
1 C

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ON mber 2003

Sec. Research Graduate School Committee
Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

I

••f

© Copyright

by

Simon Cuce

2003

GLOMAR: A Component Based Framework for

Maintaining Consistency of Data Objects within a

Heterogeneous Distributed File System

by

Simon Cuce, BComp(Hons)

Dissertation

Submitted by Simon Cuce

for fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the School of Computer Science and Software Engineering at

Monash University

Monash University

January, 2003

Contents

List of Tables viii

List of Figures x

Abstract xiii

Acknowledgments xv

Outcomes xvii

1 Introduction 1

1.1 Distributed File System 1

1.2 Replication Basics 3

1.3 Support for Heterogeneity 4

1.4 Thesis Focus 5

1.5 GLOMAR Concept 6

1.6 Outline of the Dissertation 7

2 Consistency Models 8

2.1 Replication within a Distributed System 8

2.2 Concurrency Control and Consistency Maintenance 9

2.2.1 Serialisation Conflicts 11

2.2.2 One-copy Equivalence Conflicts 12

2.2.3 Pessimistic and Optimistic Approaches 13

2.3 Consistency Model Taxonomy 14

in

2.3.1 Polling based Consistency Model 15

2.3.2 Token based Consistency Model 17

2.3.3 Voting based Consistency Model 19

2.3.4 Available Copies based Consistency Model 21

2.4 Design Issues ,._,,. 25

2.4.1 Implications of a DFS 26

2.4.2 Application, User and Environmental Requirements . . . 29

2.4.3 Models 31

2.4.4 Client/Server 32

2.4.5 Peer-to-Peer 33

2.4.6 Environmental Hardware 34

2.5 Aspects of Heterogeneity 39

2.6 Research Area targeted by this Dissertation 39

2.7 Summary 40

3 GLOMAR Design Rationale 41

3.1 GLOMAR Motivation 41

3.1.1 Support for Heterogeneous Environments 42

3.1.2 Consistency Model Development 44

3.1.3 DFS Flexibility 44

3.2 GLOMAR Aims 45

3.3 Proposed Architecture of GLOMAR 46

3.3.1 How Heterogeneity is Supported 46

3.3.2 Streamline Creation of Consistency Models 48

3.3.3 Abstracting DFS Complexity 49

3.3.4 Flexibility 50

3.4 GLOMAR Overview 51

3.4.1 Relationship Component 51

3.4.2 GLOMAR Middleware Layer 53

3.4.3 Implementation Issues 55

3.5 Related Work 56

3.6 Summary 57

4 The Relationship Component 59

4.1 Relationship Component Design Origin 59

4.2 Relationship Component Design 62

4.3 Relationship Component Structure 63

4.3.1 Consistency Model 63

4.3.2 Relationship Scope 66

4.3.3 Clone List , . 67

4.4 Relationship Component Issues 71

4.4.1 Instantiation 72

4.4.2 Threading Model 73

4.4.3 Life-Cycle 74

4.5 Summary 76

f GLOMAR Middleware Layer 77

5.1 Aims 77

5.2 GLOMAR Middleware Layer Design 78

5.2.1 Local Operation Interface 79

5.2.2 Remote Operation Interface 81

5.2.3 Clone Distribution Manager 82

5.2.4 Service Manager 83

5.2.5 System Grader 84

5.2.6 Relationship Component Repository 86

5.2.7 Executive 91

5.3 Summary 94

6 GLOMAR Implementation 97

6.1 Development Platform 97

6.2 Relationship Component Implementation 99

IV 4
v

6.2.1 IConsistencyModel interface 99

6.2.2 IRclationshipScope interface 101

6.2.3 RelationshipComponent class 103

6.3 GLOMAR Middleware Layer Implementation 105

6.3.1 Local Operation Interface 105

5.3.2 Remote Operation Interface 107

6.3.3 Clone Distribution Manager 108

6.3.4 Service Manager 109

6.3.5 System Grader 112

6.3.6 Relationship Component Repository 118

6.3.7 Executive 121

6.3.8 Administration Console 123

6.4 Running the GLOMAR System 123

6.5 Summary 125

7 Case Studies 127

7.1 Aims 127

7.2 Notepad Relationship Component' 128

7.2.1 Notepad Relationship Components Design 128

7.2.2 Notepad Relationship Components Implementation 129

7.2.3 Analysis of Notepad Relationship Components 135

7.3 Twin Transaction Model Relationship Component 136

7.3.1 TTM Relationship Component Design 137

7.3.2 TTM Relationship Component Implementation 147

7.3.3 Analysis of TTM Relationship Component 150

7.4 Outlook 2002 Relationship Component 150

7.4.1 Sent Mail, Draft Mail and Inbox Consistency Model . . . 151

7.4.2 Calendar Consistency Model 152

7.4.3 Contacts Consistency Model 153

7.4.4 Tasks Consistency Model 154

7.4.5 Outlook 2002 Relationship Component Implementation . 154

7.4.6 Analysis of Outlook 2002 Relationship Component 162

7.5 Aggregated Analysis of the Case Studies 163

7.6 Summary 164

8 GLOMAR Evaluation 170

8.1 Introduction 170

8.2 Aim and Experimental Methodology 171

8.2.1 Evaluating the Initiation of the GLOMAR middleware iayerl73

8.2.2 Evaluating Processing an Operation 174

8.3 Initiation of the GLOMAR middleware layer: Results and Dis-

cussion , 176

8.3.1 Scaling the number of Clones 176

8.3.2 Scaling the number of Relationship Components 178

8.4 Processing an Operation: Results and Discussion 181

8.4.1 Scaling the number of Clones 181

8.4.2 Scaling the number of Relationship Components 183

8.5 Conclusion 190

8.5.1 Initiation of the GLOMAR middleware layer 190

8.5.2 Processing an Operation 190

8.6 Overall 192

8.7 Summary 192

9 Conclusion 193

9.1 Contribution of this Dissertation 194

9.2 Future Work 197

9.3 Final Remarks 198

Glossary 199

VI

,'s

Vll

List of Tables

5.1 Specific information collected by the Local Operation Interface . 79

5.2 Context Provider Taxonomy 86

6.1 Clone List Tags 104

6.2 Clone Distribution Manager's API 110

6.3 UserProfilelnfo Keys 114

6.4 FileProfilelnfo Keys 115

6.5 SystemProfilelnfo Keys based on figure 6.9 117

7.1 Sent Mail, Draft Mail and Inbox Data Items 152

7.2 Calendar Data Items 153

7.3 Contact Data Items 154

7.4 Task Data Items 155

7.5 Outlook Information passed via the tag paraemter 158

7.6 Supplied Context Providers 164

8.1 Experimental Input Parameter 173

8.2 Experimental Environment Configuration 174

8.3 Initiation of the GLOMAR middleware layer Memory Consump-

tion Table (Clones) 176

8.4 Initiation of the GLOMAR middleware layer Times (Clones) . . 177

8.5 Initiation of the GLOMAR middleware layer Times (Relation-

ship Components) 179

8.6 Average Time per Operation Linear Functions (Clones) 182

vin

8.7 Average Time per Operation for the Clone Distribution Manager

Linear Function (Clones) 182

8.8 Average Time per Operation for Singleton and New Instance

Relationship Components 184

8.9 Average Time per Operation Exponential Functions (Relation-

ship Components) 186

8.10 Time of Relationship Component Processing for both Singleton

and New Instance Relationship Components 186

8.11 Average Time of Relationship Component Processing per Oper-

a t ion , E x p o n e n t i a l F u n c t i o n s (Re la t ionsh ip C o m p o n e n t s) 187

8.12 Average T i m e p e r O p e r a t i o n E q u a t i o n s w h e n on ly P a r t i a l Rela-

tionship Component Processing is invoked 189

IX

List of Figures

2.1 One-copy Equivalence 10

2.2 Optimistic and Pessimistic Approaches 14

2.3 Matrix of Relationships 17

2.4 Quorum Intersection 20

3.1 A Heterogeneous Environment 43

3.2 Single Consistency Model and Multiple Consistency Model Ap-

proaches 47

3.3 Relationship Component '. 52

3.4 GLOMAR Middleware Layer 53

4.1 UML Diagram of the Consistency Model 64

4.2 Local and Remote Operations 65

4.3 UML Diagram of the Relationship Scope 66

4.4 Relationship Scope Invocation 67

4.5 Clone Types 68

4.6 Relationship Component Instantiation Model 73

4.7 Relationship Component Threading Issues 74

5.1 Local Operation Interface 80

5.2 Remote Operation Interface 82

5.3 Service Manager 83

5.4 System Grader's pickup Approach 85

5.5 System Grader Taxonomy Structure 87

5.6 Extending Relationship Components 88

5.7 Relationship Component Processing 95

5.8 File Operations within the Executive 96

6.1 IConsistencyModel Interface 100

6.2 IRelationshipScope Interface 102

6.3 Clone List XML File 103

6.4 Local Operation Interface Implementation 106

6.5 Local Operation Interface Entry Point 107

6.6 Remote Operation Interface Entry Point 108

6.7 Service Manager XML File I l l

6.8 IGlomarService interface I l l

6.9 System Grader XML File 113

6.10 GLOMAR Administration Console 124

6.11 GLOMAR's Console Driver 125

6.12 GLOMAR's Windows Service 126

7.1 Notepad Get Latest Relationship Component 129

7.2 Notepad ROWA Relationship Component 130

7.3 Notepad Application 131

7.4 Notepad Relationship Scopes 132

7.5 GLOMAR's XML Web Service 133

7.6 Twin Transaction Model 139

7.7 Twin Transaction Model Implementation Architecture 148

7.8 Outlook Relationship Component Design 156

7.9 Outlook COM Add-In 157

7.10 GLOMAR Operation Failing within Outlook 159

7.11 IOutlookProcessing Interface 166

7.12 Outlook Consistency Model 167

7.13 Mail Log XML File 167

7.14 Calendar Two Phase Commit Protocol 168

XI

nnnn nnnn nn in
uuuu uuuu LJU iu

7.15 Contact XML Web Service 169

7.16 Task XML Web Service 169

8.1 Experiment structure 173

8.2 Initiation of the GLOMAR middleware layer Memory Consump-

tion (Clones) 177

8.3 Initiation of the GLOMAR middleware layer Times, Based on

Stages (Clones) 178

8.4 Initiation of the GLOMAR middleware layer Memory Consump-

tion (Relationship Components) 179

8.5 Initiation of the GLOMAR middleware layer Times Based on

Stages (Relationship Components) 180

8.6 Average Time per Operation (Clones) 181

8.7 Average Time per Operation for the Clone Distribution Manager

(Clones) 183

8.8 Percentage of Average Operation Time taken by the Clone Dis-

tribution Manager 184

8.9 Average Time per Operation for Singleton Relationship Compo-

nents 185

8.10 Average Time per Operation for New Instance Relationship Com-

ponents 185

8.11 Average Time per Operation for Singleton Relationship Compo-

nents when only Partial Relationship Component Processing is

invoked 188

8.12 Average Time per Operation for New Instance Relationship Com-

ponents when only Partial Relationship Component Processing is

invoked 188

8.13 Instantiation Time with Singleton and New Instance Relation-

ship Components within a Random Case Scenario 189

GLOMAR: A Component Based Framework for
Maintaining Consistency of Data Objects within a

Heterogeneous Distributed File System

Simon Cuce, PhD
Monash University, 2003

Supervisor: Arkady Zaslavsky

Abstract.

Maintaining one-copy equivalence of replicated data is one of the primary tasks
of any distributed file system (DFS). This involves ensuring that the results of
concurrent operations are made consistent between all replicated data objects.
Current mechanisms used to maintain consistency between replicated data ob-
jects are usually highly focused towards a strict set of constraints, like hardware,
timeliness, correctness, availability and/or reliability. However, with current
DFS environments exhibiting a multitude of different constraints and scenar-
ios, current concurrency control and consistency maintenance mechanisms aro.
unable to adequately adapt to all possible constraint variations that can be
experienced.

The proposed and developed GLOMAR framework resolves this lack of adapt-
ability. This framework allows for the creation, co-existence and management of
different concurrency control and consistency maintenance mechanisms under
a single DFS implementation.

GLOMAR achieves this by abstracting the concurrency control and consistency
maintenance functionality from the operating system and/or application and
re-implementing it using a component-oriented architecture. This abstraction
is referred to as the Relationship Component and is responsible for encapsulat-
ing actual concurrency control and consistency maintenance functionality, the
context of a particular component and what replicas (files) are governed.

GLOMAR also provides a middleware layer for handling run-time management
of Relationship Component implementations. The primary purpose of the mid-
dleware layer is to select the "most appropriate" Relationship Component to
handle consistency maintenance of replicas, based on the current scenario and
constraints exhibited by the DFS.

As part of determining the feasibility of GLOMAR, a full implementation was
built. Included within this implementation were a number of Relationship Com-
ponent implementations, including components for handling the constraints of
mobility-enabled environments. The resulting system illustrated how a com-
ponent based framework for maintaining consistency of data objects within a
heterogeneous DFS was achieved.

xn xin

GLOMAR: A Component Based Framework for
Maintaining Consistency of Data Objects within a

Heterogeneous Distributed File System

Acknowledgments
Declaration

I declare that this thesis is my own work and has not been submitted in any form
for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of
others has been acknowledged in the text and a list of references is given.

Simon Cuce
September 4, 2003

xiv

The enormity of a PhD is not something that can be completed alone. The
influence and sacrifice of friends and family owe much to the success of this
work. For this reason, I would like to thank the people who made this possible.

Firstly, much of my gratitude goes to my supervisor Arkady Zaslavsky. Not
only did he give me insight and direction into the academic process, but whose
personal crusade to ensure I finished was the primary reason why this work was
completed. For this I am eternally grateful.

I would also like to thank peers and staff members of the University for their
support. Firstly, I would like to thank Christine Mingins for all her work
during the latter stages of my thesis submission. I would also like to thank
Dean Thompson whom could only be described as Mr Reliable. My thanks
goes out to my office mates, past and present, including, Chee Yeen Chan,
Nick Nicoloudis, Troy Milner and the irrepressible Daniel May. Not only do I
thank them for their support, but also their friendship. Others whom I cannot
afford to forget include, Damien Watkins, Trent Mifsud, Megan Seen, Shonali
Krishnaswamy, Hugo Leroux and Peter Stanski. You made the process and
pain of a PhD bearable. Finally, of the University people I want to thank, one
can never forget the Administration and Technical staff, past and present. In
particular, I would like to thank Michelle Ketohen, who always made the time
to personally handle any issues that arose. Thanks so much.

I would like to thank Jignesh Rambhia and Bing Hu for their work on the Twin
Transaction Model implementation. Also I would like to thank Dan Fay of
Microsoft Research for his support of my work. My thanks goes to Carolyn and
Bryan Payne, who through their generosity, allowed me to utilise their holiday
home for periods of uninterrupted writing. Without this, I am sure 1 would not
have done as much or as well.

However., the biggest thanks goes equally to three people. These people were
instrumental in me undertaking this adventure and ensuring I completed. These
people include my Mum and Dad, who supported me longer than they had too.
Without their support I would have never gone down this road. The third

xv

person I must thank is Sonja Payne. Her sacrifice has made this work possible.
My loving thanks goes to all of you.

Simon Cuce

Monash University

January 2003

xvi

Outcomes

Journal arising from this thesis include:

Cuce, S and Zaslavsky, A. (2003) Supporting Multiple Consistency Mod-
els for a Mobility Enabled File System using a Component Based Frame-
work. Special Issue of MONET on Mobile and Wireless Data Management
(Accepted for Publication) Vol 8, No. 4. August 2003.

Award arising from this thesis include:

Cuce, S (2002) GLOMAR: Adaptive Consistency Control for Distributed File
Systems. 3rd Place in the The ACM International Post Graduate Compe-
tition. Held at SIGCSE 2002. February 27th - March 3rd, 2002. Northern
Kentucky - The Southern Side of Cincinnati, USA.

Publications arising from this thesis include:

Cuce, S and Zaslavsky, A. (2002) Adaptable Consistency Control Mecha-
nism for Mobility Enabled File System. 3rd International Conference on
Mobile Data Management (MDM 2002), 8th to 10th of January 2002.
Singapore.

Cuce, S. Zaslavsky, A. Hu, B. and Rambhia, J. (2002) Maintaining Con-
sistency of Twin Transaction Model Using Mobility-Enabled Distributed
File System Environment. 5th International Workshop on Mobility in
Databases and Distributed Systems in conjunction with the 13th Interna-
tional Conference on Database and Expert Systems Applications (DEXA'2002).
September 2nd to 6th, 2002. Aix-en-Provence, France

Cuce, S and Zaslavsky, A. (2002) Run-Time File System Consistency Sup-
port in Mobile Computing Systems. 2nd Asian International Mobile Com-
puting Conference. (AMOC02) 14th to 17th of May, 2002. Langkawi,
Malaysia

Cuce, S (1999) Conflict Avoidance within a Disconnected Mobile Environ-
ment, Proceedings of the 6th Australian Conference on Parallel and Real-
Time Systems (PARTS99). 29th November to 1st December, 1999. Mel-
bourne, Australia.

xvn

Cuce, S and Zaslavsky, A. (1998) Adaptive Cache Validation for Mobile File
Systems. Advances in Database Technology, Y.Kambayashi, K.Lee., E.P.Lim,
M.Mohania, Y.Masunaga (Eds), LNCS 1552, Springer-Verlag, p.181-192,
1998.

Cuce, S and Zaslavsky, A. (1998) Partially Consistent Cache Management
Model for a Mobile Environment. 1st Annual South African Telecommu-
nications, Networks and Applications Conference (SATNAC 98). 7th to
10th September, 1998. Cape Town, South Africa.

Presentations arising from this thesis include:

Cuce, S (2002) GLOMAR: Adaptive Consistency Control for Mobile Enabled
File Systems. The Coda Research Group, Carnegie Mellon University, 6th
March 2002. Pittsburgh, USA.

Cuce, S (2001) A Component Based Framework for Maintaining Consistency
of Data Objects within a Heterogeneous Distributed File System. Dis-
tributed System Technology Centre (DSTC CRC). 6th December 2001.
Melbourne, Australia.

Cuce, S (2000) GLOMAR: Adaptive Consistency Control for Mobile Enabled
File Systems. School of Computer Science and Software Engineering,
Monash University. 10th August 2000. Melbourne, Australia.

Permanent Address: School of Computer Science and Software Engineering

Caulfield Campus

Monash University

Australia

Chapter 1

Introduction

This dissertation explores the issues of concurrency control and consistency

maintenance within a distributed file system (DFS). It argues that current

concurrency control and consistency maintenance mechanisms are too strict

and inflexible in their design rationale to exist within current and future DFS

environments.

The premise for this lore arises from the inadequacies of existing concurrency

control and consistency maintenance mechanisms to fully support heterogene-

ity. This is due to current environments on which DFSs exist being a collection

of varying hardware, software and user requirements, rather than static envi-

ronments exhibiting predictable behaviour.

This dissertation asserts that multiple concurrency control and consistency

maintenance mechanisms should be constructed and scoped to specific scenar-

ios, each existing concurrently and implemented when appropriate. The contri-

bution of this dissertation is a proposed, developed and implemented working

system that supports this doctrine.

This dissertation was typeset with L^TgX2e' by the author.

is an extension of MfcX. FIgX is a collection of macros for TEX. TfiX is
a trademark of the American Mathematical Society. The macros used in formatting this
dissertation were written by Glenn Maughan and modified by Dean Thompson of Monash
University.

1.1 Distributed File System

The paradigm known as distributed systems has emerged as a combination of

personal computing, time sharing computing and interconnecting communica-

tion infrastructure (Satyanarayanan 1990). Personal computing gave users au-

tonomous access to resources. Time sharing computing gave users the ability to

share resources and information easily. Interconnecting communication infras-

tructure allowed for the communication between nodes to take place. When

xvm

combined, the result gave users the ability to easily access many shared re-

sources and information, regardless of physical location, however still providing

a level of autonomous support. The basic architecture of a distributed system

comprises a number of computing nodes connected via a communication net-

work, each with a supportive operating system (Levy and Silberschatz 1990).

Messages are then passed between nodes to facilitate the sharing of resources.

The file system is a collection of data objects that are persistent until explicitly

destroyed. File systems support four fundamental issues, naming structure,

programming interface, physical mapping and integrity (Satyanarayanan 1990).

The naming structure within a file system allows for the indexing and navigation

of file objects. The programming interface provided by the file system allows

applications to access a file via a standard set of file system primitives. The

physical mapping provides the functionality to ensure a continuous view of a file

object is available regardless of the physical storage or media. Integrity ensures

that consistency of a file object is maintained regardless of failures, whether

hardware and/or software.

Originally, file systems supported a single user performing operations at a stand-

alone node. Such systems as IBM PC-DOS (DOS 1983) and the Apple Mac-

intosh (Apple Computer 1985) are examples of these systems and best define

the personal computing paradigm. However, as the need to share resources

and information increased, so did the importance of time sharing computing.

Systems like Unix (Ritchie and Thompson 1978) allowed multiple users to ac-

cess a single file concurrently. As a result, file systems were required to ensure

that integrity of the file was preserved in the face of possible modifications by

concurrent operations. Thus, the process of maintaining integrity became more

than just a failure resolution mechanism (as it was with personal computing).

However, classic time sharing systems still centralised the storage of file system

objects and did not offer autonomous interaction (Satyanarayanan 1990).

The DFS was the merging of the two (distributed systems and file systems),

with many distributed users able to share a single file object regardless of their

location, but have access to their own processor and permanent storage. By

distributing file objects throughout the network, the chance of being partitioned

from them due to a communication failure increased. DFSs resolved this by

improving the availability of files through replication (Berstein, Hadzilacos, and

Goodman 1987).

1.2 Replication Basics

Replication is the placement and management of replicated file objects for the

purpose of improving the availability, performance and usability of file objects

(Helal, Heddaya, and Bhargava 1996). This is achieved by replicating file ob-

jects throughout the network so that when the primary file objects cannot be

accessed, the secondary replicas can be used to service the request.

This series of events are masked from the originator of the request, resulting in

the perception that the operation was successful. The replication mechanism

then assumes responsibility for ensuring the operations (or result of operations)

are propagated to other replicas. Thus, replication is in most cases a hidden

process that is responsible for Replica Placement and Consistency Maintenance

between replicas. This thesis is solely concerned with consistency maintenance

of replicas within a DFS.

Consistency Maintenance

W l ' le replication improves availability and performance (via replica placement

(Kuenning 1994; Lei and Duchamp 1997; Liu and Maguire 1994; Tait et al.

1995)), it also supports how consistency between replicas is maintained. Con-

sistency between replicas is guaranteed through consistency maintenance. Con-

sistency maintenance is the process of ensuring that events that manipulate data

on one replica are visible on all others, thus making them correct.

However, availability and consistency are competing objectives, as an increase

in the level of consistency will result in a reduction of availability and vice versa.

Thus, for a replication mechanism to find a balance, a trade-off between the

two is required. The resulting trade-off thus encapsulates the functionality used

to provide consistency maintenance, as well as supporting availability.

A trade-off is determined by evaluating the consistency and availability needs

of the DFS. In other words, this is done by determining the needs of the user,

application and/or hardware constraints. In most cases, a compromise can be

found between two extremes, pessimistic and optimistic concurrency control.

With a pessimistic approach, availability is constrained in favour of consistency,

as operations must be committed on all replicas prior to being completed. Such

an approach does provide the highest level of consistency, but reduces the avail-

ability as one failed operation can force the rollback of the operation. This is

apposed to a system that supports availability in favour of consistency, (an opti-

mistic approach). With an optimistic approach, operations can concurrently be

performed on separate replicas, regardless of tbe inconsistency that may arise.

Only after the operation is complete does the replica's consistency maintenance

mechanism attempt to achieve correctness across replicas.

One could argue strongly for each approach and would be justified in their

argument. Primarily, this is because the design constraints of the required

consistency maintenance mechanism dictates which approach is the most suited.

In some cases, availability is fundamental for the system to achieve its design

goals, this is the case with mobility-enabled DFSs (Kistler and Satyanarayanan

1991; Tait and Duchamp 1991; Ratner 1998). However, there are cases where

correctness is paramount, this is the case with systems that support a high level

of file sharing (as shown by the case study (Gill et al. 1994)). Thus, no single

approach can suit the multitude of scenarios that can exist. The numerous

scenarios generated by heterogeneous systems and applications also compound

this.

1.3 Support for Heterogeneity

Originally, DFSs existed on static environments that implemented standardised

components, which in turn exhibited predictable behaviour. Such systems were

homogeneous with certain characteristics assumed. Consistency maintenance

mechanisms when built for these environments assumed the characteristics of

the DFS were static, for example, a DFS would exist within a wired network,

connecting numerous similar computers. As a result, the underlying consistency

maintenance mechanism would be tailored to that environment.

As interconnecting protocols have been standardised (e.g. TCP/IP (Comer

1995)) and the cost of computing power and storage decreased, the degree of

homogeneity within current environments has lessened. What resulted were

different computing configurations, using different network infrastructures, ser-

vicing all types of users, rather than highly specific networks, servicing a par-

ticular need. For example, with portable computers, it is not uncommon to use

both a modem (when at home), as well as an Ethernet connection (when at

work) to access a DFS.

The ramification of increased heterogeneity has meant that the task of building

consistency maintenance mechanisms is more complex. This is illustrated by

the increase in wireless technology and the incorporation of different comput-

ing devices (PDA, Handheld, etc) into the DFS. Each variation increases the

constraints that must be considered when building consistency maintenance

mechanisms.

The problem is that current DFSs are faced with a multitude of different scenar-

ios (devices, users, communication infrastructure and applications), all exist-

ing within the one environment. However, existing approaches for consistency

maintenance are mostly focussed on a small subset of these scenarios. Thus,

existing consistency maintenance mechanisms fail to fully exploit the opportu-

nities of the true heterogeneous DFS.

1.4 Thesis Focus

"How to manage the replicated data, providing the levels of consistency, dura-

bility and availability needed"

Barbara-Milla and Garcia-Molina (1994)

"Replicated Data Management in Mobile Environments:

Anything New Under the Sun?",

IFIP Working Conference on Applications in

Parallel and Distributed Computing,

Page 237.

Research into consistency maintenance within a DFS has focussed on the trade-

off between availability and consistency. Many of these systems implement a

specific approach to suit a target system. Recently, a lot of work in the handling

of the characteristics of mobility has been done (Zaslavsky and Tari 1998; Satya-

narayanan 1996; Mukherjee and Siewiorek 1994; Liu and Jr. 1995; Badrinath

et al. 1993). However, the narrow scoping of these implementations means that

the trade-off between availability and consistency is mostly suited for mobility.

Thus, the flexibility and portability of these approaches are limited.

This dissertation claims that rather than creating a consistency maintenance

and concurrency control mechanism for a generic scenario, it is preferable to

create a number of consistency maintenance and concurrency control mecha-

nisms scoped for specific scenarios all existing concurrently. This claim is based

on the following motivations

• Limited support for fine granularity consistency maintenance.
The structure of existing systems is one that supports a generic approach

to maintaining consistency of replicas. Primarily, these systems focus on

UliUU U\J%JU UU I

a coarse level of granularity, thus ignoring the consistency requirements of

devices, environments, applications and users. Thus, this results in con-

sistency for some applications being degraded in favour of others. What

is required is an approach that allows granularity to be programmatically

defined (whether coarse or fine).

• Streamline the process of creating consistency maintenance and

concurrency control mechanisms. The process of creating and im-

plementing concurrency control and consistency maintenance mechanisms

is made complex by the tight integration with the DPS. Much of the

functionality is implemented at the system level, with developers not en-

couraged to modify or create different mechanisms. Thus, this limitation

reduces the effectiveness of a concurrency control and consistency main-

tenance mechanism, as modification for a specific scenario is difficult.

• The failure to provide transparent consistency maintenance that

is effective and efficient. Much of the work to provide scenario based

consistency maintenance is via an application-aware approach (Satya-

narayanan, Noble, Kumar, and Price 1995). For this to work, applications

are required to utilise an additional API. As a result, such approaches do

not offer support for fine grain consistency maintenance for legacy sys-

tems.

Therefore:

For a DFS to effectively and efficiently support true heterogeneity (whether be-

ing hardware, software or user), requires a scenario based approach that can

encapsulate multiple concurrency control and consistency maintenance mech-

anisms concurrently. This dissertation proposes, develops and illustrates the

ability to apply a component-oriented architecture to concurrency control and

consistency maintenance functionality within a DFS, such that the scope and

granularity of consistency can be adjusted accordingly.

1.5 GLOMAR Concept

The GLOMAR framework1 is the component-based approach that supports

consister :y of data objects within a heterogeneous DFS. GLOMAR provides

'The genesis of the name originated from the deep-sea mining ship the Glomar Explorer.
It was a joint CIA/Howard Hughes project to build a ship capable of retrieving a Soviet Golf
II-class ballistic missile submarine that sank off the Hawaii coast in 1968.

the framework required to encapsulate concurrency control and consistency

maintenance functionality within a component-oriented architecture (Szyperski

1997), focusing on the maintenance correctness of file replicas.

GLOMAR makes three major contributions:

• The ability to abstract concurrency control and consistency maintenance
functionality into a single component.

• A framework that handles component selection and concurrent implemen-
tation.

• A development methodology to facilitate component creation.

A complete design and implementation of GLOMAR was produced, with a live

production system running on a number of computing nodes. The system was

evaluated to provide a set of quantitative and qualitative results that validates

this thesis.

1.6 Outline of the Dissertation

The remainder of the Dissertation is organised as follows. Chapter 2 provides

background on the issues of replication, concurrency control and consistency

maintenance within a DFS. It also discusses inadequacies of current systems

with their support for highly heterogeneous distributed file systems. Chapter

3 discusses the design rationale for GLOMAR. Areas covered include the aims,

an in-depth discussion of the motivation and the design evolution. This chapter

also introduces major achievements, the concept of the Relationship Compo-

nent, the middleware layer and the development methodology. Chapters 4 and

5 discuss these major contributions in more detail. Chapter 6 discusses GLO-

MAR's implementation, including issues and constraints. Chapters 7 and 8

evaluate GLOMAR by detailing the implementation of a number of Relation-

ship Components and determining the impact upon performance and resources

the middleware layer imposes. Chapter 9 concludes the thesis, with a summary

and possible future work.

T

Chapter 2

Consistency Models

This chapter encompasses a detailed discussion on the purpose of replication,

the need for concurrency control and the num . ous techniques used to maintain

consistency (referred to as consistency modelr / between replicas. Following this

will be a discussion of the issues that affect the design and structure of a con-

sistency model within the context of a DFS. These include issues like transac-

tions, sessions, application requirements, communication schemes and devices.

Finally, the implications of each of the issues in relation to consistency model

construction will be addressed within the context of mobility. This will form

the motivation of this dissertation, focusing on how heterogeneity influences

consistency maintenance within current DFS implementations.

2.1 Replication within a Distributed System

The primary motivation for replication (Berstein et al. 1987) within a dis-

tributed system arose from the need to improve the availability of data objects.

The necessity for this improvement was the inevitability of segments within

the distributed system failing. These failures can be in the form of software

bugs, human error, overloaded resources and/cr media failure. When failures

occur, they can result in fail-stops (Schlichting and Scheider 1983), where all

operations are required to either wait indefinitely or be aborted as the opera-

tions destination is no longer contactable. Such events decrease the reliability

of a system, especially when the resources are highly shared. As a result, by

using replication, distributed systems were able to mask and manage failures

gracefully.

Replication is achieved by implementing redundancy via replicating data ob-

jects throughout a distributed system. During periods of failure, when the

primary replica is no longer contactable, secondary replicas are used until the

failure is resolved. As a result, regardless of the failures that can exist within

a distributed system, the repercussions can be masked transparently to the

application, improving the availability of data objects.

In addition to improved availability, replication improves performance. This

is achieved through the underlying mechanisms having the ability to detect

bottlenecks, routing operations to appropriate replicas and allowing many sites

to serve data simultaneously.

Within the distributed system domain, replication can be found in distributed

systems such as DFS (Levy and Silberschatz 1990; Satyanarayanan 1990; Borghoff

and Nast-Kolb 1989), Distributed Database Management Systems (DDBMS)

(Ozsu and Valduriez 1991) and Distributed Shared Memory (DSM) (Galli 2000).

However, this thesis will focus upon replication within a DFS.

Replication is responsible for both Replica Placement and Consistency Mainte-

nance. Replica placement is the process of creating, propagating and destroying

replicated data within the distributed system. Initially these processes were

manual or automated (Howard 1988), explicitly for performance benefits. More

recently these processes have been used to improve availability (Kuenniug 1994;

Satyanarayanan et al. 1990). However, replica placement issues are outside the

scope of this thesis and therefore will not be addressed. What will be detailed,

is how concurrency control and consistency maintenance are achieved within a

DFS.

2.2 Concurrency Control and Consistency Mainte-
nance

The distributed nature required for availability and the centralised storage of

file system objects generates a conflict when combined within a DFS. This

is because file system activities are built around a centralised storage device,

whereas availability requires that data objects be distributed. The result of

this combination, is that the data object must be perceived as centralised,

but implemented distributed (figure 2.1). This concept is known as one-copy

equivalence (Berstein et al. 1987) and is the source of most of the complexity

within a DFS.

10

Distributed File System
frmavjresa^^MBfi^

Physical
Storage 1

Figure 2.1: One-copy Equivalence

To illustrate one-copy equivalence, consider a data object Dl which is logically

viewed as a single data object. However, physically the data object consists of a

number of distributed objects dn (thus D - {di,d2,..., dn}) whose actual im-

plementation is hidden from the application's view. If an application performs

a write operation, referred to as w (thus a transaction would be Tt = {w[D}}),

the resulting physical transaction to preserve one-copy equivalence would be

Ti = {w[d1],w[d2],... ,w[dn}}.

Concurrent operations compound the cost of achieving one-copy equivalence.

The reason is that operations perform modification, insertion or deletion oper-

ations (so called update operations) on physically separated replicas simultane-

ously. As one-copy equivalence is required so that all replicas remain correct,

a means of maintaining an acceptable view of the data is necessary. Concur-

rency Control and Consistency Maintenance. :%im to manage these concurrent

operations, such that conflicts between repbV.a.'- xe avoided or masked from the

application, with correctness maintained.

'The formalisms used are based on Bernstein and Goodman (1986) description of seriali-
sation theory

.1

fa

11

Without some form of concurrency control and consistency maintenance, the

DFS is not able to handle or resolve concurrent operations that place replicas in

conflict with each other. The types of conflicts that can occur fall into two cate-

gories; operations that affect the correctness of a data object (serialisation) and

operations that compromise the consistency of replicas (one-copy equivalence).

2.2.1 Serialisation Conflicts

Primarily, serialisation conflicts result out of a failure to serialise operations,

such that correctness of a data object is maintained. For example, two con-

current applications modify the contents of the data object, regardless of each

other's own consistency needs. This form of conflict does not solely arise out

of replicating data objects throughout a distributed system. Rather, it is be-

cause of concurrent operations being performed unchecked and unmanaged on

a data object. In most cases, serialisation of concurrent operations is managed

by the local file service, as part of maintaining the integrity of the data objects.

However, this does not mean that these types of conflicts should be ignored

by the DFS. Instead, the distributed nature just complicates the resolution of

these conflicts when they do occur. The two basic conflicts that can effect

serialisation include:

• Dirty read

• Over writing of uncommitted data

The dirty read conflict (Coulouris, Dollimore, and Kindberg 2001) arises out

of a concurrent operation reading data that is later aborted by the originator

of the data. For example, consider two transactions (TJ and Tj) that process

a data object x {Ti = {r[x],w[y],c} and Tj = {w[x],a}). A history (H) of the

two concurrent transactions illustrated that the value committed to y by Ti was

based on data (re) that was aborted.

H = n[x] -> Wi[y] -> Ci

t (2-1)
Wj[x] -» a.j

The second form of conflict is over writing of uncommitted data (Coulouris,

Dollimore, and Kindberg 2001). In this situation, a concurrent transaction

over writes the value of a data object which has yet to be committed (and thus

12

achieve atomicity) by the originator of that operation. For example, consider

two concurrent transactions (Ti and Tj) that consist of a number of read and.

write operations (Ti = {r[a:],u;[z],c} and Tj = {w[z],r[y],c}). A history (H)

indicated that before Tj has committed the changes to z, Ti has modified the

same data object. Thus when Tj commits, the value of z will be different to

the actual value.

(2.2)
H = ri[x] -> Wi[z] -»• a

Wj[z] -> rj[y] Cj

2/2.2 One-copy Equivalence Conflicts

One-copy equivalence conflicts result as the distributed system is unable to ex-

hibit one-copy equivalence of a replicated data object. This type of conflict

exists because of concurrent operations being performed on different physical

replicas indiscriminately. The difficulty with one-copy equivalence conflicts is

that in most cases the operations (transactions) have adhered to all the local

serialisation constraints. However, the global implications have not been con-

sidered, resulting in the failure to maintain one-copy equivalence. The basic

types of conflicts that can arise include: _,

• Write-write conflicts

• Read-write conflicts

A write-write conflict (Coulouris, Dollimore, and Kindberg 2001) results when

a number of concurrent operations write to separate replicas, with no concern

for consistency amongst all replicas. What makes this conflict different to a

write of uncommitted data is that serialisation might have been achieved for

each of the operations. However, since they never intersect, the implications of

their actions are not known. For example, a data object D is replicated over

two physical sites, d\ and d2 (D = {di,d2}) and two transactions {Ti and Tj)

modify each replica concurrently (Ti = {io[rfi],c} and Tj = {w[d2],c}). The

history (H) of the concurrent transactions illustrated that the replicas are no

longer one-copy equivalent (d\ ^ d2).

H = Wi[di]

Wj[d2]
(2.3)

13

Read-write conflicts (Coulouris, Dollimore, and Kindberg 2001) arise where data

read by one operation is invalidated by another operation on another replica. As

a result, operations are unaware that out of date data is being used as a basis for

their operations. For example, two transactions T{ and Tj perform concurrent

operations on data object D (object D is replicated over two physical sites,

D = {di,d2}). Transaction Ti consists of reading from du writing the results

to non replicated data objects (x and y) and then commixing the changes

(Tj = {r[di],w[x],w[y],c}). Transaction Tj concurrently performs a read of x,

then the results are written to d1 and committed (Tj = {r[x], w[d{\, c}). As the

history (H) shows, the values 7* committed to x and y were based on a value

that were modified by Tj.

H = n[dx)

rj[x)

Wi[y]

Wj[d2

(2.4)

2.2.3 Pessimistic and Optimistic Approaches

There are many approaches to concurrency control and consistency mainte-

nance within a distributed system, so that replica conflicts are avoided, one-

copy equivalence is maintained and serialisation of da'ia is achieved. Thest-

can be categorised into two extremes, Pessimistic and Optimistic approaches

(Saito and Shapiro 2002). This taxonomy is based on the trade-off betw^ri; :-.ae

availability of replicas and the level of consistency.

In certain situations, there is a need for data to be correct and for integrity to be

timely preserved. For this to be achieved, a pessimistic approach would be more

suitable. The nature of a pessimistic approach ensures that the validation phase

occurs early in the execution's life cycle. In other words, the validation of the

data correctness is performed prior to any operations being persisted. Figure

2.2 illustrates the phases of execution fov an operation within a pessimistic

approach.

The benefit of such an approach ?.« ihs reduction in f;he probability of conflicts

arising. However, as a result this reduces the availability of the repli<^s. For

example, if the validation process is not allowed to complete, due to a network

partition (certain replicas were non-contact^ble),. then the operation would not

be allowed to complete or was blocked until the connection was restored. Such

an approach is suitable for application dompias that require a high-level of

consistency, but not suitable for systems that- require availability of replicas.

14

Pessimistic

. Validation Operations (R and/or W) Commit

Optimistic

Operations (R and/or W) Validation Commit

Time

Figure 2.2: Optimistic and Pessimistic Approaches

Optimistic approaches (Davidson 1982: Kung and Robinson 1981) improve

availability in favour of correctness. This is achieved by reordering the phases

of execution such that validation takes place after the operation has been com-

mitted locally. For example, concurrency control and consistency maintenance

mechanisms do not need to contact all other replicas to commit an operation.

Rather, the validation process occurs after the operation has been persisted.

Figure 2.2 illustrates the phases of execution for an operation within an opti-

mistic approach.

The benefit of improved availability of replicas means that operations can be

executed concurrently on other replicas. This is especially useful for systems

that exhibit frequent partitioning. However, the negative aspect of postponing

the validation process until after execution has completed, is the cost of main-

taining one-copy equivalence. In most cases the conflict resolution mechanism

is complex (Kumar 1994) because conflicts are compounded. The longer the

replicas exist partitioned, the increase in the complexity of the actual conflict.

2.3 Consistency Model Taxonomy

The implementation of how concurrency control and consistency maintenance is

achieved within a DFS (or any distributed system) is described as a consistency

model (Galli 2000). The consistency model details how concurrency control and

consistency maintenance handle certain aspects of the DFS, such that a suitable

level of consistency and availability is attained.

The following sections present a taxonomy of consistency models, based on how

operations are managed (read and write operations) and the degree of taade-off

15

that is achieved between availability and consistency. The categories include

Polling, Token, Voting and Available Copies methods (Honeyman and Huston

1995; Helal et al. 1996). However, not all variations are covered here, for exam-

ple, approaches not detailed include; Differential File (Severance and Lohman

1976), PCCM2 (Cuce and Zaslavsky 1998b; Cuce and Zaslavsky 1998a; Cuce

1999), Tree Quorums (Agrawal and Abbadi 1990), Virtual Partitions (Abbadi

et al. 1985), Virtual Primary Copy (Faiz 1995), etc.). For more details see Ceri

et al. (1991) and Helal et al. (1996), which give an excellent overview of the

major consistency models.

2.3.1 Polling based Consistency Model

Read Once Write All (ROWA) (Bernstein and Goodman 1984) is a simple

approach that attempts to provide one-copy equivalence of the results of opera-

tions. With this approach, an application can read from any replica. However,

an update operation is required to be propagated to all replicas before it is

allowed to be committed. In other words, a logical read can read any physical

data object, whereas a logical write must perform writes on all replicas. If a

write operation fails to be committed on any replica, the operation is aborted

or blocked indefinitely until the replica becomes available (depending on the

variation of the implementation). By enforcing this constraint, the distributed

system can ensure that all the replicas have the most up-to-date view of the

data.

The benefit of ROWA is that the cost to read a data value requires only contact-

ing a single replica, rather than the entire collection. Much of this is based on

the concept that read operations out number write operations (Burrows 1988;

Roselli et al. 2000; Kistler 1993). However, the benefit of maintaining consis-

tency comes at a cost of replica availability, as a single site failure can affect

the distributed system's ability to support update operations on all replicas.

The Primary Copy (Alsberg and Day 1976; Stonebraker and Neuholf 1979; Oki

and Liskov 1988) approach differs to that of ROWA by forcing operations to use

a centralised replica (primary copy), with the remainder of the replicas used as

backups. For example let D represent a data object replicated on a number of

sites (D = {d\,d2, • • • ,dn}). One of these sites will be defined as the primary

copy p (p 6 D) and let the remainder be backups b, ensuring that:

bCD

6 |= | JD 1-1

16

(2.5)

(2.6)

(2.7)

To perform a read, the operation must be performed on the replica designated

as the primary copy (r[D] -»• r\p]). Where as a write operation has to write to

the primary copy and all backups [w[D] -+ w\p] and w[b]) before the operation

is complete.

The motivation for the Primary Copy approach is to improve the handling of

network partitioning, compared to that of ROWA. As a result, replica availabil-

ity is improved by allowing a backup to be upgraded to a primary copy. For

example, consider the scenario of a network made up of five nodes, with one of

those nodes deemed as the primary copy. Due to a communication failure, two

of the five nodes are disconnected from the primary copy. Rather than block or

abort an operation, one of the backups in the partitioned segment is upgraded

to a primary copy, by either a line of succession or a voting approach. Thus,

there exist two primary copies, in two different segments of the network. As a

result, update operations are allowed to continue even when partitioning within

the system has occurred. ,

An example DFS implementation of a Primary Copy approach is the Harp

(Liskov et al. 1991) system. Harp implements a write back strategy for update

propagation, utilising a modified primary copy method. For a client to process

an operation, the request must go via the replica designated as the primary

copy. However, what makes Harps implementation of primary copy different

is that the primary copy (rather than the client) manages the modification

operations and the subsequent calls to backups. For example, a write operation

generated by a client is performed on the primary copy (operations are stored

in a log in volatile memory until committed). Prior to the commit request

being returned to the client, each backup will acknowledge the request (but

not actually committing changes to persistent storage). Requests are then sent

back to the primary copy indicating that the backup has received the operation.

The primary copy then returns a commit message to the client adjusting the

primary copy's value to match. A background process is then started to inform

each backup that they are now able to commit their logs.

17

A different approach to how consistency is maintained is Quasi-Caching (Alonso

et al. 1988; Alonso et al. 1990). With existing systems, validation events take

place when either a read or write operation occurs, regardless of the data being

used and its consistency requirements. Within the Quasi-Caching approach, a

coherency condition determines when the validation between the central site and

remote sites occurs. This coherency condition is a user specific criterion (usually

based on time, version or value) that defines an allowable deviation between

physical copies (quasi copies). For example, a data object can be modified on

a remote site without being propagated to the central site, as long as it does

not invalidate the coherency condition. Such an approach takes advantage of

application semantics, reducing the cost of an update operation. However, this

is offset by the additional overheads required to determine when validation is

necessary.

2.3.2 Token based Consistency Model

With the True Copy Token (Minoura and Wiederhold 1982) approach, consis-

tency is maintained by assigning a matrix of relationships (lock types) that can

coexist (figure 2.3). For any data item that exists, an exclusive lock or many

shared locks can be held. An exclusive lock ensures that whoever holds that

lock has exclusive control of the data item. Thus, no other locks are allowed.

Shared locks indicate that the holder of the lock has shared control of the data

item. Therefore, more than one shared lock may exist on a single data item.

With the True Copy Token approach only when an exclusive lock is held can

a write operation be performed on a data item. Whereas a read operation is

allowed to take place if a shared or exclusive lock is held.

Read Lock
(shared)

Write Lock
(exclusive)

Read Lock
(shared)

Write Lock
(exclusive)

Yes

No

No

No

Figure 2.3: Matrix of Relationships

The benefit of a True Copy Token approach is its ability to maintain a high-

level of consistency in a volatile environment. This is achieved by controlling

18

the number and type of locks that can exist. For example, by restricting the

number of exclusive locks that exist, partitioning will not result in concurrent

update operations. If a segment does not host an exclusive token, then no write

operations are allowed to proceed. However, there are situations where locks

need to be generated for the sake of replica availability. In this case, token

regeneration protocols are used. For example, creating an exclusive lock on a

data item requires that all shared locks be invalidated. However, the process

and rules regarding this regeneration need to be specific to the consistency and

availability requirements of the distributed systems.

The Echo (Mann et al. 1994) implementation of a DFS is an example of the

use of True Copy Tokens to ensure replica coherence. As one of the design

goals was to achieve one-copy equivalence, a strict (pessimistic) consistency

maintenance protocol was enforced. The Echo topology consists of stateful

servers, that control and manage replica coherence (via a delayed write back

approach) and clients (clerks), caching local data in memory. For a clerk,

performing an operation on behalf of an application requires the acquisition of a

specific token. Primarily, two basic tokens exist; a read token and a write token.

These follow the same rules defined within the True Copy Token approach. For

example, when a read token is allocated, the clerk is then able to only read the

contents of the cache. When a write token is held, this gives permission for the

clerk to modify the cached version of the data. However, for the actual UNIX

implementation, this simplistic approach was extended for security reasons.

Rather, than a single token used for a read operation, it is divided into sub

operations (eg OpenToken, SearchToken and ReadToken). Thus an extension

to the relationship matrix was defined (refer to Mann et al. (1994) for more

details).

One of the interesting aspects of Echo is the process of allocating tokens. Pri-

marily, Echo is a stateful system, with the server monitoring the number of

tokens that exist and the owners of the tokens. Thus, for a clerk to gain a

token, a remote procedure call to the server is required to fulfil the request.

However, there maybe concurrent operations that place the system into dead-

lock. For example, two clerks hold write locks on two separate data files. For

them to proceed, they require additional tokens on each other's data. Thus, a

deadlock arises. To avoid this, Echo structures the allocation of locks, based on

the operation's operands. Another implementation detail is that tokens cover

whole files, rather than blocks. Leases (Gray and Cheriton 1989) (an agreed

time out period) are then used to determine when the server should reclaim a

token from a clerk.

19

Another example of a DFS implementation of True Copy Token is Tait's Mobile

File System (Tait 1993; Tait and Duchamp 1992; Tait and Duchamp 1991).

What makes Tait's approach different to other DFS implementations is that

read operations are divided into strict-reads and loose-reads (referred to as the

Dual-Read-Call Interface). Strict-reads enforce a high-level of correctness by

contacting all replicas and determining the most up-to-date data value. On the

other hand loose-reads return the most convenient value.

Within Taits system, tokens are used to illustrate to a client that the data

they are reading is the most up-to-date. This is done by defining the source of

frequent updates and strict-reads. Clients are defined as Potential Consistent

Writers (PCW) and receive a Currency Token (CT) illustrating that no other

client is performing strict-reads on the same data. Only when a PCW has a

CT can strict-reads be performed. Otherwise, a series of complex tasks are

initiated to gain the CT for the PCW. Unlike other file systems that implement

write tokens, Tait focuses on using tokens to define the level of correctness of

read operations.

There are many other examples of DFS that use a True Copy Token approach.

These include AFS (Howard 1988) (referred to as callbacks), Decent (Marzullo

and Schmuck 1988), Sprite (Ousterhout et al. 1988; Nelson et al. 1988) and

MFS (Burrows 1988). However, much of the differences are not related to the

token implementation, but rather to implementation of other aspects of the

DFS.

2.3.3 Vot ing based Consis tency Model

Voting approaches for concurrency control and consistency maintenance are

achieved by performing operations only if permission is granted from a set of

replicas (the quorum). Thus read or write operations can continue only when

a consensus is achieved within the quorum. Voting approaches improve the

support for write operations and handle failures gracefully. This is different

to polling approaches that favour read operations and manage communication

failures poorly.

The basic architecture of a voting approach revolves around replicas being mem-

bers of quorum sets. A quorum set is a collection of replicas that must all be

satisfied prior to allowing an operation to commit. In most cases two sets exist,

the read quorum {RQ) and the write quorum {WQ). As the name suggests, for

each specific operation to be successful, these quorums (specific replicas) must

be accessible.

20
21

Replicas

4

Read Quorum
(RQ)

Quorum W r i t e QU O r u m (W Q)
Intersection (QI)

Figure 2.4: Quorum Intersection

Consistency is maintained by ensuring that the quorums (read and write) inter-

sect, referred to as a quorum intersection (QI) (figure 2.4, or RQ D WQ = QI)

and that a write quorum must have a common member, so that write operations

are not executed concurrently.

One of the simplest implementations of voting is the Uniform Majority Quorum

Consensus (Thomas 1979; Kumar and Segev 1988) approach. In this approach,

a majority of the sites must be contacted for an operation to be committed.

Thus only when half or greater approve of the operation, can the operation be

completed. However, not all members "need to modify their local copy. They

are just required to vote. For example, only one copy needs to be contacted to

read data, whereas half or greater of the replicas need to be accessed to perform

a write operation. The benefit of such an approach is simplicity. However, the

cost associated with contacting the quorum for every operation becomes high.

For this reason a weighted majority approach was developed.

Weighted Majority Quorum Consensus (Gifford 1979) allows each replica to

have more than a single vote. A non-negative integer is assigned to each replica

(dv where v = 1,2,. . . ,n) to define its weight. Then a threshold is defined

for both read rq and write wq. Only when the sum of the total weight (t =

]C"=i dv)1S greater than the threshold, is quorum achieved and the operation is

allowed to complete. The validation process is satisfied only when the following

constraints are met:

rq + wq > t

wq > t/2

(2.8)

(2.9)

i

The benefit of a Weighted Majority Quorum Consensus approach is the fact

that weight and threshold can be adjusted in such away that consistency or

replica availability are favoured. For example, by adjusting the weight of the

write quorum to equal the same of all weights (wq = t) and the read quorum

only requiring one replica (rq < 1), then a model similar to ROWA (section

2.3.1) is achieved. If however the write quorum is adjusted to only require a

single copy to be accessed to achieve quorum consensus (wq < 1), then an

approach that is highly available becomes feasible. However, as the process

of allocating weights is difficult, there are approaches that automate this task.

One such method is Annealing (Kumar 1991), in which a process adjusts the

weight, so that an optimal threshold is found.

An example of a system that dynamically adjusts weight and threshold is the

Missing Write approach (also referred to as the Hybrid ROWA/QC) (Eager

and Sevcik 1983). Primarily, the system exists as either a ROWA or a Uniform

Majority Quorum Consensus approach, depending upon the status of the sys-

tem. When no failures are detected, the system exists in normal mode. Within

this mode, a ROWA approach is implemented. When it has been detected that

an update operation is non-serialisablf (unable to write-to-all), then the system

enters a failure mode. Within this mode a Uniform Majority Quorum Consen-

sus approach is used, as this ensures that members of the quorum will at least

see the update operation.

2.3.4 Available Copies based Consistency Model

ROWA-Available (Goodman et al. 1983; Bernstein and Goodman 1984; Berstein

et al. 1987) is an altered version of the ROWA that improves the availability of

update operations such that they are not blocked if some of the replicas are not

contactable. Read operations are managed in the same way as ROWA, with any

available replica able to handle the request. The difference with ROWA-A. is

that write operations only have to be committed at all available copies, rather

than every replica. In other words, update operations can still be performed

with N-l site failures.

Reducing the need for all replicas to see the committed changes, improves the

availability of wrii, operations to be performed in the face of site failures.

Rather than being a full pessimistic approach, ROWA-A offers a relaxed pes-

simistic approach, which reduces the serialisability of operations. For example,

some replicas might contain stale data as they are partitioned from the write

operation. Inconsistencies are avoided by allowing stale data replicas to be

22 23

deemed available only after they have synchronised with an up-to-date replica.

Only then a replica is deemed as available and able to accept read and write

operations. Unlike other non-blocking approaches, this approach does not allow

operations to be performed on stale data.

As Soon As Possible (ASAP) (Berstein et al. 1987; Bernstein and Goodman

1984) is a variation of the Primary Copy approach (section 2.3.1)), that relaxes

the constraints placed against write operations. In the Primary Copy approach,

write operations must be committed on all backups before committed on the

primary copy. However, this approach does reduce the replica availability for

write operations when faced with network partitioning. For this reason ASAP

was created to allow write operations to be committed to the primary copy

without all backups having to be available. Update operations are sent to

the primary copy, where they are processed and committed. Another process

informs all backups that the primary copy has changed. Accompanying this

message is the actual results of the update operation.

The benefit of such an approach is that the replica availability for write opera-

tions is improved as only the primary copy needs to be available for an operation

to be committed. However, this lack of consistency between the primary copy

and the backups may result in the usage of stale data. If for example a com-

munication failure occurs prior to an update operation being propagated to a

backup, when the backup within the partitioned segment upgrades to a primary

copy, the data it uses will be stale. However, the motivation for this approach

is based on the idea that there are low write-write conflicts when data sharing,

and the need for replica availability outweighs the possibility of inconsistencies

arising.

The above mentioned approaches (ROWA-Available and ASAP) might improve

the availability of replicas for certain operations. However, the order in which

validation occurs defines them as pessimistic approaches. There are a series

of approaches that are optimistic, as they perform the validation phase after

the operation has been persisted. These are referred to as Available Copies

Algorithms (Eernstein and Goodman 1984; Saito and Shapiro 2002). The pri-

mary difference between these and other approaches is the burden placed upon

the validation to ensure correctness. For example, operations (whether read or

write) are performed on any available replica, regardless of the availability or

consistency requirements. After the operations have been committed to per-

sistent storage, an additional process is used to synchronise the replicas when

appropriate.

4

The Little Work (Honeyman and Huston 1995; Huston and Honeyman 1993)

project was an attempt to improve the support for nomadic computing within

an operating system and demonstrate an Available Copies Algorithms approach.

The final implementation was an extension to AFS (Morris et al. 1986) that

relaxed the consistency to a more optimistic approach when partially connected

or disconnected. By modifying the V-node interface (Rosenthal 1990) of an AFS

client and implementing whole file caching (in this case extending the block

size to 1 Mbyte), they were able to achieve support for disconnected operations

within an AFS network. This was achieved by allowing a client to exist in four

different states depending on the state of the connection. These are:

• Connected

• Disconnected

• Fetch-Only

• Partially Connected

When connected, the client acts as a normal AFS client, using callbacks to in-

validate stale data. When a connection with a server is lost, the client changes

to a disconnected mode, where operations can still be performed, writing to a

cached version of the data. Each operation would be recorded within a, replay

log to be used upon reintegration. To assist in the reintegration of data with

the server (bidirectional propagation), the client enters a fetch-only mode. This

mode allows for synchronisation of data and resolution of conflicts (only a sim-

plified approach is implemented). Finally, if a connection with the server exists,

however, the limited bandwidth does not allow for normal AFS callbacks, the

client enters a partially connected mode. In this mode, operations are allowed

to be performed. However, to achieve some level of cache coherence, priority

based queuing of operations is used.

Coda (Satyanarayanan et al. 1990; Kistler and Satyanarayanan 1991; Satya-

narayanan 1989; Kistler 1993) is a classic example of a DFS implementation

of an Available Copy Algorithms approach. The aim of this DFS is to support

availability of replicas efficiently and thus allow for disconnected operations

(Kistler and Satyanarayanan 1991). This is achieved by exploiting persistent

storage, non-blocking operations and a complex conflict resolution implementa-

tion (Kumar and Satyanarayanan 1995), such that failures and elective discon-

nections are masked effectively. By doing this, Coda can perform file operations

in two states, connected and disconnected.

24

The Coda topology consists of a number of replicas mapped to a Coda names-

pace, called volumes. These volumes are perceived as one-copy equivalent, but

are physically distributed. A set of replica sites that house a volume is referred

to as a volume storage group (VSG). A subset of the VSG that is available is

referred to as an Accessible VSG (AVSG). Consistency is maintained between

replicas via the server replication mechanism (Satyanarayanan et al. 1990).

This mechanism implements a callback approach, such that when an open op-

eration is requested by an application, the servers notify all other replicas that

their version of the replica is no longer valid. Only after the operation has

completed does an additional process propagate changes to all members of the

AVSG.

When a client is disconnected from the network and unable to rely upon the

AVSG, the contents of a local cache are used. Unlike the members of the

VSG that implement first class replication, the cached version is a second-class

replica, only containing the data specific to the client. The process used to

govern cached data and manage client file operations is called the Venus. The

Venus has three states:

• Hoarding

• Emulation

• Reintegration

When connected, the Venus process is in a hoarding state. Within this state, the

contents of the cache are fetched from the server. When disconnected, the Venus

moves into the emulation state. This state emulates the existence of a network

connection (pseudo-server) using the cache as the data source for operations to

perform upon. By doing this, data becomes available as operations are allowed

to continue regardless of the connection (this assumes that the data required is

present locally). Update operations are catered for in this state by recording

the events in a replay log. This log is used during the reintegration state so

that operations can be executed on the AVSG upon reconnection.

Coda handles conflicts by initiating an additional mechanism that detects and

resolves them. Application-specific resolvers (Kumar and Satyanarayanan 1995;

Kumar 1994) are used by Coda to resolve specific conflicts defined by users. For

example, conflicts within a Concurrent Versioning System (CVS) are resolved

by recompiling source code such that object files are valid. Once conflicts have

been resolved (automatically and/or manually), then the Venus returns to the

hoarding state allowing normal operations to continue.

Another major DFS implementation of an Available Copies Algorithm approach

is Ficus (Page et al. 1998; Guy et al. 1990) (influenced by Locus (Popek and

Walker 1985)). Unlike other approaches, Ficus supports replica availability

within a peer-to-peer model. As with all available copies approaches, seriali-

sation is not guaranteed. Ficus rather ensures that modifications are not lost

due to concurrent operations. When a replica is modified, it is not immedi-

ately propagated to other replicas. Rather, replicas periodically consult other

available replicas to determine if propagation is necessary. When a difference

between replicas is detected, Ficus enters a Reconciliation phase. This phase

determines what is required to bring all replicas to a correct state. This is done

by consulting the version vector (Parker et al. 1983; Ratner et al. 1997) of

each replica. Using this information, the reconciliation process can determine

if one replica "dominates" another replica. If so, then the dominating replica

is used as the primary data source for propagation. If however Ficus is unable

to determine the dominate replica then manual intervention is required (there

are also automated tools to resolve certain conflicts (Reiher et al. 1994)).

Rumor (Guy et al. 1998) is a user-level implementation of Ficus. Like Ficus,

it shares the same design philosophy (one-copy equivalence and no lost up-

date guarantees). However it has two additional aspects: selective replication

and gossip (improved replica related metadata sharing). Selective replication

(Ratner 1995) is the ability to adjust the consistency granularity within the

replicated volume. In other words, Rumor has the ability to selectively adjust

what is replicated to each physical site. Gossiping is the ability to share update

information regardless of who actually owns a replica. For example, two rarely

connected machines can learn replica status via a mutually accessible third

machine. An extension to Rumor is Roam (Ratner 1998; Ratner et al. 1996;

Ratner et al. 1996). Roam improves the scalability of Rumor, by improving

the gossip and selective replication mechanisms.

2.4 Design Issues

Whether designing, modifying or selecting an appropriate consistency model

within a DFS, many design issues (beyond that briefly discussed in section 2.3)

need to be addressed. This section looks at these, including:

• Implications of a DFS. The effect of transactions, sessions and the

basic unit as implemented within a DFS.

26
27

• Application, User asd Environment requirements. The effect of
file access patterns, scalability and conflict resolution within a DFS.

• Models. The oifferent models that exist within DFSs.

• Environment Hardware. The effect of communication infrastructure

and devices on consistency model development.

All of these issues are pivotal when trying to support consistency maintenance

and concurrency control.

2.4.1 Implications of a DFS

The DFS domain imposes specific constraints that are unique to its environ-

ment. These constraints can restrict aspects of a consistency model. One such

constraint is how transactions and sessions are understood and handled within

a file system. Another constraint is the basic unit (blocks, files, directories and

volumes) a consistency model uses.

These are of particular importance within the DFS environment as many of the

fundamental design features and approaches found within existing consistency

models are derived from Distributed Database Management System (DDBMS)

environments. Handling these constraints, within a DFS, becomes a major issue

as a DDBMS environment perceives them differently.

Transactions

Traditionally, the concept of a transaction is a collection of basic operations

denoted by a beginning and an end operation. Each transaction is considered

a single unit that can succeed or fail (Ozsu and Valduriez 1991). By defining a

structure for basic operations to exist within, properties can also be defined that

indicate details about the transaction. For example, the mnemonic "ACID"

(Haerder and Reuter 1983), indicates that a transaction must be atomic, pre-

serve data consistency, isolated and durable. However, the implementation of

transactions and these properties in a file system domain is more difficult.

Within the DDBMS domain, the concept of a transaction is intertwined with

its functionality (for example, queries). However, within existing (common)

file system implementations, there is no explicit definition of a transaction.

Rather, file systems are more general than a database, thus are not constrained

to a detailed abstraction. To achieve a pseudo-transactional model, either file

1
-J

system primitives have to be substituted to indicate the beginning and the end

of a transaction or an extension to a file system is required.

The simplest approach for achieving a pseudo-transactional model is to substi-

tute the open and close file primitives as the start and end of a transaction.

The benefit of such an approach is that applications can transparently create

transactions without actually being aware they are doing so. However, the

negative aspect of the tight coupling between the boundaries of a transaction

and file system operations is that' transactions are restricted to a single data

object. Also there is no control over whether the transaction .succeeds or fails.

The main reason for using this approach is to guarantee t,b^ correctness of a

transaction. If an open function is called on a file, then a locking approach

could be used (section 2.3.2) ensuring that other transactions do not attempt

to intercede prior to the original transaction committing.

The second approach for achieving a pseudo-transactional model is to extend

the set of file system primitives so that applications are aware of the file systems

transactional capabilities. For example, there are implementations of file sys-

tems that exploit a transactional approach (XDFS (Mitchell and Dion 1982)).

The benefit of this approach is that fine grained transactional control can be

achieved. However, applications have to be explicitly aware of this interface to

take advantage of transaction semantics.

Coda's implej^eitf-iivyii of Isolation Only Transaction mechanism (Lu et al.

1997) is an ext^rion to file system primitives to improve the transactional

capabilities of a file system. Rather than operations being ungrouped, an ad-

ditional mechanism within Coda allows applications to encapsulate operations

between a beginJot and endJot operation. As a result, read-write conflicts can

be detected and flexible conflict resolution strategies can be employed.

Sessions

Sessions are an abstraction of multiple read and write operations. However,

unlike a transaction, atomicity and serialisability are not the primary intention.

Rather, prior to a session being invoked, a guarantee from the system is obtained

by the application. This guarantee ensures that the view of the data object

remains consistent for the operations performed by a single application. An

implementation of session guarantees is illustrated in Bayou (Terry et al. 1994;

Demers et al. 1994; Edwards et al. 1997). Bayou allows an application to

us .• four different guarantees, including Read Your Writes, Monotonic Reads,

28 29

Writes Follow Reads and Monotonic Writes. Each approach ensures different

levels of consistency and availability.

The imph'cation of implementing sessions is similar to transactions, as most

DFSs have no implicit support for session guarantees. As a result, the solution

is similar to how file systems support transactions, that being either transpar-

ently implementing session boundaries based on overloading existing operations

or non-tiransparently extending the file system. Overloading existing operations

to define the boundaries of a session, restricts the scope of a guarantee and fails

to offer the ability to select different session guarantees. Where as, extending file

system operations fails to offer transparent support, only supporting applica-

tions that are explicitly aware of the file system extension. As a result, defining

session guarantees within a DFS is complex, with the resulting implementation

solely based on a balance of the benefits against the constraints.

Basic Unit

The primary purpose of the file system is to store file objects in an ordered

manner to a persistent storage for future accessing. Since it is only a service,

it has no need to be aware of the contents of the file. In other words, to service

the needs of the file system, a generic service, based on a coarse grain unit is

used. This is different to Database Management System, as the basic stored

unit is fine grain and explicitly defined (Ozsu and Valduriez 1991).

The implication is that DDBMS has the ability to maintain consistency of a

much finer grain data object, compared to a DFS, which has a file (or encapsu-

lating types, like directories and volumes) available to it. Thus, a consistency

model is constricted by a DFS, as it uses a course grain unit as the basic unit

for all consistency maintenance events. The ramification of using a course grain

unit is that the file must be propagated in its entirety, even when a minor por-

tion of it has been modified. This is because the file system does not persist the

specifics of an operation, only the effects of the operation. The result of whole

file propagation is inefficient utilisation of resources, in particular bandwidth.

This is a major implication when building consistency models within a DFS.

A solution to inefficient utilisation of resources is to impose an additional unit

on top of the file system. Traditionally, this has taken the form of file blocks

(Dwyer 1998b). In other words, files can be broken into sub elements, which can

be treated as units in their own right. For example, blocks can take the form of

static and dynamic partitions (Dwyer 1998b), or computed deltas (Burns and

Long 1997). The benefit of this approach is that utilisation of resources can be

better allocated. However, the negative aspect is that the consistency model is

required to manage, monitor, define and implement the file blocks, independent

of the file system. Thus, when considering file blocks as the basic unit, the

benefit of efficient utilisation of resources might be offset by the additional cost

of implementing the necessary infrastructure.

2.4.2 Application, User and Environmental Requirements

One of the primary requirements that must be considered in the selection or

design of a consistency model is the minimal level of consistency an application,

user and environment requires. In other words, whether an application, user

and environment are dependant upon achieving one-copy equivalence and seri-

alisation, or whether a relaxed form of consistency maintenance is acceptable.

This concept can be described as uniformity (Saito and Shapiro 2002), meaning

the demand that replica content must eventually converge. How they converge

emd the timeliness of the convergence is partly dictated by the following areas:

• File Access Patterns

• Conflict Resolution

• Scalability

File Access Patterns

When designing or selecting a consistency model, the file access patterns of

an application, user and/or environment can be used to configure the imple-

mentation to more effectively service consistency and availability requirements.

For example, if implementing an approach tailored to a CVS, then the ratio

of write to read operations would prompt the implementation of an approach

that favours write operations over read operations. For this reason, the file

access pattern of a DFS, user and/or application are one of the major factors

determining the type of consistency model to implement.

Traditionally, defining a level of consistency and availability (within a consis-

tency model) has been based on well-known and general accepted assumptions

about file access patterns. For example, numerous and extensive studies into

file access patterns (Kistler 1993; Burrows 1988; Roselli et al. 2000; Ousterhout

et al. 1985) have consistently confirmed that read operations out number write

operations 5 (or 10) to 1 and that concurrent modifications are rare, equating

30

to only 1% of all operations. Many current consistency models are built upon

these assumptions, as they are assumed adequate in real world systems.

However, there are situations where this generalisation does not adequately

exploit the needs of the application, user or environment. For example, the

discussion found in Gill, Zhou, and Sandhu (1994) illustrates that files within

an academic environments arc smaller in size and exhibit less sharing. This

is compared to commercial environments where files are larger and exhibit a

higher degree of sharing. Thus, the implementation of a consistency model has

many of its goals based on the file access patterns of the application, user or

environment in which it is attempting to service.

Much of the difficulty associated with using file access patterns, as a major

criteria for the final design or selection of a consistency model, stems not from

the ratio of read to write operations, but rather the complexity associated

with the frequency of concurrent write operations (write-sharing). As the BSD

study showed (Ousterhout et al. 1985) (more recently (Baker et al. 1991)),

the likelihood of write-sharing operations occurring is minimal. However, this

might not be the case in all situations. Rather, the frequency needs to be

determined so the criteria of performance, availability and consistency can be

satisfied.

Conflicts Resolution

It is inevitable that concurrent operations on replicated data objects w:'l result

in conflicts that break one copy-equivalence. With a pessimistic approach,

conflicts are avoided up front, as the validation phase is prior to all read or

write operations. However, the cost associated with the validation phase can

place unnecessary burden on a system, if the nature of the conflicts can be

resolved easily.

Within an optimistic approach, as the validation phase is after read and/or

write operations, the likelihood of two replicas no longer being valid is high.

However, the benefit is that the cost par operation is reduced, as validation is

no longer directly part of the transaction's life cycle.

Determining which approach to choose can be based on the complexity to re-

solve conflicting replicas. For example, some conflicts can be resolved manu-

ally, where as others can be resolved automatically. Manually conflicts can be

time consuming. Whereas, automatically resolved conflicts might require less

31

intervention of the user, however are limited by the implementation of the au-

tomatic resolvers. For example, the implementation of the Application Specific

Resolvers in Ficus (Guy et al. 1990) and Coda (Kistler and Satyanarayanan

1991) demonstrate how simplistic conflicts are managed well. However, these

systems become less appealing as the complexity of the conflict increases.

Thus, when determining which consistency model to implement, the possibility

of conflicts needs to be evaluated. The extent of the conflicts needs to be mea-

sured and the cost associated with resolving the conflict (whether automated

or manual) needs to be reviewed. Each of these aspects can have implications

on the consistency model chosen.

Scalability

The DFS (or any distributed system) can attribute the beneficial qualities of

performance and availability improvements directly to its distribution of data

and functionality throughout the network. However, the scale of this distri-

bution can effect consistency model development. As the number of replicas

increase, so does the likelihood of concurrent accesses, the increase in cost

overheads associated with propagating updates and the increase in conflicts

occurring (Saito and Shapiro 2002). For example, implementing a pessimistic

approach within a large scale DFS would avoid conflicts, but would create ad-

ditional overheads and greatly reduce availability. Whereas, implementing an

optimistic approach would reduce the overheads associated with propagating

updates (as they are moved to a background process) and increase availabil-

ity, but allow for conflicts between replicas to arise. Thus, choosing a consis-

tency model when scalability is an issue, is highly dependent on what issues are

deemed important for the consistency model to service.

2.4.3 Models

An important aspect of any DFS implementation is the mode! defining the

structure and relationship of file replicas. As has been illustrated with some of

the existing implementations of DFSs, the relationship between replicas has far

reaching implications for consistency models. Currently, the two most dominate

models are tlis ciisra/server model and the peer-to-peer model.

32

2.4.4 Client/Server

The client/server model is one form of denning relationship between replicas.

The basic design consists of a server element, managing resources and a client

element, interacting with the server. Commonly the client/server model is

referred to a second class replication. The reason is that the clients replica is

always second class compared to the replica held by the host designated as the

server.

The motivation for this model within the DFS domain stems from two major

aspects, the ability for these systems to scale easily (compared to a Peer-to-

Peer systems) and to provide an elegant model to manage files in a centralised

manner.

Scalability within a client/server model is highly dependant on the specific ap-

proach implemented. Within client/server model implementations, there can

exist two different approaches; stateful and stateless. A stateful approach re-

quires the server to maintain some form of state relating to the relationship

between a client anc a server. For example, when a client replica is created,

the server keeps a record, using callbacks (Satyanarayanan 1989) to inform the

client when the server version of the replica has changed. Such approaches

are appropriate when the consistency maintenance techniques are server cen-

tric. However, this statefulness of the server does limit the scalability of a file

system, as only a finite number of clients can be serviced by a server at any

particular time. Rather, with stateless implementations,'the server is not con-

cerned for the clients that call upon its services. The server merely provides a

service to the clients, regardless of who they are. The benefit is that such sys-

tems can scale easily as the server is not required to keep track of the number of

client replicas. This lack of tracking means that informing clients of change to a

servers replica can not be disseminated, unless some form of broadcast messag-

ing approach is used. Thus, clients must assume responsibility of consistency

maintenance of replicas. However, since the server is known to the client, the

client has a known location to determine the consistency of a replica.

The other beneficial aspect of the client/server model is that the server offers a

centralised point of control for all clients. The obvious benefit of this structure

is that many of the management techniques employed to ensure consistency

between replicas can be centralised at the server. Thus concurrency issues can

be managed in an ordered and serialised manner, as all requests must go via

a server. Primarily, for this reason, many existing implementations of DFSs

employ a client/server model.

i

33

However, the main negative aspect of the client/server model is that a server

is the central point of failure. Therefore, if a server is not contactable, then

the functionality of the client is restricted. Of course, the level of restriction

is dependent on the specifics of the implementation, for example implementing

optimistic consistency maintenance on a client. However, this trade-off does

come at a cost, as detailed in section 2.2. Solutions have been employed to

improve this negative aspect through the implementation of fault tolerance

mechanisms. In many implementations, like CODA (Satyanarayanan 1989),

multiple servers are deployed, thus reducing the disruption of the client as a

result of the primary server failing. However, this does result in a cost, as the

mechanism to update servers becomes more complex.

2.4.5 Peer- to-Peer

With the advent of Peer-to-Peer (P2P) (Fienner 2002) file sharing systems (e.g.

Gnutella (GNUTELLA. 2002)), Peer-to-Peer has emerged as a viable method

of defining replica relationships within DFSs. The basic elements of a peer-to-

peer model include three aspects; firstly, all nodes within a network are equal

members. Secondly, nodes within the system are autonomous, providing both

the facilities to consume resources and expose them (thus simultaneously being

a client and a server). Finally, much of the communication is unidirectional.

The implications of a Peer-to-Peer model in a DFS primarily focused on the

equality of nodes. As there is no implied structure between replicas; each replica

has the same weight. As a result, such systems refer to replica with a peer-

to-peer implementation as first class replication. The benefit of not having an

implied structure is that replicas can synchronise between peers, rather than

with a server. This results in adhoc networks forming, with members able to

synchronise replicas regardless of whether they are attached to a server or not.

In some respects, this improves the dissemination of replica information within

a network, however, this improvement does come at a cost.

This cost is that there is no centralised arbitrator to resolve replica consis-

tency issues. For example, two peers attempt to synchronise their replicas

and a conflict results. Since both carry the same weight, as a result, the sys-

tem has trouble determining which replica is the most up-to-date. Within a

client/server implementation, either this conflict would have been avoided or

when resolved, the entire network would be made aware of the changes, not

just two peers. Such conflict issues lead to the assignment of weights to replicas

to define the relationship between peers (e.g. version vectors (Parker, Popek,

34

Rudisin, Allen Stoughton, Walton, Chow, Edwards, Kiser, and Kline 1983)).

However, even with the assignment of weights, ensuring that all changes made

by all users on shared data are made visible requires a complex conflict resolu-

tion system.

Thus, when designing a DFSs and associated concurrency control and consis-

tency maintenance, a choice between the client/server and peer-to-peer models

has a lot to do with which model best describes the interaction between repli-

cas, the issues of scalability, the need for fault tolerance and the complexity

associated with resolving conflicts that may arise.

2.4.6 Environmental Hardware

The mechanisms of the consistency model are highly dependent on the envi-

ronmental hardware of a DFS. In other words, the choice of consistency model

must take into consideration the environment in which it exists. Primarily,

this means that the constraints of the communication infrastructure and de-

vices that make up a DFS need to be evaluated as part of consistency model

development.

Communication Infrastructure

Constraints of the communication infrastructure effect many aspects of con-

sistency model development. These unique constraints are important as they

affect specific design characteristics of the consistency model. For example,

issues that are affected by the type of communication infrastructure include

timeliness of update propagation, update strategies and the actual implemen-

tation of the mechanism used to service the consistency needs of the application

and/or user.

Communication infrastructure can be categorised into a simple taxonomy; High

Throughput Wired, Low Throughput Wired and Wireless connection. This is

by no means a definitive classification, but is acceptable for consistency model

development.

High Throughput Wired Connection

High throughput wired connection exhibit the characteristics of stable connec-

tivity and low bit error rates. As a result, consistency model implementations

built upon these systems can place less emphasis on availability issues, focusing

rather upon improving performance time to access a replica and/or maintaining

35

consistency of the replicas. This is because stability of the wired connection
implies lesser need for replication.

In addition these connections provide high throughput (Ethernet at 10/100

Mbps and ATM at 155 Mbps). With access to ample resources (in this case

bandwidth), a consistency model has more flexibility in how consistency be-

tween replicas is maintained. For example, a bandwidth intensive approach to

maintaining consistency can be employed without greatly affecting the available

resources. The benefit is that such resource intensive approaches can reduce

the time for replica synchronisation, as updates are propagated to all repli-

cas as they occur. This is in contrast to resource-constrained approaches that

prioritise propagating updates, such that bandwidth utilisation is improved.

Low Throughput Wired Connection

Low throughput wired connections exhibit some of the behaviour of high through-

put wired connections, but with some additional characteristics that are unique

to only this connection type. As the name suggests, the main characteristic

difference is throughput. As a result, mechanisms implemented within a consis-

tency model and their usage of bandwidth to maintain consi-.itacy becomes a

critical issue within the DFS. A classic example of a low throughput wired con-

nection would be a connection established using a traditional telephone based

modem.

One of the major differences is the characteristic of disconnections. With high

throughput wired connections, disconnection events are mainly the result of

failures. However, with some low throughput wired connections, disconnection

events could also be elective. This means that nodes of the DFS can choose

when to connect and disconnect from the network. Not all low throughput

wired connections have elective disconnection events as a characteristic. How-

ever, within the context of consistency model development, it is assumed that

most low throughput wired connections exhibit voluntary disconnection as a

characteristic.

The implication for consistency model development when faced with the issue

of disconnection events, is whether the event was elective or a result of a failure.

As a result, availability becomes an important issue, as support for disconnected

operations (the ability to interact with the DFS while disconnected from the

network) (Kistler and Satyanarayanan 1991) might be required to ensure the

availability requirements of an application and /or user are met.

Wireless Connection

36

Wireless communication creates an additional set of constraints for a consis-

tency model. One of these is the nature of the connection. Rather, than hav-

ing a connection that has two states (connected or disconnected), the actual

throughput can fluctuate due to environmental factors. This fluctuation is not

a rare occurrence, but rather a common characteristic of wireless communica-

tion. The implication is that the underlying bandwidth can never be assumed.

This results in consistency maintenance approaches that must prioritise events

(for example, update notification), as no level of service or future service can

be assumed.

Noties of DFS using this type of connection might disconnect and connect ran-

domly. Rather than being a critical failure or an elective event, disconnection

events within a wireless connection infrastructure can also be temporary occur-

rences. For example, loss of connection can be as a result of being out of range

or moving into a "black spot" within a radio network. A consistency model

needs to cater for this unpredictable behaviour. This might take the form of

a more robust consistency maintenance mechanism that makes no assumptions

about the longevity of a connection or the available bandwidth.

Devices

The capabilities and constraints of devices that are members of a DFS can affect

the implementation of certain aspects of a consistency model. In the context of a

DFS, these constraints primarily focus on the processing and storage capabilities

of a device, more than the type of input/output devices' and other physical

characteristics. A simple taxonomy is defined for devices, including Desktop

and Server, Portable and Handheld. Like the communication infrastructure

taxonomy (section 2.4.6), this is not a definitive classification. Rather, it is an

adequate classification within the context of a consistency model development

for a DFS.

Desktop and Server

With the decrease in the cost of processing and storage capabilities, the dif-

ference between servers and desktop devices within the context of consistency

model development becomes minor. Both devices have access to ample re-

sources and are stable members of the network. The major difference is not in

the actual architecture of the device, rather the task performed. For example,

it is common for the average desktop device to be equal with small to m. "urn

enterprise servers.

37

When developing consistency models intended for the use on these devices, im-

plementations can exploit ample resources in order to improve performance. For

example, access to abundant storage allows these devices to house all elements

of a replica (e.g. whole volumes), rather than storing a partial copy (blocks).

The ability to house more of the replica locally reduces the need to search the

network for a particular file object, in turn improving performance.

The stability of servers and desktop devices reduces the need for software sup-

port for availability. This is because the responsibility for reliability rests with

the stability of the actual device and not any underlying replication subsys-

tem. Thus, approaches that favour consistency over availability can be em-

ployed. This is illustrated in early DFSs (NFS (Sandberg et al. 1985) and AFS

(Howard 1988)), as they existed on networks containing abundant resources

(this is relative) and implemented pessimistic approaches for concurrency con-

trol and consistency maintenance.

Portable

Unlike desktop and server devices, portable devices are built to be mobile (for

example laptop computers). The actual architecture of these devices is similar

to desktop devices. However, their portability means that their processing

and storage capabilities are reduced. From a consistency model point of view,

awareness of the available resources is important. For example, replicating

whole volumes might not be physically feasible on a portable device. Rather

replicating only the files a user requires would be sufficient.

The nature of portable devices creates a number of issues relating to availability.

As portable devices are designed to be mobile, the issues of connection and

disconnection become important. Section 2.4.6 has already briefly discussed

that the ability to connect and elective disconnect creates issues for consistency

model implementations.

Handhelds

Handheld devices (Palm (Rhodes and Mckeehan 1999), PocketPC (Boling 1998),

Pison (Psion 2002)) might exhibit some of the same characteristics of portable

devices (namely mobility). However, they are architecturally different. Primar-

ily, handheld devices are extensions of the desktop, storing user specific data

in an easy to access format. What makes these devices different to portable

devices is the varying nature of their underlying hardware and their design pur-

pose. Unlike portable devices which replicate desktop functionality, these units

38

have more specific aims. Their generality is reduced in favour of horizontal ap-

plication support, with each variation of handheld device varying greatly from

one another.

This architectural difference has many implications for consistency models, be-

yond just the issue of mobility. These implications include; the need for avail-

ability, the limited resources exhibited by these devices, the storage mechanism

and the integration with the DFS.

• Availability. Much of the life of these units is spent disconnected from

the desktop (network). As a result, availability is an important aspect, as

the unit needs to operate in a disconnected mode for extended periods.

• Limited Resources. Unlike other devices, the resources of these units

are very limited. For instance, storage, processing capabilities and power

supply are reduced. As a result, addressing these concerns is essential. In

turn, performance of the consistency model implementation is paramount

with these devices, as inefficiency can adversely affect all aspects of the

device.

• Storage Mechanism. The concept of storage usually conforms to a

hierarchical file system model (of course, other implementations do exist).

However, due to the varying design goals and underlying hardware, the

concept of storage is different within handheld devices. For example, Palm

uses a database model to store data object (Rhodes and Mckeehan 1999),

whereas Pocket PC has a hierarchical file system, coupled with a universal

Database Management System for its storage needs (Boling 1998).

• Integration. The connectivity of handheld devices is varied, with either

batch (referred to as synchronisation) or on-line processing. However,

much of this is based on the supported communication infrastructure.

For example, using an IrDA (IRDA 2002) or serial connection facilitates

synchronisation, whereas on-line support is achieved with cellular modems

and more traditional approaches (Wireless or Ethernet).

Current DFSs may contain various combinations of devices (server, desktop,

portable and handheld) and communication infrastructure (wired, wireless,

etc). They also service different users and different applications. This land-

scape creates new issues for consistency model development, as not only the

effects of individual elements help determine design choices, but when fully in-

tegrated simultaneously (the heterogeneous system) into the single DFS, these

issues are compounded.

39

2.5 Aspects of Heterogeneity

The issues that arise from mobility 2 enabled systems are an excellent real life

illustration of heterogeneity within the context of a DFS. The rise of mobilicy

occurred with the expansion of portable devices and wireless communication

infrastructures. However, the introduction of mobility enabling devices did not

mean that existing infrastructure (wired connection and desktop-server devices)

were no longer part of the DFS. Rather, it resulted in a mixture of static and dy-

namic infrastructure using different communication mechanisms, all sharing the

same resources. Thus, mobility and all the associated devices and constraints

lessen the homogeneity of a DFS.

Much research has been done into a DFS's ability to effectively handle mobil-

ity (Satyanarayanan 1989; Tait 1993; Dwyer and Bharghavan 1997; Guy et al.

1998). However, solutions developed are merely scoped to handle mobility, and

not support for heterogeneity. Mobility thus illustrates the need and possibili-

ties of heterogeneity, rather than solves it.

True heterogeneity, with respect to concurrency control and consistency main-

tenance within a DFS, is creating an approach suitable for all devices, communi-

cation infrastructure, users and applications (beyond support for just mobility).

Thus, how can true heterogeneity be supported in a DFS?

2.6 Research Area targeted by this Dissertation

When determining a consistency model to implement within a DFS (or any

distributed system), the decision process consists of evaluating the application

requirements (numerous applications and urer needs) and distributed topology

(devices and communication infrastructure). Resulting from this evaluation

is a number of scenarios, each with a specific need. Scenarios thus define a

problem space for which a consistency model will attempt to solve. For example,

scenarios can be the need to support a wireless infrastructure or the level of

consistency required for a specific application.

Traditionally, serving all these scenarios has resulted in a balance being found

between consistency and availability (Saito and Shapiro 2002). The resulting

solution is a single consistency model that "as best as possible" handles the

constraints of all the scenarios. However, providing a generic approach has
2Mobility in this context refers to the effect of mobility enabling hardware, rather than

actual movement of a device.

40

major implications, as certain applications, users and hardware might not be

served effectively and efficiently. As a result, the cost of generality is a lack of

fine grain support for certain scenarios by a consistency model.

Many current implementations of DFSs illustrate specific scoping of consistency

models to support specific scenarios. For example, early DFSs were built upon

stable, high throughput wired network infrastructure. As a result, many as-

sumptions were made about the underlying consistency model implementation.

These systems supported users and applications well when these assumptions

held true, but failed when the assumptions changed. A classic example of this

failure was Coda's inability to adapt to a limited bandwidth infrastructure

(Mummert et al. 1995). As a result, Coda had to be re-engineered to cater for

the new communication infrastructure.

Thus, as the heterogeneity and complexity of a DFS increases, the effectiveness

and efficiency of a single consistency model approach is reduced. As a result, a

new approach is required to give the DFS the ability to support heterogeneity

in relation to concurrency control and consistency maintenance. This research

is targeted by this dissertation.

2.7 Summary

This chapter has detailed the fundamental issues surrounding concurrency con-

trol and consistency maintenance within the context of a DFS (the consistency

model). This chapter has also detailed how consistency models address issues

like transactions, sessions, application requirements and hardware elements.

Based on the research, the inability of current consistency models to cater for

the unique and variable nature of heterogeneous DFS was identified.

The next chapters outline GLOMAR, an approach to provide a workable so-

lution so that an additional level of adaptability can be added to a DFS's

implementation for concurrency control and consistency maintenance.

41

Chapter 3

GLOMAR Design Rationale

GLOMAR provides a component framework for the maintenance of data objects

within a heterogeneous DFS. This chapter describes the motivation, aims and

high-level design of GLOMAR. The issues that are discussed in this chapter

include;

• Why support for leterogeneity is important.

• Why streamlining processes for consistency model development is re-

quired.

• And why flexibility of DFSs needs to be improved.

These issues are then addressed in the context of GLOMAR's aims and de-

sign. This chapter is the precursor to detailed discussions regarding the system

implementation presented in further chapters.

3.1 GLOMAR Motivation

The motivation for GLOMAR (Cuce and Zaslavsky 2002a; Cuce and Zaslavsky

2002b) evolved out of three major issues within distributed system develop-

ment. The first is the difficulty for existing consistency models to support

heterogeneous environments. This is because c u w - i DFS implementations

make assumptions about the target platform, specifically scoping functionality

to that platform only. For example, some implementations assume abundant

resources (wired connections), whereas others assume resources are tightly con-

strained (wireless connections). Thus, by assuming the target platform, the

42

DFS's ability to adapt to the elements that make-up a heterogeneous environ-

ment, is reduced.

The second issue relates to the failure of some distributed system developments

to adhere and benefit from commonplace software engineering practices. Exist-

ing approaches incorporate all facets of DFS functionality into a single system.

Consequently, these systems are difficult to configure, complex to extend and

static in their ability to adapt. For example, when a DFS implementation pack-

ages all the concurrency control and consistency maintenance mechanisms in an

ad-hoc manner, extending the existing code base is subsequently more difficult.

The third issue is the lack of flexibility associated with development of con-

sistency models, configurability of these consistency models and the ability to

define specific heuristics custom-built for different target platforms. Current

DFS implementations do not offer broad flexibility in relation to the tasks they

perform. For example, installing a new heuristic (in this case packet loss in-

formation) into an existing DFS cannot be easily accommodated. Rather, the

existing heuristics found within the DFS are the only ones available to be used.

In some cases, the existing heuristics might not service a particular purpose as

well has a custom-built heuristic. This lack of flexibility is common in many

existing DFS implementations.

3.1.1 Support for Heterogeneous Environments

It is common for heterogeneous environments to consist of servers, desktops,

laptops and handheld devices, all running different applications and servicing

different users. These might be interconnected via different network infrastruc-

tures, including broadband, wireless and infrared (figure 3.1). Applications run-

ning within this environment might require a high level of consistency, whereas

others might not. The type of user that can exist may vary from transient (con-

necting and disconnecting at random intervals) to more stationary. All these

variations and many others can coexist within the one heterogeneous environ-

ment. Thus, the primary motivation for GLOMAR lies with the narrow scoping

of existing DFS implementations to cater to the variety of different hardware

elements, application domains and user requirements, which exist concurrently

within a heterogeneous environment.

The term scenario is used to describe a single variation of hardware, software

and user that can exist. Within a heterogeneous environment, many scenarios

can coexist concurrently. The problem with existing DFS's is that if a num-

ber of scenarios are experienced, only a single scenario will be effectively and

43

Laptop

Handheld

Office
Workstations

Heterogenous Environment

Home Computer . /

Modem Servers

Figure 3.1: A Heterogeneous Environment

efficiently supported. Consider a DFS built upon a network where the connec-

tivity is unstable. Such a system would implement appropriate mechanisms for

that scenario only, for example, optimistic concurrency control with periodic

updates. These chosen mechanisms are specifically suited to this scenario only.

However, when implementing a mechanism on a system where the underlying

assumptions are different to which it was designed, the issue of effective and

efficient support becomes apparent. For example, consider the mechanisms

tailored for an unstable network implemented on a stable network connection

(previous example). The result is not a total failure of the DFS, but rather a

failure of the DFS to take advantage of the stable network, as an optimistic

concurrency control approach is not the most effective method of maintaining

consistency in this scenario. As a result, the features that were a benefit in an

unstable network become a burden in a stable network.

Thus, making assumptions about the underlying constraints that a DFS exists

within hinders its ability to provide an effective and efficient level of service.

This in turn results in a failure to support the needs of a truly heterogeneous

system.

44

3.1.2 Consistency Model Development

If one wishes to create a consistency model to be used in a DFS, he/she will find

a number of issues that would make the process difficult. The first and most

difficult issue is how the consistency model code is embedded within an appli-

cation or operating system. In most cases, much of the concurrency control and

consistency maintenance functionality is tightly coupled to the file system mod-

ule, which is entrenched in the operating system. To integrate new consistency

models into an existing DFS requires some system level programming, which

can be an extremely difficult and t: ui consuming task (in particular when the

operating system is proprietary).

In the case of a Distributed Database Management System (DDBMS), the

code responsible for the concurrency control and consistency maintenance is

in most cases tightly coupled to the DDBMS core. To gain access to this

functionality for the purpose of implementing a new approach, requires access

to the original source code. Such is the nature of concurrency control and

consistency maintenance that even if the source code is available, defining where

the consistency model portion of the DDBMS core begins and ends is difficult.

In other words, rarely is the process of concurrency control and consistency

maintenance abstracted into a single module for easy modification within the

DDBMS or DFS.

Why consistency model development fails to adhere to a unified and compart-

mentalised approach is because one does not exist. Many of the existing DFS's

have just focused on "getting it working", rather ttian defining good specifi-

cations and exploiting good software engineering practices. In turn, the code

associated with consistency models is hard to create, difficult to port, convolute

to modify and unable to be extended easily,

3.1.3 DFS Flexibility

Current DFS's provide limited flexibility to configure, extend and adjust many

elements of their implementation easily. For example, what events constitute a

disconnection operation cannot be easily changed within an existing DFS.

The benefit of limited flexibility is that the complexity of certain tasks is hidden

from the user. However, this restricts a DFS's ability to adapt. An example of

this is the difficulty associated with modifying a DFS's consistency model for a

new scenario. Rather than promoting a structure that allows any variation of

consistency model to exist, many DFSs, by their inflexible nature restrict the

I;

45

implementation possibilities. In other words, the DFS's inability to adapt is

due in part to the inflexibility of its implementation.

3.2 GLOMAR Aims

The aims of GLOMAR are to:

• Create a framework that supports existing and future hetero-
geneous environments. This means for GLOMAR to support a truly

heterogeneous envir , nent, it must provide an open specification to allow

for new and different <•.. enarios to be expressed, built with few underlying

assumptions about the target platform and allow many different consis-

tency maintenance and concurrency control approaches to be supported.

• Provide a formal specification for the creation of consistency

models. The process of creating consistency models has been ad-hoc,

with no formal approach or specification available. GLOMAR attempts

to rectify this by defining a development process, where interfaces and

well defined formal specifications determine the structure of the consis-

tency model. This will improve the software engineering practices associ-

ated with consistency model creation and offers greater reusability across

platforms and scenarios.

• Focus developments on the differing aspects of a distributed file

system. When studying the different DFSs, much of the functionality

and practices are shared across implementations. Thus, when developing

a DFS, a more effective approach is to reuse existing systems and change

only the parts where one wishes different functionality. GLOMAR at-

tempts to provide this by exposing the basic functionality of a DFS via

a number of services. As a result, GLOMAR only requires new function-

ality to be implemented in relation to consistency model creation. Thus,

GLOMAR aims to reduce the development burden, since much of the

functionality will be already available. This is similar in concept to how

the CORBA ORB (Object Management Group 1999) manages communi-

cation independent of CORBA objects.

• Allow highly configurable consistency model implementations.
In keeping with the aim of supporting heterogeneous environments, GLO-

MAR will incorporate an advanced dynamic configuration mechanism for

46

consistency models. This provides the flexibility to define when a con-

sistency model is activated and what data objects it governs. Such a

mechanism is easily adaptable and flexible enough to add new constraints

when they become available.

• Provide enough flexibility to ensure that any alternative ap-
proaches can be supported within GLOMAR. As Chapter 2 has
illustrated, there are many approaches to maintaining consistency and

controlling concurrency within a DFS. No one approach is better than

others in all aspects. Rather, they each have unique properties that ser-

vice a particular need. For GLOMAR to exploit alternative approaches,

the mechanism that houses them will need to be flexible enough not to

restrict their objectives. Thus, GLOMAR will provide a balanced ap-

proach, one that promotes formal specification in relation to consistency

model creation, but be open and flexible enough to accommodate easily

legacy and differing approaches.

3.3 Proposed Architecture of GLOMAR

3.3.1 How Heterogeneity is Supported

To support the multitude of scenarios that can exist within a truly heteroge-

neous environment, the DFS is required to be adaptive. This adaptation is

achieved either as a result of a single mechanism that adapts based on a par-

ticular constraint (the single consistency model approach) or one that has a

multitude of solutions available to it, for which it can select and use the most

appropriate (the multiple consistency model approach).

The purpose of the single consistency model approach (figure 3.2) is to be adap-

tive by defining a semantic space that encompasses all the foreseen consistency

and concurrency requirements. Such a mechanism would define a semantic

space, with each end corresponding to an extremity, in this case, pessimistic

and optimistic concurrency control. Depending on a number of triggers (e.g.

number of read versus write operations) the consistency level provided at a par-

ticular point of time is defined within this semantic space. Such an approach

provides an elegant mechanism for consistency maintenance and concurrency

control. However, the type of service provided can only be somewhere v/ithin

this semantic space. Essentially, a single consistency model approach imposes a
i

47

level of generalisation for the sake of elegance and simplicity. This does not pro-

vide the fine grain consistency maintenance, concurrency control and flexibility

that a truly heterogeneous system requires.

The other approach is the multiple consistency model approach (figure 3.2).

Unlike the single consistency model approach, the multiple consistency model

approach entrusts responsibility for concurrency control and consistency main-

tenance to other modules. Such an approach is similar to plug-in architectures

(Netscape 1998; UPNP 2002), where tasks are delegated to external modules

containing the majority of the functionality. The benefit of this approach is that

a number of consistency model modules are potentially available, allowing very

specific implementations for unique events. This results in a level of flexibility

that is not possible with the single consistency model approach.

- IB—

Multiple Consistency
Model Approach

- WmmW
Single Consistency
Model Approach

Plug-in Modules

JH - -m
mm

Single Module

1......
Figure 3.2: Single Consistency Model and Multiple Consistency Model Ap-
proaches

One negative aspect of the multiple consistency model approach is that the

effectiveness of consistency maintenance and concurrency conl *-ol is only as good

as the available modules. For example, consider a scenario for • Mch no available

consistency model module was present. Within the multiple consistency model

approach, the event would fail, as the event could not be serviced. Of course a

generic module could be implemented to reduce the repercussions of the failure

to find a suitable model. But it would experience the same negative aspects

of a single consistency model approach as a result. However, within a single

consistency model approach, an attempt would be made to manage this event.

48

Thus, the success of the multiple consistency model approach is solely based on

the modules at its disposal.

Another major concern with the multiple consistency model approach is the

performance cost associated with implementing this approach. It is inevitable

that an additional management layer is required to manage multiple consistency

models. As a result, every event is required to pass through a middleware layer

before being processed. This adds a cost factor, in addition to the file system.

The approach chosen for GLOMAR is the multiple consistency model approach,

as it best fits with the aims of GLOMAR. Some of the motivation behind select-

ing the multiple consistency model approach for GLOMAR is that it offers the

flexibility required to service the needs of a truly heterogeneous environment.

For example, with the single consistency model approach, the ability to adapt is

based on definable constraints. However, with the multiple consistency model

approach, there is the ability for future scenarios to be addressed through the

implementation of multiple consistency models.

The negative aspects of the multiple consistency model approach were also

considered in this selection. As these negative aspects are inevitable within the

multiple consistency model approach, GLOMAR will firstly aim to streamline

the creation process of consistency models. Thus, this will improve the likeli-

hood of many consistency model implementations b^ing available. Secondly, is

foreseeable that the multiple consistency model approach will impose an addi-

tional cost. However, these are estimated as minor, compared to the flexibility

that this approach will provide.

3.3.2 Streamline Creation of Consistency Models

GLOMAR intends to streamline the development process associated with the

creation of consistency models, by applying a specification and using a component-

oriented architecture (Szyperski 1997). This allows GLOMAR, to provide the

benefits of software reuse, easy deployment and an improved ability to extend

existing consistency models. The solution chosen is to implement a compo-

nent approach, with the consistency model functionality encapsulated behind

a custom-built interface.

A component-oriented architecture was chosen as a means of streamlining the

encapsulation of consistency model functionality. This choice stems from the

ability to provide a unit of abstraction that embodies all elements of consistency

maintenance and concurrency control. Primarily, this allows for the flexibility

49

required to house different and varying consistency models and the use of meta-

data to describe the scenario a consistency model is best suited.

A component-oriented architecture also promotes good software engineering

practices, including the improved deployment and management of resulting

components. This is essential for consistency models to fit within the multiple

consistency model approach.

Finally, the component approach offers the framework to define a specification

and development methodology for the creation of consistency models. The

result is an encapsulation of consistency functionality and context such that

they are easily created, easily deployed and easily managed.

3.3.3 Abstracting DFS Complexity

GLOMAR takes the point of view that time and effort should be spent on the

creation of the differing aspects of a DFS, rather than the creation of existing

techniques and methods. In GLOMAR's case, this is how concurrency control

and consistency maintenance are handled. As a result, much of the complexity

of the DFS is abstracted into purposely built services. This means a DFS

developer need not be concerned about the minor aspects of a DFS, but rather

can concentrate on the consistency model portion of the DFS solely, using these

services when necessary.

However, beyond just providing services to be consumed by consistency models,

the issue of their management needs to be addressed. For example, with a

multitude of consistency models, there requires a process to determine which

model is more appropriate for a particular scenario. Thus, GLOMAR also

needs to provide a service that is responsible for the run-time management of

consistency models. The GLOMAR middleware layer does this and is similar

to other middleware implementations (CORBA (Object Management Group

1999) and DCOM (Brown and Kindel 1998)) where a set of standard services

and management tools are provided. In the case of GLOMAR, the services that

will be provided include naming, resource evaluation, operating system and/or

application integration and consistency model management. This results in a

centralised system that coordinates and manages all concurrency control and

consistency maintenance activities, appropriately.

50

3.3.4 Flexibility

One of GLOMAR's design objectives is to support many variations of consis-

tency models to service a truly heterogeneous environment. Such a task is

a difficult one and is the crux of this dissertation. The solution proposed at-

tempts to provide the flexibility necessary to handle as many consistency model

variations as possible. This is achieved by focusing on three areas:

• The creation of an open non-restrictive architecture, which is the basis

for consistency model implementations.

• Improve the extendibility of middleware layer services, such that new and

unique services can be added easily.

• Provide a level of configurability, such that many aspects of the GLOMAR

system can be adjusted and modified.

As stated earlier, the use of a component-oriented architecture promotes im-

proved software engineering practices (Szyperski 1997). In addition, the nature

of a component is such that any functionality can be bound to it, but still

offering a single unit of representation. Thus, the component itself does not

restrict the flexibility of the concurrency control and consistency maintenance

functionality.

For unique consistency models to be supported within GLOMAR, might require

that additional support services be available. For example, a consistency model

might require packet loss information to determine the scenario for which it is

valid. Many existing DFSs do not provide this packet loss information, let alone

a mechanism to insert a purposely built module that derives this information.

GLOMAR enhances this aspect of a DFS by providing a mechanism to improve

its extendibility, by allowing new services to be added to the middleware layer

easily. Such services might include specific modules targeted at a particular con-

sistencj' model, or more general services that provide a service to all consistency

models. This is achieved by exploiting a plug-in architecture, where external

functionality can be inserted into GLOMAR. These services can be accessed

easily by any or a particular consistency model. The specific implementation

of this approach is detailed in Chapter 5.

GLOMAR also promotes a high level of configurability of all its components.

For example, GLOMAR has the ability to set specifically what data objects,

users and applications a consistency model can govern. Specific details on how

51

this and other configuration features are achieved are outlined in later chapters
(4 and 5).

3,4 GLOMAR Overview

GLOMAR supports multiple concurrency control and consistency maintenance

mechanisms under a single system. These mechanisms are defined as a con-

sistency model and are coupled with metadata within a housing component,

referred to as a Relationship Component. Depending upon the current scenario,

GLOMAR determines via a middleware layer, which Relationship Component

is best suited to effectively and efficiently service the consistency needs of the

application, user, data and the DFS.

The contribution of GLOMAR consists of three elements, the component based

methodology in relation to the creation, usage and implementation of concur-

rency control and consistency maintenance mechanisms, the design and struc-

ture of the components that houses the concurrency control and consistency

maintenance functionality and the middleware layer used to manage run-time

activities.

3.4.1 Relationship Component

The concept of the Relationship Component stems from the need to provide a

framework that can encapsulate different concurrency control and consistency

maintenance mechanisms. However, the structure of the Relationship Compo-

nent is more than just a component-based wrapper around a consistency model.

Additional functionality is required to help describe the context for which the

consistency model is suited. Thus, the make up of the Relationship Compo-

nent is one that contains the functionality to control concurrency and define its

context.

These elements are implemented by delegating each specific area (functionality

and context) into sub-components within the Relationship Component. These

sub components include the Consistency Model, which contains a single concur-

rency control and consistency maintenance mechanism; the Relationship Scope,

which defines the context for which it is valid; and the Clone List, which defines

the data objects the Relationship Component will govern (figure 3.3).

52

o

O
M

A
R

Consistency Mode

T

I

Relationship Scope

1
F
(
lelationship
Component

Clone List

Figure 3.3: Relationship Component

Consistency Model

The crux of managing concurrency control and consistency maintenance is en-

capsulated in the Consistency Model. The Consistency Model is the packaging

of functionality associated with the maintenance of consistency between repli-

cas within a DFS. Much of the complexity and development time in creating

the Relationship Component is associated with the Consistency Model. Spe-

cific details of the nature, interface and structure of the Consistency Model are

provided in Chapter 4.

Relationship Scope

With the multiple consistency model approach, a variable number of consis-

tency models can co-exist. This in turn requires that a process be used to

determine which model is the most appropriate at a particular point in time.

As a result, determining the most appropriate consistency model relies on de-

tailed information used to describe the current scenario. GLOMAR achieves

this by defining the Relationship Scope. The Relationship Scope is a set of

rules that define when a Relationship Component is invoked. The legitimacy of

the Relationship Component is determined by evaluating its Relationship Scope

against the current scenario. For example, if a Relationship Component is to

be invoked only when a network partition occurs, then the current status of the

network will be the primary factor when determining whether this Relationship

Component is invoked or not. Essentially, the Relationship Scope facilitates

this by providing a simple interface that can be implemented as needed.

53

Clone List

The purpose of the Clone List is to define what physical replicated data ob-

jects (Clones) this Relationship Component will govern. The Clone List is a

configurable mechanism used to define the relationship between one or many

data objects to one or many consistency models. As a result, the Clone List

is used as part of the decision making process to determine which Relationship

Component to invoke and when.

3.4.2 GLOMAR Middleware Layer

Managing and servicing of Relationship Components is handled by the GLO-

MAR's middleware layer. Within the middleware layer, there are a number of

services required to operate GLOMAR smoothly. These include Local Opera-

tion Interface, Remote Operation Interface, Clone Distribution Manager, Ser-

vice Manager, System Grader and Relationship Component Repository. Each

of these are used or governed by the Executive (figure 3.4).

Application

I Local File;
Operation

Executive

Local Operation
Interface

Implemented |
Relationship ;
Component j

Relationship
:omponent Repository

RCl RC2 RCn

System
Grader

Service
Manager

Remote
Operation
Interface

Clone
Jistrlbutior
Manager

Module 1

Module n

Service 1

Service n

Remote File
Operation

Figure 3.4: GLOMAR Middleware Layer

Local Operation Interface

The purpose of the Local Operation Interface is to capture all local file op-

erations and forward them to GLOMAR for further processing. The Local

54

Operation Interface has two interfaces, a transparent (for operating system in-

tegration) and a non-transparent (for direct application invocation) interface.

The Local Operation Interface works by intercepting an operation and redirect-

ing it to GLOMAR. Only when GLOMAR deems the operation a success (the

Relationship Component has successfully performed the operation remotely),

can the file system allow the changes to be stored on the local stable storage.

Remote Operation Interface

Not all file operations, handled by the Executive, are a result of local file op-

erations. Some operations originate from remote sources. To ensure that these

operations are handled appropriately, the Remote Operation Interface is used

to manage these operations.

Clone Distribution Manager

The purpose of the Clone Distribution Manager is to provide the Executive

with information about a Clone. For example, this includes resolving the ID

of a file to its absolute address. The need for such a mechanism is necessary

as name resolution is made more difficult with replicas distributed in different

parts of the network and in different parts of the file system's hierarchy.

Service Manager

Beyond the default services provided by GLOMAR (in particular the Clone

Distribution Manager), additional services may be required to deal with the

specific needs of some Relationship Components. For example, a Relationship

Component may require a transaction management service. For this reason,

GLOMAR provides a Service Manager that is responsible for the implementa-

tion of user-specific services.

System Grader

Within the GLOMAR middleware layer, the System Grader is used to derive

the information to describe the current scenario. This is used for selecting a

Relationship Component or re-evaluating its legitimacy. The unique aspect of

the System Grader is its ability to describe any type of scenario. Traditionally

similar systems have provided only a standard set of heuristics (e.g. storage size,

cpu speed, bandwidth) to describe the current scenario (Noble 2000; Yu and

55

Vahdat 2000a). However, there are situations where purposely built Context

Providers are required to derive information that is not intrinsically supplied by

GLOMAR. In keeping with the component-oriented architecture, the System

Grader acts as a container for third party Context Providers to be plugged in.

This provides the flexibility to add new mechanisms to describe a scenario for

which a Relationship Component is valid.

Relationship Component Repository

The purpose of the Relationship Component Repository is to manage the run-

time selection of Relationship Components. For example, the Executive requires

a Relationship Component be selected due to a change in the current scenario.

The Relationship Component Repository ultimately compares the new infor-

mation collected by the System Grader, with the Relationship Scope of each

installed Relationship Component to determine which Relationship Component

is valid. However, the process is more complex than this (Chapter 5), but es-

sentially its purpose is to provide the tools to manage multiple Relationship

Components.

Executive

The purpose of the Executive is to manage all services and events within GLO-

MAR. For instance, the Executive is responsible for calling the services within

the middleware layer to derive such things as the current scenario (via the

System Grader) and the valid Relationship Component (via the Relationship

Component Repository). It is also responsible for handling file operations that

are passed to it by the Local Operation Interface and Remote Operation Inter-

face. Thus, the Executive binds all services and events, such that the aims of

GLOMAR are met.

3.4.3 Implementation Issues

Much of the design of GLOMAR has focused on providing a system that is in-

dependent of a particular platform or distributed system implementation. Pri-

marily, it was designed to be able to service the needs of multiple distributed

system platforms, with much of the ideas independent of a specific implemen-

tation. However, as the design advanced, there was this need to define a par-

ticular distributed system implementation. The choice made was to implement

56

GLOMAR as part of a DFS. As a result, some of the system design has been

customised to service the needs of a file system.

The choice of implementing GLOMAR as a DFS stemmed not from any specific

reason. Rather, a DFS offered more challenges in relation to support of flexibil-

ity, concurrency control and consistency maintenance. This is not to say that

this approach could not be ported to other distributed systems. However, the

vast collection of constraints and possible scenarios make a DFS an appropriate

choice to demonstrate the feasibility of GLOMAR's approach.

3.5 Related Work

Much of the motivation of GLOMAR stems from the inadequacies of existing

DFS designs r - ' :Tiplementations. However, some aspects of GLOMAR's final

design are df - U; <' om existing work. This section details the genesis of GLO-

MAR in relation to the existing work currently tasked with the management of

consistency maintenance and concurrency control within a DFS.

TACT (Yu and Vahdat 2000a; Yu and Vahdat 2000b) is an implementation

of a distributed system that adapts it consistency model at run-time. TACT

shares much of the same aims as GLOMAR, with both systems focusing on the

concept that different applications can have different consistency needs. TACT

implements different levels of consistency by using metric information to deter-

mine where within the consistency-availability semantic space a replica should

be positioned. TACT differs in that it chooses consistency based on events (sin-

gle consistency model approach), whereas GLOMAR chooses consistency based

on rules (multiple consistency model approach). The TACT design was one of

the catalysts for the final approach, undertaken within GLOMAR.

The Teapot (Chandra and Larus 1999) approach demonstrates a similar ap-

proach to GLOMAR with respect to how consistency models are created. Teapot

implements a domain specific language used in the creation of consistency mod-

els for parallel and distributed systems. However, the resulting cache coherence

protocols produced by Teapot are implemented as a single general-purpose ap-

proach. This is different to GLOMAR, which promotes many Relationship

Components within a single DFS. In addition, the constraints of the language

restrict the development of consistency models that are unique. For this reason,

the design choice made by GLOMAR was to support domain specific implemen-

tations, rather than a domain specific language.

57

The ability to select and use multiple consistency models to govern a file has

been attempted before. Tait (Tait 1993) implements a two-read approach. In

this approach the application has the ability to determine which type of read

would best serve its purpose. This concept has been enhanced again with MFAS

(Dwyer 1998a), which extended the basic file primitives to include information

regarding the consistency requirements of the operation. Both Tait's system

and MFAS require applications to be made aware of the additional APIs to

exploit this functionality. Also the types of consistency models available were

restricted, as only a number of static implementations were available. For this

reason, GLOMAR chooses to implement a transparent approach, allowing for

multiple pluggable consistency models.

The concept of a framework that manages consistency models and implements a

design methodology can be found in how Pocket PC (Boling 1998) and the Palm

operating system (Rhodes and Mckeehan 1999) implement Conduits (Rhodes

and Mckeehan 1999; Microsoft 1998). Consistency models are implemented

behind a simplified interface, with a manager deciding when to implement the

models. However, where they differ to GLOMAR is that Conduits are highly

focused to offer one-to-one interaction between desktop and handheld devices.

Thus, there is no mechanism to determine the current scenario. In contrast,

GLOMAR aims are more general, with fewer assumptions made about the

underlying platform. Thus, this means GLOMAR attempts to be more flexible

in the target platforms it supports.

3.6 Summary

This chapter describes different issues that affect the efficiency and effectiveness

of consistency maintenance (via the control of concurrency) within a distributed

system. Of particular interest is how current implementations of consistency

maintenance mechanisms are inherently complex to create and inflexible when

faced with heterogeneous environments.

Emerging from these constraints is GLOMAR's approach to managing con-

currency control and consistency maintenance. The crux of GLOMAR is the

combination of multiple consistency models (coupled with metadata) and mid-

dleware layer working collectively. This attempts to exploit the current scenario

to efficiently and effectively service the consistency needs of the resources, users,

data and applications.

58

The next chapters (4 and 5) focus specifically on the major contributions, in-

cluding the Relationship Component approach to packaging concurrency control

and consistency maintenance functionality and the middleware layer used in the

effective and efficient management of these components.

59

Chapter 4

The Relationship Component

One of the contributions of GLOMAR is the ability to encapsulate alternative

consistency models within a general-purpose component called the Relationship

Component. This chapter discusses the Relationship Component, its purpose,

motivation, aims and outlining in detail why certain design choices were made.

This chapter also looks at the three sub-components within the Relationship

Component, outlining the purpose and structure of each. Finally, this chapter

concludes with a discussion on the issues that arise from a component-oriented

architecture.

4.1 Relationship Component Design Origin

Existing implementations of concurrency control and consistency maintenance

mechanisms are said to be either fine grain (application level (Horton and

Adams 1995; Stonebraker and Neuholf 1979)) or coarse grain (operating sys-

tem level (Kistler and Satyanarayanan 1991; Guy et al. 1998)). Fine grain

concurrency control and consistency maintenance mechanisms attempt to pro-

vide one-copy equivalence by tightly coupling specific functionality to a single

application. As a result, this allows application specific data to be exploited to

achieve a very precise mechanism to control concurrency and maintain consis-

tency. However, due to the specific scoping of these systems, they are complex

to create, difficult to maintain (and improve) and are not easily ported across

application domains.

Coarse grain concurrency control and consistency maintenance mechanisms on

the other hand, aim to provide one-copy equivalence to all elements within the

scope of a distributed system, rather than a specific application. In other words,

60

they provide a cross domain generic approach, which chooses not to exploit spe-

cific data and structures, preferring to use a coarse grain unit (for example, file

objects or operations) on which any concurrency control and consistency main-

tenance event is based. The negative aspect of coarse grain mechanisms is

that concurrency control and consistency maintenance is static across different

applications and users. In addition, coarse grain concurrency control and con-

sistency maintenance mechanisms are difficult to extend and inflexible when

ported to different platforms and environments.

What is required is an approach where the benefits of both fine and coarse

grain mechanisms can be utilised concurrently. In other words, a balance be-

tween the two approaches is required, such that the resulting mechanism can be

extended easily, be more adaptive to platform and environmental change, but

not reduce its functionality capabilities. This balance can be achieved (and is

the crux of this dissertation) by decoupling the concurrency control and consis-

tency maintenance mechanism from the operating system and/or application,

re-implementing it within a reusable component.

The primary motivation for using a component-oriented architecture to encap-

sulate concurrency centrol and consistency maintenance functionality is that it

provides:

• A single unit . Rather than concurrency control and consistency mainte-

nance functionality embedded within the operating system and/or appli-

cation, all the functionality is compartmentalised and centralised within

a single unit (a component). One of the benefits of using a component is

that deployment is simplified, as the costly process of migrating function-

ality is reduced. Another benefit of using a component is that concurrency

control and consistency maintenance functionality can exist side-by-side,

concurrently and independent of each other.

• Improved maintenance and extendibility. The process of decoupling

consistency maintenance and concurrency control functionality from an

operating system and/or application decreases the complexity associated

with maintaining and extending it. This is because only the component

needs to be modified (or extended), not any external modules.

• Implementation independent of interface. By using a component to

encapsulate concurrency control and consistency maintenance functional-

ity, an interface for that component can be defined. As a result, regardless

of the development type, language of choice or motivation, as long as the

61

interface is met, then additional components can be created simply and

easily. Why this is important is the component-orientated architecture

supports flexibility, as the specifics of the concurrency control and con-

sistency maintenance functionality are independent of the interface that

defines the component.

Even though the component-orientated architecture is flexible enough to sup-

port different and unique implementations, there still needs to be guidelines

on the structure of the components to ensure that the aims of GLOMAR are

met. In this case, all components need to service and support the concurrency

control and consistency maintenance needs of the DFS. To achieve this, minor

restrictions have been placed on the nature, structure and scope of the Rela-

tionship Component and sub-components. An example of one such restriction

is that all interaction is based on file system operations (e.g. read, write, etc).

This has ramifications, because operations are stateless. Why this restricts the

Relationship Component is that traditional transactional models (section 2.4.1)

do not lend themselves well to a file operation based systems. More of these

minor restrictions will be made apparent during this and latter chapters. How-

ever, it should be noted, that effort has been made to achieve a balance with

the objectives of GLOMAR.

With all the benefits that a component-orientated architecture brings, there

are some negative aspects why this approach has not been attempted earlier.

Two aspects in particular are the costs associated with a component-oriented

architecture and that this level of flexibility and expandability was not deemed

necessary within the DFS domain.

The cost associated with existing component-oriented architectures are well doc-

umented (Szyperski 1997). This essentially indicates that the cost of metadata

processing and late binding make component based programming more expen-

sive than inline functional programming, This issue is of particular importance

for DFSs and file systems, as performance is critical for providing an acceptable

level of service. Thus, the merging of a performance dependent system and a

potentially expensive programming approach would seem unacceptable.

However, the benefits of a component-orientated architecture in this situation

(the need to support heterogeneity within a DFS) far outweighs the cost over-

heads. The motivation for this statement stems from observing performance

dependent systems that implement a component-oriented architecture. One

such system is the Windows NT operating system (Solomon and Russinovich

62

2000), which employs a component-oriented like architecture1. This system il-

lustrates an approach that can be more extendable and flexible, without greatly

compromising efficiency. An example of this is how developing system level

modules (device drivers) for Windows NT (Nagar 1997) is far simpler and more

powerful than for Windows 95/98/ME (Oney 1999), which does not follow a

component-oriented design.

This argument applies to GLOMAR also, as the need for flexibility outweighs

the need for performance (however, this does not mean performance issues

are ignored). By utilising appropriate concurrency approaches to manage con-

sistency, GLOMAR ensures that resources and users are serviced adequately.

Thus, the potential degradation of performance experienced by the implemen-

tation of GLOMAR would be offset by the efficient and effective utilisation of

other more critical resources.

4.2 Relationship Component Design

The actual design of the Relationship Component stems from a number of

issues that are intrinsic to DFS implementations and the requirements that a

multiple consistency model approach imposes. The first issue is how best to

abstract the concurrency control and consistency maintenance functionality into

a single module. The second issue is how to define the context of a consistency

model. ,

The actual design of the Relationship Component abstracts these two issues

into an element that contains the specific concurrency control and consistency

maintenance functionality and an element that defines the context for which

it is valid. In other words, the Relationship Component partitions code and

context.

The need to partition the Relationship Component into two elements stems

from the necessity to simplify development. In other words, packaging code and

context in an ad-hoc manner does not allow for element sharing and independent

development. For example, the implementation of a context element can be

easily shared across different Relationship Component implementations.

NT implements an object oriented model, written in C

63

4.3 Relationship Component Structure

I

The structure of the Relationship Component is more complex than simply

partitioning code and context. As a result, the Relationship Component consists

of three coarse grain sub-components;

• Consistency Model. A sub-component responsible for the encapsula-

tion of concurrency control and consistency maintenance functionality.

• Relationship Scope. A sub-component responsible for defining context,

that being the scenario a component is valid.

• Clone List. Another sub-component responsible for defining context,

that being data objects a component governs.

The choice of this structure was deemed the best balance between functionality,

interface, flexibility and complexity.

4.3.1 Consistency Model

The functionality of the Consistency Model2 sub-component is to manage an

appropriate level of concurrency and maintain an acceptable level of consistency.

The interface of this sub-component is based on file system operations (figure

4.1). It reflects the basic operations available to a file system. The reason

for using file system operations is due to a number of benefits. These include

compatibility with existing file system implementations (heterogeneity), the

ability to support fine grain consistency models and provide flexibility when

implementing solutions.

The motivation for using file system operations as the basis for the Consistency

Model interface is that this approach becomes highly portable to other platforms

and DFS implementations. For example, systems such as the Vnode interface

in Unix (Rosenthal 1990) and the Filter Drivers in Windows NT (Nagar 1997)

allow for intermediate layers to be inserted into the file system call stack. Since

their interfaces are based on file system operations, GLOMAR's approach fits

elegantly into these systems.

The Consistency Model interface is low level intentionally. It deals with specific

operations, rather than an abstracted high-level concept (like a transaction).
2The uncapitalised consistency model term refers to a description of concurrency control

and consistency maintenance functionality. The capitalised Consistency Model term is used
to describe GLOMAR's component implementation of a consistency model.

64

«lnterface»
Consist encyModel

•OpenCMfhandle : FHANDLE): OperationStatus
•cleanEndCMfhandle : FHANDLE): OperationStatus
•Openfhandle : FHANDLE): OperationStatus
*Create(handle : FHANDLE): OperationStatus
•Close(handle : FHANDLE): OperationStatus
*Read(handle : FHANDLE, length : Long, offset: Long, buffer: Long): Operation&aius
*Write(handle : FHANDLE, length : Long, offset: Long, buffer: Long): OperationStatus
•G6tAttr(handle : FHANDLE, fileattr: FILE_ATTR): OperationStatus
•SetAttr(handle : FHANDLE, fileattr: FILE_ATTR): OperationStatus
•Rename(handle : FHANDLE): OperationStatus
•Removefjiandle: FHANDLE): OperationStatu
•RemoteOpen(handle : FHANDLE): OperationStatus
•RemnteCreate(handle : FHANDLE): OperationStatus
•RemoteClosefliandle : FHANDLE): OperationStatus
•RemoteReadfhandle : FHANDLE, length : Long, offset: Long, buffer: Long): OperationStatus
*RemoteWrite(handle : FHANDLE, length : Long, ofset: Long, buffer: Long): OperationStatus
•RemoteGetAttnJiandle : FHANDLE. fileattr: FILE ATTR): OperationStatus
•RemoteSetAttnjiandle : FHANDLE, fileattr: FILE~ATTR) : OperationStatu
•RemoteRename(handle : FHANDLE): OperationStatus
•RemoteRemove(handle : FHANDLE): OperationStatus

Figure 4.1: UML Diagram of the Consistency Model

The benefit of such a low-level interface is the fine grain control available for

a file operation. For example, consistency maintenance can be tailored for an

individual write operation, rather than a high-level save event (containing many

write operations). This fine grain level of control is a feature of using file system

operations as the basis of the interface.

The Consistency Model interface by its nature is very generic, consisting of

basic operations, with basic known types used as parameters. In some respects

this same interface design is a quasi-standard for interacting with a file system

(Nagar 1997; Huston and Honeyman 1993). Such an interface design results

in improved flexibility, as the interface uses basic types and has file system

events clearly defined. However, it has the greatest impact for housing existing

approaches, as the interface is similar to others used in existing systems.

The negative aspect of using file system operations is the loss of application-

specific information pinned to an operation. Most file systems are not concerned

with specific information other than the details of the request for it to service.

As a result, additional information that could be used to improve the concur-

rency control and consistency maintenance process is not available. For this

reason, the signature for each file system primitive is extended to include a

tag string parameter 3. The tag string parameter can contain information that

an application might deem useful to a Consistency Model. However, there are

some restrictions on its usage. If the Consistency Model is implemented trans-

parently, then there is no way for this information to pass. This is because

3The tag string parameter is a member of the FHANDLE type

65

the file system has no explicit knowledge of the tag string. The reason for

this is the underlying file system implementations have no facilities to handle

or pass parameters, which are not directly related to the defined interface or

interaction of the file system. If GLOMAR is called explicitly by an applica-

tion, the tag parameter can be handled, as GLOMAR has the facilities to pass

the tag parameter in addition to file operation information. Thus, a trade off

between transparency and the ability to pass application-specific information is

achieved.

One of the unique aspects in the design of the Consistency Model interface is

the partitioning of file system operations into two types of operations, Local

and Remote. This is done in order to identify the origin of an operation. The

distinction between the origins of an operation is important for Consistency

Models, as it reflects the nature of the operation. For example, local operations

originate as a result of an application generating an operation locally. These

types of operations are usually the catalyst for some form of consistency main-

tenance event. On the other hand, a remote operation is usually as a result of

a consistency maintenance event (figure 4.2).

Application

Local
Operation

Consistency
Model

Remote
Operation

Consistency
Model

I
[File]

Unit 1 Unit 2

Figure 4.2: Local and Remote Operations

To ensure that local operations are handled differently to remote operations, the

Consistency Model rigorously enforces an interface for both local operations and

remote operations. A by-product of this distinction is that specific functionality

based on the type of operation can be defined, thus giving another level of

flexibility in relation to consistency management.

66

4.3.2 Relationship Scope

The Relationship Scope sub-component is one way (the other way is via ihe

Clone List) of defining the context of the Relationship Component. Thus, the

purpose of the Relationship Scope is to inform GLOMAR if a Relationship

Component is best suited to a particular scenario or not.

The concept of defining a scenario for a Consistency Model is new in relation to

DFSs and is one way of improving the configurability of Consistency Model im-

plementations. The reason scenarios has not been formally defined is that most

systems implement a single consistency model approach. However, with imple-

mentations that use multiple consistency models (Tait 1993; Dwyer 1998a), the

criteria for determining the scenario is usually set within the DFS itself. These

criteria are mostly concerned with static properties that are not easily adapted

or changed. For example, a system might define available bandwidth based on

packet loss, regardless of whether a more appropriate approach is available.

The interface of the Relationship Scope (figure 4.3) consists of four methods.

The methods are simplified, with only a Boolean result indicating success or

failure. This aids in the quick and efficient determination of context. The mo-

tivation for using a Boolean result was based on two specific reasons. Firstly, a

Relationship Component is only valid or invalid for a scenario. It is unlikely that

a Relationship Component would be partially valid for a scenario. Secondly,

the methodology of the Relationship Scope implies that all the processing to

detf Tmine the validity of a Relationship Component should be done within the

context of the Relationship Scope.

«lnter face»
IRelationshipScope

*EvaluateRules(spinfo : Environment): Boolean
^SystemProfileRule(spinfo : SystemProfilelnfo): Boolean
^UserProfileRu!e(upinfo : UserProfilelnfo): Boolean
^FileProfileRule(fpinfo : FileProfilelnfo): Boolean

Figure 4.3: UML Diagram of the Relationship Scope

The most important method of the Relationship Scope interface is the Eval-

uateRules method. This is the entry point used by GLOMAR into the Rela-

tionship Scope. The results from this method determine if the Relationship

Component is valid or not. Implementing the Relationship Scope is done by

either implementing the functionality for determining the scenario within the

67

EvaluateRules method or using system generated information, delegating the

processing to other methods. GLOMAR favours using system generated in-

formation, as the resulting cost of processing the Relationship Scope is less

expensive than implementing the functionality independently.

Determining the scenario is done by evaluating the system generated informa-

tion returned from the System Grader (section 5.2.5), which is passed into the

Relationship Scope. However, the information being passed in might be too de-

tailed for the needs of most Relationship Components. Thus, this information

can be passed to other specific methods (that also make up the Relationship

Scope interface) to be broken into a more consumable format.

These methods consist of UserProfileRule, FileProfileRule and SystemProfileRule.

They are meant to decentralise the processing of determining the scenario, based

on a simplified taxonomy (section 5.2.5 for details). To consume the information

generated by the System Grader requires that these methods be implemented

and be explicitly invoked by the EvaluateRules method (figure 4.4). If they are

not, then they are never called. Only the EvaluateRules method is implicitly

called by GLOMAR.

GLOMAR

Environment II

SystemProfilelr.foT

BoolResult

EvaluateRules

1BoolResult

UserProfilelnfo

SystemProfileRule

FlleProfllelnfo I

BoolResult

UserProflleRule

BoolResult

FileProfileRule

Figure 4.4: Relationship Scope Invocation

The Relationship Scope can now determine its validity. This interface thus pro-

vides the structure required to define the conditions for which this Relationship

Component is valid.

4.3.3 Clone List

The Clone List provides a mechanism to map a Relationship Component to a

data object (or set of data objects). In other words, the Clone List defines which

Relationship Components govern which data objects. As a result, the Clone

68

List provides another mechanism to define the context of which a Relationship

Component is valid.

The reason for using the term Clone List is that within GLOMAR, data objects

(files) and encapsulating types (directories, volumes) are referred to as Clones.

These Clones are not physical objects, but are rather references to files, directo-

ries and volumes within a file system. The motivation for using the term Clones

is that GLOMAR views distributed data objecto as clones of each other.

Prior to mapping Clones to Relationship Components within the Clone List,

it is essential that Clones are firstly defined. Within GLOMAR, a Clone can

be defined as one of four possible types; files, directories, volumes and systems

(figure 4.5). As their name suggests, each Clone types maps directly to a

corresponding type within a file system. The only major difference is that a

file Clone type references a physical file object, where as a directory, volume

and system Clone type encapsulate other Clone types. This is analogous to

how directories contain files and volumes contain directories within existing file

systems. These encapsulating types allow a hierarchical relationship between

Clones to be expressed within GLOMAR.

69

System : diskl

Directory: directoryl

Volume: volumel
System : disk2

Figure 4.5: Clone Types

File Types

The file type is the base Clone type. Unlike other systems where the base type

can be a block of a file, it was felt that a whole file approach for GLOMAR was

more appropriate. Thus a file type maps directly to a whole file object.

This decision arose from experience with disconnected systems (Huston and

Honeyman 1993). A block approach during network partitioning is more dif-

ficult to maintain and adversely effects resource processing. Experience also

shows that whole files on average are small in size and that current bandwidth

is adequate for most needs (Ousterhout et al. 1985; Baker et al. 1991). For

example, a Consistency Model is created for a disconnection environment, for

which clients are disconnected from the network for extended periods. Using

a block approach reduces the availability of the replica, as not all elements of

the file might be present locally when disconnected from the server. Thus, a

situation might arise where an operation is to be performed on part of a file

that is not available. This situation would not arise if a whole file was available

and thus is the motivation for using whole files rather than blocks.

Defining the file type within the Clone List only requires creating an entry,

assigning a globally unique identifier to it and referencing the physical file object

from the local file system.

Encapsulating Types

As stated, the directory, volume and system types are used to encapsulate other

Clone types. The main purpose for providing encapsulation Clone types is to

simplify the representation of a large set of files. For example, it is far simpler

to allocate a single directory to a Relationship Component than individually

assigning every file object within a specific directory.

However, the three encapsulating types cannot be used indiscriminately to rep-

resent any clones. Each type has specific purposes and rules. For example, the

directory types purpose is to reference a number of files within a single directory.

The volume types purpose is to encapsulate any number of files and directories.

Finally, the system type is the all encapsulating type that can contain volumes,

directories and files.

Defining the encapsulating types within the Clone List only requires creating

an entry, assigning a globally unique identifier to it and referencing all the

appropriate Clones types within it.

70

Clone Assignment

Once Cloues '^ve be'in defined, the process of assigning them to Relationship

Components is stiviight forward. For each Relationship Component entry within

the Clone List, an unlimited number of Clone types can be added. For file Clone

types, the relationship is straightforward, a Relationship Component governs a

specific file. When assigning an encapsulating Clone type (either a directory,

volume or system) to a Relationship Component, the Relationship Component

governs all Clones defined within that encapsulating Clone type.

The benefit of being able to represent large file sets using encapsulating Clone

types within GLOMAR results in improved flexibility in relation to configura-

bility. For example, a Relationship Component can be implemented as a coarse

grain approach (governing all files within a system) by using the system type

(as it represents the whole system). On the other hand, a Relationship Com-

ponent can be implemented as a fine grain approach (governing only a subset

of the file system), using the file type, as it represents a particular Clone. The

Clone List mechanism allows for both of these cases to be supported concur-

rently within the same system. Thus, allowing GLOMAR to support both fine

grain consistency control and corse grain consistency control simultaneously.

However, the benefit of being able to utilising encapsulating Clone types creates

problems when determining the appropriate Relationship Component to invoke

when an operation occurs on a Clone governed by two Relationship Compo-

nents. For example, a coarse grain Relationship Component is set to govern

a directory. Within that directory is a file for which a fine grain Relationship

Component is already assigned. To GLOMAR, both Relationship Components

have an equal level of ownership for that particular Clone. Thus, how does

GLOMAR resolve which of the Relationship Components has more ownership

of that Clone, when an operation for that Clone occurs?

It is assumed in GLOMAR that Relationship Components that directly refer-

ence an individual Clone have a higher priority than ones that indirectly refer-

ence a Clone. In other words, a Relationship Component that references a file

Clone type has more ownership than a Relationship Component that references

a file via a directory Clone type. The justification for this is that in reality,

the fine grain Relationship Component is more suited to the Clone than the

coarse grain Relationship Component. The reason is that its implementation is

better suited and more specific to a particular file than a generic coarse grain

Relationship Component.

71

To define this ownership, a classification is assigned detailing the ownership

hierarchy based on how a Relationship Component references a Clone within

the Clone List. Thus, each Clone within the Clone List is tagged as either

being explicitly or implicitly referenced by a Relationship Component. Clones

that are referenced directly are said to be explicit, whereas Clones that are

referenced indirectly are said to be implicit. GLOMAR uses this information

in determining which Relationship Component to use for a particular Clone.

Clone List Implementation

The reason Clone assignment (as denned within the Clone List) is not packaged

with the Relationship Scope is due to its nature, its purpose and how it is used.

For example, the Clone List and Relationship Scope are both used to determine

when to implement a Relationship Component. However, the process used to

discover context within the Relationship Scope is different to that used within

the Clone List. The basic difference is that information generated from the

Relationship Scope is computed at run-time, based on rules. Whereas the

information generated from the Clone List, is static and defined upfront. For

this reason, system generated information is partitioned in the Relationship

Scope and file system specific information is defined within the Clone List.

Unlike the Consistency Model and Relationship Scope, the Clone List is con-

ceptually only a sub-component. In reality, since the modification of the Clone

List is tailored to individual systems, the data store holding the relationships

is external to the actual component itself. This loose coupling improve1: a Rela-

tionship Component's configurability, as system specific elements (like physical

addresses of files) can be adjusted and modified on a per system basis. Thus,

changes to the Relationship Component itself are unnecessary. The specific

details of the Clone List are in Section 6.2.3.

4.4 Relationship Component Issues

The Relationship Component is more than the three sub-components packaged

together. It also includes additional metadata to define how GLOMAR imple-

mentation issues are handled. The issues that are addressed with the Relation-

ship Components metadata include the instantiation model, threading model

and component life cycle. The reason these issues are addressed at this level is

for simplicity. Also the cost of dealing with such issues at the sub-component

72

level was unfeasible and unnecessary for the needs of concurrency control and

consistency maintenance functionality.

4.4.1 Instantiation

One of the limitations of the majority of file systems is that file operations

are stateless. However, some concurrency control and consistency maintenance

mechanisms need statefulness, for example a transactional model. GLOMAR is

able to instantiate Relationship Components that are either stateful or stateless.

GLOMAR determines the appropriate instantiation model to implement by

inspecting the Relationship Component's metadata. This describes the model

to implement.

In GLOMAR there are two models of instantiation, the singleton or new in-

stance (figure 4.6). The singleton model (Gamma et al. 1995) is the stateless

model. Operations are directed to a specific Relationship Component, which

is selected from an already instantiated component. Since there is no direct

linkage between the component and operation, no state information can safely

exist, as potentially countless numbers of other operations for different files

will use this same Relationship Component instance. In GLOMAR, there is

a need for such an approach, as not all concurrency control and consistency

maintenance implementations require state information. For example, some

implementations might treat each operation as a single entity and have no need

for state information to be stored. In addition, the singleton model is more

efficient as the appropriate Relationship Component is already instantiated,

with no need to incur the additional overheads associated with creating a new

instance.

Nevertheless, there may be situations where the need for statefulnes? outweighs

the cost overheads of the new instance approach. With this approach, a new in-

stance of the specific component is created for that particular operation. How-

ever, instantiating a new instance for each operation does not provide state

information across multiple operations. For this reason, when a Relationship

Component specifies that the instantiation type is a new instance, this indicates

that a new instance of the component will be available for the duration of its

scenario. In other words, this instance will be used for all operations until it

is deemed invalid. Once the scenario of a Relationship Component is over, the

instance is destroyed. For example, consider a series of open, reads, writes, and

close operations on a file. The open operation triggers GLOMAR to create a

73

new instance of the specific Relationship Component. As the operations con-

tinue, they are directed to use this instance. Within this instance, some form

of state information is being stored. From operation to operation, this state

information is available. However, it is destroyed when the scenario changes.

New Instance
Operation

Selection
i

RC Instantiation

Heap
RCx

RC
Collection

1

Singleton
Operation

Selection

RC1 RC2 RC3 RC4 RC/7

Figure 4.6: Relationship Component Instantiation Model

4.4.2 Threading Model

With the ability to create instances of a Relationship Component, the possibility

of concurrent operations performing in a non-serialised manner arises (this is

assumed normal in a singleton Relationship Component). For example, consider

two instances of the same Relationship Component performing operations on

the same Clone. Without knowledge of each other and assuming exclusive

control of the Clone, both Relationship Component instances are affecting each

other's effort to maintain consistency. Figure 4.7 illustrates some of the issues

that can arise from lack of concurrency control at the Relationship Component

level. As a result, there was a need to control the conditions for the successful

instantiation and management of Relationship Components. For this reason,

the Relationship Component has the ability to define the threading model best

suited to its needs. However, this threading model is far simpler than other

component threading models (e.g COM (Box 1998)), as it was designed for

the purpose of Relationship Component management and the unique nature of

GLOMAR.

The three threading models defined within GLOMAR are:

74

Application 1 Application 2

1 1

RC1 RC2

Two different Relationship
Components govern a single clone

Application

i

1

1

RC11

L

Application

1

"h
1

2

Two (or more) Instances of the same
Relationship Component govern a single
clone

Figure 4.7: Relationship Component Threading Issues

• Single Instance, Exclusive Lock - A component defined as a Single

Instance identifies that it is to be the only instance running within GLO-

MAR. This ensures that other instances do not interfere with the task

of this Relationship Component. The Exclusive Lock specifies no other

Relationship Component holds a reference to the particular Clone. This

component will fail to create, if any of these conditions are not met.

• Single Instance, Non Exclusive Lock - This instance of the Relation-

ship Component must be the only instance ^running within GLOMAR.

However, other Relationship Components can have a reference to the

Clone. If however an Exclusive lock is found for one of the Clones, then

this operation fails. Only Non Exclusive locks can be shared.

• Multiple Instance, Non Exclusive Lock - Any number of instances

can exist for this instance to be created. Other Relationship Components

can have a reference to a Clone. If however an exclusive lock is found for

one of the Clones, then this operation fails. Only Non Exclusive Locks

can be shared.

4.4.3 Life-Cycle

As a consequence of the multiple consistency model approach, Relationship

Component instances will be starting and stopping based on different scenarios

during the life time of GLOMAR. Predicting when these events will occur is

impossible as they are based on the scenario of the Relationship Component.

75

Thus, there needs to be an elegant solution to handle these events when they

occur. The most appropriate approach is to mirror the constructor/destructor

mechanism within object-oriented programming. For example, when a Rela-

tionship Component is instantiated, a constructor like method is called, which

starts all the necessary functionality. When a Relationship Component is inval-

idated, prior to it being destroyed, a destructor like method is called, invoking

the functionality associated with finalising the component.

Since such events are tightly coupled to the functionality of the Consistency

Model, the Consistency Model interface has been extended to include two ad-

ditional methods; the OpenCM method and the CleanEndCM method. The

OpenCM method acts much like a constructor, as it is always the first method

called. It is called only once and only upon the invocation of a new Relation-

ship Component. The benefit of this method is that code placed inside can be

invoked before any operation has been performed. For example, the OpenCM

could be used to replay a log of operations recorded while in a disconnected

mode.

The CleanEndCM method has a more important task, as it is invoked be-

cause of the Relationship Component being invalidated. Thus, code wit •••a this

method attempts to generate a consistent state, ensuring that operations are

not lost and that they can be recovered easily. However, the nature of this

method is blocking, thus the system will wait until the CleanEndCM method is

finished before proceeding. As performance is an issue, a Relationship Compo-

nent should avoid creating procedures that block indefinitely. For this reason,

each Relationship Component is given a timeout period. When that period

expires, regardless of the CleanEndCM method state, the Relationship Com-

ponent instance is destroyed.

By including the ability to define a threading model, instantiation model and

life-cycle in GLOMAR improves the manageability of Relationship Compo-

nents. In the attempt to cater for the differing needs of Relationship Com-

ponents, a balance between functionality and cost has been achieved. However,

a deep understanding of the ramifications of these properties is necessary, as

implementations might fail to perform as intended. Thus, ensuring Relation-

ship Component issues are addressed is just as important as the functionality

itself.

76

4.5 Summary

This chapter details the approach used to encapsulate the concurrency control

and consistency maintenance mechanism into a single unit, the Relationship

Component. The motivation, the structure and the design decisions have also

been discussed.

The Relationship Component consists of three sub-components:

• Consistency Model. This sub-component houses the concurrency con-

trol and consistency maintenance functionality.

• Relationship Scope. This sub-component describes the scenario used

to define when to implement a component.

• Clone List. This sub-component defines the files, directories and vol-

umes it governs.

The actual Relationship Component was discussed, focussing on issues that

arise from being implemented within the multiple consistency model approach.

The next chapter (Chapter 5) discusses the GLOMAR middleware layer, de-

tailing how it manages and supports the Relationship Componc: Is.

77

Chapter 5

GLOMAR Middleware Layer

This chapter discusses the mechanism (the GLOMAR middleware layer) re-

sponsible for the handling of file system operations, as well as managing and

servicing Relationship Components. The proposed middleware layer is highly

detailed and is one of the major contributions of this dissertation. This chapter

details the aims of the GLOMAR middleware layer, the motivation for using a

middleware layer approach, the justification for the final design and the specific

details of each service of the GLOMAR, middleware layer.

5.1 Aims

The primary aim of the GLOMAR middleware layer is to manage the interaction

between the operating system and Relationship Components on one hand and

between multiple applications and Relationship Components on another. This

is achieved by creating a brokering system between file operations and a variety

of different concurrency control and consistency maintenance medianisms.

In addition to managing and servicing file operations, the GLOMAR middle-

ware layer is flexible enough to provide a constantly adapting level of service, for

existing and new Relationship Components. This means new and unique Re-

lationship Components are not restricted by the GLOMAR middleware layer.

This is of particular importance because future scenarios can be catered for

easily.

An important aim of the GLOMAR middleware layer is efficiency. This is be-

cause file operations occur frequently and whose latency is critical. For this

78

reason, the GLOMAR middleware layer implements a balanced approach, con-

sidering the imposed constraints. The specifics of these constraints are detailed

within this chapter.

The final aim of the GLOMAR middleware layer is to improve the process

of concurrency control and consistency maintenance mechanism development.

This is done by streamlining Relationship Component creation via the GLO-

MAR middleware layer providing services that are commonly found within

commonplace DFS implementations. As a result, rather than creating com-

mon services for specific implementations, they are provided as part of the

proposed framework. In addition, the GLOMAR, middleware layer allows for

the creation, modification and extension of these services easily.

5.2 GLOMAR Middleware Layer Design

Achieving the aims of the GLOMAR middleware layer requires a design that is

flexible, extendible, manageable and efficient. The choice undertaken by GLO-

MAR was to follow the bridge software pattern (Gamma, Helm, Johnson, and

Vlissides 1995). The justification for this design stems from similar systems,

including plug-in architectures like Netscape plug-ins (Netscape 1998) and Uni-

versal Plug and Play (UPNP 2002).

Within the GLOMAR middleware layer, areas .of responsibility are assigned

particular services. The first set of services is responsible for providing the

interface into the GLOMAR middleware layer. These services are:

• The Local Operation Interface

• The Remote Operation Interface

The second set of services is responsible for providing additional GLOMAR

specific functionality for use by any Relationship Component. These are:

• The Clone Distribution Manager (for name resolution of data objects)

• The Service Manager (houses additional Relationship Component user-

specific services)

The third set of services is responsible for the assignment of Relationship Com-

ponents at run-time. Due to the complexity of this task, the functionality is

divided into two services. These are:

79

Parameter
File Name

Operation Type

Offset

Buffer

Length

Application ID

Description and Purpose
The file name is used to not only point
GLOMAR to the correct data object, but
also used for determining Relationship
Components during the selection phase.
Indicates the type of operation be-
ing performed by the operating sys-
tem. GLOMAR supports the following
types: READ, WRITE, OPEN, CLOSE,
GETATTR, SETATTR, CREATE, RE-
NAME, REMOVE.
A position within a file an operation is re-
ferring to. This is only valid for READ
and WRITE operations.
The data structure used to carry modifi-
cations as a result of an operation. For
example; READ operations would pass in
an empty buffer, expecting it to be filled,
whereas WRITE operations would contain
a value to write at a particular offset.
The length of the actual value within the
Buffer.
This is the identification of the application
actually invoking the operation. This data
is used as the basis for indexing.

Table 5.1: Specific information collected by the Local Operation Interface

• The System Grader (which determines the current scenario of the system)

• The Relationship Component Repository (handles Relationship Compo-

nent management and selection)

All these services, in turn, are managed by the Executive (figure 3.4).

5.2.1 Local Operation Interface

The Local Operation Interface is solely responsible for capturing local file op-

erations and operation specific information (in this case, file details). These

operations and associated information are then forwarded to the Executive for

further processing. See table 5.1 for details on the file information the Local

Operation Interface collects.

80

Since application transparency is one of GLOMAR's aims, a user should not

be explicitly aware of the activities of GLOMAR. For this to be achieved, part

of the Local Operation Interface is designed as an additional layer that ex-

ists within a file system's Input/Output stack. Its purpose is to intercept file

operations prior to completion by the file system. However, the Local Oper-

ation Interface does not replace the file system. Rather, it resides within the

file system, forwarding operations to GLOMAR for further processing. When

GLOMAR finishes with an intercepted operation, that operation is then passed

back to the Local Operation Interface, which returns it into the file system.

The operation is then allowed to continue its execution to lower level drivers

within the file system.

The Local Operation Interface consists of two elements: the operating system

specific functional! y and the bridge that connects it with GLOMAR (figure

5.1). For example, the implementation of the operating system specific func-

tionality can be a Filter Driver in NT (Nagar 1997) or a Vnode module within

UNIX (Rosenthal 1990). The similarity between these approaches and GLO-

MAR's interface design means that implementing the operating system specific

functionality is made easier, as they both employ a file operation based inter-

face.

Application

J

User Level

System Level

Operating System

10 Subsystem

OS Specific Elemen

Disk Driver

GLOMAR

Bridge

The OS spedllc demeit
or the LOI does not have
the ability to pass on
additional Information to
GLOMAR, as the
underlying OS does not
have the capability this
Infomatlon

Figure 5.1: Local Operation Interface

However, not all situations require that a transparent approach be used. There

are situations where a non-transparent approach would be suited, as illustrated

by Odyssey (Noble 2000). Odyssey showed the benefits of a concurrency control

81

and consistency maintenance mechanism exploiting application-specific infor-

mation, using a non-transparent interface. For GLOMAR to provide a similar

service, the bridge element of the Local Operation Interface is visible to appli-

cations at the user level (rather than solely at the system level). However, no

benefit would be gained if the interface remained the same between the user

and system levels. Thus, the bridge interface is extended for applications that

directly communicate with GLOMAR (figure 5.1). As part of the design, an

application can pass any meaningful information to a Relationship Component,

via the tag parameter (As was discussed in section 4.3.1).

Therefore, the Local Operation Interface provides not only a transparent ap-

proach for processing file operations, but also a non-transparent approach that

allows applications to explicitly pass meaningful information. In addition, both

approaches are implemented simultaneously.

5.2.2 Remote Operation Interface

The nature of a DFS (or any distributed system) is that operations (or results

of operations) will be propagated to other members of the network. For this

reason, GLOMAR has a specific interface that handles requests that originate

from remote sources. The Remote Operation Interface provides this service. Its

purpose is to handle remote file operations and ensure that they are forwarded

to the appropriate Relationship Component. Within GLOMAR, the Remote

Operation Interface ensures that the operations are directed to the remote in-

terface within the Consistency Model sub-component (figure 5.2). Operation

partitioning based on the origin is detailed further in section 4.3.1.

The Local Operation Interface and Remote Operation Interface both handle

inbound file operations. As a result, they have some similarities, including

stateless event based interaction, data types used and that results from the

operation are returned to the caller. However, there are some differences with

the Remote Operation Interface, due to the type of file operations managed.

Primarily, the Remote Operation Interface is to be called only by remote Re-

lationship Components and is not meant for direct use by applications. In

addition, the information that is passed to the Remote Operation Interface is

more detailed than the information passed to the Local Operation Interface.

In the Remote Operation Interface, two additional parameters are passed, the

Relationship Component ID and Clone ID.

These two additional parameters are passed into the Remote Operation Inter-

face to avoid any ambiguity between the interaction of a local operation and a

82

remote operation. The Relationship Component ID is passed with an operation

from the remote source. The Relationship Component ID informs the Remote

Operation Interface that this operation was generated by a particular Relation-

ship Component. The Remote Operation Interface then ensures this operation

is forwarded to the same Relationship Component locally. As a result, any

ambiguity is removed in relation, to handling remote operations.

A Clone ID is also passed to determine which Clone (file) this operation is in-

tended. The reason for using an ID rather than a name and absolute address

(which is used in the Local Operation Interface) is that some files might have

different absolute addresses. Thus using IDs (similar to a File Handle) en-

sures that operations reach their destination Clone, without having to enforce

a rigorous addressing and naming scheme.

An 10 operation
resulting from a
remote Relationship
Component

GLOMAR

Remote Operation
Interface

Relationship Component

J

Local Storage

Figure 5.2: Remote Operation Interface

5.2.3 Clone Distribution Manager

In keeping with the aims of GLOM.AR, much of the common functionality is

provided by the GLOMAR middleware layer. One such example is the Clone

Distribution Manager, which is responsible for the management of files. The

purpose of the Clone Distribution Manager is to hide some of the complexity

associated with DFS interaction. In a DFS, naming of replicated data objects

becomes more complex when implemented within a distributed environment.

For example, replicated files might be implemented within different branches

of a local file system hierarchy. The Clone Distribution Manager provides a

service to extract this information.

83

The Clone Distribution Manager is only tasked with providing simplistic func-

tionality. More complex approaches can be created using the Service Manager

(section 5.2.4). The Clone Distribution Manager is not implemented as a ser-

vice within the Service Manager as much of the functionality is intrinsic to the

operations of GLOMAR, in particular, to the decision making portion of the

GLOMAR middleware layer.

5.2.4 Service Manager

In some situations, the Relationship Component methodology does not provide

the requirements needed to service the concurrency and consistency needs of

an application, user or device. For example, an external server process might

be required to complement a Relationship Component. Implementing such a

server process could be achieved by developing another mechanism that runs in

conjunction with the Relationship Component. Thus, the GLOMAR provides

for user-specific services to be added to the middleware layer. The Service

Manager is the service that handles the instantiation and management of these

user-specific services (figure 5.3).

- — •

Servk

.

:e File

Collect the Information
relating to Installed services

Service Manager

Glomar's Process

Service 1

Service 2

Service 3's Process

Service3

Service 4's Process

Service4

Figure 5.3: Service Manager

The Service Manager handles three types of services;

84

• External. These services run within their own process for the duration

of the system.

• Instantiated. These services run for the duration of GLOMAR within

GLOMAR's process. They start and stop depending on the lifetime of

the GLOMAR instance.

• Remoted. These services expose their functionality via the GLOMAR

communication cbaunel and run for the duration of GLOMAR within

GLOMAR's process. This is how intrinsic services (like the Clone Distri-

bution Manager) .ffe exposed.

Inclusion of a service irtfo the Service Manager is done by editing a Service File.

Within this Service FiJe, the physical location of the service is indicated, as well

as the entry point and vhe service type. Upon the start-up of GLOMAR, this

file is read and the appropriate services started.

Unlike the Relationship Component, which must adhere to a detailed interface,

a simple interface is defined for user-specific services. This interface consists

only of a start and stop method. Within these methods, the functionality of

the service is placed.

5.2.5 System Grader

Before selecting a Relationship Component or re-evaluating the legitimacy of

a currently implemented Relationship Component, the Executive invokes the

System Grader to collect information about the current scenario. Since this

information is used to direct file operations, GLOMAR refrains from imple-

menting a definitive mechanism for determining the legitimacy of a Relation-

ship Component. Rather, GLOMAR emphasises that the evaluation process is

"as accurate as possible" in the face of strict time constraints. This is achieved

by providing a passive process for deriving information. Rather than every file

operation resulting in a call to a set of system metric routines, every file opera-

tion performs a "pickup" of a shared data structure. This shared data structure

contains a collection of scenario types and actual values, which are then passed

into the Relationship Scope of each Relationship Component (figure 5.4).

GLOMAR maintains this information via an additional process (existing as a

separate thread), which invokes specific functionality based on a defined set

period. As a result, the shared data structure is constantly being updated,

independent of the events occurring within the Executive.

I

85

10 Operation

RC Selections

1
Relationship
Component

/
Metric
Name

Metric
Value

/

Context Provider
1

Context Provider
2

Context Provider
n

The System Grader controls rj
frequency of update InvocarJc

he
ns

per Context Provider

GLOMAR Thread System Grader Thread

Figure 5.4: System Grader's pickup Approach

Traditionally, only a standard set of information (e.g. storage size, cpu speed,

bandwidth) was available to describe a scenario. However, there are situations

where specific information that is not part of the current set of information is

required to define the scenario. One unique aspect of the System Grader is its

ability to derive such specific information, by allowing additional scenario de-

riving mechanisms {Context Providers) to be added. These Context Providers

are installed into the System Grader by editing the System Grader File. This

file is used to inform the System Grader what values are to be inserted into

the shaied da ta structure. These values are only available after a restart of

G L O M A R has occurred.

The process of updat ing the shaied data structure is performed in two ways, by

statically setting a value or by providing a pointer to a Context Provider. From

this point, the System Grader takes responsibility for ensuring that the shared

da ta s tructure is maintained in accordance with the System Grader File.

For classification purposes, scenario information is divided into a taxonomy

based on the User Profile, the File Profile and the System Profile. The User

Profile details possible interaction patterns of a user on a file. The File Profile

details the type of file being processed. The System Profile is an abstraction

of the current s ta tus of the hardware, software and location. This information

is stored in a hierarchy, with the taxonomy defined as the root elements (table

5.2 and figure 5.5).

Both the System Profile and the File Profile allow for complex structures tha t

mirror files systems and context providers to be represented. For example, a

86 87

Profile
System

File

User

Sub Branch
Hardware

Software

Location

Class

Type

User

Profile
Contains all Context Providers that eval-
uate the hardware elements of a system.
For example, CPU, Networking, Storage,
Power.
Contains all Context Providers that relate
to the software elements of a system. For
example, Operating System, Applications
installed, etc.
Contains all Context Providers that relate
to physical location. This is applicable to
mobility-enabled applications.
Contains all Context Providers that are
specific for a file within the Clone list. In
most cases illustrating the Operating Type
(READ, WRITE or READWRITE) and
Operation Action (STREAM, RANDOM,
UNIFORMED, NOTHING).
Contains all Context Providers that relate
to the type of file. This might include the
nature of the file (text, database, multi-
media, etc).
Contains all Context Providers that relate
to the user of the system and how they
might behave.

Table 5.2: Context Provider Taxonomy

tree structure that mirrors the files and directories on a file system. However,

the User Profile does not have this facilitate. Rather simple, yet suitable entries

within the User Profile adequately represent user details, without the need to

resort to complex structures.

5.2.6 Relationship Component Repository

The Relationship Component Repository is responsible for the management of

Relationship Components. This responsibility is divided into two areas;

• The creation and verification of a Relationship Component and

• The run-time selection of a Relationship Component based on the current
scenario

- System —i

File ~~}-Type
Class

Static Value

- Hardwa

U s e r | Static Value

External user
created modules

Value of metric Is
static, remaining
constant

The metric references an
external module and defines the
frequency for which this module
should be Invoked

Figure 5.5: System Grader Taxonomy Structure

Relationship Component Instantiation

The ability to add different Relationship Components into GLOMAR is based

on the decoupling of the Relationship Component functionality and middleware

layer. However, as a result, this decoupling means the GLOMAR middleware

layer has to actively seek out Relationship Components and assume responsi-

bility for their creation and run-time storage.

The Relationship Component Repository creates and stores instances of all

Relationship Components when it is started, rather than "just-in-time". The

reason for doing this stems from the aim of the GLOMAR middleware layer

to be as efficient as possible, as the selection phase has only to traverse the

data store containing the instances of Relationship Components, rather than

creating them each time.

However, this eagerness to instantiate Relationship Components does reduce the

middleware layers ability to dynamically install new components at run-time.

This design choice stems from the need to selectively determine the life-cycle op-

erations of Relationship Component instances, by eliminating the ability of the

middleware layer to add and remove Relationship Component instances. This

improves the consistency of available Relationship Components to be used and

fits within the install philosophy of Relationship Components administration

as the possibility of Relationship Components not being available on remote

nodes is reduced.

88

The events that make up the instantiation phase of the Relationship Component

Repository include:

o Finding all Relationship Component files. All files found within a

specific directory are loaded.

• Each class within the files is checked for the correct interfaces

and the correct parent object. A Relationship Component is deemed

valid only if the supplied base class RelationshipComponent is found

within the inheritance tree, regardless of its depth. This primarily en-

sures the safety of the component being instantiated. Secondary to this,

existing Relationship Components can be extended upon and still be valid

Relationship Components (figure 5.6). For example, by inheriting func-

tionality from an existing Relationship Component and adding additional

functionality, results in a new component that has exploited code reuse

and is valid.

Relationship
Component
Repository

Public class Foo
:Re1ationshipComponent

Public class Bar :Foo

Figure 5.6: Extending Relationship Components

Create and store Relationship Component instances. Once the

validity of a class has been determined, an instance is created. This

instance is stored within the Relationship Component Repository, using

the class name as the index.

89

The result from these events is that all valid Relationship Components within

a specific directory are instantiated, stored and available to be used.

However, having an already instantiated instance would seem to force all Re-

lationship Components to appear as singleton objects (Gamma et al. 1995).

As section 4.4.1 details, not all objects exhibit this instantiation model. The

reason for implementing all instances as singleton (at this stage) is solely for

accessing the Relationship Scope portion of the Relationship Component faster.

Since state information is not necessary for a Relationship Scope implementa-

tion (internal processing is static), it was determined that for efficiency reasons,

a singleton design pattern would be used for accessing Relationship Scope func-

tionality. However, the implementation of the Consistency Model portion of a

Relationship Component is handled differently (section 6.3.6 for details).

Relationship Component Processing

When required, the Relationship Component Repository is asked to return the

"most valid" Relationship Component depending on the current scenario. This

involves evaluating all aspects of each Relationship Component, including each

Relationship Scope and Clone List.

Since this evaluation event is a result of a file operation, an exhaustive process

would adversely affect the system's performance. As a result, an efficient and

yet rigorous evaluation process is required.

The solution is an evaluation process that exploits the frequency of certain

events, so that events that are more frequent are tested early. This results in

the evaluation process being divided into three sub-processes (Existing, Parade

and Investigation), with each process imposing another level of complexity and

another level of cost (figure 5.7). Such an approach ensures that efficiency is

compromised only when deemed necessary.

The Existing Process

The first process of Relationship Component Processing consists of ensuring

that the currently invoked Relationship Component is still valid (figure 5.7).

Prior to an operation being performed on a Clone, the status of the governing

Relationship Component is evaluated. Since the only criterion for changing a

Relationship Component is a change in the scenario, the Relationship Scope is

checked. If the current scenario is valid for the invoked Relationship Compo-

nent, *,hen it is used.

90

However, if the scenario has changed, therefore rendering the Relationship Com-

ponent invalid, the second process (the Parade process) is invoked. Also, if a

Clone does not have an invoked Relationship Component governing it, this

process is by-passed and the evaluation process is moved directly to the Parade

process.

The Parade Process

The Parade process promptly creates a list of suitable Relationship Components

based on the set of Clones that they govern (figure 5.7). In other words, if

an operation is about to be performed on file x, then only the Relationship

Components that define file x in their Clone List are deemed suitable. The

resulting list can either be:

• Only one Relationship Component matches the Clone

• Many Relationship Components match the Clone

If only one Relationship Component is selected, then it is assigned. There

is however, a problem with this process. For example, if one Relationship

Component is returned, but its Relationship Scope indicates that it is invalid,

it still can be used. This is because the process that evaluates the Relationship

Scope happens after this process. This is a constraint of the system and will be

addressed in future work (section 9.2).

The Parade process becomes more complex when a number of Relationship

Components are returned. In this case, an additional process is required to

evaluate each of the Relationship Components in more detail to determine the

"most valid". This is handled by the Investigation process.

The reason for evaluating the Clone List of a Relationship Component first, is

that much of the processing to determine the appropriate Relationship Com-

ponent to invoke would be done at this stage. In addition, the likelihood of

multiple Relationship Components per Clone is low. For example, a Clone in

most cases will have only one Relationship Component. Thus, evaluating the

Clone List prior to evaluating the Relationship Scope means the majority of

processing would be resolved early within Relationship Component Processing.

91

The Investigation Process

The first step of the Investigation process is to evaluate in detail each of the Re-

lationship Components considered valid from the previous process (figure 5.7).

This involves invoking the Relationship Scope of each Relationship Component

and determining their validity. The time to complete such a task is highly de-

pendent on the implementation of each Relationship Scope. The results from

this process can be one of the following:

• No Relationship Components were valid

• One Relationship Component was valid

• Many Relationship Components were valid

If no Relationship Components were valid, the operation is aborted. If one Re-

lationship Component is the result of the investigation, it is instantly returned

and invoked. However, if more than one Relationship Component is returned,

the Investigation process further evaluates the list of Relationship Components

to select the most suited one.

The second and final step involves the use of the Clone List. Each Clone within

the Clone List of a Relationship Component is referenced either implicitly or

explicitly (section 4.3.3). The Clone's reference is based on whether the Re-

lationship Component directly references the current Clone (explicit) or it is

inferred as a result of a directory Clone implying ownership (implicit). Using

this reference, the Relationship Component Repository lists explicitly refer-

enced Clones over the implicitly referenced ones. The Relationship Component

that is listed first is returned and invoked.

5.2.7 Executive

The Executive's purpose is to manage all GLOMAR middleware layer services

and handle every file operation. The Executive acts as a file operation dis-

patcher, ensuring that file operations are directed to appropriate Relationship

Components. The life-cycle of the Executive (figure 5.8) consists of:

• The Local Operation Interface passes in a file operation

• Determine if the Clone is being governed by GLOMAR

• Determine if the existing Relationship Component is still valid

92

• Ask the Relationship Component Repository for new Relationship Com-

ponent

• Implement new Relationship Component

The initial step is to determine if the Clone being accessed is governed by

GLOMAR. If not, the file operation is returned and allowed to continue. If so,

then the Executive must determine if an existing Relationship Component is

currently invoked or a new one has to be instantiated. This is done by searching

a stored collection of Relationship Component instances, indexed on the Process

ID (GLOMAR allows only one Relationship Component instance per process).

This stored collection is not to be confused with the collection of Relationship

Component instances owned by the Relationship Component Repository.

The Executive then passes the results from this search to the Relationship Com-

ponent Repository, which determines the legitimacy of the existing Relationship

Component and/or initiates Relationship Component Processing (section 5.2.6).

The results from this process can be;

• A failed operation

• The invoked Relationship Component is still valid

• There is no invoked Relationship Component, thus a new Relationship

Component is returned

• A new Relationship Component is returned to replace an invoked compo-

nent.

1 1 1 1 1 O J.GL11O) A V i V / U U l VVs U I O
4-f\ 4-l-»^

application. If however, the invoked Relationship Component is still valid, the

Executive finds the Relationship Component instance within its own stored col-

lection and invokes the method corresponding to the operation. Prom this point,

control of the operation is handled by the appropriate Relationship Component.

However, when a new Relationship Component is returned, regardless of whether

it's a new component or a replacement, the Executive implements a number of

additional steps, referred to as Relationship Component Implementation..

Relationship Component Implementation

The process of Relationship Component Implementation involves either assign-

ing the Relationship Component Repository selection to a non-governed Clone,

93

or dynamically changing the currently invoked Relationship Component to a

more suitable one. The process of assigning a Relationship Component to a

Clone that has no governing Relationship Component is straightforward. All

operations are redirected to this Relationship Component from this point on-

wards. However, the assigning of a Relationship Component to a Clone that

has an invoked Relationship Component is more complex. The Executive shuts

down the currently invoked Relationship Component and assign its replacement.

The process of changing to a new Relationship Component is done by call-

ing the method CleanEndCM (member of the Consistency Model interface, see

section 4.3.1), which is a blocking call that attempts to maintain consistency

in preparation for the Relationship Component being shutdown. If the Clea-

nEndCM method has failed to return within a set time (set time defined within

the metadata of the Relationship Component), the method is aborted and the

Relationship Component is shutdown.

The Executive then asks the newly selected Relationship Component whether it

can coexist with other Relationship Components. In other words, the thread-

ing model for the Relationship Component is inspected. Depending on the

Relationship Components already invoked, the Executive can choose whether

to invoke the newly selected Relationship Component or not. If approval is

given, the Relationship Component is asked what type of instantiation model

it prefers.

Finally, the Relationship Component is either instantiated as a singleton or

new instance (section 4.4.1). If the Executive determines that a Relationship

Component prefers a singleton approach, a reference from a list of already in-

stantiated components is returned (which reside in the Relationship Component

Repository). If however, the Executive determines that a Relationship Com-

ponent prefers a new instance of the object to be created, a new instance of

the Relationship Component is created dynamically. This new instance is then

stored in-memory within the Execute for future access. This then concludes

the process of implementing a new Relationship Component.

Handling Failures

The Executive's primary role is to dispatch file operations, with no concern

for the results returned from a Relationship Component. However, there are

situations were the Executive (and GLOMAR) would benefit from knowing the

status of an operation. For example, consider a disconnection occurring mid

operation. As the remote host cannot be contacted, the operation would fail

94
95

as the appropriate Relationship Component (built for connectivity) would time

out. However, why should the operation fail when a Relationship Component

built for disconnection is available? The solution is for the Executive to monitor

the results returned from a Relationship Component and replay the operation

if a failure occurs. Prior to the operation being replayed, the Executive again

calls the Relationship Component Repository and retrieves the most valid Rela-

tionship Component. In the case of loss of connectivity (the previous example),

the second call to the Relationship Component Repository would result in the

appropriate Relationship Component (disconnection) being returned and used.

By allowing the process to feedback on itself, the operation that would have

been lost due to a disconnection would be processed effectively.

5.3 Summary

This chapter has detailed the approach used to manage Relationship Compo-

nents, including the aims, the design and the decision making process of the

GLOMAR middleware layer. This chapter has focussed on the aims of the

GLOMAR middleware layer, in particular managing interaction, flexibility, ef-

ficiency and streamlining Relationship Component development.

The resulting GLOMAR middleware layer design was divided into three areas

of responsibility: the interfaces for the operating systems and applications (Lo-

cal Operation Interface and Remote Operation Interface); the support services

to improve the task of creating Relationship Components (Clone Distribution

Manager and Service Manager); and the components that provide the man-

agement of Relationship Components at run-time (Relationship Component

Repository, System Grader and Executive).

The next chapter discusses the implementation of GLOMAR, including the

implementation of the Relationship Component and the GLOMAR middleware

layer.

i

string RCRSelection (ClonelD, CurrentScenario)

// the Parade process returns all Relationship
// Components that can govern this Clone.

RCList = GetSuitableRC (ClonelD);'

if (RCList.Count == 0)

return "failed"; // Clone cannot be governed,
elseif (RCList.Count == 1)

return RCList(O); // Relationship Component found and returned,
else
•C
// the Investigation process

SuitableRCList = null;

while (RCList.Count > counter)

•C

// the Relationship Scope of each

// Relationship Component is checked

if (CheckRS(RCList(counter), CurrentScenario) == true)
SuitableRCList.Add(RCList(counter));

counter = counter + 1;

if (SuitableRCList.Count < 1)

return "failed";
elseif (SuitableRCList == 1)

return SuitableRCList(0);
else

•c

// the Advanced Investigation process

=hile (SuitablsRCList.Count > ccuotarS)

•C

// return the Relationship Component that

// is defined as EXPLICIT

if (CheckCloneType(SuitableRCList(counter2)) == EXPLICIT)

return SuitableRCList(counter2);

counter2 = counter2 + 1;
}
return SuitableRCList(0); // Return the first instance

Figure 5.7: Relationship Component Processing

96
97

Chapter 6

10 Operation
Enter Executive Get File Details

Yes
Failed

Evaluate RC

Use Existing

Shutdown Existing

Invoke New RC

Close

i

Read

1

GetAtb

I I

Open Rem<

4

)w lenarm

;

SetAttr

;

Write

;

Create

1
Operation Complete

10 Operation
Exits Executive

Figure 5.8: ^ile Operations within the Executive

GLOMAR Implementation

This chapter details the full-scale implementation of the GLOMAR framework

within a DFS. The GLOMAR frame A-ork implementation is comprised of ap-

proximately 6000 lines1 of.NET (Watkins, Hammond, and Abrams 2003)2 code,

consisting of a mixture of C#, Managed C++ and Visual Basic.NET. This

chapter also examines the target development platform, the implementation

or' the Relationship Component and the internal particulars of the GLOMAR

middleware layer.

6.1 Development Platform

By understanding the constraints of many file systems and using common ele-

ments of languages (and component technologies), the final design of GLOMAR

is as platform independent as possible. Nevertheless, the development platform

chosen for the full-scale implementation of the GLOMAR framework is .NET.

This decision was made due to three critical factors, namely:

• Cross Language Support

• Advanced Component Architecture

• Multiple Platform Support

Cross language support is achieved within the .NET framework, as all code is

compiled and emitted into an Intermediate Language (IL) (ECMA 2001). This

'This figure excludes lines of code that make up individual Relationship Components and
Context Providers.

2The description the .NET implementation makes use of some .NET specific terminology.
For details on their meaning, refer to the Glossary.

98

is similar to the byte code approach used in Java (Gosling et al. 2000). However,

unlike Java, which implements one language for many platforms (though other

languages have been ported to emit Java byte code (Gough and Corney 2000)),

.NET has a number of compilers that emit IL. This is critical for the GLOMAR

framework, as it allows legacy code from existing concurrency control and con-

sistency maintenance implementations to be integrated into GLOMAR easily.

For example, a concurrency control and consistency maintenance mechanism

written in C + + could be incorporated (with only some minor alterations nec-

essary) into the Relationship Component, as .NET provides a C++ compiler

that emits IL code.

Central to the GLOMAR philosophy is the concept that components are the

foundation of its implementation, whether being the implementation of a Re-

lationship Component or the services that make up the GLOMAR middleware

layer. Current component technologies implement approaches that are difficult

to manage (COM (Box 1998)), fail to offer the native support for common com-

ponent functionality (in the case of Dynamically Linked Libraries) or are too

tightly coupled with a platform or language. The .NET component approach

offers the GLOMAR framework the best balance between complexity and flex-

ibility. For example, the interfaces and metadata that make up a Relationship

Component can be rigorously defined and controlled. Also the advanced Re-

flection (Watkins, Hammond, and Abrams 2003) library supplied by the .NET

framework offer a simplified method of handling dynamic invocations required

for late binding of a Relationship Component.

As stated in Chapter 3, GLOMAR's design is platform independent. To il-

lustrate this requires a system that targets a number of platforms. Unfortu-

nately, the number of supported operating systems and hardware platforms

available for .NET is limited. For example, currently .NET provides produc-

tion quality support for Windows (98, ME, NT4, 2000, XP) only. However,

there are other platforms were support is available. These include Linux (The

Mono-project (Ximian 2002)), FreeBSD, Mac OS X 10.2 (Rotor (Whitting-

ton 2002)) and the Pocket PC/WinCE (The Compact Framework (Microsoft

2002b)). The current implementation of GLOMAR is built on the Windows

platform only. However, porting to other non-Windows platforms is trivial, as

much of the implementation of GLOMAR is platform independent and because

all the non-Windows implementation of .NET comply with the European Com-

puter Manufacturer's Association (ECMA) Common Language Infrastructure

(CLI) standard (ECMA 2001). A Java implementation was considered early in

1

99

the project based on the multiple platform support. However, it was not chosen

because of the lack of multiple language support.

6.2 Relationship Component Implementation

This section details the proposed and developed interfaces, as well as the base

class that make up the implementation of the Relationship Component. Also

discussed is how a Relationship Component is built, including how the Consis-

tency Model and Relationship Scope are developed and how the Clone List is set

and utilised. The unique interfaces and base class as defined within GLOMAR

are exclusively for the implementation of concurrency control and consistency

maintenance within the multiple consistency model approach.

6.2.1 IConsistencyModel interface

The implementation of the IConsistencyModel interface (figure 6.1) facilitates

the creation of a Consistency Model. This interface consists of 20 methods,

each relating to an operation (both local and remote), as well as a start-up and

a shutdown method.

Implemented in each method is the code responsible for handling specific op-

erations and/or events associated with concurrency control and consistency

maintenance. For example, the Read method encapsulates all the concurrency

control and consistency maintenance functionality built for handling a read op-

eration.

For each method defined within the IConsistencyModel interface, a FHANDLE

structure parameter is passed. The purpose of the FHANDLE structure is to

package information about:

• CloneName. An object representing the file being accessed.

• RCinfo. The details of the Relationship Component housing this Con-

sistency Model.

• Source. Whether the operation is local or remote.

• AppID. The process ID of the application generating the operation.

• Tag. A string containing any additional information passed in by an

application. All members (excluding the tag member) are filled by GLO-

MAR.

100

Public Interface IConsistencyModel

Function OpenCM(ByVal handle As FHANPLE) As OperationStatus
Function CleanEndCM(ByVal handle As FHANDLE) As OperationStatus

Function Create(ByVal handle As FHAHDLE) As OperationStatus
Function OpenCByVal handle As FHANDLE) As OperationStatus
Function Close(ByVal handle As FHAUDLE) As OperationStatus
Function Read(ByVal handle As FHANDLE, ByVal length As Long,

ByVal offset As Long, ByRef buffer As Long)
As OperationStatus

Function Write(ByVal handle As FHANDLE, ByVal length As Long,
ByVal offset As Long, ByVal buffer As Long)
As OperationStatus

Function GetAttr(ByVal handle As FHANDLE, ByRef fileattr As FILE.ATTR)

As OperationStatus

Function SetAttrCByVal handle As FHANDLE, ByVal fileattr As FILE.ATTR)

As OperationStatus

Function Rename(ByVal handle As FHANDLE) As OperationStatus
Function Remove(ByVal handle As FHANDLE) As OperationStatus
Function RemoteQpen(ByVal handle As FHANDLE) As OperationStatus
Function RemoteCreate(ByVal handle As FHANDLE) As OperationStatus
Function RemoteClose(ByVal handle As FHANDLE) As OperationStatus
Function RemoteRead(ByVal handle As FHANDLE, ByVal length As Long,

ByVal offset As Long, ByRef buffer As Long)

As OperationStatus

Function RemoteWrits(ByVal handle As FHANDLE, ByVal length As Long,
ByVal offset As Long, ByVal buffer As Long)
As OperationStatus

Function RemoteGetAttr(ByVal handle As FHANDLE, ByRef fileattr As FILE.ATTR)

As OperationStatus
Function RemoteSetAttr(ByVal handle As FHANDLE, ByVal fileattr As FILE.ATTR)

As OperationStatus
Function RemoteRename(ByVal handle As FHANDLE) As OperationStatus
Function RemoteRemove(ByVal handle As FHANDLE) As OperationStatus

End Interface

Figure 6.1: IConsistencyModel Interface

The return value from all the methods defined within the IConsistencyModel

interface is an enumerated value called OperationStatus. This value is used to

indicate the success or failure of an operation. The state of the OperationStatus

value can be:

• FAILED. The operation has failed.

• SUCCEEDED. The operation has succeeded.

• COMPLETED. The operation has completed remotely, but not re-

quired to complete locally.

• OPERATIONFAILED. The operation failed, but can be replayed within

the Executive.

101

For the methods Read, Write, RemoteRead and RemoteWrite, an additional

three parameters are passed. These parameters include length, offset and buffer.

This complies with the standard approach used to read and write to buffers

(passing by reference for reads and by value for writes) and is commonly used

within file system implementations (Huston and Honeyman 1993). Each of

these additional parameters is a 64-bit integer (.NET long).

For methods responsible for handling file attribute requests {SetAttr, GetAttr,

RemoteSetAttr and RemoteGetAttr), a FILE.ATTR structure parameter is

passed. This structure contains:

• LENGTH. The length of a file.

• LASTWRITE. The date/time of the last write.

• LASTACCESS. The date/time of the last access.

• CREATIONTIME. The creation date/tirr: of the file.

For consistency, each member of the structure is a ;4-bit Integer. As a result, to

pass an attribute requires the specific informatk a be marshalled into a 64-bit

value. For example, if creation time was being p tssed, it must be converted to

a 64-bit representation of the time to fit within the FILE.ATTR structure.

6.2.2 IRelationshipScope interface

The scenario for which a Relationship Component is valid is defined by imple-

menting the IRehtionshipScope interface (figure 6.2). This interface has four

methods EvaluateRules, SystemProfileRule, UserProfileRule, FileProfileRule.

The top level method (EvaluateRules) is responsible for determining the valid-

ity of a Relationship Component. The other three methods (SystemProfileRule,

UserProfileRule, FileProfileRule) are responsible for evaluating different aspects

of the current scenario fur the purpose of supporting the top level method.

These three supporting methods are based on the taxonomy defined in section

5.2.5.

Creating a Relationship Scope requires implementing scenario defining rules

within the three supporting methods and implementing a meohanism within the

top level method, to derive an overall decision on the validity of the Relationship

Component.

102
103

Public Interface IRelationshipSccpe

Function EvaluateRules (ByVal spinfo As Environment)
As Boolean

Function SysteaProfileRule (ByVal spinfo As Environment.SystemProfilel&io:
As Boolean

Function UserProfileRule(ByVal upinfo As Environment.UserProfilelnfo)
As Boolean

Function Fil«?Prof ileRule (ByVal fpinfo As Environment.FileProfilelnfo)
As Boolean

End Interface

Figure 6.2: IRelationshipScope Interface

The unique aspect of the Relationship Scope is that each method is passed

a specialised shared data structure (section 5.2.5) containing the status infor-

mation of the system, for the explicit purpose of helping the scenario defining

process. This shared data structure (referred to as the Environment object)

contains three hashtables. These hashtables include:

• UserProfilelnfo. This hashtable contains all the scenario information

referring to the current user.

• FileProfilelnfo. This hashtable contains all the scenario information

referring to the current file being accessed.

• SystemProfllelnfo. This hashtable contains all the scenario information

referring to the hardware, software and location of the current system.

Accessing specific information within the shared data structure requires an ap-

propriate key for the appropriate hashtable. This key is a string that defines

a particular environmental variable. For example, to access the current band-

width metric, the key "hardware.network.bandwidth" would be used. This key

gives access to the actual value, which can be used to determine the validity

of a Relationship Component. Section 6.3.5 details the Environment object, in

particular how it is used by the System Grader.

The return type from each method is a Boolean type. Thus, if true is returned,

the scenario for this Relationship Component is valid. If false is returned, the

scenario for this Relationship Component is invalid.

6.2.3 Relationship Component class

The foundation of any Relationship Component is the RelationshipComponent

class. All Relationship Components are built on this base class. The Relation-

shipComponent class is an abstract base class, meaning that it can never exist

as an independent instance unless it is inherited.

The RelationshipComponent class not oniy includes the functionality to house

the Relationship Scope and Consistency Model implementations, but also the

functionality associated with Clone List management and setting up Relation-

ship Component metadata.

Clone List Management

The Clone List is separated from the actual Relationship Component to allow

easy modification. This means that the Clone List is actually a XML file con-

taining the relationships between particular files and Relationship Components.

Figure 6.3 shows an extract of one such file and table 6.1 details each XML tag.

<CloneList>
<RelationshipComponent narae="Outlook Connection RC"

id="OutlookConnectionRC">

<Clone localpath="c:\temp\outlook.pst"
name="outlook f i l e " id="outlook" type="file" />

</RelationshipComponent>
<RelationshipComponent name="Connection" id="444444">

<Clone localpath="C:\ temp\test l . txt"
name="testl" id="tes t l" type="file" />

</RelationshipComponent>
</CloneList>

Figure 6.3: Clone List XML File

The structure of the Clone List contains a parent lag that defines a Relationship

Component. Child nodes under the parent tag represent files or encapsulated

types for which this Relationship Component can govern. The resulting XML

file is thus a description of the Clone-to-Relationship Component relationship,

which can be modified independently (via any text editor) of the Relationship

Component.

The Clone List is used by an already implemented method supplied with the

RelationshipComponent base class. Its purpose is to determine if a particular

104

Clone
Type
Relationship
Component

Volume

Directory

File

Tag

<RelationshipComponent
name="Testerl"
id="Testeri'7>

<Clone name="PIM Volume"
id="voll" type="volume" />

<Clone localpath="c:\temp"

name="Temp" id="temp"
type="directory"
filter="*.mpg"
Recursive="false" />

<Clone
localpath="c:\temp\test.txt
name="test.txt" id="test21"
type="file" />

Description

This tag encapsulates all
Clone types. It directly
references an existing Re-
lationship Component via
the ID.

This tag is used to bind
both directories and files,
and is used solely for order-
ing and Clone bundling

This tag is used to reference
files within a directory. The
filter defines the extension
of files that should be in-
cluded. The recursive at-
tributes indicates weatLer
to include all sub directo-
ries or not (true or false).

This tag represents the ac-
tual file,

ii

Table 6.1: Clony List Tags

Relationship Component can govern a particular Clone. The IsSuitable method

is called by the Relationship Component Repository during the Parade process

(section 5.2.6) on each Relationship Component. The Clone ID of a partic-

ular Clone is passed in. The Clone List is then searched with the results of

the search informing the Relationship Component Repository if the particular

Relationship Component can govern the particular Clone. Thus, all the func-

tionality associated with managing the Cloni: last is implemented within the

Relationship Component base class.

105

Relationship Component Metadata

The process of creating a Relationship Component not only consists of creating

and setting up the three major sub-components (the Consistency Model, Rela-

tionship Scope and Clone List), but also setting up the metadata to describe the

Relationship Component itself. This is performed by forcing the constructor of

the base class to accept an object containing all the appropriate metadata for

the Relationship Component. The RCInformation object encapsulates all the

details describing the Relationship Component. These details include:

• Name. A literal string of the name of the Relationship Component.

• Author. Name of the author of the Relationship Component.

• ID. A literal string of a unique identifier for the Relationship Component.

• InstanceType. An enumerated type that describes the two instance

types an Relationship Component can be (section 4.4.1).

• ConcurrencyState. An enumerated type that describes the three thread-

ing models that a Relationship Component can be (section 4.4.2).

• Shutdowntime. An integer value that describes how long the Clea-

nEndCM method is allowed to run in milliseconds (section 4.4.3).

The creation of the Consistency Model and Relationship Scope classes, coupled

with setting up the Clone List and metadata information results in a fully

functional Relationship Component. This can be added to into the GLOMAR

middleware layer, ready to be used when required.

6.3 GLOMAR Middleware Layer Implementation

6.3.1 Local Operation Interface

The implementation of the Local Operation Interface consists of three modules,

including a filter driver (transparent) and two bridges (non-transparent) for

COM (Box 1998) and .NET (figure 6.4).

Filter Driver

The transparent module used in the GLOMAR implementation is a Windows

NT/2000 filter driver (Nagar 1997), that intercepts file operations from the

106

}

Filter Driver

i

1

i

r

COM
Bridge

/

1 '

.NET
Bridge

LOI

< *•
GLOMAR

Figure 6.4: Local Operation Interface Implementation

input/output subsystem. These operations are then forwarded to the COM

bridge, which in turn forwards them on to the Executive (via the .NET bridge).

Once the Executive finishes with these operations, they are returned, with the

filter driver re-entering the operations back into the input/output subsystem.

The filter driver prototype demonstrated the feasibility of the transparent mod-

ule. However, for the sake of the GLOMAR implementation, attention was

focused upon the non-transparent modules.

COM Bridge

The purpose of the COM bridge is to allow non .NET applications (and the filter

driver) to pass operations to the Local Operation Interface (and Remote Opera-

tion Interface). The COM bridge consists of a .NET component, which exposes

four methods3 (LocalOperation32, RemoteOperation32, LocalOperation64 and

RemoteOperation64) via COM. In addition, the COM bridge exposed a number

of specially designed classes that can be used by COM compliant applications.

These methods process parameters passed in and make appropriate calls to the

.NET bridge, via the .NET remoting infrastructure (Srinivasan 2001).

.NET Bridge

.NET applications (and the COM bridge) communicate with GLOMAR using

the .NET bridge (figure 6.5). The .NET bridge interface consists of a single
332 bit and 64 bit interfaces are required because some COM compliant languages (e.g.

VB6) do not natively support 64 bit integers

107

method that receives eight parameters and returns the OperationStatus enu-

merated type. The eight passed in parameters include:

• filename. The name of the file being access.

• application. The application ID.

• operation. The operation being performed (this is a string representa-

tion, e.g. "read") .

• length. The length of the data within the buffer.

• file_attr. The file attribute details (by reference).

• offset. The offset within the buffer.

• buffer. The actual buffer (by reference).

• tag. The optional tag parameter (only used when required).

Public Function LocalOperation(ByVal filename As Str ing,
ByVal application As Str ing, _
ByVal operation As St r ing , _
ByVal length As Long, _
ByRef f i l e _ a t t r As FILE_ATTR,
ByVal offset As Long, _
ByRef buffer As Long, _
Optional ByVal tag As Str ing = "")

As OperationStatus

Figure 6.5: Local Operation Interface Entry Point

To communicate with the .NET bridge, an application must use the .NET re-

moting infrastructure. The URI to this particular remoted service is tcp://localhost:9999/loi.

The .NET bridge functionality consists of processing the operation passed to

it and then forwarding it onto the Executive. This call to the Executive is

synchronous.

6.3.2 Remote Operation Interface

The Remote Operation Interface supples an entry point into GLOMAR via

the .NET remoting infrastructure (the URI is tcp://hostname:9999/roi). The

Remote Operation Interface differs from the Local Operation Interface due to

108

its ability to accept two additional parameters. These additional parameters

define the ID of the Relationship Component (rcid) that made the request and

the ID of the Clone (cloneid) that the operation is intended. Figure 6.6 details

the Remote Operation Interface implementation interface.

Public Function RemoteOperation(ByVal rc id As S t r ing , _
ByVal cloneid As S t r ing , _
ByVal appid As S t r ing , _
ByRef buffer As Long, _
ByRef a t t r As FILE.ATTR, _
ByVal length As Long, _
ByVal offset As Long, _
ByVal f i leopera t ion As FileOperation,
Optional ByVal tag As Str ing = "") _

As OperationStatus

Figure 6.6: Remote Operation Interface Entry Point

Since the rcid and cloneid are passed in as parameters, there is no need to

enter the remote operation into the Executive, as this information makes the

Executive's evaluation process redundant. As a result, the Remote Operation

Interface directly invokes the remote interface of the specific Relationship Com-

ponent.

The implication of bypassing the Executive is that an operation is only able to

use the singleton instance of a Relationship Component (as only the Executive

exploits a Relationship Component's instantiation model). Thus, sharing state

information between remote operations is unsafe, as other remote operations

(from other processes) might access the same instance.

6.3.3 Clone Distribution Manager

The Clone Distribution Manager processes the Clone List and provides an API

for querying this information. This service is used by other GLOMAR middle-

ware layer services and Relationship Components.

During initiation of the Clone Distribution Manager, the location of the Clone

List is passed in. This XML file is opened and read, with an in-memory Clone

List (XML DOM) created. Some additional processing of the Clone List is

done, prior to making it available via the Clone Distribution Manager's API.

This processing includes:

109

• Expanding Directories. All Clone tags specified as directories are read

(the volume tags are ignored, as they are an encapsulating type with no

direct reference to Clones). Based on the filter and recursive attributes,

a list of files is returned. For example, if *.txt is defined as the filter,

then the list of files for this directory would include all .txt files. For each

returned file, a unique ID is created. This ID is prefixed with the ID of

the directory, thus directly binding the file to any event that affects the

directory.

• Determine Clone Reference Type. Determining the reference type

for each Clone depend? on the source of its reference. Thus, each file

entry within the Clone List is extended to include a property indicating

its reference type (explicitly or implicitly).

The Clone Distribution Manager's API facilitates the querying of this in-memory

Clone List (table 6.2). It is implemented as a singleton (Gamma et al. 1995),

with it exposed via the .NET remoting infrastructure. The URI of this remoted

service is tcp://localhost:9999/clonemanager. A benefit of using the .NET re-

moting infrastructure is that since the service is available via TCP/IP, it can

be used by remote nodes.

6.3.4 Service Manager

The implementation of the Service Manager provides the ability to implement

any additional functionality external to a Relationship Component. This is

done by the Service Manager reading an XML file (Service Manager XML File;

figure 6.7) containing the physical location and instantiation type (a remoted,

an instantiated and an external service) of all services. Once read, the services

are dynamically instantiated and started by using the .NET Reflection library.

All services (excluding the external services) are required to implement the

IGlomarService interface (figure 6.8). This interface consists of a StartService

method and a StopService method. The motivation for this interface is to allow

any service to be created. The Service Manager starts all services by asyn-

chronously invoking the StartService method of each implementation. When

GLOMAR is stopped, the Service Manager stops all services by invoking the

StopService method.

To add a new service to the Service Manager XML file requires adding a service

node. The attributes of this node are:

110

Interface

GetCloneList

GetCloneDetails

GetCloneDetails

ClonenameToClonelD

IdToLocation

IdToCloneiiair;:-.1

Parameters

Relationship
Component
ID

Clone ID

Clone ID and
Relationship
Component
ID

Clonename

Clone ID

Clone ID

Return
Type

Array
of Clone
Details

Clone De-
tails

Clone De-
tails

Cldne ID

Clone Lo-
cal Path

Clone
Name

Description

This method returns
a list of all Clones
that are Relationship
Component govern
This method gets the
Clone Details from
the Clone ID
This method gets
the Clone Details
from the Clone ID
and the Relationship
Component ID
This method gets the
Clone ID from the
Clone Name
This method gets
the Clone Local path
from the Clone ID
This method gets the
Clone name from the
Clone ID

Table 6.2: Clone Distribution Manager's API

111

<services>
<service name="transaction_log" source="trans.dll"

classname="glomar. transaction"
remoted="true" />

<service name="updater" source="update.dll"
classname="glomar.update"
remoted="false" />

<service name="proprogater" source="prop.eze"/>
</services>

Figure 6.7: Service Manager XML File

Public Interface IGlomarService
Public Sub StartServiceO
Pubic Sub StopServiceO

End Interface

Figure 6.8: IGlomarService interface

• ixame. The name of the service.

• source. This attribute is the physical location of the service, which is

relative to the Service Manager directory.

• classname. This attribute is the class name of the service. This attribute

should include any namespaces this class exists within.

• remoted. This attribute is a Boolean value, indicating whether the ser-

vice is to be remoted on the GLOMAR communication channel or not. If

true is set, the resulting URI for this service is tcp://localhost:9999/<name>.

If false is set, the service starts, but is not added to the GLOMAR com-

munication channel.

As GLOMAR aims to support legacy systems, there is a need to support exter-

nal functionality not directly coupled to the concurrency control and consistency

maintenance mechanism. These might tike the form of stand-alone executable.

To allow for such an implementation ;>;on .NET object) within GLOMAR, the

System Grader allocates and runs the executable within a new process. The

Service Manager determines this is an executable by the classname attribute

being set to null. Else, all other services run within GLOMAR's process.

112

6.3.5 System Grader

The System Grader implementation is responsible for two tasks: constructing

the Environment object and running the process to update the contents of the

Environment object.

Constructing the Environment Object

The unique approach to dynamically describing a scenario is achieved by the En-

vironment object denning three hashtables, namely, UserProfilelnfo, FilePro-

filelnfo and SystemProfilelnfo. In other words, these are the in-memory rep-

resentation of the information used in denning the context of a Relationship

Component. Each profiles directly maps to each element of the predefined

context defining taxonomy.

Upon the start-up of the System Grader, these hashtables are initiated to store

the environmental information defined within the System Grader XML File

(figure 6.9). To define the environmental information available via the hashta-

bles and detailing how they are to be updated is done by adding nodes to the

System Grader XML File. This ability allows new and unique mechanisms to

be added to GLOMAR to describe existing and future scenarios. This in col-

laboration with Relationship Components provides the capabilities to not ^- \,

describe scenarios, but also apply concurrency control and consistency mainte-

nance mechanisms to them.

UserProfilelnfo

To insert a new user, a node is added to the resource tag defined as user. The

user node consists of four attributes, including:

• username. The username must be unique.

• name. For display purposes only.

• type. This attribute reflects the user type. The classification of the

user type can be user-defined and has no direct linkage to the user types

defined within an operating system. For example, a user can be "Admin",

"Workgroup", etc. This means the classification of user types can be more

detailed than what might be offered by an operating system.

• operation. This attribute reflects the user role. For example, a user

might be defined as a "Power User", thus have a higher level of privilege

than a "Passive User". This classification of user role is user-defined and

113

I

<resource type="SyBtem">

<hiardware>

<pref name="processor" >

<pref name="speed" source="SysInfo.dll"

method="getCpuSpeed" object="ManagedSysInfo"
poll="1000"/>

</pref>
<pref name="storage" value="2000000"/>
<pref name="network">

<pref name="connection" source="pMetric.dll"
method="connection" object="prefMetric"
poll="1000"/>

<pref name="type" value="Wireless"/>
<prel name="bandwidth" value="234234" />
<pref name="packet_loss" value="2342342"/>

</pref>
</hardware>
<software>

<pref name="filesystem" value="NTFS5.0"/>
</software>
<location/>

</resource>

<resource type="User">
<user username="simonc" name="Simon Cuce"

type="ADMIN" operation="High"/>

</resource>

<resource type="File">

<file id="test" operationtype="READWRITE"

operationaction="stream" />

<type id="12312" username="simon"

description="multimedia.simon" extension^' .mpg"

operationtype="READ"

operationaction="stream" />

</resource>

Figure 6.9: System Grader XML File

is highly dependent on the specific constraints, but independent of an

operating system.

During start-up of the System Grader, information about the currently logged

in user is extracted from the operating system and matched to the user defined

within the System Grader XML File. When a match is found, the details are

extracted and inserted in the UserProfilelnfo hashtable. If, however, no match

is found, the contents of the UserProfilelnfo hashtable are set to null. The

hashtable key to the actual values are detailed in table 6.3.

FileProfilelnfo

The resource tag defined as file allows for two types of entries. One type defines

details about a particular Clone, the other defines details about the Clone's

114

Entry Attribute FlCey
username
name
type
operation

username
displayname
usertype
operation

Table 6.3: UserProfilelnfo Keys

type. Details re\b[ir.v. to a particular Clone are defined by adding a file node.

The attributes of the file node are:

• id. This attribute must correspond to the ID of a Clone within, at least,

one Clone List.

• operationtype. This attribute defines the type of access expected for a

Clone. For example, readonly, readwrite or update. This attribute can be

extended to create access types more intuitive to the specific needs of the

system.

• operationaction. This attribute defines how a Clone is used by an

application. For example, a Clone is read as a stream (as is the case with

multimedia files). This attribute can be extended also to suit a particular

need.

The second type of entry that can be added is the type node. This defines

similar attributes as the file node, however defines additional details relating

to the Clone type. For example, all .jpg files (which are image files) can have a

single set of operationtyp*: And operationaction attributes assigned to them.

In addition, the type node allows a username attribute to be added. This allows

particular users to specify type nodes relating to Clone types. For example,

userl uses .txt files differently from user2. The username attribute allows this

to be expressed, as different details relating to a Clone type can be assigned to

different users. This feature allows additional flexibility for describing details

relating to Clones or Clone types. The attributes of the type node are:

• id. This attribute must be unique.

• username. This attribute is used to couple a particular type with a

particular user. This is a non-mandatory attribute.

115

Entry Attribute [Key
File Entry | |
id
operationtype
operationaction
Type Entry
id
username
description
operationaction
operationtype
extension

filename (converted internal)
operationtype
operationaction

value not available
value not available
description
ext .operationaction
ext.operationtype
not available

Table 6.4: FileProfilelnfo Keys

• description. This attribute is a description of the type.

• extension. This attribute contains the file extension. In many file sys-

tems, the file extension is used to detail the type of a file.

• operationtype. This attribute defines the type of access expected for a

Clone. For example, readonly, readwrite or update. This attribute can be

extended to create access types more intuitive to the specific needs of the

system.

• operationaction. This attribute defines how an application uses a Clone.

For example, a Clone is read like a stream (as is the case with multimedia

files). This attribute can be extended also to suit a particular need.

When updating the contents of the FileProfilelnfo hashtable, there is no need

to have every different Clone and Clone type available. Rather, a Relationship

Scope is only concerned with the Clone and Clone type that is being accessed.

For this reason, only the details that refer to the current Clone being accessed

are stored. This means a "pickup" is done on a per operation basis within

the Executive (section 6.3.7), updating the FileProfilelnfo hashtable to reflect

the current Clone. Table 6.4 details keys for accessing Clone and Clone type

information.

SystemProfilelnfo

The resource tag defined as system is responsible for containing all the envi-

ronmental information relating to the hardware, software and location of the

116

system. However, unlike the file and user nodes, the structure of the system

node is not predefined. Rather, static environmental information, parental tags

and Context Providers can be added into the system node as needed.

Defining environmental information consists of adding a pref node to the hard-

ware, the software or the location nodes. The pref tag can have three states: a

reference to static environmental information, a parental tag or a reference to

a Context Provider. The simplest of these tags is a reference to static environ-

mental information. Such environmental information remains constant for the

duration of a GLOMAR session, for example, the version of an operating sys-

tem. The attributes of the pref tag to define static environmental information

are:

• name. The name of the static environmental information.

• value. The value of the static environmental information.

GLOMAR facilitates easy classification of different environmental information

by allowing parental tags to be defined for the system node. This allows different

environmental information to be encapsulated within a single node. An example

of a parental tag can be found in figure 6.9. The attribute of the pref tag to

define a parental tag is:

• name. The name of the parental tag.

Since Context Providers are external modules that generate environmental in-

formation independent of GLOMAR. The pref tag must contain enough infor-

mation so that GLOMAR can create an instance of the module (via the .NET

Reflection library) and extract the resulting data. Thus, the attributes of the

pref tag to define a Context Provider are:

• name. The name of the Context Provider.

• source. This attribute references the actual file containing the Context

Provider. Only a relative address is required, as by default, all Context

Providers reside within a providers directory.

• object. This attribute references the actual object within the file. This

value should include any namespaces that this object exists within.

• method. This attribute defines the method to be invoked. The results

from this method call will be the environmental information.

117

Provider Name
Processor Speed
Hardware Storage
Network Connection
Network Type
Network Bandwidth
Network Packet Loss
File System

Key

hardware.processor.speed
hardware.storage
handware.network.connection
hardware.network.type
hardware.network.bandwidth
hardware.network.packet-loss
software.filesystem

Table 6.5: SystemProfilelnfo Keys based on figure 6.9

• poll. This attribute defines when this Context Provider is invoked. If

the value is 0, the method will be called once, with the resulting value

remaining static for the duration of a GLOMAR session. If, however, the

poll value is greater than 0, this then defines in milliseconds the frequency

for which this method should be invoked.

Environmental information is addressed within the SystemProfilelnfo hashtable

by flattening the system node XML structure and separating nodes with full

stops. For example, in figure 6.9, the Processor Speed Context Provider would

have a key "hardware.processor.speed". This addressing approach allows for

any structural variation within the System Grader XML file, regardless of the

depth and defined structure of the node. Table 6.5 details the keys generated

as a result of processing the System Grader XML File illustrated in figure 6.9.

Updating Values

The other activity of the System Grader is to constantly update values within

the Environment object with information retrieved from the Context Providers.

During the initiation of the System Grader, all Context Providers are passed

onto an additional subsystem that manages their invocation.

Each Context Provider is allocated a threa ' (independent of the Executive's

thread) within which a delegate (Watkins, xmmond, and Abrams 2003) is

assigned. These delegates point to defined methods for each Context Provider.

When the threads are started, an infinite loop is initiated, calling the delegate.

Once the call is made and the results from the invocation are added to the

Environment object, the thread is made to sleep for the duration defined within

the poll attribute. This process continues for the duration of a GLOMAR

session.

118

6.3.6 Relationship Component Repository

The purpose of the Relationship Component Repository is to manage Rela-

tionship Components, determine the validity of a Relationship Component and

supply the Executive with Relationship Component instances. The Relation-

ship Component Repository does this by dividing processing into three distinct

areas:

• Relationship Component Initiation

• Relationship Component Processing

• Relationship Component Implementation

Relationship Component Initiation

All Relationship Components are initiated when the Relationship Component

Repository is started. This process involves a number of steps, exploiting the

dynamic invocation functionality of the .NET Reflection library. These include:

• Finding all Relationship Components. The initial step is to inspect

the Relationship Component directory for all .dll files. This results in a

list of files being returned.

• Select only .NET files. The next step determines which files are .NET

compliant components. The reason for this step is that many component

implementations share the .dll extension (e.g. COM and Dynamically

Link Libraries).

• Finding the Relationship Components. Once the list of files has

been reduced to only .NET components, then each is searched to find the

classes that are inherited from the RelationshipComponent class. This

involves a recursive process that traverses the inheritance hierarchy of

each class stopping when the RelationshipComponent class is found. The

reason for this rigorous process is to allow for inheritance from existing

Relationship Components. As long as the RelationshipComponent class is

found within the inheritance hierarchy, the class is deemed a Relationship

Component.

• Creating and Storing instances of the Relationship Components.

Once the Relationship Component is found, the .NET Reflection library is

119

used to dynamically create a new instance of the Relationship Component.

These instances are added to an in-memory storage container and used

from that point onwards by the Relationship Component Repository.

Relationship Component Processing

All the complexity defined within section 5.2.6 regarding Relationship Compo-

nent Processing is encapsulated into a single method. For the Executive to

request a valid Relationship Component, requires calling the Evaluate method,

which takes in a single parameter (defining the current operation and scenario)

and returns a string (defining the "most valid" Relationship Component). The

parameter passed in is called the CloneOperationDetails and contains the fol-

lowing members:

• Appld. This is the current application ID of the originator of the oper-

ation.

• Status. This refers to the Environment object, with the UserProfilelnfo,

FileProfilelnfo SystemProfilelnfo hashtables filled by the Executive.

• Clone. This object represents the Clone targeted by this operation.

• Operation. This enumerated value represents the operation being per-

formed.

• AssignmentList. This object contains a list of existing Relationship

Componenv instances that currently govern this Clone. In most cases,

there will only be a single entry, as usually only a single Relationship

Component will govern a Clone at anytime.

Upon receiving the CloneOperationDetails parameter, the Evaluate method

firstly ensures that the existing Relationship Component is still valid. This

requires extracting the currently implemented Relationship Component for the

Clone from the AssignmentList. The Relationship Component currently being

evaluated is found within this list. If no Relationship Component is found in this

list, then the Parade method is called. This returns a Relationship Component

ID, which is then passed back to the Executive.

If, howevei, a Relationship Component is found within the AssignmentList, its

validity is firstly checked. The method EvaluateRules which is a member of the

Relationship Scope is called (section 6.2.2), passing in the current Environment

120

object. If the result from this method is true, then the component is still valid

for this scenario. This results in the string "current" being returned to the

Executive.

If the Relationship Component is invalid, as indicated by a false being returned,

the Relationship Component Repository calls the Parade method. The result

from this method is an ID of the most appropriate Relationship Component

based on the current scenario. This Relationship Component is evaluated to

determine if the current threading model and instantiation type denned are

compatible for its implementation. A failure of this process results in the string

"failed" being returned. Success prompts the return of the Relationship Com-

ponent ID to the Executive.

The Parade Method

The implementation of the Parade method (section 5.2.6) determines which Re-

lationship Component should govern a specific Clone. This is done by calling

the IsSuitable method for each Relationship Component. The successful re-

sults from this query are added to a list of suitable Relationship Components.

Depending upon the count of this list:

• Count equal to zero. The string "failed" is returned to the Executive.

• Count equal to one. An actual Relationship Component ID is returned

to the Executive.

•> Count greater than one. A list of Relationship Components is passed

onto the Investigation method.

The Investigation Method

The functionality of the Investigation method firstly involves receiving a list

of Relationship Components from the Parade method. The list of suitable

Relationship Components is reduced by querying the EvaluateRules method of

each Relationship Component's Relationship Scope. This determines which of

the resulting Relationship Components can exist within the current scenario-

The count of the resulting list is tested. If the count is zero, the Relationship

Component Repository returns "failed" to the Executive. If the count is equal

to one, then the Relationship Component ID is returned to the Executive.

If, however, the count is greater than one, the list of suitable Relationship

Components is passed to the Advancedlnvestigation method, which attempts

to find the most suitable.

121

The purpose of the Advancedlnvestigation is to determine the priority of the se-

lected Relationship Components based on the referencing of a particular Clone.

Each Clone can be referenced explicitly, meaning it is singularly referenced to

a particular Relationship Component or implicitly, meaning it is part of an ag-

gregate collection of references to a particular Relationship Component. Two

lists are created, one for explicitly referenced Clones and one for implicitly refer-

enced Clones. Each suitable Relationship Component is evaluated and assigned

to the appropriate list. When complete, the first item in the explicit list is re-

turned. If, however, the count of the explicit list is zero, then the first item in

the implicit list is returned.

Relationship Component Implementation

When the Executive needs to invoke a Relationship Component, the Relation-

ship Component Repository is used. It supplies two methods to return a Re-

lationship Component instance, one for a new instance and one for a singleton

Relationship Component. The approach employed is similar to a factory pat-

tern (Gamma et al. 1995).

If the Executive needs a new instance of a particular Relationship Component,

it calls the GetRCinRCID method. This method takes the ID of the required

Relationship Component and returns a new instance of that component. Before

a new instance of the component is returned, the Relationship Component

Repository's list of stored components is searched. When found, the properties

are queried to determine if this Relationship Component can exist as a new

instance. If so, a new instance is dynamically created using the .NET Reflection

library. This instance is then returned to the Executive.

If, however, a singleton instance of the Relationship Component is needed, the

Executive calls the GetRCinRCIDStatic method. The Relationship Compo-

nent Repository's list of stored Relationship Components is searched using the

Relationship Component ID. When found, a reference from the Relationship

Component Repository's list is returned to the Executive.

6.3.7 Execut ive

The primary purpose of the Executive is to manage file operations from the

Local Operation Interface and coordinate this with the Relationship Compo-

nent Repository, so that it can dispatch operations to appropriate Relationship

122

Components. This is performed within the Executive by the method FileSys-

temEvent. As this method only receives primitive information from the Local

Operation Interface, its first task is to refine this information in preparation for

its usage.

Initially, the absolute address of the target Clone is resolved via the Clone Dis-

tribution Manager. If this fails, then it is assumed that this Clone is not meant

for governing by GLOMAR. This happens early within the FileSystemEvent

method to ensure that operations not destined for GLOMAR incur minimal

cost. If a reference is found within the Clone List, then the details for that

Clone are retrieved.

Next, a list of existing Relationship Components (in relation to the Clone) is re-

trieved. All relationships between Clones and implemented Relationship Com-

ponents are recorded within an AssignmentList. This AssignmentList contains:

• ApplicationlD. This is one of the index values.

• ClonelD. This is the other index value.

• RelationshipComponent. This is a collection of references to Relation-

ship Component instances that are currently governing this application

and Clone.

Following this, the FileProfilelnfo hashtable within the Environment object is

set. As stated in section 5.2.5, file information is set on a per operation basis.

This requires making a call to the System Grader and passing in the Clone ID.

The details stored within the System Grader XML File are examined and the

appropriate information is set within the Environment object.

The final stage involves invoking the Evaluate method of the Relationship Com-

ponent Repository. As stated (section 6.3.6), the results can either be, "cur-

rent", "failed", or a Relationship Component ID. If "failed" is returned, then

the operation is aborted. If "current" is returned, then the operation is allowed

to continue using the locally stored Relationship Component instance fetched

from the AssignmentList.

However, if a Relationship Component ID is returned (indicating a change in

governing Relationship Components), then a series of steps to manage the life-

cycle of the existing Relationship Component are implemented. The first of

these steps is to shutdown the existing Relationship Component. The imple-

mentation of this is done by asynchronously calling the CleanEndCM method

of the existing Relationship Component. While this is occurring, the current

123

thread is made to sleep for the duration defined by the shutdown time within

the metadata of the Relationship Component. When the thread is awoken, it

checks whether the asynchronous call to the CleanEndCM method has com-

pleted. If so, the Executive continues. If however the thread is still busy,

because the method has yet to complete, then the thread is terminated, regard-

less of the state of the CleanEndCM method. The Relationship Component is

consequently removed, with control returned to the Executive.

The next step is to retrieve the new Relationship Component instance from the

Relationship Component Repository and invoke the OpenCM method on the

Consistency Model object. This is performed prior to any other operation and

is only done when a Relationship Component has been replaced. The final step

is to update the AssignmentList of the changes.

Once the processing of the Executive is complete, the operation can be directed

to the appropriate method within the Relationship Component. This involves

entering the operation into an error handling loop (section 5.2.7). The results

from the method determine if this operation is to be replayed or not. This

loop is however only performed once, regardless of the number of failed results.

Once complete, the results from the method are returned to the Local Operation

Interface.

6.3.8 Administration Console

The Administration Console (figure 6.10) serves two purposes, to view and to

edit elements of the actual GLOMAR implementation via a graphic user inter-

face. It includes the ability to view the details of all the invoked Relationship

Components, all the Context Providers and Clones. It also supports the cre-

ation of new Clones (including Volumes, Directories and Files), defining their

relationship with each other, assigning these Clones to Relationship Compo-

nents (via a drag-and-drop) and updating GLOMAR's settings (including port

number and directories).

6.4 Running the GLOMAR System

There exists two versions of GLOMAR, the Console Application (figure 6.11)

and the Windows Service Application (figure 6.12). The purpose of the Console

Application is to provide a debuggable version of the implementation, specifi-

cally suited to development of Relationship Components. The Windows Service

124

jpr Glomar Administration CcWsole.

Assignment} GLOMAR J Relationship Components j Settings]

Relationship Components Clones'

[j •

§ £ 87654321
§S> 555555
^ [j 11112

•§& 8GGGGG

§ & 12345G7

23444

a

--* Volumes
•-X Directories

Files

23444

Figure 6.10: GLOMAR Administration Console

Application on the other hand allows for a transparently running implementa-

tion of the GLOMAR system, suited to production implementations.

The actual implementation for both versions is the same (some additional code

has been added to enable it to run as a Windows Service and it was not compiled

in debug mode). The structure consists of instantiating all middleware compo-

nents, registering a channel with the .NET remoting infrastructure (by default

port 9999) and assigning the Remote Operation Interface, Local Operation In-

terface and Clone Distribution Manager to that channel. Also all middleware

components are installed into the Global Assembly Cache (GAC) (Macdonald

2001). This is due to the necessity of the COM bridge to be registered in a

universally accessible location.

125

{•'.Select g:\
I.oadinc/ &
Exccut i</c
Exec itt. iuo
Execut ive
KCK : .Lon
KCK : !.o«
BOH :o.l.o,%

My Dacumcnts^jjM^glpma^toreXC
eru ir.es - .

:. S e t t i n g Dp. Hny iron fient
: Ln.uUng Syitcn Cradcl-
: Conplctc

1U119 HC n:H.
d i ny HC r r 1 *
d iny HC re'/

fid! : LoudiiK) RC re 3
J?CI! : J . o ^
E'xttcitt. ive
HO! : 'Stfl
1.OI : St..
Glonai' i*u

dim") HC > t" l .
: J!GH l .<i O d K (t

rted
rti-d
imirnj

>riyer\bin\driver.exe-"; [•::>:^'0^^li:&&^^^^^^^^^i\

Object

•

•*•

• • ".
•

I

31
I I91
H
••
H

H

n
Figure 6.11: GLOMAR's Console Driver

6.5 Summary

This chapter has detailed the actual implementation of GLOMAR, discussing

the implementation of the Relationship Component and the GLOMAR. mid-

dleware layer. This implementation was written in .NET using a mixture of

languages and techniques. The approach targeted the Windows platform, but

was designed so that much of the underlying techniques are platform indepen-

dent. However, where platform specific elements were used, they were kept to

a minimum.

The next chapter details three Relationship Component implementations. Each

example illustrate through implementation the flexibility of GLOMAR. The

first implementation is an approach to handling disconnected operations. The

second is a full scale implementation of an existing concurrency control mech-

anism targeted at a mobile environment. The third and final implementation

provides fine grain consistency maintenance for a Personal Information Man-

ager.

124

WGrdmarAdministfaition Console

Assignment J GLOMAR | Relationship Components) Settings]

Relationship Components Clones

Q
87G54321

555555

H 11112
B]§£!• GGGGGG
B !$# 1234567

; H 23444

B

Volumes

Directories

Files

~ 11112

23444

••••
j *

Figure 6.10: GLOMAR Administration Console

Application on the other hand allows for.a transparently running implementa-

tion of the GLOMAR system, suited to production implementations.

The actual implementation for both versions is the same (some additional code

has been added to enable it to run as a Windows Service and it was not compiled

in debug mode). The structure consists of instantiating all middleware compo-

nents, registering a channel with the .NET remoting infrastructure (by default

port 9999) and assigning the Remote Operation Interface, Local Operation In-

terface and Clone Distribution Manager to that channel. Also all middleware

components are installed into the Global Assembly Cache (GAC) (Macdonald

2001). This is due to the necessity of the COM bridge to be registered in a

universally accessible location.

125

Loaning Services
Execution : Setting Up Enuironncnt Object
Executive : Loading Syiten Grader
Executive : Complete
RCR : Loading HC rcH r _-
RCK ; Loading HC rcl , . "'-<r'
RCR : Loading BC IT?
RCR : Loading RC rc3
RCR : Locating RC rc4 ' • " ' " u
Executive ,r JiCR Loaded.
RO1 : Started
I.OI : Started
Glona-r running ,

Figure 6.11: GLOMAR's Console Driver

6.5 Summary

This chapter has detailed the actual implementation of GLOMAR, discussing

the implementation of the Relationship Component and the GLOMAR mid-

dleware layer. This implementation was written in .NET using a mixture of

languages and techniques. The approach targeted the Windows platform, but

was designed so that much of the underlying techniques are platform indepen-

dent. However, where platform specific elements were used, they were kept to

a minimum.

The next chapter details three Relationship Component implementations. Each

example illustrate through implementation the flexibility of GLOMAR. The

first implementation is an approach to handling disconnected operations. The

second is a full scale implementation of an existing concurrency control mech-

anism targeted at a mobile environment. The third and final implementation

provides fine grain consistency maintenance for a Personal Information Man-

ager.

126

J Action" View |] « - •» 1J • • " • •

Tree

§§} Services (Local)

Name

Manages n,.. Started

'istributedFifeSyst... Manageslo... Started

Distributed Link Tra... Sends notif... Started

^Distr ibuted Link Tra... Stores info...

toutedTransac... Coordinate... Started

Resolves a... Started

vent Log Logs event... Started

^»j Fax Service Helps you ...

^jjFile Replication Maintains f i . . .

wGlomarService

Allows adm... Started

Indexes co...

Provides n...

Allows sen,,.

Manages I... Started

Generates...

Started
Logical Disk... Started

Administrat...

Supports lo... Started

Sends and.. . Started

% I I S Admin Service

^ Index ing Service

^ I n t e r n e t Cormectio...

%Intersi te Messaging

%IPSEC Policy Agent

^KerberosKeyDistri...

%License Logging Ser...

^Logica l Disk Manager

^Log ica l Disk Manage..,

^Mach ine Debug Man...

*?& Messenger

Automatic

Automatic

Automatic

Manual

Automatic

Automatic

Automatic

Manual

Manual

Automatic

Manual

Manual

Disabled

Automatic

Disabled

Automatic

Automatic

Manual

Automatic

Automatic

Figure 6.12: GLOMAR's Windows Service

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

LocalSystem

I Description I Status I Startup Type I Log On As I •*• I

127

Chapter 7

Case Studies

GLOMAR's major contribution is the ability to support flexibility, by allow-

ing multiple consistency maintenance and concurrency control mechanisms to

be concurrently invoked at run-time. This chapter demonstrates this flexibil-

ity via three different implemented Relationship Components (case studies).

The first implementation (notepad application) demonstrates a simplified con-

sistency maintenance mechanism that handles d" "connected operations. The

second implementation (the Twin Transaction Mocol (Rasheed 1999)) demon-

strates a more complex model for handling mobility in a transaction based

processing system. The final implementation (Outlook 2002) demonstrates a

Relationship Component that handles the maintenance of data for a Personal

Information Manager (PIM).

7.1 Aims

The chapter aims to:

• Demonstrate the creation process for a consistency maintenance and con-

currency control mechanism.

• Demonstrate flexible and application-specific solutions within Relation-

ship Components.

• Demonstrate effective support for heterogeneity issues within a DFS.

Evaluating effective support for flexibility and heterogeneity is usually associ-

ated with a criterion that has no uniform basis, that may introduce bias and

lacks quantitative metrics. Therefore, analysing and observing Relationship

128

Component implementations for different classes of scenarios are considered

sufficient in this dissertation. As a result, the ability to service different con-

currency and consistency needs of a device, application and user are illustrated

within this chapter through actual Relationship Component implementations.

7.2 Notepad Relationship Component

The first implementation of a Relationship Component manages connected and

disconnected operations for a text editor. In other words, this implementation

supports a seamless transition from a connected to disconnected state for a

notepad like application, preventing lost updates upon distributed replicas.

The main aim is to illustrate how more than one Relationship Component

can be used to govern a single Clone. Within this implementation, the two

connectivity states are divided into two external Relationship Components, one

for connected and another for disconnected.

7.2.1 Notepad Relationship Components Design

Two approaches were designed to illustrate different methods of handling dis-

connected operations. These include an optimistic approach (Get Latest) and

a pessimistic approach (Read Once, Write All). Since much of the design and

implementation of this case study is restricted, it primarily demonstrates the

feasibility of GLOMAR in handling consistency maintenance and concurrency

control within a DFS.

Get Latest

The Get Latest approach has two modes, disconnected and connected. When

disconnected, all operations are performed locally, regardless of their consis-

tency requirements. When connected, prior to a file being opened, the times-

tamp of all connected nodes is checked. Whichever node has the latest version

of the file (based on a timestamp) is considered the most up-to-date. If the local

node contains the most up-to-date file, then it is used. However, if a remote

node contains the most up-to-date file, then it is copied over the network (figure

7.1) and made available locally.

129

Open Operation While Connected
GetAtfr

Get Latest

Open
Operation

Figure 7.1: Notepad Get Latest Relationship Component

Read Once, Write All

The Read Once, Write All (ROWA, section 2.3.1) approach focuses on the han-

dling of disconnected operations in a pessimistic manner. Again the model is

split into two modes, connected and disconnected. When disconnected, rather

than allowing operations to proceed unchecked, all modification (write) oper-

ations are written to a persistent log. Within each entry, the details of the

operation are included (length, buffer and offset).

Upon reconnection, the contents of the log are replayed prior to allowing normal

operations to resume. As each logged operation is successfully performed re-

motely, it is removed from the log. This allows a disconnection to occur during

log play back, without the risk of losing logged operations. Normal modification

operations that occur while connected must be propagated to all remote nodes

prior to being committed locally. Figure 7.2 details the ROWA design which

is similar to Coda's approach (Kistler and Satyanarayanan 1991), though less

sophisticated.

7.2.2 Notepad Relationship Components Implementation

The implementation of these two approaches (Read Once, Write All and Get

Latest), requires:

• The implementation of the notepad application.

• The creation of the Context Providers to determine connectivity.

• The creation of the Relationship Scope for each Relationship Component.

130

Open Operation While Connected

2
Operations

Open I 3
Operation

Write Operation While Disconnected

ROWA

Write
Operation

I 2 Write i
1 Operation,^^,

Local Storage

Figure 7.2: Notepad ROWA Relationship Component

• The implementation of an XML Web Service used to communicate infor-
mation between GLOMAR nodes.

• The implementation of the Consistency Models for both the Get Latest
and ROWA.

Notepad Application

The notepad application supports the opening, editing and closing of ASCII
plain text files (figure 7.3). However, the unique element of this application is
associated with how operations are managed.

Traditional text editor applications follow session semantics (Coulouris, Dol-

limore, and Kindberg 2001) to persist data. The developed notepad applica-

tion exhibits a more interactive approach. For example, existing text editors

adjust an in-memory representation of the data, only saving the changes to disk

when all modifications are finished. Within the developed notepad application,

131

keystroke events are captured (extracting the keyboard item and its location

within text string), then immediately saved on disk. Using this level of granu-

larity means the application exhibits the behaviours of a traditional file system

(frequent and unstructured operations), making it a suitable test bed.

Glomar Notepad
File

application that persisted data per keystroke {Figure 8), rather than upon a save event.
Using this combination of driver application. GLOMAR, two RCs and the Monash University
Wireless Network we tested this solution. As a result, this paper was created on different
computers, in different parts of the University, without loss of updates or noticeable
performance issue as a result of changing network conditions.

Figure 8: GLOMAR Notepad Application

5. Related Work

Existing DFS developments are constructed from the ground up, with highly focused aims
and constraints. For example, the Coda [Satyanarayanan98] and Rumor [Guy98] file systems
were developed to handle the unique environments that wireless hardware and mobile
constraints exhibit [Cuce98]. However, these systems handle the migration to different
network environments poorly. This is illustrated by the problems faced when Coda was
ported to use a SLIP connection [Mummert95]. What is required is a distributed file system
that can easily adapt to different environments. The requirements for such a system would
be a design methodology that allowed for a component-based approach, similar to the
InterMezzo [Bramm99b] file system. This proposes that DFS development be less of the
"ground up" development, but more reuse of existing components. As such, have the ability
to add or remove components and adapt as a result. An approach we mirror with our
framework. However, where our approach differs, is that we focus the developers towards
the development of the differing components (concurrency control! of existing DFS, not the
whole DFS itself.

Figure 7.3: Notepad Application

The other unique aspect of the notepad application is that all operations are

dispatched to GLOMAR. Thus, all operations including open, close, write and

read are redirected to the Local Operation Interface's .NET bridge (section

6.3.1). Depending upon the results from GLOMAR, the operation will or will

not be completed.

Context Provider and Relationship Scope

The implementation of the Context Provider consists of a single method that

derives the number of packets per second sent from remote nodes. This is done

by calling the Windows Performance Counter (Microsoft 2000). If the current

result from the counter is zero, then connection is assumed lost. However, if

132

the result is greater than zero, then connection is assumed active. The Con-

text Provider extracts this information into a form that can be used by the

Relationship Scope. Thus, the results from this Context Provider can be ei-

ther, "connected" or "disconnected". See figure 7.4 for the source code of the

Relationship Scope.

Public Class No_Connection_RelationshipScope

Implements IRelationshipScope

Public Function EvaluateRules(ByVal info As Environment)

As Boolean Implements IRelationshipScope.EvaluateRules
Return SystemProfileRule(info.m_SystemProfilelnfo)

End Function

Public Function SystemProfilr;riUle(ByVal spinfo As Environment.SystemProfilelnfo)
As Boolean Implements IRelationshipScope.SystemProfileRule

If spinfo.Item("hardware.network.connection") = "disconnected" Then
Return True

Else
Return False

End If
End Function

End Class

Public Class Connection.RelationshipScope

Implements IRelationshipScope

Public Function EvaluateRules(ByVal info As Environment)

As Boolean Implements IRelationshipScope.EvaluateRules
Return SystomProfileRule(info.m_SystemProfilelnfo)

End Function t

Public Function SystemProfileRule(ByVal spinfo As Environment.SystemProfilelnfo)
As Boolean Implements IRelationshipScope.SystemProfileRule

If spinfo.Item("hardware.network.connection") = "connected" Then
Return True

Else
Return False

End If
End Function

End Class

Figure 7.4: Notepad Relationship Scopes

XML Web Service

To facilitate the communication between GLOMAR nodes, an XML Web Ser-

vice (Caron 2002) was created (figure 7.5). This XML Web Service exposes the

Remote Operation Interface (section 6.3.2), using SOAP envelopes over HTTP.

For a Relationship Component to use this XML Web Service, a proxy class is

required.

133

The motivation for using a XML Web Service to faciUtate communication was

to illustrate the flexibility and capability of Relationship Component implemen-

tations to house different and unique implementations. In addition, it offered an

elegant approach, whereby much of the details of communication infrastructure

were hidden from the developer.

Mid^ft
File Edit View Favorites look Help

^ Back * <={> I Search I Favorites'

Address J|s) http://localhost/g!omarwebservice/glomar.asmx

Google* 3 .^Search Web '.^SearchSite

Gloma rWebService
The following operations are supported. For a formal definition, please review the
Service Description.

• Operation

<!
Local intranet

Figure 7.5: GLOMAR's XML Web Service

Get Latest Relationship Component Implementation

With the Get Latest implementation, all the functionality is contained within

the Consistency Model responsible for connected operations. The reason the

Consistency Model responsible for disconnected operations has no implementa-

tion is that no additional value adding processing is required when disconnected.

Within the Consistency Model responsible for connected operations, the bulk

of the complexity is found within the open method. The implementation of

this method consists of firstly calling the GetAttr method on the remote node.

The RemoteGetAttr method queries the file system to derive the timestamp of

the "last write access". Once the timestamp of the remote version of the file is

retrieved, then a comparison is performed with the local version's timestamp.

134

If the local version's timestamp indicates it is the most up-to-date, then the

open method is finished and control returned to the system.

However, if the remote version's timestamp is the most up-to-date, then the

open method downloads the contents of the remote version of the file. This

is done by calling the Read method of the remote node (in other words R.e-

moteRead method). The previously called GetAt.tr method not only retrieves

the timestamp, but also the length of the file (the number of ASCII characters

within the file). Thus, the download process consists of multiple calls to the

RemoteRead method. With each call, a single character is downloaded. The

position of this character within the file is passed as the offset value. The results

from each subsequent request are incorporated in a temporary file. Once all

characters of the file have been successfully downloaded, then the newly cre-

ated file replaces the local version. When complete, control is returned to the

system.

ROWA Relationship Component Implementation

The implementation of the ROWA approach consists of capturing all modifica-

tion operations within a log while disconnected, then posting the contents of

the log and subsequent operations while connected. The implementation of the

Consistency Model responsible for disconnected operations intercepts all write

operations, saving them to disk. This is done by writing a 192-bit value (64-bit

x 3) that stores the length, offset and buffer values. Each entry is added to the

tail of the file, implementing a queue structure.

When the scenario changes and the Consistency Model responsible for con-

nected operations is invoked, GLOMAR firstly invokes the Consistency Model's

OpenCM method. Within this method, operations captured within the log

are replayed. This involves posting these operations to the remote node via

GLOMAR's XML Web Service. This method loops through the log, reading

the length, offset and buffer of each operation. On the remote node, these

operations are processed by the RemoteWrite method. The result from the

RemoteWrite method is returned to the OpenCM method. If successful, the

posted operation is removed from the log. The benefit of this approach is that

even if a disconnection occurs during a log replay, the stored operations are not

lost. When the log has been fully replayed (the queue is empty), the original

operation that invoked GLOMAR is performed. While connected all open, close

and write operations are posted via GLOMAR's XML Web Service for remote

135

processing. Only success on the remote node will result in the operation being
committed locally.

7.2.3 Analysis of Notepad Relationship Components

The aim of this implementation was to .create a number of Relationship Compo-

nents that mask the issues associated with disconnected operations, such that

operations on Clones were not lost due to a loss of connectivity. The results

of this implementation demonstrated this, as operations were not lost due to

disconnections.

Get Latest

In particular the Get Latest Relationship Component allows for a number of

plain text file (in this case Latex files) to be shared between a desktop and

laptop. As the usage pattern was such that only a single user was ever editing

a file at one particular time, there were no version conflict issues. However.;

this Relationship Component did allow the user to move seamlessly between

processing units, ensuring the latest copy was available.

This approach did have some issues resulting from the lack of sophistication and

the reliance upon the operating system's clock for determining a file's validity.

For example, in one particular episode, the user was unaware that the laptop's

clock had been turned back. As a result (and as expected), modifications were

lost during the synchronisation stage, as data that was more timely was not

assigned the appropriate timestamp.

ROWA

The results from the ROWA Relationship Component illustrated an approach

that handled the constraints of a disconnection environment well. ROWA's

pessimistic nature meant scaling was improved compared to that of the Get

Latest. This was due in part to the reduced likelihood of concurrent operations

causing conflicts. However, when conflicts did arise, the ROWA implementation

poorly managed conflict resolution.

There were additional limitations relating to some of the implementation choices

made. The usage of a 64-bit structure to house a single character meant that

communication was inefficient. This inturn then affected the responsiveness of

the notepad application.

136

The results from both Relationship Component implementations illustrated the

aims of GLOMAR, namely, the handling of a semantically similar approach to

a file system and the flexibility to implement a unique solution for consistency

maintenance and concurrency control.

One of the benefits of this implementation is the idea that normal applications

could be converted into distributed applications with little modification. Within

this example, the notepad application was designed to act much like a normal

text editor (in stand-alone mode). However, with only minimal code to integrate

it into GLOMAR, it became distributed. This can be directly attributed to the

decoupling of the concurrency control and consistency maintenance mechanism

from the application and/or operating system.

The reason for this can draw parallels with the beneficial qualities of object-

oriented middlewares in the creation and implementation of a distributed sys-

tem. As the concurrency control functionality was decoupled into separated

components, managed by the GLOMAR middleware layer, the notepad appli-

cation was only required to interact with GLOMAR via a predefined interface,

to become a distributed application. This demarcation and delegation of func-

tionality meant that to achieve the look nnd feel of a distributed application

only required creating the linkage between GLOMAR and the notepad appli-

cation. As shown, this linkage between GLOMAR and the notepad application

was trivial and relatively seamless.

This case study demonstrated two simple solutions for providing a suitable level

of consistency within a DFS that handles disconnected operations. While the

feasibility to handle this situation was illustrated, it was recognised that to

demonstrate fully the true potential of GLOMAR required a more complex and

sophisticated system. The next case study demonstrates such an implementa-

tion.

7.3 Twin Transaction Model Relationship Compo-
nent

To enhance support for handling the constraints of a mobile environment (be-

yond the previously demonstrated case study) and demonstrating a sophisti-

cated Relationship Component, the Twin Transaction Model (TTM) (Rasheed

1999; Cuce, Zaslavsky, Hu, and Rambhia 2002) Relationship Component was

developed. This implementation illustrates two of GLOMAR's aims, flexibility

and the ability to port existing consistency models to the GLOMAR framework.

137

The TTM implementation offers a means of demonstrating the flexibility of a

Relationship Component and evaluating the process of porting a system that

was never initially intended for GLOMAR.

Another motivation for implementing TTM, was that much of the design is

based upon transaction semantics within a Distributed Database Management

System. TTM implementation within GLOMAR offers a suitable case study to

demonstrate how transaction semantics are implemented within a DFS. This

factor is important, as many concurrency control and consistency maintenance

mechanism are based on transaction semantics and are designed for Distributed

Database Management System environments.

7.3.1 TTM Relationship Component Design

The TTM defines transaction execution mechanisms to cater for connected and

disconnected modes of operation (Rasheed 1999). A defined resynchronisation

mechanism achieves a consistent state on reconnection of a mobile host. The

TTM consists of transaction executions/management, concurrency control and

resynchronisation parts. These different parts work together to maintain the

consistency of the local (a mobile host) and global (all mobile hosts) system

states. A brief summary of the TTM follows.

Transaction Execution/Management

TTM implements transaction management using a set of mobile transaction

managers (MTMs), as well as a fixed transaction manager (FTM). The MTMs

are responsible for handling transaction requests on each of the mobile hosts,

while FTM handles requests from hosts on the fixed network and from MTMs.

A set of global reconciliation algorithms is used between MTMs and FTM to

detect any conflicts/inconsistencies that may arise and resolve them.

Unlike classical transactions, TTM has no simple correctness criterion. Each

MTM decides what is its appropriate behaviour (serialisable or not). The cor-

rectness of execution of transactions is relative to these individual behaviours.

The consistency of FTM (and MTMs) is tentative most of the time (unless

all the MTMs have connected and have gone through the resynchronisation

process).

TTM relies on resynchronisation process and transaction conflict resolvers to

keep data consistent. The resynchronisation process is necessary to maintain

the consistency of data. The local state of MTM and local state of FTM evolves

138

along their own courses (different transactions take them to different states from

an initial consistent state). The resynchronisation process is responsible for the

combination of the two local states and making the data consistent. To achieve

this goal, the resynchronisation process needs a record of transactions that are

executed on both MTM and FTM. This record is termed as Transaction History

Log. Apart from transaction history log, the transactions in pending state on

MTM and FTM are also needed to ensure that no inconsistent data access was

allowed.

The resynchronisation process is executed whenever an MTM connects with

FTM and information exchange takes place (pending transactions and their

transaction execution history). On re-connection, the resynchronisation process

will make sure that replicated data items on MTM reflect the updates on the

FTM. The resynchronisation process can be divided into the following tasks:

c Propagation of resolved transactions from FTM to MTM, which transit

transactions from tentative-commit to commit state.

• Propagation of pending transactions from MTM to FTM for resolution.

TTM defines a twinning process, which is applied to each transaction. The

application of the twinning process to a transaction creates two transactions,

called twin-transactions. Thus, for a transaction T, two twin transactions Ta

and T/3 are created (thus the name Twin Transaction Model). The twinning

process is applied in both connected and disconnected modes of operation.

The a-twin of the transaction is executed locally and /3-twin is executed on

FTM. Detection and resolution of conflicts is performed using both twins of

a transaction. The twinning of a transaction is implicit and is performed for

each transaction. Explicit twinning of a transaction is also allowed, where

the application can submit the two twin transactions (a and (3). This is not

implemented in the Relationship Component implementation.

The two twins of a transaction undergo a number of states before reaching their

final state. The transition of states is dependent on connected or disconnected

mode of operation. These states and their valid transitions in connected and

disconnected modes are depicted in figure 7.6.

The twin transaction execution is different in connected and disconnected mode.
In the disconnected mode:

• Twinning process generates two transactions Ta and T/3.

139

Disconnected Operation

•

Running

commit All MTMs have
resynchronised

or resynchronise
time-range have

elapsed^
Resolved

Connected Operation

commit

resynchronise

All MTMs have
resynchronised

or resynchronise
time-range have

elapsed

Figure 7.6: Twin Transaction Model

• Transaction Ta is executed and results are committed (locally).

• Transaction Ta is placed in a tentative-commit state.

• Transaction T/3 is placed in a pending state.

• On reconnection transaction T/3 is reconciled with FTM. It is placed in a

resolving state.

• On FTM transaction T/3 reaches resolved state when all MTMs have

resynchronised or time range 6t have elapsed.

• Transaction Ta reaches a committed state when transaction T/3 reaches

a resolved state.

In the connected mode:

• Twinning process generates two transactions Ta and T/3.

• Transaction T/3 is submitted to FTM for execution. On FTM it goes

through the following process:

140

- Twinning process generates a and /3 twins of transaction Ta. The

MTM that submits transaction T/3 explicitly defines a and /3 twins to

be semantically equivalent to a and (3 twins of original transaction.

- The a-twin of transaction T/3 is executed. It is placed in a tentative-

commit state and results are committed on FTM.

- The /3-twin of transaction T/3 is placed in a pending state.

- Transaction T/3 reflects the state of it's /3-twin.

- On FTM /3-twin of transaction T/3 reaches a resolved state when all

MTMs have resynchronised or time-range 5t has elapsed

• Transaction Ta is executed and results are committed (locally). Trans-

action To: is placed in a tentative-commit state.

• Transaction Ta reaches a committed state when transaction T/3 reaches

a resolved or committed state.

Any subsequent transactions that operate on results produced by a pending

transaction T will become dependent on the success of transaction T. There

can be multiple pending transactions creating possible dependencies among

themselves. This inter-dependency of transactions (twin-transactions) must

be captured to eliminate any inconsistent operations/transactions. This will

include read and write dependencies. The read dependency occurs when a

transaction T' reads a data item written by a pending transaction T and write

dependency occurs when a transaction T' writes a data item written by a pend-

ing transaction.

A transaction T' reaches its resolved state when all the transactions on which

transaction T is dependent have reached their resolved states. Since, MTMs

are operating in disconnected mode, the transaction T cannot reach its resolved

state unless all the MTMs have connected with FTM and have gone through the

resynchronisation process. This is necessary to ensure that every transaction

that was executed during disconnection has been taken into account. However,

it is possible that some MTMs will not connect. In such a case, the FTM

will always be in a tentative state and none of the transactions will reach their

resolved state. A time out period for each MTM is required to avoid waiting

for connection indefinitely. If an MTM connects after the time out period, the

transactions executed on that MTM are resynchronised after all the resolved

transactions in the FTM are complete.

141

Consistency Model

TTM has relaxed the ACID (Haerder and Reuter 1983) properties of a trans-
action for the following reasons:

• Transactions are kept in a pending state.

• The results produced by a transaction in a pending state are made visible
to other transactions.

• The transactions produce results that are tentative until the transactions

on which these results are dependent are reconciled/synchronised.

• A transaction in a pending state is resynchronised and reaches its resolved

state during the resynchronisation process. The transaction might be

aborted or compensated during this process.

The consistency of data items is guaranteed if a transaction transforms a data

item from one consistent state to another consistent state. In the TTM, transac-

tions undergo different states before reaching their final resolved state. Among

these states, the states pending and resolved are important states to consistency

management. Post the pending state, the results of the a-twin are made visible

locally and after the resolved state, the results are made visible globally. Thus,

consistency of a data object must be maintained locally and globally. That is,

transactions executed on an MTM must be consistent before they are checked

against global consistency (if they are not consistent locally, they will not be

consistent globally). Thus to achieve consistency, TTM employs two layers of

consistency, local and global.

The local consistency layer requires that a-twin of a twin transaction must be

locally serialisable with other pending or ongoing transactions executed on the

same unit. Locally serialisable ensures that the local interleaved transaction

executions are always equivalent to the serial execution. This is necessary for

the pen ling transactions to present a locally consistent view of their results.

Since each manager executes transactions locally and these transactions are re-

solved at a later stage, an optimistic concurrency control mechanism to maintain

consistency is the natural choice. The global consistency model is defined by

the resynchronisation process, which defines how transaction histories are to be

merged.

142

The TTM defines two levels of global consistency models, that is two types of

resynchronisation mechanisms (two ways to detect conflicts during merging of

histories).

In the TTM, it is left to the application to decide what level of consistency is

required. The two levels axe:

• Global One-Copy Serialisability. If a disconnected transaction T's

result is copied to the server as is, T must be 1SR (One-Copy Serialisable)

with all previously committed transactions.

• Global Certification. Global certificates require that if a disconnected

transaction T's result is copied to the server as is, T must be not only

serialisable with but also serialisable after all the previously committed

transactions.

The classical durability property requires that once a transaction completes

successfully, its results must be able to survive. This also implies that once

the results of a transaction are made available (to other trar \cdons) it must

remain a permanent part of the system state until modified by later transac-

tions. In the TTM, durability of transactions is only guaranteed when they

have been resolved (classified as a successful completion of a transaction). This

is because a committed transaction (in pending state) on a manager might be

aborted/compensated during the resynchronisation process.

Transaction History

Each mobile host executes transactions in connected and disconnected modes.

These transactions need to be synchronised with all transactions executed by

all other hosts to achieve a global consistent state. For that purpose, each

twin-transaction manager creates a transaction history log. The transaction

history log is used to synchronise transactions during the resynchronisation

of the transaction from an MTM to FTM. The conflict detection (consistency

validation checks) cannot be performed if the transaction system does not record

the history of the disconnected transaction executions (transaction history).

Certain strategies are adopted to keep the size of the log to a minimum.

Concurrency Control

TTM uses an optimistic concurrency control mechanism. It allows transactions

to proceed, with conflicts being detected at a later stage. TTM assumes that

143

/3-twin will be successfully executed on FTM and the results produced by both
twin transactions (a and /3) will be the same.

Figure 7.6 shows that the commit of /3-twin is dependent on that of a-twin and

the transaction reaches the resolved state after the resynchronisation process.

Although, the transaction is executed in connected mode, the resynchronisa-

tion process still needs to be executed and the transaction will go through the

pending state before reaching the resolved state. This is due to the fact, that

there are transactions that might be executed on other disconnected TTMs,

which need to be resynchronised with transactions executed in the connected

mode.

The advantages of having twins of a transaction in a running state during the

connected mode are:

• The communication between the two TTMs is minimised.

• Only the results are compared and if different the results produced by

a-twin are discarded and results produced by /3-twin are replicated to

MTM.

• If MTM that submitted /3-twin of a transaction disconnects while in the

middle of a transaction, FTM can safely execute /3-twin and the result

can be resynchronised when that MTM connects again.

• Thus MTM does not need to wait for the completion of a transaction.

The TTM uses replication to provide a private workspace for the execution of

the a-twin. The public space is kept on FTM where all /3-twins are committed

and the results and the transaction history logs are maintained. The execution

of a transaction and its validation on FTM and MTM is done in two phases.

Phase 1:

• Initially the two twins To and T/3 are executed on MTM and FTM re-

spectively.

• Transaction T/3 on FTM goes through the twinning process. It reaches

pending state when its a-twin is in a tentative-commit state. The results

produced by its a-twin are checked against the public space for conflicts.

• The results produced by transaction T/3 in pending state are sent back to

MTM.

144

• MTM checks the results against that oe Ta. If conflicts are detected, the

results produced by Ta are discarded and received results are tentatively

committed.

• If Ta is aborted on MTM, T/3 is also aborted on FTM.

Phase 2: Once the transaction is validated by optimistic concurrency control in

phase 1, the next phase of validation, which is required by the TTM, begins:

• The results committed on FTM can only be finalised when all other dis-

connected MTMs have resynchronised with FTM or resynchronise time

range (St) for all TTMs have elapsed.

• Due to this reason, the results that are committed by MTM, even in

connected mode, are kept in a pending state.

When a transaction fails validation during resynchronisation, although it was

committed and was validated by optimistic concurrency control on FTM (dur-

ing connected mode), the class of transaction decides the outcome of such fail-

ures. This situation is triggered by resynchronisation process of MTMs that

are connecting with FTM.

The transactions executing on different disconnected clients cannot read results

produced by other clients (durinp; disconnected or connected modes). This

necessitates that even the results produced by connected clients must also be

kept in a pending state (for a specified amount of time, or until all clients have

resynchronised).

The optimistic concurrency control mechanism takes care of concurrency among

transactions executed by different managers. A second level of concurrency

control mechanism is required to enforce a local consistency model. This is

required to make sure that concurrent execution of a-twins of transactions on

a manager is one-copy serialisable. These transactions must be synchronised so

that the replicated copies of data remain consistent for each of them.

In current implementation strict two-phase locking (2PL) protocol is used for

local concurrency control. The advantages of 2PL are:

o Simplicity

• Reasonable performance (when data sharing is infrequent)

Since a single user typically operates each MTM, the likelihood of concurrent

transactions operating on the same data (read/write sharing) is low. In addi-

tion, 2PL is simple to implement.

145

The twin-transaction system running on an MTM that is disconnected has a

number of responsibilities. The results produced by local transactions are ten-

tative and are dependent on validation by FTM, once reconnected. To achieve

a consistent state with FTM, it needs to perform a number of tasks to ensure

that enough information about the executed transactions is made available to

FTM. These tasks include:

• Maintaining local consistency.

• Recording transaction history information.

• Detecting redundant disconnected transactions.

• Probabilistic Success/Failure calculations.

In disconnected mode of operation, the twin-transaction manager has no knowl-

edge of the state of other managers. In such a situation, an optimistic approach

to concurrency control is adopted. The transaction is allowed to execute under

the local concurrency control mechanisms and conflict detection is done dur-

ing the resynchronisation process. To decrease the number of conflicts during

the resynchronisation process TTM proposes a probabilistic conflict detection

mechanism. The mechanism relies on computing probability of success/failure

of a transaction that is being executed in disconnected mode. This is not cur-

rently implemented in this version of the Relationship Component.

Resynchronisation - TTM State Propagation

The resynchronisation process is executed whenever an MTM connects with

FTM and passes its pending transactions and their execution history log to

FTM. The resynchronisation process is executed even if the transaction history

log is empty. This is because the local state of MTM and the local state of FTM

evolves along their own courses (different transactions takes them to different

states from an initial state synchronised at last connection). On re-connection,

the resynchronisation process ensures that replicated data items on MTM reflect

the updates performed on FTM.

In the synchronising state, new transactions can be executed, but these trans-

actions will be executed in mixed mode (connected/disconnected). If the new

transaction is dependent on any of the unresolved transaction, then the transac-

tion is executed in disconnected mode and it will become a pending transaction

146

to be resolved on the server. On the other hand, if it is not dependent on any

of the unresolved transactions, then it is executed in connected mode.

The propagation of TTM state during the resynchronisation process can be

divided into the following tasks;

• Propagation of resolved transactions from FTM to MTM to transit trans-

actions from tentative-commit to commit state.

• The propagation of pending transactions from MTM to FTM for resolu-

tion.

While an MTM is disconnected from FTM, the state of FTM can change due to

two factors, other MTMs connect and synchronises with FTM and connected

MTMs execute transactions.

In both these cases, some transactions will transit from pending to resolved

state. Some of these transactions might update the data items that are repli-

cated on the disconnected MTM. Due to that reason, when an MTM connects

and goes through the resynchronisation process it is imperative that the state

of MTM should also be checked against FTM. This is to see if any data item

is no longer valid and to check whether some pending transactions on MTM

updated any invalid data item. In such a case, the pending transaction (and

its siblings) must go through the resynchronisation phase.

The validation of the state of MTM against that of FTM is done in two phases.

In the first phase, all the data items that are not accessed by transactions

on MTM are regarded as immediately resynchronised with the FTM upon re-

connection. Those data items that are accessed by transactions on MTM are

considered re-synchronised only after all the transactions have resynchronised

on FTM (resulting in either a pending or a resolved state on FTM).

For this validation, each data item is marked with a version (that can contain

Twin Transaction Manager Identification that last updated it). The version is

changed on each update operation for that data item. On reconnection, the

resynchronisation process compares the versions of every replicated data item.

If both versions are identical, the data item is marked as valid again, otherwise

it is marked as invalid. Any subsequent access to that data item, while the

MTM is connected, will cause the manager to refetch the new version of data

item from FTM. While the MTM is connected, this validation of state of MTM

is performed periodically to ensure the status of data items is up-to-date. Before

disconnection or on user demand, the twin transaction implementation provides

a mechanism to refetch all invalidated data items.

147

On reconnection, apart from the need to resynchronise data items that have

changed on FTM, the transactions executed on MTM are also propagated to

FTM (and their results to other MTMs). This is completed in the second

phase of the resynchronisation process when the transaction log of MTM is

checked against that of FTM. During this resynchronisation process, conflicts

are detected and resolved.

The TTM guarantees a global one-copy serialisable execution schedule. This

guarantee requires programmers to resolve conflicts either by programming

application-specific resolvers or by manually repairing invalidated transactions.

The programmers are also burdened with application-specific conflict estima-

tion agents that are required to calculate the probability of success or failure in

the disconnected mode operation under certain circumstances.

Since application-specific resolvers and conflict estimation agents operate on a

transaction-by-transaction base, it is wise to carry out the resynchronisation

process of MTM transaction log with that of FTM in the same way. This

ensures inconsistency and conflict scope are minimised and the resolver has just

one invalidated transaction to work with at a time. In addition, the resolver can

concentrate on the effects of the transaction on MTM and changes on FTM,

during disconnection. Therefore, it is able to make decisions without worrying

about interference from other transactions.

The resynchronisation algorithm for a transaction that is in conflict consists of

two steps. The first step invokes the resolver, which is either application-specific

or automatic re-execution. If no resolver exists, the transaction is aborted. The

second step is the successful resolution of a transaction, which often requires

adjusting the state of those transactions that read from the resolved transaction

(read data written by the resolved transaction).

After the synchronisation process, the FTM has the option to perform a check

on all those transactions that are waiting (to transit to a resolved state) for this

MTM (last) to connect and perform resynchronisation. Transactions that are

in such a state, transit to a resolved state.

7.3.2 TTM Relationship Component Implementation

Two Relationship Components were created to cater for the TTM within GLO-

MAR, Connected Twin Transaction and Not Connected Twin Transaction.

Each Relationship Component represents a connectivity state that is defined

within the TTM approach. The communication mechanism used within this

148

implementation was GLOMAR's XML Web Service and the test bed applica-

tion used was the notepad application (section 7.2.2). The architecture of the

TTM implementation is shown in figure 7.7.

GLOMAR

Connection
Twin Transaction

DFS

No Connection
Twin Transaction

FTM <
•* i

i
> '

k

^ MTM
L i

, Channel 1

Remoting

«->
DFS

i * • * > — —

r

Remoting

Figure 7.7: Twin Transaction Model Implementation Architecture

The notepad application first calls the Open operation of the Connected Twin

Transaction Relationship Component. Before opening the file, the Relationship

Component determines if resynchronisation is required. If any transactions were

logged while in a disconnected state, the log is replayed to the server. This

process is always the first operation to occur for this Relationship Component,

regardless of the operation being invoked.

After the log has been replayed, the Connection Twin Transaction Relationship

Component then proceeds by invoking the RemoteOpen operation on the server.

The file is opened on the remote server and a new transaction Ta is created

within the Transaction Server (this is an external user-specific service). After

this has succeeded, the local cached file is opened and transaction T/3 (which

is the same as Ta) is created locally. The states of Ta and T/3 are set as

Running. Subsequent Write operations generated by the notepad application

are performed remotely (RemoteWrite) and locally, with changes recorded using

immutable files (Coulouris, Dollimore, and Kindberg 2001).

When the notepad application has finished with editing a file, it calls the Close

operation. Since Open and Close operations are used as surrogate transaction

boundaries, this operation triggers the Relationship Component to commit (or

abort) all the modification operations and resolve the immutable files. Within

149

the Relationship Component, this process involves calling the RemoteClose op-

eration of the server, where transaction Ta state is changed to Tentative com-

mit. If this is successful, the local cached file is closed and the transaction T/3

state is also changed to Tentative commit. Once the transactions (Ta and T/3)

are resolved, then they are committed, with each being changed to a Committed

state.

In the Not Connected Twin Transaction Relationship Component, the process

is simpler as there is no connectivity. The Open operation opens the file and

creates a new transaction, which in turn creates a transaction history to record

the operations. The transaction is then set to a Running state. All modifica-

tion operations are performed on the immutable file for that transaction and

recorded within the log. Finally, the Close operation closes the file and changes

the transaction's state to Tentative commit. The posting of operations occurs

when the Connection Twin Transaction Relationship Component assumes con-

trol.

Beyond the Relationship Components created, additional user-specific services

were created to assist in the running of the TTM. These consist of a MTM and

FTM, which provide the transaction processing part of the TTM. The major

user-specific services provided by MTM and FTM servers are as follows:

• Add new transaction. The new transactions are added into the trans-

action vector on the MTM and FTM. There are two vectors on the MTM

corresponding to the connected and the disconnected vector respectively.

These transactions are also written into the transaction history file.

• Change transaction state. Changing transaction's state on the trans-

action vector and writing the result into the transaction history. If the

state of the transaction is changed into Abort and Commit, the transac-

tion is removed from the vector.

• Resynchronisation. When the MTM connects with FTM from discon-

nected mode and with transactions in the disconnected transaction vector,

the resynchronisation operation should be performed for file system con-

sistency. The transaction conflicts are resolved by comparing timestamps

of the transactions. This is done by browsing the transaction vector on the

FTM and the transaction history on the MTM and FTM. The transac-

tion's state is changed according to the resolved result. Conflict resolution

is only provided by FTM.

150

• File manipulating. There are many situations where files are trans-

ferred between MTM and FTM. For example, when a transaction is re-

solved, it should be propagated to other MTMs. This is done by first

reading the file into a file stream and then either uploading or download-

ing the stream to the remote node.

7.3.3 Analysis of TTM Relationship Component

The results from this implementation primarily focus on demonstrating GLO-

MAR's flexibility and its ability to house complex concurrency control and

consistency maintenance mechanisms. This implementation has demonstrated

both of these, as the TTM implements a complex series of steps and exploits

the GLOMAR infrastructure, whilst maintaining a sufficient level of consistency

within a mobile environment.

This implementation also illustrates that regardless of whether the consistency

model was designed for GLOMAR or not, it does not constrain whether it can

be implemented. For example, the original design of the TTM was not intended

to be built for a Relationship Component.

Another important aim demonstrated from this implementation is the ability to

support a pseudo-transacvion (section 2.4.1). The implications of being able to

support a pseudo-transaction are wide ranging. One implication is that many

of the existing consistency models are geared towards using transactions. The

TTM implementation has shown that transactions can be feffectively accommo-

dated within GLOMAR. The second implication is that transaction semantics

can be imposed upon a stateless file system. Rather than being restricted by

the actual implementation of the file system, consistency models can be created

that use a transactional approach. However, this ability could affect imple-

mentation issues. For example, the TTM had to overload certain operations to

provide a pseudo-transactional approach.

7.4 Outlook 2002 Relationship Component

To illustrate an application-specific Relationship Component; implementation,

a consistency model for a Personal Information Manager (PIM) was developed.

Rather than creating a home made PIM that lacks complex functionality and is

explicitly designed for GLOMAR (and its methodology), Microsoft's Outlook

2002 (XP) (Byrne 2001) was chosen instead. Outlook provides the complexity

151

and functionality required to illustrate the feasibility of GLOMAR in deal-
ing with application-specific concurrency control and consistency maintenance
mechanisms.

The Outlook Relationship Component also illustrates GLOMAR's ability to

convert a stand-alone DBM application into a distributed application in a trans-

parent way. In addition, application-specific processing within this Relationship

Component further illustrates the flexibility of GLOMAR, as different mecha-

nisms are used throughout the implementation (e.g. client-server, peer-to-peer,

optimistic or pessimistic).

The Outlook Relationship Component focuses on maintaining data for Outlook

folders. The folders that are governed include, Sent Mail, Draft Mail, Inbox,

Calendar, Contacts and Tasks.

The motivation of the consistency models chosen for each of the folders where

based on two criteria. Firstly, the appropriateness of the consistency model

to the data being governed and secondly, the overall effect of having multiple

different consistency models all concurrently existing and operating on Outlook

data.

7.4.1 Sent Mail, Draft Mail and Inbox Consistency Model

The three email-related folders within Outlook are governed by the Outlook

Relationship Component. These include;

• Sent Mail. Contains a copy of all emails sent by an Outlook user.

• Draft mail. Contains all emails that have boen written, though not sent.

• Inbox. Contains all incoming emails.

The three mail folders each use nine data items (table 7.1), referring to the

actual email and all other email related details.

The three mail folders are governed with the same type of consistency model,

which uses a preferential remote update approach l within a peer-to-peer envi-

ronment. When an operation (update, new and delete) occurs, it is added to

a queue (persistent store), prior to being performed. An additional process is

then invoked periodically to propagate the stored operations to each available

node. Only when the operation within the queue has been committed on all
1 Preferential and mandatory remote update are our terms used to describe the consistency

models used within the Outlook Relationship Component

152

Data
Body
Subject-
Time Received
Prioiit-y

To Address

Prom Address
CC Address

Sent
Unread

Description and Purpose
Contains text associated with this email
Contains the subject line of the email
When the email was written
The priority of the email (In outlook there
are levels, HIGH, LOW and NORMAL)
Contains tht email address of the ad-
dressee (TM'5 can contain more than one
email address, however it must be delim-
ited)
Contains *:fee email address of the sender
Contain*, the email address of carbon copy
recipients (This can contain more than one
email address, however it must be delim-
ited)
Whether tliis email has been sent or not
Whether this email has been read or not

Table 7.1: Sent Mail, Draft Mail and Inbox Data Items

remote nodes, will the entry withi-a the persistent store be removed. Currently,

the propagation of open-!;frih: »br the Sent Mail folder is performed every 12

Mours, t}i<e Draft Mail folder cv^y 3 hours and the Inbox folder once an hour 2.

7.4.2 Calendar Consistency Model

Within Outlook, the Calendar folder is used to record time-based events for a

user. T.fae Calendar information consists of nine data items (table 7.2), referring

to the -actual appointment, the associated date, time and other details.

The type of consistency model chosen for the Outlook Calendar was a Uniform

Majority Quorum Consensus approach (section 2.3.3), implemented within a

peer-to-peer environment. Tins balance between availability (via the peer-to-

peer model) and consistency (using quorum consensus) is highly suited to Cal-

endar information.

The crux of this consistency model is determining the dominance of replicated

Calendar information, through the use of version vectors (Parker et al. 1983).

For example, when necessary, version vectors for each available node (ensuring

The time periods defined for each mail folder are based on the perceived consistency needs
based on personal experience.

153

Data
Body
Subject
Location
Time Received

Start Time

End Time

Priority

All Day Event
Recurring

Descripticii and Purpose

Contains text associated with this event
Is a shorted description of the event
Displays the location of the event
When the appointment was created by the
user (this includes date and time)
When the event starts (This includes date
and time)
When the event ends (This includes date
and time)
The priority of the; event (In outlook there
are three levels HIGH, LOW and NOR-
MAL)
Whether the event is all day
Whether the event is recurring (Daily,
Weekly, Monthly and Yearly)

Table 7.2: Calendar Data Items

that quorum of at least 50% has been achieved) are compared. From this, the

dominant replica is found and its Calendar information used.

7.4.3 Contacts Consistency Model

Within Outlook, the Contacts folder in used to store information about indi-

vidual contacts. The Contact information used within this implementation is

detailed in table 7.3 and is only a subset of the available information used by

Outlook.

For the maintenance of Contact information, a client-server model was chosen,

using both the mandatory and preferential remote update approaches. When

Outlook performs a new, an update or a delete operation, the operation is

instantly propagated to a contact list on a server. Failure of the operation on

the server side results in the failure of the operation on the client side. Changes

(because of client operation) to the contact list on the server are not instantly

propagated to all other available replicas. Rather, every 12 hours a process

updates each available replica with the contents of the contact list.

. _
Him —iiiniinmiMiii M'IHIHHIIIIII m

154

Data

Body
Subject
Time Received

Priority

Title
Last name
First name
Middle name
Title Prefix
Email
Home number
Business number
Business fax
Mobile number
Home address
Company
Business address
Birthday
Anniversary

Description and Purpose
Contains text associated with a contact
Is the display name of the Contact
The time the Contact was created by a
user
The priority of the Contact (In Outlook
there are three levels HIGH, LOW and
NORMAL)
Contact's business title
Surname of Contact
First name of Contact
Middle name of Contact
Title of Contact
Email address of Contact
Home phone number of Contact
Business phone number of Contact
Business fax of Contact
Mobile phone number of Contact
Home address of Contact
Company name for Contact
Business address of Contact
Birthday of Contact
Wedding Anniversary cf Contact

Table 7.3: Contact Data Items

7.4.4 Tasks Consistency Model

Within Outlook, the Task folder stores tasks to be completed by a user. The

Task information used within this implementation consists of seven data items

(table 7.4), referring to the actual task to be performed and its associated dates.

The type of consistency model chosen for maintaining Task information uses

the mandatory remote update approach within a client-server environment. All

operations like open, new, update and delete are performed on a remote server

prior to being performed locally on the client. If the remote operation fails,

then the associated local operation is forced to fail as well.

7.4.5 Outlook 2002 Relationship Component Implementation

The implementation of the Outlook Relationship Component consists of con-

sistency models for each of the Outlook folders and a dispatcher to bridge

155

Data

Body

Subject
Time Received
Due Date
Start Date
Priority

Status

Description and Purpose

Contains a detailed description of the task
to be completed
A shortened description of the task
The time this task was created by a user
The due date of the task
The start date of the task
The priority of the task (In Outlook there
are three levels HIGH, LOW and NOR-
MAL)
Indicates the status of the
task (In Outlook there are
five levels, NOT-STARTED,
INJPROGRESS, COMPLETED, WAIT-
ING-ON.SOMEONE-ELSE and DE-
FERRED

Table 7.4: Task Data Items

GLOMAR with the folder-specific consistency models instances. In addition,

an Outlook COM Add-In is built to intercept Outlook operations and forward

them to GLOMAR (figure 7.8).

Outlook COM Add-In

By creating a COM (Box 1998) object that implements the interface WTExten-

sibility2 and using the Outlook Object Model 10.0, a module can be installed

into Outlook (figure 7.9) to intercept operations and perform any additional

processing (Rice 2000)3.

The implementation of this COM Add-In used the Visual Basic 6.0 template

and designer classes supplied with the book (Byrne 2001). Within this COM

Add In, each specific Outlook folder has the following operations intercepted:

• OpenFolder. This intercepts the Outlook Explorer selecting a specific

folder. The result of this operation is that the specific folder is opened with

the contents visible within the Outlook Inspector. This is not cancellable.
3Microsoft recently released a .NET Add-In template class to Visual Studio.NET, he wever

this was unavailable at the time of development

156

User Events

Outlook Operation:

COM Add-In

LOI GLOMAR

\

Outlook Relationship Component

Outlook Consistency Model r
Dispatcher

Task Contact! Email Calendar

Figure 7.8: Outlook Relationship Component Design

• CloseFolder. This intercepts the Outlook Explorer deselecting a specific

folder. The result of this operation is that the current specific folder is

removed from the Outlook Inspector. This is not cancellable.

• ItemAdd. This intercepts when an item has, been added to a specific

folder. This is not cancellable. However, if the adding of a new item fails,

then it is deleted automatically.

• BefbreDelete. This intercepts an operation prior to an item being

deleted (This is new to Outlook 2002). This is cancellable.

• Openltem. This intercepts when an item is opened within the Outlook

Inspector. This is cancellable.

• Closeltem. This intercepts when an item is closed within the Outlook
Inspector. This is cancellable.

• Writeltem. This intercepts when an item is saved within the Outlook
Inspector. This is cancellable.

When an operation has been intercepted, the COM Add-In performs additional

processing before forwarding it to GLOMAR. This results in information being

pinned to an operation so that a dispatcher, within the Outlook Relationship

Component, can direct the appropriate Outlook operation to the appropriate

157

Figure 7.9: Outlook COM Add-In

consistency model and appropriate method. This means the tag variable is

filled with Outlook specific data, detailing not only the type of operation, but

the folder type, item type, as well as other data (table 7.5). The resulting call

is then made to the COM bridge via the 32-bit API (as the COM Add-In is

written in VB 6.0).

Depending upon the returned results, the operation within Outlook is either

committed or cancelled. A cancelled operation also results in a dialog box

appearing, indicating an error has occurred (figure 7.10).

Dispatcher

The generic nature of the Consistency Model interface does not apply itself well

to the requirements of the Outlook Relationship Component. This is due to the

type of operations that can occur and the number of folders that must be indi-

vidually governed. For this reason, rather than changing the Consistency Model

interface (which would require a major reworking of GLOMAR, and reduce the

DFS's flexibility), an additional interface was individually implemented within

158

Data
Entry Id
Storage Id
Item Type

Folder

Operation

Storage String

Description and Purpose

Contains the GUID of the item
Contains the GUID of the folder
Whether the operation is occurring on a
folder or item
The folder the operation is occur-
ring within (DRAFTMAIL, SENTMAIL,
INBOXMATL. CONTACT, APPOINT-
MENT, !"«:_-)
The type of operation. These are different
to the standard operations (e.g. CREAT-
ENEWITEM, CHANGEITEM, OPEN-
ITEM, CLOSEITEM, WRITEITEM, RE-
MOVEEXISTINGITEM)
Can contain any user-defined string, eg
XML.

Table 7.5: Outlook Information passed via the tag paraemter

a single Relationship Component, specifically targeting Outlook. However, the

Dispatcher approach as defined here is not always necessary for all scenarios.

Rather, it can be seen as one method of bridging highly specific operations and

requirements with the generic interface defined by GLOMAR.

The interface IOutlookProcessing (figure 7.11) was purposely built to handle

Outlook operations. To allow for multiple implementations of this interface for

each folder type within the Outlook Relationship Component, a dispatcher was

built. The purpose of the dispatcher is to direct operations from the Outlook

Relationship Component's Consistency Model to the appropriate folder-specific

Consistency Model implementation. In other words, as operations occur, an

additional process determines the functionality to invoke based on information

passed to it via the tag parameter. For example, when an Open operation

occurs in Outlook, the COM Add-In makes the request to GLOMAR, filling

the tag parameter indicating, the data item type (folder or item), the operation

type and the details of the actual item. Once the request enters the Outlook

Relationship Component's Consistency Model, the dispatcher determines the

correct folder specific Consistency Model implementation to forward the request

to and then what specific Outlook operation it should invoke. Figure 7.12

depicts the UML based diagram of the Outlook Relationship Component.

159

BUk^Mcrosoft Outlook 2002*
ffl ?& mascs.csM.mcnash.edu.au
S ^ Outlook Todar - [Personal FoUcr'

«a.n« ;
i—v-a microsoft -

C i nonash.net '
L

Qtk
L © beskestbal

0 Contacts
ffi (3 Deletedltems

- $ > Drafts

> goo_

11^

Q Qomar
• ©Thesis
) Inbox
? Journal

;.122:

' Cirfc
4™

H 1 W 1 F S S
^ r? 3d ri so

1 2 3 1 5 6 7
9 9101112 13 14

151617 1019 20 21
LJ23W25 26 27 28
2330 31

M T W T F S S
1 2 3 4

5 6 7 8 9 10 11
1213 11 IS 16 VI 18
1920 2122 23 24 25
26272S293C 1 ?

DIB. TtskPad

0 8
Q Qlemal Han about syd '
0 Qjernalral about syd~
3 DJUiokupMSPartnarihfcdetafc

A new calendar ton coukj re* be entered due to quarum not being adMvad

3'alMonet paper
3 n) remove chrls as supervBor
3 DjRrwhlSCPS paper
3 blreriiotlnqpaper

y C^ post̂ orad stuff
€11999

•- Q Sent Items
£ tasks

*L

OfV r^i • rr, >wd s r£"< I « t .

HE

d- ,-
| 0 t o r » • ; : . . .

nest!,. | gjlcdg-doc-.,. [||igc»ten<l»-_ . . " .V ; ,

Figure 7.10: GLOMAR Operation Failing within Outlook

Sent Mail, Draft Mail and Inbox Component Implementation

The implementation of all Mail-related Consistency Models is similar, with the

Removeltem, Createltem and Changeltem operations written into a XML file

prior to local execution. For example, when an Outlook user deletes an item,

the details of that operation and item are stored within a XML file. Figure 7.13

details the Mail log XML file.

Depending upon the period set, which is different for each mail folder imple-

mentation, a user-specific service is activated (installed within the Service Man-

ager). This service firstly reads the XML file and produces a list of operations

to propagate. Then an attempt is made to contact each node and propagate

the associated operations.

Communication between nodes is facilitated as each service exposes via. the

.NET remoting infrastructure three methods, AddMail, UpdateMail and DeleteMail.

The local service contacts the equivalent service on the remote node and uploads

160

the specific operations via these methods. Once each operation is successfully

uploaded and performed on all remote nodes, it is removed £r>m ibe XML file.

Calendar Component Implementation

The Calendar-related Consistency Model is the most complex of the folder-

specific Consistency Models to implement. This is due to the complexity as-

sociated with determining if quorum is achieved, determining which Calendar

information is dominant and the process of populating Outlook with the most

up-to-date events.

When the Calendar folder is opened, the OpenFolder method is called. This

method firstly determines if quorum can be achieved, by calling the IsQuorum

method on the WebServiceList object. This object contains a list of XML

Web Service proxies that represent each node of the network. The IsQuorum

method proceeds to contact each node, recording if the node was contactable

or unreachable. Once complete, the ratio of available and unavailable nodes is

evaluated to determine if quorum was achieved (>50%).

If quorum is achieved, then the OpenFolder method contacts each available

node and requests its version vector. As only GLOMAR's XML Web Service is

used, this information needs to be marshalled into a number of Read calls (the

GetAttr method is used to gain the total number of Read calls required). This

involves marshalling the version vector into 64 Bit integer blocks on the remote

side and reconstituting a version vector instance on the local side. All version

vectors (downloaded and local) are then compared, resulting in the dominant

node being determined.

If a remote node is deemed to be dominant, then the OpenFolder method down-

loads the node's events locally. Similar to how the version vectors were gained,

the Read method of the remote node is called multiple times. This results in a

number of 64 bit integer blocks returned. When marshalled, the results repre-

sent the dominant node's list of events. Once complete, the local list of events

is removed and the downloaded list is inserted in its place. Only when this is

successful, is the local version vector adjusted.

For operations that result in the Removeltem, Createltem and Changeltem

methods being invoked, the IsQuorum method is firstly called. This attempts

to determine if quorum is achieved. Failure to achieve quorum aborts the

operation, were as success attempts to propagate the operation.

161

The process involved in propagating operations to all available nodes is based

on a two-phase commit protocol (Lampson and Sturgis 1976) (figure 7.14). The

first phase uploads a serialised representation of the operation and event itself to

each available node. Packaged with the operation is an ID number (randomly

generated number that is unique only to this operation). This operation is

then written to a temporary store and hashed on the ID number, rather than

immediately performed.

When all nodes have received the operation, then the second phase starts. A

commit message is sent to each available node. Packaged with this message

is the ID number of the operation to execute. When the commit message

reaches the remote node, the operation is retrieved from the store (the store

is persistent) and executed. Once the two-phase commit protocol is completed

(success or failure), the version vector for both the local and remote nodes are

updated.

Contact Component Implementation

The central element of this implementation is the Contact XML Web Service

(figure 7.15). This service exposes four methods; GetAUContacts, ChangeEx-

istingContacts, AddNewContacts and DeleteContacts. As the name suggests,

each method provides the functionality to access and modify a central store of

Contacts.

As Removeltem, Createltem and Updateltem operations occur, they are posted

to the Contact XML Web Service. Only when successfully performed by the

Contact XML Web Service, will the operation execute locally.

Contact information is downloaded from the XML Web Service via a user-

specific service. This process periodically queries the XML Web Service for a

list of all contacts (calling the GetAUContacts method), then downloads them,

replacing the existing Contact information with the new list.

Tasks Component Implementation

The Task-related Consistency Model forwards the Outlook operations Open-

Folder, Removeltem, Createltem and Changeltem to the Task XML Web Ser-

vice. The Task XML Web Service exposes four methods (figure 7.16), GeiAll-

Tasks, ChangeExistingTask, AddNewTask and DeleteTask. This XML Web Ser-

vice encapsulates an XML file of Tasks, providing an interface to access and

modify them.

162

This approach is similar to the Contact-related Consistency Model (section

7.4.5). However, all Tasks are downloaded when the folder is opened, not

periodically downloaded as with Contacts. Thus, when the OpenFolder method

is called, it first downloads from the Task XML Web Service the current list of

tasks. Once complete, the local list of Tasks is then replaced by the downloaded

list of Tasks.

For each Removeltem, Createltem and Changellem operation intercepted, the

Task-related Consistency Model posts the operation to the Task XML Web

Service. Only when the operation is completed successfully by the XML Web

Service, does the operation execute locally.

7.4.6 Analysis of Outlook 2002 Relationship Component

The Outlook Relationship Component demonstrates fine grain consistency main-

tenance and concurrency control for Outlook data items. Unlike other case stud-

ies implementations {TTM, Get Latest and ROWA) which provide a generic so-

lution, the Outlook Relationship Component shows how an application-specific

Relationship Component is created and serviced by GLOMAR.

Using Outlook as the test application, illustrates how only minor modifications

to the actual application are required to exploit the benefits of GLOMAR.

In other words, the processes and functionality of Outlook were not affected

to accommodate GLOMAR. Only some minor modifications were required so

operations could be intercepted and forwarded to GLOMAR.

The Outlook Relationship Component illustrates the flexibility of GLOMAR,

as each Consistency Model used a different approach and mechanism (for exam-

ple, client-server, peer-to-peer, GLOMAR to XML web service communication).

Regardless of the data structure or functionality required to service the consis-

tency and concurrency requirements of Outlook, the Relationship Component

was able to support it.

As stated in Chapter 3, GLOMAR provides a way of balancing resource usage.

The Outlook Relationship Component is an illustration of this accomplishment.

Rather than propagating the entire contents of the Outlook data store (which

can be 60 to 100 mb4) every time a modification operation occurs, only the

active data and operations are propagated. Traditionally, if a user wanted to
4This figure was determined from a brief survey of postgraduate students and academics

using Outlook within the School of Computer Science and Software Engineering, Monash
University

163

replicate Outlook data, whole file propagation was the only solution. This ad-

versely affects bandwidth and degrades performance in a constrained bandwidth

environment. With the Outlook Relationship Component, there is a reduced re-

liance upon the bandwidth, as operations are propagated at appropriate times,

without greatly compromising the consistency requirements of Outlook's data.

In addition, because of the Outlook Relationship Component, Outlook has been

simply converted into a distributed application. Thus, the Outlook Relationship

Component demonstrates that by externalising the mechanism for handling con-

sistency maintenance and concurrency control, an additional level of complexity

and functionality can be added, without affecting the original application.

7.5 Aggregated Analysis of the Case Studies

To illustrate the run-time benefits of the multiple consistency model approach,

all of the implemented Relationship Components were instantiated concur-

rently. Thus, while the notepad application was running, its Relationship

Component was governing text files using ROWA, Get Latest and TTM. Si-

multaneously, operations generated by Outlook were handled by its Relation-

ship Component. As a result, multiple concurrency control and consistency

maintenance mechanisms were simultaneously running within a single DFS.

The case studies also resulted in the development of a large library of Context

Providers. A library of C++ (Lippman and Lajoie 1998) based hardware metric

methods (Wendt 2002) were wrapped by a number of Context Providers. Table

7.6 details the environmental information that is available.

The case studies illustrate GLOMAR has potential far beyond merely encapsu-

lating concurrency control and consistency maintenance functionality. Rather,

it can be used for other tasks that require transparent redirection of file oper-

ations. For example, there are software systems that support write operations

on read-only media, like a CD-ROM (DirectCD (Roxio 2002) and Windows XP

(Microsoft 2002a)). This is made possible by redirecting operations away from

the CD to a write store. When a user reads the CD, the actual contents visible

to the user represent an amalgamation of both the contents of the CD and that

of the write store. GLOMAR was never intended to provide the framework to

do this, but due to its flexibility, it is capable of this. Thus, GLOMAR can be

applied to solutions where some additional "value adding" to an operation is

required.

164

Type
CPU

Drive

Memory

Operating System
Socket

Description
Speed
ID
Family
Model
Number of Processors
Free Space
Name
Total Space
Get Available Page File Size
Get Available RAM Size
Get Available Virtual Size
Get Total Page File Size
Get Total RAM Size
Get Total Virtual Size
Description
Domain Name
IP Address

Table 7.6: Supplied Context Providers

All the case study implementations highlighted one area of concern relating

to the handling and management of Relationship Components. For example,

an application has two Relationship Components, one for disconnected and

one for connected. Both these components share information regarding the

structure and location of a cache. A new Relationship Component (with no

knowledge of i)--e location or structure of the cache) could very easily replace an

existing Relationship Component. As a result, the life-cycle denned by the two

original Relationship Components is comprised. This issue is further addressed

in section 9.2.

7.6 Summary

This chapter has illustrated the encapsulation of different concurrency con-

trol and consistency maintenance mechanisms within a single DFS, through

actual Relationship Component implementations. The first implementation

demonstrated a semantically similar approach to a traditional file system in a

disconnected environment. The second implementation demonstrated a Rela-

tionship Component that handles the constraints of a mobility-enabled DFS,

165

using a transactions model. The final implementation demonstrated a consis-
tency model that services the specific needs of a single application, in this case
Outlook 2002.

Each example demonstrates GLOMAR's flexibility to support consistency main-

tenance and concurrency control mechanisms. It also shows that a balance can

be achieved between consistency and resource usage. The next chapter eval-

uates and discusses the cost of the GLOMAR middleware layer, pr imary to

determine if the multiple consistency model approach is efficient.

166

Public Interface IOutlookProcessing

Public Function OpenFolder(ByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function CloseFolderCByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function OpenItem(ByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)
As Glomar.Operat ionStatus

Public Function CloseltemCByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)

As Glomar.OperationStatus
Public Function RemoveItem(ByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function CreateltemCByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function ChangeItem(ByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function GetAttrFolder(ByVal handle As FHANDLE,

ByRef fileattr As Glomar.FILE.ATTR,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function ReadFolder(ByVal handle As FHANDLE, ByVal length As Long,
ByVal offset As Long, ByRef buffer As Long,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteOpenFolder(ByVal handle As FHANDLE,

ByVal details As OutlookOp'jrationDetails)
As Glomar.OperationStatus

Public Function RemoteCloseFolder(ByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteReadFolder(ByVal handle As FHANDLE, ByVal length As Long,
ByVal offset As Long, ByRef buffer As Long,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteGetAttrF<7lder(ByV*l handle As FHANDLE,
ByRef fileattr As Glomar.FILE.ATTR,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteOpenItem(ByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteCloseItem(ByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteRemoveItem(ByVal handle As FHANDLE,
ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteCreateItem(ByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

Public Function RemoteChangeItem(ByVal handle As FHANDLE,

ByVal details As OutlookOperationDetails)
As Glomar.OperationStatus

End Interface

167

RelatbnstiipComponent

«lnterface»
IConsistencyModel

OutlookRelationshipComponent

OutlookConsistencyModel

SentMailCM InboxCM CalendarCM

OutlookRelationshipScope

«lnter face»
IRelationshipScope

\

Figure 7.11: IOutlookProcessing Interface

- ^ (£ftfr
«lnterface»

IQullookProcessing

Figure 7.12: Outlook Consistency Model

<sentmaillist>

<ip address="130.194.0.1">
<add>

<sentmail>
<subject>Hello Simon</subject>
<body>Testing Relationship Component</body>
<toaddress>foo9bar.com</toaddress>

</sentmail>
</add>

p address="130.194.0.2">
<add>

<sentmail>
<subject>Hello Simon</subject>
<body>Testing Relationship Component</body>
<toaddress>fooSbar.com</toaddress>

</seatmail>
</add>

</sentmaillist>

Figure 7.13: Mail Log XML File

168

Outlook

Opafltion

Opera ton and
Operation ID

Calendar
Consistency Model

i L

Acknowledgement , r

Operation

Commit

^ — *v

Outlook Data
Store

Operation and
Operation ID

Calendar
Consistency

Model

Outlook Data
Store

\
Operation and
Operation ID

Save to data
store when

commit received

Operation and

Calendar
Consistency

Model

Operation ID /

/

Tertporary

L s"« J s

>• Outlook Data
Store

^ '
store when

commit received

Figure 7.14: Calendar Two Phase Commit Protocol

169

f je Edit--View Favorites loois Help

GontactsSefver
The following operations are supported. For a formal definition please review the
Service Description.

• DeleteContacts

• AddNewContacts

• ChanqeExistinqContacts

• GetAIIContacts

M
| i g D o n e ' : • ; , ; Internet

Fig .re 7.15: Contact XML Web Service

Edit,--yjew'; Favorites Tools ; .Help ,HV

* f Back:;r- .<4;.~.\ <& g j . . $ \ ^Search; g]Favorites . > îJ3 liiJ

http://dungbeetle.csse.monash.edu.au/tasksserver/tasksserver.asmx

lasksServer
The following operations are supported. For a formal definition, please review the
Service Description.

• DeleteTask

• AddNewTask

• GetAHTask

• ChangeEKistinqTask

M> ~J~I r~|®
Figure 7.16: Task XML Web Service

170

Chapter 8

GLOMAR Evaluation

This chapter evaluates the GLOMAR middleware layer for the purpose of de-

termining the efficiency of the multiple consistency model approach. Firstly,

this chapter discusses the evaluation methodology, focusing on the aims and

difficulties associated with evaluating GLOMAR as a middleware. Secondly, a

detailed analysis of performance and resource usage, primarily focusing on the

inner workings of the GLOMAR middleware layer is presented. Finally, this

chapter concludes with a discussion on the evaluated results.

•S.I Introduction

The previous chapter (Chapter 7) demonstrates the effectiveness of the GLO-

MAR middleware layer in supporting the multiple consistency model approach

by qualitatively analysing case studies. This chapter in turn quantitatively

evaluates the efficiency of the GLOMAR middleware layer.

All experiments proposed and described in this chapter are targeted at the cost

of using the GLOMAR middleware layer only. Therefore, the initiation of the

GLOMAR middleware layer and the cost of processing an operation (excluding

Relationship Component functionality) are measured as part of all experiments.

The evaluation of individual Relationship Components is omitted from this

chapter to highlight the generic nature of the GLOMAR middleware layer,

rather than focusing on application-specific issues.

The resulting implementation of GLOMAR combines elements of a DFS and a

traditional middleware. This is because it hides the complexity of managing dif-

ferent concurrency mechanisms via a simplified pseudo standard interface. For

the purpose of evaluation, this description specifies GLOMAR implementation

171

capabilities and target domain, rather than the whole GLOMAR framework

and methodology. This combination is the strength of GLOMAR. However,

the comparison of GLOMAR to either a DFS and/or middleware is inappropri-

ate. This is because elements of GLOMAR's middleware affect performance,

when compared with other DFSs. On the other hand, GLOMAR's DFS ele-

ments adversely affect performance comparison with traditional middlewaxes.

From the literature reviewed, no relevant comparison methodology has been

found for comparing a DFS with a middleware.

8.2 Aim and Experimental Methodology

This chapter aims to prove that the associated algorithms v/il.hin the GLO-

MAR middleware layer provide a suitable basis for implementing the multiple

consistency model approach. In other words, the benefits of GLOMAR are

not outweighed by the cost associated with the management of Relationship

Components.

This evaluation analyses the scalability of the GLOMAR middleware layer. As

much of the processing is associated with the managing of Relationship Com-

ponents and Clones, this chapter discusses the impact of varying the number

of Relationship Components and Clones. As a by-product of evaluating scal-

ability, a suggested number of Relationship Components and Clones will be

produced.

The experiments evaluate both the initiation and the processing of operations

within the GLOMAR middleware layer (figure 8.1). For each experiment, the

number of Relationship Components and Clones are assumed as input param-

eters. The experiments performed have been grouped and are outlined below:

• Initiation of the GLOMAR middleware layer. These experiments

aim to determine the time and resource usage of the initiation of the

GLOMAR middleware layer. These experiments include:

- Scaling the number of Clones. This experiment aims to deter-

mine the time and memory consumption when the number of Clones

is varied.

- Scaling the number of Relationship Components. This exper-

iment aims to determine the time and memory consumption when

the number of Relationship Components is varied.

172

• Processing of Operations within the GLOMAR middleware layer.
These experiments aim to determine the time of processing an operation

within the GLOMAR middleware layer. These experiments include:

- Scaling the number of Clones. This experiment aims to deter-

mine the average time per operation when the number of Clones is

varied.

- Scaling the number of Relationship Components; Average

time per Opeiation. This experiment aims to determine the av-

erage time per operation when the number of Relationship Compo-

nents is varied.

- Scaling the number of Relationship Components; Time of

Relationship Component Processing. This experiment aims

to determine the time taken by Relationship Component Processing

when the number of Relationship Components is varied.

- Scaling the number of Relationship Components; Average

time of partial Relationship Component Processing. This

experiment aims to determine the time taken by partial Relation-

ship Component Processing when the number of Relationship Com-

ponents is varied. This is to illustrate the effects within a real life

situation, when not all processes of the Relationship Component Pro-

cessing are invoked.

- ScalKg tue number of Relationship Components; Average

time ot Instantiation. This experiment aims to determine the time

to instantiate different Relationship Components when the number

of Relationship Components is varied.

The input parameters for each experiment are detailed in table 8.1. These

values represent a broad range of input parameters to achieve the aims of the

experiments detailed ia this chapter. They represent both the likely range

of Clones ^ d Relationship Components and the potential limit of concurrent

Clones and Relationship Components experienced within a DFS. Table 8.2 de-

tails the run-time environmental configuration of these experiments.

In order to genera e ! he Relationship Components and Clones used in the ex-

periments, an auxii;-'. y application {Relationship Component Generator) was

built. Its purpose was to crer.+e the skeleton code, Clone List and a VB.NET

makefile to represent t-ht lar^ted number of Relationship Components. As

173

InlUatlo
GLOMAR mid

i of the
dleware layer

Structure of experiments

Scaling the number
of Clones

Scaling the number of
Relationship
Components

Processing of Operations
within the GLOMAR

middleware layer

Scaling the
number of Clones

Scaling the number of
Relationship Components

Average time
of Instantiation

Average time of partial
Relationship

Component Processing

Average time
per operation

Time of Relationship
Component Processing

Figure 8.1: Experiment structure

Input Parameters

Clones

Relationship Components

Number

1, 5, 10,
50000
1, 5, 10,

50,

50,

100

100,

, 500,

500,

1000,

1000

5000, 10000,

Table 8.1: Experimental Input Parameter

these Relationship Components are used in the testing of the GLOMAR mid-

dleware layer, they contain no actual consistency maintenance code. Rather,

they contain a minimal implementation of the Consistency Model interface.

8.2.1 Evaluating the Initiation of the GLOMAR middleware
layer

Three aspects of the initiation of the GLOMAR middleware layer were evalu-

ated. These were the overall memory consumption, the overall time taken and

the initiation time of each stage.

The memory consumption is derived by recording the total memory allocated by

the .NET garbage collector on all three heaps (GenO, Genl and Gen2 (Watkins

et al. 2003)) using the application GlowCode.NET (GlowCode.Com 2002).

174

.NET version
Processor
Memory
OS
Storage

1.0.3705
Intel Pentium 434Mhz
256 Mb
Windows 2000 (5.00.2195)
7.8 Gb

Table 8.2: Experimental Environment Configuration

The time to complete each different stage is determined by outputting the

current system time at the end of each stage. The stages evaluated within the

initiation are (in order):

• Port Setup. After the .NET rernoting infrastructure has setup the lis-

tening port.

• Clone Distribution Manager. After the Clone Distribution Manager

has been initiated, including reading in data from the Clone List.

• Executive. After the Executive has been initiated.

• Relationship Component Repository. After the Relationship Com-

ponent Repository has been initiated, including the installing and instan-

tiation of all Relationship Components.

• Remote Operation Interface. After the Remote Operation Interface

has been initiated.

• Local Operation Interface. After the Local Operation Interface has

been initiated.

This evaluation consists of two experiments, one where the number of Rela-

tionship Components are varied and another where the number of Clones are

varied.

8.2.2 Evaluating Processing an Operation

The time taken to process an operation within the GLOMAR middleware layer

is evaluated within these experhr.errtu. To extract the time per operation, each

experiment (excluding the time of Relationship Component Processing) consists

of 100 operations (write operations) being passed to GLOMAR. These results

are then averaged.

175

For each experiment evaluating the average time per operation and time of

Relationship Component Processing, three types of Clone Lists and three types

of Relationship Components were produced by the Relationship Component

Generator. These include the best, average and worst case scenarios.

For Clones, the best case scenario is when one access is required to gain a Clone

from within the Clone List. The average case scenario is when accessing a Clone

requires N/2 accesses (N is the total number of Clones in the Clone List). The

worst case scenario is when accessing a Clone requires N accesses.

For Relationship Components, the best case scenario is when one access is

required to gain a Relationship Component from within the list of instanti-

ated Relationship Components. The average case scenario is when accessing a

Relationship Component requires N/2 accesses (N is the total number of Re-

lationship Components in the list of instantiated Relationship Components).

The worst case scenario is when accessing a Relationship Component requires

N accesses.

For each of these best, average and worst case scenario Relationship Com-

ponents, two instantiation types art defined, singleton or new instance. The

motivation for allowing the two instantiation types is to isolate the cost of

implementing the two types, independent of other processing costs.

The average time per operation experiment determines the average time taken

to process an operation. As a result, the 100 operations absorb the time taken by

Relationship Component Processing. Whereas, the time of Relationship Compo-

nent Processing experiment results in the actual time taken by the Relationship

Component Processing to process an operation.

The experiments (average time per operation and time of Relationship Compo-

nent Processing) only invokes Relationship Component Processing once. This

is because the scenario is static for the duration of the experiment (all 100 op-

erations). Thus, this type of experiment is analogous to a system that exists

on a stable network.

To evaluate GLOMAR in a more volatile system, a random case scenario was

defined. When a Relationship Component is defined as random case, the sce-

nario (thus Relationship Scope) is randomly validated and invalidated. This

case is used to determine the cost of instantiating Relationship Components of

different types as well as determining the time when only partial Relationship

Component Procc. ig is implemented.

176

8.3 Initiation of the GLOMAR middleware layer:
Results and Discussion

As earlier stated (section 3.3.1), GLOMAR incurs additional cost per operation.

An effort was made to avoid this by allocating costly activities to more appropri-

ate times. For example, rather than initiating Relationship Components when

required (just in time), an instance is available in-memory. This additional

memory usage is offset by the benefit of having the Relationship Component

available immediately. This particular experiment records the time and mem-

ory consumption associated with the initiation of the GLOMAR middleware

layer.

8.3.1 Scaling the number of Clones

Memory consumption during the initiation of the GLOMAR middleware layer

as the number of Clones vary are detailed in figure 8.2. These results show

a linear relationship between the consumption of memory and the number of

Clones (y = 0.121Z+149.21 with a confidence value of/?2 = 1). Noticeably, the

amount of memory consumed remains relatively insignificant (approximately

150 Kbytes to 160 Kbytes) until 100 Clones or more are instantiated (table

8.3). However, even with a very large number of Clones (10,000), GLOMAR's

memory footprint remains acceptable (approximately 1.5 Mbytes). However,

when 50,000 Clones or more are instantiated, memory consumption becomes

more noticeable.

Number of Clones

1
5
10
50
100
500

1,000
5,000
10,000
50,000

Memory (Kbytes)

149.2139
149.6982
150.3037
155.1475
161.2021
209.6396
270.1865
754.5615
1360.03

6200.204

Table 8.3: Initiation of the GLOMAR middleware layer Memory Consumption
Table (Clones)

177

10000 15000 2000." 25000 30000 35000 40000 45000 50000

Number ol Clones within the Clone List

Figure 8.2: Initiation of the GLOMAR middleware layer Memory Consumption
(Clones)

Table 8.4 details the time taken to initiate the GLOMAR middleware layer.

From one to 500 Clones, the time remains unchanged (approximately 2.5 sec-

onds), as the majority of the time is spent opening the Clone List (the XML

file) for reading, rather than the reading of the actual data itself. When the

number of Clones is greater than 5,000, the time to open the Clone List is less

than the time to read the Clone List. Thus, GLOMAR has the potential to

manage one to 1,000 Clone,': with no major difference in time.

Number of Clones
1
5
10
50
100
500

1,000
5,000
10,000
50,000

Time (seconds)

2.253299
2.343398
2.333402
2.303296
2.313306
2.533606
2.874099
6.329101
9.093107
116.5276

Table 8.4: Initiation of the GLOMAR middleware layer Times (Clones)

178

The initiation time of the GLOMAR middleware layer (table 8.4) has a linear

relationship to the actual number of Clones \y = 0.0023i + 0.2889 with a

confidence value of R2 = 0.9785).

When evaluating the initiation time based on the stages within the GLOMAR

middleware layer, the majority of the time (as expected) is spent initiating

t,he Clone Distribution Manager. Howevr. as figure 8.3 details, the effects

of scaling the number of Clones is seen at the Clone Distribution Manager

initiation stage. This illustrates that the effects of scaling the number of Clones

have been successfully isolated to the most appropriate stage, in this case, the

initiation of the Clone Distribution Manager.

After Port Setup Alter Clone Manager Alter Executive Alter RCR Alter ROI Alter LOI

Construction St tgn J

Figure 8.3: Initiation of the GLOMAR middleware layer Times, Based on
Stages (Clones)

8.3.2 Scaling the number of Relationship Components

Memory consumption of the initiation of the GLOMAR middleware layer as

the number of Relationship Components vary is detailed in figure 8.4. With no

Relationship Components, the memory footprint of the GLOMAR middleware

layer is approximately 118 Kbytes. This is an approximate value as the .NET

garbage collector fluctuates memory consumption over time.

As figure 8.4 shows, as the number of Relationship Components increases, the

consumption of memory also proportionally increases. This relationship i? linear

(y = 0.7572a; + 143.47) with a confidence value of R2 = 0.9986.

179

300 400 500 600

Number ol Relationship Component*

Figure 8.4: Initiation of the GLOMAR middleware layer Memory Consumption
(Relationship Components)

Table 8.5 details the time taken to initiate the GLOMAR middleware layer as

the number of Relationship Components varies. With no Relationship Com-

ponents installed, the time taken is 4.2 seconds. From one to 50 Relationship

Components, the time taken does not vary greatly (average 4.7 seconds). When

100 or more Relationship Components are instantiated, initiation of the mid-

dle-vare becomes noticeable.

Number of Relationship Components
0
1
5
10
50
100
500

1,000

Time(seconds)
4.226099
4.887002
4.576602
4.876992
4.816998
5.347699
9.503706
12.8185

Table 8.5: Initiation of the GLOMAR middlev/are layer Times (Relationship
Components)

A surprising observation is the time taken to instantiate one to 50 Relationship

Components is approximately the same. This is because the actual number of

180

Relationship Components has no direct reflection on the actual time to initiate

the GLOMAR middleware layer. This is particularly shown in the fact that the

time to instantiate 25 Relationship Components is less than the time to instan-

tiate two Relationship Components. This experiment was repeated multiple

times, with the same results recorded. The explanation for this anomaly can

only be attributed to the influence of the .NET garbage collector. It would seem

that the implementation of the ArrayList (Watkins, Hammond, and Abrams

2003) is customised towards larger numbers of items. Thus, when implementing

a small number of components within the ArrayList, a more aggressive approach

to memory management is implemented by the .NET garbage collector.

Figure 8.5 illustrates the initiation of the GLOMAR middleware layer broken

into stages as the number of Relationship Components is varied. The time taken

by each stage during initiation of the GLOMAR middleware layer (except for

the Relationship Component Repository) is similar regardless cf the number

of Relationship Components instantiated. Figure 8.5 shows as the number

of Relationship Components increases, so does the time taken to initiate the

Relationship Component Repository. This illustrates that the impact of scaling

the number of Relationship Components is isolated to the initiation of the

Relationship Component Repository.

i

o

n : /

JL

/
7 "
1/

After Port Setup After Clone Manager After Executive After RCR

Construction Stages

Figure 8.5: Initiation of the GLOMAR middleware layer Times Based on Stages
(Relationship Components)

181

8.4 Processing an Operation: Results and Discus-
sion

The cost of performance and resources within the initiation of the GLOMAR

middleware layer is less critical than the cost imposed upon processing an opera-

tion. Much of the benefits of the multiple consistency model approach discussed

in previous chapters are dependent upon the premise that only a small amount

of time is added to a file operation. This series of experiments investigates the

performance overhead (time) the GLOMAR middleware layer places upon an

operation, focusing upon how scaling the number of Relationship Components

and Clones affects internal processes.

8.4.1 Scaling the number of Clones

The result of the average time per operation, when scaling the number of Clones

is illustrated in figure 8.6. The average time per operation when one to 5,000

Clones are implemented is 0.02 to 0.04 seconds. This result is independent

of the position of the Clone within the Clone List (best, worst, average case

scenario). However, once the number of Clones is equal to or greater than

5,000, the performance overhead experienced by the GLOMAR middleware

layer is increased, in particular for worst and average case scenarios.

-average
-wors t

5000 10OO0 1S0OO 20000 25000 30000 35000 40000 45000 50000

Number of Clone! wllhln the Clone Llit

Figure 8.6: Average Timo per Operation (Clones)

182

Figure 8.6 also illustrates that performance is not greatly affected when 50,000

best case Clones are implemented. The average time per operation of the best

case scenario is 0.047 seconds, compared to the average case scenario which is

0.134 seconds and worst case scenario which was 0.232 seconds. This observa-

tion indicates that processes involved in the managing of an operation are not

affected by the number of Clones present when the best case scenario is ap-

plied. Performance overheads are only incurred when necessary, as with worst

and average case scenarios.

The average time per operation as the number of Clones is varied, can be

expressed as a linear function. The linear functions and confidences for best,

average and worst case scenarios are detailed in table 8.6.

Case

Best
Average
Wor?t

Equation

y = 5E- 07a; + 0.024
y = IE - 06z + 0.0259
y = 4E- OGx + 0.0252

Confidence

& = 0.8815
B? = 0.9958
U1 = 0.9975

Table 8.6: Average Time per Operation Linear Functions (Clones)

To further analyse the impact upon performance, the average time per operation

by the Clone Distribution Manager to search and retrieve a specific Clone from

within the Clone List was measured. The average time per operation of the

Clone Distribution Manager is illustrated in figure 8.7. The results also show a

linear relationship between the time and number of Clones (table 8.7).

Case

Best
Average
Worst

Equation

y = 5E-
y = 9E-
y = 2E-

08a;
07a;
06a;

+ 0
+ 0
+ 0

.0018

.024

.0019

Confidence

H2 = 0
K2 = 0
2 = 0

8219
9967
9998

Table 8.7: Average Time per Operation for the Clone Distribution Manager
Linear Function (Clones)

To further analyse the effect of the Clone Distribution Manager on the overall

average time per operation, the percentage of time spent by the Clone Distri-

bution Manager is compared to the total time taken to process an operation

(figure 8.8). The results indicate that the impact upon overall performance is

minimal (about 10% to 12%). Only when a very large number of Clones (5,000

183

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Number of Clones In Clone Ust

Figure 8.7: Average Time per Operation for the Clone Distribution
(Clones)

Manager

or greater implemented as average or worst case scenario) does the impact on

overall performance become apparent.

8.4.2 Scaling the number of Relationship Components

Average Time per Operation

The results of the average time per operation when scaling the number of Rela-

tionship Components (including best, average and worst case scenarios, imple-

menting both singleton and new instance) are detailed in table 8.8 and figures

8.9 and 8.10. These results indicate that the overall performance impact of mul-

tiple Relationship Components is exponential (table 8.9 details their equations

and confidence values).

This exponential effect is only really observed when 50 or more Relationship

Components are implemented, regardless of the Relationship Component's in-

stantiation type. When one to 50 Relationship Components are observed in

isolation, a combination of linear and constant times results. This is best rep-

resented when reviewing the time taken to process one best case new instance

Relationship Component (0.023 seconds), compared to 50 best case new instance

Relationship Components (0.027 seconds). This indicates that the data struc-

ture used to store and find Relationship Components is tailored to a smaller

184

50 100 500 1000
Number of Clones within Clor.e List

Figure 8.8: Percentage of Average Operation Time taken by the Clone Distri-
bution Manager

No. of

RCs
1
5
10
50
100
500
1000

Singleton
best,
0.02
0.0233
0.0206
0.0274
0.0384
0.3604
1.375

average

0.0271
0.026
0.034
0.0406
0.0631
0.49
1.736

worst

0.0238
0.023
0.0259
0.0522
0.0777
0.5605
1.869

New Instance

best

0.0213
0.0254
0.023
0.0276
0.0428
0.3728
1.367

average

0.027
0.0246
0.0397
0.0431
0.0627
0.4731
1.734

worst

0.026
0.0239
0.0254
0.044
0.0751
0.6097
1.953

Table 8.8: Average Time per Operation for Singleton and New Instance Rela-
tionship Components

185

300 4O0 500 600 700

Number of Singleton RelatJonhsip Components

Figure 8.9: Average Time per Operation for Singleton Relationship Compo-
nents

300 «00 500 600 700

Number of New Instance Relationship Components

Figure 8.10: Average Time per Operation for New Instance Relationship Com-
ponents

186

Instantiation Type

New Instance

Singleton

Case

Best
Average
Worst

Best
Average
Worst

Equation
y = 0.0249eu-UU4;SI

y = 0.034e0-004^
y = 0.032eu-(i04t)*
y = 0.023eu-UU441

y = OmSe^^1

y = .00325eu-UU44:E

Confidence

R2 = 0.9719 I
R2 = 0.9637
R2 = 0.9446
R2 = 0.9?3
R2 = 0.9653
R2 = 0.9391

Table 8.9: Average Time per Operation Exponential Functions (Relationship
Components)

subset of elements. When the number of elements increases, the inadequacy of

this data structure is illustrated via a relative increase in processing times.

Time of Relationship Component Processing

To further evaluate the average time per operation, the time associated with

Relationship Component Processing is isolated. The resulting time of Relation-

ship Component Processing (table 8.10), show a similar exponential effect (table

8.11) as the average time per operation. These values have not been averaged

over 100 operations as with the previous experiment. Instead, they directly

illustrate the actual time taken by Relationship Component Processing.

No. Of
RCs
1
5
10
50
100
500
1000

Singleton
best
0.4307
0.3305
0.3405
0.7411
1.9228
34.43
135.935

average
0.4807
0.37
0.3805
0.831
2.163
39.877
154.45

worst
0.3304
0.4006
0.4306
0.8913
2.1231
39.076
156.031

New Instance
best
0.3304
0.3505
0.3705
0.7711
2.042
35.921
135.174

average
0.3605
0.3705
0.4
0.881S
2.0936
38.275
156.334

worst
0.6090
0.390*
0.4507
0.8912
2.2933
42.6613
162.1932

Table 8.10: Time of Relationship Component Processing for both Singleton and
New Instance Relationship Components

Unlike the average time per operation, the exponential effect is not exhibited

until 100 or more Relationship Components are instantiated. Prom 50 to 100

Relationship Components, the time taken only doubles, in accordance with the

proportional increase in Relationship Components (linear). However, from 100

187

Instantiation Type
New Instance

Singleton

Case
Best
Average
Worst
Best
Average
Worst

Equation
y = 0.5244e0-0062a:

y = 0 .5628e 0 - ^
y = 0.666e°-OUfil1

y = 0.5264e°-UU62:c

= 0.5902e0-^*
y = 0.57395eu-uue2*

Confidence
R2 = 0.9217
R'2 = 0.927
R2 = 0.927
R2 = 0.9274
R2 = 0.926
R2 = 0.926

Table 8.11: Average Time of Relationship Component Processing per Opera-
tion, Exponential Functions (Relationship Components)

to 500 Relationship Components, the time taken increases by approximately a

factor of 20 (Relationship Components only increase by a factor of 5).

Time of Partial Relationship Component Processing

As stated in section 5.2.6, the Relationship Component Processing was designed

to impose additional cost only when necessary. So that if the current scenario of

an existing Relationship Component is valid, then the Relationship Component

Processing stops early. Figures 8.11 and 8.12 illustrate the average time per

operation when only partial Relationship Component Processing for both sin-

gleton and new instance Relationship Components is usded. In addition to best,

average and worst case scenarios, a random case scenario is added. A random

case scenario illustrates a Relationship Component that randomly changes its

validity. It is primarily used to highlight partial Relationship Component Pro-

cessing.

The results in table 8.12 show that partial Relationship Component Processing

are either linear (worst and average case scenarios) or constant (best and ran-

dom case scenarios). These results are critical in illustrating the scalability of

the GLOMAB middleware, as they illustrate that even with a large number of

input parameters, the effect of GLOMAR is minor (in a stable environment).

Time of Instantiation

This experiment determines the effect of the different instantiation types (sin-

gleton and new instance) upon performance. A comparison of different instan-

tiation types for the best, average and worst case scenarios as seen in earlier

experiments fails to determine any performance impact associated with average

188 189

100 200 300 400 500 600 700

Number o l Singleton Relationship Component!

BOO 900

Figure 8.11: Average Time per Operation for Singleton Relationship Compo-
nents when only Partial Relationship Component Processing is invoked

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 700 6 0 0 9 0 0 1000

Number ol New Instance Relationship Component*

Figure 8.12: Average Time per Operation for New Instance Relationship Com-
ponents when only Partial Relationship Component Processing is invoked

I

Instantiation Type

New Instance

Singleton

Case

Best
Average
Worst
Random
Best
Average
Worst
Random

Equation
y = 0.0191
y = 0.0001a; + 0.0263
y = 0.0003a; + 0.0198
y = 0.0194

y = 0.0178
y = 0.0001a; + 0.0251
y = 0.0003a; + 0.029
y = 0.0217

Confidence

R2 = 0.991
R2 = 0.9994

R? = 0.9975
R2 = 0.9986

Table 8.12: Average Time per Operation Equations when only Partial Rela-
tionship Component Processing is invoked

time per operation. Primarily, this is because the Relationship Component Pro-

cessing is called only once by the first operation, with the remaining operations

absorbing the cost (as the cost is averaged over 100 operations).

However, with the random case scenario, the impact becomes more noticeable.

Figure 8.13 demonstrates that as the number of Relationship Components in-

creases, the cost associated with creating a new instance type, impacts greatly

upon performance compared to that of a singleton type. However, this impact

is only observed when the number of Relationship Components is greater than

100.

-S ing le ton

- Naw Instance '

300 ««X) 500 600 700

Number d l Random R«lationh»lp Components

Figure 8.13: Instantiation Time with Singleton and New Instance Relationship
Components within a Random Case Scenario

190

8.5 Conclusion

The resists from all these experiments determine the cost of using the GLO-

MAR middleware layer. The following section outlines the suitability a'i the

proposed and implemented algorithms, as well as the effect of scaling the nim-

ber of Relationship Components and Clones. Finally, a threshold for Clones

and Relationship Component numbers is determined.

8.5.1 Initiation of the G L O M A R middleware layer

The linear relationship (section 8.3) for both memory consumption and time of

the initiation of the GLOMAR middleware layer would suggest that GLOMAR

could adequately handle many Clones and Relationship Components. Assuming

memory is abundant 1 and waiting time during the initiation of the GLOMAR

middleware layer is acceptable, then a recommended limit on the number of

Clones and 'l^lationship Components is not necessary. Thus, GLOMAR's ini-

tiation is a fi atable mechanism that does not greatly affect the performance of

the DFS.

However, it should be noted that Clones and Relationship Components do not

affect performance and resource usage equally, as Relationship Components

impact greater on the overall performance than Clones. For example, 50 Clones

add '2.3 seconds to initiation, whereas 50 Relationship Components add 4.8

seco'ads. In addition, these results only reflect Relationship Components that

have minimal actual consistency maintenance functionality packaged inside.

Realistically, Relationship Component implementations would have additional

application-specific code that would effect the time and memory consumption

of the GLOMAR middleware layer during its initiation.

8.5.2 Processing an Operation

The initiation of the GLOMAR middleware layer is less important to the overall

usage of GLOMAR when compared to processing of operations. Unlike the

initiation of the GLOMAR middleware layer where waiting for extended periods

is acceptable, the ramification of time delays upon the processing of an operation

is critical to GLOMAR's efficiency.

In relation to the scaling of the number of Clones, the results would suggest that

one to 5,000 Clones have an equal effect upon performance (section 8.4.1). For
1This is based on the assumption that GLOMAR exists on a desktop or server type device

191

any number larger than 5,000 Clones, there is a noticeable impact on perfor-

mance. Realistically, the cost is only minimal, with 50,000 Clones only adding

c.pproximately 0.9 seconds per opeiation. However, 5,000 or less Clones would

be a recommended quantity.

The effects of scaling the number of Relationship Components have far wider

implications for average time per operation than with Clones. This is because

the cost of using a Relationship Component is far greater than that of a Clone.

This is since the cost associated with processing a Relationship Component is

more than that of a Clone.

The performance of the average time per operation (section 8.4.2) changes from

linear to exponential when the number of Relationship Components exceeds 50

to 100 implementations. Implementing one to 50 Relationship Components

shows no quantifiable difference in performance, as the time in these cases

is approximately 0.03 seconds per operation. Thus, 50 or less Relationship

Components would be a recommended quantity. Implementing 50 to 100 Re-

lationship Components has a small impact upon performance, but in certain

situations, this might be acceptable (the cost is approximately 0.06 seconds

per operation). From 100 to 1,000 Relationship Components, the average time

per operation outweighs any benefits had bv the multiple consistency model ap-

proach. In this case, the average time per operation for a best case scenario with

1,000 Relationship Components is 0.37 seconds. This performance degradation

impacts the scalability of the GLOMAR middleware layer and is unacceptable

for most DFS implementations. However, the likelihood of 100 Relationship

Components or more being simultaneously implemented is very low.

These recommended quantities for Clones and Relationship Components are

because operations result in all events within the Relationship Component Pro-

cessing being invoked. In reality, the Relationship Component Processing has

been designed to only implement as much functionality as necessary to fulfil

the task of selecting the appropriate Relationship Component. As a result, and

depending on the situation, additional Relationship Components and Clones

could be implemented without incurring noticeable cost. This was illustrated

in the fact that the impact of partial Relationship Component Processing is

minimal (section 8.4.2).

The cost associated with instantiation types shows an additional cost coupled

with the implementation of a new instance Relationship Component (section

8.4.2). However, this cost increases considerably in an environment where the

•cnranui i nnavTrrairnniTTiriTV

192

scenario is constantly changing (and thus Relationship Components are con-

stantly stopped and started). Rather, if the scenario is relatively stable, then

there is no major impact on performance because of the different instantiation

types. However, if the scenario is unstable, then the implication for performance

is noticeable.

Currently, the implementation targets a mid range of input parameters, primar-

ily focusing on demonstrating the feasibility of the multiple consistency model

approach. However, the GLOMAR middleware layer can be fine-tuned to fo-

cus on performance. This is not to say that the current implementation fails

to address performance issues. However, different implementers might choose

to implement different data structures and container types more attune to the

requirements of a specific implementer or system. An illustration of this is the

poor performance seen as a result of a large number of Clones. An obvious

solution would be a more appropriate data structure than a serial list (XML)

used to represent Clones.

8.6 Overall

The results from these experiments show the efficiency of the GLOMAR mid-

dleware layer, in the face of varying numbers of Relationship Components and

Clones. These quantifiable results, in conjunction with the qualitative analy-

sis from Chapter 7 demonstrate GLOMAR as both an efficient and effective

implementation of the multiple consistency model approach.

8.7 Summary

This chapter has discussed the cost issues associated with the .NET imple-

mentation of the GLOMAR middleware layer. The experiments showed how

scaling of two input parameters (the number of Clones and the number of Re-

lationship Components) affect the GLOMAR middleware layer. Prom these

experiments, the cost of the initiation of the GLOMAR middleware layer and

the cost of processing an operation were determined. The results outline the

potential for GLOMAR to scale (up to a particular point), a recommended

number of Relationship Components and Clones and validates the proposed

and developed algorithms to support the multiple consistency model approach.

The next chapter concludes this thesis, outlining the major contributions and

future work.

193

Chapter 9

Conclusion

This dissertation discusses the motivation, conceptual architec*'.;.•• ••'.. '-3sign, im-

plementation and evaluation of a component-based framework 'L.. . •;•: ^ntaining

consistency of data objects within a heterogeneous DFS, called GLOMAR.

The motivation for GLOMAR stems from a number of issues associated with

the implementation of consistency maintenance and concurrency control within

a DFS.

Existing approaches primarily focus on servicing the consistency and concur-

rency needs of a single scenario only, whether that being user, hardware or

application-specific. However, current DFS environments exhibit more than a

single scenario. Rather, they are an amalgamation of multiple scenarios co-

existing simultaneously. For this reason, an approach targeted specifically at

a single scenario to manage consistency maintenance and concurrency control

does not service the needs of current or future DFSs.

This dissertation proposes and implements a component-based framework to fa-

cilitate the servicing of multiple scenarios within a single DFS implementation

concurrently. This is primarily achieved by abstracting the consistency mainte-

nance and concurrency control mechanisms from the operating system and/or

application, then re-implementing them as components. Depending upon the

scenario experienced by the DFS, the appropriate consistency maintenance and

concurrency control mechanism is invoked. This not only provides of level of

adaptation for the DFS, but enough flexibility to allow additional consistency

maintenance and concurrency control mechanisms to be added, when necessary.

The elements of the GLOMAR framework includes the component to house

the consistency maintenance and concurrency control mechanism (Relationship

Components) and the middleware layer used to manage them at run-time.

iTTiTnrnfiinm¥M~mmr

194

This dissertation also analysed both the Relationship Component and middle-

ware layer to determine the efficiency and effectiveness of the implementation.

This analysis consisted of three case studies (two generic Relationship Com-

ponents and one application-specific Relationship Component), each tailored

for a different scenario. These case studies, in conjunction with an analysis of

the efficiency of the GLOMAR middleware layer, demonstrate the flexibility

and feasibility of the GLOMAR framework in relation to the management of

different consistency maintenance and concurrency control mechanisms.

9.1 Contribution of this Dissertation

Prom review of the literature, this dissertation is the first attempt to propose,

design and implement a middleware layer, coupled with a component-based

framework, to manage consistency maintenance and concurrency control, as

implemented within a DFS, using the multiple consistency model approach.

The contribution of this work is summarised below.

The contribution of GLOMAR includes:

• A multiple consistency model approach to support diverse ap-
plications and scenarios running on top of a DFS was proposed.

The GLOMAR framework illustrates how different scenarios and multiple

solutions could be defined and serviced. This met the aim of supporting

multiple concurrency control and consistency maintenance within a het-

erogeneous environment.

• Consistency maintenance and concurrency control functionality

was specified and abstracted into a Relationship Component.

Primarily, the case studies in Chapter 7 showed how different consistency

models were implemented within the Relationship Component. All three

case studies were unique, whether being simple, complex, or application-

specific. However, each consistency maintenance and concurrency control

mechanism and associated elements were successfully encapsulated within

the Relationship Component. This met the aim of being able to streamline

and thus encourage the development of Relationship Components such

that new and unique implementations were achieved.

• The flexible and effective design of the Relationship Compo-

nent enabled current and future consistency maintenance and

concurrency control functionality to be supported. The varying

195

nature and structure of the case studies detailed in Chapter 7, illustrate

the flexibility and effectiveness of the design of the Relationship Compo-

nent. Not only were the scenarios for which they were valid able to be

defined, but their scope and functionality were not restricted. This is illus-

trated in the ROW A Relationship Component implementation, as it was

targeted to be a generic concurrency control and consistency maintenance

mechanism. This is opposed to the Outlook Relationship Component im-

plementation, which was targeted at a single application and a specific

data set. The Twin Transaction Model Relationship Component illus-

trated the implementation of an existing consistency model, showing how

it could be encapsulated as a Relationship Component. This met GLO-

MAR's aim of flexibility, configurability and the motivation to support

fine grain concurrency control and consistency maintenance mechanisms

within a DFS.

• The GLOMAR framework demonstrates how software engineer-
ing practices can be integrated into the construction of consis-
tency maintenance and concurrency control functionality. The

process of constructing consistency maintenance and concurrency control

functionality was streamlined via well-defined components, interfaces and

tools. This impacted positively on Relationship Component creation, as

code was shared across implementations and Relationship Components

were deployed simply. A direct illustration of this was the sharing of the

Relationship Scope for the Twin Transaction Model Relationship Com-

ponent and the ROWA Relationship Component. Thus, the aim of ex-

ploiting software engineering practices was illustrated via the many Rela-

tionship Component implementations.

• The feasibility of the multiple consistency model approach was

demonstrated with a full-scale implementation. The GLOMAR

framework was used to govern the consistency of files within a real life

system. It was actively used to ensure that replicas of files where up-to-

date within a small DFS.

• The flexibility of GLOMAR in regards to diverse Relationship
Component implementations was demonstrated. Each Relation-

ship Component implementation used different techniques and different

functionality to achieve their concurrency control and consistency main-

tenance requirements. Of particular interest was the wide range of tech-

niques used by all the Relationship Components. These including, web

196

service technologies (SOAP and WSDL), client-server and peer-to-peer ar-

chitectures and application-specific functionality (using the Outlook COM

object). This demonstrated how the aim of flexibility and heterogeneity

were supported, as the implementation possibilities were not restricted.

• A balance has been achieved between consistency and resources

usage through implementation of appropriate consistency mod-

els. The ability to balance consistency and resource usage stems from

the motivation to provide fine grain support for concurrency control and

consistency maintenance. The Outlook Relationship Component demon-

strated this with an application-specific Relationship Component, exploit-

ing application-specific data and events. This resulted in a very fine grain

level of consistency maintenance being achieved, without greatly compro-

mising resource usage (in this case bandwidth).

• Analysis of the scalability of the GLOMAR middleware layer

was demonstrated. The evaluation within Chapter 8 illustrated that

the perceived cost of implementing the middleware, in turn the multiple

consistency model approach was negligible. The results showed that when

implementing a realistic number of Clones (5,000) and Relationship Com-

ponents (50), the GLOMAR middleware layer does not greatly impact

performance such that the beneficial qualities of the multiple consistency

model approach were compromised. ••

• To support the Relationship Component development method-

ology (thus the creation of consistency maintenance and concur-

rency control mechanisms), class libraries, types and Adminis-

tration Console have been created. The class libraries, types and

Administration Console supplied with the GLOMAR framework made

the creation and editing of Relationship Components more efficient. This

usage was illustrated by the Relationship Component implementations

defined in Chapter 7, as new and existing concurrency control and consis-

tency maintenance functionality were easily added to GLOMAR. Thus,

by defining types and classes to be used, a development methodology and

specification for the creation of consistency maintenance and concurrency

control mechanisms resulted.

• To provide the infrastructure to support Relationship Compo-
nents. An aim of GLOMAR was to focus development on the differing

aspects of a DFS. This was achieved via two mechanisms. The first was

via the Relationship Component, and its specific scoping, to only service

197

concurrency control and consistency maintenance. The second was via

the services found within the GLOMAR middleware layer. The unique

aspect of the GLOMAR middleware layer was the ability to extend easily

these services, such that generic services and/or Relationship Component

specific services could be implemented. As a result, this provided the

mechanisms to support Relationship Component implementations. As

shown in Chapter 7 and was specifically illustrated in the Twin Trans-

action Model Relationship Component, Relationship Component specific

services were added to enhance the capabilities of the Twin Transaction

Model Relationship Component.

9.2 Future Work

Much o,f the possible future work arises from applying the GLOMAR framework

to platforms other than a DFS. For example, if the multiple consistency model

approach were applied to other platforms (DDBMS or DSM) then expansion

work would require overhauling some of GLOMAR's major design features.

The lack of support for transaction semantics is one case in point. Thus, an

area of future work would involve porting GLOMAR's approach to different

distributed systems platforms.

The steps within GLOMAR's Relationship Component Processing (section 5.2.6)

intends to provide a balance between cost (time) and Relationship Component

selection. However, in certain situations, the focus upon performance affects the

Relationship Component selection to the detriment of the application and/or

user. Thus future work might consider improving Relationship Component Pro-

cessing, such that a balance can be structured between time imposed to process

a selection and the appropriateness of that selection.

One example of the limitations of Relationship Component Processing is the

lack of structure between related Relationship Components. The main con-

cern is since no formal structure has been defined between related Relationship

Component (for example, a connected and disconnected consistency model),

there is no way to ensure that appropriate components interact. A solution

could be to redesign Relationship Component Processing and extend the Re-

lationship Component's metadata, such that Relationship Components can be

loosely coupled. In other words, so when it is time to select an appropriate

Relationship Component to implement, preferential treatment is given to any

related components. However, an issue like how this is to be implemented and

198

how this relationship is represented, such that flexibility is not reduced, makes

this a difficult undertaking.

Finally, areas of future work could also include improving the current Context

Provider implementations and implementing GLOMAR using a native code

compiler. The purpose of both approaches would serve only to improve the

performance of GLOMAR and nothing more. However, this benefit is unsub-

stantiated at this point.

9.3 Final Remarks

This dissertation has shown an effective and efficient mechanism to support

true heterogeneity (whether being hardware, software or user), using a scenario

based approach that encapsulates multiple concurrency control and consistency

maintenance mechanisms concurrently. This dissertation has also proposed,

developed and illustrated the ability to apply a component-oriented architecture

to concurrency control and consistency maintenance functionality within a DFS,

such that the scope and granularity of consistency can be adjusted accordingly.

199

Glossary

.NET Remoting Infrastructure The Remoting Infrastructure enables com-
munication between objects in different application domains or processes
using different transportation protocols.

API Application program interface.

Availability The process used to improve the availability of data objects.

COM Microsoft's Component Object Model

COM Add-In A COM based module used to extending existing applications.
For example, extending any of the Microsoft Office applications.

Component A binary unit of independent production, acquisition and deploy-
ment that interact to form a functioning system (Szyperski 1997).

Concurrency Control Concurrency control is the process usiid to identify
and resolve updates to data that are made by multiple users simultane-
ously.

Consistency Maintenance Consistency maintenance is the process of en-
suring that events that manipulate data on one replica are visible on all
others, thus making them correct.

consistency model (lower case) The consistency model is the concurrency
control and consistency maintenance mechanism.

Consistency Model (uppercase). This sub-component contains a single con-
currency control and consistency maintenance mechanism (in other words
a consistency model).

Context Provider The mechanisms used to derive specific information about
the current status of the system.

Clone Within GLOMAR, data objects and encapsulating types are referred
to as Clones. The reason for using this term is that GLOMAR views
distributed data objects as clones of each other

Clone Distribution Manager The GLOMAR middleware layer service that
manages all Clone related activities. These activities mainly include name
resolution.

200

Clone List This sub-component defines the governed data objects.

DDBMS See Distributed Database Management System.

DFS See Distributed File System.

DSM See Distributed Shared Memory.

Distributed Database Management System A Distributed Database Man-
agement System is a database management system that replicates data
objects to improve availability and performance.

Distributed File System A Distributed File System is a file system that
replicates data objects to improve availability and performance.

Distributed Shared Memory A Distributed Shared Memory is a memory
system that replicates data objects to improve availability and perfor-
mance.

Distributed System A Distributed System comprises a number of computing
nodes connected via a communication network, each with a supportive
operating system. Messages are then passed between nodes to facilitate
the sharing of resources

Environmental Object The Environmental object contains a collection of
scenario types and actual values, which are then passed into the Rela-
tionship Scope of each Relationship Component. It is also referred to as
the shared data structure.

Executive The GLOMAR middleware layer service that manages file opera-
tions and Relationship Component implementations at run-time.

File System The File System is a collection of data objects that are persistent
until explicitly destroyed. File systems support four fundamental issues,
naming structure, programming interface, physical mapping and integrity.

GLOMAR A Component Based Framework for Maintaining Consistency of
Data Objects within a Heterogeneous Distributed File System.

GLOMAR Middleware Layer The middleware layer used to manage the
run-time implementation of Relationship Components.

GLOMAR Taxonomy The taxonomy used within GLOMAR for classifying
scenarios. The current taxonomy is based on System, User and File pro-
files.

Heterogeneous Environment A system that exhibits all manner of hard-
ware, software and users collectively and concurrently.

IL See Intermediate Language.

Local Operation Interface The GLOMAR middleware layer service that re-
ceived file operations from the local system.

201

Multiple Consistency Model Approach The approach where numerous con-
sistency models are available for implementation by a DFS.

New Instance Relationship Component A Relationship Component that
is created dynamically at run-time.

One-copy equivalence Data objects must be perceived as centralised, but
implemented distributed.

Operating System An Operating System is the software that an application,
uses to communicate with the physical part of the computer.

Remote Operation Interface The GLOMAR middleware layer service that
received file operations from a remote system.

Reflection Reflection is the mechanism of discovering class information and
instantiating classes solely at run-time.

Relationship Component The component contains the concurrency control
and consistency maintenance functionality. In addition, it contains the
description of the scenario for which this component is valid. Contains
the sub-components, Consistency Model, Relationship Scope and Clone
List.

Relationship Component Processing The name of the process of selecting
the appropriate Relationship Component to invoke based on the current
scenario.

Relationship Component Repository The GLOMAR middleware layer ser-
vice that implements and manages all Relationship Component implemen-
tations.

Relationship Scope The sub-component that defines the scenario for which
it is valid.

Remoted Service A GLOMAR middleware layer or user-specific service that
uses the .NET Remoting infrastructure.

Replication Replication is the placement and management of replicated file
objects for improving the availability, performance and usability of data
objects.

Replica Placement The process of determining the most appropriate loca-
tion for a replicated data object.

Service Manager The GLOMAR middleware layer service that implements
all user-specific services.

Single Consistency Model Approach The approach where a single consis-
tency models is available for implementation by a DFS.

Singleton Relationship Component A Relationship Component that is ref-
erenced from an existing Relationship Component.

202

Scenario A scenario is used to describe the elements and situation that is/can
be experienced by a DFS environment.

System Grader The GLOMAR middleware layer service that determines the
current scenario.

TTM See Twin Transaction Model

Twin Transaction Model The Twin Transaction Model is a consistency model
developed by (Rasheed 1999).

URI Universal Resource Identifier.

XML Web Service An XML based method of invocating functionality on
remote machine.

203

Bibliography

Abbadi, D. Skeen, and F. Christian (1985). An efficient fault tolerant

protocol for replicated data management. In Proceedings of the Fourth

ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

March 25-27, 1985, Portland, Oregon, pp. 215-229. ACM.

Agrawal, D. and A. E. Abbadi (1990). The tree quorum protocol: An efficient

approach for managing replicated data. In D. McLeod, R. Sacks-Davis,

and H.-J. Schek (Eds.), 16th International Conference on Very Large Data

Bases, August 13-16, Brisbane, Queensland, Australia, Proceedings, pp.

243-254.

Alonso, R., D. Barbara, and H. Garcia-Molina (1990, Sep). Data caching

issues in a information retrieval system. ACM Transaction on Database

Systems 15{3), 359-384.

Alonso, R., D. Barbara, H. Garcia-Molina, ar.d S. Abad (1988). Quasi-

copies: Efficient data sharing for information retrieval systems. In J. W.

Schmidt, S. Ceri, arid M. Missikoff (Eds.), Advances in Database Technol-

ogy - EDBT'88, Proceedings of the International Conference on Extend-

ing Database Technology, Venice, Italy, March 14-18, 1988, Volume 303

of Lecture Notes in Computer Science, pp. 443-468. Springer.

Alsberg, P. A. and J. D. Day (1976). A principle for resilient sharing of

distributed resources. In 2nd International Conference on Software Engi-

neering, 13-15 October , San Francisco, California, pp. 627-644.

Apple Computer, I. (1985). Inside Macintosh, Volume II. Addison Wesley.

Badrinath, B. R., A. Acharya, and T. Imielinski (1993). Impact of mobility

on distributed computations. Operating Systems Review 27, 15-20.

Baker, M., J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout (1991,

October). Measurements of a distributed file system. In Proceedings of

13th ACM Symposium on Operating Systems Principles, pp. 198-212.

Association for Computing Machinery SIGOPS.

r
204

Barbaxa-Milla, D. and H. Garcia-Molina (1994, April). Replicated data man-

agement in mobile environments: Anything new under the sun? In IFIP

Working Conference on Applications in Parallel and Distributed Comput-

ing, pp. 237-24G.

Bernstein, P. and N. Goodman (1984). An algorithm for concurrency control

and recovery in replicated distributed databases. ACM Transaction on

Database Systems 5(4), 596 - 615.

Bernstein, P. and N. Goodman (1986). Serializability theory for replicated

databases. Journal of Computer and System Sciences 31(3), 355-374.

Berstein, P., V. Hadzilacos, and N. Goodman (1987). Concurrency Control

and Recovery in Database Systems. Addison-Wesley.

Boling, D. (1998). Programming Microsoft Windows CE. Microsoft Press.

Borghoff, U. M. and K. Nast-Kolb (1989). Distributed systems: A com-

prehensive survey. Technical Report Report No TUM-I8909, Technische

Universitat Miinchen.

Box, D. (1998). Essential COM. Object Technology Series. Addison Wesley.

Brown, N. and C. Kindel (1998). Distributed component object model

protocol—dcom/1.0. http://www.microsoft.com/com/, microsoft' corp,

network working group internet draft.

Burns, R. C. and D. D. E. Long (1997). Efficient distributed backup with

delta compression. In I/O in Parallel and Distributed Systems, pp. 27-36.

Burrows, M. (1988). Efficient Data Sharing. Ph. D. thesis, Computer Labo-

ratory, University of Cambridge.

Byrne, R. (2001). Building Applications with Microsoft Outlook Version 2002.

Microsoft Press.

Caron, R. (2002). Getting started with xml web services in

visual studio .net, http://msdn.microsoft.com/library/en-

us/dvjvstechart/html/vbtchgettingstartedwithxrnlwebservicesinvisualstudionet.asp.

Ceri, S., M. A. W. Houtsma, A. M. Keller, and P. Samarati (1991). A clas-

sification of update methods for replicated databases. Technical Report

CS-TR-91-1392, Stanford University, Computer Science.

Chandra, B. R. and J. R. Larus (1999). Teapot: A domain-speciflc language

for writing cache coherence protocols. IEEE Transactions on Software

Engineering 25(2).

205

Comer, D. (1995). Internetwroking with TCP/IP. Volume I Principles, Pro-
tocols and Architecture. Prentice Hall.

Coulouris, G., J. Dollimore, and T. Kindberg (2001). Distributed Systems:

Concepts and Design. Addison Wesley.

Cuce, S. (1999, November). Conflict avoidance within a disconnected mobile

environment. In Proceedings of the 6th Australian Conference on Parallel

and Real-Time Systems (PARTS99).

Cuce, S. and A. Zaslavsky (1998a, December). Adaptive cache validation

for mobile file systems. In Lecture Notes in Computer Science, Springer-

Verlag, LNCS 1552.

Cuce, S. and A. Zaslavsky (1998b). Partially consistent cache management

model for a mobile environment. In 1st Annual South African Telecom-

munications, Networks and Applications Conference (SATNAC98).

Cuce, S. and A. Zaslavsky (2002a, January). Adaptable consistency control

mechanism for mobility enabled file system. In 3rd International Confer-

nce on Mobile Data Management (MDM 2002), Singapore.

Cuce, S. and A. Zaslavsky (2002b). Run-time file system consistency sup-

port in mobile computing systems. In 2nd Asian International Mobile

Computing Conference. (AMOC02) Langkawi, Malaysia.

Cuce, S., A. Zaslavsky, B. Hu, and J. Rambhia (2002, September). Main-

taining consistency of twin transaction model using mobility-enabled dis-

tributed file system environment. In 5th International Workshop on Mo-

bility in Databases and Distributed Systems in conjunction with the 13th

International Conference on Database and Expert Systems Applications

(DEXA '2002). Aix-en-Provence, France.

Davidson, S. (1982). An Optimistic Protocol for Partitioned Distributed

Database Systems. Ph. D. thesis, Dept. of EECS, Princeton University.

Demers, A. J., K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,

and B. B. Welch (1994, December 8-9). The bayou architecture: Support

for data sharing among mobile users. In Proceedings IEEE Workshop on

Mobile Computing Systems & Applications, Santa Cruz, California, pp.

2-7.

DOS (1983). Disk Operating System, Version 2.1. 1502343. IBM Corpora-

tion.

Dwyer, D. (1998a). Adaptive File System Consistency for Mobile Computing

Environment. Ph. D. thesis, University of Illinois at Urbana-Champaign.

206

Dwyer, D. (1998b, September). Adaptive file system consistency for unreli-

able mobile computing environments. In IEEE International Computer

Performance and Dependability Symposium, pp. 64-173.

Dwyer, D. and V. Bharghavan (1997, Jan). A mobility-aware file system for

partially connected operations. Operating Systems Review 31(1), 24-30.

Eager, D. and K. C. Sevcik (1983). Achieving robustness in distributed

database systems. ACM transaction on Database Systems 8(3), 354-381.

ECMA (2001). Ecma c# and common language infrastructure standards -

http://www.ecma.ch/ecmal/stand/ecma-335.htm.

Edwards, W. K., E. D. Mynatt, K. Petersen, M. J. Spreitzer, D. B. Terry, and

M. M. Theimer (1997). Designing and implementing asynchronous collab-

orative applications with bayou. In Proceedings of the ACM Symposium

on User Interface Software and Technology, Asynchronous Collaboration,

pp. 119-128.

Faiz, M. (1995). Database replication strategy in mobile computing environ-

ment. Master's thesis, Computer Technology, Monash University.

Flenner, R. (2002). Java P2P Unleashed. Sams Publishing.

Galli, D. (2000). Distributed Operating Systems. Prentice Hall.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns,

Elements of Reusable Object-Oriented Softwares. Addison-Wesley.

Gifford, D. K. (1979). Weighted voting for replicated data. In Proc 7th Symp.

on Operating Systems Principles, pp. 150-162.

Gill, D. S., S. Zhou, and H. S. Sandhu (1994). A case study of file system

workload in a large-scale distributed environment. In Measurement and

Modeling of Computer Systems, pp. 276-277.

GlowCode.Com (2002). Glowcode.net v4.0 memorydashboard

http://www.glowcode.com/.

GNUTELLA. (2002). http://gnutella.wego.com.

Goodman, N., D. Skeen, A. Chan, U. Dayal, S. Fox, and D. Ries (1983). A

recovery algorithm for a distributed database system. In In Proceedings

of the 2nd ACM Symposium on Principles of Database Systems, pp. 8-15.

Gosling, J., B. Joy, G. Steele, and G. Bracha (2000). The Java Language

Specification Second Edition. Boston, Mass.: Addison-Wesley.

207

Gough, J. and D. Corney (2000, September). Evaluating the Java virtual

machine as a target for languages other than Java. In Presented to the

Joint Modula Languages Conference, Zurich, Switzerland.

Gray, C. and D. Cheriton (1989). Leases: An efficient fault-tolerant mecha-

nisms for distributed file cache consistency. In Proceedings of the Twelfth

ACM Symposium on Operating Systems Principles, pages 202-210.

Guy, R. G., J. S. Heidemann, W. Mak, J. Thomas W. Page, G. J. Popek,

and D. Rothmeir (1990, Summer). Implementation of the ficus replicated

file system. In Proceedings of the Summer 1990 USENIX Conference,

Anaheim, CA, pp. 63-72.

Guy, R. G., P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. J. Popek (1998).

Rumor: Mobile data access through optimistic peer-to-peer replication.

In Lecture Notes in Computer Science - Advances in Database Technolo-

gies, pp. 254-265. Springer-Verlag.

Haerder, T. and A. Reuter (1983). Principles of transaction-oriented database

recovery. ACM Computer Surveys 15(4), 151-166.

Helal, A. Heddaya, and B. Bhargava (1996). Replication Techniques in Dis-

tributed Systems. Kluwer Academic Publishers.

Honeyman, P. and L. Huston (1995). Communication and consistency in

mobile file systems. IEEE Personal Communications 6(2).

Horton, M. and R. Adams (1995). Rfc 1036 - standard for interchange of

Usenet messages. http://www.faqs.org/rfcs/rfclO36.html.

Howard, J. (1988). An overview of the andrew file system. In Proceedings of

the USENIX Winter Technical Conference. Feb. 1988, Dallas, TX.

Huston, L. B. and P. Honeyman (1993, 2-3). Disconnected operation for

AFS. In Proceedings of the USENIX Mobile and Location-Independent

Computing Symposium, Cambridge, MA, pp. 1-10.

IRDA (2002). Irda guidelines, http://www.irda.org/standards/guidelines.asp.

Kistler, J. J. (1993). Disconnected Operation in a Distributed File System.

Ph. D. thesis, School of Computer Science, Carnegie Mellon University.

Kistler, J. J. and M. Satyanarayanan (1991). Disconnected operation in the

coda file system. In Thirteenth ACM Symposium on Operating Systems

Principles, Volume 25, Asilomar Conference Center, Pacific Grove, U.S.,

pp. 213-225. ACM Press.

208

Kuenning, G. (1994, December). Design of the SEER predictive caching

scheme. In Workshop on Mobile Computing Systems and Applications,

Santa Cruz, CA, US.

Kumar, A. (1991, May). A randomised voting algorithm. In IEEE 10th In-

ternational Conf. On Distributed Computing Systems. Arlington, TX, pp.

412-419.

Kumar, A. and A. Segev (1988). Optimising voting-type algorithms for repli-

cated data. In J. W. Schmidt, S. Ceri, and M. Missikoff (Eds.), Advances

in Database Technology - EDBT'88, Proceedings of the International Con-

ference on Extending Database Technology, Venice, Italy, March 14-18,

1988, Volume 303 of Lecture Notes in Computer Science. Springer.

Kumar, P. (1994). Mitgating the Effects of Optimistic Replication in Dis-

tributed File System. Ph. D. thesis, School of Computer Science, Carnegie

Mellon University.

Kumar, P. and M. Satyanarayanan (1995, January). Flexible and safe reso-

lution of file conflicts. In USENIX Association (Ed.), Proceedings of the

1995 USENIX Technical Conference: January 16-20, 1995, New Orleans,

Louisiana, USA, Berkeley, CA, USA, pp. 95-106 (or 95-105). USENIX.

Kung, H. T. and J. T. Robinson (1981). On optimistic methods for concur-

rency control. ACM Transaction of Database systems 6(2).

Lampson, B. and H. Sturgis (1976). Crash recovery in a distributed system.

Technical report, Xerox, Palo Alto Research Center. '

Lei, H. and D. Duchamp (1997, January). An analytical approach to

file prefetching. In USENIX (Ed.), 1997 Annual Technical Conference,

January 6-10, 1997. Anaheim, CA, Berkeley, CA, USA, pp. 275-288.

USENIX.

Levy, E. and A. Silberschatz (1990, Dec). Distributed file systems: Concepts

and examples. ACM Computing Surveys 22(4), 321-374.

Lippman, S. and J. Lajoie (1998). C++ Primer. Addison Wesley.

Liskov, B., S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams

(1991). Replication in the Harp file system. In Proceedings of 13th ACM

Symposium on Operating Systems Principles, pp. 226-38. Association for

Computing Machinery SIGOPS.

Liu, G. and G. Q. M. Jr. (1995, November). A predictive mobility manage-

ment algorithm for wireless mobile computing and communications. In

209

IEEE International Conference on Universal Personal Communications
(ICUPC'95), Tokyo, Japan.

Liu, G. and G. Q. Maguire (1994). A survey of caching and prefetching

techniques in distributed systems. Technical report, TRITA-IT R 94:40,

Royal Institute of Technology (KTH), Department of Teleinformatics,

Telecommunication Systems Laboratory.

Lu, S., K.-W. Lee, and V. Bharghavan (1997). Adaptive service in mobile

computing environments. In Proc. 5th IFIP Int'l Wksp on QoS.

Macdonald, R. (2001). Understanding assem-

blies - http://msdn.microsoft.com/library/en-

us/dnvbdevOl/html/vbOlglO.asp.

Mann, T., A. Birrell, A. Hisgen, C. Jerian, and G. Swart (1994, May). A

coherent distributed file cache with directory write-behind. ACM Trans-

action of Computer Systems 12(2).

Marzullo, K. and F. Schmuck (1988). Supplying high availability with a stan-

dard network file system. In Proceedings of the 8th International Confer-

ence on Distributed Computing Systems (ICDCS), Washington, DC, pp.

447-455. IEEE Computer Society.

Microsoft (1998). Programmer's guide for activesync.

Microsoft (2000). Performance monitoring,

http://msdn.microsoft.com/library/en-us/exchserv/html/admnfunc_50mf.asp.

Microsoft (2002a). http://www.microsoft.com/windowsxp/default.asp.

Microsoft (2002b). .net for smart devices
http://www.gotdotnet.com/team/netcf/.

Minoura, T. and G. Wiederhold (1982, May). Resilient extended true copy

token scheme for a distributed database. IEEE Transaction of Software

Engineering 5(9), 173-189.

Mitchell, J. and J. Dion (1982). A comparison of two network-based file

servers. Communication of the ACM 25(4), 233-245.

Morris, J., M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and

F. Smith (1986). Andrew: A distributed personal computing environment.

Communications of the ACM 29(4), 184-201.

Mukherjee, A. and D. P. Siewiorek (1994, December). Mobility: A medium

for computation, communication and control. In IEEE Workshop on Mo-

bile Computing Systems and Applications.

210

Mummert, L., M. Ebling, and M. Satyanarayanan (1995). Exploiting weak

connectivity for mobile file access. In Proceedings of the 15th ACM Sym-

posium on Operating Systems Principles, Copper Mountain Resort, CO.

Nagar, R. (1997). Windows NT File System Internals; A Developer's Guide.

O'Reilly.

Nelson, M. N., B. B. Welch, and J. K. Ousterhout (1988). Caching in

the Sprite network file system. ACM Transactions on Computer Sys-

tems 6(1), 134-154.

Netscape (1998). Netscape communicator plug-in guide

http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm.

Noble, B. (2000, Feb). System support for mobile, adaptive applications.

IEEE Personal Communications 7(1).

Object Management Group, I. (1999). The common object request broker:

Architecture and specification, minor revision 2.3.1.

Oki, B. M. and B. H. Liskov (1988, Aug). Viewstamped replication: A general

primary copy method to support highly available distributed systems. In

Proc. 7th A CM Symp. on Principles of Distributed Computing. Toronto,

Ontario, pp. 8-17.

Oney, W. (1999). Programming the Microsoft Windows Driver Model. Mi-

crosoft Press. ,

Ousterhout, J. K., A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.

Welch (1988). The sprite network operating system. Computer Magazine

of the Computer Group News of the IEEE Computer Group Society, ;

ACM CR 8905-0314 21(2), 23-36.

Ousterhout, J. K., H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, and

J. G. Thompson (1985). Driven analysis of the unix 4.2 bsd file system.

In Proceedings of the 10th Symposium on Operating System Principles,

Orcas Island, WA, pp. 15-24.

Ozsu, T. and P. Valduriez (1991). Principles of Distributed Database Systems.

Prentice Hall.

Page, T., R. Guy, J. Heidemann, D. Ratner, P. Reiher, A. Goel, G. Kuenning,

and G. Popek (1998, February). Perspectives on optimistically replicated,

peer-to-peer filing. Software Practice and Experience 28(2), 155-180.

Parker, S., G. Popek, G. Rudisin, B. W. Allen Stoughton, E. Walton,

J. Chow, D. Edwards, S. Kiser, and C. Kline (1983). Detection of mutual

211

inconsistency in distributed systems. Transactions on Software Engineer-
ing 9(3), 240-246.

Popek, G. and B. Walker (1985). The LOCUS Distributed System Architec-
ture. MIT Press.

Psion (2002). http://www.psion.com/.

Rasheed, A. (1999). Twin-Transaction Model to Support Mobile Data Access.

Ph. D. thesis. School of Computer Science and Software Engineering,
Monash University.

Ratner, D. (1995). Selective replication: Fine-grain control of replicated files.

Master's thesis, University of California.

Ratner, D. (1998). Roam: A scalable replication system for mobile and dis-

tributed computing. Ph. D. thesis, University of California.

Ratner, D., G. J. Popek, and P. Reiher (1996, July). Peer replication with

selective control. Technical Report CSD-960031, University of California,

Los Angeles.

Ratner, D., P. Reiher, and G. Popek (1996, Oct). The ward model: A scalable

replication architecture for mobility. In OOPSLA '96 Workshop on Object

Replication and Mobile Computing (ORMC'96), San Jose, California.

Ratner, D., P. Reiher, and G. Popek (1997). Dynamic version vector main-

tenance. Technical Report CSD-970041, University of California.

Reiher, P., J. Heidemann, D. Ratner, G. Skinner, and G. J. Popek (1994,

Summer). Resolving file conflicts in the Ficus file system. In USENIX

Association (Ed.), Proceedings of the Summer 1994 USENIX Conference:

June 6-10, 1994, Boston, Massachusetts, USA, Berkeley, CA, USA, pp.

183-195. USENIX.

Rhodes, N. and J. Mckeehan (1999). Palm Programming. O'Reilly.

Rice, F. (2000). Building a com add-in for microsoft office xp us-

ing microsoft visual basic 6.0 - http://msdn.microsoft.com/library/en-

us/dnoxpta/html/odc-comaddinvb6.asp.

Ritchie, M. and K. Thompson (1978). The unix time-sharing system. The

Bell System Technical Journal 57(6), 1905-1929.

Roselli, D., J. Lorch, and T. Anderson (2000, June). A comparison of file sys-

tem workloads. In Proceedings of 2000 USENIX Annual Technical Con-

ference, San Doego, California, USA.

212

Rosenthal, D. S. H. (1990, Summer). Evolving the Vnode interface. In

USENIX Association (Ed.), Proceedings of the Summer 1990 USENIX

Conference: June 11-15, 1990, Anaheim, California, USA, Berkeley, CA,

USA, pp. 107-118. USENIX.

Roxio (2002). http://www.roxio.com/en/products/ecdc/dcdfeatures.jhtml.

Saito, Y. and M. Shapiro (2002). Replication: Optimistic approaches. Tech-

nical report, HP Laboratories, Palo Alto. HPL-2002-33.

Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon (1985). De-

sign and implementation of the sun network filesystem. In Proceedings of

the Summer USENIX Technical Conference, USENIX Assoc, Berkeley,

Calif, pp. 119-130.

Satyanarayanan, M. (1989). Coda: A highly available file system for a dis-

tributed workstation environment. In Proceedings of the Second IEEE

Workshop on Workstation Operating Systems. Pacific Grove, CA.

Satyanarayanan, M. (1990). A survey of distributed file systems. Annu. Rev.

Computer Science 4, 73-104.

Satyanarayanan, M. (1996, May). Fundamental challenges in mobile comput-

ing. In Fifteenth ACM Symposium on Principles of Distributed Comput-

ing, Philadelphia, PA.

Satyanarayanan, M., J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and

D. C. Steere (1990). Coda: A highly available file system for a distributed

workstation environment. IEEE Transactions on Computers 39(4), 447-

459.

Satyanarayanan, M., B. Noble, P. Kumar, and M. Price (1995). Application-

aware adaptation for mobile computing. Operating Systems Review 29,

7.

Schlichting, R. and F. Scheider (1983). Fail-stop processors: An approach

to designing fault-tolerant distributed computing systems. A CM Trans-

action on Computer Systems i(3), 222-238.

Severance, D. and G. Lohman (1976). Differential files: Their application

to the maintenance of large databases. ACM Transactions on Database

Systems 5(1), 256-267.

Solomon, D. and M. Russinovich (2000). Inside Windows 2000. Microsoft

Press.

213

Srinivasan, P. (2001). An introduction to microsoft .net re-

moting framework - http://msdn.inicrosoft.com/library/en-

us/dndotnet/html/introremoting.asp.

Stonebraker, M. and E. Neuholf (1979). Concurrency control and consistency
of multiple copies of data in distributed INGRES. IEEE Transaction on

Software Engineering 5(3), 188-194.

Szyperski, C. (1997). Component Software: ' Beyond Object-Oriented Pro-
gramming. Addison- Wesley.

Tait, C. D. (1993, August). A File System for Mobile Computing. Ph. D.

thesis, Graduate School of Arts and Sciences. Columbia University.

Tait, C. D. and D. Duchamp (1991). Service interface and replica manage-

ment algorithm for mobile file system clients. In Proceedings of the First

International Conference on Parallel and Distributed Information Sys-

tems (PDIS 1991), Fontainebleu Hilton Resort, Miami Beach, Florida,

pp. 190-197.

Tait, C. D. and D. Duchamp (1992). An efficient variable-consistency repli-

cated file service. In In proceedings of File System Workshop, USENIX,

MI, USA., pp. 111-126.

Tait, C. D., H. Lei, S. Acharya, and H. Chang (1995). Intelligent file hoarding

for mobile computers. In Mobile Computing and Networking, pp. 119-125.

Terry, D., A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. Welch

(1994, September). Session guarantees for weakly consistent replicated

data. In International Conference on Parallel and Distributed Information

Systems, Austin, TX, US, pp. 140-149.

Thomas, R. H. (1979, June). A majority consensus approach to concurrency

control for multiple copy databases. ACM Transaction on Database Sys-

tems 4(2), 180-209.

UPNP (2002). Universal plug and play forum - http://www.upnp.org/.

Watkins, D., M. Hammond, and B. Abrams (2003). Programming in the

.NET Environment. Addison Wesley.

Wendt, C. P. (2002). http://www.codeproject.com/system/sysinfo.asp.

Whittington, J. (2002). Shared source cli provides

source code for a freebsd implementation of .net-

http://msdn.microsoft.com/msdnmag/issues/02/07/sharedsourcecli/default.asp.

Ximian (2002). Mono project, http://www.go-mono.com/.

214

Yu, H. and A. Vahdat (2000a). Design and evaluation of a continuous con-

sistency model for replicated services. In Proceedings of the Fourth Sym-

posium on Operating Systems Design and Implementation (OSDI), San

Diego, CA, pp. 305-318.

Yu, H. and A. Vahdat (2000b). Efficient numerical error bounding for repli-

cated network services. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy,

U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang (Eds.), VLDB 2000,

Proceedings of 26th International Conference on Very Large Data Bases,

Cairo, Egypt, pp. 123-133.

Zaslavsky, A. and Z. Tari (1998, May). Mobile computing: Overview and

current status. The Australian Computer Journal 30(2), 42-52.

