
MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

.7 March 2003

Graduate School Committee
Under the copyright Act 1958, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained
from this thesis.

I would like to dedicate this thesis to my Mum, Marianna and Dad, Ldszlo

Koszonom, hogy felneveltetek, es hogy idaigjuthattam

I Efficient Computational Approach to
I Identifying Overlapping Documents in
I Large Digital Collections

»' Krisztian Monostori

K

; Submitted in fulfillment of
the requirements for the degree of

\ Doctor of Philosophy

School of Computer Science and Software Engineering,
Monash University

30 December, 2002

Abstract

Abstract

With the rapid growth of the Internet, large collections of digital documents

have become available. These documents may be used for various purposes

including education, research, entertainment, and many others. Given this diversity

of objectives in using these documents, we need tools that are capable of identifying

overlap and similarity within a potentially very large set of documents. Applications

of such tools include plagiarism detection, search engines, comparative analysis of

literary works, and clustering collections of documents.

This thesis studies different approaches to identifying overlap between

electronic documents. Existing approaches are compared based on different attributes

including accuracy, performance, and the degree of protection. A novel two-stage

approach is proposed in this thesis. It selects a set of candidate documents in the first

phase by applying chunking and indexing methods. The second phase uses exact

comparison methods based on suffix trees.

Suffix trees have been identified as an efficient data structure for exact string-

matching problems. One of the main arguments against the widespread use of suffix

trees is their-1 extensive space-consumption requirements. We propose a new data

structure, which has the same versatility as a suffix tree but requires less space than

any other representation known to date. This new structure is called a suffix vector

because of the way it is organised in memory. We show how this structure can be

constructed in linear time and we also prove that this data structure requires the least

space among those representations that have the same versatility. Not only does the

new representation save space but it is also more time-efficient because it eliminates

certain redundancies of a suffix tree. Therefore, some phases of algorithms running

on the structure can be eliminated, too.

This thesis also analyses how existing data structures can be used for document

j comparison. Sparse suffix trees and directed acyclic graphs generated from suffix

trees are discussed in the context of document comparison applications. Some

algorithms have been modified to suit the above mentioned data structures.

We have built a prototype system, called MatchDetectReveal (MDR) that

implements the algorithms we proposed. The MDR system is capable of efficiently

I

8 Abstract

identifying overlapping documents in a large set and uses suffix trees and suffix

vectors in its core component - the matching engine.

To speed up the comparison of documents we have developed a parallel

algorithm to process documents. We have used a general-purpose cluster of

commodity workstations with general-purpose middleware to test our algorithms as

well as a special-purpose cluster with purpose-built software based on the message-

passing model. Results of these tests are presented in this thesis and they demonstrate

both time- and space-efficiency of the proposed algorithms.

The results of this thesis have been presented at 13 international and national

conferences in Australia, New Zealand, Europe, and North America.

This thesis consists of 8 chapters, and is 224 pages long. It contains 87 figures

and 13 tables and has a list of 116 references.

This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university and, to the best of my knowledge and

belief, contains no material previously published or written by another person, except

when due reference is made in the text of the thesis. }

Contents

Acknowledgement 5
Abstract 7
List of Figures 13
List of Tables 15
Outcomes of the Thesis Work 17
1. Introduction , 19
1.1 Introduction 19
1.2 Copying Electronic Documents 20

1.2.1 Illegal Copies of Electronic Documents 20
1.2.2 Replicas of Popular Documents on the Internet 21
1.2.3 Overlap among Documents in a Local File System 21
1.2.4 Plagiarism 22

1.3 Outline of Thesis 23
2. Document Comparison Systems - Literature Review 29
2.1 Introduction 29
2.2 Copy-prevention mechanisms 30
2.3 Digital Watermarking 31
2.4 Copy-Detection Systems 33

2.4.1 Chunking Strategies 35
2.4.2 Selecting Chunks to Store 38
2.4.3 Decision Function 41
2.4.4 Clustering Documents 43
2.4.5 Canonical Forms of Documents 43

2.5 Exact String Matching Algorithms 45
2.5.1 Basic String-Matching Problems 46
2.5.2 Longest Common Subsequence of Two Strings 47
2.5.3 The Longest Common Substring of Two Strings 49

2.6 Suffix Trees. 50
2.6.1 Suffix Tree at a High Level 50
2.6.2 Suffix Tree Construction in Linear Time 51

2.6.2.1 Weiner's Suffix Tree Construction Algorithm 53
2.6.2.3 McCreight's Suffix Tree Construction Algorithm 55
2.6.2.3 Ukkonen's Suffix Tree Construction Algorithm 57
2.6.2.4 Comparison of the Three Fundamental Suffix Tree Construction
Algorithms 59

2.7 Algorithms on Suffix Trees , 60
2.7.1 The Longest Common Substring of Two Strings 60
2.7.2 Matching Statistics Algorithm 62

2.8 Alternative Approaches 64
2.9 Summary 65
3. Suffix Tree Representations .,.„ 67
3.1 Introduction 67
3.2 Practical Implementation Issues 68

3.2.1 Fixed Size Array 69
3.2.2 Linked List 69
3.2.3 Balanced Tree 69
3.2.4 Hash Table 69

10

3.2.5 Using a Mixture of the Above Techniques 70
3.3 McCreight's Suffix Tree Representation 70
3.4 Kurtz's Suffix Tree Representation 73
3.5 Suffix Arrays 77
3.6 Suffix Cactus Representation 78
3.7 Level-Compressed Tries 80
3.8 Suffix Binary Search Trees 81
3.9 Alternative Representations 83

3.9.1 Suffix Tree on Disk 83
3.9.2 Compressed Suffix Arrays 83

3.10 Summary 84
4. Modified Suffix Tree 87
4.1 Introduction 87
4.2 The Matching Statistics Algorithm by Using Only One Suffix Tree 88

4.2.1 Matching Statistics Algorithm with Many Suffix Trees 89
4.2.2 Converting the Matching Statistics Table 91

4.3 Sparse Suffix Trees 95
4.3.1 Construction of Sparse Suffix Trees , 95.
4.3.2 Running the Matching Statistics Algorithm on a Sparse Suffix Tree 98
4.3.3 Performance Analysis of Sparse Suffix Trees 99

4.4 Directed Acyclic Graphs 101
4.4.1 Converting a Suffix Tree Into a DAG 102
4.4.2 Converting a Suffix Tree into a DAG Preserving Suffix Links 1U3
4.4.3 Performance Analysis of DAGs 106

4.5 Summarv 106
5. Suffix Vector Representation 109
5.1 Introduction 109
5.2 A Suffix Vector at a High-Level 110
5.3 Suffix Vector Characteristics 114
5.4 Physical Representation of Suffix Vectors V\9

5.4.1 General Suffix Vector Representation 121
5.4.2 Compact Suffix Vector 122
5.4.3 Space Requirement of a Suffix Vector 124

5.5 Functionally Reduced Suffix Vector 130
5.6 Summary ,., 132
6. Suffix Vector Algorithms 133
6.1 Introduction 133
6.2 Building a Suffix Vector in Linear Time 134

6.2.1 Linear-Time Construction of a Suffix Vector 134
6.2.2 Performance Results of the General Suffix Vector 140
6.2.3 Construction of the Suffix Vector on an Example String 142
6.2.4 Converting a General Suffix Vector into a Compact Suffix Vector 150

6.3 Running Algorithms on a Suffix Vector 152
6.3.1 Avoiding Revisiting Nodes in the Suffix Vector 153
6.3.2 Retrieving Information from the Suffix Vector 160

6.3.2.1 Getting the first edge running out of a node 161
6.3.2.2 Getting the Next Edge from the Current Edge in the List of Edges 166
6.3.2.3 Following a Suffix Link 168

6.4 Summary 170

11

7. MatchDetectReveal Prototype and Parallel Applications 173
7.1 Introduction 173
7.2 MatchDetectReveal System Architecture 174
7.3 MDR Applications 177

7.3.1 Plagiarism Detection 177
7.3.2 Copy-Detection in a File System 177
7.3.3 Cross-Referencing Multiple Editions of Literary Works 178

7.3.3.1 Detecting Cross-References - 178
7.3.3.2 Organizing Collections of Small Pieces of Text 178
7.3.3.3 Comparative Analysis of Texts 178
7.3.3.4 Detecting variations and mistypings 179
7.3.3.5 Results of Comparison in the Miguel de Cervantes Digital Library..,. 179

7.4 The Converter Component 180
7.5 The Search-Engine Component 182

7.5.1 Hashing Chunks 183
7.5.2 Chunking Strategy Tests 184
7.5.3 Fingerprint Selection 187

7.6 Generating Test Documents 188
7.6.1 Document Generation Algorithm 189
7.6.2 Performance Analysis 192

7.7 Visualising Results 194
7.8 Parallel Applications 197

7.8.1 Comparing Documents Using a Local Cluster with the Clustor Tool 198
7.8.2 MPI Library 200
7.8.3 Using the MPI Library to Compare Documents on a Local Cluster 202

7.9 Summary , 204
8. Conclusion 207
8.1 Summary 207
8.2 Future Work 210
Glossary 213
References 217

12
13

List of Figures

Figure 2.1. Hardware-based (a) and Software-based (b) Document Distribution 31
Figure 2.2. Shifting of the Pattern, (a) Naive Algorithm (b) Shift-Rule 47
Figure 2.3, Alignment of P and T 48
Figure 2.4. The Suffix Tree of S='abcdabdbcdabb$' 51
Figure 2.5. Linear-Space Representation of a Suffix Tree 52
Figure 2.6. Pseudo Code of Weiner's Algorithm 54
Figure 2.7. The Pseudo Code of McCreight's Algorithm 56
Figure 2.8. A Suffix Tree with Suffix Links 57
Figure 2.9. The Pseudo Code of Ukkonen's Algorithm 59
Figure 2.10. Generalized Suffix Tree 61
Figure 2.11. The Pseudo Code of the Matching Statistics Algorithm 63
Figure 2.12. Calculation of the Overlap Value from Matching Statistics Values 64
Figure 3.1. McCreight's Edge Representation 71
Figure 3.2. McCreight's Suffix Tree Representation 71
Figure 3.3 Bit-Level Node-Representation in ILLI 75
Figure 3.4. Lazy Suffix Tree Representation 76
Figure 3.5. Suffix Array 77
Figure 3.6. Lcp Values 77
Figure 3.7. Suffix Cactus 79
Figure 3.8. Binary Trie 80
Figure 3.9. LC-trie 81
Figure 3.10. Suffix Binary Search Tree 82
Figure 3.11. Suffix AVL Tree 82
Figure 4.1. Auxiliary Tree 92
Figure 4.2. The Pseudo Code of the MSVAA Algorithm 93
Figure 4.3. Auxiliary Tree after the Second Step of the Algorithm , 94
Figure 4.4. Suffix Link in a Sparse Suffix Tree 96
Figure 4.5. Running Tfoie of the Construction and Matching Statistics Algorithm

Using a Sparse Suffix Tree..... 100
Figure 4.6. Running Time of the Construction and Matching Statistics Algorithm on

the Original Tree , 100
Figure 4.7. P^ttio between Original and Sparse Suffix Trees 101
Figure 4.8. Directed Acyclic Graph Representation , 102
Figure 4.9. The Pseudo Code of the Conversion Algorithm 103
Figure 4.10. Pseudo Code of the Practical Conversion Algorithm 105
Figure 4.11. Matching Statistics running Time on ths DAG Representation 106
Figure 5.1. Suffix Tree of'abcdabdbcdabb$' I l l
Figure 5.2. Suffix Vector of S 111
Figure 5.3. Eliminating Redundant Information 115
Figure 5.4. The Concept of Large Nodes 116
Figure 5.5. Merging Nodes of a Suffix Tree to Create a DAG 117
Figure 5.6. Redundant Information in a Suffix Tree 119
Figure 5.7. A Box in the General Suffix Vector 121
Figure 5.8. Space-Efficient Storage of a Suffix Vector 122
Figure 5.9. The Physical Representation of a Functionally Reduced Suffix Vector 131
Figure 6.1. Associating Copying Activities with Leaves 139
Figure 6.2. Different Copying Actions Have Different Leaves Associated with Them

139

t •

14
15

Figure 6.3. Running Time of the Construction Algorithm 142
Figure 6.4.(a). Phase 1 143
Figure 6.4.(b). Phase 2 143
Figure 6.4.(c). Phase 3 144
Figure 6.4.(d). Phase 4 144
Figure 6.4.(e). Phase 5 145
Figure 6.4.(f). Phase 6 145
Figure 6.4.(g). Phase 7 146
Figure 6.4.(h). Phases 8-12 , 147
Figure 6.4.(i). Phase 13 147
Figure 6.4.(j). Phase 14 149
Figure 6.5. Utilizing the Concept of Large Nodes 152
Figure 6.6. The Pseudo Code of the Conversion Algorithm 152
Figure 6.7.(a). Position 0 155
Figure 6.7.(b). Position 1 , . 155
Figure 6.7.(c). Position 2 156
Figure C7..M). Position 3 156
Figure 6.7.(e). Position 4 157
Figure 6.7.(f). Position 5 157
Figure 6.7.(g). Position 6 158
Figure 6.7.(h). Position 7 158
Figure 6.7.(i). Position 8 159
Figure 6.7.(j). Position 9 159
Figure 6.7.(k). Position 10 160
Figure 7.1. MDR Architecture 175
Figure 7.2. Comparison of Different Poem Collections 179
Figure 7.3. Comparing Two Editions of Don Quijote 180
Figure 7.4. Converted ASCII File .-!.... 182
Figure 7.5. Average Chunk Length 185
Figure 7.6. Overlap Percentage 185
Figure 7.7. The Effect of Aggregate k Values 186
Figure 7.8, Overlapping Chunks 187
Figure 7.9. Merging Chunks into Random Text 191
Figure 7.10. The Pseudo Code of the Document Generation Algorithm 192
Figure 7.11. Running Time of the Algorithm 193
Figure 7.12. Output ofthe Visualiser Component 194
Figure 7.13. Output ofthe Visualiser Component 196
Figure 7.14. Information Window 196
Figure 7.15. Running Time on Clustor 199
Figure 7.16. Different Number of Nodes 200
Figure 7.17. Clustor-like Architecture 202
Figure 7.18. Distributed Repository Architecture.. 203

i

List of Tables

Table 2.1. Indicator and Link Vector Values ofthe Example Tree 55
Table 3.1. The SLLI Implementation ofthe Example String 74
Table 3.2. Array Representation of a Suffix Cactus 79
Table 3.3. Comparison of Suffix Tree Representations 84
Table 4.1. Matching Statistics Values by Using One Suffix Tree 90
Table 4.2. Matching Statistics Values by Using Many Suffix Trees 90
Table 5.1. Comparison ofthe Total Space Requirement 126
Table 5.2. Statistical Data on Suffix Vectors 128
Table 5.3. Redundant Information in the Suffix Tree 129
Table 6.1. Running Time ofthe Construction Algorithm 141
Table 6.2. Retrieving Information from the Suffix Vector 170
Table 7.1. False Positives 183
Table 7.2. Asymmetric Similarities 188

16
Outcomes of the Thesis Work 17

Outcomes of the Thesis Work

Published Mi papers:

• Monostori K., Zaslavsky A., Schmidt H. Parallel Overlap and Similarity

Detection in Semi-Structured Document Collections. Proceedings of 6th

Annual Australasian Conference on Parallel and Real-Time Systems (PART

'99), Melbourne, Australia, 1999. pp 92-103, 1999.

• Monostori K., Zaslavsky A., Schmidt H. Parallel and Distributed Document

Overlap Detection on the Web. Workshop on Applied Parallel Computing -

PARA2000, 18-21 June 2000, Bergen, Norway, pp 206-214, 2000.

• Monostori K., Zaslavsky A., Schmidt H. MatchDetectReveal: Finding

Overlapping and Similar Digital Documents. Information Resources

Management Association International Conference (IRMA2000), 21-24 May,

2000 at Anchorage Hilton Hotel, Anchorage, Alaska, USA. pp 955-957, 2000.

• Monostori K., Zaslavsky A., Schmidt H. Efficiency of Data Structures for

Detecting Overlaps in Digital Documents. Proceedings of the 24th

Australasian Computer Science Conference, Bond University, Gold Coast,

Queensland, 29 January - 2 February, 2001. pp 140-147, 2000.

• Zaslavsky A., Bia A., Monostori K. Using copy-detection and text

comparison algorithms for cross-referencing multiple editions of literary

works. Proceedings of the 5th European Conference on Research and

Advanced Technology for Digital Libraries, September 4-9 2001, Darmstadt,

Germany, pp 103-114, 2001.

• Monostori K., Zaslavsky A., Bia A. Using the MatchDetectReveal System for

Comparative Analysis of Texts. Proceedings of the Sixth Australasian

Document Computing Symposium (ADCS 2001), Pacific Bay Resort, Coffs

Harbour, 7 December, 2001, pp 51-58, 2001.

• Monostori K., Zaslavsky A., Vajk I. Suffix Vector: A Space-Efficient Suffix

Tree Representation. Proceedings of the International Symposium on

Algorithms and Computation, Christchurch, New Zealand, Dec 19-21, 2001,

pp 707-718, 2001.

18 Outcomes of the Thesis Work Chapter 11ntroduction 19

• Monostori K., Zaslavsky A., Schmidt H. Suffix Vector: Space- and Time-

Efficient Alternative To Suffix Trees. Proceedings of the 25th Australasian

Computer Science Conference, Monash University, Melbourne, Victoria, 28

January - 1 February, 2002. pp 157-166,2002.

• Finkel R. A., Zaslavsky A., Monostori K., Schmidt H. Signature extraction

for overlap detection in documents. Proceedings of the 25th Australasian

Computer Science Conference, Monash University, Melbourne, Victoria, 28

January - 1 Febmary, 2002. pp 59-64, 2002.

• Monostori K., Finkel R., Zaslavsky A., Hodasz G., Pataki M. Comparison of

Overlap Detection Techniques. The 2002 International Conference on

Computational Science, Amsterdam, The Netherlands, 21 - 24 April, 2002. (I)

pp 51-60, 2002.

Published short papers:

• Monostori K., Schmidt H., Zaslavsky A. Document Overlap Detection

System for Distributed Digital Libraries. ACM Digital Libraries 2000

(DL00), 2-7 June, 2000 in San Antonio, Texas, USA. pp 226-227, 2000.

Published posters:

• Monostori K., Schmidt H., Zaslavsky A. MatchDetectReveal: Finding

Overlapping and Similar Digital Documents. The 10th Australasian

Conference on Information Systems, Wellington, New Zealand, 1999. pp

1223,1999.

• Monostori K., Schmidt H., Zaslavsky A. Identifying Overlapping Documents

in Semi-Structured Text Collections. Australasian Computer Science

Conference, Canberra, Australia, 2000.

• Monostori K., Zaslavsky A., Schmidt H. Digital Documents in Educational

Environment: Misuse, Appropriation, and Detection Issues. Fourth

Australasian Computing Education Conference, 4 - 6 December 2000,

Monash University, Melbourne, pp 254-255, 2000.

Introduction

1.1 Introduction

Proliferation of personal computers and workstations, increased quality of

printers and display devices, the ever-increasing storage capacity of servers as well

as desktop computers, and the world-wide network connecting computers have made

electronic publishing technologically feasible and have led to increased use of digital

libraries [CMPS94].

Electronic documents are available in large numbers on the Internet. The

World Wide Web dates from the late 1980s [BR99a] but only for a few years has it

been widely used in many areas of everyday life. The Internet has become the

primary publishing medium for researchers as well as commercial organisations. The

size of the Web grows exponentially [BR99a], and according to NetSizer [NetOl,

October 2001] there are currently 127.914 million hosts on the Internet.

Documents on the Internet are easily downloadable and they can be used for

different legal or illegal purposes. There are documents not intended to be freely

published, however someone can easily purchase a book in electronic format, and

publish it on the Internet. Documents may be copied within the Internet and

documents downloaded from the Internet may go into print.

This thesis discusses and proposes different algorithms and techniques for

computationally efficient identification of overlapping documents. A new two-stage

approach is proposed where the first stage uses the usual procedure of identifying

candidate documents, and the second stage uses exact string matching to identify

18 Outcomes of the Thesis Work Chapter 11ntroduction 19

• Monostori K., Zaslavsky A., Schmidt H. Suffix Vector: Space- and Time-

Efficient Alternative To Suffix Trees. Proceedings of the 25th Australasian

Computer Science Conference, Monash University, Melbourne, Victoria, 28

January - 1 February, 2002. pp 157-166,2002.

• Finkel R. A., Zaslavsky A., Monostori K., Schmidt H. Signature extraction

for overlap detection in documents. Proceedings of the 25th Australasian

Computer Science Conference, Monash University, Melbourne, Victoria, 28

January - 1 Febmary, 2002. pp 59-64, 2002.

• Monostori K., Finkel R., Zaslavsky A., Hodasz G., Pataki M. Comparison of

Overlap Detection Techniques. The 2002 International Conference on

Computational Science, Amsterdam, The Netherlands, 21 - 24 April, 2002. (I)

pp 51-60, 2002.

Published short papers:

• Monostori K., Schmidt H., Zaslavsky A. Document Overlap Detection

System for Distributed Digital Libraries. ACM Digital Libraries 2000

(DL00), 2-7 June, 2000 in San Antonio, Texas, USA. pp 226-227, 2000.

Published posters:

• Monostori K., Schmidt H., Zaslavsky A. MatchDetectReveal: Finding

Overlapping and Similar Digital Documents. The 10th Australasian

Conference on Information Systems, Wellington, New Zealand, 1999. pp

1223,1999.

• Monostori K., Schmidt H., Zaslavsky A. Identifying Overlapping Documents

in Semi-Structured Text Collections. Australasian Computer Science

Conference, Canberra, Australia, 2000.

• Monostori K., Zaslavsky A., Schmidt H. Digital Documents in Educational

Environment: Misuse, Appropriation, and Detection Issues. Fourth

Australasian Computing Education Conference, 4 - 6 December 2000,

Monash University, Melbourne, pp 254-255, 2000.

Introduction

1.1 Introduction

Proliferation of personal computers and workstations, increased quality of

printers and display devices, the ever-increasing storage capacity of servers as well

as desktop computers, and the world-wide network connecting computers have made

electronic publishing technologically feasible and have led to increased use of digital

libraries [CMPS94].

Electronic documents are available in large numbers on the Internet. The

World Wide Web dates from the late 1980s [BR99a] but only for a few years has it

been widely used in many areas of everyday life. The Internet has become the

primary publishing medium for researchers as well as commercial organisations. The

size of the Web grows exponentially [BR99a], and according to NetSizer [NetOl,

October 2001] there are currently 127.914 million hosts on the Internet.

Documents on the Internet are easily downloadable and they can be used for

different legal or illegal purposes. There are documents not intended to be freely

published, however someone can easily purchase a book in electronic format, and

publish it on the Internet. Documents may be copied within the Internet and

documents downloaded from the Internet may go into print.

This thesis discusses and proposes different algorithms and techniques for

computationally efficient identification of overlapping documents. A new two-stage

approach is proposed where the first stage uses the usual procedure of identifying

candidate documents, and the second stage uses exact string matching to identify

20 Chapter 11ntroduction Chapter 11ntroduction 21

exactly matching chunks of documents. We propose to use the suffix tree structure

along with the matching statistics algorithm to detect copies of chunks. Suffix trees

are very space-consuming structures, so we propose three alternatives to reduce

space. These alternatives are discussed in Chapters 4, 5 and 6. Sparse suffix-tree

representations, which are discussed in Chapter 4, can most efficiently be used for

comparing natural-language text. At the same time the DAG representation (Chapter

4) and the suffix-vector representation (Chapters 5 and 6) are more general

representations. The suffix vector representation is a fundamentally new

representation of a suffix tree, which is as versatile as any other suffix tree

representation, so it can be used in any area where suffix trees are used.

This chapter discusses different issues regarding copying electronic documents,

using the Internet as a distribution media, and it also gives an overview of the thesis.

1.2 Copying Electronic Documents

In the following subsections we give a detailed discussion of different reasons

for copying electronic documents, and we also describe how copy-detection

methods, which are the main focus of this thesis, could be applied to issues discussed

below.

1.2.1 Illegal Copies of Electronic Documents

We all know how useful a full-text electronic version of a book is. We can

search the text, we can print parts of it if we do not need the whole book. We can cite

portions of the text by a simple drag-and-drop operation. Why is it then that most of

the books are not available in electronic format? One of the reasons could be that

people might misuse the aforementioned advantages of electronic documents.

Someone purchases an electronic book and then puts it on his/her Web site, or posts

it to mailing lists or bulletin boards. This behaviour is against copyright laws, and is

an important reason why publishers are reluctant to make fheir publications available

in electronic form [GS95a]. To tackle this problem with a copy-detection system the

publisher can submit its electronic document to the system, which would identify any

partial or full match with existing documents on the Internet.

1.2.2 Replicas of Popular Documents on the Internet

There are many documents on the Internet that are replicated on purpose with

the permission of the legal copyright holder of the document. Exact copies of the

following documents are stored on multiple sites [BGM97]:

• FAQ (Frequently Asked Questions) or RFC (Request for Comments)

documents [RFC01]

• On-line documentation for popular programs

• Documents stored on mirror sites

• Legal documents

Partial copies of documents can also be found on the Internet. Documents may

have substantial overlap because they are [BGM97]:

• Different versions of the same document

• The same document with different formatting

• The same document with site-specific links, customisations

• Combined with some other text to create a larger document

• Split into smaller documents

A copy-detection system could find these replicas or near replicas of

documents and help users in one of three ways:

• A search-engine user could be prevented from reading the same document

more than once just because the search-engine returned documents from

mirrored sites [GS95a]. The copy-detection system can be used as an

additional filter to eliminate duplicates or near duplicates.

• It can also be used in a reverse fashion and it can present the user with only

the differences between files, so the user only has to read additional

information that he or she has not yet read.

• It car present the user with alternative sites to download a given document,

for example for reducing download time. For this solution full as well as

partial overlap detection is required, too.

1.2.3 Overlap among Documents in a Local File System

This problem is very similar to the problem described in Section 1.2.2. The

only difference is that local files are copied for different reasons. As the capacity of

hard disk storage is always just not enough, everyone has been faced with the

22 Chapter 11ntroduction

problem of "cleaning" his/her hard disk. One may have very similar documents just

because they are different versions of the same document; they are temporary

documents, which have not been deleted; they are different programs containing the

same procedure, etc. A copy-detection system could cluster such documents and one

could decide which files are necessary to keep and which files can be discarded. If

such a system also has access to a central archive, one is able to discover some files

that have already been stored in that central location, so there is no need to store

them redundantly on the local machine.

1.2.4 Plagiarism

Everyone who has been in academia for some time has faced the problem of

students copying each other's work or using documents downloaded from the

Internet to submit as their own work. Students have a handy tool for writing research

papers, because most of the scientific publications are available in electronic format.

However, this is a two-edged sword and it is tempting for students to download

ready-to-submit documents from the Internet or download relevant documents and

use different portions of them to assemble a "new" document that they can submit.J

Even if we are almost certain that the given document is not a student's genuine

work, unless we confront him/her with the original documents it is impossible to

prove that he/she is a plagiarist. Manually finding these documents is very hard even

with today's sophisticated search engines.

Plagiarism is not limited to students. There are several reported cases discussed

by Kock [Koc99] and Deninng [Den95], that researchers have chosen the easy way

to have the required number of publications rather than publishing their own work.

The "publish or perish" law might have put too much pressure on them. In the rest of

this section we summarize the case of plagiarism reported by Kock [Koc99]. Not

only does it reveal some frequently used "intelligent" ways of plagiarism but it also

tells a story of how hard it is to take even an obvious case to court, and catching

cheaters still has low success.

In 1997 Kock, who is a professor at Temple University in the USA, discovered

that someone, who is disguised under the name of Plag in the article, has used

Kock's previously published paper and submitted it to a journal. Kock's colleague

happened to review the paper and e-mailed Kock that there was a paper, which

heavily referenced his work. It was not a coincidence since Plag plagiarised Kock's

Chapter 11ntroduction 23

i

X

paper. Among the references Kock also found some papers that are almost

impossible to get hold of, like manuals for some special courses. Of the 51

paragraphs in Plag's paper, 38 were almost sentence-by-sentence copies of Kock's

article. The paper discussed the results of a survey, and Plag was smart enough to

change localities and numbers. Kock sought legal advice, but US lawyers did not

find the money involved big enough to take up the case before court. Kock finally

went public in a conference, and Plag got his well-deserved punishment from the

research community.

Kock's discovery was accidental, but a copy-detection system would catch

more Plag-like people. Kock's paper also warns us that such a system must be

prepared for sophisticated methods of plagiarism. Though moving away from the

Web as a distribution medium would make it harder for plagiarists, it would also

impede bona fide researchers, who use the Web as the primary medium for research

resources.

Not only does the Internet make it easier for plagiarists but it also makes i;

possible to create a plagiarism-detection system that would find these documents on

the Internet. The methods used for plagiarism detection are very similar to those

described in the previous subsections, and catching plagiarists is one of the main

motives behind copy-detection systems, which was also our initial goal when we

started this project.

1.3 Outline of Thesis

This thesis studies the theoretical foundations of document overlap detection

and investigates how different algorithms may or may not be used efficiently for this

purpose. In this thesis we propose a two-stage comparison technique, which is more

reliable and cost effective than previous approaches. The first stage uses the usual

procedure of identifying candidate documents, and in the second stage candidate

documents are compared by exact-matching methods that use suffix trees. We have

developed two alternative space-efficient suffix tree representations. Besides the

theoretical background, we have also developed a prototype system to test different

algorithms. As part of the development some other crucial components have been

developed:

• the Visualiser component to visualise the results

24 Chapter 11ntroduction
Chapter 11ntroduction 25

• the Document Generator component to create sufficient numbers of

documents for testing

• an On-line Submission component that enables Web-based submission of

documents

The structure of the thesis is the following. In Chapter 2 we discuss existing

copy-detection systems and their underlying algorithms. These systems are built for

different purposes and use different algorithms. These algorithms are analysed for

time and space efficiency as well as applicability to different problems discussed in

the previous sections. We also analyse string-comparison algorithms, which form the

basis of the second stage of our approach. In this chapter we introduce the suffix-tree

structure, which is a versatile data structure. We also discuss different areas of string

matching where suffix trees can be applied. Suffix trees can be built in linear time

using different construction algorithms. Three fundamental suffix-tree construction

algorithms are presented. We focus on Ukkonen's algorithm [Ukk95] because it is

the algorithm that we use to build our modified suffix tree, and this is the algorithm

that is modified to construct our suffix vector structure.

The matching statistics algorithm is a linear-time algorithm that is able to find)

the length of the longest overlapping chunk in a string starting from each position.

We use the matching statistics values to detect overlapping chunks. The matching

statistics algorithm is also described in this chapter.

The main contributions of this thesis are the modified suffix trees presented in

Chapter 4 and the suffix vector representations discussed in Chapters 5 and 6.

Chapter 3 discusses the different suffix tree representations that have been developed

to date. They are compared on their versatility and space requirements. The most

important issue of versatility is the suffix link information in the tree. There are many

algorithms that make use of the suffix link extension of the suffix tree, including the

matching statistics algorithm. Ail data structures that we use have this suffix link

information. We discuss Kurtz's Improved Linked List Implementation [Kur99] in

detail, because this is the most space-efficient suffix tree representation known to

date that also keeps suffix link information. In later chapters we show that cur suffix

vector representation is as versatile as Kurtz's representation, but requires less space

on average than Kurtz's representation. We briefly discuss representations that do

not keep suffix link information but may be more efficient in algorithms where this

information is not required.

1
I
!
i

W-

k
it
\

Chapter 4 discusses modifications to the suffix tree structure that allows them

to be stored in less space. However, these representations still resemble the original

tree representation, unlike the suffix vector representation, which is a fundamentally

new approach and is discussed in Chapters 5 and 6. One possible modification to the

tree is to include only suffixes starting at the beginning of words, because we are not

interested in overlaps starting in the middle of a word. This approach has been

proposed before [KU96, ALS99] but it has not been discussed in the context of the

matching statistics algorithm, whose running time can significantly be reduced by

utilising this structure [MZS01]. We analyse these issues and we show that this

modified tree along with its suffix links, which have different meaning in this

representation, can speed up the matching statistics algorithm. Another possible way

of reducing the space requirement of a suffix tree is to convert it into a directed

acyclic graph. We show how suffix link information can be kept in this structure and

how the matching statistics algorithm can run on these structures. We also discuss

the benefits of using these structures for document comparison rather than the

original suffix tree [MZS01].

Chapters 5 and 6 discuss the suffix-vector structure. This structure is a

fundamentally new structure that is as versatile as any other suffix tree representation

but requires the least space on average. This data structure can be used on any string,

not only natural language text, as it does not make use of word separators in the text

as opposed to the sparse suffix tree of Chapter 4.

Chapter 5 introduces the new suffix vector representation [MZV01]. It is first

introduced at the high level and some general features of the structure are described.

Then we discuss alternative physical representations. We have developed two

representations: general suffix vector and compact suffix vector. The general

representation can be constructed in linear time from scratch, while the compact

suffix vector can be converted from any other suffix tree or suffix vector

representation in linear time, thus giving a linear-time overall construction time. The

space requirement of the compact representation is compared to that of Kurtz's

representation in this chapter. It is shown that the compact suffix vector requires less

space on average than Kurtz's Improved Linked List Implementation [Kur99].

Statistical information on the suffix vector is analysed to illustrate which categories

of texts could most probably benefit from the suffix vector representation and which

categories of texts have only marginal benefit over Kurtz's representation.

26 Chapter 11ntroduction
Chapter 11ntroduction 27

Chapter 6 is mainly concerned with the algorithms that run on the suffix vector

structure [MZS02]. First, a linear-time construction algorithm of the general

representation is discussed. We formally prove the linear-time bound of the

algorithm, and present practical results to support the claim. The conversion

algorithm from the general representation into the compact representation is also

discussed in this chapter. The space-requirement of any representation is only one

issue; another very important issue is how fast we can access information stored in

the data stnh.,ure Since both Kurtz's and our compact representations are very low-

level representations, we have to analyse bow many operations are required to

retrieve certain pieces of information from the tree because this will affect the

running time of the algorithms that run on the structure. This chapter also contains

the analysis of the space requirements of the general suffix vector representation.

Chapter 7 discusses our prototype copy-deiection system, MatchDetectReveal

(MDR) [MZSOOb, MZSOOc]. First, the general architecture of the system is presented

with a short introduction to each component. The search-engine and matching engine

components are based on the algorithms discussed in Chapters 2, 4, 5, and 6. The

Document Generator component is used to generate random documents for Resting

the overlap detection, where the amount of overlap along with other parameters can

be set. The Visualiser component presents the results to the user in a Web browser

[MZBOl], It takes the results of the comparison from the Matching Engine as an

input and generates HTML files that make use of JavaScript features to present the

overlapping between documents. A case study of comparing different documents of

the Miguel de Cervantes Digital Library [BPOl] is also presented in this chapter

[ZBMOl]. Copy-detection on a large scale is very resource consuming, which

suggests the application of parallel and distributed approaches for copy-detection

[MZS99, MZSOOa], Two test-beds have been used: the Monash Parallel Parametric

Modelling Engine [Clu99], which is a local cluster at the School of Computer

Science and Software Engineering that uses the EnFusion software (formerly known

as Clustor) to distribute and load-balance jobs; and a local cluster with 4 machines

dedicated to parallel comparison of documents. The Windows implementation of the

standard MPI Library [WMPI01] has been used for interprocess communication

between processes. Different document and job distribution strategies are analysed

here.

Chapter 8 summarises the results of the thesis and revisits the main

contributions.

(5 K

28 Chapter 11ntroduction
Chapter 2 Document Comparison Systems - Literature Review 29

C H A P T E R

Document Comparison

Systems -

Literature Review

T W O

2.1 Introduction

In this chapter we give an overview of existing document overlap detection

systems. These systems have been built for different purposes, but the underlying

problem is the same: try to identify related overlapping or identical documents.

Commercial systems include Plagiarism.org [Pla99], EVE [EVEOO], IntegriGuard

[IntOl], PaperBin [PapOl], CopyCatch [CopOl], and Glatt [Gla99]. Documentation

on research prototype systems is widely published; this chapter summarises the

different approaches used in these packages and compares them based on some

fundamental issues, such as chunking primitives, fingerprint-selection algorithms,

comparison algorithms, and selection criteria. The systems we analyse include the

SCAM (Stanford Copy Analysis Method) system [GS95a], the Koala system

[Hei96], the "shingling approach" of [BGM97], and the file-system clustering

method of the sif tool [Man94]. We also discuss some alternative methods for

safeguarding intellectual property [CMPS94, BLMO94a, BLMO94b, SLL97].

Exact string-matching algorithms also are analysed in this chapter. We define

the document overlap problem and analyse existing algorithm* based on their

applicability to the problem. We point out that the document overlap problem can

most efficiently be solved by using suffix trees. Thus we introduce suffix trees in this

chapter but we leave the discussion of different physical representations of suffix

trees until Chapter 3.

30 Chapter 2 Document Comparison Systems - Literature Review
Chapter 2 Document Comparison Systems - Literature Review

2.2 Copy-prevention mechanisms

As already discussed in the previous chapter, we have two fundamental

approaches (copy prevention and copy detection) to safeguarding intellectual

property. One possibility is to prevent violations from occurring. This method makes

sure that it is not possible or at least makes it hard enough to copy electronic

documents. By "hard enough" we mean that producing a copy of a document should

be at least as expensive as purchasing an original copy.

One method suggests a designated access point to an electronic document, such

as a stand-alone machine with a CD-ROM drive [GS95b]. If we make sure that text

cannot be copied from that CD-ROM, then it is impossible to create an illegal copy

of the document. For example, if this machine does not have either a floppy drive or

a network connection then the material cannot be copied.

Choudhury et al. [CPMS94] propose a document-distribution architecture that

uses asymmetric encryption schemes. In this scheme a public key is used to encrypt

the document. This document is then decrypted by a private key on the client end.

Two architectures are proposed: The first uses hardware-based

encryption/decryption, while the second scheme relies on software components for
j

cryptography. Both architectures share the following components [CPMS94]:

• Document server: provides encrypted documents to user; trusted by

publisher

• Copyright server: authenticates users; trusted by publisher

• Display client: decrypts and displays documents; software trusted by

publisher

• Printing client: decrypts and prints document; software trusted by publisher

In the first step, the user determines the unique identifier for the document with

the aid of some sort of searching service. The user then requests the document, the

encrypted document is delivered to the user and the software on the client side either

displays or prints the document after decrypting it. The hardware-based and

software-based architectures are depicted in Figure 2.1.

I
i

(a) Architecture with firmware assistance | (b) Architecture with software only

Figure 2.1. Hardware-based (a) and Software-based (b) Document Distribution

The hardware-based approach is superior to the software-based approach

because in the software-based approach the document or some kind of a

representation of the document (e.g. bitmap) exists on the client computer and might

be stored with the help of a suitable program.

As another alternative, Griswold [Gri93] describes active documents as one of

the ways of protecting intellectual property. Active documents are documents

presented by special-purpose software. The text of the document is only available in

an encoded format on the disk and only that special software is able to decode the

document. Since the document is presented by software, actions that we can perform

on the text depend on the software, and it can prevent us from copying text from the

document.

The above-mentioned three methods are the most popular methods for copy-

prevention, but we believe that these methods are too cumbersome for bona fide

users and suppress the inherent advantages of electronic documents, thus copy-

detection methods are more favourable than copy-prevention methods.

2.3 Digital Watermarking

Digital watermarking [BLMO94a, BLMO94b] is a copy-detection method

apphcd in electronic publishing. Copy-detection does not try to hinder the

distribution of documents but rather tries to detect illegal copies. One of the issues in

copy-detection methods is how to identify the original distributor of the document.

That is, once an illegal copy is found, the question is then who purchased the original

copy of the document and made it available to other users. Digital watermarking can

32 Chapter 2 Document Comparison Systems - Literatur&^fteyjew Chapter 2 Document Comparison Systems - Literature Review 33

be considered as a complementary tool for copy-detection mechanisms. Since the

main focus of this thesis is how to find copies of documents, and not how to identify

who spread the given document, we discuss one method of watermarking proposed

by Brassil et al. [BLMO94a, BLMO94b] as a representative example of such

methods.

The essence of the watermarking method is to place undetectable codewords in

documents similar to the method of placing watermarks in bank notes. This

codeword can represent a unique document identifier, and this identifier can be

assigned to a given customer who purchased the document. These codewords ca.n be

hidden in the document by slightly altering the layout of the text. These alterations

must be reliably decodable yet not perceptible to the user. These criteria are

conflicting, so it is not trivial to design a proper method. Common to these methods

is the alteration of some kind of textual feature. Brassil et al. [BLMO94a] study three

different methods: line-shift coding, word-shift coding and feature coding.

Line-shift coding vertically shifts the locations of text lines. Originally the

space between lines is evenly distributed all over the document, but users would not

notice a slight alteration in the distance between two consecutive lines. Brassil et al.

[BLMO94a] tested a method that kept every second line intact and every line

between the unchanged lines was either moved up or down. The unchanged lines

serve as control lines and the lines shifted up or down carry the coding.

Word-shift coding horizontally shifts words within their lines. It makes Use of

the fact that most texts are left- and right-justified, and the space between words is

calculated by an algorithm. One possible application of this method is selecting the

largest spacing within a line and decreasing it by some amount, while the smallest

spacing is increased by the same amount, thus maintaining the length of the text line.

Feature coding alters the actual bitmap representation of a given character

depending on the codeword. One possibility is to increase or decrease the height of a

character by a small amount. Good candidate characters for this method are b, d, and

h because of the visibility criteria for changes.

Brassil et al. [BLMO94a] test the algorithm in the presence of some noise.

Noise sources in this case are the inaccuracy of printers, scanners, and photocopy

machines. They thoroughly analyse the line-shifting method and discuss two

alternatives. In the baseline-detection method they try to identify the baseline of a

given text line, while the centroid-detection method uses the centre of mass of a text

line profile. According to Brassil et al. [BLMO94a] centroid detection is more

reliable and to reduce the effect of noise we also can apply error-correcting coding

schemes.

Of course, once users know that watermarks are used in a document they may

try to destroy those watermarks. Such destruction is possible, but the goal here is not

to develop a "bullet-proof method. We only require that destroying such

watermarks should be at least as costly as obtaining the original documents legally.

2.4 Copy-Detection Systems

As we pointed out in Section 2.2, we believe that copy-prevention methods are

too cumbersome for bona fide users, so copy-detection systems are more favourable.

There have been several copy-detection methods developed, and although they had

different final goals they have much in common. In this section, we first define some

general concepts for copy-detection problems and then existing systems are analysed

based on these concepts.

Before classifying copy-detection problems let us define some general goals

that we expect from our copy-detection method:

• Performance: We expect our system to be as fast as possible. Most of the

systems use some index, which has to be built. Thus performance not only

means query performance, but we also have to analyse how long it takes to

build that index.

• Storage capacity: The index should not require excessive space. It means

that we have to analyse how much space is required to store that special-

purpose index and the effect that different index sizes have on performance

and accuracy.

• Accuracy: Appropriate accuracy measures must be introduced. Accuracy is

linked to the likelihood that overlapping documents will be found. We also

have to analyse how the accuracy of the system is related to other measures,

such as performance and storage capacity.

• Protection: How hard it is to do some modifications to the text and deceive

the system. In an ideal situation it is at least as hard to circumvent the system

as it is to write an original document, for example, if our target is plagiarism

detection.

34 Chapter 2 Document Comparison Systems - Literature Review
Chapter 2 Document Comparison Systems - Literature Review

General concepts for copy-detection are introduced by Brin et al. [BDG95].

First, we define a document as a body of text with some structural information, such

as word, sentence, and paragraph boundaries. We ignore figures embedded in text,

though we note that similar figures are also some evidence of plagiarism. We restrict

our discussion to textual overlap. Formatting information is removed from the

document. As a result of this process the document is represented in its canonical

form. The conversion to the canonical form must be unambiguous. Otherwise two

identical documents might have different canonical forms.

Brin et al. also have defined violation tests [BDG95]. Violation tests are

decisions made by humans, which are subjective. Let us suppose we have two

documents d and r, or a given document d and a set of documents R. Examples of

violation tests are: Plagiarising/) is true if of plagiarised r\ Containment(J,r) holds if

document d is contained in document r. We also can define violation tests for sets of

documents: Plagiarising,/?) holds if d plagiarised from any of the documents

contained in R (possibly from more than one).

A copy detection mechanism implements operational tests that approximate

these violation tests [BDG95]. For example, if an operational test discovers that 95%

of the sentences in document d appear in document r, then this operational test

approximates the Containment violation test. Operational tests are the result of some

computer algorithms, thus they are objective.

These operational tests try to identify the overlap between documents and

make a decision based on some threshold. To identify overlap, we have to decide

what is the smallest unit of text that we consider an overlap. First, we have to define

a text unit: Documents can be divided into some components, such as chapters,

sections, subsections, paragraphs, sentences, words, letters; each of these types of

division is a unit type, and particular instances of these types are units. A chunk is a

contiguous sequence of units. These chunks may overlap. For example, let us

suppose that we have a document ABCDEFGH where letters may represent any unit

types. We may have a chunking strategy that produces the following chunks: AB,

CD, EF, GH. Another strategy may consider ABCD, CDEF, and EFGH as chunks.

Chunks are usually not stored as text but a hash value is calculated for each

chunk and an inverted file is used as an index. Because of the large number of

possible chunks in a text, some algorithms keep only a certain number of chunks.

The chunks that are kept are usually selected by using a fingerprinting algorithm,

7

I

I
H

such as Rabin's fingerprint [BDG95]. Because of the complex procedures of

registration, it is important to evaluate not only the query performance, that is how

fast we can find documents that overlap with a given document, but we also have to

analyse how long it takes to add a document to the registered set of documents.

When we have the index of chunks and we have to decide whether a given

document (a query document) is plagiarised or it has "substantial overlap" with other

documents, or it is contained in another document, we have to evaluate a decision

function. This decision function can be a simple threshold value, or a more complex

value, such as from the relative frequency model [GS95b], which is similar to

techniques used in information retrieval ranking algorithms [BR99b].

In the following subsections we discuss how the aforementioned issues are

addressed in different prototype systems. Subsection 2.4.1 compares different

chunking strategies. Subsection 2.4.2 analyses different strategies to select chunks to

be stored in the index. In Subsection 2.4.3 we introduce the different decision

functions used in the approximation of violation tests. Subsection 2.4.4 considers

many-to-many comparisons, and Subsection 2.4.5 deals with the problem of

converting documents to a canonical form.

2.4.1 Chunking Strategies

Before we discuss different chunking strategies we have to decide on the

smallest number of consecutive text units that we require in order to consider it a

copy rather than an accidental overlap. One extreme is to consider that if the same

word appears in two documents, it is an overlap. This would generate many false

matches. This granularity is obviously too fine. The other extreme is to consider the

whole document as a chunk. In this case we can only detect identical copies of

documents and partial overlap detection is impossible. In this case we would miss

almost all documents. This granularity is obviously too coarse. Different systems use

different units, but knowing that the average word length in English language is

approximately 5-6 characters, we can compare strategies based on words with

strategies based on characters.

The Koala system [Hei96] uses 20 consonants, which translates into

approximately 30-45 characters. The "shingling approach" [BGM97] considers 10

consecutive words, which are approximately 50-60 characters. The sif tool [Man94]

uses 50 bytes (they use bytes rather than characters since their main focus is not only

Chapter 2 Document Comparison Systems - Literature Review

textual files but binary files, too). The SCAM system [GS96] analyses the effect of

different chunk sizes: one word, five words, ten words, and sentences. Our algorithm,

employed in the second stage of the c nparison, uses 60 characters as a threshold

value. Different research prototypes show that the threshold value should be

somewhere between 40 and 60 characters. This value is an empirical value, which

seems to work in other prototypes as well as in our system.

The chunks of a given document comprise the fingerprint of the document. As

discussed earlier, these chunks are usually hashed for space-efficiency. In the ideal

case we would index all possible a-length chunks of a document where a is the

selected threshold. In a document of length / there are l-a-1 possible a-length chunks

[Hei96]. Here we note that a suffix tree is a data structure that stores all possible

suffixes of a given string. That includes all possible a-length chunks.

We could consider non-overlapping chunks of a-length character sequences.

The problem with this approach is that adding an extra word or a character to the

document would shift all boundaries. Thus two documents differing only by a word

would produce two totally different fingerprints.

Manber [Man94] suggests two methods for selecting chunks. The first method

identifies anchors in the text and builds a chunk around that anchor. ByJ using

anchors we avoid the problem of shifted boundaries. An arbitrary example of an

anchor is the string 'acte'. Since anchors are independent from their actual position

in the text, identical chunks would generate the same fingerprints provided they

contain an anchor. We can use different anchors in such a way that they are

uniformly distributed all over the document, although it is hard to find a good set of

anchors that work well with different documents. The other method proposed by

Manber considers all 50-byte chunks and uses a selection-algorithm to choose

representative fingerprints.

The "shingling approach" of Broder et al. [BGM97] uses words as the building

blocks of chunks. Every ten-word chunk is considered. As an example consider the

following sentence:

Copy-detection methods use some kind of a hash-

function to reduce space requirements.

Ten-word chunks generated from this "document" will include:

Chapter 2 Document Comparison Systems - Literature Review 37^

• copy-detection methods use some kind of a hash-

function to reduce

• methods use some kind of a hash-function to reduce

space

• use some kind of a hash-function to reduce space

requirements

These ten-word chunks are called shingles. If we consider ev-:ry ten-word

chunk it will require too much space, so Broder et al. [BGM97] consider a selection

strategy to select representative chunks of a document. Selection algorithms are

discussed in Section 2.4.2.

Garcia-Molina et al. [GS96] compare different chunking strategies. For the

finest granularity, word chunking is considered with some enhancements, such as

eliminating stopwords. Another possibility is to use sentences as chunks to be

indexed. The problem with sentences is that sentence boundaries are not always easy

to detect. Garcia-Molina et al. tested their algorithm on informal texts, such as

discussion group documents, and because of their informality they often lack

punctuation. Sentence chunking also suffers when identifying partial sentence

overlap. To overcome the boundary-shifting problem they introduce. hashed

breakpoint chunking. Instead of having strict positional criteria to detect chunk

boundaries, such as every 10th word is a chunk boundary, they calculate a hash value

on each word and whenever this hash value modulo k is 0, it is considered as a chunk

boundary. They studied the performance of their prototype system with k=JO, and

k=5. The expected length of a chunk with this hashed breakpoint chunking is k

words. As discussed earlier k-10 is closer to the empirically defined threshold value

of 40-60 characters. The problem with this approach is that the chunk sizes may

vary. We can easily have one-word chunks and also 15-20 word chunks. A more

detailed analysis of this chunking strategy can be found in Chapter 7.

As the comparison shows [GS96], the finer the granularity, the more false

positives are computed (beta error). The coarser the granularity, the more false

negatives are computed (alpha error). This result illustrates the expectation that in the

case of small chunks, accidental overlaps occur more frequently, and in the case of

longer chunks, we miss some overlapping documents.

38 Chapter 2 Document Comparison Systems - Literature Review Chapter 2 Document Comparison Systems - Literature Review 39

2.4.2 Selecting Chunks to Store

Heintze [Hei96] points out that the space-requirement for full fingerprinting,

that is, considering each possible it-length chunk of a document, is too large. Some

selection method must be put in place to keep a representative fingerprint of the

possible chunks in a document. Full fingerprinting requires less space in the case of

the "shingling approach" [BGM97], which makes use of the fact that natural

language texts are comprised of words and we are not interested in overlaps that start

in the middle of words. We also utilise this feature of natural language texts in our

algorithm and we will show that significant space- and time-reduction can be

acii:-5\ d when we use suffix trees. If we only consider chunks starting at the

beginning of words then the number of possible chunks (full fingerprinting) is in the

order of the number of words rather than the number of characters. However, we

have to note that the sif tool [Man94] targets a broader area of copy-detection and

considers binary files as well as text files. In the case of a binary file we do not have

such a natural chunk boundary as a word boundary in a text file.

The SCAM system [GS96] studies different chunking strategies and different

selection strategies. In the case of word chunking, the size of the vocabulary is

limited given the limited number of English words. Other chunking strategies like

sentence chunking and any number of consecutive words or characters have virtually

unlimited numbers of possible chunks. In the word chunking strategy they study

three different approaches. The first approach considers every single word by only

filtering away the words in the WAIS stoplist (391 words) [GS96]. They call this

strategy "Word+0" chunking. "Word-HOO" and "word+300" strategies ignore the

100 and 300 most frequent words respectively as well as the stop words in the WAIS

list. In the case of sentence chunking and hashed breakpoint chunking SCAM keeps

all possible chunks. However, chunks are non-overlapping, as opposed to

overlapping chunks considered in other systems. When considering the whole

document as a chunk we do not have to select chunks since we have only one chunk

to represent the document. Garcia-Molina et al. [GS96] study the effect of chunk size

OD storage requirements, performance, and accuracy. Accuracy issues are discussed

in Section 2.4.3. The storage requirement for the index is between 37 and 79MB for

a 120MB dataset. If we consider the sizes of the vocabulary and the number of

postings separately, we can conclude that the smaller the chunking primitive the less

1

the size of the vocabulary, but the number of postings is higher. The number of

postings significantly decreases if we eliminate more and more frequent words. Of

course, we cannot go to the extreme of eliminating all words.

There are two main issues that affect the time required to build the index. One

issue is locality in chunk referencing, which affects the number of buffer misses, and

the actual size of the entire index. As the results show, chunking strategies that keep

all chunks are too space consuming and in the case of such a large dataset as the

Internet, it is prohibitive to have an index, which is 30-60% of the actual size of

documents.

The sif tool [Man94] proposes two different methods for identifying 50-byte

chunks. However the anchor-based strategy is basically discarded because it is hard

to achieve a uniform distribution of chunks. The second strategy considers all 50-

byte chunks and calculates a hash-value for each chunk. Here we note that the word

"fingerprint" is used in two different ways in the literature. Some authors refer to

fingerprint as a representative set of hash-values of a document. These hash values

are calculated on chunks. On the other hand, some authors [Man94, BGM97] refer to

the certain hash-value associated with the chunk when they talk about fingerprints. In

this thesis we will use the former meaning, and the hash values calculated on

different chunks are referred to as hash values. In the sif tool the hash value for the

chunk starting at the first position, that is position 0, is:

.49 .48
(2.1)

where p and M are constants. This formula is useful because we do not have to

calculate the whole polynomial again if we want to get the value for position 1; we

only have to use the following formula:

With this method hash valiu^ of consecutive chunks are easily calculated.

Manber [Man94] proposes to keep oniy those chunks that have their last k bits 0. In

the sif tool M=230, &=8, and a prime number for p are used. This means that, on

average, every 256th chunk is considered. If we ignore this many chunks the

accuracy of the system may suffer when only small portions of the files overlap.

40 Chapter 2 Document Comparison Systems - Literature Review
Chapter 2 Document Comparison Systems - Literature Review 41

The Koala system [Hei96] proposes to use a fixed size selective fingerprinting

method, which has an equal number of chunks in a representative fingerprint,

regardless of the size of the document. Although this method has the advantage that

the size of the index is dependent on the number of documents rather than the overall

size of documents, it raises some problems when file sizes in the dataset vary

significantly. In the case of large documents, a larger proportion of chunks will be

discarded. In their experiments, for documents stored in the repository, 100 chunks

are selected. For probing, that is, when a document is compared against the database,

1000 chunks are selected in a way that they are a strict superset of the 100 chunks

selected for registration. This ensures that exact copies of documents are detected by

the system. This method raises some protection issues. If the selection algorithm is

known, then a user need only make 100 changes and the system is circumvented. We

can change this selection algorithm from time to time and have different 100 chunks

selected out of 1000 considered at probing. This will not have any effect on probing,

as it will still be a subset of the chunks selected for comparison. In the Koala system,

the hash function creates a 28-bit value for each chunk. One option is to keep the

chunks with the lowest n values as a selection strategy. To have more accurate results

we can consider the frequency of chunks and keep the least frequent ones.-1 The

problem with this strategy is that relative frequency in a document is not always a

good indicator of overall frequency. Heintze [Hei96] proposed a method that uses the

first five letters of a chunk to compute the frequency.

Broder et al. [BGM97] consider 10-word chunks. 10-word chunks are ordered

according to some function, e.g. a hash function. Two methods are proposed for the

selection of a representative fingerprint. In the first method the n smallest elements

of a permutation of the chunks are selected:

= MODm(TI(S(A))) (2.4)

= MINn(U(S(A))) (2.3)

where S(A) is the set of shingles for document A, and IJ is a permutation of these

shingles. It has a fixed size and basically has the same problems as discussed in the

case of the Koala system. Another method to select chunks is to have a number

associated with each chunk, e.g. a hash function and only numbers, that are divisible

by a carefully selected number m, are kept:

4

This is very similar to the method discussed in the case of the Koala system.

However Broder et al. [BGM97] also introduce a method to limit the number of

chunks in V(A). For example, consider a document of size between 100*2' and

100*2i+l:

The expected size of Vt(A) is always between 50 and 100. Since Vi+](AJ can

easily be computed from VJA), we can calculate V{(A) and Vt(B), in case of document

A and B, based on the size of the longer document. The system uses a 40-bit hash

function based on Rabin fingerprints [Rab81] and the latter method for chunk

selection with m=25, meaning that only every 25th chunk is kept.

2.4.3 Decision Function

As discussed earlier in this chapter, our goal is to approximate such violation

tests as resemblance, plagiarism, and containment. For such an approximation we

need to associate a decision function with our operational tests. Since our operational

tests determine how many chunks overlap in a given document with chunks in other

documents, the most common decision function is a threshold value. If V(A) is the

fingerprint of document^, that is, a representative set of chunks in documents, and

the same holds for B, then our resemblance measure is:

Resemblance^, B) ^
|V(A)YV(B)|

(2.6)

|V(A) I V(B)| is the number of chunks appearing in both document A and 5, and

|V(A) Y V(B)| is the number of chunks appearing in either document^ or document

B.

The containment measure is:

(2.7)

42 Chapter 2 Document Comparison Systems - Literature Review
Chapter 2 Document Comparison Systems - Literature Review 43

This measure only holds if V(A) and V(B) are not fixed size fingerprints but are

dependent on the document size, for example in formula (2.4). To generalise this

idea we may consider all registered documents as one big document and the same

measures apply. Different applications may define different thresholds. For example,

the plagiarism decision function may be a 10% resemblance value applied for the

whole registered document set. In a file system application where we want to find

similar documents, the threshold may be higher, say 80%.

The "shingling approach" [BGM97] and the sif tool [Man94] use 50% as the

resemblance threshold. Their main target is to create clusters of similar files and they

have found that this threshold meets their needs. Heintze [Hei96] does not give a

threshold, but rather shows the resemblance values for the test document set. Garcia-

Molina et al. [GS96] study three different scenarios and set three different thresholds.

They study netnews articles, so they set the three different scenarios as follows:

• Exact Copies: identical articles.

• High Overlap Replies: response to a given article with most of the original

document contained in the response.

• Some Overlap Replies: similar to above but only small portion of original

document is contained in the response.

For different chunking schemes they set different thresholds. For word

chunking these thresholds are 100%, 66%, 33%, while in the case of sentence and

modulo schemes they are 100%, 50%, 5%. The chosen values reveal that in the case

of word chunking accidental overlap is much more likely than in the case of longer

chunks. For word-based chunking schemes SCAM proposes a new overlap measure,

which is based on the cosine measure [BR99a] widely used in information retrieval.

The problem with the cosine measure is that it only works well if the word

frequencies are of similar magnitude. To correct this problem Garcia-Molina et al.

introduce the notion of a closeness set c(R,S) for documents R and S. Words

contained in the closeness set must satisfy the following condition:

(2.8)

where Fi(D) is the relative frequency of the i-th word in document D, and e is a

tunable parameter. A small s will decrease false positives but it will also miss

i

documents with minor overlap. The higher the s value is, the more false positives

reported. The value of e is set to 2.5 in the SCAM system since they have found it to

work well in practice. After defining the closeness set they define the subset measure

as:

subset(R, S) =
V

(2.9)

In this formula only words in the closeness set are considered. Then the

similarity measure is:

sim(R,S) = max{subset(R,S),subset(S,R)} (2.10)

These corrections are necessary, as simply having similar numbers of certain

words in two documents does not necessarily mean that those documents are similar.

Documents reported by these decision functions must be checked by a human

to decide whether these decision functions are good approximations of the violation

tests they try to approximate.

2.4.4 Clustering Documents

Two of the above-discussed systems target document- or more generally file-

clustering. The additional problem of clustering is how to compare many documents

to many documents. The "shingling approach" [BGM97] and the sif tool [Man94]

use the same approach for this problem. They calculate the hash values for the

selected chunks of each document and then use the "divide, merge, sort" approach

[BGM97] to find matching chunks. Manber [Man94] also addresses the problem of

how to represent these clusters because document resemblance is not necessarily a

transitive relation. That is, while document A resembles document B, and document

B resembles document C, document A does not necessarily resemble document C.

This representation problem is outside the scope of this thesis.

2.4.5 Canonical Forms of Documents

Converting a document to its canonical form is the very first step of every

copy-detection scheme. We deferred the discussion of canonical forms to this section

44 Chapter 2 Document Comparison Systems - Literature Review Chapter 2 Document Comparison Systems - Literature Review 45^

because different copy-detection schemes have different requirements in order for

their algorithm to work.

The first step is to convert the document to pure text format. The sif tool

[Man94] does not apply this step because they deal with binary files as well as with

text files, and binary files, of course, cannot be converted to ASCII format in a

meaningful way. For transparent handling of files they do not convert text files,

either.

Converting documents to pure text is not a trivial process. Heintze [Hei96]

discusses the problem of converting PostScript files to pure text and finds that

standard tools are usually unreliable and as tools evolve their output changes, so

further processing of the text is required. Heintze found that sometimes even word

boundaries are not preserved and finds that it is easier to consider only the

consonants of a text rather than the entire sequence of characters. Of course, those

schemes that use chunking primitives based on word or sentence boundaries must

detect those boundaries, meaning that the conversion process must preserve word

boundaries. The most common trivial conversion steps, such as converting to

lowercase/uppercase and ignoring multiple whitespaces, are used in all systems.

With the exception of sentence-based chunking schemes, we also can ignore

punctuation and convert them to, for example, space characters.

Word-based chunking schemes also ignore certain stopwords. Stopwords are

the most common words such as 'and', 'is', 'the', etc. that are not likely to contribute

to the semantic meaning of the text. Some schemes also recognise that there are

common chunks, which are characteristic of a given document set just because they

are on the same topic. Most copy-detection schemes ignore very frequent chunks,

like the "word+k" schemes in the SCAM system [GS96]. The Koala [Hei96] system

ignores those chunks that appear in more than four documents but only up to 10

chunks. Otherwise, by registering the same document five times the sixth copy of the

same document would not generate any match with the first five. The reasons why

we might have common chunks in unrelated documents are discussed by Heintze

[Hei96] and Broder et al. [BGM97]:

• HTML comment tags generated by a HTML editor

• Shared header or footer in HTML files

• Mechanically generated pages with artificially different URLs and internal

links

i
V

• The beginning parts of documents contain "problematic strings", such as

addresses, names, funding agencies, acknowledgements, etc.

The last problem is addressed by ignoring the first 1000 characters of each

document in the Koala system [Hei96] and the results confirm the assumption that

this part of the text does not contribute much to the semantics of the document.

A canonical form of the document is the result of the above mentioned

conversion steps. The canonical form may vary from system to system since the text

must be ready to be processed by a certain algorithm. The conversion algorithm used

in our system addresses most of the issues discussed here and is presented in Chapter

7.

2.5 Exact String Matching Algorithms

The previous sections of this chapter demonstrate that the systems proposed so

far have drawbacks, which need to be addressed. One problem with the methods

discussed is the potential for false positives. Since each chunk extracted from the text

is hashed to a binary value, it is possible that two different chunks may produce the

same hash value even if the original chunks are different. Not only does this stem

from imperfect hashing functions, but also the mere amount of chunks to be hashed

means that we may end up with more chunks than available hash values. Of course,

choosing larger hash values that accommodate more chunks would increase the

storage capacity required. We have to find a trade-off that allows storing large

amounts of chunks without sacrificing accuracy.

Another problem is finding the exact overlap between the documents. If we

only store a fingerprint of a document we need a second stage that identifies the

exact positions of identical chunks in the documents. With each chunk we could

store their starting positions but that also would increase the storage capacity

required.

We propose a second stage that compares documents, which have been

identified to be similar in the first stage. It means that we can use even smaller hash

values, thus less space, as any false positives will be filtered out in the second stage.

Applying a second stage also means that positions of chunks need not be stored in

the database supporting the first stage.

46 Chapter 2 Document Comparison Systems - Literature Review

Let us formalise the problem we want to solve in the second stage. Let us

suppose that the two documents we want to compare are G and C (genuine document

and candidate document). We want to find each chunk in G with a minimum length

of t that overlaps with any chunk in C. More formally we can say that given two

strings G and C with the length of m and n respectively, we have to divide G and C

into substrings G=tiSit2s2t3S3...tkSifk+i and C=piq]p2q2P3q3-prqfpr+i where for each Sj

there is aj such that Si=qj and Z(\si\) is maximal.

This section analyses different exact string-matching problems and algorithms

that may help to solve the stated problem. A comprehensive overview of string-

matching algorithms is given by Gusfield [Gus97] and Aho [Aho90]. We will show

that the problem is most efficiently solved by using suffix trees. Thus this data

structure is discussed in detail in this section.

2.5.1 Basic String-Matching Problems

One of the basic string-matching problems is the exact matching problem:

"given a string P called the pattern and a longer string T called the text, the exact

matching problem is to find all occurrences, if any, of pattern P in J" [Gus97]x

There are three basic approaches to this problem, which are referred to as the

Boyer-Moore algorithm [BM77], Knuth-Morris-Pratt algorithm [KMP77], and the

Aho-Corasick algorithm [AC75]. All of them - with certain extensions - are linear-

time algorithms. The Aho-Corasick algorithm generalizes the Knuth-Morris-Pratt

algorithm to handle multiple patterns but the Boyer-Moore algorithm has the best

running time in practice.

The naive method would align the beginning of the pattern with each possible

character of the text and compare characters one by one until a mismatch is found or

all characters in the pattern have been matched. Obviously this algorithm runs in

0{nm) time in the worst case (« and m are the length of T and P respectively).

All of the above mentioned algorithms attempt to solve the problem by

applying so called shift-rules, which shift the pattern by more than one character if a

mismatch is found. Figure 2.2 illustrates the concept of shift-rules.

Different variants of the above algorithms have widely been published in the

literature [Hor80, HS91, Smi91, Smi94, Sun90, AG86]. Other approaches referred to

as arithmetic methods have also been developed [BG92, FSK82, FP74].

Chapter 2 Document Comparison Systems - Literature Review 47^

(a) (b)

T: xabxyabxyabxz T: xabxyabxyabxz
P: abxyabxz P: abxyabxz

abxyabxz abxyabxz
abxyabxz abxyabxz

Figure 2.2. Shifting of the Pattern, (a) Naive Algorithm (b) Shift-Rule

The applicability of algorithms solving the exact matching problem is quite limited

in our overlap problem. We may define each possible substring of G as the pattern P

and apply the algorithms above. Let the length of G be n and the length of C be m.

There are — possible substrings of G and the comparison of each pattern runs

in O(m) time in the worst case. Thus the worst case running time of this approach is

O(mn2). Even if we consider all suffixes of G rather than all substrings of G the

running time is still O(nm). A suffix of a string G is a substring whose last character

is the last character of string G. We will show that O(n+m) running time is

achievable by other methods. This approach also suffers when we have to compare G

to a set of documents Cj, C2, C*. In this case we would have to run k instances of

the above-described algorithm. Thus the running time would be k times more.

Obviously the algorithms designed to solve the basic exact matching problems

cannot efficiently solve our overlap problem. We have presented the exact matching

problems and the algorithms solving the problem to form a base for other problems

and algorithms as well as to show that the overlap problem is not trivial to solve.

2.5.2 Longest Common Subsequence of Two Strings

This is the problem of determining how "close" two files are to each other. In

order to demonstrate the problem and algorithms, below we define the terms

subsequence, common subsequence, and longest common subsequence as they are

defined in [Aho90].

A subsequence of a string T is a sequence of characters obtained by deleting

zero or more characters from T. A common subsequence of two strings P and T is a

string that is a subsequence of both P and T, and a longest common subsequence is a

common subsequence that is of greatest length. Here we note that in some literature

the term "subsequence" and "substring" are used interchangeably. We follow the

definitions used in most of the literature and differentiate between the two terms. The

is.

48 Chapter 2 Document Comparison Systems - Literature Review Chapter 2 Document Comparison Systems - Literature Review 49

difference is that a substring is a consecutive range of characters while a subsequence

is generated by deleting some characters and concatenating the remaining.

As an example consider the longest common subsequence of P= 'abcbba' and

T- 'cbabbcba'. The longest common subsequence of these two strings is 'abcba'.

The longest common subsequence problem is closely related to the edit distance

problem [Aho90], which defines how many edit operations are needed to convert one

of the strings to the other. Figure 2.3 shows how the two strings may be aligned, and

from that, edit operations are self-explanatory.

ab c b b a

c b a b b c b a

Figure 2.3. Alignment of P and T

We can solve the problem with a recursive algorithm [EGGI92]. The running time of

the recursive algorithm is 0(2") but it can be reduced to 0(nm) by dynamic

programming [Hir77], where n and m are the lengths of the two strings.

Myers [Mye86] and Ukkonen [Ukk85] proposed an algorithm which treats the

problem as a cheapest-cost path in a graph. A refinement of Myers' algorithm uses

suffix trees and runs in 0(n logn + d2) time, where d is the edit distance between the

two strings [Mye88]. According to Epstein et al. [EGGI92] the fastest algorithm so

far runs in O(wlog s + c loglog mm(c,mn/c)) time where c is the number of "corners"

in the matrix built during the algorithm and s=m+n. This is much better than 0(mn)

but still not linear and running time can be very large in the case of large documents.

Now let us discuss how this algorithm suits our needs. The problem is similar

to our overlap problem but it considers the order of characters and tries to find

overlaps in the original order of characters/chunks. As an example let us consider the

longest common subsequence of the following two strings P="this is a text to find in

any of the documents submitted from now on" and T="that is what we need in the

final text and this is a text to find". The longest common subsequence of these two

strings is "th is ate nd in fte dts st o n ", which is not what we are looking for. We

need an algorithm which reports "this is a text to find" as an overlapping chunk.

Using words as symbols is no?; ;i solution either because it would look for words in

their original order e.g. having two strings P=SiS2 and T-S2S1 these algorithm might

find either Sj as a matching chunk or $!? but definitely not both of them. Sj and £2 are

r

substrings ofP and T. The main problem is that the longest common subsequence of

two strings takes the order of characters (or words or chunks) into consideration.

2.5.3 The Longest Common Substring of Two Strings

We have discussed the difference between the notions of "subsequence" and

"substring" in the previous section. We will argue in this section that problems

concerned with substrings are more closely related to our overlap problem than

subsequence problems.

A substring of a string is a consecutive sequence of characters. Let SfiJ denote

the character at position i in S (numbering of positions starts at 0). P~S[i..j] is a

substring of S \fS[i+k]=P[k] for each k O&g-i.

The longest common substring R of two strings P and T\s the substring of both

P and T that is of greatest length. As an example the longest common substring of

P= "this is a text to find in any of the documents submitted from now on" and

T= "that is what we need in the final text and this is a text to find" is "this is a text to

find". These are the same example strings used in the previous subsection and one

can see that the longest common subsequence algorithm failed to deliver the

expected result while the longest common substring algorithm produced the result we

needed.

The longest common substring problem can be solved by building a

generalized suffix tree for both P and T, and then finding the deepest node in the tree.

When we have a closer look at the algorithm we can realize that this algorithm

reveals all matches between the two documents. Since suffix tree related problems

and solutions form the basis of this thesis we leave a more detailed discussion of

suffix trees and the longest common substring algorithm to the next section. This

algorithm runs in linear time, that is 0(n+m). We also will show that a generalization

of the problem will allow us to compare one document to many documents :n

0(m+n/+n2+...+«*) time where m is the length of the original document while

ni,n2 nk are the lengths of the candidate documents. It is interesting to note here

that in 1970 Don Knuth conjectured that a linear time algorithm for the longest

common substring problem would be impossible [Gus97].

50

2.6 Suffix Trees

Chapter 2 Document Comparison Systems - Literature Review Chapter 2 Document Comparison Systems - Literature Roview

termination symbol. As an example, Figure 2.4 shows the suffix tree of

S-'abcdabdbcdabb$:

b c d . b b S

In this section we introduce suffix trees and show their applicability to our

problem area. In this section we only deal with suffix trees at a high, theoretical

level, abstracted from the actual physical representation. Physical representations of

suffix trees are presented in Chapter 3. Suffix trees are versatile data structures that

can be used to solve many string-matching problems. Apostolico et al. wrote a paper

titled "The Myriad Virtues of Subword Trees" [AG86], which shows how versatile

this structure is. Gusfield [Gus97] describes numerous problems that can be solved

by suffix trees including exact set matching, longest common substring, recognizing

DNA contamination, common substrings of more than two strings, all pairs suffix-

prefix matching, etc.

Variants of the suffix tree structure are also referred to as position trees

[AHU74][MR75], complete inverted files [BBE+84][BBE+85], subword trees

[AG86] and PATRICIA trees [Mor86]. Section 2.6.1 introduces a suffix tree at a

high-level and then we show how different algorithms may run on the structure.

2.6.1 Suffix Tree at a High Level

There are different definitions and even different names for the index structure

we call suffix tree. In this subsection we give the definition as it is given in [Gus97]:

"A suffix tree T for an m-character string S is a rooted directed tree with

exactly m leaves numbered 0 to m-1. Each internal node, other than the root, has at

least two children and each edge is labelled with a nonempty substring of S. No two

edges out of a node can have edge-labels beginning with the same character. The key

feature of th« suffix tree is that for any leaf/, the concatenation of the edge-labels on

the path firoir the root to leaf/ exactly spells out the suffix of S starting at position /.

That is, it spdls out S[Lm-l]"1.

This derinition does not guarantee that a suffix tree for a given string exists. In

order to guarantee the existence and uniqueness of the suffix tree we have to add a

unique termination symbol to the string. We will refer to the unique termination

symbol by '$'. From here on we assume that this termination symbol is part of the

string, thus whenever we refer to S we refer to a string terminated by the unique

!&'

t
r

I
i

I

1 This definition is taken from Gusfiled's book [Gus97], but the indices are modified because we
index strings from 0 to m-1.

Figure 2.4. The Suffix Tree of S='abcdabdbcdabb$'

We define some additional notions that we will use throughout this thesis:

The label of a path is the concatenation of the characters on the edges from the

root to the end of the path. For example, the label of the path to node 3 is 'bcdab'.

We will also use the term label of a node, which refers to the label of the path from

the root to the given node.

The depth of a node is the number of characters in the'path from the root to the

given node. The depth of node 3 in our example tree is 5.

Before introducing the algorithms that run on a suffix tree, we show how

simply the exact matching problem may be solved by using a suffix tree. Let us

assume that we search for the pattern P='ab' in T='abcdabdbcdabb$'. We build a

suffix tree for T, which can be done in linear time (for proof see Section 2.6.2) and

then starting from the root we follow the path labelled by 'ab'. We get to node 1 and

we check the leaves under node 1, which will give us all the positions where •ab'

appears: 0, 4, 10.

2.6.2 Suffix Tree Construction in Linear Time

A suffix tree stores all the suffixes, consequently, all substrings of a given

string. Any substring of that string can be retrieved in time proportional to the length

52 Chapter 2 Document Comparison Systems - Literature Review
Chapter 2 Document Comparison Systems - Literature Review

of the substring. This feature makes the use of suffix trees very appealing but the

question is what are the time- and space-constraints this structure exhibits.

Firstly, the suffix tree as presented in the Section 2.6.1 cannot be stored in

space proportional to its length. Since the overall length of all suffixes of an n-

character string is — — - , it means that it would require storage proportional to n2

2

rather than n. To overcome this problem we can store only the start and end positions

of each edge and edge labels can be retrieved from the string if required. Of course,

this representation assumes that the string is also stored in its entirety. The number of

edges in a suffix tree is proportional to n [Gus97], which allows linear-space storage

of a suffix tree. Not only is linear-space storage important because of space-

consumption but also an algorithm building a structure requiring non-linear space

cannot theoretically run in linear time. Of course, the linear-space requirement does

not guarantee a linear-time construction algorithm but fortunately there have been

linear-time construction algorithms developed [Gus97]. The linear-space

representation of our example suffix tree is depicted in Figure 2.5. }

2- 0

Figure 2.5. Linear-Space Representation of a Suffix Tree

The naive algorithm would insert each suffix one by one. Insertion of a suffix

takes time proportional to its length, thus the running time of the naive algorithm is

0{n2). There are three fundamental linear-time construction algorithms frequently

cited in the literature: Weiner's algorithm [Wei73], McCreight's algorithm [McC76],

and Ukkonen's algorithm [Ukk95]. Giegerich et al. give a unifying view of these

algorithms [GK97]. Other alternatives of these algorithms have also been studied in

the literature (see [CS85] as an example).

In the following subsections we introduce all three algorithms and compare

them. The detailed description of the algorithms along with the proofs can be found

in Weiner's [Wei73], McCreight's [McC76] and Ukkonen's [Ukk95] papers.

2.6.2.1 Weiner's Suffix Tree Construction Algorithm

Weiner's suffix tree construction algorithm [Wei73] constructs the tree by

inserting the suffixes from right to left. Firstly, S[n-1] is inserted then S[n-2..n-l],

and so on. When S[0..n-l] is inserted the suffix tree construction is over and the tree

has been created. In Step / (/ runs from n-1 down to 0) when S[i+l..n-l] has already

been inserted we have to find the longest common prefix of S[i..n-1] and the suffixes

already inserted into the tree. Let us denote this prefix by Head(z). Head(z) is

obviously already in the tree, thus we insert the remaining part of the string. That is,

we have to remove Head(z') from the beginning of S[i..n-1] and create a leaf with this

label running out of the position of Head(z). The position of Head(z') may or may not

be at a node. If it is not at a node, a new node needs to be created and the current

edge must be split into two.

Finding Head(z) naively would not allow linear time construction of the tree.

Weiner introduces two vectors at each node, which aid in finding Head(z'): the

indicator vector I and the link vector L. Both vectors are of length equal to the size of

the alphabet (including the termination symbol '$). The indicator vector is a bit

vector allowing values of 0 and 1 at each position, while the link vector contains

pointers to other nodes. Let lv(x) specify the entry of the indicator vector at node v

indexed by character x. At any given stage of the algorithm lv(x)=I if and only if

there is a path from the root in Ti+, labelled xa if the path label of v is a. Tj, in

general, denotes they'th character of a string (indexing starts from 0).

Similarly Lv(x) is the link vector at node v indexed by character*. At any given

stage of the algorithm Lv(r) points to node v if and only if v has path label xa if the

path label of vis a.

Step /+/ finishes with the insertion of leaf /+/ . In the next step the algorithm

walks up from the leaf until it finds the first node v with Iv(S[i])=l. It then walks

further up until it finds a node v with U(SfiJ) not null, v and v may be the same node.

We jump to the node pointed by Lx(SfiJ) and find the route starting with the first

character of the path between v and v. Then we traverse down as many characters as

there are on the path between v and v and the insertion of leaf / must be done at this

54 Chapter 2 Document Comparison Systems <- Literature Review Chapter 2 Document Comparison Systems - Literature Review 55

position. It is also possible that we reach the root node without finding either v or v

or both of them. These degenerate cases can be handled in the algorithm by properly

setting the vectors at the root node.

The running time of the algorithm is proportional to the number of nodes

visited during the algorithm. It can be proven that both traversing down and up are

limited by 2n, thus the algorithm runs in linear time. For a correct time analysis of

the algorithm see [Gus97] or [Wei73]. The pseudo code of Weiner's algorithm is

depicted in Figure 2.6.

For i : = n - l DownTo 0

1. Start at leaf i+1 and walk toward the root

searching for the first node v where Iv(S[i])=l.

2. If the root is reached and Iv(S[i])=0 Head(i)

ends at the root. Go to Step 4.

3. Continue walking upward until the first r̂ ode with

Lvi(S[i]) not null is found.

3a. If the root is reached and Lvi(S[i]) is null

then ti is the number of characters between the

root and v. Search for the edge that starts with

S[i] and walk down ti+1 characters.

3b. If not 3a. Let Lvi(S[i]) point to v2. Walk

down as many characters as the number of

characters between vi and v on the path from V2

starting with the first character on the path

between vi and v. That is the position of

Head(i).

4. If no node exists at Head(i) create one and from

the node at Head(i) create a new leaf numbered i.

5. Update the indicator and link vectors.

End For

Figure 2.6. Pseudo Code of Weiner's Algorithm

The updates to the indicator and link vectors do not violate the linear-time

bound of the algorithm because in each step only the nodes visited may need to be

updated. The content of the link vector and indicator vector of each node is shown in

Table 2.1.

1
4-

I

i

Node

1
2
3
4
5
6

Indicator Vector
a
0
1
0
1
0
0

B
0
1
1
0
1
0

c
0
0
1
0
0
1

d
1
1
0
1
0
0

Link Vector
a
0
1
0
0
0
0

b
0
0
0
0
4
0

c
0
0
0
0
0
5

d
6
0
0
0
0
0

Table 2.1. Indicator and Link Vector Values of the Example Tree

2.6.2.3 McCreight's Suffix Tree Construction Algorithm

McCreight's algorithm [McC76] inserts suffixes starting from the longest

suffix S[0..n-l] to the shortest one S[n-l..n-l]. Again a naive algorithm would run in

Q(n2) time, thus we need to find a way to locate Head(i) once Head(i-1) has been

located. In the case of this algorithm Head(0 is the longest common prefix of suffix i

(S[i..n-lJ) and any suffix between 0 and /-/. Once Head(z') is located we can insert

the remaining characters in the tree.

The algorithm makes use of the so called suffix links between nodes. Suffix

links have a reverse role compared to the links established in Weiner's algorithm. If

the path label of a node v is aJ3 where a is a single character and J3 is a sequence of

characters (possibly empty) then the suffix link of node v points to a node labelled /?.

Each step is divided into the following three substeps.

Substep A finds the deepest node on the path to Head(/-/) that already has a

suffix link. Let us denote this node by v;. Head(/-7) then can be divided into three

substrings: x<*P- Za i s t n e Path label of the node vy. If no such node is found xa is

the empty string otherwise x is the first character and a is the rest of the characters.

If we follow the suffix link of v/ we get to node v?, whose label is a.

In Substep B we do a "rescanning" of characters /? from node v2. It is certain

that J5 can be read from this position because Head(/-y)=^ayff, that is xaP is part of

Tj.j and 7}.2, which means that a/3 is part of 7}./. Note that the rescanning needs to

analyse only the first characters of the edges on the path of /? because we know that/?

is part of the tree. It means that the number of steps required by rescanning is

proportional to the intermediate nodes visited during the traversal of fi. Here we have

Chapter 2 Document Comparison Systems - Literature Review

' « » 10 II ,2 u

b a b c d a b b S

56 Chapter 2 Document Comparison Systems - Literature Review

to create a new node unless there is already a node at this position. Let us denote this

node by d. The suffix link of the node labelled Head(/-/) will point to this node.

Substep C is called the "scanning" phase. Let us denote the remaining part of

the characters in Head(z) by y The length of / i s not known beforehand, thus we have

to analyse each character down the subtree until we "fall out" of the tree. At the

position where we fall out, we create a new node and the remaining part of suffix /

will label the leaf created from the new node. Note that the introduction of the unique

termination symbol ensures that the matching will fall out at some stage.

It can be proven that the overall number of intermediate nodes encountered in

the rescanning steps of the entire algorithm is proportional to n. Similarly, the overall

number of characters examined in the "scanning" phase is proportional to n for the

entire algorithm. Other operations in each step require only constant time, thus the

overall running time of McCreight's algorithm is O(«).

The pseudo code in Figure 2.7 summarizes the steps we have to follow in

McCreight's algorithm.

For i=0 To n - 1

A. Walk up to the deepest node with a suffix link on

the path to the current node. Jump to the node

pointed to by the suffix link.

B. Traverse down the remainder of Head(i-l) from

this node by analysing only the start of each

edge.

C. Traverse down the remainder of suffix i until the

matching falls out. Create a new node here with

the remaining of characters labelling leaf i.

End For

Figure 2.7. The Pseudo Code of McCreight's Algorithm

Figure 2.8 depicts our example string with the suffix links. The dashed arrows

represent the suffix links.

4

4

1

Figure 2.8. A Suffix Tree with Suffix Links

2.6.2.3 Ukkonen's Suffix Tree Construction Algorithm

Of the three algorithms discussed in this thesis, Ukkonen's is the latest,

published in 1995 [Ukk95]. It is the most elegant algorithm and it shares some

characteristics with the matching statistics algorithm [CL94] though this latter one

was published earlier. This is the algorithm that we have used in our prototype

system for suffix tree construction. This algorithm also forms the basis of the

construction algorithms used for building the proposed alternative representations

described in Chapters 4, 5, and 6.

Ukkonen's algorithm constructs an implicit suffix tree 7} in each phase /. An

implicit suffix tree is a tree obtained from the suffix tree of S by removing every

copy of the unique termination symbol. Note that in an implicit suffix tree there is no

one-to-one relationship between leaves and suffixes of a string. 7} is the implicit

suffix tree of string SfO.JJ. The true suffix tree of the whole string S is Tn., provided

that S[n-1] is the unique termination symbol. The naive algorithm would create the

suffix tree in O(n3) time. Of course, this time bound will shrink to O(/i) when we

introduce the various shortcuts applied in each phase.

Each phase is divided into extensions. In extension j of phase / suffix j of

SfO.Jj is inserted into the tree {S[j..i]). By the end of phase i, the implicit suffix tree,

Tt is created. Fortunately, not all extensions must explicitly be done. Let /? denote the

string SfiJ-1]. We have to locate (3 and then extend it by SfiJ. Note that J3 is

58 Chapter 2 Document Comparison Systems - Literature Review Chapter 2 Document Comparison Systems - Literature Review

definitely in the tree since S[j..i-1] is a suffix of 7}./ and 7} is created from 7}./. The

following three extension rules maybe defined [Gus97]:

Rule 1. Path /? ends at a leaf. In this case SfiJ must be added to the end of the

leaf.

Rule 2. No path from the end of /? starts with SfiJ but at least one labelled path

continues from the end of J3. A new leaf edge with label (i,i) must be created and if

necessary a new node, too. The index of the newly created leaf will bey.

Rule 3. Some path from the end of J3 starts with SfiJ. In this case we do not

have to do anything because an implicit suffix tree is allowed to have a suffix that

ends in the middle of an edge.

The key in the algorithm is how to find p. With the help of suffix links J3 can

be found in constant time on average for the entire algorithm. In the previous

extension we inserted SfiJ at the end of aji where a denotes the single character at

position j - 1 : a-Sfj-1]. We find the deepest node with a suffix link on the path to aft.

Let us denote this node by vj and the node where its suffix link points to by V2. V2 is

definitely on the path to /? and /3 can be reached similarly to the rescanning step of

McCreight's algorithm. These steps are refened to as the skip/count steps and it has

been proven that the overall number of skip/count steps is proportional to n for the

entire algorithm. If /?can be found in constant time the entire algorithm runs in O(n2)

time.

There are a few more shortcuts that reduce this time bound to the required

linear time. In any phase when Rule 3 applies we know that it will apply to all

further extensions of the same phase. It is true because Rule 3 applies if Sfj.A] is

found in the implicit suffix tree 7}.y. If S[j..i] is the prefix of some suffix of Sfj.A-1]

we know that all strings from S[f+7,.iJ through S[i..i] are also prefixes of some

suffix of S[j..i-1]. Since suffix links only need to be updated when a new node is

created we can stop a phase as soon as Rule 3 applies. We say that all the extensions

after Rule 3 is applied are done implicitly as opposed to extensions that we have to

do explicitly by inserting a leaf with label S[iJJ.

Our next observation is that once a leaf is created in any stage of the algorithm

execution, it will remain a leaf for the entire algorithm run duration. Using this

observation we can label the newly created leaves by (i,e) instead of (i,i) where e is

the current end pointer. This shortcut will implicitly do all the extensions where Rule

A

'2

•a

I 1

i

1 applies. If we know the length of the string in advance we may label the leaf by

(i,n-l) because the algorithm would never try to examine a character beyond e.

However, as we will point out in the next subsection the length of the string is not

always known in advance.

Explicit extensions require constant time and at most one explicit extension is

shared between two consecutive phases, thus the running time of the algorithm is

Q(n). The pseudo code of Ukkonen's algorithm is depicted in Figure 2.9.

Add root node with an edge labelled (0,e)

ji := 1

for i:=l to n-1 do

e := i

Starting at ji compute successive extensions until

Rule 3 applies (j*)

Set ji+i to j * - l to prepare for the next phase

end for

Figure 2.9. The Pseudo Code of Ukkonen's Algorithm

2.6.2.4 Comparison of the Three Fundamental Suffix Tree Construction

Algorithms

Both McCreight's and Ukkonen's algorithms use suffix links to speed up the

search between phases. Werner's algorithm uses a link vector and an indicator

vector. The length of both vectors is the number of characters in the alphabet (let us

denote this value by m). It means that for each node we need to store

m*size_of_pointer+m bits where size_of_pointer is the size of node pointers in bits.

In case of using suffix links we only need size_of_pointer extra bits. The suffix link

is the reverse of a link depicted in a link vector. The suffix link representation allows

using less space because each node may only point to one node via a suffix link but

each node may be pointed to by as many suffix links as the number of characters in

the alphabet. This problem is illustrated in Table 2.1, which shows that the link

vector is very sparse.

Both McCreight's and Weiner's algorithms require the end of the string to be

present before processing can start. It is not required by Ukkonen's algorithm

because it builds the tree from left to right. That is why it is often referred to as an

60 Chapter 2 Document Comparison Systems - Literature Review Chapter 2 Document Comparison Systems - Literature Review

on-line algorithm, which means that it can start processing the string as soon as the

first character arrives at the processing site. Of course, in this case we cannot use n-1

as end pointers on leaves as discussed in the previous subsection, A more detailed

comparison of the three algorithms was discussed by Giegerich and Kurtz [GK97].

Here we also note that suffix links are directly used in the matching statistics

algorithm introduced in the next section, thus McCreight's and Ukkonen's

algorithms are better choices for that problem.

2.7 Algorithms on Suffix Trees

In this section we introduce algorithms that use the suffix tree structure and

help us solve the overlap problem. We have shown that a suffix tree can be built in

time proportional to the number of characters in the text. In this chapter we present

two algorithms that solve the overlap problem. The first one requires a generalized

suffix tree for the two texts while the second one only requires one suffix tree, that is,

it is more favourable.

2.7.1 The Longest Common Substring of Two Strings

This problem was defined in Section 2.5.3. To solve the problem with the aid

of suffix trees we can build a generalized suffix tree for the two strings, which is

built from the concatenation of the two strings. In this tree each leaf has two indices.

One denotes which document it is from (1 or 2) and the other one is the usual suffix

index within that file. Another option is to use absolute indexes and store the "cut-

off index that separates the two strings. Let us suppose that the two strings are P and

Tand their lengths are m and n, respectively.

We can build a generalized suffix tree in 0(m+n) time by concatenating the

two strings and using two different termination symbols. After the tree has been

built, we can do a depth-first traversal and mark each node with a 1 (or 2) if there is a

leaf in its subtree which comes from document 1 (or 2). This can be done in O(«+w)

time. During this search we can store the depth and the address of the deepest node

labelled both 1 and 2. From this node there must be a leaf, which is labelled 1, or an

edge running into a node labelled 1, and also a leaf, which is labelled 2, or an edge

running into a node labelled 2. Note that we cannot have an edge running into a node

labelled both 1 and 2 because that node would be deeper than our node and we are

«

dealing with the deepest node labelled both 1 and 2. If we use Ukkonen's algorithm

to build the tree the edge indices will actually denote occurrences, thus an edge

running out of a ^/-character-deep node with a start position of i denotes an

occurrence starting at i-d. We find two edges that belong to the two different files

and calculate the positions.

As an example let us suppose that the two strings to be compared are

P=abcdab' and T='bcdabb\ We terminate P by '#' and T by '$'. Then we

concatenate the two strings: S='abcdab#bcdabb$: The generalized suffix tree for S

is depicted in Figure 2.10. P is referenced as document I, and 7 as document 2.

We used a general index (running from 0 to 13) to label edges. Indices 0

through 6 are from the first document and indices 7 through 13 are from the second

document. For every leaf, we give the number of the document the given leaf comes

from in brackets. In this example each node is labelled 1,2 and the deepest one is

node 3 with depth 5. The leaf with document 1 has a start index of 6, which means

that it appears in P starting at position 1 (6-5). The leaf with document 2 has a start

index of 12, which means that it appears in S starting at position 7 (12-5), which is

equivalent to 0 in T.

i9(2)

0(1)

2(1)

* " Id)

7(2)

Figure 2.10. Generalized Suffix Tree

Before we show how this method can be generalized to solve our overlap

problem we introduce the matching statistics values, which can easily answer our

overlap problem. Given two strings T and P, the matching statistics value mrf) is

the longest chunk starting at position i in T that appears anywhere in P. Formally

62 Chapter 2 Document Comparison Systems - Literature Review

msT(i)=v if T[i..i+v-l]=Pfk.k+v-l] for some O^c^n-1, and there is no 0£j£n-l such

that Tfi..i+vJ=P[j..j+vJ. Note that there may be more than one k value satisfying this

condition. We may only need one of those values because we are not interested in

how many times it appears in P since we are examining document T. We store one of

these positions and call it the matching chunk position: mcj{i)=k. Obviously finding

the matching statistics value reveals all chunks of T that overlap with document P.

The longest common substring problem can be generalized to solve the

matching statistics problem. In the next section we show a more elegant and more

space-efficient solution, thus here only the outline of this generalization is given. We

do a depth-first search on the tree and we keep a list of pointers about suffixes of

document T in the subtree of the current node. If the current node is labelled 1 and 2

we find an edge belonging to document 2 and set the matching statistics values of the

suffixes in the list to the depth of the node. The matching chunk position value can

also be set accordingly.

The longest common substring problem can further be generalized to more

than two strings with the extension that each string must have a unique termination

symbol and we are looking for nodes labelled with all possible document indices. }

2.7.2 Matching Statistics Algorithm

Finding the matching statistics values, which we introduced in the previous

subsection, is a general problem. Landau and Viskin [LV89] gave a solution that uses

a generalized suffix tree and Galil and Giancarlo [GG88] gave an automata-based

solution, which requires scanning the string 4 times.

The most elegant and space-efficient solution was given by Chang et al.

[CL94]. The matching statistics algorithm builds a suffix tree for P and compares T

to the tree in linear time.

To find the msj{0) the algorithm starts matching T from position 0 to the tree

beginning at the root. When there is no further match possible we record the

matching statistics value in msj{0). Let us suppose that this value is z, which means

that T[0..z-l] was found in the tree. If T[0..z-l] is in the tree we also know that

T[l..z-1] is also in the tree and its position can be found by following the suffix link

of the deepest node encountered on the path and then traversing down using the same

skip/count trick as used in Ukkonen's construction algorithm. Once the position of

T[l..z-1] is located in the tree we can try to find further matches (TfzJ). Then we can

Chapter 2 Document Comparison Systems - Literature Review 63

progress using the same method we used to find ms-rfl). The mcj{i) values can be

retrieved from the tree using the same idea as in the longest common substring

problem. Let us denote the position of the last character that matched in the tree byy,

then the mcj(i) value can be set to j-z+J.

Note that each character of Tis examined only once, which means that this part

of the algorithm runs in linear time. The skip/count steps are also proportional to the

number of characters in T, which can be proven using the same reasoning as in

Ukkonen's construction algorithm. Overall O(m) time is required to build the tree,

and then O(n) time to find the matching statistics values. Thus the running time is

The high-level pseudo code of the matching statistics algorithm is depicted in

Figure 2.11. Suppose that the length of Tis n and the length of P is m. Once we have

the matching statistics values for T we can easily extract chunks that overlap. We

only have to consider that an mstfi) value of z represents the same chunk as

msrfi+lj^z-l. Only the left-most of these positions need be recorded. The algorithm

in Figure 2.12 calculates the number of characters that overlap but it can easily be

modified to extract the actual chunks. The array ms contains the matching statistics

values.

i

Build suffix tree for P

Traverse down the suffix tree starting matching from T[0]

Let z denote the number of characters matching

Record msT(0) and mcT(0)

For i=l To n-1

Follow the suffix link of the deepest node on the

path to the current position

Apply the skip/count steps to find the position

in the tree that represents the overlap starting

at T[i] and of length z-1

Match further characters if possible

Record msT(i) and mcT(i)

z=msT(i)

End For

Figure 2.11. The Pseudo Code of the Matching Statistics Algonthm

34 Chapter 2 Document Comparison Systems - Literature Review

In Chapter 4 we will deal with the issue of the minimum length of a chunk to

be considered in our overlap detection system because this algorithm identifies every

single overlapping chunk no matter how long it is.

last_position=-l, last_value=O

for i=0 to n-1 do

if ms[i]==0

continue

end if

currentvalue= i], current_position=i

if (current_position-last_position)>last_value

overlap=overlap+last_value

last_value=current_value

last_position=current_position

else if current_value>last_value-(current_position-

last_position)

overlap=overlap+(current_position-last_position)
>

last_value=current_value

last_position=current_position

end if

end for

overlap = overlap + last_value

Figure 2.12. Calculation of the Overlap Value from Matching Statistics Values

2.8 Alternative Approaches

The systems and algorithms discussed in Section 2.4 are very similar to each

other in that they all split up the text into chunks, select a certain percentage or a

number of chunks as a fingerprint of a document, build an index on those chunks,

and compare documents based on those indexes. In this section we introduce two

alternative copy-detection approaches, which are fundamentally different from the

systems discussed previously.

The CHECK system [SLL97] is based on the observation that comparing two

documents on two different subjects are unnecessary. In the pre-processing phase the

Chapter 2 Document Comparison Systems - Literature Review 65

4

\

structure of the document is discovered and a document tree is constructed that

represents the different structural units of the document, such as sections,

subsections, subsubsections, and paragraphs. At each level of the tree, keywords are

stored for the given unit. Keywords are selected from open-class words [SLL97].

Firstly, keywords at the document-level are compared and if the documents are

considered to be similar the next level of the trees are compared. In the end of the

process related paragraphs are identified. This method has the advantage that it is not

strictly exact-matching based comparison. However, a keyword extraction method is

not reliable and overlapping chunks smaller than a paragraph are difficult to detect.

Keyword comparison at the top-level may be used as a way of identifying a set of

candidate documents but after that a more comprehensive search must be completed

to filter out unrelated documents.

Glatt [Gla99] is a commercial software product and it is not computationally

intensive at all. It is based on the assumption that users more easily remember their

own sentences than plagiarised sentences. It takes the text as an input and generates

an output text with every fifth word substituted with a blank. These blanks must be

filled out by the user, and if at least 70% of the words are correct the document is

considered to be genuine. According to [Gla99] no students have been falsely

accused yet. The problem with this approach is that users must be involved and

cooperative, which is impossible, for example, in the case of submitted conference

papers. The protection of the system is also low, since reading a plagiarised

assignment multiple times reduces the chances of the system to catch the user. This

system may reveal cheaters but without actually presenting the originals it is hard to

prove plagiarism.

2.9 Summary

In this chapter we have presented different schemes for safeguarding

intellectual property. Firstly we introduced copy-prevention mechanisms including

using standalone CD-ROMs, special hardware for authorisation, and active

documents. We believe that these approaches are too cumbersome for genuine users

and they marginalise the real advantages of electronic documents.

The first copy-detection scheme we discussed was digital watermarking.

Digital watermarking schemes make changes to the layout of the text, which cannot

66 Chapter 2 Document Comparison Systems - Literature Review Chapter 3 Suffix Tree Rep

Suffix Tree

be recognised by humans. Line-shift coding, word-shift coding, and feature coding

techniques were introduced. In case of infringement, special codewords hidden in the

layout of the text reveal the person or company who purchased the original of that

document.

In Section 2.4 we compared existing systems based on different criteria, such

as chunking strategies, chunk selection schemes, decision functions, and text

conversion methods. The performance, protection, and accuracy of different methods

were compared.

We pointed out that these systems may produce false positives and the exact

chunks are not always retrievable. Exact string-matching algorithms and suffix trees

were analysed in Sections 2.5, 2.6, and 2.7. We concluded this chapter by identifying

suffix trees as the most suitable data structure, thus we propose to use a two-stage

approach where the second stage compares documents based on exact string

matching. Suffix trees are the focus of this thesis. Thus physical storage issues and a

new space-efficient representation are discussed in later chapters.

Representations
A

4
rt

3.1 Introduction

This chapter analyses suffix tree representations that have been proposed to

date. Different representations have been developed with different applications in

mind. For each representation we analyse its applicability for different string

matching problems with special focus on the matching statistics algorithm (see

Chapter 2). The key to the matching statistics algorithm is whether suffix links are

stored in the representation. Some representations (e.g. Kurtz's [Kur99]) naturally

include the suffix link information while others could or could not be supplemented

with suffix link information.

For each representation we analyse their space requirement, which is always

O(cn) (n is the length of the string) but the constant c is different for each

representation. Since the matching statistics algorithm requires suffix links, which

are not present in all implementations, we analyse the time complexity of the exact-

matching problem. This problem is the most natural and at the same time the most

basic application of suffix trees. Most suffix tree representations have their

associated construction algorithms, which are not discussed here as they are beyond

the scope of this thesis. Basic suffix tree construction algorithms have been discussed

in Chapter 2.

To the best of our knowledge Kurtz [Kur99] has developed and demonstrated

the most space-efficient practical suffix tree representation that stores suffix link

information. In this chapter we extensively analyse that representation because in

i

66 Chapter 2 Document Comparison Systems - Literature Review Chapter 3 Suffix Tree Rep

Suffix Tree

be recognised by humans. Line-shift coding, word-shift coding, and feature coding

techniques were introduced. In case of infringement, special codewords hidden in the

layout of the text reveal the person or company who purchased the original of that

document.

In Section 2.4 we compared existing systems based on different criteria, such

as chunking strategies, chunk selection schemes, decision functions, and text

conversion methods. The performance, protection, and accuracy of different methods

were compared.

We pointed out that these systems may produce false positives and the exact

chunks are not always retrievable. Exact string-matching algorithms and suffix trees

were analysed in Sections 2.5, 2.6, and 2.7. We concluded this chapter by identifying

suffix trees as the most suitable data structure, thus we propose to use a two-stage

approach where the second stage compares documents based on exact string

matching. Suffix trees are the focus of this thesis. Thus physical storage issues and a

new space-efficient representation are discussed in later chapters.

Representations
A

4
rt

3.1 Introduction

This chapter analyses suffix tree representations that have been proposed to

date. Different representations have been developed with different applications in

mind. For each representation we analyse its applicability for different string

matching problems with special focus on the matching statistics algorithm (see

Chapter 2). The key to the matching statistics algorithm is whether suffix links are

stored in the representation. Some representations (e.g. Kurtz's [Kur99]) naturally

include the suffix link information while others could or could not be supplemented

with suffix link information.

For each representation we analyse their space requirement, which is always

O(cn) (n is the length of the string) but the constant c is different for each

representation. Since the matching statistics algorithm requires suffix links, which

are not present in all implementations, we analyse the time complexity of the exact-

matching problem. This problem is the most natural and at the same time the most

basic application of suffix trees. Most suffix tree representations have their

associated construction algorithms, which are not discussed here as they are beyond

the scope of this thesis. Basic suffix tree construction algorithms have been discussed

in Chapter 2.

To the best of our knowledge Kurtz [Kur99] has developed and demonstrated

the most space-efficient practical suffix tree representation that stores suffix link

information. In this chapter we extensively analyse that representation because in

i

68 Chapter 3 Suffix Tree Representations Chapter 3 Suffix Tree Representations 69

later chapters we compare our proposed suffix vector representation to Kurtz's suffix

tree representation.

This chapter is organized as follows. Section 3.2 is a general discussion of

suffix tree representations in their original form considering how edges and nodes

could be represented. Section 3.3 introduces McCreight's [McC76] representation,

which is one of the early attempts to store the tree efficiently. Section 3.4 discusses

Kurtz's [Kur99] representation, which is based on McCreight's early representation

but eliminates redundancies and accommodates a bit-level utilisation of storage

space. This section also discusses another alternative representation developed by

Giegerich et al. [GKS99] that does not store suffix link information (lazy suffix tree).

Section 3.5 discusses a fundamentally different representation called suffix array

[MM93], which does not have the versatility of a suffix tree but uses much less

space. Section 3.6 discusses the suffix cactus representation [Kar95] while Section

3.7 analyses LC-tries [AN95]. Section 3.8 discusses Suffix Binary Search Trees

[ILOO]. Two other alternative representations are discussed in Section 3.9. Section

3.10 presents a comparative analysis of the representations discussed earlier in the
i

chapter.

Throughout the chapter we use an example string (the same as used in previous

chapters) to demonstrate the physical layout of different representations. Also,

whenever it is applicable, we give the representation in table format.

3.2 Practical Implementation Issues

Linear storage requirements and linear construction time are only true in the

case of a finite alphabet, which is a fair assumption in case of DNA sequences and

English text. This also means that these" representations and their corresponding

construction algorithms always include a |S| factor where E denotes the alphabet and

consequently |2| denotes the size of the alphabet.

The alphabet-size factor is represented in the number of edges running out of a

node. If we have a finite-size alphabet the upper bound of the storage requirement of

a node is constant. This brings up the most important issue in suffix tree

representations, that is, how to store edges running out of each node. The following

four subsections analyse the four straightforward choices: fixed size array, linked list,

balanced tree, and hash-table [Gus97].

3.2.1 Fixed Size Array

If we have a finite alphabet we can store the edges running out of a node in an

array of size \Z\. Each position in the array represents a character in the alphabet. If

there is an edge starting with the given character running out of that node, then the

edge is stored in that position. If there is no edge running out from the node that

starts with the given character, then that position of the array is empty.

A fixed size array implementation allows very fast search but wastes too much

space if the number of edges running out of a node is much less than |S|. Search is

fast because it only takes one lookup operation to find out whether there is an edge

running out of the node starting with a given character.

3.2.2 Linked List

In this implementation, the edges running out of the node are implemented as a

linked list. The lists may be in random order depending on the actual construction

algorithm used. Traversal from the node can be performed by sequentially searching

the list. This representation is more space-efficient than the fixed size array when the

number of edges running out of a node is less than the size of the alphabet.

An alternative to this representation is an ordered linked list. If we keep the list

in sorted order we can terminate the search as soon as we find a character in the list

that is lexicographically higher than the character we are searching for. Note that the

list is still a linked list. Thus a binary search cannot be performed in this structure.

3.2.3 Balanced Tree

This representation is basically a compromise between the fixed-size array and

linked list representations. In a balanced tree [AHU74] additions and searches take

O(log£) time where k is the number of children of a given node. Because of the

additional programming and space overhead, this approach is only efficient for large

k values.

3.2.4 Hash Table

This representation relies on some kind of a hash table that associates edges

with nodes. The total number of edges is bounded by 2n in a tree. Thus we can define

an absolute hash table, which returns the edge once a node and a character are given.

if

70 Chapter 3 Suffix Tree Representations Chapter 3 Suffix Tree Representations 71

More formally, the hash table implements a function /from the set of ordered pairs

of the form (node, character) to the set of nodes, with the property f(vfx)=w if there is

an edge starring with character x between node v and node w and f(v,x)~0 if there is

no such edge. Using perfect hashing schemes [FKS84] the linear time bound can be

preserved.

3.2.5 Using a Mixture of the Above Techniques

Different edge-representations can be used at different nodes of the tree. The

nodes close to the root tend to have more edges than other nodes. For example, the

root node has one edge for each different character appearing in the string. Based on

this observation we may decide to use fixed size arrays or balanced trees at nodes

close to the root while a linked list is usually a better candidate at lower level nodes

where we do not expect many outgoing edges.

Also some levels may be compressed if they contain all possible followings.

For example, there are 205 possible amino acid substrings of length 5 and each of

them appears in some protein sequence [Gus97]. If we want to create a suffix tree on

all proteins then we can compress the top 5 levels of the tree and index the edges

with the first character. This idea is further studied in [AN95], which we discuss in

Section 3.7.

3.3 McCreight's Suffix Tree Representation

McCreight was one of the pioneers in the area of suffix tree algorithms and

representations. Not only did he present a construction algorithm in his early paper

[McC76J but he also discussed some implementation issues. He suggested two

alternative representations: one based on linked lists and the other based on hash

tables.

In McCreight's representation each node is represented by the edge running

into that node. The root node is the only node in the tree that has no incoming edges,

so a special edge is created for that node. Each edge contains the start and end

indices of the substring it represents, a pointer to the next node in the list of edges

running out of the origin node of the edge, a pointer to the first edge of its destination

node and a suffix link. The explanation of the representation is shown in Figure 3.1.

m

i

start and end pointer

brother pointer

^V-i
suffix link son pointer

Figure 3.1. McCreight's Edge Representation

We use an example suffix tree throughout this chapter to demonstrate different

suffix tree representations. This example suffix tree is built on the string

S= 'abcdabdbcdabbS' that was depicted in Figure 2.8. McCreight's representation of

this suffix tree is depicted in Figure 3.2.

(*.*)

.........T i

(12,13)

(2,13)

u (6,13)

(i.D dr-

(12,13)

Ll (6,13)

III (2,5) :
(2,5)

(3,3)

(13,13). • . ,

(12,13)

(6,13)

Ll (13,13)

(12,13)

(6,13)

(12,13) l i (7,13)

Figure 3.2. McCreight's Suffix Tree Representation

In Figure 3.2 suffix links are represented by dashed arrows while other links

(brother, son) are represented by solid arrows. As we have already mentioned the

root is a special node, which is represented by an edge with no start and end pointers

(*,*). Leaves are nodes with no son pointer. Nodes are represented by the edges

running into them. For example node 1 in Figure 2.8 corresponds to edge (0,1) in

Figure 3.2 because the incoming edge is (0,1). Its brother pointer points to the next

72 Chapter 3 Suffix Tree Representations

edge in the list of edges running out of the root (1,1). Its son pointer points to the first

edge running out of it (12,13). Other nodes are also depicted in the figure.

All throughout this chapter we assume a 32-bit memory space, which means

that 32-bit pointers are used for both physical memory location pointers and indices

of st?rt and end positions of edges. We refer to this unit as one computer word (W -

4 bytes).

Now let us analyse the space-requirement of McCreight's representation. Each

edge requires one start and one end position, one son pointer, one brother pointer and

one suffix link, that is, 5 computer words, or 20 bytes per edge. The number of edges

in the tree is; the sum of the number of nodes plus the number of leaves because each

edge runs into a single node or it is a leaf. The root node is an additional "edge" to

represent but if we include the root node in the number of nodes count, the total

space requirement of McCreight's representation is: 5*(q+n)*W where q is the

number of nodes and n is the number of characters in the string. Of course, we have

to store the string itself along with the tree. However, this is true for all

representations. Thus we do not consider that space requirement in our comparison.

As a space-efficient alternative to McCreight's representation, leaves can be

represented by only two pointers: the start index and the brother index. Storage of the

end index is not necessary because the last character of a leaf is the last character of

the string. Using this technique the space requirement can be reduced to (2n+5q)*W.

Theoretically the upper bound for the number of nodes is n (e.g. an ^-character long

string of Vz'-s). Thus the worst-case space requirement is 7*n*W. In practice,

depending on the type of text we index, the number of nodes is considerably less

than n. The theoretical average for random text is q=0.62n [Kur99].

McCreight's suffix tree representation can solve the exact matching problem in

O(w) time if the pattern we are searching for is m characters long. In our comparison

of suffix tree representations when we refer to the exact matching problem we only

consider finding one occurrence and not all occurrences. In order to find all

occurrences of P the total time needed is 0(m+k) where k denotes the number of

occurrences. Traversal of the tree can work in the way we described in Chapter 2 and

once we find an occurrence we have to analyse the subtree of the position where we

finished matching P. The leaves in the tree will give us the actual occurrences and if

there are k occurrences the subtree can be traversed in 0{k) time.

Chapter 3 Suffix Tree Representations 73

3.4 Kurtz's Suffix Tree Representation

In his paper [Kur99] Kurtz proposes four different implementations: simple

linked list implementation (SLLI), simple hash table implementation (SHTI),

improved linked list implementation (ILLI), and improved hash table implementation

(IHTI). Both linked list implementations are superior to their hash table counterparts

regarding space, thus we only discuss those implementations.

In Kurtz's SLLI each node requires 5 pointers:

1. firstchild points to the first child of the node (either a leaf or another node, it

corresponds to the son pointer of McCreight's representation)

2. bmnchbrother refers to the next child in the list (corresponds to the brother

pointer of McCreight's representation)

3. depth is the number of characters on the path from the root to the given node

4. headposition is the second left-most occurrence of the string represented by the

node (the depth-headposition pair is a substitute for the start and end pointers)

5. suffix link is the suffix link of the given node (corresponds to the suffix link in

McCreight's representation)

Leaves can be stored in an array of length n. Each leaf is stored at a position

that corresponds to the suffix it represents. In other words leaf / is stored in the z'th

position in the array. There is one value stored with each leaf: the branchbrother

value, which has the same meaning as the branchbrother value of a -ode. The start

and end pointer values can be calculated from the depth and headposition values in

the following way. Let us suppose that we have an edge pointing from node v to node

w. The start pointer can be calculated as w.headposition-v.depth and the length of the

edge is the difference in node depths (w.depth-v.depth), which determines the end

position. In case the edge is a leaf edge the same formula applies to the start position

by substituting w.headposition withy (if it is leafy) and the end position is n-1 for all

leaves. The choice of using headposition and depth instead of the more natural

choice of start and end pointers will become clearer when we analyse the ILLI

representation. By using this representation n computer words can be saved over

McCreight's representation because only one computer word is required for each

leaf. Table 3.1 shows the leaf (T,ea/) and node (Tbranch) tables of the SLLI for our

example string.

74
Chapter 3 Suffix Tree Representations

Chapter 3 Suffix Tree Representations 75

leaf# 0
10

1
nil

2
8

3 |4
nil | 0

1
5
11

6
nil

7
1

8
Nil

9
3

10
nil

11
nil

12
3

13
5

i branch - ,

node#
firstchild
branchbrother
Depth
headposition
suffixlink

Root
13
Nil
0
0
Nil

1
4
nil
2
4
2

2
12
1
1
5
nil

3
7
5
5
7
4

4
2
2
4
8
6

5
6
4
1
6
nil

6
9
6
3
9
1

Table 3.1. The SLLI Implementation of the Example String

In Table 3.1 nodes are referenced by the same numbers as used in Figure 2.8.

References (firstchild, branchbrother, suffix link) in bold refer to other nodes, while

other references refer to leaves. Thus they index the leaf table. In a physical

implementation this distinction can be achieved by using one bit in the pointer to

indicate whether the given pointer refers to a leaf or a node. It is true that we lose one

bit and now we can only address 231 locations but suffix tree implementations,

developed so far, use at least 6 bytes per input symbol. Thus the maximum length of

a string to be stored as a suffix tre<? in a 232-byte address space is less than 230, so 30)

bits will suffice our needs.

The ILLI implementation exploits the redundancies of the above

representation. Since no two headpositions of two different nodes are the same, an

absolute ordering of nodes is possible based on headposition values. In that ordered

sequence there are nodes whose headposition is one less than the node after, and

there are nodes whose headposition differ by more than one from the following node.

The latter ones are called large nodes and the rest of the nodes are small nodes. Kurtz

shows that small nodes share some characteristics with the left-most large node

following in the list. We can partition the sequence of nodes into chains of zero or

more consecutive small nodes followed by a single large node. Let us denote one of

these chains by fa ...,br where br is the large node. The following holds for any small

node bj in the chain:

• bt.depth= br.depth+(r-i)

• bi.headposition- br.headposition-(r-i)

• bi.suffixlink= bi+i

(r-i) is the distance between the position of the small node and the position of

the large node. Based on these observations a small node can be stored in 2 computer

words by storing the distance, firstchild, and branchbrother values while a large node

can be biored in four computer words by storing firstchild, branchbrother, depth,

headposition, and suffix link.

In Kurtz's representation every bit is efficiently used. In Figure 3.3 we only

give an overview of the bit layout of nodes. More details of the representation can be

found in Kurtz's paper [Kur99]. Also, more in-depth analysis of Kurtz's

representation is presented in Chapters 5 and 6.

Integers (1) and (2) are used for both large and small nodes, while (3) and (4)

are only used for large nodes. By default 5 bits are used to store the distance, which

only allows storing distances up to 32. If a longer sequence occurs a small node is

artificially converted to a large node, thus splitting the long sequence. 10 bits are

used to store the depth whenever possible. Nodes with depth values greater than

1023 are stored in a different way. In this case the suffix link is stored with the last

edge running out of the node.

5 distance bits 27 firstchild bits

(1)

(2)

2

r—— 1

i

1

29 suffixlink/branchbrother bits

1

27 depth bits

21 suffix link bits 10 depth bits

(3)

(4)

1

5 suffix link bits 27 headposition bits

i i i ~ - 1

Figure 3.3 Bit-Level Node-Representation in ILLI

76 Chapters Suffix Tree Representations Chapter 3 Suffix Tree Representations 77

The exact matching algorithm runs in the same way on Kurtz's representation

as in the general representation. The only difference is that edge indices are retrieved

differently. We compare our representation to Kurtz's [Kur99] in Chapter 5 where

the actual space requirements are also analysed.

Kurtz and others have developed another alternative representation [GKS99],

which is not as versatile as the SLLI representation, because it does not store suffix

link information. They call the structure a lazy suffix tree and it is based on a total

order of the children of a branching node. This ordering scheme uses the index of the

leaf with the smallest index value in the subtree of the node. Let us denote this value

for node v by mml(v). This representation only stores the left index for an edge. Let

us suppose that we have an edge between node u and v then the left pointer of the

node can be calculated as minl(v)+\u\. The right pointer is one character to the left of

the left pointer of the smallest child running out of node v.

For each node we store the left pointer and a pointer to its first child. Children

of the same node are stored at consecutive positions thus no link pointers are

required. For leaves we only store the left pointer. We need two special bits: one to

indicate the end of a child list and another one to indicate whether the given entry is a

node or a leaf It means that we need 2 computer words for a node and one computer

word for a leaf. Giegerich et al. [GKS99] also give a construction algorithm for a

lazy suffix tree, whose expected running time is O(«logk«). Figure 3.4 shows the

lazy suffix tree representation of our example string.

0 9

1
0 l

6
5

1

2

12
11

12
>

3

13
12.

2 16
4

4

6
2

5

12 '

3
<

6

6
(

18

7

24

13.
13
s

.7
6:

2

0
9

6
1

6
4
10

12
7

fi2f
ilpf

6
3

1

12

12
9

12
5

13

14 15 16 17 IS 19 20 22 23 24 25

Figure 3.4. Lazy Suffix Tree Representation

In Figure 3.4, boxes with solid frames represent nodes, and shaded boxes

represent the last child in the list. The lower row only indicates the mapping of nodes

and leaves to the general representation (node numbers and leaf numbers). This row

is not actually stored.

-f

3.5 Suffix Arrays

Suffix arrays are good substitutes for suffix trees in some applications but they

use a fundamentally different approach to represent the suffixes of a string. Suffix

arrays were first introduced by Manber and Myers [MM93]. A suffix array is a one-

dimensional array of size n (the length of the string), where the pointers to suffixes

are stored in lexicographical order. The most naive exact matching algorithm would

do a binary search in the array to find a given pattern. Given a pattern of length m the

time complexity of this algorithm is O(wlog«). In Figure 3.5 we show the suffix

array of our example string.

pos
SUFFIX

0
13

1
10

2
0

3
4

4
12

5
11

6
7

7
1

8
5

9
8

10
2

11
9

12
3

13
6

Figure 3.5. Suffix Array

Suffix arrays may be augmented with longest common prefix (lcp) values,

which speed up the search. Lcp(ij) by definition is the longest common prefix of the

suffix starting at position i and the suffix starting at position j . If during a binary

search we know the lcp values of the boundaries of the current interval, the running

time of finding a pattern can be reduced to O(/w+log«). We only need the lcp values

for certain pairs in the array. Thus these extra values require an extra 2n computer

words. The total space requirement of a suffix array with lcp values is 3*n*W.

Figure 3.6 shows the pairs that the lcp values are required for, as well as the actual

lcp values for our example string.

0,1

4,5 S.6 10.11 11,12

Figure 3.6. Lcp Values

m

78 Chapter 3 Suffix Tree Representations

Since we are doing a binary search on the array, these values are best

represented in a binary tree. The pairs are depicted under the nodes (these values

need not be stored because they can be derived from their positions in the tree) and

the actual lcp values are depicted in the node. Suffix arrays can either be derived

from a suffix tree representation or they can be built directly.

Suffix arrays have the advantage of being alphabet-size independent but the

searching is slower and suffix links are not present in this representation. That means

that our matching statistics problem cannot be solved in linear time udng this

representation. We also have to note that instead of storing lcp values in one

computer word, we can store it in one byte provided that they do not exceed 255,

which is the case in many texts. If we want to store lcp values in one byte we have to

prepare for the rare exception when more than one byte is needed. By storing lcp

values in one byte the space requirement of a suffix array is 6*n bytes.

3.6 Suffix Cactus Representation

This section describes Karkkainnen's suffix cactus representation [Kar95],

which can be viewed as a "cross between a suffix tree and a suffix array" [Kar95].

The representation includes the suffix array discussed in the Section 3.5, as well as

two other arrays of the same length with some extra information.

At the high level, a suffix cactus can be viewed as a suffix tree where each

node is catenated with one of its children. The simplest option is to catenate each

node with its first child, but it supposes that there is an ordering among the children.

A natural ordering is the alphabetical ordering of children. Figure 3.7 shows the

suffix cactus representation of our example string.

In a suffix cactus a branch is the result of the catenation of one or more edges.

In Figure 3.7, branches are numbered 0-13 and they are shown in lexicographical

order. In order to represent a suffix cactus we have to define a parent relation

between branches. We define the root of a branch as the starting node of the branch.

Now we say that the parent branch of a node is the branch containing the preceding

sibling of its root. In the figure above, numbers 13, 0, 4, 10, etc. under the branches

(represented by numbers in normal font) are leaf indices while numbers in bold

depict the parent branch of a given branch. Now we can represent a suffix cactus

with thres arrays:

79

1. SUFFIX is the suffix array of S, that is the lexicographically ordered list of

suffixes

2. DEPTH(0 is the depth of the root node of the given branch

3. SIBLINGS) is FIRSTCHILD(z-7) if i-1 has children and NEXTSIBLING(/) if

/ has a next sibling.

I 2

10

6 7 8

12

II

9 10 II 12 13

11

Figure 3.7. Suffix Cactus

These three arrays are shown in Table 3.2 for our example string.

i
SUFFDCtf)
DEPTHS
SIBLINGS)

0
13
0
0

1
0
0
1

2
4
2
4

3
10
2
3

4
12
0
2

5
11
1
9

6
7
1
6

7
1
5
8

8
5
1
7

9
8
0
5

10
2
4
11

11
9
0
10

12
3
3
13

13
6
1
12

Table 3.2. Array Representation of a Suffix Cactus

Karkkainnen [Kar95] suggests to store suffix and sibling values in one

computer word each (two computer words in total) and one byte for depth values.

Here the same comments apply to deep nodes as the comments about lcp values in

the previous section. Depending on the number of bytes used for the depth values a

suffix cactus implementation requires 9*n or 12*n bytes.

The exact matching algorithm can run in the same manner as it runs in case of

a general suffix tree representation. However this representation also lacks suffix

links, which means that the matching statistics algorithm cannot run on this structure

in linear time.

80 Chapter 3 Suffix Tree Representations Chapter 3 Suffix Tree Representations 81

3.7 Level-Compressed Tries

Andersson et al. [AN95] suggest representing the suffix tree as a trie. Every

suffix tree can be represented as a binary tree if we encode the characters in a binary

format. The number of bits used to encode a character depends on the size of the

alphabet Figure 3.8 shows the top levels of the binary trie of our example string. For

the sake of the LC-trie (Level-Compressed trie) example we left out the termination

symbol, thus we have a four-letter alphabet, which can be encoded in two bits. We

only show the top part of the trie because of space limitations and because the

concepts are clearly exhibited in these top levels. We have encoded 'a' as '00', 'b' as

'01 \ 'c'as 70', and tf'as 77' .

dab

bed

Figure 3.8. Binary Trie

There are two operations that may condense the trie:

• path compression - each node that has only one child can be merged with its

child and a skip value is applied on the path. A path-compressed binary trie is

a Patricia tree [Mor86]. As an example, the last three edges of the path

running to node 'bdb' can be compressed into one edge with a skip value of

3.

• level compression - if the i highest levels of the trie are complete but level

i+1 is not, we replace the / highest levels by a single node of degree 2\ This

replacement is repeated top-down. In our example the top two levels are

complete; thus they can be replaced by a single level of degree 4.

The top part of the LC-trie of our example string is shown in Figure 3.9. Skip

values are shown in bold and we numbered each node for referencing.

ab

Figure 3.9. LC-trie

A node of an LC-trie can be represented by three numbers (all requiring a

computer word each):

1. the number of positions to skip,

2. the position of the leftmost child,

3. and the branching factor (for level compressed nodes).

The first and third values are mutually exclusive for each node, thus they can

be stored in one computer word, a bit of which flags whether it is a branch or a skip

value. The LC-trie representation of a suffix tree requires 10*n bytes on average if a

computer word is used for the leftmost child value and a short integer (2 bytes) is

used for the field shared between branch and skip values.

Exact matching in the LC-trie works in the same fashion as in other suffix tree

representations but the matching statistics algorithm cannot run in linear time on this

structure because it does not implement suffix links.

3.8 Suffix Binary Search Trees

Suffix binary search trees (SBST) and suffix AVL trees were introduced by

Irving et al. [IL00]. Instead of storing the suffixes in an array as is done in a suffix

array, all suffixes are stored in a binary tree with some extra information to help

search:

• mt is 0 if / is the root otherwise it is maxj lcp(Sj,Sj) for all ancestors./ of node /

(St and Sj are the suffixes starting at position i andy, respactively)

• dt (1-bit value) is left or right, depending on whether node i is in the left or

right subtree of node/ found above

82 Chapter 3 Suffix Tree Representations

Figure 3.10 shows the SBST without the additional m and d values for our

example string. As one can see the tree can be highly unbalanced, which affects

searching time.
s t n n g s t h e e x p e c t e d

Figure 3.10. Suffix Binary Search Tree

In order to balance the tree, the suffix binary search tree can be converted into

a suffix AVL tree. An AVL tree is a balanced binary tree where the height of the two

subtrees (children) of a node differs by at most one. The tree can be maintained as an

AVL tree during the construction. The suffix AVL tree of our example string with

the auxiliary information (m,- and */,-)is shown in Figure 3.11.

Figure 3.11. Suffix AVL Tree

The exact matching algorithm on the SBST runs in O(m+l) time where / is the

length of the search path in the tree. In the worst case / is O(w) but the expected

length is O(logn). In case of the suffix AVL tree the worst case bound for / is

3.9 Alternative Representations

In this section we analyse two alternative representations, which have a slightly

different perspective from the representations discussed above. In Section 3.9.1 we

introduce a representation that deals with the issues of how to efficiently represent a

suffix tree on disk, and Section 3.9.2 introduces a representation based on some

encoding techniques.

3.9.1 Suffix Tree on Disk

Hunt et al. [HAIQ1] propose a suffix tree representation that can be stored

efficiently on disk. The suffix tree representations discussed in Sections 3.3-3.8 all

work well when the tree can fit into main memory. However as soon as we get to a

stage where paging comes into effect the performance those representations degrade

because of poor locality of suffix trees. Poor locality mainly stems from'suffix links,

which can cause a jump from one part of the tree to a totally different part.

Hunt et al. [HAIOIJ propose not to use suffix links during the construction and

they split the suffix tree into buckets based on the first x characters of the suffix.

Those buckets are built independently. The worst case running time of the algorithm

is 0{n2) but because of the pseudo-random nature of DNA sequences the average

behaviour in their tests showed O(n\ogn) running time. The exact matching

algorithm runs in O(m) time or if all k occurrences need to be found it runs in

0{m+k) time.

3.9.2 Compressed Suffix Arrays

The compressed suffix array data structure was proposed by Grossi et al.

[GV00]. It is based on the observation that strings of length n over a binary alphabet

may produce at most 2"'1 different suffix arrays. This suggests that each suffix array

can uniquely be assigned a number between 1 and 2"'1. The key point of this kind of

representation is how to look up individual values in the array. Grossi et al. [GV00J

84 Chapter 3 Suffix Tree Representations Chapter 3 Suffix Tree Representations 85

show that the lookup operation can be done in O(logE«) time for any fixed constant

e>0.

This representation can be as compact as O(log«) bits but because of the

complexity of the lookup and compress operations we do not consider them as viable

options for our matching statistics algorithm.

3.10 Summary

In this chapter we have given an overview of existing suffix tree

representations. We used an example string to demonstrate different ideas to store

suffix trees more efficiently. In Table 3.3 below we summarize the features of the

representation,0 discussed above, except for the representations analysed in Section

3.9. We analyse different representations based on the following criteria:

• average space requirement - n is the length of the string, and since each

representation requires the actual string to be present it is not considered here.

In McCreight's representation q is the number of nodes. The figures in

brackets show space requirements of those representations which have

limited string lengths because of smaller si, -e indices. Data is given in bytes;

• suffix link - whether or not suffix links are represented;

• construction via the suffix tree - whether it is suggested by the authors to

construct the structure via the suffix tree;

• direct construction time - the time complexity of the direct construction

algorithm;

• running time of the exact matching algorithm.

McCreight

SLLI

Lazy Suffix Tree

Suffix Array

Suffix Cactus

LC-trie

Suffix AVL Tree

Space

8n+20q

lO.ln

8.5n

12n(6n)

12n (9n)

lOn

lOn

Suffix

Link

Yes

Yes

No

No

No

No

No

Construction

via Tree

NA

Yes

No

Yes

Yes

No

No

Construction

Time

O(»)

O(«)

O(nlogk«)

O(nlog/?)

O(«logn)

O(*)

O(«log«)

Exact

Matching

O(m)

O(m)

O(IM)

O(w+logn)

O(w)

O(m)

O(;w+logw)

Table 3.3. Comparison of Suffix Tree Representations

As one can see from the above table, Kurtz's SLLI implementation is the most

suitable for our matching statistics algorithm because of its space requirement and

versatility. In Chapter 6 we propose a new structure called suffix vector, which

performs even better in terms of space requirement and has the same versatility.

86
Chapter 3 Suffix Tree Representations

Chapter 4 Modified Suffix Tree 87

' • , . : T - •-•• ~
r
- ' ;

•*.'•. 5 r ; " J . :

ftlpr

Modified Suffix Tree I * f ?•;•'••• * - ^ ' ' > - .

4.1 Introduction

In the previous two chapters we have shown how suffix trees can be used to

solve the document overlap problem. We also have analysed different suffix tree

representations and shown that the space requirements of suffix trees often limit their

applicability because they do not represent suffix links. In this thesis we study more

space-efficient suffix tree implementations and propose a more space-efficient

method to store suffix trees. Our application area is document overlap detection,

which means that the applicability of data structures are studied from this

perspective, though it is true that the data structures presented in this thesis can also

be used in other applications.

Our quest for more space-efficient representations is set along the following

dimensions. A number of approaches try to make use of the inherent structure of

natural language texts and only store suffixes that start at the beginning of a word

[MZS99]. Some other implementations are more general and can be used in any

application of suffix trees [MZS01, MZV01].

The suffix vector, which is proposed in this thesis, is a general representation,

which can be applied to any text, i.e. it does not make use of words [MZV01,

MZS02]. We prove that the suffix vector representation is the most space-efficient

representation known to us. It is discussed in detail in Chapters 5 and 6.

In this chapter we analyse other alternatives, which make use of word

boundaries. We also analyse a structure called Directed Acyclic Graph (DAG) that

eliminates some redundant information of suffix trees [MZS01], In the following

88 Chapter 4 Modified Suffix Tree Chapter 4 Modified Suffix Tree 89

section we first show how a suffix tree can be used in a novel fashion to solve the

matching statistics problem. This new method uses only one suffix tree built on the

suspicious document and candidate documents can be compared to that tree. The

original algorithm in a one-to-many comparison would require building a suffix tree

for each candidate document.

In Section 4.3 we study how the suffix tree structure can be used by only

inserting the suffixes that start at the beginning of words. This representation

obviously saves space but we have to analyse how the structure can directly be

constructed as well as how algorithms, especially the matching statistics algorithm,

can run on this structure [MZS99].

In Section 4.4 we introduce Directed Acyclic Word Graphs (DAWG) and their

compressed form of Compressed DAWG (CDAWG). Another alternative that is

referred to as a Directed Acyclic Graph is also introduced. This data structure

eliminates redundancy in the suffix tree. Not only does this save space but it also

eliminates some redundant comparisons in the matching statistics algorithm

[MZS01].

Performance analysis of the above-mentioned data structures is presented in

respective sections. Our results are summarized in Section 4.5 and possible future

extensions are also discussed.

4.2 The Matching Statistics Algorithm by Using Only One

Suffix Tree

In Chapter 2 we have shown how the matching statistics algorithm can answer

the document overlap problem. The algorithm presented there works well in a one-

to-one comparison scenario. However, when we want to compare one file to many

files, a suffix tree needs to be built for each document we want to compare to that

one document. From here on we will refer to the one document to be compared to

many documents as the suspicious document2 while the other documents will be

called the candidate documents. This naming scheme comes from the plagiarism

detection application, though the algorithm presented here can also be applied in

other applications.

2 Throughout this thesis we use the words 'document', 'string', and 'text' interchangeably.

''i-W*.

The following subsection introduces the problem and explains why we need to

find an algorithm that works on one suffix tree while Subsection 4.2.2 presents our

algorithm.

4.2.1 Matching Statistics Algorithm with Many Suffix Trees

As discussed in Chapter 2, the document overlap problem can be solved by

building a suffix tree for each candidate document and running the matching

statistics algorithm on those trees with the suspicious document. The result of this

will be a matching statistics array for the suspicious document, which can answer the

overlap problem by using the algorithm described in Section 2.7.2.

If we reverse the role of the suspicious document and the candidate document

we can run the same algorithm but the result will not identify all overlaps of the

suspicious document with regards to the candidate documents. The reason is that

when identifying a matching statistics value for the candidate document (plain text)

only one occurrence in the suspicious document (suffix tree) can be identified. This

is the case unless we are willing to sacrifice the linear running time of the algorithm.

Once an overlap is found we can traverse the subtree of the node our path is running

into. This would give all the occurrences in the suspicious document. For each of

these positions we could set the matching statistics values accordingly.

Here we note that in our document comparison system we can set a threshold

for the minimum length of overlapping chunks to be recorded. This threshold is set to

60 characters for plagiarism detection but other thresholds can be defined for

different applications. It means that most matches that should be recorded will finish

on a leaf or a node with only few leaves in its subtree. It is true because deep nodes

mean long overlaps within the suspicious document itself. Thus, we expect the

overhead expenses of this approach to be marginal. That does not significantly

degrade the running time of the algorithm in practice. Theoretically, this approach is

not linear in time.

In order to illustrate the problem we give an example of a one-to-many

comparison. Let us suppose that our suspicious document is the string that we have

used to demonstrate suffix tree representations {S='abcdabdbcdabb$r). The two

candidate documents to be compared to the suspicious one are Cj='cbcdad$' and

C2= 'bbdb$\ The suffix tree of S is depicted in Figure 2.8. In Step I (finding mss(l)

starting from letter b) in the comparison of Ct to the suffix tree of S, we finish

90 Ch&pter4 Modified Suffix Tree Chapter 4 Modified Suffix Tree 91

matching on the edge between nodes 2 and 3. Here, if we are willing to sacrifice the

linearity of the algorithm we can traverse the subtree of node 3 and find both

occurrences (7 and 1). If we want to remain within the linear time bounds we can

record the occurrence with the smallest index. It can directly be read from the edge

labels: we have matched 4 characters and we finished matching at position 4, so the

starting position is 1. If we use this latter method, the resulting matching statistics

and matching chunk position arrays at the end of the algorithm are shown in Table

4.1.

i

S

mss(i)

mcs(i)

C

0

a

1

b

4

1

c,

2

c

3

2

c,

3

d

2

3

c,

4

a

1

4

c,

5

b

3

1

c2

6

d

2

2

c2

7

b

8

c

9

d

10

A

11

b

2

0

c2

12

b

2

3

c2

13

$

1

6

c,

Table 4.1. Matching Statistics Values by Using One Suffix Tree

As one can see from the above table, not all positions are filled out in the table.

Had we run the matching statistics algorithm in its original form (comparing S to the

suffix trees of Q and C2, respectively) all positions would have been filled out

properly. Table 4.2 shows the matching statistics values for this latter case.

i

S

mss(i)

mcs(i)

C

0

a

1

4

c,

1

b

4

1

c,

2

c

3

2

c,

3

d

2

3

c,

4

a

1

4

c,

5

b

3

1

c2

6

d

2

2

c2

7

b

4

1

c,

8

c

3

2

c,

9

d

2

3

c,

10

A

1

4

Ci

11

b

2

0

c2

12

b

2

3

c2

13

$

1

6

c,

Table 4.2. Matching Statistics Values by Using Many Suffix Trees

The problem illustrated above raises an interesting question if the algorithm is

used for plagiarism detection. If a chunk, that is taken from some other document,

appears many times in the suspicious document, does that mean one or many counts

of plagiarism? One could say it is one count of plagiarism because once it was copied

that "copy" was used. Others could argue that the chunk was plagiarised many times.

This is not a technical issue, thus we do not analyse this question further. In the

following subsection we show how the first matching statistics table could be

converted into the second one in linear time by using only the suffix tree of S.

4.2.2 Converting the Matching Statistics Table

From Tables 4.1 and 4.2 one can see that the difference can be resolved by

analysing the suffix tree structure of S. The 'bcda' overlap is present in two positions

in S, which is represented by node 3 in the suffix tree. Node 3 is in the continuation

of the path labelled by 'bcda'. Generally we can say that given a matching statistics

value of m at position /, the matching statistics value at position/ must be set to

mdx[mss(/), min(mss(i),d)] (4.1)

I

where d is the depth of the longest common ancestor of leaves i and/. If we had to

calculate (4.1) for each pair of/ and/ we would need O(n2) time. The length of S is n.

Below we present an algorithm that correctly sets the matching statistics values in

O(/J) time.

In the first step of the algorithm we create a tree with exactly the same

structure of nodes and edges as the original suffix tree. Each leaf stores the following

information:

• leaf number, the start position of the suffix represented by this leaf

• matching statistics value: the matching statistics value defined by the

algorithm in the previous subsection (note that this may or may not be the

proper matching statistics value)

• matching chunk position: the matching chunk position belonging to the above

value

• document identifier: the identifier of the document the above two values

belong to (e.g. Ci)

The last 3 values from this list are stored in nodes. These values are taken from

the leaf in the given node's subtree with the highest matching statistics value. If there

are more than one of those values, any of them can be selected. We also need to

retain node depth information from the original suffix tree structure. The values

stored in leaves can be directly derived from the initial matching statistics values

while the values in nodes can be obtained by a depth-first traversal of the tree. The

values for our example are shown in Figure 4.1.

II
k •••..SSI

92 Chapter 4 Modified Suffix Tree Chapter 4 Modified Suffix Tree 93

node (Ml leaf node depth

ffl leaf number [_J matching stat |_J matching chunk [Pj document ID

Figure 4.1. Auxiliary Tree

In the second step we do a breadth-first traversal of the tree. Let node w be a

child node of node v. During the traversal the matching statistics value of node w is

set to

m?*x[mm(msv,dv),msw] (4.2)

where msv denotes the matching statistics value of node v, dv denotes the depth of

node v, while msw den. tes the matching statistics value of node w. The corresponding

matching chunk and document identifier values are set accordingly. When we get to

a leaf we can apply the same formula by substituting msw with msi where msi is the

matching statistics value of the given leaf:

max [mm(msv,dv), ms/\ (4.3)

We call this algorithm the Matching Statistics Value Assigning Algorithm

(MSVAA). Its pseudo code is depicted in Figure 4.2.

m
5 l

If

it

1. Build a tree with the same structure as the suffix

tree.

2. Assign leaf numbers, matching statistics values,

matching chunk position values, and document

identifiers to leaves.

3. With a depth-first traversal, set the same values in

each node in a way that it stores the maximum value

of its children.

4. With a breadth-first traversal, set the values in

the child nodes and leaves of the current node by

applying formula (4.3).

Figure 4.2. The Pseudo Code of the MSVAA Algorithm

Theorem 4.1. The MSVAA algorithm correctly sets the matching statistics

values for each position in S.

Formally, we can say that if there is a matching statistics value of ms(/) set at

position j which is greater than the one at position / (ms(/)), and S itself has an

overlap of length d (S[j..j+d-]] = S[i..i+d-l]) which appears at both/and /, then the

matching statistics value at / must be set to max[min(^,ms(/)),ms(/)]. To prove this

theorem we assume that either ms(/)<ms(/) or ms(/)<ms(/) but we only prove the

former case. The latter case can be handled similarly. We will assume that the values

are not set correctly after we have run the algorithm and we will show that it is not

possible. There are 3 cases.

Case 1. ms(i)<d<ms(J). Leaves / and/ have the longest common ancestor of

depth d. In the first step of the algorithm the matching statistics value of that node is

set to ms(/) or if there is a leaf with a greater matching statistics value it is set to that

value. Let us denote this value by k. In the second step of the algorithm the nodes on

the path from the longest common ancestor to leaf i will be set to d because d is less

than ms(/) or if there is a node with a greater value on the path from the longest

common ancestor to leaf i it will be set to that value. Also the matching statistics

value of leaf i will be set to that value, which is at least d, which contradicts with our

original assumption for this case.

Case 2. ms(i)<ms(f)<d. Leaves / and/ have the longest common ancestor of

depth d. In the first step of the algorithm the matching statistics value of that node is

I

Chapter 4 Modified Suffix Tree

94 Chapter 4 Modified Suffix Tree
95

set to ms(/) or if there is a leaf with a greater matching statistics value it is set to that

value. Let us denote this value by k. In the second step of the algorithm the nodes on

the path from the longest common ancestor to leaf i will be set to at least k, or in case

k>d, it is set to d. Also the matching statistics value of leaf i will be set to k (or d),

which contradicts with our original assumption. Similarly to Case 1 there may be a

higher value on the path but it would still contradict with our original assumption for

this case.

Case 3. d<ms(i)<ms(j). In this case the already set value of ms(7) is greater

than the number of overlapping characters between suffix / and suffix j . Thus the

matching statistics value set at j has no effect on the matching statistics value set at

in

In the case when we are only interested in overlapping chunks of length above

a certain threshold, the algorithm needs to run only on nodes with depths greater than

the given threshold value. Figure 4.3 shows our auxiliary tree after the second step of

the algorithm.

node leaf M node depth

^ leaf number Q matching stat Q matching chunk [f^] document ID

Figure 4.3. Auxiliary Tree after the Second Step of the Algorithm

In Theorem 4.1 we have proven that the values are properly set and it can be

checked on our example string in Figure 4.3.

t

k

4.3 Sparse Suffix Trees

In this section we describe a modification of a suffix tree that only contains

suffixes that start at the beginnings of words. Obviously, this data structure could

save space but we have to analyse how it could be constructed and whether it could

be used for the matching statistics algorithm [CL94].

These suffix trees have been studied in the literature and different names were

suggested: sparse suffix trees [KU96] and word suffix trees [ALS99]. We use the

term 'sparse suffix trees' in this section.

In the following subsection we formally define sparse suffix trees and analyse

two different construction algorithms, while in Subsection 4.3.2 we discuss how

sparse suffix trees may be used in the document overlap detection problem.

Subsection 4.3.3 presents the results obtained in our test system.

4.3.1 Construction of Sparse Suffix Trees

A sparse suffix tree can be defined as a suffix tree containing only a subset of

all suffixes of a string S. This is a general definition where suffix selection is

arbitrary. In our application, and also in many other applications dealing with natural

language texts, word boundaries are a natural choice of suffixes to be represented.

We have found that the most convenient choice of suffix positions is the right-most

non-alphanumerical character before the word. Thus we artificially insert a non-

alphanumerical character at the beginning of the document if one is not already there.

Here we also note that in our plagiarism-detection application we remove multiple

whitespaces between words, which means that the term 'right-most' becomes

irrelevant. A more detailed description of the text conversion performed in the pre-

processing phase can be found in Chapter 7.

A straightforward construction method for a sparse suffix tree would build the

suffix tree for S and then remove those suffixes that are irrelevant. Not only would

this construction method use an unnecessarily large amount of space but also suffix

link relationships between nodes would be violated. This latter effect would prevent

us from using the structure for the matching statistics algorithm.

In [KU96] and [KD95] two algorithms have been presented that are based on

Ukkonen's [Ukk95] and McCreight's [McC76] algorithms, respectively. The only

difference between the original algorithms and the direct construction algorithms of

I

96 Chapter 4 Modified Suffix Tree

the sparse suffix tree is that suffix links have different meanings. Otherwise the

algorithms can progress in a similar fashion by scanning the text and only inserting

suffixes that start at the beginning of words or more generally at any delimiter

i ' aracter.

From here on we restrict our discussion to suffix trees that contain suffixes

starting at word boundaries and we refer to this structure as a sparse suffix tree. The

ideas presented here for our definition of sparse suffix trees can be generalized to a

more general definition of sparse suffix trees. Before we present the new definition

of suffix links we formally define the term "word" in our representation. Let us

denote the word delimiter by the '+ ' symbol. The substring S[/../+/] is a word if

S[/]='+' and S[z+/+/]='+' while S[/>'+' for any i<j<i+l

Suffix links in a sparse suffix tree can be defined as follows. There is a suffix

link pointing from node v to node z if and only if the label of node v is cc/3 where a is

a word and /? is a substring oiS, and the label of node z is J3. In Figure 4.4 we present

a part of the suffix tree of S='+they+were+the+last+to+arrive+but+they+

were+not+late+'.

nodez

node v *

39

Figure 4.4. Suffix Link in a Sparse Suffix Tree

In the example the label of node v is '+they+were+' while the label of node z

is '+were+\ which means that a='+they' and J3='+were+\ We will show in the

following section that this interpretation of a suffix link is very convenient for us and

it can directly be utilised in the matching statistics algorithm in natural language text

processing.

Andersson et al. [ALS99] describe a suffix tree construction algorithm which is

explicitly different from the basic algorithms [McC76, Ukk95, Wei73j. We sketch

the algorithm below and a detailed discussion of the algorithm can be found in

Andersson's paper [ALS99].

In the first step of the algorithm we build a trie that contains all the different

words of S. Andersson et al.'s choice is to append the delimiters at the end of each

word, whereas in our approach we consider them as the first characters of the words.

Either of these approaches prodv-ces words where no suffix of a word can be the

prefix of another, which implies that each distinct word will correspond to a leaf in

the trie.

Step 2 performs an in-order traversal of the trie, which means that children of a

given node are visited in lexicographical order. Each leaf is assigned a number,

which corresponds to its position during the in-order traversal.

In Step 3, a number string is generated, which lists the numbers assigned to

each word in the string in the order of their appearance. This can be done by

traversing the trie while scanning the string.

In Step 4 we create a suffix tree for the number string generated in the previous

step. For this we can use any suffix tree construction algorithm.

Step 5 expands the number-based suffix tree into the sparse suffix tree. This is

done by replacing each number with its corresponding word. In order to maintain the

linear time bound of the algorithm, the word trie must be pre-processed for least

common ancestors by using any suitable algorithm, e.g. the one published by Harel

and Tarjan [HT84].

A time analysis of the above algorithm is also presented in Andersson's paper

[ALS99J. When the positions of all delimiters are known, a lexicographic /w-word

suffix tree having m/ distinct words can be constructed in time

(N \
O\~ + m + sb(ml)J

for some integer parameter b <w, where N is the number of bits in the input, w is the

machine word length, and Sb(/«/) is the time to sort m/ 6-bit integers.

In our prototype system we have used Ukkonen's construction algorithm with

the modifications described in [KU96J. This approach suited our needs better

because it keeps the suffix link information in a way that can be utilised in the

98 Chapter 4 Modified Suffix Tree

matching statistics algorithm. The latter approach by Andersson does not keep suffix

link information.

Here we also note that in [KU96] the time-bound for searching the sparse

suffix tree is also discussed. Of course, searching for substrings that start at suffixes

represented in the tree is straightforward but a general search that finds any substring

is more complicated and it is further analysed in [KU96].

Another issue about sparse suffix trees is that not all suffix tree representations

support the insertion of only those suffixes that start at delimiters. As an example

McCreight's [McC76] general representation can easily adopt sparse suffix trees

while Kurtz's [K>jr99] representation makes use of the fact that nodes are in the order

of suffix links. Thus it cannot accommodate sparse suffix trees without major

modifications.

4.3.2 Running the Matching Statistics Algorithm on a Sparse Suffix Tree

The matching statistics algorithm can use the suffix links of a sparse suffix tree

in the following way. We start matching only from beginnings of words (recall our

definition of word) and when we finish traversing a path due to a mismatch, we can

follow the suffix link and continue matching from that node where we jumped to,

because having found a matching chunk of a@ we will follow by matching j3.

As an example let us suppose that we want to compare the string

'+they+went+home+before+midnight' to the suffix tree of Figure 4.4. We traverse

down the tree until we find '+they+went+home+', which gives a score of 16 for the

matching statistic value at position 0. Then we have to find the matching statistics

value at position 5, that is the beginning of the next word. We follow the suffix link,

which places us on the path of '+went+home+', so we can continue matching from

this position, which in our case is impossible. So we set the matching statistics value

to 11 (the length of '+went+home+ *) for position 5.

As one would expect, the matching statistics algorithm using a sparse suffix

tree can save all comparisons that are in connection with suffixes starting in the

middle of words. Of course, this is very useful for natural language texts where such

an overlap does not carry any useful information.

Chapter 4 Modified Suffix Tree
99

4.3.3 Performance Analysis of Sparse Suffix Trees

In this section we analyse the time required to build a sparse suffix tree as well

as the running time of the matching statistics algorithm on the structure. We use an

array-based implementation because in this experiment our priority is running time.

Our suffix tree representation uses arrays to represent edges running out of nodes and

also some extra information is stored on nodes to make the matching statistics

algorithm run faster. This representation uses 23 bytes per input symbol on average

for the sparse suffix tree, which allows us to store the sparse suffix tree of documents

up to approximately 5MB on a machine with a main memory of 128MB. 5ME of

pure English text translates into approximately 3000 pages and considering that any

part of this text can instantly be accessed, one can understand why suffix trees are

used in many areas of string matching. We have to emphasize that this is a very

space-wasting implementation optimised for performance of the matching statistics

algorithm. As we have discussed in Chapter 3 an efficient implementation uses

around 10 bytes per input symbol for the original suffix tree.

This implementation suits the specific task we have used it for, namely one-to-

many copy-detection tasks. Since we only have to build one suffix tree for the

suspicious document, our only concern is that it should fit into main memory. For

most of the documents we have analysed in our test this was true. Here, we also note

that a more space-efficient alternative is discussed in Chapters 5 and 6.

Figure 4.5 depicts the relation between the size of the suffix tree and the time

required to build the suffix tree (depicted by squares). Triangles depict the time

required to calculate the matching statistics values if we have candidate documents

of total size of 9.84M, Experiments were carried out on our test machine (Intel

Pentium II 433MHz, 128M RAM, Windows NT Workstation).

The running time for building the suffix tree is proportional to the size of the

document. Calculating matching statistics is theoretically independent from the size

of the tree. In Figure 4.5 there is a slight increase in time as the size of the tree is

increat >-,g. This contradicts with the linear time bound of the matching statistics

algorithm, which states that the running time of the algorithm is independent from

the size cf the tree and only depends on the strings compared to the tree, which are

the candidate-documents of 9.84M in our case. We can see that in the case of small

trees the running time is slightly shorter. It is because in case of a small suffix tree

100 Chapter 4 Modified Suffix Tree

the cache-hit ratio is higher during the matching statistics algorithm run. Thus there

are more cases when the tree can be read from the cache rather than the main

memory.

E 1500

I 1000

—D— Build time

i time

Size of tree (bytes)

Figure 4.5. Running Time of the Construction and Matching Statistics

Algorithm Using a Sparse Suffix Tree

The following two figures illustrate the comparison between the sparse suffix

tree and the original suffix tree. Figure 4.6 shows the running-time of the

construction algorithm and the matching statistics algorithm for the same documents

as used above but using the original suffix tree. Figure 4.7 depicts the ratio of the

running time of these algorithms between the original suffix tree and the sparse

suffix tree (original/sparse).

12000
10000 -
8000
6000
4000-
2000

0

— Q - Build time
msi time

•» £ #
Size of tree (bytes)

Figure 4.6. Running Time of the Construction and Matching Statistics

Algorithm on the Original Tree

-t

Chapter 4 Modified Suffix Tree 101

6

5.8

5.6

0 5.4

1 5.2
K 5

4.8

4.6

4.4

- ; * •

. i*.
' 1.'

1

W
* ' • ? ! -

& • > ; '

O Construction ratio

• msi ratio

mpmMk

HHff I
^

SizeofSj>arse
Suffix 'tree

j

Figure 4.7, Ratio between Original and Sparse Suffix Trees

4.4 Directed Acyclic Graphs

Compact directed acyclic word graphs (CDAWG) could be viewed as an

alternative structure of a suffix tree that contains all suffixes of a string. The area of

CDAWGs has been studied extensively in the literature [CV97, BBE+84, BBE+85,

Gui97]. We present the definitions of DAWGs and CDAWGs based on the

definitions given in [CV97].

The directed acyclic word graph of a string S, denoted by DAWG(«S), is the

minimal deterministic automaton (not necessarily complete) that accepts all suffixes

Si- (0<i<ti) of S. The compact directed acyclic word graph of a string S, denoted by

CDAWG(iS) is the compaction of DAWG(S) obtained by keeping only terminal

states and states that are strict classes of factors according to =^j and by labelling

transitions accordingly. The definitions of classes of factors can be found in

Crochemore et al.'s paper [CV971. This definition is based on the DAWG

representation. A CDAWG can be viewed as either a compact DAWG or a suffix

tree where redundant nodes are merged. We follow die path of this latter derivation

because it reveals the relationship between suffix trees and DAWGs more closely.

A CDAWG of a string can be derived from the suffix tree of the string by

merging nodes with identical subtrees, removing the terminal symbols from leaf

labels and diverting all leaves to the terminal state. If we need leaf information we

have to keep the terminal symbol and we do not merge the leaves into a terminal

state. This structure is no longer an automaton but it is still a directed acyclic graph,

I

102 Chapter 4 Modified Suffix Tree

thus we will refer to this representation as a directed acyclic graph (DAG). Figure

4.8 depicts the DAG of our example string S= 'abcdabdbcdabb$'.

Chapter 4 Modified Suffix Tree
103

13 10

2 3 4 3 6 7 8 9 10 II 12 13

"O/ c d a b d b c d a b b S

0

Figure 4.8. Directed Acyclic Graph Representation

In our example we could merge nodes 3 and 4 with node 6 because they had

identical subtrees. Edges running into those nodes are diverted to node 6. These

edges have special values associated with them because routes containing these

edges lead to leaves with incorrect leaf numbers. If we deduct the offset value

accumulated on the path to the leaf v/e get the correct leaf number. As an example, if

we follow the route of 'cdabdb' we finish on leaf 3 but there was an offset of 1 on

our route to the leaf, which means that the given substring can be found starting at

position 2.

CDAWGs and DAGs can both be constructed either via the suffix tree or via

the DAWG representation. The latter approach is discussed in [CV97] while

construction via the suffix tree is described in the following section. A direct

construction algorithm has also been presented in [CV97],

4.4.1 Converting a Suffix Tree into a DAG

Gusfield [Gus97] describes a linear-time algorithm to convert a suffix tree into

a DAG. In Figure 2.8 one can see that isomorphic subtrees are connected by suffix

links. Gusfield [Gus97] formally proves that the subtree below node p and node q are

isomorphic if and only if there is a directed path of suffix links between ihe two

nodes and they have the same number of leaves. Since isom';:phic subtrees are

connected by suffix links there is an offset of indexes on leaves. The number of

suffix link hops defines the value of the offset to be applied. The tree of Figure 2.8

t

has been converted into a DAG depicted in Figure 4.8. Offset values can be applied

to new links and having reached a leaf with an index on traversing down the tree we

have to subtract the sum of the offset values encountered on the way from the actual

index value of the leaf.

A suffix tree converted into a DAG can be used to solve some exact matching

problems including deciding whether a pattern is a substring of another string, the

longest common substring, exact set matching, etc. However with this representation

we lose suffix links, which are heavily utilized in Chang's matching statistics

algorithm [CL94]. We have to find a way to incorporate suffix links into this

representation and also a conversion algorithm that converts a suffix tree into a DAG

preserving suffix links. These issues are discussed in the following section. In Figure

4.9 we present the compaction algorithm given by Gusfield [Gus97j.

Identify the set Q of pairs (p, q) such that there is a

suffix link from p to q and the number of leaves in their

respective subtrees is equal.

While there is a pair (p, q) in Q and both p and q are in
the current DAG,

Merge node p into q

End While

Figure 4.9. The Pseudo Code of the Conversion Algorithm

4.4.2 Converting a Suffix Tree into a DAG Preserving Suffix Links

There is a practical problem when applying the algorithm given in the previous

section. Deciding whether/? and q are in the current DAG is not straightforward. Our

implementation language is C++ and nodes are represented as pointers. It is not

obvious how to decide whether a given pointer points to a valid address or it points

somewhere in main memory, which was previously freed. We could traverse down

the tree for each/? and q but it would sacrifice the linear time bound of the algorithm.

The other main problem is that the matching statistics algorithm heavily uses

suffix links, which have to be retained in the new presentation. When we created our

I
1

104 Chapter 4 Modified Suffix Tree Chapter 4 Modified Suffix Tree 105

version of the conversion algorithm we had to preserve suffix links in the new

representation [MZS01].

Our first observation is that many suffix links are removed in the conversion

process. What is the equivalence in the DAG representation of following a suffix link

in the suffix tree? If there is a suffix link in the suffix tree representation between

nodes p and q, and nodes p and q are merged in the conversion process, it means that

their subtrees are isomorphic. During the matching statistics algorithm we follow the

suffix link to find the value of ms(B7) having found ms(z) but if the two subtrees are

isomorphic then it is certain that no further matches will be found, so ms(/+7) is

simply ms(z)-l. We know that we are in a subtree that was previously connected by

suffix links if there is an offset on the path that we have followed from the root. The

sum of the offsets determines how many suffix links we could have followed without

finding a different subtree, so if this value is x we already know the matching

statistics ms(i+7) through to ms(/+x). After that we follow the algorithm as if we

have already defined ms(/+;c) and we would like to define ms(/+jt+/).

It is also possible that after merging nodes p and q some suffix links under

nodes p and q are lost. These suffix links are not needed at all in the DAG

representation because traversing further down from nodep will place us under node

q after following a suffix link, and this case is equivalent to the case discussed above.

There is one more case that we have to discuss. It is possible that the

destination of a suffix link is removed from the tree. There is still an equivalent node

of that destination node but they are only equivalent with regards to their subtrees. If

we divert the suffix link to that equivalent node, we have to analyse how it affects the

matching statistics algorithm. We can place an offset on the suffix link similar to the

one we place on edges. The offset value is the number of suffix link hops between

the original destination node and the equivalent node. Following a diverted suffix

link is equivalent to following the original suffix link in the original suffix tree, then

repeating the steps as many times as the offset value. Matching statistics will always

decrease by one on the way because subtrees are equivalent. If we place an offset on

suffix links the algorithm is the same as the algorithm with the offset on edges.

Having discussed how suffix links are converted, we describe how our

algorithm works in practice. In the first step it makes a depth-first traversal to

identify an equivalent node for each node, if any. This can be done in linear time.

After this, suffix links are diverted. If a suffix link points to a node which has an

equivalent node, the suffix link is directed to the equivalent node with an offset of 1.

It is also possible that the equivalent node has an equivalent node, too. In this case

the offset is incremented by one and the suffix link is diverted to the latter node. This

process can be followed until a node is found without an equivalent node. Normal

edges can be diverted in the same way as suffix links. The only difference is that if

an edge is diverted, the subtree of the node, that was originally pointed to by the

edge, has to be removed. Instead of removing it immediately, we add this node to a

list of nodes to be removed. The reason for this is that by removing a node we might

break a path of equivalent nodes and at a stage we might address some invalid

memory range. After all edges and suffix links are diverted we have to remove

subtrees of nodes in the list. The pseudo code in Figure 4.10 summarizes our

algorithm.

Find number of leaves under each node

For each node

Identify equivalent node

End For

For each node

Divert suffix link to equivalent node

Define offset value for suffix link

For each edge running out of current node

If equivalent exist

Divert edge

Define offset value for edge

Add next node to remove_list

End If

End For

End For

For each node in the remove__list

Remove subtree

End For

Figure 4.10. Pseudo Code of the Practical Conversion Algorithm

106 Chapter 4 Modified Suffix Tree Chapter 4 Modified Suffix Tree 107

4.4.3 Performance Analysis ofDAGs

As we have shown in the previous subsection, DAGs have a special feature

among suffix tree representations. This feature is that some redundant information is

eliminated from the tree. Not only does this save space but we can also save time

when we run the matching statistics algorithm. We have built the DAG

representation of those documents that we used in our analysis in Section 4.3.3.

Figure 4.11 shows the running time of the matching statistics algorithm on the DAG

representation. We can see that the elimination of redundant comparisons saves

about 20% time on average.

In the next two chapters we present our new suffix vector representation, which

is also a data structure that eliminates redundant information. In Chapter 5 we show

that more redundant information is eliminated by the suffix vector and it is also

better in terms of space than the most space-efficient representations known to date.

10000

•y 8 0 0 0

E. 6000 -

g 4000 -

^ 2000 -

0

• msi time

A* ^

<?>
Size of tree (bytes)

Figure 4.11. Matching Statistics Running Time on the DAG Representation

4.5 Summary

In this chapter we have shown how the matching statistics algorithm can work

in a scenario when one suspicious document needs to be compared to many

candidate documents. The original algorithm would require the construction of a

suffix tree for each candidate document. We have shown that the matching statistics

algorithm can be used in a reverse fashion, where the matching statistics algorithm is

run on the candidate documents against the suffix tree, and when the comparisons

have finished, the correct values can be set for the suspicious document by using an

auxiliary tree.

.•i

5

We have also presented two alternative representations of suffix trees in this

chapter. Not only do these alternatives save space but also the matching statistics

algorithm can run faster on these structures. Sparse suffix trees utilize natural

delimiters in English text, thus the application area of this representation is restricted

to natural language texts. Directed Acyclic Graphs have a wider application area

because they do not rely on word delimiters. DAGs eliminate some redundant

information which is present in suffix trees.

These data structures have been widely studied in the literature but we know of

no study that analysed these representations in the context of the matching statistics

algorithm or more generally in the context of suffix links. Suffix links are introduced

in sparse suffix trees in [KU96] and in CDAWGs in [CV97] but we also show how

the matching statistics algorithm can benefit from this new interpretation of suffix

links. Also, suffix links studied in the context of CDAWGs are not satisfactory for

our matching statistics algorithm because they do not store the all important offset

information, which tells us how many matching statistics values need not be

calculated. The proposed modification of suffix links can be utilized in any other

algorithm that uses suffix link information.

The Directed Acyclic Graph representation is a general representation that can

be used anywhere where suffix trees can be used. In our performance analysis

section we have shown that by merging nodes with isomorphic subtrees we can save

approximately 20% space and the same ratio is maintained for the running time of

the matching statistics algorithm. Of course, the modifications we have introduced

for suffix links allows the structure to be used in any other suffix tree application but

in this thesis we analyse data structures in the context of the matching statistics

algorithm.

General sparse suffix trees can be built on any string with some delimiter

characters introduced. However, the most appealing application is when they are

used for natural language texts where word delimiters are natural boundaries. We

have shown that the matching statistics algorithm can utilize this new representation

efficiently.

The average word length in English texts is between 5 and 6 characters as

observed in our experiments. This means that by storing only suffixes that start at the

beginning of words we can save up to approximately 83% of the original

representation. The same holds for the matching statistics algorithm, whose running

1

108 Chapter 4 Modified Suffix Tree Chapter 5 Suffix Vector Representation 109

time is reduced by the same factor because only values for positions of word

beginnings are calculated.

It remains an open question how these two approaches could be combined.

However this issue is outside of the scope of this thesis. In the following chapters we

further analyse other possible space-efficient representations of a suffix tree. We

propose the suffix vector representation [MZV01, MZS02], which is better in terms

of space than the most space-efficient representations known to date. Our

representation eliminates even more redundant information than the DAG

representation, which allows the matching statistics algorithm to run even faster.

C H A P.. T. E R

Suffix Vector

Representation

F I V E

f

,1

5.1 Introduction

In this chapter we propose an alternative data structure for suffix trees. Ws call

this data structure a suffix vector because of the way it is organised in memory. We

show that this data structure is more space-efficient than any other suffix tree data

structure that has the same versatility. By same versatility we mean that suffix link

information is also present because it is used in many algorithms including our

document comparison algorithm based on the matching statistics algorithm fCL94].

In Section 5.2 we introduce the suffix vector at the high-level, which is

abstracted from the actual physical representation in memory. We also show the

connection between suffix trees and suffix vectors through an example string.

Section 5.3 describes some of the characteristics of the suffix vector and gives

proofs when necessary. This will form the basis of different physical representations

of suffix vectors introduced in later sections.

Section 5.4 introduces two alternative physical representations of a suffix

vector. The general suffix vector is more space consuming than its alternative but it

has the advantage that it can be directly built from a string in linear time. The second,

compact representation is more space-efficient but cannot be directly built in linear

time. It can be constructed from any suffix tree representation that stores suffix link

information and also from the general suffix vector representation. Subsection 5.4.3

analyses the space requirement of the compact representation. The space requirement

is compared to the most space-efficient suffix tree implementation known to date.

108 Chapter 4 Modified Suffix Tree Chapter 5 Suffix Vector Representation 109

time is reduced by the same factor because only values for positions of word

beginnings are calculated.

It remains an open question how these two approaches could be combined.

However this issue is outside of the scope of this thesis. In the following chapters we

further analyse other possible space-efficient representations of a suffix tree. We

propose the suffix vector representation [MZV01, MZS02], which is better in terms

of space than the most space-efficient representations known to date. Our

representation eliminates even more redundant information than the DAG

representation, which allows the matching statistics algorithm to run even faster.

C H A P.. T. E R

Suffix Vector

Representation

F I V E

f

,1

5.1 Introduction

In this chapter we propose an alternative data structure for suffix trees. Ws call

this data structure a suffix vector because of the way it is organised in memory. We

show that this data structure is more space-efficient than any other suffix tree data

structure that has the same versatility. By same versatility we mean that suffix link

information is also present because it is used in many algorithms including our

document comparison algorithm based on the matching statistics algorithm fCL94].

In Section 5.2 we introduce the suffix vector at the high-level, which is

abstracted from the actual physical representation in memory. We also show the

connection between suffix trees and suffix vectors through an example string.

Section 5.3 describes some of the characteristics of the suffix vector and gives

proofs when necessary. This will form the basis of different physical representations

of suffix vectors introduced in later sections.

Section 5.4 introduces two alternative physical representations of a suffix

vector. The general suffix vector is more space consuming than its alternative but it

has the advantage that it can be directly built from a string in linear time. The second,

compact representation is more space-efficient but cannot be directly built in linear

time. It can be constructed from any suffix tree representation that stores suffix link

information and also from the general suffix vector representation. Subsection 5.4.3

analyses the space requirement of the compact representation. The space requirement

is compared to the most space-efficient suffix tree implementation known to date.

110 Chapter 5 Suffix Vector Representation

We use the same set of documents that Kurtz [Kur99] used for his comparison tests.

The average space requirement of the compact suffix vector is better than that of

Kurtz's suffix tree representation [MZV01]. We also analyse the details of the

compact suffix vector representation to point out correlation between the structure of

documents and the space requirement of suffix vectors.

Section 5.5 discusses one more alternative physical representation of a suffix

vector that we call functionally reduced suffix vector. This representation is discussed

separately from the other two representations because it is not as versatile as the

other two. We do not store either suffix link or next node information in this

representation, which limits the range of algorithms that can run on the structure.

Kurtz et al. [GK99] also propose a representation that is limited in functionality but

our representation uses less space than that of Kurtz's.

Section 5.6 summarises the results of this chapter and revisits the key issues

presented in this chapter. The construction of the suffix vector and tb. running time

of algorithms run on the structure are discussed in Chapter 6.

5.2 A Suffix Vector at a High-Level

Suffix vectors are proposed in this chapter as an alternative representation of

suffix trees and directed, acyclic graphs (DAG) derived from suffix trees. The basic

idea of suffix vectors is based on the observation that we waste too much space on

edge indices. Therefore we store node information aligned with the original string.

Hence, edge labels can be read directly from the string. This section describes the

proposed alternative structure and in later sections we analyse its space requirements.

Firstly we give an example string and the suffix tree representation of that

string. Let the string be S='abcdabdbcdabb$', the same string that we used in our

previous examples. '#' is the unique termination symbol, which is necessary,

otherwise the suffix tree cannot be constructed. The suffix tree for S is depicted in

Figure 5.7, as a reference, it is the same tree as shown in Figure 2,8.

Chapter 5 Suffix Vector Representation 111

•0 II II

b S

Figure 5.1. Suffix Tree of'abcdabdbcdabbS'

Firstly we introduce a high-level suffix vector representation that is abstracted

from the actual storage method. We show how the traversal of the tree works using

this representation. Later we show how we can efficiently represent this structure in

memory. As we have already mentioned, the basic idea of our new representation is

based on storing nodes and edges aligned with the string. Figure 5.2 shows the new

representation.

root

O.I | 1,1 12,5 13.3 | 13.x

0 1 2 3 4 5 6 7 8 9 10 II 12 13

a b c d i a b i d b c d a b b S
1,5 -7 .x

2,x-12,x|6,x

1,5- 12.x 16,x | 13.x

5,x-I2,x

4,x-12,x

3,x-l2,x

Figure 5.2. Suffix Vector of S

The root node is represented as a linked list and it shows where to start

searching for a string. It has one pointer for each distinct character in the string

(a,b,c,d,$). Nodes of the original tree are represented as linked lists in the vector

aligned with the string. For example, node 3 of the original tree is represented in the

box at position 3. Each node has a "natural edge", that is, the continuation of the

string, so the edge pointing from node 3 to node 6 contains characters 4 and 5 in the

string. The first number in bold is the depth of the node. In the case of node 3, '7,*'

means that after matching one character (position 3 'd1) we can either follow the

112 Chapter 5 Suffix Vector Representation

string itself (this is the edge pointing from node 3 to node 6), or we can jump to

position 7 (this is leaf 6). The V means that if we jump to position 7 there are no

more nodes, that is, this edge is a leaf. The second number m bold (5) in the pair

(1,5) says that if we have reached this position after matching one character ('*/') and

we would follow matching 'a' (the "natural edge"), the next node is at position 5. In

the original tree the next node is node 6, which is depicted by the third row of the

box at position 5. We need to be able to jump from one node to the next one for some

algorithms. There are algorithms that do not require this information. For example, if

we only need to find one occurrence of a pattern in the string we can find it without

this information. In this case, the pointers of edges to the next node can be omitted.

Also, next node pointers that point to the destination node of the natural edge can be

omitted. However, in case we want to run the matching statistics algorithm, we need

next node information because after following a suffix link we need to be able to

jump from node to node.

As one can see, each node has one corresponding row in one of the boxes.

Node 1 is the first row in the box at position 1, node 2 is the second row in the box at

position 1, node 3 (as discussed earlier) is the only row in the box at position 3, node

4 is the first row in the box at position 5, node 5 is the second row in the box at

position 5, and node 6 is the third row in the box at position 5. Every node is stored

at the smallest possible index, that is, at the first occurrence of the string running into

that node.

To see how the algorithm finds a string, let us follow the matching of 'dabb' in

the string. We start from the root and find that we have to start at position 3. It is

equivalent to analysing the edges running out of the root in the tree, After having

matched id\ we try to match 'a'. In the tree we have to check whether there is an

edge starting with V running out of node 3, in the suffix vector we match the next

character. In this case it matches la\ If it had not matched we should have checked

the possible followings after having matched one character. We find this information

in the first row of the box at position 3. After V we have to match '6 ' on the edge in

the tree and in the string in the suffix vector. They match, so we have to match the

second lb\ They do not match. We have followed 3 characters up to now, so we

have to check the possible followings from here. We can see that having matched 3

characters we could follow at position 12 - it corresponds to leaf 9 in the tree. The

Chapter 5 Suffix Vector Representation

the only possible match. We have
matched 4 characters up to position 12, so the start position is 9.

We formally define a suffix vector below. A suffix vector V built on string S is

a data structure that allows accessing each suffix Si of the string in time proportional

to the length of the suffix. Let the length of string S be n. A suffix vector is an n-

eiement array of suffix boxes B. A suffix box may contain information on multiple

nodes. A node is defined similarly to its definition in the case of a suffix tree. We

have a node w with depth d in the box at position i if Sfi-d+L.iJ^T is the first

occurrence of T in the string and there exists a j>i where S[/-d+LJJ~T and

S[i+J]#S[f+lJ. The first occurrence of string T with length d is at position *', which

means that T= S[i-d+l..i] and there is no k<i where T= S[k-d+l..k]. For each node

in a box the depth of the node is to be stored. The actual representation has to make

sure that information on a node with a given depth may be accessed in constant time.

Suffix vectors may have two types of edges: natural and regular (normal) ones. A

natural edge is an edge naturally represented in the vector. A natural edge E with

starting position s and end position e is a substring in £ with the following

characteristics: there is a node with depth d at position s-1 and there is another node

with depth d+e-(s-l) at position e. Natural edges may correspond to multiple edges

in the suffix tree representation. We also have to store a next node value nn for the

natural edge. A given node has exactly one natural edge and one or more normal

edges running out of that node. The edges running out of a given node represent

different possible suffixes in a string similarly to the suffix tree representation. The

natural edge is represented by the next node pointer nn associated with the node. For

normal edges the start and end positions must be stored. Suffix links may also be

stored in the vector. A label L of a node of depth d at position / is the substring S[i-

d+l..i]. Let a denote a single character and w denote a sequence of characters. A

suffix link points from node x to nodey if node x is labelled aw and nodey is labelled

w. From the definition it follows that if the depth of node x is d then the depth of

node y is d-1. Thus storing a suffix link for a node x we only need to store the

position of the box where nodey is stored. In the next section we will show that only

one suffix link needs to be stored per box. There is one special node that is not stored

in a vector box but it is rather stored separately from other nodes. This node is the

root node R and it has one outgoing edge for each distinct character in S.

§

114 Chapter 5 Suffix Vector Representation

From the above definition one can see that there is a one-to-one mapping

between the suffix vector and the suffix tree if suffix tree edges have the smallest

possible edge indices, which is the case if the tree is constructed using Ukkonen's

linear-time algorithm [Ukk95j. In the following section we analyse some features of

a suffix vector, which allows space-efficient representation of the vector.

5.3 Suffix Vector Characteristics

In this section we discover some features of the suffix vector that allow us to

actually store less information than we outlined in the previous section. The

characteristics described here are independent of the actual physical storage method.

Further space reduction may be achieved by using an efficient physical

implementation. The details of a space-efficient physical implementation are

discussed in later sections.

The following lemma will assist the proof of Theorem 5.1. The characteristics

described in Theorem 5.1 will allow us to store only one suffix link value per box.

Lemma 5.1. There may be only one node with depth d represented in the box

at position /.

Let us suppose that there are two different nodes x and y, both with depth d

represented at position /. These two nodes must represent the same information, that

is there is some j>i where S[f-d+l.JJ=Sfi-d+l..iJ and S[j+l]*S[i+l]. If they

represent the same piece of information they are the same node D.

Theorem 5.1. The suffix link of a node always points to another node

represented in the same box at the same position, except for the node with the

smallest node depth represented in the box.

Let the label of node v be aw where a is a single character and w is a sequence

of characters. Let us suppose that the suffix link of node v points to node z. Let d be

the depth of node v. Node v is represented at position i, thus S[i-d+l]=a and Sfi-

d+2..i]=w. If there is a suffix link between node v and node z then node z has a label

w. If node v is not the node with the smallest node depth then there is a node y

represented at position i, which has a node depth d-1 and its label is w by definition

because S[i-d+2..iJ=:w. The suffix link of node v points to a node with label w and

there is only one such node, which is stored in that box (see Lemma 1). Therefore,

Chapter 5 Suffix Vector Representation

the suffix link of node v must point to node y, thus the equality relation node z = node

y follows D.

As one can see, there is still redundant information in the representation shown

in Figure 5.2:

• nodes 4, 5, and 6 are identical

• nodes 1 and 2 share some edges.

In the first case we can store only one node in the box. This node represents

nodes with depths 3 through to 5 using extra information stored in that box (see

Figure 5.3). We call these boxes reduced boxes because the information we have to

store is reduced. We can utilise the second observation by eliminating redundant

edge information.

root

0,1 11,1 12.5 | 3.3 | 13.x

0 ' 2 3 4 5 6 7 8 9 10 I I 12 13

a b c d i a b(d b c d a b b $

1,5-7,x 5-3,x-12,x

2,x-12,x|6,x12,x|

1,5-13.x

Figure 5.3. Eliminating Redundant Information

We formalise these observations below.

Let us assume that we have nn nodes in the box at position i. The depth of the

deepest node is d. If the next node values for each node d through to d-nn+1 are

identical and these nodes have the same number of edges and also identical

information on those edges, we only have to represent one node in that box. Along

with that we need to set a flag, which denotes that this is a reduced box. Thus if we

encounter this box during traversal, we know that more than one node is represented

here.

The following lemma will assist us in formalising our second observation.

Lemma 5.2. The number of edges running out of nodes stored at the same

position i monotonically increases as the depth decreases. Formally, let us denote the

number of edges running out of the node with depth d at position / by E(i,d). If d,<d2

then E(i,dj)>E(i,d2).

116 Chapter 5 Suffix Vector Representation

We denote the node with depth d at position i by Id. Let us assume that i.d has

m edges running out of that node. IS. i.d has m edges running out of it, it means that

there are m+1 occurrences of Sfi-d+L.iJ in S. Since Sfi-d+2..i] is contained in S[i-

d+l.Jj it has at least m+1 occurrences, thus there must be at least m edges running

out of node i.(d-l) D.

Based on the above observations we define three different and mutually

exclusive cases:

• Case A: the node with depth d-1 has the same number of edges as the node

with depth d and these are the same edges. In this case we simply set their

first edge pointers to the same position.

• Case B: the node with depth d-1 has the same edges as the node with depth d

plus some extra edges. In this case, the pointer of the node with depth d will

point to the edge in the list of the node with depth d-1, where its own edges

start.

• Case C: the node with depth d-1 has different edges to the node with depth d.

In this case all the edges must be represented in a separate list. We call these

nodes (with depth d-1) large nodes.

Figure 5.4 illustrates this concept and Figure 5.3 shows how it applies to our

example string.

Chapter 5 Suffix Vector Re

iggjlSaselBiSI'

iiiattcii

depth

!« — /

d-2 ~>

d-3 ->

r

> >

Figure 5.4. The Concept of Large Nodes

Some edges might be eliminated by using directed acyclic graphs (DAG)

instead of suffix trees [Gus97] (see also Chapter 4). However, the above rules allow

elimination of more edges. First, we show that all edges eliminated by DAGs are also

eliminated in the suffix vector representation [MZS02]. In [Gus97] it is proven that

two nodes {node v and node y) can be merged if they are connected by a path of

suffix links and the number of nodes in the subtree of node v equals the number of

nodes in the subtree of node y. It is shown in Figure 5.5.

h

Figure 5.5. Merging Nodes of a Suffix Tree to Create a DAG

We now show that nodes v and y have exactly the same edges running out of

them. Thus if they are eliminated in the DAG representation they are also eliminated

in the suffix vector representation. There are three different cases.

Case 1. Let us assume that nodes y and v have exactly the same number of

leaves in their respective subtrees, but there is an edge running out of node v, which

is not present in the edge list of node y. Let us first assume that there are two edges

with the same first character but they have different start positions. Let the labels of

nodes y and v be [yl..y2] and [vl..v2], respectively. The depths of the nodes are dy

and dv, respectively. Since there is a suffix link from node y to node v we know that

s[yiJi-l..y2]~S[v!..vJ. Let the edge label of the node running out of node y be

[yu~y2?J while the edge label running out of node v be [V/J..V22/. We know that

y/j>vu and Sfyj/J^SfvjJ. This means that the substring Sfyj+L.yJ+SfyjJ appears

in the string at position S[yu-dy+l..yn] and it also appears at Sfv//-dv..vuJ. We also

know that the first occurrence of the string S[yu-dy..yu] is at position yn-dy

otherwise yu would not be the start position of the edge running out of that node. It

means that there will be more edges in the subtree of node v than in the subtree of

node y because under node v we will have a leaf with index v/j-dv as well as

dy+l. In the subtree of node y we will only havs y/j-dy, which corresponds to yu-

dy+l under node v. We do not have a leaf that corresponds to vjj-dv. From Lemma

5.2 it follows that node v has at least as many leaves in its subtree as node y and

those leaves will have their indices shifted by one, that is node v has more leaves

than nodey if there is a leaf number under node v that does not appear under nodey.

We have proven that we cannot have two edges starting with the same character, but

having different indices, and running out of node y and v if they have the same

number of leaves in their subtrees.

118 Chapters Suffix Vector Representation

Case 2. Now let us assume that we have an edge /Vy/.-v^ running out of node

v that is not present in the subtree of node y. Note that because of Lemma 5.2 the

only way to have an edge running out ofnode y and not running out of node v is Case

1. If we have an edge [V11..V22] running out of node v it means that the first

occurrence of S[vu-dv..vn] is at position vj]-dv, so there is a leqfvj]-dv in the subtree

of node v. We know that the only way to have equal number of leaves is if node y has

a leqfv]j-dv-l in its subtree. If there is such a leaf it means that the label of node y is

S[vii-dv-L.virl] and there is an edge with a start position of VJJ running out of node

y. It contradicts with our original assumption.

Case 3. Let us assume that we have two edges with the same start positions but

different end positions. That is vjj=yu but V22-vu<y22-yu- V22-V11 cannot be greater

than y22-yu because it would mean that there are two different positions (m and n)

such that w=S[y22-dy-(y22-yii)+l~y22] has only one possible following (S[y22+lJ)

while cw has at least two different followings (cwa and cwb; a,b, and c denote single

characters, while w denotes a sequence of characters). If cw has more than one

following, then w must have more than one following. Let us denote the node at the

end of edge [V11..V22] by node z and the ncde at the end of edge [yu..y22] by node x.

Let us denote the start positions of two edges running out of node z by zy and Z2 and

the depth of node z by dz. We know that the leaves zi-Zd and Z2-Zd are in the subtree of

node z, thus in the subtree of node v. It means that leaves zi-zj-l and z2-Zd-l must be

under node y. In order for this to be true we must have a node at yu+V22-vn and it

cannot bey22 because y22^11^22-^11- It contradicts with our original assumption.

In order to prove that these edges are only represented once in the suffix vector

structure we have to prove that the end positions of the incoming edges of the two

nodes are also the same. If they had different incoming edges they would be

represented at two different positions in the vector, thus it would be impossible to

share edge information. Once they are in the same box they are stored under each

other because they are linked by a suffix link, so either they share edges (Case A) or

they are represented as a single reduced box.

Let us assume that y2>V2, y2 cannot be less than V2 because we know that

S[vj..V2]=S[yi+l..y2]. Sfvj..V2j is the first occurrence of Sfvi-.vJ thus V2<y2 is true.

Otherwise the label of node v would be Sfyi+l..y2j. We know that for each leaf i

under nodey there is a corresponding leafi+1 under node v. Leafvj is under node v.

It means that there must be a leafvj-1 under nodey. Otherwise they cannot have the

Chapter 5 Suffix Vector Representation 119

i
1
i

I?

t

h

same number of leaves. If there is a Ieafvj-1 under nodey it means that nodey could

have been labelled Sfvj-L.vJ, which contradicts with our original assumption.

We have shown that the extra information eliminated in the DAG

representation is also eliminated in the proposed suffix vector representation. We can

also prove that the suffix vector representation eliminates even more redundant

information. There are two types of redundant information that are still present in the

DAG representation. The first is when the edges running out of two nodes connected

by a suffix link are identical but the number of leaves in their respective subtrees is

different. Such a situation is shown in Figure 5.6.

node v nodey

node w nodex
h

Figure 5.6. Redundant Information in a Suffix Tree

Nodes v and y have exactly the same edges running out of them though the

numbers of leaves in their subtrees are different. If these two nodes have the same

value for the end position of their incoming edges their edges will be represented

only once in the suffix vector representation while multiple times in the DAG and

suffix tree representation.

The other type of redundant information is exhibited by node w and nodex. We

can store the information that node x is the same as node w except that it also has an

edge h running out of it. This is represented by Case B in Figure 5.4.

5.4 Physical Representation of Suffix Vectors

In this section we describe two alternative physical representations of a suffix

vector. The first representation occupies more space but it can be directly built from

a string in linear tim- (ihe construction of the general suffix vector is discussed in

Chapter 6). The second representation is the compact physical representation but,

because of the actual physical structures used, it cannot be directly built. However,

120 Chapter 5 Suffix Vector Representation

the first representation can be converted to the second one in linear time with

minimum overhead. From here on we will refer to the first representation as the

general suffix vector while the second one as the compact suffix vector [MZS02].

In any suffix vector representation the building blocks are boxes. One box

stores all the nodes represented at the same position. We have to be able to access

those nodes in constant time otherwise the linearity of the algorithms run on the

structure will be jeopardised. It means that in each box we have to store the number

of nodes represented at that node as well as the depth of the deepest node. We also

have to store a pointer to the first edge for each node and a next node value that

stores the index of the next node in case the natural edge is followed. Following from

Theorem 5.1 we only need to store one suffix link per box.

We start with a few observations that are utilised in either or both of the

representations described here. In Section 5.5 we analyse the space requirement of

different suffix vector representations and we will prove that the observations made

here are true in a practical sense.

Observation 5.1. The node depth of a deepest node can usually fit into 7 bits.

(The reason for using 7 bits will become clear when we describe the compact

representation but generally we can say that we usually do not need the same range

of values to store the deepest node information compared to the stored edge indices.)

Large node depth values represent long repetitions in the string. These are very

rare in English texts and also very unlikely in random texts. Representations should

not limit the possible node depth values but they may allow storing this information

in one byte whenever it is possible.

Observation 5.2. The number of nodes at a given position (in a given box) can

usually fit into 7 bits.

This observation is a direct consequence of Observation 5.1, as we cannot have

more nodes in a given box than the depth of the deepest node because nodes with the

same node depths are stored at different positions.

Observation 5.3. The length of an edge can usually fit into 1 byte.

This observation follows the reasoning of Observations 5.1 and 5.2. Long

edges mean long overlaps in the text and you cannot have many long overlaps. If you

have many long overlaps it means that you have a long text, so the proportion of

edges that are long is still small.

Urn.

Chapter 5 Suffix Vector Representation 121

5.4.1 General Suffix Vector Representation

In this representation, for each box we store the number of nodes represented in

the box (4 bytes), the depth of the deepest node (4 bytes), an array of pointers to the

first edges of each node (the length of the array equals to the number of nodes and

each pointer is 4 bytes), an array of next node indices (same length and each index is

4 bytes) and a suffix link value. Using this representation the first edge of a given

node can be accessed in constant time if we know the depth of the node.

For storing edges we make use of Observation 5.3. We store the start position

of the edge in 4 bytes but the 2 most significant bits have special meaning. If the first

bit is set to I it means that the edge is a leaf. If the second bit is set to 1, it means that

the next node pointer is stored in 1 byte rather than 4 bytes. It does not actually store

the position of the next node but rather stores the length of the edge. We also have to

store a 4-byte pointer that points to the next edge in the linked list. Using these two

special bits we can only use 30 bits to represent the start pointer, which limits the

length of the string that we may be able to store. However, it is not a real constraint

because using 4-byte pointers we can address 4GB memory space and the general

suffix vector representation, as pointed out in the next chapter, uses at least 8 bytes

per input symbol meaning that in a 232-byte memory space we can store a string with

length less than 229 characters. The structure of a box in the general representation is

shown in Figure 5.7.

Dumber of nodci | | deepeil node mffix link

Figure 5.7. A Box in the General Suffix Vector

A reduced box would only store one edge-list and one next node value because

they are the same for each node. In the general representation we do not make use of

large nodes because they do not allow linear-time construction. The space-

requirement of the general suffix vector representation is discussed in Chapter 6

along with the construction algorithm.

122 Chapter 5 Suffix Vector Representation

5.4.2 Compact Suffix Vector

A compact suffix vector cannot be directly constructed in linear time but it

allows us to store our suffix vector in a much smaller space (up to 50% reduction).

Figure 5.8 depicts the compact suffix vector representation that utilises the

characteristics discussed in the beginning of Section 5.4.

deepest node value
1 or 4 bytes

number of nodes value
lor 4 bytes

1 bit representing
the number of bytes used for
the deepest node value

extra bytes for the
deepest node value
ifneeded

next node pointers
nn*(l or 4 bytes)

extra bytes for the
number of nodes value
ifneeded

if this bit is set
this is a reduced box

if this bit is set
next node pointers
are stored in 1 byte

first edge pointers
nn*(4 bytes)

edge lists ^apwsp

next position pointer next node pointer
0,1, or 4 bytes"

leaf edge bit 'next node is 1 byte' bit

end of chain bit

Figure 5.8. Space-Efficient Storage of a Suffix Vector

In each box we have to store three pieces of information that characterize the

box rather than individual nodes, so this information must be stored once per box.

The first value that we store is the deepest node value representing the depth of the

deepest node stored at this position. From Observation 5.1 we know that the depth of

the deepest node is usually small, so storing it constantly in 4 bytes is a waste of

storage space. We use the first bit to denote the number of bytes needed to store the

deepest node value (1 or 4 bytes). Let us denote this value by /. The best case for us

is when the depth is under 128 because then it fits into the first byte (note that the

first bit is used to flag the length of the field). It is very rare that chunks greater than

128 characters are repeated in any text. The number of nodes value uses the same

number of bytes (/) based on Observation 5.2. It is possible that the number of nodes

value is less than the deepest node value. Thus it fits into one byte when the deepest

Chapter 5 Suffix Vector Representation 123

node value does not fit into one byte. However, using another bit to flag this case

would unnecessarily complicate retrieval of data and would only save space rarely.

The next piece of information stored in the box is the suffix link value. From

Theorem 5.1 it follows that every box needs to store at most one suffix link value. If

the number of nodes value equals to the deepest node value it means that the smallest

node depth in this box is one character. One-character-deep nodes do not need to

store a suffix link. In this case it is not necessary to store a suffix link for the shortest

node but we store one anyway because we use the first bit of the suffix link to flag

whether this is a reduced box and the second bit to flag whether we have small next

node pointers (1 byte) or large next node pointers (4 bytes). If the second bit is set it

means that all next node pointers can be stored in 1 byte, so the following pointers

for next nodes occupy one byte. Let s be 1 if this is a normal box and

number_of_nodes if this is a reduced box and let k denote the length of the fields

used for storing next node pointers (1 or 4 bytes).

Next we store the array of next node pointers. Next node pointers point to the

node following from this position in case we have to follow the natural edge. Note

that depending on the depth of the node stored at this position, the next node value

may vary, thus we have to store a next node pointer for each node represented at this

position. From Observation 5.3 we know that edges are usually short, which means

that we can save space by storing the length of an edge rather than the actual position

of the next node. From the length of the edge we can calculate the actual position. As

we point out later in this section it is very rare to have edges longer than 256

characters, so we only consider two cases. If all natural edges are short then next

node pointers are stored in one byte. If any of the natural edges is long, next node

pointers are stored in 4 bytes. In the array we have as many pointers as the number of

nodes. The size of the pointers depends on the size of edges as discussed above.

The next piece of information that we have to store is the array of pointers to

the list of first edges. The first of these pointers is located at the offset of

(2*l+4+number_of_nodes/s*k) bytes from the start position of the box. These are

physical pointers to a given memory address. We need as many pointers as the

number of nodes stored at this position. A pointer points to the address space where

the list of edges running out of that node is stored. It is possible that a pointer points

to an area and another pointer addresses edges within that area (this corresponds to

the cases discussed in Section 5.3).

124 Chapter 5 Suffix Vector Representation Chapter 5 Suffix Vector Representation 125

Each first edge pointer points te an area where the list of edges is stored. Below

we will discuss how a list of edges is represented. Each edge must store a next

position pointer, which tells the next position in the string where we can follow the

matching of a pattern (this is the start position of the edge). We store this information

in an integer (4 bytes). The 3 most significant bits of this value are saved for some

additional information. The first bit flags whether this edge is a leaf or an

intermediate edge. If it is a leaf there is no need to store a next node pointer, so in

this case the edge is stored in one integer. The next bit flags whether this edge is the

last one in the list or there are more edges to follow. Using this technique we do not

need to store edges as a linked list connected by pointers. Rather we can have a

fixed-length array and we check for each edge whether this is the last edge in the list.

If it is not, we know that the next integer stores another edge. The third bit flags the

number of bytes used to store the next node pointer. We follow the same reasoning

that we followed in the case of the next node pointers for the box. Edges are usually

short, so if they are shorter than 256 characters we store the length of the edge in one

byte. If they are longer, then we store them in an integer (4 bytes). The difference

here is that we can decide for each next node pointer whether we need one or four

bytes. In case of the next node pointers of the natural edges, it is determined for the

whole array. By using this technique we can always determine the address of the next

edge in the list in constant time from the first 3 bits or we learn that this is the last

edge in the list. Let / be 0 if this is a leaf and 1 if it is not a leaf. Let k denote the

number of bytes used for the next node pointer for the given edge. The number of

bytes needed to store the given edge can be calculated using the formula: 4+l*k.

5.4.3 Space Requirement of a Suffix Vector

The most space-efficient suffix tree representation so far has been developed

by Kurtz [Kur99]. He uses a collection of 42 files of different types to compare his

representation to others. We compare our compact representation to his

representation in this subsection. Kurtz uses files from the Calgary Corpus [BCW90],

the Canterbury Corpus [AB97] as well as DNA sequences used in [LI93]. We do not

consider binary files because they are not commonly used in suffix tree applications

and there is not enough information to reproduce the generated files PIR500,

R500k4, R500k20 [Kur99]. In Kurtz's collection there are English text files (light

grey shading in Table 5.1: bookl, book2, paper 1, paper2, paper3, paper4, paperS,

paper6, alice29, lcetlO, plrabnl2, bible, world 192, bib, news, trans, cp, xargs,

asyculik), formal text3 (medium grey shading in Table 5.1: progc, progl, progp,

fieldsc, grammar), and DNA sequences (dark grey shading in Table 5.1: ecoli,

J03071, K02402, M13438, M26434, M64239, V00636, V00662, X14112). Table 5.1

shows the space requirement of our and his representations. We have also included

the space requirement of compact directed acyclic word-graphs [BBE+85] because it

is also a data structure that eliminates some redundant information of suffix tress and

later we will point out the similarity between the space requirement of converted

directed acyclic word-graphs and our representation.

Table 5.1 shows the total space requirement of the test files. The size of the file

and the size of the suffix vector are given in bytes. Bytes per symbol is the average

number of bytes needed for each character in the original document. In case of 29

files out of the total of 33 files in the data set, the suffix vector representation is the

most space-efficient. For one file (trans) the converted directed acyclic graph

representation is the most space-efficient, while Kurtz's representation has the best

performance in terms of space requirements for 3 files (bible, ml 3438, v00636).

We can also analyse the results based on the type of text. There are 19 English

text files. In case of 17 files the suffix vector representation is the most space-

efficient. In one case the CDAWG representation has the best performance while in

another case Kurtz's representation is the most space-efficient.

There are 5 formal text files and in all 5 cases the proposed suffix vector

representation is the most space-efficient. The difference between Kurtz's

representation and the suffix vector representation here is much higher than in case

of English text files. Later on we will analyse why our representation is significantly

better in case of formal text files. Here we also note that the CDAWG representation

performs much better on formal text than other types of texts.

In case of DNA sequences, the suffix vector representation is the most space-

efficient in 7 cases, while Kurtz's representation is the best in case of 2 files. The

space requirement of the suffix vector representation is very similar to Kurtz's

representation and significantly better than the CDAWG representation.

3 "formal text" refers to its representation with a grammar and structure, e.g. a programming language

• *

126 Chapter 5 Suffix Vector Representation

File name

book!

bodk2

paper!

paper2

paper3

paper4

paper5

paper6

alice29

IcetiO

plrabn12

bible

world 192

bib

news

progc '

progl

progp

trans

fieldsc

cp

grammar

xargs

asyoulik

File size

768772

610857

53162

82200

46527

13287

11955

38106

152090

426755

481862

4047393

2473401

111262

377110

39612

71S47

49380

93696

11151

24604

3722

4228

125180

4638691

66496

38096

2658

56738

94648

48503

16570

152262

Compact

Suflii Vector

size

7642891

5561505

489518

778492

449325

130946

116458

352260

1450977

3886062

4746891

34952321

19293646

938647

3422077

356890

603927

416347

755344

95032

211060

33252

39897

1226042

58709494

680746

484229

33917

699190

1206867

619250

212306

191084

Bytes/symbol

Compact

Suffix Vector

9.35

8.61

8.82.

9.10

9.34

9.36

9.35

8.77

9.15

8.81

9.63

8.53

7.68

8.12

8.77

8.63

8.06

8.16

7.80

8.30

8.50

8.72

9.23

9.51

12.51

10.12

12.56

12.62

12.16

12.59

12.62

12.65

12.39

Bytes/symbol

Kurtz

9.83

9.67

9.82

9.82

9.80

9.91

9.80

9.89

9.84

9.66

9.74

7.27

9.22

9.46

9.54

9.59

10.22

10.31

10.49

9.78

9.34

10.14

9.63

9.77

12.56

12.36

12.59

12.50

12.52

12.62

12.57

12.69

12.58

Bytes/symbol

CDAWG

15.75

12.71

12.72

13.68

14.40

14.76

14.04

12.80

14.14

12.70

15.13

10.87

7.87

9.94

12.10

11.87

8.71

8.28

9.40

10.44

10.60

13.10

14.93

23.55

13.44

23.90

23.96

22.52

23.94

24.04

24.10

23.43

Table 5.1. Comparison of the Total Space Requirement

Chapter 5 Suffix Vector Representation 127

On average, the suffix vector representation is the most space-efficient for all

three types of text. The difference is most significant in case of formal texts,

reasonable in case of English texts, and very slight in case of DNA sequences. Here

we note again that the suffix vector structure's advantage over Kurtz's representation

does not solely lie in its space requirement. In Chapter 6 we describe why it is faster

to run algorithms on the suffix vector structure than on Kurtz's representation. The

combination of space- and time-efficiency makes the suffix vector superior to

Kurtz's representation.

Table 5.2 contains statistical information on the internal structure of the suffix

vector. We use these statistical data in proving why our structure requires less space

in case of some files and why it requires more in other cases. Data in columns are

described below:

Name of the file analysed.

Size of the file analysed.

The total number of nodes in the original suffix tree;

The number of large nodes in the suffix vector. These are the

nodes that need to be fully represented.

The total number of reduced boxes in the suffix vector. Reduced

boxes store one node that represents many nodes at the same

position,

The total number of boxes in the suffix vector.

The total number of edges in the original suffix tree.

The total number of edges that could be represented in one byte

in the suffix vector.

The total number of edges that needed 4 bytes in the suffix

vector, that is edges longer than 256 bytes.

The number of boxes where the value of the deepest node could

be stored in 7 bits.

The number of boxes where the value of the deepest node could

not be stored in 7 bits.

The number of nodes that do not need to be represented because

they are represented by a single node in a reduced box.

File name

File size

Nodes

Large nodes

Reduced boxes

Boxes

Edges in tree

Short edges

Long edges

Short depth

Long depth

Reduced saved

128 Chapters Suffix Vector Representation

File nam
e

booki

book2

paperi

paper2

paper3

paper4

paper5

paper6

alice29

IcetiO

plrabn12

uible

worid192

3ib

news

arogc

progl

progp

trans

Fieldsc

cp

grammar

xargs

asyoulik

ecoli

03071

kO24O2

m13438

m26434

m64239

V00636

V00662

X14112

File size

768772

610857

53162

82200

46527

13287

11955

38106

152090

426755

481862

4047393

2473401

111262

377110

39612

71647

49380

93696

11151

24604

3722

4228

125180

4638691

66496

38096

2658

56738

94648

48503

16570

152262

N
odes

385296

324525

290S7

43210

23919

6874

6221

21088

80857

226484

237072

2239780

1337299

59842

196334

21171

46504

33065

66568

6585

12810

2280

2146

62743

2978795

53654

24364

1680

37957

60900

30842

10689

99847

Large
nodes

148527

91156

7936

13430

8023

2450

1991

5718

25184

61268

89905

506475

217046

12487

53746

5495

7647

4697

7186

1184

3055

460

665

22547

1985866

15312

16573

1169

22641

41197

21330

7296

64138

R
educed
boxes

38304

27424

2325

3983

2228

607

580

1743

7673

20488

24788

181205

74368

4225

13566

1613

2385

1594

2565

388

705

185

161

6396

170433

1873

1422

92

2257

3741

1752

671

6260

B
oxes

147381

93337

8349

13961

8333

2514

2137

6057

25843

64468

91717

535114

233084

13513

55340

5815

7890

4956

7914

1250

3167

538

707

23394

1528121

12024

12705

889

17515

31929

16379

5642

49369

E
dges in
Tree

1154068

935382

82199

125410

70446

20161

18176

59194

232947

653239

718934

6287173

3810700

171104

573444

60783

118151

82445

160264

17736

37414

6002

6374

187923

7617486

120150

62460

4338

94695

155548

79345

27259

252109

S
hort

edges

439025

325571

29355

45559

26215

7719

6864

21143

85160

225806

266915

2034464

1122336

54896

203549

21409

40158

28067

49651

6220

12333

1967

2358

69692

4207235

56645

34701

2443

50723

86284

44400

15195

136350

Long
E

dges

0

0

0

0

0

0

0

0

0

0

0

56

162

0

1754

0

352

853

2685

0

0

0

0

0

16717

138

0

0

0

0

0

0

292

S
hort depth

147381

93331

8349

13961

8333

2514

2137

6053

25840

64440

91716

535006

232301

13511

55265

5814

7860

4929

7750

1248

3165

538

707

23393

1527999

11998

12705

889

17515

31929

16379

5642

49321

Long
 depth

0

6

0

0

0

0

0

4

28

1

108

783

2

75

1

30

27

164

2

2

0

0

1

122

26

0

0

0

0

0

0

48

R
educed
saved

88585

94815

9231

12190

6448

1962

1811

7155

21920

65301

56796

709244

462961

19931

59437

7022

16466

11715

26446

2119

4197

910

611

16005

255040

13518

2032

119

4099

5184

2405

898

10802

Table 5.2. Statistical Data on Suffix Vectors

Before we discuss the reasons for better performance in some cases and poorer

in other cases let us analyse that part of data that supports our observations from

Section 5.4. Observation 5.1 says that the node depth of the deepest node can usually

be stored in one byte. If you consider the 'long depth' column of the table you can

Chapter 5 Suffix Vector Representation 129

see that in most cases the number of boxes where we need more than one byte to

store the depth value is 0. The highest number is recorded for worldl92. It is 783

boxes out of 233,084 boxes, which constitutes 0.34% of all boxes. Observation 5.2

follows from Observation 5.1.

The results also support Observation 5.3. The number of long edges is 0 for

most files. The largest number of long edges can be found in ecoli, which means that

this file contains long overlaps but it still only constitutes 0.4% of all edges

represented in the vector.

The main advantage of our representation is that redundant information is

eliminated. There are two ways of eliminating redundant information. In reduced

boxes one node represents all nodes stored at that position. The 'reduced saved'

column of the table shows us how many nodes need not be stored because of reduced

boxes. Large nodes and nodes in reduced boxes are the only nodes that have to be

represented with all their edges. For the rest of the nodes only some edges or even no

edges need to be represented in the tree. Table 5.3 shows the ratio of large nodes,

boxes, and reduced nodes saved to the total number of nodes for the three types of

files we have analysed.

Type

Formal text
DNA

Large nodes/
Total nodes

17.78%
65.95%

Boxes/
Total Nodes

18.65%
50.76%

Reduced nodes saved/
Total nodes

31.05%
34.88%

8.92%
Table 5.3. Redundant Information in the Suffix Tree

Firstly, let us explain why we get much better results for formal texts. As one

can see from the data in Table 5.3, for formal texts we have many nodes represented

at each position (low boxes/total nodes value). These nodes share some information

and give a chance for longer sequence of small nodes, which is exposed in the

relatively low number of large nodes. Also the number of nodes saved in reduced

boxes is slightly higher than in case of English texts and significantly higher than in

case of DNA.

In case of DNA sequences, we can see that we hardly save any edges because

the number of large nodes is close to the total number of nodes. Also we have an

average of two nodes represented at a box, which is much lower than in the case of

130 Chapter 5 Suffix Vector Representation

the other two types. It means that we have to represent most of the nodes and most of

the edges. DNA sequences have more complicated suffix tree structures than natural

English texts or formal texts. This complex structure means that less space can be

saved by eliminating redundant information.

English text results are similar to formal text results but the slight difference in

the percentage values supports the difference in the average storage space

requirements.

We can also see that the higher the average space requirement per input

symbol, the closer Kurtz's and the suffix vector representations are. Table 5.3 shows

that higher space requirement stems from less redundant information to eliminate,

which supports this correlation.

5.5 Functionally Reduced Suffix Vector

As mentioned earlier there are string-matching problems that can be solved

without suffix link information and next node information. Applications that require

suffix link information usually also require next node information but there are

applications that only require next node information, not suffix link information. An

example of the latter application would be finding all occurrences of a pattern in a

string. If we traverse down the tree and we find an occurrence, we have to check the

subtree to find the exact occurrences. In case the length of the pattern is m and there

are k occurrences it takes O(m+k) time using a suffix tree. This can also be achieved

by using a suffix vector even if we do not have suffix links. We still need to store

next node information on edges to find that information. If we are only interested in

one occurrence then we do not even need next node information because next node

information is only used when we have to traverse the subtree of the node where the

occurrence was found. This is obvious from the description of the exact-matching

problem on suffix vectors earlier in this chapter.

In case of the general suffix tree we need suffix link and next node information

because we defined this physical representation to be constructible in linear time. In

case of the compact representation we can simply leave out either the suffix link

information or the next node information. Leaving out only the suffix link

information would not save much space but leaving out suffix link and next node

information can significantly reduce the space requirement. We call the suffix vector

Chapter 5 Suffix Vector Representation 131

representation, that does not store suffix link and next node information, the

functionally reduced suffix vector.

Figure 5.9 depicts the physical representation of a functionally reduced suffix

vector. In this representation we do not need next node pointers, which are

eliminated at both the natural edges and normal edges. Suffix links are also

eliminated. There were two special bits in the suffix link of the compact

representation. The first bit denoted whether the given box was a reduced box or a

normal box. This information is now shifted to the first bit of the number of nodes

value. If the deepest node value is stored in 1 byte it can store values up to 127 as

discussed earlier in this chapter. We also know that the number of nodes value

cannot be greater than the deepest node value, thus the first bit of the number of

nodes value can be used as a flag to indicate whether this is a reduced box or not. We

do not need the flag indicating the length of the next node values for the natural edge

because this information is not present in this representation.

deepest node value
I or 4 bytes

number of nodes value

lor 4 bytes first edge pointers
nn*(4 bytes)

extra bytes for the
number of nodes value
ifneeded

I bit representing
the number of bytes (I or 4)

used for the deepest node value

extra bytes for the
deepest node value
ifneeded

if this bit is set

this is • reduced tax
next position pointer
4 byte*

Figure 5.9. The Physical Representation of a Functionally Reduced Suffix

Vector

Edges are now stored in 4 bytes and no additional space is required to store the

next node information in this representation. Also the bit flagging the length of the

next node pointer is eliminated.

This representation is not discussed further because in our document

comparison algorithms we only use suffix vectors with suffix link and next node

information.

132 Chapter 5 Suffix Vector Representation

5.6 Summary

We have proposed and analysed the suffix vector data structure in this chapter.

This data structure is an efficient replacement for suffix trees. We have presented

three different physical representations and compared them to other representations.

The general representation does not make use of reduced boxes. Thus it is not as

space-efficient as the compact representation. The most space-efficient

representation is the functionally reduced suffix vector, but as its name suggests it, it

is not as versatile as the other two. A linear time construction algorithm is described

for the general suffix vector representation in the next chapter. Not only is tiie suffix

vector representation better in terms of space requirement than any other

representation, but it also eliminates some redundant information which is present in

other representations. The fact that redundant information need not be analysed

multiple times, along with the simplicity of the structure, which allows faster

retrieval of information from the structure, makes algorithms using the vector run

faster in practice.

We have compared our representation to the most space-efficient

representation known to date: Kurtz's representation [Kur99]. We have shown that

on average our compact representation performs better. Most of the space reduction

in our representation comes from eliminating redundant information. It has formally

been proven in this chapter that the information we eliminate is more than that

eliminated in directed acyclic graphs.

We have also analysed the internal structure of this representation and

explained the differences between results on different types of text.

Chapter 6 Suffix Vector Algorithms 133

C H A P T E R S I X

Suffix Vector Algorithms

6.1 Introduction

This chapter describes the algorithms that run on the suffix vector structure. In

Chapter 5 we have shown that the structure is space-efficient and here we also show

that algorithms can run sufficiently fast on the structure. We propose and analyse the

construction algorithm that builds the general suffix vector. We also analyse how the

matching statistics algorithm can run on the structure.

Section 6.2 describes how the general suffix vector can be constructed from a

string in linear time [MZS02]. The .gjjgorithm is based on Ukkonen's linear-time

suffix tree construction algorithm [Ukl̂ 951 but there are a few considerations that are

specific to the suffix vector. We prove that the proposed algoritlim runs in linear

time. After the theoretical presentation of the algorithm the construction steps are

demonstrated on an e?«:ample string. The running time of the algorithm as well as the

space requirement of the general suffix vector is presented in this section. We also

present a conversion algorithm that converts a suffix tree or a general suffix vector

into the compact representation. The pseudo code of the algorithm is presented as

well as the proof that the conversion algorithm runs in linear time.

The speed of algorithms run on different representations is mostly determined

by the time required to retrieve information from the tree. These issues are analysed

in Section 6.3. Suffix vector also has the advantage that it eliminates some

redundancy that is present in other representations. These features can be utilised in

many algorithms run on the vector including the matching statistics algorithm.

134 Chapter 6 Suffix Vector Algorithms

Certain steps that must be carried out on a suffix tree representation are not necessary

on a suffix vector representation. As an example we compare two strings using the

matching statistics algorithm and we point out the steps that are not necessary in the

suffix vector representation.

Section 6.4 summarises the results of this chapter and revisits the key issues

presented in this chapter.

6.2 Building a Suffix Vector in Linear Time

As mentioned in Chapter 5 we are able to build a general suffix vector in linear

time, which can then be converted to a compact representation in linear time. In

Section 6.2.1 we describe a linear-time algorithm that builds a general suffix vector

from scratch and Section 6.2.2 will describe how to convert a general suffix vector

into a compact suffix vector.

6.2.1 Linear-Time Construction of a Suffix Vector

Since a suffix vector is an alternative representation of a suffix tree we have

developed an algorithm that is based on Ukkonen's [Ukk95] linear-time suffix tree

construction algorithm. Every step in Ukkonen's algorithm has a corresponding step

in our construction algorithm. Building a general suffix vector is more complicated

because we have to deal with reduced boxes. The fact that we store multiple nodes in

one box makes things more complicated.

Ukkonen's algorithm builds the tree from left to right, which means that each

edge label has the least possible indices. In phase / the algorithm makes sure that the

implicit suffix tree 7} is complete by inserting suffixes SfO.AJ through to Sfi.AJ.

Ukkonen's algorithm in this form would not run in linear time. In each phase we

have to make only a limited number of insertions. If we find that Sjj.A] is already

present in 7}.; we can conclude that all suffixes from S[j+].AJ through to Sfi.Aj are

already present. With the automatic extensions of leaves we only have to start

inserting the suffixes in phase i+1 at j . The steps spent on reaching the required

positions between extensions add up to not more than 3n steps (n is the number of

characters in the string) by using suffix links. The above is only a rough sketch of

Ukkonen's algorithm. For detailed descriptions see [Ukk95 or Gus97] as well as

Chapter 2 of this thesis.

Chapter 6 Suffix Vector Algorithms 135

We have already proven in Chapter 5 that suffix links point to nodes in the

same box except for the suffix link of the node with the smallest node depth. Suffix

links are updated during the construction algorithm. Once a node is created its suffix

link must be directed to the next node created during the algorithm. These updates

can also be performed in our representation.

In order for the construction algorithm to run in linear time we have to make

sure that the size of a box is known when it is created. If a box needs to be extended

it means that the information that is stored in the box must be copied to a new

location in memory. The amount of data to be copied is proportional to the number

of nodes stored in those boxes (in the case of a finite alphabet). In case we need to

extend a box at some stage of the algorithm, we have to make sure that the overall

amount of data copied in the entire running of the algorithm is proportional to the

number of characters in the string.

A box may be extended in two directions. Let us assume that currently we have

x nodes at position / and the depth of the deepest node is y. Of course, x<y. Let us

assume that we have to add a node with depth z. Either z>y or z<y-x. We will show

that the latter case is only possible within one phase, and that in the first case, if

z-y>l then all other nodes between z and y will also be added to the box in the same

phase. We call the former case upward extension and the latter case downward

extension based on the way they are represented. In the proof of the following

theorem we show that only upward extension is possible once a phase is over.

Theorem 6.1. Once a phase is over and a box has been created, it is impossible

that a box must be extended downwards, that is adding a node with less depth than

the existing node with the smallest depth.

Let us suppose that in phase i in extension j we have to create a node at

position x with depth d. It means that Sfi-d.Aj was not found in the vector but S[i-

d.A-1] could be found at S[x-(d-l)..x]. We have to create a node at x with one edge

labelled (i,end) where 'end' means that this is a leaf edge. The phase is not over

because the actual substring was not found.

In the next extension we have to make sure that Sfi-d+J.AJ is in the vector. We

know that Sfi-d+J.A-lJ is in the vector. There are two possibilities: it is at either S[x-

(d-2)..xj or some other place, say S[z-(d-2)..z]. If it is found at the same position we

have to create a node with depth d-1 at x with an edge labelled (/, end). If it is found

at some different position z, it is certain that z<x because each node is stored at the

136 Chapter 6 Suffix Vector Algorithms

smallest possible position. If we do not have a node with depth d-1 at z we have to

create one. The case when there is a box there but not a node with the given depth is

discussed in Theorem 6.2. By the end of this extension we will surely have a node

with depth d-1 at z, and we know that S[x-(d-2)..x] =S[z-(d-2)..z], thus any

subsequent extension in any subsequent phase would create a node at z rather than x.

It is possible that we keep inserting nodes at x until the end of the phase. A

phase can finish in two ways. It is finished because either S[jiast-i] is found in the

vector or SfL.i] is inserted at the root, hi the latter case we have a box at x, which

stores nodes with depth d through to 1, so it is obvious that no more nodes can be

added below the node with the smallest depth, hi the former case the string is

definitely not found at x+1. If it had been found at x+1, Sjj.A] would have been

found at x+1, too. If it has not been found at x+1 it means that at some extension we

jumped to another node z, which leads us back to the previous case D.

Theorem 6.2. Let us denote the depth of the deepest node in a box by d and the

number of nodes stored in the box by nn. If we extend a box upwards, that is adding

a node with greater depth than the deepest node at the given position, by the end of

the phase we will have a continuous range of nodes from the deepest node through to

d-nn+L

Let us suppose that at position x we have a box where the deepest node is d and

in phase i at extension j we have to add a node with depth d+e. It means that the first

occurrence of S[i-(d+e)..i-l] is at S[x-(d+e)+l..x]. We also know that the first

occurrence of S[x-d+l..x] finishes at x otherwise we would not have a node with

depth d at position x. In order to have a continuous range of nodes within the box we

have to prove that in this phase extensions j+1 through to j+e-1 will also create a

node at position x. There are two reasons for not creating a node at x for these

extensions: either the phase finishes before j+e-1 or the first occurrence of S[i-

(d+k)..i-l] is at position z<x for some 0<k<e. Since in the former case each

extension tries to find an edge with label S[i] running out from x and there are no

nodes with the given depth in that box, the only possibility is the natural edge, that is

S[x+l]=S[iJ. If this were true we would not have started extension j because

S[j..i] =S[i-(d+e)J] ~S[x-(d+e)+l..x+l] would have held. It means that the phase

cannot finish between extensions^ andy+e. The latter case is also impossible because

we know that the first occurrence of S[x-d+l..x] finishes at x and the first occurrence

Chapter 6 Suffix Vector Algorithms 137

of S[x-(d+e)+l..x] finishes at x, which means that all substrings between the two will

finish at xU.

We have shown that a box can only be extended upwards, so we have to prove

that the overall number of steps involved in copying those nodes is proportional to

the total number of characters. We may also need to copy nodes when a reduced box

becomes a regular box. This involves creating nodes that have not been created yet

only because we could store them in one place. Thus these copying actions create

new nodes that are included in the linear time-bound of Ukkonen's algorithm.

Before proving that node extensions do not violate the linear running time of

the algorithm we prove the following corollary that is the result of the previous

theorems.

Corollary 6.1. Every box starts off as a reduced box. The only possible

difference between the nodes in the box is next node positions.

As we have already shown in Theorem 6.2, by the end of a phase we always

get a continuous range of nodes. If a new node has to be created it means that a new

edge running out of that node has to be created, too. This edge will be the same for

each node at the given position: (i.end). The next node pointer belonging to a given

depth is determined by the next node pointer of the edge that was split in this

extension. This may vary from node to node within a box D.

In our algorithm, whenever a new box needs to be created, we start with a

reduced box and we split that reduced box only if it is necessary. It may become

necessary because a new edge is added to some intermediate node or the next node

pointer must be changed for some intermediate node. If any changes need to be made

to the deepest node, we can apply those changes to the only node in the reduced box

because we are certain that those changes will need to be propagated to the rest of the

nodes later in that same phase. The only thing we have to be careful with is that,

when we add some extra information to the node in the reduced box, in the next

extension we will try to add that same information to some intermediate node. We

have to indicate that this new information is only there because of the nature of the

reduced box. It means that, though the actual extension does not need to be

completed, it does not stop the phase, as it would immediately cease when an

extension was not necessary.

Our rule is that whenever some extra information needs to be added to an

intermediate node of a reduced box, we split up that box and create a regular box

138 Chapter 6 Suffix Vector Algorithms

I

with the given number of nodes. It may happen that later on, that extra information

will also appear at all nodes, in which case it could become a reduced box again. We

make sure that these reduced boxes are identified in the conversion phase when we

convert our general representation to the compact representation. The conversion

algorithm is described in Section 6.2.4.

There is only one bit missing of proving that our algorithm is linear in time.

We still have not proven that the copying steps involved in box extensions are

proportional to the length of the string. We know from Theorem 6.1 that a node

cannot be extended downwards. It means that the only possible extension is when we

have a box with a deepest node of depth d, and a new node needs to be created with

depth d+z where z>0. The following theorem formalises these ideas.

Theorem 6.3. During the general suffix vector construction algorithm the

overall number of steps / involved in copying nodes is proportional to the length n of

string S the suffix vector is built on, when a box with deepest node of depth d at

position i must be extended upwards.

We assume that we have a finite alphabet. Then copying one node from one

memory location to another can be done in constant time and the constant is

determined by the size of the alphabet. Given this fact we have to prove that the

number of nodes to be copied during the entire algorithm run is proportional to n.

Here we prove that each action of copying a node can be associated with a

unique leaf. Since the number of leaves is equal to the number of characters in the

string, this guarantees that no more than n copying actions will be carried out during

the construction. In the proof we use both the tree and the vector4 representation for

demonstration, whichever is more appropriate.

Let us assume that we are in phase i at extension/, that is S/j'.JJ must be added

to the tree and we are currently in a position in the vector that has a label of S[f..i-JJ.

In Figure 6.1 the new node is depicted with a lighter colour and the details of the

paths running to nodes are depicted by a single line. In the worst case, we already

have i-j-I nodes at our current position/in the vector. It means that i-j-1 nodes must

be copied in this extension. We associate the copying of the node of depth i-Q'+l)

with leafy+7 (j+1 is the first character in the path to the node), node of depth i-Q+2)

with leafy+2, etc. Figure 6.1 depicts that in the tree it will mean that on the path

4 The expressions "suffix vector" and "suffix tree" are often used interchangeably in this thesis because
of their one-to-one correspondence.

Chapter 6 Suffix Vector Algorithms 139

running out of node labelled S/j+L.i] we have to create a leaf with label j+1. It is

created either in the next extension of the same phase or it is found in the vector.

During some later phase it still has to be created because each position in the string

must have an associated leaf in the tree.

i-l

•

Figure 6.1. Associating Copying Activities with Leaves

It may be clear from this association that every leaf has only one copying

action associated with it. We give a formal proof below. The idea that different

copying actions have different leaves associated with them is illustrated in Figure

6.2.

I
- I,

Figure 6.2. Different Copying Actions Have Different Leaves Associated with

Them

Let us assume that the copying of two different nodes denoted by Kx and Hy,

respectively, have the same leaf; associated with them. The leaf associated with

copying a node is always in the subtree of the node, so both Kx and Hy must be on the

path to leaf/ This means that at some stage we had to include S[f-l..i] and S[j-l..k]

in the tree. Without loss of generality we may assume that i<k, that is node Hy is

deeper than node Kx. From Ukkonen's construction algorithm [Ukk95], we know that

it is only possible in two different phases. However, if they are inserted in two

140 Chapter 6 Suffix Vector Algorithms

different phases, that means that Sjj-l.A] was found in the tree at phase /, extension/-

1. Otherwise it would have meant that the next extension is/.i. Thus there would not

be an extension j-L.k. This means that it could not have possibly generated the

copying action of Kx, which contradicts with our initial assumption that it is

associated with leaf/. Note that this conclusion also proves the situation when Kx=Hy

because the same node cannot be copied multiple times in the same extension D.

6.2.2 Performance Results of the General Suffix Vector

In Section 6.2.1 we have formally proven that the construction algorithm that

builds the general suffix vector is linear in time. In this section we present the

practical results. We analyse the running time of the construction algorithm as well

as the space requirements of the general suffix vector representation.

Table 6.1 contains the running time of the construction algorithm on our test

machine (Intel Pentium II 433MHz, 128M RAM, Windows 2000 Professional).

Following is a description of what is shown in each column:

File name The name of the file the suffix vector was generated

on.

The size of the original file.

The size of the general suffix vector created from

the file.

The average space requirement of the general suffix

vector (bytes per input symbol).

Construction Running Time The running time of the construction algorithm in

milliseconds.

The number of input characters processed on

average in a millisecond.

The number of bytes generated on average in a

millisecond. (These are the bytes occupied by the

general suffix vector).

File size

General Suffix Vector Size

General Suffix Vector

(bytes/input symbol)

Input characters / ms

Bytes generated / ms

Chapter 6 Suffix Vector Algorithms 141

F
ile

 n
am

e

DOOki

book2

paperi

paper2

Daper3

paper4

paper5

paper6

alice29

IcetiO

plrabn12

Dible

world 192

bib
news

progc

Drogl

Drogp

trans

fieldsc

cp

grammar

xargs

asyoulik

ecoli

J03071

k02402

m13438

m26434

m64239

V00636

v00662

x14112

F
ile

 size

768772

610857

53162

8220C

46527

13287

11955

38106

15209C

426755

481862

4047393

2473401

111262

377110

39612

71647

49380

93696

11151

24604

3722

4228

125180

4638691

66496

38096

2658

56738

94648

48503

16570

152262

G
en

eral S
u

ffix
V

ecto
r S

ize

11102805

8409961

727482

1170267

671955

194397

170968

523341

2185507

5862134

7170978

51453499

28723455

1411371

5065889

522901

898341

616040

1204981

139420

332458

46894

59260

1839918

88993178

1073381

786963

55148

1136057

1964668

1008246

345741

3088828

G
en

eral S
u

ffix
V

ecto
r

(b
ytes/in

p
u
t

sym
b

o
l)

14.44

13.77

13.6£

14.24

14.44

14.63

14.3C

13.72

14.37

13.74

14.88

12.71

11.61

12.69

13.43

13.20

12.54

12.48

12.86

12.50

13.51

12.60

14.02

14.70

19.18

16.14

20.66

20.75

20.02

20.76

20.79

20.87

20.29

C
o

n
stru

ctio
n

R
u

n
n

in
g

 T
im

e

5789

4734

407

607

377

107

100

311

1188

3576

4323

33562

20685

831

3323

327

464

320

785

77

198

23

30

1031

31562

462

277

17

404

718

357

117

1142

In
p

u
t

ch
aracters

 /
m

s

132.80

129.05

130.62

135.35

123.41

124.57

119.55

122.53

127.99

119.34

111.46

120.59

119.57

133.89

113.48

121.14

154.41

154.15

119.36

145.45

124.26

159.51

140.93

121.38

146.97

143.93

137.53

159.48

140.44

131.88

135.74

142.03

133.37

B
ytes

g
en

erated
 /

m
s

1917.91

1776.63

1787.43

1926.89

1782.37

1822.47

1709.68

1682.77

1839.14

1639.30

1658.80

1533.09

1388.61

1698.40

1524.49

1599.09

1936.08

1923.12

1535.01

1818.52

1679.08

2009.74

1975.33

1784.02

2819.63

2323.34

2841.02

3308.88

2812.02

2737.58

2821.58

2963.49

2705.54

Table 6.1. Running Time of the Construction Algorithm

142 Chapter 6 Suffix Vector Algorithms

The values in the column 'input characters per ms' show that our algorithm

runs in linear time. The lowest value is 111.46 characters per millisecond and the

highest value is 159.51 characters per millisecond. The latter belongs to file

'grammar' and it is small enough to fit into the cache. That is why we experience

significantly better performance. The chart in Figure 6.3 shows the running time of

the algorithm for different file sizes.

Running Time of the Construction Algorithm

40000

35000

"ST 30000
E
T 25000
E
~ 20000
O)

'E 15000
cc

10000

5000

1000000 2000000 3000000 4000000 5000000

Size of File (bytes)

Figure 6.3. Running Time of the Construction Algorithm

6.2.3 Construction of the Suffix Vector on an Example String

In this section we show how the construction algorithm works on our example

string. We build the general suffix vector for string £= 'aabbbabbbabba$'. We will

refer to the theorems and observations of Section 6.2.1 whenever it is relevant. For

each phase we show the current state of the suffix vector after the phase has finished.

Figures 6.4.(a) through to 6.4.(j) show these transformations.

Phase 1. {Figure 6.4. (a)) This is the beginning of the construction. We have to

insert the edge S[0..0] into the vector. Since this is the first edge it will run out from

the root. Figure 6.4.(a) depicts the suffix vector data structure after S[0..0] is

inserted. Our current position in the vector is depicted by the arrow under the string.

The shaded box with the solid border depicts the first substring that we had to insert

into the tree (the first extension of this phase). The shaded box with the dashed

border depicts the last substring that we had to explicitly insert in this phase (the last

Chapter 6 Suffix Vector Algorithms 143

extension of the phase). The new edge from the root was created with the indices

(0,x), which means that the edge starts at position 0 and it is a leaf.

i

! !

root '•

0.x

1 < 5 6 7 8 9 10 I I 12 13

b b b a b b b a b b a $

Figure 6.4.(a). Phase 1.

Phase 2. (Figure 6.4.(b)) Since Phase 1 finished with inserting a 1-character

edge, in Phase 2 we have to insert S[J..1J. We go back to the last visited node, which

is the root node in this case, and we have to follow its suffix link. Since this is the

root, there is no suffix link, thus we have to find S[L.lj='a' from the root. We check

the edges running out of the root and we find that edge. Since this edge has been

found in the vector explicit extensions are unnecessary. There was no last explicit

extension in this case. That is why the dashed box does not contain any indices. Our

current position in the vector is still position 0 (see the arrow below the scring).

root •'

0,x

9 10 II 12 I]

a|a b b b a b b b a b b a $

Figure 6.4.(b). Phase 2.

Phase 3. (Figure 6.4.(c)) We have found SfL.lJ in the string, so in this phase

the first extension will involve inserting S[1..2]. Our current position is 0, thus we

have to check whether there is a continuation here that starts with S[2]= 'b'. First, we

check the natural edge S[l], however this does not match. A new box with a new

node must be created here. The depth of the node is 1 because we arrived here when

traversing the path ofSfJ.JJ. The new node will have a new edge labelled (2,x). The

new box and the new edge are depicted by dashed borders. The first number in bold

(1) says that the depth of this node is 1. The V in bold means that following the

natural edge there is no next node, which means that this is a leaf. When we created

this node, we broke up the original edge (0,x) running out of the root, thus the next

node on the natural edge inherits the next node information of the original edge (x).

The new node will become the next node of the original edge, thus the next node of

144 Chapter 6 Suffix Vector Algorithms

edge (0,x) must be changed to the current position (the new edge is (0,0)). The suffix

link of this node does not need to be set because this is a node with depth 1. Since the

substring S[1..2] was not yet found in the vector we have to explicitly do the next

extension of this phase, which is finding the string S[2..2] in the vector. The last

visited node is the root since the newly created node need not be considered. We

have to find an edge starting with S[2J= 'b' from the root. There is no such edge, so

we have to create one. The new edge will be (2,x) and it is depicted by a dashed box.

There are no more extensions in this phase. The first and last extensions are depicted

with solid and dashed boxes, respectively.

• root •

0

2,x j *

' &

0.0

3 9 10 11 12 13

a . a t u b b a b b b a b b a $

Figure 6.4.(c). Phase 3.

Phase 4. (Figure 6.4.(d)) Since Phase 3 finished with inserting a 1-character

edge, the first extension of Phase 4 is inserting S[3..3J. Our current position in the

vector is 2 and the last visited node is the root. Thus we must go back to the root. We

have to find an edge that starts with S[3J='b'. This edge is (2,x), which means that

this extension is done implicitly and it marks the end of this phase.

• root !

| 2,x

1 2

0,0

h
a

4 S 6 7 8 9 10 I I 12 13

a b f b b a b b b a b b a $

l,x-2,x

Figure 6.4.(d). Phase 4.

Phase 5. (Figure 6.4.(e)) In Phase 4 we have found S[3..3J. Therefore the first

extension of this phase involves finding S[3..4], which means that from our current

position 2, we have to check if there is a continuation with S[4]-'b'. F;rst, we check

the natural edge and find the next character S[3]='b\ thus this extension is done

implicitly. The current position pointer is incremented. We are required to examine

Chapter 6 Suffix Vector Algorithms 145

whether the last visited node needs to be updated. Updating is unnecessary, as the

edge we are currently on is (2,x)t thus there is no next node.

;_rpot !

2.x

0 I 2

0.0

5 6 7 I 9 10 II 12 13

a,a b bjb a b b b a b b a $

1.x-2.x

Figure 6.4.(e). Phase 5.

Phase 6. (Figure 6.4.(f)) In Phase 5 we have found S[3..4J, thus the first

extension in this phase involves finding S[3..5] in the vector. Our current position is

3 and we have matched two characters (3,4). We have to check whether there is a

continuation with S[5]='a'. The natural edge does not match and there is no box at

this position, thus we have to create a new box with a new node, which has an edge

(5,x) running out of it. The new box and the new edge are depicted by dashed boxes.

The next node pointer of the natural edge is inherited from the original edge (2,x).

The next node pointer of the original edge becomes 3. This box is a reduced box

because during the construction algorithm each box starts off as a reduced box (see

Corollary 6.1). The issue of a reduced box was not relevant in the previous case, as

the deepest node there had a depth of 1. If the next node had to be created at this

position, we would only need to update the number of nodes value and check

whether the next node values match.

• root I

0,0

6 7 8 9 10 I I 12 130 I 2

b,b|b a b b b a b b a $
\
[I,x-2,x

Figure 6.4.(0- Phase 6.

In the next extension we have to find S[4..5] in the vector. We know that

S[4..4J is in the vector, hence we must traverse down to its position. The last visited

node is still the root. We find S[4..4] on edge (2,3), our current position is 2. From

146
Chapter 6 Suffix Vector Algorithms

there we must check whether there is a continuation with S[5j. The natural edge does

not match and there is no box at this position. A new box with a new node has to be

created with an edge (5,x). This new box is also depicted by a dashed box in Figure

6.4.(f). The new box will inherit the next node pointer from the original edge (2,3)

and the next pointer of the original edge will be our current position (2). We created

a new node, which means that the suffix link of the node created in the previous step

must be directed to this new node. The suffix link is depicted by the dashed arrow

bei •;;-iin the two new boxes.

In this extension we had to create a new box at a different position and not a

new iiod« at the same position as the last extension. It means that our expectation that

a new node will be created at the same position was not realised. Nothing was lost

by creating the box at position 3 as a reduced box. Later in the construction

algorithm we will find situations where this basic assumption holds true.

Since S[4..5] has not been found we have to do the next extension, that is

finding S[5..5] in the vector. We have to go back to our last visited node, which is

still the root. It means that we have to find S[5]-'a' running out of the root. There is

an edge (0,0) which starts with 'a'. Thus this extension is implicitly done, which

marks the end of this phase.

Phase 7. {Figure 6.4.(gj) In Phase 6 we have found S[5..5], thus the first

extension in this phase involves finding S[5..6J in the vector. Our current position is

0. We have to check whether there is a continuation wizh S[6]-'b' from this position.

The natural edge does not match but there is an edge running out of the node in this

box (2,x). We update our last visited node to the node at position 0 and set our

current position to 2. The last visited node is depicted by a dashed box.

2,2 > 0,0

! 5 9 10 II 12 13

a bA.bi b a b b b a b b a $

2,x-5,x k

U-5,x

Figure 6.4.(g). Phase 7.

Chapter 6 Suffix Vector Algorithms 147

Phases 8.-12. {Figure 6.4.(h)) These phases are similar to Phase 7. The next

character is always found on the natural edge, thus no explicit extensions need be

done.

2,2 > 0,0

0 1 2 3 4 I s , . 6 ' v • • 7 : , ' • ' • • . ; ' • » . - , ! ? • • . • • > • 12 13

a b t y b a b b a $
2,x-5,x

-5.x r*''

Figure 6.4.(h). Phases 8-12.

Phase 13. (Figure 6.4.(i)) In Phase 12 we have found S[5..U], thus the first

extension in this phase involves finding S[5..12] in the vector. Our current position is

7. We have to check whether there is a continuation from here with S[12]-'a'. The

natural edge (SfSJ^'b1) does not match and there is no box at position 7, which

means that a new box and a new node with a new edge need to be created at position

7. We create a reduced box, which represents only one node at the moment. The new

node inherits the next node pointer from the original edge (2,x) and the new next

node pointer of the original edge becomes 7. This is the single node at position 0.

2,2 0.0 j

2 3 4 13

a (a b .bi b a4b bi b a b b a $

l,x - 2.7 ,hlAl?4 is "*-i 7,x -Li;,?:
;2,7-5,x; ; \

1 1,3-5,7

Figure 6.4,(i). Phase 13.

In the next extension the algorithm has to insert S[6..12J. The last visited node

was at position 1 with depth 1. Since this is a node with depth 1 its suffix link points

to the root. We know that S[6..11] is already in the vector, thus we first find an edge

that starts with S[6]='b'. This is edge (2,2). This is a one character edge, which

means that we have to find S[7..U] starting after position 2. First, we check the

'I,:..

148 Chapter 6 Suffix Vector Algorithms

natural edge (character 3) this matches. Thus we follow the natural edge. We have to

look up the next node information from the box when we follow the natural edge.

The next node is x, which means we are on a leaf and we can immediately jump 11-

7+1=5 positions, which places us at position 7. We have to check whether there is

continuation with Sfl2J= 'a' from here. We find that there is none. We have created

a reduced box at position 7 in the previous extension. Now we must create a node at

the same position with a depth value d-l=3. This would have the same edge running

out (12,x) and the next node pointers of the natural edge also match because the next

node pointer of this node is inherited from the original edge (x). Since this is a

reduced box, we simply increment the number of nodes value to 2. Our last visited

node was at position 2, the natural edge was followed, and subsequently, we updated

its natural edge next node pointer to 7. This is in the box at position 2 but this value

is changed later in this phase. That is why 3 is shown in Figure 6.4.(i). The suffix

link is not updated as a node was created at the same position and we know from

Theorem 5.1 that only the suffix link of the node with the smallest depth needs to be

explicitly stored.

The following two extensions are similar to the previous one. The first

extension updates the next node pointer at position 3, while the second updates the

next node information of the normal edge stored in box 2. The number of nodes

value of the reduced box at position 7 becomes 4, and our last visited node is the

node at position 2.

Since our last visited node is one-character deep we must match the characters

from the root. In this extension S[9..12] must be inserted into the vector and we

know that S[9..11] is already there. We start traversing from the root. S[9]='a'

matches edge (0,0) at the root. We jump to the node at position 0 finding that we

must follow the edge (2,x) from there, which places us at position 3. This means that

the first occurrence of S[9.. 11] is at Sfl..3J. We have to check whether there is a

continuation with character S[12J='a' from here. The natural edge does not match,

however there is a box at position 3.

The deepest node of this box has a depth of 2 and we have matched 3

characters. It means that there is no possible continuation from this node. In this

situation we already have a box at a given position but this box needs to be extended

upwards. This is the case that has been discussed in Theorems 6.1, 6.2, and 6.3. We

have to create a new box, which has a deepest node value of 3, and the number of

Chapter 6 Suffix Vector Algorithms 149.

I

nodes stored in this box will become 2. The new box and the new edge are depicted

by dashed boxes in Figure 6.4.(i) at position 3. The last created node was at position

7, which means that the suffix link of the box at position 7 must be directed to this

box.

We show how the leaf numbers are assigned to copying a node as it is

described in the proof of Theorem 6.3. Note that assigning this leaf is not part of the

algorithm. This merely demonstrates the idea utilised in the proof of Theorem 6.3.

The copying of this node is associated with the leaf with an index j+1 where/ is the

index of the currently inserted leaf. We are currently inserting leaf 9, thus we assign

10 to the copying of the currently existing node at position 3.

In the next extension we have to insert S[10..12] into the vector. Our last

visited node is at position 0 with depth 1, thus we have to find SflO.JlJ starting

from the root. Edge (2,2) matches SflOJ='b'. From there we can follow the natural

edge, which places us at position 3. We must determine whether there is a

continuation from here that starts with S[12]= 'a'. The natural edge does not match

but there is an edge (5,x) that matches the next character. This means we have found

S[10..12] in the vector, therefore this phase is over. The last visited node is updated,

which is the node at position 2 with depth 2.

Phase 14. {Figure 6.4.(j)) In Phase 13 we have found SflO..12J, thus the first

extension in this phase involves finding SflO..13J in the vector. We are at position 5,

the natural edge does not match S[13]= '$' and there is not yet a box here, meaning

that we must create one. A reduced box is created, which is depicted by the dashed

box at position 5. We must update the next node pointer of the original edge. The

original edge is the edge at position 3 with depth 2.

root !

13,x 0.0

2 3 4 5 6 7 8 9 io

b b a L b b b a b b a $ A

3,7 - 12.x
2,7 - 5,5

7 , x - l 2 , x

•?H 3.7-lJis

Figure 6.4.(j). Phase 14.

I

150 Chapter 6 Suffix Vector Algorithms

In the next extension the original edge is the edge of the node at position 2.

Again we must create a new node at position 5, meaning that we increment the

number of nodes value of the reduced box because the next node pointers match. The

next node pointer of the original edge (5,7) has to be updated to 5.

In the next extension S[12..13J must be inserted. S[12..12] is found at position

0 and there is already a node with depth 1, although there is no edge starting with

S[13]= '$', consequently this new edge is added. The new edge is depicted in Figure

6.4.(j) by the dashed box. The last created node was at position 5, which means that

its suffix link has to be directed to this node.

In the next extension, S[13..13J must be found starting from the root. This is

not the case. As a result, a new edge needs to be created with label (13,x).

We completed the last phase and the suffix vector has been built.

6.2.4 Converting a General Suffix Vector into a Compact Suffix Vector

There are a few differences between the two proposed suffix vector

representations. These differences are discussed in this section. A conversion

method, that converts the general representation to the compact representation, is

described for each difference. In order to make sure that the conversion algorithm

works in linear time we prove that none of the nodes or edges are examined more

than a constant number of times and that none of the edges or nodes are copied more

than once.

Edges are stored as linked lists in the general suffix vector, and stored as fixed

length byte arrays in the compact representation. The conversion between the two is

straightforward. We must examine the linked list in one sweep to calculate the

overall size of the byte array that stores the edges. A memory area must be allocated

for the array and then the edge information must be filled in.

The depth of the deepest node in the box and the number of nodes stored in the

box can occupy 1 or 4 bytes each. The first bit of the first byte of the box object is

reserved to flag whether these values are stored in 1 byte (the remaining 7 bits of the

first byte) or in 4 bytes. This information can be retrieved directly from the actual

deepest node value in the general representation.

The next piece of information to be stored is the suffix link. The first two bits

have special meaning. If the first bit is set this is a reduced box, which means that it

represents more than one node. However, all the nodes contain identical information.

Chapter 6 Suffix Vector Algorithms 151

Reduced boxes are flagged by a bit in the general representation, so this information

can be retrieved directly. The second bit indicates whether all next node values can

be stored in 1 byte rather than 4 bytes. Proceeding through all next node values

stored in the given box we can set this flag accordingly. We set the actual next node

values by examining the next node values in the general representation. In the case of

a reduced box there is only one next node value.

The most computationally expensive part of the conversion is to identify large

nodes and set first edge pointers accordingly. The first node, which is the deepest, is

always a large node. For a definition of large nodes see Section 5.3. The way the

general suffix vector is constructed ensures that if two consecutive nodes have

common edges (edges with the same start and end pointer) they appear in the same

order. If the difference between two nodes is only extra edges they can be

represented in the same list of edges by setting the pointers accordingly (Case B in

Section 5.3). Of course, if all their edges are identical, they can use the same list of

edges (Case A in Section 5.3). Comparing two edge-lists can be performed in

constant time as identical edges appear in the same order. We begin comparing the

edges of the deepest node d with the node with depth d-1. If they can be represented

in the same edge-list (Case A or Case B) we then compare the node with depth d-1

with the node with depth d-2. We continue until Case C applies or we reach the node

with the smallest depth in the box. If Case C applies at a node with depth x we can

create one edge-list for nodes down to depth x+1. The lower the node is in the list,

that is, the less deep the node is, the more edges it will have. This means that first we

must store those edges that appear in node with depth x+1 but do not appear in node

with depth x+2. Again this can be done in constant time because of the order of the

edges. These steps are repeated until we reach the node with the largest depth value.

From here on, the node with depth x will act as the deepest node and the steps

described above are repeated. By the time we reach the node with the smallest depth

all first edge pointers will be set properly. Figure 6.5 shows what the edge-lists look

like by using large nodes.

It is possible that by the end of this step we find a reduced box that was not

originally flagged as a reduced box. Two conditions must be met. Firstly, all next

node pointers must be equal. Secondly, the deepest node must be the only large node,

and Case A must apply between all consecutive nodes. If these criteria are met we

can declare this box as a reduced box and change data accordingly.

1

152 Chapter 6 Suffix Vector Algorithms

z-l
first edge pointers I

edge lists

Figure 6.5. Utilizing the Concept of Large Nodes

The space-overhead of the conversion algorithm is very low. When general box

information is copied, the old data-space can be freed immediately. When next node

pointers are copied, the old space of next node pointers can immediately be freed.

When copying edge-lists we may need to store one common edge-list between the

two representations, other edge-lists are stored in either of the representations but not

both of them.

The high-level pseudo code in Figure 6.6 summarises the conversion

algorithm.

For each box that is not empty

Fill in box values

x = deepest node

While x is in Box

d = x

While d in Box and d is not large

Decrement d

End While

Set Edges for x through d+1

x = d

End While

End For

Figure 6.6. The Pseudo Code of the Conversion Algorithm

6.3 Running Algorithms on a Suffix Vector

The efficiency of storing the suffix tree/vector is only one of the issues needing

consideration. Retrieving information from the tree is at least as important as the

Chapter 6 Suffix Vector Algorithms 153

space requirement of the representation. The time-advantage of the proposed suffix

vector over Kurtz's representation [Kur99] is two-fold. Firstly, this eliminates

redundant edges and nodes; these do not have to be revisited in an algorithm that

runs on the suffix vector. Secondly, the suffix vector structure itself is a simpler

structure allowing faster retrieval of edge and node information. In the following

section we analyse the number of steps potentially saved by not visiting redundant

nodes and edges while in Section 6.3.2 we compare the number of operations needed

to retrieve the information on nodes and edges in both representations.

6.3.? Avoiding Revisiting Nodes in the Suffix Vector

As already reported in Chapter 2, the suffix tree is a versatile data structure

used to solve many string-matching problems. Some problems, such as finding the

first occurrence of a pattern in a string, do not require suffix link information. Other

algorithms, such as the matching statistics algorithm, which we use in our document-

comparison application, utilise suffix link information. In this group of algorithms,

nodes may be visited multiple times and the suffix vector representation is capable of

eliminating the examination of the same information multiple times. We illustrate

how this is achieved in the case of the matching statistics algorithm. Other

algorithms that utilise suffix links can also benefit from the suffix vector

representation. The matching statistics algorithm aims at finding the matching

statistics value for each position in string P compared to string S and is described in

detail in Chapter 2.

Let us assume that we have found that the matching statistics value for position

/ in P is ms[i]=l and we have finished matching at position k in S. In the suffix vector

representation, this means that Sfk+lJ^Pfi+lJ and either there is no box at position k

or there is a box but no continuations match Pfi+lJ. We must return to the last visited

node, follow its suffix link and go down to find the occurrence of P[i+l..i+l-l],

which we know is in the string. Consider the following two cases.

Case 1. We find P[i+l..i+l-l] at some position j*k. In this case the part of the

vector is different from the part of the previous phase; therefore edges must be

examined. If this is the case it will require as many examinations as did the suffix

tree representation.

154 Chapter 6 Suffix Vector Algorithms

Case 2. We find P[i+l..i+l-l] at position j=£+/-/. If there is no box at the

given position, we recognise that ms[i+l]=l-l. Where there is a reduced box, we

recognise we need not examine the edges running out of that node as we have

examined the edges of node with depth / at position k Now we must examine the

edges of the node with depth l-l. These are the same as this is a reduced box. If there

is a regular box at position k we may still save comparison steps in the compact

representation. In phase / we can store the actual address of the first edge examined.

In phase i+1 we only have to examine edges up to this address as edges after this

have been examined in phase i and no match has been found. If Case A applies (see

Chapter 5) it means that this node has exactly the same edges as the node examined

in phase /, so no further examination is required and ms[i+l] can be set to /-/. If

Case B applies we may find a continuation before reaching the edges of the previous

node. In that case we follow matching using that edge. The other case is when we

reach the first edge of the previous node, so no further examination is required and

msfi+1] can be set to /-/. If Case C applies, it means that there are no shared edges

between the two nodes making this case similar to Case 1.

Below is an example of the running of the matching statistics algorithm on a

suffix tree and a suffix vector. We note the steps that are not necessary in the case of

the suffix vector but that are still necessary in case of the suffix tree. The string that

we compare with our example string is T='ababcdabcab$'. We build the compact

suffix vector and the suffix tree for our original string S='abcdabdbcdabb$' and

calculate the matching statistics of T. The suffix tree and the suffix vector for S are

the same as in Figures 5.1 and 5.3. The path followed in each step is depicted by the

dotted arrows in Figure 6.7. (a) through 6.7.(k).

Position 0. (Figure 6.7.(a)) We must traverse down the tree and the vector

starting from the root. We must determine whether there is an edge running out of

the root starting with T[0]-'a'. There is (0,1). Now we need to compare the next

character of the string to the next character on the edge. In this particular case they

are equal: T[1]=S[1]. We have reached the end of the current edge, so we have to

update the current node value. Node 1 will be our current node. We have to check

whether there is an edge starting with T[2J='a' running out of this node. There is no

such edge, so we set the matching statistics value for position 0 to 2. So far, we have

made the same number of comparisons. In the worst case we had to make 5

comparisons at the root, then 1 comparison to check the next character on the edge,

Chapter 6 Suffix Vector Algorithms 155

and then 4 comparisons to check the edges running out of node 1. That is 10

comparisons up to this point in both the tree and the vector.

13 N 10

d » b d b c d a b b S
I O.HI.I | J , 5 |] J | I 3 J I I

y 1

• . I I 1 I 4 1 4 1 I « II II II II

*'Aa b c d i a b i d b c d a b b S

t.3

Sj-llji

3.1-IJji

®

Figure 6.7.(a). Position 0.

Position 1. (Figure 6.7.(b)) Instead of trying to find the matching statistics

value of position / by starting from the root we can follow the suffix link of node 1,

which points to node 2. Note that these nodes are represented at the same position in

the vector making the suffix link implicit. In the tree we must check the four edges

running out of this node again, while in the vector we only need to check one edge

not present in node 1 as the rest of the edges have already been checked. This can be

achieved by storing the pointer to the first edge every time we start analysing a node.

When this edge is reached in the next phase we can stop. In this case we cannot find

a matching edge, so we set the matching statistics value of this position to 1. The

number of comparisons in the case of the tree and the vector up to this point are

Qree-14 and Cyector^ll, respectively.

13 " \ 10

Q.I | I.I 13,3 |3,3 | I3,n

* I 1 1 4 1 « T • • I* II II t l

a b c d i a b i d b c d a b b S

U-7.x|Q)

>-.....--

Figure 6.7.(b). Position 1.

156 Chapter 6 Suffix Vector Algorithms

Position 2. (Figure 6.7.(c)) The last match was 1-character long, thus we have

to start traversing from the root again. We must check whether there is an edge

running out of the root starting with T[2]= 'a' - there is (0,1). In the worst case we

have to do 5 comparisons in both cases. From * ?re we can traverse down to

T[7]='b', meaning that 7/2.. 7] can be found in S. 1 is, the matching statistics value

must be set to 6 at position 2. One node encountered on our way (node 1) requires 3

comparisons in the worst case. In the case of the other characters we need one

comparison per character for both the tree and the vector. By the end of this phase we

have done Ctree~26 and Cvector=23 comparisons, respectively.

13 - y - v 10

».. . .„
J O.I | I.I |2.S| 3,3 113.x I

0 I 1 1 <) t 7 I • 10 II 13 II

a b , c d i a b i d b c d a b b S

5,1 -I2,x

4,1-12.1

. 12.x

Figure 6.7.(c). Position 2.

Position 3. (Figure 6.7.(d)) The last visited node was node 1, so we must

follow the suffix link of that node and then traverse down 4 characters that definitely

match. We arrive at position 5 in the vector and node 4 in the tree. We must check

whether there is an edge starting with T[8J= 'c' running out of the node. This requires

the analysis of the two edges in the case of both the tree and the vector. No match is

found, thus the matching statistics value is set to 5 at this position.

I 0.1 11.1 |2.

0 1 ; !) 4 s'f t 7 1 • 10 II II I)

a b ' c d i a b i d b c d a b b S
1.S-7.J©

!•*•

S.J-I2.X

4,I-I2,X

}•-.! •' ..;•''

Figure 6.7.(d). Position 3.

Chapter 6 Suffix Vector Algorithms 157

Two comparisons are needed in both cases at node 4 and a maximum of 4

comparisons when following the suffix link, making the total C,ree=32 and

C =70
^vector *-s.

Position 4. (Figure 6.7.(e)) Our last visited node was node 4, so we must

follow its suffix link and check the possible continuations from that node. There is no

edge running out of node 5 that starts with T[8J='c\ In the tree we must explicitly

check the edges running out of the node (2 comparisons). In the vector we can

simply skip this step because we have a reduced box, which means we immediately

conclude that this node has the same edges running out as the previous one.

Therefore we save these two comparisons in the case of the vector. In Figure 6.7. (e)

this box is shown as a regular box in order to illustrate the steps performed. The total

number of comparison steps at the end of phase 4 is Ctree=34 and Cvector=29.

10 II |] U

c d i a b i d b c d a b b $

Figure 6.7.(e). Position 4.

' ; u o
o e d a b b j P1 1

O.I | I.I 12,3 | U 113.,

• I 1 > I > » » I « 10 il |] i l

a b e d i a b i d b c d a b b S

I ••»••>•» I ®

M-I2.«|6J|HJ> I® .

4,1 • 12."

J.1-I2.X

H...

Figure 6.7.(f). Position 5.

Position 5. (Figure 6.7.(f)) In this phase we jump from node 5 to node 6, which

is still represented by the same reduced box in the vector. This means no further

158 Chapter 6 Suffix Vector Algorithms Chapter 6 Suffix Vector Algorithms 159

matches can be found and two further steps are saved in the vector. Ciree=36 and

Position 6. {Figure 6.7. (g)) In this phase we explicitly have to jump from node

6 to node 1 in both the tree and the vector. Note that in the vector these two nodes are

stored at different positions. We must check the edges running out of this node,

requiring a maximum of 3 comparisons in the worst case for both representations.

c d| a bi d b c d a b b $

Figure 6.7.(g). Position 6.

In the suffix vector we can only save comparisons if the nodes to be examined

in consecutive steps are represented at the same position. This holds true as no data is

shared between nodes stored at different positions. There is an edge (2,x) running out

of this node with T[8]='c' but no further matches are possible, so we set the

matching statistics value for this position to 3. The total number of comparisons by

the end of this phase is Ctree=40 and Cvector=33.

I 0,111.112,3 133113,» |

• \ ') 4 J • ? • • |O | | I] I)

a f t c d i a b i d b c d a b b S

•• u-n,*\tj. |

13-12.>|6.K|I3,X I

i_=U (JU-12.X

4J-I2.X

3^-12.x

Figure 6.7.(h). Position 7.

Position 7. (Figure 6.7.(h)) We follow the suffix link from node 1 to node 2

and find the outgoing edge that starts with T[8]='c' by using at most 4 comparisons

in both cases and one more comparison is needed to test that no more matches are

possible. The matching statistics value for this position is 2. Ctree=45 and Cvector-38.

Position 8. (Figure 6.7.(i)) We have to begin from the root and find the edge

that starts with T[8]='c'. In both cases this requires a maximum of 5 comparisons,

with one more comparison required to ensure that no more matches are possible. The

matching statistics value for this position is 1. Ctree=5J and Cvector-44.

10 II II I)

a b , c d i a b i d b c d a b b 5

Figure 6.7.(i). Position 8.

Position 9. (Figure 6.7.(j)) As only one character could be matched in the

previous phase we must start matching from the root. We find the edge starting with

T[9J='a' in at most 5 comparisons in both representations. One comparison is

required to match the next character. Three comparisons are necessary to find out

that no more matches are possible from node 1. The matching statistics value is set to

2 for this position. The total number of comparisons done in this step is 9 in both

cases, making the total values Ctree-60 and Cvec,Or=53.

10

0 I I) • » * » I t It II II |J

a b c d i a b i d b c d a b b S

r^
^

Figure 6.7.(j). Position 9.

160 Chapter 6 Suffix Vector Algorithms

Position 10. (Figure 6.7.(k)) This phase is similar to position 7, with the only

difference being that we definitely find T[J0J='b' at the first comparison in the

vector. In the case of the tree this may take a maximum of 4 comparisons. The

matching statistics value is 2 for this position. The total number of comparisons up to

this point is Ctree=65 and

1 ' 4 ' * ' • • I. I I I I „

c d a b d b c d a b b S

o i a j 4 s • io I I 13

a b .c di a b | d ty'c d a b b $

IJ.I2ji|tji|l3^ |®.

9a-12.x ©!

Figure 6.7.(k). Position 10.

Upon reaching position /Owe can stop the algorithm as we have found a match

for the remaining part of the string. Therefore we know that the remaining matching

statistics values represent matches up to the remaining part of the document.

In this example, we have saved one sixth of the steps. However we have not

considered some other factors that may also save steps in the case of the vector. In

the case we are on the natural edge, right after the node (one character down on the

edge), and the node pointed by the suffix link is at the same position, we immediately

conclude that we will follow the natural edge. This would place us at exactly the

same position, so examining the outgoing edges is not necessary. However, it is still

needed in case of the suffix tree.

6.3.2 Retrieving Information from the Suffix Vector

Not only does the suffix vector save time because of the redundant information

that is not repeatedly examined but it is also a simpler physical structure than Kurtz's

representation [Kur99]. Therefore, retrieving infoimation becomes simpler

[MZV01]. In this section we analyse the number of basic operations needed to get

certain information from the suffix tree and compare our proposed representation

with Kurtz's one [Kur99]. A theoretical comparison here is more appropriate than an

experimental one since the actual implementation may favour one representation

Chapter 6 Suffix Vector Algorithms 161

i

1

over the other. The notation in this section is specific to the following comparison of

the two representations.

There are three basic operations on a suffix tree:

1. getting the first edge running out of a node

2. getting the next edge from the current edge in the list of edges

3. following a suffix link

We divide primitive operations into three categories:

1. Masking. It is when we have a value (an integer or one byte) that stores

multiple pieces of information and we have to mask some bits to retrieve the

infoimation we need. We denote the masking operation by M.

2. Comparison. It is when we have to compare two values (two integers or two

bytes) and based on the result, we choose different execution paths. We denote

the comparison operation by C.

3. Addition (Subtraction). It is when we have to add (or subtract) two values.

We denote the addition (subtraction) operation by A.

In the following sections we analyse how many primitive operations are

needed to execute the three basic operations on both representations. We analyse

both best-case and worst-case scenarios.

6.3.2.1 Getting the first edge running out of a node

Let us assume that we have a pointer that points to the current node and we

want to get the information of the first edge running out of this node. The

information we need is the start position of the text represented on the edge, the end

position of the text represented on the edge, and the position of the next node if we

follow this edge. Firstly, we analyse worst-case scenarios.

The following list describes the steps needed in Kurtz's representation. To get

the edge labels in Kurtz's representation, we need the depth value of nodes both at

the end and the beginning of the edge and the headposition cf the node at the end of

the edge. We also need the first child information of the node at the beginning of the

edge. The worst case is when both nodes are small nodes. Let us denote the node at

the beginning of the edge by B (in subscripts lowercase letters are used). The large

node belonging to this small node is S. The node at the end of the edge is denoted by

E and the corresponding large node is denoted by F. Kurtz's representation is

depicted in Figure 3.3.

162 Chapter 6 Suffix Victor Algorithms

1. M. We have to mask the 5 most significant bits of the first integer of B to

learn the distance value. The distance value may take values between 0 and

31. Values 1 through 31 are valid distance values while 0 represents a large

node and we do not need to store a distance value for a large node. Let us

denote the distance value by A,.

2. C. We have to decide whether the value retrieved in the previous step is 0 or

not because the bit structure of the node is different for large and small nodes.

3. A. Since this is a small node we have to calcinate the position of the large

node S from the distance value.

4. M. We need the depth value of node B. Since this node is a small node we

have to find out the depth value of the large node S to learn the depth value of

this node. The position A the large node has been calculated in the previous

step. We have to mask the most significant bit of the third integer in node S to

find out whether the depth of this node can be represented in 10 bits or not.

5. C. We have to find out whether the bit retrieved in the previous step is 1 or 0.

6. M. Based on the result of the previous comparison we have to mask either 10

or 27 depth bits of the third integer of S. Let the depth of this large node be

P..

7. A. The depth of the small node we are at is Pb~Ps-Db.

8. M. We have to know whether the first child is a leaf or not because leaves

and nodes are stored in two separate arrays. We have to mask the first bit of

the first child bits of the current node. Let / denote the bit retrieved in this

step.

9. M. We have to mask the 26 least significant bits from the first integer in node

B.

10. M. We have to mask the 2 most significant bits of the second integer in node

B.

11. A. We have to create a new integer from the bits retrieved in the previous two

steps in order to create the first child pointer.

12. C. We have to know whether the bit retrieved in Step 8 (/) is 0 or 1. 1 denotes

a leaf.

13. M. Based on the comparison of the previous step we have to find the

headposition of the next node E. Let us denote this value by He. Since the

first child is a node, we have to mask the 5 most significant bits of the first

Chapter 6 Suffix Vector Algorithms 163

fr

integer to find out whether this is a large or a small node. We assume that this

is small node. The data is stored in the distance value De.

14. C. We have to decide whether the bit retrieved in the previous step is equal to

zero or not.

15. A. Since this is a small node we have to calculate the position of the

corresponding large node from the distance value De.

16. M. In order to learn the headposition of the large node F we have to mask the

27 least significant bits of the fourth integer. Let us denote this headposition

by///.

17. A. The headposition of the small node is He=Hj+De.

18. M. We also have to find the depth of the end node E. Since this is a small

node, first we have to identify the depth of the corresponding large node F.

To decide whether the depth of the large node F is stored in 10 or 27 bits we

have to mask the most significant bit of the third integer.

19. C. We have to decide whether the result of the previous step is 1 or 0.

20. M. Based on the result of the previous step we have to mask either 10 or 27

depth bits. Let us denote the depth of this node by Pj.

21. A. To obtain the depth of the small node: Pe=PrDe.

22. A. The beginning position of the edge is the headposition of the end node

(He) plus the depth of the originating node (Pb): edgebeg=He+Pb.

23. A. The length of the edge is a good substitute for the end position and it can

be directly retrieved: L =Pe-Pb.

The total number of steps needed in the worst case is 23 (10 maskings, 5

comparisons, and 8 additions).

Now let us consider the number of steps needed in case of the suffix vector

representation. We denote the originating node by 3 and the destination node by E.

We leave natural edges out of this discussion and by getting the first edge we mean

getting the first edge that is not a natural edge. The worst case is when this is a

regular box (as opposed to a reduced box) and next node pointers are stored in 4

bytes. Our proposed representation is depicted in Figure 5.8.

1. M. We have to mask the first bit of a box to find out whether the deepest

node value and the number of nodes are 1-byte or 4-byte values.

2. C. We have to decide whether the bit retrieved in the previous step is 1 or 0.

164 Chapter 6 Suffix Vector Algorithms

3. M. We have to mask the first byte or the first 4 bytes of the array to get the

deepest node value £>&.

4. M. We have to mask 1 byte or 4 bytes to retrieve the number of nodes value

Nb.

5. M. We have to mask the first bit of the next byte to find out whether this is a

reduced box or not.

6. C. We have to decide whether the bit is 0 or 1.

7. M. We have to mask the second bit of the same byte to find out whether the

next node pointers are stored in one byte or four bytes.

8. C. We have to decide whether the bit selected in the previous step was 1 or 0.

9. A. We have to find the position of the pointer that points to the first edge. We

are currently at the position where the suffix link starts. According to our

assumption, the next node pointers are stored in four bytes. Thus we have to

multiply the number of nodes value by 4. Let us store this value in h.

10. A. We have to add 4 to h. (4 bytes are used to store the suffix link). With this

offset we can locate the first of the first edge pointers, which points to the

deepest node.

11. A. We have to get the position of the first edge pointer belonging to the

current node in the list, which is an offset of deepest_node-

current_node_depth from the first of the first edge pointers.

12. M. We have to mask the first bit of the edge to find out whether this is a leaf

or not.

13. C. We have to find out whether the bit selected in the previous step is 1 or 0.

14. M. We have to mask the third bit of the edge to find out whether the next

node pointer is stored in 1 byte or 4 bytes.

15. C. We have to find out whether the bit selected in the previous step is 1 or 0.

16. M. We mask the 29 least significant bits of the first edge to find the

beginning position of the edge. The length of the edge can directly be

retrieved from the next node pointer based on the result of Step 15. The

length of the edge is a good substitute for the end position. Also note that the

length of the edge is also a good substitute for the next node position because

the nodes are stored along with the string.

In the worst case we need 16 steps (8 maskings, 5 comparisons, and 3

additions).

Chapter 6 Suffix Vector Algorithms 165

Let us now analyse best-case scenarios. The best case in Kurtz's representation

is when we are on a large node and the first edge is a leaf. In this case the following

steps are required.

1. M. We have to mask the 5 most significant bits of the first integer to learn the

distance value. The distance value may take values between 0 and 31. Values

1 through 31 are valid distance values while 0 represents a large node and we

do not need to store a distance value for a large node. We assume that we are

on a large node, thus this value is 0.

2. C. We have to decide whether this value is 0 or not because the bit structure

of the node is different for large and small nodes. In this step we learn that we

are on a large node.

3. M. We need the depth value of the node. We have to mask the most

significant bit of the third integer to find out whether the depth of a node can

be represented in 10 bits or not.

4. C. We have to find out whether the bit retrieved in the previous step is 1 or 0.

5. M. Based on the result of the previous comparison we have to mask either 10

or 27 depth bits. Let the depth of this large node be Pb.

6. M. We have to know whether the first child is a leaf or not because leaves

and nodes are stored in two separate arrays. We have to mask the first bit of

the first child bits.

7. C. We have to know whether the bit retrieved in the previous step is 0 or 1.

We suppose that we are on a leaf.

8. M. We have to mask the 26 least significant bits from the first integer.

9. M. We have to mask the 2 most significant bits of the second integer.

10. A. We have to create a new integer from the bits retrieved in the previous two

steps. This will give us the position of the leaf, which is the same as the

index. Let us denote this value by /.

11. A. The beginning position of the edge is the index of the leaf plus the depth

of the original node (Pb). The beginning position of the edge is edgebeg-l+Pb-

In the best case of Kurtz's representation 11 steps are required (6 maskings, 3

comparisons, 2 additions).

In the suffix vector representation, in the best-case scenario we have small next

nodes, thus the number of nodes need not be multiplied by 4 (Step 9). If the first edge

is a leaf we do not need to retrieve information on the length of the edge (Step 14 and

166 Chapter 6 Suffix Vector Algorithms

Step 15). It will save us 3 steps. Thus in the best case we need 13 steps (7 markings,

4 comparisons, 2 additions).

6.3.2.2 Getting the Next Edge from the Current Edge in the List of Edges

Now let us assume that we are examining the edges running out of a node to

find out which one we have to follow. In case of Kurtz's representation, it means that

we follow the branchbrothers of a node until we either find an outgoing edge that

matches a certain character or find the last edge in the list. Firstly, let us analyse the

number of steps needed in Kurtzvs representation to get the information on the next

edge in the list. Again, we need the start position and the end position of the edge.

The worst case is when the next edge runs into a small node and we are currently on

a node whose branchbrother must be retrieved. The steps required in this case are:

1. M. Since this edge runs into a node we have to decide whether the 29 least

significant bits of the second integer store a branchbrother reference or a

suffix link. They only store a suffix link if this is the last edge in the list. Of

course, we always have to check whether this is the last edge. This

information is encoded in the third most significant bit of the second integer,

so we mask this bit.

2. C. We have to decide whether the bit obtained in the previous step is 1 or 0.

If this was the last edge in the list we would be done but we assume that there

are more edges.

3. M. We have to mask the 29 branchbrother bits in the node.

4. M. We have to mask the first bit of the branchbrother reference to learn

whether this edge is pointing to a node or it is a leaf.

5. C. We have to find out whether the value obtained in the previous step is 0 or

1. We assume that this is a small node. Thus from here on we have to

complete the same steps as we did for the destination node when we

examined the steps to retrieve the first edge. This destination node is the

descendant of the same node as the ancestor of the previously examined node.

Thus we assume that the information (the depth value: Pb) on that node has

already been retrieved. It means that only information on the destination node

is needed.

6. M. We have to find the headposition of the destination node E. Let us denote

this value by He. Since this is a node we have to mask the 5 most significant

Chapter 6 Suffix Vector Algorithms 167

bits of the first integer to find out whether this is a large or a small node. We

assume that this is a small node. The data is stored in the distance value De.

7. C. We have to decide whether the bits retrieved in the previous step are equal

to 0 or not.

8. A. Since this is a small node we have to calculate the position of the

corresponding large node from the distance value De.

9. M. In order to learn the headposition of the large node F we have to mask the

27 least significant bits of the fourth integer. Let us denote this headposition

by// /

10. A. The headposition of the small node is He^Hj+De.

11. M. We also have to find the depth of the end node E. Since this is a small

node, first we have to identify the depth of the corresponding large node F.

To decide whether the depth of the large node F is stored in 10 or 27 bits we

have to mask the most significant bit of the third integer.

12. C. We have to decide whether the result of the previous step is 1 or 0.

13. M. Based on the result of the previous step we have to mask either 10 or 27

depth bits. Let us denote the depth of this node by P/.

14. A. To obtain the depth of the small node: Pe=PfDe.

15. A. The beginning position of the edge is the headposition of the end node

(He) plus the depth of the originating node (Pb). The beginning position

edgebeg=He+Pb.

16. A. The length of the edge is a good substitute for the end position and it can

be directly retrieved: L ~Pe-Pb.

The worst case is 16 steps (7 maskings, 4 comparisons, 5 additions).

Now let us check the steps needed in case of the suffix vector representation.

Here we assume that we have examined an edge and the next edge in the list needs to

be analysed. We assume that in the previous step the number of bytes required to

store next node information has been identified. The worst case here is when the next

edge is not a leaf. The following steps are required:

1. M. We have to mask the second most significant bit of the leaf to decide

whether we have reached the last edge or not.

2. C. We have to decide whether the bit retrieved in the previous step is 0 or 1.

We assume that there is a next edge to be analysed and its position is known

from the previously analysed edge.

168 Chapter 6 Suffix Vector Algorithms

3. M. We have to mask the first bit of this next edge to find out whether this is a

leaf or not.

4. C. We have to find out whether the bit selected in the previous step is 1 or 0.

5. M. We have to mask the third bit of the edge to find out whether the next

node pointer is stored in 1 byte or 4 bytes.

6. C. We have to find out whether the bit selected in the previous step is 1 or 0.

7. M. The length of the edge can directly be retrieved from the next node

pointer based on the result of Step 5. The length of the edge is a good

substitute for the end position. Also note that the length of the edge is also the

next node position because the nodes are stored along with the string.

It gives us 7 steps in the worst case (4 maskings and 3 comparisons). The best

case in both representations is when we have reached the last edge. It can be found

out by masking the flag bit and decide whether it is 0 or 1 (1 masking and 1

comparison). It is true for both representations.

6.3.2.3 Following a Suffix Link

Suffix links are not integral parts of a suffix tree but many algorithms including

the matching statistics algorithm make use of them. In this section we compare the

number of steps required to get the position of the node pointed to by the suffix link

in both representations.

In Kurtz's representation [Kur99] the worst case is when the current node is a

large node and its depth is greater than 1023. Most of the files do not even have a

single node like this because it means that it contains an overlap of at least 1024

characters. If we have such a node the suffix link information is stored with the last

edge running out of that node, which means that we have to scan through all edges

running out of that node to find the suffix link. The number of steps required here

depends on the size of the alphabet. The following steps must be repeated as many

times as the number of outgoing edges:

1. M. Masking the third most significant bit of the second integer to find out

whether the 29 least significant bits store a branchbrother or a suffix link.

2. C. We have to decide whether the result of the previous comparison is 1 or 0.

3. M. Masking the 29 least significant bits of the second integer. If the previous

comparison showed tbit this is a suffix link then we stop here. If it is a

branchbrother reference ^e have to repeat these steps until th? suffix link is

found.

Chapter 6 Suffix Vector Algorithms 169

The number of steps in the worst case is 3*ALPHABETSIZE. If we do not

consider this very rare situation, the worst-case scenario is when we are on a large

node and we explicitly have to read the suffix link information. 26 bits of that

information is stored in the third and fourth integer of the large node and 2 bits are

stored in the leaf list at the position identified by the headposition of this node. We

assume that the headposition has already been retrieved when we have analysed the

edges running out of a node. The following steps are required:

1. M. Mask the 21 suffix link bits of the third integer in the large node.

2. M. Mask the 5 suffix link bits of the fourth integer in the large node.

3. A. Add the values obtained in the previous 2 steps.

4. M. Mask the 2 bits in the leaf list at the position identified by the

headposition of this node.

5. A. Add the value obtained in step 4 to the value obtained in Step 3. It will

give you the position of the node pointed by the suffix link.

In the worst case we need 5 steps (3 maskings and 2 additions) in Kurtz's

representation.

In the suffix vector representation the worst case is when the current node is

the one with the smallest node depth represented at the given box. In this case we

have to read the suffix link value from the box. We assume that the position where

the suffix link is stored in the box has already been determined during examining the

edges. The following steps are required:

1. C. We have to decide whether this is the node with the smallest depth value.

2. M. The worst-case approach assumes that this is the node with the smallest

depth vihue. Then we have to mask the 30 least significant bits of the suffix

link integer. It gives us the suffix link value.

The suffix vector representation requires 2 steps in the worst case (1

comparison and 1 masking). The best case in Kurtz's representation is when we are

on a small node. In this case if the distance of this node is 1 from the large node then

the suffix link points *o the large node. The position of this large node is 2 bytes

more than our current position, thus a single comparison is enough. The same is true

for the suffix vector representation. If the node is not the one with the smallest depth,

the node pointed to by the suffix link is stored at the same position. This can also be

decided by a single comparison step. Here we note that if the node pointed to by the

suffix link is in the same box at the same position (the node is not the one with the

170 Chapter 6 Suffix Vector Algorithms

smallest depth), then most of the steps that are concerned with retrieving information

common to all nodes in the box (deepest node, number of nodes, etc.) are not

necessary in the next phase of the algorithm.

The following table summarises our results. We can conclude that in all cases

except for one the suffix vector representation is either faster or equal to Kurtz's

representation, considering both best and worst case scenarios.

Chapter 6 Suffix Vector Algorithms 171

first edge

next edge

suffix link

Kurtz's representation

Worst case

23

(10M5C8A)

16

(7M 4C 5A)

3(2M1C)*alphabetsize

5 (3M 2A)

Best case

11

(6M 3C 2A)

2

(2C)

1

(1C)

Suffix Vector

Worst case

16

(8M 5C 3A)

7

(4M 3C)

2

(1C1M)

Best case

13

(7M 4C 2A)

2

(2C)

1

(1C)

Table 6.2. Retrieving Information from the Suffix Vector

6.4 Summary

In this chapter, a linear time construction algorithm has been proposed for the

general suffix vector representation. This algorithm builds and expands on

Ukkonen's suffix tree construction algorithm [Ukk95]. We have also analysed the

space requirement of the general suffix vector representation.

We have discussed a conversion algorithm that converts a general suffix vector

into the more space-efficient compact representation. We have shown that this

conversion can be done in linear time and it is also true that this algorithm with

minor modifications could convert a general suffix tree representation into the

compact suffix vector representation.

Not only is the proposed suffix vector representation better in terms of space

requirement than any other representation, but it also eliminates some redundant

information, which is present in other representations. The fact that redundant

information need not be analysed multiple times, along with the simplicity of the

structure, which allows faster retrieval of information from the structure, makes

algorithms using the suffix vector run faster in practice [MZS02]. In this chapter we

have analysed how fast the algorithms can run on the proposed structure.

First, we showed that algorithms using the suffix link information can benefit

from the fact that redundant information is not replicated in the vector. An example

has been given to demonstrate how these steps can be saved in case of the matching

statistics algorithm.

Then we have also shown that our structure has a simpler physical

representation than Kurtz's representation by analysing the number of operations

needed to extract certain information from the structure.

172 Chapter 6 Suffix Vector Algorithms feat Prototype and Parallel Anniin*t;^
173

Ma tchDetectRe veal

Prototype and

Parallel Applications

g f J

7.1 Introduction

In this chapter we describe our practical experiences with the data structures

d.scussed u, previous chapters. We have buil, a prototype system that va.idates the

proposed aigonthms [MZSOOb]. We have named our prototype system

M^chDetecttevea! (MBR, MDR is a copy-detection system that J l J ^
sum* vectors, and the matching statistics algorithm in the core componen t ""

archnecture of the system is described in Section , 2 . The functions of differ^

components are discussed in detail in other sections.

We have run tests on the MDR prototype i n d i f f e r e n t ^ . ^

have USed RPC (Reouest for Comments) r^COl] documents as a test base b e c a l

h e , are many document streams in tha, set where documents are different revisions

of * e same onginal document. The MDR system has also been successful,y app iZ

to compare Spanish .anguage .iterary works rZBMO,]. T h i s p r o j e c t h a s J , ^

P ^ e c , w,th the Cervantes Digital Library at the University of A,iCan te [B P 0 ^

tesfng the search engine component, both RPC documents and differen H u n a l

— o n s of t h e same „ have been u se , This latter document set has been

M I Z Z r " T BUdaPCSt UnfWr^ °f T - ™ ^ - Economics
(MFZ 02]. All these apphcations are discussed in Section 7 3

Section 7.4 discusses the converter component, which is responsible for the

onvcrs,on of documents before they are processed. Not only does the convene

component convert documentS from d i f f e n t file f o n n a (s M s *

1

174 Chapter 7 MatchDetectReveal Prototype and Parallel Applications
Chapter 7 MatchDetectReveal Prototype and Parallel Applications

PDF, PS, etc.) into pure ASCII but it also creates a canonical form of documents,

which is insensitive to slight alterations, e.g. capitalization, multiple whitespaces, and

different punctuations.

The search engine component is based on the algorithms discussed in Chapter

.2. We have run a number of tests that compared different chunking strategies, as well

as defined an optimal hash size that is manageable in terms of space. At the same

time it does not produce too many false positive cases. The results of these tests are

presented in Section 7.5.

When we started testing our system we needed a document set where the

overlap between documents was known in advance. We have built a document

generator component that is able to generate documents with a predefined amount of

overlap from a base document set. This component is also capable of substituting

certain words with their synonyms using the thesaurus feature of Microsoft Word.

Details of the functionality of this component are discussed in Section 7.6.

One of the challenges we have faced in our prototype system was how to

present the results to the end-user in a user-friendly interface with as much

information as possible. We have developed a visualiser component with different

possible visualizations of the results [MZBOl]. The different possible presentations

are discussed in Section 7.7.

The testbed also includes a high-performance cluster of workstations, which

allowed us to test our document comparison algorithm in a parallel environment.

Tests have been run using different tools and messaging libraries [MZS99, MZSGOa].

The results of parallel comparison tests are discussed in Section 7.8.

The purpose of this chapter is to demonstrate that the ideas presented in

previous chapters are used in real-life applications. The wide range of applications

discussed here show that suffix trees are important data structures.

7.2 MatchDetectReveal System Architecture

In this section we outline the architecture of the MatchDetectReveal (MDR)

system. The general architecture is depicted in Figure 7.1. The components that have

already been developed are discussed in detail in later sections while the

functionality of each component is briefly discussed here.

Global resources

matching engine
brmat converter

ffsearch engine
visuaiizer

Similarity &
overlap rule
interpreter

•local repository
•matching rule DB
sindcxes -^

Figure 7.1. MDR Architecture

Users of the MDR system must be able to submit documents that either need to

be stored in the document database or need to be compared to registered documents.

We have developed an Internet-based interface for document submission, which

accepts either stand-alone files or a batch of files compressed into a single zip file.

Submitted documents can be compared to the documents that are registered in the

local repository. Individual documents may be manually registered into the

repository, while a Web-robot may be sent around the Internet to automatically

register documents on the Internet into the database. Documents from different

digital libraries, e.g. ACM DL or IEEE DL may also be registered into the database.

When a document is registered into a database it is converted and chunked into

smaller parts using the chunking strategies discussed in Chapter 2. The hash values

calculated on those chunks are registered in the database along with a unique file

identifier. The conversion and chunking processes are further discussed in Sections

7.4 and 7.5.

If a document is submitted for comparison with registered documents it goes

tlirough the same pre-processing as documents before registration. The search engine

component then compares the chunks of the submitted document to the chunks

registered in the database. If the document contains overlapping chunks above a

176 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

certain threshold, it is sent for further analysis to the matching engine. These

thresholds are different depending on the application. The files that overlap with the

submitted document are downloaded from the Web or retrieved from the local

repository and the matching engine identifies overlapping chunks of text.

The matching engine, as we have already mentioned, is responsible for

comparing the submitted document to candidate documents identified by the search

engine. The matching engine uses the algorithms discussed in previous chapters. As

shown in those chapters, our compact suffix vector representation is the most suitable

for document overlap detection.

The 'Similarity and Overlap Rule Interpreter' component is outside the scope

of this thesis and could be addressed in the future. This component will define how

to handle rephrasing, changing the names of locaiities, substituting synonyms for

certain words, etc.

With the constant increase of the processing power of commodity

workstations, clusters of workstations are widely used for parallel processing

[BB99]. Parallel processing can be performed in many different phases of the

comparison but since this thesis focuses on the exact comparison phase in the

matching engine, parallelising this phase is analysed in detail in Section 7.8.

The visualiser component of the system is responsible for presenting the end

user with the parts of the document which are plagiarised or overlap. The output of

the matching engine is a list of overlapping chunks defined as positions in the text

and the length of the chunks. This information is then converted into a visual

representation. The visualiser component is also responsible for restoring the original

positions because the file "shrinks" in the conversion process by the elimination of

multiple whitespaces. When we present the results, we retain the formatting present

in the pure ASCII version of the documents. The visualiser component is further

discussed in Section 7.7.

Document Generator is a supplementary component of the system, which

generates sufficient number of documents with known overlap to test our algorithms.

One can define the size and overall plagiarism content of the document to be

generated as well as the number of files to be used for plagiarism and the size of the

chunks. It is also possible to define the number of words to be substituted by their

synonyms to test more sophisticated ways of plagiarism. A detailed description of the

document generator can be found in Section 7.6.

Chapter 7 MatchDetectReveal Prototype and Parallel Applications 177

7.3 MDR Applications

In ihis section we discuss different possible applications of our MDR prototype

system. Of course, some applications have already been mentioned in previous

chapters when we discussed the algorithms used by the system. Here we revisit those

applications and present some other applications.

7.3.1 Plagiarism Detection

We have already discussed this straightforward application in previous

chapters. We have to register potential documents in the database. As pointed out in

the previous section, one option is to register documents from the Internet. These

documents can be registered in the database by a Web-robot that goes around the

Internet and sends back the files to the MDR system.

Plagiarism can be defined at a local level, too. A department may maintain a

database of previous assignments and every newly submitted assignment can be

compared to the database. Also a many-to-many comparison can be performed

among assignments submitted on the same topic to discover co-operation between

students.

7.3.2 Copy-Detection in a File System

This application is fundamentally the same as the one discussed in Section

7.3.1 but we might have different requirements with regards to the output. If we are

interested in the similarity among the files, we can use the same method as in

plagiarism detection. Another application may be to identify differences between

documents. These are very important applications, for example in RFC documents

[RFCOl], because some files are revised versions of previous ones. In this case we

can use the original method to identify overlapping chunks. Non-overlapping chunks

are the new information in the text. With a few simple changes in the visualiser

component it can directly output the differences rather than the similarity among

files. We have run our tests on the RFC document set on the local cluster at the

School of Computer Science and Software Engineering, Monash University. The

results of these test runs are presented in Section 7.8 where parallel applications are

discussed.

178 Chapter 7 MatchDetectReveal Prototype and Parallel Applications Chapter 7 MatchDetectReveai Prototype and Parallel Applications 179

7.3.3 Cross-Referencing Multiple Editions of Literary Works

In this subsection we discuss the applications that have come out of our joint

research project with the Cervantes Digital Library at the University of Alicante

[BP01]. These applications are similar to the applications discussed above. However,

they are put into a different context. The document set used in these tests was taken

from the collection held in the Cervantes Digital Library. The library holds different

collections of poems as well as different editions of the famous Spanish masterpiece

El Ingenioso Hidalgo Don Quijote de la Mancha by Miguel de Cervantes. Different

applications, which have been identified as useful by librarians, are discussed below

and examples are given in Section 7.3.3.5.

7.3.3.1 Detecting Cross-References

The first application we thought of was to automatically detect quotations or

cross-references between different texts. In this case the quote could be hyper-linked

to the original. We can imagine many research situations where automatic detection

of similar sections of text can be useful. It could be a valuable aid in history research,

for instance.

7.3.3.2 Organizing Collections of Small Pieces of Text

Another use of MDR is to detect repeated poems in different poem collections

(may also be tales, letters, etc.), where some of these textual units are repeated in

different editions. Most often, when collections of poems are developed, it is difficult

to keep track of which poems have been included and where, and which not. MDR

proved to be a helpful tool for detecting and locating the matching pieces of text for

verification purposes.

7.3.3.3 Comparative Analysis of Texts

The objective of this application is to compare different editions of the same

literary work. Philologists are usually interested in such comparisons for research

purposes. In ancient literature, there are usually different editions/translations of the

same work, with modifications performed sometimes by the author, sometimes by

the editor. This comparative analysis is in itself an interesting but tedious field of

study where any kind of automation is welcome. To cite an example, there are

various ancient editions of the Quijote de la Mancha, all originals from Cervantes,

but still slightly different. This application differs from the previous ones, in the

sense that here we have to find differences rather than matches. Although in this case

the matching strings are usually in the same order in both sources, synchronisation is

not always possible since the sources may have long additions inserted in different

places, apart from small differences in the matching zones. Conventional sequential

comparison may also fail in this case.

7.3.3.4 Detecting variations and mistypings

There are variations in spelling owed to ancient editor changes, which are not

strictly errors since the Spanish language was not normalized until 1713, when the

Real Academia de la Lengua Espafiola was created and language spelling started to

settle [ZBM01], Those variations, though legal, produce differences between

editions.

On the other hand, no matter how much care correctors put on freeing texts

from digitisation errors, there are always some errors that remain. So an unforeseen

result of the application of MDR to comparative analysis was the detection of

spelling errors or variations in digital library (DL) texts by the way of comparison of

different editions of the same work.

7.3.3.5 Results of Comparison in the Miguel de Cervantes Digital Library

One of our first experiments was to compare a couple of collections of poeii's

from Ram6n de Campoamor y Campoosorio. We could easily keep track of the

poems that appeared in both collections. Figure 7.2 shows the cross-reference of one

isolated poem that appears in two different poem selections.

Figure 7.2. Comparison of Different Poem Collections

180 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

As an example of the problem discussed in Subsection 7.3.3.3, there are

various ancient editions of the Quijote de la Mancha, all originals from Cervantes,

but there are rare differences. In the example of Figure 7.3 in line 17, we can see

clear differences in the two versions of Don Quijote: in the left frame we can read

"Eran cuatro, y venian con sus quitasoles, con otros cuatro criados a caballo y dos

mozos de mulas a pie", while on the right one we see "Eran seis, y venian con sus

quitasoles, con otros cuatro criados a caballo y tres mozos de mulas a pie". These

sentences refer to the merchants from Toledo. The former case refers to six

merchants, and the latter one refers to four merchants. Also these sentences refer to

two servants on foot in the former case, while referring to three servants on foot in

the latter case. In line 10 in Figure 7.3 there is another difference in meaning. On the

left it says "muy pensado" (thoughtfully) and on the right "muy bien pensado" (very

well thought). These are examples of changes introduced by editors through the

centuries.

ssateSs^MJ^

Figure 7.3. Comparing Two Editions of Don Quijote

7.4 The Converter Component

The converter component is responsible for converting documents into a

common format that makes sure that slight alterations do not hinder copy detection.

Firstly, the converter component has to convert documents in different file formats

Chapter 7 MatchDetectReveal Prototype and Parallel Applications 181

into plain ASCII text. Common converters are available on the Internet that convert

PDF [PDF01], PS [PS01], HTML [HTML01], MS Word Doc [DocOl], and MS

Word RTF (Rich Text Format) [DocOl] files into plain ASCII files. The results of

converting the same document from different file formats into plain ASCII will

almost surely be different files. The most well known problem is the end of line

characters: '0d' and 'OaOd' in hexadecimal representation.

In order to overcome this problem and to detect overlap in case of slight

alterations - i.e. capitalization of letters, multiple whitespaces, different punctuation

signs - further conversion of the text files is required. We convert each letter into

lowercase character and multiple whitespaces are converted into a single character.

This single character is not necessarily a space character; later in this section we will

explain why. We also consider every non-alphanumerical character as a white space

character, which will enable us to detect overlap even if different punctuation signs

are used.

The result of these restrictions is that our converted ASCII files will use an

alphabet containing only alphanumerical characters and a single whitespace

character. This is an alphabet of 37 characters. Also for the matching engine where

suffix trees are used for document comparison, we need a unique termination

symbol. Thus we only need 38 characters of the 256 ASCII characters available.

As described in Chapter 4, in a suffix tree we can use an array to represent the

edges running out of a node, which is best served by an alphabet of a contiguous

range of codes. We took the lowercase letters as a base starting from code 97 ('a').

All numbers are converted into the code range of 87 through to 96. The unique

termination symbol can be chosen at either end of the range: 86 or 123.

Whenever we have to represent a white space character we use a coding

scheme where we write the actual number of whitespaces represented by that

character, rather than a single whitespace character. Figure 7.4 shows an example of

this representation. On the left the original string is shown, on the right the converted

string as it looks like in a text editor, and at the bottom the ASCII codes are shown.

This representation helps us keep the formatting which is present in the original

text file. When the matching engine compares files, it converts each ASCII code

value smaller than the smallest ASCII code in our alphabet (87 in our system) into a

single whitespace character (86 in our system)- Then we have a contiguous range of

182 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

ASCII codes that are efficiently processed by the matching engine. Different

punctuation signs and multiple whitespaces are ignored.

Sample-text.*
;other-text

sampleStext|§otherf§text

97|lO9 108| 10lH H6| 101 1161Q 104 114H116 116

Figure 7.4. Converted ASCII File

When the visualiser component processes the positions of overlapping chunks

found in the converted file, it translates the positions by taking into account the

numbers representing the number of characters skipped. In the unlikely case where

the number of characters skipped exceeds the maximum value (85), multiple skip

positions are inserted.

Without lack of generality we would like to comment that the MDR system is

capable of comparing binary files as well, though with less efficiency because of the

alphabet size. However, comparing binary files is outside the scope of this thesis,

since the focus of this thesis is on suffix trees and their variants. Needless to say that

suffix trees are most efficient for natural language texts and DNA sequences.

7.5 The Search-Engine Component

This component of the system is responsible for chunking and registering

documents in the database as well as identifying candidate documents when a

suspicious document is submitted. It uses techniques similar to those discussed in

Chapter 2. In this section we analyse different chunking strategies and we also look

at the problem of false positives created by these techniques. The search engine

component has been developed in a joint project with the Budapest University of

Technology and Economics [MFZ+02]. The test sets used here include the RFC

document set [RFC01] and different Hungarian translations of the Bible [KarOl,

BD01].

In the following subsection we discuss the hashing algorithm we have used to

store chunks. In Section 7.5.2 we present the results of the tests we have mn to

experiment with different chunking strategies. Section 7.5.3 proposes some strategies

to select representative fingerprints.

Plications 183
Chapter 7 MatchDetectReveal Prototype and Parallel At

7.5.1 Hashing Chunks

Chunks are not stored as they are in the database for two reasons. First, chunks

may be quite large in size, and we wish to limit the amount of storage required.

Second, chunks contain intellectual property of the author of the file that we are

processing. Instead of storing the chunks, we reduce them by applying a digesting

tool. We use the MD5 algorithm [Riv92], which converts arbitrary byte streams to

128-bit numbers. Storing 128 bits would waste too much storage without offering

any significant advantage over shorter representations. Of course, the more hex bits

we store, the more accurate our system will be. Storing fewer bytes means that two

chunks may produce the same digest value even when they are different. These

undesired cases are called false positives and are discussed later in this subsection.

Here we also note that in our system we use an extra stage when we compare

documents. This extra stage is the matching engine component that uses exact string

matching techniques to find the actual overlapping chunks. Thus some false positives

are not of great concern, because they are eliminated in this stage.

False positives are a problem, which is common to every approach no matter

what chunking or hashing scheme it uses. False positives are those cases where we

have identical hash values despite the original chunks not matching. Table 7.1

contains the number of false positives for different chunking methods and bit depths.

These hash values have been generated by the MD5 algorithm by keeping only the

left-most k bits.

Table 7.1. False Positives

The tests were carried out on 500,000 chunks. The results show a dramatic

decrease in the number of false positives when we move from 24 bits to 32 bits. We

184 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

suggest using 32 bits, not only because the number of false positives is less than

0.01%, but it is also an easier data width to handle in today's computers.

Of course, other systems use other hashing schemes to create the digest

representation of a given chunk, and it would be interesting to compare the effect of

different hashing schemes on the number of false positives. However, that

comparison is beyond the scope of this thesis.

Hash values generated using the methods described above need to be stored in

a database. We may choose to store the hash values in a general-purpose database

management system, or alternatively, we can develop a special-purpose system

tailored to store the hash values and their postings efficiently. In our system we have

used Perl [WS92] hash data structures to store hash values.

7.5.2 Chunking Strategy Tests

The most promising chunking strategy among those presented in Chapter 2 is

hashed-breakpoint chunking. It avoids the shifting problem without the need to store

overlapping chunks. In this subsection we analyse the hashed-breakpoint strategy in

detail.

We pointed out in Chapter 2 that the expected chunk length is £ in case of £-

hashed breakpoint chunking. If a common word happens to be a chunk boundary, the

average chunk length may be much smaller than the expected average.

We have used two document sets for the comparison of chunking strategies.

The first set is the set of RFC (Request for Comment) documents [RFC01]; the

second set comprises different Hungarian translations of the Bible [KarOl, BD01].

We have chosen these two sets because we expect some overlap within these

document sets for obvious reasons.

Figure 7.5 shows the average chunk length in the function of the k value. We

can see that the higher the k value, the higher the chance is of greater deviation from

the expected result. This behaviour can be explained by the uncertainty of this

chunking strategy.

Chapter 7 MatchDetectRevoal Prototype and Parallel Applications 185

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hash value: k

Figure 7.5. Average Chunk Length

We have picked nine pairs of documents from the Bible translations and

compared them with different hash values. The results shown in Figure 7.6 reflect

the uncertainty of this chunking method.

100+7-
_karoli.txt/1kor13_ref.txt

_kanoli.txt/1moz_kat.txt

_karoli.txt/2kor_kaUxt

_karoli.txt/2moz20_karoli.txt

_karoli.txt/2aK>z20_kat.Ut

_karoii txt/2moz20_ref.txt

_kat.M/1korj<at.txt

_kat.txt/1kor!3_karoli.txt

kat.txt/1kor13_nif.Ut

2 3 * $ 6 7 (9 I O I ! l 2 D K U I S I 7 t t l 9

Hash parameter k

Figure 7.6. Overlap Percentage

The chosen pairs are different translations of the same part of the Bible. The

correlation between Figures 7.5 and 7.6 is obvious for the following reasons. For

example, the first pair has a peak at fc=16 following a low at £=14 and £=15. In

Figure 7.5, we can see that at £=14 and £=15 the average chunk length is higher than

expected. If we have longer chunks, the chance for overlap is smaller. On the

contrary, at £=16 we have a low in Figure 7.5, which means that we have shorter

chunks, so the chance for overlap is higher.

In Figure 7.5 we can also see that the chosen £ value has a significant effect on

the amount of overlap detected. We propose to use more than one £ value for

comparison, and we can either choose the average of the reported overlaps or the

186 ChzpterJ MatchDetectReveal Prototype and Parallel Applications Chapter 7 MatchDetectReveal Prototype and Parallel Applications 187

maximum/minimum values depending on the actual application. This strategy

eliminates the sensitivity of the algorithm to different k values. Figure 7.7 shows the

results of this approach. We aggregated the number of chunks reported by different k

values and calculated the result based on the total number of chunks.

g

Hkr=7+8+9

• k=7+9

Dk=5+9

Dk=5

Mk=6

®k=7

• k=8

Document-pairs

Figure 7.7. The Effect of Aggregate k Values

Of course, in our applications false positives are better than false negatives,

because false positives can be eliminated in our extra stage of exact comparison. On

the contrary, we will never identify documents missed by the first stage.

We have also conducted a test on different chunk sizes. In this test we have

used overlapping chunks of different sizes because overlapping chunks are more

predictable. The results are shown in Figure 7.8. As we expected longer chunks

result in less detected overlap. Based on these experiences, we can conclude that for

finding documents similar in style, we can choose a k value of 2 or 3, which would

find similar phrases. For plagiarism detection, k=S or k=9 seems to be a good

parameter value, while for detecting longer overlaps, we can choose values greater

than 10.

100 > t

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1korl3_karoli.txl/1kor13_ref.lxl

•fcor13_karoli.txt/1moz_kat.txt

1kon3_karolitxU2kor_kat.txt

1korl3_kanoli.txt/2moz20_karoli.tx1

1kor13_karoli.txt/2moz20_kal.txt

1korB_karoli.txt/2moz20_ref.txl

1kor13_kat.txt/1kor_kat.txt

1kor13_kat.txtyikor13_karoli.lxf

1ko(13 kat.txt/1kor13 ref.Ut

Figure 7.8. Overlapping Chunks

7.5.3 Fingerprint Selection

As discussed m Chapter 2, existing methods use some strategy to store only a

certain subset of chunks, called the fingerprint. Of course, in an ideal case we would

store all chunks, but long files lead to many chunks. Dealing with them all requires

space for storing them and time for comparing them against other stored chunks.

However, it may not be necessary to store all chunks. The strategies used in

systems discussed in Chapter 2 are mainly random. In this subsection, we propose a

more strategic approach and we support the applicability of our strategy by test

results.

A short chunk is not very representative of a text. The fact that two files share a

short chunk does not lead us to suspect that they share ancestry. In contrast, very

long chunks are very representative, but unless a plagiariser is quite lazy, it is

unlikely that a copy will retain a long section of text.

We therefore discard the longest and the shortest chunks. We wish to retain

similar chunks for any file. We have experimented with two culling methods. Let n

be the number of chunks, m the median chunk size (measured in tokens), s the

standard deviation of chunk size, b a constant, and L the length of an arbitrary chunk.

Sqrt. Retain j -Jn \ chunks whose lengths L are closest to m.

Variance. Retain those chunks such that \L-m\ <bs. Increase b, if necessary, until at

least V« chunks are selected. We start with £=0.1.

3

188 Chapter 7 MatchDetectReveal Prototype and Parallel Applications
Chapter 7 MatchDetectReveal Prototype and Parallel Applications 189

We have tested our fingerprinting method on the RFC data set [RFC01]. We

have found that the Sqrt method does not store enough chunks, thus the Variance

method is preferable. In Table 7.2 we show the results of these tests based on some

RFC documents with known overlap. The table shows asymmetric similarity, that is

RFC 1 compared to RFC 2 does not necessarily provide the same result as RFC 2

compared to RFC 1. We consider the results of the matching engine as accurate

because it is based on exact matching. SE is our signature extraction method while

OV is the overlapping chunk method.

Table 7.2 shows that our SE method tends to underestimate large overlaps

while overestimating small overlaps (overlap is given as percentage). The

overlapping-chunks method seems to provide more accurate results but at a much

higher storage cost. Overestimation is not a problem in our system because we use

the matching engine as a final filter, which correctly identifies overlapping chunks.

RFC
1

1596
2264
1138
1065
1084
1600
2497
2422
2392

RFC
2

1604
2274
1148
1155
1395
1410
2394
2276
2541

Matching
Engine 1

99
99
96
96
86
72
19
18
16

Matching
Engine 2

99
99
95
91
84
77
17
3
12

SE1

91
96
93
71
58
52
33
23
27

SE2

92
95
92
68
64
48
27
6
17

OVl

94
94
91
84
79
58
16
15
13

OV2

94
94
89
79
75
61
15
2
10

Table 7.2. Asymmetric Similarities

7.6 Generating Test Documents

The document generator component is a supplementary component that can

generate documents of different size and different amounts of plagiarism. One can

use different numbers of files and different sizes of chunks. One can also define how

many words one wants to be substituted by synonyms. The aim of developing a

document generator component was to generate test files with predefined overlap

value that could be used to test the algorithms of the MDR system. The following

subsection describes the algorithm used by the document generator, and performance

results are given in Section 7.6.2.

7.6.1 Document Generation Algorithm

As our copy-detection algorithm works on documents converted into a unified

format and defines overlap content based on the number of characters in the

converted file we use converted files as our base document set. In order to have the

specified overlap content we have to work on converted files because original chunks

might decrease in size as a result of conversion.

The Generator has 8 input parameters:

• min_file_size - defines the minimum size of the document to be generated in

kilobytes

• maxjlle_size - defines the maximum size of the document to be generated in

kilobytes

• min_overlap - defines the minimum overlap content in percentage of the total

size of the document

• max_overlap - defines the maximum overlap content in percentage of the total

size of the document

• numjiles - defines the number of files to be used for generation. It must be

less than or equal to the number of base documents

• min_char - the minimum number of characters in a single chunk

• max_char - the maximum number of characters in a single chunk

• num_words - the number of words to be substituted in each chunk

In our algorithm we use as much randomisation as possible. Note that the

parameters given above may be contradictory. For example we can define a

document of size between 10K and 1 IK, which should contain overlap between 50%

and 55% with 5 chunks from 5 different files and the size of each chunk between

2000 and 3000 characters. If we take 5 chunks with the minimum size of 2000

characters from 5 different documents we will end up with a 10000-character

overlap, which should make up at most 55% of a maximum 1 IK document.

We have defined file size and overlap content as our priority parameters, so our

algorithm will surely create a file of the size in the given range and the overlap

content will also be in the given range. The algorithm will use as many files as

possible for the generation up to the number of files given in the numjiles

parameters. All the chunks will be in the given range except for the last one, which

might be smaller than the minimum value in case the overlap content criterion cannot

y

i

i

190 Chapter 7 MatchDetectReveal Prototype and Parallel Applications Chapter 7 MatchDetectReveal Prototype and Parallel Applications 191

be met in another way. In the following we will describe in detail how our algorithm

works.

In the first step of our algorithm we generate the "genuine" part of the

document, which is a random sequence of characters. These characters are from the

alphabet of the converted file. We try to simulate a real document by varying the

word length in a uniform distribution with a mean value of 6. The size of the genuine

part is determined by the following formula:

(. . m a x file s i z e - m m file s i z e ~ \ , (, n r . (. , m a x overlap-min overlapS\. .(/ . 1)
random _ t e x t _ s a e = \ mm_file_sbe+ = * — = — — = I* 100-1 mm_overlap+ = £ - = —11/100 v '

This formula defines the size of the genuine part as the mean percentage of the

mean file size. The two boundary values for the genuine part would be

max_ file_ size * (100 - min_overlap) 1100

min_ file _size * (100 - max_oveiiap) 1100

(7.2)

(7.3)

We chose formuk (7.1) because it gives us more freedom when we add the

random chunks.

The next step is to choose those documents whose chunks will be used for

creating the overlap content of the document. Documents in our base document set

use a naming convention of 'doc#.txt', where '#' denotes an integer value between 1

and the maximum number of files in our base document set. Now we only have to

generate numjiles random numbers between 1 and the maximum file number and

file names can easily be generated from those numbers.

In the next step we extract chunks out of the document set generated in &e

preceding step. We take the files one by one and if we get to the last file we continue

with the first one. We generate a random-size chunk within the given range, extract

that chunk from the document and add it to the list of chunks. We also add a random

number, which defines the position of that chunk in the document to be generated.

The position value is in the range between 0 and random_text_size-\. Figure 7.9

depicts how chunks are merged into the random text to form the document.

During the process of generating these chunks we keep a counter, which counts

the number of overall overlap characters. After each phase, that is each chunk

generation, we check if the overlap content is above min_overlap. If it is above

min_overlap, we check if it is below max_overlap. If it is true, this step is finished.

Otherwise we do not add this last chunk to the list of chunks rather we define the

minimum and maximum size of the chunk which meets the overlap criterion. If

maxjchar is less than the maximum value defined above and greater than the

minimum value we replace this maximum with maxjchar. If minjzhar is greater

than the minimum value defined above and less than the maximum value we set

minjzhar as the minimum value. We generate the last chunk with these parameters.

There is a chance that the last chunk will not meet the criterion for chunks but the file

size and overlap criteria will be met and we set priority on these parameters.

Positions 0 PosI . . Posn random text size

Size: nl

Posl

Size: n2

Pos2+nl

Size: nn

Posn+Inx

Figure 7.9. Merging Chunks into Random Text

When a chunk is extracted from a base document we substitute the required

number of words with synonyms. Instead of creating a special-purpose database of

synonyms for document generator we use OLE Automation to access the thesaurus

of Microsoft Word. The required number of words is randomly picked from each

chunk and Word is requested to provide a synonym for that word. It is possible that

the randomly picked word does not have a synonym in the thesaurus. In this case we

pick another word. In order not to create an infinite loop we have to put a limit on the

number of attempts, which is an input parameter. Document Generator reports on the

number of words that could not be replaced because of reaching the limit. With

reasonable chunk sizes and reasonable limit on the number of attempts this value is

likely to be 0.

The last step of our algorithm is to insert the chunks into the random text.

When we create the chunks and add them to a list we can keep this list ordered,

which helps us in the merging process. We take the first chunk of the list, which has

the lowest position value and insert that chunk at the given position generated in the -I

192 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

preceding step. We keep a counter, which stores the shift value, that is the number of

character shifts due to previous insertions. Each insertion will increase this counter

by the number of characters inserted, so the next insertion has to add the counter to

the position value to insert that chunk to the proper position.

Before giving a summary of steps in our algorithm there is one more issue to

be addressed. In real documents boundaries of chunks are also boundaries of words.

To simulate this effect when a random size chunk is generated we adjust the

boundary of the chunk to word boundaries and also during the merging process we

insert chunks at word boundaries. The pseudo code of our algorithm is depicted in

Figure 7.10.

Calculate the size of random text

Generate random text

Generate document set to be used

while min__overlap not reached do

generate chunk from the next file

if max_overlap is reached when chunk is added then

define proper min and max values

generate chunk with those values

end if

generate position for this chunk

add chunk to ordered l is t

end while

shift <- 0

for i:=0 to "size of l i s t ' - 1 do

insert chunk at position+shift

shift:=shift+'size of chunk'

end for

Figure 7.10. The Pseudo Code of the Document Generation Algorithm

7.6.2 Performance Analysis

In this subsection we analyse the performance of the above algorithm. The

algorithm was implemented in Visual C++ and experiments were run on a PC with

Chapter 7 MaichDetectReveal Prototype and Parallel Applications 193

Intel Pentium II 433MHz processor, 128MB RAM, and running Windows NT

Workstation.

We have experimented with a fixed document size. Because of the random

nature of the algorithm this varies between 290 and 310 kilobytes (min_file_size

=290, max_file_size=310). We aiso fixed the chunk size between 800 and 900 bytes.

The plagiarised portion of the generated file was experimented at 5 different values

(50,000 bytes, 100,000 bytes, 150,000 bytes, 200,000 bytes, and 250,000 bytes).

Again these values are approximate values because the file size and the overlap

content are both given as a range. We also varied the number of files to be used for

plagiarism (1,2,3,4,5). After each run we had the matching engine define the overlap

content to check whether the plagiarised content is around the desired approximate

value. Running time of the algorithm in these 25 cases are shown in Figure 7.11.

Running time of the Algorithm

2500

2000

Running 1 5 0 °
time(ms) 1000

500

0
200000

2 3
50000

"Plagiarised"
part(bytes)

B50000

• 100000

D150000

D200000

• 250000

Number of Files

Figure 7.11. Running Time of the Algorithm

Figure 7.11 suggests that the number of files used have little effect on the

running time of the algorithm. The only difference we would expect is the difference

of the number of files to be opened but it is not significant. Running time increases if

we increase the amount of "plagiarised" text because more chunks are read from files

and processed. Generating the "genuine" part of the document is not so time-critical.

According to a separate measurement it remained under 100ms in the above cases.

The running time significantly increases if we use word substitutions. If we set

the number of words to be changed to 5 in each chunk, and set the attempt limit to 20

attempts in the simplest case when 50000 bytes are "plagiarised", we might end up

calling MS Word more than 5000 times in the worst case. This test ran for 48

194 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

seconds. This is very time-consuming but remember that it is a case of creating a

200-page document w \ more than 50 half-page plagiarised chunks.

7.7 Visualising Results

The visualiser component takes the output of the matching engine and

generates HTML files that show the overlap between documents. The idea ;,s that we

establish links between correlated documents and clicking on those links brings up

the other document and jumps to the position where the overlappLt?; chunk is

located.

The interface is designed for one-to-many comparisons and the left pane

always contains the suspicious document, while the right pane shows updated

candidate documents while we traverse through the original document. Two different

interfaces are proposed that could visualize the results of MDR in a user-friendly

manner. These interfaces are discussed below.

The first interface uses different colours to denote the overlapping chunks. Ten

different colours are identified and they are reused if more than 10 overlapping

chunks are present in the document. Each chunk is also a link and by clicking on the

link we jump to that section of the candidate document where the matching chunk

can be found. Figure 7.12 shows an example output.

cfrM^fr^M^

versel

Figure 7.12. Output of the Visualiser Component

Chapter 7 MatchDetectReveal Prototype and Parallel Applications

In this representation the interface contains four panes. The top panes contain

the name of the documents shown in the bottom panes. The left panes show the

original document while the right panes show the current candidate document. The

current candidate document i.:ay change because the original document may overlap

with more than one document and the right panes always contain the corresponding

candidate document and the name of that document.

The visualiser takes the position and length values, which are identified for the

converted document, and calculates the positions in the original document, which

may be different, since multiple whitespaces are eliminated in the converted

document. Then it places HTML tags in the document to mark up overlapping

chunks. It also generates the relevant colouring tags.

In the other interface the basic look-and-feel is the same as that of the previous

one, though we make use of the features of JavaScript. In this interface each

overlapping chunk is depicted by the same colour and once the mouse is over a given

chunk it changes its colour, a tooltip shows information on that chunk and in the

right pane the candidate document is automatically scrolled to the overlapping chunk

and its colour also changes. The information shown in the tooltip includes the

percentage of text the given chunk represents, the total number of overlapping

chunks in the document, the sequence number of the given chunk, the position in

both the original and the candidate document, the length of the chunk in both

documents, and the overall size of both documents.

The process of generating these documents is very similar to the previous

method. The only difference is that the markups that need to be inserted are more

complex because they contain JavaScript code beside standard HTML tags. An

example of this second interface is shown in Figure 7.13.

Chapter 7 MatchDetectReveal Prototype and Parallel Applications 197

196 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

CllJ93J^:*<miiri/rrsM^

Ffc Edt "Mew Favorites T o * Hefc

of document vers«l: 3607S4 bytes
tartpoanmofavrk #21 futocumentversel: 53227

of chunk #21 in document vorsel: 521 byte
of dxument verier: 230445 bytes
posson of dunk #21 n document verse2:98892

of chunk #2indocim4ntveree2: 513

Figure 7.13, Output of the Visualiser Component

We have also experimented with expanding the upper information windows

with information on the entire file. An example of that is depicted in Figure 7.14.

Besides the statistical information in the table at the top it contains a map of

overlapping chunks in the document. Moving the mouse over any of those chunks

brings up information specific to the given chunk in a pop-up window. Clicking on

chunks in the document map scrolls the original document to the position of the

given chunk and the right pane is also updated with the corresponding candidate

document.

acsc2001 Total Character: 36521
Total % Overlap: 19.98%
Total Number of Chunk: 36
Largest Chunk Qn character): 757
Shortest Chunk (in character): 74
Size of block: 1826.05

I
B !•••••

25%
50%
75%
100%

LIST OF COMPARE FILES

Figure 7.14. Information Window

We believe that the visualiser component is a very important component that

could be further developed to suit the needs of different end users as well as different

applications. The prototype implemented in the MDR system has proved to be very

successful despite the fact that the visualiser component fell outside the scope of this

thesis.

7.8 Parallel Applications

Since we are considering the comparison of a huge document set, i.e. the

Internet, it is possible that the comparison jobs cannot be handled by a single

computer or process. We have analysed parallel approaches to compare documents

[MZS99, MZSOOa]. Before going into the details of how the algorithm works on a

parallel platform we discuss different available platforms for the comparison.

One option for reducing comparison time is to use a local cluster. Clusters of

workstations have emerged in recent years because the computational power of

workstations has dramatically improved and their cost has remained low. They are

more cost-effective solutions than high-performance parallel computers.

There are numerous cluster systems of commodity workstations built for

different applications. The Berkeley NOW project [NOW01] uses Solaris

Workstations and applies an OS layer called GLunix (Global Layer Unix) above

Unix to provide a single system image. This layer provides transparent remote

execution, support for interactive parallel and sequential jobs, load balancing, and a

cluster-wide namespace. It also provides network RAM, which enables heavily

loaded workstations to use the memory of idle workstations. The NOW project has

also investigated in network interface hardware and fast communication protocols.

The Beowulf project [Beo94] emphasizes the use of mass-market commodity

components. They use PCs running a modified Linux, which is able to handle

multiple parallel Ethernet networks. Research has shown that up to three networks

can be bundled together to obtain significant improvement in throughput. The project

includes several programming environments, e.g. PVM, MPI, BSP etc.

Solaris-MC [Sol96] is a distributed operating system for a cluster of Solaris-

based PCs and workstations. It is built on the top of the Solaris kernel to provide a

global single system image. The most interesting feature of Solaris-MC is that it uses

198 Chapter 7 MaichDetectRevea! Prototype and Parallel Applications

an object-oriented framework (CORBA) for interprocess communication. It also

features a distributed file system called ProXy File System (PXFS).

In our project we have used the Monash Parallel Parametric Modelling Engine

(PPME) at the School of Computer Science and Software Engineering, Monash

University. The PPME is a cluster of high-end PCs. The system specifications

included 22 x 330 MHz Pentium II processors; 32 x 350 MHz Pentium II processors;

8 x 500 MHz Pentium HI processors; 5.8 Gbyte RAM; 180 Gbyte disk space at the

time of our tests. Since then the machines have been upgraded.

All of the 32 machines are dual-processor Pentiums. 26 machines can be

booted in either Linux or Windows NT while the remaining six machines are running

Linux. One of the Linux-only machines serves as a cluster server. Two parts of the

cluster are located on two different campuses and they are connected by an ATM

network.

Parametric experiments can be easily executed using the Active Tools Clustor

program [Clu99]. The capabilities of the Clustor tool are briefly described below.

Clustor enables the easy execution of jobs over a predefined parameter range. If there

are, for example, 5 parameters and we want to test our algorithm with 5 different

values for each parameter it means that we have to execute 55 = 3125 jobs. These

jobs are dispatched and scheduled by Clustor according to a plan file, which can be

generated by a graphical tool. Basically Clustor executes an executable file 3125

times with different parameters using as many processors as available and balances

the load among them.

In the following subsection we present the results of the tests run on our local

cluster using the Clustor tool. In Section 7.8.2 we describe the capabilities of the MPI

library and Section 7.8.3 contains the results of the test runs using the MPI Library.

7.8.1 Comparing Documents Using a Local Cluster with the Clustor Tool

As discussed in Section 7.8, the Clustor tool provides an easy-to-use interface

and a high-level service to submit jobs, which are then distributed among nodes. Our

main problem is to compare a single document (suspicious document) to many

documents (candidate documents). One job is to compare the suspicious document to

one candidate document. When these comparisons have finished the results of

separate comparisons must be merged. In Chapter 3 we have discussed how we can

calculate the overlap from the matching statistics values. If multiple comparisons are

Ji^

Chapter 7 MatchDetectReveal Prototype and Parallel Applications 199

done simultaneously we simply have to store the maximum value of the matching

statistics for all comparisons and then the overlap value can be calculated using the

same algorithm as described in Chapter 3 though we have to collect the results from

different nodes.

To use Clustor we have to provide a plan file that describes the parameter

range for the task, which executables must be executed on each node before any of

the jobs start, the parameterised execution of the main task, and the post-processing

phase.

In our case the parameter range is the range of document identifiers to be

compared to the suspicious document. In the pre-processing phase we copy the

suspicious document to each node. The main task reads the suspicious document,

builds a suffix tree on it, and compares a candidate document to the suffix tree. The

results of the comparison are saved in a file, which is copied back to the root node

either right after the execution or in a batch after all jobs have finished.

This is the simplest and most straightforward application of the Clustor tool but

there are a few problems to it. We have to read the suspicious document multiple

times and build the tree multiple times because Clustor is unable to retain anything in

memory between two executions. We could build the tree once in the pre-processing

phase and then have each process read the tree rather than the document but the tree

consumes more space than the document, and in practice it is slower to read the tree

than to read the document and build the tree. Another enhancement could be to batch

documents together and compare a batch of documents to the suspicious document. It

reduces the overhead of rebuilding the tree for every new candidate document, since

we only have to rebuild it for every batch.

When we performed our tests using Clustor we did not receive the speed-up

that we had expected, so we compared the actual running time of a job to the running

time given by Clustor. Results are shown in Figure 7.15.

Tim*

Job numbtr

O Running time on
Clustor(soc)

• Real running
tlma(»»c)

Figure 7.15. Running Time on Clustor

200 Chapter 7 MatchDetectReveal Prototype and Parallel Applications

The difference between the two values is the overhead of copying files between

nodes and initiating processes. The results show that the Clustor tool is not suited for

short-running jobs. We have also experimented with different number of nodes for

comparing documents. The results are shown in Figure 7.16.

Running Time with Different Number of Nodes

30

20

10

- Running Time (sees)

1 2 3 4

Number of Nodes

Figure 7.16. Different Number of Nodes

The figure shows that the speed-up is not increasing linearly with the number

of nodes and applying more than 5 nodes does not reduce the running time much

further. These jobs are very data-intensive, because they include copying of several

candidate documents from one node to another. The Clustor tool is an excellent tool

for parameterised execution and we can treat our problem as a parametric execution

problem but the overhead is too much to use it in case of data-intensive jobs. The

following subsections introduce approaches that use the MPI library and bypasses

Clustor, so job distribution and execution is all controlled by the processes

themselves.

7.8.2 MPI Library

In this subsection we introduce the message-passing model and describe why

we have chosen the MPI Library to implement our parallel algorithms. The most

popular parallel computational models include the data parallel model, the shared

memory me •''.el, message passing, and remote memory operations [GLS99].

Data parallelism appears at many levels in computing but it was first

introduced in vector processors. Data parallelism is now more a programming style

than an architecture.

Chapter 7 MatchDetectReveal Prototype and Parallel Applications 201

In the shared memory model different processes have access to the same

memory space and they communicate by means of load and store operations.

Today's PCs are becoming small-scale shared-memory machines and they are often

referred to as symmetric multiprocessors (SMP).

In the remote memory operations model, processes are able to directly read and

write memory spaces of other processes without the involvement of the process the

data space belongs to. A similar model is the active message model [ECGS92] where

the operations are performed by a small subroutine in the address space of the other

process. Here we note that the MPI-2 standard [GLT99] also supports remote

memory operations.

The message-passing model assumes individual processes with their own

memory space and they communicate by means of messages, which require

operations from both processes. The message-passing model has many advantages

over other models. It is universal in a way that it fits many hardware and software

configurations. The message-passing model has been found to be a useful and

complete model, which also eliminates the most common problem in parallel

programs, the overwriting of memory. With a proper debugger the developer may

even see the status of message queues. The message-passing model gives a lot of

control to the developer, who then is capable of optimising the code for caching and

communication.

Because of the above-mentioned advantages message passing libraries had

been developed independently in the past: PICL [GHPW90], PVM [BGMS91],

PARMACS [BRH90], p4 [BL94], Chameleon [GS93], Zip-code [SSD+94], and

TCGMSG [Har91]. The MPI Forum [MPI01] was formed in 1992 to create a

standard that combines all ideas of the above systems. The first MPI standard was

released in 1994, while the latest is the MPI-2 standard, which was completed in the

summer of 1997.

In our project we have used the Windows MPI implementation [WMPI01] of

the MPI Library from Critical Software. The current version at the time of writing is

1.54. It did not pose any limitations, because we have not found the need for any of

the extra features that are present in the MPI-2 standard. In the following subsection

we describe how we used the MPI Library to bypass the overhead of the Clustor

Tool.

202 Chapter 7 MatchDetectReveal Prototype and Parallel Applications Chapter 7 MatchDetectReveal Prototype and Parallel Applications 203

7.8.3 Using the MPI Library to Compare Documents on a Local Cluster

If we use the MPI library for communication between processes comparing

documents we do not have to pay the overhead of the Clustor tool. The most

important improvement is that we can keep the suspicious document permanently in

memory. The basic concept is that we have a master process that knows the names of

candidate documents. There are several slave (or worker) processes that process

documents. Slave processes read the suspicious document (it can be sent by the

master process) and build the suffix tree for that document. Then this tree can be

permanently kept in memory. Slave processes contact the master process when they

need a new candidate document to be analysed. Slave processes can also keep the

matching statistics array in memory and they only need to send that array back to the

master process when the entire comparison task has finished.

Different architectures are possible for placing the master process and the slave

processes. It is also a question whether the slave processes should use the shared file

system to read the files, or have the master process, or another process, send the

content of the file to the slave process for processing. The third problem is how to

place the repository of files. We can store those files in a central database or we can

have it distributed among processing nodes. Figure 7.17 shows the architecture that

resembles much of the only possible architecture of the approach using Clustor.

Slave 1

:

Processor 2 ; j

1 !

Slave 2

Processor 3 i •

siave'3

Processor 4 i j

Slave*

Processor 5 i |

— • %

Slave 5

Processor 6 i

MPI

Figure 7.17. Clustor-Iike Architecture

First we compared the performance of using this approach and found that the

overhead was reduced significantly. Then we compared the same batch of documents

in two different architectures. The first architecture was the one depicted in Figure

7.17 and the second one used the shared file system. We used 3 slave nodes and

comparing 70 documents took 60 seconds using the shared file system, while it used

only 40 seconds when the master process distributed the files.

To run a heavy test of the parallel algorithm we have compared 2590 RFC

documents pairwise. The total size of the documents is 114MB (pure ASCII text).

We have to emphasize that the matching engine algorithm used in these tests is

suited for comparing a single (or a few) suspicious document to many candidate

documents and it is not suited for pairwise comparison. Our pairwise comparison is

equivalent to comparing 2590 suspicious documents to a 114MB repository or one

file to 295GB of documents. The reason for choosing this pairwise comparison is

that it generates enough jobs to run a heavy test of the algorithm. We used a fully

replicated repository, that is all RFC files were stored on each node. We used one

master process running on one node and one slave process each, running on the three

other nodes. The architecture is depicted in Figure 7.18.

MPI

Figure 7.18. Distributed Repository Architecture

The running time of the algorithm was 164,817secs, which translates into a

throughput of approximately 2Mbyte of documents per second. This result is

reasonable because 2MByte is about 1200 pages of text. This experiment shows that

parallel comparison of documents is feasible. Replication techniques should also be

analysed to have a feasible distribution of documents. We have to stress again that

our matching engine algorithm is only intended to be used in a second phase of a

comparison - only on documents that have previously been identified as candidate

documents by the search-engine.

204 Chapter 7 MatchDetectReveal Prototype and Parallel Applications
Chapter 7 MatchDetectReveal Prototype and Parallel Applications 205

7.9 Summary

In this chapter we have described the MatchDetectReveal prototype system that

we built to test the feasibility of the algorithms proposed in previous chapters. The

architecture of the MDR system was presented and different components were

discussed.

The core component of the system is the matching engine that uses suffix trees

and suffix vectors along with the matching statistics algorithm to identify overlap

between documents. This component can only analyse a limited number of

documents. Thus the search-engine operates as a pre-filter, which only feeds those

documents to the matching engine that potentially overlap with the submitted

document. The search-engine uses algorithms similar to those used in prototype

systems discussed in Chapter 2, We have run different tests to find appropriate

chunking and hashing methods, and we have also devised a fingerprinting method

that is more strategic than the random methods of other prototype systems.

Our experiments were run on three different document sets that contain overlap

among themselves. The RFC documents [RFC01] contain revisions of and responses

to other documents in the set, different Hungarian translations of the Bible [KarOl,

BD01] also overlap for obvious reason, and the documents of the Miguel de

Cervantes Digital Library [BP01] revealed a few more applications of the system. In

the context of the Cervantes Digital Library we discussed how the MDR system

could aid librarians in many research areas.

The theoretical algorithms that we have discussed in previous chapters present

the results as positions and chunk lengths. We introduced a visualiser component into

the system that transforms these data into a presentation, which is easily perceptible

by human. The results are shown in a Web-browser, thus no extra training is required

for users to use the system.

The system was also supplemented with a document generator component that

generated test documents with predefined overlap content. As a preparation for

future extensions of the system the document generator is capable of substituting

some words with their synonyms, which could later test the similarity and overlap

rule interpreter component that will define how to handle synonyms, and changing of

data and e.g. localities.

With the ever-increasing computational power of workstations, parallel

computing is more readily available even for applications such as our document

comparison. In the last section we have analysed how standard tools and tailored

solutions can be beneficial to our document overlap problem area.

The aim of building the MDR system was to prove in practice that the

algorithms presented in previous chapters are feasible and practical. The results show

that these algorithms are very effective and the system can be used in many

application areas, which is demonstrated by the different document sets we have used

in our tests.

. ' • ; ; * * : • ' . • • ! •

206 Chapter 7 MatchDetectReveal Prototype and Parallel Applications Chapter 8 Conclusion 207

C H A P T E R E'-T G H T

Conclusion

8.1 Summary

This thesis has presented efficient algorithms and data structures for document

overlap detection. The main focus was on the suffix tree structure and the matching

statistics algorithm. The suffix tree structure is a versatile data structure that can be

used not only in document comparison applications but also in many other areas of

computing.

The main contribution of the thesis is the new space-efficient representation of

a suffix tree: the suffix vector [MZV01, MZS02]. The suffix vector representation is

more space-efficient than any other representation known to date with the same

versatility, meaning the suffix vector representation can be used in any application

where suffix trees are used. While there are other representations that may be more

space-efficient, they are restricted for use only in certain algorithms.

The suffix vector representation is a conceptually new representation, although

it can be homomorphically mapped to the suffix tree structure. Two alternative

physical representations have been proposed: the general representation and the

compact representation. The former can be directly built from a text file and is easier

to extract data. The compact representation is the more space-efficient

representation; this is better in terms of space-requirements than any other

representation [MZV01]. The compact representation can be derived from either a

suffix tree or a general suffix vector. The construction algorithm and its time-

complexity have also been presented for the general representation [MZS02].

208 Chapter 8 Conclusion

The suffix vector representation eliminates redundancies present in other suffix

tree representations, hence some algorithms can run faster on this representation as

they do not need to examine redundant parts of the tree multiple times. One of these

algorithms is the matching statistics algorithm, which is heavily used in our

document comparison system. Examples have been presented throughout this thesis

to reinforce these concepts.

We have implemented the suffix vector representation and compared its space

requirement to the most space-efficient representation to date. Kurtz [Kur99] uses a

document set of 42 files to analyse the space requirement of his representation. We

used the same set of documents and demonstrated that our representation is superior.

Differences between the space requirements of Kurtz's representation and the

proposed suffix vector vary between document types. We have also analysed the

internal structure of the suffix vector representation and pointed out the causes of

these differences.

We have also analysed the time-efficiency of the proposed suffix vector

structure. Our comparison is based on primitive operations we have defined. We then

analysed how data can be extracted from the representation by using these primitive

operations. We have defined three crucial pieces of information that need to be

extracted from the suffix tree. These operations have been analysed, and we have

demonstrated that our representation requires fewer primitive operations than that of

Kurtz [Kur99]. The other advantage of our structure, which we have already

mentioned, is that redundant information is eliminated. Thus certain algorithms, such

as the matching statistics algorithm, need to extract less information from the

structure because redundant data is not extracted multiple times.

As previously mentioned, the suffix vector data structure is a general structure

that can be used wherever suffix trees are used. We have also investigated special

suffix tree representations that aid document comparison. Tailored suffix tree

representations may have extra benefits for some applications.

One modification we investigated was the sparse suffix tree; this represents

only those suffixes that start at the beginning of words [MZS99]. This representation

has been proposed by other researchers in the past, however it has not been analysed

for document comparison purposes. We have shown that the matching statistics

algorithm can utilize this new representation and the running time of the algorithm is

radically reduced.

Chapter 8 Conclusion 209

The other modification that we have analysed is the Directed Acyclic Graph

(DAG) representation of a suffix tree. Similarly to the suffix vector representation,

the DAG representation merges some isomorphic parts of the suffix tree. In this

thesis we have shown that the suffix vector representation is capable of eliminating

even more redundancies. The DAG representation in its original form could not serve

the matching statistics algorithm. Consequently extra modifications were proposed to

prepare the structure for the matching statistics algorithm [MZS01].

The matching statistics algorithm has been used throughout this thesis to

demonstrate the applicability of different structures. The reason for that is that we

have analysed these structures in the context of document comparison. We have

found that the matching statistics algorithm that operates on a suffix tree is an

effective algorithm to define overlap between documents.

Having analysed existing copy-detection and copy-prevention methods we

found copy-detection to be a more effective way of protecting intellectual property as

it does not impede bona fide researchers and users [MFZ+02]. Copy-detection

methods proposed in the past share some common characteristics. All divide the text

into smaller chunks. These chunks are then hashed to a more space-efficient

representation and the comparison is based on the equality of the hash values. For

space limitation reasons not all of these values can be stored in the repository. The

process of selecting the chunks to be retained is called fingerprinting. The main

problem with this approach is the uncertainty surrounding the chunking and

fingerprinting methods. We have proposed a second phase, after using the

aforementioned stage, to identify exact overlapping chunks of documents. This

second phase is the matching statistics algorithm on those data structures discussed

above.

We have found that the time-efficiency of the matching statistics algorithm can

be improved in the event we need to compare one document to many documents. The

original matching statistics algorithm would build a suffix tree for each candidate

document to be compared to the suspicious document. We have illustrated that the

suffix tree can be used in a reverse fashion where only one suffix tree needs to be

built for the suspicious document and other documents can be compared to that

single suffix tree [MZS99].

Throughout this thesis data structures and algorithms are discussed in the

context of document comparison. Document comparison is a very broad term and we

210 Chapter 8 Conclusion

have found many specific applications where our prototype system could be used.

The prototype system we have built is called the MatchDetectReveal (MDR) system;

it is a complete document comparison environment, which can be used for numerous

applications by setting different parameters [MZSOOb].

In Chapter 7 the system architecture was presented and potential applications

were analysed. The primary application of our system is plagiarism detection, which

was our initial goal at the start of the project. As the project progressed we found

other application areas including clustering a file system, cross-references in digital

libraries, and search-engines. We have worked on a joint project with the Miguel de

Cervantes Digital Library and their librarians have found the tool very useful in

many areas, discussed in detail in Chapter 7 [ZBM01].

The MDR system has shown that the algorithms and data structures proposed

in this thesis are effective in document comparison applications. One of the

interesting components of the system is the parallel comparison engine, which uses a

local cluster for comparing documents on a large scale. Both standard tools and

message passing libraries have been tested and proved successful in our experiments

on parallel environments [MZS99, MZSOOa].

8.2 Future Work

Possible future extensions of the proposed algorithms and data structures have

been identified in respective chapters in this thesis. This section revisits these

problems and provides a summary of them.

The search-engine component of the system is a pre-filter that feeds a

manageable-sized document set to our matching engine. This component has been

developed in a joint project with the Budapest University of Technology and

Economics. However some issues remain open, such as what is the best hashing

scheme, how to tackle the uncertainty of hashed breakpoint chunking, and what is the

effect of chunk sizes on false positives.

Another open research area is to determine how the advantages of data

structures discussed here could be combined to create a more efficient representation.

As an example, it is a future research direction to find out how the DAG

representation could be combined with the sparse suffix tree representation.

Chapter 8 Conclusion 211 4"

There are certain other aspects of the system wrapped up in different

components that need to be further analysed and developed. Perhaps the most

important issue is how to handle inexact matches. Methods based on exact-

comparison can be cheated by slight modifications to the text, which must be

targeted in plagiarism-detection applications. Here we note that in case of substantial

overlap between the modified texts, these methods are still useful. We have proposed

a similarity and overlap rule interpreter component that would handle these problems

in the future.

We have also explored some straightforward parallelization of the proposed

algorithm, again many issues still remain open: what is the best distribution of the

repository, what is the best topology of nodes, how many nodes can be used for

significant speed-up?

We hold a firm belief that systems like MDR and research associated with

them have many future applications and will contribute to advancement of

knowledge.

J

212 Chapter 8 Conclusion
Glossary 213

Glossary

AVL Tree. A balanced binary tree where the height of the two subtrees (children) of

a node differs by at most one. Named after Adelson-Velskii and Landis.

Candidate Document. A document identified by the search engine that overlaps

with the original document.

Canonical Form of a Document. The form of the document after conversion, which

tries to eliminate minor differences, such as different case, punctuation, spacing, etc.

Compact Suffix Vector. A physical suffix vector representation that consumes the

smallest space but cannot directly be built in linear time.

Ctree. The number of comparison steps required in the suffix tree during the matching

statistics algorithm.

Cvector- The number of comparison steps required in the suffix vector during the

matching statistics algorithm.

DAG. Directed Acyclic Graph. A data structure that can be used to eliminate some

redundancies of a suffix tree.

DAWG. Directed Acyclic Word Graph. The minimal deterministic automaton (not

necessarily complete) that accepts all suffixes of S.

Downward Extension. An extension of a vector box where a node with a depth less

than the current smallest node depth is added to the box.

False Negative. Identical chunks that are not reported overlapping.

False Positive. Chunks that are reported to be overlapping when they are different.

FAQ. Frequently Asked Questions.

Fingerprint. A representative selection of chunks of a document.

Functionally Reduced Suffix Vector. A suffix vector representation that does not

include next node and suffix link information.

General Suffix Vector. A physical suffix vector representation that can be built in

linear time.

Genuine Document. In plagiarism applications a document considered to be original

work.

Hashed Breakpoint Chunking. A chunking strategy where chunk boundaries are

determined with the help of a hash function.

214 Glossary

IHTI. Improved Hash Table Implementation. A physical suffix tree representation

proposed by Kurtz.

DLLI. Improved Linked List Implementation. A physical suffix tree representation

proposed by Kurtz.

Implicit Suffix Tree. A suffix tree where a suffix does not necessarily finish at the

end of a leaf.

Large Node. A node that needs to be represented in its entirety in the suffix vector

representation.

Long Depth. The depth of a node is long if it is more than 127.

Long Edge. An edge, whose length is greater than or equal to 256 characters.

Longest Common Prefix. The longest common prefix of two strings is the prefix of

both strings with the greatest length.

Longest Common Subsequence. A common subsequence of two or more strings

that is of greatest length.

Longest Common Substring. The longest common substring of two or more strings

is the substring of all strings which is of greatest length.

Matching Statistics Algorithm. An algorithm that defines the longest overlap

present at each position of a given string.

Matching Statistics Position. The position of the chunk in the candidate document

where the longest overlapping chunk from this position can be found.

Matching Statistics Value. The length of the longest overlapping chunk from a

given position.

MDR. MatchDetectReveal. Our prototype system that has been developed to test the

algorithms.

Natural Edge. An edge implicitly represented in the suffix vector representation.

Normal (Regular) Edge. An edge that is explicitly stored in the suffix vector

representation.

Operational Test. Computerized tests that approximate violation tests. They are

objective.

Reduced Box. A vector box that stores information on multiple nodes but those

nodes are identical. Therefore only information on one node is stored.

RFC. Request for Comments. A series of notes, started in 1969, about the Internet

(originally the ARPANET). The notes discuss many aspects of computer

communication.

Glossary 215

Regular Box. A vector box that is not a reduced box.

SBST, Suffix binary search tree. A suffix tree representation developed by Irving et

al.

SCAM. Stanford Copy Analysis Mechanism. A copy-detection system developed by

Garcia-Molina et al.

Shingle. A chunk of text.

Sif. A file-comparison tool developed by Manber.

Shift-rule. A shortcut used in exact string-matching algorithms.

Short Depth. The depth of a node is short if it is less than 128.

Short Edge. An edge whose length is less than 256 characters.

SHTI. Simple Hash Table Implementation. A physical suffix tree representation

proposed by Kurtz.

SLLI. Simple Linked List Implementation. A physical suffix tree representation

proposed by Kurtz.

Sparse Suffix Tree. A special suffix tree that contains only certain suffixes of a

string.

Subsequence. A subsequence of a string is a sequence of characters obtained by

deleting zero or more characters from it.

Substring. A consecutive range of characters within a string.

Suffix. Any substring in a string, whose last character is the last character of the

string.

Suffix Link. A link between two nodes in a suffix tree where the label of the node

pointed to by the suffix link can be obtained by eliminating the first character of the

label of the originating node.

Suffix Tree. A data structure that contains each suffix of a word.

Suffix Vector. The proposed new data structure that has a one-to-one

correspondence with suffix trees.

Suspicious Document. A document that is suspected to contain overlap with other

documents.

Upward Extension. An extension of a vector box where a node with a depth greater

than the current greatest node depth is added to the box.

Vector Box. The building block of the suffix vector data structure.

Violation Test. Decisions made by humans regarding document comparison tasks.

These decisions are subjective.

References 217.

216
Glossary

References

[AB97] Arnold R. and Bell T. A Corpus for Evaluation of Lossless
Compression Algorithms. Proceedings of Data Compression
Conference, pp 201-210, 1997. URL http://corpus.canterbury.ac.nz

[AC75] Aho A, Corasick M. Efficient String Matching: An Aid to
Bibliographic Search. Communications of the ACM, 18:333-340,
1975.

[AG86] Apostolico A. and Giancarlo R. The Boyer-Moore-Galil String
Searching Revisited. SIAMJournal of Computing, 15:98-105, 1986.

[AGK00] Abramson, D., Giddy, J. and Kotler, L. High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid?.
International Parallel and Distributed Processing Symposium
(IPDPS), pp 520- 528, Cancun, Mexico, May 2000.

[Aho90] Aho A. V. Algorithms for Finding Patterns in Strings. In Leeuwen J.,
editor, Handbook of Theoretical Computer Science. Chapter 5, pp.
257-300, Elsevier Science Publisher B.V., 1990.

[AHU74] Aho A. V., Hopcroft J. E., and Ullman J. D. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[ALS99] Andersson A., Larsson N. J., Swanson K. Suffix Trees on Words.
Algorithmica 23: 246-260, 1999.

[AN95] Andersson A., Nilsson S. Efficient Implementation of Suffix Trees.
Software - Practice and Experience 25 (2): 129-141, 1995.

[Apo85] Apostolico A. The Myriad Virtues of Subword Trees, in A. Apostolico
and Z. Galli. Combinatorial Algorithms on Words. (Springer-Verlag
Heidelberg) pp. 85-96,1985.

[BB99] Baker M. and Buyya R. Cluster Computing at a Glance in Buyya R.
High Performance Cluster Computing. (Prentice Hall) pp. 3-47, 1999.

[BBE+84] Blumer A., Blumer J., Ehrenfeucht A., Haussler D., and McConnell R.
Building a Complete Inverted File for a Set of Text Files in Linear
Time. Proceedings of the 16th ACM Symposium on Theory oj
Computing, 349-358, 1984.

[BBE+85] Blumer A., Blumer J., Ehrenfeucht A., Haussler D., Chen M.T., and
Seiferas J. The Smallest Automaton Recognizing the Subwords of a
Text. Theoretical Computer Science 40 (1), 31-56, 1985.

[BCW90] Bell T.C., Cleary J.G., and Witten I.H. Text Compression. Prentice
Hall, Englewood Cliffs, NJ, 1990.

[BD01] Bekes G., Dalos P. Ujszovetsegi szentiras. A kiilfuldi katolikus magyar
akcio kiaddsa, Roma, 1951. URL http://www.cadvision.com/mayl/bd-
ind.html,2001.

[BDG95] Brin S., Davis J., Garcia-Molina H. Copy Detection Mechanisms for
Digital Documents. Proceedings of the ACM SIGMOD Annual
Conference, pp. 398-409, San Francisco, CA, May 1995.

[Beo94] Beowulf Project (1994). URL http://beowulf.gsfc.nasa.gov/, 1994.
[BG92] Baeza-Yates R. and Gonnet G. A New Approach to String Searching.

Communications of the ACM, 35: 74-82,1992.

P

218

[BGM97]

[BGMS91]

[BL94]

[BLMO94a]

[BLMO94b]

[BM77]

[BP01]

[BR99a]

[BR99b]

[BRH90]

[BRN99]

[CMPS94]

[CL94]

[Clu99]
[CopOl]
[CS85]

[CV97]

References

Broder A.Z., Glassman S.C., Manasse M.S. Syntatic Clustering of the
Web. Proceedingsof the Sixth International World Wide Web
Conference, World Wide Web Consortium, Cambridge, pp. 391-404,
1997.
Beguelin A., Geist G. A., Manchek R., and Sunderman V. A User's
Guide to PVM: Parallel Virtual Machine. Technical Report TM-
11826, Oak Ridge National Laboratory, Oak Ridge, TN, 1991.
Butler R. and Lusk E. Monitors, Messages, and Clusters: The p4
Parallel Programming System. Parallel Computing, 20: 547-564,
April, 1994.
Brassil J., Low S., Maxemchuk N., and O'Gorman L. Technical report,
AT&T Bell Labratories, 1994. URL
ftp://ftp.research,att.com/dist/brassil/docmark2.ps, 1994.
Brassil J., Low S., Maxemchuk N., and O'Gorman L. Electronic
marking and identication techniques to discourage document copying.
Technical report, AT&T Bell Labratories, 1994.
Boyer R. S., Moore J. S. A Fast String Searching Algorithm.
Communications of ACM, 20:762-772,1977.
Bia A. and Pedreno A. The Miguel de Cervantes Digital Library: The
Hispanic Voice on the WEB. LLC (Literary and Linguistic
Computing) Journal, Oxford University Press, 16(2): 161-177, 2001.
Baeza-Yates R., Ribeiro-Neto B. Searching the Web in Baeza-Yates
R., Ribeiro-Neto B. Modern Information Retrieval, ACM Press, 1999.
Baeza-Yates R., Ribeiro-Neto B. Modeling in Baeza-Yates R.,
Ribeiro-Neto B. Modern Information Retrieval, ACM Press, 1999.
Bomans L, Roose D., Hempel R. The Argonne/GMD Macros in
FORTRAN for Portable Parallel Programming and Their
Inplementation on the Intel iPSC/2. Parallel Computing, 15: 119-132,
1990.
Baeza-Yates R., Ribeiro-Neto B., Navarro G. Indexing and Searching
in Baeza-Yates R., Ribeiro-Neto B. Modern Information Retrieval,
ACM Press, 1999.
A.K. Choudhury, N.F. Maxemchuk, S. Paul, H.G. Schulzrinne.
Copyright Protection for Electronic Publishing over Computer
Networks, IEEE Network Magazine, May/June 1995. Vol. 9 No. 3
1994. pp. 12-20, 1994.
Chang W.I. and Lawler E.L. Sublinear Approximate String Matching
and Biological Applications. Algorithmica 12:327-344, 1994.
Clustor Manual. URL http://hathor.cs.monash.edu.au/clustor/, 1999.
CopyCatch System. URL http://www.copycatch.freeserve.co.uk, 2001.
Chen M.T., Seiferas J. Efficient and Elegant Subword Tree
Construction, in Apostolico A. and Galli Z. Combinatorial Algorithms
on Words. (Springer-VerlagHeidelberg) pp. 97-107,1985.
Crochemore M. and Verin R. On Compact Directed Acyclic Word
Graphs, in Structures in Logic and Computer Science, a selection oj
essays in honor of A. Ehrenfeucht, J. Mycielski, G. Rozenberg and A.
Salomaa, eds., LNCS 1261, Springer-Verlag, 192-211,1997.

References 219

[Den95] Denning P. J. Editorial: Plagiarism in the Web. Communications of the
ACM, December 1995, Vol. 58, No. 12, pp.29,1995.

[DocOl] Doc2txt converter. URL
http://plaza27.mbn.or.jp/~satomii/soft/cui/doc2txt.html, 2001.

[ECGS92] Eicken T. von, Culler D. E., Goldstein S. C , and Schauser K. E.
Active messages: A mechanism for integrated communication and
computation. Proceedings of the l&h International Symposium on
Computer Architecture, Gold Coast, Australia, pp. 256-266,1992.

[EGGI92] Eppstein D., Galil Z., Giancarlo R., and Italiano G.F. Sparse Dynamic
Programming I: Linear Cost Functions. Journal of the ACM, Vol 39,
No 3. July 1992, pp 519-545, 1992.

[EVEOO] EVE Plagiarism Detection System. URL http://www.canexus.com,
2000

[FK97] Foster I. and Kesselman C. Globus: A Metacomputing Infrastructure
Toolkit. Ml J Supercomputer Applications 11(2), pp. 115-128, J997.

[FKS84] Fredman M. L,, Komlos J., Szemeredi E. Storing a Sparse Table with
0(1) Worst Case Access Time. Journal of the ACM, 31: 61-68, 1984.

[FP74] Fischer M. and Patterson M. String-Matching and Other Products. In
Karp R. M., editor, Complexity of Computation, pp. 113-125. SIAM-
AMS Proa, 1974.

[FSK82] Felsenstein J, Sawyer S., and Kochin R. An Efficient Method for
Matching Nucleic Acid Sequences. Nucleic Acids Res., 10:133-139,
1982.

[FZMS02] Finkel R. A., Zaslavsky A., Monostori K., Schmidt H. Signature
extraction for overlap detection in documents. Australasian Computer
Science Conference, Monash University, Melbourne, Victoria, 28
January - I February, 2002, pp 59-64, 2002.

[GG88] Galil Z. and Giancarlo R. Data Structures and Algorithms for
Approximate String Matching. Journal of Complexity A, 33-72, 1988.

[GGS96] Garcia-Molina H., Gravano L., Shivakumar N. dSCAM: Finding
Document Copies Across Multiple Databases. Proceedings of 4th
International Conference on Parallel and Distributed Information
Systems (PDIS'96), pp. 68-79, Miami Beach, Florida, 1996.

[GHPW90] Geist G. A., Heath M. T., Peyton B. W., and Worley P. H. PICL: A
Portable Instrumented Communications Library, C Reference Manual.
Technical Report TM-11130, Oak Ridge National Laboratory, Oak
Ridge, TN, July 1990.

[GK97] Giegerich R. and Kurtz S. From Ukkonen to McCreight and Weiner:
A Unifying View of Linear-Time Suffix Tree Construction.
Algorithmica 19:331-353, 1997.

[GKS99] Giegerich R., Kurtz S., Stoye J. Efficient Implementation of Lazy
Suffix Trees. Algorithm Engineering 1999: 30-42, 1999.

[Gla99] Glatt Plagiarism Screening Program. URL:
http://www.plagiarism.com/screen.id.htm, 1999.

[GLS99] Gropp W., Lusk E., Skjellum A. Using MPI. Portable Parallel
Programming with the Message-Passing Interface. 2nd Edition. The
MIT Press, 1999.

220 References

[GLT99] Gropp W., Lusk E., Thakur R. Using MPI-2: Advanced Features of the
Message-Passing Interface. The MIT Press, 1999.

[Gri93] Griswold G. N. A method for protecting copyright on networks. In
Joint Harvard MIT Workshop on Technology Strategies for Protecting
Intellectual Property in the Networked Multimedia Environment, URL
http://www.cni.org/docs/ima.ip-workshop/Griswold.html 1993.

[GS93] Gropp W. D. and Smith B. Chameleon Parallel Programming Tools
Users Manual. Technical Report ANL-93/23, Argonne National
Laboratory, Argonne, IL, March, 1993.

[GS95a] Garcia-Molina H., Shivakumar N. The SCAM Approach to Copy
Detection in Digital Libraries. D-lib Magazine, November, 1995.

[GS95b] Garcia-Molina H., Shivakumar N. SCAM: A Copy Detection
Mechanism for Digital Documents. Proceedings of 2nd International
Conference in Theory and Practice of Digital Libraries (DL'95), pp.
155-163, June 11-13 , Austin, Texas, 1995.

[GS96] Garcia-Molina H., Shivakumar N. Building a Scalable and Accurate
Copy Detection Mechanism. Proceedings of 1st ACM International
Conference on Digital Libraries (DL'96), pp. 160-168, March,
Bethesda Maryland, 1996.

[Gus97] Gusfield D. Algorithms on Strings, Trees, and Sequences. Computer
Science and Computational Biology. Cambridge University Press,
1997.

[GVOO] Grossi R., Vitter J. S. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching (extended abstract).
Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing (STOC 2000), May 21-23, 2000, Portland, OR, USA.
397-406, 2000.

[HAI01] Hunt E., Atkinson M. P., Irving R. W. A Database Index to Large
Biological Sequences. Proceedings of the 27th VLDB Conference,
Rome, Italy, pp. 139-148,2001.

[Har91] Harrison R. J. Portable Tools and Applications for Parallel Computers.
International J. Quantum Chem., 40 (847), 1991.

[Hei96] Heintze N. Scalable Document Fingerprinting. Proceedings of the
Second USENIX Workshop on Electronic Commerce, Oakland,
California, 18-21 November, 1996. URL
http://www.cs.cmu.edu/afs/cs/user/nch/www/koala/main.html, 1996.

[Hir77] Hirschberg D. S. Algorithms for the Longest Common Subsequence
Problem. Journal of A CM, 24:664-675, 1977.

[Hor80] Horspool N. Practical Fast Searching in Strings. Software - Practice
and Experience, 10:501-506,1980.

[HT84] Harel D. and Tarjan R. E. Fast algorithms for finding nearest common
ancestors. SJAM Journal on Computing, 13(2): 338-355, 1984.

[HTML01] HTML2txt Converter. URL
http://www.infomedia.it/artic/Baccan/opensource/, 2001.

[HS91] Hume A. and Sunday D. M. Fast String Searching. Software - Practice
and Experience, 21:1221-1248, 1991.

••m-

References 221

[ILOO] R.W. Irving and L. Love. The suffix binary search tree and suffix
AVL tree, University of Glasgow, Computing Science Department
Research Report, TR-2000-54, February 2000.

[IntO 1] InteriGuard System. URL http://www.integriguard.com, 2001.
[KarOl] Karoli G. Szent Biblia, 1591.

URL http://www.cab.u-szeged.hu/WWW/books/Biblia/, 2001.
[Kar95] Karkkainnen J. Suffix Cactus: A Cross between Suffix Tree and Suffix

Array. Proceedings of the Annual Symposium on combinatorial
Pattern Matching (CPM'95), LNCS937,pp. 191-204, 1995.

[KD95] Kosaraju S. R. and Delcher A. L. Large Scale Assembly of DNA
Strings and Space-Efficient Construction of Suffix Trees. Proceedings
of the 27 th Annual ACM Symposium on Theory of Computing (STOC),
pp. 169-177, 1995.

[KMP77] Knuth D. E., Morris J. H., Pratt V. B. Fast pattern matching in strings.
SIAM Journal of Computing, 6:323-350, 1977.

[Koc99] Kock. N. A case of academic plagiarism. Communications of the
ACM, July 1999, Vol. 42, No.7, pp. 96-104,1999.

[KU96] Karkkainnen J. and Ukkonen E. Sparse Suffix Trees. Computing and
Combinatorics, Second Annual International Conference, COCOON
'96, Hong Kong., June 17-19, 1996, Proceedings, 219-230, 1996.

[Kur99] Kurtz S. Reducing the Space Requirement of Suffix Trees. Software-
Practice and Experience, 29 (13), 1149-1171, 1999.

[LI93] Lefevre C. and Ikeda J.-E. The Position End-Set Tree: A Small
Automaton for Word Recognition in Biological Sequences. Comp.
Appl. BioscL, 9(3): 343-348, 1993.

[I.V89] Landau G. M. and Viskin U. Fast Parallel and Serial Approximate
String Matching. Journal of Algorithms 10, 157-169, 1989.

[Man94J Manber U. Finding Similar Files in a Large File System. Proceedings
of the 1994 USENIX Conference, pp. 1-10, 1994.

[McC76] McCreight E. M. A Space-Economical Suffix Tree Construction
Algorithm. Journal of A CM, 23 (2), 262-272, 1976.

[MFZ+02] Monostori K., Finkel R., Zaslavsky A., Hodasz G., Pataki M.
Comparison of Overlap Detection Techniques. The 2002 International
Conference on Computational Science, Amsterdam, The Netherlands,
21 - 24 April, 2002. (I) pp 51-60, 20C2.

[MM93] Manber U., Myers E.W. Suffix Airsys: A New Method for On-Line
String Searches. SIAM Journal on Computing, 22 (5):935-948, 1993.

[Mor86] Morrison D. R. P A T R i w . - Practical Algorithm to Reprieve
Information Coded in Alphanumeric. Journal of ACM 15 (4) 514-534
1986.

[MPIO1] The MPI Forum. URL http://www.mpi-forum.org, 2001.
[MR75] Majster M. E. and Reisner A. Efficient On-Line Construction and

Correction of Position Trees. SIAM Journal of Computing 9 (4) 346-
351, 1975.

[Mye86] Myers E. W. An O(ND) Difference Algorithm and Its Variations.
Algorithmica 1 251-266, 1986.

222 References References 223

[Mye88] Myers E. W. A Four Russian Algorithm for Regular Expression
Pattern Matching. Tech. Report 88-34, Dept. of Computer Science,
University of Arizona, Tucson, AZ, 1988.

[MZB01] Monostori K., Zaslavsky A., Bia A. Using the MatchDetectReveal
System for Comparative Analysis of Texts. Proceedings of the Sixth
Australasian Document Computing Symposium (ADCS 2001), Pacific
Bay Resort, Coffs Harbour, 7 December, 2001, pp 51-58,2001.

[MZS99] Monostori K., Zaslavsky A., Schmidt H. Parallel Overlap and
Similarity Detection in Semi-Structured Document Collections.
Proceedings of the 6th Annual Australasian Conference on Parallel
and Real-Time Systems (PART '99), Melbourne, Australia, 1999. pp
92-103, 1999.

[MZSOOa] Monostori K., Zaslavsky A., Schmidt H. Parallel and Distributed
Document Overlap Detection on the Web. Workshop on Applied
Parallel Computing - PARA2000, 18-21 June 2000, Bergen, Norway.
pp 206-214,2000.

[MZSOOb] Monostori K., Zaslavsky A., Schmidt H. MatchDetectReveal: Finding
Overlapping and Similar Digital Documents. Information Resources
Management Association International Conference (IRMA2000), 21-
24 May, 2000 at Anchorage Hilton Hotel, Anchorage, Alaska, USA. pp
955-957,2000.

[MZSOOc] Monostori K., Schmidt H., Zaslavsky A. Document Overlap Detection
System for Distributed Digital Libraries. ACM Digital Libraries 2000
(DL00), 2-7 June, 2000 in San Antonio, Texas, USA. pp 226-227.
2000.

[MZS01] Monostori K., Zaslavsky A., Schmidt H. Efficiency of Data Structures
for Detecting Overlaps in Digital Documents. Australasian Computer
Science Conference, Bond University, Gold Coast, Queensland, 29
January - 2 February, 2001. pp 140-147, 2000.

[MZS02] Monostori K., Zaslavsky A., Schmidt H. Suffix Vector: Space- and
Time-Efficient Alternative To Suffix Trees. Proceedings of the 25th

Australasian Computer Science Conference, Monash University,
Melbourne, Victoria, 28 January - 1 February, 2002, pp 157-166,
2002.

[MZV01] Monostori K., Zaslavsky A., Vajk I. Suffix Vector: A Space-Efficient
Suffix Tree Representation. Proceedings of the International
Symposium on Algorithms and Computation, Christchurch, New
Zealand, Dec 19-21, 2001, pp 707-718,2001.

[NetOl] Evaluating the Size of the Internet. URL http://www.netsizer.com,
30/11/2001

[NOW01] NOW Project. URL http://now.cs.berkeley.edu/, 2001.
[PapOl] PaperBin system. URL http://www.paperbin.com, 2001.
[PDF01] PDF2txt Converter, URL http://alkaline.vestris.com/files/asearch-

distrib/WinNT/,2001.
[Pla99] Plagiarism.org, the Internet plagiarism detection service for authors &

education. URL http://www.plagiail -m.org, 1999.
[PS01] PS2txt Converter,

http://www.research.digital.com/SRC/virtualpaper/pstotext.html,
2001.

[Rab81] Rabin M.O. Fingerprinting by random polynomials. Center for
Research in Computing Technology, Harvard University, TR-15-81,
1981

[RFC01] RFC Overview. URL http://www.rfc-editor.org/overview.html, 2001.
[Riv92] Rivest R. L. RFC 1321: The MD5 Message-Digest Algorithm. Internet

Activities Board, April 1992.
[SLL97] Si A., Leong H.V., Lau R. W. H. CHECK: A Document Plagiarism

Detection System. Proceedings of ACM Symposium for Applied
Computing, pp.70-77, Feb. 1997.

[Smi91] Smith P. D. Experiments With a Very Fast Substring Search
Algorithm. Software - Practice and Experience, 21:1065-74, 1991.

[Smi94] Smith P. D. On tuning the Boyer-Moore-Horspool String Searching
Algorithm. Software - Practice and Experience, 24:435-36, 1994.

[Sol96] Solaris-MC Project. URL http://www.sunlabs.com/research/solaris-
mc/, 1996.

[SSD+94] Skjellum A., Smith S. G., Doss N. E., Still C. H., Leung A. P., and
Morari M. The Zipcode Message Passing System. In Fox G. C , editor,
Parallel Computing Works! Morgan Kaufman, 1994.

[Sun90] Sunday D. M. A Very Fast Substring Search Algorithm.
Communications of the ACM, 33:132-142, 1990.

[Ukk85] Ukkonen E. Algorithms for Approximate String Matching.
Information and Control 64, 100-118, 1985.

[Ukk95] Ukkonen E. On-Line Construction of Suffix Trees. Algorithmica 14.
pp. 249-260, 1995.

[Wei73] Weiner P. Linear Pattern Matching Algorithms. Proceedings of the
14' IEEE Symposium on Switching and Automata Theory, pp. 1-11.
1973.

[WMPIOl] V/indows MPI. URL http://www.criticalsoftware.com/wmpi/, 2001.
[WS92] Wall L. and Schwartz R. L. Programming Perl. O 'Reilly & Associates,

Inc., 981 Chestnut Street, Newton, MA 02164, USA, 1992.
[ZBM01] Zaslavsky A., Bia A., Monostori K. Using copy-detection and text

comparison algorithms for cross-referencing multiple editions of
literary works. Proceedings of the 5th European Conference on
Research and Advanced Technology for Digital Libraries September
4-9 2001, Darmstadt, Germany, pp 103-114, 2001.

