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Addendum

Page 15, at last paragraph, add: "and its usefulness wili be demonstrated throughout the thesis™.
Page 20, first line after Eq, (3.2.2), delete: .., andj is a complex number, JF2 =-1"
Page 21, at the end of fourth sentence after heading 3.3, add: “as will be clearly shown and demonstrated
in this chapter".
Page 23, second line, delete: "...and thus its real and “imaginary" parts are identical”,
Page 24, sixth line, delete:”...and thus their real and “imaginary® parts are identical®,
Page 68, Eq. (4.2.9) should be replaced by: ¥ (8 = [sech{ﬁﬂ)]’- cos(rd)
Page 68, second line from bottom, delete “important” and read ... examine some properties...”
Page 70, Eq. (4.3.6) should be replaced by;
4o

Ceonstraint = .[ -B*- sech (Be) (1 - 2[sech (o W} dw

Page 70, at the end of second last paragraph, add: “Eq. (4.3.6) could be analytically verified using Maple
or Mathematica sofiware. However, a simulation method is employed 10 evaluaie integrals since the
method is fast and yields farther understanding on the integrand. Thus, simulation will be used
throughout this chapter and subsequent chapters where applicable”,

Page 95, first line after heading 4.4.5: "sometimes” for "sometime”,

Page 116, a the end of second last paragraph, add: "The above range of 0.5 < B £ 50 could be
considered "rule-of-thump” for the hyperbolic kenel. It js important o note that the above performance-

analysis procedure for the hyperbolic kemel should be applied to other kemels so that their irue
performance can be obtained,”
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PREFACE

The research presented in this thesis is aboul time-frequency signal processing and parallel
computing. Since Fourier transform method has been a dominant ool in signal processing
for many decades, the role of lime-frequency signal processing seems 1o be forgotten. In
other words, there are many non-stationary signals, i.e. signals whose frequency spectrum
varies with time, encountered in practice which requires the use of time-frequency signal
processing. For example, for signals such as ECG, music, speech. underwater signal
analysis, plasma physics, chaos, time-frequency signal analysis is required since their
spectra vary with time. If the Fourier spectrum technique is employed, fine details of the

spectrum will be lost and thus it does nol clearly reveal the signal characteristics.

This thesis is writlen with a prime purpose to brighten up the time-frequency signal
processing area by proposing a new kernel family. Unlike other kemels proposed in the
literature, this kernel family is found by taking the advantage of summing two first-power
exponential functions which are familiar in many aspects of electrical engineering.
Moreover, properties of these functions have been well known and thus make the analysis of
the new kernel family more effective and easier than using higher-power exponential
functions. It should also be noted that lime-frequency analysis is built upon the Fourier
transform method except that the former can display power spectra in both time and

frequency domains.

For all graphs in the thesis, the captions include important information about the
graphs. The header of some graphs might have incomplete sentences or contains strings of
numbers for programming purposes. In those cases, the captions should be solely consulted.
Some captions may also contain a lot of text explaining about the graphs since it is believed

that the graphs should be self-explainable and understandable at the first glance.
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ABSTRACT

This thesis proposes a new hyperbolic kernel family {sech(B81)]", where a = 1, 3, 5..., for
time-frequency power spectrum analysis. An important relationship between time-frequency

kerels and wavelet functions is found which leads to the discovery of the new hyperbolic

wavelet function.

Theoretical background of the first-order hyperbolic kernel, which corresponds to n =
I, and its corresponding wavelet are examined in detail. The effectiveness of the first-order
hyperbolic kernel is compared with previous kernels including Choi-Williams, Wigner-Ville
and the multiform tiltable exponential. The hyperbolic, Morlet and Choi-Williams wavelets

are examined so that appropriate applications of each wavelet can be identified.

There are two major applications of the hyperbolic kernel and hyperbolic wavelet
presented in this thesis. The first application employs the hyperbolic kernel to ¢:ablish a
general non-unity kernel time-frequency detector and hyperbolic time-frequency detector
for non-stationary signal detection. Detection of stationary signals such as sinusoids will
also be investigated to validate the effectiveness of the detector. Performance of the general
non-unity kernel time-frequency detector, hyperbolic detector, Choi-Williams detector,
matched-filter detector and Wigner-Ville detector will be compared and discussed in detail

by calculating their corresponding signal-to-noise ratios, SNRs.

The second application uses the proposed hyperbolic wavelet function for signal
analysis, especially to differentiate among periodic, transient and chaotic properties of
various signals, including Duffing oscillator, ECG, sinusoids, exponential, music and
speech, by calculating their hyperbolic wavelet power spectra. The hyperbolic wavelet
power spectrum and Fourier power spectrum techniques are compared. The merits of each

technique will be clearly identified.

Parallel computing, as a uscful tool, is employed to improve the efficiency in
calculating the bispectrum and time-frequency power spectrum. A 12-processor parallel

computer system is employed to run paralle} programs whose speedup factors and efficiency

are measured.
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Chapter 1: INTRODUCTION

Signal analysis is important in understanding the behaviour of electrical systems such as
power planis, control systems in telecommunication, chaotic systems such as the human
electrocardiogram (ECG), plasma phenomena, oscillatory systems and other non-linear
systems. This understanding enables electrical engineers to predict the behaviour of the
system in the fulure, 1o measure the performance of the system, to study the system
characteristics in detail and to effectively improve the system performance. Many tools for
signal analysis have been developed over many years for stationary and non-stationary

signals with constant improvements in efficiency, effectiveness, accuracy and cost.

The most important signal-processing tool is the Fourier transform which is very useful
in spectral analysis. Spectral analysis is employed to establish important functions in higher-
order statistics of signals such as the power spectrum (first-order statistics) and bispectrum
{second-order statistics). The power, or energy, spectrum can be employed to study chaotic
phenomena and turbulence [1-4]. However, it should be emphasised that for Fourier analysis
to be effective and accurate, the signal is assumed to be stationary or wide-sense stationary.

That is, its statistical properties do not vary with time.

The Fourier transform is formed by summing and then averaging a product of the input
signal and a sum of two sinusoidal functions or the complex exponential function exp(—jux)
whose time support is infinite. If the Fourier transform is used to examine non-stationary
signals, fine-detailed information of the signal energy density will be suppressed since the
Fourier transform yields the average signal energy density over an infinite time interval. In
practice, non-stationary signals are often encountered and thus it is important to develop
methods to study these signals. This is one of the main themes of the research presented in
this thesis. Examples of non-stationary signals are voice and speech, underwater signals
such as whale sounds, bat sounds, transient signals, ECG and other biclogical signals,
chaotic signals and sun-spot intensity over a short- or long-time period [5-8]. It is important
that the energy density or energy distribution of a non-stationary signal is viewed as a

function of time so that it is known when a particular event happens.




Chapter 1: Introduction

To effectively investigate non-stationary signals, a method called the joint time-
frequency analysis |8, 9] or time-varying spectrum anmalysis was proposed by Page,
Rihaczek and others [10-12]. This method was later studied in detail and significantly
modified by Cohen [8] so that time-frequency analysis could be generalised. This method
uses a general transform function for a general expression of the time-frequency
distribution. For each different transform function that satisfies a certain set of constraints, a

new and unique time-frequency distribution is found.

To capture the fine-detailed information in the energy density of non-stationary signals,
the time-frequency transform function must be a finite-time supported function. This
transform function is called the kernel function and labelled ®(6, 7). The kemel function,
(0, 7}, has two arguments @ and 7, which are frequency and time respectively and are used
to derive the joint time-frequency spectrum. It has been shown that Fourier analysis is a
special case of the joint time-frequency analysis (8]. In the case of the Fourier transform,
only one argument, @, which corresponds to the frequency, is employed. The time variable

is removed through averaging and so has no variation.

Different time-frequency spectra can be generated if there exist different kernel
functions. The simplest kernel function that has been employed is the Wigner-Ville (WV)
unity kernel, ®uy (6, 7} = 1. The WV time-frequency distribution has been extensively
studied by many researchers [13-22], but suffers from a disadvantage that it generates cross
terms in the time-frequency plane. These cross terms originate from instantaneous values of
an auto-correlation function and hence make it difficult to interpret the WV time-frequency
power spectrim. The main problem is that even when the signal is absent, the WV time-

frequency power spectrum is not zero.

The existence of cross terms in the time-frequency domain motivated the search for
new kernels that are more effective than the WV kemel with desirable properties such as
effective cross-term suppression, fine auto-term resolution and high level of noise
-0’ /o

robustness. In 1989, the Choi-Williams (CW) kernel, ®cw (8, 1) = ¢ where g is (he

kernel control parameter, was proposed as one outstanding candidate to effectively suppress
the cross terms. The main principle of the CW kernel is that the location of auto terms and
cross terms is identified. That is, the auto terms are located in the vicinity of the origin and
the cross terms away from the origin. The weighting function, which is the 1-D Fourier
transform of the kernel, of the CW kernel peaks at the origin and decays to small values as

the time and frequency variables 7 and & of the kernel increase. This means that only the




Chapter 1: Introduction

auto terms are amplified while the cross terms are suppressed in the time-frequency plane,

which means cross terms can be effectively avoided.

The CW kernel is a second-power exponential function which is sometimes difficult to
integrate, especially when being combined with high-order power series. This complexity of
the CW kernel has motivated the need to find simpler first-power kemels. However, the CW
kernel has been applied in different fields and has found many applications in speech
processing, image processing, wavelet theory, underwater signal analysis and other fields [6,
8, 9, 23-26). Among the various applications, wavelet theory has been the most useful
application of the CW kernel because of the presence of the Mexican-hat wavelet [51-67)
function,

The wavelet transform and Joint time-frequency power spectrum are closely related
since they both employ time and frequency domains to describe the power spectrum of a
non-stationary signal. The wavelet transform is a time-frequency transform which employs a
wavelet function to display the signal energy density. The main difference between the joint
time-frequency analysis and wavelet analysis is that the former employs the Fourter
transform and the latter uses the wavelet transform which employs a wavelet function.
Wavelet functions are usually finite time supportive so that fine-detailed information of the
energy spectrum cait be effectively monitored. If a new wavelet function is found, then a

new wavelet transform, using that particular wavelet function, can be generated.

In 1995, the multiform tiltable exponential (MTE) kernel was proposed by Costa and
Boudreaux-Bartels [27} which has been claimed to be more effective than the CW kernel in

suppressing cross terms. The MTE kemel is given by the following equation

2 ) 2 2 ﬁ Y
T e T LA 0
®@,7)=ewp|-7 [;0-} [5;] * Lo] [6‘0] " [7090]

(L.L1)

where % and & are constants. The CW kernel is a special case of the MTE kernel when r =

0 and & = A = 1. The multiform tiltable exponential kerne! has ten different forms whose

shapes depend on values of its control parameters &, B.v. 2 and 7.




Chapter 1: Introduction

Although the MTE kemel has been shown to be effective and diversified in terms of
kernel variety and cross-term suppression [27), it is a very complicated kernel and it is not
possible 1o generate its explicil time-frequency expressions. In addition, some of the MTE
kernel types are not Fourier-transformable which makes the MTE kernel difficult to use.

Consequently, a new kemel which is simpler and more effective than the CW and MTE

kernels is urgently needed.

A kernel is said to be effective if it meets the following criteria: it can effectively
suppress cross ferms, support the auto terms by having a fine auto-term resolution and it is
noise robust under noisy conditions or interference. These are the three criteria that are used
to judge the performance of time-frequency kernels. Even if only two of the three criteria
listed above are satisfied, the kernel can be said to be effective. In practice, all three criteria

‘& very difficult to satisfy simultaneously and there exists a trade-off among them.

Cross terms, generated because of coupling of various signals in the time-frequency
plane, are undesirable in the time-frequency power spectrum. Cross-term suppression is
crucial to prevent false interpretation of the signal characteristics as happens with the WV
kemel. The ratio of the cross-term peak magnitude to auto-term peak magnitude measures

the performance of a kernel. The lower this ratio is, the more effective the kernel.

Auto-term resolution is also important in time-frequency power spectrum analysis. The
finer the auto-term resolution is, the better a particular kernel can support auto terms. Some
kernels suppress the auto term and cross terms simultaneously since they cannot separate the
auto terms from the cross terms. Auto terms are located near the origin of the time-
frequency power spectrum and the cross terms are located further away from the origin.
Thus, increasing the auto-term resolution of a time-frequency power spectrum makes its
corresponding kemnel more effective. In fact, the effectiveness of a kerel is measured by the
peak-magnitude ratio of the cross terms to the auto terms. This is the key factor that must be

taken into account when designing new kemnels.

Noise robustness measures the ability of a time-frequency power spectrum to withstand
external interference or noisy disturbances created by the surroundings such as transmission
noise. Under noisy conditions, the time-frequency power spectrum of a particular kernel
function should retain its original shape and the amount of deformation is expected to be

minimal. The less the deformation is, the better the noise robustness of the kernel function.

[N
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Chapter 1: Introduction

Investigations on cross-term suppression |28], auto-term resolution and noise
robustness of the CW kernel have been carried cut by Stankovic and Amin [29, 30]. The
MTE kernel has been studied in detail by Cosia and Boudreaux-Bariels |27) and has been

shown that its cross-term suppression is superior compared with the CW kernel. However,

the MTE kernel has not been investigated and reporied in the literature on auto-term

resolution and noise robustness analyses. Even though the MTE kernel is the most effective :

3 —rpoar,

kernel in suppressing cross terms in the time-frequency plane, its auto-term resolution and
noise robustness ability raise unanswered questions about the kernel effectiveness. Although

it has been shown that the CW kernel is effective in meeting all three criteria and the MTE

is superior in cross-term suppression, it is still believed that a simpler and more effective I

kernel can be found.

Criteria on how to evaluate an effective kernel have been stated which enable one to
propose an effective kernel and consequently derive an effective time-frequency power
spectrum. Moreover, a signal-processing method should be efficiently calculated. One
typical and common problem of the time-frequency power spectral analysis is that its
computation is extensive because a large amount of instantaneous values of the auto-
correlation function (for the time-frequency power spectrum) are required. Thus, there is 2

need to develop new tool{s) to improve the efficiency of time-frequency analysis.

1.1 Proposal of the New Kernel

This thesis proposes a new family of kernels, called the hyperbolic family kernels, ®(6, 7) =
[sech(BO7)]" where n is the order of tie kernel family and n = 1 corresponds to the first-
order hyperbolic kernel; § is the kernel control parameter. The corresponding hyperbolic
time-frequency power spectrum is employed to study non-stationary signals. Properties of
the hyperbolic kernel such as cross-term suppression, auto-ferm resolution and noise
robustness will be investigated. In addition, a new wavelet function, hyperbolic wavelet, is
generated and its properties are studied in detail. Applications of the hyperbolic kernel and

hyperbolic wavelet are discussed in the fields of signal detection and studies of signal

characteristics.
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Chapter 1; Introduction

The first aim of the research reported in this thesis is to propose the new hyperbolic
kernel for use with time-frequency power spectrum and compare it with other well-known
kemels such as the CW and multiform tiltable exponential (MTE) which are used as
comparison benchmarks. A (rade-off among auto-term resolution, cross-term suppression

and noise-robustness of the hyperbolic kernel, CW kernel and the MTE kemne! will be
stated.

The second aim of this research is 10 show that there is a strong link between time-
frequency kernels and wavelet functions. It will be shown that if a new time-frequency
kernel is proposed, it simultaneously gives rise to a new wavelet funciion (provided that the
wavelet function satisfies admissibility constraint(s)) and vice versa. This concept extends
the time-frequency and wavelet fields which means more useful time-frequency kernels can

be generated from the corresponding wavelet functions and vice versa.

We explore the relationship between time-frequency kemels and wavelet functions in
some detail. This is an important contribution of the thesis, We begin by carefully
examining the Mexican-hat wavelet function and show that it is generated from the
Gaussian pulse function, which is essentially the CW kernel. In other words, there is a
strong relationship between time-frequency kemels and wavelet functions that has not been

reported in the literature,

The third aim is to demonstrate possible applications of the time-frequency power
spectrum, in particular, the hyperbolic time-frequency power spectrum, in areas such as
signal detection and signal analysis, especially chaotic studies. Non-stationary signal
detection has been identified as one such application of the time-frequency power spectrum
because of the outstanding work by Kumar and Carroll {31, 32]. Detection of chaotic
behaviour using the time-frequency power spectrum and wavelet transform, which has been
inspired by the work of Milligen and Farge (33-35}, is another typical application of the
time-frequency power spectrum. Since the time-frequency power spectrum shows how the
energy density of an input signal changes with time and frequency, it is possible to detect
the transition from the periodic region to the chaotic region of the signal which is useful in

determining when a non-linear signal is behaving chaotically.
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The fourth aim of the research is to investigate the effectiveness of parallel computing
in the calculation of the bispectrum and the hyperbolic time-frequency power spectrum as
two typical signal-processing methods. Parallel compuling has steadily developed over
many decades, yet it has not been extensively used due to high cost and programming
difficulties. It will be shown that the use of parallel computing is effective and parallel
programming is a powerful tool for dealing with heavy-computation tasks of the hyperbolic
time-frequency power spectrum and the bispectrum, that are common problems in the field

of higher-order statistical signal processing,

1.2  Thesis overview

The thesis is organised as follows.

Chapter 2 reviews a number of aiready-published kernels in the literature so that an
overview on time-frequency kernels is given and the proposal of the hyperbolic kernel is

appropriate.

Chapter 3 proposes the new hyperbolic kernel with its family and studies its properties
in detail. The advantages and disadvantages of this kemel family are discussed and the
kemel is compared with the CW and the MTE kemels in terms of auto-term resolution,

noise robustness and cross-tetm suppression.

Chapter 4 continues the analysis of the hyperbolic time-frequency kemnel by
investigating the new hyperbolic wavelet, which is gencrated from the hyperbolic kernel by
taking its negative second-order derivative function, The research reported in this chapter
was inspired by the fact that the popular Mexican-hat wavelet was generated from the CW
kernel. This important fact, however, has not been reported in the literature. The hyperbolic,
CW or Mexican-hat and Morlet wavelets are compared in this chapter from an engineering
point of view in terms of aliasing effects, the number of sampling points fo~ the wavelet
function, the maximum scale and scale resolution. One typical example is | “ovided to
illustrate the adv  ages and disadvantages of the hyperbolic wavelet. From a mathematical

point of view, the .iyperbolic wavelet is briefly studied in the second part of the chapter.




T ——

Chapter 1: Introduction

The first application of the hyperbolic time-frequency power spectrum is in the field of
signal detection in Chapter 5. In this chapter, performances of the hyperbolic, CW (non-
unity kernels), WV (unity kemel) and cross-correlator signal detectors are compared in
detail in terms of their signal-to-noise ratios (SNRs) and quality factors Q's. This chapter
shows that non-unity-kernel time-frequency signal detectors are better than the unity-kernel
signal detector (WV signal detector) in terms of SNR, The hyperbolic signal detector will be
shown to be better than the Choi-Williams signal detector by having a larger SNR. From this o
chapter, Chapters 3 and 4, the applicable range of 8 and trade-off ameng cross-term ]
suppression, auto-term magnitude, noise robustness, scale resolution, signal-detection ability :

against auto-term resolution are stated. &

Chapters 6 and 7 report the second application of the time-frequency power spectrum
technique for signal analysis. In these chapters, the hyperbolic wavelet power spectra of
signals such as sinusoids, :xponentially decaying sinusoids, Duffing oscillator, the ECG, 1
music and speech are calculated so that their instantaneous characteristics or any transitions

from periodicity to chaos can be detected. Chapter 6 lays a foundation for Chapter 7 by

forming a gallery of hyperbolic wavelet power spectra of various familiar signals including

sinusoidal, exponential, exponentially decaying sinusoidal, Duffing oscillator and ECG.
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Music and speech signals are separately investigated in Chapter 7. The Fourier power
spectrum and the wavelet power spectrum techniques are also compared in deiail in H
Chapters G and 7. 1

Chapter 8 reports on the measured- and effective-speedup factors that can be achieved
when a 12-processor parallel computer is used to estimate the bispectrum and time-
frequency power spectrum. It will be shown that parallel computing can significantly ‘
improve the efficiency of the bispectrum and time-frequency power spectrum calculation é

processes.

Finally, Chapter 9 presents the conclusions of this research and summarises important

contributions of the thesis. The chapter also outlines new directions for future research.
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The first application of the hyperbolic time-frequency power spectrum is in the field of
signal detection in Chapter 5. In this chapter. performances of the hyperbolic, CW (non-
unity kernels), WV (unity kernel) and cross-correlator signal detectors are compared in
detail in terms of their signal-to-noise ratios (SNRs) and quality factors Q's. This chapter
shows that non-unity-kernel time-frequency signal detectors are better than the unity-kemel
signal detector (WV signal detector) in terms of SNR. The hyperbalic signal detector will be
shown to be better than the Choi-Williams signal detector by having a larger SNR. From this
chapter, Chapters 3 and 4, the applicable range of f and trade-off among cross-term
suppression, auto-term magnitude, noise robustness, scale resolution, signal-detection ability

against auto-term resolution are stated,

Chapters 6 and 7 report the second application of ihe time-frequency power spectrum
technique for signal analysis. In these chapters, the hyperbolic wavelet power specira of
signals such as sinusoids, exponentially decaying sinusoids, Duffing oscillator, the ECG,
music and speech are calculated so that their instantaneous characteristics or any transitions
from periodicity to chaos can be detected. Chapter 6 lays a foundation for Chapter 7 by
forming a gallery of hyperbolic wavelet power spectra of various familiar signals including
sinusoidal, exponential, exponentially decaying sinusoidal, Duffing oscillﬁlor and ECG.
Music and speech signals are separately investigated in Chapter 7. The Fourier power
spectrum and the wavelet power spectrum techniques are also compared in detail in
Chapters 6 and 7.

Chapter 8 reports on the measured- and effective-speedup factors that can be achieved
when a 12-processor parallel computer is used to estimate the bispectrum and time-
frequency power spectrum. It will be shown that paralle] computing can significantly
improve the efficiency of the bispectrum and time-frequency power spectrum calculation

PIOCESSES.

Finally, Chapter 9 presents the conclusions of this research and summarises important

contributions of the thesis. The chapter also outlines new directions for future research.
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Chapter 2: REVIEW OF TIME-
FREQUENCY KERNELS

2.1 Introduction

This chapter gives details of the time-frequency kernels which have been published in the
literature. The most notable kernels are the Choi-Williams and multiform tiltable
exponential kernels which will be compared with the proposed kernel in Chapter 3. The

general expression for the time-frequency power spectrum is [8)

a3 o -0
P(r,w)=—'— g~ SO FT0r B 0, 1) R, ((t,7) dudtd@ (2.1.1)
ar? W

The chapter is mainly based on the review papers by Cohen [8] and Janse and Kaiser
[16). Some of the already-published kernels in the literature are listed along with their

distributions or time-frequency power spectra.

2.2 Revision of time-frequency kernels

2.2.1 The Wigner-Ville (WV) Unity Kernel

The WV kernel is a unity kernel which is given in Eq, (2.2.1)
o0,7) =1 2.2.1)

The corresponding Cohen distribution of this kernel is given by Eq. (2.2.2)

WeV () =—'-I e~ ™. 8¢ —u)ur'(ﬂ --T-]-x(" +£] dr (2.2.2)
23: 2 2
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The function & (¢ ~ 1) is the Fourier transform of the unity function ©(8, 7) = 1. For this
function to exist, the temporary variable # must be equated to the time variable ¢ whicls

yields the Wigner-Ville time-frequency power spectrum as a function of the time ¢ and

frequency w

Vb e o, T (LT
WCV(r.w) = 211',[ e "x (:—-5]-4 (I+-2—] dt 22,

This is the simplest time-frequency kernel in Cohen's class. The characteristics of the

e g e LR S T

WYV distribution have been extensively studied in a series of three papers by Claasz, and 9
Mecklenbrauker [13-15]. The 1-D Fourier transform of the kemel is an impulse ¢
concentrated at every time instant 7 as can be seen in Eq, (2.2.2). Hence the term &t —i) can

be ignored which gives the standard form of the distribution as given in Eq. (2.2.3) I8, 16}, i

1t should be noted that Eq. (2.2.2) is basically the form of an ambiguity function as defined
in (8, 27].

Consider first the input signal as a mono-component signal. The WV time-frequency
power spectrumn estimation of the input signal is purely based on the auto-correlation |
method. This means that if there exists a certain degree of similarity of the signal in the past :
and future (regardless the value of the signal) then the WV power spectrum will be non-zero
as explained by Cohen (7] in terms of “overlapping of the signal”. For the case of a multi-
component input signal, where the input signal comprises of a number of mono-compor+

signals, there will be interference among the power spectra of the mono-coussis¢isznt signals

e R e A P

which provide misleading information about the time-frequency power spectrum. Thus the

search for new kernels that are effective at cross-term suppression is necessary.

2.2.2 Choi-Williams (CW) Kernel i -
The CW kernel was first proposed in 1989 and is given by Eq. (2.2.4) i '

®(8,7) = exp (—621:2/0‘) (22.9)

where o is the kernel control parameter.
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The CW distribution (based on Cohen’s class) is given by Eq. (2.2.5)

| o ;

WC(rw) = ‘__. ~jtw 1
CWC(r,w) EJJ—I.[.[ = ¢

(225) 1

s o __O'(t-u) - T T . i1
(.\p[ - T]l (H —E]'I(H+E] dudt

where 7=0, 1, ..., M~ | and M is the length of the discrete input signal x(-).

The CW kernel was the first kernel proposed in the reduced interference kernel class
{48] and is well recognised for its effectiveness in suppressing cross terms in the time-

frequency plane.

2.2.3 The Generalised Choi-Williams Kernel

The generalised CW kemel is defined by Eq. (2.2.6)

0 2N M
®(B,7) = exp —{9—] [}’—] } (2.2.6)
| |

where M, N, 8, and 7, are positive integer constants.

This kernel [25] attempts to reduce the transition region of the kernel so that the cross i
terms can be more cffectively reduced when compared with the CW kemel. Derivations of 7
the weighting function and hence the general formula of the ger>«.bzea CW keinel are
complicated. For example, for N = M = 3, the weighting function is o smelex and consists of
products of Gamma and Lommel functions [44] which require further approximations. This

kernel and the CW kernel are special cases of the multiform tiltable exponential kernel [27}

which will be given in Section 2.2.6.
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2.2.4 Butterworth Kernel

The kernel is defined by Eq. (2.2.7)

| .
PO, 7)= - T - si + Where M and N are arbitrary constants. 22.7)
14— ]—

This kernel [25] and the generalised CW kernel were studied by Papandieon and
Boudreaux-Bartels. The main difficully with the GED (Generalised Exponential
Distribution) and the Butterworth kernels is that they are complicated (because of the high-

power part of the kernels) and thus it is very difficult to derive their general distributions.

2.2.5 Cone-Shaped Kernel

This kernel was studied in [39, 46] and is given by Eq. (2.2.8)

(2.2.8)

where w(1) is a function to be specified and a = 2 to ensure finite time support.

The general formula of the cone-shaped time-frequency power spectrum is given by [9]

$oo 14|t)fa .
ZAM(‘vf)’—‘I wr-e 27 ""(“"Iz')')-‘(u+'§') dudt (2.2.9)
~on t~t)fa

The cone-shaped kernel has been used to study speech and chirped signals and it was

reported that the cone-shaped kernel produce good resuits in locating speech formants and

pitch [47].
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2.2.6 Multiform Tiltable Exponential (VITE) Kernel

This kernel was proposed in 1995 by Costa and Boudreaux-Bartels [27] and has the general
form given by Eq.-(2.2.10)

PO, T)Y=expi~n 28 |2 LA +2 16 (2.2.10)
To ) %o 0

706
where ¢, f, v, A and r are kernel control parameters which are independent of the signal
parameters and subject Lo certain conditions given in [27]. The positive-valued parameters %

and & can be designed to suit specific requirements.

The kernel given in Eq. (2.2.10) is a general formula for a number of kernels including _
the WV kernel, the CW, generalised CW kernel and the tilted Gaussian kernel. A detailed i

list of various types of the MTE kernel can be found in [27], which also includes the design

i ppappper Yoy ey e S e 1

procedures of their contro! parameters. The MTE kernel was shown to be effective in

suppressing cross lerms and to vary the stop band and pass band of the kernel dépending on '- I

Pt gy S

specific values of the kernel control parameters. This allows the MTE kernel flexibility in
kernel design and a wider range of applications. However, the MTE kernel is a complicated

kemel whose closed-form general time-frequency power spectrum cannot be obtained.

2.2.7 Reduced-Interference Kernel

Jeong and Williams [48] proposed a kernel design procedure to reduce cross terms in the
power spectrum. They also compared a number of different kernels used in time-frequency
distributions. Their kernel, the reduced interference kernel, can be used to derive other

kernels, in particular, the Born-Jordan, G-Hamming, truncated-CW, truncated-sine and

triangular kernels. This kemel can be considered as one of the general kernels which is used
to suppress cross terms by employing attenuation techniques in its time-frequency plane.

Table 2.2.1 summarises some of the popular kernels that have been reported in the literature

and their corresponding time-frequency distributions.

14
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e

Table 2.2.1: Some popular kernels and their distributions (8]

higher-power exponential kernels have been successfully employed in the field of time-

Kernel Name Kernel (0, ) Distribution P{1, w) (Eg. (2.1.1))
Wigner-Ville [16] { ] et .o, 1
o e (=) x(t + -72-) dr
Margenau or 1 w5
3 cos| — —_—x(t}. e/ X :
P And Hill [16] ( 5 ] RC{JE-\(P) e X (&’)}
Kirkwood and ior ] e g
Rihaczek [16) exp [-’Lz—-] 72—;.1‘(!) e X {(w)
sinc [16] sin(abr) | ) +at
R Y7y Yo Iy, z
abr 47£a_"r e Jx -5 X+ ) dudz ;
r-at
Page (8] e ) , 2
— x(ty)e " de
olar § 7! : i
- )
Choi-Williarms 1 o :
(28) 2,2 P _[ _[ ¢
P 2 T
g %
“exp [-—E—g;l)]-x‘(u—i)-x(fﬁ-;-)dudr :
Product of Levin J‘ J‘ O_ . -jw _exp[_ a(t—u)]
and C[hloll-\z?\;l]lllams exp (__ _o__:;;j) cos (% ) \’ a2 472 t,;}
= [x'(u ~1)x(e) + x(u+7)x" (u)]dudr
= i
2.3 Conclusion |
This chapter has reviewed kemels that have been published in the literature. Second- and E %hi:
|
i

frequency signal processing, especially the CW kemel and MTE kemel. However, first-
power exponential kernels have not been effectively used. These kemels are simpler than
the CW and MTE kernels but they do not provide effective cross-term suppression ability
and noise robustness. Thus, there ought to be a new kernel, employing first-power

exponential functions, which is simpler and also more effective than the CW and MTE

kernels. This kernel will be presented in the next chapter.
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Chapter 3: THE HYPERBOLIC
KERNEL FOR TIME-FREQUENCY '
POWER SPECTRUM

This chapter proposes a new family of hyperbolic kernels @ppernuic8. 7} = [sech(B6D)",
where 1= 1, 3, 5.... The first-order hyperbolic kemnel @y 6, T) = seclh{BOT) with n = 1

is mainly considered in this thesis. Theoretical aspects of the new hyperbolic kemel are

examined and studied in detail. In the time-frequency context, the effectiveness of a kernel
is determined by three faclors: cross-term suppression, auto-term resolution and noise
robustness. The effectiveness of the new kernel will be compared with other kernels

including Choi-Williams, Wigner-Ville and multiform tiltable exponential (MTE) using two

T e P e Y e T o

different signals: complex exponential and chirp. The results of this chapter form the
foundation for the subsequent chapters in which the hyperbolic wavelet (Chapter 4),
hyperbolic signal detector (Chapter 5) and hyperbolic time-frequency wavelet power
spectrum technique (Chapters 6 and 7) will be examined.
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3.1 Introduction

A cross-term effect in the power spectrum of multi-component signals represents
interactions among the individual component signals. This effect, sometimes called the
“artifact”, is undesirable since the intera *:ons among different mono-component signals in a
multi-component signal provide no useful physical interpretation of the individual signals.
For example, the artifact causes zero-valued regions of the original spectrum to be non-zero
and complicates the interpretation of the time-frequency power specttum as will be
illustrated later. To eliminate artifacts, the modulus of cross terms in the time-frequency
power spectrum must be reduced. However, cross terms cannot be completely reduced since
a spectrum consists of both auto and cross terms {28]. One of the methods for reducing the
effects of cross terms is to use an appropriate kernel for the computation of the power
spectrum. A desirable property of a kernel is that it supports auto terms and suppresses cross
terms in the time-frequency plane by multiplying them with its weighting function. A kernel
is an arbitrary function which must satisfy a number of admissibility constraints. These

constraints were studied in detail in [14] and are:

1. Kernel function, ®(6, 7), is independent of time ¢,
2. Kemel function is independent of frequency @,
3. 6, 0)=1forall 5,
4, d0,7)=\)foraliT,
5. Kernel function must be real, i.e. O(8, 7) = ©'(-8, —1), where "*" indicales the complex
conjugate,
d
6. —d@,7) =0, V&,
dt =0
d
7. ——cD(B.*r)‘ =0, Vr.
40 0=0

Detailed interpretations of the seven constraints above are given in Appendix A,
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The main molivation in inventing new kemels is to more cffectively suppress cross
terms in the time-frequency power spectrum of multi-component signals. The Wigner-Ville
(WV) distribution or Wigner-Ville time-frequency power spectrum, which employs a unity
kernel, was first proposed by Wigner in 1932 to solve problems in quantum mechanics [8).
Since then, the WV time-frequency distribution has found many different applications
including radar, speech recognition and loudspeaker design [16]. Further details on the WV
distribution are provided in [8. 13-15, 36]. Since the WV kernel is unity, the cross terms in
the time-frequency plane are not suppressed, i.e. they are scaled down by a unity factor,
which is the main disadvantage of the WV distribution, These cross terms or “artifacts”
provide misleading information about the WV time-frequency power spectrum. It should
also be noted that the terms "time-frequency distribution”, which was coined by Cohen [8,
371, and "time-frequency power spectrum”, which was first used by Page and Rihaczek [10,
11}, are identical. These terms have been extensively used by many different authors in the
field of time-frequency signal processing, In this thesis, they will be interchangeably used

without any difference in their meanings.

Currently, there are two kernels that have been shown to be useful and effective in the
time-frequency power spectrum analysis which were introduced earlies. The first kernel was
the Choi-Williams (CW) kernel which was proposed in 1989 by Choi and Williams [28].
The second kemel was the multiform tiltable exponential (MTE) kernel which was found in
1995 by Costa and Boudreauz-Bartels [27). The CW kernel is a special case of the MTE
kernel for some special values of the kernel parameters. The main problem of the MTE
kernel is that some of the kernel types are not Fourier transformable which makes it difficult

10 use.,

A number of alternative kernels have been proposed and studied in Chapter 2 such as

c0s(0.507) by Margenau and Hill [8], sinc(07) [10], exponential kemel ¢/%/ [11], the
compound kernel derived by taking a product of the Hill and CW kemnels [38], cone-shaped
kernel [39] and the generalised CW kernel [25]. These kernels, although easy to use, are not

effective in cross-term suppression compared with the CW and MTE kernels.

18
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Chapter 3: The Hyperbolic Kernel For Time-Frequency Power Spectrum

The CW and MTE kernels are sccond- and higher-power exponential functions whose
explicit expressions when integrating with power series do not exist. Thus, "first-power"
exponential kernels are more suilable for a time-frequency distribution. The problem of 1
first-power exponential kernels is that they are simple and thus some desirable properties f;u'.',
such as effeclive cross-term suppression and noise robustness are missing. Therefore, ’
- finding the right kernel, which is easy to use and at the same time effective, is a difficult

task. To overcome this difficulty is the main aim of this chapler.

The purpose of this chapter is to propose a new family of kernels, the family of
hyperbolic functions, [sech(f01)]" where n is the kernel family order, that can be used to
suppress cross terms in the time-frequency power spectrum. These kernels provide better
results than the CW kernel for well-chosen values of the kernel control parameter 8. Since

the MTE kernel is not Fourier transformable, it is not possible to compare its cross-term

suppression and noise robustness with that of the hyperbolic and CW kemels. However,
various forms of the MTE kemel are studied by estimating their auto-term widths, then
comparisons are made among the MTE, hyperbolic and CW kernels. The hyperbolic and
CW kernels are compared in detail in terms of cross-term suppression, auto-term resolution

and noise robustness.

The chapter is organised as follows. The proposed hyperbolic kernel family is detailed
in Section 3.3. Section 3.4 compares the weighting functions of the hyperbolic and CW
kernels. Section 3.5 discusses cross-term suppression ability of the hyperbolic and CW

kernels using multi-component chirped and complex exponential signals. Sections 3.6 and

3.7 compare the effectiveness of the CW, hyperbolic and multiform tiltable exponential

(MTE) kernels in terms of their auto-term widths and noise robustness.
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3.2 Background on Cohen's Time-Frequency "

Distribution i
The general form of time-frequency power spectrum in Cohen's class for deterministic non- i :
stationary signals is defined as [8) ’ ;
Frm—— it
1 P :
Plw)= :1_3- '[ IJ e JO—jrot+ j0n | @O, 7) Rr.l (t,7) dudtdd (3.2.1)
s

where R, (r,r):x(u +5) .\"(u-—;-) is the local auto-correlation function, ®(9, 1) is the
kernel function, n=¢ +-§—. T is the lag parameter and ¢ is the running time vaciable. The

range of 1 is 0 £ 1 < 1, where 1 is the signal window size over which the power spectrum of

a non-stationary signal is estimated. From now on, the range of all integrals is from —eo to

+oo unless oltherwise stated.

The one-dimensional (1-D) Fourier transform of a function x(¢) is defined as [41]

Jon .
F(w)-—-j *(0)-e (3:22)

where F (w) is the 1-D Fourier transform of x(f) and f is a complex number , ==

The formula for a time-frequency distribution is derived by firsi obtaining its weighing
function. The weighting function [44, 45] is derived by taking the 1-D Fourier transform of
the kernel, D8, 7). This weighting function, W(f—u, 1), determines how the cross terms of a
time-frequency power spectrum ate scaled down and thus reducing their effects in relation

to the auto terms.

Eq. (3.2.1) can be rewritten in the form of the weighting function W(t —#, 7) as given

by

footoutos

P(1,0) =f-5- I I J 7200 . 0@,7)] ¢/ - R,y (1. 7) dudn® (3:23)
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In the case of the time-frequency power spectrum, the local auto-correlation function is
defined 8. 19]) as R, ;(t,7) =.\-(u +§) X (u —-;—) It should be noted that the auto terms are

located over the small-valued region of the lag parameter 7 [40] and the cross terms in the
high-valued region as the auto-correlation function is a measure of the similarity of the
signal with itself as a function of the lag parameter 7 [41]. Higher-order time-frequency
spectra have been studied in [20, 21, 42, 43] by defining a new form of the local auto-
correlation function. However, this chapter is devoted to the time-frequency power spectrum

and a hyperbolic kernel which is studied next.

3.3 The Hyperbolic sech(867) Kernel and Its
Family

A number of kernels have been reviewed in the previous chapter. In this section, we propose
and analyse a new kemel family. The main motivation for finding the hyperbolic kernel
(first-power exponential functions) is that previous kernels are high-power exponential
functions such as the CW kernel (second-power exponential function) and the MTE keme!
(second- or higher-power exponential functions). First-power exponential functions are
mathematically much simpler, easier to interpret and more effective than second- or higher-

power exponential functions. Consider the following function given by Eq. (3.3.1)

©0,7) = cosh (Br) = 2L *’2‘”” (=B6) (3.3.1)

The function can be rewritten for the general case as
@O, T;,Tao Ty} = cosh{BO(T) + T2+t T, ) (3.3.2)

The function given in Eq. (3.3.1) satisfies the seven constraints given in Section 3.1,
however, it is not bounded which results in an infinite volume under the surface of its
Fourier transform function or the weighiing function. It should be noted that the
boundedness of the weighting function of a kernel function is crucial for its cross-term
suppression. If the weighting function is not bounded, i.e. the cross terms will be very large
since they are multiplied with a large weighting-function factor, then the corresponding
kernel, even though satisfies the seven constraints, is not effective in suppressing cross

terms in the time-frequency plane of the spectrum. Thus, the additional constraint on
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Chapter 3: The Hyperbolic Kernel For Time-Frc - - Power Spectrum

boundedness on a kernel function should be included with thor = constraints already slated in
Section 3.1.

From Egs. (3.3.1) and (3.3.2), a new kernel function can be derived by taking the
reciprocal of the hyperbolic function

1

PO, 171, Tr e T )=
PRI cosh [BO(T) + T2+t 7y)

] = sech [ﬁﬂ(t, +Ty 4. +T; )]

(3.3.3)

where B is a parameter to control the exponential terms of the hyperbolic function.

The use of the control parameter 3 is important. As B tends to infinity in Eq. (3.3.3), the
kernel will approach zero. If 8 = 0, the hyperbolic distribution will become the WV
distribution. Thus, the chosen values of § should not be too large or too small. Depending
on a particular application, 8 should be accordingly chosen so that satisfactory performance
in terms of cross-term suppression, auto-term resolution and noise robustness can be
achieved. It is also important to note that the hyperbolic seeh(-) kernel, given in Eq. (3.3.3),
is not the MTE kemel given in Chapter 2, Eq. (2.2.10), even though the CW kernel is a
speciai case of the latter kernel. This makes the hyperbolic kernel unique and thus it
hopefully might provide some improvements to the CW and MTE kemels as investigations

on the hyperbolic kernel unfold tiil the end of the thesis.

As the new first-order hyperbolic kernel is proposed, it is necessary to justi®y that it
satisfies the seven constraints listed in the Introduction. First, it is clear that th- kernel
satisfies the first two constraints since it is independent of the time r and the frequency .

For the third and fourth constraints, we always have
sech(BOTY __o = sech(BOT)y_q =1 (334

since the hyperbolic kernel is an even function of 8 and 7. From Eq. (3.3.4), constraints

number 3 and 4 are satisfied by the hyperbolic first-order kernel.
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Chapter 3: The Hyperb - iic Kernel For Time-Frequency Power Spectrum

Constraint number 5 is satisfied by the net = - - - kemnel since the sechi(-) function is a

real function and thus its real and “imaginary | ws are identical. Constraint number 6 for

the kernel is examined as follows

0 lexp(B61) + exp(~Bor) I =0

From Eq. (3.3.5), it is clear that the first-order hyperbolic kernel satisfies constraint
number 0. Similarly, since the kernel is an even function of 8 and 7, constraint number 7 is
also satisfied. Thus, the first-order hyperbolic kemel satisfies the seven admissibility
constraints and it can be used as a valid time-frequency kemel for further time-frequency

signal processing analysis.

The time-frequency power spectrum using the hyperbolic sech(370) kemel can be
derived by substituting &8 1© = sech(frf) into Eq. (3.23) with

R0,y = 2lu+2) X - £) s follows

B s e ]

P(r,w)= -—-1—2 j I J. e‘jrm . (sech (ﬁﬂ‘r) . e‘jﬂ(l—u) ) x'{u _...12:]. x(;‘ 4 %]d"dfdﬂ
4n

- e G =

(33.6)

Hence, the general time-frequency power spectrum of the hyperbalic kernet is obtained

as

- . ®
P(f.w)=j e-irw‘[ Eé_;.sech{n(;ﬁ;i)].x Lu—%J'x[:&—Z—)dndr 337

The general expression of the tigher-order hyperbolic family kernel is given in Eq.

(2.3.3)

d’(ﬁ,r}:[sech(ﬁﬂr)] " np>1 and n is a positive integer. (3.3.8)
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For the hyperbolic kernel family, it is important to show that it satisfics the
admissibilily constraints as does the first-order hyperbolic kernel. First, it is clear that the
family kernel satisfies constraints number 1 and 2 since the hyperbolic family kernel is L
independent of the time ¢ and frequency . From Eq. (3.3.4), it is clear that constraints

number 3 and 4 are satisfied by the family kernel. Constraint number 5 is similarl y satisfied

AT T L T T

by the family kernel since hyperbolic functions are real and thus their real and "imaginary"

parts are identical. Constraint number 6 can be examined based on Eq. (3.3.5),

d " B8 - exp(0t) — B9 - exp(- fO1) 1=
= [sech(pory) |. =-2n- I [sech (B8 =0
ar 0" Tepepon) respiponf N

for all values of 6.

e ey b g,

(3.3.9)

From Eq. (3.3.9), constraint number 6 and likewise constraint number 7 are satisfied by
the hyperbolic kernel family. Thus, all higher-order hyperbolic kernels are also valid time-
frequency kernels and they can be employed for time-frequency signal processing analysis.
This shows the generality and diversification of the hyperbolic family kernel. This
diversification of thesc kernels has the ability to generate different wavelets as will be

shown in Chapter 4. i

There are two separate cases of even and odd values of the parameter #. Forn=2, 4, 6,
..., the weighting factors provided by these kernels are not effective 2s compared with the
case of n = 1. The main reason for this is that their weighting functions have infinite
volumes under the surface in the ((f — ), 7) plane as will be shown later. Thus, they are not i
as cross-term effective as the first-order hyperbolic and CW kernels. For n = 3, 5, 7, ...,
initial investigations show that the weighting functions of these kemels have smaller side

lobes which can suppress cross terms more effectively than the first-order hyperbolic it

i

sech(B07) kernel. Thus, the odd-set of hyperbolic kernels might find useful applications in i

signal analysis which requires miore research work in this direction. However, this thesis is
devoted to the first-order hyperbolic kernel and thus the discussion on higher-order

hyperbolic kernels is stopped here. Further studies on these kernels can be found in [127].

The weighting functions of the hyperbolic and CW kernels are compared in Section 3.4.
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3.4 Comparison of the Hyperbolic and Choi- _
Williams Weighting Functions ;

Mathematically, the hyperbolic kernel is easier to integrate than the CW kemel. The
weighting functions (the 1-D Fourier transform of the kernel with the "frequency” variable (1 1t

— 1)) of the two kernels are given by Egs. (3.4.1) and (3.4.2) respectively

H’l\‘)er fr='zi"s‘ 4 [ﬂ(r—“):l=—£-. 2 i . b
hyperbol Pr ech 207 Br exp a(t—u) +expl— 7t~ u) (34.1) ]
26 v 287

on Gt ~u)’ J
“’c“: = -_T“ - exXp |:_ %’] (3‘4'2) ;

where 8 and o are the kernel parameters of the hyperbolic and CW kernels respectively, Tis

the lag parameler used to calculate the auto-correlation function.

The 2-D contour plots of the weighting functions of the CW and hyperbolic kernels are
shown in Figure 3.4.1. This shows that the hyperbolic kernel is more "local” in the (z ~ u)-
direction than in the t-direction. The CW kernel extends wider in the (¢ — u) direction and
therefore it can be said not to be "local” in that direction [28]. Thus, the hyperbolic kernel is

more concentrated in the vicinity of the origin in the (¢t — u) direction than the CW kernel.

The peak of the hyperbolic weighting function is also Jn times larger than that of the CW

e
AR

kernel at the origin which might suggest that the hyperbolic auto terms are Jr times larger
than the CW auto termns. Detailed simutations in Sections 3.5.2 and 3.5.3 will justify this

fact.

&

The 3-D plots of the weighting functions of the CW and hyperbolic kernels, which
correspond to the contour plots displayed in Figure 3.4.1, are shown in Figure 3.4.2. The }
hyperbolic weighting function has larger non-zero values in the vicinity of the origin as seen :
in Figure 3.4.2. If the auto terms are mostly distributed along the horizontal straight line (¢ -

1) = 0 in Figure 3.4.1, then the hyperbolic kernal is most suitable in amplifying these auto

terms since it is localised in the (f — i) axis.
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Since the CW weighting function is localised in the direction of Ihe 7 axis, it is most
suitable for auto terms that are located along the (# ~ 1) axis. Overall, the CW kernel is more
localised around the origin than the hyperbolic kernel, i.e. the lobes of the CW contours
around the origin are wider than those of the hyperbolic weighling function (as seen in
Figure 3.4.1). This suggests that the CW kernel can support the auto terms more effectively
than the hyperbolic kernel, in other words, the CW kernel is expected to have a finer auto-
term resolution than that of the hyperbolic kernel. From Figure 3.4.1, it can be seen that the
hyperbolic kernel has large main lobes that extend in the direction of the T axis, i.e. its
weighting function has a fast decaying rate, which suggests that it is more effective than the
CW kernel in terms of cross-lerm suppression. The cross-term suppression ability of these
kernels will be discussed in Sections 3.5.2 and 3.5.3 using a sum of two ccmplex
exponential and chirp signals respectively, The auto-term resolution of the CW, hyperbolic
and some MTE kernels will be investigated in Section 3.6 so that a trade-off between cross-

term suppression and auto-term resolution can be established.

Contour Plot of the lyperbotic and CW Weighting Funclions,f=o0=1

5 Ll ] 1 T 1 T T
4 < R . - A
S N A

3 N

.
CW Weighting Function ‘o
\
A
‘c-
D
i
1
u
:
7
Hy Weighting Funlicn ,f .
y
’

-

o -y
-
- -~
L I L i 1 - I i
-5 5 3 4 5 ) 7 B 9 10

Figure 3.4.1: Contour plots of the CW and hyperbolic weighting functions
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Chapler 3: The Hyperbolic Kernel For Time-Frequency Power Spectrum

The hyperbolic kemet waighting funct.on, Beta = 1

Tau

‘The: CW kemel weighiing function, Sigma = 1

t-u Tau

Figure 3.4.2: 3-D) plots of the hyperbolic and CW weighting f:=ctions

The 3-D plots in Figure 3.4.2 of the weighting functions of the hyperbolic and CW
kernels validate the effects of kernel furctions on time-frequency power spectra. They show
auto-term suppostive regivis (around the vicinity of the origin in both the (¢ - &) and 7:xes)
of the kernels and therefore it is possibie to choose the application to the appropriate kemnels

with the minimum amount of ¢ross terms and maximura amount of auto terms.

The contour plot of the second-orsizr yyperbolic kernel, [sech(f69)]" for n = 2, is given
in Figure 3.4.3. The main and side lobes of the weighiing function of the {sech(B8D) kernel
are unbounded at the centre frequency suggesting that its volume under the surface is
infinite. Thus, it is aot suitable for suppressing cross icems in the time-frequency plane and
therefore the even-order of the hyperbolic family kernels will not be investigated further in
this thesi ;. Although the even-ordei hyperbolic famity kemels do not provide effeciive
cross-lerm suppression, they still satisfy the seven constraints. In the following section,

performance of the CW and hyperbolic kernels arc compared in terms of cross-term

suppression through simulation.

27

L T

A TR




Chapter 3: The Hyperbolic Kernel For Time-Frequency Power Spectrum

The Squared Hyperbolic Sech Kernel

T 1 T

a
v 33

2B Il 1 ] 1 L

Figure 3.4.3: The weighting function of the second-order hyperbolic kernel ®(8, 1) =
[sech(BOD)]* with B = 1

3.5 Cross-Term Suppression Comparison

The effectiveness of the CW and hyperbolic kernels in suppressing cross termns will be
compared with two types of multi-component signals: a sum of two complex exponential
and two chirp signals. Performance of the WV kernel is also compared with the CW and
hyperbolic kernels. One of the key factors that can be used to judge the performance of a
particular kernel is to estimate the normalised peak-magnitude ratio of the cross terms to

auto terms. The lower this ratio, the more effective cross-term suppression the kernel is.

Firstly, the WV, CW and hyperbolic time-frequency power spectra are compared so
that the disadvantages of the WV unity kernel are shown and the advantages of the CW and
hyperbolic time-frequency power spectra are demonstrated. In the rest of this chapter, the
CW, MTE and the first-order hyperbolic sech(f30r) kernels are studied and compared (where
appropriate) in terms of normalised cross-term magnitude ratio (Section 3.5.2), normalised
peak-magnitude ratio of the cross terms to auio terms fSection 3.5.3), auto-term resolution

or auto-term width (Section 3.6) and noise robustness (wcction 3.7). The normalisation, that
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has been used throughout this chapter, uniess otherwise specified, is done by dividing the i
particular values by their maximum value. For example, the normalised ratio of the cross ot

terms (0 aulo lerms is oblained by dividing all of the ratios by their maximum value, - i

3.5.1 A Typical Example g

In this section, the effects of cross terms and artifacts are demonstrated so that the !
effectiveness of the CW and hyperbolic kernels can be clearly identified and understood. L
The MTE time-frequency distribution does not have a general expression and thus it is not !

included here. Since the well-knoven CW kemel is a special case of the MTE kernel, it can

be chosen as a representative kerne! for the MTE kernel.

A simulated speech signal, shown in Figure 3.5.1, is used as an input signal to obtain
the WV, CW and hyperbolic time-frequency power spectra. A silent period [5-9] is present

since it is unavoidable in normal conversations.

Simytated Telephone Signal

T T T T LI ¥ T T T

0.8

L

0.4t

Silem period

oz} /
o.

-

L] 1 ) 1 L 1 1 1 L I

0 10 20 30 40 50 (] 70 80 g0 100

Diservic Samples

Figure 3.5.1: A simulated speech signal with a silent period
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The WV, CW and hyperbolic time-frequency power spectra are displayed in Figure
3.5.2 1o Figure 3.54 respectively, The most important thing that determines the
effectiveness of a kemnel is that during the silent period of the speech signal, its time-

frequency power spectrum must be "silent” or there is effectively no energy-smearing.

WVTFR ol a Telephona Conversation, Fast Version, N= 32

B '/
2-]. p \“ i ]
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Figure 3.5.2: The WV time-frequency power spectrum of a speech signal displayed in
Figure 3.5.1

As can be seen from Figure 3.5.2, the WV time-frequency power spectrum is non-

zeroed over the silent period (from discrete times of 32 to 64) of the conversation. There are
many humps and considerable energy smearing over the silent period. This creates
misleading information about the nature of the input signal and thus it shows that the WV

uniiy kernel is not effective in suppressing cross terms in the time-frequency plane.
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Figure 3.5.3 displays the CW time-frequency power spectrum which shows zerced
spectrum over the silent period. This is a major improvement over the WV time-frequency
power spectrum. However, there is still energy smearing over the sifent period. The

“humps” are cleaner and smaller but they should be ideally removed from the spectrum.

TFRCW of a Telephone Conversation, N = 32

14-.
124
0.8 4
0.6+
04---

0.2\”“,,.....

Diserete Tima n

Frequency Bin k

Figure 3.5.3: The CW time-frequency power spectrum with o= | of a speech signal
displayed in Figure 3.5.1. The "Frequency Bin k" axis should read "Discrete Frequency”.

Figure 3.5.4 shows the hyperbolic time-frequency power spectrum with a clear display
of the silent period. The edges are sharp and the amount of energy smearing is considerably
reduced. There are still small "humps” over the silent period but these humps are much
smaller and cleaner than those in the WV and CW time-frequency spectra. This suggests
that the hyperbolic kemel can perform better cross-term suppression than the CW and WV
kernels. The subsequent sections compare cross-term suppression ability of the hyperbolic,
CW and WV kemels by using a sum of two complex exponential and two chirp signals.
Auto-term resolution and noise robustness of the hyperbolic, CW and MTE ketnels are

examined and compared in Sections 3.6 and 3.7 respectively.

31




Chapter 3: The Hyperbolic Kernel For Time-Frequency Power Spectrum

TFRHypesbolic of a Tetephona Convarsation, N = 32, Beta = 1

1.5&.,--"‘“.”5‘
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Discrets Time n o o
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Figure 3.5.4: The hyperbolic time-frequency power spectrum with £ = 1 of a speech signal
displayed in Figure 3.5.1. The "Frequency" axis should read “Discrete Frequenc/”.

3.5.2 A Sum of Two Complex-Exponential Signals

Given the input signal
FO =Aexp[jiat +6))+ Agexplilw,t + 8,)]
where A;, A, are arbitrary real constants and &, &, are the phases of the exponential terms,

@ = 30 rad/s’ end @, = 34 rad/s. The CW time-frequency power spectrum of Ar) is given by
(28, 102]

EDcy (1, @) = 2ALS (0 — a0y + 27A3 5(0 ~ y)

(3.5.1)
+2A1A2 oy [(a'l "(92)" + 9] "92]' WE!GHTCW

where

' For comparison purposes, values of @ and &} are taken from the paper by Choi and Williams [28).
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2
WEIGHTy = |—"— - exp| -—T— [ o - 2222 (3.5.2)
() ~w,)" 4o, —w,) 2

The WV time-frequency power spectrum is given by

WV(t.0) = 274§ (w - 0, ) + 27438 (0 - 1, 553
+2A1A2 CO.\‘[((DI—QJZ)'I'I'QI "92]’WEIGH?}W -

where ‘VE!GHT]nr =],

The auto terms and cross terms of the hyperbolic time-frequency power spectrum are
identical to those of the CW (ime-frequency power spectrum (as seen in Eq. (3.5.1)).
However, the hyperbolic weighting factor is different [rom that of the CW kernel and is
given by

r T ] ']'(02
WEIGHT,,,,, = ————sech |- ————— | ———*%
hyper B, —oy) sech [2‘3(0)' o) ( 5 )] {(3.5.4)

From Eqgs. (3.5.1)-(3.5.4), it is clear that the WV kernel ddes not effectively suppress

cross terms, i.e. its weighting factor is unity as seen in Eq. (3.5.3). The weighting factors of

both the CW and hyperbolic kernels are much iess than unity and thus they are more
effective in suppressing cross lerms than the WV kernel. I<igure 3.5.5 shows the 3-D plot of
the normalised ratio of the hyperbolic weighting factor (Fiq. (3.5.4)) to that of the CW kernel

(Eq. (3.5.2)) as a function of w and B. This ratio is very smatl except for small values of f.

This means that for approximately 8 < 1.5 and for frequencies less than 5 rad/s, the
hyperbolic weighting function is much larger than that of the CW kernel and thus the former
is not effective in suppressing cross terms. However, for f > 1.5, the hyperbolic weighting
factor appears to be smaller than that of the CW kernel and therefore the former kemnel is

more effective at cross-term suppression than the latter,
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Aatic of Weigiting Factor of Hyperbtue over GW Kams!s N
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Figure 3.5.5: Normalised ratio of the hyperbolic weighting factor (Eq. (3.5.4)) to that of the
CW kernel (Eq. (3.5.2)) for a sum of two complex-exponential signals

Comparison of Hyperbolic and Choi-Williams Kermels, Beta = 1.45
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Figure 3.5.6: Comparison of the CW and hyperbolic kernels using a sum of two complex-
exponential signals
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Figure 3.5.6 displays the cross-term suppression ability of the CW and hyperbolic
kemels for 8= 1 and B = 1.45. As explained in Section 3.3 and from Figure 2.5.5, when f
increases, betier pesformance in terms of cross-term suppression is obtained since the main-
lobe magnitude of the hyperbolic weighting function is reduced. For small values of $< 1.5
(o2 0.67}, as explained earlier, the CW distribution gives better results since its main lobe
is smaller in magnitude than that of the hyperbolic distribution. Howevet, it should be noted
that /3 should not be chosen too small or too large or accordingly o should not be chosen too
large or too small (as explained in Section 3.3) since extreme values of 8 or o can make the

kernel become the WV kernel which does not have effective cross-term suppression.

The hyperbolic, CW and WV auto-term magnitude remains constant at 274,% and
27A.” as shown in Egs. (3.5.1) and (3.5.3). Since the auto terms rema’n constant, their ratios
to the corresponding cross terms are not shown. Instead, the normalised cross terms of the
CW and hyperbolic kernels (given also in Eq. (3.5.1)) for a sum of two complex-exponential

signals is shown in Figure 3.5.7.

ooqk- - - - - Hy. and CW normalised Cross Terms for a sum of exponential] - - -
o84\ - - Signals

074 - - - e e
064 1N - —+—CWNorCross| . .......
—o— HyNorCross

054 -

044 - -
034 - --
0.2+

Figure 3.5.7: Normalised CW and hyperbolic cross terms for a sum of two complex-
exponential signals. The lower this value is, the better the cross-term suppression ability of
the kernel. In this case, the hyperbolic kernel is better than the CW kernel for 2 1.45.
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From Figure 3.5.6, for B near 1.45 (o= (.7), the hyperbolic cross terms have identical
peaks with those of the CW. When B 2 1.45, the hyperbolic kernel starts outperforming the
CW kernel by having a smaller cross-term peak magnitude. The normalised cross-term
magnitude ratio, which is shown in Figure 3.5.7, decreases as 8 increases. From Figure
3.5.7, the faster decaying rate of the hyperbolic normalised cross terms cdmpared with that
of the CW cross terms suggests that the hyperbolic kernel is more effective in suppressing
cross terms than the CW kernel as predicted in Section 34, In fact, from Figure 3.5.7, the
CW normalised cross terms are always larger than those of the hyperbolic kernel for values

of B not large, i.e. typically, 8 < 50.

If B is large, the hyperbolic kernel approaches a "zeroed" kernel {which is not very
useful) and the CW keme{ becomes the WV kemel which does not provide effective cross-
term suppression. In addition, under this extreme condition of f, the normalised cross terms
of the two kernels will be getting closer in value and it is expected that they will be identical
for very large values of f8. Thus, the vaiue of 8 and & should be carefully chosen with the
specific application to avoid the above limitations of the hyperbolic and CW kernels. For a
sum of two complex exponential signals, from Figure 3.5.5 to Figure 3.5.7, the useful range
of f3 for effective cross-term suppression is 82 145 with 8 is not to be chosen very large.
Another frequently encountered non-stationary signal in practice is the chirp signal. A sum

of two chirp signals is examined in the following section.
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3.5.3 A Sum of Two Chirp Signals
Let the input signal, f{n), be a sum of two chirp signals of the form

1'2

2 42
fin= A|e.1;0(j—“;—]+ Azexp (‘—“2—'-—) where &y = 1, &2 = 3 and A, = A, = 1 (for simplicity).

For a sum of two chirp signals, the integration cannot be analytically calcolated, thus,

approximation methods (by means of simulation) using discrete techniques are used to

estimate the integrals. The general form of the time-frequency power spectrum can be

written as P(t, w) = AUTO + CROSS. The WV time-frequency power spectrum is given by

AUTOwy = ALS (0 ~ ayf) + A28 (w —atyt) (3.5.5)
and
CROSSwy = 2A]A2I exp {— jQu - 3112‘2:)1-}- cos[ 1y -, )(% +r2)] dr (3.5.6)

T

The time-frequency power spectrum given by the CW distribution is [28, 102]

o

2.4
AUTOcy = A;z J. {exp (- E”_!Z_]} (e-j(w—a,:)r) dr

T

2.4 ‘
+ A%I {exp{- ———ag ]] (e_"(w'az’)r) dr

T

(357

CROSScy = AIAZI exp [— j(a) —E'%"Ar)r]—

T

2
J. (2 |G _Ou (3.5.8)
e _— X, —
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The auto terms and cross terms of the hyperbolic time-frequency power spectrum of a

sum of two chirp signals are given by

AUTOy, = Alzj {sech (6(111'2 )} (e“j('”'“")r )d'r

- ' (3.5.9)
| +A; I {seck (ﬁazr 2 )} (e‘f{“"“? x )dz'
4
. +{Xy i l
CROSS”y = AlAz-[ exp [-—- }&U —_ ﬂ.zi-.f)r].-[eﬂﬂ]‘*ﬂz) sz . {ﬁ;" Sech(-%]}
T n
“cos kal —a)u+0)? [2+(ay - az)rz/s] du drt
(3.5.10)

From Eqs. (3.5.6), (3.5.8) and (3.5.10), the cross-term weighting factors of the WV,
CW and hyperbolic distributions are

CROSS - WEI'GH?“W =Cos [';-(Ctl —az)(‘%:- +f2)] (3.51 l)
CROSS - WEIGHT qyy

2
=1L oxp _o‘u2 l-coska,-az)(u+r)2/2+(o:,—aZ)rZ/S] (35.12)
2n 4 |

CROSS - WEIGHT,,,
(35.13)

) {2;7 '3305{ 27;;]} - [(cxl a1 [2+ "‘0-’2)1'2/8]

From Egs. (3.5.11)—-(3.5.13), it is evident that the WV kernel has a larger weighting
factor than those of the hyperbolic and CW kernels. Thus, the WV unity kernel is not
effective in cross-term suppression. The normalised ratio of the hyperbolic weighting factor

(Eq. (3.5.13)) to the CW weighting factor (Eq. (3.5.12)} is given in Figure 3.5.8.
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Ratio of Weighting Factor of Hyperbolic over CW kernels

ufau o 0

Beta

Figurc 3.5.8: Normalised ratio of the hyperboiic weighting factor to that of the CW kernel
for a sum of two chirp signals as a function of £ and f. The approximate useful range of 8

is 820.5.

Figure 3.5.8 displays the 3-D plot of the normalised ratio of the hyperbolic weighting ;
factor (Eq. (3.5.13)) to that of the CW kernel (Eq. (3.5.12)) as a function of L and B in

which the ratio is small except for large values of £ and small values of 8. This is similar to L

the case of a sum of two complex-exponential signals investigated earlier. As stated in
Section 3.5.2, as B increases, better performance of the hyperbolic kernel compared with the
CW kernel will be obtained. Increasing B will reduce the volume under the surface of the

weighting functions of the hyperbolic and CW kerneis. The faster the reduction rate of this

volume with respect to f3, the larger the peak-magnitude ratio of the auto terms over the

Cross terms.
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Normalised Ratio of Cross- to Auto-Terms for a sum of chirp signals

—+— HyNorRatio |. .
—8— CWNorRatio

=4 HyNorAulo .
—=—CWNorAuto | -

Figure 3.5.9: Normalised peak-magnitude ratio of the cross terms to auto terms of the CW
kernel (ratio of Eq. (3.5.8) to Eq. (3.5.7), CWNorRatio) and hyperbolic kernel (ratio of Eq.
(3.5.10) to Eq. (3.5.9), HyNorRatio) for a sum of two chirped signals. The lower this ratio is,
the better the cross-term suppression ability of the kernel. The normalised values of the auto
terms of the two kernels (HyNorAwto and CWNorAuzo) are also shown in the same graph.
The higher this value, the better the auto term magnitude. At 8= 2.5, the normalised values
of the auto terms of the Iwo kemels are approximately equal. The hyperbolic normalised
ratio of the cross terms to auto terms is much lower than that of the CW kernel for all values
of Bexceptat §=0.035. The useful range of fis therefore 0.3 < f<2.5.

Figure 3.5.9 displays the peak-magnitude ratio of the cross terms to auto terms and the
normalised auto terms of the two kernels as 8 varies. This ratio is more important than the
individual magnitude of the cross terms and auto terms since it reflects the effectiveness of
the kernel in supporting auto terms and suppressing cross terms. If the cross terms are small
in magnitude, say 0.1, and the auto terms under the same conditions are much smaller than
the cross terms, say 0.000001, then the kernel is not effective even though the cross terms
are small. This explains why the ratio of cross terms to auto terms of a kernel is considered
to be the most important facter and therefore it is used as a benchmark to compare the
effectiveness of different kernels. It is clear that the smaller this ratto, the more effective the
kernel. From Figure 3.5.9, theoretically, for 8 = 0.05, i.e. o< 20, (he hyperbolic kernel will
perform better than the CW kernel by having a small cross-term 1o auto-term maguitude
ratio. The worst performance occurs when the hyperbolic auto terms have lower magnitude

than those of the CW kernel which corresponds to 82 100, i.e. £0.0L.
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It should be noted that the decaying rate of the hyperbolic cross terms is faster than that
of the CW cross terms as discussed earlier in Section 3.4 which yields better cross-term
suppression as can be seen in Figure 3.5.9. This effect has also been observed by
Boudreaux-Bartels and Papandreou [25). From Figure 3.3.9, the useful range of B is
approximately 0.3 € B8 < 2.5 to ensure that the hyperbolic kernel is more effective than the
CW kernel by having better auto-term magnitude and cross-lerm suppression ability. Using
the observed range of 8 from Fignre 3.5.8 of 82 0.5, the range of 8 now becomes 0.5 < 8<
2.5. It should be noted that the lower limits of § obtained from Figure 3.5.8 (8= 0.5) and
from Figure 3.5.9 (8 2 0.3) ave in the same order of magnitude which suggests that both

methods of calculating the ratio of the kernels weighting faclors or magnitude ratio of auto

terms and cross terms are valid,

From Section 3.5.2, the useful range of B for a sum of two complex exponential signals
is f 2 1.45, Thus, to enable the hyperbolic kernel to perform better than the CW kernel,
pract:cally, 8 should be in the range of 1.45 £ §<2.5. From Figure 3.5.9, it should be noted
that for 20 2 2 2.5, the hyperbolic kernel still performs well, but with a slightly smaller
auto-term magnitude compared to that of the CW kernel. If only the cross-term suppression
ability is considered, then the larger 8 is, the better the cross-term suppression. However, if
B is very large (about 107, detiled simulation shows that the auto-term peak magnitude

becomes saturated at about 0.001 for a sum of two chirp signals.

The auto terms of the two kernels are plotted in Figure 3.5.10 for 1 =0, 0= 1 and
Figure 3.5.11 shows the cross terms of the CW and hyperbolic time-frequency power
spectra for 8 = 3.5 and ¢ = 0 to give further understanding on the effectiveness of the

hyperbolic and CW kernels.
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1.4

o Choi-Williams :
1 -.x-...Hyp‘e..rb.o.li.c..i.‘......__...-._........ Ll

osl-

Aute=Term Values

Auto Terms of the CW and Hyperbolic Kernels for Chirped Signals

! T T =T ¥

r -30 -20 -10 0 10 20 30 A0
Frequency (Hz)
Figure 3.5.10: Auto-term magnitude of the CW and hyperbolic time-frequency power

specira forr =0and 8=1

From Figure 3.5.10, it can be seen that the hyperbolic auto-term peak magnitude is less

than that of the CW kernei for 8 = 1. From Figure 3.5.11, the hyperbolic cross-term peak

magpitude is equal to that of the CW kernel for § = 3.5. From Figure 3.5.9, it was shown

that for 20 2 B2 2.5, the hyperbolic normalised auto-term peak magnitude is less than that

of the CW kernel and for B = 0.3, the magnitude ratio of cross terms to auto terms of the

hyperbolic kernel is less than that of the CW kemel. As explained earlier, the above ratio

truly reflects the effectiveness of the kernel rather than the cross-term peak magnitude.

Therefore, the useful range of B is not going to be chosen as § 2 3.5, as it was the method

used to obtain the sange of £ for the case of a sum of two complex exponential signals in

Section 3.5.2.
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035 Discrete Cross Terms of the CW and Hyperbolic Kernels

o Chol-Williams
x Hyperbolic : : : :
028 - ........... ........... oo ........... ............ .......... .

o
X
T

Cross-Term Values
=]
@
]

b
o
T

0.05F -

Figure 3.5.11: Cross-term magnitude of the CW and hyperbolic time-frequency power
spectra for 1 = 0 and f= 3.5 which suggest (hat for 82 3.5, better cross-term suppression
can be achieved by using the hyperbolic kernel rather than the CW kernel.

However, from Figure 3.5.9, at §= 3.5, the hyperbolic normalised auto terms are only
slightty less than the CW normalised auto terms (about 5 %) and thus it can be accepted as a
useful value of 8. Thus, the most useful range of B, which yields optimum performance for
the hyperbolic kernel in cross-term suppression and auto-term magnitude compared with the
CW kemel, can be expanded to 1.45 < 8 <3.5. The applicable range of § for a satisfactory
performance of effective cross-term suppression and acceptable auto-term magnitude is
therefore 0.5 < < 20. This range of B will be discussed further along with other trade-offs

in Chapters 4 and 5 so that the most applicable range of 5 can be clearly idemified.

Although the hyperbolic kernel can suppress cross terms more effectively than the CW
kernel for well-chosen values of 8, increasing 10 a very large value will saturate the auto-
term peak magnitude as diserssed earlier and as observed by Choi and Williams [28).
Making B 0o large does not provide useful information since the hyperbolic kernel
approaches a “zeroed" kernel as explained in Section 3.4. If B is too large then the peak-
magnitude ratio of the cross terms 1o auto terms decreases as shown in Figure 3.5.7 and

Figure 3.5.9. In addition, the normalised auto-term magnitude of the CW and hyperbolic

—‘—!
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kemnels also decrcases. Thus, it can be suggested that increasing § (or decreasing o)
enhances cross-lerm suppression but decreases the auto-term magnitude. A question arises
at this point ~— Are there any other trade-offis) associated with increasing B, such as auto-
term resolution and noise robusiness? — Sections 3.6 and 3.7 examine the auto-term
resolution or auto-term widih and noise robustness (as § varies) of the CW, hyperbolic and

some of the MTE kernels in some detail so that the relationships and trade-off(s) among the b

above mentioned quantities can be established.

3.6 Auto-Term Functions and Auto-Term
Widths

Sections 3.5.2 and 3.5.3 examined the effectiveness of the hyperbolic and CW kernels by
estimating the peak-magnitude ratio of their auto terms to cross terms. The effectiveness of
a kernel can also be measured based on its auto-term width or auto-term resolution which
can be estimated from its auto-term function. The auto-term function is a function of the lag
parameter 7 but with the substitution of 8 = -at, where a is the slope of the auto-term line in

the kernel time-frequency plane.

The auto-term width is defined as the frequency at which the auto-term magnitude
decreases by ¢ = 2.718 times its peak magnitude [49]. The larger the auto-term width, the
finer the auto-term resolution. Previous work by Stankovic {49] calculated the auto-term
functions and auto-term widths of a number of kernels including the Born-Jordan kernel, the
pseudo WV kernel, the optimal kernel, the CW kernel and sinc kernel [49]. This section is
devoted to compare the hyperbolic sech(f07) kernel with the CW and MTE kemels as the

kerne! control parameters B =-1- (for hyperbolic kernel), & (for CW kernel) o, r, Bure, yand

A (for MTE kemel) vary. The auto-term function is given in general by

Auto - term Frmcrion=J‘ PO,y _,e eIt (3.6.1) *

O

The auto-term functions of the CW and hyperbolic kernels are given in Egs. (3.6.2) and

(3.6.3) respectively
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R .
2.4
AUTOCW' =J. e.\‘p[—- at :|'£.’_"'Tmr dr (362)
c
oo
AUTO =.[ sech [—- aﬁrz]—e"ﬁ“ dt (3.6.3)

Eqgs. (3.6.2) and (3.6.3) cannol be further reduced to their closed forms although the
integrands are well-behaved functions. To estimate the auto-term widths of the hyperbolic
and CW kemnels, the discrete Fourier transform versions of Egs. (3.6.2) and (3.6.3) were
used based on simulations in MATLAB. The normalised auto-term widths of the hyperbolic
and CW kemnels plotted against 8 are shown in Figure 3.6.1 in which the maximum auto-
term width of each series is used as the normalisation factor. The auto-term functions and
auto-term widths of the MTE diamond case I and 2 forms along with those of the
hyperbolic and CW kernels are plotted in Figure 3.6.2 and Figure 3.6.3 respectively. Figure
3.6.4-Figure 3.6.6 show the auto-term functions as a function of the frequency @ of various
forms of the MTE kernel. Table 3.6.1 lists the auto-term widths of various types of the MTE

kernels for @ = 1 and compares them with those of the hyperbolic kernel and CW kemel.

As explained in Section 3.4, the auto terms are located around the origin and the
hyperbolic kernel supports auto terms in the direction of the 7 axis and the Choi-Williams
kernel does so in the direction of the (r — ) axis. It has also been shown that the CW kernel
is more effective than the hyperbolic kernel since it is more concentrated around the origin
whereas the hyperbolic kernel has large main lobes that extend in the direction of the T axis.
From Figure 3.6.1, the above remark can be validated. It is clear that the CW kemel is more
auto-term supporiive than the hyperbolic kernel by having a finer auto-term resolution.
Thus, it can be drawn that auto terms are mainly located in the direction of the (r — v) axis

(vertically) rather than in the direction of the 7 axis (horizontally).

From Figure 3.6.1, the hyperbolic auto-term resolution approaches that of the CW
kernel when 8 is very small (o is very large). For other values of f, the CW kernel
outperforms the hyperbolic kernel which is a trade-off of having more effective cross-term

suppression of the hyperbolic kernel at the expense of having a poorer auto-term resolution.
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Figure 3.6.1: Normalised auto-term width of the hyperbolic and CW kemels
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Figure 3.6.2: Auto-term functions and auto-term widths of the MTE diamond case I kernel, j
hyperbolic and CW kernels '
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In Table 3.6.1, the following parameter values are chosen: @ = {, Ty = Gy =1 and 8=

I:rL =1 for simplicity which will not affect the generality of comparisen. The auto-term widih

of the CW and hyperbolic kernels for other values of § is displayed in Figure 3.6.1 in which
the hyperbolic kernel has a smaller auto-term width than that of the CW kerne!. This clearly
indicates the (rade-off between cross-lerm suppression ability and aulo-term resolution.
Increasing f increases the auto-term resolution (seen in Figure 3.6.1) but also decreases the
auto-term magnitude as seen in Figure 3.5.9. It should be noted that the MTE kernel
becomes the WV kernel when A = 0. In that case, the MTE kernel can be rewritten as ™,
which is essentially the WV kernel multiplied by a constant ¢™ = 0.0432. From Table 3.6.1,
it should also be noted that the MTE kernel has 3 parameters which can generate upto (S =
120 different MTE kernels with different sets of parameters. The main aim of this work is
not going to analyse the MTE kernel in detail but to show that there is still room for
improvements even though the MTE has been shown to be an effective kernel {27]. Thus,
only some popular forms of the MTE kernel are studicd in this thesis. Further studies of the
MTE kernel can also be found in [27].

Table 3.6.1: Auto-lerm widths (in frequency samples) for @ = 1 of various forms of the MTE
kernel. The auto-term widths and auto-terrn functions of the CW, hyperbolic kernels and
MTE Diamond Case ! and Case 2 forms are given in Figure 3.6.2 and Figure 3.6.3
respectively. Figure 3.6.4 to Figure 3.6.6 display the auto-lerm functions of various forms of
the MTE kernel for a = 0.5, 1 and 2 respectively.

MTE Kernel Parameler Value Auto-terra Width fora = 1
o r 8 | v | A | MTE| Hyperbolic! CW
Parallel 0 i 1 1 1 0.5 55 7.0
Strip
Cross 0 -1 2 0.5 1 0.5 5.5 7.0
Snowflake® | 0 |r=-2] 2 0.5 1 ] 145 5.5 7.0
[ Untiited 0 0 i ) 1} 145 5.5 7.0
Elliptical .
Tilted 0 0.5 1 1 2 92 55 1.0
Elliptical
Diamond 0 | 2 0.5 1 18.5 5.5 7.0
Casel
Diamond 0.1 0 i i 1 13.0 5.5 7.0
Case 2
Hyperbolic 1 0 ] l l 10.5 3.5 7.0
Rectangular | 10" 0 1 1 1 | 65 5.5 7.0

¥ The parameiess of the hyperbolic and CW kernels are §= l/ G =t throughout ihe table.

¥ For this set of parameters, the MTE snowflake and uniilted-efliptical forms have identical auto-lerm functions.
The auto-term funciioas of the MTE snowflake forms with ¥= | and y = 10 are shown in Figure 3.6.4-Figure

3.6.6 along with other MTE forms.
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Table 3.6.1 shows the advaniages and disadvantages of various forms of the MTE

kernel over the CW and hyperbolic kernels in terms of auto-term width. From Table 3.6.1, it

can be suggested that the MTE kernel can produce better auto-term quality than the
hyperbolic and CW kernels (for 8= 1/ = 1) as larger auto-term widths are obtained from
various types of the MTE kernel. Excepl in cases of the parallel snd cross MTE kernels
where the MTE auto-term widths are 0.5 (=0, r= B = y= A = 1) compared with 5.5 and
7.0 of the hyperbolic and CW kemels respectively.

Auto-Tarm Functions ol CW, Hyperbolic and MTE Diamond Case 2
L) L 1 1

50

45 Hyperbolic Aulo Function i

40

CW Auta Function : 9
35

MTE Diamond Case 2 Form - | =

30
alpha=0.1,r=0,lamda =1
gamz =05, beta=2
25 ]

20 ;|
47.3381/2.71 = 17.4165 .

15 36.2561/2.710 = 13,9375

1
0 20.982/2.798 = 7.7196

5 L
o I 1 + ' -
5 10 15 20 25 i
Frequency Samplas from 1 lo 25 5
Figure 3.6.3: Auto-term functions and auto-term widths of the MTE diamond case 2 kernel, l

hyperbolic kemel and CW kernel

Figure 3.6.2 and Figure 3.6.3 respectively display and compare the auto-term widths of
the MTE Diamond Case 1 and Case 2 kernels with those of the hyperbolic and CW kernels
for a = 1. The auto-term widths of other remaining MTE kemeis are displayed in Figure
3.6.4 to Figure 3.6.6 for a = 0.5, 1 and 2 respectively. The shape of different types of the
MTE kernel is clearly displayed for visualisation purposes only and their auto-term widths
can be roughly estimated. All auto-term widths of various types of the MTE kernel were

given in Table 3.6.1 for @ = 1. It should be noted that the "hyperbolic™ labelled in these
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figures is the hyperbolic MTE kernel (in izalic font), not our proposed hyperbolic sech(f01)
kernel.

o Auto-Term Functions of various Forms of the MTE Kernel, a= 0.5
d T T T T T T T T T

Snowllake
20 gama =10

e Untiited Etiptical

= Thed Elpica

as o xx tbolic i
, g:n:'!ﬂe __ Aectangular

a0

25

10r

5 1 15 2 25 8 35 40 45
Frequency Samples from 1 to 50

Figure 3.6.4: Auto-term functions for a = 0.5 of the rectangular, snowflake, untilted
elliptical, tilted elliptical and hyperbolic MTE forms whose parameter values are shown in
Table 3.6.1 ~

The following conclusions on the MTE kemmnel are drawn after observing Figure 3.6.4,
Figure 3.6.5 and Figure 3.6.6. The larger the auto-term slope a in the (8, 7) plane of the
kernel function (6, 7), the finer the auto-term resolution. It also appears that the untilted
elliptical MTE kemnel has the finest auto-term resolution and is most sensitive to the auto-

term slope compared to other types of the MTE kernel, the hyperbolic and CW kernels. The

rilted elliptical MTE kernel appears to have the coarsest auto-term width. The auto-term

functions of the remaining MTE kernels (except the untilted elliptical MTE kernel) are

almost identical (and so are their auto-term widths) for a smalil value of ¢ = 0.5 as seen in
Figure 3.6.4. From Figure 3.6.5 and Figure 3.6.6, the MTE hyperbolic and MTE tilted
elliptical kernels have identical auto-term functions and hence equal auto-term widths. From

Figure 3.6.5, the auto-term functions of the snow flake MTE kernel (y= 1) and the untilted
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elliptical MTE kemel are identical when a = 1. This might suggest that at some specific
values of a, the auto-term functions of various types of the MTE kemel are identical,

yielding convergence of various forms of the MTE kemnel, which reduces its uniqueness.

© Aulo-Terr Functions of various Forms of the MTE Kernel, a=1
1 1 13 1 1 1 13 1 13

. Rectangutar
++ Tilted Eliiptical
..... Untilted Elliptical

0 and Snowilake (gama = 1) .
! xx Hyperbolic
25 i
20 i
Snowflake

i5

105

5 10 15 20 25 30 3B 40 45 50
Frequency Samples from 1 to 50

Figure 3.6.5: Auto-term functions for ¢ = 1 of various forms of the MTE kernel, except the
diamend case 1 and 2 forms

Depending upon the kemnel control parameter(s), specific requirements can be met.
The MTE kemnel is flexible, since it can generate various types of different kernels, but one
of its disadvantages is that the parallel and cross forms have coarse auto-term resolutions in
which their auto-term functions are identical triangular pulses with very large peaks.
Further, the auto-term resolutions of the MTE snowflake and untilted elliptical forms are
equal in value as seen in Table 3.6.1 for identical auto-term functions as observed earlier.
For larger values of 4, the MTE snowflake auto-term function departs from that of the MTE

untilted-elliptical kernel which suggests that these kernels can only be effectively used when

Als large.
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Auto-Term Functions of various Forms of the MTE Kernel, a= 2

25 T [] 1 I i [] 1) 1 L}
Snowliake
gama = 10
..... Untitted Etiptical
snowliake ++ Tilted Elliptical
20 gama= 1 XX Hyperboiic 7

’ __ Reclanguiar

15

10

Frequency Samples from 1t0 50

Figure 3.6.6: Auto-term functions for a = 2 of various forms of the MTE kernel except the

diamond case 1 and 2 forms

In this section, the relationship between the auto-term resolution, auto-term magnitude

and f3 has been established. The larger the control parameter f is, the higher the auto-term

resolution but the smaller the auto-term magnitude. There is also a trade-off between the

auto-term resolution and cross-term suppression ability of a kernel. The finer the auto-term

resolution, the less effective the kemel is in cross-term suppression. From this, it might be

suggested that the MTE kernel is less cross-term suppression effective compared with the

hyperbolic kernel and CW kernel since most MTE kernels have finer auto-term resolutions

than those of the former two kernels as was shown earlier,

Section 3.7 examines the noise variance of the hyperbolic and CW time-frequency

power spectra so that further conclusion(s) on the trade-off among auto-term resolution,

cross-term suppression and noise robustness can be established.
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3.7 Noise Variance Calculation

In practice, on¢ usually deals with a complex noise and real white Gaussian noise. Previous
work done by Stankovic and Ivanovic [29], Hearon and Amin (30, 50] found that given an
input complex white Gaussian noise with variance ¢, the noise variance ¢ > produced by

the input noise in time-frequency power spectrum is given by

+o

EEDY Z | Wi, - )| (3.1.1)

r=—o [1-p)=—m

where W(7, t - u) is the weighting function of the kernel function ©(8, 7).

Eq. (3.7.1) can be clearly interpreted as the volume under the surface of the squared
weighting function which is independent of the frequency w. Since it is almost impossible to
estimate the Fourier transform of the MTE kemel in closed forms, its noise variance could

not be performed in this work.

Tie normalised noise variance of the CW and hyperbolic kernels, as a function of j, is
plotted in Figure 3.7.1, from which it can be suggested that the hyperbolic kernel is more
noise robust than the CW kemnel for 8 2 3. For detailed analysis of the noise variance of
other kemels, see [29, 50]. Hence, it can be concluded that kemels that can effectively
suppress cross terms tend to be more noise robust (the hyperbolic kemel) than kernels that
are less cross-term effective but have a finer auwto-tersn vesolution (in this case, the CW and _

the MTE kernels). This important relationship agrees with what was reported in [13-15, 28].

For the case of real noise, the noise variance is given by [29, 50]

olw)= cr,,,z 2 Wie, ¢ —w0)|> + W =) W . —w)- e

T=—= (f—it}=—=

(3.7.2)

where all notations have the same meaning as in Eq. (3.7.1) and "*" indicates complex

conjugale operation.
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From Eq. (3.7.2), it can be seen that the noise variance is a function of w and gains its

maximum value when @ = 0, thus the maximum real noise variance in the time-frequency

power spectrum is given by

o2, =z.:r;;2 2 | Wi, - ) (3.2.3)

75— (I—p)=—c=

CW and Hyperbolic Noise Variance
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Figure 3.7.1: Normalised noise variance of the CW and hyperbolic kernels as a function of B

Eq. (3.7.3) is evidently a function of the volume under the squared weighting function.
Thus, it is important to note that to ensure robustness in the time-frequency power spectrum,
the volume under the squared weighting function should be minimised which means
effective cross-term suppression. Eqgs. (3.7.1) and (3.7.3) have a similar form except th=* in
the case of real noise, the noise variance is a function of the freqﬁency which peaks at w =0
r and has a magnitude of twice as large compared with that of the complex noise given by Eq.

(3.7.1).
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Figure 3.7.2 and Figure 3.7.3 display contour plots of the hyperbolic and CW time-
frequency power spectra respectively for a sum of \wo chirp signals without noise
interference. Figure 3.7.4 and Figure 3.7.5 display contour plots of the CW and hyperbolic
time-frequency power spectra respectively for a sum of two chirped signals embedded in a
3-dB Gaussian noise. The corresponding 3-D plois of the hyperbolic and CW time-
frequency power spectra without noise interference, whose contours plots are displayed in

Figure 3.7.2 and Figure 3.7.3, are given in Figure 3.7.6 and Figure 3.7.7 respectively.

TFRHy of Converged Chirped Signals, without noise
1 1

2501 ' T T
O C’
m‘ -+
3
T 150} 1
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¢ e
or 2 : |
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1 . . 1 ]
50 100 150 200 250

Discrele Frequency Index

Figure 3.7.2: Contour plot of the hyperbolic time-frequency power spectrum of two chirped
signals when nio noise is added, 8= 10. The cross-term region is approximately from
discrete frequencies 95 to 125. The x-axis and y-axis should read "Discrete Frequency” and
"Discrete Time" respectively. This convention is also applied to the remaining graphs in this
chapter.
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As expected, by comparing Figure 3.7.2 and Figure 3.7.3, it might be suggesied that the
hyperbolic time-frequency power spectrum is clearer than the CW time-frequency power
spectrum due 1o a smaller amount of cross terms in the region between the two auto-term
arms. In addition, at the intersection of the two arms, there are less interference from the
auto terms themselves than in the case of the CW time-frequency power spectrum as

displayed in Figure 3.7.3, which is another advantage of the hyperbolic kernel over the CW
kernel.

TFRCW of Chirped Signals, withOUT noise, Sigma = 0.1
250 T ' ' ' ]

200

150

100

Figure 3.7.3: Contour piot of the CW time-frequency power spectrum of two chirped signals
when no noise is added, = 0.1. The x-axis is "Discrete Frequency” and the y-axis is
“Discrete Time". The cross-term region is approximately from discrete frequencies 45 to
175.

As stated earlier, the CW time-frequency power spectrum has more cross terms in the
region between the two auto-term arms and in the directions along the arms as seen in
Figure 3.7.3 which is a disadvantage of the CW kernel compared with the hyperbolic kernel.
However, the CW kernel, due to its finer auto-term resolution, has stronger auto-term arms

in the time-frequency power spectrum as shown in Figure 3.7.3 compared with those of the
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Chapter 3; The Hyperbolic Kernel For Time-Frequency Power Spectrum

hyperbolic time-lrequency power spectrum in Figure 3.7.2. This advantage establishes an
nportant trade-off between aulo-term resolution and cross-lerm suppression of the two
kernels as discussed throughout this chapter. However, there appears one more important
parameter in this trade-off (as stated earlier in this section) which is the noise robustness,

which will be graphically shown in Figure 3.7.4 and Figure 3.7.5.

TFRCW of Noisy Chirped Signals, SNR = 3db, Sigma = 0.1
1 L 1 T

250 T

200

Z

Discrete Time

—
=]
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Discrete Frequency Bin

Figure 3.7.4: Contour plot of the CW time-frequency power spectrum of chirp signals
embedded in a 3-dB noise, 6=0.1

From Figure 3.7.4, it is seen that the CW time-frequency poswer spectrum is
significantly distorted under the effects of a 3-dB noise source. It is very hard to distinguish
the two main auto-term arms of the spectrum and therefore it might be said that the CW
time-frequency power spectrum is not robust. The cross terms appear (o remain almost 'i

unchanged under the effects of a noise source even though they are slightly degraded.
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From Figure 3.7.5, the hyperbolic time-frequency power spectrum, although is better
than the CW spectrum, still suffers from noise interference. The left auto-term arm of the
power spectrum is distorted, however, the right auto-term arm can still be recognisable as it
was not the case for the CW time-frequency power spectrum displayed in Figure 3.7.4. The
hyperbolic cross terms are also degraded {as were the CW cross terms) as compared with
the case in which no noise was added in Figure 3.7.2. However, the amount of cross terms
appears to remain unchanged. This might suggest that noise sources do not considerably
affect cross terms in time-frequency power spectra, however, the auto terms are significantly

reduced.

TFRHy of Noisy Chirped Signals, SNR = 3dB, Bela = 10
3 1 1]

1]

g

Discrete Time

100

50 100 150 200 250
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Figure 3.7.5: Contour plot of the hyperbolic time-frequency power spectrum of a sum of two
chirped signals embedded in a 3-dB noise, = 10
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Chapter 3: The IHyperbolic Kernel For Time-Frequency Power Spectrum

As can be seen in Figure 3.7.4, the CW time-frequency power spectrum, by having a
finer aulo-term resolution, considerably suffers under the effects ol noise inierference
compared 10 the hyperbolic time-frequency spectrum (Figure 3.7.5). Obviously, the latter
can withstand tougher conditions than the former. This suggests that the more effective the
kernel is at cross-lerm suppression, auto-term magnitude and noise robustness, the poorer its
auto-term resolution. This is the prime result that this chapter aims to achieve. The next few

chapters further develop this trade-off so that more understanding on time-frequency kernels
can be gained.

The 3-D mesh plots of the hyperbolic and CW time-frequency power spectra are
provided in Figure 3.7.6 and Figure 3.7.7 to give further understanding on the effects of a
noise source on the spectrum. Mesh plots of the CW and hyperbolic time-frequency powef
spectra embedded in a 3-dB noise source are given in Figure 3.7.8 and Figure 3.7.9

respectively.

TERHY of Converged Chirped, TirHyFast.m, B = 10, WithQUT noise

130] T P

160" - RPN - DI T T

1ot

120
T e

00

Dsicrete Time kdex Discrete Frequency Indax

Figure 3.7.6: 3-D plot of the hyperbolic time-frequency power spectrum of a sum of two
chiip signals, B = 10, no additional noise is added
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TFRCW ol Chirped Signa's, TirCwPerFasim, S = 0.1, wilhOUT nolse

100

. 0 0
Discrete Time Discrete Frequency Bin

Figure 3.7.7: 3-D plot of the CW time-frequency power spectrum of a sum of two chirp
signals, 7= 0.1, no additional noise is added

TFRCY of of Chirped Signals, TCwPerFastm, 5 = 0.1, 3dB Nolse
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ZGD‘-‘-‘-“.-. ¥

150 "h,...‘.“.u”.

100 .o

Discrets Time Discrete Frequency

Figure 3.7.8: Mesh plot of the Choi-Williams time-frequency power spectrum embedded in
a 3-dB noise, o= 0.1
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TFRHy of Converged Chiped Signala, ThHyFastm, B = 10, 3dB NOISE

Discrete Time 0 o

Discrete Frequency

Figure 3.7.9: Mesh plot of the hyperbolic time-frequency power spectrum embedded in a 3-
dB noise, =10

3.8 Conclusion

The hyperbolic [sech(S81)]" (with n = 1) kernel has been shown to be effective in cross-term
suppression. In particular, we have shown its effectiveness for a sum of two complex-
exponential signals, for 82 1.45 and in the case of a sum of two chirp signals, for 202 §2
0.5. The hyperbolic kernel has also been shown to be better than the CW kemel in terms of
cross-term suppression ability and lower noise variance for well-chosen values of 8= 3.

Thus, the applicable range of Sis 202 2 3.

However, the hyperbolic kernel has a staller auto-term resolution than that of the CW
kernel and most tyves of the MTE kernels, except in the case of the MTE rectangular form
where the auto-term widths of the three kernels are approxirt:'ely equal. There appears to
be a trade-off among auto-term resolution, auto-term magnitude, cross-term suppression
ability and noise robustness. The more effective the kernel is at cross-term suppression,
auto-term magnitude and noise robustness, the poorer its auto-term resolution. This is an

important trade-off that should be considered in choosing the appropriate kernel for a
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particular application. Further research needs to be carried oul to investigate other members
of the hyperblic kerel family, such as the {sech(B8D)° kernel or higher-order kamnels, for
further improvements on auto-lerm resolution and noise robustness. An additional constraint

on the boundedness of a kernel weighting function has also been stated.

The first contribution of this chapter is to propose the new hyperbolic kernel and its
family of kernels for the time-frequency power spectrum. The second contribution is that the
hyperbolic kernel has been shown to be more effective than the well-known Choi-Williams
in terms of cross-term suppression and noise robustness but less effective in terms of auto-

term resolution. It has also been shown that the hyperbolic kemel is simpler than the MTE

kernel but its auto-term resolution is poorer than that of most types of the MTE kernel. The.

third contribution is that the important trade-off among auto-term resolution against cross-
term suppression and noise robustness is established. This relationship has been reported in
the literature by a number of researchers but the effects of noise and noise robustness have
not been previously identified. The next chapter introduces the hyperbolic wavelet and

studies its properties in detail.
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Chapter 4: THE HYPERBOLIC
WAVELET FUNCTION

This chapter continues the study of the hyperbolic kernel in Chapter 3 by exploring the new
hyperbolic wavelet. The primary aim of this chapter is to further explore the differences
between the hyperbolic and Choi-Williams (CW) kernels by comparing the hyperbolic
wavelet and the Choi-Williams or Mexican-hat wavelet. More importantly, the main aim is
to show that there exists a strong link between time-frequency kernels and wavelets. This
relationship helps to expand the time-frequency and wavelet areas in the field of signal
processing. The contents of this chapler are necessary background for Chapters 6 and 7 in
which the hyperbolic wavelet power spectra of a number of stationary and non-stationary

signals are examined.

The next chapter introduces the first application of the hyperbolic kernel as a time-
frequency signal detector. The WV detector is used as a benchmark for signal detection

comparison, The CW and hyperbolic detectors are also compared in detail.
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Chapter 4: The Hyperbolic Wavelet Function

4.1 Introduction

Studies of wavelet functions and wavelet transform have been done over many years,
starting with the simplest wavelet, the Haar wavelet [51). There is a strong connection
between the wavelet transform lechnique and time-frequency power spectrum lechnique
since both of these techniques view the energy density of a non-stationary signal in both
time and frequency domains. One of the most popular wavelets is the Mexican-hat wavelet,
which is the negative second derivalive function [52] of the Gaussian pulse, ®(8, 7) =

~0% o :
e , where gis the pulse control parameter.

In 1989, the Gaussian pulse was used by Choi and Williams [28] as a time-frequency
kernel to suppress cross terms in the time-frequency power spectrum which means the
Gaussian pulse and the CW kemel are identical except that they have been used in different
areas of signal processing. In other words, iiere exists a strong link between wavelet theory
context and time-frequency power spectrum context in which the CW kernel and Mexican-
hat wavelet pair is one typical example. However, there have not been investigations on the
relationship between the Mexican-hat wavelet and the CW time-frequency kernel in the

literature,

Based on the relationship between the CW kernel and the Mexican-hat wavelet, there
ought to be a strong connection between (he hyperbolic kernel and the hyperbolic wavelet
{by taking the negative second derivative of the hyperbolic kernel) if this derivative function

satisfies an admissibility constraint which is given by

o

Ilp’(l)dt=0 @.1.1)

—r

Over the years, a large number of wavelets have been proposed and extensively
studied, starting with the Haar wavelet {51, 52] proposed in 1910. In the 1980s, a number of
excellent wavelets were proposed such as the Daubechies wavelet [52], the Meyer wavelet
[53) and the Mallat wavelet [54-59). These wavelets provide excellent features such as
orthogonality, bi-orthogonality, vanishing moments, existence of the scaling function,
continuity and discrete transform of the wavelet function, which have received considerable
attention from mathematicians. One common feature of these wavelets is that their mother

wavelets are not symmetrical and do not possess explicit expressions.
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It has been claimed that wavelets which do not have explicit expressions tend to have
more useful properties than those that have explicit expressions. For example, the
Daubechies wavelet [52, 60-62] can only be represented by recursive relations since it does
not have an explicit expression, however, it has many desirable properties including
orthogonality, FIR filtering and vanishing moments. Among the wavelets, those that do not
have explicit expressions are more common than those that do have such explicit
expressions,

Along with wavelets that are non-symmetrical and do not have e:  ** expressions,

there exist a small number of wavelets that are symmetrical and ha*. . . . .nressions,
The CW and Morlet waveleis both belong to this particular ¢l~ . - © . named
“crude” wavelet class [67). Since the hyperbolic and CW ©~ . - .. . - mial
functions and similar in shape as was shown in Chapter 3, iti .~ .~ . "¢ . 4strong
possibility that the hyperbolic wavelet might exist. In addi - . joe 7. ..c and CW
wavelels might have similar characteristics. The scaling fin, ©~ v .+ ~v_mbers of the
"crude" wavelet class do not exist which make them un-orthoge - .tich is the main

disadvantage of this class. However, these wavelets are symmetrical and have explicit

expressions which make their investigations and understanding much easier.

There are a large number of papers written about wavelets from a mathematical point
of view as listed throughout the chapter. However, this chapter is written from an
engineering point of view in which intensive mathematics is avoided. Instead, the physical
interpretation and exemplification will be discussed and explored in detail. Properties such
as orthogonality, bi-orthogonality, scaling property and regularity will not be discussed in

detail.

The purpose of this chapter is to investigate the hyperbolic wavelet function if it
satisfies the admissibility constraint imposed by Eq. (4.1.1). In a sense, this chapter
emphasises that there exists a strong relationship between time-frequency kemels and
wavelet functions. This relationship is important in terms of diversifying the wavelet and
time-frequency areas in which new kernels can be generated from corresponding wavelets
and vice versa. The hyperbolic, CW (Mexican-hat) and Morlet wavelets are compared in
terms of scale resolution, scale limit and aliasing effects. From that, particular applications
for each wavelet can be found. Some useful overview papers that summarise the

developments in the field of wavelet theory can be found in [55, 57, 59, 63, 64].
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This chapter is organised as follows. Seclion 4.2 provides the literature survey of some
popular and well-known wavelets. Section 4.3 investigates important properiies of the :

hyperbolic, Morlet and CW wavelets by calculating their fundamental parameters (Section

4.3.1) and band-peak frequency (Section 4.3.2), examining the aliasing effects (Section
4.3.3), estimating the maximum scale {Section 4.3.4) and the scale resolution in Section
4.3.5. Section 4.4 investigates other properties of the hyperbolic wavelel from a
mathematical point of view including symmetry (Section 4.4.1), onthogonality and bi-
orthogonality (Section 4.4.2), compactly supported orthogonality and bi-orthogonality
(Section 4.4.3), an arbitrary number of vanishing moments (Section 4.4.4), existence of the
scaling function ¢(r) (Section 4.4.5) and the FIR (Finite Impulse Response} filtering
property {Section 4.4.6).

4.2 The "Crude" Wavelet Group and the
Hyperbolic Wavelet Function

There are many interesting wavelets that have been proposed and studied by many
researchers and mathematicians such as Daubechies, Mallat, Meyer, Morlet whose wavelets
are named after them. These wavelels have been extensively studied and their many
interesting and useful properties can be found in {51-53, 535, 56, 58-61, 63-66]. The
Daubechies wavelet is probably the most popular wavelet due to its desirable properties
such as orthogonality, bi-orthogonality, vanishing moments and existence of the scaling
function. The Daubechies wavelet family is recursive, which means that the formula of any
wavelet cannot be explicitly expressed but as a function of another wavelet in the family.
This fact, although not convenient, provides the Daubechies wavelet family with many
useful properties {52]. Other existing wavelets such as Cauchy, Poisson, chirp can be found
in [65).

Wavelet functions have been classified into four classes [67]

1. Type 1 (orthogonal with FIR filtering): the wavelet is orthogonal and its FIR filter

exists. This class includes the Daubechies, Coiflets and Symlets wavelets.

2. Type 2 (bi-orthogonal with FIR filtering): the wavelet is bi-orthogonal and its FIR filter

exists. The Bior-Splines wavelet belongs to this class.
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3. Type 3 (orthogonal with scale function): the wavelet and its scale function exist, its FIR

filter does not exist, however. The Meyer wavelet is a typical member of this class.

4. Type 4 (FIR filler and scaling function do not exist): this class has been considered as a
"crude” wavelet class since the wavelet scaling function and its FIR filter do not exist.
However, the support range of the wavelets in this class can be identified by the time-
base interval (T in Section 4.3). The wavelets in this class are usuaily symmetrical and
have explicit expressions. As already noted, this chapter only deals with this particular

class of wavelets. The hyperbolic, CW and Maorlet wavelets belong to this class.

Unlike the Daubechies wavelet family, the Mexican-hat (CW) and Morlet wavelets
have explicit expressions and are odd symmeitrical about the origin. By having explicit
expressions, the Morlet and CW wavelets are considered as "crude" wavelets in which their
scaling functions have been shown to be non-existent [67]. The CW wavelet, given in Eq.
(4.2.1}, is found by taking the negative second derivative of the CW kemnel [28] (discussed
in Chapter 3) as given by

Wenlt) = §~exp (/o) 1+ 202o) @2.1)

The Morlet wavelet [66] is given by

[

Witarted?) = exp(jwy 1) + exp| —=—— |, where o is the wavelet control parameter.
e}

4.2.2)

The frequency representations of the CW and Morlet wavelets are give by
Flye)) = ¥ cw (@) = V7o -0? -exp (- 0w?[4), and 4.2.3)
F{ Wu;ﬁer(f)} = U ptorter (@) =70 - exp (- o0 -0, ) / 4) (4.2.4)

where the symbol F{-} denotes the Fourier transform operation of the function {-}.
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The CW and Morlet wavelets belong to Type-4 wavelet group which is the "crude"
wavelet group since they are symmetrical and have explicil expressions. It should be
stressed (hat this class of wavelets currently consists of only very few members. Thus, it is
imporiant to further explore their characteristics and potential applications.

The hyperbolic wavelel function is generated by taking negative second derivative of
the hyperbolic kernel which was proposed in Chapter 3. It is recalled that the hyperbolic
kernel is given by ®(8) = [sech(BO]". The first derivative function of the hyperbolic kernel

of order 1 is given by

% = —nf-{tanh(BO)) [sech(BO))" (4.2.5)

The second derivative function of the hyperbolic kernel of order n or the hyperbolic

wavelet function is therefore given by

2
S =B {sech(BOY (o + D {sech(BOF) 42.6)

The hyperbolic wavelet function, y,(8), can be formed by taking the negative second

derivative function given by Eq. (4.2.6) as
Y 0) = (=1)np 2 (sech(BON"{n—(n + 1)-[sech(B6))*) 4.2.7)

¥or n = 1, taking the Fourier transform of Eq. (4.2.7), the frequency domain

representation of the hyperbolic wavelet function is given by

, 7w’
FLynO) = ¥y (@) = =5 sech (nw/2p) (4.2.8)

By substituting # = 1 into Eq. (4.2.7), the first-order ﬁypcrbolic wavelet function is
obtained. The hyperbolic wavelet will be examined later by simulation in Section 4.3.1 to
determine whether it satisfies the odd-symmetry condition imposed by Eq. (4.1.1), i.e. the
area under the curve of the second derivative of the hyperbolic kernel is zero.
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In 1992, Szu (125, 126] proposed the soliton wavelel 10 study nonlinearity dynamics in

sonar, ocean waves and so on. The soliton wavelel can be given as

Yiy(0) = [sech(BOY- cos(n0) (4.2.9)

By comparing Eqgs. (4.2.7) and (4.2.9), it should be noted that the hyperbolic wavelet is
not the soliton wavelet proposed by Szu. In fact, the soliton wavelet employs one of the
members of the hyperbolic kernel, the second-order hyperbolic kernel [sech(B6))* studied in
Chapter 3. This shows that the hyperbolic kernel family can find useful applications in the
field of non-linear signal processing. From Eq. (4.2.9), it can be seen that the soliton wavelet
is symmetrical and thus it belongs to the "crude” wavelet group. However, as stated earlier,
since the soliton wavelet employs one of the hyperbolic kernels in its expression, the
investigation of this wavelet will be not be studied in this chapter but only the hyperbolic

wavelet.

Other wavelets in the same family with different scales can be obtained by using a

transiation and dilation relationship or multi-resolution relationship [51]

1 t-b
Wap()= *J—E' . "’“"’(T) (4.2.10)

where a 15 the scale index and b is ihe transiation or time index of the wavelet. The mother

wavelet correspondstoa =1 and b =0.

For each value of the scale index a, there is one unique corresponding wavelet function

which can be considered as a band-pass filter. In the frequency domain, the multi-resolution
relationship becomes [66])
Vo @) =a -, (a®)- exp (- job) “.2.11)

where ¥, (w) is the Fourier transform of the wavelet function ¥, ,(?).

In this section, explicit expressions of the CW wavelet (Egs. (4.2.1)-(4.2.3)), Morlet
wavelet (Eq. (4.2.4)) and the hyperbolic wavelet (Eqgs. (4.2.7) and (4.2.8)) have been given
in both time and frequency domains. It is important to examine some important properties of

these wavelets by estimating their numbers of sampling points, aliasing effects, the
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maximum possible scales and their scale resolutions. These properties will be studied in

detail in Section 4.3,

4.3 Properties of the Choi-Williams, Moilet
and Hyperbolic Wavelets

From an engineering point of view, to study properties of a wavelet function, it is necessary
to investigate its scale resolution, maximum scale used, number of sampling points, relation
to input sampling interval and aliasing effects. The main reason that sampling of a wavelet
function is of concern is that digital signal processing is practical and important. In addition,
the input waveform is usually a discrete set of samples from a continuous process. This
section examines the above mentioned properties in detail. Firstly, fundamental parameteré

of the CW, Morlet and hyperbolic wavelets are estimated.

4,3.1 Fundamental Parameters

The Morlet wavelet was studied and used to study the transition to turbulence in [66] by
Jordan, Miksad and Powers in which the following useful parameters are numerically

estimated

oL g2
)
The admissibility constant C,, =2?TJ- |W(a) [ dw 4.3.1)
+o0
2
.[ ) (43.2)

The first moment in time domain 7o ===

I ()" de

The time variance or time width from the mean of the wavelet function [68] is given by

Eq. (4.33).

< (4.3.3)
o, = I (r-t0)2-|:,u(r)|2dt
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The larger the widlh around the mean, the less energy-concentrated the wavelet is.
Wavelel functions that have narrow widths about their means have high energy density. The
quaantity G, given in Eq. {4.3.3), is also the standard deviation from the mean or the second-
moment of the wavelel. The smaller the frequency domain standard deviation is, the more

energy-concentrated the wavelet is in frequency domain. This feature will be useful for

COMparison purposes.

The first moment y in frequency domain is given by

At

I w-!w(w)]zn‘w
o == (4.3.4)
J () do

—_—

The frequency variance g, of the wavelet function is given by Eq. (4.3.5)

+oa
4.3.5
Oy = I @ -w9)? - () do (3.3.5)

At this point, it is necessary to check whether the first-order hyperbolic wavelet given
by Eq. (4.2.7) satisfies the admissibility constraint given by Eq. (4.1.1). By substituting Eq.
(4.2.7) into Eq. (4.1.1) we obtain

ey
Cronsraint = f ~B2 - sech (PB) {1 - 2[sech ( OV} dw (4.3.6)

—00

Simulation results showed that Ceommainr Was very small which proved that the
hyperbolic wavelet is a valid wavelet. As will be shown later in Figure 4.3.1, the hyperbolic
wavelet is a symmetrical wavelet which means it belongs to the symmetrical Type 4 "crude”

wavelet group.

Numerical values of fundamental parameters of the CW, Morlet and hyperbolic

wavelets for §= [ are given in Table 4.3.1.
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Table 4.3.1: Fundamental parameters of the CW, Morlet and hyperbolic wavelats for f=1

Wavelet Parameter values, = 1
Cy fo o 0 Ow
Choi-Williams 398 0.0 1.48 2.12 2.386
Morlet 1.352 0.0 0.4 5.0 2.806
Hyperbolic forn=1| 1.25 0.0 0.87 1.6 .23

The admissibility constant C,, represents the inverse-transform ability of a wavelet [66],
i.e. when a function is transformed using a particular wavelel then it can be successfully
recovered by using the inverse wavelet transform. As can be seen from the above table, all

three wavelets have finite admissibility constants which means that they are valid wavelets.

From Table 4.3.1, the hyperbolic wavelet has higher energy density than the CW and
Morlet wavelets as shown by having a smaller ¢, This property is useful when analysing
signals that have broad power spectra. The value of &; is used to obtain the length of the
wavelet time-base sampling interval T. Typically, T 2 45, to ensure that the mother wavelet
is completely sampled. However, to make sure that the time-base sampling interval is long
enough, graphical display of the mother wavelet is required. Fundamental parameters of the
three wavelets are re-calculated for 8= 0.5 und are given in Table 4.3.2. For various values
of the control parameters o and B, from simulation, it can be concluded that the hyperbolic
wavelet satisfies the admissibility constraint imposed by Eq. (4.1.1) by having a very small

area under the curve. The error in this case is always O(107%) or less from simulation results.

Table 4.3.2: Fundamental parameters of the CW, Morlet and hyperbolic wavelets for = 0.5
using Egs. (4.3.1)-(4.3.5)

Wavelet Parameter values, 8=0.5
Cy o O; o Ow
Choi-Williams 1.785 0.0 1.245 1.47 1.08
Morlet 1.58 0.0 0.6656 5.0 2.36
Hyperbolic 0.15 0.0 0.@2 0.817 0.213

The larger the value of o; and O the less time and frequency support the
corresponding wavelet has respectively. The smaller o, is, the less the number of
frequencies that are required to express the spectrum of an input signal. In other words, this
feature is closely related to the compression effects of a wavelet which are of practically

significant. The more effective the compression effect of the wavelet is, the less the number
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of required scales of the wavelet are for an input signal which reduces the required

T ORI

compulational time of the wavelel power spectrum and increases the efficiency of the

salculation process.

TR

Seenons 4.3.2-4.3.5 estimate the band-peak frequencies, examine the aliasing effects,

i T e T et i pm o A s it e =2

tiie maximum scales and scale resolutions as well as the total numbers of required scales of

" IR AT

the CW, Morlet and hyperbolic wa. s,

4.3.2 Dimensional Expressions and Band-Peak
Frequency B

It is asstined that a dimensional sampling interval of the input data series of length M is 9
(At and a non-dimensional sampling interval of a wavelet, whose time base interval is from

-3 T, is (Af), where the symbol "’ " indicates a dimensional quantity [66]. Let N be the

number of samples that should be takep for the wavelet function. To calculaie the non-

dimensional time base of the wavelet function, we have to map the sampling interval of the :

input wave{orm to that of the wavelet, ie. [=7, T] ¢ [0, N(Ar")). The wavelet time base is

therefore piven by

PR 4.3.7
N(Ar) @.3.7)

The expression for the non-dimensional frequency fis obtained by taking the inverse of

Eq. (4.3.7) yielding
: N(Ar) (4.3.8) |
i Ny |, - ! , - B
; =2, O =——Z ) 1
f o7 foor T

e el i

The wavelet functions of the CW, Morlet and hyperbolic in terms of the dimensional

guantities are therefore given by Egs. (4.3.9), (4.3.10) and (4.3.11) respectively

. , )
v no 2 12 o) el L {2y (439)
wa,bf(!)-a - 1 5 [aN(N,)(r )] ] exp[o, [aN(A:')(’ )
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Morlet ,r 1 -’ ZTw'ly 1 2T :
yr b ({ ).—_—..e'\'p - ('-.b' e —_— L 4.3.10
“ Ja [aN(Ar 3 )] erp[ a (aN(Ar') « b)] @10
W)

-nf? 2 . ] 2Th 2 (@.3.11)
- ! L - 4 - ¥
7 [sec :[ NG (' ~b )]] n-{n+ l)[se‘:h[aN(N') (t'-b ))

where n is the order of the hyperbolic kernel and also the hyperbolic wavelet, n = 1
corresponds to the first-order hyperbolic wavelet. The dimensional quantity &” is similarly
dezined by Egs. (4.3.7) unw) (4.3.9).

The corresponding dimensional frequency expressions of the CW. Morlet and
hyperbolic wavelets ure given by Eqgs. (4.3.12), (4.3.13) and (4.3.14)

Wy (f)=

e - expl - NAL SO0 [ Nar(ar) z,exp _o {agN@anY @3.12)
{ r T 4 T

sMorer o [ N@AOWY L1 (aNAD Y s

o= [ LT ) LA T s

hy on_mNa NEAONY (N@OY (T g N
Vaop(f)= 3 exp( p- J{ - ] sech —-————-——-—-2’3.?_ (4.3.14)

where typically, 5.0 £ w,, < 6.0 rad/s is used to ensure that the constraint imposed by Eq.

(4.1:1) is met. Throughout this chapter. 0);, = 5.0 rad/s is employed for the Morlet wavelet.

The band-peak frequency, f ;, is the frequency at which the wavelet filter has the

maximum value. To estimate the band-peak frequency, the first derivatives of the real parts
of the dimensional frequency expressions of the wavelets should be firstly obtained. Since

the real parts of the firsl-derivative functions are exponential functions, the second-
. . . - J

derivative functions are not required. For the Morlet wavelet, to maximise ufﬁj’«' “

(given by Eq. (4.3.13)), the exponent of the exponential term is made to be zero which

yields [66]
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I
Tﬁmrh-:ww _ ww
—=
MNMaﬂ'rr (Af ) “C.lftm'cf

r
S ptatortery = » where Cuorter = Npgorion TAOT ey (43.15)

The band-peak frequency of the CW wavelet is obtained by equating the first derivative
of Eq. (4.3.12) to zero which yields

/P S— - 43.16
aCeywVo  aNoyn(ar'Wo (4.3.16)

where o is the kernel control parameter of the CW kemel.

Varying o yields different values of the band-peak frequency and affects the
effectiveness in cross-term suppression [28] of the kernel as was shown in Chapter 3. For
the hyperbolic and CW wavelets, there is a point at which the frequency expressions of the
wavelets attain the minimum value, which is at the origin. For other non-zero values of the

frequency, the band-peak frequency of the hyperbolic wavelet can be similarly obtained

45 4T, _f\fny?f(ﬁf')
anCry  aNym?(ar')

oty = 4.3.17

Eq. (4.3.17) is an approximate expression of the band-peak frequency of the hyperbolic

wavelet, f;w},). The assumption that has been used to obtain it is that Cy, is a small

number since N is typically not very large compared to the wavelet time base interval Ty,
and (Ar”) is very small. It should be noted that N is the number of sampling points for the

mother wavelet which is of the same order of magnitude of 7.

4.3.3 Aliasing Effects

In this section, the number of sampling points of the hyp;rbolic. CW and Morlet wavelets

are calculated.
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Chapter 4: The Hyperbolic Wavelet Function

To avoid aliasing effects in sampling the wavelet non-dimensionally and in sampling
the input time serivs dimensionally, the Nyquist criterion must be satisfied. The Nyquist

frequency of the input time series with the sampling interval (A¢') can be given by

.
Sy RETIVGY (4.3.18)

where (Ar') is the dimensional sampling interval of the input series.

To avoid aliasing in the mother wavelet itself, the overlapping fraction « of two
adjacent wavelet filters at different scales must be prescribed so that it is less than a

threshold value. This fraction can be defined as an absolute value of the ratio of the wavelet

at the frequency ..., at which o is sufficiently small to the magnitude of the wavelet at

the band-peak [requency £, (Eq. (4.3.19)). At the time that two adjacent wavelet filiers
overlap, to recover the input signal and to avoid aliasing of the wavelet filters, the

overlapping frequency rust be at least equal to the Nyquist frequency f,{,), yie. f;‘.,,fapp =
f!:fy' The mathematical expression of the ratio o is therefore given by Eq. (4.3.19) and

graphical representation of aris seen in Figure 4.3.1.

‘F’:«::l.b‘(f ;\:y) 4.3.19)
Wa=l.b'(fp)

If & is known beforehand, then it is possible to estimate the number of sampling points

for the wavelet function. Jordan, Miksad and Powers [66] calculated the required number of
sampling points Nyor. for the Morlet wavelet for a typical case of ¢ = 2. The number of

sampling points of the Morlet wavelet function Ny, for a general value of g is given by

N portes =______2Tﬂ:;;rkr - (&)w ++f-0 lna), where @, =5.0rad/sand < 1. (4.3.20)
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The ¥Myperbolic Wavelet

0.25

0.2}

0.1

¥
0.08

Frequency Samples

Figure 4.3.1: Aliasing effect of the hyperbolic wavelet for 8= 0.5, f5and fy, are

dimensional band-peak and overlapped frequencies respectively. The ratio o (Eq. (4.3.19)),
which can be viewed as the ratio of f ; and f ;,y in the graph, should be small so that
aliasing problems can be effectively avoided.

The following calculations attempt to estimate the minimum number of sampling

points for the CW and hyperbolic wavelets. For these wavelets, the estimation process is
more difficult and the solutions are found by employing a graphical method. In using this
method, functions on the left- and right-and sides of an equation are plotted on one co-
ordinate system and the intersection(s) of the graphs of two functions are approximately the
roots of the equation. In this case, the next odd value of the number of sampling points is

chosen since only N — | points are employed to sample the wavelets as will be seen in

subsequent sections.

By using Eq. (4.3.18) for fy,, Eq. (4.3.17) for fp and Eq. (4.3.14) for the expression

of ;‘2’} w{f), we obtain the minimum oumber of sampling data points Ny, for the

hyperbolic wavelet. If Ny, 2 16, then Npyy can be approximated by




E
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h=fror

<———

2.2
aff T v

\
where @ = | for the mother wavelet and it is assumed that Ny 2 16. \
a8

4pTy,, 11.464° P
N gy =— '1'{ . (4.3.21)

If Nysy < 16, then the number of sampling points Ny, is found by the graphical method 3l
by plotting the graphs of two functions /) and f; given by the following equation ' f

(4322)

In aﬁ TH}' N 2
5 Taa2 exp( iy 23»’ )+l =In(2)+ Ny, - ﬁTH,,

Eq. (4.3.22) yields a good estimate of Ny, and is therefore used throughout this chapler.
Eq. (4.3.21) provides the approximate value of Ny, only in the case of Ny, 2 16. Sm‘nlarly,
by using Eq. (4.3.12) for the expression of ¢y ;(f"), Bq. (4.3.18) for fr, . Eq. (4.3.17)
for f; and after some mathematical manipulations, the sufficient number of sampling

points New for the CW wavelet is given by

2 2 .
0.6170 - New =) 1679 [ New (4.3.23)
Tew a |\ Tew

The approximate minimum number of sampling points for the Morlet, hyperbolic and
CW wavelets have been estirnated and are given by Egs. (4.3.20), (4.3.22) and (4.3.23)
respectively. Egs. (4.3.22) and (4.3.23) give the approximate values of Ny, and New by
employing the graphical method. Eq. (4.3.20) yields the exact expression of Nygre. The

maximum scale that can be used for each wavelet is examined in the next section.

4.3.4 Scale Limit

Scales, in wavelet theory context, are inversely proportional to frequencies in the frequency
domain. For each wavelet function, there exists the maximum number scale number that the
wavelet function can display. The larger the scale limit, the better the wavelet in terms of

representing broad-spectrum signals.
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The maximum scale number used for a wavelet is determined based on the number of
wrapped-around points or end-points of the input time series since these points do not
provide useful information. It has been observed that ihe number of end points is
proportional to the scale a [66]. That means, if the scale increases to a certain value, the
number of end points will dominate the estimated wavelet transform coefficients and not

much information can be gained about the signal if the scale increases further.

From [66), the number of wrap-around points at one end is a function of the scale a and
is approximately given by

a(N-1)
2 (4.3.29)

N wrap (a)=

To estimate the maximum scaie number of a wavelet, let us intraduce 7 as a fraction of
the number of wrap-around points Ny, and M = 27, the number of input data points into the

waveiet, then we obtain

N —l 2 Nwm
“—mi—)/ sg and = -ﬁ"— where N, is given in Eq. (4.3.24); (4.3.25)

where N is the number of sampling points of the wavelets. For the Morlet, hyperbolic and
CW wavelets, their numbers of sampling points are given by Eqs. (4.3.20), (4.3.22) and
(4.3.23) respectively.

To speed up the calculation process of the wavelet transform coefficients, M should be

a power of 2. The fraction 1 = -:'5-, which corresponds to about 30% of the wavelet transform

coefficients being overlapped by the wrap around points, was used by Jordan and Miksad
[66) for the estimation of the maximum scale number. In this chapter, we leave 7] to be
arbilréry so that the general expression of am, can be obtained. For both ends and from Eq.

(4.3.25), the upper limit of the maximum scale number am, is given by

9" .

amax S _’}"' (4.3.26)

The number of input sampling points M can be estimated from the maximum scale

number amy using Eq. (4.3.27)

o
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w o (N =1 - 1) :
M =2" g{___)_&?.-‘_ or m21443. ]n(EN——])—E"—’l"—] (4.3.27)
i '

where 1] is a ratio of the number of wrap around points at the maximum scale number to the

total number of points in the time series. a9

The next section calculates the scale resolution of the three wavelet functions.

4.3.5 Scale Resolution

The scale resolution constant o), is defined as tie distance between iwo band-peak
frequencies of two adjacent wavelet filters (66]. The finer the scale resolution @ is, the
smaller the resolution constant. The distance between two adjacent band-peak frequencies
can be determined by specifying a variable A which has the mathematical form given by Eq.
(4.3.28)

f(awy)

= '—A—'—————— 4-3423
ylaw, +wg) ( )

where w;, is the dimensional peak frequency, @, is the scale resolution constant and ¥ {w)

is the frequency expression of the wavelet function given by Eqs. (4.2.3), (4.2.4) and (4.2.8)
for the Morlet, CW and hyperbolic wavelets respectively. In most practical wavelets, the
scale resolution constant must be small to capture rapid changes in the energy density of the
input waveform, which is usually non-stationary such as turbulence and chaos [66], ECG
[69), music signal [70-72] or random processes [73]. It is impeortant to note that in Eq.
(4.3.28), the frequency quantities are non-dimensional, thus appropriate conversion of the

variables must be used to obtain the correct answer.
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As the scale «a increases, the scale resolution constant will decrease since the f reguency
of a wavelet i5 inversely proportional to the scale [51, 52). If j is the index of an

instantaneous scale that is going to be used, then we have the following relationship

’ e - wd :

Datjey = Wp(p === (4329 '
j

where a; is the j* scale of the wavelet and w;,[ j+nis the band-peak frequency at the (j + H*

scale.

The scale resolution of the Morlet wavelet can be analytically solved. For the CW and

hyperbolic wavelets, the scale resolutions are approximately obtained by eliminating the

third- and higher-power terms in the time series of In(1 — x) [45], where x is substituted as
the scale resolution @, The main reason that the third-power terms are ignored is that the
scale resolution @, is expected to be less than 1. In addition, for these two particular

wavelets, the third-power constants are quite small, thus, they can be safely ignored without

making large differences in value of the final answer, For the Marlet wavelet function, the

exact scale resolution constant @}'*™' is found to be

a)f”""' =y—0c-InA,where A<1and nA<0. (4.3.30)

The approximate scale resolution constant of the hyperbolic wavelet w:f” is given by

Eq. (4.331)

m;fy~4ﬁ—\d—lnﬂ. _ 4‘\}'1[’]/1
d = 7T =

o

(4.3.31)

. Vo s 4
The approximate scale resolution constant of the CW wavelet w$Y is given by :

oW = {_E_:‘_" = J=28-InA (4.3.32)
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Since the scale resolution is always less than unity, the applicable ranges of S and o
can be worked out using the chosen value of A. From Egs. (4.3.30)~(4.3.32), by making the
scale resolutions less than unity, the ranges of Bare obtained as 82 0.1, < 2.4 and B=4T.
Thus, the applicable range of Bis 0.1 € $< 24, ie. 102 o2 0.42, with A = 0.9, For other
values of A, different ranges of fand @ can be obtained. The closer A is to unity, the larger
the value of § and the wider the range of 8 becomes. When A = 0.99, from Egs.
(4.3.30)—(4.3.32), the ranges of Bare 82 0.01, B< 7.8 and B <49 which resuls in the final
range of B to be 0.01 £ < 7.8, i.e. 1002 o> 0.13. Ii should be noted that the closer the

value of w, to unity, the finer is the resolution of a wavelet.

From Egs. (4.3.30)-(4.3.32), il is evident that the scale resolutions w; of the three
wavelets are independent of the sampling interva) (As)’ which makes them unique. The
above equations are analytically obtained or with practical approximations. The following

table lists values of the scale resolution of the three wavelets for 8=0.5, 1,2,2.4 and A is
chosen to be 0.9,

Table 4.3.3: The approximate scale resolution constants w, of the hyperbolic wavelet (Eg.
(4.3.31)), Morlet wavelet (Eq. (4.3.30)) and CW wavelet (Eq. (4.3.32)) for 8=0.5, 1,2,2.4

and A=09
B w ;I,\'pt'rboﬁr o :fon'er o gw
0.5 0.20 0.46 0.33
1 0.41 0.33 0.46
2 0.83 0.23 0.65
24 1.0 0.21 0.71

From Table 4.3.3 and for the range of the hyperbolic control parameter 2.4 2> 2 0.1,
the hyperbolic wavelet appears (o have a finer scale resolution constant compared with those
of the Morlet and CW wavelets, When 8 = 2, the scale resolution @,/™**** = 0,83 which
approaches unity. From a kernel point of view, for 20 = B 2 0.5, the hyperbolic kernel
outperforms the CW kernel in terms of cross-term suppression and noise robustness but
being outperformed by the CW kernel with respect to auto-term resolution as was shown in
Chapter 3. This is a trade-off of achieving more effective cross-term suppression at the
expense of having a poorer auto-term resolution. In this chapter, from a wavelet point of
view. it has been shown that for 2.4 2 B8 2 0.1 and A = 0.9, the hyperbolic wavelet
outperforms the CW and Morlet wavelets by having a finer scale resolution constant &, For

other values of A, the range of § will be changed which yields different values of the scale
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resolution. In the next chapter, it will be shown that another trade-olf in signal detection

performance between the hyperbolic and CW kernels exists. The following table lists all

values of 4 from 0.9 10 0.99 (increasing in steps of 0.01) and the approximale corresponding

applicable range of 3.

Table 4.3.4: The approximate corresponding applicable range of B for A varies from 0.9 to

: 0.99 in increasing steps of 0.01
A} Minimum value of | Maximum value of | Maximum value of | Approximate
B (for the Morlet | B (for the hyperbolic | B (for the CW applicable
wavelet, wavelet, Eq. wavelet, £q. range of 8
Eq.(4.3.30)) (4.3.31)) (4.3.32))

0.9 0.10 2.4 4.7 0.1<8<24
0.91 0.09 25 5.3 0.09<8<25
0.92 0.08 2.7 6.0 0.08<pB<27
0.93 0.07 2.9 6.9 00782y
0.94 0.06 3l 8.0 0.06<8<3.1
0.95 0.05 3.5 9.7 0.05<8<35
0.96 0.64 39 12.2 0.04< <39
0.97 0.03 4.5 16.4 0.03<8<45
0.98 0.02 5.5 247 0.02<8<55
0.99 0.01 7.8 49.7 001878

From Table 4.3.4, it is clear that for values of 0.9 £ A < 0.99, the widest applicable

range of Bis 0.01 £ B £ 7.8. From Chapter 3, for effective cross-term suppression of the

hyperbolic kernel compared with the CW kemel, B needs to be in the range of 82 1.45

(Section 3.5.2 for a sum of two complex exponential signals) and 0.5 < 8 < 20 (Section 3.5.3

for a sum of two chirp signals). For larger normalised auto-term magnitude (Figure 3.5.9),

the range of B is § < 100 and to improve noise robustness, the range of Sis 82 3 (Figure

3.7.1). Thus the applicable range of 8 of 0.01 < 8< 7.8 (for the hyperbolic wavelet having a

fine scale resolution” obtained in this chapter) lies well within the above ranges of 3 for the

effectiveness of the hyperbolic kernel.

* The right-hand side of all ranges of f# in Table 4.34 is from (he maximum allowable value of 8 of the
byperbolic wavelet, This yiclds the hyperbolic scale resolution a unity value and of other kernels values of less

than uaity.

—_

et AT R TR,




Chapier 4;: The Hyperbolic Wavelet Funetion

It should be noted that, for all values of §3, the hyperbolic normalised auto-term
resolution is always less than that of the CW kernel (Figure 3.6.1) which is a trade-off as
explained earlier in Chapter 3. After taking into consideration 21l of the above factors, the
most effective range of fis 0.5 < 3 < 20 for satisfactory performance in time-frequency
power spectrum and simultaneously having a fine wavelet scale resolution. Thus, another
trade-off among cross-term suppression, aulo-term magnitude, noise robustness and scale

resolution constant against auto-lerm resolution has been established.

To obtain the total number of scales that can be utilised in a wavelet (provided that the
scale resolution constant is known), it is convenient to take the first band-peak frequency to
be the reference frequency. The subsequent band-peak frequencies arc obtained by dividing
the reference band-peak frequency by the scale that corresponds to the particular band-peak
frequency, i.e. @, ; =Wy /a; . Using this relation and Eq. (4.3.29) one can obtain [66]

- == 4.3.33
aj.,,] a; aj ( )

The minus sign on the right-hans side of Eq. (4.3.33) is employed to ensure that the
total number of scales jumx is 2 positive number (Eq. (4.3.36) without affecting the

correctness of the equalion.

The recursive relationship for the scale a is then given by

(0] W pn
= —2__ |4 =k aj, where ¥ =N (4.3.34)

The first band-peak frequencies (which corresponds to a = 1 for the mother wavelet) of
the Morlet, CW and hyperbolic wavelets can be estimated by using Eqgs. (4.3.15)-(4.3.17)

tespectively, which are given in Section 4.3.2.

From Eq. (4.3.34), it is evident that the present scales are dependent on the previous
scales. This relationship can be understood via the constant &, which is a function of the
peak frequency o the first-scale wavelet {mother wavelet) and the scale resolution constant
@, As the scale a becomes larger, the width of the corresponding wavelet becomes smaller

since it is inversely proportional to the scale a as can be seen in Eq. (4.2.10). Assumning that
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@ = 1, i.e. choosing j = 1 as the starting point, Eq. (4.3.34) can be rewritien to find the total
number of scales of a wavelet under certain conditions [66]

a;= k47, where K was defined by Eq. (4.3.34). (4.3.35)

From Eqgs. (4.3.34) and (4.3.35), one can obtain an expression for the required total
number of scales ‘o

; l max
Fra =( n(a %,K)H 4.3.36)

By using the maximum value of any, given by Eq. (4.3.26), the required total number
of scales jnax for a wavelet can be obtained. For each wavelet, the number of sampling
points of the m: aer wavelet is different and so are the band-peak frequency, scale
resofution, amx and the total number of required scales. To gain more practical insight into
the three wavelets, the following section calculates their parameters which have been
discussed in Sections 4.3.1-4.3.5. Wavelet power spectra of the English speech vowel "e"

signal are also given to demonstrate compression ability of the hyperbolic wavelet,

4.3.6 Parameter calculations and wavelet power
spectra of a speech signal

One practical example was used in [66] in which the transition to turbulence in a subsonic
wake was investigated using the Morlet wavelet transform. Major conclusions about the
behaviour of the subsonic wake were made in [66] and will not be repeated here. This
section compares the Morlet, CW and hyperbolic wavelets by calculating the following

parameters: band-peak frequency, maximum scales, aliasing, scale resolution and the total

number of scales used in this particular application. For these wavelets, the value of f= I/o

= 0.5 is used.
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The sampling interval of the inpul lime scries was (Ar) = 0.2 ms. The aliasing
parameter is chosen to be @ = 0.01 (1%) so that only 1% of the mother wavelet is aliased.
From Table 4.3.2, Figure 4.3.1 and Figure 4.3 2, the one-sided length of the hyperbolic, CW
and Morlet mother wavelets are Ty, = 10, Tew= 5 and Tyane = 3 respectively. The values of
the required number of sampling points of the mother wavelets are hence found by direct
calculation using values of T's and Eq. (4.3.20) and by the graphical method using Eqs.
(4.3.22) and (4.3.23). From Eqs. (4.3.22) and (4.3.23), the approximate number of sampling
points of the hyperbolic and CW wavelets are given as Ny = 9 and New= 13 respectively,

Morlet and Choi-Williams (Mexican Hat) Wavelets

Morlet Wjavelel

Time

Figure 4.3.2: Time base interval Tey and Ty of the CW and Morlet wavelets for o= 2,

i.e. B=0.5. Tyarta and Ty are used to estimate Ny and New by the graphical method
using Eqs. (4.3.20) and (4.3.23) respectively.
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The band-peak frequencies are given by

1125.8 863.7 1452

fuy = » fow == and fagoner == (4.3.37)

Further, the band-peak frequency can be scaled down to about 30 Hz, which allows us
to estimate the maximum scale number ., The maximum scale numbers of each wavelet

are given by
ol =37.53, aS¥ =28.8 and 2} =484, (4.3.38)

From Egs. (4.3.27) and (4.3.38), the required numbers of data points for each wavelet

with 7= 4 are given by

My, = 1024, Mcw = 2048 and My = 4096, (4.3.39)

It should be noted that the number of input sampling points could be varied by
changing the value of 1 to provide satisfactory solutions to a particular application or
problem. However, the value of 7} should be kept small so that aliasing can be effectively
avoided. For 8= 0.5, i.e. o =2, the scale resolution of each wavelet is estimated next using

Eqgs. (4.3.30)—(4.3.32) which yields

0 202066, 5" =0.3246 and W} =0.459. (4.3.40)

The dimensional peak frequencies of the Morlet, hyperbolic and CW mother wavelets
are co;,lw,‘,,‘.,) = 5.0 rads, 0)";( nyy = 0.6366 rad/s and co;,'(cw) = 1.4142 rad/s respectively.
The total number of scales that can be computed is directly proportional to the scale
resolution &, By employing Eq. (4.3.36), the total number of scales of each wavelet can be

approximately worked out as juuey = 11, fmaxew = 14 and foraxmorten = 42.

The Morlet wavelet, as expected, has the largest number of computed scales since it
has the coarsest scale resolution as calculated by Eq. (4.3.40) compared with the hyperbolic
and CW wavelets. Table 4.3.5 summarises values of important parameters and highlights
the significant values of the hyperbolic, CW and Morlet wavelets that have been estimated

in this section.
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Table 4.3.5: Summary of important parameters of the hyperboiic, CW and Morlet wavelets
for the case of 8 = Ifo = 0.5. The shuded cells indicate important parameters of the

wavelels.
| Wavelet One Wavelet | Maximum Scale Total number
sided- sampling scale resolution @,y | ©f scales fmux
length 7 | points N_ | number dymx
Morlet 3 17 SR A 42
Fot
Choi-Williams 5 13 14
Hyperbolic 10 9 11

From Table 4.3.5, the hyperbolic wavelet appears to have the finest scale resolution
compared with the Morlet and CW wavelets. However, the total number of scales of the
hyperbolic wavelet is smaller than those of the CW and Morlet wavelets which suggests that
it is not suitable for signals that have enercy distributed over a wide frequenc'y range. With
regard to this aspect, the Morl.i wavelet can be considered most suitable for wide-range
frequency signals compared to the hyperboliz and CW wavelets. The hyperbolic wavelet is
most suitable for transient signals, which do not have a wide frequency range to resolve.
Clearly, the most appropriate wavelet depends on the application and the nature of the
problem. It should be noted that the hyperbolic and C' wavelets do not have = wide scale
range and their total nurabers of scales are in the same order of magnitude. This might
suggest that the hyperbolic wavelet is more advantageous than the CW wavelet since the

former has a finer scale rzsolution,

Since the wavelet power spectrum is going to be used later in this section, it is
appropriate to define the wavelet transform aud wavelet power spzctrin at this point. The

wavelet transform WT{a, b) of a function x(#) is given by [51, 52]

E)
WT(a,b)= I x(#) w(%é] dt (4.3.41)

-by. N .
where w[i——-— is the mother wavelat, 4 and b are the scale and time indices respectively.
a

The wavelet power spectrum of x(f), &5 analogous (o its Fourier power spectrum

]

counierpart P(w)= )?(o))- )?‘(w) = }f{m)l“ ,is given as

. 4342
WPS(, @) = WT(t,0)-WT* (,0) =[¥T(, ) (4.342)
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Chapter 4: The Hyperbolic Wavelet Function

Egs. (4.3.41) and (4.3.42) form the background for plotting the Morlet, CW and
hyperbolic wavelet power spectra of the English vowel "e". The wavelet power spectrem, in
particular the hyperbolic wavelet power spectrum, will be investigated in detail in Chapter 6
in which detailed comparisons between the Fourier power spectrum and wavelet power
spectrum are made,

It should also be noted that the scale resolution constant @y is independent of the
extemal dimensional parameter (Ar)’, thus each wavelet has its own scale resolution constant
which is determined by the nature of the mother wavelet. For this particular example, the
hyperbolic wavelet has the finest scale resolution for 8= 0.5 compared with the Morlet and

CW wavelets. Depending on the application, the appropriate values of £ can be chosen to
yield the most suitable wavelet.

To demonstrate the effects of having a small total number of required scales, the
Morlet, CW and hyperbolic wavelets are used to examine a speech signal of the English
vowel "e” in which their wavelet power spectra are displayed in Figure 4.3.3 and Figure
4.3.4 respectively. It should be noted that the contour scale is not quantitatively included in

these graphs as it is not the main emphasis of this chapter.

The Morlet Wavelet Power Spectrum
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Figwse 4.3.3: Contour plots of the Morlel and CW wavelet power spectra of the English
vowel "e" speech signal
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The Hyperbolic Wavelet Power Spectrum of the Yowel "'e*

Scale Index

Time Index

Figure 4.3.4: Contour plot of the hyperbolic wavelet power spectrum of the English vowel
"e" speech signal

As canr be seen, the Morlet wavelet does not reveal energy components in the
approximate scales of 20 to 45, whereas the hyperbolic and CW wavelets do. Moreover, the
hyperbolic wavelet can display components at very high frequencies which correspond to
scales smaller than 10. The CW and hyperbolic wavelet power spectra are similar, except
the latter has a finer scale resolution by clearly showing all harmonics and sub-harmonics as
can bz seen from Figure 4.3.3 and Figure 4.3.4. This suggests that tl;e hyperbolic wavelet
power spectrum cannot be used to examine signais that have broad power spectra as stated
earlier in this chapter.

The main advantage of the hyperbolic wavelet over the Morlet and CW wavelets is that
it has a smatler total number of required scales which considerably reduces the calculation .
time. In other words, with the same number of scales of 70 (Figure 4.3.4), the wavelet
power spectrum of the vowel "e" speech signal can be successfully shown using the
hyperbolic wavelet. Whilst, the CW and Motlet wavelets cannot display the wavelet power
spectrum of the input signal within the above scale range due to having a coarser scale
resolution and a larger total number of scales. This shows that the hyperbolic wavelet power
spectrum can be successfully compressed whereas the Morlet and CW wavelet power

spectra require a larger number of scales to display the energy distribution of the speech

&
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signal. Thus, it can be suggested that the hyperbolic wavelet is more effective and efficient
than the Morlet and CW wavelets.

The effectiveness of the hyperbolic wavelet will be examined further by calculating the
hyperbolic wavelet power spectra of different signals in Chapters 6 and 7 of the thesis.
Table 4.3.6 summarises the advantages and disadvantages of the hyperbolic, Morlet and CW

wavelets.

Table 4.3.6: Detailed qualitative comparisons of the Morlet, CW and hyperbolic wavelets

Morlet Wavelet CW Wavelet Hyperbolic Wavelet
Cemmon | Easy 1o generate and analyse; symmetrical and all have explicit expressicns;
features un-orthogonal, un-biorthogonal and their scaling functions do not exist;
classified as "crude" wavelets.
Aliasing | Calculation for the The graphical method Similar to the CW
effects mother wavelet can must be employed to find | wavelet
be analytically done. | the number of sampling
points for the mother
wavelet.
Scale limit { High Low Higher than CW
A wavelet's but smaller
than Morlet wavelet's
Total High Moderate Low
number of
scales fuax
Scale Coarse Moderate, depending on Fine, depending on
resolution the control parameter ¢ values of the control
o, =1
z parameter 3= A
Suitable | Wide-frequency In between the Morlet and | Narrow-frequency
input range signals hyperbolic wavelets, - | range signals
signals including chaos, depending upon the including transients,
music and speech particular application and ECG

In this section, the hyperbolic, CW and Morlet wavelets have been studied in detail
from an engineering point of view by comparing some crucial parameters and properties.
The next section briefly investigates properties of the hyperbolic wavelet from a
mathematical point of view including symmetry, orthogonality, bi-orthogonality, existence
of scaling function, FIR and vanishing moments. It should be emphasised that these

properties have been extensively studied in the past decade by many mathematicians and

they are worth investigating.
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Chapter 4: The Ilyperbolic Wavelet Function

4 Other Properties of the Hyperbolic
Wavelet Function

dection 4.3 investigated some important properties of the hyperbolic, CW and Morlet
wavelels from an engineering point of view. These properties include aliasing effects, scale
limit, scale resolution, total number of required scales and some preliminary parameters of
the hyperbolic, CW and Morlet wavelets. In this section, other properties of the hyperbolic

wavelet are briefly investigated from a mathematical point of view in the following order

1. Explicit expression — The wavelet function is clearly defined in the time and
frequency domains with unique expressions.

2. Symmetry — The wavelet function is symmetrical about the vertical axis. This-
property is desirable for avoiding de-phasing in image processing [67). The wavelets
investigated in (his chapter, i.e. hyperbolic, CW and Morlet wavelets, are symmetrical.

3. Orthogonal and bi-orthogonal analyses -— This property and the regularity of a wavelet
allow fast algorithmic calculation of the wavelet transform.

4. Compactly supported orthogonal and bi-orthogonal.

5. Existence of the scaling function ¢(f) — This affecis the existence of the FIR filtering
property

6. Vanishing moments for ¢{f} — This property is desirable for compression purposes of
polynomial power serics up to a certain order.

7. FIR (Finite Impulse Response) filter — This filter represents the connection between

the wavelet function 1(7) and the scaling function ¢(#).

The above properties have been discussed and reported in detail in (67]. This section
mainly focuses on the hyperbolic wavelet, which has not been previously studied in the
literuture. Some desirable properties of the waveizt are studied to find out more about the
hyperbolic wavelet and to compare it with other wavelets such as CW, Morlet, Daubechies,
Mallat, Meyer and Cauchy. Although it might seem that the hyperbolic wavelet has similar
properties to those of the CW and Morlet wavelets, it is necessary to examine its properties

in some detail so that detailed conclusions on the wavelet can be drawn.
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4.4.1 Explicit Expression and Symmetry

The expression of the hyperbolic wavelet function was given in Eq. (4.2.7). It is evident that
the hyperbolic wavelet is a symmetrical function and has finite time support. The graphical
representations of the hyperbolic and CW wavelet functions are displayed in Figure 4.4.1.

Hyperholic and Choi-Williams Wavelets
I

I I 1

| _ Chol<Williams Wavelet :
I R oo e N S 1

Hyperb@lic Waveljet : : : , .
05k TR IRy SR . SO ORI s 9

Value

Samples

Figure 4.4.1; The CW (Eq. {4.2.1) and hyperbolic (Eq. (4.2.7)) wavelets for §=2,i.e. 6=
0.5

It should be emphasised that wavelet functions that have explicit expressions are
difficult to find. For example, Daubachies wavelets are excellent wavelets but their values
are only obtained by recursive numerical calculation. Some wavelets that have explicit
expressions include the Morlet, Haar (Daubachies order 1} and Mexican-hat or CW. The
hyperbolic wavelet function is a continuous and symmetrical function with no singularity in

the time domain as seen in Figure 4.4.1.
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4.4.2 Orthogonal and Bi-Orthogonal Analyses

Let us define fi(r) as a set of functions or vectors that span the space F. The set fi(?) is

orthogonal if every (unction or vector within the set is independent of each other, i.e. each

et !ﬂr}ﬁ“_ L

function or vector is unigue and no relationship can be established between them {51].
Consider a wavelet function as a set of wavelet functions. If the wavelet is orthogonal, the
following condition must be met {51, 52)

+oa

J".Vm )y (Ndr =0, forallm=1 4.4.1)

—C

Eq. (4.4.1) represents the area under the curve of the inner product of two wavelet
functions .. () and v (). If this area is zero. the wavelet is said to be orthogonal. For the

hyperbolic wavelet, we have to examine the following inner product of two hyperbolic
wavelet functions

I Jrr.*:"[sech(m‘r)]{--[.wz.c.‘z(ivari'r)]:"-f-[h:mh(m‘l:)]2 (44.2)

s Flsech(D}-{-[sech(D) +[tanh(lD)?} dt
forall m# 1

To examine the final value of Eq. (44.2), firstly, some familiar values of m and [ are
used. If Eq. (4.4.2) appears to satisfy the condition of orthogonality stated in Eq. (44.1),

then the general case of m and ! will be examined. For simplicity, by puttingm=1and [ =2,

we obtain

I isech(D]-{~[sech(D)+|tani(D)])’) ' (44.3)

2% [sech(Zf)]—{—[sech(2‘r)]2+[Ianh(2'r)]2} ar

The inner product of Eq. (4.4.3) is plotted against 7in Figure 44.2. It is evident that the

area under the curve is non-zers (the area under the curve is = 0.48 units) form =1 and / =

2, which means the hyperbolic wavelet is not orthogonal.
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Since only symmetrical wavelets are considered in this thesis, bi-orthogonality
characteristics are not important for these wavelcts. However, bi-orthogonality is still brielly
discussed for compleleness.

If a wavelet (expansion set), (), is not orthogonal within itself, then if there exists a
dual set y; (1), which is orthogonal 1o the expansion set ,(f), then the wavelet is said 1o be

bi-orthogonal since it requires two sets of vectors or functions to make it orthogonal,

Mathematicaily, the definition of bi-orthogonality can be given by [51]

oo

Jlu)'m (r)- Wf(f)dr =6(ﬂ! =1} 4.4.4)

i d

It is evident from Eq. (4.4.4) that the hyperbolic wavelet is not bi-orthogonal since it

has a finite area under the curve as seen in Figure 4.4.2.

Orthogonality Funclion of the Hyperbolic Wavelket
1 T

Hyperbolic Orihogonality Function

-0.2
Tau

Ay

Figure 4.4.2: ' he orthogonal inner product function of the hyperbolic wavelet _(Eq. 44. l_),.
Th~ area under the curve is evidently not zero which means that the hyperbolic wavelet is
not orthogonal or bi-orthogonal.
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———

443 Compactly Supported Orthogonal and Bi-
Orthogonal Analyses

If the scaling function of a wavelet does not exist, the wavelet is said to be un-orthogonal
since it requires both the wavelet and scaling functions to be orthogonal or bi-orthogonal.
From Section 4.4.2, it has been shown that the hyperbolic wavelet is not orthogonal and bi-
orthogonal, thus it is not compactly supported orthogonal and bi-orthogonal. These
properties are closely related (0 orthogonality and bi-orthogonality investigated in Section

4.4.2 and they were briefly mentioned here for completeness.

4.4.4 An Arbitrary Number of Vanishing Moments

In the coniext of wavelet analysis, the moment function of order a, M,, is defined by Eq.
(4.4.5)

M,= J 17y (n) dr (4.4.5)

where a is in the range of 0 to (@ — 1) and gy is the maximum moment number.

If M, =0 for @ Z @my. then the moment function is said to vanish at and beyond the
order amx. A wavelet that has vanishing moments of order amy can suppress polynomial
signals of the same order {67), i.e. polynomial signals of order amy will have zero wavelet

coefficients as seen in Eq. (4.4.5).

4.4.5 Existence of the Scaling Function ¢(7) -

The exist‘ence of the scaling function ¢(z) is sometime not easy to determine. The scaling
and translating relationship of the wavelet function y(z) and scaling function ¢(#) can be
stated as [51]

if2 j i j (4.4.6)
i) =272/ e = k) and @) = 277271 - k)

where k and j are the time translation and scale indices respectively.
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The scaling function @(f) and the wavelet function (1) both can be recursively

expanded. This relationship is called the dilation or multi-resolution relationship

N-l N-|

o) = Eh(n)—ﬁ (2t — ) and y(r) = zg(n)-JE w2t -n) 4.4.7)

n=0 n=0
where N is the order of the FIR filter ().

The scaling function is related to the wavelet function w(r) by the following relation
(51}

N-1
W= Y )29 -m) (448)

n=0

where hy(n) is a set of finite coefficients and can be related to h(n) by

() = 1R ~n) (4.4.9)

where i1(n) is the scaling filter of the scaling function ¢(#).

If the wavelet function is known beforehand such as in the case of the hyperbolic
wavelet function, then the expression for the FIR filter i(n) can be found. From Eq. (4.4.7),
the first dilation equation for the scaling function @{f} may or may not exist which
determines the status of (7). If the dilation equation does not exist (which is the case for the
Morlet and CW wavelets), the FIR filter Zi(n) cannot be found.

The existence of the scaling function ¢(f) is determined by the existence of its scaling
filter i(n). If h(n) does not exist, the scaling function ¢{#) cannot recursively expand itself
(Eqgs. (4.4.6) and (4.4.7)) through the given space.

4.4.6 FIR Filter

The finite impulse response (FIR) filter is the link between the wavelet function y(#) and its
scaling function @(2). If the scaling function does not exist, then the FIR filter will not exist

as concluded in Section 4.4.5.
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4.5 Conclusion

The new hyperbolic wavelet has been generated from the new time-frequency hyperbolic
kemel, proposed in Chapter 3. The important link between time-frequency kernels and
wavelets has been established. The hyperbolic, Choi-Williams and Morlet wavelets have
been compared in terms of aliasing effects, scale resolution, (otal number of required scales
and of maximum required-scale number. It can be concluded that the first-order hyperbolic
wavelet is not orthogonal, nor bi-orthogonal, its scaling function does not exist and therefore
no FIR filter can be generated for this wavelet. Instead, the hyperbolic wavelet is
symmetrical about the vertical axis and can be identified with a unique explicit expression.
The hyperbolic wavelet is a member of the "crude” wavelet group, which includes the
Morlet and CW wavelets. It has been shown that the hyperbolic wavelet has a finer scale
resolution but it has a smaller total number of required scales compared to those of the CW
and Morlet wavelets. In other words, by having a smaller scale limit, the hyperbolic wavelet

power spectrum can be calculated more efficiently than the CW and Morlet wavelets.

The first contribution of this chapter is 1o propose the new hyperbolic wavelet function
which is generated from the hyperbolic kernel, proposed in the previous chapter. Detailed
comparisons of the hyperbolic wavelet with the CW and Morlet wavelets are carried out in
this chapter from an engineering point of view. The second contribution of the chapter is to
establish an important link between wavelet functions and time-frequency kernels so that a

new wavelet can be found if a new kernel exists.

The next chapter presents the first application of time-frequency power spectrum
analysis in detecting non-stationary signals using the hyperbolic, CW, Wigner-Ville and
cross-correlator signal detectors. Chapters 6 and 7 calculate the hyperbolic wavelet power

spectra of signals including ECG, music and speech.
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Chapter 5: SIGNAL DETECTION
USING NON-UNITY KERNEL TIME-
FREQUENCY DISTRIBUTIONS

This chapter examines the first application of the hyperbolic kemel in detecting non-

stationary and stationary signals in the presence of noise. Moyal's formula for non-unity

kernel time-frequency detectors is derived based on Moyal's formula for a unity-kernel time-

frequency signal detector (Wigner-Ville detector). Performance comparisons of the
hyperbolic detector, Choi-Williams detector, general non-unity kernel detector, Wigner-
Ville detector and matched-filter correlator detector in terms of signal-to-noise ratio (SNR)
are made. The second application of the hyperbolic wavelet function on wavelet power

spectrum analysis is presented in Chapter 6 and Chapter 7.
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~ Williams kernel signal detector (CWWD) can be considered as the most useful and popular

5.1 Introduction

Detection of known and deterministic signals in the presence of noise is a classical problem
which has been extensively studied in the literature [68, 74]. To solve this problem, the 'V
signals and the additive noise are assumed to be stationary or wide-sense stationary and
zero-mean processes. A maiched-filter technique has been shown to be the most effective

method 1o deiect signals in this case. However, if the signal is non-stationary, i.e. its power

s, DL o

spectrum varies with time, or the signal is not known beforehand, then the classical method

using the matched-filter technique is limited. Non-stationary signals include radar, sonar,
chaotic, ECG, speech, music signals and image matching [75, 76]. For such non-stationary
signals, time-frequency signal detectors need to be employed so that the signals can be -

effectively detected.

One typical time-frequency detector is the Wigner-Ville unity-kernel detector which
can be used to solve a simple binary detection problem [31, 32). There are two reasons that
the Wigner-Ville time-frequency detector is popular. First, the Wigner-Ville distribution is
simple and easy to implement and it provides perfect frequency concentration in the time-
frequency plane [77). Second, originally used in quantum mechanics [78], Moyal's formula,
which is required for calculation of the SNR, is readily available for the Wigner-Ville
distribution. Noise sources, which are assumed to be complex, wide-sense stationary, can be
of two common types that are vsually encountered in practice, namely white and coloured

noise. Using the Wigner-Ville unity kernel detector, detection of non-stationary signals in

white noise was done by Flandrin [77] and in coloured noise by Marinovich [75]. Both
researchers used a method to detect signals by estimating a statistical function 1 which is
then compared with a threshold value [18, 24, 31, 32, 77, 79]. If 7 is greater than the

threshold, then the signal is said to be present; otherwise, the signal is not present.

The non-unity kernel time-frequency signal detectors form a class of detectors of which
the Wigner-Ville unity-kernel signal detector is a special case. This class of detectors

employs Cohen's time-frequency distributions with different kernel functions. Each kernel

corresponds to a unique distribution and hence to a unique signal detector. The kernel
function strongly influences the performance of the detector in terms of SNR and the higher

the SNR, the better the performance of the signal detector. The simplest non-unity kermel of

the Cohen time-frequency class is the Rihaczek kemel, @pye(6, 7} = %1% The Choi-

detector due to the effectiveness of the Choi-Williams kernel in suppressing cross terms and

9
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its robustness in noisy conditions. A different class of signal detectors is the bilinear signal _
detectors in which the non-stationary structure of the signal is exploited 1o ensure the best '
match of the signal to the detector filter |76]). Another class is the quadratic class of time- ;
frequency power spectrum, called the hyperbolic class, which was first proposed by E
Papandreou and Bartels [80]). Signal detection using this particular class is examined in {26, I

i
81, 82) using the same method of estimating the statistical function 1. ’

Non-unity kernel signal detectors have been studied in some detail in the literature, in
particular, detectors using the Rihaczek and Choi-Williams kernels. A comparison of the
Wigner-Ville and Rihaczek distributions has been done in [77] in which the Wigner-Ville
distribution was found to be more suitable than the Rihaczek distribution in terms of signal
detection and preservation of the inner product of Moyal's formula. The Wigner-Ville
detector was compared with the Choi-Williams detector [24] for the case of the Doppler
target-return signal using the same method presented in [77]). In [24], the reverberation ratio .
SRR was estimated instead of the SNR due to the specific requirements of calculating the

target return.

Although the Choi-Williams time-frequency distribution has been used to detect the
Doppler signal, the statistical function 7 of the general non-unity kemel signal detector
{GNKD) has not been derived. It should also be noted that to estimate the SNR of a time-
frequency detector, Moyal's formula for the corresponding time-frequency distribution of
the detector is required. While Moyal's formula has been derived for the case of the Wigner-
Ville time-frequency distribution of unity kernel only, this formula has not been derived for
a non-unity kernel time-frequency distribution. We derive this formula for non-unity kemnel

time-frequency distributions and then apply it to the statistical function 7 to calculate the

SNR of the detector. Thus, deriving Moyal's formula for a non-unity kernel time-frequency
distribution is an important step before any performance calculation of a non-unity kerne!
time-frequency detector is carried out. Furthermore, using Moyal's formula is the only
method currently available to estimate the SNR of time-frequency detectors. If Moyal's
formula for a particular class of time-frequency detectors, i.e. Moyal's formula for the
corresponding time-frequency distributions, does not exist, then it is not possible to estimate

performance of deteciors employing these disuributions.
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This chapter aims to achieve three goals. First, to derive the prerequisite Moyal formula
for non-unity kernel detectors. This formula can be used for any non-unity kernel detector if
a new kernel function and hence its corresponding time-frequency distribution are available.
Secondly, the hyperbolic detector (HyD) and Choi-Williams detector (CWWD) are
compared so that the effectiveness of the hyperbolic kemel in comparison with the Choi-
Williams kernel can be clearly identified. Thirdly, the ability of non-unity kernel detectors

in detecting practicat signals such as ECG, music and speech is examined in detail.

The chapter is organised as follows. Section 5.2 briefly defines the binary signal
detection problem and outlines the general expression of the SNR. Section 5.3.2 derives
Moyal's formula in detail for the non-unity kernel time-frequency distribution. In Section
5.3.3, the general detailed expression of the SNR of the GNKD is given using Moyal's
formula. The relative performance of the HyD and CWWD is compared by using the
geometrical features of the hyperbolic and Choi-Williams weighting functions. Section 5.4
calculates the SNR by using Moyal's formula from Section 5.3.2 and compares the loss
factor Q of three signal detectors, namely GNKD, CWD and correlated signal delector
(CORR). Values of an energy ratio X, which plays an important role in determining the
performance of a signal detector, are estimated in Section 5.4.4 for a number of signals
including a sinusoid sin(f), an exponential transient exp(-f), an exponentially decaying
sinusoid sin(#)-exp(-r), a chirped signal cos(Cr%), the ECG and speech signals including all

the English vowels and the "sh"-sound signals.

5.2 The Binary Detection Problem

The binary detection problem can be understood as a problem of determining the presence
of a non-stationary signal 5(z) in the presence of a stationary, white, zero mean and complex
noise w(f), given the received noisy signal f{1). The signal energy and the noise variance are
assumed to be Ap and N, respectively. These parameters are used in this chapter to estimate

a detector performance by estimating its SVR.

Since the signal is non-stationary, the classical method employed for stationary signals
cannot be used. Instead, time-frequency signal detectors have to be employed to detect the
presence of non-stationary and unknown signals which are corrupted by channel noise and
other noise sources. It is assumed that it is not possible to separate frequency power spectra

of the wanted signal and the noisy received signal f(r) and also that the signal is completely
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masked by the noise w(f). The two hypotheses for detecting the signal that need (o be
considered are given in Eq. (5.2.1)

Hy: A =w(® and Hy: A0 =5() + w(2) 5.2.1)

in which Ho means that the signal s{r) is not present and H; means the signal is present. The

reference signal s(7) is assumed to be unknown, non-stationary and could be of random type.

The hypotheses are then examined and the main goal is to decide which one of them is
likely to hold. This is done by forming a swatistics n using the received noisy signal 1) and
the reference signal s(¢). The hypotheses are then decided by comparing the statistics 7 with
a threshold value. If 1 is greater than the threshold, the signal is said to be present.
Otherwise, the signal is not present [75-77]. The performance of a particular statistics 1 is
determined by estimating its SNR. The SNR of the statistical function n for random

variabies, which is equivalent to the likelihood ratio, is given by [31, 32]

£t - Bt

SNR = l
\/5 (Var{nlh,] V4 Var{n]h,o })

(5.2.2)

where E(-) and Var(-) denote the expectation and variance operations respectively on the
statistical function 1 under the hypotheses Hy and H,. The SNR of the matched filter or
cross-correlator detector (CORR) can be found by using the general formula (Eq. (5.2.2))
which will be shown in detail in Section 5.4.1. The next section derives Moyal's formula for
the general non-unity kernel time-frequency distributions based on Moyal's formula for the

unity-kernel Wigner-Ville time-frequency distribution.
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5.3 Derivation of the Discrete Moyal
Formula for a General Time-Frequency
Distribution

5.3.1 The Discrete Moyal Formula for the Wigner-
Ville Time-Frequency Distribution

To successfully estimate the SNR of a time-frequency detector, Moyal's formula of a
particular time-frequency distribution must be known. The discrete Moyal formula for the
Wigner-Ville time-frequency distribution has been derived by Moyal and forms the basis for
deriving Moyal's formula for a general time-frequency distribution which is vital in

estimating its SNR.

The general time-frequency distribution is denoted as TFR(w, 1) in continucus form or
TFR(m, n) in discrete form with @ and ¢ the frequency and time variables respectively, and
m, n the discrete frequency and time variables respectively, From Chapter 3, the general

time-frequency distribution [6, 8] is given in Eq. (5.3.1) as

Foadon oo
TFR(r,w) = Il-; J.J‘ IL'”“"" -d)(&.r)]— eI R, (r,7) dudT dO (5.3.1)
erd k .
o t—om Fir-u.1)

where F (1 —u, 7) is the weighting function which is the 1-D Fourier transform of the kemnel

function d{6, 1, u=t +§ and the local auto-correlation  function
2.2

Ry (7)=x{u +£)-x" (= 5). The Choi-Williams kernet is given by ®cw(6, 7) = ¢ 0

[28] and the first-order hyperbolic kernel is given by @8, 7) = [sech(BOD))", where n = 1.
Two other kernels that can be used for signal detection are the third-order hyperbolic kernel
D6, ) = [sech(BOD)])" (where n = 3) and the Choi-Williams-Butterworth (CWB) kernel

, It should be noted that the ®cya(B, 7) kernel satisfies the

22
e-Or/o
el

0°1°H

(DCWB(G') T) =
admissibility constraints discussed in Chapter'3 [8, 13, 14] and has not been reported in the
literature. The CWB and cubic hyperbolic kernels are briefly mentioned in this chapter but

they will not be investigated further in the research presented in this thesis.
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The weighting functions Few, Fuy,, Feun and Feyp of the Choi-Williams, hyperbolic,
cubic hyperbolic and Choi-Williams-Butterworth kemels ate given by Eqs. (5.3.2)~(5.3.5)
respectively

URY:
Fow = =A TE "-’-YP(-"U—(%T—;Q—] (53.2)
Fusy =En;sech(ﬂ(;g:)] (5.3.3)
m(8%t® +u?) (it —u)
F Cubllv = 28 33 sech 26t (5.3.4)
F _T-exp (}{,)
owe =T
T g 2t T c 2T
(5.3.5)

The continuous Wigner-Ville time-frequency distribution is given by substituting ®(8,

7) = 1, which is a unity kernel [6, 8, 13-15], into Eq. (5.3.1) to obtain
Wit )= Ix(; #2)x"(~5) e ar (5.36)

where the range of integration is from —eo 10 +eo for the rest of the chapter unless otherwise

stated.,
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In discrete form, the Wigner-Ville distribution of two signals f{-) and s(-) is given by
Eg.{5.3.7)

Mf2 n]
We(nmy=2- D’(n +11) -8 (n=1p ) expl~ j2mkmf(M + 1))] (3.7
T =—(M[2-|u))

where 7 is the lag parameter and M is the number of dala samples. More detailed

background on the Wigner-Ville time-frequency distribution can be found in {13-15).

The continuous Moyal formula for the Wigner-Ville time-frequency distribution
derived by Moyal in 1949 [78] is given by Eq. (5.3.8) [18, 31, 32, 8§3)

By = II Wy (4, 0) - Wy (1, @) didw = { Jf(r) g (r)dr} - { jh' (t)- s(t)dt} (5.3.8)
w !

which is a product of two energy terms of four functions f1), g(), i(#) and s(#), i.e. the inner
product has been reserved for the Wigner-Ville time-frequency distribution [77]. As will be
seen later, the discrete Moyal formula for the non-unity kernel time-frequency distribution is
complicated with the involvement of the odd and even samples of the signal in the time and

frequency domains.

The discrete Moyal formula for the Wigner-Ville distribution is given by Eq. (5.3.9)

M{2 M-1
By = ﬁ: Z ng(n,m)-W;:,.(n,m) (3.3.9)

n=—Mj2  m=0
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The derivation of the discrete Moyal formula for the Wigner-Ville time-frequency

distribution (Eq. (5.3.10)) is given in detail in [31] and is given here as

[ M2 M[2
By =2M - SGy -k @) |- g (1) -s(v)
| r==A1/2 ve—0 {2
) (5.3.10)
M[2 Afj2
+2M - D" £l -k () |- (-1)" g"(v)- s(v)
| n=—M/2 v=-M}2

To apply the discrete Moyal formula to find the SNR of the GNKD, the following
identities are applied to Eq. (5.3.10): g(-) = A(-) = s(-). The following section derives the
discrete Moyal formula for the GNKD.

5.3.2 Derivation of the Discrete Moyal J'ormula for the
General Non-Unity Kernel Signal Detector

The discrete Moyal formula for the Wigner-Ville distribution was given in the previous
section. This section extends Moyal's formula for the general Cohen non-unity kernel time-
frequency distribution. Given the reference signal s(r) with energy Ao and the white noise,
zero mean process w(¢) of variance Ny, the problem we have to solve is to determine the
existence of the reference signal in noisy conditions. The signal energy Ao and the absolute

energy difference By between the even and odd samples of the signal s(r) are defined by

Mz M2 M2
2 2 ]
Ag = i IS(k)lz and By = | (K yopn )] - | S(kodd)l (5.3.11)
k=—M{2 bopen=—M{f2 kopa==M[2

The energy and energy difference of the noise w(r) are similarly defined by Eq. (5.3.12}

M2 M2 Mf2
NO = i Iw(k)lz and Mo = I W(kewn )I2 - | “’(kadd ),2
k=-Mf2 keven=-M[2 koda =-M /2

(53.12)
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From Eqs. (5.3.11) and (5.3.12), the dim21sionless energy ratios of the signal s(r) and

the noise w{¢) are defined as X, = % and Xo = %' respectively. It is evident that the ratios

Xy and X are positive and less than unity since Ay 2 B = 0 and Ny = My 2 0. Generally, ]
values of By could be in the range of -Ay £ By < Ay, however, in this chapter, only the
positive half of By is considered due 1o its usefulness and convenience in practical situations.

The same convention is applied to M, of the noise. The physical meanings of X, and X5 will ! ‘

be discussed in detail in Sections 5.3.3 and 5.4.3.

The discrete form of the general time-frequency distribution is also given by Eq. (5.3.9)
but with W(n, m) replaced by TFR(n, m) as shown in Eq. (5.3.13)

M2 .4 =1
Bonko = N TRy (nm)TFR} () (53.13)
n=-MJ2 m=0

The discrete form of the general time-frequency distribution with a non-unity kernel is

given by

L M2
TFR(n,m) = 22 i fle+t) g (e —7) Fln~u,1) exp(= j2mmr/M) (5.3.14)

==L u=-Mf2

where L = i'zi-—]n] , F(n —u, 7 is the 1-D Fourier transform of the kernel functions ©(8, 1),

M is the length of the input discrete signal, m and n are the discrete time and frequency

variables respectively,

The discrate Moyal formula for a non-unity kernel distribution is obtained by taking a

product of two discrete TFR(n, nt)'s and is given in Eq. (5.3.15) .
Mfz [ a=) o
Bankp =4 5_“ 23-"?(1'2”‘(?1 ~7,)-m/M)|- i
n=-MJ2| m=0

i %F'f("k +7;)-8 (e ~74) l[i: %p.h*(ﬂ,t 7)ol =)

ty=—Lup=-M{2 fF'L‘"F'MI‘Z

(5.3.15)
where F is the weighting function of the kernel.
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The summation with respect to m in Eq. (5.3.15) can be replaced by M-8 (1, - 7) [31,

84] which results in 7= 7x = 750 that the impulse function exists. Afier pulting gy =1, + T

and g¢ = 1 — Tand similarly py = 1 + Tand g, = — 7, Eq. (5.3.15) can be rewritten us

ALf2
-~ Benkp =4M ﬁ {a.B)}

n=~3{2
M2 n M=|n| [+ar M+)n)
=4M Foo - flpe) 8 ()| Fy 1 (py) slay)
n=—M{2 (| ar=-{n] py=-M+|n] de=ln] py=—M+)n|

(5.3.16)

where A and B correspond appropriately to the square-bracketed terms in Eq. (5.3.16).

From the above, we also obtain P, = p; + q, = 2uy and Py = p; + ¢ = 21y which are even

numbers. Thus, to allow the summation over the specified range given in Eq. (5.3.16), the
factors --(1-1- (-7 “‘"‘) and (l-l- (-n* ’+"") are inserted into the expressions A and B in
Eq. (5.3.16) respectively without affecting the correctness of the expressions since the

inserted factors are unity in value. After muliiplying, separating and rearranging the

variables appropriately, we obtain

M2
Bownkp =4M [4-B]

n=-M{2

Mj2 A
= 4M g (@ )z Fo Foe )t Y 8" @D Y By - Flp -0 |
a=—M [ g, =] i =—|n} Pi
5':1:‘(«: )Y Fy-slen)+ ﬁ:h (@™ Z :s{p,)- -7
gy =~4u| 2 g =—n}

(5.3.17)

where A and B correspond to the square-bracketed items and the running ranges of py and ¢
are similar to those given in Eq. (5.3.16). Eq. (5.3.17) is the final form of the discrete Moyal
formula for the general time-frequency power spectrum with a non-unity kernel. The next
section gives the calculations of the SNR of the statistics of the hypotheses Hy and H, for the

non-unity kernel general case by using Eq. (5.3. 17?.
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5.3.3 SNR Calculation of the General Non-Unity =
Kernel Detector and Performance Comparison e
of Different Non-Unity Kernel Detectors

Having obtained Moyal's formula for the general time-frequency distribution, detailed
derivation of the SNR of the GNKD can be made by employing Eq. (5.2.2). The mean and

variance of the statistical function 1 are given by i

E{ Nirea| 1, = 0since E{w(n)} = 0

E{ r]n.-R| i, }=2MC¢, where M is the length of the input data samples and

{ !

A
Cc= Zsﬁ(Qk)ZFk'S(Pk) . 23(‘11)25‘3‘(.01)
P ) 2

% \
AY4
| Xs" @Y, Feeslo) [ )5 @)D" Y F sl -0
\ % Pl \ 0 P

(3.3.18)

Under the special conditions px = pr, g = gn and ¢ = g1, Ce (given by Eq. (5.3.18))
becomes a constant Ce = C = (A} 4+ (Bor)’, where

Aor =Zs-(‘-7.{' )y - s(qx) and Bor =25*(fh)'ﬁ +slg)- -n7.

i 9

Since Nyep) u=C* Nrex) 1y the variance of zee] 1 equal 1o that of Tipgg,, .

Detailed derivations of the variances of the statistics and its SNR are given in Appendix B.

The variance of the statistical function Nyep i, is given by
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Var{nTFRlﬂu )= Var{Nre, |”l = E{ [??melnl ]2}

A2 M2
=M (Ag - Agyrs *Noer - Ap )+ (4o - Boy - Nogr - Boyer )

n=—Aff2 j=—Mf2
+(A0 " Aqy - Noge * Aoy )+ (Ao Nogp - Boy + Boyr )+ (249 - Nogr - By - Bogr ) _
+(240 - By - Nogr * Borr )+ (2By - Mypr - Ag - Ager )+ (2B -Mopy - By Bogr ) I '

+{2Bg - Mopr - By - Bogp )+ (2By - Mgy - Ag - Ager )

|
e ‘fL; ; a
=M= 2 P (Ao - Agrrr - Noer - Agy )+ (Ag - Boy  Nogr +Boyer )] ;
nm=M {2 jo-M]2 ol
+2[2{Ag- Nogp « By~ Bysr )+ 2By - Mypr - Ag < Agpr )+ 2(By - Mopr < By - Bogr )

(5.3.19)
where
Apirr = ZFJ -s(py )- ZFJ“ s (on). Acer -'ZF: s(p)- Fyy 5" (py )

P
Bypp = ZFI +s(py )y - s{py )- (=DP, By = ZS‘(G:)‘(“I)'" '25(%1)'("1)("1 ,
i am
Byjpr = EFI +s(py ) -D¥ - EFII s(py ) CDP1, Ag = 23 (@) 25(911 2
P 4n
Morr =2FL wipy ) Fy -wip, )- (-D%*, Nopr = ZFk w Pk) Fwlpy)
Pk P
(5.3.20)
The SNR of the GNKD is given by
Eliirer|y, ) 2MC
SNRowkp = L/ — (53.21)
- JVar{nTFRI ”l} \ﬁ/m'{ﬂmvl Hy }
The SNRgvxp for the special case of pi = pi, qx = gy and g; = gy is given by
V2 (A§ +B3)
SNRonkp = 20 (53.22)
AOJ.‘:’U Ay * {]+.§L+2[(Ao)z + 2 M“ +8 ﬁ(‘: (’:2)3]}
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It is worth repeating that X, = 2 and Xa = L., which were defined by Eq. (5.3.11)

and Eq. (5.3.12) in Section 5.3.2, are ratios of the absoluie energy difference between the
even and odd samples of a signal and noise to its total energy of the input signal and noise
respectively. The ratio X\ can be estimated by using simulation at different sampling rates. It
will be shown later in Section 5.4.4 that the sampling rate can affect the value of X,, which

in turn will affect the performance of the signal detector.

The physical meanings of the energy ratio X) can be understood as the ratio of the
bandwidth (the Difference_Energy given by Eq. (5.3.23)) to the total energy of the input
signal. As it will be shown later in Figure 5.4.1 to Figure 5.4.3 that the smaller the value of
Xi, the higher the signal detector performance in detecting a particular signal. In addition,
satisfactory performance can be achieved by having the value of X, close to 1.0 provided

that X is small (Section 5.4.3). However, the latter scenario is not applicable to situations in

which the X ratio of the noise is large. The energy of the input signal can be expressed in

terms of the even and odd energy of the input signal

+oo ten
A, 2
Total_Energy = Even_Energy + Odd_Energy = 7)—11; j |F (w)| dw = I finyd

—ca H |
Difference_Energy = |Even_Energy — Gdd_Energy| ~ Signal_Bandwidth e

Difference_Energy
Total_Energy

Absolute_Energy_Ratio =

{5.3.23)
where F () is the Fourier transform of the input signal f{7). -

Theoretically, the constant signal (~e < t < +oo}, which according to Eq. (5.3.23) has a
zero bandwidth, is most effectively detected since there is no energy difference between the
even and odd samples of the signal. The Fourier transform or the energy density of the
constant signal is a single impulse &) located at the origin. This impuise is regarded as a
perfect way o concentrate the energy in the frequency domain since there is no energy

smearing. The bandwidth of a constant signal is zero since there is no "width" in the

frequency domain for ar impulse. In the case of periodic sinusoidal signals, the Fourier
twransforms of the functions sin{wo!) and cos{ayt) are impulses located at frequencies ten.
These impulses perfectly concentrate the energy of the input signal in the frequency domain,
as a result, their bandwidths are effectively zero. Thus, it can be concluded that signals that

have a zero Fourier-frequency-domain bandwidth such as the constant and periodic sinusoid !
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signals are effectively detected by using a time-frequency signal detector. Simulation resuits
in Section 5.4.4 shows that the periodic sinusoid has a zero-valued X; which is consistent
with the theoretical prediction of Eq. (5.3.23).

The two cases mentioned above validate Eq. (5.3.23) in which the absolute energy
difference between the even and odd samples of an input digital signal is directly
proportional 1o its Fourier-frequency-domain bandwidth. Other types of signals including
exponential transient exp{~r), chirped cos(C1%), exponentially decaying sinusoidal
sin{ay)-exp(~1) have non-zero bandwidths which result in a larger energy ratio X,. Hence,
detecting signals having wider bandwidths is more difficult than detecting those with
narrower bandwidths. Real signals such as the ECG and speech are effectively detected

using a time-frequency signal detector as will be seen in Section 5.4.4.

The fact that wide-band signals are more difficult to detect than narrow-band signals
can also be explained by looking at the problem from a filter point of view. If the signal is
wide-band, it is more likely to be contaminated by other signals such as noise disturbances
that have been sent at the same time in a pass band of a filter. The role of the filter is (0
extract detected signal(s) in its pass band. If the pass band contains not just the wanted

signal but a mixture of two or more signals, then the signal is more difficult to detect.

From Egs. (5.3.18) and (5.3.19), it is evident that the SNR of a signal detector is
proportional to the volume under the surface of the weighted signal, i.e. a product of the
signal s(#) and the weighting function of the kemnel, and inversely proportional to the volume
of the weighted-signal variance. Thus, if the volume under the surface of the weighted
signal is larger than that of the weighted-signal variance, SNVR of the corresponding detector
is high. Furthermore, it has been found that the hyperbolic kernel is more robust [29, 30]
than the Choi-Williams kernel. Thus, the HyD provides a smaller noise variance than that of
the CWWD for well chosen values of 8 2 3 as can be seen in Figure 5.3.1 in which the
volume under the surface of the weighted-signal variance is displayed. As a result, the SNR
of the HyD is better than that of the CWWD. Table 5.3.1 gives the volumes under the surface
of the weighting functions of four kernels: hyperbolic, cubic hyperbolic (the third power of
the hyperbolic kernel), Choi-Wiltiams and Choi-Williams-Butterworth kernel (a product of
the Choi-Wiiliams and Butterworth kemnels [25]). The volumes under the surface of the
weighted variance of the four kernels for some typical values of 8 are also listed in Table
5.3.2. It is evident from Table 5.3.2 and Figure 5.3.1 that for different values of the control

parameter f3, a different volume under the surface is obtained. Thus the control parameter of
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a kernel plays an important role in determining the performance of the corresponding signal
detector and of time-frequency kemels as it was shown in Chapter 3.
Table 5.3.1: Voluines under the surface of the Choi-Williams, hyperbolic, cubic hyperbolic : _
and CW-Butterworth (Egs. (5.3.2)-(5.3.7) respectively) weighting functions o
Volume under the surface of the weighting function E ,L
5] Hyperbolic Cubic Hyperbolic | Choi-Williams (CW) | CW-Butterworth i
kernel kernel kernel kernel i
0.1 12.08 12.04 12014 11.91 IR
1 11.997 11.88 11.98 11,78 _
5 9.9 7.58 11.02 10.78 ’
10 7.39 4.98 9.953 9.787 1
20 4.384 298 8.63 8.53 Rt
50 2.44 1.33 6.78 6.74
100 1.3173 0.68 5.47 5.45
12
CW and Hyperbolic Noise Variance
1@ - -+ L ————————— e ¢ " " " " °
B 08 -
c
8
I
g 0.6 I - - e e
Q
A
% 044 N - - c e -
—e— CWNoise
I N —e—HyNoise
0 1 1 [} O - 13

2 10 12 15 20 30 40 50 60 70 80 90 100 200 500 700

Beta

Figure 5.3.1: Noise variance of the HyD and CWWD (this figure is taken from Chapter 3,
Figure 3.7.1)
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Table 5.3.2: Volumes under the surface of the weighted variance of the four kernels

Volume under the surface of the variance of the weighting function
B Hyperbolic Cubic Hyperbolic | Choi-Willtiams (CW) | CW-Buiterworth
kernel kernel kernel kernel o
0.1 5.25 2.766 1.02 0.36 o
1 0.51 0.274 0.322 0.234 F
_ 5 0.1 0.05 0.1425 0.13
10 0.040 0.02 0.0985 0.094
20 0.0195 0.008 0.067 0.065
50 0.0054 0.0018 0.0387 0.0038
100 0.00175 0.000494 0.025 0.025

The volume under the surface of the weighted-signal variance is directly proportional
to the variance of a time-frequency signal detector. The smaller this volume, the better is the
performance of a particular time-frequency signal detector. The performance of the GNKD

in terms of SNR is dependent on the volume under the surface of the weighted signal and its

variance, The loss factor Q of the GNKD over the Wigner-Ville unity-kernel signal detector,

i.e. a ratio of SNRgwxp to SNRcwy, is given by

Vonkn)

J YWVanxp)’  SVonkp +12SVonxp)

O(GNKD/CWD) =

(5.3.24)

where Voo and (SVoakp) are the volumes under the surface of the weighted signal and its
variance respectively. Eq. (5.3.24) can be used to estimate the improvement factor for

different non-unity kernel time-frequency signal detectors.

To measure the relative performance of the HyD and CWWD, their loss factor Q is
formed as [32]

2
SNRy, Cuo  [Yarmowwnly,} ( Vo Y sV,
O(HyD/CWWD) =—— 20 o 100 ’ o) [ VYo | SVewwn

SNRewwp  Cowwp V Var{n}f}r.{)l”o} Vewwn SVuyo

(5.3.25)

where Vip and Vowwp are the volumes under the surface of the weighted signal and SVi,p,
SVcwwp are the volumes under the surface of the weighted-signal variance of the hyperbolic

and Choi-Williams kernels respectively.
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Using the data provided by Table 5.3.1 and Table 5.3.2, the improvement factor Q of
the HyD and CWWD are calculated and given in Table 5.3.3.

Table 5.3.3: Improvement factors Qofl the HyD and CWWD, 35 8510

Signal Delector Improvement Factor O S
HyD 225 £ Qyp£24.8d8B
CWwD 22.554 £ Qcwwp £23.94dB

The relative performance of the HyD to that of the CWWD is graphically displayed in
Figure 5.3.2. From Eq. (5.3.25) and using the appropriate values from Table 5.3.1 and Table
5.3.2, the CWWD is more effective than the HyD by 63% for 8 = 1. From Figure 5.3.1 and

Figure 5.3.2, it is evident that for § < 3, the performance of the HyD is worse than that of the
CWWD due to a larger noise variance or larger volume under the surface of the weighted-
signal variance. For 8> 3, and typically 8=35, the HyD provides a larger SNR by a factor of
1.15 (15%) than that of the CWWD. For 8 = 10, the performance of the HyD is
approximately 1.18 (18%) times better than the CWWD in terms of SNR. As f further
increases, the performance of the HyD gradually degrades even though at 8 2 500 the
performance is slightly improved. This is due to an unequal rate of change of the volume

under the surface of the weighted signal and that of the weighted-signal variance.

Relative Performance of the HyD to CWWD

0.6 -

0.4 -

0.2

0 T L] T L) L] T T T ™ T T T T

0.1 ; 3 5 6 7 B 9 10 20 50 100 200 500 1000 2000 3000 5000

Figure 5.3.2: Loss factor ¢ of the HyD and CWWD (Eq. (5.3.25)) as a function of the kernel
control parameter 8 = 1/o . The useful range of B is evidently from 3 to 10.
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From Figure 5.3.2, it can be suggested that the I{yD is beuer than the CWWD in terms
of SNR over the 1yp-wal range of the control parameter 8 of 3 € B < 10. Qutside this range,
the CWWD outperforms the HyD. For large values of 8 (8 2 500, i.e. o < 0,002) the HyD
might provide a large SNR which is mainly due to a relatively large volume under the
surface of the weighted-signal variance. It should be noted that large values of B are not
applicable in practice since the hyperbolic weighting function collapses (in shape) into a
near-flat function with a very small volume under the surface. This shape of the weighting
function indicates that the kernel is not stable under these specific conditions of large S
(small o for the Choi-Williams kernel) and should not be empioyed as a time-frequency
kernel. This fact was explained in detail in Chapter 3. In contrast, the Choi-Williams
weighting function retains its original shape for very small values of o by having a finite
volume under the surface. This makes the Choi-Williams kernel and CWWD more stable

than the hyperbolic kernel and HyD over extreme values of the control parameters 8 and o.

At this point, it is appropriate to summarise alfl the (rade-off(s) that have been stated in
Chapters 3, 4 and in this chapter so that important remarks can be made. From Chapter 3, it
can be concluded that for 8 in the range of 0.5 € 8 £ 3.5 the hyperbolic kernel is more
effective than the CW kernel in terms of cross-term suppression and auto-term magnitude.
For noise robusiness, the range of 8 is 8 2 3. As stated in Chapter 3, for 20 2 8 2 0.5, the
hyperbolic auto-lerm magnitude is still acceptable even though it is lower than that of the
CW auto terms. From Chapter 4, for 0.01 £ 8 < 7.8, the hyperbolic wavelet has a finer scale
resolution @y than that of the CW wavelet. From the obtained results in this chapter, for
effective signal detection, the useful range of 8 is 3 £ 8 < 10. However, the performance of
the HyD is still compatible to that of the CWWD for 8 < 50. Thus, the useful range of §,
taking into consideration the auto-term magnitude, auto-term resolution, cross-term
suppression, noise robustness, scale resolution and effective signal detection, is 3 <8< 10
and the practical or applicable range of 8is 0.5 £ f# £ 50. However, the only disadvantage of
the hyperbolic kernel is that its auto-term resolution is poorer than that of the CW kernel and

most of the MTE kernels as was explained in Chapter 3.

This section has covered a number of important topics of the chapter. Firstly, Moyal's
formula for the Wigner-Ville time-frequency distribution was stated. Then, the discrete
Moyal formula for the GNKD was derived based on Moyal's formula for the WV
distribution. After that, the SNR of the GNKD and performance comparison of the HyD and
CWWD were discussed. The next section studies the CORR, CWD and GNKD by

calculating their SNR's.
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54 Performance Comparison of Some Time- |
Frequency Signal Detectors o

Section 5.3.3 derived an expression of the SNR of the GNKD in detail and analysed the _
physical meanings of the energy ratio X;. Relative performance of the HyD and CWWD was o
successfully measured based on geometrical characieristics of the hyperbolic and Choi-

Williams kernels respectively. In this section, performance of three signal detectors namely,

CORR, CWD and GNKD will be estimated as a function of X, = % and X2 = %2' under the

general case and special cases. The SNR expression of the GNKD derived in Section 5.3.3

(Eq. (5.3.22)) is employed to determine its performance. The SNR expressions of the CWD
and CORR have been given in the literature and will be used to compare their performance
with that of the GNKD.

5.4.1 Performance of the Cross-Correlator Signal
Detector (CORR)

The performance of the cross-correlator method, known as the matched-filter method, is

considered as the best method in binary signal detection since it provides the best SNR [31,

74). The statistical function 7 is given by

Neokr = If ()" (1) dt , where —s0 S £ < oo, | (5.4.1)

!

The SNR of the cross-correlator detector is given by [32]

’A
SNRcor = %;0 (5.4.2)

where Ao and Ny are the signal energy and noise variance respectively.

The SNR of the CORR is not affected by the energy difference between the even and
odd samples of the signal (X,) as in the case for the CWD with a unity kernel function as
will be discussed in the next section. For the case of a non-unity kernel signal detector, the
effects of the absolute energy difference between the even and odd samples of the digital

input signal and noise (X>) are included as will be shown in Section 5.4.3.
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5.4.2  Performance of the Wigner-Ville Detector

The performance of the Wigner-Ville detector (CWD) was studied by Kumar and Carroll for
the continuous and discrete cases [18, 31, 32, 79]. The SNR of the Wigner-Ville signal o iR
detection is given by Eq. (5.4.3) as 1

B >
SNRcup = [20 l+(73-) (5.4.3)

Y¥o -J1+3'(f’_ﬁ I ;

The SNRcwp of the Wigner-Ville time-frequency signal detector is clearly smaller than
the SNRcogy Of the cross-correlator detector given by Eq. (5.4.2) due to the effects of the

ratio X; = % . \

5.4.3 Performance of the General Non-Unity Kernel
Signal Detector (GNKD)

The performance of the GNKD was briefly estimated in Section 5.3.3. In this section, its
performance under general and special cases, such as for small values of X, and X;, is
discussed. Relative performance of the GNKD, CORR and CWD is also estimated by taking
ratios of their SVR's to form the loss factor Q. The larger the value of the @ factor, the better

the performance of the relevant signal detector.

From Eq. (5.3.22), it is evident that the SNR of the GNKD depends on X; and Xz, which

clearly shows the effects of a noise source on the performance of the detector. It should be

noted that in the case of the Wigner-Ville distribution employing a unity kernel, the effects

of the noise ratio X, are not apparent [31). In addition, the effects of X; range from tie first
power to the third-power terms as shown by Eq. (5.3.22). The noise ratio X; is of the first
power only which significantly affects the SNR of the GNKD.

If X = % is very small, i.e. the noise energy difference is most evenly distributed 5
0 i

among its even and odd samples or the noise bandwidth is small, then Eq. (5.3.22) becomes
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V2. (A} + B2 -t

SNRgip = ¢t Bor) 5.4.4) 4
An N[”"F ‘AOFF -{l+%+2(%)2} :
After separating the kerne! weighting function, we obtain ?
Ay V2. [1 + @C%)Z
SNRnip = == - = =, where X, is very small. (5.4.5)
7 By By i
T+ 2+2:42 :

IfXs= %“]l is not small, then SNRgykp will be further reduced and the performance of

the GNKD is degraded. It is also important to note that the SNR of the GNKD has been
calculated under the special conditions of py = pi, qi = ¢; and g; = gy stated in Section 5.3.3.

This means that only the auto terms in the summations (see Appendix B) are included and

interactions among them are ignored. The performance in this case can be considered as the
lower limit performance of the detector. For the general case, the SNR of the GNKD is given
by Eq. (5.4.6)

Ag ﬁ.[“.(%)l]
NRGnxp =E' Emm——
eaedRf (20

A V204 X{)
No L4 X, +2[X}+X, (X, +X})]

The 3-D graphical presentation of the normalised SNR of the GNKD, SNRguxp, a5 2

function of X, = %- and X> = %ﬁ- , is displayed in Figure 5.4.1. It should be noted again that

for the case of the non-unity kernel time frequency signal detector, the effects of noise are
taken into account which reduces the performance of the detector. From Figure 5.4.1, the
minimum SNRenxp 15 —0.6602 dB at (X, = 0.63, X; = 1), i.e. \fhen the energy difference of §
the even and odd samples of the noise is equal to its energy. In other words, when the noise .

is energy balanced.
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Figure 5.4.2 and Figure 5.4.3 show the absolute and normalised loss factors of
GNKD/CORR, GNKD/CWD and CWD/CORR respectively as a function of X,. The absolute

plot of the SNRgyxp in Figure 5.4.2 has the same shape as that of Figure 5.4.3 except that its

maximum value is ¥2 = 1.414, i.e. the SNRguxp is improved by a factor of V2 or about
41.4% compared with the CWD and CORR. From these figures, detailed comnparisons of the
three signal detectors are shown clearly in Table 5.4.1.

Normalized SNR of the GNXD in terms orx, and Xz

Q
X2 X

Figure 5.4.1: Normalised SNRgnxp of the GNKD (Eq. (5.4.6)) as a function of X; and X,.
The optimum performance of the GNKD is obtained by having X; in the range of X; of 0.0 5
X1£020r09< X, and X, 0.2,

The Q factor of the GNKD and CWD is then given by the ratio of Eq. (5.4.5) to Eq.

(5.4.3) (when X;is small)
143X}
J‘. 1
1+ X, +2- 3}

SNR,
Q(GNKD/CWD) = 2-~9¥k2 = [ .

(54.7)
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Absolute @ Factors of GNKD/CWD and GNKD/CrossC
L T T ]

1 T L
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Value of the @ Factor
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1.2 GNKED/CrossC

1.26F

Figure 5.4.2: Loss factor @ (GNKDI/ICWD) (Eq. (5.4.7)) and Q (GNKD/CrossC) as a
function of Xi. The typical range of X; for satisfactory performance is 0.0 <X, £0.1 0r 0.9 5
X; £ 1.0 when X, is small.

%

It should be noted that the HyD and CWWD belong to the GNKD class in which the
kernel function is non-unity. The CWD is a special of the GNKD in which the unity kernel
function is employed. From Eq. (5.4.7), SNR of the GNKD is about 41.4% (by a factor of

~2) higher than that of the CWD which clearly reveals the advantage of using non-unity

kernel time-frequency distributions.

When X2is small, the loss factor of the GNKD and the classical CORR is given by

8
A 14l ~
SNRowkn ‘E[J'(f'«)x] e xd)

SNR o \[1_"&4_2_@%)2 JI+ X, +2: X}
A

Q(GNKD{CORR) =

(5.4.8)
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It was found in Section 5.3.3 thai the ratio of the bandwidth (Eq. (5.3.23}) to the total
signal energy (Eq. (5.3.11)), X), delermines the performance of a lime-frequency signal
detector. Decreasing the bandwidth and increasing the energy of the signal lowers this ratio
and leads to better performance. For good performance, typical ranges of X, of 0.0 £ X; €
0.20r 0.8 <X, <1.0i70.0 £ X, <0.2 are required as can be seen in Figure 5.4.1. Thus, any
value of X in the range of 0.2 < X| < 0.8 will considerably lower the SNR of the detector
and should not be used. If there is energy balance in the odd and even samples of the input

signal, i.e. X) is close to zero, then the signal is best detected.

When there is energy unbalance among the odd and even samples of the signal, i.e.
there is clear dominance of even over odd samples or odd over even samples, X; will be
close to unity. In this case, if the noise energy is evenly distributed then best detection can

be achieved. Otherwise, the signal is not effectively detected.

Q, Factors of GNKD/CWD, GNKD/CrossC and CWD/CrossC

1 T L 1 T H 1 T T 1
0.581 Q,(CWD/Cros5C) .
o° 096} ]
S
3
S
3 0941 O(GNKD/CWD) -
E
=]
Z  os2f -
0.9 OJGNKD/CmssC) -
A L [ ] 1 -1 1 1 L
'S 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.4.3: Normalised Qv (GNKD/CWD) (Eq. (54.7)), Ov (GNKD{CORR) {Eq.
(5.4.8)) and Qu(CWDICORR) (ratio of Eq. (5.4.3) t0 Eq. (5.4.2))as a function of X,. For the
CWD, the typical range of Xy can be extended to 0.0 < X, £0.3. The maximum value of each
O factor was used as the normalisation factor.
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Table 5.4.1: Worst performance ratio of the GNKD 10 CWD (Eq. (5.4.7)), the CWD to
CORR (ratio of Eq. (5.4.3) 10 Eq. (5.4.2)) and the GNKD to CORR (Eg. (5.4.8)) as a
function of X) as scen from Figure 5.4.3. The best performance is oblained at Qy = 1 with
the corresponding SNR = 0 dB.

. Worst Performance
Signal Detector Comparison X, = _ii% Normalised Loss factor | SNR of Qu (dB)
Fi QN
GNKD/ICWD 0.35 0.9258 ~0.67
CWD/Cross-Correlator 0.6 0.9428 -0.5
GNKD/Cross-Correlator 0.45 0.3829 -1.08

The performance of the CORR, CWD and GNKD has been compared and it is clear that
the GNKD has the largest absolute S¥R. The next section studies the effects of sampling on

the performance of time-frequency signal detectors using typical signals.

5.4.4 Some Typical Examples

In Sections 5.4.1-5.4.3, the performance of the CORR, CWD and GNKD were theoretically
estimated and compared by using the discrete Moyal formula derived in Section 5.3.2. In
this section, the experimental aspects of detection performance and the effects of sampling
on the input signal are examined using the GNKD. Moreover, particular attention is given to
how the energy ratio X, varies with different values of the sampling interval Ar. Since X, is
the energy ratio of the even and odd samples of the digital input signal, its value strongly
depends on the type of signal and the sampling interval Ar. Some typical and popular signals
in practice are examined such as a sinusoid at 30 Hz (sin(27 - 501)), decaying exponential
exp(~1), an exponentially decaying sinusoid sin(r)-exp(—f), chirped cos(C-£5), ECG and

speech.

As was mentioned in Section 5.3.3, for digital input signals, the sampling interval does
affect the value of the energy ratio X of the signal.. A number of waveforms have been
digitised at different sampling rates and the experimental results are summarised in Table
5.4.2. The sampling interval should be small enough to obtain small values of X;. In this
case, the sampling frequency is set to be about four times larger than the critical Nyquist
frequency of the input signal. From Table 5.4.2, it appears that sinusoidal signals can be

efficiently detected using time-frequency signal detectors.
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Chapter 3: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

The transient signal exp(=r) has a large-valued X; which can yield poor SNR if Az 2 500
ms. Sinusoidal signals can be very efficiently detected with very small-valued X;. It is
important to emphasise that for periodic signals, the signal sampling interval should be
chosen long enough so that X, can be correctly estimated. The exponentially decaying
sinusoidal signal has the largest X; of 0.14 at the worst sampling interval Ar,, = 0.6 s with the
corresponding worst SNR,. = 0.935 as can be seen in Table 5.4.2, where the subscript "w"

indicates the worst case and "b" the best case. The ECG and speech signals appear to have

small-valued X, which might suggest that these signals can be successfully detected using
the GNKD. The non-stationary chirp signals can be very efficiently detected eing the
GNKD with the worst and best SNR's are relatively close to 0.99 and 1.0~ .. ' om
Figure 5.4.3, the Oy factor in detecting signals that have X; € 0.] is G woey

range of Oy 2 0.95 which is satisfactory.

Table 5.4.2: The best and wors! cases in detection of some typical . - .o U o VKD
in terms of normalised SNRgugp in Figure 5.4.1 when Xzissmall. Tw. <% 1. #"and
“b" indicate the worst and best cases respectively.
Worst Case Beo. _as2

Signal At (ms) | Xiw SNR,. Aty X SNR,
(dB) {ms) (dB) 9
sin(2a X 501} 5.00 1.00 0.75 2.00 0.00 1.00
exp(—n) 500 [0462] 0.65 10 0.01 0.98
exp(—n)-sin(n) 600 0.14 0.935 100 0.04 0.973
cos(2m0.125(nfM )) 800 [0.008] =099 0.1 | 50x107 | =1.00
ECG (averaged over 12 100 | 475x10° [ 1.00
channels) The sampling intervals for
Speech [85] (English these cases are fixed. There — 3.7x 107 1.00
vowels "a", "e", "o", "u", | are no worst or best cases for 1
*i* and the sound "sh") these signals. L

From Table 5.4.2, it should be noted that for the exponentially decaying sinusoid, the

worst and best detection of the signal are quite similar which suggests that the signal can be

well detected using the GNKD. Based on the performance of the GNKD, it is evident that

stationary signals such as sinusoids can be effectively detected vsing time-frequency signal
detectors. betecting non-stationary signals such as the decaying exponential exp(—), chirp
and exponentially decaying sinusoidal sin(f)-exp(-) signals is dependent on the sampling
interval used to sample the signal. If the sampling interval Az is fast enough, then the

detection process will be effective.
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5.5 Conclusion

This chapter regorts on some investigations in the field of time-f requency signal detection.

Firstly, the discrete Moyal formula has been derived for the general case in which the
kerniel function is not a unity kemel. The performance of the general non-unity kernel signal
detector (GNKD) has been examined by using the discrete Moyal formula to obtain the SNR
of the statistical function 7. It has been shown that the GNKD perform better than the
Wigner-Ville detector (CWD) by increasing its SNR by a minimum factor of ¥2. The

performance of the correlator detector has also been examined and compared with that of

the CWD and GNKD. It has been found that the hyperbolic detector HyD and Choi-Williams .

detector (CWWD) can improve the SNR over the CWD by a faclor Q in the range of 22.5 4B
L Quy324.8 dBand 22.5 dB £ Qcw < 223.9Y dB respectively over the typical range of 3< <
10. From the results obtained in Chapters 3, 4 and in this chapter, the applicable range of 8
is 0.5 < = 50 for satisfactory performance on signal detection, scale resolution (discussed
in Chapter 4), cross-term suppression, auto-term magnitude and noise robustness (discussed
in Chapter 3} at the expense of having a poer auto-term resolution (discussed in Chapter 3).
This is an important trade-off among crucial parameters that significantly affects the

performance of a kemnel.

Secondly, a new signal detector, the hyperbolic time-frequency signal detector, has
been proposed and investigated. The new detector performs better than the famous CWWD
by improving the SNR by 18% for 3 < § < 10, independent of the input signal because of the

nature of the weighting functions of the CW and hyperbolic detectors.

Thirdly, the performance of the GNKD using a number of typical signals has been
examined. It has been shown that the sampling interval can affect the performance of the
GNKD by varying the energy ratio X\ = By/A, . It has also been observed by simulation
that sinusoidal and chirped signals can be efficiently detected with satisfactory SNR.
Transient signals can be efficiently detected by using a suitable sampling interval.
Physiological signals such as the ECG and speech can be successfully detected with the

normalised SAR in the approximate range of 0.99 to 1.00.
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Chapter 6: THE HYPERBOLIC
WAVELET POWER SPECTRA OF
TYPICAL SIGNALS

This chapter introduces the wavelet power spectrum as a useful technique to study signal

characteristics in which the hyperbolic and sym3 wavelets are employed. The hyperbolic -

wavelet power spectrum technique is employed for typical signals including ECG,
sinusoidal and transient exponential. Chapter 7 develops this technique for practical non-
stationary signals such as music and speech. Comparisons between the Fourier power

spectrum technique and hyperbolic wavelet power spectrum technique are also made.
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Chapter 6: The Hyperbolic Wavelet Power Spectra of Typical Signals

6.1 Theoretical Background of the Wavelet
Power Spectrum Technique

Analyses of stationary signals have been carried out over many decades using the Fourier
transform. The basis of (he Fourier transform is that any function can be represented by a
sum of a number of complex exponential functions, in other words, sinusoids and co-

sinusoids. The discrete Fourier transform is defined as [41]

M-1
X{k)= 2 x(n)- e~ RIM 6.1.1)
n=0 )

where x(n) is a discrete input signal, X (k) is its Fourier transform, M is the length of x(n)

and £ is the frequency variable in rad/s.

The merits of the Fourier transform method were discussed in detail in Chapter 1 at the
begiuning of the thesis. Based on this discussion, it is clear that there are a number of issues
that need to be taken into account when using the Fourier transform. First, the Fourier
frequency spectrum of a signal A7) is obtained by averaging its values over an infinite time
interval since the Fourier kernel function is exponential. As a result, if the signal spectrum
varies with time (as for non-stationary signals) then fine spectral details will be lost. Thus,
for the Fourier transform to be accurate, the input signal should be stationary or wide-sense
stationary which means that its statistical properties do not vary with time. Secondly,
signals, in general (from linear and non-linear systems), consist of a sum of different
harmonics which interact with each other to cause quadratic phase coupling [86, 87]. The
significant limitation of the Fourier transform method is that it cannot provide information
on interactions of different harmonics. Thus, estimating the Fourier transform of a signal
only reveéls information about the frequency spectral contents of each harmonic component

over a specified frequency range averaged over the entire time horizon.
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To understand a signal, its energy distribution or energy density must be examined.

Higher-order statistical techniques using the Fourier transform such as the power spectrum

and bispectrum have been successfully employed to study signal energy distributions [2, 4].
In using higher-order statistical techniques, correlation functions and the Wiener-Khinchin

theorem play important roles. The general correlation function is defined by [86, 87]

M=)
R, (T, T30 Tpy) = Z xn) x(n+ 1) -x(n+15) 0 X +71,) (6.1.2)
n=0

where 7; s the lag parameter in the range of 0 ~ (M — 1), m is the order of the correlation
function, m = 1 corresponds to the auto-correlation function (whose Fourier transform is the

power spectrum) and « is the discrete index of the input signal x(n).

The Wiener-Khinchin theorem [41] is given by

P(w)= R (r)-e /¥ (6.1.3)

x
L

where R\(7) = Z x(n)-x{(n+7) is the auto-correlation function and P(w) is the power
n=0

spectrum of the discrete input signal x{n).

From Eq. (6.1.3), the power spectrum can be rewritten in a simpler form

s T (6.1.4)
P(w) = X () X (@) =IX(w)|

where the symbol "*" indicates the complex conjugate operation.

It should be noted that Eq. (6.1.4} is directly derived from Eq. (6.1.3) and the former
employs a product of two Fourier transforms of the input signal. The power spectrum is
usually estimated by using Eq. (6.1.4) rather than Eq. (6.1.3) to reduce its computational
burden. Other higher-order frequency functions such as the bispectrum and trispectrum can
be formed based on Eq. (6.1.4), which is also used to form the analogous wavelet power

spectrum (WPS) to improve calculation efficiency.
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From Eq. (6.1.4), it is evidemt that the phase information is suppressed and only the
magnitude information is given by the power spectrum, Therefore the power spectrum is not

unique since there might be more than one signal which has identical magnitude but

different phase information. Thus, the second-order statistical function, i.e. the bispectrum,”

is employed to study signals that have identical power spectra, The bispectrum of a discrete

input signal x(it) is the 2-D Fourier transform of its tri-correlation function Ro7, 1) and is

given by
M- M-
B(f]nfz)zzz RZ(TI,Tz)-eXp [" jZJ‘I(fITI +f2f2)] (6.1.5)
Tz=0 r,:O
M-I
where 7, and 7 are the lag parameters, Ry(7) = 2 x(n)-x(n+1))-x(n+1,) is the
n=0

tricorrelation function and B{ f,, f2) is the bispectrum of the discrete input signal x(n),

Eq. (6.1.5), like Eq. (6.1.3), can be rewritten in a simpler form as

B(fi, f)=X(f1)) X(f2)- X" (i + fa) (6.1.6)

The general expression for higher-order statistics spectrum, HOSP, is obtained using

the following expression

HOSPU; s fares i) = K- RS2 XS fy + f +ot ) 617

The bispectrum decomposes the skewness or odd-order asymmetries of the input signal
since three Fourier products are involved in Eq. (6.1.6) {88). It alsv provides information on

interactions of the frequency components f; and f> in the 2-D frequency plane, (fi, /3).

The power spectrum and bispectrum have been shown to be very effective in studying
chaos, non-linear behaviour and turbulence of wide-sense stationary signals as reported in
many studies {1-4, 89, 90]. They have also been used to examine non-stationary signals by
dividing them into typically small segments of 1,024 samples for cases of the ECG and
Duffing oscillator. In this case, the effectiveness of the power spectrum and bispectrum has

been clearly shown by Chandaran [1] and Lipton [4],
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Chapter 6: The Hyperbaolic Wavelet Power Spectra of Typical Signals

However, for other non-stationary signals such as plasma phenomena, speech,

underwater signals, whale sounds and music, the power spectrum and the bispectrum are not

suitable tools since they suppress fine details of the energy distribution of the input signal.
Thus there is a need for a time-frequency power spectrum analysis which provides
information on how the energy of a non-stationary signal is distributed in time and

frequency domains.

The time-frequency power spectrum technique employs both the time and frequency
axes to display the spectrum of a non-stationary input signal. The additional ime axis is
required to track any changes of the signal spectrum over time and this axis enables
detection of instantaneous behaviour of the signal. One typical time-frequency analysis tool
is the wavelet power spectrum which uses the wavelet transform. The wavelet transform can
be regarded as being analogous to the Fourier transform, but with a different kemel
function. For the Fourier transform method, the kernel function is an exponential function
and for the wavelet transform method there exist various arbitrary kernet functions which

must satisfy admissibility constraint(s}.

The wavelet transform method, like the Fourier transform method, assumes that any
function can be represented by a sum of an arbitrary set of wavelet functions y¥A¢} (which
satisfy the admissibility constralnts) [51]. The Fourier transform might be considered a
special case of the wavelet transform in which the mother wavelet function () is replaced
by the complex exponential function, Wrawie(t) = exp(-je), if this function satisfies the
admissibility constraints as will be discussed later. The mother wavelet function, y{(»),
sometimes called the basic wavelet function, is the fundamental function in any expansion
of the wavelet transform. The wavelet transform of the input signal x{r) with the mother

wavelet function y(#), which was defined in Chapter 4, is given as [51, 52]
T b
WT(a,b)= I x(r)-ly[i-;—]dt : (6.1.8)

where @ and b are the scale and time indices respectively, and Wi, b) is the wavelet
transform function of the input signal x(r). For the Fourier transform, y() is the exponential
function exp(~jwr) which has infinite time support. To obtain finite time support for the

wavelet transform, an appropriate mother wavelet function must be cmployed.
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Chapter 6: The Hyperbolic Wavelet Power Spectrea of Typical Signals

There are two mother wavelets that will be ¢mployed in this chapler. The orthogonal
sym3 wavelet, provided in MATLAB software, can be regarded as a useful symmetrical
wavelet whose scale function exists and the proposed hyperbolic wavelet of the symmetricai
"crude” wavelet group as was studied in Chapter 4.

To be a valid mother wavelet funclion, the function must satisfy the following

admissibility constraint which is given by {51, 52]

4

I ylt)dr=0 (6.1.9)

—-—c

The above condition is satisfied by the complex exponential function. since it can be written

as a sum of two sinusoids. Thus, it can be said that the Fourier transform is a special case of

the wavelet transform in which the mother wavelet is the complex exponential.

From Eq. (6.1.4), the wavelet power spectrum WPS(z, @), analogous to the Fourier

power specirum P{w) of an input signal x(n), is given by [33, 34]
WPS(,0) = WT(1,0) - WT (¢, 0) = [WT (1, 0)|* (6.1.10)

where WT(y, w) is the wavelet transform of the input signal x(1).

The main difference between the wavelet transform and the Fourier transform is that
the wavelet transform examines the frequency contents of the signal over a short time period
since its mother wavelet function has finite-time support. By contrast, the Fourier transform
averages the frequency contents of the signal over an infinite time interval by the effects of
sin() and cos(-) functions. The time-support range of most wavelet functions (the
hyperbolic, the Choi-Williams or Mexican-hat and Morlet wavelets for example) is
approxirhately 10- to 20-unit lime index (as was seen in Chapter 4). Thus, by employing the
wavelet transform, it is possible to observe instantaneous behaviour of the signal, which is

vital in studying the signal characteristics and predicting its future behaviour.
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In addition, the WPS technique gives the energy density of the input signal in both time
uil frequency domains, whereas the Fourier power specirum displays the energy contents of
t: «tgnal in the frequency domain only. The combination of time and frequency domains
wvic ds lacal imugzes of the input signal energy contents and thus it is possible to carry out in-
deptly stady of fie signal by examining its instantaneous behaviour. Since there exist many
ditferent wavelet functions, the corresponding wavelet transforms also exist and each
wavelet function has different chai. :istics which means that they can be used for
different specific applications. The hyperbolic wavelet function, which was proposed in )
Chugter 1, is employed in this chapter to further demonstrate the uscfulness of the
hypetbolic kernel family, The hyperbolic wavelet has been shown to have a fine scale
resplution which is suitable for studying signals that do not have broad power spectra such
as transients which was concluded in Chapter 4. The hyperbolic wavelet function also has a
small numbar of computed scales which means it can be used for compression purposes.

This reduces the computational burden of the hyperbolic wavelet power spectrum.

Milligen and others [33, 34] showed how the WFS-and wavelet bispectrum techniques
could be used to study chaos and turbulence whirh provide the foundation for the research
reported in this chapter. In their studies, they showed that the wavelet bispectrum could be
utilised to cifectively study chaos. They showed that the main problem with the wavelet
bispectrum was that there are four dimensions that need to be simuitaneously expressed.

Thus, the con:ept of slicing the wavelet bispectrum at separate frequencies was employed

which was shown to be successful provided that the behaviour of the signal could be
predicied. Farge and others [35] showed that the wavelet transform method could be used to

study turbulence by detecting edgy behaviour in its time-frequency spectrum.

The WPS technique is much simpler than the wavelet bispectrum technique since there
are only three quantities, i.e. time, scale and magnitude, that necd to be simultaneously
displayed. One major advantage of the WPS technique over the Fourier power spectrum
technique is that the signal energy distribution is shown in 3D graphs which do not suppress

the phase information as it is the case of the power spectrum, i.e. the phase information is

included as a function of time,

Jubran and Hamdan {91} used the Gaussian wavelet transform to study the behaviour of
flow induced vibration and cross flow in a cylinder. They compared the performance of a
number of different mother wavelets including the Morlet wavelet, Daubechies wavelets and

the Gaussian wavelet, and then concluded that the Gaussian wavelet was the most suitable
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wavelet for this particular application. In that paper, only the wavelet transform of the input

data was estimated, while the WPS and bispectrum techniques were not considered.

This chapler aims to create a gallery of the hyperbolic and sym3 wavelet power spectra
Jf typical signals. Comparisons of the wavelel power spectra of these signals will be made
to validate the hyperbolic wavelet power spectrum. However, quantitative compari.sons
between the sym3 and hyperbolic wavelets are not the prime purpose of the chapier. Unlike
the work done by Milligen and others, the work reported in this chapter explores further the
effectiveness and usefulness of the WPS technique in studying instantaneous behaviour and

energy distributions of not rtationary signals.

The chapter is organised as follows. Section 6.2 is the main section in which the
wavelet power spectra of several signals are displayed. The WPS of a periodic sinusoidal
signal is studied first in Section 6.2.1 as this is the most common and well-known signal in
signal processing. Section 6.2.2 examines the popular exponential signal exp(—f). Section
6.2.3 calculates the WPS of an exponentially decaying sinusoid sin(1) - exp(=f). The Duffing
cscillator is studied in Section 6.2.4 including Periods 1, 2, 4 and chaotic state. The Fourier
power spctra of thes= signals are also given to validate results drawn by using the wavelet

power spectrum technizjue.

6.2 The Hyperbolic and sym3 Wavelet Power
Spectra of Typical Signals

In this section, characteristics of a number of typical signals inciuding sinusoids,

exponentially decaying sinusoids, Duffing oscillaior, ECG are examined by using the

wavelei power spectrum' (WPS) technique. Instantaneous energy distributions of these

signals are continuously monitored so that their characteristics can be successfully revealed.
I The MATLAB software package has been extensively used to display various signal

wavelet power spectra.

The mziin reasons that the two wavelets, sym3 and hyperbolic, are used to calculate the
wavelet power specira of various signals are firstly, to validate the hyperbolic wavelet
power spectrum technique as an effective tool for signal analysis. Secondly, to verify the

correctness and effectiveness of the newly proposed hyperbolic wavelet, which is one of the

main research topics of the thesis.
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The main advantages of the sym3 wavelet over the hyperbolic wavelet are first, the
former has a larger number of possible calculated scales than those of the hyperbolic
wavelet. This enables the sym3 wavelet 1o cover all the necessary scales for different
signals. However, one main advantage of having a small number of possible calculated
scales is that the wavelet power spectral calculation process is less time consuming. Second,
the scaling function of the sym3 wavelet exitsts which is significantly different from other
wavelets in the "crude” wavelet group. In this chapler, both the sym3 and hyperbolic wavelet
power spectra will be estimated and discussed in detail. For some signals, where the sym3
and hyperbolic wavelet power spectra are aliost identical, only one wavelet power

spectrum will be displayed.

The purpose of creating a gallery of the wavelet power spectra of signals is o recognise
wavelet power spectra of different signals so that analyses of unknown signals can be
examined based on the known wavelet power spectra. Thus, qualitatively, the general
patterns of the wavelet power spectra are mainly focused. Quantitative details of signals
such as signal frequency, although can be estimated, is not strongly emphasised in this

research.

To compare diffarent wavelet power spectra, which are 2-D matrices of complex
elements, normalised wavelet power spectra are employed. The normalisation process is
carried out by dividing every member of the wavelet power spectrum matrix by the
maximum magnitude of the matrix elements. For all graphs in this chapter and Chapter 7,
the "samples” axis, which is used to indicate the sample number of the input signal, and the
“Time Index" axis, which is used in the wavelet context for time expansion, are identical
except that they are used in different context. Contour scales have also been added to all

graphs where appropriate so that energy density levels can be identified.

By using the WPS technique, harmonics and sub-harmonics are displayed. A harmonic
peak is recognised by an island of closed contour curves with the minimum scale of 0.7 on
the normalised scale {113]. If the scale is less than 0.7, the peak is considered as a sub-
harmonic. This convention is applied in this chapter and Chapter 7 to recognise harmonic
and sub-harmonic peaks. For al! graphs in this chapter and the next chapter, the "Scale
Index" and "Time Index" correspond to a and b respectively as these notations were used in

Chapter 4. Thus, interchangeably, it should be understood that @ and b are defined as "Scale

Index" and "Time Index” respectively.
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6.2.1 The Wavelet Power Spectrum of a Sinusoid
In this section, contour plots of WPS,,,; and WPS,,, of a periodic sinusoid sin(27m) are given

in Figure 6.2.1 and Figure 6.2.2 respectively in which periodicity can be identified by the 5
following points

1. There is a clear boundary between the peaks of the signal which indicates strong

periodic behaviour. In addition, the energy is mainly concentrated at harmonic peaks
and there is no broad energy distribution over a wide scale range. The harmonic peaks 4
are located at the approximate scale of a = 50, 13
2. Contour curves are closely spaced and there are a large number of bounded small-
radius contours towards the harmonic peaks.
3. The energy is discretely and uniformly distributed. The most important and
recognisable feature of a pericdic signal is that its energy distribution is repetitive. It
can be seen that the discrete peaks of the input signal are clearly displayed by the WPS
technique. Thus, it is evident that for periodic signals, their wavelet power spectra are

not broad and smeared but discontinuous and exhibit distinctive peaks.

The WPSW ol sin{2nt}

150

Figure 6.2.1: Contour plot of the WPS,,3 of sin(272) signal
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The WPS,y, in Figure 6.2.2 shows distinctive peaks which indicate strong periodic
behaviour of the signal as expected. Compared with the WPS,,,,; given in Figure 6.2.1, the
WP Sys, requires a smaller number of scales which improves the computational efficiency of
the hyperbolic time-frequency power spectrum. From Figure 6.2.1 and Figure 6.2.2, the

scale ranges of a harmenic peak using the sym3 and hyperbolic wavelets are approximately

20 £ agms < 130 and S < ayy, < 45 respectively, where a,yms and ay,, are the scale indices of
the sym3 and hyperbolic wavelets respectively. As can be seen, the WPS,,»; and WPS,,, are
consistent which validates the hyperbolic wavelet and therefore the hyperbolic wavelet

power spectrum technique.

The Magnilied WPSHW, of sin{2nt)

Scale Index

Figure 6.2.2: Contour plot of the WPS, of sin(2%) signal

The relationship between the centre scale, @c.ur., and the frequency of the signal, fiigrah

is given by [99]

f samp Wy i
_ ' ©62.1)
or f, signal 2 fw amp Beentre

[ samp @y I
a = -
cenire 27: ‘ f wsamp f .ﬂ'gnat

WhET fusanps firp a0 @b are the wavelet sampling frequency, sampling frequency of the

signal and centre frequency of the wavelet respectively.
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From Eq. (6.2.1), the signal frequency figmat can be estimated based on Lhe centre scale
Aeenare SPECified by the wavelet power spectrum. The sampling frequency of the signal Seanp 18
usually abo:t 100 times larger than the wavelet sampling frequency fu, since the number
of required sampling points for a wavelet function is much smaller than that for a signal as
discussed in Chapter 4. For a sinusoidal input signal of sin(2m), using the sym3 wavelet
with the centre frequency wp = 3 rad/s, d e = 50, Figure 6.2.1 and Eq. (6.2.1), the signal

frequency fi;uw can be approximalely estimated as

fsignnf = '_—2":_' = =096 He (6.2.2)

Similarly, the signal frequency fi.a of the signal sin(277) can be approximately
estimated using the hyperbolic wavelet with the centre frequency ay = = 1 rad/s, acenyre =
13, Figure 6.2.2 and Eq. (6.2.1}, we obtain

f.figna! ='_2;_ ==12 Hz (6.2.3)

From the calculations performed in Eqs. (6.2.2} and (6.2.3), it is clear that the
frequency of the signal can be estimated. It should be noted that the percent error could be
as high as 20% (Eq. (6.2.3)) as in the case of the hyperbolic wavelet. Thus, quantitatively,
the signal frequency can be more accurately estimated by using the Fourier power spectrum

technique.

6.2.2 The Wavelet Power Spectrum of an Exponential
Transient Signal

Exponential signals are common responses of first- and second-order linear circuits. This is
the main reason why it is included in this research. The WPSs,.; of a transient signal exp(~)

is given in Figure 6.2.3.
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Figure 6.2.3: Contour plot of the WPS,,,,; of the exp(~r) signal

The WPS,,,; of an exponential signal exp(~f) is broad and there seems to exist one
distinctive peak represented by the smatlest-radius contour curve with a large contour scale
in Figure 6.2.3, The contour plot of the exponential transient signal is not closely spaced as
it was in the case of a sinusoid. In fact, the number of closed contours is less than that of the

sinusoid even though they both have dominant peak(s).

The decaying rate or time constant of the exponential signal is approximately the scale
difference between the centres of two adjacent contours. From Figure 6.2.3, the scale
difference between the inner-most contour curve and the second inner-most curve is about
60 which corresponds to the decaying rate of 0.8 by using Eq. (6.2.1). The accuracy of the
estimatioﬁ can be improved by taking the scale-difference average of all adjacent-contour

pairs which yields the time constant of about 0.99. This is the expected time constant of the

investigated exponential signal.
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It should be noted that the energy of an exponential signal is not concentrated at one
particular scale, but instead, spreading over a wide scale range as can be seen in Figure
6.2.3. The exponential energy tends to form closed contours, but this process appears to be
very slow, i.e. contour curves have near-infinitely large radii which reflect the nature of
exponential transient signals. The WPS,,, is given in Figure 6.2.4,

The WFS, ot exp{-t)
1000 o

3) W

700}

GOCH

500

MMMW/W//

mWW’PWWW% %

Scale Index

150 200 250 300 350 400 450 500
Time index

Figure 6,2.4: Contour plot of the WPS},, of an exp(-1) signal

The time constant of the exponential signal can be similarly estimated using the same
method applied to the hyperbolic wavelet. From Figure 6.2.4, the scale difference between
two inner-most adjacent contour curves is approximately 20, which corresponds to the time
constant of 0.78. By taking the scale-difference average, we obtain the estimated time
constant of the exponential signal of about 0.95 which is close to the expected result.
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Even though the time constant of a transient signal can be estimated with reasonable

precision, it is still hard to estimate since the centre of each contour curve is sometimes hard
to determine. For example, for the case of the sym3 wavelel, since the centres of all contour
curves cannot be clearly displayed, the distance between two adjacent curves along the
vertical line is taken instead. For the hyperbolic wavelet, since most of the curves are clearly ’ )
displayed, the scale difference between two adjacent centres can be effectively estimated. 1
Secondly, this process is lengthy and tedious since the average value of the scale differences

of all contour curves has to be calculated.

The WPS,y, in Figure 6.2.4 is consistent with the WPS,,,; given in Figure 6.2.3 in
which large-radius contours are detected. The peak is detected by the smallest contour
curve. Even though the peak contour curve has a high scale, it is not filled which illustrates
the main difference between sinusoidal signals and exponential signals. For the former, all
peak contour curves are filled, whereas that is not the case for the latter. If the contour
curves are filled, then the signal energy tends to be more concentrated around the peak
which implies periodic characteristics. It should also be noted that the WPS,,, is calculated

over a smaller scale range than that of the WPS,,.;.

The compression ratio is estimated by counting thc number ol contour curves up o a
certain scale. Frorn Figure 6.2.3 and Figure 6.2.4, the scale ranges of the inner-most contour
curves of the WPS,m: and WPS,,, are approximately 320 < « < 950 and 50 £ a < 120
respectively. This yields the compression ratio in the range of about 6.4 and 7.9. The
wavelet power spectra of periodic sinusoidal and exponential signals are used to establish a

basis for further studies on other signals as shall be seen later.

6.2.3 The Wavelet Power Spectrum of an
Exponentially Decaying Sinusoidal Signal

This section examines the WPS of an exponentially decaying sinusoidal signal
exp(—fysin(2mr). The periodic and transient components of this signal were separately
studied in Sections 6.2.1 and 6.2.2 respectively. The contour plot of its WPS,;,; is given in

Figure 6.2.5. The WPSpy, is similar to the WPS,y.; and is not given in this case.
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Tirne Dornain Wavetorm ol the exp-hsin(zsh

The WPS, ., of sinf2uexp(-t

Time Index

Figure 6.2.5: Time-domain waveform and contour plot of the WPS,,,; of an exponentially
decaying sinusoid exp(—t)-sin(2/). The WPS,,, is very similar to the WPS,,,;.

It is expected that this signal have a combination of transient and periodic
characteristics which hopefully can be detected by the WPS technique. From Figure 6.2.5, it
is evident that the energy density is densely concentrated at the scale of about 100 for three
harmonic peaks and decays to zero as the signal reaches steady state. There are three
dominant and distinctive peaks in the signal whose positions correspond to those shown by
the time-domain waveform. These peaks are clearly detected by using the WPS technique
and indicated by three closed contours which represent periodic characteristics of the signal.
The diminishing of energy as the signal reaches steady state indicates that the final value of
the signal is zero. It should also be noted that the number of contour curves surrounding the
peaks decrease as the time index increases which reflects transient characteristics in the
signal. In particular, the number of contour curves in the third peak is only two at low scales
compared with nine curves at high scales for the first and second peaks. Thus, it might be

suggested that exponentially decaying sinusoidal signals with a zero final value can be well

recognised by using the WPS technique.
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If the final value of an exponentially decaying sinusoidal signal is non-zero, its WPS is
expected to be broad since the peaks are now smoothened by a broad energy distribution of
the DC component [41]. As a result, the WPS of an exponentially decaying sinusoid with a l :
non-zero final value has only one major peak whose contours are not closely spaced as can 3
be seen in Figure 6.2.6. It should be noted that the transient characteristics of the signal are '

[
indicated by large-radius contow curves as was seen in Section 6.2.2 for the case of an 8
exponential signal.

Time Domain Wavetorm ot sinf2ntexgy-} + 3
L]

L] L] T |
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The issm of sin{2rljexp-t) +3
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Figure 6.2.6: Contour plot of the WPS,; of the sin(27)-exp(—) + 3 signal

The main difference between an exponentially decaying sinusoid with a non-zero final

value and an exponential signal is that for the former the radii of energy contours are not

infinitely large but finite. This reflects periodic characteristics in the former signal whose
WPS tends to form islands of closed contour curves. For comparison purposes, the WPSy,,

of the signal sin(27)-exp(—f) + 3 is shown in Figure 6.2.7.
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4 Time Domain Wavelorm of sin¢2nt)exp(—t) + 3
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Figure 6.2.7: Time-domain waveform and contour plot of the WPS,,,, of the sin(27r)-exp(-)
+ 3 signal

From Figure 6.2.7, the upper parts of the contour curves have trick edges which
indicate an energy-smearing phenomenon. It should not be incotrectly concluded that the
signal is chaotic since the contour curves are densely focated in the time-frequency plane
which indicates discrete energy distribution. These features allow distinctive differentiation
between exponentially decaying sinusoids with a non-zero final value and chaotic signals
such as the ECG which will be examined later. The scale ranges in Figure 6.2.6 and Figure
6.2.7 are different since the WPS,,, in Figure 6.2.7 is magnified so that its contour curves
can be clearly displayed. It is clear that the hyperbolic wavelet is more efficient than the

sym3 wavelet in which more contour curves are displayed over the same scale range.

From Chapter 4, it was reported that the hyperbolic wavzlet is most suitable for
transient signals. By comparing Figure 6.2.6 and Figure 6.2.7, it is clear that the WPS;,, can
display more contour curves than the WPS;,; due to the former has a finer scale resolution
and a smailer total number of calculated scales. This fact was also shown in Section 4.3.6

when calculating the hyperbolic, Morlet and Choi-Williams wavelet power spectra of the

English vowel "e"

143




Chopter 6: The Hyperbolic Wavelet Power Spectra of Typical Signals

In addition, by comparirg Figure 6.2.3, Figure 6.2.4, Figure 6.2.6 and Figure 6.2.7, it
might be suggested that the hyperbolic wavelet is a symmeirical function whose wavelet
power spectrd are perfectly symmetrical about the vertical line. Thus, graphical
representations of the hyperbolic wavelet power spectra are better displayed than using the
sym3 wavelet. As a result, it is easier to differentiate the exponential signal from the
exponentially decaying sinusoidal signals with zero and non-zero values by using the
hyperbolic wavelet power spectru.. Further, one advaniage of the hyperbolic wavelet over

the sym3 wavelel is that the former can reveal more information over an identical scale

range than the latter due to the compressi~  ~kility of the hyperbolic wavelet of having a
smaller total number of calculated scales. fhis also increase: tte efficiency of the

hyperbolic wavelet power spectrum calculation process.

6.24 The Wavelee Power Spectrum of Duffing
Oscillator

Duffing oscillator has been popular in signal processing because of its simplicity [1]. In this
section, the Duffing oscillator is studied by calculating its wavelet power spectra of Periods
1, 2, 4 and chaotic state. From this, it is possible to determine hot. its energy is distributed
and therefore deducing the systern characteristics and detecting possible transition(s) into

the chaotic region.

The equation governing Duffing oscillator is given as {!]

ii + it — 0.5( — 1) = Feos(wt) (6.2.4)

where = 0.168, @ = 1, u(?) is the displacement funciion of the time ¢ and F is the driving

function. For Period 1, F\ = 0.05, Period 2, F2 = 0.178, Period 4, F4 = 0.197 and for chaotic

state, Fqs = 0.21. The initial conditions used for the system were [# &])=[C 1]

6.2.4.1 -Duffing Period 1

Duffing Period 1 waveform can be regarded as a genuine periodic signal whose energy is
concentrated over the high-frequency range (low scale range). Duffing Period 1 time-

domain waveform and its WPS using the hyperbolic and sym3 wavelets are given in Figure
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6.2.8. It should be noted that the energy is uniformly and repetitively distributed over the
whole range of the time index which means each segment of the input data points is almost

identical. This means that there is no degree of disorder or chaos in Duffing Period |
waveform.

{a) Dufting Pesiod 1 ‘Wavelorm

04 . r T . : . ; , —
02k
|
w2zt |
.4 i 1 H 1 1 1 1 )\ L
0 &0 W00 150 200 250 300 350 400 450 500
(b} The WPS,,_, of Dutling Period 1
50 T T .
a0t
-3
B
s |4
&%
10F
0 1
0 50

Figure 6.2.8: Time-domain waveform and contour plot of the WPS;;,; of Duffing Period 1.
The WPS,,, of Duffing Period 1 waveform is very similar to the WPS,,,,; except that it is
displayed on a different scale range.

From Figure 6.2.8, periodic (harmonic) peaks of Duffing Period 1 waveform are clearly
separated which is similar to the case of the sinusoidal signal sin{¢) studied in Section 6.2.1.
Apart from a minor drift of the signal at the beginning where the time index is roughly b <
300, there is no difference in the amount of energy density over time, which suggests that
Duffing Period 1 waveform is near periodic. The duration during which the periodic peak
occupies is short which suggests that the signal energy is highly concentrated. This fact has
been well kno vn and extensively reported in the literawre [1]. Thus the correctness and
consistency of the proposed WPS technique are validated, It should be noted that the symbol
b is used as the time index as explained earlier in Section 6.1. The symbol a, which was

used in Section 6.2.1, will be used as the scale index. These notations will be conveniently

used in this chapter and the next chapter.
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6.2.4.2 Duffing Period 2

The driving force used for Duffing Period 2 waveform in Eq. (6.2.4) is F, = 0.178. The '
time-domain waveform and its WPS,m3 are displayed in Figure 6.2.9. The WPS,,, of ﬁ
Duffing Period 2 waveform is given in Figure 6.2.10.

(a) Ouffing Chactic Wavetorm
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Figure 6.2.9: Time-domain waveform of Duffing Period 2 and contour plot of its WPS3

The time-domain waveform of Duffing Period 2 shows an early sign of deviation from
periodicity in which the number of detected sub-harmonics is large. The signal regains its
near-periodic characteristics at the time index b = 1,400. For b = 1,400, the signal exhibits
similar characteristics to those of Duffing Period 1 waveform which suggests that
periodicity is dominant. However, since its contour scale is lower than that of Duffing
Period 1 waveform, it can be suggested that Duffing Period 2 waveform does not
completely regain its periodicity as can be seen in Figure 6.2.9. Figure 6.2.11 and Figure
6.2.12 show the magnified contour plot of the WPS,,,.;and WPS, for 2,000 2 b = 1,000 and

0 < b < 1,100 respectively.




Chapter 6: The Hyperbolic Wavelet Power Spectra of Typical Signals

; [£5)] DﬂngPenodZWav form

A

-1
0 20 w0 60 8% W0 10 1400 1800 100 2000

& The WPS,  of Dutiing Period 2
T L] L}

T —

h Rl - AN
ﬂ 7 % 1 B
wemin)

600 800 1000 1200 1400 1800 1800 2000
Time Index

Figure 6.2.10: Time-domain waveform and contour plot of the WPSy,, of Duffing Period 2
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Figure 6.2.11: Magnified contour plot of Figure 6.2.9 and Figure 6.2.10 for 2000202
1,000

147




——_*

Chapter 6: The Hyperbolic Wavelet Power Spectra of Typical Signals

The near periodicity of Duffing Period 2 waveform is detected by a series of closed and
filied contours (at high scales) with repetitive patiems over time. Although there are discrete
and filled contours, more sub-harmonics are detected by the WPS technique in Daffing
Period 2 waveform than in Duffing Period 1 waveform. In addition, the contour scale of the
wavelet power spectrum of Duffing Period 2 waveform is lower than that of Duffing Period
1 waveform which suggests that the former has a broader energy distribution than that of the
latter,

{a) Magnitied WPSW of DuHing Period 2 for 05 b< 1100

Scale Index

1000 1100

Time Index

Figure 6.2.12: Magnified contour plots of the WPS,,,; and WPS,,, of Duffing Period 2
waveform for 0 £ b £ 1,100. The colour contour scale is similar to those given in Figure
6.2.9 and Figure 6.2.10.

From Figure 6.2.12(b), it is clear that for the hyperbotic wavclet, main details of the
WPS,,, are successfully displayed. However, minor fine details are missing, i.e. sub-
harmonics ate not clearly shown as in Figure 6.2.12(a), which are mainly due to the effects
of having a small total number of calculated scales or the compression ability of the
hyperbolic wavelet. However, more importantly, the ¥WPSym; and WPS,,, are consistent and
can be employed to successfully detect periodicity and deviation from periodicity of Duffing

Period 2 waveform.
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6.2.4.3 Duffing Period 4

Duffing Period 4 waveform can be regarded as a transition state from periodicity to chaos
[1] which hopefully will be detected by using the wavelet power spectrum technique. The
time-domain waveform and its WPS,,,; of Duffing Period 4 are given in Figure 6.2.13. The
WPSyy, is given in Figure 6.2.14.

{a) Duifing Period 4 Waveform

! v
0.5 .
Q
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-0.5F ! v
-1 L 1
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a0 {b} The WPSW of Dutfing Period 4

)

“.

Lo

Time Index

Figure 6,2.13; Duffing Period 4 time-domain waveform and contour plot of its WPSyn3

Similar to Duffing Period 2 waveform, Duffing Period 4 waveform exhibits early
deviation from periodicity with 2 major harmonics and a number of sub-harmonics for b £
700. Transitions into the chaotic region is signalled by continuous closed contours at b =
700 with a widei scale range as can be seen in Figure 6.2.13. The continuity of energy
indicates that the waveform has entered into the chaotic region. However, chaotic
components of the waveform are not strong enough since periodic components are still
present. For b 2 700, the signal partially regains its periodicity with low contour-scale
curves. All of the above features can be clearly seen in the magnified contour plots of the

WPS,ym3 and WPS,,, shown in Figure 6.2.15.
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) (a) Duifing Pariod 4 Wavelorm
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Figure 6.2.14: Time-domain waveform and contour plot of the WPS},, of Duffing Period 4 ’
i

The main difference of Duffing Period 4 waveform from Duffing Period 2 waveform is

that after the signal regains its periodicity, a number of sub-harmonics at low scales are still
detected in the former. Whereas, for the latier, repetitive energy patterns at high contour z
scales are detected which are similar to Duffing Period 1 waveform. This cleatly shows that L
Duffing Period 2 waveform is more periodic and stable than Duffing Period 4 waveform. ;
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(a) Magnitied Conlour Plot of the WPS,
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Figure 6.2.15: Mugnified contour plots of the WPS,,,,; and WPS,,, of Duffing Period 4
waveform which shows the transition into the chaotic region at & = 700. For & 2 700,
Duffing Period 4 waveform partially regains its periodicity by having repetitive closed
contour curves. However, these curves have low contour scales which suggests that their
energy is not densely distributed. Thus, the waveform is vulnerable to chaotic behaviour.

From Figure 6.2.13 and Figure 6.2.14, it can be seen that the hyperbolic and sym3
wavelet power spectra of Duffing Period 4 waveform are consistent in which the transition
into the chaotic region is detected at b = 700. For & < 700, near-periodic behaviour is
detected in the waveform and for b > 700 a mixture of chaotic and periodic components are
detected. However, due fo the compression effects of the hyperbolic wavelet, some sub-
harmonics are suppressed. It is important to note that by using the wavelet power spectrum
time-frequency technique, it is possible to determine when the waveform enters into the

chaotic region hence the transition region of the waveform can be clearly identified.
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6.2.4.4 Duffing Chaotic

For Duffing chaotic, the driving force has the value of Fenaes = 021, The time-domain
waveform and its WPS,,,,; are shown in Figure 6.2.16. The WPS,,, is given in Figure 6.2.17.

The magnified versions of these figures are given in Figure 6.2.18 and Figure 6.2.19
respectively.

{a) Duffing Chactic Wavelomn
—
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Figure 6.2.16: Time-domain waveform of Duffing chaotic and contour plot of its WPSy;

From Figure 6.2.16 and Figure 6.2.17, Duffing chaotic waveform exhibits early
deviation from periodicity as was detected in Duffing Period 2 and 4 waveforms. However,
instead of regaining its periodicity, Duffing chaotic waveform remains chaotic after the
transition into its chaotic region. Duffing chaotic state is signalled by a non-repetitive and
broad energy distribution in which distinctive peaks are unevenly distributed for time index
less than 1,100, which is the transition region of the waveform. All of these features can be

seen in Figure 6.2.18(a) and Figure 6.2.19(a).
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From Figure 6.2.16 ard Figure 6.2.18, for time index greater than 1,100, it is evident
that the waveform has entirely entered into the chaotic state in which its fundamental
periodic components have disappeared as compared to Duffing Period 1, 2 and 4
waveforms. The energy is unevenly distributed over the scale range of 20 to 250. There is
no particular energy concentration in any region ofi the spectrum {due to low contour scales),
which is broadly distributed (approximateiy at the time indices of 1,100, 1,700 and 2,500 in
Figure 6.2.17(b)), which strongly suggests that the waveform is chaotic. It should be noted
that in this case, even though the curves have low contour scales, they still represent
repetitive energy patterns which means that for time index greater than 1,100 Duffing
chaotic waveform still possesses weak periodicity. Thus, it can be suggested that Duffing
chaotic waveform is superposition of periodic and chaotic components. The main difference
between Duffing Period 4 waveform and Duffing chaotic waveform is that there are no
disordered energy paiterns in the former, whereas the contour scales of the latter vary with
time which suggests disordered characteristics. Figure 6.2.18(b) and Figure 6.2.19(b) clearly
show the magnified energy distribution of the waveform for time index greater than 1,100.

(a) Tima Domain Wavelomof Dufiing Chaos
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Figure 6.2.17: Time-domain waveform and contour plot of the WPSy,, of Duffing chaotic
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Figure 6,2.18: Magnified version of Figure 6.2.16(b), the horizontal and verticai axes are
"Time Index" and "Scale Index" respectively as was in Figure 6.2.17
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Figure 6.2.19: Magnified version of Figure 6.2.17(b)
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Sections 6.2.1-6.2.4 examined signals whose characteristics have been well known.
The next section calculates the WPS,n; and WPS,,, of the ECG signal. The Fourier power

spectrum technique will also be used so that the effectiveness of the WPS technique can be
assessed.

6.2.5 The Wavelet Power Spectrum of ECG Signal

The practical ECG (Human Electrocardiogram) is examined in this section due to its
importance in medical diagnosis. The time-domain waveform of the ECG signal is
displayed in Figure 6.2.20.

Magnified Time Domain of the 1,024 sample ECG Signal
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Figure 6.2.20: Time-domain waveform of the ECG
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Wavelat Power Spectrum of 1024 point ECG, scale = 1:4098

1500

Scale Index 0 0o

Time Index

Figure 6.2.21: 3-D mesh plot of the WPS,,,,; of 1024-point ECG

The WPSyyn; of ECG signal, which is shown in Figure 6.2.21 in 3-D plot and Figure
6.2.22 in contour plot, is similar to that of the exponential signal shown in Section 6.2.2 and
quite similar to the WPS,,,; of the exponentially decaying sinusoid with a non-zero DC
component shown in Section 6.2.3. For periodic and exponentially decaying sinusoidal
signals, their wavelet power spectra ail have dominant peaks and large-radius contours. The
WPS,ym; of the ECG does not have identifiable peaks and its contours have very large radii
which suggests that the ECG might be a transient type. The energy distribution of the ECG
is spread over a wide scale range as can be seen in Figure 6.2.22. In addition, ECG contours

are not sharp but thick in width.

The scale range of contour curves is worked out by estimating the corresponding scales
of the lowest and the highest contours. For example, in Figure 6.2.22, the scale range of the
sym3 wavelet power spectrum will be 900 < a, not 2,000 £ a since the lower contour
stretches down to the scale of 900 and 2,000 is its starting point. This method has been used

in this chapter and Chapter 7 to work out the scale range of various wavelet power spectra.
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From Figure 6.2.21, the ECG energy distribution is smooth and there are no abrupt
changes in its energy density over the high- and low-valued segion of the scale and time
indices. By comparing the WPS,,,; in Figure 6.2.6 (the exponentially decaying sinusoid with
a non-zero fina value) and Figure 6.2.22 (ECG signal), it is evident that the energy density
of the ECG is broader and distributed over a larger scale range of 900 € ¢ < 3,500 than that
of an exponentially decaying sinuscid with a non-zero DC component (500 < a < 1,800). In
addition, the inner-most contour curve has the scale range of 1,800 < a < 3,700 for the ECG
and 900 < a £ 1,800 (smaller scale range than the ECG) for the exponential signal, which
suggests that the former might exhibit chaotic characteristics. However, since the energy

patierns provided by the wavelet power spectral technique are almost similar, it is difficult
to distinguish between these signals.

WPSW of tha ECG for the first 1024 samples

wl ] T TN\
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Figure 6.2.22: Contour plot of the WPS;n; of 1,024-point ECG signal
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For comparison purposes, the WPS,, is shown in Figure 6.2.23 in which it is
symmetrically displayed. From Section 6.2.3, the WPS;,, of an exponentially decaying
sinusoid with a non-zero final value is very similar to that of the ECG. The only difference
between the two wavelet power spectra is that the occupied scale range of the ECG (120 < a
< 1,800 in Figure 6.2.23) is wider than that of an exponentially decaying sinusoidal signal
with a non-zero final value (70 < a < 850 in Figure 6.2.7). This suggests that the ECG
energy distribution is broader than that of the exponentially decaying sinusoid signal as
explained earlier. In addition, the wavelet power spectrum of the exponential signal has
more contour curves over the same scale range than those of the ECG wavelet power
spectrum which further supports the above statement.

WPSMOI the ECG for lhe first 1024 samples
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Figure 6.2.23: Contour plot of the WPS, of the ECG

The scale ranges of the ECG and an exponentiaily sinusoidal signals, using the
hyperbolic wavelet, are clearly different compared with those observed using the near-
symmetric sym3 wavelet which makes the differentiation of these signals casier. This
indicates the usefulness of a perfectly-symmetrical wavelet such as the hyperbolic wavelet.
Thus, the hyperbolic wavelet power spectrum technique can be used to study the ECG

signal by examining the occupied scale range of its wavelet power spectrum. In general,
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however, the WPS technique is nol very effective in studying the ECG signal since it cannot
clearly differentiate between an exponentially decaying signal and the ECG signal due to
their identical wavelet power spectra. This is a disadvantage of the WPS technique

compared with the Fourier power spectrum technique as will be further explored in Chapter
7.

Although the wavelet power spectra of the ECG and exp(—r)-sin(t) + 3 signals are very
similar, their Fourier power spectra, given in Figure 6.2.24 and Figure 6.2.25 respectively,
are quite different which shows that the Fourier technique is more effective than the WPS
technique in this case. Thus, depending on the paricular application, the wavelet power
spectrum technique or the Fourier power spectrum technigue should be used to reveal the
signal characteristics. In this case, it might be suggested that the ECG signal can be
effectively studied using the Fourier power spectrum technique. This conclusion is
consistent with the findings in [4). However, transient signals such as exp(—f) and
exp(—t)sin(f) + 3 can be successfully studied by employing the wavelet power spectrum

technique since their Fourier power spectra are quite similar as can be seen in Figure 6.2.25.

Fourier Powar Specirum of the ECG

Paower Spectrum Magnituda {d8)

0 ; P i i ; ; '. .
"o 0.9 %2 03 04 05 08 07 08 ) 1
Normalised Frequency

Figure 6.2.24: Fourier power spectrum of ECG signal. The frequency is normalised by
dividing every frequency bin by the largest frequency bin in the signal spectrum. This
method of frequency normalisation is used in this chapter and also in Chapter 7.
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From Figure 6.2.24. it is evident that the ECG signal has a broad power spectrum
which suggests that it is not periodic. This is consistent with the conclusions drawn by using
the WPS technique from Figure 6.2.21 1o Figure 6.2.23. Transient characteristics of the ECG

signal, however, are not effectively delected by using the Fourier power spectrum lechmque
but can be detected by using the WPS technique.
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Figure 6.2.25: Fourier power spectra of exp(—1) and exp(—)-sin(r) + 3 signals

From Figure 6.2.25, there is a minor discrepancy with the magnitude of the power
spectrum of the f () = exp(~f)-sin(f) + 3 signal at DC condition. The power of the signal
[0 at DC condition is 9 which corresponds to about 10-logi6(9.0) = 9.5 dB. The signal
power calculated by MATLAB gives a value of about 30 dB. To work out the power at DC

condition, we take the magnitude of the power spectrum at DC, which s 30 dB, and divide

that by 27 which yields about 12 dB. This corresponds to a percent error of about 26%
with respect to 9.5 4B. It should be noted that this method of power spectral estimation by
MATLAB is only approximate. In addition, it is the qualitative information of the graph that
is of importance, not the quantitative details. However, to provide a satisfactory result, the
Welch method of power spectral estimation can be used to obtain the power spectrum of the

signal. This method yields the DC power of about 9.6 dB which corresponds to about 0.1%
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percent error. However, calculation of the Fourier power spectra of signals is not the main

emphasis of this chapter and we stop the discussion about power speciral estimation at this
point.

The following table summarises notable characleristics of an exponential signal
exp(=f), an exponentially decaying sinusoidal signal with a zero final value exp(—f)-sin(f), an

exponentially decaying sinusoidal signal with a non-zero final value exp(-r)-sin() + 3 and
the ECG signal.

Table 6.2.1: Characteristics of exp(=1), exp(=1)-sin(?), exp(=1)-sin(r) + 3 and ECG  signals

Signal Characteristics
exp(—1) Exhibits transient behaviour, periodicity is not present, bounded
energy
sin(ry-exp(—1) Exhibits transient and periodic behaviour, strong sinusoidal

decaying characteristics, bounded energy, WPS contour curves have

small radii; energy smearing is not present

sin(?)-exp(—£y+ 3 | Exhibits transient behaviour, bounded energy due to closed contour
curves. The density of contour curves is high which suggests that
the signal is not chaotic. WPS contour curves have large radii;

energy smearing is not present.

ECG Exhibits transient and chaotic behaviour, bounded energy, WPS
contour curves have large radii, energy smearing is present. The
occupied WPS scale range of the ECG signal is wider than that of

the sin{f)-exp(—¢) + 3 signal.

Throughout this chapter, comparisons between the hyperbolic and sym3 wavelet power
spectra have been made. It can be seen that the WPSyy, of most signals have a smaller scale
range than that of the WPS,,,; which significantly reduces the wavelet power spectral
computational burden. In addition, the WPSy,, converges faster than the WPSy.; in the case
of an exponential signal in which the signal energy distribution is more clearly displayed by
using the hyperbolic wavelet than by using the sym3 wavelet, One advantage of the WPSy.3
over the WPS;,, is that the former can clearly display all sub-harmonics of signals, whereas,
some sub-harmonics are missing if the laiter is used due to the compression efiects (was

studied in Chapter 4) as will also be demonstrated in Chapter 7. This can be seen as a trade-

off between efficiency and fine-detail display of the hyperbolic and sym3 wavelets.
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6.3 Remarks

Five different signals have been studied in detail in this chapter including a sinusoid, an

exponential transient, an exponentiaily decaying sinusoid with a zero and non-zero DC

component, Duffing oscillator and the ECG. We have employed contour plots of their

wavelet power spectra to recognise the presence of periodic, transient and chaotic

characteristics. The following remarks are drawn from the numerical simulation and

analysis in this chapter

1.

2.

4.

If the contour plot of the WPS consists of a repetitive and discrete sequence of islands
of closed and filled contour curves at high scales, then it is effectively periodic. Typical
examples are a sinusoidal signal in Section 6.2.1, Duffing Period 1 and 2 waveforms in

Section 6.2.4;

If the contour plot of the WPS consists of one peak and the contour curves have very
large radii which indicate a slow converging rate, then it is of a transient type. A typical
example is an exponential signal in Section 6.2.2. If a small number of islands of
distinctive closed contour curves are present, then the signal is transient-periodic, e.g.

an exponentially decaying sinusoid with a zero final value in Section 6.2.3;

If the contour plot of the WPS consists of bounded contour curves with large radii :
then the signal is either transient-periodic (quasi periodic), e.g. an exponentially
decaying sinusoid with a non-zero DC component in Section 6.2.3, or chaotic, e.g. the
ECG. To differentiate between these two cases, the occupied scale ranges of their
wavelet power spectra are used. If the WPS of the signal covers a large scale range
(approximately larger than 2,000 scales), then the signal is chaotic, e.g. the ECG.

Otherwise, it is transient-periodic;

. If the WPS is continuous (ECG signal) and there are changes iq its energy patterns, i.e.

the energy distribution varies for different data segments, that means the signal is

possibly in the transition into the chaotic region, e.g. Duffing Period 4 waveform,;

* These radii are smaller than those discussed in Case 2.
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5. If the contour plot of the WPS is non-repetitive and contour curves have low scales,
then the signal has entered into the chaotic region, e.g. Duffing chaotic waveform. It
should be noted that for cases 4 and 5, the occupied wavelet power spectral scale range

of the signal is wide and its energy densily is broad and continuous.

This chapter has established a gallery of the WPSy,, and WPS,y,,: which are necessary

for the next chapter in investigating speech and music signals using the hyperbolic and sym3

wavelets.

6.4 Conclusion

The contribution of this chapter is to establish a gallery of the proposed WPS,,,. Five typical
signals have been examined including a sinusoid, an exponential transient, an exponentially
decaying sinusoid with a zero and non-zero DC component, Duffing oscillator and the ECG.
The Fourier power spectra of these signals have also been displayed and compared with
their wavelet power spectra. The Duffing oscillator has been examined in detail and the
observed resulis are consistent with previous results reported in the literature. The ECG
signal appears to exhibit chaotic behaviour in which smooth, broad and no major harmonic

peaks were detected in its wavelet power spectrum.

Although the WPS technique has an advantage (over the Fourier method) of showing
signal energy distributions in time and frequency domains, it is not effective when
examining the ECG signal. In fact, the WPS,, and WPS,,; of the ECG and the
exponentially decaying sinusoid with a non-zero DC component signals were almost
identical. In contrast, the Fourier power spectra of these signals can be differentiated which
is a disadvantage of the WPS technique. Thus, the most appropriate technique is identified
based on the application and the nature of the signal. The next chapter carries out
investigations on speech and music signals by using the hyperbolic and sym3 wavelet power

spectrum techniques.




Chapter 7: THE HYPERBOLIC
WAVELET POWER SPECTRA OF
MUSIC AND SPEECH SIGNALS

This chapter studies two different non-stationary signals — music and speech — by
examining their hyperbolic and sym3 wavelet power spectra. These wavelet power spectra
will be compared and discussed. Background on the wavelet and Fourier transform methods
was discussed in detail in Chapter 6. It will be chown that music and speech signals can be

effectively studied by using the wavelet power spectrum technigue.
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7.1  The Wavelet Power Spectrum of Musical
Signals

Music signals are studied in detail in this section using the hyperbolic wavelet power
spectrum technique. Musical sounds have been studied by a number of researchers on music
multi-dimensional scale analysis [70-72}, music classification [103, 104, 111, 112] music

identification [105] and music recognition by using the continuous wavelet transform [112).

Classifying different piano sounds was studied by Delf and Jondral by using a number
of time-frequency techniques such as the Short-Time Fourier Transform (STFT) and the
Wigner-Ville (WV) time-frequency distribution. As was reported in Chapter 3, the WV
kemel was not effective since it generates unnecessary cross terms in the time-frequency
plane which provides misleading information about the signal. Thus, the Wigner-Ville time-
frequency power spectrum technique is not effective. Even though the WV time-frequency
technique was used in [103], instantaneous behaviour of musical signals was not
emphasised in the paper. The STFT is also not an effective time-frequency technique since
its time and frequency resolutions are coarse [8]. The technique used in this chapter is the
new hyperbolic time-frequency power spectrum technique, which was shown in Chapter 3
to be more effective than the WV time-frequency technique in terms of cross-term
suppression, auto-term resolution and noise robustness. The sym3 wavelet power spectrum

technique is also employed as was done in the previous chapter.

Hamdy, Tewfik, Chen and Takagi [104, 111] reported a music classification method
using a statistical technique of calculating skewness, entropy, the first- and second-order
statistics of different musical sounds such as jazz, rock, pop and then estimated the
appropriate threshold so that these sounds can be clearly distinguished. The main limitation
on this method is that it does not make use of the instantaneous information of the signal

which yields its characteristics and hence allows effective signal classification.

The most relevant work to this chapter is the work by Olmo, Dovis, Benotto, Calosso
and Passaro [112] on using the continuous wavelet transform to detect different tones in
music. The authors designed the new wavelet, called the Log-Morlet wavelet, and then
showed that the new wavelet was capable of recognising different harmonics and tones in
music waveforms. This method used the same principle in detecting edges and abrupt
changes in an input signal as was reported in [52]. The main difference of this work to our

work is that we employ the hyperbolic wavelet power spectrum, not the continuous wavelet
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transform, for music recognition and to study music characteristics. Although time and
frequency localisation was employed in [112], it was not as strongly emphasised as in our
work reported in this chapter. In particular, all harmonic and sub-harmonics will be
identified in both time and frequency domains which allows effective music recognition. As
was shown in Chapter 4, the hyperbolic wavelet has a finer scale resolution than both the
CW (Mexican-hat) and Morlet wavelets which subsequently yields finer time and frequency
resolutions in the hyperbolic wavelet power spectrum. This is the main reason why the

hyperbolic wavelet is employed in this section for music investigation.

The main objective of this section is to study musical signals by observing their
instantaneous behaviour which is the main difference from other methods reported in the
literature. Froin that, their characteristics can be thoroughly studied, hence, it is possible to
conclude whether the signal is chaotic, transient, periodic or transient periodic. The
hyperbolic wavelet power spectrum technique, as was done in Chapter 6, is used to study
signal characteristics, whereas other researchers concentrated on time-frequency distribution
techniques such as using the Wigner-Ville distribution [33, 34] and Choi-Williams
distribution [28).

Two musical files ecchb32.dat (refers to accordion sound) and cleb42.dar (refers to
clarinet sound) are used as input signals. The files were sampled at 44.1 kHz for a time
period of 2 seconds. Since music files have a large number of data samples of 44,100, they
are divided into small sets of 2,048 samples and each set consists of two segments of 1,024
samples. The wavelet power spectrum of each set is calculated. The characteristics of
various music segmenis are examined in detail. To accurately examine music signals,
however, the entire segment of 44,100 samples is used to calculate their wavelet power

spectra so that chaotic behaviour or non-uniform energy distributions can be successfully

detected.

The input data are carefully chosen so that noise and other interference sources are
eliminated, i.e. the first few segments of a music source file are ignored and the subsequent
segments are used as an input signal. Usually, after the first 5,000 data samples, music
samples are suitable for signal analysis. To further strengthen the correctness of the obtained
results, the Fourier power spectrum technique is employed so that consistency between the

wavelet power spectrum and Fourier power spectrum techniques is validated.
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It should be noted that as stated in Chapler 6, a harmonic peak can be identified by
having a colour contour scale of larger than 0.7 and a sub-harmonic peak has a contour scale
of smaller than 0.7, but usually, it is less than 0.5. The lower the order of a sub-harmonic.
the lower the contour scale. This method has also been employed by Olmo e af [112] and
P Sussaman and Karsh {113] by means of energy separation.

7.1.1 The Wavelet Power Spectrum of an accordion
music signal

Various segments of the accordion music signal are examined in this section so that its
instantaneous behaviour can be detected. For data samples from 1,024x5 to 1,024x7 and

from 1,024x30 to 1,024x32, the wavelet power spectra of each set are given in Figure 7.1.1
and Figure 7.1.2 respectively.

{a) Music Waveforn accb32.dat, 1024°5:1024'7
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Figure 7.1.1: Time-domain waveform and contour plot of the WPS,;,.30f the accordion
music, data samples are in the range of 1,024x5:1,024x7
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As can be seen from Figures 7.1.1 and 7.1.2, the 2,048-sample music sets seem to
exhibit periodic behaviour in which their wavelet power spectra show repetitive energy
patierns over time. The energy is mainly concentrated at the harmonic peaks and there are
three sub-harmonics that can be clearly identified. This information can be used to classify
the specific characteristics of the accordion signal. Thus, sounds from different musical

instrument can be distinguished by examining their wavelet power spectra, The WPS;,, of

the accordion music signal of the previous data sets are given in Fipure 7.1.3.

Music Wavelorm accb32.dat, 1024°30:1024*32

Vale

L] 1 L A R [l L 1
312 3.14 ER T 318 a2 3.2 a2 3.26
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The WPSsymsof acch32 Music Signal
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250 E
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2
8
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3
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Figure 7.1.2: Time-domain waveform and contour plot of the WPS,,; of the accordion
music signal for data samples from 30x1,024:32x1,024
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WPsmof the accbd2 music signal, data sat 1024*5:1024*7

T T T =T T

k.

5200 5400 5800 5800 6000 6200 6400 6800 680D 7000

Scale Index

WPSMO! the acch32 music signal, data et 1024*30:1024°32
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T T

216 318 a2 322 324 2326
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Figure 7.1.3: Contour plots of the WPS,,, of the accordion music signal of the two data sets

As can be seen from Figure 7.1.3, ihe hyperbolic wavelet power spectra of the
accordion music signal are consistent wilh the WPS,,,; given in Figures 7.1.1 and 7.1.2 in
which instantaneous periodic characteristics of the signal are successfully detected with
bounded contours and repetitive patterns. The WPS,,, and WPS;;.; are both very similar
which suggests that this music signal can be effectively studied using the hyperbolic and
sym3 wavelet power spectrum techniques.

From simulations, since the wavelet power spéctra of various sets of the signal are very
similar, it might be suggested that the musical accordion signal is periodic. To validate this

conclusion, the WPS;,; of the entire music signal is calculated and given in Figure 7.1.4.
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Figure 7.1.4: Contour plat of the WFS,,,,; of the accordion music signal for the time index o
from 1 to 44,100 b
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As can be seen from Figure 7.1.4, there are three main peaks present in the wavelet

power spectrum of the signal. For the first 30,000 samples, periodic behaviour is dominant

TR AT L P R T

as the peaks are clearly shown and the signal energy is evenly distributed as seen in the

time-index magnified versions of Figure 7.1.4, which are Figure 7.1.1 and Figure 7.1.2. The

uneven matching in energy distribution between the two strongest peaks (approximately
located at scales of 60 and 100) which reflects the instability of the signal. From Figure

.

7.1.4 and Figure 7.1.11 (Fourier power spectrum of the accordion signal) it might be

E

f

i

!

o

third peak (located at the scale a = 80) disappears after the first 30,000 samples and there is o i
{

!

|

suggested that the music signal has entered into the chaotic region due to its broad and |
I

continuous Fourier power spectrum and uneven energy density as the time index increases. ;
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” WPsrwo{ the acch32 music signal, data set 1024°1:1024%41

]

Time index x10°

Figure 7.1.5: Contour plot of the WPS,,, of the accordion music signal

The WPS,,, of the accordion music signal, given in Figure 7.1.5, agrees with the
WPS,ms given in Figure 7.1.4 in which both wavelets can detect instantaneous periodic
characteristics of the signal by having high contour scales. It should be noied that the
compression ratio of about 250/38 = 6.5 is observed in Figure 7.1.5 which resuits in a
smaller scale range in this figure. From Figure 7.1.5, the WPS,,, consists of energy-density
layers (approximately having the same center) at different scales. Especially, the harmonic
peak (represented by the inner-most layer) approximately terminates at the time index b =
30,000 which reflects the discontinuity of this musipal signal. Other harmonic peaks (at
lower scales due to a brighter colour on the colour scale) of the signal subsequently
terrninate at the time indices of 35,000 and 38,000. However, the sub-harmonic peaks (at

very low scales) are present in the WPS,, for all time indices.




Chapter 7: The Hyperbolic Wavelet Pawer Spectra of Music and Speech Signals

As seen from Figure 7.1.4 and Figure 7.1.5, the wavelet power spectrum of the
accordion signal varies for different values of time index, i.e. harmonic peaks decay over
time which indicates uneven energy density and discontinuity in the signal. In addition,
different segments of the signal, which were recorded from one musical instrument, have
different wavelet power spectra. Thus, although the signal appears to be periodic in its time-
domain waveforms, it is disordered or chaotic as it has been shown in this section and in
other findings [106-110).

A clarinet music signal is studied in the next section.

7.1.2 The Wavelet Power Spectrum of a clarinet music
signal

The wavelel power spectra of various segments of the clarinet signal are given in Figure

7.1.6 and Figure 7.1.7.

{a) claba2 Signal, 20k $b< 22k (&) The WPS,;of clabd2 Signal
05
04
4
0.3 2
0.2 ®
o1l § by

ﬁﬁl‘:ﬁ"q{f}' 3{,:[ n AT o.

-

Scale Index
Scale Index

246 218 22 222 224

x10*
Tire Indax

Tirne Index
Figure 7.1.6: Time-domain waveform (a) of the clarinet music data samples from 1,024x20

1o 1,024%22 samples and contour plot of its WPS,,,,,_; (b). The magnified contour plots of
WPSyms are given in (c) and (d).
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The first data set is chosen from the 1,024x20 sample to 1,024x22 sample. As can be
seen in Figure 7.1.6, the wavelet power spectrum consists of iwo distinctive peaks which
suggest that this set of the signal is periodic. There are two harmonic peaks aad three sub-
harmonics in “one period” of the waveform of about 80 samples or 1.8 ms. In Figures
7.1.6(c} and (d), the peaks (which can be identified by high contour scales in the graph) are
located at the scale of @ = 70 and the sub-harmonics at the scale of 2 = 20. There is also
continuity of energy because one peak and one sub-harmonic are located at the same time

index.

{a) clab42 Signal, 40k 5 bs 42k (b) The WeS, . of claba2 Signal
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Scale Index
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Figure 7.1.7: Time-domain waveform of the 1,024x40 to 1,024x42 samples (2) and contour
plot of WPS,,,3 (b) of the clarinet musical signal. The magnified graphs of (b) are given in
(c) and (d).

The second data set is chosen from the 1,024x40 sample to 1,024x42 sample. This set,
as seen in Figure 7.1.7, exhibits similar characteristics to those of the first set, except that
the energy concentration at the main harmonic peak is reduced due to a lower contour scale,
The energy patterns of the harmonics and sub-harmonics ase unchanged. The WPS,,, of two

separate data sets 1,024x20:1,024x22 and 1,024x40:1,024%42 are given in Figures 7.1.8(a),
(b) and (¢), (d) respectively.
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(&) WPS,WOI the ¢laba2, 20k < bz 21k
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Figure 7.1.8: Contour plots of the WPS,,, of two separate sets of the clarinet music signal.
The time index is expanded so that the WPS,,, can be clearly displayed.

The WPS,,, of this data set is consistent with its WPS,; in which major harmonic and
sub-harmonic peaks are successfully detected. However, as seen from Figure 7.1.8, the
WPS,,, cannot display some sub-harmonics of the clarinet music signal as it can in the case
of the accordion signal. The WPS,,,s successfully displays all fine details of the signal as
can be seen in Figure 7.1.6. This is one disadvantage of the hyperbolic wavelet compared
with the sym3 wavelet. However, the WPS,,, is compressed to the highest scale of 25 which
is about six times smaller than that of the WPS,,.;. Thus, calculation-time of the WPS,,, can
be significantly reduced which makes it more efficient than the WPS,ym;.
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Music Wavefomn ol elabd2.dat music file of 44,100 samples
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Figure 7.1.9: Time-domain waveform and contour plot of the WPS;,,.; of the clarinet signal.
The WPS,,,.3 shows early "periodic" behaviour due to high contour colour scales of the
energy density which represents one rapid-decaying peak. This can be understood as a burst
of energy or an abrupt change in the signal energy. After that, there is no major harmonic
peak in the signal and sub-harmonic peaks at low contour scales, indicated by the blue
colour which corresponds to the maximum scale of 0.3, are dominant. At the 15,000"
sample, a change in energy is detected, From the time index of 25,000 onwards, sub-
harmonics are discontinued and they completely terminate at the time index b = 37,000.
This might suggest that the signal is disordered since its components disorderedly vary with
time. The contour scale of this figure is similar to that given in Figure 7.1.7.

Figure 7.1.9 displays the WPS,y,; of the entire clarinet music signal which shows one
rapid-decaying “periodic” peak at the approximate scale of 20. This represents a burst of
energy in the signal. The periodic peak disappears from approximately the 5,000™ sample
onwards and the signal appears to behave non-periodically. From the 15,000 sample

onwards, chaotic behaviour appears to be dominant due to a broad energy distribution and

uneven energy density of the signal.

Figure 7.1.10 displays the WPS,y, of the clarinet music signal.
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Figure 7.1.10: Contour plot of the WPS,,, of the clarinet music signal. Periodic components
are cleariy displayed in the scale range of 1 to 8 compared with 10 — 30 in Figure 7.1.9.

From Figure 7.1.9 and Figure 7.1.10, it can be suggested that the hyperbolic and sym3
wavelets can successfully detect early periodic characteristics of the clarinet music signal.
Then, periodicity decays away which makes the wavelet power spectra of subsequent
segments of the waveform to be unsymmetrical. Similar to the accordion musical signal,
different segments of the clarinet music signal have different wavelet power spectra which

reflects its disordered characteristics.

Section 7.1.1 and this section investigated the characteristics of two different musical
signals, accordion and clarinet, using the hyperbolic and sym3 wavelet power spectrum
techniques in which the disordered characteristics of both signals have been successfully
revealed. Their wavelet power spectra have been instantaneously displayed so that their
behaviour could be effectively monitored. The results found in this chapter also agree with
results found by other researchers [106-111]. The Fourier power spectra of music signals are

given next to validate the results drawn by using the wavelet power spectrum technique.
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Power Speetrum of the Music File aceb32.dal

Power Speetram Magnitude (dB)
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Figure 7.1.11: Fourier power spectra of the accordion and clarinet music signals. The
frequency is normalised by dividing every frequency bin by the largest frequency bin in the
signal spectrum. This rule is also applied for all subsequent graphs in this chapter which will
not affect the general shape of the spectrum. The true maximum frequency of both the
accordion and clarinet signals is 22.5 kfz.

From Figure 7.1.11, it can be seen that the Fourier power spectrum of the accordion
signal is broad with harmonic peaks over the low-frequency range. These peaks, as
explained before, are fundamental components of the signal. The true behaviour of the
signal is based on the high-frequency components. In this case, the high-frequency spectrumn

is broad which suggests that the signal exhibit chaotic behaviour.

The power spectrum of the clarinet music signal has more distinctive periodic peaks
than that of the accordion signal which means that the former is more stable than rhe latter.
Over the high-frequency range, the power spectrum is broad (as it was the case for the
accordion signal) which suggests that the clarinet music signal might exhibit chaotic
behaviour. However, due to a large amount of periodic components over the low- and mid-

frequency ranges, chaotic behaviour might not be dominant and the signal in this case can

be said to be in a transition 1o chaos.
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In this section, the Fourier power spectrum technique has been successfully used to
study characteristics of musical signals. It is clear that the wavelel power spectrum
technique and Fourier power spectrum technique are consistent. However, compared with
the wavelet power spectrum, the Fourier technique does not show instanlaneous behaviour
of the signals over time. This is a disadvantage of the Fourier power spectrum technique
since different segments of music signals have different power spectra. Thus, even though
the Fourier technique can been used to study music, it is not effective compared with the
wavelet power spectrum technique in this aspect. It should be recalled that in Chapter 6, the
wavelet power spectrum was not an effective tool to study an exponentially decaying
sinusoidal signal and the ECG but the Fourier technique was. Therefore, depending on the
input signal, the appropriate technique is chosen. For unknown signals, which are often
encountered in practice, both techniques should be employed so that the most suitable

technique can be jdentified.

By studying the instantaneous characteristics of musical signals using the hyperbolic
wavelet power spectrum techiique, it is possible to classify different musical sounds. The
hyperbolic wavelet power spectrum technique gives locations in time (lime index b) and
frequency (inverse of the scale a) of harmonic and sub-harmonic peaks which are unique for
every signal. This is a major advantage of the wavelet power spectrum technique over the
statistical technique [104, I11], the WV time-frequency power spectrum and the time-
frequency STFT techniques [103]. The hyperbolic wavelet power spectrum technique has
been shown to be an effective tool which promises useful applications in non-stationary
signal classification. The main limitation on the time-frequency hyperbolic wavelet power
spectrum technique is that for some signals, i.e. the ECG and the exponentially decaying
sinusoid with a non-zero final value studied in Chapter 6, their wavelet power spectra are
similar even though their harmonic peaks are 1ocale& at different scales. This makes the
classification process of the two signals difficult. Another limitation is that the hyperbolic
wavelet power spectrum is intensive to compute and thus powerful computing tools are
required to improve the computation speed. This issue will be dealt with in Chapter 8 along

with the paratlel computation of the second-order statistical bispectrum.

In the next section, speech waveforms of the English vowels and the sound "sh” are
studied using the hyperbolic wavelet power spectrum, sym3 wavelet power spectrum and

Fourier power spectrum techniques.
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7.2 The WPS of Speech Signals

Speech signals are examined in this section using both the wavelet power spectrum and the
Fourier power spectrum technigues. Speech signals have been studied using time-frequency
power spectrum analyses to detect formanis over time [9, 39, 92]. Some popular kernels that
have been used to study speech signals are the cone-shaped kernel [39], Choi-Williams 28]
and signal-dependent Gaussian-shaped kemels [8, 9]. This section attempts to study
characteristics of speech signals using the new hyperbolic wavelet and the sym3 wavelet to
detect periodic and chaotic behaviour. The speech signals in this section are of 4,096-sample
long and they are the English vowels "a", "e", "i", "0", "u” and the sound "sh". Each of these
signals will be individually examined. All graphs in this section have the time index of
length 2,000, instead of 4,096, for magnification purposes so that harmonic and sub-
harmonic peaks can be clearly seen. Figure 7.2.1 shows the time-domzin signal and the

WPS,m; of the vowel "a".

{a} Tima-Domain Wavelorm of the Vowel "a"
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Figure 7.2.1: The speech time-domain waveform of the vowel "a” and contour plot of its
) WPS,W
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This speech signal exhibits strong periodic behaviour by having a concentrated energy
density at the peaks. Periodicity is strongly indicated by repetitive islands of closed contour
curves in the wavelet power spectrum of the signat. Each harmonic peak is surrounded by a
large nember of sub-harmonics. The waveform seems to indicate periodic behaviour
although the energy is not completely discrete as compared with the sinusoidal signal in
Section 6.2.1 in Chapter 6. It should also be noted that there are no sub-harmonics
associated with a harmonic peak simultaneously in time as it was the case for the clarinet
music signal studied in Section 7.1.2. Thus, chaotic behaviour does not exist in this speech

waveform.

The WPS,m; of the vowel "e" is given in Figure 7.2.2. The speech signal of the vowel
"e" is genuinely considered periodic because of its uniform energy distribution and
repetitive energy pattemns over time. The peaks are clearly displayed and their scale index
location is almost unchanged. There are two main peaks in "one period" of the WPS;,m; of
the signal which makes it significantly different from the vowel "a". This might suggest that
the vowel "e" is more difficult for speech recognition due to its non-sub-harmonics
characteristics.

The time-index magnified WPS,,, of the vowels "a" and "e" are given in Figures
7.2.3(a) and (b) respectively which clearly show periodic peaks and sub-harmonics in the
signals. These were also successfully detected by the sym3 wavelet. However, due to its
compression effects compared with the WPS,,.3, the WPS,,, could not clearly display the
sub-harionics as can be seen in Figure 7.2.3(b) and Figure 7.2.2(b) for the vowel "e". This
disadvantage has been reported earlier in Chapter 6. However, the overall shape of the
WPSp,, and WPS,,,.; are consistent which validates the hyperbolic wavelet power spectrum
technique and the effectiveness of the hyperbolic wavelet.

n:m
| [

Figure 7.2.4 shows the WPS,y,; of the vowel
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(8} Time-Domain Waveform of the Vowe! *a*
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Figure 7.2.2: Speech waveform of the vowel "¢” and contour plot of its WPS,,.s
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Figure 7.2.3: Contour plots of the WPSyy, of the speech vowels "a" and "e"
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Figure 7.2.4: Speech time-domain waveform: of the vowel "" and contour plot of its

WP Ssymj

As can be seen from Figure 7.2.4, the first part of the speech signal, which corresponds
to the time index of less than 1,600, exhibits periodic behaviour, although "minor™ chaotic
behaviour is indicated by its broad energy distribution at a low contour scale. In the second
part of the waveform which corresponds to the time index of greater than 1,600,
fundamental harmonics are not fully displayed but only the sub-harmonics at low contour

scales.

Although the majority of harmonics (contours at high scale) disappear from the 1,600"
sample enwards, the sub-harmonics (contours are at low scales) of the signal are still
repetitive at regular time intervals. In addition, the occupied scale range of 20 — 100 of the
energy distribution is short which indicates strong pesiodicity in the signal. These two points
suggest that the signal is periodic. This phenomenon, however, does not indicate chaos but

indicates a change in the speech components of the signal which can be seen by changes in

the time-domain waveform.

The contour plot of the WPS,;s of the vowel "o" is displayed in Figure 7.2.5.
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(a) Tima-Domain Wavetorm of the Vowel "o
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Figure 7.2.5: Speech time-domain waveform of the vowel "o" and contour plot of its

For the speech signal of the vowel "o", the flow of energy from the 1,500™ sample
onwards indicates a change in its components in which the scale range slightly changes and
the number of sub-harmonics decreases as the time index increases. The energy distribution
of the signal is repetitive over regular time intervals which might suggest that the signal is

largely dominated by periodic components,

It should also be noted that the occupied scale range of the energy distribution is short,
which indicates strong periodicity, as was the case of the vowels “a", "¢" and "i"
investigated earlier. The energy concentration at the peaks renxains almost unchanged which

further validates the above statement.

The WPS,,, of the vowels "i" and "o" are shown in Figures 7.2.6(a) and (b)

respectively.
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{a) The WPSm,Di the Vowel ™"
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Figure 7.2.6: Contour plots of the WPS,,, of the speech vowels “i* and "o"

As expected, the WPS,,, of the vowels "i" and "o" are consistent with the WPS,,;
given in Figure 7.2.4 and Figure 7.2.5 in which periodicity is successfully detected. The

" l“

energy patterns of the vowels "i" and "o", which are shown by using the hyperbolic wavelet,
are consistent with those obtained by using the sym3 wavelet. The cccupied scale ranges of
the WPS,,, of the vowels "i" and "o" are short, which once again indicates strong periodic
characteristics. It should also be noted that there are no changes in the scale range of the
spectral components of the WPS,, of the vowels "i" and "o" as it is the case for the WPSgps.
This is an advantage of the hyperbolic wavelet to the sym3 wavelet which is mainly due to
its perfect symmetry. It is also important to stress that if the energy density of a signal is
distributed over a namrow scale range and even though there is component-variation in the
siznal, the signal is likely not chaotic since its energy is not broadly distributed. This fact
should be clearly understood since there are a number of signals that have component-

variation charactetistics, however, are not chaotic.

The WPS,yns of the vowel "u" is given in Figure 7.2.7.
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L] T

M

1 J. 1

—d
0 200 400 600 800 1000 1200 1400 160D VBDD 2000

(b) The WPSsmul the Vowal "u*
Ll L)

200 T T — T T T
150 .'\‘
k-1 3
(-]
2
o 1001
sofjf V A
D 1 L — 1 i L L '] L L
© 200 400 600 BOD 1000 1200 1400 1600 180G 2000

Time Index

Figure 7.2.7: Speech time-domain of the vowel "u" and contour plot of its WPS, s

The WPS,yms of the vowel "u" is discrete in which fundamental peaks at high contour
scales are clearly shown, which shows strong periodicity in the signal. This signal can be
regarded as similar to Duffing Period 1 waveform except that there are three sub-harmonics
associated with the main harmonic located at the approximate scale of 100. The energy
distribution is repetitive over regular time intervals. The WPS;,,3 of the vowels "u" and "e"
(given in Figure 7.2.2) are similar in which both wavelet power spectra do not consist of

sub-harmonics which might suggest that they are difficult for speech recognition.

The contour plot of the WPS,y,; of the "sh” sound is given in Figure 7.2.8 whose
magnified plot is given in Figure 7.2.9. Figure 7.2.8 and Figure 7.2.9 have identical contour

scales.
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Speech Wavatorm of the sound "sh”
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Figure 7.2.8: Speech time-domain waveform of the sound "sh" and contour plot of its
WPS;,3. The colour contour scale of the graph is given in Figure 7.2.9.

The sound "sh", due to its nature, is very fast and noisy. As can be seen from Figure
7.2.8, the usual discrete spectral components, as seen from the previous cases, disappear.
Instead, there appears chaotic behaviour similar to Duffing Period 4 and Duffing chaotic
waveforms studied in Section 6.2.4 in Chapter 6. However, harmonic peaks at very high
scales (about larger than 500) are detectcd as can be seen in Figure 7.2.8 which suggests that
the sigral is not chaotic. The main characteristics of the signal are determined by the low-
scale energy patterns whose magnified plot is given in Figure 7.2.9 in which the energy is
unevenly distributed at the beginning of the signal. The samples in the middie of the signal
are partly periodic and chaotic and there are no repetitive patterns in the wavelet power
spectrum. This might suggest that the waveform is not periodic as it is usually the case for
speech signals. The true characteristics of the waveform is determined when the magnified

contour plot over the low-scale range is examined next.
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Figure 7.2.9: Magnified contour plot of the WPS,,,; of the speech sound "sh"

A comparison of Figure 7.2.9 to Figures 6.2.16 and 6.2.17 (Duffirg chaotic waveform)
shows that the "sh" sound speech signal is not chaotic since its energy patterns are sharp and
discontinuous, whereas Duffing chaotic energy patterns are smooth. The sharp and fast-
rising energy patterns of the "sh" sound signal do not indicate chaotic behaviour, but
instead, indicate considerable sub-harmonics variation in the waveform. The fundamental
peak of the sound at a high contour scale (Figure 7.2.8) is still present at b = 550 which
validates the above suggestion that this signal is periodic. In addition, the scale range of this
speech is short which strongly suggests that it is not chaotic. The wavelet power spectrum of
the sound "sh” is similar to that of the vowel “i" (but having fewer harmonic peaks) in which

spectral component-varjation js present.

Contour plots of the WPSy,, of the vowel "u" and the sound "sh" are shown in Figures

7.2.10(a) and (b) respectively.
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Figure 7.2.10: Contour plots of the WPS,,, of the speech vowel "u" and the speech sound
Ilshll

The WPS,y, of the vowel “u" is similar to the WPS,,,; in which three associated sub-
harmonics are detected. Although periodic peaks are not clearly presented in the WPS,,,, the
speech "sh" waveform is not chaotic since its energy distribuiion is not smooth and
distributed over a narrow scale range as can be seen in Figure 7.2,10(b). The energy of the
"sh" sound signal appears to flow in bursts at uneven time intervals which means there is

component-variation in the signal.

The new wavelet power spectrum technique, in particular using the byperbolic and
sym3 wavelets, has been effectively used to study speech signals. It has been shown that true
characteristics of various musical and speech signals can be effectively studied by
examining their hyperbolic and sym3 wavelet power spectra. The Fourier power spectrum
technique is now employed to examine these signals so that the effectiveness of each
technique can be clearly identified. The Fourier power spectra of all the speech vowels and

the sound "sh” are shown in Figure 7.2.11 and Figure 7.2.12 respectively.
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Figure 7.2.11: The Fourier power spectra of the vowels "a", "e", "i" and "o"
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Figure 7.2.12: Fourier power spectia of the vowel "u" and the sound "sh". The frequency of
each signal is normalised by dividing every frequency bin by the largest frequency bin of
the signal spectrum. Thus, the shape of the power spectrum will not be changed by the
normalisation process.

As can be seen from Figure 7.2.11 and Figure 7.2,12, the Fourier power spectra of
speech signals exhibit distinctive peaks which suggests that they are periodic. This
conclusion is consistent with the results obtained using the wavelet power spectrum
technique. The "sh" sound, although has a broad Fourier power spectrum, still does have one
distinctive peak at a high contour scale. Evidently, by using the Fourier power spectrum
technique, it is not possible to detect instantancous behaviour of the signal as it can be done
using the wavelet power spectrum technique. This makes the wavelet transform method

more applicable and effective than the Fourier transform method.
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7.3 Remarks

Music and speech signals have been studied in this section by using the hyperbolic wavelet

power spectrum technique, sym3 wavelet power spectrum technique and the Fourier power

spectrum technique.

For music signals, their wavelet power spectra should be calculated by using the entire
signal of 44,100 samples to determine the true characteristics. The wavelet power spectra of
data sets of 2,048 samples only reveal the instantaneous characteristics of the signals. Thus,
music signals are quite different to other signals in which long data records are required so

that misleading information about the signals can be avoided.

Speech signals of the English vowels and the sound "sh" are periodic signals with
discrete and repetitive harmonic and sub-harmonic peaks. There is component-variation
within speech signals. However, they are not chaotic since their energy is not broadly

distributed over a wide scale range even though there is component-variation.

One disadvantage of the wavelet power specirum technique is that for some cases such
as music signals, the input signal must be taken long enough to effectively detect its

characteristics. Usually, the number of data samples for input signals is larger than 10,240.

Another disadvantage of the wavelet power spectrum technique is that for some cases,
the Fourier power spectrum is required to differentiate signals with similar characteristics,
which could not be clearly revealed by the wavelet power spectrum technique. For example,
the wavelet power spectra of the ECG and exponentially decaying sinusoidal with a non-
zero final value signals are identical but their Fourier power spectra are quite different.
However, for other cases, the Fourier power spectrum technique is not effective compared
with the wavelet power spectrum technique, e.g. music and speech. Therefore, depending
upon specific applications, the appropriate technique is used. In general, both techniques

should be employed to effectively reveal the signal characteristics.
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7.4 Conclusion

Mustc and speech signals have been examined using the wavelel power spectrum and the
Fourier power spectrum techniques. Music signals behave chaotically even though the
wavelet power spectra of different sets of the signals appear 1o be instantaneously periodic.
This can be explained by ... fact that harmonic peaks of musical signals abruptly disappear
over ume which reflects the disordered characteristics of these signals. The findings in this

chapter agrec with results found by other researchers [103-111].

Speech signals have been found to be periodic with strong harmonic peaks and several
sub-harmonics. It has been shown that remarks drawn by using the wavelet power spectrum
and Fourier power spectrum techniques are consistent. Some speech signals exhibit
component-variation but they are not chaotic since their wavelet power spectra are not broad
and occupy narrow scale ranges. The wavelet power spectrum technique seems to be more
effective than the Fourier power spectrum technique in studying music and speech signals.
On the other hand, it is not effective in studying the ECG signal as was discussed in Chapter
.

The contribution of this chapter is that the hyperbolic wavelet power spectrum is
einployed as a new technique to effectively study music and speech signals. This might lead
to a new way of using more sophisticated time-frequency techniques for signal analysis and
other aspects of signal processing such as signal detection (Chapter 5), time-frequency

higher-order statistics such as time-frequency bispectrum and speech recognition.

The hypesbolic wavelet is more efficient than the sym3 wavelet because its total
number of scales is smaller than that of the sym3 wavelet due to the compression effect. In
addition, for some speech signals, the hyperbolic wavelet is more effective than the sym3
wavelet by clearly displaying the signal harmonics and sub-harmonics. The hyperbolic
wavelet power spectrum technique is also able to focus on main harmenics of an input
signal which leads to a disadvantage of missing fine sub-harmonics. Overall, the hyperbolic

wavelet is an efficient and suitable wavelet for the wavelet power spectrum technique.

The next chapter applies parallel computing to calculate the bispectrum and time-

frequency power spectrum by using a parallel computer.

-
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Chapter 8: PARALLEL
COMPUTATION OF THE
BISPECTRUM AND HYPERBOLIC
TIME-FREQUENCY POWER
SPECTRUM

Chapters 6 and 7 examined the wavelet power spectrum technique and mentioned the
bispectrum technique as effective tools for signal analysis, especially, in detecting chaos and
non-linearity, Although the bispecirum and hyperbolic time-frequency power spectrum
techniques are effictive, these techniques require a large amount of computation time if
using a setiul-processing computer which limits their practical applications. Thus powerful
computing tools are required to improve their efficiency so that they can be widely used.
Paiail. « vompating is one such tool. In parallel computing, a large task is split into smaller |

tasks so that they can be concurrently executed by multiple independent processors.

This chapter shows that parallel comiputing is an appropriate und effective tool to solve
computationally intensive tasks in signal processing. The bispectrum and hyperbolic time-
frequency power spectrum are two typical applications that are investigated by using
paralle! pragramming. In this chapter, background of the bispectrum is given in Section 8.1.
The hyperbolic time-frequency power spectrum was studied in detail in Chapter 3 and its

basic relations are briefly repeated in this chapter.

The bispectrum and hyperbalic time-frequency power spectrum are closely related by
the auto-correlation function which was used to calculate the power spectrum in Chapter 3,
Section 3.2, which is the main reason why the bispectrum is included in this chapter. The
theoretical background of the bispectrum is given first to form a fundamental background

for the hyperbolic time-frequency power spectrum which will be discussed in the next

|
|
i

section.
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Chapter 8: Parallel Computation of The Bispectrum and Hyperbolic Time-Frequency Power
Spectrum

8.1 Theoretical  Background of the
Bispectrum

Parallel programming and parallel machines have been extensively studied and used over
many decades mainly for predicting weather patterns [93} and in image processing, [94, 95)
where tasks, which are compulationally expensive, are executed. However, to the best of our
knowledge, parallel programming techniques have not been widely used in the field of
higher-order statistics and higher-order spectra such as the bispectrum. Recently, two papers
were published applying parallel computing in estimating the bispectrum. The first paper
[96], which was published in 1991, reported the performance of an 8-CPU shared-memory
CRAY Y-MP machine and 1024-CPU distributed-memory n-CUBE machine in calculation
of the bispectrum. In particular, the speedup factor of the bispectrum calculation process
was measured and compared for different machine configurations in which a near super-
linear speedup factor was obtained. The second paper [97] proposed an algorithm to
estimate higher-order moments using the MASPAR-1 machine, which is a SIMD (Single

Instruction Multiple Data) machine.

In this chapter, the bispectrum is estimated by using two different methods namely
direct and indirect. The direct method employs the 1-D FFT algorithms and the indirect
method employs the 2-D FFT algorithm to estimate the bispectrum. Both methods are
implemented by using 2 different paraliel programming techniques: semi- and full-
automatic or the Power C Analyser (PCA). The Silicon Graphics Power Challenge
Multiprocessor System (with 12 CPUs) is used to run the parallel codes.

The direct method is used to estimate the bispectrum {86, 87), which was given by Eq.
(6.1.6) in Chapter 6, and is repeated here by Eq. (8.1.1)

BUL f) = RO XU XA+ f2) (8.1.1)

where X (-)is the 1-D Fourier transform of a given discrete series x(n) of M samples. For
more information on the bispectrum, the interested reader should consult references (86,

87). i
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The indirect method uses the 2-D Fourier transform (calculated using the 2-D FFT

technique) of the tricorrelation function R, (7., 7)

B( fi. f2) = F{Ru(T, T}}, where
M-

Rm(r,,rz)=2 x(m)-x(n+7)x(n+1)5 0, 2=01,2,.. . M-1
n=0

(8.1.2)

The bispectrum has been shown to be a useful tool in the study of chaos and behaviour
of non-linear systems [1, 98, 99]. However, since the Fourier transform is most suitable for
wide sense stationary signals only (as stated in Chapter 3), the bispectrum therefore has its
limitations when the input signal is non-stationary. If the input signal is not wide sense
stationary, then the frequency contents of (he signal (or energy density) will change with
time. By using the Fourier transform, fine-detailed information of the signal energy density
will be tost since the Fourier transform method averages the energy density over an infinite
time interval. It has been observed that the fine-detailed information of the energy density is
useful to detect the transitions to chaos and turbulence [33, 34] as was shown in Chapters 6
and 7. To be able to observe time and frequency variation of the energy density of a non-
stationary signal, a time-frequency power spectrum technique is employed. The time-
frequency power spectrum technique displays the energy density of a signal as a function of
time (f) and frequency { f ) which means that the signal characteristics can be
instantaneously monitored. The general formula of the time-frequency power spectrum is
given by Eq. (3.1.3)

o o0 oo

Pt,0) =—% j I I [e“f”(“‘*> -q:f(e,z)J]‘ e R, 1 (1,T) du dr d 8.1.3)
an W(i—a,7)

—Cr—a—O0

where x(n) is the input signal, ®(8, 7 is the kemnel function and

R, (t,'r)=x(u +§) x*(u—-f;) is the local auto-correlation function. The formulas of the

first-order hyperbolic and other kernels were given in Chapter 3. More details on the general

time-frequency power spectrum may be found in [9, 28].
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The discrete version of Eq. (8.1.3) is given by Eq. (8.1.4) [28]

DTF(n k)= 22 ¢~ i2m/M 2 WLT) x(r+ g +1)- X" (n+ g ~7) (8.1.4)

T=—ee =00

As was evident from Egs. (8.1.3) and (§.1.4), the amount of required computation of
the time-frequency power spectrum is very large due to the triple integral and the two
running variables s and . The resultant serial program consists of four nested £or loops. If
the input signal has 256 samples, then the number of required iterations will be (256)* =
4,294,967,296 which is a large number which makes the calculation process time
consuming if it is run serially. For the bispectrum, to calculate the bispectrum of the ECG
using 10,240 samples would take more than a day runaing on a normal PC. Thus, paralle!
computing is employed with the hope that it can reduce the amount of compultation time of

these tasks.

Sequential C programs were written first based on Eqgs. (8.1.1) and (8.1.2) to estimate
the bispectrum using the direct and indirect methods respectively. Then semi-automatic and
full-automatic parallel (PCA) programs were construcied based on the sequential programs.
Semi-automatic programs are obtained by inserting #pragma directives into the sequential
program at appropriate points. This technique is based on a coarse-grained technique
whereas the PCA method is based on a fine-grained technique. Also, arrays and loop
parameters of the sequential program are controlled so that they can be independently run by
different CPUs to avoid data dependency. The PCA parallel technique is activated by

running the —pca flag of the Power C compiler.

For the hyperbolic lime-frequency power spectrum, it should be noted that due to the
immaturity of parallel compilers, the PCA or full-parallel method might not provide
satisfactory results. The PCA method does not efficiently parallel the serial program due to
data dependency even though the program is free from data dependency. The compiler only
parallels a loop or breaks it into smaller tasks if and only if it knows that the loop is free
from data dependency. This is usually the case for single loops, but not for nested loops
which contains most of the computational burden. Thus, semi-automatic parallel method
seems to be the most appropriate way to apply parallel programming although it requires in-

depth understanding of the programming language and the structure of the parallel system.
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This chapter focuses on the effectiveness of the Silicon Graphics Power Challenge
multiprocessor shared-memory MIMD (Multiple Instruction Multiple Data) machine
(HOTBLACK)' in calculation of the bispectrum and the hyperbolic time-frequency power
spectrum. Each CPU can be considered as an independent processor with a separate local
memory and cache. To effectively program the machine, it is important to arrange the loop
parameters and data structure inside the programs so that they are suitable for the specific
configurations of the computer. This is the most difficult part of parallel programming in
which the programmer must understand the configuration of the particular machine. The
semi- and full-automatic parallel methods are employed to run the programs so that their
speedup factors can be accurately measured and compared. The semi-automatic method
employs the coarse-grained parallel technique which usually gives a better measured-
speedup factor. The full-automatic method employs the fine-grained parallel technique
which parallels a large number of small loops and usually results in higher parallel overhead
compared with the semi-automatic method. For the hyperbolic time-frequency power
spectrum calculation process, the semi-automatic method is only used. The full-automatic
PCA method is not employed since it results in very large paraliel overhead which causes a
poor measured-speedup factor. The effectiveness of the semi- and full-automatic paraliel

methods in calculating the bispectrum is examined in the following section.

8.2 Parallel Computation of the Bispectrum

In the HOTBLACK parailel computer, there are 12 parallel programs with different
numthread (N} to run on 12 different processors on the system. numthread (N} is a
paralle) directive from Silicon Graphics that allows the program to be executed in parallel
using N independent CPUs. For example, if N =3 then the program will be executed in
parallel using only 3 CPUs. To ensure efficient compilation, the programs are submitted
into a batch queue to obtain more CPU_time, memory_use and stack_data_size

quota. Four script files have been written to run the programs under the UNIX operating

system.

* HOTBLACK isa local name of the machine at Monash University.
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The measured-speedup factor is estimated as

Sequential_Time

Measured - Speedup Factor =
P Parallel_Time (8.2.1)

where the Sequential_Time is the real CPU time used to run the sequential saurce code and

the Parallel_Time is the real CPU time of the slowest CPU employed to run the parallel
code.

The efficiency of a parallel program is estimated as

Measured_Speedup
Ideal_Speedup (8.2.2)

Parallel_Efficiency =

Theoretically, the ideal or super-lincar measured-speedup factor of a program is
defined as N if the parallel program is run using N CPUs [101]. Practically, the measured-
speedup factor is always less than the super-linear speedup factor due to parallel overhead

implying that parallel efficiency is less chan 100%.

To ensure consistency between parallel and sequential programming techniques, their
resultant output files are compared and it has been observed that they are identical. If the
files are not identical, data dependency must have occutred in the sequential source code.
The difference between the fine-grained and coarse-grained parallel techniques is that, for
the former, which is used by the PCA method, only small repeated loops are paraileled
which yields more than one parallel loop in a paraliel program and thus results in more
parallel overhead. For the coarse-grained parallel technique, the largest parallel loop that has
the largest workload in the program is paralleled. Usually, there is only one largest repetitive
loop in the program. Since the number of paralleled loops in the coarse-grained technigue is

much less than that in the fine-grained technigue, the amount of parallel overhead in the

former is much less than that in the latter.

For comparison, the size of each segment of the direct method is 2,048 data points
which is twice that of the indirect method of 1,024 data points (since 1,024 data-point
segments are still not large enough for the direct method, 2,043-data-point segments are
used instead, also longer segment size of up to 10,240 points can be used). From simulation

results, it has been observed that the serial program of the direct method took approximately
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23 seconds to run compared to 587 seconds running time of the indirect method although
the segments in the latter method are half as long. Thus the direct method (Eq. (8.1.1) or
equivalent) is more computational efficient than the indirect method. The measured-speedup
factors of the semi- and full-antomatic parallel methods are plotted as a function of the
number of processors N in Figure 8.2.1; the parallel efficiency of each technique is plolted
in Figure 8.2.2. In these figures, Direct and Indirect are the measured-speedup factors using
the semi-automatic parallel method for the direct and indirect methods respectively. Direct
PCA and “adirect PCA are measured-speedup faciors obtained using the PCA full-automuatic

parallel method for the direct and indirect methods respectivly.

Figure 8.2.1: The measured-speedup factors (based on Eq. (8.2.1)) of the semi- and fuil-
automatic methods using the direct method (Eq. (8.1.1)) and indirect method (Eq. (8.1.2)) as
a function of N

As N increases, the amount of parallel overhead increases due to synchronisation and
waiting time of the processors. However, near super-linear measured-speedup factors are
obtained by using the semi- and fuil-automatic parailel methods for the direct method as
seen in Figure 8.2.1. For the direct method using the PCA paraliel method and for large
values of N (for instance, at N = 12), the measured-speedup factor staris to decrease which
illustrates the limitation of the fine-grained parailel technique: large amount of parallel

overhead are generated for large values of N which lowers the measured-speedup factors
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(the Direct_PCA and Indirect_PCA curves in Figure 8.2.1). For N £ 12, the PCA method
provides a near-linear measured-speedup factor which indicates that the fine-grained
technique is more suitable for the direct method (using the PCA method) than the coarse-
grained technique. If the segment size increases further, near-linear measured-speedup
factors might not be oblained for the indirect method due to a long waiting time as

explained in the foliowing section.

—&— Indireci PCA

Q4

Figure 8.2.2: Parallel efficiency (based on Eq. (8.2.2)) of the semi- and full-automatic
paralle] methods versus the number of processors

For the indirect method using the semi-automatic parallel method, near super-linear
measured-speedup factors are obtained only with some specific numbers of CPUs which are
multiple of the loop size of 10. That means when ¥ = 1, 2, 5 or 10, near super-linear
measured-speedup factors will be obtained. For other values of N, since the associated work
with each iteration of the loop is large, there will be "unemployed” processors waiting for
other processors to complete their tasks. For example, if N = 6. all six CPUs will be
assigned to the first six iterations of the loop. After finishing the 6 iterations, four of the six
CPUs will be used to compleie the remaining 4 iterations and two CPUs have to wait

("spin") until the iterations are finished. Since the associated work of each iteration is large,
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this results in a long waiting time and thus the measured-speedup factors and parallel
efficiency will be lowered as illustrated for casesof N=3,4,6, 7, 8,9, 11 and 12 in Figure
8.2.1 and Figure 8.2.2, Hence, if N is not a factor of the loop size (which is 10) and if the
work of each iteration is large, increasing N will increase parallel overhead and constrain the
measured-speedup factor.

For the indirect method applying the PCA parallel method, the measured-speedup
factor linearly increases as A increases although with lower values compared (o the case of
semi-automatic parallel method due to high parallel overhead in several small parailel loops.
However, the performance of the PCA methed is prediciable. From Figure 8.2.1, in contrast
with the direct method, the coarse-grained technique is more suitable for the indirect
method than for the direcr method since a better measured-speedup factor is achieved.
However, o obtain satisfactory performance, & must be chosen to be a factor of the loop
size. Table 8.2.1 compares the maximum measured-speedup factors of the semi- and full-

automatic parallel methods applied to the direct and indirect methods.

Table 8.2.1: Maximum measured-speedup factor comparison of the semi-automatic and
PCA parallel methods (using the direct and indirect methods) for the bispectral parallel
computation process

Method Semi-aulomatic Fuli-automatic PCA
measured-speedup measured-speedup
. factor factor
Direct calculation of the bispectrum 1084t N=12 1044 at N =11
Indirect calculation of the bispectrum 0.17atN=11 76T N=12

From Figure 8.2.1 and Figure 8.2.2, the bispectrum measured-speedup factor increases
but its parallel efficiency decreases as N increases. Thus, there ought to be a realised
speedup factor or effective-speedup factor that considers both the measured-speedup factor
and parallel efficiency by forming their product as a function of N. The.effective-speedup
factor reflects the effectiveness of a parallel caleulation procedure and should be considered
important. Thus, when choosing a panicular value of N for designing purposes, the
measured-speedup factor, parallel efficiency and effective-speedup factor should all be
considered. Depending on a particular application (whether the measured-speedup factor or
parallel efficiency is the first priority), the appropriate parameter is used. If both of them are

required, the effective-speedup factor is employed. The effective-speedup factor of the

bispectrum is displayed in Figure 8.2.3.
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Figure 8.2.3: The effective-speedup factors of the bispectrum calculation, The measured-
speedup factors are not included here for simplicity.

This section nas presented the results of paraliel computation of the bispectrum, the
next section shows that the hyperbolic time-frequency power spectrum can also be

efficiently calculated by using parallel computing.

In this thesis, two signal-processing techniques have been proposed. Firstly, the
hyperbolic kernel and secondly, the hyperbolic wavelet which can be generated from the
hyperbolic kernel. The bispectrum has not been thoroughly studied in this thesis and yet it
has been calculated using a parallel computer to reduce its computational burden. The
hyperbolic time-frequency power spectrum will be estimated using a parallel computer in
the next section. However, the hyperbolic wavelet transform and wavelet power specirum
have not been mentioned or calculated using a parallel computer up to this point. The main
reason for this is that the wavelet transform and wavelet power spectrum have been
extensively estimated using a parallel computer in the literature [114-126] and thus this
chapter will not pursuit further the already-established results. It has been found that the
wavelet transform can be efficiently estimated with a near-linear measured-speedup factor

[114-117, 119, 120, 121, 123, 124] by using a parallel computer.
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The wavelet transform and wavelet power spectrum are time-frequency techniques and
thus they are closely related to the time-frequency power spectrum techniyue via the local
autocorrelation function (Eq. (8.1.3)). The ~avelet power spectrum technique has been
shown 1o be useful in studying signal characteristics in Chapters 6 and 7. Some of the
parallel techuiques used to estimate the wavelet such as the coarse-grained parallel

technique [117, 121} will be employed to estimate the hyperbolic time-frequency power
spectrum.

8.3 Parallel Computation of the Hyperbolic
Time-Frequency Power Spectrum

I Section 8.2, the bispectrum was estimated using a super parallel computer and that a
near-ideal measured-speedup factor was achieved in estimating the bispectrum. In this
section the computer is utilised to estimate the hyperbolic time-frequency powr: spectrum.
From that, suggestions can be made whether the hyperbolic time-frequency power spectrum
is suitable for parallel computing analysis. Fund:+ w2ntal background of the hyperbolic time-
frequency power spectrum was given in Section 8.1 from which the serial program to

calculate the hyperbolic time-frequency power spectrum is construciad.

The coarse-grained parallel technique is used for the semi-automatic method and the
fine-grained paralle! technique is employed for the full-automatic PCA method as was
applied in the case of the bispectrum calculation process. However, only the semi-autoinatic
paraliel method is investigated due to inefficieni coding of the C annotator (full-automatic
PCA method). The compiler mistook the inner toop as the most efficient loop for parallel
programming, in other words, it inefficiently employed the fine-grained pa;allel technique
which resulted in long parallel overhead and lowered the measured-speedup factor. For the
semi-automatic parallel method, the structure of the parallel program is manually
constructed thus the coarse-grained parallel technique can be efﬁciem]y employed which
gives a better measured-speedup factor and parallel efficiency. This agrees with previous

work by Suzuki et a/ [117] and Lihua and Misra [121].
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Chapter 8: Parailel Compuintion of The Bispectrum and Hyperbolic Time-Frequency Power
Spectrum

Key factors that affect the performance of parallel programs are paralle! load (the load
among the processors should be evenly balanced), parallel overhead (the amount of
communication among the processors should be minimised) and data dependency. There are
four nesizd £or loops in the program which require a large amount of computation. The
measured-speedup factor is obtained by using 256-sample for loops. Since there are 4
nested for loops, the n mber of itcrations would be (256)" = 4,294,967,296 iterations or
approximately 4.310°. Eecause the stack_size and memory_size quotas on the
parailel computer on which ull e¥neriments were run are limited, a larger loop size (for

example 1024 or larger) could not br _erformed.

The coarsc-grained parallel technique is utilised in the outer-most loop of the program
by dividing it into smaller tasks. Each independent task has 3 nested for loops, which can
be concurrently executec Yy independent processors. The outer-most loop is runt in parallel
since it is the largest loop in the program, which requires the largest amount of computing
power. Each iteration of the loop is independent of each other which considerably reduces

parallel overhead among the processors.

It shouid be noted that time-frequency power spectia of various kernels are different in
the kernel functions only and their general architectural structures are unchanged. In
addition, the associated computation of the general structure (as stated earlier) is too large
compared with the calculation of the kemel which involves simple multiplication and
division operations. Thus, if the hyperbolic time-frequency power spectrum can be
efficiently estimated, other time-frequency power spectra using different kernels such as
Choi-Williams or Wigner-Ville can also be efficiently estimated. The parallel measured-
speedup factor and efficiency are estimated by using Eqs. (8.2.1) and (8.2.2) and given in
Figure 8.3.1 and Figure 8.3.2 respectively. Comparisons of the measured-speedup and

effective-speedup factors are given in Figure 8.3.3.
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Figure 8.3.1: The measured-speedup factor of the hyperbolic time-frequency power spectral
calculation process, the loop size is M = 256

The measured-speedup factor of the hyperbolic time-frequency power spectral parallel
calculation process is evidently near super-linear. The measured-speedup factor linearly
increases as there are no "humps" or sudden "jumps” in the curve as seen in Figure 8.3.1.
This shows that the hyperbolic time-frequency power spectrum can be efficiently calculated
using parallel computing. By comparing the measured-speedup factors of the hyperbolic
time-frequency power spectrum and bispectrum, it is clear that the bispectrum can be more
efficiently calcwated than the hyperbolic time-frequency power spectrum. This is mainly
due to the structure of the inner loops of the hyperbolic time-frequency power spectrum
program becau-e the number of i £ statements in the bispectrum program is less than that in
the hyperbolic time-frequency power spectrum program which significantly slow the

processors down.
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Parallel Efficiency of the Time-Frequency Power Spectrum Calenlation
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Figure 8.3.2: Parallel efficiency of the hyperbolic time-frequency power spectral calculation
process, the foop size is 256
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Figure 8.3.3: Comparison of the measured- and effective-speedup factors as a function of N

The hyperbolic time-frequency power spectral calculation process has lower parallel
efficiency than the bispectral calculation (for the case of the direcs semi-automatic and
direct PCA full-automatic method only) process because the number of nested for. loops

inside the main loop of the former program (4 for loops) is larger than that in the fatter

program (3 for loops). In addition, for each nested for loop, there is a summing
mechanism, which must be performed so that the results are ready for the next outer loop.
As a result, therc is idle time in an outer loop since its inner loops are not always ready for

calculation if all of their iterations are not completed. This creates a farge amount of
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unavoidable parallel overhead (on average about 10 seconds compared with | second in the

case of the bispectral calculation process).

The parailel efficiency of the hyperbolic time-frequency power spectral calculation
process attains its minimum value of 74.9% at N = 10 and its maximum value of 75.8% at N
= 3. The paraltel efficiency remains unchanged with the average value of 75.2% for other
values of N. From Figure 8.2.2 (bispectrum paralle! efficiency) and Figure 8.3.2 (hyperbolic
tume-frequency power spectral parallel efficiency), the bispectral paralle} efficiency is
higher than the hyperbolic time-frequency power spectral parallel efficiency (except for the
case of the indirect semi-automatic and PCA full-automatic methods) as previously

explained.

It should be noted that the efficiency of the hyperbolic time-frequency power spectral
parallel calculation process, though lower than that of the bispectrum, is quite stable, unlike
the case of the bispectral parallel calculation process. This is mainly due to the size of the
input data sets. For the case of the bispectrumn, there are 10 segments, each congisting of
1,024 samples and the total number of samples. is 10.240. If the number of samples per
segment is less than 1,024, then there arz no significant conclusions on the signal
characteristics (for example, the ECG) because the data set is not large enough. Therefore,
10 iterations are chosen. Since the number of iterations of the paraliel loop is small, the
number of processors used to run the bispectrura parallel program plays an irsportant role in
speediag up the calculation process. Although there are unly 10 iteraticns, the associated
work with each iteration is large which results in long waiting time for the processors as

explained in Section 8.2 for the indirect method,

For the hyperbolic iime-frequency power spectrum, the number of jterations for the
main parallel loop is 256, which is  large number compared with the humber of processors
of the system (12 independent processors). Thus, the waiting time of one processor is
considerably small compared with the calculatiza time of‘olher processors. In other words,
if one or more processors waii for others to finish their tasks, then the waiting time is always
considerably less than the useful time. For example, if the number of processors it N = 3,
then the number of ilerations inat each processor has to complete is 51 and there is 1
iteration left. After the procissors finish their S1-iteration work then one of them has to
finish the remaining itzration ard other processors (four in this case) have to wait or spin
untii that remaining itecation is completed. The spinning time associated with one iteration

is clearty much less than the required time 1o complete 51 iterations. This ex plains why the
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parallel efficiency of the hyperbolic time-frequency power spectral calculation process is

more stable than that of the bispectral calculation process.

Overall, although the paraliel efficiency of the hyperbolic time-frequency power
spectral process (75.2%) is not as high compared with that of the paratlel bispectral
calculation process (about 90% or higher for the direct method), it has been shown that the
hyperbolic time-frequency power spectrum can be efficiently calculated by using parallel
computing which is an encouraging result. The parallel efficiency of the hyperbolic time-

frequency power spectral calculation process can be improved by increasing the loop size.

8.4 Conclusion

The contribution of this chapter is to improve the speed of computation of the bispectrum
and hyperbolic time-frequency power spectrum processes by using paralle]l computing,
Near-linear measured-speedup factors of the bispectral parallel calculation process have
been achieved by using the semi- and full-automatic (PCA) methods for the direct method.
For the indirect method, parallel overhead gradually increases when N 2 6 due to the
specific loop structure of the serial program. However, for ¥ £ 5 or N = 10, near-linear
measured-speedup factors were obtained for the indirect method by using the semi-
automatic method. Thus it can be concluded that the direct method of bispectrum
computation is more suitable for parallel programming than the indirect method. The PCA
method can be used to achieve the measured-speedup factor of 7.67 at N = 12 (for the
indirect method). However, the PCA method suffers from high parallel overhead for large
values of N (N 2 12) since a PCA parallel program (employing the fine-grained parallel

technique) contains several small parallel loops.

For the hyperbolic time-frequency power spectral paraliel calculation process, a near-
linear measured-speedup factor has been obtained with the minimum ei;‘ﬁciency of 75.13%
at N = 1. The maximum efficiency of 75.58% was achieved when N = 3 at the measured-
speedup factor of 2.3. At N = 12, the efficiency was 75.3% which corresponds to the
measured-speedup factor of 9.03. The average cfficiency is approximately 75.34%. It has
been observed that the PCA method could not provide a suitable parallel solution to the
serial program thus only the semi-automatic method was employed to paraliel the

hyperbolic time-frequency power spectrum serial program. From the obtained results, it
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appears that the hyperbolic time-frequency power spectrum can be efficiently calculated by
using parallel computing. However, the efficiency of the process is not high compared with
that of the bispectral calculation process. As stated earlier, other time-frequency power
spectra using different kernel functions such as the Choi-Williams and Wigner-Ville can be
efficiently estimated using parallel computing due to a small difference in the computational

burden of these kernels.

The effective-speedup factors of the bispectrum and hyperbolic time-frequency power
spectrum have also been obtained for completeness ard for practical purposes. Since the
efficiency is always less than unity, effective-speedup factors are always less than
measured-speedup factors. As its name implies, the effective-speedup factor represents the
true speedup factor gained by using a particular parallel system. This speedup factor can be
used {or applications in which both the measured-speedup factor and parallel efficiency are
required so that the most suitable number of processors can be identified. It is important to
realise that the more processors, the faster the computation can be carried out. On the other
hand, simultaneously, parallel overhead will be increased. Thus, there must be a balance
between the number of processors and parallel overhead in a parallel system. For the
HOTBLACK system, it is clear that the calculation efficiency of the bispectrum and
hyperbolic time-frequency power spectrum is always higher than 75% (except for the case
of the indirect semi-automatic and PCA full-automatic methods) which shows that
appropriate parallel methods have been employed and parallel overhead has been
sufficiently small in our work. Future work can be carried out on different parallel systems

to examine the effects of parallel overhead and the number of processors.
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Chapter 9: CONCLUSIONS AND
FUTURE RESEARCH

9.1 Summary and Conclusions

This research has explored the theoretical characteristics and some practical applications of
the hyperbolic kemel family. The research can be divided into two pas: theory and
application. The theoretical part consists of the first four chapters in which the hyperbolic
kernel family and hyperbolic wavelet were investigated in detail in Chapter 3 and Chapter 4
respectively. In Chapter 4, the strong link between time-frequency kernels and wavelet
functions was established which forms a foundation to expand the two areas of time-
frequency and wavelet signal processing further. This is one of the major contributions of

the thesis.

The application part of the research examines possible applications using the
hyperbolic kernel and hyperbolic wavelet including signal detection in Chapter 5 and signal
analysis using the hyperbolic wavelet power spectrum technique in Chapters 6 and 7.
Chapter 8 presented parallel computing as a useful tool to improve the computational speed

of the bispectrum and hyperbolic time-frequency power spectrum.

The first-order hyperbolic kernel of the hyperbolic kemel family has been found tobe a
simpler and more effective kernel than the popular Choi-Wiiliams and multiform tiltable
exponential kernels in some applications. The hyperbolic kernel has been shown to be cross-
term effective and noise robust. However, the kernel has a coarse auto-term resolution
which could result in weak support for the auto terms in the time-frequency plane. It has
been shown that the new hyperbolic wavelet has a finer scale resolution compared with the
Morlet and Choi-Williams wavelets. The hyperbolic wavelet has been shown to have the
smallest total number of calculated scales among the three wavelets considered which
enables compression ability. This significantly improves the efficiency of the hyperbolic

wavelet power spectrum calculation process.
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Chapter 9: Conclusions

In signal detection, it has also been shown that the hyperbolic signal deteclor is more

‘ive than the Choi-Williams, Wigner-Ville and maltched-filter deteciors by improving
+l-to-noise ratio by up to 40%. The discrete Moyal formula for non-unity kernels has

-vn derived based on Moyal's formula for the unity kernel, i.e. the Wigner-Ville Lemnel. By
deriving Moyal's formula for non-unity kernels, the effects of noise were cunsidered and

explored in detail using non-unity kernel signal detectors.

The hyperbolic wavelet power spectrum technique has beer shown to be effective for
stationary and non-stationary signal analysis. A gallery of the hyperbolic wavelet power
spectra of various signals including ECG, speech, music, periodic sinusoidal and
exponential has been established. Transitions into the chaotic region of the ECG and
Duffing oscillatory signals have been successfully identified by using the hyperbolic
wavelel power spectrum. )

The wrade-off among cross-term suppression, noise robustness, scale resolution, signal
detection ability and auto-term resolution has been established. All of these features can be
successfully achieved at the expense of having a poor auto-term resolution. In addition, as
was shown in Chapters 4, 6 and 7, the hyperbolic wavelet power spectrum has been very
effective in studying non-stationary signals with a finer scale resolution and & smaller scale

range, compared with the Choi-Williams (Mexican-hat) wavelet and Morlet wavelet.

It has been shown that parallel computing can improve the efficiency of heavy
computational tasks in signal processing such as the bispectrum and hyperbolic time-
frequency po.ver spectrum. Near-ideal speedup factors have been.achieved by using the
semi- and full-automatic paralle! methods. The minimum paraliel efficiency of calculating
these tasks is 75% which shows that they can be efficiently calculated using a paraliel

computer.
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Chapter 9; Conclusions

In conclusion, the contributions of this thesis are:
¢ Proposal of the new hyperbolic kernel family,

*  Discovery of the new hyperbolic wavelet which is generated from the first-order
hyperbolic kernel,

* Identification of the link between the wavelet and time-frequency signal
processing areas which enables expansion of time-frequency and wavelet
analyses,

* Proposal of the new non-unity time-frequency detector, in particulur the

hyperbolic detector with improved SNR,

L]

Establishment of the trade-off among cross-term suppression, noise robustness,
scale resolution, wavelet compression and signal detection against auto-term
resolution

¢ Proposal of the hyperbolic wavelet power spectrum technique for signal analysis,

*  Demonstration of the effectiveness of parallel computing in signal processing.

9.2 Future Research

The discovery of the hyperbolic kernel family has opened new research directions such as
kernel design, wavelet theory, signal detection and signal analysis using the time-frequency

power spectrum technique.

In this research, the first-order hyperbolic kernel @ypepmec = sech(867) has been
extensively studied. However, other members of the family should be investigated. In
particular, the third-order hyperbolic kernel @cupic yperotic = [sech(ﬂ@r)]’, is an exciting
kernel with useful features that are worth investigating. This kernel was mentioned a fow
times in the thesis and some of its properties such as volume under the surface and time-
frequency power spectrum expression were given. However, its ability in suppressing cross
terms, noise robustness, auto-term resolution and signal detection have not been examined.

More work needs to be done so that the entire hyperbolic family kernel can be classified.

Chapter 4 showed that when new kernels were found, new wavelets could be
generated. It would be interesting to investigate possible new wavelet functions that can be
generated from the hyperbolic kernel family as it is not known whether there are useful

wavelets that could be generated from the family.
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Although there are many new research directions in the theoretical study of the
hyperbolic kernel family, the applications of the family are also worth exploring. Detailed
studies need 10 be done to establish a kerne!l that yields the corresponding time-frequency
signal detector with a ncar perfect performance. Since the first-order hyperbolic kernel has
been shown (o be superior to the Choi-Williams kernel, this kernel could be one of the

members of the hyperbolic family kernel or a kernel from another family.

Further work on parallel computing can be carried out by using the hyperbolic time-
frequency bispectrum as a typical application. The associated computation of the time-
frequency bispectrum is extensive since the spectrum must be able 1o "slide” to be
successfully displayed. This area of research has not been done and promises interesting

research work.
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APPENDIX A :

EXPLANATION OF THE SEVEN
CONSTRAINTS

This section of the thesis attempts to explain meaning of the seven constraints, which were
given in Section 3.1, so that deeper understanding on them can be gained. Detailed meaning of

these constraints imposed on a time-frequency kernel will be given.

The general energy distribution, P(1, w ; ®), defined by Cohen [6, 9] is given as

o0 oo on ’
P(1.0;®) = 4% _[ I I e~ IOit w0 0,7y x (L) x (e + 3)u dr dO (A1)
T

D O O

where x(?) is the input signal and 7 is the lag parameter. For discrete input signal x(#), 7 is in the

range of O — (M ~ 1) where M is the number of samples of the input signal x(»).

Eq. (A.1) was derived by Cohen by using the operator characteristic method. This method
uses two special operators, namely the time operator 3 and the frequency operator Q. The

correspondence rules of the operators are (6, 8]

It Q—)-j-g;'
(A2)

d
=

. . . jlr+ jreg
The characteristic function, M(8, 7). is an average function of the complex signal ¢/ "/

in whic: ~and T are associated with time ¢ and frequency @ respectively. The time-frequency

power spectrum can be obtained from the characteristic function using the following relation
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o0 o
Pt w,®) = J I M©,1)-e” 1B . 90.7) 40 dr (A.3)

The general formula of the characteristics function is given by

“+ootoa

M(0,7)= J. I T P ) et de
~eroe (A.4)

1 L H el 3 - - o . .
where P(f,w)= N -Rc{x (0)-e’™ . X (w)} in which X (@) is the Fourier transform of

X(7) and "*" denotes complex conjugate operation. If x(f) is real then x'(£) = x{¢).

From Eqs. (A.3) and (A.4), the characteristic function is given as

MO0 =(e )= [ (-1 s (As)

—

The exponential function involved in the operators can be split further into separate

components using the Baker-Hausdor{ theorem {6, 8, 100)

QSO _ mJOi[2 Q03 _ L i0r[2 | 0 (A.0)

in which the change in the multiplication order of the operators results in an extra exponential

term with a changing sign. The extra exponential terms are present since the operators 3 and Q
do not commute and ¢/ is not equal to eIB . I ke ordinary variables [6]. In fact, the

relation 3Q - QY = [6) exists. More details on this derivation may be found in [8].

In addition, by using the first translation of Eq. (A.2), we obtain

d .
ejrgx(t) = ef(m]x(r) =x(t +1), where ¢/ is the translation factor [8].
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By combining Eqgs. (A.5)-(A.7), the characteristic function can be rewritten as

+u
MO,7)= I\ ()T I Ty dr (A.8)

Putting « =¢+% and du = dt with T as a constant parameter, Eq. (A.8) becomes

M(B,1) =J‘);t (e —--;—)-efa' - x(n +-’2-) du (A.9)

where the integral is taken from —co to 4o,

From Egs. (A.3) and (A.9), the general fort . "« for the time-frequency power spectrum is
obtained as given in Eq. (A.1). '

There are a number of properties and corresponding constraints to ensure that time-
frequency kernels are valid. The first property that we need to consider is that the energy
distribution of a particular signal should not be complex, i.e. the energy distribution P{, @)

should be real. Thus, the first constraint is that the kemel must be real and even, that means
(0, 1) = D'(~6,-1) (Constraint 1)

The energy distribution is also required to satisfy the shift properties with respect to the

time and frequency domains respectively, that means the following must be satisfied

P@, w, @) = P(t— 101, 0, P)
and

P(t, @ @) = P2, @ — an; D)

where fo; and @, are arbitrary constants in time and frequency domains respectively.
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Therefore, the constraint imposed on the kernel is that the kernel must be independent of

both time and frequency. That means the following constraints must be met,

d(8, 7) does not depend on the time ¢, (Constraint 2)

@(8, 7) does not depend on the frequency w. (Constraint 3)
Since the time-frequency power spectrum is an instantaneous energy distribution, the sum

of P(1, & ; ) over the time and frequency domains must be the total energy distribution of the

input signal x(#), that means

Gea .
L I P(t.0;®) dw =[x (1))’ (A.10)
2
and
409 )
| o 2
-2;I P(r,w;fb)dt=|}((w)| (A.11)

The total power spectrum of the inpul signal x(?) is integrated with respect to the frequency
variable @ in Eq. (A.10). To equate the left-hand side to the right-hand side of Eq. (A.10), two
conditions must be satisfied: first, the kemel should not have any effect on the energy
distribution since it is the power spectrum of the input signal itself and second, the "frequency
variable @" of the kernel must be eliminated. It should be noted that 8 is the time variable and 7

is the frequency variable used in the characteristic operator method.
To fulfill the above two requirements, we must have

®(6,0)=1forall & _ {Constraint 4)
Similarly, we obtain another kernel constraint based on the property given in Eq. (A.11)

@0, 7)=1forall = (Constraint 5)
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Next, firstly, it is required that the average frequency of the energy distribution P(r, @ ; ®)
and the instantanecus frequency of the signal should be equal a1 a certain time. Secondly, the
group delay and the average time of the distribution P(7, @ ; @) should be identical in value at a

S~ certain frequency. Mathematicaily, the above two conditions can be written as {13, 14]

Iw P, w;9) dw
—to d
=Im{L oy
m {d{ In 1(!)} (A.12)

+oa

J‘P(t,w;qb) dow

—Cy

and

ey

J't -P(t,w39)dr
= =-Im {—"'—In }?(w)} (A.13)
dw

+o0

j P(r,an @) dt

—oo

where X (w) is the 1-D Fourier transform of the input signal x(¢) and In(-) denotes the natural

logarithmic of the function () to the base e.

To meet the requirement given in Eq. (A.12), constraint 4 is required so that the time-
frequency power spectrum P(;, @ ; ®) is independent of the "frequency variable” of the kemel
which is 7. Recall that 7 and @ are the frequency and time variables respectively of the kernel
d functions $(B, 1) as have been used in the characteristic operator method. Thus, this property

covers the property previously given in Eq. (A.10).

The right-hand side of Eg. (A.12) can be rewritien as

d - 4
Im{zln x(:)} = Im{ln = x(f)} (A.14)
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The left-hand sides of Egs. (A.12) and (A.13), which consist of the time-{requency power
spectrum and the kernel function, are equated with the rate of change of the input signal in time
and {requency domains respectively. To obtain the next two constraimts, similar logical
techniques to those used to obtain constraints 4 and 5 are employed. In this case, the rate of
change of the kernel in the time and frequency domains (8 and © respectively) must be zero so
that the rate of change of the time-frequency power spectrum is equal to that of the input signal
without the kernel interference. Mathematically, the required constraints to fulfill Eqs. (A.12)
and (A.13) can be stated as

d
-&-é-{(b(ﬁ.r)} o =0,¥7 and (D(O.. T) =] forall 7 (Constraint 6)
Similarly, we obtain
d ,
-E{q:(e,r)} : =0,V and ®(6,0) = 1 for all 6, (Constraint 7)
7=l

The final property is the finite support property which states that the energy distribution
P{t, @ ; @) should be zero over the zero region(s) of the input signals in time and frequency

domains. That means the followings can be stated

In the titne domain, if £ £) = 0 for £ | < Ty then P(t, ;@) =0 for| 7| <7, and similarly in

the frequency domain, if F(w)=0 for| w|< ey then P(t, @; ®) =0 for | @| < ax.

The finite support properties in time and frequency domains ensure that the energy
distribution or the time-frequency power spectrum is finite over the defined ranges of the time
variable ¢ and the frequency variable @ To meet the finite support properties, the kernel
weighting function must be finite over the defined ranges of time or frequency. In other words,
the kernel weighting functions must decay to zero outside the defined ranges of the time and

frequency variables. The following constraints are therefore obtained

Ig'f“ (0, 7)d8 =0, for | 7 |<2)¢| : (Constraint 8)




Appendix A

and similarly
Ie‘f"“ -(8,7)dr =0, for|@|<2| w]

where all integrals are from —e to +os,

(Constraint 9)
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APPENDIX B : SIGNAL-T O-

NOISE RATIO DERIVATION OF THE
GNKD

This section presents detailed calculations of the SNR of the general non-unity kernel signal
detector (GNKD). The statistics 17 is calculated by substituting the appropriate signals into
Eq. {5.19) in which the signals g(-), ii(-), s(-} and f{-) are different. To calculate the statistics
1, we put g(*) = i(-) = 5(-) which is the input reference signal. For the case of Hy, we have

) = w(n). For the case of Hy. f{-} = w(n) + s().

The statistics of the hypothesis Hy is given by

Mj2
??IFRIHO =M i [Al 'Bl]

=2
M
=M 2 s (qk)ZFL wlpg )+ ) 5T (q) (-1 )‘“Eﬂ wipy ) (-1 |-
n=-M[2| qy=-|n} qp=—]H

i’ (ql)ZFi s(p )+ is {q;) (-1 )""ZF; s(p; ) (-D™

g=-]r| 9= | i
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After multiplying out all the summations and products we obtain

M2
nTFRIuo =M - (D, + Dy + Dy + D)
n==AJ2
M
=M: 2 is (Qk)ZFL wipg ) | is (Q:)EF: s(p;)
A=-M[3 gp=-}| tr=-]#|
r’ il L
+ iS*(Qk)ZFk wlp )| is'(‘h)‘(‘l)mza'S(Pf)' -n*
\‘f&=‘|ﬂ| Pr ffF‘l"[ Pt
4 H \ ( W
+ ﬁ“s'w&)-(-n‘“z‘,& wlpe)- (D™ | is @)Y, Fi-s(o.)
9=l Px J L= P
ar Y (e
+ i-‘ (qz) (‘I)I‘ZFA wipg ) (-7 |- i-’f (an (-l)“"ZF, (p;)- (-7
 4e=~]] Pk J Lar=-inl

(B.2)

The stalistics for the hypothesis H is given by

M2

ﬂmz'ul =M Z
n=-pMf2
ié‘ (9 )ZFk oy )+ slpe) "'ES (@)= l)q"sz (wlp }+ s(pg ))- (=% |-
[ =" 0%
N @)Y Fieslp)+ Y s @) 0" Y Fieslor) 1
| 9 Pt a Fi
Mi2
=M i ¥ @Y fslp )t s @ 0" Zf‘k s(pe)- (D" + A, |-B,
n==Mf2 4 Py 4k
(B.3)
where A; and B, were defined by Eq. (B.1).
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The general expression of 1| n, 18 given by

M2

??rrklu. =M
n=-Mf2

% ax

Mf2

=M
n=-Af2

4k & Pi

M2

25‘(‘& )sz‘S(Pk) B+ 25'(«&)'("0“25‘3(& ) (=D)P* B+ A B,
P Pi

25‘(%)2 Fis(py )| By + Zfi(qk)'("l)w‘ ZFk s(py ) (=1)?% |- By +n7er H,
Py

=M {ZC+nTFR|Ifo}
n=—A[2

(B.4)
where
c=| D@ Feso) || Yostan Y Frs(p) |+ 55

9 P ar Pt
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223

A PO

Tyt

T T e L




.

Appendix B

For the special case of p; = p;, g, = qn and ¢z = gy, Eq. (B.5) becomes

C= 23‘(%)2151 +s{p) |- ZS(qI)ZF;'S'(P;) +
P Pi

at o

D@y sl || 35 @ vn 3 A sl
Py

o - r;, P (B.6)

=Apr Apr + Bor - Bor

where Agp = Es*(qk)-Fk -s(g,) and Byp =23"(q,)-F, -sg; ) -9,

L L4

The constant C (given by Eq. (B.5)) is a modified version of the signal energy in which
the constant product F - F; can be considered as the square of the weighting function of the
kemnel function ®(6, 7) when k =1, As will be seen later, under the special condition of k=1,

some useful manipulations can be carried out.

In the case of the Wigner-Ville kernel in which the involvement of the kernel is
included in the index of the local auto-correlation function, the reference-signal energy is
not altered. For the case of a non-unity kemel, the Fourier transform of the kernel is not an
impulse function which makes the calculation of the time-frequency power spectrum more
difficult. As a result, the signal energy will be modified and its familiar form is not obtained.
Instead, the signal energy will be reduced by multiplying with the weighting function Fi.
The rest of the appendix is going to calculate the SNR of the statistics 1 by evaluating all ten

terms of the summation square. The effects of the weighting function will also be

demonstrated.

The notations used in this appendix are as follows. The subscript "0" indicates
energy terms with only one summation. These terms are usualty the original signal energy
or noise energy, e.g. Ao, Vo The subscript "1" indicates there are two summations in the
energy due to different & and /. If k is similar to /, then the subscript can be safely ignored.
The subscript "F" indicates that the energy term is multiplied by the kemel weighting

function F and "FF" means that the term is multiplied by a square of the weighting function.
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Appendix B

The performance of a detector is Judged by the value of its SNR. Firstly, we calculate
the mean of the statistics of the two hypotheses

E{ "T"Rlun } =0 since E{w(n)} =0;

B.7)
E{ ﬂrml”l } =2MC

Since Ty 4, = C+ Mg, - the variance of ey 18 equal to that of nzep],, . The

variance of 77| u, 15 given by

Var{ ﬂrm]"l } = Var| ﬂmelno }= E{{nml,,o I'} (B.8)

To evaluate Eq. (B.8), we have to square nﬂ.-R| H given in Eq. (B.2) to obtain a square

summation. From Eq. (B.2) and after the squaring process, we obtain the first term of the
square summation

Mj2 M[2
2
M 2, Dl =
Ca==Mf2 j=-Mf2

M2 N f Zs (q1) - Es(q“) EF: PI)Z s Pn) (B.9)

n=-M{2 j==M{2 g get a1

\
ZFk w{py ) ZFJU ~wlpe) | ZS (q;) Zs(q,,
#u 4
For a corplex white noise process of variance Ny, we obtain
E{w(p)w(pu)} = Nob (pi = pu), thus, py = pu (B.10)

The noise process in this case is modified by the energy of the weighting function F;

which results in a new noise process of variance Ny. Using Eq. (B.10), Eq. (B.9) can be
rewritien as

A T A
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The performance of a detector is judged by the value of its SNR. Firsily, we calculate

the mean of the statistics of the two hypotheses
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To evaluate Eq. (B.8), we have to square nmwl Ho given in Eq. {B.2) to obtain a square

summation. From Eq. (B.2) and after the squaring process, we obtain the first term of the

square summation

M[f2 M2
M. D} =
n=-MJ2 j=—M[2
\

M2 Mj2
M. i i Zs @) Y slan) | ZF: (o) D Fes" )| g
n=—Mf2 je—MH 4. 91 P J

ZFJ& wlpy )- Z W) | 23 (g} Es(fiu)

P11 an

For a complex white noise process of variance Ng, we obtain

E{w(pe)-w(pn)} = Nod (x = pa1), thus, pe = p (B.10)

The noise process in this case is modified by the energy of the weighting function Fy

which results in a new noise process of variance Ny Using Eq. (B.10), Eq. (B.9) can be

rewritten as
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M2 M2 M2 Mp 1
M?. Z Dl =M?. Ay - Aoy Norr - Agy (B.11)
n=-MJ2 j=wM[2 as=M{2 ja-Aff2 :
where
Nogr = ZFk wipy ) 2 P ) Agy = ZS‘(G:)‘ZS(QM»
L1 Ul mn
Agier = EF' s(p ) ZFJ“ s (pu) (B.i2)
Edy
and Ay was defined in Eq. (5.13).
The second term is given by
M2 M2
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The third term is given by

M2 M2
2
Mt D}
n==M2 F==Mf2
M2 Mf2
2 *
YES i“ Y @ ne Y slap v | Zs (@) ) stan)
n=—M[2 j=—M{ gy 73}

i

sz w{p )- (=P - z 1 wlpy ) (=P | ZFI s(ps z e +s"(pn)

Fil Pt

M2 M
g2
=M"- 2 Ay Agy - Noer - Aipr

n=-M{2 j=-M[2

(B.14)
The fourth term is given by
o omMzoMp Miz M2 '
naeB1f2 jo-M[2 n=[2 j=M/A 0 a0
. EFL wlpy ) (=17 Zﬂu wipy ) (=DPH
| Pi1
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(B.15)
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The fifth term is given by
M2 M2
M*. 2D,D,
n==M{2 j=-Aif2
M2 M2

VLS D @) Fowlpe)|

n==Mf2 j=-Mf{A @ Pr
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The sixth term s given by

Mf2 M2
M. 2D,D,
e M2 ja-M]2

: Mpz Mf2
=2m?%.

n=—Mf2 j=-Mf 4
1Y s @ Y Foloe) b | Y

g Pr it

M2 M2

=M. 2Aq - By - Nogr  Borr

n=-MJ2 j=-iif2

S @)D" Y Fislp (-7
Py

25'(91)2!"} +s(pr)
Pt

qt

(B.16)

3500 Y, Fewlpe)- 0™ | PIATIILEY
Py P

qt

s* (@) =D Z F, - s(py)- (=D
Pt

(B.17)




Appendix B

The seventh term is given by

M2 Mp
M. 2D,D,

n=-8J2 j=-M[2

Mp o M2
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The eighth term is given by
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The ninth term is given by

M2 Mp2
M. 2D,
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The tenth term is given by

Af2 M2
M 2. 20294
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By summing the ten terms given by Eqs. (B.9)-(B.20), the variance of Mrgl,y, is given
i

by Eq. (B.22)

M2 MJ2

- 2
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For the special case of p, = p; and 9= qi @ = qn, Eq. (B.23) becomes

Aprr = Aorrs Agrr =2Fl +s(py )- Fas(p)
m

Bopr =2F: -s(p )y -s(py ) (=17 ; Byy = Ay, = Ag: Boypr =Byrr,
M

Morr =2Fk wlpy ) Fy - wlpy )- (=)™ Nogr =2Fk wipy ) Fp - wlp,)
Py P

(B.24)

The SNR of the GNKD for the general case is then given by

2:M-C

* SNRGuip =—p=e=——, Where Var(flyz},, ) is given by Eq. (B.22).
'lfar{nTFR | Hy } Hl (B.zs)

Eq. (B.22) consists of ten terms with the involvement of the fourth power of the
weighting functions F, which reduces the values of the terms significantly. The nominator
of Eq. (B.25) is a function of the second power of the weighting function which is much
larger than its fourth power counterpart in the denominator. The denominator of Eq. (B.25)

needs to be as small as possible to maximize the SNR.
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For the special case of p; = p; and (x = q given by Eq. (B.24), Eq. (B.22) becomes,

Mp2 Mp

2
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(B.26)

where X = % is the ratio between the energy difference of the even and odd parts of the

reference signal s(-) to its energy Ag, Xo = —: is the ratio of the energy difference between

the even and odd parts of the noise process to its energy No, Nogr and Ager are the modified

noise energy and signal energy respectively scaled down by the square of the weighting

function F.

The SNRguxn of the non-unity kernel signal detector in the special case is thus given by

V2 (Agr + Bgr)

N A

SNRugp = (B.27)
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‘I‘he’ measured speedup factor of the time-frequency power spectral parallel calculation

grocess is evidently a_!most linear, The speedup factor increases linearly as there are no

humps" or sudden "jumps" in the speedup factor. This shows that the time-frequency
power spectrum can be calculated efficiently using parallel compuling.

o6 Paratlel Efficiency of the Time-Frequency Power Spectrum Caleulation

0.758 1
0.756 1
0.754 1
0524 -

0.75 1
0.745 1

0.746 1

0344 L} L7 v T L) -1 - T L] T ¥

Number of Processors, N

Figure 1.2.2: Parallel efficiency of the time-frequency power spectral calculation process,
the loop size is 256 samples

1.3 Discussion

Conditional executions within the main paralle]l loop unbalance the load among the
processors as values of the running variables », # and 7 vary and thus lower the parallel
efficiency of the process. Consider a fragment of the code given below

indexl = n + M + T;

index2 =n+ M- 7T;
if ((indexl >= M) | (index2 < 0)) temp = (float) 0.0;

Task 1
else temp = (float) WFCW*ff[indexl]*ff (index2];

Task 2

The above code is located in the inner-most loop of the main parallel loop. Thus, the
conditional execution will occur repeatedly many times. Since the number of nested for
loops of the bispectrum process is less than that of the timc—ﬁ:equcncy power spectrum
process, this explains why the parallel efficiency of the latter is lower than that of the
former. As values of the temporary running variables index1 and index2 change. 50
does that of the temp variable which results in two unbalanced tasks as can be seen in tl'{e
above code. For large values of n, 1 and 7 which are close to (he loop size M, the load is
Jess computational-heavy compared to that for the case of small va!ues n, nand © Thus,
processors that had been assigned iarge-order tasks will take ]?5? time to complete the§e
tasks and therefore they will be re-emiployed to finish any remaining iterations of the main

parallel loop.

Paralle! efficiency might be improved by increasing the loop size M which' increases
the ratio of useful work to total work whereas the amount of wgsted wqu rtfmams alml?sl
unchanged. However, at the same time the parallel overhead might be increased. In of ]fr
words, if the loop size M is large compared to the total number of processors N m the
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System (which is 12 in this case), the parallel efficiency might be improved. For the time-
freguency power spectrum case, the number of iterations for the main parallel loop is 256,
which is a large number compared to the number of processors of the system (12
independent processors). Thus. the waiting time of any processor will be considerably
shorter than its useful time. For example, if the number of processors is N = 5, then the
number of ilerations that each processor has to complete is 256 div 5 = 51 and there is 256
mod 5 = 1 iteration left. After the 5 processors finish their 51-iteration work then the one
that finishes its tasks earliest has to finish the remaining iteration and other processors (four
in this case) have to wait until the remaining iteration is completed. The waiting time
associated with one iteration is clearly much less than that of completing 51 iterations. This
explains why the parallel efficiency of the time-frequency power spectral calculation
process is more stable than that of the bispectral calculation process.

However, the time-frequency power spectrum calculation process suffers from a larger

-number of conditional executions compared to that of the direct bispectrum calculation

process which lowers the parallel efficiency. The parallel efficiency of the time-frequency
power spectrum calculation process is higher than that of the indirect method bispecirum
calculation for some values of N since the parallel efficiency of the latter depends strongly
on the number of conditional executions in the code and the number of processors used to
execute the parallel program (hence the unstability) as can be seen in Figure 1.3.1.

The parallel efficiency of the time-frequency power spectrum calculation process
attains its minimum of 74.9% with N = 10 and its maximum value of 75.8% with N = 3.
Most of the time, the efficiency remains almost unchanged around the average value of
75.2% for other values of the number of processors N.

If the program is run serially, then the time it would take to finish it is approximately
2583 seconds or 43 minutes for a small loop size of 256. The paralle] program would take
less than 15 minutes to complete since the efficiency is higher than 75%, If the loop size
further increases, the efficiency of parallel techniques will be increased. The following table
summarises the advantages and disadvantages of parallel calculation of the bispectrum and
the time-frequency power spectrum.

Table 1.3.1: Comparison of (he parallel bispectrum and time-frequency power spectrum
calculation processes

Common features

Parallel efficiency can be improved by increasing the loop size, parallel codes are flexible
and can be easily modified for other types of parallel architecture. Data dependency can
be resolved effectively.

Advaniages

Disadvantages

Bispectrum

Higher efficiency due to efficient
inner loop (direct method) and a
small loop size.

Unstable efficiency (indirect
method) due to a small number of
loop size of 10. Performance
strongly depends on the number
of processors used to run the
program in paraliel.

Time-frequency
power spectrum

Stable efficiency due to a large
number of iterations of 256 or
larger. Performance is uniform
as N varies.

Lower efficiency due to a larger
nutnber of conditional executions.

i ime-f wer spectral process

Overall, although the paralle} efficiency of the time-frequency powe
(75.2%‘; is not that high compared to that of the parallel bispectral calculation process {about
90% or higher), it has been shown that the time-frequency power spectrus: can be calculated
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cfficiently by using parallel computing. In addition, parallel compuling is a useful oo} 1o
solve large and lengthy signal processing tasks. The parallel efficiency of the ti:ne-
frequency power spectral calculation process might be improved by incieasing the loop size
The measured speedup factor was obtained by using 256-sample for loops. Since ther; are-
fl nes.led for loops, the number of iteraticns would be (256)* or approximately 4.3 x 10°
iterations. Because the stack_size and memery_size quotas on the patallel cl:mpuler

on which all experiments were run were limited, larger loop size (f }
s O ¥
larger) could not be performed. ’ P ffor example 1024 or

Bispectrum Parallel Efficdency

04 ; + ; 5 : S 5 , ,
i 2 3 4 S 6 1 8 9 0w m B
Number of Pcocessors, N

Figure 1.3.1: Paralle} efficiency of ihe oispectrum caliulation process [24]

14 Conclusion

For the time-frequency power spectral paralle) calculation process, near linear-speedap
factor has been observed with the minimum efficiency of 75.1% with N = 1. The maximum
efficiency of 75.6% was obtained wien N = 3 at the speedup factor of 2.3. With N = i2, the
efficiency was 75.3% and the speedup factor was 9.03. The average efficiency was
approximately 75%. [t has been observed that the PCA method could not provide suitable
parallel solution to the program hence only the semi-automatic method was employed using
the coarse-grainea method for the time-frequency power spectruim calculation process. From
the results obtained, it appears that the time-frequency power spectrun, can be calculated
efficiently by using parallel comouting. However, the efficiency of the process is not 'high
compared to the bispectral calculution process due to 2 farge number of conditional

executions.
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Abstract. A new lechnique is proposed to solve the simple binary
signal-detection problem using a ponunity kernel time-frequency signal
detector (GNKD). The GNKD is based on a Gohen time-frequency power
Spectrum, employing nonunity kernels only. This iass of signal detectors
includes the Chol-Williams delector (CWWD) and the recently proposed
hyperbolic detector (HyD). This work extends the work done by Kumar
and Carroll, who investigated the cross unity-kemel Wigner-Vills detector
{CWD), which is a special case of the GNKD class. The discrele Moyal's
formula for the nonunity kernel time-frequancy distribution is derived.
The performance of the GNKD is then compared to that of the CWD and
the crass-correlator (CORR) detectors by calculaling the signakto-noise
ratio (SNR) and the loss facior @, The GNKD is shown 1o be better than
both the CWD and the CORR with improvement in the SNR by a factor of
vl The HyD can improve the SNR by about 18% compared o the
CWWD. Detection of some praclical nonstationary signals is also inves-
tigated 1o exemplity the proposed method. @ 2001 Socisty of Photo-Optical
! tation Engi {DO: 1011371147408}

Subjecl 1erms: Wigner-Ville detector; Moyal's formula; hyperbolic kernel: Choi-
Williams kemel: signal-to-noise ralio; Cohen time-irequency power spectrum,
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1 Introduction

Detection of known and deterministic signals in the pres-
ence of noise is a classical problem that has been siudied
imensively in the literature.? To solve this problem, the
signals and the additive noise are assumed to be stationary
or wide-sense stationary and zero-mean processes. The
maiched-filler technique has been shown 1o be the most
effective method to detect signals in this case. However, if
the signal is nonstationary, i.c., its power spectrum varies
with time or the signal is not known beforehand, then the
classical method using the matched-filter technique is lim-
iled. Nonstationary signals in practice include radar, sonar
signals, image matching,>® and so on. For such nonstation-
ary signals, time-frequency signal delectors need to be em-
Ployed so that the signals can be detected effectively.

One typical lime-frequency detector is the Wigner-Ville
uity-kernel detector, which can be used 10 solve the simple
binary detection problem.>6 There are two reasons that the
Wigner-Ville time-lrequency detector is popular. First, the
Wigner-Ville distribution is simple and easy (o implement,
and it provides perfect frequency concentration in the time-
irequency plane.” Second, originally used in quantum
mechanics,” Moyal's formuila, which is required for calcu-
lation of the SNR, is available for the Wigner-Ville distri-
bution. The noise, which is assumed 1o be complex, wide-
sense stationary, can be of two common types thal are
tsually encountered in practice, namely white and colored
toise. Using the Wigner-Ville unity kemel detecior, detec-
ion of nonstationary signals in white noise was done by

2001; accepted lor publication June 20, 2001.

Flandrin’ and in colored noise by Marinovich.> Bath these
researchers used a method 1o detect signals by estimating a
statistical function %, which is then compared with a thresh-
old value.3?=1" If 5 is greater than the threshold, then the
signal is said to be present; otherwise, the signal is not
present.

The nonunity kemnel lime-frequency signal detectors
form a class of detectors of which the Wigner-Ville unity-
kernel signal detector is one special case. This class of de-
tectors employs Cohen’s (ime-frequency distributions with
difterent kernel functions. Each kernel comesponds to a
unique distribwion and hence to a unique signal detector.
The kernel function strongly influences the performance of
the detector in terms of SNR and the higher the SNR, the
beuter the performance of the signal detector. The simplest
nonunity kemel of Cohen time-frequency class is the
Rihaczek kernel, Ppis,coal & 7y=exp(jo2). The Choi-
Williams kernel signal detector {CWWD) can be consid-
ered as the most usefid and popular detector due to the
effecliveness of the Choi-Williams kernel in suppressing
cross terms and its robusiness in noisy condiiions. A dilfer-
ent class of signal detoctors is the bilinear signal detectors,
in which the nonstationary structure of the signal is ex-
ploited to ensure the best match of the signal to the detec-
11's filter? Another class of distribution associated with a
detector is the quadratic class of time-frequency power
spectrum called the hyperbolic class, which was first pro-
pased by Papandreou and Bartels.'? Signal detection using
this particular class is examined in Refs. 13-15 using the

266 Opt. Eng. 40(12) 2866-2877 (December 2001) 0001-3286/2001/617.00 @ 2001 Saciely of Photo-Optical Instrumentation Engineers




Le, Dabke, and Egar: Signal deleclion . . .

~J of estimating the statistical function 7.

—aniy kernel signat datectors have been studied in
wme detail in the literature, in particular, detectors using
the Rihaczek and Chei-Williams kemels. A comparison of
the Wigner-Ville and Rihaczek distributions has been done
in Ref. 7 in which the Wigner-Ville distribution was found
lo be more suitable than the Rihaczek distribution in terms
of signal detection and preservation of (he inner product of
Moyal's fornula. The Wigner-Vilie detector was compared
to the Choi-Williams detector® for the case of the Doppler
taget-relurn signal using the same method presented in
Ref. 7. In Rel. 9, the reverberation ratic SRR was estimated
instezd of the SNR due to the specific requirements of the
application of calculating the arget return,

Although the Choi-Williams time-lrequency distribution
has been used 1o detect the Doppler signal, the statistical
function i of GNKD has not been derived. It should also be
noted that (o estimate the SNR of u time-frequency detec-
tor, Moyal’s formunla for the cotresponding lime-frequency
distribution of the detector is required. While Moyal's for-
mulz has been derived for the case of the Wigner-Ville
ime-frequency distribution of unity kernel only, ihis for
mula has not been derived for a nonunity kernel time-
frequency distribution. We derive this formula for nonunity
kemel time-frequency distribution and then apply it 1o the
siauistical function » o calculae the SNR of a delector.
Thus, derivation of Moyal’s formula is an imporiant step
belore any performance calculation of a time-{requency de-
tector is carvied out. Furthermorte, using Moyal's formula is
the only method currently available to estimate the SNR of
ime-frequency detectors, since the process involves mul-
tiple products of the corresponding time-frequency distribu-
tions that the detector is based on. 1f Moyal’s formula for a
patticular class of time-frequency detectors, i.e.. Moyal’s
formula for the corresponding time-{requency distributions,
does not exist, then it is not possible w0 estimate the perfor-
mance of the detector class. :

We aim 10 achir v~ three goals. First, to derive the pre-
requisite Moyal’s iormula for nonunity kernel detectors.
This formula can be used for any nonunity kernel detector
if a new kernel function and hence its corresponding time-
frequency distribution are available. Secondly, the hyper-
bolic detecior (HyD) and Choi-Williams detector (CWWD)
are compared so that the effectiveness of the hyperbolic
kemel aver the Choi-Williams kermels can be clearly iden-
tified. Thirdly, the ability of nonunity kernel detecters in
detecting practical signals such as ECG, music, and speech
is examined in detail. )

Section 2 briefly defines the binary signal detection
problem and outlines the general expression of the SNR.
Section 3.2 derives Moyal’s formula in detail for the non-
unily kernel time-frequency distribution. In Sec. 3.3, the
general detatled expression of the SNR of ithe GNKD is
given using Moyal’s formula. The relative performance of
the HyD and CWWD is compared by using the geomelrical
features of the hyperbolic and Choi-Williams weighlin.g
functions. Section 4 calculates the SNR by using Moyal's
formula from Sec. 3.2 and compares the loss factor Qg of
three signal detectors, namely, GNKD, CWD, and the
tross-correlator detector {CORR). The value of the energy
ratio X, , which plays an imporiant role in determining the
petformance of a signal detector, is estimated in Sec. 4.4

for 2 number of signals, including a sinusoid sin{f), an ex-
ponential exp{—1), exponentiall* decaying sinusoid sin(r)
-exp(—1), chirped cos(Cr), the ECU, und speech including
all the voweis aud the “sh"-sound signals. These signals
are used 1o est the performance of the GNKD, CWD, and
CORR. Overall, the GNKD provides a substantially im-
proved SNR for most practical signals compared to the
CWD and CORX. The HyD performs better than the popu-
lar CWWD with a larger SNR,

2 Binary Detection Problem

The binary detection problem can be undersiood as a prob-
lem of determining the presence of a nonstationary signal
s5{r) in the presence of the stationary, white, zero mean and
complex noise w(r), given the received noisy signal f{r).
The signal energy and the noise variunce are assumed 10 be
Ay and Ny, respectively. These parameters are used to es-
timate the detector’s performance by estimating its SNR,
Since the signal is nonstationary, the classical method
employed for stationary and known signals cannot be used.
Insiead, time-frequency signal detectors have 10 be em-
ployed 1o detect the presence of the nonstationary and un-
known signals, which are commupled by channel noise und
other noise sources. It is assumed that it is not possible 0
separate frequency power spectra of the signal and the
noisy received signal f(r), and also that the signal is com-
pletely masked by the noise w(r). The two hypotheses for
detecting tlie signal that need to be considered are given in

Eq. (1)
Hy:fin=w(e) and H:f(n)=s(1)+w(s), n

in which H, means that the signal s(¢} is not present and
H\, means the signal is present. The reference signal s(¢} is
assumed to be unknown, nonsiationary, and could be of
random type.

The hiypotheses are then examined and the main goal is
10 decide which one of them is likely to hold. This is done
by forming a siatistics # using the received noisy signal
J(£) and the reference signal s(s}. The hypotheses are then
decided by comparing the staistics n with a threshold
v-lue. If 77is greater than the threshold, the signal is said to
be present. Otherwise, the signal is not present™*’ The
performance of 2 particular statistics # is determined by
estimating its SNR. The SNR of a statistical function » for
random variables, which is equivalent to ihe likelihood ra-
lio, is given by

| E{ ’7| i l} - E{ ’I| no}l

= ' @
($Var{ 7y } + Var{ gly,h'"

SNR

where E(-} and Var(-) denote the expectation and variance
operations on the statistical funclion 7 under the hypoth-
eses Ho and M. The SNR of the matched filter or COll{R
can be found by using the general formula [Eq, (2}], which
will be shown in Se. 4.1, The next section derives Moya}‘s
formula for the general nonunity kerne! time-frequency dis-
(ributions based on the same Moyal’s formuia for the unity-
kernel Wigner-Ville time-frequency distribution.
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3 Derivation of the Discrete Moyal's Formula for
a General Time-Frequency Distribution

a1 Discrete Moyal's Formula for the Wigner-Ville
Time-Frequency Distiibution

To successlully esiimate the SNR of a time-frequency de-
tector, Moyal's fomula of a particular lime-frequency dis-
tribution must be known. The discrete Moyal's formula for
the Wigner-Ville time-{requency distribution has been de-
rived by Moyal and forms the basis for deriving Moyal's
formula for a general time-frequency distribution, which is
vital in estimating the SNR of a detector using a nonunity
kemel time-frequency distribution.

The general time-frequency distribution is denoted as
TFR(w.!} in coniinuous form, or TFR(m,.n) in discrete
form, with w and-¢ the frequency and wime variables respec-
tively, and m.n the discrete {requency and time variables,
respectively, The general time-frequency distribution is de-
rived by Cohen '™7 and given in Eq. (3)

1 +m [+ 4o
TRR(t,w)= g J‘_w I_m J_ fexp—jo(t—1)]-d(6,7)
Fli—u,7)

-exp{— jT0)-R,,(t,7)dudrdé, )]

where F(r—n,7) is the weighting (unction, which is the
1-D Fourier transform of the kernel function d(6, 7).
=t+7/2, and the autocorrelation function R, (#,7}=x(u
+12)- x*(u— 7/2). The Choi-Williams kemnel is given by
$ewl( 8.y =exp(—&a) (Ref. 18} and the hyperbolic or
firn-order hyperbolic kernel is given by @,(6,7)
=[sech(B67]". where n= 1. Two other kernels that can be
used for signal detection are the third-order hyperbolic ker-
nel, Degpry( 8, 7) =[sech(BON]", (where n=3), and the
Choi-Williams-Butierworth  (CWB) kemel $cywp(8,7)
=exp(—FAHDIFP+1. It should be noted that the
®cwp(8,7) kemel satisfies admissibility constraints'™"
and has not been reported in the literature.

The weighling functions ch, F“y, FCublly' and FCWB
of the Choi-Williams, hyperbolic, cubic hyperbolic, and
Choi-Williams-Bunerworsth kemels are given by Egs. (4)-
{7), respectively

—2
Fnﬁg;sech(ﬂ—g%‘l] (5)
(B +u?) alt—u)
Fcumﬁ"w fzﬁ’f’" sec ( T ] (6

mexp{ Vo) | = l =
Fowp= 7 {e-"P( - _f_) ’ Erfc( T Vo 2r

Al o
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) The ;Vigncr-\:’il]c lime-frequency distribution in con-
tinuous form is given by substituting B (0, 7)= 1, which is
a unity k‘emel,'"ﬁ"'m‘22 into Eq. (3) 1o obtain

W(r.w)=J.r{f+%)-.t*(r— %)—exp(-—jwr]dr. (8)

where the range of integration is from — (0 +eo unless
otherwise siated.
In discrete form, the Wignes-Ville distribution of 1wo
signals f(-} and s(-) is given by Eq. (9)
Af2-|a)
W, lnm)=2. +7)-s* (-7
14 } et {f(n+T7)-s*(n=1)

<expl —j2mkmi(M + 1)]}, )

where ru are the discrete time and {requency variables, 7,
is the lag parameter, and M is the number of data samples.
More detailed background on the Wigner-Ville time-
frequency distribution can be found in Refs. 20-22,

The continuous Moyal's formula for the Wigner-Ville
time-frequency distribution derived by Moyal in 1949% is
given by Eg. (10)>6108

Bywy= J I Wi (1, @) Wi(1,0)drdo
wat

=[jf(r}-g"‘[r}dr]-[fh"’(r)-s[r)d:], (1e)

which is a product of two energy terms of the four func-
tions, i.e., the inner product has been reserved for the
Wigner-Ville time-frequency distribution.” As is seen later,
the discrele Moyal's formula for the Wigner-Ville and for
the nonunity kernel time-frequency distributiens are more
complicated with the involvement of the odd and even
samples of the signal in the time and frequency domains,

The discrete Moyal's formula of the Wigner-Ville distri-
bution is given by Eq. (11)

M M-l
Bawv= 2 2 Welum) - Whin,m). (1D
n=m M2 =0

The derivation of the discrete Moyal’s formula [(Eq.
(12)] is given in detail in Ref. 5 and is repeated here as

M2 M2
= . . . * .
Buv=2M-| 3, o) h*mJ Z 8o s(v)]

M2
. e
oM ,,E,m( Df(u)-h {a)J
M2
[ 2 {_”"8*('*)°S(v31- (12)
,l"'-Mr‘Z

To apply the discrete Moyal’s formula to find the SNR
of the GNKD, the following identities are applied to Eq.
(12): g(-)=h(-)=s(-). The following section derives the
discrete Moyal's formula for the GNKD.

*—ﬁ
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3.2 Derivation of the Discrete Moyal's Formula for
the GNKD

The discrefe Moyal's formula for the Wigner-Ville distribu-
tion was given in the previous section, This section extends
Moyal’s formula for the general Cohen nonunity kernel
time-frequency disiribution. Givan the reference signal s(/)
wilh the energy A, and the white noise, zero mean process
w(t) of variance Ng, the problem we have 1o solve is 1o
determine the existence of the reference signal in noisy
conditions. The signai energy A, and the absolute energy
difference B, between the even and odd samples of the
signal s{7) are defined by

M2
= 312
A= 2 stk
and
M2 Mi2
= ko i , 2 .
B=|, &, kel 3 Itk 03

The energy and energy difference of the noise w(r) are
similarly defined by Eq. (14)

Alfs

No= 2 [wik)f?

t=-MI2
and
M2 M2
Mo=[ 2 felheeal?~ 2 |wlkeal’|. (14
itt\":n- -MR &IKH- - M2 )

From Egs, {13) and {14), the dimensionless energy ratios
of the signal 5(f) and the noise w{r) are defined as X,
=84/Ag and X,=My/Ny, respectively. It is evident that
the ratios X, and X, are 05X, X1, since Ag=>By=0
and Ng= M ¢2=0. Generally, the values Bg could be in the
range of —Ago<By=<A;, however, in this work, only the
pasitive half of B is considered due to its uselulness and
convenience in practical situations. The physical meaning
of X, is discussed in detail in Secs. 3.3 and 4.3.

The discrete form of the general time-frequency distri-
bution is also given by Eq. (11) but with W(n,m) replaced
by TFR{#,m) as shown in Eq. (15)

Mz M)
Bankn= 2 2 TR {(n,m) TFRE(n.m). {15)
n=~Ml =0

The discrete form of the general time-frequency distri-
bution with a nonunity kermel is given by

L MR
TFR(n,m)=2 E 2 fin+y-g¥(n=-1)
Lu=—MR2

==

-Fln=i,7)- exp(—j2mm I M), (16)

where L= M/2~|n|, F(n—u,7) is the 1-D Fourier trars-
form of the kernel functiens (2, 7),M is the length of the
input discret signal, and s and # are the discrele lime and
(requency variables, respectively.

The discrete Moyal’s formula for a nonunity kernel dis-
tribution is obtained by laking a product of two discrete
TER(u,m) given in Eq. (17)

M2 M=-1
Bowp=4 2, 12 exp[jZW-{f;-r*}-m!M]]
n=—MD |l m=0

L M
“ >, Zm F-f(u;+'r,t)-g*(uk-f*)]

el e~

L Mz
[ z E F-*(up+ ) s{u— 1';)”,

==L g = M2
(17)

where F is the weighting function of the kemel.

The summation with respect to m in Eq. {17} can be
replaced by M- 8(7)— 1) (Refs. 5 and 24}, which results in
7= 7= 7 50 that the impulse function exists. After putting
pr=tt 7 and g=u;— 7, and similarly p,=u,+ 7 and ¢,
=u;~7, Eq. {17} can be rewritten as

M
p=4M A-B
Bomp=4M _%m {4-B}

MR Inl M=[n]
=4M 2 [[ > 2 Fueflpa

n==M | L ax==Inl pp==M+|a|
[sl+Ar  Af+[n]

Lk ) -
g (%)] Ll;"[ P:"‘%"‘l"l pr* it (P1)

-qu:)” . (18)

where A and B correspond appropriately 1o the square-
brackefed terms in Eq. {18).

From these, we also obain Pr=p;q,=2i; and Py
= p;+q;=2ul, which are even numbers. Thus, to allow the
summation over the specified range given in Eq. (18), the
factors M2[ 1+ (— 1)"«* %] and 1/2{ 1+ (—1)?*%] are in-
serted inlo the expressions A and B in Eg. (18}, respec-
tively, without affecting the value of the expression, since
the inserted factors are unity in value. Alter multiplying,
separating, and rearanging the variables appropriately, we
oblain
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a2

Powo=4M 3 [4-B) 7l = CF sl
a="hn
i lo] the variance of Fyrely, is equal to that 6f s sreg| #ye The
=4M > eI 2 Fofip) variance of the statistical functions pypgly, is ziven by
a=Shn | F2) iy '
lal Var{ gl e} = Var{ peeglis } = E{{ el s, 12
0 el nrewl 1%}
+ 2 8Na) (=D Fyflpa) - (— 1) o '
et Pr 172 M2
Inf Inf =M 2 ,_E (Ao ApirrNopr-Any)
" A =AY j= =Mz
2 NG Fpesipy+ D, (gl
==l " ar==lal Ay Boy-Nosr Bops) + (Ao- Ao Nogr

Ap1rr)t (Ap: Nopp By Baipe) + (24,
Nogr Bo* Borr) + (240 Bo Nogr Boer)

where A and 8 comrespond to the square-bracketed items. +(2Bo: Mopr Ao Aorr) +(2By- Mogr
Eq. (19) is the final form of the discrele Moyal's formula 8. . B,

of the general time-frequency power spectrum with a non- By Bopp)+(2By Mopr- Bo- Borr)

ity kernel. The next section gives the calculations of the +(2Bg - Morr- Ay Aorr)

SNR of the statistics of the hypotheses Hy and H, for the w2 Mp

aonunity kernel general case by using Eq. {19), =M. F%m j‘z’m 2(Ag-Agirr Nosr

(=192 Fyps(p)- (=171, (19)

3.3 8NR Caiculation of the GNKD and Performance cAg)+ (AgBoy- Bore Boirr)1+2[2(4,
Comparison of Different Nonunity Kemel
De,egﬁ,,s L4 -Norr-Bo Bopr) +2(By Mope- Ao Aorr)
Having obtained Moyal’s formula for the general time- +2(By Mo Bo- Borr)] 21
frequency distribution, detailed derivation of the SNR of
the GNKD can be made by employing Eq. (2}. The mean where
and varianice of the statistical function 7 are given by

E{real iy} =0, since E{w(r}}=0 Aorr= 2 FJ‘S(P:)'?; Fies*pnh
L] 1

E{ el }=2MC

Aorr=2, Fi-s(pp) Fips*(p).
where M is the length of (he input data samples, and ot

C""(Z -‘*Uh); Fk'-‘(Pk)] (2 -"(‘?f)g F:‘S*(PI)] Borr=z Frs(p)Fpes(p)- (- 1%,
v O k [} "

vl

+

> 5*(9‘0% Fk‘-T(Pk))

L

301=2 5"(4’;)'(‘”""2 s{qn)-(—-1", (22)

& 1

S se(gp(— 1", F;-s(p;)°(—l)”)- (20)
L4

L

Boier= 2 Fys(pp) (= 1) 2 Fyp-slpn)- (=DM,
P,
Under the special conditions py=py, q/=qn. and gy o (L

=q;, the term given by Eq. (20) becomes a constant C
=(Ror)*+(Bop)’s where Ag=2 s*(q) 2, slan),

i kil

A= D, s*¥(q)Fi 5(a0)
" Mopr= 2 Fywl(pi)- Fe-w(ps) (= D,
By
and

=  * Frew .
Bor= 2, s*(qp)-Fr s(an)-s(qn) - (~1)™. Narr=2 Fiwl(pe)- Fiwips)

T

 oiven b
Since the The SNR of the GNKI> is given by
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MR = E{naln,} IMC
O Var e} Va el '

(23)

The SNRgyxp for the special case of py=p,, q,=q; and gq,=q, is given by

v2.(A3+BY)

SNRgnkp=

BO
A Ag i 1+ =—=+2
o(No Aul o TA\A,

¢

Itis worth repeating that X = By/4, and X,= My /N,,
which were defined by Egs. {13) and (14} in Sec. 3.2, are
ratios of the absolme energy difference between the even
and odd samples of a signal to its total energy of the input
signal and noise, respectively. The ratio X, can be esti-
mated by using simulation at different sampling intervals. 1t
is shown later in Sec. 4.4 that the sampling rate can affect
the value of X, which in twrm will affect the petformance
of the signal detector,

The physical meanings of the encrgy ratio X, can be
understood as the tatio of the bundwidiy [the
Difference__Energy given by Eq. (25)] 1o the 1otal energy of
the input signal, As is shown later in the figures in Sec. 4,
the smaller the value of X the higher the signal detector
performance in detecting a particular signal. In addition,
satisfactory performance can be achieved by having the
value of X; close to 1.0, provided that X, is small (Sec.
4.3). However, the latter scenario is not applicable 1o situ-
ations in which the X, ratio of the noise is large. The en-
ergy of the input signal can be expressed in terms of the
even and odd energy of the input signal terms

Total _Energy
=Even_Energy+0dd_Energy

1 +m +x
o [ irao= [ o

Difference _Energy
=|Even_Energy—Odd_Energy|~Signal_Bandwidth

Difterence_Enerpy

Absolute _Energy _Ratio= , (23)

Total _Energy

where F(w) is the Fourier transform of the input signal
fi

Theoretically, the constant signal (-c<rs + ),
which according to Eq. {25) has zero bandwidih, is most
effectively detected since there is no energy difference be-
wween the even and odd samples of the signal. The Fourier
tansforin or the energy density of the conslamt signal is a
single impulse &w) located at the origin. This impulse is
regarded as a perfect way 10 concentrale the energy in lt_ne
frequency domain, since there is no smearing of eneigy In
the frequency domain. The bandwidth of a constant signal
is zero, since there is no width in the frequency domain for
an impulse. In the case of periodic sinusoidal signals, the

(Bo)l By Mo M,

Mg BT 24)
+TV'J'(§3) m

!

Fourier transforms of the functions sin{ewq ) and cos{ey?)
are impulses located at [requencies * wy. These impulses
concentrale the energy of the inpw signal perfecily in the
frequency domain, and their bandwidths are effectively
zero. Thus, it can be concluded that signals that have zero
Fourier-frequency-domain bandwidth, such as the constant
and periodic sinusoid signals, are most effectively detected
using a time-{requency signal detector. Simulation results
in Sec. 4.4 show that the periodic sinusoid has a zero-
valued X, , which is consistent with the theoretical predic-
tion of Eq. (23).

These two cases validate Eq. (25} in which the absolute
energy difference between the even and odd samples of an
input digital signal is directly proportional 10 its Fourier
frequency domain bandwidth. Other types of signals in-
cluding  exponential  transient  exp(—#, chirped
signals  cos(C-+}), exponentially decaying sinusoid
sin{wp)-exp(—#), and so on have nonzero bandwidths,
which result in larger energy tatio X,. Hence, detecting
signals with wider bandwidths is more difficult than detect-
ing the ones with narrower bandwidths. Real signals such
as the ECG, speech signals, and so on are reporied to be
effectively detecled using a time-frequency signal detector,
as is seen in Sec. 4.4.

The facl that wide-band signals are more difficult to de-
tect than narrow-band signals can also be explained by
looking at the problem from the filter point of view, If the
signal is wide-band, it is more likely 10 be contaminated by
other signals such as noise, or different types of signals that
have been sent at the same time in the same channel in the
passband of the system. The role of the filter is to cxtract
the passband of the detected signal. IF the passband con-
fains not just ihe signal but a mixture of two or more sig-
nals, it is more difficult to detect the signal.

From Eqgs. (20) and (21), it is evident that the SNR of a
signal detector is proportional to the volume under the sut-
face of the weighted signal, i.e., a product of signal s(z)
and the weighting function of the kernel, and inversely pro-
portional to the volume of the weighted-signal variance.
Thus, if the volume under the surface of the weighted sig-
nal is larger than that of he weighted-signal variance, the
SNR of the corresponding detector is high. Furthermore, it
has been found that the hyperbolic kemel is more
robust!®25% han the Choi-Williams kernel. Thus, the HyD
provides a smaller variance than that of the CWWD for
well chosen values of 8, as can be seen in Fig. 1 in w]uc_h
the volume under the surface of the weighted-signal vari-
ance of the two kemels is displayed. It is clear from Fig. |
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Nofss Variance
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Flg. 1 Noise variance of the hyperboliz and Chol-Williams time-frequency signal deteciors.

that the SNR of the HyD is beuter than that of the CWWD
due to having smaller noise variance.

Table 1 gives the volume uwnder the surface of (he
weighting function of four kemnels: hyperbolic, cubic hy-
perbolic (the third order of the hyperbolic kernel), Choi-
Williams, and Choi-Williams- Buterworth kernel (a product
of the Choi-Williams and Buuerworth kernels??). The vol-
umes under the surface of the weighted-signal variance of
the four kemels for some typical values £ are listed in
Table 2. It is evident from Table 2 and Fig. 1 that for dil-
ferent values of the control pa -1meter B, 2 different volume
under the surface is obtaine-i. 1 2us the control parameter of
a kemel plays an imporiant role in determining the perfor-
mance of the corresponding signal detector.

The volume under the surface of the weighted-signal
variance is directly proporional to the variance of the time-
frequency signal detector. The smaller this velumne, the bet-
ter is the performance of a particular time-frequency signal
detector. From Figs. 2 and 1, it is evident that {for 8=<3, the
performance of the hyperbolic time-frequency signal detec-
tor is worse than that of the Choi-Williams due to larger
noise variance or larger volume under the surface of the
weighted-signal variance. For 8>3, and typically 8=S3,
the HyD provides a larger SNR than that of the CWWD.

The performance of the GNKD in terins of SNR is de-
pendent on the volume under the surface of the weighted

signal and its variance. The loss faclor @ of the GNKD
over the Wigner-Ville unity-kernel signal detector, ie., a
ratio of SNRguxp to SNRewg, is given by .

Q({GNKD/CWD)

- (Vonkn)®
[4(Voakp)’ - SVankn+ 12(5 Vongn) 1™’

(26)

where Vgnkp and (SVgukp) are the volume under the sur-
face of the weighted signal and its variance, respectively.
Equation (26) can be used to estimate the improvement
factor for each different nonunity kernel time-frequency
signal detector. Using the data provided by Tables | and 2,
the improvement factor @ of the HyD and CWWD are
calculated and given in Table 3. [t should be noted that the
minimum lower bound vatue of vZ (about 3.01 dB) is ob-
tained by employing the special case as stated by Eq. (24).

To measure the relative performance of the HyD and
CWWD, the ratio of their SNRs (the  factor or loss factor)
is formed as

Table 1 Volume under the surace of the Choi-Wiliams, hyperbolic, cubic hyperbolic, and CW-
Bullerworlh [Egs. (4)-(7), respectively] weighling functions.

Volume under the surface of the weighting function

Cubic hyperbolic

Choi-Williams (CW) CW-Bullerworth

] Hyperbolic kemel kernel kemel kerngl
2.1 12.08 12.04 12,014 11.91
1 11,997 11.88 11.98 11.78
5 8.9 7.58 11.02 10.78
10 738 4,98 9.953 9.787
20 4,884 2,98 8.63 B8.53
50 244 1.33 B.7B 6.74
100 1.3173 0.68 547 545
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Table 2 Volume under the surlace of the variance of the weighling function,

Volume under the sudace of the variance of {he weighting lunction

g Hyperbalic kernel mcszr?;mo“c Chm.\ﬂﬂs (e CW'E:".-:QW "
0.1 5.25 2766 1.02 0.36
1 0.51 0.274 0.322 0.234
5 0.1 0.05 0.1425 013
10 0.046 0.02 0.0985 0.094
20 0.0195 0.008 0.067 0.065
50 0.0054 0.0018 0.0387 0.0038
100 0.00175 0.000494 0.025 0.025

Q(HyD/CWWD)
_ SNRyp
SNRewwp — Cowwn

__( Vi )2_ SYcwwp
Vewwo SViyp

Clin (Val‘{ ’?C\VWD!HB} i
Var{ Zuyplpf

7

where Vyp and Vieywp are the volumes under the surface
of the weighted signal and SVy,p.5Ycwwp are the vol-
umes under the surface of the weighted-signal variance of
the hyperbolic and Choi-Wiltiams kernel, respeciively.

The relative performance of the HyD to (hat of the
CWWD is displayed graphically in Fig. 2. From Eg. {27),
for the case of the hyperbolic and Choi-Williams time-
frequency signal detectors, the CWWD is more elfective
than the HyD by a facter of abowt 1.6 (60%) for S=1.
However, for #=35, the HyD yields a larger SNR than that
of the Choi-Williams by a factor of 1.15 (15%). For 8
=10, the performance of the HyD is approximately 1.18
(18%) uvmes better than the CWWD in terms of the SNR.
As 8 {unther increases, the performance of the hyperbolic
degrades gradually even though at 82=500 the performance
is slightly improved. This is due 0 an unequal rate of
change of the volume under the surface of the weighted
signal and that of the weighted-signal variance.

From Fig. 2, it can be suggested that the HyD is better
than the CWWD in terms of SNR over the typical range of
the control parameter 8 of 3= 10. Owside this range,
the CWWD owperforms the HyD. For large values of g2
(B=500) the HyD might provide a large SNR, which is
mainly due o the relatively large value of the volume under
the surface of the weighted-signal variance. It should be
noted that Jarge valves of 8 are not applicable in practice,
since the hyperbolic weighting function coMapses (in
shape) into a near-flat function with a very small volume
under the surface. This shape of the weighting function
indicates that the ketnel is not stable under these specific
conditions of large B (small & for the Choi-Williams ker-
nel) and should not be employed as a time-frequency ker-
nel. la comtrast, the Choi-Williams weighting function re-
1ains its original shape for very small values of o by having
a finile volume under the surface. This makes the Choi-
Williams kemel more stable than the hyperbolic kemel
over exireme values of the control parameters 8 and o,

4 Performance Comparison of Some
Time-Frequency Signal Detectors

Section 3.3 derived an expression of the SNR of the GNKD
in detail and analyzed the physical meanings of the energy
ratio X,. Relative performance of the HyD and CWWD

Relative Performance of the HyD to CWWD

improvement Factor

[ % B ] 3

; ; 7 B 1 10 20 50 100 200 500 000 000 3000 5000
Beta

Fig. 2 The O faclor {EQ. {27)] of the HyD and CWWD as a lunction of the wemel conirol parameter
A= /o, The uselul range of Bis avidently from 3 to 10.
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Table 3 Improvement faclors Q of the HyD and CWWD, 3=3
<10,

Signat deteclor

HyD
CWWD

Improvement lactor Q

22.5% Oy =24.8 0B
22.554= OCWWDﬁ 23,908

was measured successfully based on geometrical character-
istics of the hyperbolic and Choi-Williams kernels, respec-
tively. In this section, performance of three signal detectors,
mamely, CORR, CWD, and GNKD, will be estimated as 2
function of X,=85/A; and X,=My/N; under general
cases and special cases. The SNR expression of the GNKD
derived in Sec. 3.3 is employed to determine its perfor-
mance. The SNR expressions of the CWD and CORR have
been given in (he literature and will be used to compare
their performance with that of the GNKD.

4.3 Performance of the Cross-Correlator Signal
Detector

The performance of the cross-correlator method, known as
the matched filter method, is considered as the best method
in binary signal detection, since it provides the best SNR.>®
The statistical function % is given by

TCORR™ f [} s¥()dr, where —osr<+ee, (28)
1

The SNR of the cross-correlator detector is given by®

Ag
SNRcopr= N

where Ag and Ny are the signal energy and noise variance,
respectively.

The SNR of the CORR is not affected by the energy
difference between the even and odd samples of the signal
(X,) as in the case for the CWD with 2 unity-kemel func-
tion, a5 is discussed in the next section. For the case of a
nonunity kemel signal detector, the effects of the absolute
energy difference between the even and odd samples of the
digital input signai and noise (X) are included as is shown
in Sec. 4.3.

{29)

42 Performance of the CWD

The performance of the CWD was stuc!icd by ](um?{S I:}]nltli
Carroll for both of the continuous and discrete cases.”™™ ™

The SNR of the Wigner-Ville-based signal detection
method is given by Eq. (30)

30)1
Ay H(Ao

SNRCWD__' ﬁ;"'[—_ﬂu_!]'m.
1+3.(32)
Ag

This SNRcwp of the Wigner-Ville time-frequency signal
detector is clearly smailer than the SNRcorr of the cross-
correlator detector given by Eq. (29) due o the effects of
the ratio X] = Bofﬁg.

(30
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4.3  Performance of the Nonunity-Kemel Signal
Detector

The performance of the GNKD was briefly estimated in
Sec. 3.3. In this section, performance under special and
general cases, such as for small values of X, and X,, is
discussed. Relative performance of the GNKD, CORR, and
CWD is also estimated by 1aking ratios of SNRs o form
the loss factor Q. The larger the value of the Q factor, the
better the performance of the relevant signal detector.

From Eq, (24}, itis evident that the SNR of (he detection
system depends on X; and X,, which clearly shows the
effects of the noise process X, on the performance of the
systerm. It should be noted that in the case of the Wigner-
Ville distribution employing a unity keme), the effects of
the ratio X are not apparent. In addition, the effects of X,
range from the first order to the third order, as shown by
Eq. (24). The noise ratio X, is of the first order only.

it Xo;=Mg /N, is very small, i.e., the noise energy dif-
ference is most evenly distributed between its even and odd
samples or the noise bandwidth is small, then Eq. (24) be-
comes

vZ-(Al+BEr)
BO BO & lize {31)
AO(NOFF'AorF‘ll‘F;;*'Z(A—ﬂ) ])

After separating the kernel's weighting function, we oblain

B 2
Ay Agy
SNRguxp= 'ﬁ;l By (80)2}”""

SNRgukp=

(32)

2

Ag

where X; is very small.

I X,=Mo/Ny is not small, then SNRgyyp will be fur-
ther reduced and the performance of the GNKD is de-
graded. it is also important to note that the SNR of the
GNKD has been calculated under the special conditions of
pi=prs qu=q; and g;=gy in Sec. 3.3. This means that
only the autoterms of the surmmations are included and in-
teraction between the autoterms are ignored. The perfor-
mance in this case can be considered as the lower limit
performance of the detector. For the general case, the SNR
of the GNKD, which will be improved, is given by Eq. (33)

SNRgnkp

alieftf]
Bz

(33)

The 3-D graphical presentation of the normialized SNR
of the GNKD, SNRgnxp. as a function of Xy =8g/A¢ aqd
X 3= Mo/Ng is displayed in Fig. 3. Ie Shl:!uld be noted again
1hat for the case of 1he nonunity kernel time-frequency sig-
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Hormalized SNR of the GHKER Detector in tetyia of X1 and X3

X

Fig. 3 Nommalized SNRgwe of the GNKD [Eq. (33)) as a lunction of
Xy and X, . Maximum performance is obtained by having small val-
ves of Xy of 0.0= X,=0.2 or large values of 0.9=X,; and X,=<0.2,

nal detector, the effects of noise are 1aken into account,
which reduces the performance of the detector, From Fig. 3,
the minimum SNRgyip is —0.6602 dB at (X,=0.63, X,
=1}, i.e,, when the energy difference of the even and odd
samples ofithe noise is equal to its energy. Figures 4 and 5
show the absolute and nermalized loss factors of three sys-
ems, GNKD/CORR, GNKD/CWD, and CWD/CORR, re-
speclively, as a function of X,;. The absolute plot of the
SNRgukp in Fig. 4 has the same shape as that of Fig. 5
except that its maximum vale is vZ=1414, ie., the
SNRgnxp is improved by a factor of vZ or about 41.4%.
From these figures, detailed comparisons of the three signal
detectors are shown clearly in Table 4.

Abeolute & Faclors ol GHKD/CWD and GRKDICronsC

142 T — T

Pi &

Valua of the O Facior

I

LHONKD/CropsC)

a4 - L s " 1 " L i
o [ 3] [F3 X ] b4 0.5 1] a3 [E o9 1
X

Fig. 4 Loss tactor Q{GNKD/CWD)} [Eg. (34)) and O {GNKD/CORR}
(Eq. {25)] as a function of X;. The typical range of X, is 0.0=X,
=0,1 or 0.9= ), = 1,0 when X» is small.

0, Facion f GNXIVEIMD, GNXDTssC and CWO/Cmas

o O,/ EH DT 4
FENT !
k-]

i
F “"'|’ ) JGMOCID}
: ]
2 o
1173 0, /GCMDI80G)

Flg. 5 Normaiized Q, (GNKD/CWD) [Eq. (34)), Qu (GNKDICORR)
{Eq. (35}] and Qy {CWD/CORRY) [ratio of Eq. (30} o Eg. (29)] as a
tunction of X,. For the CWD, the typical range of X; can be ex-
tended 10 0.0= X,=0.3. The maximum value of each Q fattor was
used as the normalization factor.

The @ factor or loss factor of the GNKD and the CWD
is then given by the ratio of Eq. (32) w0 Eq. (30) (when X,
is smigll}

SNRGnkD
SNRcwo

a2 ]

et s

Q(GNKD/CWD)=

7]

=3,

” 1+3.x3 )"2 =
“YE\Tex r2x

When X, is small, the loss factor of the GNKD and the
classical CORR is given by

Tabie 4 Warst pedormance ratio of the GNKD o the CWD [Eq.
(34)), CWD 10 the CORR [ratio of Eq. {30} to Eq. (29)) and lhe
GNKD Io the CORR fEq (35)] as a funclion of X, as seen lrom Fig.
8. The bast performance i$ oblained at Q=1 and the correspond-
ing SNR=0d8.

Worst Perlonmance

i

X,
Normalized loss factor A On SNR (dB)

GNKDICWD 0.35 0.9258 -(.67
CWDI/Cross-correlator 05 0.9428 -0.5
GNKD/Cross-correlator 0.45 0.8829 -1.08
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Table § The besl and wors! cases in delection of some popular signals using the GNKD in tems of

normalized SNRgy in Fig. 3 when X, is small,

Wors! case Best case
Signal Al ms) X, SNR {dB) At{ms) Xy SNR (dB)
sin{27x50n) 5.00 1.00 075 200 0.00 1.00
exp(—n) 500 0.462 065 10 0.0 0.98
exp(—}-sin(n) 620 0.14 0.935 100 0.04 0.975
cog{27-n-0.125- (nfM) ] 800 '0.008 =0,99 0.1 5.0%x10-7 =1.00
ECG (averaged over 12 - .
phs ‘ 1.00 475% 1078 1.00
The ?amglu_?g intervals for these cases
28 are fixed. There are no worsl or best
59‘:’3‘;“ o f?"i""e's cases for these signals. — 37x10* 1.09

and the sound “sh”)

2|5
SNRgny ) Ao
Q(GNKD/CORR) = memh® o Ao N
SNRcogr l+_13_0+2_(§2 -
Ag Ag
V- (1+X3)

=—"——{l+xl+2'le]h‘2' (35)

It was found in Sec. 3.3 that the ratio of the bandwidth
10 the total energy of the signal [Eqgs. (25) and {13)], X,,
determines the performance of a time-frequency signal de-
tector. Decreasing the bandwidth and increasing the energy
of the signal lowers the ratio and leads to better perfor-
mance. For good performance, a ypical range of X, is
0.0=X,<02 or 0.8=X,=1.0 if and only if 0.05X,
(.2, as can be seen in Fig. 3. Thus, any value of X, in the
ange of 0.2< X, <0.8 will lower the SNR of the detector
considerably and should not be used. The performance of
the GNKD has been estimated and compared with other
detectors, such as the CWD and the CORR. The next sec-
lien studies the effects of sampling on the performance of a
time-frequency signal detector using typical wavelorms in
practice.

4.4 Some Typical Exampies

In Secs. 4.1 through 4.3, the performance of the CORR,
CWD, and the GNKD were estimated theoretically by us-
ing the discrete Moyal’s formnula derived in Sec, 3.2. In this
section, the experimental aspects of detection performance
anil the effects of sampling on the input signal are exam-
ined. Moreover, particular attention is given to how the
energy ralio X, varies with different values of the sampling
inlerval (Ar). Since X, is the energy ratio of the even and
odd samples of the digital input signal, its value depends
strongly or the type of the signal and the sampling interval
At. Some typical and popular signals in practice are exam-
ined, such as sinusoid at 50 Hz [sin(2wX50n)], decaying
exponential exp(—r), exponentially decaying sinusoid
sin(r)-exp(—r}. chirped cos(C-), ECG, and speech.

As was metioned in Sec. 3.3, for digital input signals,
the sampling interval does aflect the value of the energy
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ralio X, of the signal. A number of waveforms have been
digitized at different sampling rates and the experimenul
results are summarized in Table 5. The sampling interval
should be small enough to enable small values of X;. In
this case, the sampling frequency is set to be at about four
times larger than the critical Nyquist frequency of the inpunt
signal, It is important to emplhasize that for periodic sig-
nals, the signal interval should be chosen long enough so
that X, can be estimated corcectiy. From Table 5, it appears
that sinusoidal signals can be detected efficiently using the
GONKD because of the low value of X, in the best case
scenario. The transient signal exp(~:) has a large X,
which can have low SNR if the sampling interval Ar
=0.5s. The exponentially decaying sinusoidal signal has
the worst X, of 0.14 s Ar=0.6s, with the corresponding
SNR=0.935, as can be seen in Table 5. The ECG and
speech signals appear to have small X,, which might sug-
gest that these signals can be detected successfully uvsing
the GNKD. The nonstationary chirp signals can be detected
very efficiently by using the GNKD, with the worst and
best SNRs very close at 0.99 and 1,00, respectively. From
Fig. 5, it is clear that signals with X;=<0.1 yiclds Qy
20.95, which corresponds to salisfactory SNR.

Based on the performance of (he general time-frequency
signal detector, it is evident that stationary signals such as
sinusoids can be detected effectively. However, there are
other simpler and equally eflfective mettiods for doing this.
Thus, time-frequency signal detectors can be employed (o
detect stationary signals. Detecting nonstationary signals
such as decaying exponential exp(—#), chirp, and exponen-
tiatly decaying sinusoid sin(s)-exp(—1) signals is dependent
on the sampling interval used to sample the signal. If the
sampling interval Az is small enougt.. the detection process
will be most effective, This is consistent with Nyquist sam-
pling theoreth,

5§ Conclusions

We report on some contributions in the field of time-
frequency signal detection. ‘

First, the discrete Moyal’s formula has been derived for
the general case in which the kemel function Is not a unity
kernel. The performance of the general nonunity kemel sig-
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nal deteclor GNKD has been examined by using the dis-
crete Moyal's formula to oblain the SNR of the statistical
function 7. It has been shown that the GNKD performs
better than the cross Wigner-Ville detector CWD by in-
creasing the loss factor and the SNR by a minimum facior
of v2. The performance of the comelator detector CORR
has also been examined and compared with that of the
CWD and GNKD. It has been found that the hyperbolic
detector HyD and Choi-Williams detector CWWD can im-
prove the SNR over the CWD by a lactor Q in the range of
225dB=<0y,<24.8dB and 22.5dB= Q- <23.994dB, re-
spectively, over the ypical range of 3 8= 10,

Second, a new signal detector, the hyperbolic time-
frequency signal deteclor, has been investigated. The new
detector has been proven lo be better than the famous
CWWD and CWD by improving the SNR by 18% with the
range of the control parameter B being 3 8=<10.

Third, the performance of time-frequency signa! detec-
tors using a number of typical signals has been examined, It
has been shown that the sampling interval used for sam-
pling the input signal can affect the performance of a time-
frequency signal detector by varying the energy ratio X,
=By/Ag. It has been observed by simulation that sinu-
soidal and chirped signals can be efficiently detecied with
satisfactory SNR., Transient signals can be detecied effi-
ciently using a suitable sampling interval. Physiological
signals such as the ECG and speech can be detected suc-
cessfully with the normalized SNR in the approximate
range of 0.99 (o 1.00.
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ABSTRACT :
This paper investigates the effectiveness of parallel computing in calculation of the bispectrum. The )
bispectrum is estimated by using two different methods namely direcr and indirect. The direct Eo

method employs 1-D FFT algorithms and the indirecr method employs the 2-D FFT algorithm 10
estimate the bispecrum. Both methods have been implemented using 2 different parallel
programming techniques: semi-automatic and fully aulomatic using the Power C Amalyzer (PCA).
The Silicon Graphics Power Challenge Multiprocessor System (with 12 CPUs) is used (o run (he
parallel codes. Near-linear speedup was observed by employing both iechnigues. Overali, the
maxinuum speedup of 10.84 at N = 12 can be achieved for the direct method and of 8.7 at N = 10 for
the indirect method using the semi-automatic parallel technique. For the PCA fully parallel
technique, the mavivmn measured speedup for the direct and indirect methods are 10.07 at N = 11
and 7.67 at N = 12 respectively,

1 INTRODUCTION

Parallel programming and parallel machines have been studied and used extensively in the last few
years mainly for predicting weather pattern [§] and in image processing, [2,3]. However, to the best
of our knowledge, parallel programming techniques have nol been widely used in the field of higher-
order staiistics and higher-order spectra. Recently, there were two relevant papers applying parallel
computing in estimating the bispectrum. The first paper [4], which was published in 1991, reported
the performance of an 8-CPU shared-memory CRAY Y-MP machine and 1024-CPU distributed-
memory nCUBE machine in calculation of the bispectrum. In particular, the speed-up factor was
measured and compared for different machine configurations. Near super-linear speedup was
obtained. The second paper [$] proposed an algorithm to estimate higher-order moments using the
MASPAR-1 machine, which is a SIMD (Single Instruction Multiple Data} machine.

This paper focuses on the effectiveness of the Silicon Graphics Power Challenge Multiprocessor
shared-memory MIMD Machine (HOTBLACK)' in calculation of the bispectrum. Each CPU can be
considered as an independent PC within the system with separate local memory and cache. To
program the system effectively, it is important to arrange the loop parameters .and data structure
inside the program so that they are suitable for the specific configuration of a particular system. This
is the most difficult part of parallel programming in which the programmer must understand the
configuration of the particular machine.

The bispectrum [6,7] is estimated using the direct method as in Eq. |

B f2) = XU XU X (i + ) (1)

where X( f) is the 1-D FFT of a given discrete series x(n) of M samples and X() is the complex
conjugate of X(-). For more information on the bispectrum, the interested reader should consult
references [6, 7).

The indirect method uses the 2-D FFT of the tricorrelation function R (7, 7;) abbreviated as R

BUfy, f2) = 2- DDFFT{Ryyy (71,75} v

M-l
where Ry = X x(n) - x(n +'rl)-x(u +1'2) and 71,79 =012, .M —1.
n=0

1 HOTBLACK is a local name of the machine at Monash University.
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Sequential C programs were writien first based on Eqs. 1 & 2. Then the semi-automatic and fully
automatic parallel programs were constructed based on the sequential versions. Semi-aulomatic
programs are obtained by inserting #pragma directives into the sequential program at appropriate
points. This lechnique is based on the coarse-grained method whereas the PCA method is based on
the fine-grain method®, Also. arrays and loop parameters of the sequential program are controlled so
that they can be accessed independently by different CPUs to avoid data dependency. The fully
automatic option is activated by running the pca tlag of the Power C compiler.

ymposium on Signal Processing and its Applications

2 EXPERIMENTS AND RESULTS
There are 12 parallel programs with different numthread (N) to run on 12 different processors on
the system. numthread (N) is a parallel directive from Silicon Graphics that allows ihe program Lo
be executed in parallel using N independent CPUs. For example, if N = 3 then the program will be
executed in parallel using only 3 CPUs on the system. To ensure efficient compilation, the programs
are submitied into a batch queue on the system 10 obtain more CPU_time, memory_use and

stack_data_size quota. Four script files have been written to run the programs under the UNIX
operating system.

The speedup factor is estimated as

S tial_Tim
Speedup= equential_Time 3)
Parallel_Time

where the Sequential_Time is the real CPU time used to run the sequential source code and the
Paraliel_Time is the real CPU time of the slowest thread in a parallel program.

The parallelling efficiency of a parallel program can be estimated as

Measured speedup

Efficiency = 0))

ldeal speedup

Theotetically, the ideal speed-up or super-linear speedup of a program is defined as N if the parallel
program is run wsing N CPUs [8). The measured speedup is defined as in Eq. 3. Practically, the
measured speedup is less than the super-linear speed-up due to parallel overhead.

To ensure consistency between parallel and sequential programming techniques, the output files are
compared and it has been observed that they are identical. If the files are not identical, data
dependency tnust have occusred in the sequential source code. The difference between fine-grained
and coarse-grained parallel techniques is for the former, only small repeated loops are paralleled and
thus results in more than one paratlel loop in a parallei program This technique is often used by
Power C Compiler. The latter technique parallels loop(s) {usually done manually) that have the
largest work in the program. Usually, there is only one largest repeated loop in the program.

For comparison, the size of each segment of the direct method is 2048 data points which is twice that
of the indirect method of 1024 data points (since 1024 data-point segments are still not large enough
for the direct method, 2048-data-point segments are used instead, also longer segment size up to
10,240 points can be used). From simulation results, it has been observed that the serial program of
the direct method took approximately 23 seconds to run compared o 587 second's running time of the
indirect method although the segments are half as long. Thus the direct method is more efficient than
the indirect method in terms of computing efficiency.

As N is increased, the amount of parailel overhead increases due to S.ynchronization and \‘avaiting time
of slave processors. However, near super-linear speedup is ob}amed using the semi- and fl-f"}’
automatic paralle] techniques for the direct method as seen in Fig. 1. For the direct method using
PCA parallel technique and for large values of N (for instance, at N = !2). the speed-up factor starts
to decrease which itlustrates the limitation of the fine-grained paralleling method: lz_irge amount of
parallel overhead for large values of N which lowers the performance (the Direct_PCA and

2The idea of these methods will be expiained later.
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indirect_PCA curves ir! Fig. 1). For other values of ¥ less than 12, the PCA method provides better
speed-up factor which indicates that the fine-grained method is more suitable for the direct method
than the coarse-grained method. If the segment size is increased further, near linear-speedup might

not be obtained due 1o long waiting time as explained for the indirecr method in the following
section.

For the indirect method using the semi-automatic parallel technique, near super-linear speedup is
observed only with some specific number of CPUs which is a multiple of the loop size of 10. That
means when N = 1, 2. 5 or 10, near super-linear speed-up will be oblained. For other values of N,
since the work associated with each iteration of the loop is large, there will be “unemployed”
processors waiting for other processors 10 complete the tasks. For example, if N = 6, ali six CPUs
will be assigned to the first six iterations of the loop. After finishing the 6 iterations, four of the six
CPUs will be used to compleie the remaining 4 iterations and two CPUs have 10 wait {*spin”) until
the iterations are finished. Since the associated work of each iteration is large, this results in long
waiting time and thus the performance of (he paralle! program will be lowered. This is illustrated for
casesof N=6,7, 8 and 9 in Fig. 1. Hence, if A is not a factor of the loop size and if the work of each
iteration is large, increasing N will increase parallel overhead and constrain the speed-up factor. Since
the PCA parallel technique employs the fine-grained method (several small repeated loops will be
paralleled instead of the largest repeated loop), parallel overhead will be increased substantially as ¥
is increased, i.e., parallel overhead of using N CPUs will be & times larger than using | CPU.

For the indirecr method applying the PCA parallel technique, the speed-up factor is increased linearly
although with lower values compared to the case of semi-automatic parallel technique due (o high
parallel overhead in several small paraliel loops. However, the performance of the PCA method is
predictable. From Fig. 1, in contrast with the direct method, the coarse-grained method is more
appropriate for the indirect method since better speed-up factor is achieved. However, to obtain the
best performance, the number of CPUs, N, used to run a parallel program applying the indirect
method must be chosen to be a facior of the [oop size.

The measured speed-up factor and paralleling efficiency of the semi- and fully automatic parallel
techniques are plotted against the number of processors, N, in Figs. 1 & 2 respectively. In these
figures, Direct and Indirect are the speed-up curves using the semi-automatic paralle] technique for
the direct and indirect methods respectively. Table 1 compares the maximum speed-up factor of the
two parallel techniques. Direct PCA and Indirect PCA are speed-.up curves oblained using the PCA
fully parallel technique for the direcr and indirect methods respectively.
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Figure 1: Measured speedup facior for the direct
and indirect methods using the semi- and fully
automatic parallel technigues.

Figure 2: Parallel efficiency for the direct and
indirect methods using the semi- and fully
aufomatic (PCA) parallel techniques.

Table 1: Maximum speedup comparison of semi-automatic and PCA parallel programming
techniques.

Method Semi-automatic PCA
Direct 10.84 at N=12 10.44 at N=11
Indirect 9. 17at N=11 7.67 at N=12

3 CONCLUSIONS
Near linear-speedup was achieved using the semi- and fully automatic parallel techniques for the
direct method. For the indirect method, the amount of overhead gradually increases when N 2 6 due
to specific loop structure of the serial program, however, for N <5 or N = 10, near lincar-speedup was
observed using the semi-automatic parallel technique. Thus it can be concluded that the direct
method is more suitable for parallel programming than the indirect method. The PCA technique can
be used to achieve the speedup factor of 7.67 at N = 12 (for the indircct method). However, the PCA
(Power C Analyzer) method suffers from high parallel overhead for large values of ¥ (¥ 2 12) since a
PCA parallel program (employing the fine-grained parallel method) contains several small parallel
loops inside. Further research can be done by applying parallel computing to higher-order spectra

stich as the trispectrum.
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Absiract

A survey of known wavelet groups is listed and propertics of the symmetrical first-order hyperbolic
wavelet function are studied. This new wavelel is the negative second derivative function of the
hyperbolic kernel function, [sech(BM]" where n = 1, 3, 5,... and a = | corresponds to the first-order
hypesbolic kernel, which was recently proposed by the authors as a useful kernel for studying time-
frequency power spectrum. Members of the “crude” wavelet group, which includes the hyperbolic,
Mexican-hat (Choi-Williams) and Morlet wavelets, are compared in terms of band-peak frequency,
aliasing effects, scale limit, scale resolution and the total number of computed scales. The hyperbolic
wavelet appears to have the finest scale resolution for well-chosen values of 8 < 0.5 and the Morlet
wavelet seems to have the largest total number of scales.

Keywords: Mexican-hat wavelet, Morlet wavelet, hyperbolic wavelet, scale resolution, aliasing, wavelet
transform.

1 INTRODUCTION

Study of wavelet functions and wavelet transform was done many years ago, starting with the simplest
wavelet system, the Haar waveist [1]. There is a sirong connection between wavelet transform and time-
frequency power spectrum since both of these techniques view the energy density of the signal in two
dimensions, time and frequency. One of the most popular wavelels is the Mexican-hat wavelet, which is
negative second derivative function of the Gaussian pulse or Choi-Williams kernel, ®(8, 7) = e'eztzf o,
where o is the kernel control parameter [2). This is one typical case which shows that there exists a link
between time-frequency kernels and wavelet functions.

By taking negative second derivative of the kernel, it is possible to generate a variety of different
wavelet functions, (). However, these wavelet functions need to satisfy the admissibility condition of
odd symmetry, i.e.,

40

L1
Iw(t)dr=0 (L

-t

Over the years, a large number of wavelet systems have been proposed and studied extensively,
starting with the Haar wavelet system {1, 3] proposed in 1910, In the 1980s, a number of excellent
wavelet systems were proposed such as the Daubechies wavelet syster [3], the Meyer wavelet system .[4]
and the Mallat wavelet system [3-10]. These wavelets provide excellent features such as orthogOnahty,
bi-orthogonality, a number of vanishing moments, existence of the scaling function, continuous and
discrete transform of the wavelet function, which have received considerable attention from

mathematicians.

The purpose of this paper is to investigate the new hyperbolic wavelet function ar!d some of its
properties. The central theme of this paper is 10 establish the permanent fink between time-frequency
Lermels and wavelet functions so that more wavelet functions can be discovered by taking the negative
second derivative functions of the corresponding kernels and also new kernels can be found‘by using
known wavelet functions. Only (he Morlet wavelet was studied in dela}l in' [! 1]. The main contribution gf
this paper is to study and compare properties of the hyperbolic, Choi-Williams and Morlet wavelets in
terms of scale resolution, band-peak frequency. almsin_g effects, to}al number of cqmpq(ed scales and
scale limit. Symmetrical wavelets with explicit expressions are particularly focused in this paper. Cther
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types of wavelets will not be considered. The Mexican-hat (Choi-Williams) and Morlet wavelets 112, 13)
are considered as "crude" wavelets [14] with explicit expressions and symmetrical properties, "I‘he
hyperbolic wavelet appears 1o belong to the same wavelet group. However, propetties of the hyperbolic
wavelet need to be siudied before drawing any conclusions about the wavelet itself. Some useful
(l);t]arwew papers that summarise the developments in the field of wavelet can be found in [6, &, 10, 15,

2 WAVELET SYSTEMS AND THE "CRUDE" WAVELET GROUP

There are many interesting wavelet systems that have been proposed and swdied such as Daubechies,
Mallat, Meyer. Morlet and so on whose wavelel systems are named after the investigators and
~oponents. These wavelets have been studied extensively and their many interesting and useful

properties can be found in [1, 3, 4, 6, 7, 9-11, 15-19]. Wavelet functions have been classified into four
different types {14]

1. Type 1 (orthogonal with FIR filtering): the wavelet is orthogonal and the FIR filter of the wavelet
exists. This class includes the Daubechies, Coiflets and Symlets wavelets.

2, Type 2 (biorthogonal with FIR filtering): the wavelet is bi-orthogonal and the FIR filter of the
wavelel exists. The BiorSplines wavelet belongs to this class,

3. Type 3 (orthogonal with scale function): the wavelet and scale functions exist, the FIR filter does not
exist, however. The Meyer wavelet is a typical member of this class.

4. Type 4 (FIR filter and scaling funclion do not exist): this class has been considered as a "crude”
wavelet class since the FIR filter and the wavelet's scaling function do not exist. However, the
support range of wavelets in this class can be identified as the time-base interval (7" in Section 2.1).
The wavelets in this class are usually symmetrical and have explicit expressions. As already noted,
this paper deals with this particular class of wavelets. The hyperbolic, Choi-Williams (Mexican-hat)
and Morlet wavelets belong to this class.

Unlike the Daubechics wavelet family, the Mexican-hat and Morlet wavelets have explicit
expressions and are odd symmetrical about the origin. By having explicit expressions, the Morlet and
Choi-Williams wavelets are considered as “crude” wavelet systems in which the scaling function has been
proven to be non-existent [14]. The Mexican-hat or Choi-Williams wavelet, given in Eq. (2.1) is found by
taking the negative second derivative of the Choi-Williams kernel [2] as given by

2
Werlt) = ;-exp [—12/0')- (—l +272/a) 2.1
The hyperbolic wavelet can be considered to be in the same group as the Mexican-hat and Moriet

wavelets since they are all symmetrical and have explicit expressions. Their frequency representations are
given by

F{w = = .‘} 2 - 4 2.2)

{wew()} 'f'cw (w) Az W -exp( O'Coz/ ). and (

Flw, = = ,’ - - 4 23
{ Watorte(D} = W ygoper (0} = NAO -exp( oW - wy % / ) (2.3)

where the symbol F{-} denotes the Fouricr wansform operation of the function (-} and CW stands for
Choi-Williams

The hyperbolic wavelet funclion is generated by taking negative second derivative of the 2-variable
hyperbolic kernel, @(6) = sech(P6), which was proposed by the authors recently. The hyperbolic wavelet
function yy,(0) is given by ) .

Wi 8) = (~1)nf*[sech(BON™{n - (n + 1){sech(BO’} (2.4)

For n = 1, the frequency domain representation of the first-order hyperbolic wavelet function is
given by

2
FIVO) = ¥y (@) = —sech g/ 26) @.5)
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*w, hyperbolic wavelet funciion will be shown by simulation in Section 2.1.1 1o satisfy the odd-

symmiciy vondition imposed by Eq. (1.1), i.e., the area under the ¢ ivati
) ‘ - (L), Le,, urve of the se -
hyperhatis: hernel is zere, eond derivative of he

_ _C’ih::i \}'a!\ulg-'s i the same family with different scales can be obtained by using the translation and
dilation telationship or muiti-resolution relationship [1]

1 t-b
"‘I{-: =——q-!1‘ —
Vaull) J; t n!( a ] 2.6)

worere a is the scale index and b is the translation or time index of the wavelet. The mother wavalet
adrespondstoa=land o = Q.

. For easls value of the scale index a, there is one unique corresponding wavelet function which can
;iu r:-r:nwura:d 2 4 band pass filter. In the frequency domain, the multi-resolution relationship breomes
AR T

W0t} =V W, (60)- exp (~ib) - @n

where 7 _ » ) is the Fourier transform of the wavelet function w, (7).

In this section, explicit expressions of the Choi-Williams (Mexican-hat) (Eqgs. {2.1)-.(2.2)), Morlet
\‘n'm*c:l_:?is 4. {2.3)) and the hyperbolic (Eqs. (2.4) and (2.5)) have been given in both time and frequency
domtaze Ti s necessary to examine some important properties of these wavelels by estimating the
number of sampling points for the wavelet, aliasing effects, maximum possiblc scale that can be
supporied by the wavelet system and the scale resolution. These properties will be studied in detail in
Section 2.1.

2.1 Propertics of the Mexican-Hat {Choi-Williams), Morlet and Hyperbolic Wavelets

From an engineceing point of view, to study properties of a wavelet function, it is important to investigate
the scale resolution, maximum scale used in wavelet transform, the sampling of the wavelet and its
relation to the time sampling of the time input signal and (he aliasing effects. The main reason that
sampling of a wavelat function is of concern is that digital signal processing is practical and important. In
addition, the input waveform is usually a discrete set of samples from a continuous process. This section
auzmines the above mentioned properties in detail. Firstly, some preliminary parameters of the Choi-
¥ jjams, Morlet and hyperbolic wavelets are estimated.

2.1.1 Fundamental Parameters

The Morlet wavelet was studied and vsed to investigate transition to turbulence in [11] by Jordan, Miksad
and Powers in which formulas of the admissibility constant C, , the first moments in time 7 and
frequency domain «w, the time variance o, and frequency variance o, are given in detail, The paramelers
of the hyperbolic, Mexican-hat and Morlet wavelets are calculated for §= 0.5 and given in Table 2.1. For
various values of the control parameters & and B, from simulation, it can be concluded that the Morlet and
hyperbolic wavelets satisfy the admissibility condition imposed by Eq. (1.1} by having a _vsry-small area
wnder the curve. The error in this case for both wavelels is always less than 1 part in 2 million.

Table 2.1: Fundamental parameters of the hyperbolie, Choi-Williams and Morlet wavelets for §=0.5

Wavelet Parameter values, 8= 0.5
Cy T o, @ To__
Choi-Williams 1.785 0.0 1.245 1.47 1.08
Morlet 1.58 0.0 0.6650 5.0 2.36
Hyperbolic 0.15 0.0 0.62 0.817 0213

The larger the vaiues of o; and 0, are, the less time- and frequency-support the corresponding

wavelet has respectively.
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21.2 Dimensional Expressions and Band-Peak Frequency

It is assumed that the dimensional sampling time interval of the input data series of length M is Ar and
the. non-dimensio*nal sampling lime of the wavelet, whose time base interval is rom =T (o T, is At, where
the symbol " **  indicates a dimensional quantity [11]. Let N be the number of samples that should be
sampled for the wavelet function. To calculate the non-dimensional lime base of the waveiet function, we

have o map the sampling time interval of the input waveform to that of the wavelet, ie, -, T« [0,
N(AL)]. The wavelet time base is therefore given by
r .,

=Nen 28

The expression for the non-Ciraensional frequency fis obtained by taking the inverse of Eq. (2.8)
yielding

_RGY) L, ‘
STap SeresT 29)

The dimensional frequency expressions of the Choi-Williams, Morlet and hyperbolic wavelets are
given by Egs. (2.10), (2.11) and (2.12)

PP e N2 [ oA N2

S (e {-‘—ano__gxp(_u\'ﬁf o) }[NTQ'(AH] ,w[_g{m] ] 210
a T T 4 T

-~ Moriet; - ,a INTF (AL 1 {anfN(ar) 2 _

wa-?: :U Y= 5;-exp(—--—’?-—_].exp[—;'[————_r———ww] } (2.11)

by o 7N NGO Y (NGO (1ea-afN(ar) 212
"Va;:‘(f)' ; .exp[- e )( T ] sech ——_—Zﬂ‘T (2.12)

where typically, 5.0 £ 0,5 6.0 rad/s to ensure that the condition imposed by Eq. (1.1) is met. Throughout

this paper, @, = 5.0 rad/s fur the Morlet wavelet. The dimensional quantity b is similarly defined via Egs.
(2.8) and (2.9).

The band-peak frequercy, f ,’, , is the frequency at which the wavelex filler has the maximum value.

To cstimate the band-peak frequency, the first derivative of the real-part dimel}sional frpquency
expressiuns of the wavelets is obtained. Since the real parts of the first derivative functions are
exponeniial functions, the second derivative functions are not required. For the Morlet wavelet, to

maximise l;?gfgfm( f7) (given by Eq. (2.11)), the exponent of the exponential term is made to be zero
which yields [11]

TMorte@y - Wy
7alN ptortes (N') aCptorter

p = = T 2.13
S pistorien = , where Chporier = Nt(A)f 2.13)

The band-peak frequency of the Choi-Williams wavelet is similasly obtained as
2T

2
’ = = (2.14)
Twew = e e avaee
where o is the kernel control parameter of the Choi-Williams kernel.

The band-peak frequency of the hyperbolic wavelet is stmilarly given by

* Throughout this paper, some MATLAB graphs usc a " instead of a * * " to indicate dimensional quantities and
wi(/") is equivalent to W(f") for convenience.

|
[
[
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2.1.3 Aliasing Effccts

To_avoifi aligsing effects, in sampling the wavelet non-dimensionally and in sampling the input time
series dimensionally, the Nyquist criterion must be satisfied. The Nyguist frequency of the input time
series with the sampling time (Af') can be given by

1

f ,"vy = m . where (Ar') is the dimensional sampling time of the input series. (2.16)

To avoid aliasing in the mother wavelet, the overlapping fraction o of two adjacent wavelet filters at
different scales of a wavelet system must be prescribed so that it is less than a threshold value. This
fraction can be defined as an absolute ratio of the magnitude of the wavelet at the frequency fo o un, at

which & is sufficiently small to the magnitude of the wavelet at the band-peak frequency £’ (Eq. (2.17)).
At the ime that two adjacent wavelel filters overlap, to recover the input time signal and to avoid aliasing

of the wavelet filiers, the overlapping frequency must be at least equal to the Nyquist frequency f ‘{;y,

ie., f;,,,,;app = f ‘{:y. The mathematical expression of the ratio « is therefore given by Eq. (2.17) and
graphical representation of er is seen in Figure 2.1,

- lﬁ'a:l.b’(fﬂfy) (2‘17)
ﬁa:l.b'(f ;’))

If & is known beforehand, then it is possible to estimate the number of sampling points for the
wavelet system. Jordan, Miksad and Powers [11] calculated the required number of sampling poins
Nigorter for the Morlet wavelet system for a typical case of ¢ = 2. The number of sampling points of the
Morlet wavelet function Ny, for a general value of o is given by

2T
N ptorier = (‘”w +y-o lno:), where @, = 5.0 1ad/s (2.18)

By using Eq. (2.16) for f;q_..,. Eq. (2.15) for f;, and Eq. (2.12) for the expression of r,c?:ffl‘b.(f') we

obtain the minimum number of sampling data points Ny, for the hyperbolic wavelet. The numbey of
sampling points Ny, is found by a graphical method by plotting the graphs of two functions f; and f; given
by the following equation

2m2 pA
of “Tiyy ar? - N.oF @.19)
fi=f where fy = ln[m- exp(N°2mﬂ +1]tand /o= In@)+ N -2 BTy

Eq. (2.19) yields a good estimate of Ny, and therefore is used throughout this paper. Similarly, by

using Eq. (2,10} for the expression of u?f;{b«( F)). Eq. (2.16) for f,{:y. Eq. (2.15) for f, and after
performing mathematical manipulations, the sufficient number of sampling points New for the Choi-
Williams wavelet is given by the relation

2 2
N 1.670 { New
o.sl?a-(-f-‘”—} =1n -—-[—-—}

(2.20)

oW a | Tew

214 Scale Limit
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The maximum possible scale using in a wavelet system is determined based on the number of wrapped-
around points or end-points since these points do not provide useful information. It has been observed
that the number of end points is proporiional to the scale @ [11]. That means if the scale increases ioa
certain value, the number of end points will dominate the estimated wavelet transform coef{icients.

From [11), the number of wrap-around points at one end is a funclion of the scale a and can be
given approximately by

a(N-1)

N wrap (@)= 5

(2:21)

The Hyperbolic Wavelet
0.25
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Figure 2.1: Graphical representation of acand window width T of the hyperbolic wavelet for §=0.5

To estimate the largest scale of a wavelet system, introduce 7} as the fraction thar the pumber of

wavelet coefficients being affected by the number of wrap-around points Nyrep and M = 27 as the number
of input data points into the wavelet system. Then

Zm (N =D/2 1 @.22)
[ T’ ‘ ‘ . ‘
whare ifis the number of sampling points of the wavelets which was discussed in Section 2.1.3.
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To speed up the calculation process of the wavelet transform coefficients, M should be a power of 2,

The fraction = -;- was used by Jordan, Miksad and Powers for the estimation of the largest scale. For

both ends and from Eq, (2.22), the maximum scale Qo 1S given by
2™ .y
Ayax = Nl 223

o 2‘:‘;l‘he number of input sampling poimts M can be estimated from the maximum scale @y, using Eq.

N-1)- -1
M=2" a(—-—;?—“—’“-“i or m1.443- 1n(5§—l:}—“-m—“—] (2.24)

where 1 is a ratio of the number of wrap around points at the largest scale to the total number of points in
the time series.

The maximum scale is inversely proportional to N, the number of sampling points of a wavelet
function, as seen from Eq. (2.23). The next section caiculates the scale resolution.

2.1.5 . Scale Resolution

The scale resolution constant @;is defined as the distance between two band-peak frequencies of the two
adjacent wavelet filters [11). The finer the scale resolution ay is, the smaller the resolution constant. This
distance between two adjacent band-peak frequencies can be determined by specifying a decay constant A
wiiich has the mathematical form given by Eg. (2.25)

_ Vawp)

¥ (aw p TW4 )
where @), is the scale resolution constant and () is the frequency expression of the wavelet function
given by Egs. (2.2, (2.3) and (2.5) for the Morlet, Choi-Williams and hyperbolic wavelets respectively.
In most practical systems, the scale resolution constant must be small to capture rapid changes in the
energy density of the input waveform, which is usually non-stationary in cases of turbulence and chaos
[11), ECG [20), music signal [21-23] or random processes [24]. It is important 1o note that in Eq. (2.25),
the frequency quantities are non-dimensional, thus appropriate conversion of the variables must be used
to obtain the cotrect answer.

(2.25)

As the scale g increases, the scale resolution constant decreases since the frequency in a wavelet
system is inversely proportional to the scale (1, 3], If f is the index of an instant scale that is going to be
used in a wavelet system, then we have the following relationship
Dy

Wpgeny ~Qpipy =~ (2.26)
aj

where a;is the j® scale of the wavelet system and @ . 1y is the band-peak frequency at the  + 1) scale.

The scale resolution of the Morlet can be obtained analyticall):. For the Choi-Williams and
hyperbolic wavelets, the approximate scale resolutions are estimated by eliminating the .durd- and h[ghe.r-
order terms in the time series of In(1 ~ x), where x is a function of the scale resolution @, The main
reason that the third-order terms are ignored is lhfil the scale resolution @y is expected to be less than 1. In
addition, for these two particular wavelets, the third-order constants are quite smali that they can be safely
ignored without making large differences in value of the final answer. For the Morlet wavelet function,

. Morlet
the exact scale resolution constant @y

mdMorfef =J-o-Inl, where A<

is found 1o be
(2.27)
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The approvimate scale resolution constant of the hyperbolic wavelet s
{2.28)

m‘:iy < 48-J-1n 2 _ 4=l
T

o

ystem o4 is given by Eq.

, where A< i (2 28)

The approximate scale resolution of the Choi-Williams or Mexican-hat wavelet system a)fw is
given by

' 2.lnA
o™ =—.1‘— 12 = 3B A, where A< 1 (2.29)

a

‘ From Eqs. (2.27)-(2.29), it is evident that the scale resolution ay of the three wavelet systems are
independent of the sampling interval (Ar) which makes the wavelets unique. These equations are
obtained analytically or with practical approximations. The following table lists values of the scale
resolution of the three wavelets for different values of 8

Table 2.2: The scale resolutions of the Morlet, hyperbolic and CW wavelets for 8=0.5, | and 2

B w :;forlﬂ @ a!'iy © a(': W
0.5 0.459 0.2066 0.3246

1 0.3246 0.4133 .459

2 0.459 0.8266 0.649

Thus, over the typical range of the hyperbolic control parameter 0.5 < 8 < 2, the hyperbolic wavelet
appears to have a fine scale resolution constant as shown. For 8 = 2, the scale resolution is four times
farger than for the case of 8= 0.5 which suggests that for §2 2, the hyperbolic wavevlet will have coarse
scale resolution.

To obtain the largest number of scales that can be utilised in a wavelet system (provided that the
scale resolution is known), it is convenient to take the first band-peak frequency to be the reference
frequency. The subsequent band-peak frequencies are obtained by dividing the reference band-peak
frequency by the scale that corresponds to the particular band-peak frequency, i.e., @p); =@y /a e

Using this relation and Eq. (2.26) one can obtain [11]

[} w
Seon T | _Yg (2.30)
@i aj aj

The minus sign on the right hand side of Eq. (2.30} is employed to ensure that the total number of
scales jmy i 2 positive number (Eq. (2.33) and Section 2.1.6) without affecting the correctness of the

equation.

The recursive relationship of the scale a is then given by

(i W
= =2 s where =2 2
O)(P)] + Wy O){p)] -0y

The first band-peak frequencies (corresponding to a = 1 for the mother wavelet) of the Morlet, Choi-
Williams and hyperbolic wavelets can be estimated by using Eqgs. (2.13)~(2.15) r;spectiycly. from Eq.
{2.31). it is evident that previous scales are dependent on the present scale. This relationship can be
understood via the constant k, which is a function of the peak frequency of the first scale wawj,let {mother
wavelet) and the scale resolution constant @y. As the scale ¢ becomes larger, the width of the
ding wavelet becomes smaller and smaller. The wavelet width as a function of the scale a is a

i < i . ing that
function of the mother wavelel peak frequency a) and the scale resolution constant @y Assuming
'al:n;l? (¢ = 1 as the starting point), Eq. (2.31) can be rewritten to find the number of scales that are

required in a wavelet system under certain conditions {11]

correspon
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a;j= xd! , where K was defined by Eq. (2.31}. (2.32)
From Eq. (2.32), one can obtain an expression for the total number of required scales
" _ In(a Jmax )
Jmax =R (2.33)

By using the maximum value of @, given by Eq. (2.23), the total number of scales Jmax required for
a wavelet system can be obtained. For each wavelet system, the number of sampling points of the mother
wavelet is different and so are the band-peak frequency, resolition, @,y and the total number of required
scales. To gain more practical insight into the three wavelet systems, Section 2.1.6 provides one Lypical
example in which the necessary parameters and important properties (which have been estimated and

dis?usseg throughout Sections 2.1.1-2.1.5) of a wavelet system under some special conditions are
estimated.

216 Remarks and One Typical Example

One practical example was used in [11]) in which the transition to turbulence in a subsonic wake was
investigated using the Morlet wavelet wansform. The major conclusions about the behaviour of the
subsonic wake were made in [11]) and will not be repeated here. This section compares the three wavelet
systems namely Morlet, Choi-Williams and hyperbolic in terms of band-peak frequency, maximum
scales, aliasing, resolution and the total number of scales used in this particular application, For the three
wavelets Morlet, Choi-Williams and hyperbolic, the value of f = 1fg = 0.5 is used throughout this

section.

The sampling nterval of the input time series was (Ar") = 0.2 ms. The aliasing parameter is chosen
to be o = 0.01 {1%) so that only 1% of the mother wavelet is overlapped. From Table 2.1, the one-sided
length of the hyperbelic. Choi-Williams and Morlet -+ other wavelets are Ty = 10, Tew = 5 and Ty, = 3
respectively. The values of the required number of sampling points of the mother wavelets are hence
found by using Egs. (2.18)—(2.20). From Eqs. (2.19) and (2.20), the spproximate number of sampling
points of the hyperbolic and Choi-Williams wavelets are Ny, = 9 and Ney= |3 respectively.

The band-peak frequencies are obtained by employing Egs. (2.13)-(2.15) for the Morlet, Choi-
Williams and hyperbolic wavelets respectively. Since the band-peak frequency can be down to about 30
Hz {11], the maximum scales of each wavelet can be found. From Eqgs. (2.24), the required number of

data points in each wavelet system with 1 = % can be calculated. For # = 0.5 and o = 2, the scale

resolution of each wavelet system is estimated next using Eqgs. (2.27)~(2.29). It should be noted that the
number of input sampling points can be varied by changing the value of 7 to provide satisfactory
solutions to a particular application or problem (Eq. (2.24)). However, 1 shouid be kept small so that
aliasing effects can be avoided effectively.

The total number of scales that can be computed is directly proportional to the scale resolution @
By employing Eq. (2.33) the total number of scales of each wavelet system can be worked out. Table 2.3
summarises values of important parameters for the hyperbolic, Choi-Williams and Morlet wavelets that

have been estimated in this section.

Table 2.3: Parameter comparison of the hyperbolic, Choi-Williams (Mexican-hat) and Morlet wavelets for B=ljo

=0.5 :

Wavelet T N Arax @y Jmax
Morlet 3 17 49 0.459 42
Choi-Williamg 5 13 29 0.3246 i4
Hyperbolic 10 9 38 0.2066 11

i § le resolution, however, the total
From Table 2.3, the hyperbolic wavelet appears o have the finest sca . ‘
aumber of scales jou Of the hyperbolic wavelet is smaller compared to those of the Mexican-hat and
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Mopr:lel wavelets. This suggests that the hyperbolic wavelel is most suitable for signals which do not have
ic\\ ‘: s:;r;;iginfn); ls.peclrm'n to reso’l ve. In addition, with a fine scale resg[ulion, the hyperbolic wavelet can
g non—el?n" etrlergy-momlormg tool over a number of short time intervais. This feature is most
suit or non-s ationary signals whose energy intensity changes rapidly with time. Figure 2.2 and Figure
2.3 illustrate these points using the speech signal of the vowel "e”,

The Morlet Wavelet Power Spectrum

e TR TR e
Ll L
g 50 y r i "M i - v |{I
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560 7000 7500 20.00 25I(10 ilLoo 35|00 40.00
The CW Wavelet Power Spectrum
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i i | |
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Figure 2.2: Contour plot of the Morlet and Choi-Williams {(Mexican-hat) wavelet power specira

As can be seen, the Morlet wavelet does not reveal energy components in the scale range of 20 to
40, whereas the hyperbolic and CW wavelets do. Moreover, the hyperbolic wavelet can monitor
components at very high frequencies which correspond to scales as low as 10. The Choi-Williams
wavelet can be considered as a mixture of the Morlet and hyperbolic wavelets. From Figure 2.3, the
hyperbalic wavelet power spectrum is different from those seen in Figure 2.2 in which a certain degree of
slope is present. This suggests that the hyperbolic wavelet cannot be used to examine signals _that have
broad spectra (as explained earlier) since part of the energy pattern is masked by the slope. This is another
trade-off of the hyperbolic wavelet in having a fine scale resolution and 2 small total number of scales.
The Choi-Williams wavelet seems 10 be the most suitable wavelet in this case. However, the hyperbolic
wavelet does reveal the energy pattern continuously at almost every scale frora 10 to 80, whereas the
Morlet {only for scales greater than 40) and CW (for scales greater than 20) wa?velfets do not. Thus, it can
be suggested that having a fine scale resofution makes the wavelet more effective in revealing the energy
pattern of the input signal but simuftaneously limits Othe ability in displgy.ing the full energy pattern as
illustrated in Figure 2.2 and Figure 2.3 due 10 a non-90" slope. Therefore, it is not always advantageous to
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:ll?:c a 1f'il'l': sclalc_ resolution and a small total number of scales. Instend, there should be a balance between
scale resolution and the 1otal number of scales as for the Choi-Williams wavelel.

The Hyperbolic Wavelel Power Spectrum of the Vowel "e”
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Figure 2.3: Contour plot of the hyperbolic wavelet power specirum
22 Conclusion

The hyperbolic, Choi-Williams and Morlet wavelets have been compared in detail in terms of scale
resolution, scale limit and aliasing effects. The hyperbolic wavelet appears to have the finest scale
resolution for well-chosen values of . The Choi-Williams and Mo et wavelets appears to be suitable for
broad-spectrum signals, whilst e hyperbolic wavelet is applicable for signals whose spectra vary rapidiy
with time, i.e., non-stationary signals. By having a fine scale resolution, the hyperbolic wavelet might be
run in parallel on independent processors 1o monitor the energy intensity of different segments of a
discrete input signal. This is one major advantage of the hyperbolic over the Morlet and Choi-Wﬂhams
wavelets. The major disadvantage of the hyperbolic wavelet is that its total numbe;.' of scales is smatl
which might be difficult when examining broad-spectrum signals. Moreover, there exists a nop—QO slope
which limits the cffectiveness of the hyperbolic wavelet in displaying energy patterns. Higher-order
hyperbolic wavelets can be investigated in future work so that more useful applications can be found.
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Abstract

Experiments of Jarge data sets are computationally expensive. Signal processing analysis on
a single CPU leads to unacceptably long execution times. The paper presents initial
experiments on calculating the time-frequency power spectrum using the coarse-grained
paralle! programming technique. Experimental speedup factors are given and discusscd. The
measured speedup factor of the time-frequency power spectrum parallel calculation process
is sub-linear which indicates that the Gme-frequency power specirum is a suitable
application for parallel programming. The p:_ allel efficiency is acceptable with the lowest
value of 75.1% occurring at N = 10. The maximum speedup factor of 9.1 is obtained when N
= 12 at 75.3% of efficiency.

1.1 Eatroduction

Time-frequency power spectrum is a useful tool to study non-stationary signals in detection
and signal behaviour. In practice, non-stationary signals are often encouritered in speech,
sound, under-water signal analysis, non-linear response, random processes, ECG, complex
exponential signals, chirped signals and so on [1, 2. For wide-sense stationary signals, the
bispectrum has been extensively used to extract vital information about the signal.
Therefore, the signal behaviour and characteristics can be viewed systematically [3-9).
Since Fourier transform is the basis of the bispectrum, for non-stationary signals, it is not
accurate to use the Fourier transform (due to its infinite time support) but a joint time-
frequency distribution must be developed (o capture the changes in energy density with
frequency of these signals. Time-frequency power spectrum is one such tool which was
proposed and studied by Rihaczek [10], Cohen [1, 11-13] and others. The general formula
for the time-frequency power spectrum is [2, 12]

B e A

P(r,m) =...l? J‘ ‘[ I [e-jO[l-u) . @(9.1‘)[' L R (1,7) dudvd6 (1.1.1)
an — oo o—00 Wie-1,7)

where x(n) is the discrete-time input signal, d(, 1) is the kernel function, W(t — i, 7) is the
weighting function of the kernel ®(8, 7 and R, (#,7)= x(u + %) xtu --;—) is the local auto-

correlation function, where w =1 + %

The discrete version of Eq. (1.1.1) is given by Eq. (1.1.2)




ICIH 2001 Proceedin_grs, Conference C, Oct. 2001, Beijing, Ching

M A i
DIF(ni)=2 ) e/l ¥ Wawo) forpro S p-n) (1.12)
T=-M w=-M -

where Wi, 1) is the weighting function as defined by Eq. (1.1.1), M is the number of input

samp.lv‘ and j(-} is the discrete-time input signal. The weighting function is an arbitrary
function that saiisfies a number of admissibility constraints [14).

_ The discrete version of the time-frequency power spectrum is used to construct the '
serial program {and hence the parallel program) to run on a parallel machine. As can be seen
in Eq. (1.1.2.+. there are four running variables of n, &, 7 and i which result in four nested

fox loops in the program. Moreover, there are conditional executions that are employed to
evaluate the local auto-correlation function,

Although it is a very useful tool in analysing non-siationary signals, the time-frequency
power spectrum is complicated and expensive (o compute. This is due to the fact that instant
values of the auto-correlation function must be calculated so that rapid changes of the input
signal can be viewed at any time instant. The smaller the auto-correlation time window is,
the more expensive the calculation. This is the main reason that time-frequency power
spectrum has nol been popular or widely used compared to the Fourier transform, the power
spectrumn and the bispectrum. One solution to the above problem is to reduce the calculation
process time of the time-{requency power spectrum by using a parallel computer.

The wavelet transform, which is another form of the time-{-equency power spectrum,
has received considerable attention in recent years with proposals on applying parallel
computing to compute the wavelet transform [15-21). Some authors have reported on
methods of developing ways t:: compute the time-frequency power spectrum concurrently
[22, 23]. This indicates that time-frequency power spectrum could be a suitable candidate
for parallel computing. Even though there are proposals to calculate time-frequency tasks in
parallel, no hands-on experiments have been perfirrmed and reported in the literature. This
motivates the work reported in this paper.

In this paper, a MIMD 12-processor Silicon Graphics Power Challenge parallel
machine is utilised to perform experiments in estimating the time-frequency power
spectrum, From this, recommendations can be made whether the iime-frequency power
spectrum is suitable for parallel computing. The main aim of this paper is to show that the
time-frequency power spectrum is a suitable application for parallel programming as is the
case for the bispectrum. Moreover, this paper hopes to make the time-frequency power
spectrutn a more popular signal-processing tool by reducing its calculation time using a
parallel compuier. The basic background of this paper is the time-frequency power spectrum
and the bispectrum with some knowledge on parallel computing being employed as a new
exploring tool 1o dc the calculations efficiently.

The coarse-grained parallel technique is used for the semi-automatic and lhe.finf.:-
grained parallel technique is employed for the full-automatic PCA method as was applied in
the case of the bispectrum calculation process. In this paper, however, only the semi-
automatic parallel method is employed due to inefficient of coding of the C annotator (f911~
automatic PCA method). An examination of the parallel code s.howeﬁi that the compiler
mistook the inner loops as the most efficient loop for parallel programuming. In other words,
it employed the fine-grained parallel method inefficiently }vhlch res‘ulled in large parallel
overhead and thus lowered the speedup factor. For the semi-automatic parallcl‘method. the
structure of the parallel program is constructed manually so that ihe coarse-grained paraliel
method can be employed more effectively to give better speedup factors and parallel

efficiency.
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The key factors thai affect the performance of parallel programs are parailel load (the
load among the processors should be evenly balanced), parallel overhead (the amount of
communication among the processors should be minimised) and data dependency in the
parallel loop. There are four nested for loops in the program which require a large amount
of compuitation. If the number of input sainples (or loop size) is greater than 256 (M 2 256),
the number of iterations of the program is in the crder of 10” or even larger. The coarse-
grained parallel technique is utilised in the outer-most loop of the program by dividing it
into smalier tasks. Each small task has 3 nested £or loops, which can be executed
independently by independent processors (CPU) of the systems thus preverting data
dependency among the processors. Moreover, in using the coarse-grained parallel tech~ique,
the parallel overhead is minimised since the number of parallel loops is only one in this
case. Since the main paralie] loop and the smaller loops inside it are identical, the load
division among the . ~¢ssors is equal which maximises the efficiency of the system.

1.2  Experimental Results

The parallel speedup factor and parallel efficiency (24, 25} are estimated by using Eq.
(1.2.1)

Sequential_Time
Parallel_Time -

Speedup_Factor =
(1.2.1)

Measured_Speedup

1lel_Efficiency =
Parallel Efficlency Ideal_Speedup

The parallel speedup factors of the time-frequency power spectral calculation and
bispectrum processes are shown in Figure 1.2.1 which also shows the ic[eal §pee_dup factqr.
The parallel efficiency of the timz-frequency power spectrum calculation is displayed in
Figure 1.2.2.

Comparison of the Bispectrum (B) and Time-Frequency (TF) Speedup Factors
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Figure 1.2.1: Measur=d speedup factor of the time-frequency power spectrum (the Joop size
’ is 256 samples) and bispectrum calculation processes






