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Addendum

Page 15, at last paragraph, add: "and its usefulness will be demonstrated throughout the thesis".
Page20, first line after Eq. (3.2.2), delete:"... and; is a complex number , /= - 1 " .
Page 21, at the end of fourth sentence after heading 3.3, add: "as will be clearly shown and demonstrated
in this chapter".

Page23, second line, delete: "...and thus its real and "imaginary" parts are identical".
Page24, sixth line, delete:"...and thus their real and "imaginary" parts are identical".
Page 68, Eq. (4.2.9) should be replaced by: Vsoitt<m(.0) = [sech(fiO)]2- cos(n9)
Page 68, second line from bottom, delete "important" and read"... examine some properties..."
Page 70, Eq. (4.3.6) should be replaced by:

'"'= J -02- { 1 - 2-[Sech (00 )]2} do)

—oo

Page 70, at the end of second last paragraph, add: "Eq. (4.3.6) could be analytically verified using Maple
or Mathematica software. However, a simulation method is employed to evaluate integrals since the
method is fast and yields further understanding on the integrand. Thus, simulation will be used
throughout this chapter and subsequent chapters where applicable".
Page 95, first line after heading 4.4.5: "sometimes" for "sometime".

Page 116, at the end of second last paragraph, add: "The above range of 0.5 < P < 50 could be
considered "rule-of-thump" for the hyperbolic kernel. It is important to note that the above performance-
analysis procedure for the hyperbolic kernel should be applied to other kernels so that their true
performance can be obtained."
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PREFACE

The research presented in this thesis is about time-frequency signal processing and parallel

computing. Since Fourier transform method has been a dominant tool in signal processing

for many decades, the role of time-frequency signal processing seems to be forgotten. In

other words, there are many non-stationary signals, i.e. signals whose frequency spectrum

varies with time, encountered in practice which requires the use of time-frequency signal

processing. For example, for signals such as ECG, music, speech, underwater signal

analysis, plasma physics, chaos, time-frequency signal analysis is required since their

spectra vary with time. If the Fourier spectrum technique is employed, fine details of the

spectrum will be lost and thus it does not clearly reveal the signal characteristics.

This thesis is written with a prime purpose to brighten up the time-frequency signal

processing area by proposing a new kernel family. Unlike other kernels proposed in the

literature, this kernel family is found by taking the advantage of summing two first-power

exponential functions which are familiar in many aspects of electrical engineering.

Moreover, properties of these functions have been well known and thus make the analysis of

the new kernel family more effective and easier than using higher-power exponential

functions. It should also be noted that time-frequency analysis is built upon the Fourier

transform method except that the former can display power spectra in both time and

frequency domains.

For all graphs in the thesis, the captions include important information about the

graphs. The header of some graphs might have incomplete sentences or contains strings of

numbers for programming purposes. In those cases, the captions should be solely consulted.

Some captions may also contain a lot of text explaining about the graphs since it is believed

that the graphs should be self-explainable and understandable at the first glance.

IV
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ABSTRACT

This thesis proposes a new hyperbolic kernel family [sech{P0r)]n, where n = 1, 3, 5..., for

time-frequency power spectrum analysis. An important relationship between time-frequency

kernels and wavelet functions is found which leads to the discovery of the new hyperbolic

wavelet function.

Theoretical background of the first-order hyperbolic kernel, which corresponds to n =

1, and its corresponding wavelet are examined in detail. The effectiveness of the first-order

hyperbolic kernel is compared with previous kernels including Choi-Williams, Wigner-Ville

and the multiform tillable exponential. The hyperbolic, Morlet and Choi-Williams wavelets

are examined so that appropriate applications of each wavelet can be identified.

There are two major applications of the hyperbolic kernel and hyperbolic wavelet

presented in this thesis. The first application employs the hyperbolic kernel to ciablish a

general non-unity kernel time-frequency detector and hyperbolic time-frequency detector

for non-stationary signal detection. Detection of stationary signals such as sinusoids will

also be investigated to validate the effectiveness of the detector. Performance of the general

non-unity kernel time-frequency detector, hyperbolic detector, Choi-Williams detector,

matched-filter detector and Wigner-Ville detector will be compared and discussed in detail

by calculating their corresponding signal-to-noise ratios, SNRs.

The second application uses the proposed hyperbolic wavelet function for signal

analysis, especially to differentiate among periodic, transient and chaotic properties of

various signals, including Duffing oscillator, ECG, sinusoids, exponential, music and

speech, by calculating their hyperbolic wavelet power spectra. The hyperbolic wavelet

power spectrum and Fourier power spectrum techniques are compared. The merits of each

technique will be clearly identified.

Parallel computing, as a useful tool, is employed to improve the efficiency in

calculating the bispectrum and time-frequency power spectrum. A 12-processor parallel

computer system is employed to run parallel programs whose speedup factors and efficiency

are measured.



Chapter 1: INTRODUCTION

Signal analysis is important in understanding the behaviour of electrical systems such as

power plants, control systems in telecommunication, chaotic systems such as the human

electrocardiogram (ECG), plasma phenomena, oscillatory systems and other non-linear

systems. This understanding enables electrical engineers to predict the behaviour of the

system in the future, to measure the performance of the system, to study the system

characteristics in detail and to effectively improve the system performance. Many tools for

signal analysis have been developed over many years for stationary and non-stationary

signals with constant improvements in efficiency, effectiveness, accuracy and cost.

The most important signal-processing tool is the Fourier transform which is very useful

in spectral analysis. Spectral analysis is employed to establish important functions in higher-

order statistics of signals such as the power spectrum (first-order statistics) and bispectrum

(second-order statistics). The power, or energy, spectrum can be employed to study chaotic

phenomena and turbulence [1-4]. However, it should be emphasised that for Fourier analysis

to be effective and accurate, the signal is assumed to be stationary or wide-sense stationary.

That is, its statistical properties do not vary with time.

The Fourier transform is formed by summing and then averaging a product of the input

signal and a sum of two sinusoidal functions or the complex exponential function exp(-jax)

whose time support is infinite. If the Fourier transform is used to examine non-stationary

signals, fine-detailed information of the signal energy density will be suppressed since the

Fourier transform yields the average signal energy density over an infinite time interval. In

practice, non-stationary signals are often encountered and thus it is important to develop

methods to study these signals. This is one of the main themes of the research presented in

this thesis. Examples of non-stationary signals are voice and speech, underwater signals

such as whale sounds, bat sounds, transient signals, ECG and other biological signals,

chaotic signals and sun-spot intensity over a short- or long-time period [5-8]. It is important

that the energy density or energy distribution of a non-stationary signal is viewed as a

function of time so that it is known when a particular event happens.
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To effectively investigate non-stationary signals, a method called the joint time-

frequency analysis [8, 9] or time-varying spectrum analysis was proposed by Page,

Rihaczek and others [10-12]. This method was later studied in detail and significantly

modified by Cohen [8] so that time-frequency analysis could be generalised. This method

uses a general transfoiTn function for a general expression of the time-frequency

distribution. For each different transform function that satisfies a certain set of constraints, a

new and unique time-frequency distribution is found.

To capture the fr.e-detailed information in the energy density of non-stationary signals,

the time-frequency transform function must be a finite-time supported function. This

transform function is called the kernel function and labelled <I>(0, T). The kernel function,

O(0, T), has two arguments 9 and T, which are frequency and time respectively and are used

to derive the joint time-frequency spectrum. It has been shown that Fourier analysis is a

special case of the joint time-frequency analysis [8]. In the case of the Fourier transform,

only one argument, co, which corresponds to the frequency, is employed. The time variable

is removed through averaging and so has no variation.

Different time-frequency spectra can be generated if there exist different kernel

functions. The simplest kernel function that has been employed is the Wigner-Ville (WV)

unity kernel, <t>w\' (9, r) = 1. The WV time-frequency distribution has been extensively

studied by many researchers [13-22], but suffers from a disadvantage that it generates cross

terms in the time-frequency plane. These cross terms originate from instantaneous values of

an auto-correlation function and hence make it difficult to interpret the WV time-frequency

power spectrum. The main problem is that even when the signal is absent, the WV time-

frequency power spectrum is not zero.

The existence of cross terms in the time-frequency domain motivated the search for

new kernels that are more effective than the WV kernel with desirable properties such as

effective cross-term suppression, fine auto-term resolution and high level of noise

robustness. In 1989, the Choi-Williams (CW) kernel, <$>C\v(.9, f) = e~e z'a where a is the

kernel control parameter, was proposed as one outstanding candidate to effectively suppress

the cross terms. The main principle of the CW kernel is that the location of auto terms and

cross terms is identified. That is, the auto terms are located in the vicinity of the origin and

the cross terms away from the origin. The weighting function, which is the 1-D Fourier

transform of the kernel, of the CW kernel peaks at the origin and decays to small values as

the time and frequency variables rand 9 of the kernel increase. This means that only the
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auto terms are amplified while the cross terms are suppressed in the time-frequency plane,

which means cross terms can be effectively avoided.

The CW kernel is a second-power exponential function which is sometimes difficult to

integrate, especially when being combined with high-order power series. This complexity of

the CW kernel has motivated the need to find simpler first-power kernels. However, the CW

kernel has been applied in different fields and has found many applications in speech

processing, image processing, wavelet theory, underwater signal analysis and other fields [6,

8, 9, 23-26]. Among the various applications, wavelet theory has been the most useful

application of the CW kernel because of the presence of the Mexican-hat wavelet [51-67]

function.

The wavelet transform and joint time-frequency power spectrum are closely related

since they both employ time and frequency domains to describe the power spectrum of a

non-stationary signal. The wavelet transform is a time-frequency transform which employs a

wavelet function to display the signal energy density. The main difference between the joint

time-frequency analysis and wavelet analysis is that the former employs the Fourier

transform and the latter uses the wavelet transform which employs a wavelet function.

Wavelet functions are usually finite time supportive so that fine-detailed information of the

energy spectrum caii be effectively monitored. If a new wavelet function is found, then a

new wavelet transform, using that particular wavelet function, can be generated.

In 1995, the multiform tillable exponential (MTE) kernel was proposed by Costa and

Boudreaux-Bartels [27] which has been claimed to be more effective than the CW kernel in

suppressing cross terms. The MTE kernel is given by the following equation

-n
0

2r

(1.1.1)

where to and 0b are constants. The CW kernel is a special case of the MTE kernel when r =

0 and a = A = 1. The multiform tiltable exponential kernel has ten different forms whose

shapes depend on values of its control parameters a, 0, y, X and r.
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Although the MTE kernel has been shown to be effective and diversified in terms of

kernel variety and cross-term suppression [27], it is a very complicated kernel and it is not

possible to generate its explicit time-frequency expressions. In addition, some of the MTE

kernel types are not Fourier-transformable which makes the MTE kernel difficult to use.

Consequently, a new kernel which is simpler and more effective than the CW and MTE

kernels is urgently needed.

A kernel is said to be effective if it meets the following criteria: it can effectively

suppress cross terms, support the auto terms by having a fine auto-term resolution and it is

noise robust under noisy conditions or interference. These are the three criteria that are used

to judge the performance of time-frequency kernels. Even if only two of the three criteria

listed above are satisfied, the kernel can be said to be effective. In practice, all three criteria

.e very difficult to satisfy simultaneously and there exists a trade-off among them.

Cross terms, generated because of coupling of various signals in the time-frequency

plane, are undesirable in the time-frequency power spectrum. Cross-term suppression is

crucial to prevent false interpretation of the signal characteristics as happens with the WV

kernel. The ratio of the cross-term peak magnitude to auto-term peak magnitude measures

the performance of a kernel. The lower this ratio is, the more effective the kernel.

Auto-term resolution is also important in time-frequency power spectrum analysis. The

finer the auto-term resolution is, the better a particular kernel can support auto terms. Some

kernels suppress the auto term and cross terms simultaneously since they cannot separate the

auto terms from the cross terms. Auto terms are located near the origin of the time-

frequency power spectrum and the cross terms are located further away from the origin.

Thus, increasing the auto-term resolution of a time-frequency power spectrum makes its

corresponding kernel more effective. In fact, the effectiveness of a kernel is measured by the

peak-magnitude ratio of the cross terms to the auto terms. This is the key factor that must be

taken into account when designing new kernels.

Noise robustness measures the ability of a time-frequency power spectrum to withstand

external interference or noisy disturbances created by the surroundings such as transmission

noise. Under noisy conditions, the time-frequency power spectrum of a particular kernel

function should retain its original shape and the amount of deformation is expected to be

minimal. The less the deformation is, the better the noise robustness of the kernel function.
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Investigations on cross-term suppression [28], auto-term resolution and noise

robustness of the CW kernel have been carried out by Stankovic and Amin [29, 30]. The

MTE kernel has been studied in detail by Costa and Boudreaux-Bartels [27] and has been

shown that its cross-term suppression is superior compared with the CW kernel. However,

the MTE kernel has not been investigated and reported in the literature on auto-term

resolution and noise robustness analyses. Even though the MTE kernel is the most effective

kernel in suppressing cross terms in the time-frequency plane, its auto-term resolution and

noise robustness ability raise unanswered questions about the kernel effectiveness. Although

it has been shown that the CW kernel is effective in meeting all three criteria and the MTE

is superior in cross-term suppression, it is still believed that a simpler and more effective

kernel can be found.

Criteria on how to evaluate an effective kernel have been stated which enable one to

propose an effective kernel and consequently derive an effective time-frequency power

spectrum. Moreover, a signal-processing method should be efficiently calculated. One

typical and common problem of the time-frequency power spectral analysis is that its

computation is extensive because a large amount of instantaneous values of the auto-

correlation function (for the time-frequency power spectrum) are required. Thus, there is a

need to develop new tool(s) to improve the efficiency of time-frequency analysis.

1.1 Proposal of the New Kernel

This thesis propose? a new family of kernels, called the hyperbolic family kernels, 0(0, f) =

[sech(P(h)T where n is the order of the kernel family and n = 1 corresponds to the first-

order hyperbolic kernel; /3 is the kernel control parameter. The corresponding hyperbolic

time-frequency power spectrum is employed to study non-stationary signals. Properties of

the hyperbolic kernel such as cross-term suppression, auto-term resolution and noise

robustness will be investigated. In addition, a new wavelet function, hyperbolic wavelet, is

generated and its properties are studied in detail. Applications of the hyperbolic kernel and

hyperbolic wavelet are discussed in the fields of signal detection and studies of signal

characteristics.
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The first aim of the research reported in this thesis is to propose the new hyperbolic

kernel for use with time-frequency power spectrum and compare it with other well-known

kernels such as the CW and multiform tiltable exponential (MTE) which are used as

comparison benchmarks. A trade-off among auto-term resolution, cross-term suppression

and noise-robustness of the hyperbolic kernel, CW kernel and the MTE kernel will be

stated.

The second aim of this research is to show that there is a strong link between time-

frequency kernels and wavelet functions. It will be shown that if a new time-frequency

kernel is proposed, it simultaneously gives rise to a new wavelet function (provided that the

wavelet function satisfies admissibility constraint(s)) and vice versa. This concept extends

the time-frequency and wavelet fields which means more useful time-frequency kernels can

be generated from the corresponding wavelet functions and vice versa.

We explore the relationship between time-frequency kernels and wavelet functions in

some detail. This is an important contribution of the thesis. We begin by carefully

examining the Mexican-hat wavelet function and show that it is generated from the

Gaussian pulse function, which is essentially the CW kernel. In other words, there is a

strong relationship between time-frequency kernels and wavelet functions that has not been

reported in the literature.

The third aim is to demonstrate possible applications of the time-frequency power

spectrum, in particular, the hyperbolic time-frequency power spectrum, in areas such as

signal detection and signal analysis, especially chaotic studies. Non-stationary signal

detection has been identified as one such application of the time-frequency power spectrum

because of the outstanding work by Kumar and Carroll [31, 32]. Detection of chaotic

behaviour using the time-frequency power spectrum and wavelet transform, which has been

inspired by the work of Milligen and Farge [33-35], is another typical application of the

time-frequency power spectrum. Since the time-frequency power spectrum shows how the

energy density of an input signal changes with time and frequency, it is possible to detect

the transition from the periodic region to the chaotic region of the signal which is useful in

determining when a non-linear signal is behaving chaotically.
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The fourth aim of the research is to investigate the effectiveness of parallel computing

in the calculation of the bispectrum and the hyperbolic time-frequency power spectrum as

two typical signal-processing methods. Parallel computing has steadily developed over

many decades, yet it has not been extensively used due to high cost and programming

difficulties. It will be shown that the use of parallel computing is effective and parallel

programming is a powerful tool for dealing with heavy-computation tasks of the hyperbolic

time-frequency power spectrum and the bispectrum, that are common problems in the field

of higher-order statistical signal processing.

1.2 Thesis overview

The thesis is organised as follows.

Chapter 2 reviews a number of already-published kernels in the literature so that an

overview on time-frequency kernels is given and the proposal of the hyperbolic kernel is

appropriate.

Chapter 3 proposes the new hyperbolic kernel with its family and studies its properties

in detail. The advantages and disadvantages of this kernel family are discussed and the

kernel is compared with the CW and the MTE kernels in terms of auto-term resolution,

noise robustness and cross-term suppression.

Chapter 4 continues the analysis of the hyperbolic time-frequency kernel by

investigating the new hyperbolic wavelet, which is generated from the hyperbolic kernel by

taking its negative second-order derivative function. The research reported in this chapter

was inspired by the fact that the popular Mexican-hat wavelet was generated from the CW

kernel. This important fact, however, has not been reported in the literature. The hyperbolic,

CW or Mexican-hat and Morlet wavelets are compared in this chapter from an engineering

point of view in terms of aliasing effects, the number of sampling points fcx the wavelet

function, the maximum scale and scale resolution. One typical example is ^ovided to

illustrate the adv' ages and disadvantages of the hyperbolic wavelet. From a mathematical

point of view, the ,iyperbolic wavelet is briefly studied in the second part of the chapter.
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The first application of the hyperbolic time-frequency power spectrum is in the field of

signal detection in Chapter 5. In this chapter, performances of the hyperbolic, CW (non-

unity kernels), WV (unity kernel) and cross-correlator signal detectors are compared in

detail in terms of their signal-to-noise ratios (SNRs) and quality factors Q's. This chapter

shows that non-unity-kernel time-frequency signal detectors are better than the unity-kernel

signal detector (WV signal detector) in terms of SNR. The hyperbolic signal detector will be

shown to be better than the Choi-Williams signal detector by having a larger SNR. From this

chapter, Chapters 3 and 4, the applicable range of (3 and trade-off among cross-term

suppression, auto-term magnitude, noise robustness, scale resolution, signal-detection ability

against auto-term resolution are stated.

Chapters 6 and 7 report the second application of the time-frequency power spectrum

technique for signal analysis. In these chapters, the hyperbolic wavelet power spectra of

signals such as sinusoids, exponentially decaying sinusoids, Duffing oscillator, the ECG,

music and speech are calculated so that their instantaneous characteristics or any transitions

from periodicity to chaos can be detected. Chapter 6 lays a foundation for Chapter 7 by

forming a gallery of hyperbolic wavelet power spectra of various familiar signals including

sinusoidal, exponential, exponentially decaying sinusoidal, Duffing oscillator and ECG.

Music and speech signals are separately investigated in Chapter 7. The Fourier power

spectrum and the wavelet power spectrum techniques are also compared in detail in

Chapters 6 and 7.

Chapter 8 reports on the measured- and effective-speedup factors that can be achieved

when a 12-processor parallel computer is used to estimate the bispectrum and time-

frequency power spectrum. It will be shown that parallel computing can significantly

improve the efficiency of the bispectrum and time-frequency power spectrum calculation

processes.

Finally, Chapter 9 presents the conclusions of this research and summarises important

contributions of the thesis. The chapter also outlines new directions for future research.
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Chapter 2: REVIEW OF TIME-
FREQUENCY KERNELS

2.1 Introduction

This chapter gives details of the time-frequency kernels which have been published in the

literature. The most notable kernels are the Choi-Williams and multiform tiltable

exponential kernels which will be compared with the proposed kernel in Chapter 3. The

general expression for the time-frequency power spectrum is [8]

•)-R,y(t,z) dudxdO (2.1.1)= -\ f f f
—CO—CO—OO

The chapter is mainly based on the review papers by Cohen [8] and Janse and Kaiser

[16]. Some of the already-published kernels in the literature are listed along with their

distributions or time-frequency power spectra.

2.2 Revision of time-frequency kernels

2.2.1 The Wigner-Ville (WV) Unity Kernel

The WV kernel is a unity kernel which is given in Eq. (2.2.1)

The corresponding Cohen distribution of this kernel is given by Eq. (2.2.2)

t,co)=—(WCV(t,co)=—( e-j™-8(t-u)-x(u-^)-xlu + ̂ }dT (2.2.2)

10



Chapter 2: Review of Time-Frequency Kernels

The function 8(t - u) is the Fourier transform of the unity function O(0, T) = 1. For this

function to exist, the temporary variable // must be equated to the time variable t which

yields the. Wigner-Ville time-frequency power spectrum as a function of the time t and

frequency co

WCV(t
2n J (2.2.?;

This is the simplest time-frequency kernel in Cohen's class. 1 he characteristic- of the

WV distribution have been extensively studied in a series of three papers by Claas,:u ix:v\

Mecklenbrauker [13-15]. The 1-D Fourier transform of the kernel is an impulse

concentrated at every time instant / as can be seen in Eq. (2.2.2) Hence the term S(t -u) can

be ignored which gives the standard form of the distribution as given in Eq. (2.2.3) [8, 16].

It should be noted that Eq. (2.2.2) is basically the form of an ambiguity function as

in [8, 27].

Consider first the input signal as a mono-component signal. The WV time-frequency

power spectrum estimation of the input signal is purely based on the auto-correlation

method. This means that if there exists a certain degree of similarity of the signal in the past

and future (regardless the value of the signal) then the WV power spectrum will be non-zero

as explained by Cohen [7] in terms of "overlapping of the signal". For the case of a multi-

component input signal, where the input signal comprises of a number of mono-compor*ft><l

signals, there will be interference among the power spectra of the mono-cowjjiitant signals

which provide misleading information about the time-frequency power spectrum. Thus the

search for new kernels that are effective at cross-term suppression is necessary.

'<%••

;. if-,.

2.2.2 Choi-Williams (CW) Kernel

The CW kernel was first proposed in 1989 and is given by Eq. (2.2.4)

(2.2.4)

where a is the kernel control parameter.

11



Chapter 2; Review of Time-Frequency Kernels

The CW distribution (based on Cohen's class) is given by Eq. (2.2.5)

(2.2.5)

where r= 0, 1 M - 1 and M is the length of the discrete input signal *(•)•

The CW kernel was the first kernel proposed in the reduced interference kernel class

[48] and is well recognised for its effectiveness in suppressing cross terms in the time-

frequency plane.

2.2.3 The Generalised Choi-Williams Kernel

The generalised CW kernel is defined by Eq. (2.2.6)

e_
0,

(2.2.6)

where M, N, fy and X\ are positive integer constants.

This kernel [25] attempts to reduce the transition region of the kernel so that the cross

terms can be more effectively reduced when compared with the CW kernel. Derivations of

the weighting function and hence the general formula of the geri'^iis^ci CW kernel are

complicated. For example, for N = M = 3, the weighting function is complex and consists of

products of Gamma and Lommel functions [44] which require further approximations. This

kernel and the CW kernel are special cases of the multiform tiltable exponential kernel [2.7]

which will be given in Section 2.2.6.

i\

12
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2.2.4 Butterworth Kernel

The kernel is defined by Eq. (2.2.7)

, where M and A' are arbitrary constants.
(2.2.7)

This kernel [25] and the generalised CW kernel were studied by Papandieou and

Boudreaux-Bartels. The main difficulty with the GED (Generalised Exponential

Distribution) and the. Butterworth kernels is that they are complicated (because of the high-

power part of the kernels) and thus it is very difficult to derive their general distributions.

2.2.5 Cone-Shaped Kernel

This kernel was studied in [39,46] and is given by Eq. (2.2.8)

nd

(2.2.8)

where w{t) is a function to be specified and a > 2 to ensure finite time support.

The general formula of the cone-shaped time-frequency power spectrum is given by [9]

ZAM(t,f)= I wT-e
(2.2.9)J

t-\z\/a

The cone-shaped kernel has been used to study speech and chirped signals and it was

reported that the cone-shaped kernel produce good results in locating speech formants and

pitch [47].

13
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2.2.6 Multiform Tiltable Exponential (MTE) Kernel

This kernel was proposed in 1995 by Costa and Boudreaux-Bartels [27] and has the general

form given by Eq.(2.2.10)

-n 2r

\Y
(2.2.10)

where a, /?, y, X and r are kernel control parameters which are independent of the signal

parameters and subject to certain conditions given in [27]. The positive-valued parameters T0

and da can be designed to suit specific requirements.

The kernel given in Eq. (2.2.10) is a general formula for a number of kernels including

the WV kernel, the CW, generalised CW kernel and the tilled Gaussian kernel. A detailed

list of various types of the MTE kernel can be found in [27], which also includes the design

procedures of their control parameters. The MTE kernel was shown to be effective in

suppressing cross terms and to vary the stop band and pass band of the kernel depending on

specific values of the kernel control parameters. This allows the MTE kernel flexibility in

kernel design and a wider range of applications. However, the MTE kernel is a complicated

kernel whose closed-form general time-frequency power spectrum cannot be obtained.

2.2.7 Reduced-Interference Kernel

Jeong and Williams [48] proposed a kernel design procedure to reduce cross terms in the

power spectrum. They also compared a number of different kernels used in time-frequency

distributions. Their kernel, the reduced interference kernel, can be used to derive other

kernels, in particular, the Born-Jordan, G-Hamming, truncated-CW, truncated-smc and

triangular kernels. This kernel can be considered as one of the general kernels which is used

to suppress cross terms by employing attenuation techniques in its time-frequency plane.

Table 2.2.1 summarises some of the popular kernels that have been reported in the literature

and their corresponding time-frequency distributions.

14
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Kernel Name
Table 2.2.1: Some popular kernels and their distributions [81

Wigner-Ville [16]

Margenau
And Hill [16]

Kirkwood and
Rihaczek [16]

sine [16]

Page[8]

Choi-Williams
[28]

Product of Levin
and Choi-Williams

[11,28]

Kernel O(0, T)

cos
9T

sin («0r)

aOT

exp

exp\ -•
62r2

Distribution P(t, w) (Eg. (2.1.

In

1+flT

J T

3/

2^

w -jTdl I O(f-ll)
e J -expi - - v - '

~[x* (H -T)JC(H) +

2.3 Conclusion

This chapter has reviewed kernels that have been published in the literature. Second- and

higher-power exponential kernels have been successfully employed in the field of time-

frequency signal processing, especially the CW kernel and MTE kernel. However, first-

power exponential kernels have not been effectively used. These kernels are simpler than

the CW and MTE kernels but they do not provide effective cross-term suppression ability

and noise robustness. Thus, there ought to be a new kernel, employing first-power

exponential functions, which is simpler and also more effective than the CW and MTE

kernels. This kernel will be presented in the next chapter.

15



Chapter 3: THE HYPERBOLIC
KERNEL FOR TIME-FREQUENCY
POWER SPECTRUM

This chapter proposes a new family of hyperbolic kernels <Ph>Vcrbaiic(6< f) = \sech(P6T)]n,

where n = 1, 3, 5.... The first-order hyperbolic kernel <&hyPerboUc{.0, T) = sech(f}df) with n = 1

is mainly considered in this thesis. Theoretical aspects of the new hyperbolic kernel are

examined and studied in detail. In the time-frequency context, the effectiveness of a kernel

is determined by three factors: cross-term suppression, auto-term resolution and noise

robustness. The effectiveness of the new kernel will be compared with other kernels

including Choi-Williams, Wigner-Ville and multiform tiltable exponential (MTE) using two

different signals: complex exponential and chirp. The results of this chapter form the

foundation for the subsequent chapters in which the hyperbolic wavelet (Chapter 4),

hyperbolic signal detector (Chapter 5) and hyperbolic time-frequency wavelet power

spectrum technique (Chapters 6 and 7) will be examined.

16
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3.1 Introduction

A cross-term effect in the power spectrum of multi-component signals represents

interactions among the individual component signals. This effect, sometimes called the

"artifact", is undesirable since the intera- 'sons among different mono-component signals in a

multi-component signal provide no useful physical interpretation of the individual signals.

For example, the artifact causes zero-valued regions of the original spectrum to be non-zero

and complicates the interpretation of the time-frequency power spectrum as will be

illustrated later. To eliminate artifacts, the modulus of cross terms in the time-frequency

power spectrum must be reduced. However, cross terms cannot be completely reduced since

a spectrum consists of both auto and cross terms [28]. One of the methods for reducing the

effects of cross terms is to use an appropriate kernel for the computation of the power

spectrum. A desirable property of a kernel is that it supports auto terms and suppresses cross

terms in the time-frequency plane by multiplying them with its weighting function. A kernel

is an arbitrary function which must satisfy a number of admissibility constraints. These

constraints were studied in detail in [14] and are:

1. Kernel function, 0(0, T), is independent of time /,

2. Kernel function is independent of frequency at,

3. 0(0, 0) = 1 for all 0,

4. 0(0, T) = 1 for all T,

5. Kernel function must be real, i.e. 0(0, r) = 0*(-0. - r ) , where "*" indicates the complex

conjugate,

6. — 0 ( 0 , T ) | =0, V0,
dr |T=0

d
7. -0(0,T) = 0,

0=0

Detailed interpretations of the seven constraints above are given in Appendix A.
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The main motivation in inventing new kernels is to more effectively suppress cross

terms in the time-frequency power spectrum of multi-component signals. The Wigner-Ville

(WV) distribution or Wigner-Ville time-frequency power spectrum, which employs a unity

kernel, was first proposed by Wigner in 1932 to solve problems in quantum mechanics [8].

Since then, the WV time-frequency distribution has found many different applications

including radar, speech recognition and loudspeaker design [16]. Further details on the WV

distribution are provided in [8, 13-15, 36]. Since the WV kernel is unity, the cross terms in

the time-frequency plane are not suppressed, i.e. they are scaled down by a unity factor,

which is the main disadvantage of the WV distribution. These cross terms or "artifacts"

provide misleading information about the WV time-frequency power spectrum. It should

also be noted that the terms "time-frequency distribution", which was coined by Cohen [8,

37], and "time-frequency power spectrum", which was first used by Page and Rihaczek [10,

11], are identical. These terms have been extensively used by many different authors in the

field of time-frequency signal processing. In this thesis, they will be interchangeably used

without any difference in their meanings.

Currently, there are two kernels that have been shown to be useful and effective in the

time-frequency power spectrum analysis which were introduced earlier. The first kernel was

the Choi-Williams (CW) kernel which was proposed in 1989 by Choi and Williams [28].

The second kernel was the multiform tiltable exponential (MTE) kernel which was found in

1995 by Costa and Boudreauz-Bartels [27]. The CW kernel is a special case of the MTE

kernel for some special values of the kernel parameters. The main problem of the MTE

kernel is that some of the kernel types are not Fourier transformable which makes it difficult

to use.

A number of alternative kernels have been proposed and studied in Chapter 2 such as

cos(0.59r) by Margenau and Hill [8], sinciPOz) [10], exponential kernel eJ0r/2 [11], the

compound kernel derived by taking a product of the Hill and CW kernels [38], cone-shaped

kernel [39] and the generalised CW kernel [25]. These kernels, although easy to use, are not

effective in cross-term suppression compared with the CW and MTE kernels.
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The CW and MTE kernels are second- and higher-power exponential functions whose

explicit expressions when integrating with power series do not exist. Thus, "first-power"

exponential kernels are more suitable for a time-frequency distribution. The problem of

first-power exponential kernels is that they are simple and thus some desirable properties

such as effective cross-term suppression and noise robustness are missing. Therefore,

finding the right kernel, which is easy to use and at the same time effective, is a difficult

task. To overcome- this difficulty is the main aim of this chapter.

The purpose of this chapter is to propose a new family of kernels, the family of

hyperbolic functions, [sech((36t)]n where n is the kernel family order, that can be used to

suppress cross terms in the time-frequency power spectrum. These kernels provide better

results than the CW kernel for well-chosen values of the kernel control parameter p\ Since

the MTE kernel is not Fourier transformable, it is not possible to compare its cross-term

suppression and noise robustness with that of the hyperbolic and CW kernels. However,

various forms of the MTE kernel are studied by estimating their auto-term widths, then

comparisons are made among the MTE, hyperbolic and CW kernels. The hyperbolic and

CW kernels are compared in detail in terms of cross-term suppression, auto-term resolution

and noise robustness.

The chapter is organised as follows. The proposed hyperbolic kernel family is detailed

in Section 3.3. Section 3.4 compares the weighting functions of the hyperbolic and CW

kernels. Section 3.5 discusses cross-term suppression ability of the hyperbolic and CW

kernels using multi-component chirped and complex exponential signals. Sections 3.6 and

3.7 compare the effectiveness of the CW, hyperbolic and multiform tiltable exponential

(MTE) kernels in terms of their auto-term widths and noise robustness.
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3.2 Background on Cohen's Time-Frequency
Distribution

The general form of time-frequency power spectrum in Cohen's class for deterministic non-

stationary signals is defined as [8]

/>(/, to) =

-H»+oo+oo

—oo—oo—oo

1 • * (0 , T) • /?,,, (/, T) dudrdO (3.2.1)

where / ? , , ( / ,T ) = .V(H+-|)"-v*("~i) ' s t n e ' o c a ' auto-correlation function, 0(0, T) is the

kernel function, u = i+j, r is the lag parameter and / is the running time variable. The

range of / is 0 < / < /0, where t0 is the signal window size over which the power spectrum of

a non-stationary signal is estimated. From now on, the range of all integrals is from -°° to

unless otherwise stated.

The one-dimensional (1-D) Fourier transform of a function x(t) is defined as [41]

+00

F(0))= I x(t)-e-jul dt (3.2.2)

where F((0) is the 1-D Fourier transform of x(t) andy is a complex number,/ = - 1 .

The formula for a time-frequency distribution is derived by first obtaining its weighing

function. The weighting function [44, 45] is derived by taking the 1-D Fourier transform of

the kernel, <J>(0, T). This weighting function, W(t-u, r), determines how the cross terms of a

time-frequency power spectrum are scaled down and thus reducing their effects in relation

to the auto terms.

Eq. (3.2.1) can be rewritten in the form of the weighting function W(t - u, r) as given

by

+00+00 +C»nua)=-^l\\ dudzdd (3.2.3)

—oo—oo—oo
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In the case of the time-frequency power spectrum, the local auto-correlation function is

defined [8, 19] as /?,,, ( / ,T) = .Y(K +1)-.v*(M ~§) . It should be noted that the auto terms are

located over the small-valued region of the lag parameter T [40] and the cross terms in the

high-valued region as the auto-correlation function is a measure of the similarity of the

signal with itself as a function of the lag parameter r [41]. Higher-ordor time-frequency

spectra have been studied in [20, 21, 42, 43] by defining a new form of the local auto-

correlation function. However, this chapter is devoted to the time-frequency power spectrum

and a hyperbolic kernel which is studied next.

3.3 The Hyperbolic sech(POT) Kernel and Its
Family

A number of kernels have been reviewed in the previous chapter. In this section, we propose

and analyse a new kernel family. The main motivation for finding the hyperbolic kernel

(first-power exponential functions) is that previous kernels are high-power exponential

functions such as the CW kernel (second-power exponential function) and the MTE kernel

(second- or higher-power exponential functions). First-power exponential functions are

mathematically much simpler, easier to interpret and more effective than second- or higher-

power exponential functions. Consider the following function given by Eq. (3.3.1)

(3.3.1)

I

The function can be rewritten for the general case as

+T2
(3.3.2)

The function given in Eq. (3.3.1) satisfies the seven constraints given in Section 3.1,

however, it is not bounded which results in an infinite volume under the surface of its

Fourier transform function or the weighting function. It should be noted that the

boundedness of the weighting function of a kernel function is crucial for its cross-term

suppression. If the weighting function is not bounded, i.e. the cross terms will be very large

since they are multiplied with a large weighting-function factor, then the corresponding

kernel, even though satisfies the seven constraints, is not effective in suppressing cross

terms in the time-frequency plane of the spectrum. Thus, the additional constraint on

il:
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boundedness on a kernel function should be included with thor constraints already stated in

Section 3.1.

From Eqs. (3.3.1) and (3.3.2), a new kernel function can be derived by taking the

reciprocal of the hyperbolic function

Tk) =
cosh +T2

= sech +r2

(3.3.3)

where P is a parameter to control the exponential terms of the hyperbolic function.

The use of the control parameter (3 is important. As (3 tends to infinity in Eq. (3.3.3), the

kernel will approach zero. If (3 = 0, the hyperbolic distribution will become the WV

distribution. Thus, the chosen values of p" should not be too large or too small. Depending

on a particular application, p* should be accordingly chosen so that satisfactory performance

in terms of cross-term suppression, auto-term resolution and noise robustness can be

achieved. It is also important to note that the hyperbolic sech(-) kernel, given in Eq. (3.3.3),

is not the MTE kernel given in Chapter 2, Eq. (2.2.10), even though the CW kernel is a

special case of the latter kernel. This makes the hyperbolic kernel unique and thus it

hopefully might provide some improvements to the CW and MTE kernels as investigations

on the hyperbolic kernel unfold till the end of the thesis.

As the new first-order hyperbolic kernel is proposed, it is necessary to justify that it

satisfies the seven constraints listed in the Introduction. First, it is clear that th ^ kernel

satisfies the first two constraints since it is independent of the time t and the frequency co.

For the third and fourth constraints, we always have

= 1 (3.3.4)

since the hyperbolic kernel is an even function of 8 and T. From Eq. (3.3.4), constraints

number 3 and 4 are satisfied by the hyperbolic first-order kernel.
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Constraint number 5 is satisfied by the nr: • kernel since the sech(-) function is a

real function and thus its real and "imaginary , aus are identical. Constraint number 6 for

the kernel is examined as follows

(IT

n P6-exp{p0T)-P0-exp(-PBT)

r=0
= 0 , V0 (3.3.5)

T=0

From Eq. (3.3.5), it is clear that the first-order hyperbolic kernel satisfies constraint

number 6. Similarly, since the kernel is an even function of 9 and T, constraint number 7 ?s

also satisfied. Thus, the first-order hyperbolic kernel satisfies the seven admissibility

constraints and it can be used as a valid time-frequency kernel for further time-frequency

signal processing analysis.

The time-frequency power spectrum using the hyperbolic sech(PtQ) kernel can be

derived by substituting Q>(0, T) = sech(Pz9) into Eq. (3.2.3) with

i \ , (/, r) = x(u + •£•)• .v* (H - y) as follows

!fr

+U0+0O+00

— oo—oo—oo

' ) • * * U -A" « + —

(3.3.6)

Hence, the general time-frequency power spectrum of the hyperbolic kernel is obtained

as

2/3r
(3.3.7)

The general expression of the l.igher-order hyperbolic family kernel is given in Eq.

(3.3.8)

<D(0,T) = [sech(fl6r)]", n > 1 and n is a positive integer.
(3.3.8)
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For the hyperbolic kernel family, it is important to show that it satisfies the

admissibility constraints as does the first-order hyperbolic kernel. First, it is clear that the

family kernel satisfies constraints number 1 and 2 since the hyperbolic family kernel is

independent of the time / and frequency co. From Eq. (3.3.4), it is clear that constraints

number 3 and 4 are satisfied by the family kernel. Constraint number 5 is similarly satisfied

by the family kernel since hyperbolic functions are real and thus their real and "imaginary"

parts are identical. Constraint number 6 can be examined based on Eq. (3.3.5),

- - * • • exiKPST)-
r=0

= 0
T=0

for all values of 6.

(3.3.0)

From Eq. (3.3.9), constraint number 6 and likewise constraint number 7 are satisfied by

the hyperbolic kernel family. Thus, all higher-order hyperbolic kernels are also valid time-

frequency kernels and they can be employed for time-frequency signal processing analysis.

This shows the generality and diversification of the hyperbolic family kernel. This

diversification of these kernels has the ability to generate different wavelets as will be

shown in Chapter 4.

There are two separate cases of even and odd values of the parameter n. For n = 2, 4, 6,

..., the weighting factors provided by these kernels are not effective ss compared with the

case of 7i = 1. The main reason for this is that their weighting functions have infinite

volumes under the surface in the ((/ - it), T) plane as will be shown later. Thus, they are not

as cross-term effective as the first-order hyperbolic and CW kernels. For n = 3, 5, 7, ...,

initial investigations show that the weighting functions of these kernels have smaller side

lobes which can suppress cross terms more effectively than the first-order hyperbolic

sech(POT) kernel. Thus, the odd-set of hyperbolic kernels might find useful applications in

signal analysis which requires more research work in this direction. However, this thesis is

devoted to the first-order hyperbolic kernel and thus the discussion on higher-order

hyperbolic kernels is stopped here. Further studies on these kernels can be found in [127].

The weighting functions of the hyperbolic and CW kernels are compared in Section 3.4.

in
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3.4 Comparison of the Hyperbolic and Choi-
Williams Weighting Functions

Mathematically, the hyperbolic kernel is easier to integrate than the CW kernel. The

weighting functions (the 1-D Fourier transform of the kernel with the "frequency" variable (/

-»)) of the two kernels are given by Eqs. (3.4.1) and (3.4.2) respectively

n
'hyperbolic

\n{i-u) n
Pv exp

I

~n{t-u)~]

2/3r J *Xp
n(t - u)

2Pr

(3.4.1)

...
wcw =

exP
c{t-H)2

Ax1 (3.4.2)

where /3 and care the kernel parameters of the hyperbolic and CW kernels respectively, ris

the lag parameter used to calculate the auto-correlation function.

The 2-D contour plots of the weighting functions of the CW and hyperbolic kernels are

shown in Figure 3.4.1. This shows that the hyperbolic kernel is more "local" in the (t - i n -

direction than in the r-direction. The CW kernel extends wider in the (t - H) direction and

therefore it can be said not to be "local" in that direction [28]. Thus, the hyperbolic kernel is

more concentrated in the vicinity of the origin in the (t - it) direction than the CW kernel.

The peak of the hyperbolic weighting function is also 4n times larger than that of the CW

kernel at the origin which might suggest that the hyperbolic auto terms are 4n times larger

than the CW auto terms. Detailed simulations in Sections 3.5.2 and 3.5.3 will justify this

fact.

The 3-D plots of the weighting functions of the CW and hyperbolic kernels, which

correspond to the contour plots displayed in Figure 3.4.1, are shown in Figure 3.4.2. The

hyperbolic weighting function has larger non-zero values in the vicinity of the origin as seen

in Figure 3.4.2. If the auto terms are mostly distributed along the horizontal straight line (t -

u) = 0 in Figure 3.4.1, then the hyperbolic kernel is most suitable in amplifying these auto

terms since it is localised in the (/ - u) axis.

¥
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Since the CW weighting function is localised in the direction of the Taxis, it is most

suitable for auto terms that are located along the (/ - u) axis. Overall, the CW kernel is more

localised around the origin than the hyperbolic kernel, i.e. the lobes of the CW contours

around the origin are wider than those of the hyperbolic weighting function (as seen in

Figure 3.4.1). This suggests that the CW kernel can support the auto terms more effectively

than the hyperbolic kernel, in other words, the CW kernel is expected to have a finer auto-

term resolution than that of the hyperbolic kernel. From Figure 3.4.1, it can be seen that the

hyperbolic kernel has large main lobes that extend in the direction of the r axis, i.e. its

weighting function has a fast decaying rate, which suggests that it is more effective than the

CW kernel in terms of cross-term suppression. The cross-term suppression ability of these

kernels will be discussed in Sections 3.5.2 and 3.5.3 using a sum of two complex

exponential and chirp signals respectively. The auto-term resolution of the CW, hyperbolic

and some MTE kernels will be investigated in Section 3.6 so that a trade-off between cross-

term suppression and auto-term resolution can be established.

Contour Plot of the Hyperbolic and CW Weighting Functions, P = o = 1
1 1 1—

CW Weighting Function

Hy Weighting Funtion

10

Figure 3.4.1: Contour plots of the CW and hyperbolic weighting functions
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The hyperbolic kernel weighting function, Beta = 1

-20
-40 0 5

t - u Tau

The CW kernel weighting function, Sigma = 1

-20
-40 0 5

t - u Tau

Figure 3.4.2: 3-D plots of the hyperbolic and CW weighting factions

The 3-D plots in Figure 3.4.2 of the weighting functions of the hyperbolic and CW

kernels validate the effects of kernel functions on time-frequency power spectra. They show

auto-term supportive regions (around the vicinity of the origin in both the (t - u) and raxes)

of the kernels and therefore it is possible to choose the application to the appropriate kernels

with the minimum amount of cross terms and maximum amount of auto terms.

The contour plot of the second-oroiir hyperbolic kernel, [st;ch(J30t)]n for n = 2, is given

in Figure 3.4.3. The main and side lobes of the weighting function of the liech(J}0r)]2 kerne]

are unbounded at the centre frequency suggesting that its volume under the surface is

infinite. Thus, it is not suitable for suppressing cross terms in the time-frequency plane, and

therefore the even-order of the hyperbolic family kernels will not be investigated further in

this thesi;. Although the even-order hyperbolic family kernels do not provide effective

cross-term suppression, they still satisfy the seven constraints. In the following section,

performance of the CW and hyperbolic kernels arc compared in terms of cross-term

suppression through simulation.

II
•an

it

? t
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The Squared Hyperbolic Sech Kernel

1:1

i
i

Figure 3.4.3: The weighting function of the second-order hyperbolic kernel 0(0, r) •
[sech(p9t)f with p = 1 Hr- C

3.5 Cross-Term Suppression Comparison

The effectiveness of the CW and hyperbolic kernels in suppressing cross terms will be

compared with two types of multi-component signals: a sum of two complex exponential

and two chirp signals. Performance of the WV kernel is also compared with the CW and

hyperbolic kernels. One of the key factors that can be used to judge the performance of a

particular kernel is to estimate the normalised peak-magnitude ratio of the cross terms to

auto terms. The lower this ratio, the more effective cross-term suppression the kernel is.

i

Firstly, the WV, CW and hyperbolic time-frequency power spectra are compared so

that the disadvantages of the WV unity kernel are shown and the advantages of the CW and

hyperbolic time-frequency power spectra are demonstrated. In the rest of this chapter, the

CW, MTE and the first-order hyperbolic sech(P6v) kernels are studied and compared (where

appropriate) in terms of normalised cross-term magnitude ratio (Section 3.5.2), normalised

peak-magnitude ratio of the cross terms to auto terms 'Section 3.5.3), auto-term resolution

or auto-lenn width (Section 3.6) and noise robustness section 3.7). The normalisation, that

5:5
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has been used throughout this chapter, unless otherwise specified, is done by dividing the

particular values by their maximum value. For example, the normalised ratio of the cross

terms to auto terms is obtained by dividing all of the ratios by their maximum value.

3.5.1 A Typical Example

In this section, the effects of cross terms and artifacts are demonstrated so that the

effectiveness of the CW and hyperbolic kernels can be clearly identified and understood.

The MTE time-frequency distribution does not have a general expression and thus it is not

included here. Since the well-known CW kernel is a special case of the MTE kernel, it can

be chosen as a representative kernel for the MTE kernel.

! • !

! i

A simulated speech signal, shown in Figure 3.5.1, is used as an input signal to obtain

the WV, CW and hyperbolic time-frequency power spectra. A silent period [5-9] is present

since it is unavoidable in normal conversations.

Simulated Telephone Signal

Discrete Samples

Figure 3.5.1: A simulated speech signal with a silent period

29



Chapter 3: The Hyperbolic Kernel For Time*Frequency Po vcr Speclrum

The WV, CW and hyperbolic lime-frequency power spectra are displayed in Figure

3.5.2 to Figure 3.5.4 respectively. The most important thing that determines the

effectiveness of a kernel is that during the silent period of the speech signal, its time-

frequency power spectrum must be "silent" or there is effectively no energy-smearing.

WVTFR of a Telephone Conversation, Fast Version, N = 32

40

20 20

Discrete Time n 0 0

40

Discrete Frequency k

Figure 3.5.2: The WV time-frequency power spectrum of a speech signal displayed in
Figure 3.5.1

As can be seen from Figure 3.5.2, the WV time-frequency power spectrum is non-

zeroed over the silent period (from discrete times of 32 to 64) of the conversation. There are

many humps and considerable energy smearing over the silent period. This creates

misleading information about the nature of the input signal and thus it shows that the WV

unity kernel is not effective in suppressing CTOSL terms in the time-frequency plane.
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Figure 3.5.3 displays the CW time-frequency power spectrum which shows zeroed

spectrum over the silent period. This is a major improvement over the WV time-frequency

power spectrum. However, there is still energy smearing over the silent period. The

"humps" are cleaner and smaller but they should be ideally removed from the spectrum.

TFRCW of a Telephone Conversation, N = 32

40 60

20
40

20

Discrete Time n 0 0
Frequency Bin k

Figure 3.5.3: The CW time-frequency power spectrum with a= 1 of a speech signal
displayed in Figure 3.5.1. The "Frequency Bin k" axis should read "Discrete Frequency".

Figure 3.5.4 shows the hyperbolic time-frequency power spectrum with a clear display

of the silent period. The edges are sharp and the amount of energy smearing is considerably

reduced. There are still small "humps" over the silent period but these humps are much

smaller and cleaner than those in the WV and CW time-frequency spectra. This suggests

that the hyperbolic kernel can perform better cross-term suppression than the CW and WV

kernels. The subsequent sections compare cross-term suppression ability of the hyperbolic,

CW and WV kernels by using a sum of two complex exponential and two chirp signals.

Auto-term resolution and noise robustness of the hyperbolic, CW and MTE kernels are

examined and compared in Sections 3.6 and 3.7 respectively.
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TFRHyperbolic ol a Telephone Conversation, N = 32, Beta = 1

1 . 5 > , • • • • • •

40

20
20

Discrete Time n 0 o

40

Frequency

Figure 3.5.4: The hyperbolic time-frequency power spectrum with /?= 1 of a speech signal
displayed in Figure 3.5.1. The "Frequency" axis should read "Discrete Frequency".

3.5.2 A Sum of Two Complex-Exponential Signals

Given the input signal

/ ( / ) = Axexp [j(a)xt + 0X)] + A2exp [j(co2t + 02)]

where A\, A2 are arbitrary real constants and 0\, &i are the phases of the exponential terms,

CO\ = 30 rad/s+ and Oh = 34 rad/s. The CW time-frequency power spectrum of fit) is given by

[28,102]

EDCW (t, co) = lnA\8{a) - cox) + lnA\8{(0 - co2)

+ 2AX A2 cos [(<y, - (O2) • t + 0X - 02 ] • WEIGHTCW

where

(3.5.1)

' For comparison purposes, values of (th and ah are taken from the paper by Choi and Williams [28].
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WE1GHTCW=. ncr
T ' exP

GJ, +(02 (3.5.2)

The WV time-frequency power spectrum is given by

WV(t, co) = 2,-x4,2<5(w - a)

- (o2) • / + 0, - 02 ]• WEIGHT
m

(3.5.3)

where WE!GHTm,= 1.

The auto terms and cross terms of the hyperbolic time-frequency power spectrum are

identical to those of the CW time-frequency power spectrum (as seen in Eq. (3.5.1)).

However, the hyperbolic weighting factor is different from that of the CW kernel and is

given by

WEIGHThyper=- n • sech n
-co2)

C O - -
+C02

(3.5.4)

From Eqs. (3.5.1)—(3.5.4), it is clear that the WV kernel does not effectively suppress

cross terms, i.e. its weighting factor is unity as seen in Eq. (3.5.3). The weighting factors of

both the CW and hyperbolic kernels are much iess than unity and thus they are more

effective in suppressing cross terms than the WV kernel. Figure 3.5.5 shows the 3-D plot of

the normalised ratio of the hyperbolic weighting factor (Eq. (3.5.4)) to that of the CW kernel

(Eq. (3.5.2)) as a function of (0 and /3. This ratio is very small except for small values of j3.

This means that for approximately /3 < 1.5 and for frequencies less than 5 rad/s, the

hyperbolic weighting function is much larger than that of the CW kernel and thus the former

is not effective in suppressing cross terms. However, for /? > 1.5, the hyperbolic weighting

factor appears to be smaller than that of the CW kernel and therefore the former kernel is

more effective at cross-term suppression than the latter.
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Ratio of Weighting Factor ol Hyperbolic over CW Kernels

1 ^
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Figure 3.5.5: Normalised ratio of the hyperbolic weighting factor (Eq. (3.5.4)) to that of the
CW kernel (Eq. (3.5.2)) for a sum of two complex-exponential signals

Comparison of Hyperbolic and Choi-Williams Kernels, Beta = 1.45
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Comparison of Hyperbolic and Choi-Williams Kernels, Beta = 1
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Figure 3.5.6: Comparison of the CW and hyperbolic kernels using a sum of two complex-
exponential signals
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Figure 3.5.6 displays the cross-term suppression ability of the CW and hyperbolic

kernels for /J= 1 and /? = 1.45. As explained in Section 3.3 and from Figure 3.5.5, when )3

increases, better performance in terms of cross-term suppression is obtained since the main-

lobe magnitude of the hyperbolic weighting function is reduced. For small values of/3< 1.5

(a> 0.67), as explained earlier, the CW distribution gives better results since its main lobe

is smaller in magnitude than that of the hyperbolic distribution. However, it should be noted

that ft should not be chosen too small or too large or accordingly a should not be chosen too

large or too small (as explained in Section 3.3) since extreme values of/3 or cr can make the

kernel become the WV kernel which does not have effective cross-term suppression.

The hyperbolic, CW and WV auto-term magnitude remains constant at 2TZAI2 and

27tA2 as shown in Eqs. (3.5.1) and (3.5.3). Since the auto terms rema.'n constant, their ratios

to the corresponding cross terms are not shown. Instead, the normalised cross terms of the

CW and hyperbolic kernels (given also in Eq. (3.5.1)) for a sum of two complex-exponential

signals is shown in Figure 3.5.7.

Hy. and CW normalised Cross Terms for a sum of exponential
Signals

-CWNorCross

•HyNorCross

? ? f f f
0.01 0.4 40 60

Figure 3.5.7: Normalised CW and hyperbolic cross terms for a sum of two complex-
exponential signals. The lower this value is, the better the cross-term suppression ability of

the kernel. In this case, the hyperbolic kernel is better than the CW kernel for /3> 1.45.
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From Figure 3.5.6, for /? near 1.45 (cr= 0.7), the hyperbolic cross terms have identical

peaks with those of the CW. When /? > 1.45, the hyperbolic kernel starts outperforming the

CW kernel by having a smaller cross-term peak magnitude. The normalised cross-term

magnitude ratio, which is shown in Figure 3.5.7, decreases as (3 increases. From Figure

3.5.7, the faster decaying rate of the hyperbolic normalised cross terms compared with that

of the CW cross terms suggests that the hyperbolic kernel is more effective in suppressing

cross terms than the CW kernel as predicted in Section 3.4. In fact, from Figure 3.5.7, the

CW normalised cross terms are always larger than those of the hyperbolic kernel for values

of P not large, i.e. typically, /?< 50.

If P is large, the hyperbolic kernel approaches a "zeroed" kernel (which is not very

useful) and the CW kernel becomes the WV kernel which does not provide effective cross-

term suppression. In addition, under this extreme condition of P, the normalised cross terms

of the two kernels will be getting closer in value and it is expected that they will be identical

for very large values of p. Thus, the value of P and a should be carefully chosen with the

specific application to avoid the above limitations of the hyperbolic and CW kernels. For a

sum of two complex exponential signals, from Figure 3.5.5 to Figure 3.5.7, the useful range

of P for effective cross-term suppression is P > 1.45 with /3 is not to be chosen very large.

Another frequently encountered non-stationary signal in practice is the chirp signal. A sum

of two chirp signals is examined in the following section.
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3.5.3 A Sum of Two Chirp Signals

Let the input signal, J[t), be a sum of two chirp signals of the form

fit) = Axexp\ ^f- 1+ A2exp\ ^f- ), where a\ = 1, a2 = 3 and A> = A2 = 1 (for simplicity).

For a sum of two chirp signals, the integration cannot be analytically calculated, thus,

approximation methods (by means of simulation) using discrete techniques are used to

estimate the integrals. The general form of the time-frequency power spectrum can be

written as Pit, oS) = AUTO + CROSS. The WV time-frequency power spectrum is given by

A UTOm = /i,<5 (w - a, /) + AfS (cu - a2/) (3.5.5)

and

CROSSm = 2 f exp{-j{(p-^Y^ (f- + /2)l dx (3.5.6)

The time-frequency power spectrum given by the CW distribution is [28,102]

AUTOcw •4 lexp

(3.5.7)

CROSSCW =AlA2\ exp[-ji(O-^p

J(ai+a2)ur/2 # a air
• exa :J

• cos [(of, - a 2 X" + 0212 + (a, -a2)x
2/s] dudx

(3.5.8)
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The auto terms and cross terms of the hyperbolic time-frequency power spectrum of a

sum of two chirp signals are given by

= A?j {tech (/3a,r2)}• (e--K
w-°«'>T )rfT

CROSSIly =A]

- CC2)T
2/s\ du dr

(3.5.9)

(3.5.10)

From Eqs. (3.5.6), (3.5.8) and (3.5.10), the cross-term weighting factors of the WV,

CW and hyperbolic distributions are

CROSS - WEIGHT^ = cos | ^ (a, - a , )(•£ + ' 2 ) (3.5.11)

CROSS - WEIGHTCW

I ° f <™211 t
= \—f=-exp\ r- \>-coslax -a2){u

(3-5.12)

CROSS -WEIGHTHy

-CC2)T
2/S]

(3.5.13)

From Eqs. (3.5.11)—(3-5.13), it is evident that the WV kernel has a larger weighting

factor than those of the hyperbolic and CW kernels. Thus, the WV unity kernel is not

effective in cross-term suppression. The normalised ratio of the hyperbolic weighting factor

(Eq. (3.5.13)) to the CW weighting factor (Eq. (3.5.12)) is given in Figure 3.5.8.
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Ratio ol Weighting Factor of Hyperbolic over CW kernels

u/tau
Beta

Figure 3.5.8: Normalised ratio of the hyperbolic weighting factor to that of the CW kernel
for a sum of two chirp signals as a function of &• and /3. The approximate useful range of /3

is/3>0.5.

Figure 3.5.8 displays the 3-D plot of the normalised ratio of the hyperbolic weighting

factor (Eq. (3.5.13)) to that of the CW kernel (Eq. (3.5.12)) as a function of f and /3 in

which the ratio is small except for large values of j and small values of p\ This is similar to

the case of a sum of two complex-exponential signals investigated earlier. As stated in

Section 3.5.2, as /3 increases, better performance of the hyperbolic kernel compared with the

CW kernel will be obtained. Increasing /3 will reduce the volume under the surface of the

weighting functions of the hyperbolic and CW kernels. The faster the reduction rate of this

volume with respect to /3, the larger the peak-magnitude ratio of the auto terms over the

cross terms.
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Normalised Ratio of Cross- to Auto-Terms for a sum of chirp signals

HyNorRatio

CWNorRatio

HyNorAuto

CWNorAuto

Figure 3.5.9: Normalised peak-magnitude ratio of the cross terms to auto terms of the CW
kernel (ratio of Eq. (3.5.8) to Eq. (3.5.7), CWNorRatio) and hyperbolic kernel (ratio of Eq.

(3.5.10) to Eq. (3.5.9), HyNorRatio) for a sum of two chirped signals. The lower this ratio is,
the better the cross-term suppression ability of the kernel. The normalised values of the auto

terms of the two kernels (HyNorAuto and CWNorAuto) are also shown in the same graph.
The higher this value, the better the auto term magnitude. At (3 = 2.5, the normalised values

of the auto terms of the two kernels are approximately equal. The hyperbolic normalised
ratio of the cross terms to auto terms is much lower than that of the CW kernel for all values

of (3 except at (5= 0.05. The useful range of /? is therefore 0.3 < fi< 2.5.

Figure 3.5.9 displays the peak-magnitude ratio of the cross terms to auto terms and the

normalised auto terms of the two kernels as (3 varies. This ratio is more important than the

individual magnitude of the cross terms and auto terms since it reflects the effectiveness of

the kernel in supporting auto terms and suppressing cross terms. If the cross terms are small

in magnitude, say 0.1, and the auto terms under the same conditions are much smaller than

the cross terms, say 0.000001, then the kernel is not effective even though the cross terms

are small. This explains why the ratio of cross terms to auto terms of a kernel is considered

to be the most important factor and therefore it is used as a benchmark to compare the

effectiveness of different kernels. It is clear that the smaller this ratio, the more effective the

kernel. From Figure 3.5.9, theoretically, for (3 > 0.05, i.e. a< 20, the hyperbolic kernel will

perform better than the CW kernel by having a small cross-term to auto-term magnitude

ratio. The worst performance occurs when the hyperbolic auto terms have lower magnitude

than those of the CW kernel which corresponds to /?> 100, i.e. <r< 0.01.
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It should be noted that the decaying rate of the hyperbolic cross terms is faster than that

of the CW cross terms as discussed earlier in Section 3.4 which yields better cross-term

suppression as can be seen in Figure 3.5.9. This effect has also been observed by

Boudreaux-Bartels and Papandreou [25]. From Figure 3.5.9, the useful range of P is

approximately 0.3 < j8 < 2.5 to ensure that the hyperbolic kernel is more effective than the

CW kernel by having better auto-term magnitude and cross-term suppression ability. Using

the observed range of P from Figure 3.5.8 of P > 0.5, the range of (5 now becomes 0.5 < f5 <

2.5. It should be noted that the lower limits of P obtained from Figure 3.5.8 (/3 > 0.5) and

from Figure 3.5.9 (ft > 0.3) are in the same order of magnitude which suggests that both

methods of calculating the ratio of the kernels weighting factors or magnitude ratio of auto

terms and cross terms are valid.

From Section 3.5.2, the useful range of P for a sum of two complex exponential signals

is P > 1.45. Thus, to enable the hyperbolic kernel to perform better than the CW kernel,

practically, P should be in the range of 1.45 < P < 2.5. From Figure 3.5.9, it should be noted

that for 20 > j8 > 2.5, the hyperbolic kernel still performs well, but with a slightly smaller

auto-term magnitude compared to that of the CW kernel. If only the cross-term suppression

ability is considered, then the larger P is, the better the cross-term suppression. However, if

P is very large (about 107), detailed simulation shows that the auto-term peak magnitude

becomes saturated at about 0.001 for a sum of two chirp signals.

The auto terms of the two kernels are plotted in Figure 3.5.10 for t = 0, a = 1 and

Figure 3.5.11 shows the cross terms of the CW and hyperbolic time-frequency power

spectra for p = 3.5 and / = 0 to give further understanding on the effectiveness of the

hyperbolic and CW kernels.
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Figure 3.5.10: Auto-term magnitude of the CW and hyperbolic time-frequency power
spectra for t = 0 and /3 = 1

From Figure 3.5.10, it can be seen that the hyperbolic auto-term peak magnitude is less

than that of the CW kernei for /3 = 1. From Figure 3.5.11, the hyperbolic cross-term peak

magnitude is equal to that of the CW kernel for /? = 3.5. From Figure 3.5.9, it was shown

that for 20>P> 2.5, the hyperbolic normalised auto-term peak magnitude is less than that

of the CW kernel and for j8 > 0.3, the magnitude ratio of cross terms to auto terms of the

hyperbolic kernel is less than that of the CW kernel. As explained earlier, the above ratio

truly reflects the effectiveness of the kernel rather than the cross-term peak magnitude.

Therefore, the useful range of P is not going to be chosen as /? > 3.5, as it was the method

used to obtain the range of P for the case of a sum of two complex exponential signals in

Section 3.5.2.
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Figure 3.5.11: Cross-term magnitude of the CW and hyperbolic time-frequency power
spectra for; = 0 and B = 3.5 which suggest that for B> 3.5, better cross-term suppression

can be achieved by using the hyperbolic kernel rather than the CW kernel.

However, from Figure 3.5.9, at B= 3.5, the hyperbolic normalised auto terms are only

slightly less than the CW normalised auto terms (about 5 %) and thus it can be accepted as a

useful value of B. Thus, the most useful range of B, which yields optimum performance for

the hyperbolic kernel in cross-term suppression and auto-term magnitude compared with the

CW kernel, can be expanded to 1.45 < B < 3.5. The applicable range of B for a satisfactory

performance of effective cross-term suppression and acceptable auto-term magnitude is

therefore 0.5 < B < 20. This range of B will be discussed further along with other trade-offs

in Chapters 4 and 5 so that the most applicable range of B can be clearly identified.

Although the hyperbolic kernel can suppress cross terms more effectively than the CW

kernel for well-chosen values of B, increasing B to a very large value will saturate the auto-

term peak magnitude as discussed earlier and as observed by Choi and Williams [28].

Making fi too large does not provide useful information since the hyperbolic kernel

approaches a "zeroed" kernel as explained in Section 3.4. If B is too large then the peak-

magnitude ratio of the cross terms to auto terms decreases as shown in Figure 3.5.7 and

Figure 3.5.9. In addition, the normalised auto-term magnitude of the CW and hyperbolic
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kernels also decreases. Thus, it can be suggested that increasing /? (or decreasing a)

enhances cross-term suppression but decreases the auto-term magnitude. A question arises

at this point — Are there any other tradc-qff(s) associated with increasing P, such as auto-

term resolution and noise robustness? — Sections 3.6 and 3.7 examine the auto-term

resolution or auto-term width and noise robustness (as /3 varies) of the CW, hyperbolic and

some of the MTE kernels in some detail so that the relationships and trade-off(s) among the

above mentioned quantities can be established.

3.6 Auto-Term Functions and Auto-Term
Widths

Sections 3.5.2 and 3.5.3 examined the effectiveness of the hyperbolic and CW kernels by

estimating the peak-magnitude ratio of their auto terms to cross terms. The effectiveness of

a kernel can also be measured based on its auto-term width or auto-term resolution which

can be estimated from its auto-term function. The auto-term function is a function of the lag

parameter rbut with the substitution of 6 = -ax, where a is the slope of the auto-term line in

the kernel time-frequency plane.

The auto-term width is defined as the frequency at which the auto-term magnitude

decreases by e = 2.718 times its peak magnitude [49]. The larger the auto-term width, the

finer the auto-term resolution. Previous work by Stankovic [49] calculated the auto-term

functions and auto-term widths of a number of kernels including the Born-Jordan kernel, the

pseudo WV kernel, the optimal kernel, the CW kernel and sine kernel [49]. This section is

devoted to compare the hyperbolic sech(pOf) kernel with the CW and MTE kernels as the

kernel control parameters /3 =•£• (for hyperbolic kernel), c(for CW kernel) a, r, PMTE, /and

A (for MTE kernel) vary. The auto-term function is given in general by

Auto-term Functionion = ®@>r)\0=-ax
~imdT (3.6.1)

The auto-term functions of the CW and hyperbolic kernels are given in Eqs. (3.6.2) and

(3.6.3) respectively
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AUTOCW r « 2 T 4

\I — I exp
J a

•e~jm dx (3.6.2)

AUTOHy = I seek [-aPx2\e~jm dx (3.6.3)

Eqs. (3.6.2) and (3.6.3) cannot be further reduced to their closed forms although the

integrands are well-behaved functions. To estimate the auto-term widths of the hyperbolic

and CW kernels, the discrete Fourier transform versions of Eqs. (3.6.2) and (3.6.3) were

used based on simulations in MATLAB. The normalised auto-term widths of the hyperbolic

and CW kernels plotted against P are shown in Figure 3.6.1 in which the maximum auto-

term width of each series is used as the normalisation factor. The auto-term functions and

auto-term widths of the MTE diamond case 1 and 2 forms along with those of the

hyperbolic and CW kernels are plotted in Figure 3.6.2 and Figure 3.6.3 respectively. Figure

3.6.4-Figure 3.6.6 show the auto-term functions as a function of the frequency co of various

forms of the MTE kernel. Table 3.6.1 lists the auto-term widths of various types of the MTE

kernels for a = 1 and compares them with those of the hyperbolic kernel and CW kernel.

As explained in Section 3.4, the auto terms are located around the origin and the

hyperbolic kernel supports auto terms in the direction of the T axis and the Choi-Williams

kernel does so in the direction of the (t - w) axis. It has also been shown that the CW kernel

is more effective than the hyperbolic kernel since it is more concentrated around the origin

whereas the hyperbolic kernel has large main lobes that extend in the direction of the Taxis.

From Figure 3.6.1, the above remark can be validated. It is clear that the CW kernel is more

auto-term supportive than the hyperbolic kernel by having a finer auto-term resolution.

Thus, it can be drawn that auto terms are mainly located in the direction of the (t - u) axis

(vertically) rather than in the direction of the Taxis (horizontally).

From Figure 3.6.1, the hyperbolic auto-term resolution approaches that of the CW

kernel when /3 is very small (a is very large). For other values of /?, the CW kernel

outperforms the hyperbolic kernel which is a trade-off of having more effective cross-term

suppression of the hyperbolic kernel at the expense of having a poorer auto-term resolution.

ii
i i
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Figure 3.6.1: Normalised auto-term width of the hyperbolic and CW kernels

Auto-Term Functions of CW, Hyperbolic and MTE Diamond Case 1

10 15

Frequency Samples from 1 to 25

Figure 3.6.2: Auto-term functions and auto-term widths of the MTE diamond case 1 kernel,
hyperbolic and CW kernels
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In Table 3.6.1, the following parameter values are chosen: o = 1, T0 = fib = 1 and j3 =

— = 1 for simplicity which will not affect the generality of comparison. The auto-term width

of the CW and hyperbolic kernels for other values of P is displayed in Figure 3.6.1 in which

the hyperbolic kernel has a smaller auto-term width than that of the CW kernel. This clearly

indicates the trade-off between cross-term suppression ability and auto-term resolution.

Increasing p* increases the auto-term resolution (seen in Figure 3.6.1) but also decreases the

auto-term magnitude as seen in Figure 3.5.9. It should be noted that the MTE kernel

becomes the WV kernel when A = 0. In that case, the MTE kernel can be rewritten as e'^1,

which is essentially the WV kernel multiplied by a constant e~n ~ 0.0432. From Table 3.6.1,

it should also be noted that the MTE kernel has 5 parameters which can generate up to (5!) =

120 different MTE kernels with different sets of parameters. The main aim of this work is

not going to analyse the MTE kernel in detail but to show that there is still room for

improvements even though the MTE has been shown to be an effective kernel [27], Thus,

only some popular forms of the MTE kernel are studied in this thesis. Further studies of the

MTE kernel can also be found in [27].

Table 3.6.1: Auto-term widths (in frequency samples) for a = 1 of various forms of the MTE
kernel. The auto-term widths and auto-terrn functions of the CW, hyperbolic kernels and

MTE Diamond Case 1 and Case 2 forms are given in Figure 3.6.2 and Figure 3.6.3
respectively. Figure 3.6.4 to Figure 3.6.6 display the auto-term functions of various forms of

the MTE kernel for a = 0.5, 1 and 2 respectively.
MTE Kernel

Parallel
Strip
Cross

Snowflake§

Untilted
Elliptical

Tilted
Elliptical
Diamond

Casel
Diamond

Case 2
Hyperbolic
Rectangular

Parameter Value
a
0

0
0
0

0

0

0.1

1
10lu

r
1

-1
r = -2

0

0.5

1

0

0
0

P
1

2
2
1

1

2

1

1
1

Y
1

0.5
0.5
1

1

0.5

1

1
1

A
1

1
1
1

2

1

1

1
1

Auto-term Width for a = 1
MTE
0.5

0.5
14.5
14.5

9.2

18.5

13.0

10.5
6.5

Hyperbolic*
5.5

5.5
5.5
5.5

5.5

5.5

5.5

5.5
5.5

CW
7.0

7.0
7.0
7.0

7.0

7.0

7.0

7.0
7.0

* The parameters of the hyperbolic and CW kernels are P= l/cr = 1 throughout the table.
8 For this set of parameters, the MTE snowjlake and imtilted-elliptical forms have identical auto-term functions.
The auto-term functions of the MTE snowjlake forms with y= 1 and y= 10 are shown in Figure 3.6.4-Figure
3.6.6 along with other MTE forms.
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Table 3.6.1 shows the advantages and disadvantages of various forms of the MTE

kernel over the CW and hyperbolic kernels in terms of auto-term width. From Table 3.6.1, it

can be suggested that the MTE kernel can produce better auto-term quality than the

hyperbolic and CW kernels (for /? = \ja = 1) as larger auto-term widths are obtained from

various types of the MTE kernel. Except in cases of the parallel iM cross MTE kernels

where the MTE auto-term widths are 0.5 (a = 0, r = j3 = y= A = 1) compared with 5.5 and

7.0 of the hyperbolic and CW kernels respectively.

50

45 -
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35
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25

20 -"

15 -

10 -

Auto-Term Functions of CW, Hyperbolic and MTE Diamond Case 2

/ > . Hyperbolic Auto Function

\ /

\ CW Auto Function

\ \

^ Hv. Width ^ ^ K

CW Width

MTE Width

/ MTE Diamond Case 2 Form
/ alpha = 0.1, r = 0, lamda = 1

gama = 0.5, beta = 2

Vv

47.3381/2.718=17.4165

36.2561/2.718 = 13.3375

\ 20.982/2.718 = 7.7196

10 15
Frequency Samples from 1 to 25

20 25

Figure 3.6.3: Auto-term functions and auto-term widths of the MTE diamond case 2 kernel,
hyperbolic kernel and CW kernel

Figure 3.6.2 and Figure 3.6.3 respectively display and compare the. auto-term widths of

the MTE Diamond Case 1 and Case 2 kernels with those of the hyperbolic and CW kernels

for a = 1. The auto-term widths of other remaining MTE kernels are displayed in Figure

3.6.4 to Figure 3.6.6 for a = 0.5, 1 and 2 respectively. The shape of different types of the

MTE kernel is clearly displayed for visualisation purposes only and their auto-term widths

can be roughly estimated. All auto-term widths of various types of the MTE kernel were

given in Table 3.6.1 for a = 1. It should be noted that the "hyperbolic" labelled in these
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figures is the hyperbolic MTE kernel (in italic font), not our proposed hyperbolic sech(P6T)

kernel.

Auto-Term Functions of various Forms of the MTE Kernel, a = 0.5

Untilted Elliptical
++ Tilted Elliptical
xx Hyperbolic

Rectangular

10 15 20 25 30 35 40 45

Frequency Samples from 1 to 50
50

Figure 3.6.4: Auto-term functions for a = 0.5 of the rectangular, snowflake, untilted
elliptical, tilted elliptical and hyperbolic MTE forms whose parameter values are shown in

Table 3.6.1

The following conclusions on the MTE kernel are drawn after observing Figure 3.6.4,

Figure 3.6.5 and Figure 3.6.6. The larger the auto-term slope a in the (0, T) plane of the

kernel function 0(0, T), the finer the auto-term resolution. It also appears that the untilted

elliptical MTE kernel has the finest auto-term resolution and is most sensitive to the auto-

term slope compared to other types of the MTE kernel, the hyperbolic and CW kernels. The

tilted elliptical MTE kernel appears to have the coarsest auto-term width. The auto-term

functions of the remaining MTE kernels (except the untilted elliptical MTE kernel) are

almost identical (and so are their auto-term widths) for a small value of a = 0.5 as seen in

Figure 3.6.4. From Figure 3.6.5 and Figure 3.6.6, the MTE hyperbolic and MTE tilted

elliptical kernels have identical auto-term functions and hence equal auto-term widths. From

Figure 3.6.5, the auto-term functions of the snowflake MTE kernel (y= 1) and the untilted
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elliptical MTE kernel are identical when a = 1. This might suggest that at some specific

values of a, the auto-term functions of various types of the MTE kernel are identical,

yielding convergence of various forms of the MTE kernel, which reduces its uniqueness.

Auto-Term Functions of various Forms of the MTE Kernel, a = 1

Rectangular
++ Tilted Elliptical

Untilted Elliptical
and Snowflake (gama = 1)

xxx Hyperbolic

10 15 20 25 30 35
Frequency Samples from 1 to 50

Figure 3.6.5: Auto-term functions for a = 1 of various forms of the MTE kernel, except the
diamond case 1 and 2 forms

Depending upon the kernel control parameter(s), specific requirements can be met.

The MTE kernel is flexible, since it can generate various types of different kernels, but one

of its disadvantages is that the parallel and cross forms have coarse auto-term resolutions in

which their auto-term functions are identical triangular pulses with very large peaks.

Further, the auto-term resolutions of the MTE snowflake and untilted elliptical forms are

equal in value as seen in Table 3.6.1 for identical auto-term functions as observed earlier.

For larger values of A, the MTE snowflake auto-term function departs from that of the MTE

untilted-elliptical kernel which suggests that these kernels can only be effectively used when

A is large.
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Auto-Term Functions of various Forms of the MTE Kernel, a = 2

Unfilled Elliptical
++ Tilted Elliptical
xx Hyperbolic

Rectangular

10 15 20 25 30 35

Frequency Samples from 1 to 50
40 45 50

Figure 3.6.6: Auto-term functions for a = 2 of various forms of the MTE kernel except the
diamond case 1 and 2 forms

In this section, the relationship between the auto-term resolution, auto-term magnitude

and B has been established. The larger the control parameter j3 is, the higher the auto-term

resolution but the smaller the auto-term magnitude. There is also a trade-off between the

auto-term resolution and cross-term suppression ability of a kernel. The finer the auto-term

resolution, the less effective the kernel is in cross-term suppression. From this, it might be

suggested that the MTE kernel is less cross-term suppression effective compared with the

hyperbolic kernel and CW kernel since most MTE kernels have finer auto-term resolutions

than those of the former two kernels as was shown earlier.

Section 3.7 examines the noise variance of the hyperbolic and CW time-frequency

power spectra so that further conclusion(s) on the trade-off among auto-term resolution,

cross-term suppression and noise robustness can be established.
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3.7 Noise Variance Calculation

In practice, one usually deals with a complex noise and real white Gaussian noise. Previous

work done by Stankovic and Ivanovic [29], Hearon and Amin [30, 50] found that given an

input complex white Gaussian noise with variance crin
2, the noise variance a 2 produced by

the input noise in time-frequency power spectrum is given by

T=-oo (/-H)=-oo

where W(T, t -u) is the weighting function of the kernel function O(0, T).

Eq. (3.7.1) can be clearly interpreted as the volume under the surface of the squared

weighting function which is independent of the frequency (0. Since it is almost impossible to

estimate the Fourier transform of the MTE kernel in closed forms, its noise variance could

not be performed in this work.

Ti?e normalised noise variance of the CW and hyperbolic kernels, as a function of ft, is

plotted in Figure 3.7.1, from which it can be suggested that the hyperbolic kernel is more

noise robust than the CW kernel for ft > 3. For detailed analysis of the noise variance of

other kernels, see [29, 50]. Hence, it can be concluded that kernels that can effectively

suppress cross terms tend to be more noise robust (the hyperbolic kernel) than kernels that

are less cross-term effective but have a finer auto-term resolution (in this case, the CW and

the MTE kernels). This important relationship agrees with what was reported in [13-15, 28].

For the case of real noise, the noise variance is given by [29, 50]

(3.7.2)

where all notations have the same meaning as in Eq. (3.7.1) and "*" indicates complex

conjugate operation.
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From Eq. (3.7.2), it can be seen that the noise variance is a function of co and gains its

maximum value when co = 0, thus the maximum real noise variance in the tirne-frequency

power spectrum is given by

+OO +OO

\\V{r,{t-u))\: (3.7.3)

T=-~ (/-(()=-

1.2
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Figure 3.7.1: NormaliseJ noise variance of the CW and hyperbolic kernels as a function of {3

Eq. (3.7.3) is evidently a function of the volume under the squared weighting function.

Thus, it is important to note that to ensure robustness in the time-frequency power spectrum,

the volume under the squared weighting function should be minimised which means

effective cross-term suppression. Eqs. (3.7.1) and (3.7.3) have a similar form except th*4 in

the case of real noise, the noise variance is a function of the frequency which peaks at (0 = 0

and has a magnitude of twice as large compared with that of the complex noise given by Eq.

(3.7.1).
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Figure 3.7.2 and Figure 3.7.3 display contour plots of the hyperbolic and CW time-

frequency power spectra respectively for a sum of two chirp signals without noise

interference. Figure 3.7.4 and Figure 3.7.5 display contour plots of the CW and hyperbolic

time-frequency power spectra respectively for a sum of two chirped signals embedded in a

3-dB Gaussian noise. The corresponding 3-D plots of the hyperbolic and CW time-

frequency power spectra without noise interference, whose contours plots are displayed in

Figure 3.7.2 and Figure 3.7.3, are given in Figure 3.7.6 and Figure 3.7.7 respectively.

TFRHy ol Converged Chirped Signals, without noise

50 100 150
Discrete Frequency Index

250

Figure 3.7.2: Contour plot of the hyperbolic time-frequency power spectrum of two chirped
signals when no noise is added, /?= 10. The cross-term region is approximately from

discrete frequencies 95 to 125. The A-axis and y-axis should read "Discrete Frequency" and
"Discrete Time" respectively. This convention is also applied to the remaining graphs in this

chapter.
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As expected, by comparing Figure 3.7.2 and Figure 3.7.3, it might be suggested that the

hyperbolic time-frequency power spectrum is clearer than the CW time-frequency power

spectrum due to a smaller amount of cross terms in the region between the two auto-term

arms. In addition, at the intersection of the two arms, there are less interference from the

auto terms themselves than in the case of the CW time-frequency power spectrum as

displayed in Figure 3.7.3, which is another advantage of the hyperbolic kernel over the CW

kernel.

TFRCW of Chirped Signals, withOUT noise, Sigma = 0.1

50-

Figure 3.7.3: Contour plot of the CW time-frequency power spectrum of two chirped signals
when no noise is added, o= 0.1. The x-axis is "Discrete Frequency" and the y-axis is

"Discrete Time". The cross-term region is approximately from discrete frequencies 45 to
175.

As stated earlier, the CW time-frequency power spectrum has more cross terms in the

region between the two auto-term arms and in the directions along the arms as seen in

Figure 3.7.3 which is a disadvantage of the CW kernel compared with the hyperbolic kernel.

However, the CW kernel, due to its finer auto-term resolution, has stronger auto-term arms

in the time-frequency power spectrum as shown in Figure 3.7.3 compared with those of the
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hyperbolic time-frequency power spectrum in Figure 3.7.2. This advantage establishes an

rnportant trade-off between auto-term resolution and cross-term suppression of the two

kernels as discussed throughout this chapter. However, there appears one more important

parameter in this trade-off (as slated earlier in this section) which is the noise robustness,

which will be graphically shown in Figure 3.7.4 and Figure 3.7.5.

TFRCW of Noisy Chirped Signals, SNR = 3db, Sigma = 0.1

50

50 100 150
Discrete Frequency Bin

200

Figure 3.7.4: Contour plot of the CW time-frequency power spectrum of chirp signals
embedded in a 3-dB noise, CT= 0.1

From Figure 3.7.4, it is seen that the CW time-frequency power spectrum is

significantly distorted under the effects of a 3-dB noise source. It is very hard to distinguish

the two main auto-term arms of the spectrum and therefore it might be said that the CW

time-frequency power spectrum is not robust. The cross terms appear to remain almost

unchanged under the effects of a noise source even though they are slightly degraded.
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From Figure 3.7.5, the hyperbolic time-frequency power spectrum, although is better

than the CW spectrum, still suffers from noise interference. The left auto-term arm of the

power spectrum is distorted, however, the right auto-term arm can still be recognisable as it

was not the case for the CW time-frequency power spectrum displayed in Figure 3.7.4. The

hyperbolic cross terms are also degraded (as were the CW cross terms) as compared with

the case in which no noise was added in Figure 3.7.2. However, the amount of cross terms

appears to remain unchanged. This might suggest that noise sources do not considerably

affect cross terms in time-frequency power spectra, however, the auto terms are significantly

reduced.

TFRHy of Noisy Chirped Signals, SNR = 3dB, Beta = 10

50 100 150
Discrete Frequency Bin

200

Figure 3.7.5: Contour plot of the hyperbolic time-frequency power spectrum of a sum of two
chirped signals embedded in a 3-dB noise, /?= 10
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As can be seen in Figure 3.7.4, the CW lime-frequency power spectrum, by having a

finer auto-term resolution, considerably suffers under the effects of noise interference

compared to the hyperbolic time-frequency spectrum (Figure 3.7.5). Obviously, the latter

can withstand tougher conditions than the former. This suggests that the more effective the

kernel is at cross-term suppression, auto-term magnitude and noise robustness, the poorer its

auto-term resolution. This is the prime result that this chapter aims to achieve. The next few

chapters further develop this trade-off so that more understanding on time-frequency kernels

can be gained.

The 3-D mesh plots of the hyperbolic and CW time-frequency power spectra are

provided in Figure 3.7.6 and Figure 3.7.7 to give further understanding on the effects of a

noise source on the spectrum. Mesh plots of the CW and hyperbolic time-frequency power

spectra embedded in a 3-dB noise source are given in Figure 3.7.8 and Figure 3.7.9

respectively.

TFRHy ol Converged Chirped, TfrHyFast.m, B = 10, WithOUT noise

300
250

200
150

100

Dsicrete Time Index Discrete Frequency Index

Figure 3.7.6: 3-D plot of the hyperbolic time-frequency power spectrum of a sum of two
chirp signals, (3 = 10, no additional noise is added
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TFRCW ol Chirped Signa's, TfrCwPerFast.m, S = 0.1, wilhOUT noise
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Discrete Time 0 0
50

Discrete Frequency Bin

Figure 3.7.7: 3-D plot of the CW time-frequency power spectrum of a sum of two chirp
signals, a- 0.1, no additional noise is added

TFRCW of of Chirped Signals, TfrCwPerFastm, S - 0.1, 3dB NOISB

150

Discrate Time

100 150

50
100

50
0 0

Discrete Frequency

Figure 3.7.8: Mesh plot of the Choi-Williams time-frequency power spectrum embedded in
a3-dfinoise, cr= 0.1
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TFRHy ol Converged Chirped Signals, TlrHyFast.m, B = 10,3dB NOISE

100 150
50 100

Discrete Time 0 0
50

300
250

200

Discrete Frequency

Figure 3.7.9: Mesh plot of the hyperbolic time-frequency power spectrum embedded in a 3-
dB noise, (1= 10

3.8 Conclusion

The hyperbolic [sech(j3&f)]n (with n = 1) kernel has been shown to be effective in cross-term

suppression. In particular, we have shown its effectiveness for a sum of two complex-

exponential signals, for /?> 1.45 and in the case of a sum of two chirp signals, for 20 > 0>

0.5. The hyperbolic kernel has also been shown to be better than the CW kernel in terms of

cross-term suppression ability and lower noise variance for well-chosen values of P > 3.

Thus, the applicable range of /?is 20 > /?> 3.

However, the hyperbolic kernel has a smaller auto-term resolution than that of the CW

kernel and most types of the MTE kernels, except in the case of the MTE rectangular form

where the auto-term widths of the three kernels are approxin r.ely equal. There appears to

be a trade-off among auto-term resolution, auto-term magnitude, cross-term suppression

ability and noise robustness. The more effective the kernel is at cross-term suppression,

auto-term magnitude and noise robustness, the poorer its auto-term resolution. This is an

important trade-off that should be considered in choosing the appropriate kernel for a
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particular application. Further research needs to be carried out to investigate other members

of the hyperbolic kernel family, such as the [sech^pOz)]3 kernel or higher-order kernels, for

further improvements on auto-term resolution and noise robustness. An additional constraint

on the boundedness of a kernel weighting function has also been stated.

The first contribution of this chapter is to propose the new hyperbolic kernel and its

family of kernels for the time-frequency power spectrum. The second contribution is that the

hyperbolic kernel has been shown to be more effective than the well-known Choi-Williams

in terms of cross-term suppression and noise robustness but less effective in terms of auto-

term resolution. It has also been shown that the hyperbolic kernel is simpler than the MTE

kernel but its auto-term resolution is poorer than that of most types of the MTE kernel. The.

third contribution is that the important trade-off among auto-term resolution against cross-

term suppression and noise robustness is established. This relationship has been reported in

the literature by a number of researchers but the effects of noise and noise robustness have

not been previously identified. The next chapter introduces the hyperbolic wavelet and

studies its properties in detail.
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WAVELET FUNCTION

This chapter continues the study of the hyperbolic kernel in Chapter 3 by exploring the new

hyperbolic wavelet. The primary aim of this chapter is to further explore the differences

between the hyperbolic and Choi-Williams (CW) kernels by comparing the hyperbolic

wavelet and the Choi-Williams or Mexican-hat wavelet. More importantly, the main aim is

to show that there exists a strong link between time-frequency kernels and wavelets. This

relationship helps to expand the time-frequency and wavelet areas in the field of signal

processing. The contents of this chapter are necessary background for Chapters 6 and 7 in

which the hyperbolic wavelet power spectra of a number of stationary and non-stationary

signals are examined.

The next chapter introduces the first application of the hyperbolic kernel as a time-

frequency signal detector. The WV detector is used as a benchmark for signal detection

comparison. The CW and hyperbolic detectors are also compared in detail.
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4.1 Introduction

Studies of wavelet functions and wavelet transform have been done over many years,

starling with the simplest wavelet, the Haar wavelet [51]. There is a strong connection

between the wavelet transform technique and time-frequency power spectrum technique

since both of these techniques view the energy density of a non-stationary signal in both

time and frequency domains. One of the most popular wavelets is the Mexican-hat wavelet,

which is the negative second derivative function [52] of the Gaussian pulse, O(0, r) =

e~ T ' a , where cris the pulse control parameter.

In 1989, the Gaussian pulse was used by Choi and Williams [28] as a time-frequency

kernel to suppress cross terms in the time-frequency power spectrum which means the

Gaussian pulse and the CW kernel are identical except that they have been used in different

areas of signal processing. In other words, ihere exists a strong link between wavelet theory

context and time-frequency power spectrum context in which the CW kernel and Mexican-

hat wavelet pair is one typical example. However, there have not been investigations on the

relationship between the Mexican-hat wavelet and the CW time-frequency kernel in the

literature.

Based on the relationship between the CW kernel and the Mexican-hat wavelet, there

ought to be a strong connection between the hyperbolic kernel and the hyperbolic wavelet

(by taking the negative second derivative of the hyperbolic kernel) if this derivative function

satisfies an admissibility constraint which is given by

Jy/(t )dt = 0 (4.1.1)

Over the years, a large number of wavelets have been proposed and extensively

studied, starting with the Haar wavelet [51, 52] proposed in 1910. In the 1980s, a number of

excellent wavelets were proposed such as the Daubechies wavelet [52], the Meyer wavelet

[53] and the Mallat wavelet [54-59]. These wavelets provide excellent features such as

orthogonality, bi-orthogonality, vanishing moments, existence of the scaling function,

continuity and discrete transform of the wavelet function, which have received considerable

attention from mathematicians. One common feature of these wavelets is that their mother

wavelets are not symmetrical and do not possess explicit expressions.
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It has been claimed that wavelets which do not have explicit expressions tend to have

more useful properties than those that have explicit expressions. For example, the

Daubechies wavelet [52, 60-62] can only be represented by recursive relations since it does

not have an explicit expression, however, it has many desirable properties including

orthogonality, FIR filtering and vanishing moments. Among the wavelets, those that do not

have explicit expressions are more common than those that do have such explicit

expressions.

; t expressions,

nressions.

named

.;•< ^ntial

!' I1: ~ strong

<v .-, ,c and CW

•~mbers of the

.lich is the main

Along with wavelets that are non-symmetrical and do not have e:

there exist a small number of wavelets that are symmetrical and h?" .

The CW and Morlet wavelets both belong to this particular cl*

"crude" wavelet class [67]. Since the hyperbolic and CW ' , -!- ,.,

functions and similar in shape as was shown in Chapter 3, it i • •>• ." v

possibility that the hyperbolic wavelet might exist. In addi • ••.)<]

wavelets might have similar characteristics. The scaling fin, ' -•: i

"crude" wavelet class do not exist which make them un-orthog

disadvantage of this class. However, these wavelets are symmetrical and have explicit

expressions which make their investigations and understanding much easier.

There are a large number of papers written about wavelets from a mathematical point

of view as listed throughout the chapter. However, this chapter is written from an

engineering point of view in which intensive mathematics is avoided. Instead, the physical

interpretation and exemplification will be discussed and explored in detail. Properties such

as orthogonality, bi-orthogonality, scaling property and regularity will not be discussed in

detail.

The purpose of this chapter is to investigate the hyperbolic wavelet function if it

satisfies the admissibility constraint imposed by Eq. (4.1.1). In a sense, this chapter

emphasises that there exists a strong relationship between time-frequency kernels and

wavelet functions. This relationship is important in terms of diversifying the wavelet and

time-frequency areas in which new kernels can be generated from corresponding wavelets

and vice versa. The hyperbolic, CW (Mexican-hat) and Morlet wavelets are compared in

terms of scale resolution, scale limit and aliasing effects. From that, particular applications

for each wavelet can be found. Some useful overview papers that summarise the

developments in the field of wavelet theory can be found in [55, 57, 59, 63, 64].
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This chapter is organised as follows. Section 4.2 provides the literature survey of some

popular and well-known wavelets. Section 4.3 investigates important properties of the

hyperbolic, Morlet and CW wavelets by calculating their fundamental parameters (Section

4.3.1) and band-peak frequency (Section 4.3.2), examining the aliasing effects (Section

4.3.3), estimating the maximum scale (Section 4.3.4) and the scale resolution in Section

4.3.5. Section 4.4 investigates other properties of the hyperbolic wavelet from a

mathematical point of view including symmetry (Section 4.4.1), orthogonality and bi-

orthogonality (Section 4.4.2), compactly supported orthogonality and bi-orthogonality

(Section 4.4.3), an arbitrary number of vanishing moments (Section 4.4.4), existence of the

scaling function <p(/) (Section 4.4.5) and the FIR (Finite Impulse Response) filtering

property (Section 4.4.6).

4.2 The "Crude" Wavelet Group and the
Hyperbolic Wavelet Function

There are many interesting wavelets that have been proposed and studied by many

researchers and mathematicians such as Daubechies, Mallat, Meyer, Morlet whose wavelets

are named after them. These wavelets have been extensively studied and their many

interesting and useful properties can be found in [51-53, 55, 56, 58-61, 63-66]. The

Daubechies wavelet is probably the most popular wavelet due to its desirable properties

such as orthogonality, bi-orthogonality, vanishing moments and existence of the scaling

function. The Daubechies wavelet family is recursive, which means that the formula of any

wavelet cannot be explicitly expressed but as a function of another wavelet in the family.

This fact, although not convenient, provides the Daubechies wavelet family with many

useful properties [52]. Other existing wavelets such as Cauchy, Poisson, chirp can be found

in [65].

Wavelet functions have been classified into four classes [67]

1. Type 1 (orthogonal with FIR filtering): the wavelet is orthogonal and its FIR filter

exists. This class includes the Daubechies, Coiflets and Symlets wavelets.

2. Type 2 (bi-orthogonal with FIR filtering): the wavelet is bi-orthogonal and its FIR filter

exists. The Bior-Splines wavelet belongs to this class.
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3. Type 3 (orthogonal with scale function): the wavelet and its scale function exist, its FIR

filter does not exist, however. The Meyer wavelet is a typical member of this class.

4. Type 4 (FIR filter and scaling function do not exist): this class has been considered as a

"crude" wavelet class since the wavelet scaling function and its FIR filter do not exist.

However, the support range of the wavelets in this class can be identified by the time-

base interval (T in Section 4.3). The wavelets in this class are usually symmetrical and

have explicit expressions. As already noted, this chapter only deals with this particular

class of wavelets. The hyperbolic, CW and Morlet wavelets belong to this class.

Unlike the Daubechies wavelet family, the Mexican-hat (CW) and Morlet wavelets

have explicit expressions and are odd symmetrical about the origin. By having explicit

expressions, the Morlet and CW wavelets are considered as "crude" wavelets in which their

scaling functions have been shown to be non-existent [67]. The CW wavelet, given in Eq.

(4.2.1), is found by taking the negative second derivative of the CW kernel [28] (discussed

in Chapter 3) as given by

WcM =--exp (-T2/a)- (-1 + 2r2/a) (4.2.1)

The Morlet wavelet [66] is given by

= exp(jcovt) • exp I ' l2
, where a is the wavelet control parameter.

(4.2.2)

The frequency representations of the CW and Morlet wavelets are give by

F{ Vfcw(0} = Vcw co2 -expy-aco2/4), and (4.2.3)

F{ y/MorUO} = V M exp (- a(a) - co
(4.2.4)

where the symbol F{-} denotes the Fourier transform operation of the function {•]
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The CW and Morlet wavelets belong to Type-4 wavelet group which is the "crude"

wavelet group since they are symmetrical and have explicit expressions. It should be

stressed that this class of wavelets currently consists of only very few members. Thus, it is

important to further explore their characteristics and potential applications.

The hyperbolic wavelet function is generated by taking negative second derivative of

the hyperbolic kernel which was proposed in Chapter 3. It is recalled that the hyperbolic

kernel is given by O(0) = [sech(fiB)}n. The first derivative function of the hyperbolic kernel

of order n is given by

(4.2.5)

The second derivative function of the hyperbolic kernel of order n or the hyperbolic

wavelet function is therefore given by

dQ
= np 2-[secKp9)]n-{n - (n + l)-[sech(P0)]2} (4.2.6)

The hyperbolic wavelet function, y/ny(9), can be formed by taking the negative second

derivative function given by Eq. (4.2.6) as

-{n - (" + \)-[sech{p9)f} (4.2.7)

For n = 1, taking the Fourier transform of Eq. (4.2.7), the frequency domain

representation of the hyperbolic wavelet function is given by

( 0)} =
71(0

(4.2.8)

By substituting n = 1 into Eq. (4.2.7), the first-order hyperbolic wavelet function is

obtained. The hyperbolic wavelet will be examined later by simulation in Section 4.3.1 to

determine whether it satisfies the odd-symmetry condition imposed by Eq. (4.1.1), i.e. the

area under the curve of the second derivative of the hyperbolic kernel is zero.
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In 1992, Szu [125, 126] proposed the soliton wavelet to study nonlinearity dynamics in

sonar, ocean waves and so on. The soliton wavelet can be given as

i///,v(0) = cos(nO) (4.2.9)

By comparing Eqs. (4.2.7) and (4.2.9), it should be noted that the hyperbolic wavelet is

not the soliton wavelet proposed by Szu. In fact, the soliton wavelet employs one of the

members of the hyperbolic kernel, the second-order hyperbolic kernel [sech(P6)]2 studied in

Chapter 3. This shows that the hyperbolic kernel family can find useful applications in the

field of non-linear signal processing. From Eq. (4.2.9), it can be seen that the soliton wavelet

is symmetrical and thus it belongs to the "crude" wavelet group. However, as stated earlier,

since the soliton wavelet employs one of the hyperbolic kernels in its expression, the

investigation of this wavelet will be not be studied in this chapter but only the hyperbolic

wavelet.

Other wavelets in the same family with different scales can be obtained by using a

translation and dilation relationship or multi-resolution relationship [51]

- 7 = (4.2.10)

where a is the scale index and b is the translation or time index of the wavelet. The mother

wavelet corresponds to a = 1 and b = 0.

For each value of the scale index a, there is one unique corresponding wavelet function

which can be considered as a band-pass filter. In the frequency domain, the multi-resolution

relationship becomes [66]

(4.2.11)\jrab (co) = V^ • wa,b (« w ) •

where \i>a b (co) is the Fourier transform of the wavelet function y/a,b(t).

In this section, explicit expressions of the CW wavelet (Eqs. (4.2.1)-(4.2.3)), Morlet

wavelet (Eq. (4.2.4)) and the hyperbolic wavelet (Eqs. (4.2.7) and (4.2.8)) have been given

in both time and frequency domains. It is important to examine some important properties of

these wavelets by estimating their numbers of sampling points, aliasing effects, the
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maximum possible scales and their scale resolutions. These properties will be studied in

detail in Section 4.3.

4.3 Properties of the Choi-Williams, Morlet
and Hyperbolic Wavelets

From an engineering point of view, to study properties of a wavelet function, it is necessary

to investigate its scale resolution, maximum scale used, number of sampling points, relation

to input sampling interval and aliasing effects. The main reason that sampling of a wavelet

function is of concern is that digital signal processing is practical and important. In addition,

the input waveform is usually a discrete set of samples from a continuous process. This

section examines the above mentioned properties in detail. Firstly, fundamental parameters

of the C\V, Morlet and hyperbolic wavelets are estimated.

4.3.1 Fundamental Parameters

The Morlet wavelet was studied and used to study the transition to turbulence in [66] by

Jordan, Miksad and Powers in which the following useful parameters are numerically

estimated

The admissibility constant C,V=2irJ
CO

dco (4.3.1)

J t-Mttdt
The first moment in time domain t0 = -^7

(4.3.2)

dt

The time variance or time width from the mean of the wavelet function [68] is given by

Eq. (4.3.3).

(4.3.3)
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The larger the width around the mean, the less energy-concentrated the wavelet is.

Wavelet functions that have narrow widths about their means have high energy density. The

quantity a,, given in Eq. (4.3.3), is also the standard deviation from the mean or the second-

moment of the wavelet. The smaller the frequency domain standard deviation is, the more

energy-concentrated the wavelet is in frequency domain. This feature will be useful for

comparison purposes.

The first moment (OQ in frequency domain is given by

J co-\yf(a)f
Q)n=-

+00

J
(4.3.4)

dco

The frequency variance GW of the wavelet function is given by Eq. (4.3.5)

(4.3.5)

At this point, it is necessary to check whether the first-order hyperbolic wavelet given

by Eq. (4.2.7) satisfies the admissibility constraint given by Eq. (4.1.1). By substituting Eq.

(4.2.7) into Eq. (4.1.1) we obtain

C,-o

+00

_ f _
aim ~ I 1

•P2 • sech (P9) {1 - Hsech (00 )]2} do) (4.3.6)

Simulation results showed that COT1J,raim was very small which proved that the

hyperbolic wavelet is a valid wavelet. As will be shown later in Figure 4.3.1, the hyperbolic

wavelet is a symmetrical wavelet which means it belongs to the symmetrical Type 4 "crude"

wavelet group.

Numerical values of fundamental parameters of the CW, Morlet and hyperbolic

wavelets for /3= 1 are given in Table 4.3.1.
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Table 4.3.1: Fundamental parameters of the CW, Morlet and hyperbolic wavelets for fl= 1
Wavelet

Choi-Williams

Morlet

Hyperbolic for n = 1

Parameter values, P = 1

3.98

1.352

1.25

h

0.0

0.0

0.0

1.48

0.4

0.87

Oh

2.12

5.0

1.6

2.386

2.806

1.23

The admissibility constant Cv represents the inverse-transform ability of a wavelet [66],

i.e. when a function is transformed using a particular wavelet then it can be successfully

recovered by using the inverse wavelet transform. As can be seen from the above table, all

three wavelets have finite admissibility constants which means that they are valid wavelets.

From Table 4.3.1, the hyperbolic wavelet has higher energy density than the CW and

Morlet wavelets as shown by having a smaller aw. This property is useful when analysing

signals that have broad power spectra. The value of a, is used to obtain the length of the

wavelet time-base sampling interval T. Typically, T > 4cr, to ensure that the mother wavelet

is completely sampled. However, to make sure that the time-base sampling interval is long

enough, graphical display of the mother wavelet is required. Fundamental parameters of the

three wavelets are re-calculated for /J = 0.5 and are given in Table 4.3.2. For various values

of the control parameters a and j3, from simulation, it can be concluded that the hyperbolic

wavelet satisfies the admissibility constraint imposed by Eq. (4.1.1) by having a very small

area under the curve. The error in this case is always 0(1CT6) or less from simulation results.

§ ! • •

f

I
Phi:

Table 4.3.2: Fundamental parameters of the CW, Morlet and hyperbolic wavelets for /3 = 0.5
using Eqs. (4.3.l)-(4.3.5)

Wavelet

Choi-Williams

Morlet

Hyperbolic

Parameter values, /3= 0.5

1.785

1.58

0.15

to

0.0

0.0

0.0

o,

1.245

0.6656

0.62

COo

1.47

5.0

0.817

1.08

2.36

0.213

The larger the value of <J, and aw, the less time and frequency support the

corresponding wavelet has respectively. The smaller o^ is, the less the number of

frequencies that are required to express the spectrum of an input signal. In other words, this

feature is closely related to the compression effects of a wavelet which are of practically

significant. The more effective the compression effect of the wavelet is, the less the number
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of required scales of the wavelet are for an input signal which reduces the required

computational time of the wavelet power spectrum and increases the efficiency of the

calculation process.

fcetionu 4.3.2-4.3.5 estimate the band-peak frequencies, examine the aliasing effects,

the maximum scales and scale resolutions as well as the total numbers of required scales of

the C\¥, Morlet and hyperbolic w<i, s.

4.3.2 Dimensional Expressions and Band-Peak
Frequency

It is assigned that a dimensional sampling interval of the input data series of length M is

(A/1) and a non-dimensional sampling interval of a wavelet, whose time base interval is from

••Tta T, is (A/), where the symbol " ' " indicates a dimensional quantity [66]. Let N be. the

number of samples that should be taken for the wavelet function. To calculate the non-

dimensional time base of the wavelet function, we have to map the sampling interval of the

input waveform to that of the wavelet, i.e. [-T, T\ <-> [0, N(At')]. The wavelet time base is

therefore given by

N(At') (4.3.7)

The expression for the non-dimensional frequency/is obtained by taking the inverse of

Eq. (4.3.7) yielding

•0)

(4.3.8)

The wavelet functions of the CW, Morlet and hyperbolic in terms of the dimensional

quantities are therefore given by Eqs. (4.3.9), (4.3.10) and (4.3.11) respectively

J-Ja
1-1

<r aN(At')
•exp

1 ( IT
a aN(At')

(4.3.9)
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.Morlet,.',

'n ' [ aN(At') exp
1

a oN(At')
(4.3.10)

[aN(At')

(4.3.11)

where n is the order of the hyperbolic kernel and also the hyperbolic wavelet, n = 1

corresponds to the first-oider hyperbolic wavelet. The dimensional quantity b' is similarly

defined by Eqs. (4.3.7) and (4.3.8).

The corresponding dimensional frequency expressions of the CW, Morlet and

hyperbolic wavelets are gwen by Eqs. (4.3.12), (4.3.13) and (4.3.14)

Inner • exp\ -
lN7tf'i\t')b'

•exp
a_
4

(4.3.12)

1 (aTtfN(At')
-co,,, (4.3.13)

*£
T ( T

. A
2/3-7

( 4 .3 .1 4 )

where typically, 5.0 < (oL < 6.0 rad/s is used to ensure that the constraint imposed by Eq.

(4.1.1) is met. Throughout this chapter. (a'v = 5.0 rad/s is employed for the Morlet wavelet.

The band-peak frequency, / ' , is the frequency at which the wavelet filter has the

maximum value. To estimate the band-peak frequency, the. first derivatives of the real parts

of the dimensional frequency expressions of the wavelets should be firstly obtained. Since

the real parts of the first-derivative functions are exponential functions, the second-

derivative functions are not required. For the Morlet wavelet, to maximise y^'y1*''(/')

(given by Eq. (4.3.13)), the exponent of the exponential term is made to be zero which

yields [66]
- - —

6 !"

pf;
ft-'
i [•'..
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MorktaV

n(to') aC
* where Q,()r;i, =

Morlct
Muriel' (4.3.15)

The band-peak frequency of the CW wavelet is obtained by equating the first derivative

of Eq. (4.3.12) to zero which yields

IT,
rp{CW)

CW
(4.3.16)

where a is the kernel control parameter of the CW kernel.

Varying a yields different values of the band-peak frequency and affects the

effectiveness in cross-term suppression [28] of the kernel as was shown in Chapter 3. For

the hyperbolic and CW wavelets, there is a point at which the frequency expressions of the

wavelets attain the minimum value, which is at the origin. For other non-zero values of the

frequency, the band-peak frequency of the hyperbolic wavelet can be similarly obtained

'p(lly)
4/3 4/37,Hy

anCHy aNHyn
2(At')

, where Clly = —
lHy

(4.3.17)

Eq. (4.3.17) is an approximate expression of the band-peak frequency of the hyperbolic

wavelet, f'P(ny) • The assumption that has been used to obtain it is that Cny is a small

number since N is typically not very large compared to the wavelet time base interval THy

and (AO is very small. It should be noted that N is the number of sampling points for the

mother wavelet which is of the same order of magnitude of T.

4.3.3 Aliasing Effects

In this section, the number of sampling points of the hyperbolic, CW and Morlet wavelets

are calculated.
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To avoid aliasing effects in sampling the wavelet non-dimensionally and in sampling

the input time series dimensionally, the Nyquist criterion must be satisfied. The Nyquist

frequency of the input time series with the sampling interval (At') can be given by

(4.3.18)

where (At') is the dimensional sampling interval of the input series.

To avoid aliasing in the mother wavelet itself, the overlapping fraction a of two

adjacent wavelet filters at different scales must be prescribed so that it is less than a

threshold value. This fraction can be defined as an absolute value of the ratio of the wavelet

at the frequency f,'n,erlupp at which a is sufficiently small to the magnitude of the wavelet at

the band-peak frequency^,' (Eq. (4.3.19)). At the time that two adjacent wavelet filters

overlap, to recover the input signal and to avoid aliasing of the wavelet filters, the

overlapping frequency must be at least equal to the Nyquist frequency f'Ny , i.e. f'overiapp =

f'Ny. The mathematical expression of the ratio a is therefore given by Eq. (4.3.19) and

graphical representation of a is seen in Figure 4.3.1.

(4.3.19)

If a is known beforehand, then it is possible to estimate the number of sampling points

for the wavelet function. Jordan, Miksad and Powers [66] calculated the required number of

sampling points NMorki for the Morlet wavelet for a typical case of a = 2. The number of

sampling points of the Morlet wavelet function NMoHei for a general value of a is given by

2T
Morlet

Morlet

n
• (o)v W - , where o)¥ = 5.0 rad/s and a < 1. (4.3.20)
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Figure 4.3.1: Aliasing effect of the hyperbolic wavelet for /3 = 0.5, f'Pand f'Ny are

dimensional band-peak and overlapped frequencies respectively. The ratio a (Eq. (4.3.19)),

which can be viewed as the ratio of fp and fNv in the graph, should be small so that

aliasing problems can be effectively avoided.

The following calculations attempt to estimate the minimum number of sampling

points for the CW and hyperbolic wavelets. For these wavelets, the estimation process is

more difficult and the solutions are found by employing a graphical method. In using this

method, functions on the left- and right-and sides of an equation are plotted on one co-

ordinate system and the intersection(s) of the graphs of two functions are approximately the

roots of the equation. In this case, the next odd value of the number of sampling points is

chosen since only N - 1 points are employed to sample the wavelets as will be seen in

subsequent sections.

By using Eq. (4.3.18) for f'Ny, Eq. (4.3.17) for f'p and Eq. (4.3.14) for the expression

of V*-lh>(f'), we obtain the minimum number of sampling data points NHy for the

hyperbolic wavelet. If N,,y > 16, then NHy can be approximated by
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' l l / t t r t 2 ^

an

where a = I for the mother wavelet and it is assumed that N,h. > 16.lly

(4.3.21)

If Nny < 16, then the number of sampling points Nny is found by the graphical method

by plotting the graphs of two functions/i and/2 given by the following equation

-h or

In
5.73fl'2 I I ' 0 ' 2pFfjy + 1

(4.3.22)

an

Hy

Eq. (4.3.22) yields a good estimate ofN,Iy and is therefore used throughout this chapter.

Eq. (4.3.21) provides the approximate value of Nny only in the case of NH>. > 16. Similarly,

by using Eq. (4.3.12) for the expression of ^ f c - ( / / ) , Eq. (4.3.18) for f'Ny, Eq. (4.3.17)

for f'p and after some mathematical manipulations, the sufficient number of sampling

points Â cir for the CW wavelet is given by

0.617(7-P
Tcw

=ln
1.61(7 (Ncw (4.3.23)

The approximate minimum number of sampling points for the Morlet, hyperbolic and

CW wavelets have been estimated and are given by Eqs. (4.3.20), (4.3.22) and (4.3.23)

respectively. Eqs. (4.3.22) and (4.3.23) give the approximate values of Ntty and NCw by

employing the graphical method. Eq. (4.3.20) yields the exact expression of NMoricl. The

maximum scale that can be used for each wavelet is examined in the next section.

4.3.4 Scale Limit

Scales, in wavelet theory context, are inversely proportional to frequencies in the frequency

domain. For each wavelet function, there exists the maximum number scale number that the

wavelet function can display. The larger the scale limit, the better the wavelet in terms of

representing broad-spectrum signals.
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The maximum scale number used for a wavelet is determined based on the number of

wrapped-around points or end-points of the input time series since these points do not

provide useful information. It has been observed that ihe number of end points is

proportional to the scale a [66]. That means, if the scale increases to a certain value, the

number of end points will dominate the estimated wavelet transform coefficients and not

much information can be gained about the signal if the scale increases further.

From [66], the number of wrap-around points at one end is a function of the scale a and

is approximately given by

a(N-l)
' wrap' (4.3.24)

To estimate the maximum scale number of a wavelet, let us introduce rj as a fraction of

the number of wrap-around points Nwrap and M = 2m, the number of input data points into the

wavelet, then we obtain

GttmiN 1 ) / 2 < ̂  and 77 =
2'" 2 M

, where Nwrap is given in Eq. (4.3.24); (4.3.25)

where N is the number of sampling points of the wavelets. For the Morlet, hyperbolic and

CW wavelets, their numbers of sampling points are given by Eqs. (4.3.20), (4.3.22) and

(4.3.23) respectively.

To speed up the calculation process of the wavelet transform coefficients, M should be

a power of 2. The fraction 77 = ^ , which corresponds to about 30% of the wavelet transform

coefficients being overlapped by the wrap around points, was used by Jordan and Miksad

[66] for the estimation of the maximum scale number. In this chapter, we leave 77 to be

arbitrary so that the general expression of flmx can be obtained. For both ends and from Eq.

(4.3.25), the upper limit of the maximum scale number a^ is given by

2 " : -77 (4.3.26)

The number of input sampling points M can be estimated from the maximum scale

number a^x using Eq. (4.3.27)
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M =2'">- or m> 1.443-In (4.3.27)

where ;j is a ratio of the number of wrap around points at the maximum scale number to the

total number of points in the time series.

The next section calculates the scale resolution of the three wavelet functions.

4.3.5 Scale Resolution

The scale resolution constant co^ is defined as the distance between two band-peak

frequencies of two adjacent wavelet filters [66]. The finer the scale resolution cod is, the

smaller the resolution constant. The distance between two adjacent band-peak frequencies

can be determined by specifying a variable A which has the mathematical form given by Eq.

(4.3.28)

W(aco' +(Od)
(4.3.28)

where co'p is the dimensional peak frequency, (x>d is the scale resolution constant and

is the frequency expression of the wavelet function given by Eqs. (4.2.3), (4.2.4) and (4.2.8)

for the Morlet, CW and hyperbolic wavelets respectively. In most practical wavelets, the

scale resolution constant must be small to capture rapid changes in the energy density of the

input waveform, which is usually non-stationary such as turbulence and chaos [66], ECG

[69], music signal [70-72] or random processes [73]. It is important to note that in Eq.

(4.3.28), the frequency quantities are non-dimensional, thus appropriate conversion of the

variables must be used to obtain the correct answer.
I

i (
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As the scale a increases, the scale resolution constant will decrease since the frequency

of a wavelet is inversely proportional to the scale [51, 52]. I f ; is the index of an

instantaneous scale that is going to be used, then we have the following relationship

)= — (4.3.29)

where as is the/1 scale of the wavelet and 0)'p{j+]) is the band-peak frequency at the (j + 1)*

scale.

The scale resolution of the Morlet wavelet can be analytically solved. For the CW and

hyperbolic wavelets, the scale resolutions are approximately obtained by eliminating the

third- and higher-power terms in the time series of ln(l - x) [45], where x is substituted as

the scale resolution coj. The main reason that the third-power terms are ignored is that the

scale resolution C0d is expected to be less than 1. In addition, for these two particular

wavelets, the third-power constants are quite small, thus, they can be safely ignored without

making large differences in value of the final answer. For the Mortet wavelet function, the

exact scale resolution constant 0)"crL' is found to be

COfforkl = V-cr-In A , where A < 1 and lnA < 0. (4.3.30)

The approximate scale resolution constant of the hyperbolic wavelet co'Jy is given by

Eq. (4.3.31)

co.
4/W-lnA _ 4V-In A

n no
(4.3.31)

The approximate scale resolution constant of the CW wavelet cofv is given by

(4.3.32)
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Since the scale resolution is always less than unity, the applicable ranges of j3 and a

can be worked out using the chosen value of A. From Eqs. (4.3.30)-(4.3.32), by making the

scale resolutions less than unity, the ranges of P are obtained as /3 > 0.1, P < 2.4 and P < 4.7.

Thus, the applicable range of P is 0.1 < P < 2.4, i.e. 10 > a> 0.42, with A = 0.9. For other

values of A, different ranges of P and a can be obtained. The closer A is to unity, the larger

the value of P and the wider the range of /3 becomes. When A = 0.99, from Eqs.

(4.3.30)-(4.3.32), the ranges of j3 are )3 > 0.01, P < 7.8 and )3 < 49 which results in the final

range of P to be 0.01 < j3 < 7.8, i.e. 100 > a> 0.13. It should be noted that the closer the

value of (Da to unity, the finer is the resolution of a wavelet.

From Eqs. (4.3.30)-(4.3.32), it is evident that the scale resolutions G)d of the three

wavelets are independent of the sampling interval (At)' which makes them unique. The

above equations are analytically obtained or with practical approximations. The following

table lists values of the scale resolution of the three wavelets for /3 = 0.5, 1, 2, 2.4 and A is

chosen to be 0.9.

Table 4.3.3: The approximate scale resolution constants co(i of the hyperbolic wavelet (Eq.
(4.3.31)), Morlet wavelet (Eq. (4.3.30)) and CW wavelet (Eq. (4.3.32)) for /3 = 0.5, 1,2, 2.4

and A = 0.9

p

0.5

1

2

2.4

Hvperbolic
Wd'

0.20

0.41

0.83

1.0

, , Muriel
Md

0.46

0.33

0.23

0.21

CW
G>d

0.33

0.46

0.65

0.71

From Table 4.3.3 and for the range of the hyperbolic control parameter 2.4 > P > 0.1,

the hyperbolic wavelet appears to have a finer scale resolution constant compared with those

of the Morlet and CW wavelets. When P = 2, the scale resolution (of*""*"1* = 0.83 which

approaches unity. From a kernel point of view, for 20 > $ > 0.5, the hyperbolic kernel

outperforms the CW kernel in terms of cross-term suppression and noise robustness but

being outperformed by the CW kernel with respect to auto-term resolution as was shown in

Chapter 3. This is a trade-off of achieving more effective cross-term suppression at the

expense of having a poorer auto-term resolution. In this chapter, from a wavelet point of

view, it has been shown that for 2.4 > P > 0.1 and A = 0.9, the hyperbolic wavelet

outperforms the CW and Morlet wavelets by having a finer scale resolution constant (0d. For

other values of A, the range of P will be changed which yields different values of the scale
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resolution. In the next chapter, it will be shown that another trade-off in signal detection

performance between the hyperbolic and CW kernels exists. The following table lists all

values of A from 0.9 to 0.99 (increasing in steps of 0.01) and the approximate corresponding

applicable range of /3.

Table

A

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

4.3.4: The approximate corresponding applic
0.99 in increasing ste

Minimum value of
P (for the Morlet

wavelet,
Eq.(4.3.30))

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0,02

0.01

Maximum value of
P (for the hyperbolic

wavelet, Eq.
(4.3.31))

2.4

2.5

2.7

2.9

3.1

3.5

3.9

4.5

5.5

7.8

able range of P for A varies from 0.9 to
ps of 0.01

Maximum value of
/3(fortheCW
wavelet, Bq.

(4.3.32))
4.7

5.3

6.0

6.9

8.0

9.7

12.2

16.4

24.7

49.7

Approximate
applicable
range of P

O.l</3<2.4

0.09 <P< 2.5

0.08 <p< 2.7

0.07</3<2.y

0.06 <P< 3.1

0.05 <P<3.5

0.04 <p< 3.9

0.03 <B<4.5

0.02 <P< 5.5

0.01 <P< 7.8

From Table 4.3.4, it is clear that for values of 0.9 < A < 0.99, the widest applicable

range of P is 0.01 < P < 7.8. From Chapter 3, for effective cross-term suppression of the

hyperbolic kernel compared with the CW kernel, /3 needs to be in the range of /3 > 1.45

(Section 3.5.2 for a sum of two complex exponential signals) and 0.5 < j3 < 20 (Section 3.5.3

for a sum of two chirp signals). For larger normalised auto-term magnitude (Figure 3.5.9),

the range of P is p < 100 and to improve noise robustness, the range of P is (3 > 3 (Figure

3.7.1). Thus the applicable range of (3 of 0.01 < P < 7.8 (for the hyperbolic wavelet having a

fine scale resolution* obtained in this chapter) lies well within the above ranges of /3 for the

effectiveness of the hyperbolic kernel.

* The right-hand side of all ranges of j3 in Table 4.3.4 is from the maximum allowable value of j3 of the
hyperbolic wavelet. This yields the hyperbolic scale resolution a unity value and of other kernels values of less
than unity.
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It should be noted that, for all values of ft, the hyperbolic normalised auto-term

resolution is always less than that of the CW kernel (Figure 3.6.1) which is a trade-off as

explained earlier in Chapter 3. After taking into consideration all of the above factors, the

most effectivr range of ft is 0.5 < ft < 20 for satisfactory performance in time-frequency

power spectrum and simultaneously having a fine wavelet scale resolution. Thus, another

trade-off among cross-term suppression, auto-term magnitude, noise robustness and scale

resolution constant against auto-term resolution has been established.

To obtain the total number of scales that can be utilised in a wavelet (provided that the

scale resolution constant is known), it is convenient to take the first band-peak frequency to

be the reference frequency. The subsequent band-peak frequencies arc obtained by dividing

the reference band-peak frequency by the scale that corresponds to the particular band-peak

frequency, i.e. co^p)j =cu(p)1/fl;-. Using this relation and Eq. (4.3.29) one can obtain [66]

(O,

a:
(4.3.33)

The minus sign on the right-hanri ^Je of Eq. (4.3.33) is employed to ensure that the

total number of scales ./max is a positive number (Eq. (4.3.36) without affecting the

correctness of the equation.

The recursive relationship for the scale a is then given by

(O,
a I =K a :, where K* =- (4.3.34)

The first band-peak frequencies (which corresponds to a = 1 for the mother wavelet) of

the Morlrt, CW and hyperbolic wavelets can be estimated by using Eqs. (4.3.15)-(4.3.17)

respectively, which are given in Section 4.3.2.

From Eq. (4.3.34), it is evident that the present scales are dependent on the previous

scales. This relationship can be understood via the constant K, which is a function of the

peak frequency of the first-scale wavelet (mother wavelet) and the scale resolution constant

(Od. As the scale a becomes large.r, the width of the corresponding wavelet becomes smaller

since It is inversely proportional to the scale a as can be seen in Eq. (4.2. JO). Assuming that
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«i = 1, i.e. choosing; = 1 as the starting point, Eq. (4.3.34) can be rewritten to find the total

number of scales of a wavelet under certain conditions [66]

aj = KJ~], where K'was defined by Eq. (4.3.34). (4.3.35)

From Eqs. (4.3.34) and (4.3.35), one can obtain an expression for the required total

number of scales j m i x

(4.3.36)

By using the maximum value of «max given by Eq. (4.3.26), the required total number

of scales j ^ * . for a wavelet can be obtained. For each wavelet, the number of sampling

points of the m. her wavelet is different and so are the band-peak frequency, scale

resolution, amx and the total number of required scales. To gain more practical insight into

the three wavelets, the following section calculates their parameters which have been

discussed in Sections 4.3.1-4.3.5. Wavelet power spectra of the English speech vowel "e"

signal are also given to demonstrate compression ability of the hyperbolic wavelet.

4.3.6 Parameter calculations and wavelet power
spectra of a speech signal

One practical example was used in [66] in which the transition to turbulence in a subsonic

wake was investigated using the Morlet wavelet transform. Major conclusions about the

behaviour of the subsonic wake were made in [66] and will not be repeated here. This

section compares the Morlet, CW and hyperbolic wavelets by calculating the following

parameters: band-peak frequency, maximum scales, aliasing, scale resolution and the total

number of scales used in this particular application. For these wavelets, the value of /3 = i/cr

= 0.5 is used.
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The sampling interval of the input time series was (At') = 0.2 ms. The aliasing

parameter is chosen to be a = 0.01 (1%) so that only 1% of the mother wavelet is aliased.

From Table 4.3.2, Figure 4.3.1 and Figure 4.3 2, the one-sided length of the hyperbolic, CW

and N4orlet mother wavelets are T,ly = 10, Tcw~5 and TMurkt ~ 3 respectively. The values of

the required number of sampling points of the mother wavelets are hence found by direct

calculation using values of 7's and Eq. (4.3.20) and by the graphical method using Eqs.

(4.3.22) and (4.3.23). From Eqs. (4.3.22) and (4.3.23), the approximate number of sampling

points of the hyperbolic and CW wavelets are given as Nlty = 9 and NC\v= 13 respectively.

Morlet and Choi-Williams (Mexican Hat) Wavelets
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Figure 4.3.2: Time base interval Tew and TMor\e, of the CW and Morlet wavelets for (7=2,
i.e. /3= 0.5. TMOTWI and TCw are used to estimate NMurki and New by the graphical method

using Eqs. (4.3.20) and (4.3.23) respectively.
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The band-peak frequencies are given by

, _ 1125.8 , 865.7 1452
JUy " — ' Jew = and JMorkt =

a a a
(4.3.37)

Further, the band-peak frequency can be scaled down to about 30 Hz, which allows us

to estimate the maximum scale number 0^*. The maximum scale numbers of each wavelet

are given by

' • • \

I

1:
r

I

a"> =37.53, aZ =28.8 and a'J'f =48.4. (4.3.38)

From Eqs. (4.3.27) and (4.3.38), the required numbers of data points for each wavelet

with '? = i are given by

, = 1024, Mcw = 2048 and MMork, = 4096. (4.3.39)

It should be noted that the number of input sampling points could be varied by

changing the value of TJ to provide satisfactory solutions to a particular application or

problem. However, the value of r\ should be kept small so that aliasing can be effectively

avoided. For /? = 0.5, i.e. cr= 2, the scale resolution of each wavelet is estimated next using

Eqs. (4.3.30)-(4.3.32) which yields

"y = ^orlet(o"y =0.2066, 0)%w =0.3246 and co^orlet =0.459. (4.3.40)

The dimensional peak frequencies of the Morlet, hyperbolic and CW mother wavelets

are a>'p(Mmiet) ~ 5-0 rad/s, 0)'^Hy) = 0.6366 rad/s and co'p{CW) = 1.4142 rad/s respectively.

The total number of scales that can be computed is directly proportional to the scale

resolution cOd- By employing Eq. (4.3.36), the total number of scales of each wavelet can be

approximately worked out asjnaxwy) ~ 11.7max(ov) = 14 andjmaxworto) = 42.

The Morlet wavelet, as expected, has the largest number of computed scales since it

has the coarsest scale resolution as calculated by Eq. (4.3.40) compared with the hyperbolic

and CW wavelets. Table 4.3.5 summarises values of important parameters and highlights

the significant values of the hyperbolic, CW and Morlet wavelets that have been estimated

in this section.
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Table 4.3.5: Summary of important parameters of the hyperbolic, CW and Morlet wavelets
for the case of /3 = 1/CT = 0.5. The shaded cells indicate important parameters of the

wavelets.
Wavelet

Morlet

Choi-Williams

Hyperbolic

One
sided-

lenpth T
3

5

10

Wavelet
sampling
points N

17

13

9

Maximum
scale

number fl,rax

29

38

Scale
resolution cô

0.459

0.3246

Y«t$2Q66^

Total number
of scales ;'mix

42

14

11

From Table 4.3.5, the hyperbolic wavelet appears to have the finest scale resolution

compared with the Morlet and CW wavelets. However, the total number of scales of the

hyperbolic wavelet is smaller than those of the CW and Morlet wavelets which suggests that

it is not suitable for signals that have energy distributed over a wide frequency range. With

regard to this aspect, the Mori--', wavelet can be considered most suitable for wide-range

frequency signals compared to the hyperboli:: and CW wavelets. The hyperbolic wavelet is

most suitable for transient signals, which do not have a wide frequency range to resolve.

Clearly, the most appropriate wavelet depends on the application and the -nature of the

problem. It should be noted that the hyperbolic and CW wavelets do not have a wide scale

range and their total numbers of scales are in the same order of magnitude. This might

suggest that the hyperbolic wavelet is more advantageous than the CW wavelet since the

former has a finer scale resolution.

\
1:

!
i

Since the wavelet power spectrum !s going to be used later in this section, it is

appropriate to define the wavelet transform and wavelet power spsctnun at this point. The

wavelet transform WT(a, b) of a function x{t) is given by [51, .52]

WT(a
(4.3.41)

where m ] is the mother wavelet, a and b are the scale and time indices respectively.
a

The wavelet power spectrum of x(i), as analogous to its Fourier power spectrum

|2
counterpart P(a)) = * (« ) • X*(co)= X(.CQ)\ , is given as

(4.3.42)
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Eqs. (4.3.41) and (4.3.42) form the background for plotting the Morlet, CW and

hyperbolic wavelet power spectra of the English vowel "e". The wavelet power spectrum, in

particular the hyperbolic wavelet power spectrum, will be investigated in detail in Chapter 6

in which detailed comparisons between the Fourier power spectrum and wavelet power

spectrum are made.

It should also be noted that the scale, resolution constant a^ is independent of the

external dimensional parameter (A/)', thus each wavelet has its own scale resolution constant

which is determined by the nature of the mother wavelet. For this particular example, the

hyperbolic wavelet has the finest scale resolution for /? = 0.5 compared with the Morlet and

CW wavelets. Depending on the application, the appropriate values of /3 can be chosen to

yield the most suitable wavelet.

To demonstrate the effects of having a small total number of required scales, the

Morlet, CW and hyperbolic wavelets are used to examine a speech signal of the English

vowel "e" in which their wavelet power spectra are displayed in Figure 4.3.3 and Figure

4.3.4 respectively. It should be noted that the contour scale is not quantitatively included in

these graphs as it is not the main emphasis of this chapter.
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,3: Contour plots of the Morlet and CW wavelet power spectra of the English
vowel "e" speech signal
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Figure 4.3.4: Contour plot of the hyperbolic wavelet power spectrum of the English vowel
"e" speech signal

As can be seen, the Morlet wavelet does not reveal energy components in the

approximate scales of 20 to 45, whereas the hyperbolic and CW wavelets do. Moreover, the

hyperbolic wavelet can display components at very high frequencies which correspond to

scales smaller than 10. The CW and hyperbolic wavelet power spectra are similar, except

the latter has a finer scale resolution by clearly showing all harmonics and sub-harmonics as

can bs seen from Figure 4.3.3 and Figure 4.3.4. This suggests that the hyperbolic wavelet

power spectrum cannot be used to examine signals that have broad power spectra as stated

earlier in this chapter.

The main advantage of the hyperbolic wavelet over the Morlet and CW wavelets is that

it has a smaller total number of required scales which considerably reduces the calculation

time. In other words, with the same number of scales of 70 (Figure 4.3.4), the wavelet

power spectrum of the vowel "e" speech signal can be successfully shown using the

hyperbolic wavelet. Whilst, the CW and Morlet wavelets cannot display the wavelet power

spectrum of the input signal within the above scale range due to having a coarser scale

resolution and a larger total number of scales. This shows that the hyperbolic wavelet power

spectrum can be successfully compressed whereas the Morlet and CW wavelet power

spectra require a larger number of scales to display the energy distribution of the speech

_ _ - —



Chapter 4: The Hyperbolic Wavelet Function

signal. Thus, it can be suggested that the hyperbolic wavelet is more effective and efficient

than the Morlet and CW wavelets.

The effectiveness of the hyperbolic wavelet will be examined further by calculating the

hyperbolic wavelet power spectra of different signals in Chapters 6 and 7 of the thesis.

Table 4.3.6 summarises the advantages and disadvantages of the hyperbolic, Morlet and CW

wavelets.

Table 4.3.6: Detailed qualitative comparisons of the Morlet, CW and hyperbolic wavelets

Common
features

Aliasing
effects

Scale limit
<W

Total
number of
scales ./mx

Scale
resolution

Suitable
input
signals

Morlet Wavelet CW Wavelet Hyperbolic Wavelet

Easy to generate and analyse; symmetrical and all have explicit expressions;
un-orthogonal, un-biorthogonal and their scaling functions do not exist;
classified as "crude" wavelets.

Calculation for the
mother wavelet can
be analytically done.

High

High

Coarse

Wide-frequency
range signals
including chaos,
music and speech

The graphical method
must be employed to find
the number of sampling
points for the mother
wavelet.

Low

Moderate

Moderate, depending on
the control parameter a

In between the Morlet and
hyperbolic wavelets,
depending upon the
particular application

Similar to the CW
wavelet

Higher than CW
wavelet's but smaller
than Morlet wavelet's

Low

Fine, depending on
values of the control

parameter P=VL

Narrow-frequency
range signals
including transients,
and ECG

In this section, the hyperbolic, CW and Morlet wavelets have been studied in detail

from an engineering point of view by comparing some crucial parameters and properties.

The next section briefly investigates properties of the hyperbolic wavelet from a

mathematical point of view including symmetry, orthogonality, bi-orthogonality, existence

of scaling function, FIR and vanishing moments. It should be emphasised that these

properties have been extensively studied in the past decade by many mathematicians and

they are worth investigating.
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Chapter 4: The Hyperbolic Wavelet Function

J.4 Other Properties of the Hyperbolic
Wavelet Function

.section 4.3 investigated some important properties of the hyperbolic, CW and Morlet

wavelets from an engineering point of view. These properties include aliasing effects, scale

limit, scale resolution, total number of required scales and some preliminary parameters of

the hyperbolic, CW and Morlet wavelets. In this section, other properties of the hyperbolic

wavelet are briefly investigated from a mathematical point of view in the following order

1. Explicit expression — The wavelet function is clearly defined in the time and

frequency domains with unique expressions.

2. Symmetry — The wavelet function is symmetrical about the vertical axis. This

property is desirable for avoiding de-phasing in image processing [67]. The wavelets

investigated in this chapter, i.e. hyperbolic, CW and Morlet wavelets, are symmetrical.

3. Orthogonal and bi-orthogonal analyses — This property and the regularity of a wavelet

allow fast algorithmic calculation of the wavelet transform.

4. Compactly supported orthogonal and bi-orthogonal.

5. Existence of the scaling function (fit) — This affects the existence of the FIR filtering

property

6. Vanishing moments for (p(t) — This property is desirable for compression purposes of

polynomial power series up to a certain order.

7. FIR (Finite Impulse Response) filter — This filter represents the connection between

the wavelet function y/(f) and the scaling function (p(t).

The above properties have been discussed and reported in detail in [67]. This section

mainly focuses on the hyperbolic wavelet, which has not been previously studied in the

literature. Some desirable properties of the wave'.jt are studied to find out more about the

hyperbolic wavelet and to compare it with other wavelets such as CW, Morlet, Daubechies,

Mallat, Meyer and Cauchy. Although it might seem that the hyperbolic wavelet has similar

properties to those of the CW and Morlet wavelets, it is necessary to examine its properties

in some detail so that detailed conclusions on the wavelet can be drawn.

i
i;
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4.4.1 Explicit Expression and Symmetry

The expression of the hyperbolic wavelet function was given in Eq. (4.2.7). It is evident that

the hyperbolic wavelet is a symmetrical function and has finite time support. The graphical

representations of the hyperbolic and CW wavelet functions are displayed in Figure 4.4.1.
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Figure 4.4.1: The CW (Eq. (4.2.1) and hyperbolic (Eq. (4.2.7)) wavelets for/J = 2, i.e. a-
0.5

It should be emphasised that wavelet functions that have explicit expressions are

difficult to find. For example, Daubachies wavelets are excellent wavelets but their values

are only obtained by recursive numerical calculation. Some wavelets that have explicit

expressions include the Morlet, Haar (Daubachies order 1) and Mexican-hat or CW. The

hyperbolic wavelet function is a continuous and symmetrical function with no singularity in

the time domain as seen in Figure 4.4.1.
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4.4.2 Orthogonal and Bi-Orthogonal Analyses

Let us define fk(t) as a set of functions or vectors that span the space F. The set/t(/) is

orthogonal if every function or vector within the set is independent of each other, i.e. each

function or vector is unique and no relationship can be established between them [51].

Consider a wavelet function as a set of wavelet functions. If the wavelet is orthogonal, the

following condition must be met [51, 52]

I' i Q)dt = 0, for all m (4.4.1)

Eq. (4.4.1) represents the area under the curve of the inner product of two wavelet

functions y/m (/) and y/i (/). If this area is zero, the wavelet is said to be orthogonal. For the

hyperbolic wavelet, we have to examine the following inner product of two hyperbolic

wavelet functions

[sech(mx)]{-[sech(mx)]2+[tanh(mx)f (4.4.2)

• l2[secKlx)]-{-[sech(lx)]2+[tanh(lx)]2} dx

for all m * I.

To examine the final value of Eq. (4.4.2), firstly, some familiar values of in and / are

used. If Eq. (4.4.2) appears to satisfy the condition of orthogonality stated in Eq. (4.4.1),

then the general case of in and / will be examined. For simplicity, by putting in = 1 and / = 2,

we obtain

[ [sech(T)l{-[secKt)]2+[tanh(f)]2}

• 22-[sec!i(2T)]-{-[sech(2T)]2+[tanli(2T)]2} dx

(4.4.3)

The inner product of Eq. (4.4.3) is plotted against Tin Figure 4.4.2. It is evident that the

area under the curve is non-zero (the area under the curve is = 0.48 units) for m = 1 and / =

2, which means the hyperbolic wavelet is not orthogonal.
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Chapter 4: The Hyperbolic Wavelet Function

Since only symmetrical wavelets are considered in this thesis, bi-orthogonality

characteristics are not important for these wavelets. However, bi-orthogonality is still briefly

discussed for completeness.

I

If a wavelet (expansion set), l/UO, is not orthogonal within itself, then if there exists a

dual set y/,'(/), which is orthogonal to the expansion set y/m(t), then the wavelet is said lu be

bi-orthogonal since it requires two sets of vectors or functions to make it orthogonal.

Mathematically, the definition of bi-orthogonality can be given by [51]

I- (4.4.4)

It is evident from Eq. (4.4.4) that the hyperbolic wavelet is not bi-orthogonal since it

has a finite area under the curve as seen in Figure 4.4.2.

Orthogonality Function of the Hyperbolic Wavelet

0.8 -

0.6 -

ra
o

0.4 -

0.2 -

- 0 .2
-3

_ - 1

1
1

1

V
\ / •

-2 -1 0
Tau

Figure 4.4.2: ;"he orthogonal inner product function of the hyperbolic wavelet (Eq. (4.4.1)).
Th" area under the curve is evidently not zero which means that the hyperbolic wavelet is

not orthogonal or bi-orthogonal.
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4.4.3 Compactly Supported Orthogonal and Bi-
Orthogonal Analyses

If the scaling function of a wavelet does not exist, the wavelet is said to be un-orthogonal

since it requires both the wavelet and scaling functions to be orthogonal or bi-orthogonal.

From Section 4.4.2, it has been shown that the hyperbolic wavelet is not orthogonal and bi-

orthogonal, thus it is not compactly supported orthogonal and bi-orthogonal. These

properties are closely related to orthogonality and bi-orthogonality investigated in Section

4.4.2 and they were briefly mentioned here for completeness.

4.4.4 An Arbitrary Number of Vanishing Moments

In the context of wavelet analysis, the moment function of order a, Ma, is defined by Eq.

(4.4.5)

f!

A

=\ ta-y(t)dt (4.4.5)

where a is in the range of 0 to («o - 1) and CIQ is the maximum moment number.

If Ma = 0 for a > amxy then the moment function is said to vanish at and beyond the

order n ^ . A wavelet that has vanishing moments of order a™* can suppress polynomial

signals of the same order [67], i.e. polynomial signals of order amiX will have zero wavelet

coefficients as seen in Eq. (4.4.5).

4.4.5 Existence of the Scaling Function (pit)

The existence of the scaling function (p(t) is sometime not easy to determine. The scaling

and translating relationship of the wavelet function y^t) and scaling function (p(t) can be

stated as [51]

= 2j/2-\iK2jt-k) and (p{t) =2j/2-(p(2Jt-k)

where k and; are the time translation and scale indices respectively.

(4.4.6)
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Chapter 4: The Hyperbolic Wavelet Function

The scaling function <p(/) and the wavelet function i//(/) both can be recursively

expanded. This relationship is called the dilation or multi-resolution relationship

W) =
AM

• (p(2t - n) and
"=0

g(n) • V2 • yr(2t - n) (4-4.7)

M=0

where A' is the order of the FIR filter h(n).

The scaling function is related to the wavelet function yA,t) by the following relation

[51]

N-\

5 (4.4.8)

71=0

where /ii(7i) is a set of finite coefficients and can be related to /i(«) by

< : j ; I

; : ; • ] ;

#:

I

where h(n) is the scaling filter of the scaling function (p(t).

(4.4.9)

1
If the wavelet function is known beforehand such as in the case of the hyperbolic

wavelet function, then the expression for the FIR filter h(n) can be found. From Eq. (4.4.7),

the first dilation equation for the scaling function (p(t) may or may not exist which

determines the status of (fit). If the dilation equation does not exist (which is the case for the

Morlet and CW wavelets), the FIR filter h(n) cannot be found.

The existence of the scaling function (p{t) is determined by the existence of its scaling

filter h(n). If h(n) does not exist, the scaling function <p(t) cannot recursively expand itself

(Eqs. (4.4.6) and (4.4.7)) through the given space.

Jill,';

4.4.6 FIR Filter

The finite impulse response (FIR) filter is the link between the wavelet function y{t) and its

scaling function (p(t). If the scaling function does not exist, then the FIR filter will not exist

as concluded in Section 4.4.5.
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4.5 Conclusion

The new hyperbolic wavelet has been generated from the new time-frequency hyperbolic

kernel, proposed in Chapter 3. The important link between time-frequency kernels and

wavelets has been established. The hyperbolic, Choi-Williams and Morlet wavelets have

been compared in terms of aliasing effects, scale resolution, total number of required scales

and of maximum required-scale number. It can be concluded that the first-order hyperbolic

wavelet is not orthogonal, nor bi-orthogonal, its scaling function does not exist and therefore

no FIR filter can be generated for this wavelet. Instead, the hyperbolic wavelet is

symmetrical about the vertical axis and can be identified with a unique explicit expression.

The hyperbolic wavelet is a member of the "crude" wavelet group, which includes the

Morlet and CW wavelets. It has been shown that the hyperbolic wavelet has a finer scale

resolution but it has a smaller total number of required scales compared to those of the CW

and Morlet wavelets. In other words, by having a smaller scale limit, the hyperbolic wavelet

power spectrum can be calculated more efficiently than the CW and Morlet wavelets.

The first contribution of this chapter is to propose the new hyperbolic wavelet function

which is generated from the hyperbolic kernel, proposed in the previous chapter. Detailed

coinparisons of the hyperbolic wavelet with the CW and Morlet wavelets are carried out in

this chapter from an engineering point of view. The second contribution of the chapter is to

establish an important link between wavelet functions and time-frequency kernels so that a

new wavelet can be found if a new kernel exists.

The next chapter presents the first application of time-frequency power spectrum

analysis in detecting non-stationary signals using the hyperbolic, CW, Wigner-Ville and

cross-correlator signal detectors. Chapters 6 and 7 calculate the hyperbolic wavelet power

spectra of signals including ECG, music and speech.
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Chapter 5: SIGNAL DETECTION
USING NON-UNITY KERNEL TIME-
FREQUENCY DISTRIBUTIONS

This chapter examines the first application of the hyperbolic kernel in detecting non-

stationary and stationary signals in the presence of noise. Moyal's formula for non-unity

kernel time-frequency detectors is derived based on Moyal's formula for a unity-kernel time-

frequency signal detector (Wigner-Ville detector). Performance comparisons of the

hyperbolic detector, Choi-Williams detector, general non-unity kernel detector, Wigner-

Ville detector and matched-filter correlator detector in terms of signal-to-noise ratio (SNR)

are made. The second application of the hyperbolic wavelet function on wavelet power

spectrum analysis is presented in Chapter 6 and Chapter 7.

si
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Chapter 5: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

5.1 Introduction

Detection of known and deterministic signals in the presence of noise is a classical problem

which has been extensively studied in the literature [68, 74]. To solve this problem, the

signals and the additive noise are assumed to be stationary or wide-sense stationary and

zero-mean processes. A matched-filter technique has been shown to be the most effective

method to detect signals in this case. However, if the signal is non-stationary, i.e. its power

spectrum varies with time, or the signal is not known beforehand, then the classical method

using the matched-filter technique is limited. Non-stationary signals include radar, sonar,

chaotic, ECG, speech, music signals and image matching [75, 76]. For such non-stationary

signals, time-frequency signal detectors need to be employed so that the signals can be'

effectively detected.

One typical time-frequency detector is the Wigner-Ville unity-kernel detector which

can be used to solve a simple binary detection problem [31, 32]. There are two reasons that

the Wigner-Ville time-frequency detector is popular. First, the Wigner-Ville distribution is

simple and easy to implement and it provides perfect frequency concentration in the time-

frequency plane [77]. Second, originally used in quantum mechanics [78], Moyal's formula,

which is required for calculation of the SNR, is readily available for the Wigner-Ville

distribution. Noise sources, which are assumed to be complex, wide-sense stationary, can be

of two common types that are usually encountered in practice, namely white and coloured

noise. Using the Wigner-Ville unity kernel detector, detection of non-stationary signals in

white noise was done by Flandrin [77] and in coloured noise by Marinovich [75], Both

researchers used a method to detect signals by estimating a statistical function r) which is

then compared with a threshold value [18, 24, 31, 32, 77, 79]. If r] is greater than the

threshold, then the signal is said to be present; otherwise, the signal is not present.

The non-unity kernel time-frequency signal detectors form a class of detectors of which

the Wigner-Ville unity-kernel signal detector is a special case. This class of detectors

employs Cohen's time-frequency distributions with different kernel functions. Each kernel

corresponds to a unique distribution and hence to a unique signal detector. The kernel

function strongly influences the performance of the detector in terms of SNR and the higher

the SNR, the better the performance of the signal detector. The simplest non-unity kernel of

the Cohen time-frequency class is the Rihaczek kernel, <lwxf,t(0, T) = ejOtl1. The Choi-

Williams kernel signal detector (CWWD) can be considered as the most useful and popular

detector due to the effectiveness of the Choi-Williams kernel in suppressing cross terms and

] | :
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Chapter 5: Signal Detection, Using Non-Unity Kernel Time-Frequency Distributions

its robustness in noisy conditions. A different class of signal detectors is the bilinear signal

detectors in which the non-stationary structure of the signal is exploited to ensure the best

match of the signal to the detector filter [76]. Another class is the quadratic class of time-

frequency power spectrum, called the hyperbolic class, which was first proposed by

Papandreou and Bartels [80]. Signal detection using this particular class is examined in [26,

81, 82] using the same method of estimating the statistical function 77.

Non-unity kernel signal detectors have been studied in some detail in the literature, in

particular, detectors using the Rihaczek and Choi-Williams kernels. A comparison of the

Wigner-Ville and Rihaczek distributions has been done in [77] in which the Wigner-Ville

distribution was found to be more suitable than the Rihaczek distribution in terms of signal

detection and preservation of the inner product of Moyal's formula. The Wigner-Ville

detector was compared with the Choi-Williams detector [24] for the case of the Doppler

target-return signal using the same method presented in [77]. In [24], the reverberation ratio

SRR was estimated instead of the SNR due to the specific requirements of calculating the

target return.

Although the Choi-Williams time-frequency distribution has been used to detect the

Doppler signal, the statistical function r\ of the general non-unity kernel signal detector

(GNKD) has not been derived. It should also be noted that to estimate the SNR of a time-

frequency detector, Moyal's formula for the corresponding time-frequency distribution of

the detector is required. While Moyal's formula has been derived for the case of the Wigner-

Ville time-frequency distribution of unity kernel only, this formula has not been derived for

a non-unity kernel time-frequency distribution. We derive this formula for non-unity kernel

time-frequency distributions and then apply it to the statistical function r/ to calculate the

SNR of the detector. Thus, deriving Moyal's formula for a non-unity kernel time-frequency

distribution is an important step before any performance calculation of a non-unity kernel

time-frequency detector is carried out. Furthermore, using Moyal's formula is the only

method currently available to estimate the SNR of time-frequency detectors. If Moyal's

formula for a particular class of time-frequency detectors, i.e. Moyal's formula for the

corresponding time-frequency distributions, does not exist, then it is not possible to estimate

performance of detectors employing these distributions.

i

'• 'h v
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Chapter 5: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

This chapter aims to achieve three goals. First, to derive the prerequisite Moyal formula

for non-unity kernel detectors. This formula can be used for any non-unity kernel detector if

a new kernel function and hence its corresponding time-frequency distribution are available.

Secondly, the hyperbolic detector (HyD) and Choi-Williams detector (CWWD) are

compared so that the effectiveness of the hyperbolic kernel in comparison with the Choi-

Williams kernel can be clearly identified. Thirdly, the ability of non-unity kernel detectors

in detecting practical signals such as ECG, music and speech is examined in detail.

The chapter is organised as follows. Section 5.2 briefly defines the binary signal

detection problem and outlines the general expression of the SNR. Section 5.3.2 derives

Moyal's formula in detail for the non-unity kernel time-frequency distribution. In Section

5.3.3, the general detailed expression of the SNR of the GNKD is given using Moyal's

formula. The relative performance of the HyD and CWWD is compared by using the

geometrical features of the hyperbolic and Choi-Williams weighting functions. Section 5.4

calculates the SNR by using Moyal's formula from Section 5.3.2 and compares the loss

factor Q of three signal detectors, namely GNKD, CWD and correlated signal detector

{CORK). Values of an energy ratio X\, which plays an important role in determining the

performance of a signal detector, are estimated in Section 5.4.4 for a number of signals

including a sinusoid sin(f), an exponential transient exp(-t), an exponentially decaying

sinusoid sin(t)-exp(-t), a chirped signal cos(Ct2), the ECG and speech signals including all

the English vowels and the "sh"-sound signals.

:Jf

5.2 The Binary Detection Problem

The binary detection problem can be understood as a problem of determining the presence

of a non-stationary signal s(t) in the presence of a stationary, white, zero mean and complex

noise w(t), given the received noisy signal/(/)• The signal energy and the noise variance are

assumed to be J4O and M> respectively. These parameters are used in this chapter to estimate

a detector performance by estimating its SNR.

Since the signal is non-stationary, the classical method employed for stationary signals

cannot be used. Instead, time-frequency signal detectors have to be employed to detect the

presence of non-stationary and unknown signals which are corrupted by channel noise and

other noise sources. It is assumed that it is not possible to separate frequency power spectra

of the wanted signal and the noisy received signaler) and also that the signal is completely
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Chapter 5: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

masked by the noise «••(/)• The two hypotheses for detecting the signal that need to be

considered are given in Eq. (5.2.1) M

Ho : and //, : /(/) = s(t) + »•(/) (5.2.1)

in which Ho means that the signal s{t) is not present and H\ means the signal is present. The

reference signal s(t) is assumed to be unknown, non-stationary and could be of random type.

The hypotheses are then examined and the main goal is to decide which one of them is

likely to hold. This is done by forming a statistics r] using the received noisy signal/(?) and

the reference signal s(t). The hypotheses are then decided by comparing the statistics r\ with

a threshold value. If 7] is greater than the threshold, the signal is said to be present.

Otherwise, the signal is not present [75-77]. The performance of a particular statistics r) is

determined by estimating its SNR. The SNR of the statistical function r\ for random

variables, which is equivalent to the likelihood ratio, is given by [31,32]

r

\:

SNR =
(5.2.2)

where £(•) and Vor{-) denote the expectation and variance operations respectively on the

statistical function 77 under the hypotheses Ho and H\. The SNR of the matched filter or

cross-correlator detector (CORR) can be found by using the general formula (Eq. (5.2.2))

which will be shown in detail in Section 5.4.1. The next section derives Moyal's formula for

the general non-unity kernel time-frequency distributions based on Moyal's formula for the

unity-kernel Wigner-Ville time-frequency distribution.

1
V
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Chapter 5: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

5.3 Derivation of the Discrete Moyal
Formula for a General Time-Frequency
Distribution

5.3.1 The Discrete Moyal Formula for the Wigner-
Ville Time-Frequency Distribution

To successfully estimate the SNR of a time-frequency detector, Moyal's formula of a

particular time-frequency distribution must be known. The discrete Moyal formula for the

Wigner-Ville time-frequency distribution has been derived by Moyal and forms the basis for

deriving Moyal's formula for a general time-frequency distribution which is vital in

estimating its SNR.

3 [.
i i

ill

The general time-frequency distribution is denoted as TFR((O, t) in continuous form or

TFR(m, n) in discrete form with 0) and / the frequency and time variables respectively, and

m, n the discrete frequency and time variables respectively. From Chapter 3, the general

time-frequency distribution [6, 8] is given in Eq. (5.3.1) as

-fco+oo+oo

TFR(t,co)= -—: f f IV ~im /?,,, (t,t)dudxdO (5.3.1)

—oo—oo—oa

where F(t- u, f) is the weighting function which is the 1-D Fourier transform of the kernel

function <£(0, T), u = t+^- and the local auto-correlation function

/?,,(/,r) = . t( i '+l)-x*(«-f)- The Choi-Williams kernel is given by Ont<0, *) = e~°^'a

[28] and the first-order hyperbolic kernel is given by O//>.(0, T) = [sech(Pet)]", where n = 1.

Two other kernels that can be used for signal detection are the third-order hyperbolic kernel

QcubHyi.®, T) = [sech(POT)]" (where n = 3) and the Choi-Williams-Butterworth (CWB) kernel

2 2/
0CVVB(0, r) = e'°, 2 • It should be noted that the OCIVB(0, T) kernel satisfies the

admissibility constraints discussed in Chapter 3 [8, 13, 14] and has not been reported in the

literature. The CWB and cubic hyperbolic kernels are briefly mentioned in this chapter but

they will not be investigated further in the research presented in this thesis.

4-
ti-

I
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The weighting functions Few, F,fy, FCubny and FC\VB of the Choi-Williams, hyperbolic,

cubic hyperbolic and Choi-Williams-Butterworth kernels are given by Eqs. (5.3.2)-(5.3.5)

respectively

Jit ( cr(r-H)2

(5.3.2)

n (n{t-u)
r« =-r-*ec/i ——— (5.3.3)

..^ :2+u2)Fo.bny= —qi sech (5.3.4)

t-u

m

(5.3.5)

The continuous Wigner-Ville time-frequency distribution is given by substituting $(0,

T) = 1, which is a unity kernel [6, 8,13-15], into Eq. (5.3.1) to obtain

ffi

(5.3.6)

where the range of integration is from -°° to +«> for the rest of the chapter unless otherwise

stated.

w

104



Chapter 5; Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

In discrete form, the Wigner-Ville distribution of two signals/-) and s(-) is given by

Eq. (5.3.7)

M/2-\n\\
Wfi (n, m) = 2 • ^ [/(/! + rk). / ( , , - xk) • exp{- j2nkm/(M +1))] (5-3-7)

n=-(M/2-\n\)

i

where T* is the lag parameter and M is the number of data samples. More detailed

background on the Wigner-Ville time-frequency distribution can be found in [13-15].

The continuous Moyal formula for the Wigner-Ville time-frequency distribution

derived by Moyal in 1949 [78] is given by Eq. (5.3.8) [18, 31, 32, 83]

Pwv =\\Wfs(/'w>• K«.a>)dtda> = j [/(/)• g\t)dt\• j IV(0• s{t)dt (5.3.8)

(0 I

which is a product of two energy terms of four functions/0> 5(0. W) and s(t), i.e. the inner

product has been reserved for the Wigner-Ville time-frequency distribution [77]. As will be

seen later, the discrete Moyal formula for the non-unity kernel time-frequency distribution is

complicated with the involvement of the odd and even samples of the signal in the time and

frequency domains.

The discrete Moyal formula for the Wigner-Ville distribution is given by Eq. (5.3.9)

M/2 M-\

Pwv= (5.3.9)

n=-M/2 HI=0
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The derivation of the discrete Moyal formula for the Wigner-Ville lime-frequency

distribution (Eq. (5.3.10)) is given in detail in [31] and is given here as

H=-Af/2

A//2

«=-A//2

Af/2

_v=-A//2

v=-M/2

(5.3.10)

To apply the discrete Moyal formula to find the SNR of the GNKD, the following

identities are applied to Eq. (5.3.10): ,?(•) s /i(-) = $(•). The following section derives the

discrete Moyal formula for the GNKD. 1
5.3.2 Derivation of the Discrete Moyal Formula for the

General Non-Unity Kernel Signal Detector

The discrete Moyal formula for the Wigner-Ville distribution was given in the previous

section. This section extends Moyal's formula for the general Cohen non-unity kernel time-

frequency distribution. Given the reference signal s(i) with energy AQ and the white noise,

zero mean process w(t) of variance A'o, the problem we have to solve is to determine the

existence of the reference signal in noisy conditions. The signal energy Ao and the absolute

energy difference Bo between the even and odd samples of the signal s(t) are defined by

1

Ao = \s(kf and Bo = 2J
kevm=-M/2

(5.3.11)

m

The energy and energy difference of the noise w(t) are similarly defined by Eq. (5.3.12)

No= a n d

k=-M/2

M/2 Af/2

*o.en =-M/2

(5.3.12)

106



Chapter 5: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

From Eqs. (5.3.11) and (5.3.12), the dimeisionless energy ratios of the signal s(t) and

the noise w(t) are defined as X, = -^ and X2 = - ^ respectively. It is evident that the ratios

X\ and X2 are positive and less than unity since Au > Bo > 0 and NQ>M0> 0. Generally,

values of Bo could be in the range of -Ao < Bo < Ao, however, in this chapter, only the

positive half of Bo is considered due to its usefulness and convenience in practical situations.

The same convention is applied to Mo of the noise. The physical meanings of Xi and X2 will

be discussed in detail in Sections 5.3.3 and 5.4.3.

The discrete form of the general time-frequency distribution is also given by Eq. (5.3.9)

but with W(n, m) replaced by TFR(n, in) as shown in Eq. (5.3.13)

V't-
i- i:

M

Mil J-\

PGNKD -

n=-M/2 m=Q

V TFRfs («, m) • TFRl (n, m) (5.3.13)

The discrete form of the general time-frequency distribution with a non-unity kernel is

given by

;M

L MJ2

TFR(n,m) = 2\ "/V("'
c=-L u=-Mj2

{" ~T)- F(n -u ,z ) • exp{- (5.3.14)

where L = 4p -1«|, F(n - it, r) is the 1-D Fourier transform of the kernel functions O(0, T),

M is the length of the input discrete signal, m and n are the discrete time and frequency

variables respectively.

The discrete Moyal formula for a non-unity kernel distribution is obtained by taking a

product of two discrete TFRQi, m)'s and is given in Eq. (5.3.15)

P,GNKD =4

n=-M/2

xk=-Luk=-Ml2

exp{j2n • (r, -rk)- m/M)

m=0

L MIT.

ri=-Lu,=-M/2

where F is the weighting function of the kernel.
(5.3.15)

m

I
I
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The summation with respect to m in Eq. (5.3.15) can be replaced by M-8 (T; - Tt) [31,

84] which results in r, = Tk=r so that the impulse function exists. After putting pk = ut + r

and qk = uk - rand similarly p, = it, + rand q, = u, - T, Eq. (5.3.15) can be rewritten as

2^
n=-A//2

= 4M

n=-M/2 _'il=\"\ P/=-A/+|n|

(5.3.16)

where A and B correspond appropriately to the square-bracketed terms in Eq. (5.3.16).

From the above, we also obtain Pk = pt + qk = 2»t and Pi = pt + qi = 2«/ which are even

numbers. Thus, to allow the summation over the specified range given in Eq. (5.3.16), the

factors •i-(l + (-l)/)*+</t) and •i-(l + (-l) / ' '+ '") are inserted into the expressions A and B in

Eq. (5.3.16) respectively without affecting the correctness of the expressions since the

inserted factors are unity in value. After multiplying, separating and rearranging the

variables appropriately, we obtain

n=-M/2

n=-M/2 qk=-\

(5.3.17)

where A and B correspond to the square-bracketed items and the running ranges of pk and qi

are similar to those given in Eq. (5.3.16). Eq. (5.3.17) is the final form of the discrete Moyal

formula for the general time-frequency power spectrum with a non-unity kernel. The next

section gives the calculations of the SNR of the statistics of the hypotheses Ho and Hi for the

non-unity kernel general case by using Eq. (5.3.17).
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5.3.3 SNR Calculation of the General Non-Unity
Kernel Detector and Performance Comparison
of Different Non-Unity Kernel Detectors

Having obtained Moyal's formula for the general time-frequency distribution, detailed

derivation of the SNR of the GNKD can be made by employing Eq. (5.2.2). The mean and

variance of the statistical function ?j are given by

E{I1TFR\,,0)=0 since E{w(t)} = 0

E{ T)TFR\l{ }= 2MCc, where M is the length of the input data samples and

PI

'Ik Pk ii PI

(5.3.18)

H

1
i
K j

Under the special conditions pt = pi, qi = qn and qt = qi, Cc (given by Eq. (5.3.18))

becomes a constant Cc = C = (AQFf + (B0F)2, where

AQF = s{qk) and B0F =

ik 'it

Since r\TFR\lh = C + r]TFR\IlQ, the variance of VTFR\HI
 ]S equal to that of

Detailed derivations of the variances of the statistics and its SNR are given in Appendix B.

The variance of the statistical function r]TFR\u is given by

I

Jf.V

I
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/ / , ' - " • • " / • « ! / / , •

A//2 A//2

M " ' 2j Z~/(A°' A™FF ' N°FF ' AOl ) + (^0 • B0\ • NOFF • B0]FF )
n=-A//2 j=-A//2

V-"0 ' •"01 ' "OFF ' "OIFF Ĵ " 1^0 " ^OFF " ^01 ' BO\FF J^ (,-^0 ' ^OFF ' ̂ 0 ' ̂ OFF /

{2A0 • BQ • NQFF • B0FF)+ (2BQ • M0FF • Ao • AOFF)+{2B0 • M0FF • Bo • B0FF)

(2B0 • M0FF • Bo • B0FF)+ (2B0 • M0FF • Ao • A 0 F F )

Al'/3 A//2

n=-A//2 j=-A//2

+ 2[2{A0 • N0FF • Bo • B^p)+ 2(B0 • M0FF • Ao • A0FF )+ 2(B0 -MOFF-B0- BOFF )

(5.3.19)

where

^OIFF = 2_j F' ' s(p'

PI Pn

PI

Wi

The 5N/? of the G^^D is given by

Pi

'it i

' N°FF =

(5.3.20)

!i

SNR,
2MC

GNKD
(5.3.21)

The SNRGNKD for the special case of p* = pi, qk = qi and q\ = <7;i is given by

SNRGNKD (5.3.22)
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It is worth repeating that *i = -JJ- and X2 = ^J-, which were defined by Eq. (5.3.11)

and Eq. (5.3.12) in Section 5.3.2, are ratios of the absolute energy difference between the

even and odd samples of a signal and noise to its total energy of the input signal and noise

respectively. The ratio Xi can be estimated by using simulation at different sampling rates. It

will be shown later in Section 5.4.4 that the sampling rate can affect the value of X\, which

in turn will affect the performance of the signal detector.

The physical meanings of the energy ratio X\ can be understood as the ratio of the

bandwidth (the Difference_Energy given by Eq. (5.3.23)) to the total energy of the input

signal. As it will be shown later in Figure 5.4.1 to Figure 5.4.3 that the smaller the value of

Xu the higher the signal detector performance in detecting a particular signal. In addition,

satisfactory performance can be achieved by having the value of X\ close to 1.0 provided

that Xi is small (Section 5.4.3). However, the latter scenario is not applicable to situations in

which the X2 ratio of the noise is large. The energy of the input signal can be expressed in

terms of the even and odd energy of the input signal

I f - 2 f 2
Total_Energy = Even_Energy + Odd_Energy = — I F(co) da)= f (t)dt

Difference..Energy = |Even_Energy - Odd_Energy| ~ Signal_Bandwidth

Difference_Energy
Absolute_Energy_Ratio =

Total_Energy

where F(co) is the Fourier transform of the input signal fit).

(5.3.23)

Theoretically, the constant signal (-<» < t < +°°), which according to Eq. (5.3.23) has a

zero bandwidth, is most effectively detected since there is no energy difference between the

even and odd samples of the signal. The Fourier transform or the energy density of the

constant signal is a single impulse <5(«) located at the origin. This impulse is regarded as a

perfect way to concentrate the energy in the frequency domain since there is no energy

smearing. The bandwidth of a constant signal is zero since there is no "width" in the

frequency domain for an impulse. In the case of periodic sinusoidal signals, the Fourier

transforms of the functions sin(oJot) and cos(Wot) are impulses located at frequencies ±(Oo.

These impulses perfectly concentrate the energy of the input signal in the frequency domain,

as a result, their bandwidths are effectively zero. Thus, it can be concluded that signals that

have a zero Fourier-frequency-domain bandwidth such as the constant and periodic sinusoid

111

i,



Chapter 5: Signal Detection Using Non-Unity Kernel Time-Frequency Distributions

signals are effectively detected by using a time-frequency signal detector. Simulation results

in Section 5.4.4 shows that the periodic sinusoid has a zero-valued Xi which is consistent

with the theoretical prediction of Eq. (5.3.23).

The two cases mentioned above validate Eq. (5.3.23) in which the absolute energy

difference between the even and odd samples of an input digital signal is directly

proportional to its Fourier-frequency-domain bandwidth. Other types of signals including

exponential transient exp(-t), chirped cos(C-f), exponentially decaying sinusoidal

sin(oh)-exp{-t) have non-zero bandwidths which result in a larger energy ratio X\. Hence,

detecting signals having wider bandwidths is more difficult than detecting those with

narrower bandwidths. Real signals such as the ECG and speech are effectively detected

using a time-frequency signal detector as will be seen in Section 5.4.4.

The fact that wide-band signals are more difficult to detect than narrow-band signals

can also be explained by looking at the problem from a filter point of view. If the signal is

wide-band, it is more likely to be contaminated by other signals such as noise disturbances

that have been sent at the same time in a pass band of a filter. The role of the filter is to

extract detected signal(s) in its pass band. If the pass band contains not just the wanted

signal but a mixture of two or more signals, then the signal is more difficult to detect.

From Eqs. (5.3.18) and (5.3.19), it is evident that the SNR of a signal detector is

proportional to the volume under the surface of the weighted signal, i.e. a product of the

signal s(t) and the weighting function of the kernel, and inversely proportional to the volume

of the weighted-signal variance. Thus, if the volume under the surface of the weighted

signal is larger than that of the weighted-signal variance, SNR of the corresponding detector

is high. Furthermore, it has been found that the hyperbolic kernel is more robust [29, 30]

than the Choi-Williams kernel. Thus, the HyD provides a smaller noise variance than that of

the CWWD for well chosen values of )3 > 3 as can be seen in Figure 5.3.1 in which the

volume under the surface of the weighted-signal variance is displayed. As a result, the SNR

of the HyD is better than that of the CWWD. Table 5.3.1 gives the volumes under the surface

of the weighting functions of four kernels: hyperbolic, cubic hyperbolic (the third power of

the hyperbolic kernel), Choi-Williams and Choi-Williams-Butterworth kernel (a product of

the Choi-Williams and Butterworth kernels [25]). The volumes under the surface of the

weighted variance of the four kernels for some typical values of /? are also listed in Table

5.3.2. It is evident from Table 5.3.2 and Figure 5.3.1 that for different values of the control

parameter /3, a different volume under the surface is obtained. Thus the control parameter of
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a kernel plays an important role in determining the performance of the corresponding signal

detector and of time-frequency kernels as it was shown in Chapter 3.

Table 5.3.1: Volumes under the surface of the Choi-Williams, hyperbolic, cubic hyperbolic
and CW-Butterworth (Eqs. (5.3.2)-(5.3.7) respectively) weighting functions

p

0.1
1
5
10
20
50
100

Hyperbolic
kernel
12.08
11.997

9.9
7.39

4.884
2.44

1.3173

Volume under the surface of the
Cubic Hyperbolic

kernel
12.04
11.88
7.58
4.98
2.98
1.33
0.68

weighting function
Choi-Williams (CW)

kernel
12.014
11.98
11.02
9.953
8.63
6.78
5.47

CW-Butterworth
kernel
11.91
11.78
10.78
9.787
8.53
6.74
5.45

1.2

CW and Hyperbolic Noise Variance

1 3 5 8 10 12 15 20 30 40 50 60 70 80 90 100 200 500 700

Beta

Figure 5.3.1: Noise variance of the HyD and CWWD (this figure is taken from Chapter 3,
Figure 3.7.1)
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p

0.1
1
5
10
20
50
100

Volume under the surface of the variance of the weighting function
Hyperbolic

kernel
5.25
0.51
0.1

0.046
0.0195
0.0054

0.00175

Cubic Hyperbolic
kernel
2.766
0.274
0.05
0.02
0.008

0.0018
0.000494

Choi-Williams (CW)
kernel
1.02

0.322
0.1425
0.0985
0.067

0.0387
0.025

CW-Butterworth
kernel
0.36
0.234
0.13
0.094
0.065
0.0038
0.025

The volume under the surface of the weighted-signal variance is directly proportional

to the variance of a time-frequency signal detector. The smaller this volume, the better is the

performance of a particular time-frequency signal detector. The performance of the GNKD

in terms of SNR is dependent on the volume under the surface of the weighted signal and its

variance. The loss factor Q of the GNKD over the Wigner-Ville unity-kernel signal detector,

i.e. a ratio of SNRGNKD to SNRCWR, is given by

Q(GNKD/CWD) =
+ n(SVGNKD)2

(5.3.24)

where VGNKD and (SVGNKD) are the volumes under the surface of the weighted signal and its

variance respectively. Eq. (5.3.24) can be used to estimate the improvement factor for

different non-unity kernel time-frequency signal detectors.

To measure the relative performance of the HyD and CWWD, their loss factor Q is

formed as [32]

Q(HyD/CWWD) =
SNR,CWWD

'HyD

-CWWD

CWWD\

Var{r]IlyD\t

VHviHyD

V,CWWD

sv,CWWD

SV,HyD

(5.3.25)

where Vup and VCWWD are the volumes under the surface of the weighted signal and SVHyD,

SVCWWD are the volumes under the surface of the weighted-signal variance of the hyperbolic

and Choi-Williams kernels respectively.
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Using the data provided by Table 5.3.1 and Table 5.3.2, the improvement factor Q of

the HyD and CWWD are calculated and given in Table 5.3.3.

Table 5.3.3: Improvement factors Q of the HyD and CWWD, 3 < /3< 10
Signal Detector

HyD
CWWD

Improvement Factor Q
22.5 <Q,,vD< 24.8 (IB

22.554 <QawD< 23.9 dB

The relative performance of the HyD to that of the CWWD is graphically displayed in

Figure 5.3.2. From Eq. (5.3.25) and using the appropriate values from Table 5.3.1 and Table

5.3.2, the CWWD is more effective than the HyD by 63% for /3 = 1. From Figure 5.3.1 and

Figure 5.3.2, it is evident that for /3 < 3, the performance of the HyD is worse than that of the

CWWD due to a larger noise variance or larger volume under the surface of the weighted-

signal variance. For j3 > 3, and typically /? = 5, the HyD provides a larger SNR by a factor of

1.15 (15%) than that of the CWWD. For /3 = 10, the performance of the HyD is

approximately 1.18 (18%) times better than the CWWD in terms of SNR. As )3 further

increases, the performance of the HyD gradually degrades even though at )3 > 500 the

performance is slightly improved. This is due to an unequal rate of change of the volume

under the surface of the weighted signal and that of the weighted-signal variance.

Relative Performance of the HyD to CWWD

1.2-

0, , 3 5 6 7 8 9 10 20 50 100 200 500 1000 2000 3000 5000

Beta

Figure 5.3.2: Loss factor Q of the HyD and CWWD (Eq. (5.3.25)) as a function of the kernel
control parameter f3 = l/cr. The useful range of (3 is evidently from 3 to 10.
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From Figure 5.3.2, it can be suggested that the HyD is better than the CWWD in terms

of SNR over the typ ,.ul range of the control parameter /? of 3 < B < 10. Outside this range,

the CWWD outperforms the HyD. For large values of B(B> 500, i.e. cr< 0.002) the HyD

might provide a large SNR which is mainly due to a relatively large volume under the

surface of the weighted-signal variance. It should be noted that large values of /J are not

applicable in practice since the hyperbolic weighting function collapses (in shape) into a

near-flat function with a very small volume under the surface. This shape of the weighting

function indicates that the kernel is not stable under these specific conditions of large B

(small o" for the Choi-Williams kernel) and should not be employed as a time-frequency

kernel. This fact was explained in detail in Chapter 3. In contrast, the Choi-Williams

weighting function retains its original shape for very small values of a by having a finite

volume under the surface. This makes the Choi-Williams kernel and CWWD more stable

than the hyperbolic kernel and HyD over extreme values of the control parameters B and a.

At this point, it is appropriate to summarise all the trade-off(s) that have been stated in

Chapters 3, 4 and in this chapter so that important remarks can be made. From Chapter 3, it

can be concluded that for B in the range of 0.5 < B < 3.5 the hyperbolic kernel is more

effective than the CW kernel in terms of cross-term suppression and auto-term magnitude.

For noise robustness, the range of B is (3 > 3. As stated in Chapter 3, for 20 > /3 > 0.5, the

hyperbolic auto-term magnitude is still acceptable even though it is lower than that of the

CW auto terms. From Chapter 4, for 0.01 < B < 7.8, the hyperbolic wavelet has a finer scale

resolution (Od than that of the CW wavelet. From the obtained results in this chapter, for

effective signal detection, the useful range of B is 3 < B < 10. However, the performance of

the HyD is still compatible to that of the CWWD for B < 50. Thus, the useful range of B,

taking into consideration the auto-term magnitude, auto-term resolution, cross-term

suppression, noise robustness, scale resolution and effective signal detection, is 3 < /? < 10

and the practical or applicable range of B is 0.5 < /3 < 50. However, the only disadvantage of

the hyperbolic kernel is that its auto-term resolution is poorer than that of the CW kernel and

most of the MTE kernels as was explained in Chapter 3.

This section has covered a number of important topics of the chapter. Firstly, Moyal's

formula for the Wigner-Ville time-frequency distribution was stated. Then, the discrete

Moyal formula for the GNKD was derived based on Moyal's formula for the WV

distribution. After that, the SNR of the GNKD and performance comparison of the HyD and

CWWD were discussed. The next section studies the CORR, CWD and GNKD by

calculating their SNR's.
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5.4 Performance Comparison of Some Time-
Frequency Signal Detectors

Section 5.3.3 derived an expression of the SNR of the GNKD in detail and analysed the

physical meanings of the energy ratio X\. Relative performance of the HyD and CWWD was

successfully measured based on geometrical characteristics of the hyperbolic and Choi-

Williams kernels respectively. In this section, performance of three signal detectors namely,

CORR, CWD and GNKD will be estimated as a function of X, = j± and X2 = - ^ under the

general case and special cases. The SNR expression of the GNKD derived in Section 5.3.3

(Eq. (5.3.22)) is employed to determine its performance. The SNR expressions of the CWD

and CORR have been given in the literature and will be used to compare their performance

with that of the GNKD.

5.4.1 Performance of the Cross-Correlator Signal
Detector (CORR)

The performance of the cross-correlator method, known as the matched-filter method, is

considered as the best method in binary signal detection since it provides the best SNR [31,

74]. The statistical function r\ is given by

VCORR •J *(f)dt - w b e r e -°° - ' - +o°- (5.4.1)

The SNR of the cross-correlator detector is given by [32]

SNRCORR (5.4.2)

where Ao and M) are the signal energy and noise variance respectively.

The SNR of the CORR is not affected by the energy difference between the even and

odd samples of the signal (A'l) as in the case for the CWD with a unity kernel function as

will be discussed in the next section. For the case of a non-unity kernel signal detector, the

effects of the absolute energy difference between the even and odd samples of the digital

input signal and noise (X2) are included as will be shown in Section 5.4.3.
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5.4.2 Performance of the Wigner-Ville Detector

The performance of the Wigner-Ville detector (CWD) was studied by Kumar and Carroll for

the continuous and discrete cases [18, 31, 32, 79]. The SNR of the Wigner-Ville signal

detection is given by Eq. (5.4.3) as

SNRCW0 = (5.4.3)

The SNRCWD of the Wigner-Ville time-frequency signal detector is clearly smaller than

the SNRCORR of the cross-correlator detector given by Eq. (5.4.2) due to the effects of the

ratio Xi=&.

5.4.3 Performance of the General Non-Unity Kernel
Signal Detector (GNKD)

The performance of the GNKD was briefly estimated in Section 5.3.3. In this section, its

performance under general and special cases, such as for small values of X\ and X2, is

discussed. Relative performance of the GNKD, CORR and CWD is also estimated by taking

ratios of their SNR's to form the loss factor Q. The larger the value of the Q factor, the better

the performance of the relevant signal detector.

From Eq. (5.3.22), it is evident that the SNR of the GNKD depends on Xt and X2, which

clearly shows the effects of a noise source on the performance of the detector. It should be

noted that in the case of the Wigner-Ville distribution employing a unity kernel, the effects

of the noise ratio X2 are not apparent [31]. In addition, the effects of X\ range from the first

power to the third-power terms as shown by Eq. (5.3.22). The noise ratio X2 is of the first

power only which significantly affects the SNR of the GNKD.

If x2 = ^~ is very small, i.e. the noise energy difference is most evenly distributed

among its even and odd samples or the noise bandwidth is small, then Eq. (5.3.22) becomes
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SNRGNKD = (5.4.4)

After separating the kernel weighting function, we obtain

, where X2 is very small. (5.4.5)

If X2 = -jf- is not small, then SNRGNKD will be further reduced and the performance of

the GNKD is degraded. It is also important to note that the SNR of the GNKD has been

calculated under the special conditions of p* = pi, qt = qi and qt = qn stated in Section 5.3.3.

This means that only the auto terms in the summations (see Appendix B) are included and

interactions among them are ignored. The performance in this case can be considered as the

lower limit performance of the detector. For the general case, the SNR of the GNKD is given

by Eq. (5.4.6)

SNR,GNKD

(5.4.6)

The 3-D graphical presentation of the normalised SNR of the GNKD, SNRGNKD, as a

function of X\ - ^- and X2 = ^f-, is displayed in Figure 5.4.1. It should be noted again that

for the case of the non-unity kernel time frequency signal detector, the effects of noise are

taken into account which reduces the performance of the detector. From Figure 5.4.1, the

minimum SNRGNKD is -0.6602 (IB at {Xx = 0.63, X2 = 1), i.e. when the energy difference of

the even and odd samples of the noise is equal to its energy. In other words, when the noise

is energy balanced.
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Figure 5.4.2 and Figure 5.4.3 show the absolute and normalised loss factors of

GNKDICORR, GNKD/CWD and CWD/CORR respectively as a function of X,. The absolute

plot of the SNRGNKD
 in Figure 5.4.2 has the same shape as that of Figure 5.4.3 except that its

maximum value is V2 = 1.414, i.e. the SNRCNKD is improved by a factor of -Jl or about

41.4% compared with the CWD and CORR. From these figures, detailed comparisons of the

three signal detectors are shown clearly in Table 5.4.1.

Normalized SAW of the GNKD in terms otXj and X3

Figure 5.4.1: Normalised SNRGNKD of the GNKD (Eq. (5.4.6)) as a function of X, and X2.
The optimum performance of the GNKD is obtained by having X, in the range of Xi of 0.0 <

X, < 0.2 or 0.9 < Xi and X2 < 0.2.

The Q factor of the GNKD and CWD is then given by the ratio of Eq. (5.4.5) to Eq.

(5.4.3) (when X2 is small)

SNR,CWD ^ + 2

(5.4.7)
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1.42
Absolute Q Factors of GNKD/CWD and GNKD/CroxsC

1.28

1.26

1.24
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.4.2: Loss factor Q (GNKD/CWD) (Eq. (5.4.7)) and Q (GNKDICrossQ as a
function of X\. The typical range of X\ for satisfactory performance is 0.0 < X\ < 0.1 or 0.9

X\ < 1.0 when Xjis small.

It should be noted that the HyD and CWWD belong to the GNKD class in which the

kernel function is non-unity. The CWD is a special of the GNKD in which the unity kernel

function is employed. From Eq. (5.4.7), SNR of the GNKD is about 41.4% (by a factor of

-Jl) higher than that of the CWD which clearly reveals the advantage of using non-unity

kernel time-frequency distributions.

When X2 is small, the loss factor of the GNKD and the classical CORR is given by

Q(GNKD/CORR) =
SNRGNKD _

SNRCORR
(5.4.8)
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It was found in Section 5.3.3 that the ratio of the bandwidth (Eq. (5.3.23)) to the total

signal energy (Eq. (5.3.11)), Xu determines the performance of a time-frequency signal

detector. Decreasing the bandwidth and increasing the energy of the signal lowers this ratio

and leads to better performance. For good performance, typical ranges of X\ of 0.0 < X\ <

0.2 or 0.8 < Xi < 1.0 if 0.0 <X2< 0.2 are required as can be seen in Figure 5.4.1. Thus, any

value of Xi in the range of 0.2 < X\ < 0.8 will considerably lower the SNR of the detector

and should not be used. If there is energy balance in the odd and even samples of the input

signal, i.e. Xi is close to zero, then the signal is best detected.

When there is energy unbalance among the odd and even samples of the signal, i.e.

there is clear dominance of even over odd samples or odd over even samples, X\ will be

close to unity. In this case, if the noise energy is evenly distributed then best detection can

be achieved. Otherwise, the signal is not effectively detected.

QN Factors of GNKD/CWD, GNKD/CrossC and CWD/CrossC

o
O

to

i
o

0.98

0.96

0.94

0.92

0.9

0.88
0 . 0.1 0.2 0.8 0.9

Figure 5.4.3: Normalised QN (GNKD/CWD) (Eq. (5.4.7)), QN (GNKDICORR) (Eq.
(5.4.8)) and QN(CWD/C0RR) (ratio of Eq. (5.4.3) to Eq. (5.4.2)) as a function of X,. For the
CWD, the typical range of Xi can be extended to 0.0 < Xi < 0.3. The maximum value of each

Q factor was used as the normalisation factor.
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Table 5.4.1: Worst performance ratio of the GNKD to CWD (Eq. (5.4.7)), the CWD to
CORK (ratio of Eq. (5.4.3) to Eq. (5.4.2)) and the GNKD to CORR (Eq. (5.4.8)) as a

function of X, as seen from Figure 5.4.3. The best performance is obtained at QN = 1 with
the corresponding SNR = 0 dB.

Signal Detector Comparison

GNKD/CWD
CWD/Cross-Correlator

GNKD/Cross-Correlator

Worst Performance

A)

0.35
0.6

0.45

Normalised Loss factor
QN

0.9258
0.9428
0.8829

SNRofQN(clB)

-0.67
-0.5

-1.08

H ' I '

The performance of the CORR, CWD and GNKD has been compared and it is clear that

the GNKD has the largest absolute SNR. The next section studies the effects of sampling on

the performance of time-frequency signal detectors using typical signals.

5.4.4 Some Typical Examples

In Sections 5.4.1-5.4.3, the performance of the COT?/?, CWD and GNKD were theoretically

estimated and compared by using the discrete Moyal formula derived in Section 5.3.2. In

this section, the experimental aspects of detection performance and the effects of sampling

on the input signal are examined using the GNKD. Moreover, particular attention is given to

how the energy ratio Xi varies with different values of the sampling interval At. Since X\ is

the energy ratio of the even and odd samples of the digital input signal, its value strongly

depends on the type of signal and the sampling interval At. Some typical and popular signals

in practice are examined such as a sinusoid at 50 Hz (sin(2n • 500). decaying exponential

exp{-t), an exponentially decaying sinusoid sin{t)-exp{-t), chirped cos(C-t"), ECG and

speech.

As was mentioned in Section 5.3.3, for digital input signals, the sampling interval does

affect the value of the energy ratio Xi of the signal.. A number of waveforms have been

digitised at different sampling rates and the experimental results are summarised in Table

5.4.2. The sampling interval should be small enough to obtain small values of X\. In this

case, the sampling frequency is set to be about four times larger than the critical Nyquist

frequency of the input signal. From Table 5.4.2, it appears that sinusoidal signals can be

efficiently detected using time-frequency signal detectors.
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The transient signal exp(-t) has a large-valued X\ which can yield poor SNR if At > 500

ms. Sinusoidal signals can be very efficiently detected with very small-valued X,. It is

important to emphasise that for periodic signals, the signal sampling interval should be

chosen long enough so that A', can be correctly estimated. The exponentially decaying

sinusoidal signal has the largest X\ of 0.14 at the worst sampling interval Atw = 0.6 s with the

corresponding worst SNRK = 0.935 as can be seen in Table 5.4.2, where the subscript "w"

indicates the worst case and "b" the best case. The ECG and speech signals appear to have

small-valued X\ which might suggest that these signals can be successfully detected using

the GNKD. The non-stationary chirp signals can be very efficiently detected ring the

GNKD with the worst and best SNR's are relatively close to 0.99 and 1.0 - . ! -Om

Figure 5.4.3, the QN factor in detecting signals that have X\ < 0.1 ic >• •, ' >

range of QN > 0.95 which is satisfactory.

Table 5.4.2: The best and worst cases in detection of some typical •„ > ' . ' I 'MV < NKD
in terms of normalised SNRCNKD in Figure 5.4.1 when X2 is small. 71. ; h .< ! A>" and

"b" indicate, the worst and best cases respectively.

Signal

sin(2nx50n)
exp(-n)

exp(-n)-sin(n)
cos(2mi-0.125in/M ))

ECG (averaged over 12
channels)

Speech [85] (English
vowels "a", "e", "o", "u",
"i" and the sound "sh")

Worst Case
Atw (ms)

5.00
500
600
800

Xl(w)

1.00
0.462
0.14

0.008

SNRW

(cIB)

0.75
0.65

0.935
= 0.99

The sampling intervals for
these cases are fixed. There

are no worst or best cases for
these signals.

B e ^ ^uS'S

Atb

(ms)
2.00

10
100
0.1

1.00

X\0)

0.00
0.01
0.04

5.0 x 10"7

4.75 x 10"6

3.7 x 10"4

SNRb

(dB)
1.00
0.98
0.975
= 1.00

1.00

1.00

From Table 5.4.2, it should be noted that for the exponentially decaying sinusoid, the

worst and best detection of the signal are quite similar which suggests that the signal can be

well detected using the GNKD. Based on the performance of the GNKD, it is evident that

stationary signals such as sinusoids can be effectively detected using time-frequency signal

detectors. Detecting non-stationary signals such as the decaying exponential exp(-t), chirp

and exponentially decaying sinusoidal sin(t)-exp(-t) signals is dependent on the sampling

interval used to sample the signal. If the sampling interval At is fast enough, then the

detection process will be effective.
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5.5 Conclusion

This chapter reports on some investigations in the field of time-frequency signal detection.

Firstly, the discrete Moyal formula has been derived for the general case in which the

kernel function is not a unity kernel. The performance of the general non-unity kernel signal

detector (GNKD) has been examined by using the discrete Moyal formula to obtain the SNR

of the statistical function 77. It has been shown that the GNKD perform better than the

Wigner-Ville detector (CWD) by increasing its SNR by a minimum factor of V2. The

performance of the correlator detector has also been examined and compared with that of

the CWD and GNKD. It has been found that the hyperbolic detector HyD and Choi-Williams

detector (CWWD) can improve the SNR over the CWD by a factor Q in the range of 22.5 dB

< Q,ly < 24.8 dB and 22.5 dB < Qcw ^ -3.99 dB respectively over the typical range of 3 < P <

10. From the results obtained in Chapters 3, 4 and in this chapter, the applicable range of/3

is 0.5 < (3 < 50 for satisfactory performance on signal detection, scale resolution (discussed

in Chapter 4), cross-term suppression, auto-term magnitude and noise robustness (discussed

in Chapter 3) at the expense of having a poor auto-term resolution (discussed in Chapter 3).

This is an important trade-off among crucial parameters that significantly affects the

performance of a kernel.

Secondly, a new signal detector, the hyperbolic time-frequency signal detector, has

been proposed and investigated. The new detector performs better than the famous CWWD

by improving the SNR by 18% for 3 < j3 < 10, independent of the input signal because of the

nature of the weighting functions of the CW and hyperbolic detectors.

Thirdly, the performance of the GNKD using a number of typical signals has been

examined. It has been shown that the sampling interval can affect the performance of the

GNKD by varying the energy ratio Xi = Bo/Ao . It has also been observed by simulation

that sinusoidal and chirped signals can be efficiently detected with satisfactory SNR.

Transient signals can be efficiently detected by using a suitable sampling interval.

Physiological signals such as the ECG and speech can be successfully detected with the

normalised SNR in the approximate range of 0.99 to 1.00.
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Chapter 6: THE HYPERBOLIC
WAVELET POWER SPECTRA OF
TYPICAL SIGNALS

This chapter introduces the wavelet power spectrum as a useful technique to study signal

characteristics in which the hyperbolic and sym3 wavelets are employed. The hyperbolic

wavelet power spectrum technique is employed for typical signals including ECG,

sinusoidal and transient exponential. Chapter 7 develops this technique for practical non-

stationary signals such as music and speech. Comparisons between the Fourier power

spectrum technique and hyperbolic wavelet power spectrum technique are also made.
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6.1 Theoretical Background of the Wavelet
Power Spectrum Technique

Analyses of stationary signals have been carried out over many decades using the Fourier

transform. The basis of the Fourier transform is that any function can be represented by a

sum of a number of complex exponential functions, in other words, sinusoids and co-

sinusoids. The discrete Fourier transform is defined as [41]

(6.1.1)

H=0

where x(n) is a discrete input signal, X(k) is its Fourier transform, M is the length of x{n)

and k is the frequency variable in rad/s.

The merits of the Fourier transform method were discussed in detail in Chapter 1 at the

beginning of the thesis. Based on this discussion, it is clear that there are a number of issues

that need to be taken into account when using the Fourier transform. First, the Fourier

frequency spectrum of a signal f(J) is obtained by averaging its values over an infinite time

interval since the Fourier kernel function is exponential. As a result, if the signal spectrum

varies with time (as for non-stationary signals) then fine spectral details will be lost. Thus,

for the Fourier transform to be accurate, the input signal should be stationary or wide-sense

stationary which means that its statistical properties do not vary with time. Secondly,

signals, in general (from linear and non-linear systems), consist of a sum of different

harmonics which interact with each other to cause quadratic phase coupling [86, 87]. The

significant limitation of the Fourier transform method is that it cannot provide information

on interactions of different harmonics. Thus, estimating the Fourier transform of a signal

only reveals information about the frequency spectral contents of each harmonic component

over a specified frequency range averaged over the entire time horizon.

r
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To understand a signal, its energy distribution or energy density must be examined.

Higher-order statistical techniques using the Fourier transform such as the power spectrum

and bispectrum have been successfully employed to study signal energy distributions [2, 4].

In using higher-order statistical techniques, correlation functions and the Wiener-Khinchin

theorem play important roles. The general correlation function is defined by [86, 87]

A/-1

(6.1.2)

n=0

where T; IS the lag parameter in the range of 0 - (M - 1), m is the order of the correlation

function, m = 1 corresponds to the auto-correlation function (whose Fourier transform is the

power spectrum) and n is the discrete index of the input signal x(n).

The Wiener-Khinchin theorem [41] is given by

r=M-\

P(co) = (6.1.3)

r=0

M-\

where R\{x) = } x(n) • -v(« + T) is the auto-correlation function and P(co) is the power

;i=0

spectrum of the discrete input signal x(n).

From Eq. (6.1.3), the power spectrum can be rewritten in a simpler form

(0))= X(a>)
(6.1.4)

where the symbol "*" indicates the complex conjugate operation.

It should be noted that Eq. (6.1.4) is directly derived from Eq. (6.1.3) and the former

employs a product of two Fourier transforms of the input signal. The power spectrum is

usually estimated by using Eq. (6.1.4) rather than Eq. (6.1.3) to reduce its computational

burden. Other higher-order frequency functions such as the bispectrum and trispectrum can

be formed based on Eq. (6.1.4), which is also used to form the analogous wavelet power

spectrum (WPS) to improve calculation efficiency.
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From Eq. (6.1.4), it is evident that the phase information is suppressed and only the

magnitude information is given by the power spectrum. Therefore, the power spectrum is not

unique since there might be more than one signal which has identical magnitude but

different phase information. Thus, the second-order statistical function, i.e. the bispectrum,

is employed to study signals that have identical power spectra. The bispectrum of a discrete

input signal .v(/i) is the 2-D Fourier transform of iis tri-correlation function R2(X\, T2) and is

given by '

[
A f - l A f - l

/ / ^2(Tl'T2)-eA'P [~ 7^T(/]T] +/2T2)] (6.1.5)
T2=0 T , = 0

Af-l

where T, and T2 are the lag parameters, R2(t) = N .*(«) • x(n + r}) • x(n + T2 ) is the

tricorrelation function and fi(/i,/2) is the bispectrum of the discrete input signal x(n).

Eq. (6.1.5), like Eq. (6.1.3), can be rewritten in a simpler form as

If
The general expression for higher-order statistics spectrum, HOSP, is obtained using I;

the following expression '

It
The bispectrum decomposes the skewness or odd-order asymmetries of the input signal f

\k
since three Fourier products are involved in Eq. (6.1.6) [88]. It also provides information on j ^

1 -

interactions of the frequency components f\ and/2 in the 2-D frequency plane, (/i,/2). r

The power spectrum and bispectrum have been shown to be very effective in studying

chaos, non-linear behaviour and turbulence of wide-sense stationary signals as reported in jf

many studies [1-4, 89, 90]. They have also been used to examine non-stationary signals by

dividing them into typically small segments of 1,024 samples for cases of the ECG and

Duffing oscillator. In this case, the effectiveness of the power spectrum and bispectrum has

been clearly shown by Chandaran [1] and Lipton [4].
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However, for other non-stationary signals such as plasma phenomena, speech,

underwater signals, whale sounds and music, the power spectrum and the bispectrum are not

suitable tools since they suppress fine details of the energy distribution of the input signal.

Thus there is a need for a time-frequency power spectrum analysis which provides

information on how the energy of a non-stationary signal is distributed in time and

frequency domains.

The time-frequency power spectrum technique employs both the time and frequency

axes to display the spectrum of a non-stationary input signal. The additional time axis is

required to track any changes of thf signal spectrum over time and this axis enables

detection of instantaneous behaviour of the signal. One typical time-frequency analysis tool

is the wavelet power spectrum which uses the wavelet transform. The wavelet transform can

be regarded as being analogous to the Fourier transform, but with a different kernel

function. For the Fourier transform method, the kernel function is an exponential function

and for the wavelet transform method there exist various arbitraiy kernel functions which

must satisfy admissibility constraint(s).

The wavelet transform method, like the Fourier transform method, assumes that any

function can be represented by a sum of an arbitrary set of wavelet functions y/(t) (which

satisfy the admissibility constraints) [51]. The Fourier transform might be considered a

special case of the wavelet transform in which the mother wavelet function !//(/) is replaced

by the complex exponential function, y//w/fr(0 = exp(-ja>t), if this function satisfies the

admissibility constraints as will be discussed later. The mother wavelet function, y</),

sometimes called the basic wavelet function, is the fundamental function in any expansion

of the wavelet transform. The wavelet transform of the input signal x{t) with the mother

wavelet function !//(/)> which was defined in Chapter 4, is given as [51,52]

WT(a,b)= I x(t)-w\ — \clt (6.1.8)

where a and b are the scale and time indices respectively, and WT(a, b) is the wavelet

transform function of the input signal x{t). For the Fourier transform, 1//Q is the exponential

function exp(-jax) which has infinite time support. To obtain finite time support for the

wavelet transform, an appropriate mother wavelet function must be employed.

130



Chapter 6: The Hyperbolic Wavelet Power Spectra of Typical Signals

There are two mother wavelets that will be employed in this chapter. The orthogonal

sym3 wavelet, provided in MATLAB software, can be regarded as a useful symmetrical

wavelet whose scale function exists and the proposed hyperbolic wavelet of the symmetrical

"crude" wavelet group as was studied in Chapter 4.

To be a valid mother wavelet function, the function must satisfy the following

admissibility constraint which is given by [51, 52]

J (6.1-9)

The above condition is satisfied by the complex exponential function since it can be written

as a sum of two sinusoids. Thus, it can be said that the Fourier transform is a special case of

the wavelet transform in which the mother wavelet is the complex exponential.

From Eq. (6.1.4), the wavelet power spectrum WPS(t, a>), analogous to the Fourier

power spectrum P(co) of an input signal A(/I), is given by [33, 34]

(6.1.10)

where WT{t, co) is the wavelet transform of the input signal x(n).

The main difference between the wavelet transform and the Fourier transform is that '

the wavelet transform examines the frequency contents of the signal over a short time period

since its mother wavelet function has finite-time support. By contrast, the Fourier transform |,j

averages the frequency contents of the signal over an infinite time interval by the effects of !

si?i(-) and cos(-) functions. The time-support range of most wavelet functions (the >(

hyperbolic, the Choi-Williams or Mexican-hat and Morlet wavelets for example) is •

approximately 10- to 20-unit time index (as was seen in Chapter 4). Thus, by employing the '

wavelet transform, it is possible to observe instantaneous behaviour of the signal, which is

vital in studying the signal characteristics and predicting its future behaviour.
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In addition, the WPS technique gives the energy density of the input signal in both time

ui'>ii frequency domains, whereas the Fourier power spectrum displays the energy contents of

{h: r.igriaS in the frequency domain only. The combination of time and frequency domains

yic Ms local in^-fls of the input signal energy contents nnd thus it is possible to carry out in-

dt:\j\h iiydy of iiie signal by examining its instantaneous behaviour. Since there exist many

different wavelet functions, the corresponding wavelet transforms also exist and each

wavelet function has different chaiu .iistics which means that they can be used for

different specific applications. The hyperbolic wavelet function, which was proposed in

Chap-tor 4, is employed in this chapter to further demonstrate the usefulness of the

hyperbolic kernel family. The hyperbolic wavelet has been shown to have a fine scale

resolution which is suitable for studying signals that do not have broad power spectra such

as transients which was concluded in Chapter 4. The hyperbolic wavelet function also has a

small number of computed scales which means it can be used for compression purposes.

This reduces the computational burden of the hyperbolic wavelet power spectrum.

Milligen and others [33, 34] showed how the WPS-and wavelet bispectrum techniques

could be used to study chaos and turbulence which provide the foundation for the research

reported in ihss chapter. In their studies, they showed that the wavelet bispectrum could be

utilised to effectively study chaos. They showed that the main problem with the wavelet

bispectrum was that there are four dimensions that need to be simultaneously expressed.

Thus, the concept of slicing the wavelet bispectrum at separate frequencies was employed

which was shown to be successful provided that the behaviour of the signal could be

predicied. Fargc and others [35] showed that the wavelet transform method could be used to

study turbulence by detecting edgy behaviour in its time-frequency spectrum.

The WPS technique is much simpler than the wavelet bispectrum technique since there

are only three quantities, i.e. time, scale and magnitude, that need to be simultaneously

displayed. One major advantage of the WPS technique over the Fourier power spectrum

technique is that the signal energy distribution is shown in 3D graphs which do not suppress

the phase information as it is the case of the power spectrum, i.e. the phase information is

included as a function of time.

Jubran and Hamdan [91] used the Gaussian wavelet transform to study the behaviour of

flow induced vibration and cross flow in a cylinder. They compared the performance of a

number of different mother wavelets including the Morlet wavelet, Daubechies wavelets and

the Gaussian wavelet, and then concluded that the Gaussian wavelet was the most suitable
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wavelet for this particular application. In that paper, only the wavelet transform of the input

data was estimated, while the WPS and bispectrum techniques were not considered.

This chapter aims to create a gallery of the hyperbolic and sym3 wavelet power spectra

jf typical signals. Comparisons of the wavelet power spectra of these signals will be made

to validate the hyperbolic wavelet power spectrum. However, quantitative comparisons

between the sym3 and hyperbolic wavelets are not the prime purpose of the chapter. Unlike

the vvork done by Milligen and others, the work reported in this chapter explores further the

effectiveness and usefulness of the WPS technique in studying instantaneous behaviour and

energy distributions of non- rta'ionary signals.

The chapter is organised as follows. Section 6.2 is the main section in which the

wavelet power spectra of Several signals are displayed. The WPS of a periodic sinusoidal

signal is studied first in Section 6.2.1 as this is the most common and well-known signal in

signal processing. Section 6.2.2 examines the popular exponential signal exp{—f). Section

6.2.3 calculates the WPS of an exponentially decaying sinusoid sin(t) • exp{-t). The Duffing

cicillator is studied in .Section 6.2.4 including Periods 1, 2, 4 and chaotic state. The Fourier

power sp;ctra of theŝ i signals are also given to validate results drawn by using the wavelet

power spectrum technique.

6.2 The Hyperbolic and sym3 Wavelet Power
Spectra of Typical Signals

In this section, characteristics of a number of typical signals including sinusoids,

exponentially decaying sinusoids, Duffing oscillator, ECG are examined by using the

wavelet power spectrum (WPS) technique. Instantaneous energy distributions of these

signals are continuously monitored so that their characteristics can be successfully revealed.

The MATLAB softv/are package has been extensively used to display various signal

wavelet power spectra.

The main reasons that the two wavelets, sym3 and hyperbolic, are used to calculate the

wavelet power spectra of various signals are firstly, to validate the hyperbolic wavelet

power spectrum technique as an effective tool for signal analysis. Secondly, to verify the

correctness and effectiveness of the newly proposed hyperbolic wavelet, which is one of the

main research topics of the thesis.

_ _ _ _ _ _
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The main advantages of the sym3 wavelet over the hyperbolic wavelet are first, the

former has a larger number of possible calculated scales than those of the hyperbolic

wavelet. This enables the sym3 wavelet to cover all the necessary scales for different

signals. However, one main advantage of having a small number of possible calculated

scales is that the wavelet power spectral calculation process is less time consuming. Second,

the scaling function of the sym3 wavelet exitsts which is significantly different from other

wavelets in the "crude" wavelet group. In this chapter, both the sym3 and hyperbolic wavelet

power spectra will be estimated and discussed in detail. For some signals, where the sym3

and hyperbolic wavelet power spectra are almost identical, only one wavelet power

spectrum will be displayed.

The purpose of creating a gallery of the wavelet power spectra of signals is to recognise

wavelet power spectra of different signals so that analyses of unknown signals can be

examined based on the known wavelet power spectra. Thus, qualitatively, the general

patterns of the wavelet power spectra are mainly focused. Quantitative details of signals

such as signal frequency, although can be estimated, is not strongly emphasised in this

research.

To compare different wavelet power spectra, which are 2-D matrices of complex

elements, normalised wavelet power spectra are employed. The normalisation process is

carried out by dividing every member of the wavelet power spectrum matrix by the

maximum magnitude of the matrix elements. For all graphs in this chapter and Chapter 7,

the "samples" axis, which is used to indicate the sample number of the input signal, and the

"Time Index" axis, which is used in the wavelet context for time expansion, are identical

except that they are used in different context. Contour scales have also been added to all

graphs where appropriate so that energy density levels can be identified.

By using the WPS technique, harmonics and sub-harmonics are displayed. A harmonic

peak is recognised by an island of closed contour curves with the minimum scale of 0.7 on

the normalised scale [113]. If the scale is less than 0.7, the peak is considered as a sub-

harmonic. This convention is applied in this chapter and Chapter 7 to recognise harmonic

and sub-harmonic peaks. For al! graphs in this chapter and the next chapter, the "Scale

Index" and "Time Index" correspond to a and b respectively as these notations were used in

Chapter 4. Thus, interchangeably, it should be understood that a and b are defined as "Scale

Index" and "Time Index" respectively.
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6.2.1 The Wavelet Power Spectrum of a Sinusoid

hi this section, contour plots of WPSsyn3 and WPShyP of a periodic sinusoid sin(2m) are given

in Figure 6.2.1 and Figure 6.2.2 respectively in which periodicity can be identified by the

following points

1. There is a clear boundary between the peaks of the signal which indicates strong

periodic behaviour. In addition, the energy is mainly concentrated at harmonic peaks

and there is no broad energy distribution over a wide scale range. The harmonic peaks

are located at the approximate scale of a ~ 50.

2. Contour curves are closely spaced and there are a large number of bounded small-

radius contours towards the harmonic peaks.

3. The energy is discretely and uniformly distributed. The most important and

recognisable feature of a periodic signal is that its energy distribution is repetitive. It

can be seen that the discrete peaks of the input signal are clearly displayed by the WPS

technique. Thus, it is evident that for periodic signals, their wavelet power spectra are

not broad and smeared but discontinuous and exhibit distinctive peaks.

150
The WPSsym3 of sinfM)

100

50 100 150 200 250 300 350 400 450 500
Time Index

0.2

0.1

Figure 6.2.1: Contour plot of the WPSsym3 oisin{2m) signal
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The WPSh)V in Figure 6.2.2 shows distinctive peaks which indicate strong periodic

behaviour of the signal as expected. Compared with the WPSsym3 given in Figure 6.2.1, the

WPShyp requires a smaller number of scales which improves the computational efficiency of

the hyperbolic time-frequency power spectrum. From Figure 6.2.1 and Figure 6.2.2, the

scale ranges of a harmonic peak using the sym3 and hyperbolic wavelets are approximately

20 < a$yms < 130 and 5 < ahyp < 45 respectively, where asym3 and ahyp are the scale indices of

the sym3 and hyperbolic wavelets respectively. As can be seen, the WPSsym3 and WPShyp are

consistent which validates the hyperbolic wavelet and therefore the hyperbolic wavelet

power spectrum technique.

The Magnified WPShyp0r, of sin(2it)

50 100 150 200 250 300 360 400 450 500
Time Index

0.1

Figure 6.2.2: Contour plot of the WPShyp of sin(2m) signal

The relationship between the centre scale, acenlre, and the frequency of the signal, fsigna,,

is given by [99]

8ml"

where fmamp,fsamp and &b are the wavelet sampling frequency, sampling frequency of the

signal and centre frequency of the wavelet respectively.
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From Eq. (6.2.1), the signal frequency/„-,.„„, can be estimated based on the centre scale

arm,re specified by the wavelet power spectrum. The sampling frequency of the signal fsamp is

usually about 100 times larger than the wavelet sampling frequency/„„,„,, since the number

of required sampling points for a wavelet function is much smaller than that for a signal as

discussed in Chapter 4. For a sinusoidal input signal of siii(2m), using the sym3 wavelet

with the centre frequency ctio = 3 rad/s, armlrc ~ 50, Figure 6.2.1 and Eq. (6.2.1), the signal

frequency/s,A.,,n/ can be approximately estimated as

(6.2.2)

Similarly, the signal frequency fsiliml of the signal sin{2m) can be approximately

estimated using the hyperbolic wavelet with the centre frequency coo = j8 = 1 rad/s, acenlre ~

13, Figure 6.2.2 and Eq. (6.2.1), we obtain

'signal
In 13 (6.2.3)

From the calculations performed in Eqs. (6.2.2) and (6.2.3), it is clear that the

frequency of the signal can be estimated. It should be noted that the percent error could be

as high as 20% (Eq. (6.2.3)) as in the case of the hyperbolic wavelet. Thus, quantitatively,

the signal frequency can be more accurately estimated by using the Fourier power spectrum

technique.

6,2.2 The Wavelet Power Spectrum of an Exponential
Transient Signal

Exponential signals are common responses of first- and second-order linear circuits. This is

the main reason why it is included in this research. The WPSsym3 of a transient signal exp{-t)

is given in Figure 6.2.3.
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0.9

50 100 150 200 250 300 350 400 450 500
Time Index

Figure 6.2.3: Contour plot of the WPSsym3 of the exp(-t) signal

The WPSsym3 of an exponential signal exp(-t) is broad and there seems to exist one

distinctive peak represented by the smallest-radius contour curve with a large contour scale

in Figure 6.2.3. The contour plot of the exponential transient signal is not closely spaced as

it was in the case of a sinusoid. In fact, the number of closed contours is less than that of the

sinusoid even though they both have dominant peak(s).

The decaying rate or time constant of the exponential signal is approximately the scale

difference between the centres of two adjacent contours. From Figure 6.2.3, the scale

difference between the inner-most contour curve and the second inner-most curve is about

60 which corresponds to the decaying rate of 0.8 by using Eq. (6.2.1). The accuracy of the

estimation can be improved by taking the scale-difference average of all adjacent-contour

pairs which yields the time constant of about 0.99. This is the expected time constant of the

investigated exponential signal.

It?
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It should be noted that the energy of an exponential signal is not concentrated at one

particular scale, but instead, spreading over a wide scale range as can be seen in Figure

6.2.3. The exponential energy tends to form closed contours, but this process appears to be

very slow, i.e. contour curves have near-infinitely large radii which reflect the nature of

exponential transient signals. The WPShyp is given in Figure 6.2.4.

The WPShyp of exp(-t)

50 100 150 200 250 300 350 400 450 500
Time Index

0.1

Figure 6.2.4: Contour plot of the \VPShyp of an exp(-t) signal

The time constant of the exponential signal can be similarly estimated using the same

method applied to the hyperbolic wavelet. From Figure 6.2.4, the scale difference between

two inner-most adjacent contour curves is approximately 20, which corresponds to the time

constant of 0.78. By taking the scale-difference average, we obtain the estimated time

constant of the exponential signal of about 0.95 which is close to the expected result.
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Even though the time constant of a transient signal can be estimated with reasonable

precision, it is still hard to estimate since the centre of each contour curve is sometimes hard

to determine. For example, for the case of the sym3 wavelet, since the centres of all contour

curves cannot be clearly displayed, the distance between two adjacent curves along the

vertical line is taken instead. For the hyperbolic wavelet, since most of the curves are clearly

displayed, the scale difference between two adjacent centres can be effectively estimated.

Secondly, this process is lengthy and tedious since the average value of the scale differences

of all contour curves has to be calculated.

The WPShyp in Figure 6.2.4 is consistent with the WPSs>m-i given in Figure 6.2.3 in

which large-radius contours are detected. The peak is detected by the smallest contour

curve. Even though the peak contour curve has a high scale, it is not filled which illustrates

the main difference between sinusoidal signals and exponential signals. For the former, all

peak contour curves are filled, whereas that is not the case for the latter. If the contour

curves are filled, then the signal energy tends to be more concentrated around the peak

which implies periodic characteristics. It should also be noted that the WPShyp is calculated

over a smaller scale range than that of the WPSsyms-

m

The compression ratio is estimated by counting the number of contour curves up to a

certain scale. From Figure 6.2.3 and Figure 6.2.4, the scale ranges of the inner-most contour

curves of the WPSs>mj and WPShyp are approximately 320 < a < 950 and 50 < a < 120

respectively. This yields the compression ratio in the range of about 6.4 and 7.9. The

wavelet power spectra of periodic sinusoidal and exponential signals are used to establish a

basis for further studies on other signals as shall be seen later.

6.2.3 The Wavelet Power Spectrum of
Exponentially Decaying Sinusoidal Signal

an

This section examines the WPS of an exponentially decaying sinusoidal signal

exp(-i)-sin{2TU). The periodic and transient components of this signal were separately

studied in Sections 6.2.1 and 6.2.2 respectively. The contour plot of its WPSsym3 is given in

Figure 6.2.5. The WPShyp is similar to the WPSsym3 and is not given in this case.
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-0.5 -

Time Domain Waveform of the exp(-/)sln(&:f)

20 40 60 80 100

T h e WPSsym3 0 ( Sin(2nt)exp(-t)

120 140

60 BO 100
Time Index

160

160

Figure 6.2.5: Time-domain waveform and contour plot of the WPSsyms of an exponentially
decaying sinusoid exp(-t)-sin(2m). The WPShyp is very similar to the WPSsym3.

It is expected that this signal have a combination of transient and periodic

characteristics which hopefully can be detected by the WPS technique. From Figure 6.2.5, it

is evident that the energy density is densely concentrated at the scale of about 100 for three

harmonic peaks and decays to zero as the signal reaches steady state. There are three

dominant and distinctive peaks in the signal whose positions correspond to those shown by

the time-domain waveform. These peaks are clearly detected by using the WPS technique

and indicated by three closed contours which represent periodic characteristics of the signal.

The diminishing of energy as the signal reaches steady state indicates that the final value of

the signal is zero. It should also be noted that the number of contour curves surrounding the

peaks decrease as the time index increases which reflects transient characteristics in the

signal. In particular, the number of contour curves in the third peak is only two at low scales

compared with nine curves at high scales for the first and second peaks. Thus, if might be

suggested that exponentially decaying sinusoidal signals with ?>. zero final value can be well

recognised by using the WPS technique.
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If the final value of an exponentially decaying sinusoidal signal is non-zero, its WPS is

expected to be broad since the peaks are now smoothened by a broad energy distribution of

the DC component [41]. As a result, the WPS of an exponentially decaying sinusoid with a

non-zero final value has only one major peak whose contours are not closely spaced as can

be seen in Figure 6.2.6. It should be noted that the transient characteristics of the signal are

indicated by large-radius contour curves as was seen in Section 6.2.2 for the case of an

exponential signal.

Time Domain Waveform of sin(2nt)exp(-t) + 3

,3.5-

|

3 -

2.5

. / . . .A.

^ A
50 100 160 200 250 300 350 400 450

The WPSsym3 ol sin(2nl)exp(-t) + 3

500

50 100 150 200 250 300 350 400 450 500
Time Index

Figure 6.2.6: Contour plot of the WPS^s of the sin(2m)-exp(-t) + 3 signal

The main difference between an exponentially decaying sinusoid with a non-zero final

value and an exponential signal is that for the former the radii of energy contours are not

infinitely large but finite. This reflects periodic characteristics in the former signal whose

WPS tends to form islands of closed contour curves. For comparison purposes, the WPShyp

of the signal sin(2m)-exp(-t) + 3 is shown in Figure 6.2.7.
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Time Domain Wavelomi of sin(2nt)exp(-t) + 3
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Figure 6.2.7: Time-domain waveform and contour plot of the WPShyp of the sin(2m)-exp(-t)
+ 3 signal
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From Figure 6.2.7, the upper parts of the contour curves have thick edges which

indicate an energy-smearing phenomenon. It should not be incorrectly concluded that the

signal is chaotic since the contour curves are densely located in the time-frequency plane

which indicates discrete energy distribution. These features allow distinctive differentiation

between exponentially decaying sinusoids with a non-zero final value and chaotic signals

such as the ECG which will be examined later. The scale ranges in Figure 6.2.6 and Figure

6.2.7 are different since the WPSh)P in Figure 6.2.7 is magnified so mat its contour curves

can be clearly displayed. It is clear that the hyperbolic wavelet is more efficient than the

sym3 wavelet in which more contour curves are displayed over the same scale range.

From Chapter 4, it was reported that the hyperbolic wavelet is most suitable for

transient signals. By comparing Figure 6.2.6 and Figure. 6.2.7, it is clear that the WPShyp can

display more contour curves than the WPSSy)n3 due to the former has a finer scale resolution

and a smaller total number of calculated scales. This fact was also shown in Section 4.3.6

when calculating the hyperbolic, Morlet and Choi-Williams wavelet power spectra of the

English vowel "e".
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In addition, by comparing Figure 6.2.3, Figure 6.2.4, Figure 6.2.6 and Figure 6.2.7, it

might be suggested that the hyperbolic wavelet is a symmetrical function whose wavelet

power spectra are perfectly symmetrical about the vertical line. Thus, graphical

representations of the hyperbolic wavelet power spectra are better displayed than using the

sym3 wavelet. As a result, it is easier to differentiate the exponential signal from the

exponentially decaying sinusoidal signals with zero and non-zero values by using the

hyperbolic wavelet power spectrum. Further, one advantage of the hyperbolic wavelet over

the sym3 wavelet is tliat the former can reveal more information over an identical scale

range than the latter due to the compress1". ->hility of the hyperbolic wavelet of having a

smaller total number of calculated scales, fhis also increase.:: the efficiency of the

hyperbolic wavelet power spectrum calculation process.

6.2.4 The Wavelet Power Spectrum of Duffing
Oscillator

Duffing oscillator has been popular in signal processing because of its simplicity [1]. In this

section, the Duffing oscillator is studied by calculating its wavelet power spectra of Periods

1, 2, 4 and chaotic state. From this, it is possible to determine hov, its energy is distributed

and therefore deducing the system characteristics and detecting possible transition(s) into

the chaotic region.

The equation governing Duffing oscillator is given as [! J

u + yii- O.S(w - i i3) = Fcos((Ot)
(6.2.4)

where y= 0.168, co = 1, u(t) is the displacement function of the time / and F is the driving

function. For Period 1, F\ = 0.05, Period 2, F2 = 0.178, Period 4, F4 = 0.197 and for chaotic

state, Fchim = 0.21. The initial conditions used for the system were [u u ] = [0 1].

6.2.4.1 Duffing Period 1

Duffing Period 1 waveform can be regarded as a genuine periodic signal whose ene.gy is

concentrated over the high-frequency range (low scale range). Duffing Period 1 time-

domain waveform and its WPS using the hyperbolic and sym3 wavelets are given in Figure
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6.2.8. It should be noted that the energy is uniformly and repetitively distributed over the

whole range of the time index which means each segment of the input data points is almost

identical. This means that there is no degree of disorder or chaos in Duffing Period 1

waveform.

-U.2

-0.4

(a) Duffing Period 1 Waveform
-r-

50 100 150 200 250 300 350 400 450

(b) The WPSsym3 of Duffing Period 1

0 50 100 150 200 250 300 350 400 450 500
Time Index

500

Figure 6.2.8: Time-domain waveform and contour plot of the WPSsym3 of Duffing Period 1.
The WPShyp of Duffing Period 1 waveform is very similar to the WPSsym3 except that it is

displayed on a different scale range.

From Figure 6.2.8, periodic (harmonic) peaks of Duffing Period 1 waveform are clearly

separated which is similar to the case of the sinusoidal signal sin(t) studied in Section 6.2.1.

Apart from a minor drift of the signal at the beginning where the time index is roughly b <

300, there is no difference in the amount of energy density over time, which suggests that

Duffing Period 1 waveform is near periodic. The duration during which the periodic peak

occupies is short which suggests that the signal energy is highly concentrated. This fact has

been well kno vn and extensively reported in the literature [1]. Thus the correctness and

consistency of the proposed WPS technique are validated. It should be noted that the symbol

b is used as the time index as explained earlier in Section 6.1. The symbol a, which was

used in Section 6.2.1, will be used as the scale index. These notations will be conveniently

used in this chapter and the next chapter.

_ _ — • - —
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6.2.4.2 Duffing Period 2

The driving force used for Duffing Period 2 waveform in Eq. (6.2.4) is F2 = 0.178. The

time-domain waveform and its WPSsym3 are displayed in Figure 6.2.9. The WPShi.p of

Duffing Period 2 waveform is given in Figure 6.2.10.

(a) Duffing Chaotic Waveform

i t - 1 i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

(b) The WPSsym3 of Duffing Period 2

200 400 600 800 1000 1200 1400 1600 1800 2000

Time Index b

Figure 6.2.9: Time-domain waveform of Duffing Period 2 and contour plot of its WPSsym3

The time-domain waveform of Duffing Period 2 shows an early sign of deviation from

periodicity in which the number of detected sub-harmonics is large. The signal regains its

near-periodic characteristics at the time index b ~ 1,400. For b > 1,400, the signal exhibits

similar characteristics to those of Duffing Period 1 waveform which suggests that

periodicity is dominant. However, since its contour scale is lower than that of Duffing

Period 1 waveform, it can be suggested that Duffing Period 2 waveform does not

completely regain its periodicity as can be seen in Figure 6.2.9. Figure 6.2.11 and Figure

6.2.12 show the magnified contour plot of the WPSiymJ and WPShyp for 2,000 > b > 1,000 and

0 < b < 1,100 respectively.
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(a) Duffing Period 2 Wavelorm
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(b) The WPS^ of Duffing Period 2
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Figure 6.2.10: Time-domain waveform and contour plot of the WPShyp of Duffing Period 2
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Figure 6.2.11: Magnified contour plot of Figure 6.2.9 and Figure 6.2.10 for 2,000 > b >
1,000
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The near periodicity of Duffing Period 2 waveform is detected by a series of closed and

filled contours (at high scales) with repetitive patterns over time. Although there are discrete

and filled contours, more sub-harmonics are detected by the WPS technique in Duffing

Period 2 waveform than in Duffing Period 1 waveform. In addition, the contour scale of the

wavelet power spectrum of Duffing Period 2 waveform is lower than that of Duffing Period

1 waveform which suggests that the former has a broader energy distribution than that of the

latter.

250
(a) Magnified WPSsym3 of Duffing Period 2 for 0 S bs 1100

0 100 200 300 400 500 600 700 800 900 1000 1100

(b) MagnifiedWPS^ofDuflingPeriod2forOSbS 1100

0 100 200 300 400 500 600 700 800 900 1000 1100
Time Index

Figure 6.2.12: Magnified contour plots of the WPSsym3 and WPShyp of Duffing Period 2
waveform for 0 < b < 1,100. The colour contour scale is similar to those given in Figure

6.2.9 and Figure 6.2.10.

From Figure 6.2.12(b), it is clear that for the hyperbolic wavelet, main details of the

yp are successfully displayed. However, minor fine details are missing, i.e. sub-

harmonics are not clearly shown as in Figure 6.2.12(a), which are mainly due to the effects

of having a small total number of calculated scales or the compression ability of the

hyperbolic wavelet. However, more importantly, the WPSsym3 and WPShyp are consistent and

can be employed to successfully detect periodicity and deviation from periodicity of Duffing

Period 2 waveform.
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6.2.4.3 Duffing Period 4

Duffing Period 4 waveform can be regarded as a transition state from periodicity to chaos

[1] which hopefully will be detected by using the wavelet power spectrum technique. The

time-domain waveform and its WPSsym3 of Duffing Period 4 are given in Figure 6.2.13. The

is given in Figure 6.2.14.

(a) Duffing Period 4 Waveform
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200

1000 1500

(b) The WPSsym3 of Duffing Period 4
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Time Index
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Figure 6.2.13: Duffing Period 4 time-domain waveform and contour plot of its WPSsym3

Similar to Duffing Period 2 waveform, Duffing Period 4 waveform exhibits early

deviation from periodicity with 2 major harmonics and a number of sub-harmonics for b <

700. Transitions into the chaotic region is signalled by continuous closed contours at b =

700 with a wider scale range as can be seen in Figure 6.2.13. The continuity of energy

indicates that the waveform has entered into the chaotic region. However, chaotic

components of the waveform are not strong enough since periodic components are still

present. For b > 700, the signal partially regains its periodicity with low contour-scale

curves. All of the above features can be clearly seen in the magnified contour plots of the

WPSsym3 and WPShyp shown in Figure 6.2.15.
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Figure 6.2.14: Time-domain waveform and contour plot of the WPShyp of Duffing Period 4

The main difference of Duffing Period 4 waveform from Duffing Period 2 waveform is

that after the signal regains its periodicity, a number of sub-harmonics at low scales are still

detected in the former. Whereas, for the latter, repetitive energy patterns at high contour

scales are detected which are similar to Duffing Period 1 waveform. This clearly shows that

Duffing Period 2 waveform is more periodic and stable than Duffing Period 4 waveform.
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(a) Magnified Contour Plot of the WPS ,of Duffing Period 4
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Figure 6.2.15: Magnified contour plots of the WPSsym3 and WPShyp of Duffing Period 4
waveform which shows the transition into the chaotic region at b ~ 700. For b 1700,

Duffing Period 4 waveform partially regains its periodicity by having repetitive closed
contour curves. However, these curves have low contour scales which suggests that their
energy is not densely distributed. Thus, the waveform is vulnerable to chaotic behaviour.

From Figure 6.2.13 and Figure 6.2.14, it can be seen that the hyperbolic and sym3

wavelet power spectra of Duffing Period 4 waveform are consistent in which the transition

into the chaotic region is detected at b = 700. For b < 700, near-periodic behaviour is

detected in the waveform and for b > 700 a mixture of chaotic and periodic components are

detected. However, due to the compression effects of the hyperbolic wavelet, some sub-

harmonics are suppressed. It is important to note that by using the wavelet power spectrum

time-frequency technique, it is possible to determine when the waveform enters into the

chaotic region hence the transition region of the waveform can be clearly identified.
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6.2.4.4 Duffing Chaotic

For Duffing chaotic, the driving force has the value of Fcham = 0.21. The time-domain

waveform and its WPSsym3 are shown in Figure 6.2.16. The WPShyp is given in Figure 6.2.17.

The magnified versions of these figures are given in Figure 6.2.18 and Figure 6.2.19

respectively.

(a) Duffing Chaotic Waveform
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Figure 6.2.16: Time-domain waveform of Duffing chaotic and contour plot of its WPS5ynui

From Figure 6.2.16 and Figure 6.2.17, Duffing chaotic waveform exhibits early

deviation from periodicity as was detected in Duffing Period 2 and 4 waveforms. However,

instead of regaining its periodicity, Duffing chaotic waveform remains chaotic after the

transition into its chaotic region. Duffing chaotic state is signalled by a non-repetitive and

broad energy distribution in which distinctive peaks are unevenly distributed for time index

less than 1,100, which is the transition region of the waveform. All of these features can be

seen in Figure 6.2.18(a) and Figure 6.2.19(a).
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From Figure 6.2.16 and Figure 6.2.18, for time index greater than 1,100, it is evident

that the waveform has entirely entered into the chaotic state in which its fundamental

periodic components have disappeared as compared to Duffing Period 1, 2 and 4

waveforms. The energy is unevenly distributed over the scale range of 20 to 250. There is

no particular energy concentration in any region of the spectrum (due to low contour scales),

which is broadly distributed (approximately at the time indices of 1,100, 1,700 and 2,500 in

Figure 6.2.17(b)), which strongly suggests that the waveform is chaotic. It should be noted

that in this case, even though the curves have low contour scales, they still represent

repetitive energy patterns which means that for time index greater than 1,100 Duffing

chaotic waveform still possesses weak periodicity. Thus, it can be suggested that Duffing

chaotic waveform is superposition of periodic and chaotic components. The main difference

between Duffing Period 4 waveform and Duffing chaotic waveform is that there are no

disordered energy patterns in the former, whereas the contour scales of the latter vary with

time which suggests disordered characteristics. Figure 6.2.18(b) and Figure 6.2.19(b) clearly

show the magnified energy distribution of the waveform for time index greater than 1,100.
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(a) Time Domain Waveform of Duffing Chaos

500 1000 1500 2000

(b) The WPSn of Duffing Chaos
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Figure 6.2.17: Time-domain waveform and contour plot of the WPShyp of Duffing chaotic
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Figure 6.2.18: Magnified version of Figure 6.2.16(b), the horizontal and vertical axes are
"Time Index" and "Scale Index" respectively as was in Figure 6.2.17
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Figure 6.2.19: Magnified version of Figure 6.2.17(b)
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Sections 6.2.1-6.2.4 examined signals whose characteristics have been well known.

The next section calculates the WPSsym} and WPShyp of the ECG signal. The Fourier power

spectrum technique will also be used so that the effectiveness of the WPS technique can be

assessed.

'X.\

6.2.5 The Wavelet Power Spectrum of ECG Signal

The practical ECG (Human Electrocardiogram) is examined in this section due to its

importance in medical diagnosis. The time-domain waveform of the ECG signal is

displayed in Figure 6.2.20.
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Figure 6.2.20: Time-domain waveform of the ECG
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Wavelet Power Spectrum of 1024 point ECG, scale = 1:4096

1500

2000

Scale Index 0 0

Figure 6.2.21: 3-D mesh plot of the WPSsym3 of 1024-point ECG

The WPSsym3 of ECG signal, which is shown in Figure 6.2.21 in 3-D plot and Figure

6.2.22 in contour plot, is similar to that of the exponential signal shown in Section 6.2.2 and

quite similar to the WPSsym3 of the exponentially decaying sinusoid with a non-zero DC

component shown in Section 6.2.3. For periodic and exponentially decaying sinusoidal

signals, their wavelet power spectra all have dominant peaks and large-radius contours. The

WPSsym3 of the ECG does not have identifiable peaks and its contours have very large radii

which suggests that the ECG might be a transient type. The energy distribution of the ECG

is spread over a wide scale range as can be seen in Figure 6.2.22. In addition, ECG contours

are not sharp but thick in width.

The scale range of contour curves is worked out by estimating the corresponding scales

of the lowest and the highest contours. For example, in Figure 6.2.22, the scale range of the

sym3 wavelet power spectrum will be 900 <; a, not 2,000 < a since the lower contour

stretches down to the scale of 900 and 2,000 is its starting point. This method has been used

in this chapter and Chapter 7 to work out the scale range of various wavelet power spectra.

:••! •
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From Figure 6.2.21, the ECG energy distribution is smooth and there are no abrupt

changes in its energy density over the high- and low-valued region of the scale and time

indices. By comparing the WPSsym3 in Figure 6.2.6 (the exponentially decaying sinusoid with

a non-zero final value) and Figure 6.2.22 (ECG signal), it is evident that the energy density

of the ECG is broader and distributed over a larger scale range of 900 < a £ 3,500 than that

of an exponentially decaying sinusoid with a non-zero DC component (500 < a < 1,800). In

addition, the inner-most contour curve has the scale range of 1,800 <, a < 3,700 for the ECG

and 900 < a < 1,800 (smaller scale range than the ECG) for the exponential signal, which

suggests that the former might exhibit chaotic characteristics. However, since the energy

patterns provided by the wavelet power spectral technique are almost similar, it is difficult

to distinguish between these signals.

WPSsyn>3°( t h e E C Q f o r l h e f i r s t 1 0 2 4 sarop'68
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100 200 300 400 500 600 700 800 900 1000
Time Index

Figure 6.2.22: Contour plot of the WPSsym3 of 1,024-point ECG signal
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For comparison purposes, the WPShyp is shown in Figure 6.2.23 in which it is

symmetrically displayed. From Section 6.2.3, the WPShyp of an exponentially decaying

sinusoid with a non-zero final value is very similar to that of the ECG. The only difference

between the two wavelet power spectra is that the occupied scale range of the ECG (120 < a

^ 1,800 in Figure 6.2.23) is wider than that of an exponentially decaying sinusoidal signal

with a non-zero final value (70 < a < 850 in Figure 6.2.7). This suggests that the ECG

energy distribution is broader than that of the exponentially decaying sinusoid signal as

explained earlier. In addition, the wavelet power spectrum of the exponential signal has

more contour curves over the same scale range than those of the ECG wavelet power

spectrum which further supports the above statement.

2000
WPShypo\ the ECQ lor the first 1024 samples

100 200 300 400 500 600 700 800 900 1000
Time Index

0.2

0.1

Figure 6.2.23: Contour plot of the WPShyp of the ECG

The scale ranges of the ECG and an exponentially sinusoidal signals, using the

hyperbolic wavelet, are clearly different compared with those observed using the near-

symmetric sym3 wavelet which makes the differentiation of these signals easier. This

indicates the usefulness of a perfectly-symmetrical wavelet such as the hyperbolic wavelet.

Thus, the hyperbolic wavelet power spectrum technique can be used to study the ECG

signal by examining the occupied scale range of its wavelet power spectrum. In general,
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however, the WPS technique is not very effective in studying the ECG signal since it cannot

clearly differentiate between an exponentially decaying signal and the ECG signal due to

their identical wavelet power spectra. This is a disadvantage of the WPS technique

compared with the Fourier power spectrum technique as will be further explored in Chapter

7.

Although the wavelet power spectra of the ECG and exp(-t)-sm(t) + 3 signals are very

similar, their Fourier power spectra, given in Figure 6.2.24 and Figure 6.2.25 respectively,

are quite different which shows that the Fourier technique is more effective than the WPS

technique in this case. Thus, depending on the particular application, the wavelet power

spectrum technique or the Fourier power spectrum technique should be used to reveal the

signal characteristics. In this case, it might be suggested that the ECG signal can be

effectively studied using the Fourier power spectrum technique. This conclusion is

consistent with the findings in [4]. However, transient signals such as exp{-t) and

exp(—t)-sin(t) + 3 can be successfully studied by employing the wavelet power spectrum

technique since their Fourier power spectra are quite similar as can be seen in Figure 6.2.25.

Fourier Power Spectrum of the ECG
90

80

70

5
E 40

I 30
W
G)

S. 20

10 -

0 -

-10

\

v
—̂.

V

- 1

V:

i

0.1 0.2 0.3 0.4 0.5 0.6
Normalised Frequency

0.7 0.8 0.9

Figure 6.2.24: Fourier power spectrum of ECG signal. The frequency is normalised by
dividing every frequency bin by the largest frequency bin in the signal spectrum. This

method of frequency normalisation is used in this chapter and also in Chapter 7.
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From Figure 6.2.24, it is evident that the ECG signal has a broad power spectrum

which suggests that it is not periodic. This is consistent with the conclusions drawn by using

the WPS technique from Figure 6.2.21 to Figure 6.2.23. Transient characteristics of the ECG

signal, however, are not effectively detected by using the Fourier power spectrum technique,

but can be detected by using the WPS technique.
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Figure 6.2.25: Fourier power spectra of exp(-t) and exp(-t)-sin(t) + 3 signals

From Figure 6.2.25, there is a minor discrepancy with the magnitude of the power

spectrum of the / (/) = exp(-t)-sm(t) + 3 signal at DC condition. The power of the signal

[f{t)f at DC condition is 9 which corresponds to about 10-logi0(9.0) ~ 9.5 dB. The signal

power calculated by MATLAB gives a value of about 30 dB. To work out the power at DC

condition, we take the magnitude of the power spectrum at DC, which is 30 dB, and divide

that by V2TF which yields about 12 dB. This corresponds to a percent error of about 26%

with respect to 9.5 dB. It should be noted that this method of power spectral estimation by

MATLAB is only approximate. In addition, it is the qualitative information of the graph that

is of importance, not the quantitative details. However, to provide a satisfactory result, the

Welch method of power spectral estimation can be used to obtain the power spectrum of the

signal. This method yields the DC power of about 9.6 dB which corresponds to about 0.1%
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percent error. However, calculation of the Fourier power spectra of signals is not the main

emphasis of this chapter and we stop the discussion about power spectral estimation at this

point.

The following table summarises notable characteristics of an exponential signal

exp(-t\ an exponentially decaying sinusoidal signal with a zero final value exp(-t)-sin(t), an

exponentially decaying sinusoidal signal with a non-zero final value exp(-t)-sin(t) + 3 and

the ECG signal.

Table 6.2.1: Characteristics of exp(-t), exp(-t)-sin(t), exp(-t)-sin(t) + 3 and ECG signals
Signal

exp(-t)

sin(t)-exp(-t)

sin(t)-exp(-t) + 3

ECG

Characteristics

Exhibits transient behaviour, periodicity is not present, bounded

energy

Exhibits transient and periodic behaviour, strong sinusoidal

decaying characteristics, bounded energy, WPS contour curves have

small radii; energy smearing is not present

Exhibits transient behaviour, bounded energy due to closed contour

curves. The density of contour curves is high which suggests that

the signal is not chaotic. WPS contour curves have large radii;

energy smearing is not present.

Exhibits transient and chaotic behaviour, bounded energy, WPS

contour curves have large radii, energy smearing is present. The

occupied WPS scale range of the ECG signal is wider than that of

the sin(t)-exp{-t) + 3 signal.

Throughout this chapter, comparisons between the hyperbolic and sym3 wavelet power

spectra have been made. It can be seen that the WPSH>V of most signals have a smaller scale

range than that of the WPSsym3 which significantly reduces the wavelet power spectral

computational burden. In addition, the WPShyp converges faster than the WPSsym3 in the case

of an exponential signal in which the signal energy distribution is more clearly displayed by

using the hyperbolic wavelet than by using the sym3 wavelet. One advantage of the WPSsym3

over the WPShyp is that the former can clearly display all sub-harmonics of signals, whereas,

some sub-harmonics are missing if the latter is used due to the compression effects (was

studied in Chapter 4) as will also be demonstrated in Chapter 7. This can be seen as a trade-

off between efficiency and fine-detail display of the hyperbolic and sym3 wavelets.
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6.3 Remarks

Five different signals have been studied in detail in this chapter including a sinusoid, an

exponential transient, an exponentially decaying sinusoid with a zero and non-zero DC

component, Duffing oscillator and the ECG. We have employed contour plots of their

wavelet power spectra to recognise the presence of periodic, transient and chaotic

characteristics. The following remarks are drawn from the numerical simulation and

analysis in this chapter

1. If the contour plot of the WPS consists of a repetitive and discrete sequence of islands

of closed and filled contour curves at high scales, then it is effectively periodic. Typical

examples are a sinusoidal signal in Section 6.2.1, Duffing Period 1 and 2 waveforms in

Section 6.2.4;

2. If the contour plot of the WPS consists of one peak and the contour curves have very

large radii which indicate a slow converging rate, then it is of a transient type. A typical

example is an exponential signal in Section 6.2.2. If a small number of islands of

distinctive closed contour curves are present, then the signal is transient-periodic, e.g.

an exponentially decaying sinusoid with a zero final value in Section 6.2.3;

3. If the contour plot of the WPS consists of bounded contour curves with large radii *

then the signal is either transient-periodic (quasi periodic), e.g. an exponentially

decaying sinusoid with a non-zero DC component in Section 6.2.3, or chaotic, e.g. the

ECG. To differentiate between these two cases, the occupied scale ranges of their

wavelet power spectra are used. If the WPS of the signal covers a large scale range

(approximately larger than 2,000 scales), then the signal is chaotic, e.g. the ECG.

Otherwise, it is transient-periodic;

4. If the WPS is continuous (ECG signal) and there are changes in its energy patterns, i.e.

the energy distribution varies for different data segments, that means the signal is

possibly in the transition into the chaotic region, e.g. Duffing Period 4 waveform;

' These radii are smaller than those discussed in Case 2.
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5. If the contour plot of the WPS is non-repetitive and contour curves have low scales,

then the signal has entered into the chaotic region, e.g. Duffing chaotic waveform. It

should be noted that for cases 4 and 5, the occupied wavelet power spectral scale range

of the signal is wide and its energy density is broad and continuous.

This chapter has established a gallery of the WPShyp and WPS^ which are necessary

for the next chapter in investigating speech and music signals using the hyperbolic and sym3

wavelets.

6.4 Conclusion

The contribution of this chapter is to establish a gallery of the proposed WPSh)T Five typical

signals have been examined including a sinusoid, an exponential transient, an exponentially

decaying sinusoid with a zero and non-zero DC component, Duffing oscillator and the ECG.

The Fourier power spectra of these signals have also been displayed and compared with

their wavelet power spectra. The Duffing oscillator has been examined in detail and the

observed results are consistent with previous results reported in the literature. The ECG

signal appears to exhibit chaotic behaviour in which smooth, broad and no major harmonic

peaks were detected in its wavelet power spectrum.

Although the WPS technique has an advantage (over the Fourier method) of showing

signal energy distributions in time and frequency domains, it is not effective when

examining the ECG signal. In fact, the WPShyP and WPSsym3 of the ECG and the

exponentially decaying sinusoid with a non-zero DC component signals were almost

identical. In contrast, the Fourier power spectra of these signals can be differentiated which

is a disadvantage of the WPS technique. Thus, the most appropriate technique is identified

based on the application and the nature of the signal. The next chapter carries out

investigations on speech and music signals by using the hyperbolic and sym3 wavelet power

spectrum techniques.
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Chapter 7: THE HYPERBOLIC
WAVELET POWER SPECTRA OF
MUSIC AND SPEECH SIGNALS

This chapter studies two different non-stationary signals - music and speech - by

examining their hyperbolic and sym3 wavelet power spectra. These wavelet power spectra

will be compared and discussed. Background on the wavelet and Fourier transform methods

was discussed in detail in Chapter 6. It will be shown that music and speech signals can be

effectively studied by using the wavelet power spectrum technique.

i

i
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7.1 The Wavelet Power Spectrum of Musical
Signals

Music signals are studied in detail in this section using the hyperbolic wavelet power

spectrum technique. Musical sounds have been studied by a number of researchers on music

multi-dimensional scale analysis [70-72], music classification [103, 104, 111, 112] music

identification [105] and music recognition by using the continuous wavelet transform [112].

Classifying different piano sounds was studied by Delf and Jondral by using a number

of time-frequency techniques such as the Short-Time Fourier Transform (STFT) and the

Wigner-Ville (WV) time-frequency distribution. As was reported in Chapter 3, the WV

kernel was not effective since it generates unnecessary cross terms in the time-frequency

plane which provides misleading information about the signal. Thus, the Wigner-Ville time-

frequency power spectrum technique is not effective. Even though the WV time-frequency

technique was used in [103], instantaneous behaviour of musical signals was not

emphasised in the paper. The STFT is also not an effective time-frequency technique since

its time and frequency resolutions are coarse [8]. The technique used in this chapter is the

new hyperbolic time-frequency power spectrum technique, which was shown in Chapter 3

to be more effective than the WV time-frequency technique in terms of cross-term

suppression, auto-term resolution and noise robustness. The sym3 wavelet power spectrum

technique is also employed as was done in the previous chapter.

Hamdy, Tewfik, Chen and Takagi [104, 111] reported a music classification method

using a statistical technique of calculating skewness, entropy, the first- and second-order

statistics of different musical sounds such as jazz, rock, pop and then estimated the

appropriate threshold so that these sounds can be clearly distinguished. The main limitation

on this method is that it does not make use of the instantaneous information of the signal

which yields its characteristics and hence allows effective signal classification.

The most relevant work to this chapter is the work by Olmo, Dovis, Benotto, Calosso

and Passaro [112] on using the continuous wavelet transform to detect different tones in

music. The authors designed the new wavelet, called the Log-Morlet wavelet, and then

showed that the new wavelet was capable of recognising different harmonics and tones in

music waveforms. This method used the same principle in detecting edges and abrupt

changes in an input signal as was reported in [52]. The main difference of this work to our

work is that we employ the hyperbolic wavelet power spectrum, not the continuous wavelet
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transform, for music recognition and to study music characteristics. Although time and

frequency localisation was employed in [112], it was not as strongly emphasised as in our

work reported in this chapter. In particular, all harmonic and sub-harmonics will be

identified in both time and frequency domains which allows effective music recognition. As

was shown in Chapter 4, the hyperbolic wavelet has a finer scale resolution thai: both the

CW (Mexican-hat) and Morlet wavelets which subsequently yields finer time and frequency

resolutions in the hyperbolic wavelet power spectrum. This is the main reason why the

hyperbolic wavelet is employed in this section for music investigation.

The main objective of this section is to study musical signals by observing their

instantaneous behaviour which is the main difference from other methods reported in the

literature. From that, their characteristics can be thoroughly studied, hence, it is possible to

conclude whether the signal is chaotic, transient, periodic or transient periodic. The

hyperbolic wavelet power spectrum technique, as was done in Chapter 6, is used to study

signal characteristics, whereas other researchers concentrated on time-frequency distribution

techniques such as using the Wigner-Ville distribution [33, 34] and Choi-Williams

distribution [28].

Two musical files accb32.dat (refers to accordion sound) and clab42.dat (refers to

clarinet sound) are used as input signals. The files were sampled at 44.1 kHz for a time

period of 2 seconds. Since music files have a large number of data samples of 44,100. they

are divided into small sets of 2,048 samples and each set consists of two segments of 1,024

samples. The wavelet power spectrum of each set is calculated. The characteristics of

various music segments are examined in detail. To accurately examine music signals,

however, the entire segment of 44,100 samples is used to calculate their wavelet power

spectra so that chaotic behaviour or non-uniform energy distributions can be successfully

detected.

The input data are carefully chosen so that noise and other interference sources are

eliminated, i.e. the first few segments of a music source file are ignored and the subsequent

segments are used as an input signal. Usually, after the first 5,000 data samples, music

samples are suitable for signal analysis. To further strengthen the correctness of the obtained

results, the Fourier power spectrum technique is employed so that consistency between the

wavelet power spectrum and Fourier power spectrum techniques is validated.
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It should be noted that as stated in Chapter 6, a harmonic peak can be identified by

having a colour contour scale of larger than 0.7 and a sub-harmonic peak has a contour scale

of smaller than 0.7, but usually, it is less than 0.5. The lower the order of a sub-harmonic,

the lower the contour scale. This method has also been employed by Olmo et al [112] and

Sussaman and Karsh [113] by means of energy separation.

7.1.1 The Wavelet Power Spectrum of an accordion
music signal

Various segments of the accordion music signal are examined in this section so that its

instantaneous behaviour can be detected. For data samples from 1,024x5 to 1,024x7 and

from 1,024x30 to 1,024x32, the wavelet power spectra of each set are given in Figure 7.1.1

and Figure 7.1.2 respectively.

(a) Music Waveform accb32.dat, 1024*5:1024*7

5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

(b) The lVPSsym3 of accb32 Music Signal

5200 5400 5600 5800 6000 6200 6400 6600 6800 7000
Time Index

Figure 7.1.1: Time-domain waveform and contour plot of the WPSsym3 of the accordion
music, data samples are in the range of 1,024x5:1,024x7
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As can be seen from Figures 7.1.1 and 7.1.2, the 2,048-sample music sets seem to

exhibit periodic behaviour in which their wavelet power spectra show repetitive energy

patterns over time. The energy is mainly concentrated at the harmonic peaks and there are

three sub-harmonics that can be clearly identified. This information can be used to classify

the specific characteristics of the accordion signal. Thus, sounds from different musical

instrument can be distinguished by examining their wavelet power spectra. The WPShyp of

the accordion music signal of the previous data sets are given in Figure 7.1.3.

Music Waveform accb32.dat, 1024*30:1024*32

3.08 3.22 3.24 3.26

X10

The WPSsym3 of accb32 Music Signal

3.08 3.1 3.12 3.14 3.16 3.18 3.2
Time Index

3.22 3.24 3.26

x10

Figure 7.1.2: Time-domain waveform and contour plot of the WPSsym3 of the accordion
music signal for data samples from 30x1,024:32x1,024
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wpshypof t h B accb32 music signal, data set 1024*5:1024*7

I
5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

WPShypo\ the accb32 music signal, data set 1024*30:1024*32

3.08 3.1 3.12 3.14 3.16 3.18 3.2 3.22 3.24 3.26
Time Index X10

Figure 7.1.3: Contour plots of the WPShyp of the accordion music signal of the two data sets

As can be seen from Figure 7.1.3, the hyperbolic wavelet power spectra of the

accordion music signal are consistent with the WPSsym3 given in Figures 7.1.1 and 7.1.2 in

which instantaneous periodic characteristics of the signal are successfully detected with

bounded contours and repetitive patterns. The WPShyp and WPSsym3 are both very similar

which suggests that this music signal can be effectively studied using the hyperbolic and

sym3 wavelet power spectrum techniques.

From simulations, since the wavelet power spectra of various sets of the signal are very

similar, it might be suggested that the musical accordion signal is periodic. To validate this

conclusion, the WPSsym3 of the entire music signal is calculated and given in Figure 7.1.4.
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0.5 1 1.5 2
WPSsym3 o f a c c b 3 2 M u s i c S i 9 n a l x 1D4

2.4 2.B 2.8 3.2 3.4 3.6 3.8
Time Index

4.2 4.4

x104

Figure 7.1.4: Contour plot of the WPSsym3 of the accordion music signal for the time index
from 1 to 44,100

As can be seen from Figure 7.1.4, there are three main peaks present in the wavelet

power spectrum of the signal. For the first 30,000 samples, periodic behaviour is dominant

as the peaks are clearly shown and the signal energy is evenly distributed as seen in the

time-index magnified versions of Figure 7.1.4, which are Figure 7.1.1 and Figure 7.1.2. The

third peak (located at the scale a ~ 80) disappears after the first 30,000 samples and there is

uneven matching in energy distribution between the two strongest peaks (approximately

located at scales of 60 and 100) which reflects the instability of the signal. From Figure

7.1.4 and Figure 7.1.11 (Fourier power spectrum of the accordion signal) it might be

suggested that the music signal has entered into the chaotic region due to its broad and

continuous Fourier power spectrum and uneven energy density as the time index increases.
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WPShypof t h e a c < * 3 2 music signal, data set 1024*1:1024*41

0.9

Figure 7.1.5: Contour plot of the WPShyp of the accordion music signal

The WPShyp °f the accordion music signal, given in Figure 7.1.5, agrees with the

WPSsym3 given in Figure 7.1.4 in which both wavelets can detect instantaneous periodic

characteristics of the signal by having high contour scales. It should be noted that the

compression ratio of about 250/38 ~ 6.5 is observed in Figure 7.1.5 which results in a

smaller scale range in this figure. From Figure 7.1.5, the WPSh)P consists of energy-density

layers (approximately having the same center) at different scales. Especially, the harmonic

peak (represented by the inner-most layer) approximately terminates at the time index b ~

30,000 which reflects the discontinuity of this musical signal. Other harmonic peaks (at

lower scales due to a brighter colour on the colour scale) of the signal subsequently

terminate at the time indices of 35,000 and 38,000. However, the sub-harmonic peaks (at

very low scales) are present in the WPShyp for all time indices.
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As seen from Figure 7.1.4 and Figure 7.1.5, the wavelet power spectrum of the

accordion signal varies for different values of time index, i.e. harmonic peaks decay over

time which indicates uneven energy density and discontinuity in the signal. In addition,

different segments of the signal, which were recorded from one musical instrument, have

different wavelet power spectra. Thus, although the signal appears to be periodic in its time-

domain waveforms, it is disordered or chaotic as it has been shown in this section and in

other findings [106-110].

M
III

iii'F

A clarinet music signal is studied in the next section.
if!:

7.1.2 The Wavelet Power Spectrum of a clarinet music
signal

The wavelet power spectra of various segments of the clarinet signal are given in Figure

7.1.6 and Figure 7.1.7.

IE
iI

(a) clab42 Signal, 20k <, b< 22k ol clab42 Signal

I

2.05 2.16 2.18 2.2 2.22

Time Index

2.24

Figure 7.1.6: Time-domain waveform (a) of the clarinet music data samples from 1,024x20
to 1,024x22 samples and contour plot of its WPSsyin3 (b). The magnified contour plots of

WPSsym3 are given in (c) and (d).
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The first data set is chosen from the 1,024x20 sample to 1,024x22 sample. As can be

seen in Figure 7.1.6, the wavelet power spectrum consists of two distinctive peaks which

suggest that this set of the signal is periodic. There are two harmonic peaks and three sub-

harmonics in "one period" of the waveform of about 80 samples or 1.8 ms. In Figures

7.1.6(c) and (d), the peaks (which can be identified by high contour scales in the graph) are

located at the scale of a ~ 70 and the sub-harmonics at the scale of a = 20. There is also

continuity of energy because one peak and one sub-harmonic are located at the same time

index.

(a) claM2 Signal, 40k -ibz 42k (b) The WPS$ym3 of clab42 Signal

I
1
CO

4.1 4.12 4.14 4.16 4.18

Time Index to
X10

4.2 4.22 4.24 4.26 4.28 4.3

Time Index x 1 °

Figure 7.1.7: Time-domain waveform of the 1,024x40 to 1,024x42 samples (a) and contour
plot of WPSsyms (b) of the clarinet musical signal. The magnified graphs of (b) are given in

(c) and (d).
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The second data set is chosen from the 1,024x40 sample to 1,024x42 sample. This set,

as seen in Figure 7.1.7, exhibits similar characteristics to those of the first set, except that

the energy concentration at the main harmonic peak is reduced due to a lower contour scale.

The energy patterns of the harmonics and sub-harmonics are unchanged. The WPShyp of two

separate data sets 1,024x20:1,024x22 and 1,024x40:1,024x42 are given in Figures 7.1.8(a),

(b) and (c), (d) respectively.
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(a) WPShypol the clab42,20k s bs 21 k (b)
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(d)
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4.1 4.12 4.14 4.16 4.18

Time Index

4.2 4.22 4.24 4.26 4.28 4.3
x104

Time Index x104

Figure 7.1.8: Contour plots of the WPShyp of two separate sets of the clarinet music signal.
The time index is expanded so that the WPShyp can be clearly displayed.

The WPSh>p of this data set is consistent with its WPSsym3 in which major harmonic and

sub-harmonic peaks are successfully detected. However, as seen from Figure 7.1.8, the

WPShyp cannot display some sub-harmonics of the clarinet music signal as it can in the case

of the accordion signal. The WPSsym3 successfully displays all fine details of the signal as

can be seen in Figure 7.1.6. This is one disadvantage of the hyperbolic wavelet compared

with the sym3 wavelet. However, the WPShyp is compressed to the highest scale of 25 which

is about six times smaller than that of the WPSsymi. Thus, calculation time of the WPShyp can

be significantly reduced which makes it more efficient than the WPSsym3-

\\:
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Music Waveform of clab42.dat music file of 44,100 samples

Wavelet Power Spectrum of clab42 Music Waveform
T"

2 2.5
Time Index

x10

Figure 7.1.9: Time-domain waveform and contour plot of the WPSsym3 of the clarinet signal.
The WPSsym3 shows early "periodic" behaviour due to high contour colour scales of the

energy density which represents one rapid-decaying peak. This can be understood as a burst
of energy or an abrupt change in the signal energy. After that, there is no major harmonic

peak in the signal and sub-harmonic peaks at low contour scales, indicated by the blue
colour which corresponds to the maximum scale of 0.3, are dominant. At the 15,000th

sample, a change in energy is detected. From the time index of 25,000 onwards, sub-
harmonics are discontinued and they completely terminate at the time index b ~ 37,000.

This might suggest that the signal is disordered since its components disorderedly vary with
time. The contour scale of this figure is similar to that given in Figure 7.1.7.

Figure 7.1.9 displays the WPSsym3 of the entire clarinet music signal which shows one

rapid-decaying "periodic" peak at the approximate scale of 20. This represents a burst of

energy in the signal. The periodic peak disappears from approximately the 5,000th sample

onwards and the signal appears to behave non-periodically. From the 15,000th sample

onwards, chaotic behaviour appears to be dominant due to a broad energy distribution and

uneven energy density of the signal.

Figure 7.1.10 displays the WPShyp of the clarinet music signal.
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WPSt\yp°lthe c l a b 4 2 Music Signal, 1024 s £>S 40'1024

0.9

Figure 7.1.10: Contour plot of the WPShyp of the clarinet music signal. Periodic components
are cleariy displayed in the scale range of 1 to 8 compared with 10 - 30 in Figure 7.1.9.

From Figure 7.1.9 and Figure 7.1.10, it can be suggested that the hyperbolic and sym3

wavelets can successfully detect early periodic characteristics of the clarinet music signal.

Then, periodicity decays away which makes the wavelet power spectra of subsequent

segments of the waveform to be unsymmetrical. Similar to the accordion musical signal,

different segments of the clarinet music signal have different wavelet power spectra which

reflects its disordered characteristics.

Section 7.1.1 and this section investigated the characteristics of two different musical

signals, accordion and clarinet, using the hyperbolic and sym3 wavelet power spectrum

techniques in which the disordered characteristics of both signals have been successfully

revealed. Their wavelet power spectra have been instantaneously displayed so that their

behaviour could be effectively monitored. The results found in this chapter also agree with

results found by other researchers [106-111]. The Fourier power spectra of music signals are

given next to validate the results drawn by using the wavelet power spectrum technique.
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Figure 7.1.11: Fourier power spectra of the accordion and clarinet music signals. The
frequency is normalised by dividing every frequency bin by the largest frequency bin in the
signal spectrum. This rule is also applied for all subsequent graphs in this chapter which will

not affect the general shape of the spectrum. The true maximum frequency of both the
accordion and clarinet signals is 22.5 kHz.

From Figure 7.1.11, it can be seen that the Fourier power spectrum of the accordion

signal is broad with harmonic peaks over the low-frequency range. These peaks, as

explained before, are fundamental components of the signal. The true behaviour of the

signal is based on the high-frequency components. In this case, the high-frequency spectrum

is broad which suggests that the signal exhibit chaotic behaviour.

The power spectrum of the clarinet music signal has more distinctive periodic peaks

than that of the accordion signal which means that the former is more stable than rhe Utter.

Over the high-frequency range, the power spectrum is broad (as it was the case for the

accordion signal) which suggests that the clarinet music signal might exhibit chaotic

behaviour. However, due to a large amount of periodic components over the low- and mid-

frequency ranges, chaotic behaviour might not be dominant and the signal in this case can

be said to be in a transition to chaos.
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In this section, the Fourier power spectrum technique has been successfully used to

study characteristics of musical signals. It is clear that the wavelet power spectrum

technique and Fourier power spectrum technique are consistent. However, compared with

the wavelet power spectrum, the Fourier technique does not show instantaneous behaviour

of the signals over time. This is a disadvantage of the Fourier power spectrum technique

since different segments of music signals have different power spectra. Thus, even though

the Fourier technique can been used to study music, it is not effective compared with the

wavelet power spectrum technique in this aspect. It should be recalled that in Chapter 6, the

wavelet power spectrum was not an effective tool to study an exponentially decaying

sinusoidal signal and the ECG but the Fourier technique was. Therefore, depending on the

input signal, the appropriate technique is chosen. For unknown signals, which are often

encountered in practice, both techniques should be employed so that the most suitable

technique can be identified.

By studying the instantaneous characteristics of musical signals using the hyperbolic

wavelet power spectrum technique, it is possible to classify different musical sounds. The

hyperbolic wavelet power spectrum technique gives locations in time (time index b) and

frequency (inverse of the scale a) of harmonic and sub-harmonic peaks which are unique for

every signal. This is a major advantage of the wavelet power spectrum technique over the

statistical technique [104, 111], the WV time-frequency power spectrum and the time-

frequency STFT techniques [103]. The hyperbolic wavelet power spectrum technique has

been shown to be an effective tool which promises useful applications in non-stationary

signal classification. The main limitation on the time-frequency hyperbolic wavelet power

spectrum technique is that for some signals, i.e. the ECG and the exponentially decaying

sinusoid with a non-zero final value studied in Chapter 6, their wavelet power spectra are

similar even though their harmonic peaks are located at different scales. This makes the

classification process of the two signals difficult. Another limitation is that the hyperbolic

wavelet power spectrum is intensive to compute and thus powerful computing tools are

required to improve the computation speed. This issue will be dealt with in Chapter 8 along

with the parallel computation of the second-order statistical bispectrum.

In the next section, speech waveforms of the English vowels and the sound "sh" are

studied using the hyperbolic wavelet power spectrum, sym3 wavelet power spectrum and

Fourier power spectrum techniques.
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7.2 The WPS of Speech Signals

Speech signals are examined in this section using both the wavelet power spectrum and the

Fourier power spectrum techniques. Speech signals have been studied using time-frequency

power spectrum analyses to detect formants over time [9, 39, 92]. Some popular kernels that

have been used to study speech signals are the cone-shaped kernel [39], Choi-Williams [28]

and signal-dependent Gaussian-shaped kernels [8, 9]. This section attempts to study

characteristics of speech signals using the new hyperbolic wavelet and the sym3 wavelet to

detect periodic and chaotic behaviour. The speech signals in this section are of 4,096-sample

long and they are the English vowels "a", "e", "i", "o", "u" and the sound "sh". Each of these

signals will be individually examined. All graphs in this section have the time index of

length 2,000, instead of 4,096, for magnification purposes so that harmonic and sub-

harmonic peaks can be clearly seen. Figure 7.2.1 shows the time-domain signal and the
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Figure 7 2 1- The speech time-domain waveform of the vowel "a" and contour plot of its
WPSsym3
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Chapter 7: The Hyperbolic Wavelet Power Spectra of Music and Speech Signals

This speech signal exhibits strong periodic behaviour by having a concentrated energy

density at the peaks. Periodicity is strongly indicated by repetitive islands of closed contour

curves in the wavelet power spectrum of the signal. Each harmonic peak is surrounded by a

large number of sub-harmonics. The waveform seems to indicate periodic behaviour

although the energy is not completely discrete as compared with the sinusoidal signal in

Section 6.2.1 in Chapter 6. It should also be noted that there are no sub-harmonics

associated with a harmonic peak simultaneously in time as it was the case for the clarinet

music signal studied in Section 7.1.2. Thus, chaotic behaviour does not exist in this speech

waveform.

The WPSsymj of the vowel "e" is given in Figure 7.2.2. The speech signal of the vowel

"e" is genuinely considered periodic because of its uniform energy distribution and

repetitive energy patterns over time. The peaks are clearly displayed and their scale index

location is almost unchanged. There are two main peaks in "one period" of the WPSsym3 of

the signal which makes it significantly different from the vowel "a". This might suggest that

the vowel "e" is more difficult for speech recognition due to its non-sub-harmonics

characteristics.

The time-index magnified WPShyp of the vowels "a" and "e" are given in Figures

7.2.3(a) and (b) respectively which clearly show periodic peaks and sub-harmonics in the

signals. These were also successfully detected by the sym3 wavelet. However, due to its

compression effects compared with the WPSsym3, the WPShyp could not clearly display the

sub-harmonics as can be seen in Figure 7.2.3(b) and Figure 7.2.2(b) for the vowel "e". This

disadvantage has been reported earlier in Chapter 6. However, the overall shape of the

WPShiV and WPSsym3 are consistent which validates the hyperbolic wavelet power spectrum

technique and the effectiveness of the hyperbolic wavelet.

Figure 7.2.4 shows the WPSiym3 of the vowel "i".
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Figure 7.2.2: Speech waveform of the vowel "e" and contour plot of its WPSsym3
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Figure 7.2.3: Contour plots of the WPShyp of the speech vowels "a" and "e
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(a) Time-Domain Waveform of the Vowel " i "
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Figure 7.2.4: Speech time-domain waveform of the vowel "i" and contour plot of its
WPSsym3

As can be seen from Figure 7.2.4, the first part of the speech signal, which corresponds

to the time index of less than 1,600, exhibits periodic behaviour, although "minor" chaotic

behaviour is indicated by its broad energy distribution at a low contour scale. In the second

part of the waveform which corresponds to the time index of greater than 1,600,

fundamental harmonics are not fully displayed but only the sub-harmonics at low contour

scales.

if

Although the majority of harmonics (contours at high scale) disappear from the 1,600th

sample onwards, the sub-harmonics (contours are at low scales) of the signal are still

repetitive at regular time intervals. In addition, the occupied scale range of 20 - 100 of the

energy distribution is short which indicates strong periodicity in the signal. These two points

suggest that the signal is periodic. This phenomenon, however, does not indicate chaos but

indicates a change in the speech components of the signal which can be seen by changes in

the time-domain waveform.

The contour plot of the WPSsym3 of the vowel "o" is displayed in Figure 7.2.5.

I,
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3000 (a) Time-Domain Waveform of the Vowel "o"
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Figure 7.2.5: Speech time-domain waveform of the vowel "o" and contour plot of its
WPSsym3

For the speech signal of the vowel "o", the flow of energy from the 1,500th sample

onwards indicates a change in its components in which the scale range slightly changes and

the number of sub-harmonics decreases as the time index increases. The energy distribution

of the signal is repetitive over regular time intervals which might suggest that the signal is

largely dominated by periodic components.

It should also be noted that the occupied scale range of the energy distribution is short,

which indicates strong periodicity, as was the case of the vowels "a", "e" and "i"

investigated earlier. The energy concentration at the peaks remains almost unchanged which

further validates the above statement.

The WPShyp of the vowels "i" and "o" are shown in Figures 7.2.6(a) and (b)

respectively.
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Figure 7.2.6: Contour plots of the WPShyp of the speech vowels "i" and "o"

As expected, the WPShyp of the vowels "i" and "o" are consistent with the WPS,ym3

given in Figure 7.2.4 and Figure 7.2.5 in which periodicity is successfully detected. The

energy patterns of the vowels "i" and "o", which are shown by using the hyperbolic wavelet,

are consistent with those obtained by using the sym3 wavelet. The occupied scale ranges of

the WPShyp of the vowels "i" and "o" are short, which once again indicates strong periodic

characteristics. It should also be noted that there are no changes in the scale range of the

spectral components of the WPShyp of the vowels "i" and "o" as it is the case for the WPSsym3.

This is an advantage of the hyperbolic wavelet to the sym3 wavelet which is mainly due to

its perfect symmetry. It is also important to stress that if the energy density of a signal is

distributed over a narrow scale range and even though there is component-variation in the

signal, the signal is likely not chaotic since its energy is not broadly distributed. This fact

should be clearly understood since there are a number of signals that have component-

variation characteristics, however, are not chaotic.

I
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The WPSsyms of the vowel "u" is given in Figure 7.2.7.
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(a) Time-Domain Waveform of the Vowel V
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Figure 7.2.7: Speech time-domain of the vowel "u" and contour plot of its WPSsym3

The WPSsym3 of the vowel "u" is discrete in which fundamental peaks at high contour

scales are clearly shown, which shows strong periodicity in the signal. This signal can be

regarded as similar to Duffing Period 1 waveform except that there are three sub-harmonics

associated with the main harmonic located at the approximate scale of 100. The energy

distribution is repetitive over regular time intervals. The WPSsym3 of the vowels "u" and "e"

(given in Figure 7.2.2) are similar in which both wavelet power spectra do not consist of

sub-harmonics which might suggest that they are difficult for speech recognition.

The contour plot of the WPSsym3 of the "sh" sound is given in Figure 7.2.8 whose

magnified plot is given in Figure 7.2.9. Figure 7.2.8 and Figure 7.2.9 have identical contour

scales.
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200 Speech Waveform of the sound "sh"
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Wavelet Power Spectrum ol the sound "sh"
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Figure 7.2.8: Speech time-domain waveform of the sound "sh" and contour plot of its
Ssymj. The colour contour scale of the graph is given in Figure 7.2.9.

The sound "sh", due to its nature, is very fast and noisy. As can be seen from Figure

7.2.8, the usual discrete spectral components, as seen from the previous cases, disappear.

Instead, there appears chaotic behaviour similar to Duffing Period 4 and Duffing chaotic

waveforms studied in Section 6.2.4 in Chapter 6. However, harmonic peaks at very high

scales (about larger than 500) are detected as can be seen in Figure 7.2.8 which suggests that

the signal is not chaotic. The main characteristics of the signal are determined by the low-

scale energy patterns whose magnified plot is given in Figure 7.2.9 in which the energy is

unevenly distributed at the beginning of the signal. The samples in the middle of the signal

are partly periodic and chaotic and there are no repetitive patterns in the wavelet power

spectrum. This might suggest that the waveform is not periodic as it is usually the case for

speech signals. The true characteristics of the waveform is determined when the magnified

contour plot over the low-scale range is examined next.
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Figure 7.2.9: Magnified contour plot of the WPSsym3 of the speech sound "sh"

A comparison of Figure 7.2.9 to Figures 6.2.16 and 6.2.17 (Duffin3 chaotic waveform)

shows that the "sh" sound speech signal is not chaotic since its energy patterns are sharp and

discontinuous, whereas Duffing chaotic energy patterns are smooth. The sharp and fast-

rising energy patterns of the "sh" sound signal do not indicate chaotic behaviour, but

instead, indicate considerable sub-harmonics variation in the waveform. The fundamental

peak of the sound at a high contour scale (Figure 7.2.8) is still present at b ~ 550 which

validates the above suggestion that this signal is periodic, hi addition, the scale range of this

speech is short which strongly suggests that it is not chaotic. The wavelet power spectrum of

the sound "sh" is similar to that of the vowel "i" (but having fewer harmonic peaks) in which

spectral component-variation is present.

Contour plots of the WPSh>v of the vowel "u" and the sound "sh" are shown in Figures

7.2.10(a) and (b) respectively.
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Figure 7.2.10: Contour plots of the WPShyp of the speech vowel "u" and the speech sound
"sh"

The WPShyp of the vowel "u" is similar to the WPSsym3 in which three associated sub-

harmonics are detected. Although periodic peaks are not clearly presented in the WPS^p, the

speech "shK waveform is not chaotic since its energy distribution is not smooth and

distributed over a narrow scale range as can be seen in Figure 7.2.10(b). The energy of the

"sh" sound signal appears to flow in bursts at uneven time intervals which means there is

component-variation in the signal.

The new wavelet power spectrum technique, in particular using the hyperbolic and

sym3 wavelets, has been effectively used to study speech signals. It has been shown that true

characteristics of various musical and speech signals can be effectively studied by

examining their hyperbolic and sym3 wavelet power spectra. The Fourier power spectrum

technique is now employed to examine these signals so that the effectiveness of each

technique can be clearly identified. The Fourier power spectra of all the speech vowels and

the sound "sh" are shown in Figure 7.2.11 and Figure 7.2.12 respectively.
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Figure 7.2.11: The Fourier power spectra of the vowels "a", "e", "i" and "o"
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Figure 7.2.12: Fourier power spectra of the vowel "u" and the sound "sh". The frequency of
each signal is normalised by dividing every frequency bin by the largest frequency bin of

the signal spectrum. Thus, the shape of the power spectrum will not be changed by the
noTnalisation process.

As can be seen from Figure 7.2.11 and Figure 7.2.12, the Fourier power spectra of

speech signals exhibit distinctive peaks which suggests that they are periodic. This

conclusion is consistent with the results obtained using the wavelet power spectrum

technique. The "sh" sound, although has a broad Fourier power spectrum, still does have one

distinctive peak at a high contour scale. Evidently, by using the Fourier power spectrum

technique, it is not possible to detect instantaneous behaviour of the signal as it can be done

using the wavelet power spectrum technique. This makes the wavelet transform method

more applicable and effective than the Fourier transform method.
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7.3 Remarks

Music and speech signals have been studied in this section by using the hyperbolic wavelet

power spectrum technique, sym3 wavelet power spectrum technique and the Fourier power

spectrum technique.

For music signals, their wavelet power spectra should be calculated by using the entire

signal of 44,100 samples to determine the true characteristics. The wavelet power spectra of

data sets of 2,048 samples only reveal the instantaneous characteristics of the signals. Thus,

music signals are quite different to other signals in which long data records are required so

that misleading information about the signals can be avoided.

Speech signals of the English vowels and the sound "sh" are periodic signals with

discrete and repetitive harmonic and sub-harmonic peaks. There is component-variation

within speech signals. However, they are not chaotic since their energy is not broadly

distributed over a wide scale range even though there is component-variation.

One disadvantage of the wavelet power spectrum technique is that for some cases such

as music signals, the input signal must be taken long enough to effectively detect its

characteristics. Usually, the number of data samples for input signals is larger than 10,240.

Another disadvantage of the wavelet power spectrum technique is that for some cases,

the Fourier power spectrum is required to differentiate signals with similar characteristics,

which could not be clearly revealed by the wavelet power spectrum technique. For example,

the wavelet power spectra of the ECG and exponentially decaying sinusoidal with a non-

zero final value signals are identical but their Fourier power spectra are quite different.

However, for other cases, the Fourier power spectrum technique is not effective compared

with the wavelet power spectrum technique, e.g. music and speech. Therefore, depending

upon specific applications, the appropriate technique is used. In general, both techniques

should be employed to effectively reveal the signal characteristics.
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7.4 Conclusion

Music and speech signals have been examined using the wavelet power spectrum and the

Fourier power spectrum techniques. Music signals behave chaotically even though the

wavelet power spectra of different sets of the signals appear to be instantaneously periodic.

This can be explained by i... fact that harmonic peaks of musical signals abruptly disappear

over lime which reflects the disordered characteristics of these signals. Tho findings in this

chapter agree with results found by other researchers [103-111].

Speech signals have been found to be periodic with strong harmonic peaks and several

sab-harmonics. It has been shown that remarks drawn by using the wavelet power spectrum

and Fourier power spectrum techniques are consistent. Some speech signals exhibit

component-variation but they are not chaotic since their wavelet power spectra are not broad

and occupy narrow scale ranges. The wavelet power spectrum technique seems to be more

effective than the Fourier power spectrum technique in studying music and speech signals.

On the other hand, it is not effective in studying the ECG signal as was discussed in Chapter

The contribution of this chapter is that the hyperbolic wavelet power spectrum is

employed as a new technique to effectively study music and speech signals. This might lead

to a new way of using more sophisticated time-frequency techniques for signal analysis and

other aspects of signal processing such as signal detection (Chapter 5), time-frequency

higher-order statistics such as time-frequency bispectrum and speech recognition.

The hyperbolic wavelet is more efficient than the sym3 wavelet because its total

number of scales is smaller than that of the sym3 wavelet due to the compression effect. In

addition, for some speech signals, the hyperbolic wavelet is more effective than the sym3

wavelet by clearly displaying the signal harmonics and sub-harmonics. The hyperbolic

wavelet power spectrum technique is also able to focus on main harmonics of an input

signal which leads to a disadvantage of missing fine sub-harmonics. Overall, the hyperbolic

wavelet is an efficient and suitable wavelet for the wavelet power spectrum technique.

The next chapter applies parallel computing to calculate the bispectrum and time-

frequency power spectrum by using a parallel computer.
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Chapter 8: PARALLEL
COMPUTATION OF THE
BISPECTRUM AND HYPERBOLIC
TIME-FREQUENCY POWER
SPECTRUM

Chapters 6 and 7 examined the wavelet power spectrum technique and mentioned the

bispectrum technique as effective tools for signal analysis, especially, in detecting chaos and

non-linearity. Although the bispectrum and hyperbolic time-frequency power spectrum

techniques are effective, these techniques require a large amount of computation time if

using a seriui-processing computer which limits their practical applications. Thus powerful

computing tools are required to improve their efficiency so that they can be widely used.

PaiaiUj computing is one such tool. In parallel computing, a large task is split into smaller

tasks so that they can be concurrently executed by multiple independent processors.

This chapter shows that parallel computing is an appropriate and effective tool to solve

computationally intensive tasks in signal processing. The bispectrum and hyperbolic time-

frequency power spectrum are two typical applications that are investigated by using

parallel programming. In this chapter, background of the bispectrum is given in Section 8.1.

The hyperbolic time-frequency power spectrum was studied in detail in Chapter 3 and its

basic relations are briefly repeated in this chapter.

The bispectrum and hyperbolic time-frequency power spectrum are closely related by

the auto-correlation function which was used to calculate the power spectrum in Chapter 3,

Section 3.2, which is the main reason why the bispectrum is included in this chapter. The

theoretical background of the bispectrum is given first to form a fundamental background

for the hyperbolic time-frequency power spectrum which will be discussed in the next

section.
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8.1 Theoretical
Bispectrum

Background of the

Parallel programming and parallel machines have been extensively studied and used over

many decades mainly for predicting weather patterns [93] and in image processing, [94, 95]

where tasks, which are computationally expensive, are executed. However, to the best of our

knowledge, parallel programming techniques have not been widely used in the field of

higher-order statistics and higher-order spectra such as the bispectrum. Recently, two papers

were published applying parallel computing in estimating the bispectrum. The first paper

[96], which was published in 1991, reported the performance of an 8-CPU shared-memory

CRAY Y-MP machine and 1024-CPU distributed-memory n-CUBE machine in calculation

of the bispectrum. In particular, the speedup factor of the bispectrum calculation process

was measured and compared for different machine configurations in which a near super-

linear speedup factor was obtained. The second paper [97] proposed an algorithm to

estimate higher-order moments using the MASPAR-1 machine, which is a SIMD (Single

Instruction Multiple Data) machine.

In this chapter, the bispectrum is estimated by using two different methods namely

direct and indirect. The direct method employs the 1-D EFT algorithms and the indirect

method employs the 2-D FFT algorithm to estimate the bispectrum. Both methods are

implemented by using 2 different parallel programming techniques: semi- and full-

automatic or the Power C Analyser (PCA). The Silicon Graphics Power Challenge

Multiprocessor System (with 12 CPUs) is used to run the parallel codes.

The direct method is used to estimate the bispectrum [86, 87], which was given by Eq.

(6.1.6) in Chapter 6, and is repeated here by Eq. (8.1.1)

(8.1.1)

where X(-)is the 1-D Fourier transform of a given discrete series x{n) of M samples. For

more information on the bispectrum, the interested reader should consult references [86,

87].
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The indirect method uses the 2-D Fourier transform (calculated using the 2-D FFT

technique) of the tricorrelation function RVX.X(T\,T2)

uT2)}, where

M-l

Rxxx (Ti .T2) = 2 ^ Jc('O • x(n + T,) • x(n + T 2) ; Ti, T2 = 0, 1, 2 , . . . , Af - 1
n=0

(8.1.2)

The bispectrum has been shown to be a useful tool in the study of chaos and behaviour

of non-linear systems [1, 98, 99]. However, since the Fourier transform is most suitable for

wide sense stationary signals only (as stated in Chapter 5), the bispectrum therefore has its

limitations when the input signal is non-stationary. If the input signal is not wide sense

stationary, then the frequency contents of the signal (or energy density) will change with

time. By using the Fourier transform, fine-detailed information of the signal energy density

will be lost since the Fourier transform method averages the energy density over an infinite

time interval. It has been observed that the fine-detailed information of the energy density is

useful to detect the transitions to chaos and turbulence [33, 34] as was shown in Chapters 6

and 7. To be able to observe time and frequency variation of the energy density of a non-

stationary signal, a time-frequency power spectrum technique is employed. The time-

frequency power spectrum technique displays the energy density of a signal as a function of

time (/) and frequency ( / ) which means that the signal characteristics can be

instantaneously monitored. The general formula of the time-frequency power spectrum is

given by Eq. (8.1.3)

+00+00+00

III
—CO—OO—CO

(8.1.3)

where JC(«) is the input signal, 0(9, f) is the kernel function and

R (t,T) = x(u+-)-x*(u-%) is the local auto-correlation function. The formulas of the

first-order hyperbolic and other kernels were given in Chapter 3. More details on the general

time-frequency power spectrum may be found in [9,28].
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The discrete version of Eq. (8.1.3) is given by Eq. (8.1.4) [28]

(8 .1.4)

;«=-

As was evident from Eqs. (8.1.3) and (8.1.4), the amount of required computation of

the time-frequency power spectrum is very large due to the triple integral and the two

running variables / and co. The resultant serial program consists of four nested fo r loops. If

the input signal has 256 samples, then the number of required iterations will be (256)4 =

4,294,967,296 which is a large number which makes the calculation process time

consuming if it is run serially. For the bispectrum, to calculate the bispectrum of the ECG

using 10,240 samples would take more than a day running on a normal PC. Thus, parallel

computing is employed with the hope that it can reduce the amount of computation time of

these tasks.

Sequential C programs were written first based on Eqs. (8.1.1) and (8.1.2) to estimate

the bispectrum using the direct and indirect methods respectively. Then semi-automatic and

full-automatic parallel (PCA) programs were constructed based on the sequential programs.

Semi-automatic programs are obtained by inserting #pragma directives into the sequential

program at appropriate points. This technique is based on a coarse-grained technique

whereas the PCA method is based on a fine-grained technique. Also, arrays and loop

parameters of the sequential program are controlled so that they can be independently run by

different CPUs to avoid data dependency. The PCA parallel technique is activated by

running the - p e a flag of the Power C compiler.

For the hyperbolic time-frequency power spectrum, it should be noted that due to the

immaturity of parallel compilers, the PCA or full-parallel method might not provide

satisfactory results. The PCA method does not efficiently parallel the serial program due to

data dependency even though the program is free from data dependency. The compiler only

parallels a loop or breaks it into smaller tasks if and only if it knows that the loop is free

from data dependency. This is usually the case for single loops, but not for nested loops

which contains most of the computational burden. Thus, semi-automatic parallel method

seems to be the most appropriate way to apply parallel programming although it requires in-

depth understanding of the programming language and the structure of the parallel system.
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This chapter focuses on the effectiveness of the Silicon Graphics Power Challenge

multiprocessor shared-memory MIMD (Multiple Instruction Multiple Data) machine

(HOTBLACK)* in calculation of the bispectrum and the hyperbolic time-frequency power

spectrum. Each CPU can be considered as an independent processor with a separate local

memory and cache. To effectively program the machine, it is important to arrange the loop

parameters and data structure inside the programs so that they are suitable for the specific

configurations of the computer. This is the most difficult part of parallel programming in

which the programmer must understand the configuration of the particular machine. The

semi- and full-automatic parallel methods are employed to run the programs so that their

speedup factors can be accurately measured and compared. The semi-automatic method

employs the coarse-grained parallel technique which usually gives a better measured-

speedup factor. The full-automatic method employs the fine-grained parallel technique

which parallels a large number of small loops and usually results in higher parallel overhead

compared with the semi-automatic method. For the hyperbolic time-frequency power

spectrum calculation process, the semi-automatic method is only used. The full-automatic

PCA method is not employed since it results in very large parallel overhead which causes a

poor measured-speedup factor. The effectiveness of the semi- and full-automatic parallel

methods in calculating the bispectrum is examined in the following section.

8.2 Parallel Computation of the Bispectrum

In the HOTBLACK parallel computer, there are 12 parallel programs with different

numthread(N) to run on 12 different processors on the system. numthread(N) is a

parallel directive from Silicon Graphics that allows the program to be executed in parallel

using N independent CPUs. For example, if N = 3 then the program will be executed in

parallel using only 3 CPUs. To ensure efficient compilation, the programs are submitted

into a batch queue to obtain more CPU_time, memory_use and s t a c k _ d a t a _ s i z e

quota. Four script files have been written to run the programs under the UNIX operating

system.

1 HOTBLACK is a local name of the machine at Monash University.
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The measured-speedup factor is estimated as

Measured - Speedup Factor - S e c » u e n t i a l - T i m e

Parallel_Time (8.2.1)

where the SequentialJTime is the real CPU time used to run the sequential source code and

the ParallelJTime is the real CPU time of the slowest CPU employed to run the parallel

code.

The efficiency of a parallel program is estimated as

n „ , C f r . Measured SpeedupParallel_Effkiency = =_E: L
Ideal_Speedup (8.2.2)

Theoretically, the ideal or super-linear measured-speedup factor of a program is

defined as N if the parallel program is run using N CPUs [101]. Practically, the measured-

speedup factor is always less than the super-linear speedup factor due to parallel overhead

implying that parallel efficiency is less ciian 100%.

To ensure consistency between parallel and sequential programming techniques, their

resultant output files are compared and it has been observed that they are identical. If the

files are not identical, data dependency must have occurred in the sequential source code.

The difference between the fine-grained and coarse-grained parallel techniques is that, for

the former, which is used by the PCA method, only small repeated loops are paralleled

which yields more than one parallel loop in a parallel program and thus results in more

parallel overhead. For the coarse-grained parallel technique, the largest parallel loop that has

the largest workload in the program is paralleled. Usually, there is only one largest repetitive

loop in the program. Since the number of paralleled loops in the coarse-grained technique is

much less than that in the fine-grained technique, the amount of parallel overhead in the

former is much less than that in the latter.

For comparison, the size of each segment of the direct method is 2,048 data points

which is twice that of the indirect method of 1,024 data points (since 1,024 data-point

segments are still not large enough for the direct method, 2,048-data-point segments are

used instead, also longer segment size of up to 10,240 points can be used). From simulation

results, it has been observed that the serial program of the direct method took approximately
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23 seconds to run compared to 587 seconds running time of the indirect method although

the segments in the latter method are half as long. Thus the direct method (Eq. (8.1.1) or

equivalent) is more computational efficient than the indirect method. The measured-speedup

factors of the semi- and full-automatic parallel methods are plotted as a function of the

number of processors N in Figure 8.2.1; the parallel efficiency of each technique is plotted

in Figure 8.2.2. In these figures, Direct and Indirect are the measured-speedup factors using

the semi-automatic parallel method for the direct and indirect methods respectively. Direct

PCA and Indirect PCA are measured-speedup factors obtained using the PCA full-automatic

parallel method for the direct and indirect methods respectively.
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Figure 8.2.1: The measured-speedup factors (based on Eq. (8.2.1)) of the semi- and full-
automatic methods using the direct method (Eq. (8.1.1)) and indirect method (Eq. (8.1.2)) as

a function of Af

As N increases, the amount of parallel overhead increases due to synchronisation and

waiting time of the processors. However, near super-linear measured-speedup factors are

obtained by using the semi- and full-automatic parallel methods for the direct method as

seen in Figure 8.2.1. For the direct method using the PCA parallel method and for large

values of N (for instance, al N = 12), the measured-speedup factor starts to decrease which

illustrates the limitation of the fine-grained parallel technique: large amount of parallel

overhead are generated for large values of N which lowers the measured-speedup factors
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(the Direct_PCA and Indirect.PCA curves in Figure 8.2.1). For N < 12, the PCA method

provides a near-linear measured-speedup factor which indicates that the fine-grained

technique is more suitable for the direct method (using the PCA method) than the coarse-

grained technique. If the segment size increases further, near-linear measured-speedup

factors might not be obtained for the indirect method due to a long waiting time as

explained in the following section.

Parallel Efficiency of the Bispectrum Calculation

Direct

Indirect

Direct PCA

Indirect PCA

10 11 12

Number of Processors, N

Figure 8.2.2: Parallel efficiency (based on Eq. (8.2.2)) of the semi- and full-automatic
parallel methods versus the number of processors

For the indirect method using the semi-automatic parallel method, near super-linear

measured-speedup factors are obtained only with some specific numbers of CPUs which are

multiple of the loop size of 10. That means when N = 1, 2, 5 or 10, near super-linear

measured-speedup factors will be obtained. For other values of N, since the associated work

with each iteration of the loop is large, there will be "unemployed" processors waiting for

other processors to complete their tasks. For example, if N = 6 all six CPUs will be

assigned to the first six iterations of the loop. After finishing the 6 iterations, four of the six

CPUs will be used to complete the remaining 4 iterations and two CPUs have to wait

("spin") until the iterations are finished. Since the associated work of each iteration is large,
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this results in a long waiting time and thus the measured-speedup factors and parallel

efficiency will be lowered as illustrated for cases of N = 3, 4, 6, 7, 8, 9, 11 and 12 in Figure

8.2.1 and Figure 8.2.2. Hence, if N is not a factor of the loop size (which is 10) and if the

work of each iteration is large, increasing N will increase parallel overhead and constrain the

measured-speedup factor.

For the indirect method applying the PCA parallel method, the measured-speedup

factor linearly increases as N increases although with lower values compared to the case of

semi-automatic parallel method due to high parallel overhead in several small parallel loops.

However, the performance of the PCA method is predictable. From Figure 8.2.1, in contrast

with the direct method, the coarse-grained technique is more suitable for the indirect

method than for the direct method since a better measured-speedup factor is achieved.

However, to obtain satisfactory performance, N must be chosen to be a factor of the loop

size. Table 8.2.1 compares the maximum measured-speedup factors of the semi- and full-

automatic parallel methods applied to the direct and indirect methods.

Table 8.2.1: Maximum measured-speedup factor comparison of the semi-automatic and
PCA parallel methods (using the direct and indirect methods) for the bispectral parallel

computation process
Method

Direct calculation of the bispectrum

Indirect calculation of the bispectrum

Semi-automatic

measured-speedup

factor

10.84 at N= 12

9.17atN=ll

Full-automatic PCA

measured-speedup

factor

10.44 at N= 11

7.67 at W= 12

From Figure 8.2.1 and Figure 8.2.2, the bispectrum measured-speedup factor increases

but its parallel efficiency decreases as N increases. Thus, there ought to be a realised

speedup factor or effective-speedup factor that considers both the measured-speedup factor

and parallel efficiency by forming their product as a function of N. The.effective-speedup

factor reflects the effectiveness of a parallel calculation procedure and should be considered

important. Thus, when choosing a particular value of N for designing purposes, the

measured-speedup factor, parallel efficiency and effective-speedup factor should all be

considered. Depending on a particular application (whether the measured-speedup factor or

parallel efficiency is the first priority), the appropriate parameter is used. If both of them are

required, the effective-speedup factor is employed. The effective-speedup factor of the

bispectrum is displayed in Figure 8.2.3.
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Effective- Speedup Factors of the Bispectrum Calculation
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Figure 8.2.3: The effective-speedup factors of the bispectrum calculation. The measured-
speedup factors are not included here for simplicity.

This section nas presented the results of parallel computation of the bispectrum, the

next section shows that the hyperbolic time-frequency power spectrum can also be

efficiently calculated by using parallel computing.

In this thesis, two signal-processing techniques have been proposed. Firstly, the

hyperbolic kernel and secondly, the hyperbolic wavelet which can be generated from the

hyperbolic kernel. The bispectrum has not been thoroughly studied in this thesis and yet it

has been calculated using a parallel computer to reduce its computational burden. The

hyperbolic time-frequency power spectrum will be estimated using a parallel computer in

the next section. However, the hyperbolic wavelet transform and wavelet power spectrum

have not been mentioned or calculated using a parallel computer up to this point. The main

reason for this is that the wavelet transform and wavelet power spectrum have been

extensively estimated using a parallel computer in the literature [114-126] and thus this

chapter will not pursuit further the already-established results. It has been found that the

wavelet transform can be efficiently estimated with a near-linear measured-speedup factor

[114-117, 119, 120, 121, 123, 124] by using a parallel computer.
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The wavelet transform and wavelet power spectrum are time-frequency techniques and

thus they are closely related to the time-frequency power spectrum technique via the local

auto-correlation function (Eq. (8.1.3)). The ..-avelet power spectrum technique has been

shown to be useful in studying signal characteristics in Chapters 6 and 7. Some of the

parallel techniques used to estimate the wavelet such as the coarse-grained parallel

technique [117, 121] will be employed to estimate the hyperbolic time-frequency power

spectrum.

8.3 Parallel Computation of the Hyperbolic
Time-Frequency Power Spectrum

In Section 8.2, the bispectrum was estimated using a super parallel computer and that a

near-ideal measured-speedup factor was achieved in estimating the bispectrum. In this

section the computer is utilised to estimate the hyperbolic time-frequency powr; ;-pectrum.

From that, suggestions can be made whether the hyperbolic time-frequency power spectrum

is suitable for parallel computing analysis. Fund::! v^ntal background of the hyperbolic time-

frequency power spectrum was given in Section 8.1 from which the serial program to

calculate the hyperbolic time-frequency power spectrum is construct.

The coarse-grained parallel technique is used for the semi-automatic method and the

fine-grained parallel technique is employed for the full-automatic PCA method as was

applied in the case of the bispectrum calculation process. However, only the semi-automatic

parallel method is investigated due to inefficient coding of the C annotator (full-automatic

FCA method). The compiler mistook the inner loop as the most efficient loop for parallel

programming, in other words, it inefficiently employed the fine-grained parallel technique

which resulted in long parallel overhead and lowered the measured-speedup factor. For the

semi-automatic parallel method, the structure of the parallel program is manually

constructed thus the coarse-grained parallel technique can be efficiently employed which

gives a better measured-speedup factor and parallel efficiency. This agrees with previous

work by Suzuki et al [117] and Lihua and Misra \ 121].
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Key factors that affect the performance of parallel programs are parallel load (the load

among the processors should be evenly balanced), parallel overhead (the amount of

communication among the processors should be minimised) and data dependency. There are

four nebiid fo r loops in the program which require a large amount of computation. The

measured-speedup factor is obtained by using 256-sample f o r loops. Since there are 4

nested for loops, the n -nber of iterations would be (256)4 = 4,294,967,296 iterations or

approximately 4.3-109. Lecause the s t a c k _ s i z e and memory_size quotas on the

parallel computer on which J l experiments were run are limited, a larger loop size (for

example 1024 or larger) could not b- .erformed.

The coarse-grained parallel technique is utilised in the outer-most loop of the program

by dividing it into smaller tasks. Each independent task has 3 nested fo r loops, which can

be concurrently executef' by independent processors. The outer-most loop is run in parallel

since it is the largest loop in the program, which requires the largest amount of computing

power. Each iteration of the loop is independent of each other which considerably reduces

parallel overhead among the processors.

It should be noted that time-frequency power specti.;) of various kernels are different in

the kernel functions only and their general architectural structures are unchanged. In

addition, the associated computation of the general structure (as stated earlier) is too large

compared with the calculation of the kernel which involves simple multiplication and

division operations. Thus, if the hyperbolic time-frequency power spectrum can be

efficientiy estimated, other time-frequency power spectra using different kernels such as

Choi-Williams or Wigner-Ville can also be efficiently estimated. The parallel measured-

speedup factor and efficiency are estimated by using Eqs. (8.2.1) and (8.2.2) and given in

Figure 8.3.1 and Figure 8.3.2 respectively. Comparisons of the measured-speedup and

effective-speedup factors are given in Figure 8.3.3.
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Measured Speedup Factor of the TF Power Spectrum

Linear Speedup

Measured Speedup Factor

Number of Processors, N

Figure 8.3.1: The measured-speedup factor of the hyperbolic time-frequency power spectral
calculation process, the loop size is M = 256

I

The measured-speedup factor of the hyperbolic time-frequency power spectral parallel

calculation process is evidently near super-linear. The measured-speedup factor linearly

increases as there are no "humps" or sudden "jumps" in the curve as seen in Figure 8.3.1.

This shows that the hyperbolic time-frequency power spectrum can be efficiently calculated

using parallel computing. By comparing the measured-speedup factors of the hyperbolic

time-frequency power spectrum and bispectrum, it is clear that the bispectrum can be more

efficiently calculated than the hyperbolic time-frequency power spectrum. This is mainly

due to the structure of the inner loops of the hyperbolic time-frequency power spectrum

program because the number of i f statements in the bispectrum program is less than that in

the hyperbolic time-frequency power spectrum program which significantly slow the

processors down.

1
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0.756 •
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Parallel Efficiency of the Time-Frequency Power Spectrum Calculation

Number of Processors, N

Figure 8.3.2: Parallel efficiency of the hyperbolic time-frequency power spectral calculation
process, the loop size is 256

I

Comparison of Effective-Speedup and Measured-Speedup Factors

Linear Speedup
Measured Speedup Factor
Realised Speedup Factor

Figure 8.3.3: Comparison of the measured- and effective-speedup factors as a function of N

\

The hyperbolic time-frequency power spectral calculation process has lower parallel

efficiency than the bispectral calculation (for the case of the direct semi-automatic and

direct PCA full-automatic method only) process because the number of nested for-, loops

inside the main loop of the former program (4 f o r loops) is larger than that in the latter

program (3 f o r loops). In addition, for each nested fo r loop, there is a summing

mechanism, which must be performed so that the results are ready for the next outer loop.

As a result, there is idle time in an outer loop since its inner loops are not alwavs ready for

calculation if all of their iterations are not completed. This creates a large amount of
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unavoidable parallel overhead (on average about 10 seconds compared with 1 second in the

case of the bispectral calculation process).

The parallel efficiency of the hyperbolic time-frequency power spectral calculation

process attains its minimum value of 74.9% at N= 10 and its maximum value of 75.8% at N

= 3. The parallel efficiency remains unchanged with the average value of 75.2% for other

values of N. From Figure 8.2.2 (bispectrum parallel efficiency) and Figure 8.3.2 (hyperbolic

time-frequency power spectral parallel efficiency), the bispectral parallel efficiency is

higher than the hyperbolic time-frequency power spectral parallel efficiency (except for the

case of the indirect semi-automatic and PCA full-automatic methods) as previously

explained.

It should be noted that the efficiency of the hyperbolic time-frequency power spectral

parallel calculation process, though lower than that of the bispectrum, is quite stable, unlike

the case of the bispectral parallel calculation process. This is mainly due to the size of the

input data sets. For the case of the bispectrum, there are IO segments, each consisting of

1,024 samples and the total number of samples, is 10.240. If the number of samples per

segment is less than 1,024, then there are no significant conclusions on the signal

characteristics (for example, the ECG) because the data set is not la-ge enough. Therefore,

10 iterations are chosen. Since the number of iterations of the parallel loop is small, the

number of processors used to run the bispectruiii parallel program plays an important role in

spee-iing up the calculation process. Although there are only 10 iterations, the associated

work with each iteration is large which results in lor>g waiting time for the processors as

explained in Section 8.2 for the indirect method.

For the hyperbolic time-frequency power spectrum, the number of iterations for the

main parallel loop is 256, which is a large number compared with the number of processors

of the system (12 independent processors). Thus, the waiting time of one processor is

considerably small compared with the calculation time of other processors. In other words,

if one or more processors wuil fcr others to finish their tasks, then the waiting time is always

considerably less than the useful time. For example, if the number of processors k N = 5,

then the number of iterations that each processor has to complete is 51 and there is 1

iteration left. After the processors finish their 51-iteration work then one of them has to

finish the remaining iteration ana other processors (four in this case) have to wait or spin

until that remaining iteration is completed. The spinning time associated with one iteration

is cleariy much less than the required time to complete 51 iterations. This explains why the
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parallel efficiency of the hyperbolic time-frequency power spectral calculation process is

more stable than that of the bispectral calculation process.

Overall, although the parallel efficiency of the hyperbolic time-frequency power

spectral process (75.2%) is not as high compared with that of the parallel bispectral

calculation process (about 90% or higher for the direct method), it has been shown that the

hyperbolic time-frequency power spectrum can be efficiently calculated by using parallel

computing which is an encouraging result. The parallel efficiency of the hyperbolic time-

frequency power spectral calculation process can be improved by increasing the loop size.

1

J
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8.4 Conclusion

The contribution of this chapter is to improve the speed of computation of the bispectrum

and hyperbolic time-frequency power spectrum processes by using parallel computing.

Near-linear measured-speedup factors of the bispectral parallel calculation process have

been achieved by using the semi- and full-automatic (PCA) methods for the direct method.

For the indirect method, parallel overhead gradually increases when N > 6 due to the

specific loop structure of the serial program. However, for N < 5 or N = 10, near-linear

measured-speedup factors were obtained for the indirect method by using the semi-

automatic method. Thus it can be concluded that the direct method of bispectrum

computation is more suitable for parallel programming than the indirect method. The PCA

method can be used to achieve the measured-speedup factor of 7.67 at N = 12 (for the

indirect method). However, the PCA method suffers from high parallel overhead for large

values of N (N > 12) since a PCA parallel program (employing the fine-grained parallel

technique) contains several small parallel loops.

I

!

For the hyperbolic time-frequency power spectral parallel calculation process, a near-

linear measured-speedup factor has been obtained with the minimum efficiency of 75.13%

at N = 1. The maximum efficiency of 75.58% was achieved when N = 3 at the measured-

spsedup factor of 2.3. At N = 12, the efficiency was 75.3% which corresponds to the

measured-speedup factor of 9.03. The average efficiency is approximately 75.34%. It has

been observed that the PCA method could not provide a suitable parallel solution to the

serial program thus only the semi-automatic method was employed to parallel the

hyperbolic time-frequency power spectrum serial program. From the obtained results, it

—- —
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li

appears that the hyperbolic time-frequency power spectrum can be efficiently calculated by

using parallel computing. However, the efficiency of the process is not high compared with

that of the bispectral calculation process. As stated earlier, other time-frequency power

spectra using different kernel functions such as the Choi-Williams and Wigner-Ville can be

efficiently estimated using parallel computing due to a small difference in the computational

burden of these kernels.

The effective-speedup factors of the bispectrum and hyperbolic time-frequency power

spectrum have also been obtained for completeness and for practical purposes. Since the

efficiency is always less than unity, effective-speedup factors are always less than

measured-speedup factors. As its name implies, the effective-speedup factor represents the

true speedup factor gained by using a particular parallel system. This speedup factor can be

used for applications in which both the measured-speedup factor and parallel efficiency are

required so that the most suitable number of processors can be identified. It is important to

realise that the more processors, the faster the computation can be carried out. On the other

hand, simultaneously, parallel overhead will be increased. Thus, there must be a balance

between the number of processors and parallel overhead in a parallel system. For the

HOTBLACK system, it is clear that the calculation efficiency of the bispectrum and

hyperbolic time-frequency power spectrum is always higher than 75% (except for the case

of the indirect semi-automatic and PCA full-automatic methods) which shows that

appropriate parallel methods have been employed and parallel overhead has been

sufficiently small in our work. Future work can be carried out on different parallel systems

to examine the effects of parallel overhead and the number of processors.

il
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Chapter 9: CONCLUSIONS AND
FUTURE RESEARCH

9.1 Summary and Conclusions

This research has explored the theoretical characteristics and some practical applications of

the hyperbolic kernel family. The research can be divided into two paits: theory and

application. The theoretical part consists of the first four chapters in which the hyperbolic

kernel family and hyperbolic wavelet were investigated in detail in Chapter 3 and Chapter 4

respectively. In Chapter 4, the strong link between time-frequency kernels and wavelet

functions was established which forms a foundation to expand the. two areas of time-

frequency and wavelet signal processing further. This is one of the major contributions of

the thesis.

The application part of the research examines possible applications using the

hyperbolic kernel and hyperbolic wavelet including signal detection in Chapter 5 and signal

analysis using the hyperbolic wavelet power spectrum technique in Chapters 6 and 7.

Chapter 8 presented parallel computing as a useful tool to improve the computational speed

of the bispectrum and hyperbolic time-frequency power spectrum.

The first-order hyperbolic kernel of the hyperbolic kernel family has been found to be a

simpler and more effective kernel than the popular Choi-Williams and multiform tiltable

exponential kernels in some applications. The hyperbolic kernel has been shown to be cross-

term effective and noise robust. However, the kernel has a coarse auto-term resolution

which could result in weak support for the auto terms in the time-frequency plane. It has

been shown that the new hyperbolic wavelet has a finer scale resolution compared vv'ith the

Morlet and Choi-Williams wavelets. The hyperbolic wavelet has been shown to have the

smallest total number of calculated scales among the three wavelets considered which

enables compression ability. This significantly improves the efficiency of the hyperbolic

wavelet power spectrum calculation process. I
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In signal detection, it has also been shown that the hyperbolic signal detector is more

ive than the Choi-Williams, Wigner-Ville and matched-filter detectors by improving

al-to-noise ratio by up to 40%. The discrete Moyal formula for non-unity kernels has

on derived based on Moyal's formula for the unity kernel, i.e. the Wigner-Ville Ivtmel. By

deriving Moyal's formula for non-unity kernels, the effects of noise were considered and

explored in detail using non-unity kernel signal detectors.

1
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The hyperbolic wavelet power spectrum technique has beer shown to be effective for

stationary and non-stationary signal analysis. A gallery of the hyperbolic wavelet power

spectra of various signals including ECG, speech, music, periodic sinusoidal and

exponential has been established. Transitions into the chaotic region of the ECG and

Duffing oscillatory signals have been successfully identified by using the hyperbolic

wavelet power spectrum.

The trade-off among cross-term suppression, noise robustness, scale resolution, signal

detection ability and auto-term resolution has been established. All of these features can be

successfully achieved at the expense of having a poor auto-term resolution. In addition, as

was shown in Chapters 4, 6 and 7, the hyperbolic wavelet power spectrum has been very

effective in studying non-stationary signals with a finer scale resolution and a smaller scale

range, compared with the Choi-Williams (Mexican-hat) wavelet and Morlet wavelet.

It has been shown that parallel computing can improve the efficiency of heavy

computational tasks in signal processing such as the bispectrum and hyperbolic time-

frequency po.ver spectrum. Near-ideal speedup factors have been achieved by using the

semi- and full-automatic parallel methods. The minimum parallel efficiency of calculating

these tasks is 75% which shows that they can be efficiently calculated using a parallel

computer.

i
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In conclusion, the contributions of this thesis are:

• Proposal of the new hyperbolic kernel family,

• Discovery of the new hyperbolic wavelet which is generated from the first-order

hyperbolic kernel,

• Identification of the link between the wavelet and time-frequency signal

processing areas which enables expansion of time-frequency and wavelet

analyses,

• Proposal of the new non-unity time-frequency detector, in particular the

hyperbolic detector with improved SNR,

*• Establishment of the trade-off among cross-term suppression, noise robustness,

scale resolution, wavelet compression and signal detection against auto-term

resolution

• Proposal of the hyperbolic wavelet power spectrum technique for signal analysis,

• Demonstration of the effectiveness of parallel computing in signal processing.

9.2 Future Research

The discovery of the hyperbolic kernel family has opened new research directions such as

kernel design, wavelet theory, signal detection and signal analysis using the time-frequency

power spectrum technique.

In this research, the first-order hyperbolic kernel ^hyperbolic = sech(POr) has been

extensively studied. However, other members of the family should be investigated. In

particular, the third-order hyperbolic kernel <$>aibic hyperbolic - [sech(j36f)f, is an exciting

kernel with useful features that are worth investigating. This kernel was mentioned a few

times in the thesis and some of its properties such as volume under the surface and time-

frequency power spectrum expression were given. However, its ability in suppressing cross

terms, noise robustness, auto-term resolution and signal detection have not been examined.

More work needs to be done so that the entire hyperbolic family kernel can be classified.

Chapter 4 showed that when new kernels were found, new wavelets could be

generated. It would be interesting to investigate possible new wavelet functions that can be

generated from the hyperbolic kernel family as it is not known whether there are useful

wavelets that could be generated from the family.

I
'i
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Although there are many new research directions in the theoretical study of the

hyperbolic kernel family, the applications of the family are also worth exploring. Detailed

studies need to be done to establish a kernel that yields the corresponding time-frequency

signal detector with a near perfect performance. Since the first-order hyperbolic kernel has

been shown to be superior to the Choi-Williams kernel, this kernel could be one of the

members of the hyperbolic family kernel or a kernel from another family.

li

1

Further work on parallel computing can be carried ouv by using the hyperbolic time-

frequency bispectrum as a typical application. The associated computation of the time-

frequency bispectrum is extensive since the spectrum must be able to "slide" to be

successfully displayed. This area of research has not been done and promises interesting

research work. I
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APPENDIX A :
EXPLANATION OF THE SEVEN
CONSTRAINTS

This section of the thesis attempts to explain meaning of the seven constraints, which were

given in Section 3.1, so that deeper understanding on them can be gained. Detailed meaning of

these constraints imposed on a time-frequency kernel will be given.

The general energy distribution, P{t, co; O), defined by Cohen [6, 9] is given as

+0O+OO+OO

P(t, co; O) = - ^ j J J J e-
ja-j™+ja' • *(0, T) • x* (H - f )• x (« +1)du dx cW (A- D

—oo—oo—oo

where x(t) is the input signal and Tis the lag parameter. For discrete input signal x(n), -ris in the

range of 0 - (M - 1) where M is the number of samples of the input signal x(n).

Eq. (A.I) was derived by Cohen by using the operator characteristic method. This method

uses two special operators, namely the time operator 3 and the frequency operator Q. The

correspondence rules of the operators are [6, 8]

at
(A.2)

f

The characteristic function, M(0, T), is an average function of the complex signal eJOt*j™

in whicl j and T are associated with time t and frequency co respectively. The time-frequency

power spectrum can be obtained from the characteristic function using the following relation <_

1
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Appendix A

*,©;*)= f f M(e,T)-e-j(a-J«i.<s>{Qa) de (lT (A.3)

The general formula of the characteristics function is given by
+00-foo

M(6,T)= I f ejOt+j™ • P(t,(o) dt dco

(A.4)

where P(t,a)) = -==-Re{x\r)-ej"* -X*{a)) } in which X*(co) is the Fourier transform of
V27T

x(t) and "*" denotes complex conjugate operation. Ifx(0 is real then x\t) = x(t).

From Eqs. (A3) and (A.4), the characteristic function is given as

,T) = (eJ6l+JTU))= fx' (A.5)

The exponential function involved in the operators can be split further into separate

components using the Baker-Hausdorf theorem [6, 8, 100]

_ -JOr/2 . Jra . j(B = JOr/2 , JCB . JiQ (A.6)

in which the change in the multiplication order of the operators results in an extra exponential

term with a changing sign. The extra exponential terms are present since the operators 3 and Q.

do not commute and e-
/03+-'lii is not equal to e-'03 • e-/rf2 like ordinary variables [6]. In fact, the

relation 3£2 - £23 =j [6] exists. More details on this derivation may be found in [8].

In addition, by using the first translation of Eq. (A.2), we obtain

i d \

ejrnx(t) = e Tl x{t) = x(t + T), where e;ri2 is the translation factor [8].
(A.7)
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By combining Eqs. (A.5)-(A.7), the characteristic function can be rewritten as

M ( 0 , T ) = IV(O • ejer/2 • eja • .x(t + T) dt (A.8)

Putting // =/+•§ and du = dt with ras a constant parameter, Eq. (A.8) becomes

Af (0,T) = J V ( M -\)-eiBtt -.V(H +i)rf« ( A 9 )

where the integral is taken from -«> to +°°.

From Eqs. (A.3) and (A.9), the general fon • \ for the time-frequency power spectrum is

obtained as given in Eq. (A.I).

There are a number of properties and corresponding constraints to ensure that time-

frequency kernels are valid. The first property that we need to consider is that the energy

distribution of a particular signal should not be complex, i.e. the energy distribution P(t, co)

should be real. Thus, the first constraint is that the kernel must be real and even, that means

|

T) = $ (-0, -T) (Constraint 1)

The energy distribution is also required to satisfy the shift properties with respect to the

time and frequency domains respectively, that means the following must be satisfied

P(t, ox, O) = P(t - tou ar, O)

and

P(t, ay, 0>) = P{t, a) - oh\ <&)

where tO\ and coo are arbitrary constants in time and frequency domains respectively. 1
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Therefore, the constraint imposed on the kernel is that the kernel must be independent of

both time and frequency. That means the following constraints must be met,

, r) does not depend on the time /, (Constraint 2)

, r) does not depend on the frequency co. (Constraint 3)

Since the time-frequency power spectrum is an instantaneous energy distribution, the sum

of Pit, CO ; 3>) over the time and frequency domains must be the total energy distribution of the

input signal ,v(/), that means

-^ f PQ,co; (A. 10)

and

J P(t,(o; X(co) (AM)

The total power spectrum of the input signal x(t) is integrated with respect to the frequency

variable coin Eq. (A.10). To equate the left-hand side to the right-hand side of Eq. (A.10), two

conditions must be satisfied: first, the kernel should not have any effect on the energy

distribution since it is the power spectrum of the input signal itself and second, the "frequency

variable co" of the kernel must be eliminated. It should be noted that 6 is the time variable and x

is the frequency variable used in the characteristic operator method.

To fulfill the above two requirements, we must have

O(0, 0) = 1 for all a (Constraint 4)

Similarly, we obtain another kernel constraint based on the property given in Eq. (A.ll)

0(0, T) = 1 for all T. (Constraint 5)

j

\
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Next, firstly, it is required that the average frequency of the energy distribution P(t, co; 0>)

and the instantaneous frequency of the signal should be equal at a certain time. Secondly, the

group delay and the average time of the distribution P(t, co; O) should be identical in value at a

certain frequency. Mathematically, the above two conditions can be written as [13,14]

+00

CO-P(j,CO\^)dCO

(PO,CO;

(A. 12)

and

+~
t-P(t,co;<j))dt

t,co;<p)dt
do

\nX{0i) (A. 13)

where X(co) is the 1-D Fourier transform of the input signal x(t) and ln(-) denotes the natural

logarithmic of the function (•) to the base e.

To meet the requirement given in Eq. (A. 12), constraint 4 is required so that the time-

frequency power spectrum P(t, co ; O) is independent of the "frequency variable" of the kernel

which is T. Recall that T and 6 are the frequency and time variables respectively of the kernel

functions 0(0, T) as have been used in the characteristic operator method. Thus, this property

covers the property previously given in Eq. (A. 10).

The right-hand side of Eq. (A. 12) can be rewritten as

I
ft

dt
(A. 14)
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The left-hand sides of Eqs. (A.12) and (A.13), which consist of the time-frequency power

spectrum and the kernel function, are equated with the rate of change of the input signal in time

and frequency domains respectively. To obtain the next two constraints, similar logical

techniques to those used to obtain constraints 4 and 5 are employed. In this case, the rate of

change of the kernel in the time and frequency domains (0and z respectively) must be zero so

that the rate of change of the time-frequency power spectrum is equal to that of the input signal

without the kernel interference. Mathematically, the required constraints to fulfill Eqs. (A.12)

and (A.13) can be stated as

at)
= 0,VT andO(0, T) = 1 for all T.

0=0
(Constraint 6)

Similarly, we obtain

= 0, V0 and O(0, 0) = 1 for all 0.
T=0

(Constraint 7)

The final property is the finite support property which states that the energy distribution

P{t, co ; O) should be zero over the zero region(s) of the input signals in time and frequency

domains. That means the followings can be stated

In the time domain, if/ t) = 0 for j t \ < To then P(t, co; O) = 0 for 11 \ < T, and similarly in

the frequency domain, if F(co)= 0 for | co \ < Oh then P{t, co; O) = 0 for | co \ < C0Q.

The finite support properties in time and frequency domains ensure that the energy

distribution or the time-frequency power spectrum is finite over the defined ranges of the time

variable t and the frequency variable co. To meet the finite support properties, the kernel

weighting function must be finite over the defined ranges of time or frequency. In other words,

the kernel weighting functions must decay to zero outside the defined ranges of the time and

frequency variables. The following constraints are therefore obtained

f e~ja • <!>(6,T)d9 = 0, for | r \ < 2| t (Constraint 8)

IT

v
I

n
(4
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and similarly

~J™ • O(0, T) di = 0, for 19 | < 2| Q)f
where all integrals are from -«> to +°°.

(Constraint 9)
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APPENDIX B : SlGNAL-T O -
NOISE RATIO DERIVATION OF THE
GNKD

I

This section presents detailed calculations of the SNR of the general non-unity kernel signal

detector (GNKD). The statistics i] is calculated by substituting the appropriate signals into

Eq. (5.19) in which the signals g(-), /i(-), s(-) and/(-) are different. To calculate the statistics

77, we put g(-) = /»(•) = s(-) which is the input reference signal. For the case of Ho, we have

/[•) = w(n). For the case ofHuA') = M") + •*(•)•

The statistics of the hypothesis Ho is given by

A//2

n=-M/2

n=-M/2 1k=-\n\

Pi

' / *=-" Pk

Pl

(B.I)
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After multiplying out all the summations and products we obtain

2j
n=-M/2

2/ 2
»i=-A//2 %=-| Pi

<ik=-\"\

2̂
1k=-\n\

ik=-\"\

2j

Pk

Pk

The statistics for the hypothesis H\ is given by

M/l

n=-A//2

A .
2/ (" + s(pk

ik

91 PI

n=-M/2

where Ai and 5i were defined by Eq. (B.I).

Pi

PI

Pk

(B.2)

)+ s(Pk ))• (-1)"*

(B.3)
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The general expression of i]TFR\H is given by

»\
= M

n=-A//2

Ik Pk J I qk

n=-M/2

Ik Pk

\ r

<ik Pk

= M

n=-A//2

where

/

C =

Ik Pk

Pk

\

II Pi

Pi

+

(B.4)

(B.5)

h
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For the special case of pk = Pu q, = qn and qk = q,, Eq. (B.5) becomes

C =

- A 0 F • A 0 F + B0F • B0F

V '•"

J { 11
(-1)P/

(B.6)

where A0F =^s* (qk)-Fk .s(qk) and B0F =^s" (q,)-F, • s(q,)- (-1)"'.

'it 'it

The constant C (given by Eq. (B.5)) is a modified version of the signal energy in which

the constant product Fk • F; can be considered as the square of the weighting function of the

kernel function 0(0, r) when k = I. As will be seen later, under the special condition of k = I,

some useful manipulations can be carried out.

In the case of the Wigner-Ville kernel in which the involvement of the kernel is

included in the index of the local auto-correlation function, the reference-signal energy is

not altered. For the case of a non-unity kernel, the Fourier transform of the kernel is not an

impulse function which makes the calculation of the time-frequency power spectrum more

difficult. As a result, the signal energy will be modified and its familiar form is not obtained.

Instead, the signal energy will be reduced by multiplying with the weighting function Fk.

The rest of the appendix is going to calculate the SNR of the statistics r\ by evaluating all ten

terms of the summation square. The effects of the weighting function will also be

demonstrated.

The notations used in this appendix are as follows. The subscript "0" indicates

energy terms with only one summation. These terms are usually the original signal energy

or noise energy, e.g. Ao, No- The subscript "1" indicates there are two summations in the

energy due to different k and /. If k is similar to /, then the subscript can be safely ignored.

The subscript "F indicates that the energy term is multiplied by the kernel weighting

function F and "FF means that the term is multiplied by a square of the weighting function.
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The performance of a detector is judged by the value of its SNR. Firstly, we calculate

the mean of the statistics of the two hypotheses

/ / 0 ) = 0 since E{w(t)}=0;

(B.7)

Since VTFRI,^ = C + ^TFR\HO > t h e variance of r}TFR\^ is equal to that of riTFR\fl . The

variance of VTFR\H ' S g ' v e n by

= Var{ 1 7 ^ } = E{ [77 (B.8)

To evaluate Eq. (B.8), we have to square t]TFR\H given in Eq. (B.2) to obtain a square

summation. From Eq. (B.2) and after the squaring process, we obtain the first term of the

square summation

M'

AT

M/2 A//2

n=-M/2 j=-M/2

M/2 M/2

n=-M/2 j=-M, 'lk\ Pi Pi 1

Pk Pk\

(B.9)

For a complex white noise process of variance A'o, we obtain

E{w(pk)-w(pki)} = N08(pk ~Pk\), thus, pk = pki
(B.10)

The noise process in this case is modified by the energy of the weighting function Fk

which results in a new noise process of variance NOi. Using Eq. (B.10), Eq. (B.9) can be

rewritten as
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The performance of a detector is judged by the value of its SNR. Firstly, we calculate

the mean of the statistics of the two hypotheses

(B.7)

Since VTFR^ = C+ VTFR\HO . t h e variance of i1TFR\IIi
 i s e q u a l t 0 *at of riTFR\H . The

variance of r)TFR|/y is given by

L } = Var{ 7 ^ 1 ) =
"o

(B.8)

To evaluate Eq. (B.8), we have to square r)TFR\H given in Eq. (B.2) to obtain a square

summation. From Eq. (B.2) and after the squaring process, we obtain the first term of the

square summation

A//2 A//2

n=-M/2 >-A//2

A//2 A//2

n=-M/2 j=-M/2

M'

ik\

(B.9)

ii 9/1

For a complex white noise process of variance A'o, we obtain

E{w(pk)-w(pki)} = NoS(pk -pki), thus,pk = pk\ (B.10)

The noise process in this case is modified by the energy of the weighting function Fk

which results in a new noise process of variance Afoi. Using Eq. (B.10), Eq. (B.9) can be

rewritten as
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Af/2 M/2 A//2 M/2

= M 2

n=-A//2 y=-A//2 ;i=-A//2 7=-A

where

k • w{pk

PI

and Ao was defined in Eq. (5.13).

The second term is given by

Af/2 Af/2

-Af/2 y=-Af/2

A//2 M/2 f

n=-A//2 ;=-A//2| <lk

\ r

Pk Pk\

M/2 M/2

n=-A//2 y=-A

where

it

9/1

(B.ll)

(B.12)

-1)""

(B.13)

r?
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The third term is given by

A//2 A//2

n=-Af/2 j=-M/2

S Mjl (

n=-M/2 j=-M/2[ iik

Af/2 MJZ

2^ 2J
n=-Mj2 j=-M/2

The fourth term is given by

J I 'I'

Wi

111

(B.14)

M
Mjl MJ2 Mjl Mjl

2'- V \,D}=M2- V V
n=-M/2 j=-M/2 n=-M/l j=-M/ <lk\

S A//2

2J A0 • NOFF • ^0! *J

n=-M/2 j=-M/2

Pl\

1 • '», ! .

(B.15)
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The fifth term is given by

Af/2 Af/2

V VM 2D,D2

A//2 M/l

»=-M/2 j=-M/2\

{qk ) ^ Fk • W{

Ik Pk

S M/2

n=-M/2 ;=-Af/2

F, • s{p,)F,

PI

• 30FF

PI

Ft • s{p,

PI

(B.16)

The sixth term is given by

S Mjl

n=-M/2 j=-M/2

M/2 M/2 /

n=-M/2 j=- <ik

'Ik

Pk

^ r

M/2 M/2

'2- V V 2A0-B0-N0FF-B0FF

n=-M/l j=-M/2

'"

PI

p>

(B.17)
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The seventh term is given by

M2

Mj2 MJ2

n=-M/2 j=-M/2

M/2 M/2

n=-A//2 j=-M/ V Ik

'Ik Pk

M/2 M/2

;i=-A//2 j=-M/2

Pk

P/

(B.I 8)

The eighth term is given by

A//2 A//2

H=-A//2 j=-M/Z

M/2 M/2

= 2M'

n=-A//2 jV-

Pk

pk Pi

2B0-M0FF -B0-B0FF

n=-M/2 j=-M/2

(B.19)
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The ninth term is given by

A//2 Af/2

2D,D3

n=-A//2 y=-Af/2

Mil M/2

= 2JW

n=-A//2 j=-M/2

A//2 A//2

n=-M/2 j=-

The tenth term is given by

A//2 A//2

n=-M/2 j=-M/2

M/2 M/2.

n=-M/2 j=-M/2 11c Pk

J \ '"

) { "I

ii

M/2 M/2
2- V 2^,2B0-M0FF-A0-A0FF

n=-M/2 j=-M/2

PI

(B.20)

PI

PI

(B.21)

Ml

;

\\ i

I,
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By summing the ten terms given by Eqs. (B.9)-(B.2O), the variance of i]TFR\H is given

by Eq. (B.22)

M/l M/l

o} = M 2 • 2_j X ^ ° " A°]FF ' N°FF '
n=-M/2 >-M/2

A W * AOIFF )+ (A) • N0FF • B01 •

' NQFF '

f [2A0 • N0FF • Bo • B0FF)

+ {2A0 • Bo • N0FF • B0FF)+ (2S 0 • M0FF • Ao • A0FF)+ (2B0 • MQFF • Bo • B0FF)

+ ( 2 5 0 • M0FF • BQ • BQFF)+ (2B0 • M0FF • Ao • AQFF )

2 A//2

2^ 2HA0 • AO\FF • NOFF • ^01 ) + (^0 • #01 ' N0FF ' S01Ff )]

n=-M/l j=-M/l

+ 2[2(A0 • N0FF • Bo • B0FF)+ 2(fl0 • M o f F • Ao • A0FF)+ 2{B0 • M0FF • Bo • B0FF)]

(B.22)

where

PI PI\ PI

P i

PI

M
0FF

pn

• Apk )• Fk • Apk )• ( - 1 ) w ; A'OFF = 2 ^ F *

Pk

• Fk • w(pk )

f '

(B.23)
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For the special case of pk = p, and qk = q,, q, = qn, Eq. (B.23) becomes

AO\FF = AOFF •" AOFF = / . Fl ' s{l>l ) ' Fji ' S* {p, '

Pi

BQFF = y^ F, • s(pi )Fi • s(pi )• |

'OFF

FF = B
0FF,

(B.24)

The 5N/? of the GNKD for the general case is then given by

SNRGNKD = ,__ ' ' . = . where VOK^TF/II//, ) i s S i v e n tyEq- (B-22)-

Eq. (B.22) consists of ten terms with the involvement of the fourth power of the

weighting functions Fk which reduces the values of the terms significantly. The nominator

of Eq. (B.25) is a function of the second power of the weighting function which is much

larger than its fourth power counterpart in the denominator. The denominator of Eq. (B.25)

needs to be as small as possible to maximize the SNR.
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For the special case of> t = p, and qk = q, given by Eq. (B.24), Eq. (B.22) becomes,

A//2 M]2

/i=-A//2 j=-A//2

(i40 • N0FF • Bo • B0FF)+ 2(BQ -MOFF-AO- A0FF)+2(B0 .MOFF-BO- BOFF

A//2 At/2

M 2 • X X 2 ^ ° ' ̂ 0FF ' ̂ Off • ^o)+ (^o • ^o • N0FF • B0FF)]
n=-M/2 j=-M/2

Q • N0FF • BQ • B0FF ) + 2(SO • M0FF • Ao • A O f F ) + 2(fi0 -MOFF-BO- BQFF

W/2 A//2

;i=-Af/2 j=-M/2

= 2M2-A2-N0FF-A0FF

M/2 A//2

n=-/l//2 j=-A//2

(B.26)

where X\ = -£- is the ratio between the energy difference of the even and odd parts of the

reference signal s(-) to its energy Ao, X2 = ^f- is the ratio of the energy difference between

the even and odd parts of the noise process to its energy No, NQFF and AOFF are the modified

noise energy and signal energy respectively scaled down by the square of the weighting

function Fk.

The SNRGNKD of the non-unity kernel signal detector in the special case is thus given by

SNR,GNKD

#0 No

(B.27)
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n r n r , SPe,edUP f " C t ° r ° f l h e t i m e- f r eq^ncy power spectral parallel calculation
process is evidently almost ,near. The speedup factor increases linearly as there are no
humps or sudden jumps" in the s^edup factor. This shows that the time-frequency

power spectrum can be calculated efficiently using parallel computing.
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Figure 1.2.2: Parallel efficiency of the time-frequency power spectral calculation process,
the loop size is 256 samples

1.3 Discussion
Conditional executions within the main parallel loop unbalance the load among the
processors as values of the running variables /:, t] and x vary and thus lower the parallel
efficiency of the process. Consider a fragment of the code given below

i n d e x l = n + T| + T;
index2 = n + T| - T;

i f ( ( i n d e x l >= M) | ( index2 < 0) ) temp = ( f l o a t ) 0 . 0 ;
Task!
else temp = (float) WFCW*ff[indexl]*£f[index2];
Task 2

The above code is located in the inner-most loop of the main parallel loop. Thus, the
conditional execution will occur repeatedly many times. Since the number of nested fo r
loops of the bispectrum process is less than that of the time-frequency power spectrum
process, this explains why the parallel efficiency of the latter is lower than that of the
former. As values of the temporary running variables i n d e x l and index2 change, so
does that of the temp variable which results in two unbalanced tasks as can be seen in the
above code. For large values of n, )j and r which are close to the loop size M, the load is
less computational-heavy compared to that for the case of small values n, r] and r. Thus,
processors that had been assigned large-order tasks will take less time to complete these
tasks and therefore they will be re-employed to finish any remaining iterations of the main
parallel loop.

Parallel efficiency might be improved by increasing the loop size M which increases
the ratio of useful work to total work whereas the amount of wasted work remains almost
unchanged. However, at the same time the parallel overhead might be increased. In other
words, if the loop size M is large compared to the total number of processors N in the

i.r

• I ,
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system (which is 12 in this case), the parallel efficiency might be improved. For the time-
frequency power spectrum case, the number of iterations for the main parallel loop is 256,
which is a large number compared to the number of processors of the system (12
independent processors). Thus, the waiting time of any processor will be considerably
shorter than its useful time. For example, if the number of processors is N = 5, then the
number of iterations that each processor has to complete is 256 d i v 5 = 51 and there is 256
mod 5 = 1 iteration left. After the 5 processors finish their 51-iteration work then the one
that finishes its tasks earliest has to finish the remaining iteration and other processors (four
in this case) have to wait until the remaining iteration is completed. The waiting time
associated with one iteration is clearly much less than that of completing 51 iterations. This
explains why the parallel efficiency of the time-frequency power spectral calculation
process is more stable than that of the bispectral calculation process.

However, the time-frequency power spectrum calculation process suffers from a larger
number of conditional executions compared to that of the direct bispectrum calculation
process which lowers the parallel efficiency. The parallel efficiency of the time-frequency
power spectrum calculation process is higher than that of the indirect method bispectrum
calculation for some values of N since the parallel efficiency of the latter depends strongly
on the number of conditional executions in the code and the number of processors used to
execute the parallel program (hence the unstability) as can be seen in Figure 1.3.1.

The parallel efficiency of the time-frequency power spectrum calculation process
attains its minimum of 74.9% with N = 10 and its maximum value of 75.8% with N = 3.
Most of the time, the efficiency remains almost unchanged around the average value of
75.2% for other values of the number of processors N.

If the program is run serially, then the time it would take to finish it is approximately
2583 seconds or 43 minutes for a small loop size of 256. The parallel program would take
less than 15 minutes to complete since the efficiency is higher than 75%. If the loop size
further increases, the efficiency of parallel techniques will be increased. The following table
summarises the advantages and disadvantages of parallel calculation of the bispectrum and
the time-frequency power spectrum.

Table 1.3.1: Comparison of the parallel bispectrum and time-frequency power spectrum
calculation processes

Common features
Parallel efficiency can be improved by increasing the loop size, parallel codes are flexible
and can be easily modified for other types of parallel architecture. Data dependency can
be resolved effectively.

Bispectrum

Time-frequency
power spectrum

Advantages
Higher efficiency due to efficient
inner loop (direct method) and a
small loop size.

Stable efficiency due to a large
number of iterations of 256 or
larger. Performance is uniform
as N varies.

Disadvantages
Unstable efficiency (indirect
method) due to a small number of
loop size of 10. Performance
strongly depends on the number
of processors used to run the
program in parallel.
Lower efficiency due to a larger
number of conditional executions.

Overall although the parallel efficiency of the time-frequency power spectral process
(75 2%) is not that high compared to that of the parallel bispectral calculation process (about
90% or higher) it has been shown that the time-frequency power spectrum can be calculated
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efficiently by using parallel computing. In addition, parallel computing is a useful tool to
solve large and lengthy signal processing tasks. The parallel efficiency of the time-
frequency power spectral calculation process might be: improved by inci easing the loop size.
The measured speedup factor was obtained by using 256-sample f o r loops. Since there are
4 nested f o r loops, the number of iterations would be (256)4 or approximately 4.3 x 109

iterations. Because the s t ack_ . s i ze and memory_.size quotas on the parallel computer
on which all experiments were run were limited, larger loop size (for example 1024 or
larger) could not be performed.

Bispcctrum Parallel Efficiency

Direct

Indirect

Direct PGA.

Indirect PCA

0.6 -

05-

0.4-

3 10 114 5 6 7 8 9

Number of Processors, N

Figure 1.3.1: Parallel efficiency of ihe bispectrum calculation process [24]
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1.4 Conclusion
For the time-frequency power spectral parallel calculation process, near linear-speedup
factor has been observed with the minimum efficiency of 75.1% with N = 1. The maximum
efficiency of 75.6% was obtained when A' = 3 at the speedup factor of 2.3. With N = U, the
efficiency was 75.3% and the speedup factor was 9.03. The average efficiency was
approximately 75%. It has been observed that the PCA method could not provide suitable
parallel solution to the program hence only the semi-automatic method was employed using
the coarse-grainea method for the time-frequency power spectrum calculation process. From
the results obtaiaed, it appears that the time-frequency power spectrun. can be calculated
efficiently by using parallel computing. However, the efficiency of the process is not high
compared to the bispectral calculation process due to a large number of conditional
executions.

m.m.
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Abstract. A new technique is proposed to solve the simple binary
signal-detection problem using a nonunity kernel time-frequency signal
detector (GNKD). The GNKD is based on a Cohen time-frequency power
spectrum, employing nonunity kernels only. This class of signal detectors
includes the Choi-Williams, detector (CWWD) and the recently proposed
hyperbolic detector (HyD). This work extends the work done by Kumar
and Carroll, who investigated the cross unity-kernel Wigner-Ville detector
(CWD), which is a special case of the GNKD class. The discrete Moyal's
formula for the nonunity kernel time-frequency distribution is derived.
The performance of the GNKD is then compared to that of the CWD and
the cross-correlator (CORR) detectors by calculating the signal-to-noise
ratio (SNR) and the loss factor Q. The GNKD is shown to be better than
both the CWD and the CORR with improvement in the SNR by a factor of
v£ The HyD can improve the SNR by about 18% compared io the
CWWD. Detection of some practical nonstationary signals is also inves-
tigated to exemplify the proposed method. © 2001 society of Photo-Optical
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1 Introduction

Detection of known and deterministic signals in the pres-
ence of noise is a classical problem that has been studied
intensively in (he literature. To solve this problem, the
signals and the additive noise are assumed to be stationary
or wide-sense stationary and zero-mean processes. The
matched-filter technique has been shown to be the most
effective method to detect signals in this case. However, if
the signal is nonstationary, i.e., its power spectrum varies
with time or the signal is not known beforehand, then the
classical method using the matched-filter technique is lim-
ited. Nonstationary signals in practice include radar, sonar
signals, image matching,3'4 and so on. For such nonstation-
ary .signals, time-frequency signal detectors need to be em-
ployed so that the signals can be detected effectively.

One typical time-frequency detector is the Wigner-Ville
unity-kernel detector, which can be used to solve the simple
binary detection problem.5'6 There are two reasons that the
Wigner-Ville time-frequency detector is popular. First, the
Wigner-Ville distribution is simple and easy to implement,
and it provides perfect frequency concentration in the time-
irequency plane.7 Second, originally used in quantum
mechanics, Moyal's formula, which is required for calcu-
lation of the SNR, is available for the Wigner-Ville distri-
bution. The noise, which is assumed to be complex, wide-
sense stationary, can be of two common types that are
usually encountered in practice, namely white and colored
noise. Using the Wigner-Ville unity kernel detector, detec-
tion of nonstationary signals in white noise was done by

Flandrin7 and in colored noise by Marinovich.3 Both these
researchers used a method to detect signals by estimating a
statistical function TJ, which is then compared with a thresh-
old value.5"79"" If 7} is greater than the threshold, then the
signal is said to be present; otherwise, the signal is not
present.

The nonunity kernel time-frequency signal detectors
form a class of detectors of which the Wigner-Ville unity-
kernel signal detector is one special case. This class of de-
tectors employs Cohen's lime-frequency distributions with
different kernel functions. Each kernel corresponds to a
unique distribution and hence to a unique signal detector.
The kernel function strongly influences the performance of
the detector in terms of SNR and the higher the SNR, the
better the performance of the signal detector. The simplest
nonunity kernel of Cohen time-frequency class is the
Rihaczek kernel, <PRihaC2C(;(0,r) = exp(/&V2). The Choi-
Williams kernel signal detector (CWWD) can be consid-
ered as the most useful and popular detector due to the
effectiveness of the Choi-Williams kernel in suppressing
cross terms and its robustness in noisy conditions. A differ-
ent class of signal detectors is the bilinear signal detectors,
in which the nonstationary structure of the signal is ex-
ploited to ensure the best match of the signal to the detec-
t ir's filter.4 Another class of distribution associated with a
detector is the quadratic class of time-frequency power
spectrum called the hyperbolic class, which was first pro-
posed by Papandreou and Bartels.12 Signal detection using
this particular class is examined in Refs. 13-15 using the
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J of estimating the statistical function 77.
kernel signal detectors have been studied in

,0111c detail in the literature, in particular, detectors usinc
the Rihaczek and Choi-Williams kernels. A comparison of
the Wigner-Ville and Rihaczek distributions has been done
in Ref. 7 in which the Wigner-Ville distribution was found
to be more suitable than the Rihaczek distribution in terms
of signal detection and preservation of the inner product of
Moyal's formula. The Wigner-Ville detector was compared
to the Choi-Williams detector9 for the case of the Doppler
target-return signal using the same method presented in
Ref. 7. In Ref. 9, the reverberation ratio SRR was estimated
instead of the SNR due to the specific requirements of the
application of calculating the target return.

Although the Choi-Williams time-frequency distribution
has been used to detect the Doppler signal, the statistical
function 77 of GNKD has not been derived. It should also be
noted that to estimate the SNR of a time-frequency detec-
tor, Moyal's formula for the corresponding time-frequency
distribution of the detector is required. While Moyal's for-
mula has been derived for the case of the Wigner-Ville
lime-frequency distribution of unity kernel only, this for-
mula has not been derived for a nonunity kernel time-
frequency distribution. We derive this formula for nonunity
kernel time-frequency distribution and then apply it to the
statistical function 77 to calculate the SNR of a detector.
Thus, derivation of Moyal's formula is an important step
before any performance calculation of a time-frequency de-
tector is carried out. Furthermore, using Moyal's formula is
the only method currently available to estimate the SNR of
time-frequency detectors, since the process involves mul-
tiple products of the corresponding time-frequency distribu-
tions that the detector is based on. If Moyal's formula for a
particular class of time-frequency detectors, i.e., Moyal's
formula for the corresponding time-frequency distributions,
does not exist, then it is not possible to estimate the perfor-
mance of the detector class.

We aim to achi>- ••". three goals. First, to derive the pre-
requisite Moyal's iormula for nonunity kernel detectors.
This formula can be used for any nonunity kernel detector
if anew kernel function and hence its corresponding time-
frequency distribution are available. Secondly, the hyper-
bolic detector (HyD) and Choi-Williams detector (CWWD)
are compared so that the effectiveness of the hyperbolic
kernel over the Choi-Williams kernels can be clearly iden-
tified. Thirdly, the ability of nonunity kernel detectors in
detecting practical signals such as ECG, music, and speech
is examined in detail.

Section 2 briefly defines the binary signal detection
problem and outlines the general expression of the SNR.
Section 3.2 derives Moyal's formula in detail for the non-
•mity kernel time-frequency distribution. In Sec. 3.3, the
general detailed expression of the SNR of the GNKD is
given using Moyal's formula. The relative performance of
Ihe HyD and CWWD is compared by using the geometrical
features of the hyperbolic and Choi-Williams weighting
functions. Section 4 calculates the SNR by using Moyal's
formula from Sec. 3.2 and compares the loss factor Q of
three signal detectors, namely, GNKD, CWD, and the
cross-correlator detector (CORR). The value of the energy
ratio X,, which plays an important role in determining the
performance of a signal detector, is estimated in Sec. 4.4

for a number or signals, including a sinusoid sin(0, an ex-
ponential exp(-f), exponential!.1 decaying sinusoid sin(/)
•exp(-'), chirped cosCCr2), the ECU, jnd speech including
all the voweis and the "sh"-sound signals. These signals
are used to test the performance of the GNKD, CWD, and
CORR. Overall, the GNKD provides a substantially im-
proved SNR for most practical signals compared to the
CWD and COR:<. The HyD performs better than the popu-
lar CWWD with a larger SNR.

2 Binary Detection Problem

The binary detection problem can be understood as a prob-
lem of determining the presence of a nonstationary signal
s(t) in the presence of the stationary, white, zero mean and
complex noise \v(t), given the received noisy signal f(t).
The signal energy and Ihe noise variance are assumed to be
Ao and No, respectively. These parameters are used to es-
timate the detector's performance by estimating its SNR.

Since the signal is nonstationary, the classical method
employed for stationary and known signals cannot be used.
Instead, time-frequency signal detectors have to be em-
ployed to detect the presence of the nonstationary and un-
known signals, which are corrupted by channel noise and
other noise sources. It is assumed that it is not possible to
separate frequency power spectra of the signal and the
noisy received signal/(/), and also that the signal is com-
pletely masked by the noise w(t). The two hypotheses for
detecting the signal that need to be considered are given in
Eq. (1)

//„:/(/) = «,(') and //,:/(/) = co(t), (1)

in which Ho means that the signal s(t) is not present and
H\ means the signal is present. The reference signal s(t) is
assumed to be unknown, nonstationary, and could be of
random type.

The hypotheses are then examined and the main goal is
to decide which one of them is likely to hold. This is done
by forming a statistics 77 using the received noisy signal
/ ( / ) and the reference signal s(t). The hypotheses are then
decided by comparing the statistics 77 with a threshold
v.-lue. If 77 is greater than the threshold, the signal is said to
be present. Otherwise, the signal is not present.3'4'7 The
performance of a particular statistics 77 is determined by
estimating its SNR. The SNR of a statistical function 77 for
random variables, which is equivalent to the likelihood ra-
tio, is given by5,6

SNR=-
\\a

(2)

where £( -) and Var(-) denote the expectation and variance
operations on the statistical function 77 under the hypoth-
eses Ho and Hi. The SNR of the matched filter or CORR
can be found by using the general formula [Eq. (2)], which
will be shown in So:. 4.1. The next section derives Moyal's
formula for the general nonunity kernel time-frequency dis-
tributions based on the same Moyal's formula for the unity-
kernel Wigner-Ville time-frequency distribution.
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3 Derivation of the Discrete Moyal's Formula for
a General Time-Frequency Distribution

3.1 Discrete Moyal's Formula for the Wigner-Ville
Time-Frequency Distribution

To successfully esiimate the SNR of a time-frequency de-
tector, Moyal's formula of a particular time-frequency dis-
tribution must be known. The discrete Moyal's fonnula for
the Wigner-Ville time-frequency distribution has been de-
rived by Moyal and forms the basis for deriving Moyal's
formula for a general time-frequency distribution, which is
vital in estimating the SNR of a detector using a noiiunity
kernel time-frequency distribution.

The general time-frequency distribution is denoted as
TFR(w.r) in continuous form, or T F R ( / H , « ) in discrete
form, with cu and / the frequency and time variables respec-
tively, and m,n the discrete frequency and time variables,
respectively. The general time-frequency distribution is de-
rived by Cohen lS;i7 and given in Eq. (3)

TFR(t,o>)= _7 f +J>xp-

•exp(-JT<o)-RtA(t,T)dudTd8, (3)

where F{t—u,T) is the weighting function, which is the
1-D Fourier transform of the kernel function <$>{6, r), u
=/+r/2, and the autocorrelation function R,_l(t,T)=x(.u
+ T/2)-.V*(M- r/2). The Choi-Williams kernel is given by
(J)cw(^.'') = exp(-62r2/a-) (Ref. 18) and the hyperbolic or
first-order hyperbolic kernel is given by ll>ny(0,T)
=[sechO30r)]", where n- 1. Two other kernels that can be
used for signal detection are the third-order hyperbolic ker-
nel, <I>Cubliy(0,r) = [sech(/307-)]", (where « = 3), and the
Choi-Williams-Butterworth (CWB) kernel # C W D ( 0 , T )

=exp(-0272/(r)/!9:72+l. It should be noted that the
*CWB(0>T) kernel satisfies admissibility constraints17"19

and has not been reported in the literature.

The weighting functions Fcvl, F1Iy, FC u b H y , and F C W B
of the Choi-Williams, hyperbolic, cubic hyperbolic, and
Choi-Williams-Butterworth kernels are given by Eqs. (4)-
(7), respectively

r-frr
expl

ir ir(t-u)

FCWB =

T T ^ V + H 2 )

?rexp( 1/cr)

J
sech

2/?T

(4)

(5)

(6)

2 r

+ exp
t-u

e x p l _ ^ i j . E r f c ^ _
1 r- t — U

(7)
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The Wigner-Ville lime-frequency distribution in con-
tinuous form is given by substituting <I>(0,r)= 1, which is
a unity kernel,I6J7'20-22 into Eq. (3) to obtain

)=l-vKWr-I (8)

where the range of integration is from - » to +oo unless
otherwise stated.

In discrete form, the Wigner-Ville distribution of two
signals/(•) and s(-) is given by Eq. (9)

A//2-|n|

(9)•e\p[-j2trkm/(M+\)]},

where nun are the discrete time and frequency variables, Tk

is the lag parameter, and M is the number of data samples.
More detailed background on the Wigner-Ville time-
frequency distribution can be found in Refs. 20-22.

The continuous Moyal's formula for the Wigner-Ville
time-frequency distribution derived by Moyal in 1949s is
given by Eq. ( l ) 5 ^ 1 0 2 3

v= f l
= 1 f(t)-8*(t)dt\-\ h*V)-s(t)dt\, (10)

which is a product of two energy terms of the four func-
tions, i.e., the inner product has been reserved for the
Wigner-Ville time-frequency distribution.7 As is seen later,
the discrete Moyal's formula for the Wigner-Ville and for
the nonunity kernel time-frequency distributions are more
complicated with the involvement of the odd and even
samples of the signal in the time and frequency domains.

The discrete Moyal's formula of the Wigner-Ville distri-
bution is given by Eq. (11)

MI2 M-\

Wh(n,m)-Wl(n,m). (10

The derivation of the discrete Moyal's formula [Eq.
(12)] is given in detail in Ref. 5 and is repeated here as

Mil

+ 2M-

Af/2

A//2

2

(-!)"/(«)•**(«)

A//2

• 2 (-i)
I Ml2

(12)

To apply the discrete Moyal's formula to find the SNR
of the GNKD, the following identities are applied to Eq.
(12): 4'(-)=/'(-) = s (0 - The following section derives the
discrete Moyal's formula for the GNKD.
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3.2 Derivation of the Discrete Moyal's Formula for
the GNKD

The discrete Moyal's formula for the Wigner-Ville distribu-
tion was given in the previous section. This section extends
Moyal's formula for the general Cohen nonunity kernel
time-frequency distribution. Given the reference signal s(t)
with the energy Aa and the white noise, zero mean process
w(t) of variance No, the problem we have to solve is to
determine the existence of the reference signal in noisy
conditions. The signal energy Ao and the absolute energy
difference So between the even and odd samples of the
signal s(t) are defined by

Ma

and

(13)

The energy and energy difference of the noise w(t) are
similarly defined by Eq. (14)

Mis

;. Ma

TFR(»,m) = 2 2 X A'I+T)-8*(U-T)
r=-L u=-Ma

(16)

where L-M/2-\n\, F(II-II,T) is the 1-D Fourier trans-
form of the kernel functions <!>( 0, T),M is the length of the
input discrete signal, and m and n are the discrete time and
frequency variables, respectively.

The discrete Moyal's formula for a nonunity kernel dis-
tribution is obtained by taking a product of two discrete
TFR(H,#H) given in Eq. (17)

A / - 1

-Ma m=0

L Ma

2 f 2 F-Xut+Tt)-g*(uk-Tk)

Ma

F- II*(U,+ T,)-S(U,~ 7,)

(17)

and

where F is the weighting function of the kernel.
The summation with respect to m in Eq. (17) can be

replaced by M • S{ r,-rk) (Refs. 5 and 24), which results in
Tj= rk= T so that the impulse function exists. After putting
pk = uk+T and qk = uk—T, and similarly PI=UI+T and qt

= »/— r, Eq. (17) can be rewritten as

Wn= \w(kem (14)

From Eqs. (13) and (14), the dimensionless energy ratios
of the signal s(t) and the noise \v(t) are defined as Xt

= B0/A0 and X2=M0/N0, respectively. It is evident that
the ratios X, and X2 are 0 « X ] , X 2 ^ l , since A02sB0=*0
and N02=M05sO. Generally, the values Bo could be in the
range of -A0^B0^A0, however, in this work, only the
positive half of BQ is considered due to its usefulness and
convenience in practical situations. The physical meaning
of X, is discussed in detail in Sees. 3.3 and 4.3.

The discrete form of the general time-frequency distri-
bution is also given by Eq. (11) but with W(n,m) replaced
byTFR(/i,»i) as shown in Eq. (15)

Ma M-\

/ W D = 2 2 TFR^di.nO-TFRfcdi./ii). (15)

The discrete form of the general time-frequency distri-
bution with a nonunity kernel is given by

Mil

0GNKD = 4 A # B _ 2 W _ { A - * }

Ma

=AM 2
n=-Ma

M A/-M

2 . . 2 Fpk.f(Pk)
=—I'M Pk=~M + \"\

\n\ + M

•*(<!,)
(18)

where A and B correspond appropriately to the square-
bracketed terms in Eq. (18).

From these, we also obtain Pk=pk~qk=2uk and P;
=Pi+qi=2ul, which are even numbers. Thus, to allow the
summation over the specified range given in Eq. (18), the
factors l /2 [ l+ ( - l ) ' ' * + ' " ] and l/2[l + ( - l ) ' ) '+ ' " ] are in-
serted into the expressions A and B in Eq. (18), respec-
tively, without affecting the value of the expression, since
the inserted factors are unity in value. After multiplying,
separating, and rearranging the variables appropriately, we
obtain
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A//2

^GNKD=4M(i_2M/2M-fl]

MP.

W

2 Mf/*=-i"i

w

(19)

where A and B correspond to the square-bracketed items.
Eq. (19) is the final form of the discrete Moyal's formula

of the general time-frequency power spectrum with a non-
unity kernel. The next section gives the calculations of the
SNR of the statistics of the hypotheses Ho and H{ for the
nonunity kernel general case by using Eq. (19).

3.3 SNR Calculation of the GNKD and Performance
Comparison of Different Nonunity Kernel
Detectors

Having obtained Moyal's formula for the general time-
frequency distribution, detailed derivation of the SNR of
the GNKD can be made by employing Eq. (2). The mean
and variance of the statistical function 77 are given by

W0} = 0, since E{w(t)} =

where M is the length of the input data samples, and

\ "k

Fk-s{pk)
ik

'// PI
(20)

Under the special conditions Pk~Pi< <?/ = 9;i. w& Ik
9/, the tenn given by Eq. (20) becomes a constant C

2, where

VTFRI//0 .

the variance of ?TFR |N| is equal to that of -.»TFRIHO< The

variance of the statistical functions VTFRI// is given by

M12 Ma

• BQ • B0FF) Jr(2Ba-M<iFF- Bo • B0FF)

+ (2BrM0FF-A0-A0FF)

Mf2 Ma

M2- X 2 2[(A0.A0iFF-NOFF
n=-Maj=-MI2

•A0l) + (Ao-BovB0FrBolFF

(21)

where

PI

F = S Frs(pi)-Fjrs*(p,),
PI

PI

(-0'".

A 0 F = 2 s*(qk)Fk-s(qk)

and

'//

Since ihe
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r >v(p<.) • ( - l)p*.
/>*

O F F = 2 Ft-w(pk)-Fk-w(pk).
Pk

The SNR of the GNKD is given by
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2A/C
(23)

The SNRGNKD f° r l ' l e special case of Pk~P\> <7t=<7; a"d <7/=<7n >s given by

S N R G N K D =
, | W , >}4.B°+0 \(B° 4 - S ° M°

Ao\No-Ao-\\ + — + 2\\—\ +T"1T'

Mo Mo
(24)

r

It is worth repeating that XX = BOIAO and X2=M0IN0,
which were defined by Eqs. (13) and (14) in Sec. 3.2, are
ratios of the absolute energy difference between the even
and odd samples of a signal to its total energy of the input
signal and noise, respectively. The ratio Xt can be esti-
mated by using simulation at different sampling intervals. It
is shown later in Sec. 4.4 that the sampling rate can affect
the value of A',, which in turn will affect the performance
of the signal detector.

The physical meanings of the energy ratio X, can be
understood as the ratio of the bandwidth [the
Difference_Energy given by Eq. (25)] to the total energy of
the input signal. As is shown later in the figures in Sec. 4,
the smaller the value of X, the higher the signal detector
performance in detecting a particular signal. In addition,
satisfactory performance can be achieved by having the
value of Xi close to 1.0, provided that X2 is small (Sec.
4.3). However, the latter scenario is not applicable to situ-
ations in which the X2 ratio of the noise is large. The en-
ergy of the input signal can be expressed in tenns of the
even and odd energy of the input signal terms

Total_Energy

=Even_Energy+Odd_ Energy

f\t)dt

Difference_Energy

= |Even_Energy-Odd_Energy|~Signal_Bandwidth

Difference_Energy
Absolute_Energy_Ratio= T o t a L E n e r gy • (25)

where F(w) is the Fourier transform of the input signal

/ ( )
Theoretically, the constant signal ( -

which according to Eq. (25) has zero bandwidth, is most
effectively detected since there is no energy difference be-
tween the even and odd samples of the signal. The Fourier
transform or the energy density of the constant signal is a
single impulse <5(w) located at the origin. This impulse is
regarded as a perfect way to concentrate the energy in the
frequency domain, since there is no smearing of energy in
the frequency domain. The bandwidth of a constant signal
is zero, since there is no width in the frequency domain for
an impulse. In the case of periodic sinusoidal signals, the

Fourier transforms of the functions sin(wof) and COS(WQ/)
are impulses located at frequencies ± u0. These impulses
concentrate the energy of the input signal perfectly in the
frequency domain, and their bandwidths are effectively
zero. Thus, it can be concluded that signals that have zero
Fourier-frequency-domain bandwidth, such as the constant
and periodic sinusoid signals, are most effectively detected
using a time-frequency signal detector. Simulation results
in Sec. 4.4 show that the periodic sinusoid has a zero-
valued Xt, which is consistent with the theoretical predic-
tion of Eq. (25).

These two cases validate Eq. (25) in which the absolute
energy difference between the even and odd samples of an
input digital signal is directly proportional to its Fourier
frequency domain bandwidth. Other types of signals in-
cluding exponential transient exp(-/), chirped
signals cos(C-r2), exponentially decaying sinusoid
sin(a>0)-exp(-r), and so on have nonzero bandwidths,
which result in larger energy ratio Xx. Hence, detecting
signals with wider bandwidths is more difficult than detect-
ing the ones with narrower bandwidths. Real signals such
as the ECG, speech signals, and so on are reported to be
effectively detected using a time-frequency signal detector,
as is seen in Sec. 4.4.

The fact that wide-band signals are more difficult to de-
tect than narrow-band signals can also be explained by
looking at the problem from the filter point of view. If the
signal is wide-band, it is more likely to be contaminated by
other signals such as noise, or different types of signals that
have been sent at the same time in the same channel in the
passband of the system. The role of the filter is to extract
the passband of the detected signal. If the passband con-
tains not just the signal but a mixture of two or more sig-
nals, it is more difficult to detect the signal.

From Eqs. (20) and (21), it is evident that the SNR of a
signal detector is proportional to the volume under the sur-
face of the weighted signal, i.e., a product of signal s(t)
and the weighting function of the kernel, and inversely pro-
portional to the volume of the weighted-signal variance.
Thus, if the volume under the surface of the weighted sig-
nal is larger than that of the weighted-signal variance, the
SNR of the corresponding detector is high. Furthermore, it
has been found that the hyperbolic kernel is more
robust19"'76 than the Choi-Williams kernel. Thus, the HyD
provides a smaller variance than that of the CWWD tor
well chosen values of B, as can be seen in Fig. 1 in which
the volume under the surface of the weighted-signal van-
ance of the two kernels is displayed. It is clear from Fig. 1
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Fig. 1 Noise variance of the hyperbolic and Choi-Williams time-frequency signal detectors.

that the SNR of the HyD is better than that of the CWWD
due to having smaller noise variance.

Table 1 gives the volume under the surface of the
weighting function of four kernels: hyperbolic, cubic hy-
perbolic (the third order of the hyperbolic kernel), Choi-
Williams, and Choi-Williams-Butterworth kernel (a product
of the Choi-Williams and Butterworth kernels27). The vol-
umes under the surface of the weighted-signal variance of
the four kernels for some typical values fi are listed in
Table 2. It is evident from Table 2 and Fig. 1 that for dif-
ferent values of the control p? •• imeter /?, a different volume
under the surface is obtained. 1 ;ius the control parameter of
a kernel plays an important role in determining the perfor-
mance of the corresponding signal detector.

The volume under the surface of the weighted-signal
variance is directly proportional to the variance of the time-
frequency signal detector. The smaller this volume, the bet-
ter is the performance of a particular time-frequency signal
detector. From Figs. 2 and 1, it is evident that for /?=S3, the
performance of the hyperbolic time-frequency signal detec-
tor is worse than that of the Choi-Williams due to larger
noise variance or larger volume under the surface of the
weighted-signal variance. For f3>3, and typically /?=5,
the HyD provides a larger SNR than that of the CWWD.

The performance of the GNKD in terms of SNR is de-
pendent on the volume under the surface of the weighted

signal and its variance. The loss factor Q of the GNKD
over the Wigner-Ville unity-kernel signal detector, i.e., a
ratio of SNRGNKD to SNRCWR, is given by ,

£>(GNKD/CWD)

(26)

where VGNKD and (SI^NKD) are the volume under the sur-
face of the weighted signal and its variance, respectively.
Equation (26) can be used to estimate the improvement
factor for each different nonunity kernel time-frequency
signal detector. Using the data provided by Tables 1 and 2,
the improvement factor Q of the HyD and CWWD are
calculated and given in Table 3. It should be noted that the
minimum lower bound value of VI (about 3.01 dB) is ob-
tained by employing the special case as stated by Eq. (24).

To measure the relative performance of the HyD and
CWWD, the ratio of their SNRs (the Q factor or loss factor)
is formed as

Table 1 Volume under the surface of the Choi-Williams, hyperbolic, cubic hyperbolic, and CW-
Butterworth [Eqs. (4)-(7), respectively] weighting functions.

p

0.1

1

5

10

20

50

100

Volume under the surface of the weighting function

Hyperbolic kernel

12.08

11.997

9.9

7.39

4.884

2.44

1.3173

Cubic hyperbolic
kernel

12.04

11.88

7.58

4.98

2.98

1.33

0.68

Choi-Williams (CW)
kernel

12.014

11.98

11.02

9.953

8.63

6.78

5.47

CW-Butterworth
kernel

11.91

11.78

10.78

9.787

8.53

6.74

5.45

I .-
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Table 2 Volume under the surface of the variance of the weighting function.

Volume under the surface ol the variance of the weighting function

Hyperbolic kernel
Cubic hyperbolic

kernel
Choi-Williams (CW)

kernel
CW-Butterworth

kernel

5.25

0.51

0.1

0.046

0.0195

0.0054

0.00175

2.766

0.274

0.05

0.02

0.008

0.0018

0.000494

1.02

0.322

0.1425

0.0985

0.067

0.0387

0.025

0.36

0.234

0.13

0.094

0.065

0.0038

0.025

Q(HyD/CWWD)

SNRHyD _ /Var{i/CWWD |J ,0}\ia

SNRCWWD

(27)

where VUyD and VCWWD are the volumes under the surface
of the weighted signal and 5VH > ,D ,5VC W \VD are the vol-
umes under the surface of the weighted-signal variance of
the hyperbolic and Choi-Williams kernel, respectively.

The relative performance of the HyD to that of the
CWWD is displayed graphically in Fig. 2. From Eq. (27),
for the case of the hyperbolic and Choi-Williams time-
frequency signal detectors, the CWWD is more effective
than the HyD by a factor of about 1.6 (60%) for /?= 1.
However, for y3=5, the HyD yields a larger SNR than that
of the Choi-Williams by a factor of 1.15 (15%). For /?
= 10, the performance of the HyD is approximately 1.18
(18%) times better than the CWWD in terms of the SNR.
As p further increases, the performance of the hyperbolic
degrades gradually even though at /3&5OO the performance
is slightly improved. This is due to an unequal rate of
change of the volume under the surface of the weighted
signal and that of the weighted-signal variance.

From Fig. 2, it can be suggested that the HyD is better
than the CWWD in terms of SNR over the typical range of
the control parameter y3 of 3*S/3*S 10. Outside this range,
the CWWD outperforms the HyD. For large values of /3
(/3==5OO) the HyD might provide a large SNR, which is
mainly due to the relatively large value of the volume under
the surface of the weighted-signal variance. It should be
noted that large values of /? are not applicable in practice,
since the hyperbolic weighting function collapses (in
shape) inlo a near-flat function with a very small volume
under the surface. This shape of the weighting function
indicates that the kernel is not stable under these specific
conditions of large (i (small cr for the Choi-Williams ker-
nel) and should not be employed as a time-frequency ker-
nel. In contrast, the Choi-Williams weighting function re-
tains its original shape for very small values of cr by having
a finite volume under the surface. This makes the Choi-
Williams kernel more stable than the hyperbolic kernel
over extreme values of the control parameters /? and cr.

4 Performance Comparison of Some
Time-Frequency Signal Detectors

Section 3.3 derived an expression of the SNR of the GNKD
in detail and analyzed the physical meanings of the energy
ratio X,. Relative performance of the HyD and CWWD

Relative Performance of the HyD to CWWD

, 3 5 6 7 B 9 10 20 50 100 ZOO 500 1000 2000 3000 5000

Fig. 2 The Q factor [Eq. (27)] of the HyD and CWWD as a function of the kernel control parameter

/3= 1/tr. The useful range of p is evidently from 3 to 10.
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Table 3 Improvement (actors O o( the HyD and CWWD, 3 « 0 4 3

Signal detector Improvement (actor O

HyD

CWWD
22.5=sQH>.D=s24.8dB

22.554=sQCWWD=s23.9dB

was measured successfully based on geometrical character-
istics of the hyperbolic and Choi-Williams kernels, respec-
tively. In this section, performance of three signal detectors,
namely, CORR, CWD, and GNKD, will be estimated as a
function of XI = BOIAO and X2=M0IN0 under general
cases and special cases. The SNR expression of the GNKD
derived in Sec. 3.3 is employed to determine its perfor-
mance. The SNR expressions of the CWD and CORR have
been given in the literature and will be used to compare
their performance with that of the GNKD.

4.1 Performance of the Cross-Correlator Signal
Detector

The performance of the cross-correlator method, known as
the matched filter method, is considered as the best method
in binary signal detection, since it provides the best SNR.2'5

The statistical function rj is given by

r?coRR= )/(')• s*(t)dt, where -=os=r=£ + °c. (28)

The SNR of the cross-correlator detector is given by6

(29)SNRCORR= V —

where Ao and No are the signal energy and noise variance,
respectively.

The SNR of the CORR is not affected by the energy
difference between the even and odd samples of the signal
(X{) as in the case for the CWD with a unity-kernel func-
tion, as is discussed in the next section. For the case of a
nonunity kernel signal detector, the effects of the absolute
energy difference between the even and odd samples of the
digital input signal and noise (X2) are included as is shown
in Sec. 4.3.

4.2 Performance of the CWD
The performance of the CWD was studied by Kumar and
Carroll for both of the continuous and discrete cases. •' '
The SNR of the Wigner-Ville-based signal detection
method is given by Eq. (30)

(30)SNRrWr,= \hr

This SNRCWD of the Wigner-Ville time-frequency signal
detector is clearly smaller than the SNRCORR o f " l h e c r o s s "
correlator detector given by Eq. (29) due to the effects of
the ratio Xl=BQ/A0-

Performance of the Nonunity-Kernel Signal
Detector

The performance of the GNKD was briefly estimated in
Sec. 3.3. In this section, performance under special and
general cases, such as for small values of X, and X2, is
discussed. Relative performance of the GNKD, CORR, and
CWD is also estimated by taking ratios of SNRs to form
the loss factor Q. The larger the value of the Q factor, the
better the performance of the relevant signal detector.

From Eq. (24), it is evident that the SNR of the detection
system depends on X, and X2, which clearly shows the
effects of the noise process X2 on the performance of the
system. It should be noted that in the case of the Wigner-
Ville distribution employing a unity kernel, the effects of
the ratio X2 are not apparent.5 In addition, the effects of X\
range from the first order to the third order, as shown by
Eq. (24). The noise ratio X2 is of the first order only.

If X2=M0IN0 is very small, i.e., the noise energy dif-
ference is most evenly distributed between its even and odd
samples or the noise bandwidth is small, then Eq. (24) be-
comes

SNRGNKD~ (31)

After separating the kernel's weighting function, we obtain

- • • i s "
SNR,• G N K D "

N
(32)

where X2 is very small.
If X2=MQ/N0 is not small, then SNRGNKD will be fur-

ther reduced and the performance of the GNKD is de-
graded. It is also important to note that the SNR of the
GNKD has been calculated under the special conditions of
pk=pt, qk=qi and qi = qn in Sec. 3.3. This means that
only the autoterms of the summations are included and in-
teraction between the autoterms are ignored. The perfor-
mance in this case can be considered as the lower limit
performance of the detector. For the general case, the SNR
of the GNKD, which will be improved, is given by Eq. (33)

SNRGNKD

V2- ••
Bo\2

A~oJ
fin

(33)

The 3-D graphical presentation of the normalized SNR
of the GNKD, SNRGNKD. as a function ofXi=B0/A0 and
X2=M0/N0 is displayed in Fig. 3. It should be noted again
that for the case of the nonunity kernel time-frequency sig-
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NormaliiMl SNH ol the GNKD Dettctor In temw ol XI and X8
0 . Faclora cl ONKOCWO. CMCOOossC and CWttC/ossC

Fig. 3 Normalized SNRGNKD of the GNKD [Eq. (33)] as a function of
X, and X 2 . Maximum performance is obtained by having small val-
ues of X, of 0 .0«X,«0.2 or large values of 0.9sX, and X2«0.2.

Fig. 5 Normalized 0N (GNKD/CWD) [Eq. (34)], QN (GNKD/CORR)
[Eq. (35)] and QN (CWD/CORR) [ratio of Eq. (30) to Eq. (29)] as a
function of X , . For the CWD, the typical range of X, can be ex-
tended to 0.OsX,=sO.3. The maximum value of each Q factor was
used as the normalization factor.

nal detector, the effects of noise are taken into account,
which reduces the performance of the detector. From Fig. 3,
the minimum SNRGNKD is -0.6602 dB at (X, = 0.63, X2

= 1), i.e., when the energy difference of the even and odd
samples ofithe noise is equal to its energy. Figures 4 and 5
show the absolute and normalized loss factors of three sys-
tems, GNKD/CORR, GNKD/CWD, and CWD/CORR, re-
spectively, as a function of X{. The absolute plot of the
SNR(3NKD in Fig. 4 has the same shape as that of Fig. 5
except that its maximum value is V2= 1.414, i.e., the
SNRCNKD ' s improved by a factor of V2" or about 41.4%.
From these figures, detailed comparisons of the three signal
detectors are shown clearly in Table 4.

Absolute O Factors ol GNKD/CWD and GNKD/CroaaC

0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9

Rg. 4 Loss factor Q (GNKD/CWD) [Eq. (34)] and O (GNKD/CORR)
[Eq. (35)] as a function of X , . The typical range of X, is OOsX
^0.1 or0.9=£X,=si.O when X2 is small.

The Q factor or loss factor of the GNKD and the CWD
is then given by the ratio of Eq. (32) to Eq. (30) (when X2

is small)

••>•(£*
1/2

l+3-Xf V12

l+Xi+2-X]
(34)

When X2 is small, the loss factor of the GNKD and the
classical CORR is given by

Table 4 Worst performance ratio of the GNKD to the CWD [Eq.
(34)], CWD to the CORR [ratio of Eq. (30) to Eq. (29)] and the
GNKD to the CORR [Eq (35)] as a function of X, as seen from Fig.
5. The best performance is obtained at ON= 1 and the correspond-
ing SNR=0dB.

Normalized loss factor

GNKD/CWD

CWD/Cross-correlator

GNKD/Cross-correlator

0.35

0.6

0.45

Worst Performance

ON

0.9258

0.9428

0.8829

SNR (dB)

-0.67

-0.5

-1.08
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tf^01 some popuiar signais usins the GNKD

Signal

sin(2i7X50n)

exp(-n)

exp(-n)-sin(n)

cos[27rnO.125-(n/M)]
ECG (averaged over 12

channels)

Speech28 (vowels
a, e, o, u, i,

and the sound "sh")

-

Af(ms)

5.00

500

600

800

Worst case

1.00

0.462

0.14

0.008

SNR (dB)

0.75

0.65

0.935

«=0.99

The sampling intervals tor these cases
are fixed. There are no worst or best

(:ases tor these signals.

A/(ms)

2.00

10

100

0.1

1.00

—

-
Best case

X,

0.00

0.01

0.04

5.0X10-7

4.75X10"6

3.7X10"4

SNR (dB)

1.00

0 98

0.975

=1.00

1.00

1.00

0(GNKD/CORR) =
SNR

VI-
GNKD

SNRCORR

I- (35)

It was found in Sec. 3.3 that tlie ratio of the bandwidth
to the total energy of the signal [Eqs. (25) and (13)], X,,
determines the performance of a time-frequency signal de-
tector. Decreasing the bandwidth and increasing the energy
of the signal lowers the ratio and leads to better perfor-
mance. For good performance, a typical range of X, is
0.0=sX,=£0.2 or O.8=sX,=si.O if and only if 0.0=sX2

5=0.2, as can be seen in Fig. 3. Thus, any value of X) in the
range of 0.2<X,<0.8 will lower the SNR of the detector
considerably and should not be used. The performance of
the GNKD has been estimated and compared with other
detectors, such as the CWD and the CORR. The next sec-
tion studies the effects of sampling on the performance of a
time-frequency signal detector using typical waveforms in
practice.

4.4 Some Typical Examples

In Sees. 4.1 through 4.3, the performance of the CORR,
CWD, and the GNKD were estimated theoretically by us-
ing the discrete Moyal's formula derived in Sec. 3.2. In this
section, the experimental aspects of detection performance
and the effects of sampling on the input signal are exam-
ined. Moreover, particular attention is given to how the
energy ratio Xt varies with different values of the sampling
interval (At). Since X, is the energy ratio of the even and
odd samples of the digital input signal, its value depends
strongly on the type of the signal and the sampling interval
Af. Some typical and popular signals in practice are exam-
ined, such as sinusoid at 50Hz[sin(27rX50/)], decaying
exponential exp(-r), exponentially decaying sinusoid
sin(0-exp(-f). chirped cosCC-r2), ECG, and speech.

As was mentioned in Sec. 3.3, for digital input signals,
the sampling interval does affect the value of the energy

ratio X, of the signal. A number of waveforms have been
digitized at different sampling rates and the experimental
results are summarized in Table 5. The sampling interval
should be small enough to enable small values of Xp In
this case, the sampling frequency is set to be at about four
times larger than the critical Nyquist frequency of the input
signal. It is important to emphasize that for periodic sig-
nals, the signal interval should be chosen long enough so
that X, can be estimated correctly. From Table 5, it appears
that sinusoidal signals can be detected efficiently using the
GNKD because of the low value of X\ in the best case
scenario. The transient signal exp(—;) has a large Xt,
which can have low SNR if the sampling interval Af
2=0.5 s. The exponentially decaying sinusoidal signal has
the worst X| of 0.14 at Ar=0.6s, with the corresponding
SNR=0.935, as can be seen in Table 5. The ECG and
speech signals appear to have small X | , which might sug-
gest that these signals can be detected successfully using
the GNKD. The nonstationary chirp signals can be detected
very efficiently by using the GNKD, with the worst and
best SNRs very close at 0.99 and 1.00, respectively. From
Fig. 5, it is clear that signals with X ^ O . l yields QN

s=0.95, which corresponds to satisfactory SNR.

Based on the performance of the general time-frequency
signal detector, it is evident that stationary signals such as
sinusoids can be detected effectively. However, there are
other simpler and equally effective methods for doing this.
Thus, time-frequency signal detectors can be employed to
detect stationary signals. Detecting nonstationary signals
such as decaying exponential exp(-f). chirp, and exponen-
tially decaying sinusoid sin(f)-exp(-r) signals is dependent
on the sampling interval used to sample the signal. If the
sampling interval A/ is small enough, the detection process
will be most effective. This is consistent with Nyquist sam-
pling theorem.

5 Conclusions
We report on some contributions in the field of time-
frequency signal detection.

First, the discrete Moyal's formula has been derived for
the general case in which the kernel function is not a unity
kernel. The performance of the general nonunity kernel sig-

t ''
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nal detector GNKD has been examined by using the dis-
crete Moyal's formula to obtain the SNR of the statistical
function 77. h has been shown that the GNKD performs
better than the cross Wigner-Ville detector CWD by in-
creasing the loss factor and the SNR by a minimum factor
of Vl The performance of the correlator detector CORR
has also been examined and compared with that of the
CWD and GNKD. It has been found that the hyperbolic
detector HyD and Choi-Williams detector CWWD can im-
prove the SNR over the CWD by a factor Q in the range of
22.5dB=SQH),!£24.8dB and 22.5dB^Qcw«23.99dBW, re-
spectively, over the typical range of 3^fJ*s 10.

Second, a new signal detector, the hyperbolic time-
frequency signal detector, has been investigated. The new
detector has been proven to be better than the famous
CWWD and CWD by improving the SNR by 18% with the
range of the control parameter 0 being 3=s/3^ 10.

Third, the performance of time-frequency signal detec-
tors using a number of typical signals has been examined. It
has been shown that the sampling interval used for sam-
pling the input signal can affect the performance of a time-
frequency signal detector by varying the energy ratio X{

= BO/Ao- It has been observed by simulation that sinu-
soidal and chirped signals can be efficiently detected with
satisfactory SNR. Transient signals can be detected effi-
ciently using a suitable sampling interval. Physiological
signals such as the ECG and speech can be detected suc-
cessfully with the normalized SNR in the approximate
range of 0.99 to 1.00.
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ABSTRACT
This paper investigates the effectiveness of parallel computing in calculation of the bispectrum. The
bispectrum is estimated by using two different methods namely direct and indirect. The direct
method employs 1-D FFT algorithms and the indirect method employs the 2-D FFT algorithm to
estimate the bispectrum. Both methods have been implemented using 2 different parallel
programming techniques: semi-automatic and fully automatic using the Power C Analyzer (PCA).
The Silicon Graphics Power Challenge Multiprocessor System (with 12 CPUs) is used to run the
parallel codes. Near-linear speedup was observed by employing both techniques. Overall, the
maximum speedup of 10.84 at N = 12 can be achieved for the direct method and of 8.7 at N = 10 for
the indirect method using the semi-automatic parallel technique. For the PCA fully parallel
technique, the maximum measured speedup for the direct and indirect methods are 10.07 at N = 11
and 7.67 at N = 12 respectively.

1 INTRODUCTION
Parallel programming and parallel machines have been studied and used extensively in the last few
years mainly for predicting weather pattern [1] and in image processing, [2,3]- However, to the best
of our knowledge, parallel programming techniques have not been widely used in the field of higher-
order statistics and higher-order spectra. Recently, there were two relevant papers applying parallel
computing in estimating the bispectrum. The first paper [4], which was published in 1991, reported
the performance of an 8-CPU shared-memory CRAY Y-MP machine and 1024-CPU distributed-
memory nCUBE machine in calculation of the bispectrum. In particular, the speed-up factor was
measured and compared for different machine configurations. Near super-linear speedup was
obtained. The second paper [5] proposed an algorithm to estimate higher-order moments using the
MASPAR-1 machine, which is a SIMD (Single Instruction Multiple Data) machine.

This paper focuses on the effectiveness of the Silicon Graphics Power Challenge Multiprocessor
shared-memory MIMD Machine (HOTBLACK)1 in calculation of the bispectrum. Each CPU can be
considered as an independent PC within the system with separate local memory and cache. To
program the system effectively, it is important to arrange the loop parameters and data structure
inside the program so that they are suitable for the specific configuration of a particular system. This
is the most difficult part of parallel programming in which the programmer must understand the
configuration of the particular machine.

The bispectrum [6,7] is estimated using the direct method as in Eq. 1

B{fuh) = * ( / , W 2 ) - X V . +fi) (D

where X{f) is the 1-D FFT of a given discrete series x(n) of M samples and X*(-) is the complex
conjugate of X(-). For more information on the bispectrum, the interested reader should consult
references [6,7].

The indirect method uses the 2-D FFT of the tricorrelation function /?X«(7|,T2) abbreviated as /?,;

, f2) = 2 - D DFFT{ Rxxx ( ^ , r 2 )} (2)

where Rx =
M - l

n = 0

and T I , T 2 = - 1 .

1 HOTBLACK is a local name of the machine at Monash University.
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Sequential C programs were written first based on Eqs. 1 & 2. Then the semi-automatic and fully
automatic parallel programs were constructed based on the sequential versions. Semi-automatic
programs are obtained by inserting #pragma directives into the sequential program at appropriate
points. This technique is based on the coarse-grained method whereas the PCA method is based on
the fine-grain method2. Also, arrays and loop parameters of the sequential program are controlled so
that they can be accessed independently by different CPUs to avoid data dependency. The fully
automatic option is activated by running the pea tlag of the Power C compiler.

2 EXPERIMENTS AND RESULTS
There are 12 parallel programs with different numthread(N) to run on 12 different processors on
the system, numthread (N) is a parallel directive; from Silicon Graphics that allows the program to
be executed in parallel using N independent CPUs. For example, if N = 3 then the program will be
executed in parallel using only 3 CPUs on the system. To ensure efficient compilation, the programs
are submitted into a batch queue on the system to obtain more CPU_time, memory_use and
s t a c k _ d a t a _ s i z e quota. Four script files have been written to run the programs under the UNIX
operating system.

The speedup factor is estimated as

Speedup =
Sequential_Time

Parallel_Time
(3)

where the Sequential_Time is the real CPU time used to run the sequential source code and the
Parallel_Time is the real CPU time of the slowest thread in a parallel program.

The parallelling efficiency of a parallel program can be estimated as

Measured speedup
Efficiency =-

Ideal speedup
(4)

Theoretically, the ideal speed-up or super-linear speedup of a program is defined as N if the parallel
program is run using N CPUs [8]. The measured speedup is defined as in Eq. 3. Practically, the
measured speedup is less than the super-linear speed-up due to parallel overhead.

To ensure consistency between parallel and sequential programming techniques, the output files are
compared and it has been observed that they are identical. If the files are not identical, data
dependency must have occurred in the sequential source code. The difference between fine-grained
and coarse-grained parallel techniques is for the former, only small repeated loops are paralleled and
thus results in more than one parallel loop in a parallel program This technique is often used by
Power C Compiler. The latter technique parallels loop(s) (usually done manually) that have the
largest work in the program. Usually, there is only one largest repeated loop in the program.

For comparison, the size of each segment of the direct method is 2048 data points which is twice that
of the indirect method of 1024 data points (since 1024 data-point segments are still not large enough
for the direct method, 2048-data-point segments are used instead, also longer segment size up to
10 240 points can be used). From simulation results, it has been observed that the serial program oi
the direct method took approximately 23 seconds to run compared to 587 seconds running time of the
indirect method although the segments are half as long. Thus the direct method is more effic.ent than
the indirect method in terms of computing efficiency.

As N is increased, the amount of parallel overhead increases due to synchronization and waiting time
of slave processors. However, near super-linear speedup is obtained using the s mi- and fully
automatic parallel techniques for the direct method as seen in Fig. 1. For the direct method us.ng
J S S S t e S n S and for large values of N (for instance, at N = 12), the speed-up factor starts
foLreas" which l s t r a t e s t h e limitation of the fine-grained paralleling method: large amount of
parale ^ h e a d fo large values of * which lowers the performance (the D.rect.PCA and

1 The idea of these methods will be explained later.
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Indirect_PCA curves in Fig. 1). For other values of N less than 12, the PCA method provides better
speed-up factor which indicates that the fine-grained method is more suitable for the direct method
than the coarse-grained method. If the segment size is increased further, near linear-speedup might
not be obtained due to long wailing time as explained for the indirect method in the following
section.

For the indirect method using the semi-automatic parallel technique, near super-linear speedup is
observed only with some specific number of CPUs which is a multiple of the loop size of 10. That
means when N = 1, 2. 5 or 10, near super-linear speed-up will be obtained. For other values of N,
since the work associated with each iteration of the loop is large, there will be "unemployed"
processors waiting for other processors to complete the tasks. For example, if N = 6, all six CPUs
will be assigned to the first six iterations of the loop. After finishing the 6 iterations, four of the six
CPUs will be used to complete the remaining 4 iterations and two CPUs have to wait ("spin") until
the iterations are finished. Since the associated work of each iteration is large, this results in long
waiting time and thus the performance of the parallel program will be lowered. This is illustrated for
cases of N= 6, 7, 8 and 9 in Fig. 1. Hence, if TV is not a factor of the loop size and if the work of each
iteration is large, increasing N will increase parallel overhead and constrain the speed-up factor. Since
the PCA parallel technique employs the fine-grained method (several small repeated loops will be
paralleled instead of the largest repeated loop), parallel overhead will be increased substantially as N
is increased, i.e., parallel overhead of using N CPUs will be N times larger than using 1 CPU.

For the indirect method applying the PCA parallel technique, the speed-up factor is increased linearly
although with lower values compared to the case of semi-automatic parallel technique due to high
parallel overhead in several small parallel loops. However, the performance of the PCA method is
predictable. From Fig. 1, in contrast with the direct method, the coarse-grained method is more
appropriate for the indirect method since better speed-up factor is achieved. However, to obtain the
best performance, the number of CPUs, N, used to run a parallel program applying the indirect
method must be chosen to be a factor of the loop size.

The measured speed-up factor and paralleling efficiency of the semi- and fully automatic parallel
techniques are plotted against the number of processors, N, in Figs. 1 & 2 respectively. In these
figures, Direct and Indirect are the speed-up curves using the semi-automatic parallel technique for
the direct and indirect methods respectively. Table 1 compares the maximum speed-up factor of the
two parallel techniques. Direct PCA and Indirect PCA are speed-up curves obtained using the PCA
fully parallel technique for the direct and indirect methods respectively.
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Table 1: Maximum speedup comparison of semi-automatic and PCA parallel programming
techniques.

Method

Direct
Indirect

Semi-automatic
10.84 at A/=12
9.17atJV=ll

PCA
10.44 at N= 11
7.67atW=12

3 CONCLUSIONS
Near linear-speedup was achieved using the semi- and fully automatic parallel techniques for the
direct method. For the indirect method, the amount of overhead gradually increases when N > 6 due
to specific loop structure of the serial program, however, for N < 5 or N = 10, near linear-speedup was
observed using the semi-automatic parallel technique. Thus it can be concluded that the direct
method is more suitable for parallel programming than the indirect method. The PCA technique can
be used to achieve the speedup factor of 7.67 at N = 12 (for the indirect method). However, the PCA
(Power C Analyzer) method suffers from high parallel overhead for large values of N {N > 12) since a
PCA parallel program (employing the fine-grained parallel method) contains several small parallel
loops inside. Further research can be done by applying parallel computing to higher-order spectra
such as the trispectrum.
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Abstract

A survey of known wavelet groups is listed and properties of the symmetrical first-order hyperbolic
wavelet function are studied. This new wavelet is the negative second derivative function of the
hyperbolic kernel function, [sech(PQ)]" where n = 1, 3, 5,... and n = 1 corresponds to the first-order
hyperbolic kernel, which was recently proposed by the authors as a useful kernel for studying time-
frequency power spectrum. Members of the "crude" wavelet group, which includes the hyperbolic,
Mexican-hat (Choi-Williams) and Morlet wavelets, are compared in terms of band-peak frequency,
aliasing effects, scale limit, scale resolution and the total number of computed scales. The hyperbolic
wavelet appears to have the finest scale resolution for well-chosen values of P < 0.5 and the Morlet
wavelet seems to have the largest total number of scales.

Keywords: Mexican-hat wavelet, Morlet wavelet, hyperbolic wavelet, scale resolution, aliasing, wavelet
transform.

1 INTRODUCTION

Study of wavelet functions and wavelet transform was done many years ago, starting with the simplest
wavelet system, the Haar wavelet [1]. There is a strong connection between wavelet transform and t.me-
frequency power spectrum since both of these techniques view the energy density of the signal in two
dimensions, time and frequency. One of the most popular wavelets is the Mexican-hat wavelet, whic.i is

negative second derivative function of the Gaussian pulse or Choi-Williams kernel, *(fl, T) = e z ,
where a is the kernel control parameter [2]. This is one typical case which shows that there exists a link
between time-frequency kernels and wavelet functions.

By taking negative second derivative of the kernel, it is possible to generate a variety of different
wavelet functions, ytt- However, these wavelet functions need to satisfy the admissibility condition of
odd symmetry, i.e.,

(1.1)

J
Over the years, a large number of wavelet systems have been proposed "J1 S ^ J J ^ , ^

mathematicians.

second derivative of the W ^ ^ T h e m a i n c o n t n b u t l o n of
known wavelet functions Onty the Morfct wa o f t h e hyperbolic, Choi-Williams and Morlet wavelets in
this paper is to study and comparej»opertK*ot he hyp ^ ^ ^ ^ ^ ^

i S ^ ^ ^ W ^ ^ ^ particularly focused in this paper. Other
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types of wavelets will not be considered. The Mexican-hat (Choi-Williams) and Morlet wavelets 112 13]
are considered as "crude" wavelets [14] with explicit expressions and symmetrical properties.'The
hyperbolic wavelet appears to belong to the same wavelet group. However, properties of the hyperbolic
wavelet need to be studied before drawing any conclusions about the wavelet itself. Some useful
overview papers that summarise the developments in the field of wavelet can be found in [6, 8, 10, 15,
16].
2 WAVELET SYSTEMS AND THE "CRUDE" WAVELET GROUP

There are many interesting wavelet systems that have been proposed and studied such as Daubechies,
Mallat, Meyer. Morlet and so on whose wavelet systems are named after the investigators and
->roponents. These wavelets have been studied extensively and their many interesting and useful
properties can be found in [1, 3, 4, 6, 7, 9-11, 15-19]. Wavelet functions have been classified into four
different types [14]

1. Type 1 (orthogonal with FIR filtering): the wavelet is orthogonal and the FIR filter of the wavelet
exists. This class includes the Daubechies, Coiflets and Symlets wavelets.

2. Type 2 (biorthogonal with FIR filtering): the wavelet is bi-orthogonal and the FIR filter of the
wavelet exists. The BiorSplines wavelet belongs to this class.

3. Type 3 (orthogonal with scale function): the wavelet and scale functions exist, the FIR filter does not
exist, however. The Meyer wavelet is a typical member of this class.

4. Type 4 (FIR filter and scaling function do not exist): this class has been considered as a "crude"
wavelet class since the FIR filter and the wavelet's scaling function do not exist. However, the
support range of wavelets in this class can be identified as the time-base interval (Fin Section 2.1).
The wavelets in this class are usually symmetrical and have explicit expressions. As already noted,
this paper deals with this particular class of wavelets. The hyperbolic, Choi-Williams (Mexican-hat)
and Morlet wavelets belong to this class.

Unlike the Daubechies wavelet family, the Mexican-hat and Morlet wavelets have explicit
expressions and are odd symmetrical about the origin. By having explicit expressions, the Morlet and
Choi-Williams wavelets are considered as "crude" wavelet systems in which the scaling function has been
proven to be non-existent [14]. The Mexican-hat or Choi-Williams wavelet, given in Eq. (2.1) is found by
taking the negative second derivative of the Choi-Williams kernel [2] as given by

= ~eXp(- T2/a )-(-l + 2T2/O) (2.1)

The hyperbolic wavelet can be considered to be in the same group as the Mexican-hat and Morlet
wavelets since they are all symmetrical and have explicit expressions. Their frequency repiesentations are

F{ Yfa

F{ nio

•co -exp(- aco
(2 2)

and CIV stands for

/4), and

= ¥ Marled = J™ ' eXP (" CT^ " °V } 7 4 )
where the symbol F[-} denotes the Fourier transform operation of the function
Choi-Williams

The hyperbolic wavelet function is generated by taking negative second derivative of the 2-variable
hyperbolic kernel, 0(0) = «c/i(j80), which was proposed by the authors recently. The hyperbolic wavelet
function y/,,y(9) is given by

For ii = 1, the frequency domain representation of the first-order hyperbolic wavelet function is

given by
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- u hyperbolic wavelet function will be shown by simulation in Section 2.1.1 to satisfy the odd
symmeiry condition imposed by Eq. (1.1), i.e., the area under the curve of the second derivative of the
hyperho?.*: kernel »s zero.

Oii'iSJ week ' s in ihe same family with different scales can be obtained by using the translation and
dilation relationship or multi-resolution relationship [1]

a J (26)
M 'f.re a is the scale index and b is the translation or time index of the wavelet. The mother wavelet
«.«i responds to a = 1 and v - 0.

F';>r «M<A value of the scale index a, there is one unique corresponding wavelet function which can
lu C'nr,'c/i.';r.d a., a band pass filter. In the frequency domain, the multi-resolution relationship becomes

VaJb (Ctl- *•' J" 'V'aJ,(«W)" exP H'G)fc) ( 2 J )

where ^aj,(co) is tbe Fourier transform of the wavelet function Vn,j,(/).

In this section, explicit expressions of the Choi-Williams (Mexican-hat) (Eqs. (2.1)-.(2.2)), Morlet
lets <Eq. (2.3)) and the hyperbolic (Eqs. (2.4) and (2.5)) have been given in both time and frequency

fwrri U is necessary to examine some important properties of these wavelets by estimating the
number ox sampling points for the wavelet, aliasing effects, maximum possible scale that can be
supported by the wavelet system and the scale resolution. These properties will be studied in detail in
Section 2.1.

2.1 Properties of the Mexican-Hat (Choi-Williams), Morlet and Hyperbolic Wavelets

From an engineering point of view, to study properties of a wavelet function, it is important to investigate
the scale resolution, maximum scale used in wavelet transform, the sampling of the wavelet and its
relation to the time sampling of the time input signal and the aliasing effects. The main reason that
sampling of a wavelet function is of concern is that digital signal processing is practical and important. In
addition, the input waveform is usually a discrete set of samples from a continuous process. This section
e.s?/ni«es the above mentioned properties in detail. Firstly, some preliminary parameters of the Choi-
\V.\iidmt, Morlet and hyperbolic wavelets are estimated.

2.1.1 Fundamental Parameters

The Morlet wavelet was studied and used to investigate transition to turbulence in [11] by Jordan, Miksad
and Powers in which formulas of the admissibility constant Cv , the first moments in time t0 and
frequency domain ftb, the time variance a, and frequency variance aa are given in detail. The parameters
of the hyperbolic, Mexican-hat and Morlet wavelets are calculated for J5 = 0.5 and given in Table 2.1. For
various values of the control parameters crand j8, from simulation, it can be concluded that the Morlet and
hyperbolic wavelets satisfy the admissibility condition imposed by Eq. (1.1) by having a very-small area
tfwJer the curve. The error in this case for both wavelets is always less than 1 part in a million.

Wavelet

Choi-Williams
Morlet

Hyperbolic

Parameter values, /? = 0.5

cw
1.785
1.58
0.15

7-Q

0.0
0.0
0.0

cr,

0.6656
0.62

Oh

1.47
5.0

0.817

Ota

2.36
0.213

The larger the values of a, and aa are, the less time- and frequency-support the corresponding

wavelet has respectively.
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2.1.2 Dimensional Expressions and Band-Peak Frequency

It is assumed that the dimensional sampling time interval of the input data series of length M is At' and
the non-dimensional sampling time of the wavelet, whose time base interval is from - 7 to 7, is Ar, where
the symbol" ' " indicates a dimensional quantity [11]. Let N be the number of samples that should be
sampled for the wavelet function. To calculate the non-dimensional time base of the wavelet function, we
have to :>iap the sampling time interval of the input waveform to that of the wavelet, i.e., [-7, 7] <-> [0,
jV(Af')]. The wavelet time base is therefore given by

N(At') (2.8)

The expression for the non-iMwcnsional frequency/is obtained by taking the inverse of Eq. (2.8)
yielding

N(At')
— — or o) =

n-N(M'}
(2.9)

The dimensional frequency expressions of the Choi-Williams, Morlet and hyperbolic wavelets are
given by Eqs. (2.10), (2.11) and (2.12)

ihxf\at')b'\(N7tf'(At')
•exp

a (aNnfXAt')

•exp •-co,,

,r.Hy • secli

(2.10)

(2.11)

(2.12)
7 ){ T ) { 2/3-7

where typically, 5.0 < .«,„< 6.0 rad/s to ensure that the condition imposed by Eq. (1.1) is met. Throughout
thh paper, cov = 5.0 rad/s fur the Morlet wavelet. The dimensional quantity b is similarly defined via Eqs.
(2.8) and (2.9).

The band-peak frequency, f'p , is the frequency at which the wavelet filter has the maximum value.

To estimate the band-peak frequency, the first derivative of the real-part dimensional frequency
expressions of the wavelets is obtained. Since the real parts of the first derivative functions are
exponential functions, the second derivative functions are not required. For the Morlet wavelet, to

maximise yM"flel'(/') (given by Eq. (2.11)), the exponent of the exponential term is made to be zero

which yields [11]

f' —

J p(Morkt) ~

CO,,

m N Morlet ( A f ' ) "C Morlet
, where CMorlet= Nn(M')/T.

The band-peak frequency of the Choi-Williams wavelet is similarly obtained as

r 2 27
Jp{CW)

(2.13)

(2.14)

where a is the kernel control parameter of the Choi-Williams kernel.

The band-peak frequency of the hyperbolic wavelet is similarly given by

' Throughout this paper, some MATLAB graphs use a »•" instead of a " '" to indicate dimensional quantities and

\f/T</) is equivalent to \jf(f) for convenience.



Proceedings of SPIE on Wavelet Applications VIII. 4391, AeroSense Conference 2001, Orlando, Florida,
USA

4/3 4j5Ttfv
=~zp— = T (2.15)

2.1.3 Aliasing Effects

To avoid aliasing effects, in sampling the wavelet non-dimensionally and in sampling the input time
series dimensionally, the Nyquist criterion must be satisfied. The Nyquist frequency of the input time
series with the sampling time (A/') can be given by

fNy - 77T7T' w n e r e (A'') i s t n e dimensional sampling time of the input series. , 2 16)

To avoid aliasing in the mother wavelet, the overlapping fraction a of two adjacent wavelet filters at
different scales of a wavelet system must be prescribed so that it is less than a threshold value. This
fraction can be defined as an absolute ratio of the magnitude of the wavelet at the frequency f'merlttpp at

which a is sufficiently small to the magnitude of the wavelet at the band-peak frequency yj,' (Eq. (2.17)).
At the time that two adjacent wavelet filters overlap, to recover the input time signal and to avoid aliasing
of the wavelet filters, the overlapping frequency must be at least equal to the Nyquist frequency f'Ny,

= f'Ny . The mathematical expression of the ratio a is therefore given by Eq. (2.17) and

(2.17)

i.e., f
graphical representation of Otis seen in Figure 2.1.

If a is known beforehand, then it is possible to estimate the number of sampling points for the
wavelet system. Jordan, Miksad and Powers [11] calculated the required number of sampling points
Nuorie, for the Morlet wavelet system for a typical case of CT= 2. The number of sampling points of the
Morlet wavelet function NMnrie, for a general value of ois given by

27 / i ^
Ipty + V ff In a j ,Morkt =

n

i ^
+ V- ff In a j , where a>v = 5.0 rad/s (2.18)

By using Eq. (2.16) for f'Nv, Eq. (2.15) for f'p and Eq. (2.12) for the expression of V%#U') we

obtain the minimum number of sampling data points N,,y for the hyperbolic wavelet. The number of
sampling points NHy is found by a graphical method by plotting the graphs of two functions/, and/2 given
by the following equation

/ , =f2 where/i = In
5.73a

and/2= (2.19)

Eq. (2.19) yields a good estimate of N,ly and therefore is used throughout this paper. Similarly, by

using Eq. (2.10) for the expression of l £ a % / ( / ' ) , Eq. (2.16) for f'Ny, Eq. (2.15) for / ; and after

performing mathematical manipulations, the sufficient number of sampling points Ncw for the Choi-

Williams wavelet is given by the relation

0.617(7
NCW

= l n

( TCW

1.67cr

a

(2.20)

2.1.4 Scale Limit
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The maximum possible scale using in a wavelet system is determined based on the number of wrapped-
around points or end-points since these points do not provide useful information. It has been observed
that the number of end points is proportional to the scale a [11]. That means if the scale increases to a
certain value, the number of end points will dominate the estimated wavelet transform coefficients.

From [11], the number of wrap-around points at one end is a function of the scale a and can be
given approximately by

(2.21)

The Hyperbolic Wavelet

-0.05 -

-0.1
-15 -10 -5 0 5

Frequency Samples
10

Figure 2.1: Graphical representation of a and window width T of the hyperbolic wavelet for 0 = 0.5

To estimate the largest scale of a wavelet system, introduce 7] as the fraction thaUhe number of

wavelet coefficients being affected by the number of wrap-around points Nwrap and M = 2"1 as the number

of input data'points into the wavelet system. Then

«max (N - D/2 ^ r\ ( 2 2 2 )

2 '" ^ '
where N is the number of sampling points of the wavelets which was discussed in Section 2.1.3.
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To speed up the calculation process of the wavelet transform coefficients, M should be a power of 2.

The fraction >] = 1 was used by Jordan, Miksad and Powers for the estimation of the largest scale. For

both ends and from Eq. (2.22), the maximum scale anm is given by

JV — 1 (2.23)

(2.24)
The number of input sampling points M can be estimated from the maximum scale am% using Eq.

or HI > 1.443-In
(JV-l)-flmax

(2.24)

where 7j is a ratio of the number of wrap around points at the largest scale to the total number of points in
the time series.

The maximum scale is inversely proportional to N, the number of sampling points of a wavelet
function, as seen from Eq. (2.23). The next section calculates the scale resolution.

2.1.5 . Scale Resolution

The scale resolution constant (Ojis defined as the distance between two band-peak frequencies of the two
adjacent wavelet filters [11]. The finer the scale resolution coj is, the smaller the resolution constant. This
distance between two adjacent band-peak frequencies can be determined by specifying a decay constant A
which has the mathematical form given by Eq. (2.25)

A = - (2.25)
\jf(acop+0)d)

where d)d is the scale resolution constant and tf((O) is the frequency expression of the wavelet function
given by Eqs. (2.2), (2.3) and (2.5) for the Morlet, Choi-Williams and hyperbolic wavelets respectively.
In most practical systems, the scale resolution constant must be small to capture rapid changes in the
energy density of the input waveform, which is usually non-stationary in cases of turbulence and chaos
[11], ECG [20], music signal [21-23] or random processes [24]. It is important to note that in Eq. (2.25),
the frequency quantities are non-dimensional, thus appropriate conversion of the variables must be used
to obtain the correct answer.

As the scale a increases, the scale resolution constant decreases since the frequency in a wavelet
system is inversely proportional to the scale [1, 3]. If j is the index of an instant scale that is going to be
used in a wavelet system, then we have the following relationship

: ~ ^ - (2.26)

where as is the;"1 scale of the wavelet system and (O^ + „ is the band-peak frequency at the (j + I)"1 scale.

The scale resolution of the Morlet can be obtained analytically. For the Choi-Williams and
hyperbolic wavelets, the approximate scale resolutions are estimated by eliminating the third- and higher-
order terms in the time series of ln(l - x), where x is a function of the scale resolution ad. The main
reason that the third-order terms are ignored is that the scale resolution ad is expected to be less than 1. In
addition for these two particular wavelets, the third-order constants are quite small that they can be safely
ignored without making large differences in value of the final answer. For the Morlet wavelet function,

the exact scale resolution constant 0)d
or'et is found to be

. (2.27)
^Morlet = J_ cr. in A , where A < 1

a
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(2.28)
The approximate scale resolution constant of the hyperbolic wavelet system (o'jy is given by Eq.

,,//>> 4/3 -V- In;, 4V-lnA
wd' ~ = , where A < 1

n no
(2.28)

The approximate scale resolution of the Choi-Williams or Mexican-hat wavelet system
given by

IS

= V - 2 < 1 (2.29)

From Eqs. (2.27)-(2.29), it is evident that the scale resolution (0,, of the three wavelet systems are
independent of the sampling interval (AO which makes the wavelets unique. These equations are
obtained analytically or with practical approximations. The following table lists values of the scale
resolution of the three wavelets for different values of /3

p
0.5

1
2

„ Morlet
d

0.459
0.3246
0.459

0.2066
0.4133
0.8266

cw
°>d

0.3246
0.459
0.649

Thus, over the typical range of the hyperbolic control parameter 0.5 < /3 < 2, the hyperbolic wavelet
appears to have a fine scale resolution constant as shown. For P = 2, the scale resolution is four times
larger than for the case of P = 0.5 which suggests that for /? > 2, the hyperbolic wavevlet will have coarse
scale resolution.

To obtain the largest number of scales that can be utilised in a wavelet system (provided that the
scale resolution is known), it is convenient to take the first band-peak frequency to be the reference
frequency. The subsequent band-peak frequencies are obtained by dividing the reference band-peak
frequency by the scale that corresponds to the particular band-peak frequency, i.e., <Q(p)j

 = w (p ) l / f l ; •
Using this relation and Eq. (2.26) one can obtain [11]

•-^L (2.30)
ay+1 aj

The minus sign on the right hand side of Eq. (2.30) is employed to ensure that the total number of
scales jmiX is a positive number (Eq. (2.33) and Section 2.1.6) without affecting the correctness of the
equation.

The recursive relationship of the scale a is then given by

-( (°(P)X \ , =« . , - , where K = - (2.31)

The first band-peak frequencies (corresponding to a = 1 for the mother wavelet) of the Morlet, Choi-
Williams and hyperbolic wavelets can be estimated by using Eqs. (2.13)-(2.15) respectively. From Eq.
(2.31), it is evident that previous scales are dependent on the present scale. This relationship can be
understood via the constant K, which is a function of the peak frequency of the first scale wavelet (mother
wavelet) and the scale resolution constant co,,. As the scale a becomes larger, the width of the
corresponding wavelet becomes smaller and smaller. The wavelet width as a function of the scale a is a
function of the mother wavelet peak frequency % „ and the scale resolution constant ad. Assuming that
a, = 1 0' = 1 as the starting point), Eq. (2.31) can be rewritten to find the number of scales that are
required in a wavelet system under certain conditions [11]
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ctj =Kj ' , where K'wasdefined by Eq. (2.31).

From Eq. (2.32), one can obtain an expression for the total number of required scales j , , m

_
Jmax ~ In/f

• + 1

(2.32)

(2.33)

By using the maximum value ofajmax given by Eq. (2.23), the total number of scales j m f t t required for
a wavelet system can be obtained. For each wavelet system, the number of sampling points of the mother
wavelet is different and so are the band-peak frequency, resolution, «lim and the total number of required
scales. To gain more practical insight into the three wavelet systems. Section 2.1.6 provides one typical
example in which the necessary parameters and important properties (which have been estimated and
discussed throughout Sections 2.1.1-2.1.5) of a wavelet system under some special conditions are
estimated.

2.1.6 Remarks and One Typical Example

One practical example was used in [11] in which the transition to turbulence in a subsonic wake was
investigated using the Morlet wavelet transform. The major conclusions about the behaviour of the
subsonic wake were made in [11] and will not be repeated here. This section compares the three wavelet
systems namely Morlet, Choi-Williams and hyperbolic in terms of band-peak frequency, maximum
scales, aliasing, resolution and the total number of scales used in this particular application. For the three
wavelets Morlet, Choi-Williams and hyperbolic, the value of /3 = I/a = 0.5 is used throughout this
section.

The sampling interval of the input time series was (Af') = 0.2 ms. The aliasing parameter is chosen
to be a = 0.01 (1%) so that only 1% of the mother wavelet is overlapped. From Table 2.1, the one-sided
length of the hyperbolic, Choi-Williams and Morlet mother wavelets are 7//v = 10, TQW~ 5 and T^orie, ~ 3
respectively. The values of the required number of sampling points of the mother wavelets are hence
found by using Eqs. (2.18)-(2.2O). From Eqs. (2.19) and (2.20), the approximate number of sampling
points of the hyperbolic and Choi-Williams wavelets are Nlh. = 9 and NC\v= 13 respectively.

The band-peak frequencies are obtained by employing Eqs. (2.13M2.15) for the Morlet, Choi-
Williams and hyperbolic wavelets respectively. Since the band-peak frequency can be down to about 30
Hz [11], the maximum scales of each wavelet can be found. From Eqs. (2.24), the required number of

data points in each wavelet system with t] = y can be calculated. For j3 = 0.5 and a = 2, the scale

resolution of each wavelet system is estimated next using Eqs. (2.27)-(2.29). It should be noted that the
number of input sampling points can be varied by changing the value of 7] to provide satisfactory
solutions to a particular application or problem (Eq. (2.24)). However, X] should be kept small so that
aliasing effects can be avoided effectively.

The total number of scales that can be computed is directly proportional to the scale resolution (Od.
By employing Eq. (2.33) the total number of scales of each wavelet system can be worked out. Table 2.3
summarises values of important parameters for the hyperbolic, Choi-Williams and Morlet wavelets that
have been estimated in this section.

Table 2.3: Parameter comparison of the hyperbolic, Choi-Williams (Mexican-hat) and Morlet wavelets for /3= 1/ff
= 0.5

Wavelet
Morlet

Choi-Williams
Hyperbolic

T
3
5
10

N
17
13
9

49
29
38

0.459
0.3246
0.2066

7 max

42
14
11

From Table •> 3 the hyperbolic wavelet appears to have the finest scale resolution, however, the total
number of scales"ynm of the hyperbolic wavelet is smaller compared to those of the Mexican-hat and
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a^v de f Z ? ! T h l s , s u SS e s l s l h a t >he hyperbolic wavelet is most suitable for signals which do not have
a wide frequency spectrum to resolve. In addition, with a fine scale resolution, the hyperbolic wavelet can
oe used as an instant energy-monitoring tool over a number of short time intervals. This feature is most
suitable tor non-stationary signals whose energy intensity changes rapidly with time. Figure 2.2 and Figure
2.3 illustrate these points using the speech signal of the vowel "e"

The Morlct Wavelet Power Spectrum

•ac

1000 1500 2000 2500 3000 3500 4000

o
•a

"a

The CVV Wavelet Power Spectrum

500 1000 1500 2000 2500 3000 3500 4000

Time Index

Figure 2.2: Contour plot of the Morlct and Choi-Williams (Mexican-hat) wavelet power spectra

As can be seen, the Morlet wavelet does not reveal energy components in the scale range of 20 to
40, whereas the hyperbolic and CW wavelets do. Moreover, the hyperbolic wavelet can monitor
components at very high frequencies which correspond to scales as low as 10. The Choi-Williams
wavelet can be considered as a mixture of the Morlet and hyperbolic wavelets. From Figure 2.3, the
hyperbolic wavelet power spectrum is different from those seen in Figure 2.2 in which a certain degree of
slope is present. This suggests that the hyperbolic wavelet cannot be used to examine signals that have
broad spectra (as explained earlier) since part of the energy pattern is masked by the slope. This is another
trade-off of the hyperbolic wavelet in having a fine scale resolution and a small total number of scales.
The Choi-Williams wavelet seems to be the most suitable wavelet in this case. However, the hyperbolic
wavelet does reveal the energy pattern continuously at almost every scale from 10 to 80, whereas the
Morlet (only for scales greater than 40) and CW (for scales greater than 20) wavelets do not. Thus, it can
be suggested that having a fine scale resolution makes the wavelet more effective in revealing the energy
pattern of the input signal but simultaneously limits the ability in displaying the full energy pattern as
illustrated in Figure 2.2 and Figure 2.3 due to a non-900 slope. Therefore, it is not always advantageous to
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have a fine scale resolution and a small total number of scales. Instead, there should be a balance between
the scale resolution and the total number of scales as for the Choi-Williams wavelet.

70

60

50

S 40

30

20

10

The Hyperbolic Wavelet Power Spectrum of the Vowel "e"

500 1000 1500 2000 2500 3000 3500 4000

Time Index

Figure 2.3: Contour plot of the hyperbolic wavelet power spectrum

2.2 Conclusion

The hvperbolic, Choi-Williams and Morlet wavelets have been compared in detail in terms of scale
Solution scale limit nnd aliasing effects. The hyperbolic wavelet appears to have the finest scale
resolution for well-chosen values of j3. The Choi-Williams and Moilet wavelets appears to be suitable for
b ^ ^ t r u m signals, whilst the hyperbolic wavelet is applicable for signals whose spectra vary rapidly
S time e non-stat onary signals By having a fine scale resolution, the hyperbolic wavelet might be

t i m " ; t l n n indeoendent processors to monitor the energy intensity of different segments of a
7 '", ̂ JS2JrS£iZ^ ^^ntage of the hyperbolic over the Morlet and Choi-Williamsdiscrete input signal T t a s » ^ J ^ ^ ^ ^ ^ ^ ^ n u m b e r rf s c a l e s n

wnict m i J be d S u when
nt

ex
8amining broad-spectrum signals. Moreover, there exists a non- 0° slope

W ! S J t h : effectiveness of the hyperbolic wavelet in displaying energy patterns. Higher-order
I S I f can be investigated in future work so that more useful applications can be found.
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Abstract

Experiments of large data sets are computationally expensive. Signal processing analysis on
a single CPU leads to unacceptably long execution times. The paper presents initial
experiments on calculating the time-frequency power spectrum using the coarse-grained
parallel programming technique. Experimental speedup factors are given and discussed. The
measured speedup factor of the time-frequency power spectrum parallel calculation process
is sub-linear which indicates that the time-frequency power spectrum is a suitable
application for parallel programming. The PL allel efficiency is acceptable with the lowest
value of 75.1 % occurring at N = 10. The maximum speedup factor of 9.1 is obtained when TV
= 12 at 75.3% of efficiency.

-.11:
I"

t i t =.

1.1 Introduction
Time-frequency power spectrum is a ^ , ^ . ^ » » * ! * ^ ^ t o

t o ^

the signal behaviour and characteristics can be viewed systematically 3-9]

dis ribution must be developed to capture the changes in energy

for the time-frequency power spectrum is [i, u\

1 f f f
P(t,O))= r

4n J J J

(1.1.1)

—oo-oo-oo

weighting function of the kernel <D(ft t) and /?,,,(/,?)

correlation function, where M = / + \ •

Thediscrete version of Eq. (1.1-D is given by Eq. (1.1.2)
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(1.1.2)

where W(u, i) is the weighing function as defined by Eq. (1.1.1), M is the number of input
sampk' a n d / ( 0 is the discrete-time input signal. The weighting function is an arbitrary
function that satisfies a number of admissibility constraints [14].

The discrete version of the time-frequency power spectrum is used to construct the
serial program (and hence the parallel program) to run on a parallel machine. As can be seen
in Eq. (1.1.2,', there are four running variables of «, k, r and jj. which result in four nested
f o r loops in the program. Moreover, there are conditional executions that are employed to
evaluate the local auto-correlation function.

Although it is a very useful tool in analysing non-stationary signals, the time-frequency
power spectrum is complicated and expensive to compute. This is due to the fact that instant
values of the auto-correlation function must be calculated so that rapid changes of the input
signal can be viewed at any time instant. The smaller the auto-correlation time window is,
the more expensive the calculation. This is the main reason that time-frequency power
spectrum has not been popular or widely used compared to the Fourier transform, the power
spectrum and the bispectrum. One solution to the above problem is to reduce the calculation
process time of the time-frequency power spectrum by using a parallel computer.

The wavelet transform, which is another form of the time-frequency power spectrum,
has received considerable attention in recent years with proposals on applying parallel
computing to compute the wavelet transform [15-21]. Some authors have reported on
methods of developing ways t ; compute the time-frequency power spectrum concurrently
[22, 23]. This indicates that time-frequency power spectrum could be a suitable candidate
for parallel computing. Even though there are proposals to calculate time-frequency tasks in
parallel, no hands-on experiments have been performed and reported in the literature. This
motivates the work reported in this paper.

In this paper, a MIMD 12-processor Silicon Graphics Power Challenge parallel
machine is utilised to perform experiments in estimating the time-frequency power
spectrum. From this, recommendations can be made whether the time-frequency power
spectrum is suitable for parallel computing. The main aim of this paper is to show that the
time-frequency power spectrum is a suitable application for parallel programming as is the
case for the bispectrum. Moreover, this paper hopes to make the time-frequency power
spectrum a more popular signal-processing tool by reducing its calculation time using a
parallel computer. The basic background of this paper is the time-frequency power spectrum
and the bispectrum with some knowledge on parallel computing being employed as a new
exploring tool to do the calculations efficiently.

The coarse-grained parallel technique is used for the semi-automatic and the fine- | r

grained parallel technique is employed for the full-automatic PCA method as was applied in j |
the case of the bispectrum calculation process. In this paper, however, only the semi- > |
automatic parallel method is employed due to inefficient of coding of the C annotator (full- | |
automatic PCA method). An examination of the parallel code showed that the compiler | |
mistook the inner loops as the most efficient loop for parallel programming. In other words, |
it employed the fine-grained parallel method inefficiently which resulted in large parallel jjj;
overhead and thus lowered the speedup factor. For the semi-automatic parallel method, the gj
structure of the parallel program is constructed manually so that the coarse-grained parallel | |
method can be employed more effectively to give better speedup lactors and parallel j|j

If!*

efficiency. i |

I
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The key factors that affect the performance of parallel programs are parallel load (the
load among the processors should be evenly balanced), parallel overhead (the amount of
communication among the processors should be minimised) and data dependency in the
parallel loop. There are four nested f o r loops in the program which require a large amount
of computation. If the number of input samples (or loop size) is greater than 256 (M > 256),
the number of iterations of the program is in the order of 109 or even larger. The coarse-
grained parallel technique is utilised in the outer-most loop of the program by dividing it
into smaller tasks. Each small task has 3 nested f o r loops, which can be executed
independently by independent processors (CPU) of the systems thus preventing data
dependency among the processors. Moreover, in using the coarse-grained parallel technique,
the parallel overhead is minimised since the number of parallel loops is only one in this
c;ise. Since the main parallel loop and the smaller loops inside it are identical, the load
division among thp •;.. "issors is equal which maximises the efficiency of the system.

1.2 Experimental Results
The parallel speedup factor and parallel efficiency [24, 25] are estimated by using Eq.
(1.2.1)

Speedup_Factor =
Sequential_Time

Parallel Time
(1.2.1)

Parallel_Efficiency =
Measured_Speedup

Ideal_Speedup

The parallel speedup factors of the time-frequency power spectral calculation and
bispectrum processes are shown in Figure 1.2.1 which also shows the ideal speedup factor.
The parallel efficiency of the time-frequency power spectrum calculation is displayed in
Figure 1.2.2.

t i !

I

Comparison of the Bispectrum (B) and Time-Frequency (TF) Speedup Factors

Measured TF-
Speedup

Measured B-
Spcedup

Figure

5 6 7 S

Number of Processors N

12 1- Measured speedup factor of the time-frequency power spectrum (the Joop size
is 256 samples) and bispectrum calculation processes




