In the TTM, transac-
tions undergo different states before reaching their final resolved state. Among
these states, the states pending and resolved are important states to consistency
managzment. Post the pending state, the results of the a-twin are made visible
locally and after the resolved state, the resulis are made visible globally. Thus,
consistency of a data object must be maintained locally and globally. That is,
transactions executed on an MTM must be consistent before they are checked
against global consistency (if they are not consistent locally, they will not be
consistent globally). Thus to achieve consistency, TTM employs two layers of
consistency, local and global.

The local consistency layer requires that a-twin of a twin transaction must be
locally serialisable with other pending or ongoing transactions executed on the
same unit. Locally serialisable ensures that the local interleaved transaction
executions are always equivalent to the serial execution. This is necessary for
the pen ling transactions to present a locally consistent view of their results.

Since each manager executes transactions locally and these transactions are re-
solved at a later stage, an optimistic concurrency control mechanism to maintain
consistency is the natural choice. The global consistency model is defined by
the resynchronisation process, which defines how transaction histories are to be

merged.

142

The TTM defines two levels of global consistency models, that is two types of
resynchronisation mechanisms {two ways to detect conflicts during merging of
histories).

In the TTM, it is left to the application to decide what level of consistency is
required. The two levels are:

¢ Global One-Copy Serialisability. If a disconnected transaction T’s
result is copied to the server as is, T must be 1SR (One-Copy Serialisable)
with all previously committed transactions.

¢ Global Certification. Global certificates require that if a disconnected
transaction T’s result is copied to the server as is, T must be not only
serialisable with but also serialisable after all the previously committed
transactions.

The classical durability property requires that once a transaction completes
successfully, its results must be able to survive. This also implies that once
the results of a transaction are made available (to other trar sciions) it must
remain a permanent part of the system state until modified by later transac-
tions. In the TTM, durability of transactions is only guaranteed when they
have been resolved (classified as a successful completion of a transaction). This
is because a committed transaction (in pending state) on a manager might be
aborted /compensated during the resynchronisation process.

v

Transaction History

Each mobile host executes transactions in connected and disconnected modes.
These transactions need to be synchronised with all transactions executed by
all other hosts to achieve a global consistent state. For that purpose, each
twin-transaction manager creates a transaction history log, The transaction
history log is used to synchronise transactions during the resynchronisation
of the transaction from an MTM to FTM. The conflict detection (consistency
validation checks) cannot be performed if the transaction system does not record
the history of the disconnected transaction executions {transaction history).
Certain strategies are adopted to keep the size of the log to a minimum.

Concurrency Control

TTM uses an optimistic concurrency control mechanism. It allows transactions
to proceed, with conflicts being detected at a later stage. TTM assumes that

143

S-twin will be successfully executed on FTM and the results produced by both
twin transactions (o and 8) will be the same.

Figure 7.6 shows that the commit of S-twin is dependent on that of a-twin and
the transaction reaches the resolved state after the resynchronisation process.
Although, the transaction is executed in connected mode, the resynchronisa-
tion process still needs to be executed and the transaction will go through the
pending state before reaching the resclved state. This is due to the fact, that
there are transactions that might be executed on other disconnected TTMs,
which need to be resynchronised with transactions executed in the connected
mode.

The advantages of having twins of a transaction in a running state during the
connected mode are:

@ The communication between the two TTMs is minimised.

o Only the results are compared and if different the results produced by
a-twin are discarded and results produced by S-twin are replicated to
MTM.

¢ If MTM that submitted S-twin of a transaction disconnects while in the
middle of a transaction, FTM can safely execute S-twin and the result
can be resynchronised when that MTM connects again.

o Thus MTM does not need to wait for the completion of a transaction.

The T'TM uses replication to provide a private workspace for the execution of
the a-twin. The public space is kept on FTM where all S-twins are committed
and the results and the transaction history logs are maintained. The execution
of a transaction and its validation on FTM and MTM is done in two phases.

Phase 1:

e Initially the two twins Ter and Tj3 are executed on MTM and FTM re-
spectively.
¢ Transaction T8 on FTM goes through the twinning process. It reaches

pending state when its a-twin is in a tentative-commit state. The results
produced by its a-twin are checked against the public space for conflicts.

o The results produced by transaction TS in pending state are sent back to
MTM.

144

e MTM checks the results against that of Ta. If conflicts are detecied, the
results produced by T are discarded and received results are tentatively
committed.

¢ If Te is aborted on MTM, TS is also aborted on FTM.

Phase 2: Once the transaction is validated by optimistic concurrency control in
phase 1, the next phase of validation, which is required by the TTM, begins:

o The results committed on FTM can only be finalised when all other dis-
connected MTMs have resynchronised with FTM or resynchronise time
range (§t) for all T'T"Ms have elapsed.

e Due to this reason, the results that are committed by MTM, even in
connected mode, are kept in a pending state.

When a transaction fails validation during resynchronisation, although it was
committed and was validated by optimistic concurrency control on FTM (dur-
ing connected mode), the class of transaction decides the outcome of such fail-
ures. This situation is triggered by resynchronisation process of MTMs that
are connecting with FTM.

The transactions executing on different disconnected clients cannot read results
produced by other clients (durine disconnected or connected modes). This
necessitates that even the results produced by connected clients must also be
kept in a pending state {for a specified amount of time, or until all clients have
resynchronised).

The optimistic concurrency control mechanism: takes care of concurrency among
transactions executed by different managers. A second level of concurrency
control mechanism is required to enforce a local consistency model. This is
required to make sure that concurrent execution of a-twins of transactions on
a manager is one-copy serialisable. These transactions must be synchronised so
that the replicated copies of data remain consistent for each of them.

In current implementation strict two-phase locking (2PL) protocol is used for
local concurrency control. The advantages of 2PL are:

o Simplicity
» Reasonable performance {when data sharing is infrequent)

Since a single user typically operates each MTM, the likelihood of concurrent
transactions operating on the same data (read/write sharing) is low. In addi-
tion, 2PL is simple to implement.

145

The twin-transaction system running on an MTM that is disconnected has a
number of responsibilities. The results produced by local transactions are ten-
tative and are dependent on validation by FTM, once reconnected. To achieve
a consistent state with FTM, it needs to perform a number of tasks to ensure

that enough information about the executed transactions is made available to
FTM. These tasks include:

» Maintaining local consistency.
¢ Recording transaction history information.
¢ Detecting redundant disconnected transactions.

» Probabilistic Success/Failure calculations.

In disconnected mode of operation, the twin-transaction manager has no knowl-
edge of the state of other managers. In such a situation, an optimistic approach
to concurrency control is adopted. The transaction is allowed to execute under
the local concurrency contro! mechanisms and conflict detection is done dur-
ing the resynchronisation process. To decrease the number of conflicts during
the resynchronisation process TTM proposes a probabilistic conflict detection
mechanism. The mechanism relies on computing probability of success/failure
of a transaction that is being executed in disconnected mode. This is not cur-
rently implemented in this version of the Relationship Component.

Resynchronisation - TTM State Propagation

The resynchronisation process is executed whenever an MTM connects with
FTM and passes its pending transactions and their exzscution history log to
FTM. The resynchronisation process is executed even if the transaction history
log is empty. This is because the local state of MTM and the local state of FTM
evolves along their own courses (different transactions takes them to different
states from an initial state synchronised at last connection). On re-connection,
the resynchronisation process ensures that replicated data items on MTM reflect
the updates performed on FTM.

In the synchronising state, new transactions can be executed, but these trans-
actions will be executed in mixed mode (connected/disconnected). If the new
transaction is dependent on any of the unresolved transaction, then the transac-
tion is executed in disconnected mode and it will become a pending transaction

146

to be resolved on the server. On the other band, if it is not dependent on any

of the unresolved transactions, then it is executed in connected mode.

The propagation of TTM state during the resynchronisation process can be
divided into the following tasks;

e Propagation of resolved transactions from FTM to MTM to transit trans-
actions from tentative-commit to commit state.

» The propagation of pending transactions from MTM to FTM for resolu-
tion.,

While an MTM is disconnected from FTM, the state of FTM can change due to
two factors, other MTMs connect and synchronises with FTM and connected
MTMs execute transactions.

In both these cases, some transactions will transit from pending to resolved
state. Some of these iransactions might update the data items that are repli-
cated on the disconnected MTM. Due to that reason, when an MTM connects
and goes through the resynchronisation process it is imperative that the state
of MTM should also be checked against FTM. This is to see if any data item
is no longer valid and to check whether some pending transactions on MTM
updated any invalid data item. In such a case, the pending transaction (and
its siblings) must go through the resynchronisation phase.

The validation of the state of MTM against that of FTM is done in two phases.
In the first phase, ali the data items that are not accessed by transactions
on MTM are rczarded as immediately resynchronised with the FTM upon re-
connection. Those data items that are accessed by transactions on MTM are
considered re-synchronised only after all the transactions have resynchronised
on FTM (resulting in either a pending or a resolved state on FTM).

For this validation, each data item is marked with a version (that can contain
Twin Transaction Manager Identification that last updated it). The version is
changed on each: update operation for that data item. On reconnection, the
resynchronisation process compares the versions of every replicated data item.
If both versions are identical, the data item is marked as valid again, otherwise
it is marked as invalid. Any subsequent access to that data item, while the
MTM is connected, will cause the manager to refetch the new version of data
item from FTM. While the MTM is connected, this validation of state of MTM
is performed periodically to ensure the status of data items is up-to-date. Before
disconnection or on user demand, the twin transaction implementation provides
a mechanism to refetch all invalidated data items.

147

On reconnection, apart from the need to resynchronise data items that have
changed on FTM, the transactions executed on MTM are also propagated to
FTM (and their results to other MTMs). This is completed in the second
phase of the resynchronisation process when the transaction log of MTM is

checked against that of FTM. During this resynchronisation process, conflicts
are detected and resolved.

The TTM guarantces a global one-copy serialisable execution schedule. This
guarantee requires programmers to resolve conflicts either by programming
application-specific resolvers or by manually repairing invalidated transactions.
The programmers are also burdened with application-specific conflict estima-
tion agents that are required to calculate the probability of success or failure in
the disconnected mode operation under certain circumstances.

Since application-specific resolvers and conflict estimation agents operate on a
transaction-by-transaction base, it is wise to carry out the resynchronisation
process of MTM transaction log with that of FTM in the same way. This
ensures inconsistency and conflict scope are minimised and the resolver has just
one invalidated transaction to work with at a time. In addition, the resolver can
concentrate on the effects of the transaction on MTM and changes on FTM,
during disconnection. Therefore, it is able to make decisions without worrying
about interference from other transactions.

The resynchronisation algorithm for a transaction that is in conflict consists of
two steps. The first step invokes the resolver, which is either application-specific
or automatic re-execution. If no resolver exists, the transaction is aborted. The
second step is the successful resolution of a transaction, which often requires
adjusting the state of those transactions that read from the resolved transaction
(read data written by the resolved transaction).

After the synchronisation process, the FTM has the option to perform a check
on all those transactions that are waiting {to transit to a resolved state) for this
MTM (last) to connect and perform resynchronisation. Transactions that are
in such a state, transit to a resolved state.

7.3.2 TTM Relationship Component Implementation

Two Relationship Components were created to cater for the TTM within GLO-
MAR, Connected Twin Trensaction and Not Connected Twin Transaction.
Each Relationship Component represents a connectivity state that is defined
within the TTM approach. The communication mechanism used within this

148

implementation was GLOMAR's XML Web Service and the test bed applica-
tion used was the notepad application {section 7.2.2). The architecture of the
TTM implementation is shown in figure 7.7.

GLOMAR
Connection No Connection- .

.- Twin Transaction - Twin Transaction -
S S
ors [Em

1 Chani:el
Remoting Remoting

Figure 7.7: Twin Transaction Model Implementation Avchitecture

The notepad application first calls the Open operation of the Connecled Twin
Transaction Relationship Component. Before opening the file, the Relationship
Component determines if resynchronisation is required. If any transactions were
logged while in a disconnected state, the log is replayed to the server. This
process is always the first operation to occur for this Relatione;hip Component,
regardless of the operation being invoked.

After the log has been replayed, the Connection T'win Transaction Relationship
Component then proceeds by invoking the RemoteOpen operation on the server.
The file is opened on the remote server and a new transaction T is created
within the Transaction Server (this is an external user-specific service). After
this has succeeded, the local cached file is opened and transaction T8 {which
is the same as Ta) is created locally. The states of Tor and TS are set as
Running. Subsequent Write operations generated by the notepad application
are performed remotely (Remote Write) and locally, with changes recorded using
immutable files (Coulouris, Dollimore, and Kindberg 2001).

When the notepad application has fintshed with editing 2 file, it calls the Close
operation. Since Open and Close operations are used as surrogate transaction
boundaries, this operation triggers the Relationship Component to commit {(or
abort) all the modification operations and resolve the immutable files. Within

149

the Relationship Component, this process involves calling the RemoteClose op-
eration of the server, where transaction T state is changed to Tentative com-
mit. If this is successful, the local cached file is closed and the transaction TS
state is also changed to Tentative commit. Once the transactions (Te and T5)

are resolved, then they are committed, with each being changed to a Comsmitted
state.

In the Noi Connecied Twin Transaction Relationship Component, the process
is simpler as there is no connectivity. The Open operation opens the file and
creates a new transaction, which in turn creates a transaction history to record
the operations. The transaction is then set to a Running state. All modifica-
tion operations are performed on the immutable file for that transaction and
recorded within the log. Finally, the Close operation closes the file and changes
the transaction’s state to Tentative commit. The posting of operations occurs
when the Connection Twin Transaction Relationship Component assumes con-
trol.

Beyond the Relationship Components created, additional user-specific services
were created to assist in the running of the TTM. These consist of 2 MTM and
FTM, which provide the transaction processing part of the TTM. The major
user-specific services provided by MTM and FTM servers are as follows:

» Add new transaction. The new transactions are added into the trans-
action vector on the MTM and FTM. There are two vectors on the MTM
corresponding to the connected and the disconnected vector respectively.
These transactions are also written into the transaction history file.

s Change transaction state. Changing transaction’s state on the trans-
action vector and writing the result into the transaction history. If the
state of the transaction is changed into Abort and Commit, the transac-

tion is removed from the vector.

¢ Resynchronisation. When the MTM connects with FTM from discon-
nected mode and with transartions in the disconnected transaction vector,
the resynchronisation operation should be performed for file system con-
sistency. The transaction conflicts are resolved by comparing timestamps
of the transactions. This is done by browsing the transaction vector on the
FTM and the transaction history on the MTM and FTM. The transac-
tion’s state is changed according to the resolved result, Conflict resolution

is only provided by FTM.

i
|

'
N
1

|
|
|

150

o File manipulating. There are many situations where files are trans-
ferred between MTM and FTM. For example, when a transaction is re-
solved, it should be propagated to other MTMs. This is done by first
reading the file into a file stream and then either uploading or download-
ing the stream to the remote node.

7.3.3 Analysis of TTM Relationship Component

The results from this implementation primarily focus or demonstrating GLO-
MAR’s flexibility and its ability to house complex concurrency control and
consistency maintenance mechanisms. This implementation has demonstrated
both of these, as the TTM implements a complex series of steps and exploits
the GLOMAR infrastructure, whilst maintaining a sufficient level of consistency
within a mobile environment.

This implementation also illustrates that regardless of whether the consistency
model was designed for GLOMAR, or not, it does not constrain whether it can
be implemented. For example, the original design of the TTM was not intended
to be built for a Relationship Component.

Another important aim demonstrated from this implementation is the ability to
support a pseudo-transac.ion (section 2.4.1). The implications of being able to
support a psendc-transaction are wide ranging. One implication is that many
of the existing consistency models are geared towards using transactions. The
TTM implementation has shown that transactions can be effectively accommo-
dated within GLOMAR. The second implicaticn is that transaction semantics
can be imposed upon a stateless file system. Rather than being restricted by
the actual implementation of the file sysiem, consistency models can be created
that use a transactional approach. However, this ability could affect imple-
mentation issues. For example, the TTM had to overload certain operations to
provide a pseudo-transactional approach.

7.4 Outlook 2002 Relationship Component

To illustrate an application-specific Relationship Compdnent implementation,
a consistency model for a Personal Information Managsr (PIM) was developed.
Rather than creating a home made PIM that lacks complex functionality and is
explicitly designed for GLOMAR (and its methodology), Microsoft’s Qutlook
2002 (XP) (Byrpe 2001) was chosen instead. Qutlook provides the complexity

151

and functionality required to illustrate the feasibility of GLOMAR in deal-

ing with application-specific concurrency control and consistency maintenance
mechanisms.

The Outlook Relationship Component also illustrates GLOMAR’s ability to
convert a stand-alone DBM application into a distributed application in a trans-
parent way. In addition, application-specific processing within this Relationship
Component further illustrates the flexibility of GLOMAR, as different mecha-
nisms are used throughout the implementation {e.g. client-server, peer-to-peer,
optimistic or pessimistic).

The Outlook Relationship Component focuses on maintaining data for Outlook

folders. The folders that are governed include, Sent Mail, Draft Mail, Inboz,
Calendar, Contacts and Tasks.

The motivation of the consistency models chosen for each of the folders where
based on two criteria. Firstly, the appropriateness of the consistency model
to the data being governed and secondly, the overall effect of having multiple
different consistency models all concurrently existing and operating on QOutlook
data.

7.4.1 Sent Mail, Draft Mail and Inbox Consistency Model

The three email-related folders within Outlook are governed by the Outlook
Relationship Component. These include;

e Sent Mail. Contains a copy of all emails sent by an Qutlook user.
¢ Draft mail. Contains all emails that have been written, though not sent.

¢ Inbox. Contains all incorming emails.

The three mail folders each use nine data items (table 7.1), referring to the
actual email and all other email related details.

The three mail folders are governed with the same type of consistency model,
which uses a preferential remote update approach ! within a peer-to-peer envi-
ronment. When an operation (update, new and delete) occurs, it is added to
a queue (persistent store), prior to being performed. An additional process is
then invoked periodically to propagate the stored operations to each available
node. Only when the operation within the queue has been committed on all

1 Preferential and mandatory remote update are our terms used to describe the consistency
models used within the Outlook Relationship Compenent

Data Description and Purpose

Body Contains text associated with this email

Cabjent Contains the subject line of the email

Time Received | When the email was written

Priosssy The prioriiy of the email (In outlook there
are levels, HIGH, LOW and NORMAL)

To Address Contains tht email address of the ad-

dressee (TkLi3 can contain more than one
email address, however it must be delim-
ited)

Froin Address

Contains i:i;e email address of the sender

CC Address Contains tiie email address of carbon copy
recipienis {This can contain more than one
email address, however it must be delim-
ited)

Sent Whether this email has been sent or not

Unread Whether this email hag been read or not

Data Descripticat and Purpose

Body Contains text assoctated with this event

Subject Is a shorted description of the event

Location Displays the location of the event

Time Received | When the appointment was created by the
user (this includes date and time)

Start Time When the event starts (This includes date
and time)

End Time When the event ends (This includes date
and time)

Priority The priority of the event (In outlook there
are three levels HIGH, LOW and NOR-
MAL)

All Day Event | Whether the event is all day

Recurring Whether the evert is recurring (Daily,
Weekly, Monthly and Yearly)

153

Table 7.1: Sent Mail, Draft Mail and Inbox Data Items

remote nodes, will the entry withia the persistent store be removed. Currently,
the propagation of opert{ivi. {or the Seni Mail folder is performed every 12
ours, the Draft Mail folder ¢y 3 hours and the Inboz folder once an hour 2.

v

7.4.2 Lalendar Consistency Model

Within ‘Outlook, the Calendar folder is used to record time-based events for a
user. 'The Calendar informsation consists of nine data items (table 7.2), referring
to the actnal appointimens, the associated date, time and other details.

The type of consistency mode! chosen for the Outlook Calendar was a Uniform
Majority Quorum Consensus approach (section 2.3.3), implemented within a
peer-to-peer environment. This balance between availability (via the peer-to-
peer model) and consisteucy (using quorum consensus) is highly suited to Cal-
endar information. :

The crux of this consistency model is determining the dominance of replicated
fCalendar information, through the use of version vectors (Parker et al. 1983).
For example, when necessary, version vectors for each available node (ensuring

2The time periods defined for each mail folder are based on the perceived consistency needs
based on personal experience.

Table 7.2: Calendar Data Items

that quorum of at least 50% has been achieved) are compared. From this, the
dominant replica is found and its Calendar information used.

7.4.3 Contacts Consistency Model

Within Qutlook, the Contacts folder in used to store information about indi-
vidual contacts. The Contact information used within this implementation is
detailed in table 7.3 and is only a subset of the available information used by
Qutlook.

For the maintenance of Contact information, a client-server model was chosen,
using both the mandatory and preferential remote update approaches. When
Outlook performs a new, an updafe or a delete operation, the operation is
instantly propagated to a contact list on a server. Failure of the operation on
the server side results in the failure of the operation on the client side. Changes
(because of client operation) to the contact list on the server are not instantly
propagated to all other available replicas. Rather, every 12 hours a process
updates each available replica with the contents of the contact list.

154

Data Description and Purpose

Body Contains text associated with a contact

Subject Is the display name of the Contact

Time Received The time the Contact was created by a
user

Priority The priority of the Contact (In Qutlook
there are three levels HIGH, LOW and
NORMAL)

Title Contact’s business tigle

Last name Surname of Contact

First name First name of Contact

Middle name Middle name of Contact

Title Prefix Title of Contact

Email Email address of Contact

Home number Home phone number of Contact

Business number | Business phone number of Contact

Business fax Business fax of Contact

Mobile number | Mobile phone number of Contact

Home address Home address of Contact

Company Company name for Contact

Business address |} Business address of Contact

Birthday Birthday of Contact

Anniversary Wedding Anniversary cf Contact

Table 7.3: Contact Data Items

7.4.4 Tasks Consistency Model

Within Qutlook, the Task folder stores tasks to be completed by a user. The
Task information used within this implementation consists of seven data items
(table 7.4}, referring to the actual task to be performed and its associated dates.

The type of consistency model chosen for maintaining Task information uses
the mandatory remote update approach within a client-server environment. All
operations like open, new, update and delete are performed on a remote server
prior to being performed locally on the client. If the remote operation fails,
then the associated local operation is forced to fail as well.

7.4.5 Outlook 2002 Relationship Component Implementation

The implementation of the Outlook Relationship Component consists of con-
sistency models for each of the Outlook folders and a dispatcher to bridge

155

Data Description and Purpose |

Body Contains a detailed description of the task
to be completed

Subject A shortened description of the task

Time Received | The time this task was created by a user

Due Date The due date of the task

Start Date The start date of the task

Priority The priority of the task (In Outlook there
are three levels HIGH, LOW and NOR-
MAL)

Status Indicates the status of the
task (In Outloock there are
five levels, NOT STARTED,
IN_.PROGRESS, COMPLETED, WAIT-
ING.ONSOMEONE_ELSE and DE-
FERRED

Table 7.4: Task Data Items

GLOMAR with the folder-specific consistency models instances. In addition,
an Qutlook COM Add-In is built to intercept Qutlook ¢perations and forward
them to GLOMAR (figure 7.8).

Qutlook COM Add-In

By creating 2 COM (Box 1998) object that implements the interface IDTEsten-
sibility2 and using the Outlook Object Model 10.0, a module can be installed
into Qutlook (figure 7.9) to intercept operations and perform any additional
processing (Rice 2000)3.

The implementation of this COM Add-In used the Visual Basic 6.0 template
and designer classes supplied with the book (Byrne 2001). Within this COM
Add In, each specific Qutlook folder has the following operations intercepted:

e OpenFolder. This intercepts the Outlook Explorer sclecting a specific
folder. The result of this operation is that the specific folder is opened with
the contents visible within the Qutlook Inspector. This is not cancellable.

3Microsoft recently released a .NET Add-In template class to Visual Studio.NET, hcwever
this was unavailable at the time of development

156

\ User Events

Qutlock Operations

/’ Lot GLOMAR
COM Add-In

| I

Outlook Relationship cOmponek*

Outiock Consistency Mode)
/ Dispatches
/ e

Task "Contact Email |[Calendar

Figure 7.8: QOutlook Relationship Component Design

¢ CloseFolder. This intercepis the Outlook Explorer deselecting a specific
folder. The result of this operation is that the current specific folder is
removed from the Outlook Inspector. This is not cancellable.

o ItemAdd. This intercepts when an item has. been added to a specific
folder. This is not carcellable. However, if the adding of a new item fails,
then it is deleted antomatically.

» BeforeDelete. This intercepts an operation prior to an item being
deleted (This is new to Outlook 2002). This is cancellable.

¢ Openltem. This intercepts when an item is opened within the Outlook
Inspector. This is cancellable.

¢ Closeltem. This intercepts when an item is closed within the Qutlook
Inspector. This is cancellable.

» Writeltem. This irtercepts when an item is saved within the Outlook
Inspector. This is cancellable,

When an operation has been intercepted, the COM Add-In performs additional
processing before forwarding it to GLOMAR. This results in information being
pinned to an operation so that a dispatcher, within the Qutlock Relationship
Component, can direct the appropriate Outlook operation to the appropriate

B bk M T Dl . e
i Be OE . Yer. Fegu Iose m n-b : -
: b- tsmx‘WMMb"whﬁ‘ém!Q\M%wunwnma @

Fo THIHTNE BT I
PriZaj oMo 6:31 PR
ol MNOTION2 LA P
Thu EXNEONTT £.48 M
] Thy PARESOGS BT S
FrdW0GI00 Len e

- IO B
'hlm"“m vl

4

’ g:““ 333 3 e 4t wicie 4 v wnd 4l fon Lhog ok
"@Od 3 3 3ugparairs Wotthe ol et
Dypnre 3)’-‘”50“!!.‘“’\”'!!“‘0'“ e i1k
E . T Proad B3 racoopleit, vhais i)
y - (2 koo] »ERF

;l.

Figure 7.9: Outlook COM Add-In

consistency model and appropriate method. This means the fag variable is
filled with Outlook specific data, detailing not only the type of operation, but
the folder type, item type, as well as other data (table 7.5). The resulting call
is then made to the COM bridge via the 32-bit API (as the COM Add-In is
written in VB 6.0).

Depending upon the returned results, the operation within Outlook is either
committed or cancelled. A cancelled operation also results in a dialog box
appearing, indicating an error has occurred (figure 7.10).

Dispatcher

The generic nature of the Consistency Model interface does not apply itself well
to the requirements of the Outlook Relationship Component. This is due to the
type of operations that can occur and the number of folders that must be indi-
vidually governed. For this reason, rather than changing the Consistency Model
interface (which would require a major reworking of GLOMAR, and reduce the
DF$’s flexibility), an additional interface was individually implemented within

el DD o e | e B Sl i) BOBVSSE

158

Data Description and Purpose |

Entry Id Contains the GUID of the item

Storage Id Contains the GUID of the folder

Item Type Whether the operation is occurring on a
folder or em

Folder The folder the operation is occur-

ring within (DRAFTMAIL, SENTMAIL,
INBOXMATL. CONTACT, APPCINT-
MENT, ©...0)

Operation The type of operation. These are different
to the standard operations (e.g. CREAT-
ENEWITEM, CHANGEITEM, OPEN-
ITEM, CLOSEITEM, WRITEITEM, RE-
MOVEEXISTINGITEM)

Storage String | Can contain any user-defined string, eg
XML.

Table 7.5: Qutlook Information passed via the teg paraemter

a single Relationship Componeni, specifically targeting Qutlook. However, the
Dispatcher approach as defined here is not always necessary for all scenarios.
Rather, it can be seen as one method of bridging highly specific operations and
requirements with the generic interface defined by GLOMAR.

The interface TOutiookProcessing (figure 7.11) was purposely built to handle
Qutlook operations. To allow for multiple implementations of this interface for
each folder type within the Qutlook Relationship Component, a dispatcher was
built. The purpose of the dispaicher is to direct operations from the Outlook
Relationship Component’s Consistency Model to the appropriate folder-specific
Consistency Model implementation. In other words, as operations occur, an
additional process determines the functionality to invoke based opn information
passed to it via the tag parameter. For example, when an Open operation
occurs in Outlook, the COM Add-In makes the request to GLOMAR, filling
the tag parameter indicating, the data item type (folder or item), the operation
type and the details of the actual item. Once the request enters the Outlook
Relationship Component’s Consistency Model, the dispatcher determines the
correct folder specific Consistency Model implementation to forward the request
to and then what specific Outlook operation it should invoke. Figure 7.12
depicts the UML based diagram of the Outlook Relationship Component.

by Lale_r u.ar I“k:rouﬂ. uu.lkn-..k

£ B OIRILIZ 114
lsmsnnsmz: wwAZDN
?‘25327“ HErTHN 1}
ECE) p M

{| s DN Y

- i

__|i|ma|;] i Mo i lgnm;gn o Ilﬂm«u - WTWW

Figure 7.10: GLOMAR Operation Failing within Qutlook

Sent Mail, Draft Mail and Inbox Component Implementation

The implementation of all Mail-related Consistency Models is similar, with the
Removeltem, Createliem and Changeltem operations written into a XML file
prior to iocal execution. For example, when an QOutlook user deletes an item,
the details of that operation and item are stored within a XML file. Figure 7.13
details the Mail log XML file.

Depending upon the period set, which is different for each mail folder imple-
mentation, a user-specific service is activated (installed within the Service Man-
ager). This service firstly reads the XML file and produces a list of operations
to propagate. Then an attempt is made to contact each node and propagate
the associated operations.

Communication between nodes is facilitated as each service exposes via the

NET remoting infrastructure three methods, AddMail, UpdateMarl and DeleteMail.
The local service contacts the equivalent service on the remote node and uploads

160

the specific operations via these methods. Once each operation is successfully
uploaded and performed on all remote nodes, it is removed T~m the XML file.

Calendar Component Implementation

The Calendar-related Consistency Model is the most complex of the folder-
specific Consistency Models to implement. This is due to the complexity as-
sociated with determining if quorum is achieved, determining which Calendar
information is dominant and the process of populating Cutlock with the most
up-to-date events.

When the Calendar folder is opened, the OpenFolder method is called. This
method firstly determines if quorum can be achieved, by calling the IsQuorum
method on the WebServiceList object. This object contains a list of XML
Web Service proxies that represent each node of the network. The [:Quorum
method proceeds to contact each node, recording if the node was contactable
or unreachable. Once complete, the ratio of available and unavailable nodes is
evaluated to determine if quorum was achieved (>50%).

If quorum is achieved, then the OpenFolder method contacts each available
node and requests its version vector. As only GLOMAR's XML Web Service is
used, this information needs to be marshalled into a number of Read calls (the
GetAtlr method is used to gain the total number of Read calls required). This
involves marshalling the version vector into 64 Bit integer blocks on the remote
side and reconstituting a version vector instance on the local side. All version
vectors (downloaded and local) are then compared, resulting in the dominant
node being determined.

If a remote node is deemed to be dominant, then the OpenFolder method down-
loads the node’s events locally. Similar to how the version vectors were gained,
the Read method of the remote node is called multiple times. This results in a
number of 64 bit integer blocks returned. When marshalled, the results repre-
sent the dominant node’s list of events. Once complete, the local list of events
is removed and the downloaded list is inserted in its place. Only when this is
successful, is the local version vector adjusted.

For operations that result in the Removeltemn, Createliem and Changeltem
methods being invoked, the IsQuorum method is firstly called. This attempts
to determine if quorum is achieved. Failure to achieve quorum aborts the
operation, were as success attempts to propagate the operation.

161

The process involved in propagating operations to all available nodes is based
on a two-phase commit protocol (Lampson and Sturgis 1976) {figure 7.14). The
first phase uploads a serialised representation of the operation and event itself to
each available node. Packaged with the operation is an ID number (randomly
generated number that is unique only to this operation), This operation is

then written to a temporary store and hashed on the ID number, rather than
immediately performed.

When all nodes have received the operation, then the second phase starts. A
commit message is sent to each available node. Packaged with this message
is the ID number of the operation to execute. When the commit message
reaches the remote node, the operation is retrieved from the store (the store
is persistent) and executed. Once the two-phase commit protocol is completed
(success or failure), the version vector for both the local and remote nodes are
updated.

Contact Component Implementation

The central element of this implementation is the Contact XML Web Service
(figure 7.15). This service exposes four methods; GetAllContacts, ChangeEz-
istingContacts, AddNewContacts and DeleteContacts. As the name suggests,
each method provides the functionality to access and modify a central store of
Contacts.

As Removeltem, Createltem and Updateltem operations occur, they are posted
to the Contact XML Web Service. Only when successfully performed by the
Contact XML Web Service, will the operation execute locally.

Contact information is downloaded from the XML Web Service via a user-
specific service. This process periodically queries the XML Web Service for a
list of all contacts (calling the GetAllContacts method), then downloads them,
replacing the existing Contact information with the new list.

Tasks Component Implementation

The Task-related Consistency Model forwards the Outlook operations Open-
Folder, Removeltem, Createltem and Changeltem to the Task XML Web Ser-
vice. The Task XML Web Service exposes four methods (figure 7.16), GetAll-
Tasks, ChangeEzistingTask, AddNewTask and DeleteTesk. This XML Web Ser-
vice encapsulates an XML file of Tasks, providing an interface to access and

modify them,

162

This approach is similar to the Contact-related Consistency Model (section
7.4.5). However, all Tasks are downloaded when the folder is opened, not
periodically downloaded as with Contacts. Thus, when the OpenFolder method
is called, it first downloads from the Task XML Web Service the current list of
tasks. Once complete, the local list of Tasks is then replaced by the downloaded
list of Tasks.

For each Removeltem, Createltem and Changeliem operation intercepted, the
Task-related Consistency Model posts the operation to the Task XML Web
Service. Only when the operation is completed successfully by the XML Web
Service, does the operation execute locally.

7.4.6 Analysis of Qutlook 2002 Relationship Component

The Outlook Relationship Component demonstrates fine grain consistency main-
tenance and concurrency control for Qutlook data items. Unlike other case stud-
ies implementations (TTM, Get Latest and ROWA) which provide a generic so-
lutiox, the Qutlook Relationship Component shows how an application-specific
Relationship Component is created and serviced by GLOMAR.

Using Outlook as the test application, illustrates how only minor modifications
to the actual application are required to exploit the benefits of GLOMAR.
In other words, the processes and functionality of Outlook were not affected
to accommodate GLOMAR. Only some mindr modifications were required so
operations could be intercepted and forwarded to GLOMAR.

The Outlook Relationship Component illustrates the flexibility of GLOMAR,
as each Consistency Model used a different approach and mechanism (for exam-
ple, client-server, peer-to-peer, GLOMAR to XML web service communication).
Regardless of the data structure or functionality required to service the consis-
tency and concurrency requirements of Qutlook, the Relationship Component
was able to support if.

As stated in Chapter 3, GLOMAR provides a way of balancing resource usage.
The Qutlook Relationship Component is an illustration of this accomplishment.
Rather than propagating the entire contents of the Outlook data store (which
can be 60 to 100 mb*) every time a modification operation occurs, only the
active data and operations are propagated. Traditionally, if a user wanted to

*This figure was determined from a brief survey of postgraduate students and academics
using Outlook within the School of Computer Science and Software Engineering, Monash
University

163

replicate Outlook data, whole file propagation was the only solution. This ad-
versely affects bandwidth and degrades performance in a constrained bandwidth
environment. With the Qutlook Relationship Component, there is a reduced re-
liance upon the bandwidth, as operations are propagated at appropriate times,
without greatly compromising the consistency requirements of Outlook’s data.

In addition, because of the Qutlook Relationship Component, Outlook has been
simply converted into a distributed application. Thus, the Outlock Relationship
Compaonent demonstrates that by externalising the mechanism for handling con-
sistency maintenance and concurrency control, an additional level of complexity
and functionality can be added, without affecting the original application.

7.5 Aggregated Analysis of the Case Studies

To illustrate the run-time benefits of the multiple consistency model approach,
all of the implemented Relationship Components were instantiated concur-
rently. Thus, while the notepad application was running, its Relationship
Component was governing text files using ROWA, Get Latest and TTM. Si-
multaneously, operations generated by Outlook were handled by its Relation-
ship Component. As a result, multiple concurrency control and consistency
maintenance mechanisms were simultaneously running within a single DFS.

The case studies also resulted in the development of a large library of Context
Providers. A library of C++ (Lippman and Lajoie 1998) based hardware metric
methods (Wendt 2002) were wrapped by a number of Contexi Providers. Table
7.6 details the environmental information that is available.

The case studies illustrate GLOMAR has potential far beyond merely encapsu-
lating concurrency control and consistency maintenance functionality. Rather,
it can be used for other tasks that require transparent redirection of file oper-
ations. For example, there are software systems that support write operations
on read-only media, like a CD-ROM (DirectCD (Roxio 2002) and Windows XP
(Microsoft 2002a)). This is made possible by redirecting operations away from
the CD to a write store. When a user reads the CD, the actual contents visible
to the user represent an amalgamation of both the contents of the CD and that
of the write store. GLOMAR was never intended to provide the framework to
do this, but due to its flexibility, it is capable of this. Thus, GLOMAR can be
applied to solutions where some additional “value adding” to an operation is

required.

e ek et it L e

164

Type Description]
CPU Speed

D

Family

Model

Number of Processors

Drive Free Space

Name

Total Space

Memory Get Available Page File Size
Get Available RAM Size
Get Available Virtual Size
Get Total Page File Size
Get Total RAM Size

Get Total Virtual Size
Operating System | Description

Socket Domain Name

IP Address

Table 7.6: Supplied Context Providers

All the case study implementations highlighted one area of concern relating
to the handling and management of Relationship Components. For example,
an application has two Relationship Components, one for disconnected and
one for connected. Both these components share information regarding the
structure and location of a cache. A new Relationship Component {with no
knowiedge of £ liaiion or structure of the cache) could very easily replace an
existing Relationship Component. As a result, the life-cycle defined by the two
original Relationship Components is comprised. This issue is further addressed
in section 9.2.

7.6 Summary

This chapter has illustrated the encapsulation of different concurrency con-
trol and consistency maintenance mechanisms within a single DFS, through
actual Relationship Component implementations. The first implementation
demonstrated a semantically similar approach to a traditional file system in a,
disconnected environment. The second implementation demonstrated a Rela-
tionship Component that handles the constraints of a mobility-enabled DFS,

165

using a transactional model. The final implementation demonstrated a consis-

tency model that services the specific needs of a single application, in this case
Outlook 20062.

Each example demonstrates GLOMAR’s flexibility to support consistency main-
tenance and concurrency control mechanisms. It also shows that a balance can
be achieved between consistency and resource usage. The next chapter eval-
uates and discusses the cost of the GLOMAR middleware layer, primarily to
determine if the multiple consistency model approach is efficient.

166

Public Interface IQutlookProcessing

Public Funttion DpenFolder(ByVal handle As FHAXDLE,

Public

Public

Pablic

Public

Public

Public

Public

Publie

Public

Public

Public

Public

Public

Puktlie

Pubiic

Publie

Public

Function

Fuhction

Function

Function

Function

Function

Function

Function

Function

Funetion

Function

Function

Functicon

Function

Function

Function

Function

End Interface

ByYal details As OutlockDperationDetails)
4s Glomar.DperationStatus
CloseFolder(ByVal handle As FHANDLE,
ByVal details As QutlookDperationbetails)
Ax Glomar,OperationStatus
Openltem{PyVal hendle As FHANDLE,
Byval details As OutlcokOperaticnDetails)
As Glomar.OperationStatus
Closeltem(By¥al handle As FHANDLE,
Byval details As OutlookOperationDetaila)

As Glomar.lparationStatus
Removeltem(ByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails}
Ap Glomar.OperationStatus
Createltem(ByVal handle As FHANDLE,
ByVal details As OurleokOperationDetails)
he Glomar.DperationStatus
ChangeIten{ByVal handle As FHANDLE,
ByVal details As OutleokOperationDetaila)
As Glomar.0OperationStatus
GetAttrFolder (ByVa) handle As FHANDLE,
ByRef fileattr hs Glomay.FILE_ATIR,
ByVal details As DutlookOperationDetails)
As Glomar.DperationStatus
ReadFolder{ByVal handle As FHANDLE, ByVal length As Long,
ByVal offset As Long, ByRef buffer As Long,
ByVal details As DutlookOperationDetails)
As Glomay.OperationStatus

Remote(penFolder{ByVal handle is FHANDLE,
ByVal details As QutlookOpurationDetails)
As Glomar.OperationStatus
RemoteCloseFolder(ByVal handle As FHANDLE,
ByVal @etails As OutlookDperationDetails)
As Glomar.OperaticnStatus
RemoteReadFolder(ByVal handle As FHANDLE, ByVYel length As Long,
ByVal offset As Long, ByRef buffer As Long,
By¥al details As OutlookOperationDetails)
A3 Glomar.OperationStatus
RemoteGetAttrFolder (ByVal handle As FHANDLE,
ByRef fileattr As Glomar.FILE_ATTA,
ByVal details As QutlookperationDetails)
A3 Glomar.OperationStatus
RemoteOpenltem{ByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.DperationStatus
RemoteCloseItem(ByVal handle As FHARDLE,
ByVal details As OutlockOperatjonDetajls)
As Glomar.DperationStatus
RemoteRemoveltem(ByVal handle As FHANDLE,
ByVal details As OutlookUperationDetails)
Az Glomar.OperationStatus
RemoteCreatalten(ByVal handle As FHANDLE,
ByVal deteils As OutlockOperationDetails)
As Glomar.OperationStatus
RemoteChangeltem(ByVal handle As FHANDLE,
ByVel details As DutlockOperatiombetails)
Ap Glomar,OperstionStatus

Figure 7.11: IOutlookProcessing Inwerface

RelationshipCompanant

<<nterface>>
[ConsistencyModel

OutlookRelationshipCamponent

/

/

OutlookRelalisnshipScope

/

OutlookConsistencyh odel

V

’d"

<«Interfaces>
IRelationshipScope

/

SentMailcM | [nboxCM | [CatendarcM | [Taskcm | [Drafivailcm | [ContactCm
~ \\ \ / P -
~ N\ \ / p -
~
N\ v -
“~

<gentmaillist>

<<Inteface>>
0 utlookProcessin

Figure 7.12: Outlook Consistency Model

<ip address="130.194.0.1">

<add>

<gentmail>

<subject>Halle Simon</subject>
<body>Testing Relationship Component</bo
<toaddress>foolbar. coms/toaddress>

¢</zentoail>

</faddy
</ip»

<ip address="130.194.0.2">

<add>

<gentmails

<subject>Halle Simon</subject>
<body>Testing Relationship Component</be
<toaddress>foolbar. comd/toaddress>

<fgontmail>

<fadd>
</ip>
</eentmaillis¢l

dy>

dy>

Figure 7.13: Mail Log XML File

Service Description.
® DeleteContacts
¢ AddNewContacts

¢ EhangeExistingCon

¢ GetaliCoptacts

The following operations are supported. For a formal definition, please review the

—e=—

NE

—_— Calendar —_—
Outlook Consistency Model Outieck Data
Store
Operataon and .
Operation ID T Commit
| Acknowledgement ‘
Operation and
Opa“::::éd Operabon 10
Kevawd
Aokene edgemt Commﬂ Commit Acknowdedgement
Calendar /
Consistency Calendar
Model Gm;:;s;ency
§on and Cpsiation and el
\ Operation D Operation ID
S
Qutiook Data S—— Su— Outlook Dat
Siore o | Tacrgorary Temaomry ’ Store
Store Stora Save to data
Bave to dats e al
siote whan S1008 when
commli received commit regalved

Fig re 7.15: Contact XML Web Service

Figure 7.14: Calendar Two Phase Commit Protocol

The following aperatiens are supported. For a formal definition, please review the
Service Description,

¢ DeleteTask
e AddNewTask
* GetallTasi

3 8 Task

Figure 7.16: Task XML Web Service

170

Chapter 8

GLOMAR Evaluation

This chapter evaluates the GLOMAR middleware layer for the purpose of de-
termining the efficiency of the multiple consistency model approach. Firstly,
this chapter discusses the evaluation methodology, focusing on the aims and
difficulties associated with evaluating GLOMAR as a middleware. Secondly, a
detailed analysis of performance and resource usage, primarily focusing on the
inner workings of the GLOMAR middleware layer is presented. Finally, this
chapter concludes with a discussion on the evaluated results.

8.1 Imtroduction

The previous chapter (Chapter 7) demonstrates the effectiveness of the GLO-
MAR middleware layer in supporting the multiple consistency model approach
by qualitatively analysing case studies. This chapter in turn quantitatively
evaluates the efficiency of the GLOMAR middleware layer,

All experiments proposed and described in this chapter are targeted at the cost
of using the GLOMAR middleware layer only. Therefore, the initiation of the
GLOMAR middleware layer and the cost of processing an operation (excluding
Relationship Component functionality) are measured as part of all experiments.

The evaluation of individual Relationship Components is omitted from this
chapter to highlight the generic nature of the GLOMAR middleware layer,
rather than focusing on application-specific issues.

The resulting implementation of GLOMAR combines elements of a DFS and a
traditional middleware. This is because it hides the complexity of managing dif-
ferent concurrency mechanisms via a simplified pseudo standard interface. For
the purpose of evaluation, this description specifies GLOMAR implementation

171

capabilities and target domain, rather than the whole GLOMAR framework
and methodology. This combination is the strength of GLOMAR. However,
the comparison of GLOMAR to either a DFS and/or middleware is inappropri-
ate. This is because elements of GLOMAR’s middleware affect performance,
when compared with other DFSs. On the other hand, GLOMAR’s DFS ele-
ments adversely affect performance comparison with traditional middlewares.
From the literature reviewed, no relevant comparison methodology has been
found for comparing a DFS with a middleware.

8.2 Aim and Experimental Methodology

This chapter aims to prove that the associated algorithms w:thin the GLO-
MAR middleware layer provide a suitable basis for implementing the multiple
consistency model approach. In other words, the benefits of GLOMAR are
not outweighed by the cost associated with the management of Relationship
Components,

This evaluation analyses the scalability of the GLOMAR middleware layer. As
much of the processing is associated with the managing of Relationship Com-
ponents and Clones, this chapter discusses the impact of varying the number
of Relationship Components and Clones. As a by-product of evaluating scal-
ability, a suggested number of Relationship Components and Clones will be
produced.

The experiments evaluate both the initiation and the processing of operations
within the GLOMAR middleware layer (figure 8.1). For each experiment, the
number of Relationship Components and Clones are assumed as inpui param-
cters. The experiments performed have been grouped and are outlined below:

e Initiation of the GLOMAR middleware layer. These experiments
aim to determine the time and resource usage of the initiation of the
GLOMAR, middleware layer. These experiments include:

- Scaling the number of Clones. This experiment aims to deter-
mine the time and memory consumption when the number of Clones
is varied.

— Scaling the number of Relationship Components. This exper-
iment aims to determine the time and memory consumption when
the number of Relationship Components is varied.

172

¢ Processing of Operations within the GLOMAR middleware layer.
These experiments aim to determine the time of processing an operation
within the GLOMAR middleware layer. These experiments include:

~ Scaling the number of Clones. This experiment aims to deter-
mine the average time per operation when the number of Clones is
varied. .

— Scaling the number of Relationship Components; Average
time per Operation. This experiment aims to determine the av-
erage time per operation when the number of Relationship Compo-
nents is varied.

- Scaling the number of Relationship Components; Time of
Relationship Componeni Processing. This experiment aims
to determine the time taken by Relationship Component Processing
when the number of Relationship Components is varied.

—~ Scaling the number of Relationship Components; Average
time of partial Relationship Component Processing. This
experiment aims to determine the time taken by partial Relation-
ship Component Processing when the number of Relationship Com-
ponents is varied. This is to illustrate the effects within a real life
situation, when not all procésses of the Relationship Component Pro-
cessing are invoked.

— Ecaling iive number of Relationship Components; Average
time ot Zastantiation. This experiment aims to determine the time
to instantiate different Relationship Components when the number
of Relationship Components is varied.

The input parameters for each experiment are detailed in table 8.1. These
values represent a broad range of input parameters to achieve the aims of the
experiments detailed in this chapter. They represent both the likely range
of Clones =nd Relationship Components and the potential limit of concurrent
Clones and Relationshiv Components experienced within a DFS. Table 8.2 de-
tails the run-time ecvironmental configuration of these experiments.

In order to genera'w the Relationship Components and Clones used in the ex-
periments, an auxillsy application (Relationship Component Generator) was
built. Its purpose was tc ererte the skeleton code, Clone Lisi and a VB.NET
makefile to represent thy tary.ted number of Relationship Components. As

173

Initiation of the
GLOMAR eriddiewars layer
Scaling the number
of Clonas
Scallng the nupber of
. Components
Structure of experiments
Processing of Operations — Average tme
wiin e GLOMAR of Insiantiation
middieware fayar
. Average time of pardal
— " Relstionghip
Component Processing
Scaling the
number of Clones - Average timg
perOpe_ratlnn
Sealing the number of :
— Time of Relationship
Refationzhip Components] Component Processing

Figure 8.1: Experiment structure

[Input Parameters Number
Clones 1, 5, 10, 80, 100, 500, 1000, 5000, 10000,
50000
Relationship Components | 1, 5, 10, 50, 100, 500, 1000

Table 8.1: Experimental Input Parameter

these Relationship Components are used in the testing of the GLOMAR mid-
dleware layer, they contain no actual consistency maintenance code. Rather,
they contain a minimal implementation of the Consistency Model interface.

8.2.1 Evaluating the Initiation of the GLOMAR middleware
layer

Three aspects of the initiation of the GLOMAR middleware layer were evalu-
ated. These were the overall memory consumption, the overall time taken and
the initiation time of each stage.

The memory consumption is derived by recording the total memory allocated by
the .NET garbage collector on all three heaps (Gen0, Genl and Gen2 (Watkins
et al. 2003)) using the application GlowCode. NET (GlowCode.Com 2002).

r.NET version | 1.0.3705

Processor Intel Pentium 434Mhz
Memory 256 Mb

08 Windows 2000 {5.00.2195)
Storage 7.8 Gb

Table 8.2: Experimental Environment Configuration

The time to complete each different stage is determined by outputting the
current system time at the end of each stage. The stages evaluated within the

initiation are (in order):

Port Setup. After the .NET remoting infrastructure has setup the lis-

tening port.

Clone Distribution Manager. After the Clone Distribution Manager
has been initiated, including reading in data from the Clone List.

Executive. After the Executive has been initiated.

Relationship Component Repository. After the Relationship Com-
ponent Repository has been initiated, including the installing and instan-
tiation of all Relationship Components.

Remote Operation Interface. After the Remote Operation Interface
has been initiated.

Local Operation Interface. After the Local Operation Interface has
been injtiated.

This evaluation consists of two experiments, one where the number of Rela-
tionship Components are varied and another where the number of Clones are
varied.

8.2.2 Evaluating Processing an Operation

The time taken to process an operation within the GLOMAR, middleware layer
is evaluated within these experiisents. To extract the time per operation, each
experiment (excluding the time of Relationship Component Processing) consists
of 100 operations (write operations) being passed to GLOMAR. These resulis
are then averaged.

175

For each experiment evaluating the average time per operation and time of
Relationship Component Processing, three types of Clone Lists and three types
of Relationship Components were produced by the Relationship Component
Generator. These include the best, average and worst case scenarios.

For Clones, the best case scenario is when one access is required to gain a Clone
from within the Clone List. The average case scenario is when accessing a Clone
requires N/2 accesses (N is the total number of Clones in the Clone List). The
worst case scenario is when accessing a Clone requires N accesses.

For Relationship Components, the best case scenario is when one access is
required to gain a Relationship Component from within the list of instanti-
ated Relationship Components. The average case scenario is when accessing a
Relationship Component requires N/2 accesses (N is the total number of Re-
lationship Components in the list of instantiated Relationship Components).

The worst case scenario is when accessing a Relationship Component requires
N accesses.

For each of these best, average and worst case scenario Relationship Com-
ponents, two instantiation types arc defined, singleion or new insiance. The
motivation for allowing the two instantiation types is to isolate the cost of
implementing the two types, independent of other processing costs.

The average time per operation experiment determines the average time taken
t0 process an operation. As aresult, the 100 operations absorb the time taken by
Relationship Component Processing, Whereas, the time of Relationship Compo-
nent Processing experiment results in the actual time taken by the Relationship
Component Processing to process an operation.

The experiments (average time per operation and time of Relationship Compo-
nent Processing) only invokes Relationship Componeni Processing once. This
is because the scenario is static for the duration of the experiment {(all 100 op-
erations). Thus, this type of experiment js analogous to a system that exists
on a stable network.

To evaluate GLOMAR. in a more volatile system, a random case scenario was
defined. When a Relationship Component is defined as random case, the sce-
nario (thus Relationship Scope) is randomly validated and invalidated. This
case is used to determine the cost of instantiating Relationship Components of
different types as weil as determining the time when only partial Relationship
Component Procv. - ug is implemented.

176

8.3 Initiation of the GLOMAR middleware layer:
Results and Discussion

As earlier stated {section 3.3.1), GLOMAR incurs additional cost per operation.
An effort was made to avoid this by allocating costly activities to more appropri-
ate times. For example, rather than initiating Relationship Components when
required (just in time), an instance is available in-memory. This additional
memory usage is offset by the benefit of having the Relationship Component
available immediately. This particular experiment records the time and mem-
ory consumption associated with the initiation of the GLOMAR. middleware

layer.

8.3.1 Scaling the number of Clones

Memory consumption during the initiation of the GLOMAR middleware layer
as the number of Clones vary are detailed in figure 8.2. These results show
a linear relationship between the consumption of memory and the number of
Clones (y = 0.1212+149.21 with a confidence value of R? = 1). Noticeably, the
amount of memory consumed remains relatively insignificant (approximately
150 Kbytes to 160 Kbytes} until 100 Clones or more are instantiated (table
8.3). However, even with a very large number of Clones (10,000), GLOMAR's
memory footprint remains acceptable (approximately 1.5 Mbytes). However,
when 50,000 Clones or more are instantiated, memory consumption becomes
more noticeable.

177

g
!
\

a 5000 10000 15000 200 25000 30000 FEH00 40000 45000 0000
Humiber 6t Clones whivin 1he Clone L3

Figure 8.2: Initiation of the GLOMAR middleware layer Memory Consumption
{Clones)

Table 8.4 details the time taken to initiate the GLOMAR middleware layer.
From one to 500 Clones, the time +emains unchanged (approximately 2.5 sec-
onds), as the majority of the time is spent opening the Clone List (the XML
file} for reading, rather than the reading of the actual data itself. When the
number of Clenes is greater than 5,000, the time to open the Clone List is less
than the time to read the Clone List. Thus, GLOMAR has the potential to
manage one to 1,000 Clones: with no major difference in time.

Number of Clones | Memory (Kbytes)
1 149.2139
5 149.6982
10 150.3037
50 155.1475
100 161.2021
500 209.6396
1,000 270.1865
5,000 754.5615
10,000 1360.03
50,000 6200.204

Table 8.3: Initiation of the GLOMAR middleware layer Memory Consumption

Table (Clones)

Number of Clones | Time (seconds) |

1 2.253299

5 2.343398
10 2.323402
50 2.303296
100 2.313306
500 2.533606
1,000 2.874009
5,000 6.329101
10,000 9.093107
50,000 116.5276

Table 8.4: Initiation of the GLOMAR. middleware layer Times (Clones)

178

The initiation time of the GLOMAR middleware layer (table 8.4) has a linear
relationship to the actual number of Clones (y = 0.0023z + 0.2889 with a
confidence value of R? = 0.9785).

When evaluating, the initiation time based on the stages within the GLOOMAR
middleware layer, the majority of the time (as expected) is spent initiating
the Clone Distribution Manager. Howev-r. as figure 8.3 details, the effects
of scaling the number of Clones is seen at the Clone Disiribution Manager
initiation stage. This illustrates that the effects of scaling the number of Clones

have been successfully isolated to the most appropriate stage, in this case, the _

initiation of the Clone Distribution Manager.

. —

—+—1Cloe
=5 Clones
g @ 10 Clories
é |50 Citnes
g 0 = 100 Clones
E / =500 (Hones
e
%) [t 1000 Clonirs
e 5000 Clonas!
— 10000
o Clones
: - SO000
{ L Cioows |
ol _— —r
At Por Setup Aller Clons Managsr Aher Executive: Aner RCR Aher RCI Adipr LOV

Corstruciion Stages 4

Figure 8.3: Initiation of the GLOMAR middleware layer Times, Based on
Stages (Clones)

8.3.2 Scaling the number of Relationship Components

Memory consumption of the initiation of the GLOMAR middleware layer as
the number of Relationship Components vary is detailed in figure 8.4. With no
Relationship Components, the memory footprint of the GLOMAR middleware
layer is approximately 118 Kbytes. This is an approximate value as the NET
garbage collector fluctuates memory consumption over time.

As figure 8.4 shows, as the number of Relationship Components increases, the
consumption of memory also proportionally increases. This relationshin iz linear
(y = 0.7572z + 143.47) with a confidence value of R? = (.9986.

179

[} 100 20 00 0) £00 00 o 00 1600
Hamber of Relationship Compominis

Figure 8.4: Initiation of the GLOMAR. middleware layer Memory Consumption
{Relationship Components)

Table 8.5 details the time taken to initiate the GLOMAR middleware layer as
the number of Relationship Components varies. With no Relationship Com-
ponents installed, the time taken is 4.2 seconds. From one to 50 Relationship
Components, the time taken does not vary greatly (average 4.7 seconds). When
100 or more Relationship Components are instantiated, initiation of the mid-
dleware becomes noticeable.

Number of Relationship Components | Time{seconds})

0 4.226099

1 4.887002

5 4.576602

10 4.876992

50 4.816998

100 5.347699

500 9.503706

1,000 12.8185

Table 8.5: Initiation of the GLOMAR middleware layer Times (Relationship
Components)

A surprising observation is the time taken to instantiate one to 50 Relationship
Components is approximately the same. This is because the actual number of

180

Relationship Components has no direct reflection on the actual tiine to initiate
the GLOMAR middleware layer. This is particularly shown in the fact that the
time to instantiate 25 Relationship Components is less than the time to instan-
tiate two Relationship Components. This experiment was repeated multiple
times, with the same results recorded. The explanation for this anomaly can
only be attributed to the influence of the .NET garbage collector. It would seem
that the implementation of the ArrayList (Watkins, Hammond, and Abrams
2003) is customised towards larger numbers of items. Thus, when implementing
a small number of components within the ArrayList, a more aggressive approach
to memory management is implemented by the .NET garbage collector.

Figure 8.5 illustrates the initiation of the GLOMAR middleware layer broken
into stages as the number of Relationship Components is varied. The time taken
by each stage during initiation of the GLOMAR middleware layer (except for
the Relationship Component Repository) is similar regardless ¢f the number
of Relationship Components instantiated. Figure 8.5 shows as the number
of Relationship Components increases, so does the time taken to initiate the
Relationship Component Repository. This illustrates that the impact of scaling
the number of Relationship Comvonents is isclated to the initiation of the
Relationship Component Repository.

4

E // —+—0 ACx
z ! —a—1 Ay
T % 5 Ris
& ——15 RCs
! // —»—50 RCu 1
E & i —a=10¢ RCa !
=500 RCE 1
| ——1000 78]

Atie: Forl Setup Afier Clons Manager Afisr Execulive Atier RCA At RTI After LY
Connlruclion Siages

Figure 8.5: Initiation of the GLOMAR middleware layer Times Based on Stages
{Relationship Components})

181

8.4 Processing an Operation: Results and Discus-
sion

The cost of performance and resources within the initiation of the GLOMAR
middleware layer is less critical than the cost imposed upon processing an opera-
tion. Much of the benefits of the multiple consistency model approach discussed
in previous chapters are dependent upon the premise that vnly a small amount
of time is added to a file operation. This series of experiments investigates the
performance overhead (time) the GLOMAR middleware layer places upon an

operation, focusing upon how scaling the number of Relationship Components
and Clones affects internal processes.

8.4.1 Scaling the number of Clones

The result of the average time per operation, when scaling the number of Clones
is illustrated in figure 8.6. The average time per operation when one to 5,000
Clones are implemented is 0.02 to 0.04 seconds. This result is independent
of the position of the Clone within the Clone List (best, worst, average case
scenario). However, once the number of Clones is equal to or greater than
5,000, the performance overhead experienced by the GLOMAR middleware
layer is increased, in particular for worst and average case scenarios.

22

e
|

o 5000 10000 15500 20000 25000 30000 35000 40000 45000 50000
Humber of Clanes wilhin the Clane Lisl

Figure 8.6: Average Timx: per Operation (Clones)

182

Figure 8.6 also illustrates that performance is not greatly affected when 50,0600
best case Clones are implemented. The average time per uperation of the best
case scenario is 0.047 seconds, compared to the avercge case scenario which is
0.134 seconds and worst case scenario which was 0.232 seconds. This observa-
tion indicates that processes involved in the managing of an operation are not
affected by the number of Clones present when the best case scenario is ap-
plied. Performance overheads are only incurred when necessary, as with worsi
and average case scenarios.

The average time per operation as the number of Clones is varied, can be
expressed as a linear function. The linear functions and confidences for best,
average and worst case scenarios are detailed in table 8.6,

| Case Equation Confidence

Best y=5E—07c+0.024 | R*=0.8815
Average | y = 2F — 06z -+ 0.0259 | R* = (.9958
Wort | y = 4E — 06z + 0.0252 | R® = 0.9975

Table 8.6: Average Time per Operation Linear Functions (Clones)

To further analyse the impact upon performance, the average time per operation
by the Clone Distribution Manager to search and retrieve a specific Clone from
within the Clone List was measured. The avera'ge time per operation of the
Clone Distribution Manager is illustrated in figure 8.7. The results also show a
linear relationship between the time and number of Clones (table 8.7).

Case Equation Confidence |
Best y = 5E — 08z + 0.0018 | R* = 0.8219
Average | y = 95 — 07z + 0.024 | R? = 0.9967
Worst y = 2F ~ 06z + 0.0019 | R* = 0.9998

Table 8.7: Average Time per Operation for the Clone Distribution Manager
Linear Function (Clones)

To further analyse the effect of the Clone Distribution Manager on the overall
average time per operation, the percentage of time spent by the Clone Distri-
bution Manager is compared to the total time taken to process an operation
{figure 8.8). The results indicate that the impact upon overall performance is
minimal {about 10% to 12%). Only when a very large number of Clones (5,000

183

" / /
e
W -

L] 3000 10040 1500 0000 25000 J0000 35000 40000 45000 50000
Rumber of Clonss In Clons Ust

Figure 8.7: Average Time per Operation for the Clone Distribution Manager
{Clones)

or greater implemented as average or worst case scenario) does the impact on
overall performance become apparent.

8.4.2 Scaling the number of Relationship Components
Average Time per Operation

The results of the average time per operation when scaling the number of Rela-
tionship Components (including best, average and worst case scenarios, imple-
menting both singleton and new instance) are detailed in table 8.8 and figures
8.9 and 8.10. These results indicate that the overall performance impact of mul-
tiple Relationship Components is exponential (table 8.9 details their equations
and confidence values).

This exponential effect is only really observed when 50 or more Relationship
Components are implemented, regardless of the Relationship Component's in-
stantiation type. When one to 50 Relationship Components are observed in
isolation, a combination of linear and constant times results. This is best rep-
resented when roviewing the time taken to process one best case new instance
Relationship Component (0.023 seconds), compared to 50 best case new instance
Relationship Components (0.027 seconds). This indicates that the data struc-

. ture used to store and find Relationship Components is tatlored to a smaller

184

£ i
L 25-] "]
M et |
E 20 | |lwaoe'
= | Fwors
]
1 |
15-4
=i f—
-
5] |
G- 0 1 0 . 0 d
1 mn 50 100 Sho 1000 5000 10000 50000
Numbaer of Clones witbin Clone Lt

Figure 8.8: Percentage of Average Operation Time taken by the Clone Distri-
bution Manager

No. of Singleton New Instance
[RCs best, average | worst [l best average | worst
1 0.02 0.0271 | 0.0238 || 0.0213 | 0.027 0.026
5 0.0233 | 0.026 0.023 | 0.0254 | 0.0246 | 0.0239
10 0.0206) 0.034 0.0259 1] 0.023 | 0.0397 | 0.0254
50 0.0274 | 0.0406 | 0.0522 || 0.0276 | 0.0431 | 0.044
100 0.0384 § 0.0631 | 0.0777 || 0.0428 | 0.0627 | 0.0751
500 0.3604 | 0.49 0.5605 (| 0.3728 | 0.4731 | 0.6097
1000 1.375 1 1.736 1.869 | 1.3687 | 1.734 1.953

Table 8.8: Average Time per Operation for Singleton and New Instence Rela-
tionship Components

185

?15 //
i ' -
le // /.
g 1 // /
;u /i v
e o et
~ o ,//‘(//
u‘%j, -

Figure 8.9; Average Time per Operation for Singleton Relationship Compo-
nents

N\
N

N
N

N
\

7 7

lom-ben |

Averacs Thma par oparktion {Ssconds)

) s e
) e

. Pid

. e

300 400 500 o 00 400 B0 1000
Nursber of Hew Antationsiin &

Figure 8.10: Average Time per Operation for New Instance Relationship Com-
ponents

T _
186
Instantiation Type | Case Equation Confidence |
— B | B2 — 09719 |
New Instance Best y = 0.0249¢V %% | B4 =0.9719 !

Average | y = 0.034e7%0%2= | RZ = 0.9637
Worst | y = 0.082¢"%0%5% | R? = 0.9446
Singleton Best y = 0.023e900%E T RZ - 0.9/3

Average | y = 0.033¢%9%5% | R =(.9653
Worst | y = .00325¢7%%%% | R* = 0.9391

Table 8.9: Average Time per Operation Exponential Functions (Relationship
Components)

subset of elements. When the number of elements increases, the inadequacy of
this data structure is illustrated via a relative increase in processing times.

Time of Relationship Component Processing

To further evaluate the average time per operation, the time associated with
Relationship Component Processing is isolated. The resulting time of Relation-
ship Component Processing (table 8.10), show a similar exponential effect (table
8.11) as the average time per operation. These values have not been averaged
over 100 operations as with the previous experiment. Instead, they directly
illustrate the actual time taken by Relationship Component Processing.

No. Of Singleton New Instance

RCs best average | worst best average | worst

1 0.4307 | 0.4807 | 0.3304 | 0.3304 | 0.3605 | D.6090

5 0.3305 | 0.37 0.4006 [/ 0.3505 | 0.3705 | 0.390F |
10 0.3405 | 0.3805 | 0.4306 | 0.3705 |04 0.45G7

50 0.7411 | 0.831 0.8013 [[0.7711 [0.8815 | 0.8912
100 1.9228 | 2.163 2.1231 | 2.042 2.0936 | 2.2933
500 3443 39.877 | 39.076 | 35.921 | 38.275 | 42.6613
1000 135.935 | 154.45 | 156.031 || 135.174 | 156.334 | 162.1932

Table 8.10: Time of Relationship Component Processing for both Singleton and
New Instance Relationship Components

Unlike the average time per operation, the exponential effect is not exhibited
until 100 or more Relationship Components are instantiated. From 50 to 100
Relationship Components, the time taken only doubles, in accordance with the
proportional increase in Relationship Components (linear). However, from 100

187

Instantiation Type | Case Equatinn Confidence
New Instance Best | y=0.5244%000 | RZ = (.9217
Average | y = 0.5628¢"0%% | R? = 0.327
Worst | y=0.666e""5% | R = 0.927
Singleton Best y = 0.5264<70052F | R? = (.9274
Average | y = 0.5902¢"°"%% | R? = ().926
Worst | y = 0.57395e%902T | R2 = 0.926

Table 8.11: Average Time of Relationship Component Processing per Opera-
tion, Exponential Functions (Rejationship Components)

to 50C Relationship Components, the time taken increases by approximately a
factor of 20 (Relationship Components only increase by a factor of 5).

Time of Partial Relationship Component Processing

As stated in section 5.2.6, the Relationship Component Processing was designed
to impose additional cost only when necessary. So that if the cuzrent scenario of
an existing Relationship Componeaut is valid, then the Relationship Component
Processing stops early. Figures 8.11 and 8.12 illustrate the average time per
operation when only partial Relationship Component Processing for both sin-
gleton and new instance Relationship Components is usded. In addition to best,
average and worst case scenarios, a random case scenario is added. A random
case scenario illustrates a Relationship Component that randomly changes its
validity. It is primarily used to highlight partial Relationship Component Pro-
cessing.

The results in table 8.12 show that partial Relationship Component Processing
are either linear (worst and average case scenarios) or constant (best and ran-
dom case scenasios). These results are critical in illustrating the scalability of
the GLOMAR ‘middleware, as they illustrate that even with a large number of
input parameters, the effect of GLOMAR is minor (in a stable environment).

Time of Instantiation

This experiment determines the effect of the different instantiation types (sin-
gleton and new instance) upon performance. A comparison of different instan-
tiation types for the best, average and worst case scenarios as seen in earlier
experiments fails to determine any performance impact associated with average

188

e WS
| == bt

i

i / 4 avorage
045 im—tandom |

|

t /

Aversge TIme per oparalion [Seconde)

Figure 8.11: Average Time per Operation for Singleton Relationship Compo-
nents when only Partial Relationship Component Processing is invoked

| A
e

0.5 e

E —
| e

——woit
il]

//‘ e pearae

== random

008 -

[100 200 0 L] 500 L] 700 Lo 200 1000
Humber of Hew L Asintk

Figure 8.12: Average Time per Operation for New Instance Relationship Com-
ponents when only Partial Relationship Component Processing is invoked

189

Instantiation Type | Case Equation Confidence |
New Instance Best y = 0.0191
Average | y = 0.0001z + 0.0263 | B° = 0.991

Worst y = 0.0003x + 0.0198 | R* = (.9994
Random | y = 0.0194
Singleton Best y = 0.0178
Average | y = 0.0001z 4 0.0251 | R® = 0.9975
Worst y = 0.0003x + 0.028 | R* = 0.9986
Random | y = 0.0217

Table 8.12: Average Time per Operation Equations when only Partial Rela-
tionship Component Processing is invoked

time per operation. Primarily, this is because the Relaiionship Component Pro-
cessing is called only once by the first operation, with the remaining operations
absorbing the cost (as the cost is averaged over 110 operations).

However, with the random case scenario, the impact becomes more noticeable.
Figure 8.13 demonstrates that as the number of Relationship Components in-
creases, the cost associated with creating a new instance type, impacts greatly
upon performance compared to that of a singleton type. However, this impact
is only observed when the number of Relationship Components is greater than
100.

-]

2

\

S Empetn

g

2

Average Tims pas opanition {Seconds}

|

Figure 8.13: Instantiation Time with Singleton and New Instance Relationship
“Jompouents within a Random Case Scenario

.

190
8.5 Conclusion

The resclts from all these experiments determine the cost of using the GLO-
MAR middleware layer. The following section outlines the suitability o' the
proposed and implemented algorithms, as well as the effect of scaling the nuri-
ber of Relationship Components and Clones. Finally, a threshold for Clones
and Relationship Component numbers is determined.

8.5.1 Imnitiation of the GLOMAR middleware layer

The linear relationship (section 8.3) for both memory consumption and time of
the initiatiou of the GLOMAR middleware layer would suggest that GLOMAR
could adequately handle many Clones and Relationship Components. Assuming
memory is abundant ! and waiting time during the initiation of the GLOMAR
middleware layer is acceptable, then a recommended limit on the number of
Clones apg “rlationship Components is not necessary. Thus, GLOMAR's ini-
tiation is a 5 .itable mechanism that does not greatly affect the performance of

the DFS.

However, it should be noted that Clones and Relationship Components do not
affect performance and resource usage equally, as Relationship Components
impact greater on the overall periormance than Clones. For example, 50 Clones
add ‘2.3 seconds to initiation, whereas 50 Relationship Components add 4.8
seconds. In addition, these results only reflect Relationship Components that
have minimal actual consistency maintenance functionality packaged inside.

salistically, Relationship Component implementations would have additional
application-specific code that woulid effect the time and memory consumption
of the GLOMAR middleware layer during its initiation.

8.5.2 Processing an Operation

The initiation of the GLOMAR middleware layer is less important to the overall
usage of GLOMAR when compared to pméessing of operations. Unlike the
initiation of the GLOMAR middleware layer where waiting for extended periods
is acceptable, the ramification of time delays upon the processing of an operation
is critical to GLOMAR’s efficiency.

In relation to the scaling of the number of Clones, the results would suggest that
one to 5,000 Clones have an equal effect upon performance (section 8.4.1). For

I'This is based on the assumption that GLOMAR, exists on a desktop or server type device

1

1N

any number larger than 5,000 Clones, there is a noticeable impact on perfor-
mance. Realistically, the cost is only minimal, with 50,000 Clones only adding
zpproximately 0.9 seconds per operation. However, 5,000 or less Clones would
be a recommended quantity.

The effects of scaling the number of Relationship Components have far wider
implications for average time per operation than with Clones. This is because
the cost of using a Relationship Component is far greater than that of a Clone.
This is since the cost associated with processing a Relationship Component js
more than that of a Clone.

The performance of the average time per operation (section 8.4.2) changes from
linear to exponential when the number of Relationship Components exceeds 50
to 100 implementations. Implementing one tc 50 Relationship Components
shows no quantifiable difference in performance, as the time in these cases
is approximately 0.03 seconds per operation. Thus, 50 or less Relationship
Components would be a recommended quantity. Implementing 50 to 100 Re-
lationship Components has a small impact upon performance, but in certain
situations, this might be acceptable (the cost is approximately 0.06 seconds
per operation). From 100 to 1,000 Relationship Components, the average time
per operation outweighs any benefits had bv the rultiple consistency model ap-
proach. In this case, the average time per operation for a best case scenario with
1,000 Relationship Components is 0.37 seconds. This performance degradation
impacts the scalability of the GLOMAR middleware layer and is unacceptable
for most DFS implementations. However, the likelihood of 100 Relationship
Components or more being simultaneously implemented is very low.

These recommended quantities for Clones and Relationship Components are
because operations result in all events within the Relationship Component Pro-
cessing being invoked. In reality, the Relationship Component Processing has
been designed to only implement as much functionality as necessary to fulfil
the task of selecting the appropriate Relationship Component. As a result, and
depending on the situation, additional Relationship Components and Clones
could be implemented without incurring noticeable cost. This was illustrated
in the fact that the impact of partial Relationship Component Processing is

minimal {section 8.4.2).

The cost associated with instantiation types shows an additional cost coupled
with the implementation of a new instance Relationship Component (section
8.4.2). However, this cost mcreases considerably in an environment where the

192

scenario is constantly changing (and thus Relationship Componetts are con-
stantly stopped and started). Rather, if the scenario is relatively stable, then
there is no major impact on performance because of the different instantiation
types. However, if the scenario is unstable, then the implication for performance

is noticeable,

Currently, the implementation targets a mid range of input parameters, primar-
ily focusing on demonstrating the feasibility of the multiple consistency model
approach. However, the GLOMAR middleware layer can be fine-tuned to fo-
cus on performance. This is not to say that the current implementation fails
to address performance issues. However, different implementers might choose
to implement different data structures and container types more attune to the
requirements of a specific implementer or system. An illustration of this is the
poor performance seen as a result of a large number of Clones. An obvious
solution would be a more appropriate data structure than a serial list (XML}
used to represent Clones.

8.6 Overall

The results from these experiments show the efficiency of the GLOMAR mid-
dleware layer, in the face of varying numbers of Relationship Components and
Clones. These quantifiable results, in conjunction with the qualitative analy-
sis from Chapter 7 demonstrate GLOMAR as both an efficient ancd effective
implementation of the multiple consistency model approach,

8.7 Summary

This chapter has discussed the cost issues associated with the .NET imple-
mentation of the GLOMAR middieware layer. The experiments showed how
scaling of two input parameters (the number of Clones and the number of Re-
lationship Components) affect the GLOMAR middleware layer. From these
experiments, the cost of the initiation of the GLOMAR middleware layer and
the cost of processing an operation were determined. The results outline the
potential for GLOMAR to scale (up to a particular point}), a recommended
number of Relationship Components and Clones and validates the proposed
and developed algorithms to support the multiple consistency model approach.
The next chapter concludes this thesis, outlining the major contributions and
future work. '

193
Chapter 9
L
Conclusion
This dissertation discusses the motivation, conceptual architect .. ‘=sign, im-
plementation and evaluation of a component-based framework i.. -+ ntaining

consistency of data objects within a heterogeneous DFS, called GLOMAR.

The motivation for GLOMAR, stems from a number of issues associated with

the implementation of consistency maintenance and concurrency control within
a DFS.

Existing approaches primarily focus on servicing the corsistency and concur-
rency needs of a single scenario only, whether that being user, hardware or
application-specific. However, current DFS environments exhibit more than a
single scenario. Rather, they are an amalgamation of multiple scenarios co-
existing simultaneously. For this reason, an approach targeted specifically at
a single scenario t0 manage consistency maintenance and concurrency control
does not service the needs of current or future DFSs.

This dissertation proposes and implements a component-based framework to fa-
cilitate the servicing of multiple scenarios within a single DFS implementation
concurrently. ‘This is primarily achieved by abstracting the consistency mainte-
nance and concurrency control mechanisms from the operating system and/or
application, then re-implementing them as components. Depending upon the
scenario experienced by the DFS, the appropriate consistency maintenance and
concurrency control mechanism is invoked. This not only provides of level of
adaptation for the DFS, but enough flexibility to allow additional consistency
maintenance and concurrency conirol mechanisms to be added, when necessary.

The clements of the GLOMAR framework includes the component to house
the consistency maintenance and concurrency control mechanism (Relationship
Components) and the middleware layer used to manage them at run-time,

194

This dissertation also analysed both the Relationship Component and middle-
ware layer to determine the efficiency and effectiveness of the implementation.
This analysis consisted of three case studies (two gencric Relationship Com-
ponents and one application-specific Relationship Component), each tailored
for a different scenario, These case studies, in conjunction with an analysis of
the efficiency of the GLOMAR middleware layer, demonstrate the flexibility
and feasibility of the GLOMAR framework in relation to the management of
different consistency maintenance and concurrency control mechanisms.

9.1 Contribution of this Dissertation

From review of the literature, this dissertation is the first atterapt to propose,
design and implement a middleware layer, coupled with a component-based
framework, to manage consistency maintenance and concurrency control, as
implemented within a DFS, using the multiple consistency model approach.
The contribution of this work is summarised below.

The contribution of GLOMAR includes:

e A multiple consistency maodel approach to support diverse ap-
plications and scenarios running on top of a DFS was proposed.
The GLOMAR framework illustrates how different scenarios and multiple
solutions could be defined and serviced. This met the aim of supporting
multiple concurrency control and consistency maintenance within a het-
erogeneous environment.

¢ Consistency maintenance and concurrency control funciionality
was specified and abstracted into a Relationship Component.
Primarily, the case studies in Chapter 7 showed how different consistency
models were implemented within the Relationship Component. All three
case studies were unique, whether being simple, complex, or application-
specific. However, each consistency maintenance and concurrency control
mechanism and associated elements were successfully encapsulated within
the Relationship Component. This met the aim of being able to streamline
and thus encourage the development of Relationship Components such
that new and unique implementations were achieved.

s The flexible and effective design of the Relationship Compo-
nent enabled current and future consistency maintenance and
concurrency conirol functionality to be supported. The varying

195

nature and structure of the case studies detailed in Chapter 7, illustrate
the flexibility and eflectiveness of the design of the Relationship Compo-
nent. Not only were the scenarios for which they were valid able to be
defined, but their scope and functionality were not restricted. This is ilius-
trated in the ROWA Relationship Component implementation, as it was
targeted to be a generic concurrency control and consistency maintenance
mechanism. This is opposed to the Qutlook Relationship Component im-
plementation, which was targeted at a single application and a specific
data set. The Twin Transaction Model Relationship Component illus-
trated the implementation of an existing consistency model, showing how
it could be encapsulated as a Relationship Component. This met GLO-
MAR’s aim of flexibility, configurability and the motivation to support

fine grein concurrency control and consistency maintenance mechanisms
within a DFS.

The GLOMAR framework demonstrates how software engineecr-
ing practices can be integrated into the construction of consis-
tency maintenance and concurrency control functionality. The
process of constructing consistency maintenance and concurrency control
functionality was streamlined via well-defined components, interfaces and
tools. This impacted positively on Relationship Component creation, as
code was shared across implementations and Relationship Components
were deployed simply. A direct illustration of this was the sharing of the
Relationship Scope for the Twin Transaction Model Relationship Com-
ponent and the ROWA Relationship Component. Thus, the aim of ex-
ploiting software engineering practices was illustrated via the many Rela-
tionship Component implementations.

The feasibility of the multiple consistency model approach was
demonstrated with a full-scale implementation. The GLOMAR
framework was used to govern the consistency of files within a real life
system. It was actively used to ensure that replicas of files where up-to-
date within a small DFS,

The flexibility of GLOMAR in regards to diverse Relationship
Component implementations was demonstrated. Each Relation-
ship Component implementation used different techniques and different
functionality to achieve their concurrency control and consistency main-
tenance requirements. Of particular interest was the wide range of tech-
niques used by all the Relationship Components. These including, web

196

service technologies (SOAP and WSDL), client-server and peer-to-peer ar-
chitectures and application-specific functionality (using the Outlook COM
object). This demonstrated how the aim of flexibility and heterogeneity
were supported, as the implementation possibilities were nof restricted.

A balance has been achieved between consistency and resources
usage through implementation of appropriate consistency mod-
els. The ability to balance consistency and resource usage stems from
the motivation to provide fine grain support for concurrency control and
consistency maintenance. The Outlook Relationship Component demon-
strated this with an application-specific Relationship Component, exploit-
ing application-specific data and events. This resulted in a very fine grain
level of consistency maintenance being achieved, without greatly compro-
mising resource usage (in this case bandwidth).

Analysis of the scalability of the GLOMAR middleware layer
was demonstrated. The evaluation within Chapter 8 illustrated that
the perceived cost of implementing the middleware, in turn the multiple
consistency model approach was negligible. The resuits showed that when
implementing a realistic number of Clones (5,000) and Relationship Com-
ponents (50), the GLOMAR. middleware layer does not greatly impact
performance such that the beneficial qualities of the multiple consistency
model approach were compromised. .

To support the Relationship Component development method-
ology (thus the creation of consistency maintenance and concur-
rency control mechanisms), class libraries, types and Adminis-
tration Console have been created. The class libraries, types and
Administration Console supplied with the GLOMAR framework made
the creation and editing of Relationship Components more efficient. This
usage was illustrated by the Relationship Component implementations
defined in Chapter 7, as new and existing concurrency control and consis-
tency maintenance functionality were easily added to GLOMAR. Thus,
by defining types and classes to be used, a development methodology and
specification for the creation of consistency maintenance and concurrency
control mechanisms resulted.

To provide the infrastructure to support Relationship Compo-
nents. An aim of GL.OMAR was to focus development on the diflering
aspects of a. DFS. This was achieved via two mechanisms. The first was
via the Relationship Component, and its specific scoping, to only service

197

toncurrency control and consistency maintenance. The second was via
the services found within the GLOMAR middleware layer. The unique
aspect of the GLOMAR middleware layer was the ability to extend easily
these services, such that generic services and/or Relationship Component |
specific services could be implemented. As a result, this provided the
mechanisms to support Relationship Component implementations. As
shown in Chapter 7 and was specifically lustrated in the Twin Trans-
action Model Relationship Component, Relationship Component specific
services were added to enhance the capabilities of the Twin Transaction
Model Relationship Component.

9.2 Future Work

Much of the possible future work arises from applying the GLOMAR framework
to platforms other than a DFS. For example, if the multiple consistency model
approach were applied to other platforms (DDBMS or DSM) then expansion
work would require overhauling some of GLOMAR’s major design features.
The lack of support for transaction semantics is one case in point. Thus, an
area of future work would involve porting GLOMAR’s approach to different
distributed systems platforms.

The steps within GLOMAR’s Relationship Component Processing (section 5.2.6)
intends to provide a balance between cost (time) and Relationship Component
selection. However, in certain situations, the focus upon performance affects the
Relationship Component selection to the detriment of the application and/or
user. Thus future work might consider improving Relationship Component Pro-
cessing, such that a balance can be structured between time imposed to process
a selection and the appropriateness of that seleciion.

One example of the limitations of Relationship Component Processing is the
lack of structure between related Relationship Components. The main con-
cern is since no formal structure has been defined between related Relationship
Component (for example, a connected and disconnected consistency model),
there is no way to ensure that appropriate components interact. A solution
could be to redesign Relationship Component Processing and extend the Re-
lationship Component’s metadata, such that Relationship Components can be
loosely coupled. In other words, so when it is time to select an appropriate
Relationship Component to implement, preferential treatment is given to any
related components. However, an issue like how this is to be implemented and

198

how this relationship is represented, such that flexibility is not reduced, makes
this a difficult undertaking.

Finally, areas of future work could also include improving the current Context
Provider implementations and implementing GLOMAR using a native code
compiler. The purpose of both approaches would serve only to improve the
performance of GLOMAR and nothing more. However, this benefit is unsub-
stantiated at this point.

9.3 Final Remarks

This dissertation has shown an effective and efficient mechanism to support
true heterogeneity (whether being hardware, software or user), using a scenario
based approach that encapsulates multiple concurrency control and consistency
maintenance mechanisms concurrently. This dissertation has also proposed,
developed and illustrated the ability to apply a component-oriented architecture
to concurrency control and consistency maintenance functionality within a DFS,
such that the scope and granularity of consistency can be adjusted accordingly.

199

Glossary

.NET Remoting Infrastructure The Remoting Infrastructure enables com-
munication between objects in different application domains or processes
using different transportation protocols.

API Application program inter{ace.
Availability The process used to improve the availability of data objects.
COM Microsoft’s Component Object Model

COM Add-In A COM based module used to extending existing applications.
For example, extending any of the Microsoft Office applications.

Component A binary unit of independent production, acquisition and deploy-
ment that interact to form a functioning system (Szyperski 1997).

Concurrency Control Concurrency control is the process used to identify
and resolve updates to data that are made by multiple users simuliane-
ously.

Consistency Maintenance Consistency maintenance is the process of en-
suring that events that manipulate data on one replica are visible on all
others, thus making them correct.

consistency model (lower case) The consistency model is the concurrency
control and consistency maintenance mechanism.

Consistency Model (upper case). This sub-component contains a single con-
currency control and consistency maintenance mechanism (in other words
a consistency model).

Context Provider The mechanisms used to derive specific information about
the current status of the system.

Clone Within GLOMAR, data objects and encapsulating types are referred
to as Clones. The reason for using this term is that GLOMAR views
distributed data objects as clones of each other

Clone Distribution Manager The GLOMAR middleware layer service that
manages all Clone related activities. These activities mainly include name
resolution,

200

Clone List This sub-component defines the governed data objects.
DDBMS See Distributed Database Management System.

DFS See Distributed File System.

DSM See Distributed Shared Memory.

Distributed Database Management System A Distributed Database Man-

agement System is a database management system that replicates data
objects to improve availability and performance.

Distributed File System A Distributed File System is a file system that
replicates data objects to improve availability and performance.

Distributed Shared Memory A Distributed Shared Memory is a memory
system that replicates data objects to improve availability and perfor-
mance.

Distributed System A Distributed System comprises a number of computing
nodes connected via a communication network, each with a supportive
operating system. Messages are then passed between nodes to facilitate
the sharing of resources

Environmental Object The Environmental object contains a collection of
scenario types and actual values, which are then passed into the Rela-
tionship Scope of each Relationship Component. It is also referred to as
the shared data structure.

Executive The GLOMAR middleware layer service that manages file opera-
tions and Relationship Component implementations at run-time.

File System Tke File System is a collection of data objects that are persistent
until explicitly destroyed. File systems support four fundamental issues,
naming structure, programming interface, physicol mapping and infegrity.

GLOMAR A Component Based Framework for Maintaining Consistency of
Data Objects within a Heterogeneous Distributed File System.

GLOMAR Middleware Layer The middleware layer used to manage the
run-time implementation of Relationship Components.

GLOMAR Taxonomy The taxonomy used within GLOMAR for classifying
scenarios. The current taxonomy is based on System, User and File pro-
files.

Heterogeneous Environment A system that exhibits all manner of hard-
ware, software and users collectively and concurrently.

IL See Intermediate Language.

Local Operation Interface The GLOMAR middleware layer service that re-
ceived file operations from the local system.

201

Multil.)le Consistency Model Approach The approach where numerous con-
sistency models are available for implementation by a DFS.

New Instance Relationship Component A Relationship Component that
is created dynamically at run-time.

One-copy equivalence Data objects must be perceived as centralised, but
implemented distributed.

Operating System An Operating System is the software that an application,
uses to communicate with 1he physical part of the computer.

Remote Operation Interface The GLOMAR middleware layer service that
received file operations from a remote system.,

Reflection Reflection is the mechanism of discovering class information and
instantiating classes solely at run-time.

Relationship Component The component containg the concurrency control
and consistency maintenance functionality. In addition, it contains the
description of the scenario for which this component is valid. Contains
the sub-components, Consistency Model, Relationship Scope and Clone
List.

Relationship Component Processing The name of the process of selecting
the appropriate Relationship Component to invoke based on the current
scenario.

Relationship Component Repository The GLOMAR middleware layer ser-
vice that implements and manages all Relationship Component implemen-
tations.

Relationship Scope The sub-component that defines the scenario for which
it is valid.

Remoted Service A GLOMAR middleware layer or user-specific service that
uses the .NET Remoting infrastructure.

Replication Replication is the placement and management of replicated file
objects for improving the availability, performance and usability of data
objects.

Replica Placement The process of determining the most appropriate loca-
tion for a replicated data object.

Service Manager The GLOMAR middleware layer service that implements
all user-specific services.

Single Consistency Model Approach The approach where a single consis-
tency models is available for implementation by a DFS.

Singleton Relationship Component A Relationship Component that is ref-
erenced from an existing Relationship Component.

202
0 203

Scenario A scenario is used to describe the elements and situation that is/can
be experienced by a DFS environment.

System Grader The GLOMAR middleware layer service that determines the
current scenario.

TTM See Twin Transaction Model

Bibliography

Twin Transaction Model The Twin Transaction Model is a consistency model
developed by (Rasheed 1999).

URI Universal Resource Identifier.

XML Web Service An XML based method of invocating functionality on
remote machine.

Abbadi, D. Skeen, and F. Christian (1985). An efficient fault tolerant
protocol for replicated data management. In Proceedings of the Fourth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
March 25-27, 1985, Portland, Qregon, pp. 215-229. ACM.

Agrawal, D. and A, E. Abbadi (1990). The tree quorum protocol: An efficient
approach for managing replicated data. In D. McLeod, R. Sacks-Davis,
and H.-J. Schek (Eds.), 16th International Conference on Very Large Data
Buases, August 18-16, Brisbane, Queensland, Australia, Proceedings, pp.
243-254.

Alonso, R., D. Barbara, and H. Garcia-Molina (1990, Sep). Data caching
issues in a information retrieval system. ACM Transaction on Database
Systems 15(3), 359-384.

Alonso, R., D. Barbard, H. Garcia-Molina, ar.d S. Abad (1988). Quasi-
copies: Efficient data sharing for information retrieval systems. In J. W.
Schmidt, S. Ceri, and M. Missikoff (Eds.), Advances in Database Technol-
ogy - EDBT’88, Proceedings of the International Conference on Egztend-
ing Datobase Technology, Venice, Ialy, March 14-18, 1988, Volume 303
of Lecturc Notes in Computer Science, pp. 443-468. Springer.

Alsberg, P. A. and J. D. Day (1976). A principle for resilient sharing of
distributed resources. In 2nd International Conference on Software Engi-
neering, 13-15 October , San Francisco, California, pp. 627-644,

Apple Computer, I. (1985). Inside Macintosh, Volume II. Addison Wesley.

Badrinath, B. R., A. Acharya, and T. Imielinski (1993). Impact of mobility
on distributed computations. Operating Systems Review 27, 15-20.

Baker, M., J. Hartman, M. Kupfer, K. Shirriff, and J. Qusterhout (1991,
October). Measurements of a distributed file system. In Proceedings of
13th ACM Symposium on Operating Systems Principles, pp. 198-212.
Association for Computing Machinery SIGOPS.

204

Barbara-Milla, D. and H. Garcia-Molina (1994, April). Replicated data man-
agement in mobile environments: Anything new under the sun? In IFJP
Working Conference on Applications in Parallel and Distributed Comput-
ing, pp. 237-24G.

Bernstein, P. and N. Goodman (1984)}. An algoritbm for concurrency control
and recovery in replicated distributed databases. ACM Transaction on
Database Systems 9(4), 586 — 615.

Bernstein, P. and N. Goodman (1986). Serializability theory for replicated
databases. Journal of Computer and System Sciences 31(3), 355-374.
Berstein, P., V. Hadzilacos, and N. Goodman (1987). Concurrency Control

and Recovery in Database Systems. Addison-Wesley.

Boling, D. (1998). Programming Microsoft Windows CE. Microsoft Press.

Borghoff, U. M. and K. Nast-Kolb (1989). Distributed systems: A com-
prehensive survey. Technical Report Report No TUM-I8909, Technische
Universitit Miinchen.

Box, D. (1998). Essential COM. Object Technology Series. Addison Wesley.

Brown, N. and C. Kindel {1998). Distributed component object model
protocol—dcom/1.0. http://www.microsoft.com/com/, microsoft: corp,
network working group internet draft,

Burns, R. C. and D. D. E. Long (1997). Efficient distributed backup with
delta compression. In I/0 in Parallel and Disiributed Systems, pp. 27-36.

Burrows, M, (1988). Efficient Date Sharing. Ph. D. thesis, Computer Labo-
ratory, University of Cambridge.

Byrne, R. (2001). Building Applications with Microsoft Outlook Version 2002.
Microsoft Press.

Caron, R. (2002). Getting started with xml. web services in
visual studio net, http://msdn.microsoft.com/library/en-

us/dv_vstechart/html/vbichgettingstartedwithxmlwebservicesinvisualstudionet.asp.

Ceri, S., M. A. W, Houtsma, A, M. Keller, and P. Samarati (1991). A clas-
sification of update methods for replicated databases, Technical Report
CS-TR-91-1392, Stanford University, Computer Science.

Chandra, B. R. and J. R. Larus (1999). Teapot: A domain-specific language
for writing cache coherence protocols. IEEE Transactions on Software
BEngineering 25(3).

205

Comer, D. (1995). Internetwroking with TCP/IP. Volume I Principles, Pro-
tocols and Architecture. Prentice Hall,

Coulouris, G., J. Dollimere, and 7T. Kindberg (2001). Distributed Systems:
Concepts and Design. Addison Wesley. ’

Cuce, S. (1999, November). Conflict avoidance within a disconnected mobile
environment. In Proceedings of the 6th Australian Conference on Parallel
and Real-Time Systems (PARTS99).

Cuce, S. and A. Zaslavsky (1998a, December). Adaptive cache validation
for mobile file systems. In Lecture Notes in Computer Science, Springer-
Verlag, INCS 1552.

Cuce, S. and A. Zaslavsky (1998b). Partially consistent cache management
model for a mobile environment. In fst Annual South African Telecom-
munications, Networks and Applications Conference (SATNAC98).

Cuce, S. and A. Zaslavsky (2002a, January). Adaptable consistency control
mechanism for mobility enabled file system. In 3rd International Confer-
nce on Mobile Data Management (MDM 2002), Singapore.

Cuce, S. and A. Zaslavsky (2002b). Run-time file system consistency sup-
port in mobile computing systems. In 2nd Asian International Mobile
Computing Conference. (AMOC02) Langkows, Malaysia.

Cuce, S., A. Zaslavsky, B. Hy, and J. Rambhia (2002, September). Main-
taining consistency of twin transaction model using mobility-enabled dis-
tributed file system environment. In 5th International Workshop on Mo-
bility in Databases and Distributed Systems in conjunction with the 13th
Internetional Conference on Database and Ezpert Systems Applications
(DEXA?2002). Aiz-en-Provence, France.

Davidson, S. (1982). Anr Optimistic Protocol for Pertitioned Distributed
Database Systems. Ph. D. thesis, Dept. of EECS, Princeton University.

Demers, A. J., K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and B. B. Welch (1994, December 8-9). The bayou architecture: Support
for data sharing among mebile users. In Proceedings IEEE Workshop on
Mobile Compuiing Systems & Applications, Santa Cruz, California, pp.
2-7.

DOS (1983). Disk Operating System, Version 2.1. 1502343. IBM Corpora-
tiom.

Dwyer, D. (1998a). Adaptive File Sysiem Consistency for Mobile Computing
Environment. Ph. D, thesis, University of Illinois at Urbana-Champaign.

206

Dwyer, D. (1998b, September). Adaptive file system consistency for unreli-
able mobile computing environments. In JEEE International Computer
Perfermance and Dependability Symposium, pp. 64-173.

Dwyer, D, and V. Bharghavan (1997, Jan). A mobility-aware file system for
partially connected operations. Operciing Systems Review 31(1), 24-30.

Eager, D. and K. C. Sevcik (1983). Achieving robustness in distributed
databasc systems. ACM {ransaction on Database Systems §(3), 354-381.

ECMA (2001). Ecma c# and common language infrastructure standards -
http://www.ecma.ch/ecmal /stand /ecma-335.htm.

Edwards, W. K., E. D. Mynatt, K. Petersen, M. J. Spreitzer, D. B. Terry, and
M. M. Theimer (1997). Designing and implementing asynchronous collab-
orative applications with bayou. In Proceedings of the ACM Symposium
on User Interface Sofiware and Technology, Asynchronous Collaboration,
Pp. 119-128,

Faiz, M. (1995). Database replication strategy in mobile computing environ-
ment. Master’s thesis, Computer Technology, Monash Unjversity.

Flenner, R. (2002). Java P2P Unleashed. Sams Publishing.
Galli, D. (2000). Distributed Operating Systems. Prentice Hall,

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patierns,
FElements of Reusable Object-Oriented Softwares. Addison-Wesley.

Giflord, D. K. {1979). Weighted voting for replicated data. In Proc 7th Symp.
on Operating Systems Principles, pp. 150-162.

Gill, D. S., S. Zhou, and H. S. Sandhu (1994). A case study of file system
workload in a large-scale distributed environment. In Measurement and
Modeling of Computer Sysiems, pp. 276-277.

GlowCode.Com (2002). Glowcode.net v4.0 memorydashboard -
htip:/ /www.glowcode.com/.
GNUTELLA. (2002). http://gnutella.wego.com.

Goodman, N., D. Skeen, A. Chan, U. Dayal, S. Fox, and D. Ries (1983). A
recovery algorithm for a distributed database system. In In Proceedings
of the 2nd ACM Symposium on Principles of Database Systems, pp. 8-15.

Gosling, J., B. Joy, G. Steele, and G. Bracha (2000). The Jave Language
Specification Second Edition. Boston, Mass.: Addison-Weslay,

207

Gough, J. and D. Corney (2000, September). Evaluating the java virtual
machine as a target for languages other than java. In Presented o the
Joint Modula Languages Conference, Zurich, Switzerland.

Gray, C. and D. Cheriton (1989). Leases: An efficient fault-tolerant mecha-
njsms for distributed file cache consistency. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pages 202-210.

Guy, R. G., J. S. Heidemann, W. Mak, J. Thomas W. Page, G. J. Popek,
and D. Rothmeir (1990, Summer). Implementation of the ficus replicated

file system. In Proceedings of the Summer 1990 USENIX Conference,
Ancheim, CA, pp. 63-72,

Guy, R. G., P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. J. Popek (1998).
Rumor: Mobile data access through optimistic peer—to—peer replication.
In Lecture Notes in Computer Science ~ Advances in Database Technolo-
gtes, pp. 264-265. Springer-Verlag,

Haerder, T. and A. Reuter (1983). Principles of transaction-oriented database
recovery. ACM Computer Surveys 15(4), 151-166.

Helal, A. Heddaya, and B. Bhargava (1996). Replication Techniques in Dis-
tributed Systems. Kluwer Academic Publishers.

Honeyman, P. and L. Huston (1995). Communication and consistency in
mobile file systems. IEEE Personal Communications 6(2).

Horton, M. and R. Adams (1995). Rfc 1036 - standard for interchange of
usenet messages. http://www.fags.org/rfcs/rfc1036.html.

Howard, J. (1988). An overview of the andrew file system. In Proceedings of
the USENIX Winter Technical Conference. Feb. 1988, Dallas, TX.

Huston, L. B. and P. Honeyman (1993, 2-3). Disconnected operation for
AFS. In Proceedings of the USENIX Mobile and Location-Independent
Computing Symposium, Cambridge, MA, pp. 1-10.

IRDA (2002). Irda guidelines. http://www.irda.org/standards/guidelines.asp.

Kistler, J. J. (1993). Disconnected Operation in a Distributed File System.
Ph. D. thesis, School of Computer Science, Carnegie Mellon University.

Kistler, J. J. and M. Satyanarayanan (1991). Disconnected operation in the
coda file system. In Thirteenth ACM Symposium on Operating Systems
Principles, Volume 25, Asilomar Conference Center, Pacific Grove, U.S.,
pp. 213-225. ACM Press.

208

Kuenning, G. (1994, December). Design of the SEER predictive caching
scheme. In Workshop on Mobile Computing Sysiems and Applications,
Santa Cruz, CA, US.

Kumar, A. (1991, May). A randomised voting algorithm. In JEEE 10th In-
ternational Conf. On Distributed Computing Systems. Arlington, TX, pp.
412-419.

Kumar, A. and A. Segev (1988). Optimising voting-type algerithms for repli-
cated data. In J. W. Schmidt, S. Ceri, and M. Missikoff (Eds.), Advances
in Datebase Technology - EDBT’88, Proceedings of the International Con-
ference on Ezxtending Daiabase Technology, Venice, Italy, March 14-18,
1988, Volume 303 of Lecture Notes in Computer Science. Springer.

Kumar, P, (1994). Mitgating the Effects of Optimistic Replication in Dis-
tributed File System. Ph. D. thesis, School of Computer Science, Carnegie
Mellon University.

Kumar, P: and M. Satyanarayanan (1995, January). Flexible and safe reso-
lution of file conflicts. In USENIX Association (Ed.), Proceedings of the
1895 USENIX Technical Conference: January 16-20, 1995, New Orleans,
Louisiana, USA, Berkeley, CA, USA, pp. 95-106 (or 95-103). USENIX.

Kung, H. T. and J. T. Robinson (1981). On optiﬁﬁstic methods for concur-
rency control. ACM Transaction of Database systems 6(2).

Lampson, B. and H. Sturgis (1976). Crash recovery in a distributed system.
Technical report, Xerox, Palo Alto Research Center. ’

Lei, H. and D. Duchamp (1997, January). An analytical approach to
file prefetching. In USENIX (Ed.), 1997 Annual Technical Conference,
Joanuary 6-10, 1997. Ancheim, CA, Berkeley, CA, USA, pp. 275-288.
USENIX.

Levy, E. and A. Silberschatz (1990, Dec). Distributed file systems: Concepts
and examples. ACM Computing Surveys 22(4), 321-374.

Lippman, S. and J. Lajoie {1998}, C++ Primer. Addison Wesley.

Liskov, B., S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams
(1991). Replication in the Harp file system. In Proceedings of 18th ACM
Symposium on Operating Systems Principles, pp. 226-38. Association for
Computing Machinery SIGOPS.

Liu, G. and G. Q. M. Jr. (1995, November). A predictive mobility manage-
ment algorithm for wireless mobile computing and communications. In

209

IEEE International Conference on Universal Personal Communications
(ICUPC’95), Tokyo, Japan.

Liu, G. and G. Q. Maguire (1994). A survey of caching and prefetching
techniques in distributed systerss. Technical report, TRITA-IT R 94:40,
Royal Institute of Technology (KTH), Department of Teleinformatics,
Telecommunication Systems Laboratory.

Ly, S., K.-W. Lee, and V. Bharghavan (1997). Adaptive service in mobile
computing environments. In Proc. 5th IFIP Int’l Wksp on QoS.

Macdonald, R. (2001). Understanding assem-
blies - http://msdn.microsoft.com/library /en-
us/dnvbdev01/html/vh01gl0.asp.

Mann, T., A. Birrell, A. Hisgen, C. Jerian, and G. Swart (1994, May). A
coherent distributed file cache with directory write-behind. ACM Trans-
action of Computer Systems 12(2).

Marzullo, K. and F. Schmuck (1988). Supplying high availability with a stan-
dard network file system. In Proceedings of the 8th International Confer-
ence on Distributed Computing Systems (ICDCS), Washington, DC, pp.
447-455. IEEE Computer Society.

Microsoft {1998). Programmer’s guide for activesync.

Microsoft {2000). Performance monitoring,

http://msdn.microsoft.com/library/en-us/exchserv/html/admnfunc_50mf.asp.

Microsoft (2002a). http://www.microsoft.com/windowsxp/default.asp.

Microsoft (2002b). .net for smart devices -
http://www.gotdotnet.com/team/netcf/.

Minoura, T. and G. Wiederhold (1982, May). Lesilient extended true copy
token scheme for a distributed database. IEEE Transaction of Software
Engineering 5(9), 173-189.

Mitchell, J. and J. Dion (1982). A comparison of two network-based file
servers. Communicaiion of the ACM 25(4}, 233-245.

Morris, J., M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and
F. Smith (1986). Andrew: A distributed personal computing environment.
Communications of the ACM 29(4), 184-201.

Mukherjee, A. and D. P. Siewiorek {1994, December). Mobility: A medium
for computation, communication and control. In IEEE Workshop on Mo-
bile Computing Systems and Applications,

210

Mummert, L., M. Ebling, and M. Satyanarayanan (1995). Exploiting weak
connectivity for mobile file access. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles, Copper Mountain Resort, CO.

Nagar, R. (1997). Windows NT File System Internals; A Developer’s Guide.
O'Reilly.

Nelson, M. N., B. B. Welch, and J. K. Qusterhout (1988). Caching in
the Sprite network file system. ACM Transactions on Compuler Sys-
tems 6(1), 134-154.

Netscape (1998). Netscape communicator plug-in guide

http://developer.netscape.com/docs/manuals/communicator /plugin/index.htm.

Noble, B. (2000, Feb). System support for mobile, adaptive applications.
IEEE Personal Communications 7(1).

Object Management Group, I. {1999). The common object request broker:
Architecture and specification. minor revision 2.3.1.

Oki, B. M. and B. H. Liskov (1988, Aug). Viewstamped replication: A general
primary copy method to support highly available distributed systems. In
Proc. Tth ACM Symp. on Principles of Disiributed Computing. Toronio,
Ontario, pp- 8-17.

Oney, W. (1999). Programming the Microsoft Windows Driver Model. Mi-
crosoft Press. .

QOusterhout, J. K., A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.
Welch (1988). The sprite network operating system. Computer Magazine
of the Computer Group News of the IEEE Computer Group Society, ;
ACM CR 8905-0314 21(2), 23-36.

Qusterhout, J. K., H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, and
J. G. Thompson (1985). Driven analysis of the unix 4.2 bsd file system.
In Proceedings of the 10th Symposium on Operating System Principles,
Orcas Island, WA, pp. 15-24.

Ozsu, T. and P. Valduriez (1991). Principles of Distributed Detabase Systems.
Prentice Hall.

Page, T., R. Guy, J. Heidemann, D. Ratner, P. Reiher, A. Goel, G. Kuenning,
and G. Popek {1998, February). Perspectives on optimistically replicated,
peer—to-peer filing. Soffware Practice and Ezperience 28(2), 155-180.

Parker, S., G. Popek, G. Rudisin, B. W. Allen Stoughton, E. Walton,
J. Chow, D. Edwards, S. Kiser, and C. Kline (1983). Detection of mutual

211

inconsistency in disiributed systems. Transactions on Software Engineer-
ing 9(3), 240-246.

Popek, G. and B. Walker (1985). The LOCUS Distributed Systemn Architec-
ture. MIT Press.

Psion (2002). http://www.psion.com/.

Rasheed, A. (1999). Twin-Transaction Model to Support Mobile Data Access.
Ph. D. thesis, School of Computer Science and Software Engineering,
Monash University.

Ratner, D. (1995). Selective replication : Fine-grain control of replicated files.
Master’s thesis, University of California.

Ratner, D. (1998). Roam: A scalable replication system for mobile and dis-
tributed compuling. Ph. D. thesis, University of California.

Ratner, D., G. J. Popek, and P. Reiher (1996, July). Peer replication with
selective control. Technical Report CSD-960031, University of California,
Los Angeles.

Ratner, D., P. Reiher, and G. Popek (1996, Oct). The ward model: A scalable
replication architecture for mobility. In OOPSLA 96 Workshop on Object
Replication and Mobile Computing (ORMC’96), San Jose, California.

Ratner, D., P. Reiher, and G. Popek (1997). Dynamic version vector main-
tenance. Technical Report CSD-970041, University of California.

Reiher, P., J. Heidemann, D. Ratner, G. Skinmer, and G. J. Popek (1994,
Summer). Resolving file conflicts in the Ficus file system. In USENIX
Association (Ed.}, Proceedings of the Summer 1994 USENIX Conference:
June 6-10, 1994, Boston, Massachusetts, USA, Berkeley, CA, USA, pp.
183-195. USENIX.

Rhodes, N. and J. Mckeehan (1999). Palm Programming. O’Reilly.

Rice, F. (2000). Building a com add-in for microsoft office xp us-
ing microsoft visual basic 6.0 - http://msdn.microsoft.com/library/en-
us/dnoxpta/html/odc_comaddinvbé.asp.

Ritchie, M. and K. Thompson (1978). The unix time-sharing system. The
Bell System Technical Journal 57(6), 1905-1929.

Roselli, D., J. Lorch, and T. Anderson (2000, June}. A comparison of file sys-
tem workloads. In Proceedings of 2000 USENIX Annual Technical Con-
ference, San Doego, California, USA.

212

Rosenthal, D. S. H. (1990, Summer). Evolving the Vnode interface. In
USENIX Association (Ed.), Proceedirigs of the Summer 1990 USENIX
Conference: June 11-15, 1990, Anaheim, California, USA, Berkeley, CA,
USA, pp. 107-118. USENIX.

Roxio (2002). http://www.roxio.com/en/products/ecdc/dcdfeatures.jhtml.

Saito, Y. and M. Shapiro (2002). Replication: Optimistic approaches. Tech-
nical report, HF* Laboratories, Pale Alto. HPL-2002-33.

Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon (1985). De-
sign and implementation of the sun network filesystem. In Proceedings of
the Summer USENIX Technical Conference, USENIX Assoc., Berkeley,
Calif, pp. 119-130.

Satyanarayanan, M. (1989). Coda: A highly available file system for a dis-
tributed workstation environment. In Proceedings of the Second IEEE
Workshop on Workstation Operating Systems. Pacific Grove, CA.

Satyanarayanan, M. (1990). A survey of distributed file systems. Annu. Rev.
Computer Science 4, 73-104,

Satyanarayanan, M. (1996, May). Fundamental challenges in mobile comput-
ing. In Fifteenth ACM Symposium on Principles of Distributed Comput-
ing, Philadelphia, PA.

Satyanarayanan, M., J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and
D. C. Steere {1990). Coda: A highly available file system for a distributed

workstation environment. IEEE Transactions on Computers 39(4), 447~
459.

Satyanarayanan, M., B. Noble, P. Kumar, and M. Price (1995). Application-
aware adaptation for mobile computing. Operating Systems Review 29,
7.

Schlichting, R. and F. Scheider (1983). Fail-stop processors: An approach

to designing fault-tolerant distributed computing systems. ACM Trans-
action on Computer Systems 1(3), 222-238.

Severance, D. and G. Lohman (1976). Differential files: Their apﬁlication
to the maintenance of large databases. ACM Transactions on Datobase
Systems 3(1), 256-267.

Solomon, D. and M. Russinovich (2000). Inside Windows 2000. Microsoft
Press.

213

Srinivasan, P. (2001). An introduction to microscfi .met re-

moting framework - hitp://medn.microsoft.com/library /en-
us/dadotnet/html/introremoting,asp.

Stonebraker, M. and E. Neuholf (1979). Concurrency control and consistency
of multiple copies of data in distributed INGRES. IEEE Transaction on
Software Engineering 3(3), 188-194.

Szyperski, C. (1997). Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley.

Tait, C. D. (1993, August). 4 File System for Mobile Computing. Ph. D.
thesis, Graduate School of Arts and Sciences. Columbia University.

Tait, C. D. and D. Duchamp (1991). Service interface and replica manage-
ment algorithm for mobile file system clients. In Proceedings of the First
International Conference on Parallel and Distributed Information Sys-
tems (PDIS 1991), Fontainebleu Hilton Resort, Miami Beach, Florida,
pp. 190-197.

Tait, C. D. and D. Duchamp (1992). An efficient variable-consistency repli-
cated file service. In Jn proceedings of File Sysiem Workshop, USENIX,
Mi, USA., pp. 111-126.

Tait, C. D., H. Lei, 8. Acharya, and H. Chang (1995). Intelligent file hoarding
for mobile computers. In Mobile Computing and Networking, pp. 119-125.

Terry, D., A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. Welch
(1994, September). Session guarantees for weakly consistent replicated
data. In Internaiional Conference on Parallel and Distributed Information
Systerns, Austin, TX, US, pp. 140-149.

Thomas, R. H. (1979, June}. A majority consensus approach to concurrency
contro! for multiple copy databases. ACM Transaction on Datebase Sys-
tems {(2), 180-209.

UPNP (2002). Universal plug and play forum - http://www.upnp.org/.

Watkins, D., M. Hammond, and B. Abrams (2003). Programming in the
NET Environment. Addison Wesley.

Wendt, C. P. (2002). http://www.codeproject.com/system/sysinfo.asp.

Whittington, J. (2002). Shared source chi provides
source code for a freebsd implementation of .net-

htip://msdn.microsoft.com/msdnmag/issues/02/07 /sharedsourcecli/default.asp.

Ximian (2002). Mono project, http://www.go-mono.com/.

214

Yu, H. and A. Vahdat (20002}, Design and evaluation of a continuous con-
sistency model for replicated services. In Proceedings of the Fourth Sym-
postum on Operating Systems Design and Implementation (OSDI), San
Diego, CA, pp. 305-318.

Yu, H. and A. Vahdat (2000b). Efficient numerical error bounding for repli-
cated network services. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy,
U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang (Eds.), VLDB 20600,
Proceedings of 26th International Conference on Very Large Data Bases,
Cairo, Egypt, pp. 123-133.

Zaslavsky, A. and Z. Tari (1998, May). Mobile computing: Overview and
current status. The Ausiralian Computer Journal 30(2), 42-52.

