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Abstract

This thesis is concerned with the issue of multiple maxima of likelihood

functions and its implication for inference in the general linear regression model.

Special attention is given to regression models with a .first order moving average

error process and to marginal likelihood methods. We also investigate whether

estimating equations can help to improve the understanding of the estimating process

in the context of the general IHK-T model.

The first contribution of this thesis is to study the consequences of different

strategies for maximising the likelihood function when a local maximum is distinctly

possible on tests of regression coefficients. This is done in the context of maximum

likelihood estimation of the general linear model with a first order moving average

error process.

As a second contribution, we investigate two possible improvements to

standard tests of the regression coefficients. We reassesses the importance of taking

care in finding the global maximum of the likelihood function and investigate

improvements through modified test statistics by using corrected degrees of freedom

when the model contains a nuisance parameter and also using marginal likelihood

based estimates. We investigate the effectiveness of these modifications through a

Monte Carlo simulation.

xvm



The third contribution of this thesis is to look at the consequences of

different strategies for maximising the likelihood function on forecasting

performance of the linear regression model when maximum likelihood and marginal

likelihood methods are used to estimate the nuisance parameter when there are first

order moving average disturbances. In addition, we look at forecasting performance

when the initial term of the forecasting error is estimated and compare it with that

when the initial error is set to zero in the recursive calculations required for one-step-

ahead forecasts. We compare the forecasting performance for both one-step-ahead

and two-step-ahead forecasts.

The final contribution is to show the estimating equation for the least

squares method applied to a transformed model gives the same expression as that of

the estimating equation of the concentrated likelihood. The estimating equation can

be expressed as a polynomial of fifth degree when regression design matrix is a

vector in the context of the linear model with a non-stationary first order

autoregressive error process and also an infinite degree polynomial of the parameter

when regression design matrix is not a vector. Instead of using an infinite degree

polynomial, which is analytically difficult or even impossible to solve, we suggest

the use of an approximating polynomial of finite degree, which is easier to solve.

In conclusion, this thesis warns that looking for the global maximum of the

likelihood function is not always best choice in the case of maximum likelihood

because it may give tests with poor small sample sizes. This is not the case for the

maximum marginal likelihood estimation method which we find to be best for

inference in the linear regression model with a first order moving average error

xix



process. When using the marginal likelihood, the best test and forecasting results

seem to come from taking considerable care to find its global maximum.
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CHAPTER 1

Introduction

1.1 Prologue

Econometrics in a broad sense is a set of quantitative techniques that are

useful for making inferences about economic behaviour under uncertainty. It is

concerned with extracting the best possible information from data in order to

make inferences. Within this context, estimation is a very widely used statistical

method, which depends on the scientific deduction of an unknown quantity from

sample information. The aim of estimation is to approximate the values of

unknown parameters using the available data in a way that provides a useable

approximation and some idea of the quality of that approximation.

Applied econometricians and statisticians are usually interested in

effective inferences using econometric or statistical models for the purpose of

forecasting, policy analysis or to have a better understanding of the economy.

For this reason, they need to study the properties of estimators with particular

emphasis on the accuracy of the ensuing inference. In econometric modelling,

information on the distributional properties of an estimator is important for
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making quality statistical inferences and being certain about the quality of

parameter estimates of the model. In applied work, the probability distribution

of the estimator is not always known and, in addition, exact statistical inference

may be computationally difficult. In such cases, econometricians depend on the

asymptotic properties of the estimator in the hope that asymptotic

approximations will give reasonably accurate results. Unfortunately, their

accuracy seems to be doubtful in some cases.

An example of one such case is given by King and McAleer (1987) who

considered testing first-order autoregressive (AR(1)) disturbances against first-

order moving average (MA(1)) disturbances in the linear regression model.

They reported that the asymptotic Cox test of AR(1) errors against MA(1) errors

has less than ideal small sample properties. They found that the Cox test based

on asymptotic critical values at the 0.05 level can have true sizes in excess of

0.70, 0.40 and 0.20 when the sample sizes are 15, 30 and 60 respectively.

Godfrey (1978), Griffiths and Surekha (1986), King (1987a), King and McAleer

(1987), Honda (1988), Moulton and Randolph (1989), Chesher and Austin

(1991), Kennedy and Simons (1991) and Latif and King (1993), are examples of

other studies in a range of different settings in which the accuracy of asymptotic

tests is questioned.

Obviously the best estimator may be regarded as the one whose

distribution concentrates as closely as possible near the true value of the

parameter being estimated. In statistical inference, the most popular and widely

used estimation methods are those of maximum likelihood (ML) and least

: f.
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squares (LS). The method of LS involves finding the parameter values that

minimize the sum of squared residuals. The difference between the dependent

variable and its estimated expected value is known as the residual. The LS

method was first named and published by Legendre in 1805 (Merriman, 1877).

Gauss became familiar with his work and took an early opportunity to study the

method in detail (Gauss, 1806, p. 184). The method has a long history of use

with a great number of variations, extensions and applications being published in

the literature. Partly its popularity comes fxCd the fact that it is a simple

technique that does not require exact specification of the population distribution.

ML is a general method of estimation, which chooses the value of the

unknown parameter in such a way that maximizes the likelihood function with

respect to the unknown parameter. R.A. Fisher first introduced maximum

iikelihood in the early 1920's as a tool for estimating unknown parameters.

Over the last few decades, ML has been a widely used method of estimation

because, under some fairly general conditions, ML estimators are consistent,

asymptotically normal, asymptotically unbiased and asymptotically efficient, see

for example, Lehmann (1983) and LeCam (1990). It can be applied to a wide

range of different parametric models and the likelihood ratio (LR), Wald and

Lagrange multiplier (LM) test procedures have been developed based on

likelihood functions.

In econometrics and statistics, model selection is another useful technique

that has originated from the maximum likelihood method. Akaike (1974)

proposed his widely used information criteria known as AIC and in 1973 he
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(Akaike (1973)) also suggested selecting the best fitting model using this criteria

to discriminate between alternative models. AIC was developed incorporating

Kullback-Leibler (KL) information with the use of maximum likelihood

principles and negative entropy. The form of AIC is that it uses the penalized

maximized log-likelihood form given as AIC = l(y)-p, where l(j) is the

maximized log-likelihood of the model, y is the estimated parameter vector and

p is the penalty term which is the number of free parameters included in the

model under consideration. The main disadvantage of AIC is that it is an

inconsistent information criterion. Schwartz (1978) modified the AIC procedure

and proposed another model selection criteria based on maximum likelihood

known as BIC, which overcomes the disadvantages of AIC for large samples.

In a given econometric setting, all the parameters of a model may not be

equally important to the researcher. Estimating the parameters of interest

without taking care of unwanted parameters, that is nuisance parameters, may

give us misleading information about the model under consideration. To

overcome this problem, we need to be able to estimate the nuisance parameters

effectively so that we can reduce any estimation bias.

Nuisance parameters are also known as incidental parameters. They are

not parameters of interest but are needed in order to make the model under

consideration realistic. Traditionally we often rely on concentrating the

likelihood function in order to estimate the nuisance parameters. Neyman and

Scott (1948) introduced the nuisance parameter problem and later Kalbfleisch

and Sprott (1970), Cooper and Thompson (1977), Corduas (1986), Tunnicliffe

; i':.
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Wilson (1989), McCullagh and Nelder (1989), Bellhouse (1991), King (1996),

Laskar and King (1996b) and Rahman and King (1997) discussed problems of

nuisance parameters in practical situations. The view that has emerged from this

literature is that it is better to use the marginal likelihood rather than the

concentrated likelihood when estimating some key nuisance parameters. It helps

to reduce the estimation bias. For example, Ara (1995) and Rahman and King

(1998) showed marginal likelihood based tests have better small sample

properties in the context of tests of regression disturbances than corresp jnding

tests based on the concentrated likelihood. For a general discussion of marginal

likelihoods, see for example Kalbfleisch and Sprott (1970), Cox (1988),

McCullagh and Nelder (1989), Tunnicliffe Wilson (1989), Rahman and King

(1994) and Laskar and King (1998). This will be further discussed in Chapter 2.

The first derivative of the likelihood function is known as Fisher's score

function. The ML estimate can be found by setting the score to zero and solving

for the parameter values. The equation involving the score function set to zero is

known as an estimating equation because solving it allows us to find the required

estimate. Usually an estimating equation of a non-linear character makes

solution for the parameters difficult. In this situation, numerical methods can

help to find an appropriate solution via an iterative formula.

A number of authors have used estimating equations for choosing

appropriate estimates. For example, Godambe (1960) used the score of the

estimating equation to show an optimum property of regular maximum

likelihood estimation. Godambe and Thompson (1974) modified the score of
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the estimating equation for regular maximum likelihood estimation as a method

of bias correction. Mahmood (2000) showed how the estimating equation

approach can be used ?•:> derive estimators which possess good small sample

properties. Using an estimating equation approach, he assessed various

modified likelihood methods of estimation and concluded that the marginal

likelihood is the best overall likelihood for statistical inference in the general

linear model.

Forecasting plays an important role in the field of econometrics, statistics

and many other brandies of science. One standard approach to producing a

good forecast is to construct a reliable (statistical or econometric model. This

typically involves the estimation of unStnovvn parameters of the model. There is

a common view that a good forectsi c,,*ai only be obtained when the estimation of

the parameters of the- model can be done with minimum error. In other words, a

good estimate of tha parameters of the model will provide good forecasts when

used in the model.

Hv^s of this Thesis

In this thesis we look at the issue of global maximum versus local maxima

of the likelihood function and its impact on testing regression coefficient and

making forecasts in the linear model. We also investigate whether estimating

equations can help to improve the understanding of the estimating process in the

context of the general linear model.

.&J
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The specific objectives of this thesis are to:

(1) Look at the consequences of different strategies for maximising the

likelihood function when a local maximum is distinctly possible,

on test sizes when estimating a nuisance parameter based on the

concentrated likelihood and marginal likelihood for the general

linear model.

(ii) Develop modified test statistics for testing regression coefficients

by correcting degrees of freedom when the model contains

nuisance parameters and to investigate the usefulness of such

modifications through Monte Carlo simulations.

(iii) Investigate the consequences of different strategies for maximising

the likelihood function on forecasting performance when the ML

and maximum marginal likelihood (MML) methods are used to

estimate the nuisance parameter in the context of the linear

regression model with MA(1) errors.

(iv) Through an estimating equation approach, establish, an equivalence

between least squares and ML based on the concentrated likelihood

function in the context of the general regression model.

(v) Explore analytical solutions of estimating equations in the context

of a linear regression with non-stationary AR(1) errors.
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1.3 Organization of the Thesis

In Chapter 2, we review estimation of the linear model in the presence of

nuisance parameters. Here the particular problem of estimation when the errors

follow an MA(1) process are discussed. We review some methods of numerical

optimization of the likelihood function, namely the marginal likelihood and the

concentrated likelihood, along with the estimating equation of the concentrated

likelihood for estimating the parameters of the general linear regression model.

We also discuss some aspects of estimating equations and multiple maxima,

highlighting their role. In addition, we briefly outline the literature on the

simulated annealing algorithm for finding the global maximum of an objective

function.

Chapter 3 deals with the consequences on the size of the standard test of

regression coefficients of accepting local maxima instead of the global

maximum of a concentrated likelihood function involving MA(1) regression

disturbances. We compare the estimated sizes of the test when estimation is

done through different strategies for different values of the MA(1) error

parameter and different sample sizes using Monte Carlo simulation. We

conclude that, in general, our calculated test sizes are unacceptably high.

In Chapter 4, we investigate two possible improvements to the test of the

regression coefficients aimed at improving size and reassess the importance of

taking care in finding the global maximum of the likelihood. One possible

improvement is to use the method of MML. We also construct test statistics
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usin:?lg various degrees of freedom based on estimation of all parameters (except

the variance term) and calculate the estimated sizes of tests using different

strategies for estimating the moving average parameter with different degrees of

freedom for different values of the moving average parameter.

In Chapter 5, first we look at the effect of different strategies for

maximising the likelihood function on forecasting performance when estimation

of the moving average parameter is based on the ML and MML methods. We

then see whether taking extra care in finding the global maxima of likelihood

functions improves the accuracy of forecasting performance. We also look at

whether there is any difference between the forecasting performance of the

model when the first term of the forecasting error is replaced by its estimated

value or by zero as suggested by King and McAleer (1987) in the context of the

linear regression model with MA(1) errors. We use the concentrated likelihood

and the marginal likelihood to estimate the moving average parameter through

different strategies to assess the forecasting performance. We also compare the

forecasting performance of the model for different values of the parameter in the

case of one-step-ahead forecasts and two-step-ahead forecasts.

In Chapter 6, we consider the concentrated likelihood and marginal

likelihood for the general linear model and give the score of the concentrated

likelihood and the marginal likelihood. We explore whether there is equivalence

between the LS method and the maximum likelihood method and examine

estimating equations for the LS method based on a specially transformed model

with that from the concentrated likelihood function. We discuss estimating the
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covariance matrix parameter in the linear regression model with a non-stationary

AR(1) error process. We show that the estimating equation is a polynomial of

infinite degree in the case of non-stationary AR(1) errors. To find the roots of

this polynomial, we use different mathematical expressions to approximate the

polynomial up to degree four. We also show a special case where the estimating

equation turns into a fifth degree polynomial when the design matrix is a single

vector for this nonstationary AR(1) process. We make a suggestion for finding

the roots of the polynomial and choosing an appropriate root as our desired

estimate. We also derive an iterative formula to find roots of the higher degree

polynomial.

We conclude this thesis with Chapter 7. It includes a summary of the

results, conclusions and contributions of this thesis, and gives some suggestions

for further research.



CHAPTER 2

Review of the Literature

2.1 Introduction

This thesis covers four main subject areas. These are finding the global

maximum of likelihood functions, testing regression coefficients, estimation of

nuisance parameters in the general linear regression model with an MA(1) error

process and the consequences of using global and local maxima of the likelihood

function on forecasting performance. The aim of this chapter is to survey literature

on these and relevant areas with particular emphasis on estimation in the case of the

general linear regression model. We discuss the problem of numerical optimisation

of likelihood functions, and in particular the use of marginal likelihood and

concentrated likelihood functions. We investigate estimating equations for

parameter estimation of the general linear regression model and review some aspects

of multiple maxima of likelihoods, highlighting their role in statistical inference.

Following the above introduction, we begin the review of the literature in

Section 2.2 with a brief discussion on likelihood based inference in econometrics and

statistics. In this section we discuss maximum likelihood estimation, the score
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vector, the information matrix and the Newton-Raphson method. In Section 2.3 we ; I

review the simulated annealing algorithm used for optimization. In Section 2.4 we f

discuss the concentrated likelihood function of the general linear model and survey i

the problem of multiple maxima of likelihood functions. The marginal likelihood

approach is outlined in Section 2.5. In Section 2.6 we review the use of estimating

equations and exploit the properties of this approach to address theoretical and

empirical issues of estimation problems based on likelihood functions. Finally,

Section 2.7 contains some concluding remarks.

2.2 Likelihood Based Inference

In econometrics and statistics, the likelihood function plays an important role.

Fisher (1922) first introduced maximum likelihood as a tool for estimating unknown

parameters. After Fisher's contribution, the likelihood became a central concept of

parametric statistical methods both in the Bayesian and in the classical approaches.

Since then, likelihood methods have become increasingly popular. In frequency

based inference, the main reason for their widespread use is that sampling

distributions of statistics such as the maximum likelihood estimator and the

likelihood ratio test statistic have simple and well understood (first-order) asymptotic

approximations in many relevant models. Much of the work on likelihood inference

over the past few decades has been aimed at refining and improving upon first-order

approximations by moving to higher-order asymptotics.

Maximum likelihood is probably the most popular estimation procedure in

context of multi-parameter models. Its main aim is to find the parameter value(s)
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that makes the observed data most likely. This is because the likelihood of the

parameters given the data is defined to be equal to the probability of the data given

the parameters. The purpose of this section is to provide a brief introduction to the

ideas behind maximum likelihood estimation.

Let y\,'~,yn be n independent random variables with probability density

functions f^y^y) depending on a vector-valued parameter y . The joint density of

// independent observations y = (_v,, • • •, yn) is

f{y:r)=
1=1

(2.1)

This expression, viewed as a function of the unknown parameter y given the data y,

is called the likelihood function. Often we work with the natural logarithm of the

likelihood function, the so-called log-likelihood function:

logL(y;y) = (2.2)

In linear regression or analysis of variance, we typically turn to the principle

of least squares for estimation of the unknown parameters of the model. The idea of

ieast squares is to choose parameter estimates that minimize the average squared

difference between observed and predicted values of the data being modelled. That

is, to maximize the fit of the model to the data by choosing the model that is closest,

in a least squares sense, to the data.

For many other models such as logistic, Poisson, and proportional hazard

regression, least squares usually cannot be used as an estimation method because of

the non-linear nature of these models. Instead, we turn to the method of maximum
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likelihood estimation. Maximum likelihood estimation involves searching over all

possible sets of parameter values for a specified model and finding the set of

parameter values which, given the observed sample, is most likely. This is done by

maximizing the likelihood (or equivalently the log-likelihood) function. Formally,

the maximum-likelihood estimator (MLE) is the value y such that

logL(y;y)>logL(y;y) for all y .

2.2.1 The score function

The first derivative of the log-likelihood function is called Fisher's f- ;ore

function, and is denoted by

etegifcy) (23)

ay

Note that the score is a vector of first partial derivatives, one for each element of y .

If the log-likelihood is concave, one can find the maximum likelihood estimator by

setting the score to zero, i.e. by solving the system of equations: u(y) = 0. Rao

(1947) discussed the use of the score function for estimation of several parameters.

Bartlett (1953a, 1953b) discussed the use of the score function while approximating

confidence intervals.

2.2.2 The information matrix

The score is a random vector with some interesting statistical properties. In

particular, the score evaluated at the true parameter value y has variance-covariance

matrix given by the information matrix:
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var[u{y)] = E[u(r)u'{r)] = I(y) • (2.4)

The information matrix can be obtained as minus the expected value of the

matrix of second derivatives of the iog-iikeiihood:

d2logL(y;y)
dydy'

(2.5)

The matrix of negative observed second derivatives is sometimes called the

observed information matrix. Sometimes it is difficult and even impossible to find

the expected value of (2.5). If it is tedious to take the second derivative, then

information matrix can be estimated as

?( )_( dlogL{r;y)YdlogL{r;y)\

{ sr ){ dr ) '
(2.6)

which converges stochastically to l(y) in an open neighbourhood of the true value

of y , which we denote by yt. The expected value of the score vector evaluated at

the true parameter value is

Slog if yl;y

dy
= 0 (2.7)

and the variance-covariance matrix (2.4) of the score vector evaluated at the true

parameter value can be written as

Var
dy

= E
dydy'

(2.8)
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For the asymptotic distribution of the estimator y, we need to establish the

relationship between the estimator and ° S V'y' under mild regularity

dy

conditions. Theil (1971, Chapter 8), Cox and Hinkley (1974, Chapter 9), Holly

(1982), Amemiya (1985, Chapter 4), Godfrey (1988, Chapter 1) and Gourieroux and

Monfort (1995, Chapter 7) among others discussed tliese mild regularity conditions.

The fbllowing regularity conditions were compiled by Godfrey (1988, page 6):

1. "The true parameter value / i s interior to the parameter space which is finite

dimensional, closed and bounded.

2. The probability distributions defined by two different values of y are distinct.

3. The first- and second-order partial derivatives of logL{y;y) with respect to

the elements of y are continuous throughout some neighbourhood of the true

parameter value. Moreover, the third-order partial derivatives are such that

the quantities n"x ' (i,j,k = \,---,m) exist and are bounded by

integrable functions in such a neighbourhood.

4. If the score vector — % \ • ) is denoted by u(y) and the Hessian
dy

°S W'y> by Dn(y), then when the argument y is the true parameter

value y ,

0 (2.9)

and

^"lr>
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where E[] and V[] denote expectation and variance-covariance matrices,

respectively, and llyt J is the information matrix. Equations (2.9) and

(2.10) require that the relevant integrals converge and that the effective range

of integration be independent of y .

5. The matrix l(y) is positive definite at y = y and in an open neighbourhood

of the true value which implies that yl is locally identifiable (see Rothenberg, I

1971). I

6. The eigenvalues of / ( y j all tends to infinity as n -» oo so that information \
• i

accrues steadily as the sample size increases without limit. i
I

7. Under the yl distribution, the probability limit of - / / Dn(y
l J is Im, j

i-i ( t\ • i
the m x m identity matrix. Also, the probability limit of [A.O')] DJy is i

Im for y in a neighbourhood of y . j

8. The vector M ( / M U\Y ) ls asymptotically normally distributed with I

zero mean vector and covariance matrix Im." • [

Using the Central Limit Theorem,

jdlogL^y'.-y^ d

N\0, lim^n-1![/')) (2.1 D

w h e r e " > " represents convergence in distribution and

|
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There are many results in the literature concerning the asymptotic properties

of the ML estimator. Rao (1973, p. 364) presented the consistency of the local MLE,

which was originally proved by Cramer (1946). Wald (1949) proved the consistency

of the global MLE without assuming compactness of the parameter space, but his

conditions are difficult to ve»ify in practice. Many other references concerning the

asymptotic properties of the MLE can be found in survey articles by Norden (1972,

1973).

The asymptotic distributional properties of ML estimates of y play an

important role in the derivation of the most important and widely used tests that are

based on the likelihood principle. These are the likelihood ratio (LR), Wald and LM

tests. Neyman (1935) introduced the LR test, Wald (1943) proposed the Wald test

and Aitchinson and Silvey (1958) outlined the LM test. Rao (1948) introduced the

score test which turned out to be the same as the LM test.

2.2.3 Newton-Raphson technique

In this subsection we will discuss a method for maximizing the likelihood

function called the Newton-Raphson method based on an iterative procedure.

Usually the emulation of the MLE requires an iterative procedure. Consider

expanding the score function evaluated at the MLE / around a trial value y 0 using a

first-order Taylor series, so that

v-vA (2-13)
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Setting the left-hand-side to zero and solving for y gives the first-order

approximation

Y*ro-n-\y0)u{y0). (2.14)

This result provides the basis for an iterative approach for computing the

MLE known as the Newton-Raphson technique. Given an initial value of y0 for y ,

we use (2.14) to obtain an improved estimate and repeat the process until the

difference between successive estimates is sufficiently close to zero. This procedure

tends to converge quickly if the log-likelihood is well behaved (close *n quadratic) in

a neighbourhood of the maximum and if the starting value is reasonably close to the

maximum likelihood estimate. An improved estimate can be found by using

which is known as Fisher scoring. In almost ever/ econometric software package, an

optimization algorithm is available. The GAUSS (See Aptech, 1995) constrained

optimization module uses the Newton-Raphson technique as one of its options for

optimization. We used it in simulations reported in subsequent chapters. In the next

subsection we will review the simulated annealing algorithm which is another

optimization technique used in this thesis.

f\

•]*
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2.3 Review of the Simulated Annealing (SA)
Algorithm

In econometrics and statistics, many methods of estimation depend upon

optimization techniques to estimate the parameters in the model. However, almost

all conventional algorithms sometimes fail to find the optimum value of the objective

function. Conventional algorithms, such as Newton-Raphson, attempt to move up

hill in an iterative manner. More specifically, starting from a point, these algorithms

determine the best direction and step length to head up hill. Popular statistical and

econometric packages use these algorithms to solve optimization problems. Reviews

of these packages can be found in Judge et al. (1985) and Press et al. (1986).

Generally, conventional optimization algorithms assume the nature of the

function to be optimized is approximately quadratic. Unfortunately, some functions

frequently do not follow this assumption. A common problem of the traditional

algorithms is that although these algorithms converge; they may converge to a local

maximum instead of the global maximum. In this situation, researchers generally try

to solve these problems by using different approaches, for example, trying different

starting values (see Cramer (1986) and Finch et al. (1989)). Fortunately, the

simulated annealing algorithm assumes very little about the function and can tackle

the optimization problem very efficiently (see Corana et al. (1987) and Goffe et al.

(1994)). The advantage of this algorithm is that it is explicitly designed for functions

with multiple maxima and it also works well for complex functions. The simulated

annealing algorithm discovers the function's complete surface and while moving both

up hill and down hill, tries to optimize the function.
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In this section, we review the simulated annealing global optimization

algorithm, which is a well-established stochastic neighbourhood search approach that

has the capacity to jump out of the neighbourhood of a local optima in order to reach

the global optimum. The name of the algorithm is drawn from an analogy between

solving an optimization problem and simulating the annealing of a solid. The

efficiency of the SA algorithm in solving combinatorial optimization problems is

well known, see Corana et al. (1987).

The SA algorithm was initially proposed by Metropolis et al. (1953) as a

means of finding the equilibrium configuration of a collection of atoms at a given

temperature. Rosenbrock (1960) introduced an automatic method similar to the SA

algorithm for finding the maximum value of a function and mentioned that the SA

algorithm performs very well. Nelder and Mead (1965) derived a new version of the

the SA algorithm called the simplex method for maximization and found that the SA

algorithm always gives the global maximum or at least close to the global maximum.

Kirkpatrick et al. (1983) were the first who used the SA algorithm based on

the analogy with thermodynamics, especially with the way metals, and some liquids,

cool and crystallize. Geman et al. (1984) first gave a necessary and sufficient

condition for the convergence of the annealing method to the global maximum.

Their method is usually called either Boltzmann annealing (BA) or classical

simulated annealing. Pronzato et al. (1984) developed a general form of the SA

algorithm. Carnevali et al. (1985) successfully used the SA algorithm in an image-

processing problem. Press et al. (1986) gave a detailed description of how the SA

algorithm works.
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Corana et al. (1987) mentioned that the SA algorithm assumes very little

about the behaviour of the objective function and can tackle the optimization

problem very efficiently. Szu et al. (1987) proposed the fast annealing method,

which is a semi-local search and consists of occasional long jumps. They introduced

minimization of continuous multi-modal functions using the SA algorithm and found

that it is more reliable than classical optimization algorithms, being nearly always

able to find the optimum, or at least a point very close to it. However, this algorithm

appears to be the best with respect to the combination of ease of use and robustness.

They also mentioned that unlike the case for classical optimization algorithms, it is

not a necessary condition for the objective function to be approximately quadratic

and differentiate when the SA algorithm is implemented.

Derwent (1988) showed an improved and better way to control pollution with

the application of simulated annealing. Hajek (1988) developed the theory of

cooling schedules for maximization using simulated annealing. Wasserman and

Schwartz (1988) showed how simulated annealing is applicable to neural networks.

Wong et al. (1988) applied simulated annealing in the context of computer and

circuit design.

Ingber (1989) presented the very fast-simulated re-annealing method. They

argued that their algorithm permits a fast exponential cooling schedule, while fast

annealing has only an inverse-cooling schedule, and BA has only an inverse

logarithmic cooling schedule. Jeng and Woods (1990) extended the use of the

simulated annealing algorithm to the case of continuous functions. Johnson et al.

(1990,1991,1992) discussed the performance ofthe SA algorithm on four problems:

„!;.[
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the travelling salesman problem, graph partitioning problem, graph colouring

problem and number partitioning problem, in general, the performance of the SA

algorithm was mixed, in some problems it outperformed the best known heuristics

for these problems, and in other cases, specialized heuristics performed better.

Goffe et al. (1994) noted that the advantage of this algorithm is that it is

explicitly designed for functions with multiple maxima and also works well for

complex functions. Therefore, the SA algorithm is much more user friendly than

traditional algorithms found in the econometric literature. In the context of

estimation of econometric models, they compared four algorithms introduced by

Coraj a et al. (1987) with that of the SA algorithm.

They gave detailed modifications to the SA algorithm for econometric

applications and mentioned that the SA algorithm can handle a very complex

function and it provides valuable information about the function through the step

length vector. The most important advantage of the SA algorithm is that it can

properly optimize functions thai are very complex and nearly impossible to optimize.

They also mentioned the drawback of the S A algorithm, which requires a very high-

powered computer and in present times, this is not a major problem. As a

consequence, the SA algorithm is an attractive optimization algorithm for difficult

functions. White (1994) introduced the perception of scale in simulated annealing

and mentioned that in the presence of a large number of local maxima, it works very

well.

Trouve (1996) noted that the behaviour of simulated annealing algorithms is

related to the decomposition of cycles ar.d showed how to perform the
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decomposition and achieve exact computation of the algorithm. Fang et al. (1997),

studied simulated annealing using large deviation theory. They also specified the

closed form of the critical constant in terms of the potential function of the mean

model. Olivier (1998) defined a general methodology of simulated annealing with a

constraint that deals with minimization of a loss function. He compared the

Metropolis algorithm, simulated annealing, and the iterated energy transformation

method and looked at the asymptotic theory of the algorithm. He showed that the SA

algorithm works better than other algorithms.

Cohn and Fielding (1999) studied the theoretical aspects of simulated

annealing that deal with the convergence to the global optimum of the objective

function with probability tending to one. They mentioned that in practice, the

convergent algorithms are too slow and performed a detailed analysis of various

temperature schedules with application to travelling salesman problems of various

sizes. Moral and Miclo (1999) discussed the convergence of generalized simulated

annealing with time-inhomogeneous communication cost functions. They proposed

two general genetic algorithms with a simple proof of the convergence toward the

global optimum of the fitness function.

Fielding (2000) mentioned that for moderate sample sizes with a fixed

temperature, the SA algorithm based on a heuristic formula for determining the

optimal temperature is superior to other algorithms and gave some practical

examples including the travelling salesman, quadratic assignment and graph

partitioning problems. He commented in favour of the simulated annealing

algorithm.

' ' • I • • ' ' , . ' : •
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Baykasoglu et al. (2001) described in detailed how to apply the SA algorithm

to solve dynamic layout problems. They found that the SA algorithm works very

well at finding the global optimum. King et al. (2000) used the SA algorithm to

estimate penalty functions for time series information criteria (IC) model selection.

They suggested the use of the SA algorithm in conjunction with MML when faced

with choosing between different regression disturbance models. Azam (2002) used

the SA algorithm for finding optimal penalties for different changepoint regression

models and compared it with different IC procedures and the grid search (GS)

method. He concluded that the GS procedure out performed all IC procedures at a

high computational cost. He found that the performance of the SA algorithm is

similar to that of the GS method while its computational cost is lower. Tucci (2002)

compared the performance of optimizing algorithms such as the SA, EZGARD, and

genetic algorithm or tabu search in econometric problems. These algorithms are

global optimization algorithms and the SA algorithm works very well compared to

other algorithms. In the next subsection we will discuss briefly how the simulated

annealing algorithm works.

2.3.1 Description of how the SA algorithm works

In the previous section we gave a short overview of the literature on the

simulated annealing algorithm. Now we will discuss working steps of the algorithm.

As we mentioned, the SA algorithm is an optimization method that finds the global

maximum even in the presence of a large number of local maxima. It starts from an

initial value of the parameter to be estimated; the algorithm takes a step and
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evaluates the objective function, which in our case is the likelihood function. The

algorithm takes both up hill and down hill moves, transitions out of a local maximum

and stops at the global maximum. Compared to classical methods, the SA algorithm

requires less rigorous assumptions regarding the objective function and it can handle

ridges and plateaux with more ease. In the remainder of this subsection, we discuss

how the SA algorithm can be implemented to find the global maximum.

Let / be the N x 1 parameter vector and let f(y) denote our objective

function to be optimized. We also assume that the optimal value of / is such that

I <y <u, where / and u are the lower and upper bounds of the parameter vector

determined by the user. The algorithm starts with an initial value y0, it chooses a

new value say, y in the neighbourhood of y0. The value of f(y), the objective

function, is calculated at this trial point and is compared to its value at the initial

point. In our case we accept up hill moves because we are maximizing our objective

function. If the change f(y) - f(y0) represents an increase in the value of objective

function, then the new value is accepted and the algorithm continues from this trial

point. Note that the step is always centered at the trial point. If the change in the

objective function represents a reduction then the down hill move may be accepted

with probability exp((f(y)-f(y0))/f), where T represent a parameter called

temperature. If the trial value is rejected and another value is chosen for a trial

evaluation.

Let V{ be the maximum step length for the / th component of y . This is

a.;'listed periodically so that approximately half of all points are accepted. Ths
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algorithm requires specification of a cooling schedule. Let T be the temperature and

To be its initial value. In general, the initial temperature To should be relatively high

so that most trials are accepted and there is little chance of the algorithm converging

to a local maximum in the early stages. The algorithm requires a temperature

reduction factor, which is used to reduce the temperature, and a termination criterion,

which used to terminate the algorithm. The following are different steps for

implementation of simulated annealing.

2.3.1.1 Step 1 (Initialization of different factors)

The first and foremost task of using SA algonthm is to decide on the initial

values for different factors. The initial factors are: y0 the initial value of the N x 1

parameter vector, Fc the starting N x 1 step length vector, To the initial temperature,

r, the temperature reduction factor, Ns the number of cycles after NSN function

evaluations of the function after which the step length vector adjusted, NT the

number of iterations to each temperature reduction, e the error tolerance for

termination, Ne the number of final function values used to decide upon

termination, / the lower bound for the parameter vector, u the upper bound for the

parameter vector and c the factor that controls the step length adjustment for the i th

component of / , i = 1, • • •, N.
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2.3.1.2 Step 2 (Calculation of objective function)

Using an initial value of y say y0 in the function, calculate f(y0) and store

y0 as y and f(y0) a s / .

2.3.1.3 Step 3 (Searching for a new parameter value)

Generate a new parameter value say, y by changing element i of y as

X/ -y t+u^i where u is a random variable uniformly distributed froir -1 to 1 and

Vj is the ith element of the step vector V, i = \,---,N. If the parameter value y is

outside the bounds then repeat calculations until another new y is found within these

bounds.

2.3.1.4 Step 4 (Metropolis criterion)

Compute the value of the function at y, f = f(y) and compare with the

previous function value / . If / > / , then accept the new function value; i.e., store

y as y and / as / . On the other hand, if / < / , the Metropolis criterion decides

on acceptance or rejection of the value with probability Pr = exp((/ - / ) / TJ. This

is done by generating Pu, a uniformly distributed random number from [0, l] . If

Pr > Pu, the new value is accepted; otherwise it is rejected.
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2.3.1.5 Step 5 (Adjustment of V)

In order to accept 50 percent of all moves, Vt, where i = 1,2,-•-,7V is adjusted

after Ns steps. If more than 60 percent of points are accepted for V., then V, is

enlarged by the factor l + 2.5c,.(m(. / Ns -0 .6) , where m, is the number of points

accepted and c; is the factor that controls step length adjustment for the /th

parameter. If less than 40 percent of points are accepted, then Vi is decreased by the

factor 1 + 2.5c((0.4 - m{ / Ns). Otherwise, V. remains unchanged.

2.3.1.6 Step 6 (Temperature reduction)

After repeating steps 3 to 5;Nr times, i.e., after NTNtN function

evaluations, the temperature is reduced by the temperature reduction factor rT:

T -rTT and return to step 3.

2.3.1.7 Step 7 (Termination criterion)

Let fk be the most recent function value from the k th temperature reduction,

/*_*., k' = 1,• • •, Nc, be the last Nc values at the temperature reduction step. Then if

\fk ~ fk-k\ - e k' =\,---,Nc, stop the search.

In conclusion, we can use the SA algorithm to estimate parameters when

there are multiple optima. Overall, the main advantages of the SA algorithm are ease

of use, adaptability to the function under consideration and suitability for

computations. We will use the SA algorithm as one of the strategies to estimate

parameters of the model considered in this thesis.

,; r
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2.4 Multiple Maxima

Multiple maxima is a problem of numerical optimisation. The major problem

of numerical optimization of a likelihood function is that sometimes the optimization

procedure stops at a local optimized value rather than global maximum. The aim of

this section is to provide a review of different likelihood based maximization issues

in the context of the general linear model. The literature on this area is very vast and

we will highlight that which reflects on our interest in the linear regression model

with MA(1) errors and autocorrelated errors in general.

2.4.1 The model and related approach

Consider the linear regression model with non-spherical disturbances

y = X/3 + u (2.16)

where y is an n x 1 vector, Xismnxk matrix of known nonstochastic values and

of full column rank, and J3 is a k dimensional vector of unknown parameters. The

elements of u are assumed to follow the MA(1) process:

7* M , - 1 < / < 1 , w h e r e e, ~IM(0,a2) (2.17)
u, =

which implies that u~ JV(0,aal(y)) where Z(y) is the tri-diagonal symmetric

matrix of the form

r

0 y

0 0

0

r
. 2

• • 0

... o
•• 0
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2

(2.18)
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The likelihood and the log likelihood for this model are respectively

, , | 4 , . , (2-19)

and

(2-20)

Uogix iogo- -\iog\z(r)\ --^(y- W)' ArY (y - XP\

We have chosen to work with the MA(1) error model which is widely used in

the literature. There are a number of instances in which MA(1) processes arise from

theoretical considerations. Rational lag estimation and some kinds of expectation

modelling may result in an MA error process, see Trivedi (1970). These methods

typically incorporate lagged effects arising from habit persistence, technological

constraints or expectations effects which link anticipation with experience. Other

examples may be found in papers authored by Zellner and Montmarquette (1971),

Rowley and Wilton (1973) and Kenward (1975). For further discussion see King

(1983) and Silvapulle and King (1991).

Nicholls, Pagan and Terrell (1975) reviewed the estimation and use of the

linear model with MA disturbances and mentioned the computational difficulty

involved in estimating parameters of the model. Fortunately, due to the availability

of high-powered computers, this problem is not a big issue these days. There is a

considerable literature on testing for MA(1) disturbances in the linear model.

Breusch (1978) and Godfrey (1978) independently derived tests for MA disturbances

using the LM test approach of Silvey (1959) and Aitchison and Silvey (1960). Other
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extensive studies include Tanaka (1990), Saikkonen and Luukkonen (1993), Davis et

al. (1995) for details. See King (1987b) for a survey of the literature on testing

various forms of autocorrelation in the linear regression model included MA(1)

disturbances. There is also the literature on testing AR(1) disturbances against

MA(1) disturbances and vice versa. For example, see Walker (1967), King (1983a,

1983b, 1987b), King and McAleer (1987), Godfrey and Tremayne (1988), McAleer

et al. (1988), Hall and McAleer (1989), Burke et al. (1990), McAleer et al. (1990),

Smith and Tremayne (1990), Frances (1992), Godfrey and Tremayne (1992),

Silvapulle and King (1993), Baltagi and Li (1995) and McKenzie et al. (1999).

2.4.2 Concentrated likelihood

The maximum likelihood estimators of fi, a2 and y are obtained by jointly

maximizing equation (2.20) with respect to /?, a2 and y . The likelihood estimating

equations are

dl(y;yo2,P) _ 2 djy-Xp)'
d/3 ~~ 2a2 dB (2.21)

O

dl{y;yo2,p) 2d{y -

dy 2 dy 2a2 dy

In order to evaluate the latter score vector, note that

(2.22)

(2.23)
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dy dy
(2.24)

where - — is the n x n matrix of derivatives of the elements of T.(y) with respect

to y . Also

d{y-Xp)'i:-\y){y-xp)
dy

Therefore equation (2.23) can be written as

dy
(2.25)

— tr
2

(2.26)

Equations (2.21), (2.22V and (2.26) are almost impossible to solve

simultaneously. We have k + 2 equations and some of which involve the traces of

products of inverses and matrices of derivatives.

For any value of y , equation (2.21) can be solved as

So for any value of y , the maximum likelihood estimate of p is p{y). In a similar

dlogl(y;y,a2,p)
way, we can see that —-7 = 0 implies

da2

(2.28)

If we replace P in this equation by the estimated value conditional on y

given by (2.27), then we have
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- {r)[y - (2.29)

Now the remaining problem is to solve for y to get the estimate of y and

consequently the final estimates fi(y) and az(y). We can substitute the maximum

likelihood estimates of (3 and a2 conditional on y into the log likelihood function

to get

; , r ) . (2.30)

This equation is only a function of y and is called the log concentrated likelihood.

One can estimate the parameter y by maximizing the concentrated likelihood

numerically by using a suitable computer algorithm. Once the value for y is found,

which we will denote by y , then P{y) and &2(y) provide the maximum likelihood

estimates of J3 and a2, respectively. In the next section, we will discuss some

related literature on the question of whether the optimized value of the likelihood

function is really a local or global maximum.

2.4.3 Local and global maximum

In the literature, researchers have highlighted the importance of finding the

global maximum of the likelihood function and, at the same time, have in some cases

ignored the existence of local maxima while estimating a model of interest. We will

discuss some related issues in this regard.

• i ' H:-
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Hildreth and Lu (1960) discussed multiple maxima and provided an account

of the existence of double maxima of the sum of squared errors of the linear

regression model with autoregressive disturbances. The sum of squared errors were

computed as a function of the autoregressive parameter p and the chosen estimate of

intercept, slope and p is that value of p corresponding to the minimum sum of

squared errors. They found that dual minima of the sum of squared errors at p —

-0.90 and p = 0.30 for their data set. Sargan (1964) noticed theoretical possibilities

of occurrence of multiple maxima of the likelihood function in a lagged dependent

variable regression model

where w, =f« ,_ ,+e , and e, ~ 7/(0,<72). He acknowledged the theoretical

possibility of multiple maxima but noted that in 53 applications, no such occurrence

was found. Theil (1971) and Hendry and Trivedi (1972) mentioned that multiple

maxima can occur in the likelihood function of such a lagged dependent variable

regression model.

Hendry and Srba (1977) demonstrated that multiple maxima occur in the

likelihood function of a lagged dependent variable regression model (2.31) in small

samples and can be eliminated as the sample size increases. In other words, multiple

maxima in this model tend to disappear asymptotically. They also showed that the

possibilities of dual maxima in small samples and the presence of lagged dependent

variables together create small sample bias. They observed that the occurrence of
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multiple maxima needs special attention in order to estimate the coefficient of the

lagged dependent variable in small samples.

Cooper and Thompson (1977) mentioned that the sampling distribution of the

exact maximum likelihood estimator y of y in the first-order MA(1) time series

model gives values of y at or v-. :'•••' lear the boundaries ± 1. Ansley and Newbold

(1980) investigated the small sample properties of various estimators using

simulation in the context of autoregressive-moving average time-series models.

They obtained the sampling distribution of exact maximum likelihood estimators of

y in the first-order moving average model. In their simulation study, they claimed

that considerable concentration occurred for values of y close to the invertibility

boundaries ± 1, other than that, the sampling distribution seems to be unimodal.

Jonathan and Ledolter (1981) investigated the finite sample properties of the

maximum likelihood estimator / of y in the MA(1) time series model. When the

estimated value of the parameter is on the boundary, they gave a theoretical

explanation for it. They also mentioned that the global maximum can occur at ± 1

when the true value of the parameter is near ± 1.

Oxley and Roberts (1982) focused on the possibility of multiple minima of

the sum of squared residuals and the consequences of locating a local rather than

global solution in a lagged dependent variable regression model. According to them,

instead of using the Cochrane-Orcutt (CO) iterative procedure to identify all

solutions, global and local, the Hildreth-Lu (HL) grid search technique should be

used to solve this problem. Pesaran (1983) made an observation on Sargan and
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Bhargava's (1983) results concerning the probability of observing a local maxima of

the likelihood function of the regression model with MA(1) errors. He demonstrated

that the ML estimator of y is consistent even when the true value of y is on the

boundary. Similar results can also be derived in the case of autoregressive moving

average parameters.

Oxley and Roberts (1986) investigated the occurrence of multiple roots and

explained the consequences of them in the context of the lagged dependent variable

regression model using the HL iterative procedure. They found that the iterative

procedure can converge to the local maxima instead of the global maximum. Their

results demonstrated that the problem of multiple roots is not severe in the case of

small samples. As the sample size increases, the occurrence of multiple roots also

increases except for the combination of higher values of the intercept and the

autoregressive parameter.

Hoeschele (1988) investigated the convergence of local maxima when an

iterative procedure is used to estimate the parameter with unbalanced data and mixed

linear models with two or more variance components using maximum likelihood

(ML) and restricted maximum likelihood (REML). Analytically he showed that for

unbalanced data, ML and the Bayesian method can have two local maxima for small

random effects within the permissible parameter range, whereas REML and another

Bayesian method always have a single maximum. He suggested that replacing the

ML method by the REML method for variance component analysis typically gives

better results.

11
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Mardia and Watkins (1989) experienced some difficulties with ML

estimation. They found a problem with ML was the lack of a second derivative over

the parameter space for the spherical correlation scheme of a spatial linear model.

As a result they found the likelihood function might have multiple roots and they cast

doubt about the accuracy of the contour plot of the concentrated likelihood.

Davis and Dunsmuir (1996) investigated the maximum likelihood estimator

for an MA(1) process when the moving average parameter is on or near the unit

circle. They derived the asymptotic distribution of the maximum likelihood

estimator and showed that a local maximum is close to y = ±1 . Asymptotically

these two estimators are different. Since the asymptotic distribution of the maximum

likelihood of y under Ho: y = 1 is not known, the development of the likelihood

ratio test and Wald tests are not possible. Asymptotic theory was used to construct

the generalised likelihood ratio test for testing the null hypothesis of the moving

average parameter being on the unit circle.

In this section, problems of multiple maxima have been discussed. There is

considerable evidence in the literature of this being a practical problem for various

time-series models. It is an issue we will explore further in this thesis. In the next

section, we review the literature related to marginal likelihood methods.

•Ml
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2.5 Marginal Likelihood Method

With respect to estimation in a econometric model of the form (2.27), one of

the important issues is dealing with unwanted parameters known as nuisance

parameters or incidental parameters. Various methods have been suggested to

improve the quality of estimation by eliminating these nuisance parameters.

Fraser (1967) first introduced the concept of the marginal iikdihood in the

context of statistical inference. Later Kalbfleisch and Sprott (1970) derived the

marginal likelihood method as an important device to eliminate nuisance parameters.

Construction of the marginal likelihood involves modifying the likelihood in such a

way that it splits the likelihood function into two distinct parts, with one part

containing the information about parameter of interest and the other part containing

no information about the parameter of interest. The former part of the likelihood,

which contains information about the parameter, works as the marginal likelihood.

The marginal likelihood approach is useful because typically it helps reduce

the estimation bias, see for example, Kalbfleisch and Sprott (1970), Tunnicliffe

Wilson (1989), Laskar and King (1998), Ara and King (1993) and Rahman and King

(1997). This method is popular for estimating the parameters of the variance-

covariance matrix in the linear regression model. Levenbach (1972) used the

marginal likelihood approach for estimating the first-order autoregressive model.

Levenbach (1973) also applied the method to estimation of heteroscedasticity in

disturbances in the linear model. Kalbfleisch and Prentice (1973) obtained the

marginal likelihood for regression parameters of the general linear model. Cooper

Si
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and Thomson (1977) used the marginal likelihood method to estimate the parameter

of the MA(1) model and found that the application of the marginal likelihood method

reduced the estimation bias.

Bellhouse (1978) demonstrated that the application of the marginal likelihood

to ARMA models and lagged dependent variable regression models is worthwhile

and discussed handling the nuisance parameters for such models. Corduas (1986)

showed that the marginal likelihood method helps to remove the estimation bias in

the presence of trend-like regressors and AR(1) errors. Tunnicliffe Wilson (1989)

derived the marginal likelihood for y in (2.16) as

-!/2
(2.32)

where m = n-k. He used this method in trend estimation, seasonal forecasting and

mixed spectrum analysis to reduce the bias in the estimation of the parameter of

interest. He also used this technique for comparing different time series models.

Grose (1992) used the marginal likelihood for estimating the coefficient of

the lagged dependent variable in the dynamic regression model. She reported that

the estimator based on the marginal likelihood is less biased compared to the OLS

estimator.

Ara and King (1993) derived general formulae for the likelihood ratio,

Lagrange multiplier, Wald and asymptotically locally most powerful tests for linear

regression disturbances using the marginal likelihood and investigated the small

sample properties of these tests for testing the parameters of the fourth-order

autoregressive disturbance process and the presence of Hildreth-Houck random
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coefficients. They pointed out that the problem of testing different y values is

invariant under transformations of the model. They also demonstrated that that

above mentioned test can be constructed by treating the maximal invariant statistic as

the observed data. Further, they demonstrated that the marginal likelihood and the

likelihood of the maximal invariant are the same. In addition, Ara and King (1995)

investigated ihe small sample sizes and power of the likelihood ratio, Lagrange

multiplier, Wald and asymptotically locally most powerful tests for a subvector of

the parameter vector based on the marginal likelihood. They reported better

improvements in small sample sizes and powers of the marginal likelihood based

tests compared to those of Ara and King (1993). This significant improvement of

small sample sizes and powers of the tests occurred due to better handling of

nuisance parameters.

Latif and King (1993) introduced the marginal likelihood approach for time-

series forecasting based on the linear regression model in the presence of AR(1)

disturbances. They suggested a weighted average of predictions, assuming different

values of the AR(1) parameter with weights proportional to the marginal likelihood

of that parameter. Their simulation results show that their approach produces better

forecasts compared to existing procedures, which is a consequence of the application

of marginal likelihood.

Shephard (1993) applied Bellhouse's (1991) method to estimation of the

regression model with stochastic trend components and demonstrated that the

probability of estimating the trend to be deterministic is very sensitive to the type of

likelihood in the context of inference.
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Rahman and King (1998) developed the marginal likelihood based Lagrange

multiplier and asymptotically locally most powerful tests for situations in which the

parameter vector of the error structure is partitioned into two parts, with one being

the parameter of interest and another being nuisance parameters. They observed that

for their problem, all nuisance parameters could not be eliminated using the

likelihood of the maximal invariant or the marginal likelihood. Instead, they

constructed tests, in which their maximum marginal likelihood estimators replaced

those nuisance parameters, which could not be eliminated.

Laskar and King (1998) demonstrated that the use of the marginal likelihood

can help to reduce the estimation bias at the same time produces more reliable

estimates than of those from the concentrated likelihood in the context of AR(1) and

MA(1) regression disturbances.

Laskar (1999) investigated the small sample properties of estimators and tests

based on different likelihood functions. He mentioned that marginal likelihood

based LM tests for both MA(1) and AR(1) processes and the LR test for AR(1)

processes are quite impressive and most accurate in the sense that they have best

sizes.

Sartori et al. (2003) proposed several different adjustments of the

concentrated likelihood when the conditional and marginal likelihoods are available,

to take proper account of the effects of estimating nuisance parameters. Their

approach involves the use of the full likelihood of the model calculated with a known

value of an orthogonal nuisance parameter. They proposed an orthogonal

parameterization and claimed that their method gives an appropriate likelihood called
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the directed adjusted concentrated likelihood, which is independent of

parameterisation of the nuisance parameter.

In this section we briefly surveyed the literature on the marginal likelihood

method which is a well regarded estimator of the parameters of the variance-

covariance matrix in the linear regression model for a wide range of applications.

The consensus from the literature is that the method of marginal likelihood reduces

estimation bias and provides better small sample testing procedures. The traditional

approach to dealing with nuisance parameters is to reduce the problem to one in

which the nuisance parameters have been eliminated, ideally with as little sacrifice of

information as possible about the parameter of interest. In a limited, but often-

important set of problems, reduction to a relevant conditional likelihood or a

marginal likelihood that is free of the nuisance parameter is possible. The work of

Ara and King (1993), King and Rahman (1997), Laskar and King (1997a, 1997b) are

especially relevant, since some ideas used in this thesis trace back to their work.

In the next subsectio- we will review the literature on estimating equations.

2.6 Estimating Equation Approach

Godambe and Kale (1991) defined estimating functions as any real function

/ of both the observations y and the parameter y . The estimated value of y is y

which can be found by solving the equation

) = o (2.32)

which is called the estimating equation. This provides a unifying structure

connecting some of the classical estimation methods such as the method of

1 I

> B 1



Chapter 2 Review of the Literature 44

maximum likelihood and least squares. The following formulations illustrate these

estimators as the roots of their respective estimating equations.

In a single parameter model, the maximum likelihood estimator y can be

found as the solution to the score equation —^—^- = 0, where l{y;y) is the log-ax

likelihood. The least squares estimator is defined as the value of y which minimizes

the sum of squares of errors. After differentiation, the normal equations are obtained

and the solution of which is the least squares estimator of y . Godambe and Kale

(1991) mentioned that rrtimation is usually approached by stating a set of optimality

criteria such as suffic.ency, unbiasedness, minimum variance to name but a few.

They also pointed out that most estimation methods are ad hoc in the sense that the

selection of a method does not follow from the optimality criteria. Given a new

problem, there is no theory to say which estimation procedure should be used.

An advantage of approaching problems through estimating equations is that

optimality properties can be defined in terms of the estimating equations themselves.

Another justification is that major parts in the proofs of the consistency and

asymptotic normality of the MLE involve facts about the score function. In

particular, in an independently identically distributed sample set up, the score

function is an independently identically distributed sum, so that the law of large

numbers, and the central limit theorem hold quite generally. These important

properties of the score function are worthy of study in their own right, see, Small and

McLeish(1994).
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Recently, attention has turned to the problem of multiple roots in the context

of general estimating equations. Small and Yang (2000) mentioned that estimating

equations can have more than one root. They also pointed out that in many cases, the

theory supports an estimating equation having a unique consistent root. But they cast

doubt that in reality, there may be considerable suspicion about the uniqueness of the

root. Therefore the obvious question is which root should be used as an appropriate

estimate of the parameters.

Huzurbazar (1948) mentioned that proofs of the consistency and asymptotic

efficiency of the maximum likelihood estimator were more properly proofs of the

existence nf a consistent and asymptotically efficient root of the likelihood equations,

and such a root could also be a local maximum. He also showed that a consistent

root of the likelihood equation is asymptotically unique LJid corresponds to a local

maximum of the likelihood function. Kraft and LeCam (1956) discussed multiple

roots of the maximum likelihood estimating equation. They mentioned that the

global maximum of the likelihood could give an inconsistent root of the score

function.

Godambe (1960) and Durbin (1960) introduced the concept of the theory of

estimating functions and Godambe (1960) has given optimality properties for the

score function in a parametric framework. He derived a certain optimality property

of the MLE using the estimating equation and demonstrated that the likelihood

equation is an optimal estimating equation.

Barnett (1966) demonstrated a method essential for finding all the roots of the

likelihood equations. His method systematically locates all the roots of the

! ;
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likelihood and chooses the one, which corresponds to the absolute maximum of the

likelihood function. He also used five different iterative procedures for finding the

roots of the likelihood equation and conducted a simulation study of the likelihood

equation for the Cauchy location model. These methods were the Newton-Raphson

iteration method, Fisher's scoring of parameters, the fixed derivative Newton

method, the method of false position and a method used by Cohen (1957) for

estimating the parameter of a truncated normal distribution. He found that the

performance of the method of false position is best for locating a root of a single

parameter model or in a model with multiple roots in which one of the parameters

can be solved easily.

Chaubey and Gabor (1981) discussed the solution to the problem of multiple

roots and mentioned that the concentrated likelihood function might have more than

one maximum. Ferguson (1982) discussed inconsistent estimates from maximum

likelihood. He mentioned that the global maximum of the likelihood function could

give an inconsistent root of the score function but some roots of the score function

might be a consistent estimator of the parameter of interest.

Lehmann (1983) gave a detailed account of the theory of efficient likelihood

estimation when there are multiple local optimum in the likelihood function. He

mentioned that many asymptotically efficient estimators can be constructed for the

regular model but how to choose the best one remains an unsolved problem. Basford

and McLachlan (1985) discussed the usefulness of multiple roots in a mixture model.

The existence of multiple roots in a mixture model works as a diagnostic tool to

prescribe different interpretations of the data.
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Crowder (1986) discussed in detail the consistency of estimating equations.

He also noted that under mild regularity conditions, the estimating equation

possesses consistent roots. Godambe and Thomson (1986) discussed how to use an

estimating equation to estimate the parameters of the super-population and sur/ey

population.

Liang and Zeger (1986) introduced a class of estimating equations that gives

consistent estimates of regression parameters and of their asymptotic variances in the

class of generalized linear models for cluster correlated data. They mentioned that

when the independent variables or covariates in such models are subject to

measurement errors, the parameter estimates obtained from these estimating

equations are no longer consistent. They constructed an estimator with smaller

asymptotic bias assuming that the measurement error variance is either known or

estimable. They gave the asymptotic distribution of the bias-corrected estimator, a

consistent estimator of its asymptotic variance and studied a binary logistic

regression model in detail.

Stefanski and Carrol (1987) illustrated optimal and conditional scores for the

general linear regression model with measurement error, which act as nuisance

parameters. They eliminated the effect of nuisance parameters of the model by using

the conditional joint density function on a complete sufficient statistic in such a way

that the estimating function does not depend on the error.

Finch et al. (1989) introduced a numerical search procedure for finding the

global maximum of the likelihood functions. Their method is useful for finding the

roots by iterative search from a random starting value. They evaluated their search
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procedure to estimate parameters of a mixture of two normal distributions by the

method of maximum likelihood. They mentioned that their search procedure is

useful considering the computational time involved but difficult to get the global

maximum with a high degree of reliability. In an example, they used 150 starting

points in their computation. The first 50 gave some sign of trouble and second 100

refined their estimate and gave the optimal value with certainty.

Ghosh (1991) extended t u ' Mea of the use of estimating equations to estimate

the super and survey population o Godambe et al. (1986) and used it in survey

sampling methods to estimate model parameters. Godambe et al. (1991) asserted

that the theory of estimating equations unifies three major estimation methods in

econometric and statistical literature, such as the method of LS, the method of ML

and the method of minimum variance unbiased (MVU) estimates developed by

Gauss (1809, 1823). They further demonstrated that estimating equations give a

much wider class of estimates of the parameter of interest when there are multiple

roots in the likelihood function.

Godambe and Kunte (1993) presented optimal estimation of the

multiplicative treatment effect under biased allocation of treatments using the

estimating equation of Godambe and Thomson (1989).

Zidek et al. (1998) developed methods for nonlinear regression analysis that

are applicable for the analysis of clustered data. It has dual applications to cluster

analysis and error in the measurement of the explanatory variables. They calculated

second-order moments for measurement error of the explanatory variable that enable

a generalized estimating equation approach for fitting and testing nonlinear models
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linking the response to the explanatory variables and random effects. They also us<=,d

Taylor expansion methods to overcome difficulties, if any, and gave an application

of this methodology that concerns the degree of association of hospital admissions

for acute respiratory health problems and air pollution.

Markatou et al. (1998) introduced a modified likelihood called a weighted

likelihood function where the roots of the equation were found by bootstrap

searching. They mentioned that the weighted likelihood function might have

multiple roots. They pooled bivariate data and estimated the weighted likelihood

estimate for location. Their results showed that the weighting method successfully

gives two roots by separating the data. They also incorporated a wide variety of

estimating equations. The roots of the estimating equations divide into reasonable

and unreasonable roots. The local maximum are unreasonable roots which are

supported by a subset of data. They suggested that replication with 100 bootstrap

samples is enough to detect all reasonable roots.

Heyde and Morton (1998) discussed multiple roots in estimating equations

and suggested how to pick the correct root when there are more than one root of the

equation. They used different methods, such as, asymptotics, analogues of empirical

information and goodness-of-fit type formula. They mentioned these formulae are

very useful if the estimating equation is a polynomial of degree less than five when

the sample size is small. They claimed that their methods are straightforward to

select roots that give sensible estimates of the parameter. They also mentioned that

when a root of the estimating equation can be determined by an analytical formula

and shown to be asymptotically consistent, then it would be an excellent choice for
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estimation of the parameter. Tzavelas (1998) proved the uniqueness of the likelihood

estimator and hinted how to determine the consistent root of the estimating equation.

Small and Yang (1999) have noted that estimating equations can have

multiple roots and the problem is to choose a root that estimates the parameter. They

mentioned that in most of the cases there exists a unique consistent root and most of

the roots cluster around consistent estimators of the parameters. They illustrated this

with the example of the use of root intensity functions of first and second order of the

score function for the Cauchy location model.

Small et al. (2000) provided a comprehensive review of the literature on

eliminating multiple root problems in estimation and gave a considerable number of

examples such as: (1) Estimation of the correlation coefficient of the bivariate

normal distribution where there is as many as three real roots in the interval (-1, l ) .

It is a small sample issue, which disappears for sufficiently large sample sizes. (2)

Cauchy location models whose likelihood equation is a polynomial equation of

degree 2« - 1 ; in this example, the problem of multiple solutions for the likelihood

equation does not disappear asymptotically. (3) Inconsistent global maximum of the

likelihood function. The usual conditions that are imposed for the asymptotic

efficiency of the ML estimate only ensure that the consistent root of the likelihood

equations is efficient; there is no guarantee that the global maxima of likelihood

corresponds to a consistent root. (4) Estimating the normal mean in stratified

sampling. The geometric structure of roots of this case is essentially the same as for

the problem in the Cauchy location model but the probability of multiple roots

arising in the two models are different. (5) Regression with measurement error. In
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the generalized linear models where the covariates cannot be observed directly, but

can only be measured with a certain amount of measurement error. (6) Weighted

likelihood equations of estimating functions with multiple roots. They concluded

that when a general estimating equation has multiple roots, in general the task of

detecting roots is more problematic than it would be for a likelihood-based

estimating equation.

In this section, we have reviewed the literature on estimating equations in the

context of linear models. Different likelihood based methods can be linked with the

framework of estimating equation approaches. From the discussion of this section,

we conclude that estimating equations are of considerable interest and consequently

in general are worthy of study.

2.7 Conclusion

This chapter reviewed the literature related to likelihood based-inference

namely, maximum likelihood, concentrated likelihood and marginal likelihood for

estimating the parameters of interest of a general linear regression model. It also

reviewed different methods and issues such as the simulated annealing algorithm,

global maximum, local maxima, estimating equations and multiple roots. From the

review, it is evident that the most popular and widely used methods in econometrics

are those based on maximizing the likelihood, concentrated likelihood and marginal

likelihood because of their simplicity and ease of use.

Before starting the work reported in this thesis, we conducted a survey of

recent econometric texts to see what they had to say on the issue of global and local

! t
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maximum of likelihood functions. Our survey suggested that the consequences of

accepting a local maximum instead of the global maximum are not well articulated.

This is also borne out in the review reported above. While the consequences for the

estimation of parameters of interest might seem obvious, less obvious is what effect

using a nuisance parameter estimate from a local maximum could have on the small

sample properties of standard testing and forecasting procedures. There are some

examples in the literature, which suggest it may not always appropriate to use the

global maximum to obtain the MLE. Asymptotically this problem seems to

disappear and intuitively it does seem sensible to seek the global maximum of the

likelihood function. These issues will be taken up in Chapters 3 to 5 of this thesis.

Estimating equations seem to be a powerful method for improving our

understanding of estimators. Using an estimating equation approach, we will seek to

establish equivalence between least squares and ML based on the concentrated

likelihood function in the context of the general regression model in Chapter 6. We

will also explore analytical solution of the estimating equations expressed as a

polynomial in the case of the regression model with non-stationary AR(i) errors.



CHAPTER 3

Test Sizes and the Issue of Finding the
Global Maximum of the Likelihood

Function1

3.1 Introduction

As discussed in Chapter 2, when numerical methods are used to maximise

the likelihood function, we can sometime 5 end up with a local maximum rather

than the global maximum. While the consequences for the estimation of

parameters of interest might seem obvious, less obvious is what effect using a

nuisance parameter estimate from a local maxima could have on the small sample

properties of standard testing procedures.

The aim of this chapter is to show that not carefully looking for the global

maximum when estimating nuisance parameters can affect a test's size. This is

done in the context of testing a coefficient in the linear regression model with first-

order moving average (MA(1)) errors. The moving average parameter, y, is a

nuisance parameter in this setting. In this chapter we investigate the effect on the

size of tests of regression coefficients of estimating this nuisance parameter using

' 'A paper based on material in this chapter and Chapter 4 has been accepted for publication in the
Journal of Statistical Computation and Simulation, see Yeasmin and King (2003).
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four different strategies. The first involves accepting the estimate that comes from

maximizing the concentrated likelihood using constrained optimisation from a

least squares based starting point. The second involves taking the best result from

an additional three fixed starting points but only when the initially estimated value

of y is a boundary point. The third involves the same approach but taking even

greater care to find the global maximum by using 43 different starting values. The

fourth involves the use of simulated annealing (SA) with the aim of finding the

global maximum.

The remainder of this chapter is organised as follows. In Section 3.2, we

discuss the model and construct our test statistic based on maximization of the

likelihood function for the unknown moving average parameter. In Section 3.3,

we report calculations of estimated sizes of the test statistics for different sample

sizes, and different values of y using Monte Carlo simulation. Section 3.4

contains a discussion of the results of the Monte Carlo study. Section 3.5 presents

some concluding remarks.

3.2 The Model and the Test Statistic

3.2.1 The model

Consider the linear regression model with non-spherical disturbances

(3.1)

where v is an n x 1 vector, X is an n x k matrix of known nonstochastic values and

of full column rank, and fi is a k -dimensional vector of unknown parameters. The

elements of u are assumed to follow the MA(1) process

I'l !
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u,=s,+ ys,_x -\<y<\^ where st ~ JIN(O,a2) (3 2 )

which implies that u ~ N(0, er22(y)) where 2(y) is an tri-diagonal symmetric matrix

of the form

y i
o 7

0 0

o ...
y . . .

2 (3.3)

One way to tackle the estimation problem for this model is to transform

using the Cholesky decomposition. Let S( /) = L(y)L(/)' where L(y) is the

upper triangular matrix of £(y), defined as

7n 0 0 ••• 0

ll2 l22 0 ••• 0

0 /„ /„ ••• 0

0 0 ... nn .

.1/2

The non-zero elements of L(y) can be obtained recursively by using

'••-(n-r1)'

h-u-i

and

w h e r e / = 2 , 3 , ••• , n .
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The inverse of the matrix L(y) is used to transform model (3.1) in order to

find the generalised least squares (GLS) estimator of p. This implies L{y)y' = y

and L(y)X' = X where y and X* are the transformed vector and matrix

respectively. Using these expressions it is easy to obtain the formula for y" which

can be written as

y>yJV+r)m

y'i = (y-, - h-\y]-\) ! h where i = 2, • • •, n.

This same transformation is also applied to each column of X in turn in order to

obtain X". The resultant transformed model can be written as

y'=X'p+u'

and the transformed disturbance vector u* has the properties E(«*) = 0 and

The GLS estimator can be found by applying the usual ordinary least squares

estimator to the above transformed model. Unless the value of y is known, the

above technique cannot be applied. For a known value of y , the GLS estimator

P{y) defined in equation (2.22) in Chapter 2 is the best linear unbiased estimator

of p. Unfortunately, the value of the parameter y is typically unknown and

therefore it needs to be estimated. For example, we can obtain the estimated value

of y by maximising the concentrated likelihood of y . The log concentrated

likelihood is
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ic(y;r) = - \ \°i^-\\*z{s\y)in)-Uo^{y)\-n- (3 4 )

where <J2 and /? have been replaced by their estimated values with

*2 (r) = {y- xp{r))' s - (r )(^ - ^ ( r ) ) (3.5)

and

^(r) = (^'S-1(^)"1^'2:-1(7)>;> (3-6)

To obtain a final estimate of J3, we need to estimate the value of y by

maximizing the right hand side of (3.4) and replacing y by its estimated value in

equation (3.5), which can be written as

where y denotes the maximum likelihood estimator (MLE) of y from

maximizing (3.4).

3.2.2 The test statistics

Our interest is in investigating the effect of estimates based on local versus

global maximum in the context of testing the j th regression coefficient in the

model given by (3.1) and (3.2), namely testing Ho: fi} = Pj0 against Hx: Pj * PJ0

where 1 < j < k and pjQ is a known constant. The test statistic we are interested

in can be written as

( 3 - 8 )

where Pj(y) is the j t h element of (3.7) and
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[ I (3.9)

in which (X^^X)'* denotes the 7th diagonal element of (Z IS~1(/)X)"1.

The form of log likelihood (3.4) reveals that we are unable to maximize the

likelihood analytically in order to estimate y . In this situation, the best way to

solve the estimation problem is by optimising the log likelihood using a suitable

numerical optimization algorithm. The model given by (3.1) and (3.2) has a minor

identification problem in that cr2E(/) and all.(y.) take exactly the same value

whenever a2. -a2y2 and y. = — . In order to confirm this, we can easily show

r
that

> (1 / y)y

s2 (Uy)=(y~ Xf5{\ I r))' I"1 (1 / y){y - xfo I y))

:•?•/•
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As noted in Section 2.3.3 of Chapter 2, our likelihood has a turning point

(which may be a maximum or a minimum) at \y\ = 1. This can result in the global

maximum being at \y\ = 1, a point that is well recognised in the literature (see

Kang (1975), Dunsmuir (1981) and Cryer and Ledolter (1981)). It can also result

in a local maximum being at \y\ = 1. Consequently, when as can often bsppen,

maximising the likelihood results in y - 1, one might be suspicious that one has

a local maximum rather than a global maximum. Cryder and Ledolter (1981)

discussed the theoretical explanation for the tendency of the maximum likelihood

to have this pile up effect at the boundaries. Davis and Dunsmuir (1996)

demonstrated that when y = 1, the statistical problem is a non-regular one and the

usual asymptotic theory does not apply to the maximum likelihood estimator.

They also explained that at the boundary point, the standard theory of a maximum

likelihood gives a very poor approximation to the actual distribution of the

estimator. The consequences of getting appropriate maxima of the likelihood

i l l

i!
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function will be investigated by using the different strategies described in the

following subsection.

3.2.3 Strategies for estimation

Often econometricians will estimate a parameter and consider its estimated

value. If it looks reasonable, they might accept the parameter particularly if they

feel they have been able to use a good starting value for the optimization. If it

looks unreasonable or suspicious, they might try one or more different starting

values in order to assure themselves that they have the global maximum.

Alternatively, they could use one of the optimisation methods specifically

designed not to converge to a local maximum, such as simulated annealing.

With these thoughts in mind, we considered four different strategies for our

particular problem. For each we start with a reasonable starting value that comes

from a rough estimate of the degree of correlation in the OLS residuals. The first

strategy involves putting this into a standard optimisation routine (using the

GAUSS Newton-Raphson procedure) and accepting the estimate that results. The

second involves this same process but an examination of the final estimate. If it is

on the boundary, it is regarded as suspicious and the optimisation is repeated 3

further times with a spread of 3 different stalling values. The final estimate is that

which gives the largest maximised likelihood. The third strategy is just the second

with three different starting values being replaced by 43 different starting values.

It represents a higher degree of care being taken when the initial estimate is on the
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boundary and therefore regarded as suspicious. Finally there is the attempt to find

the global maximum without any value judgements being made using SA.

3.3 Monte Carlo Experiment

A Monte Carlo experiment was conducted to investigate the effect of

estimated sizes of the t test of regression coefficients based on estimation through

the four different strategies for finding the global maximum of the concentrated

likelihood function for the MA(1) parameter as outlined above.

3.3.1 Design of simulation experiments

In order to explore the consequences of accepting local maxima on test sizes,

we consider the four strategies outlined above, namely (i) using one starting value

in a standard optimization technique and accepting the outcome as the global

maximum, (ii) using three further starting values of ^ = -0.5,0,0.5 if the

estimated value under (i) is on the boundary and then choosing the estimate with

the largest maximised likelihood, (iii) as for (ii) but using 43 starting values,

namely y = ±0.98, ±0.96,-••, ±0.78, ±0.75, ±0.70, "- ,±0.50, ±0.40, ±0.30, ;

•••, 0 if the estimated value from (i) is on the boundary and (iv) using simulated

annealing. In Figure 3.1 the first three of the above mentioned strategies are

presented in a concise form. In all four cases, the initial starting value was set to

-0.9999, if p < -0.4999, ,
]

2p. j
0.9999, if p> 0.4999, ,
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wnere p = ,2 in which z,, / = 1,—,n, are the OLS rssto&ls from
»=2

(3.1). In this case, the t test of a regression coefficient is essentially a Wald test.

Laskar (1999, p.83) noted problems with the Wald test for the linear regression

model with MA(1) errors and was able to overcome these problems by restricting

y to an interval that does not include y - ± 1. We have followed his lead and

restricted y and its estimates to [-0.9999,0.9999].

The simulation experiment involved generating observations for y from

(3.1) and (3.2) in which X is the n x 3 matrix of observations on three regressors,

the first being the constant dummy, the second being Australia's quarterly

consumer price index commencing 1948(4) and the third being this regressor

lagged one quarter. We focused on testing HQ: J3j = 0 against Ha: fij *• 0 using

a two-sided test. There is an issue of what distribution to use for the calculation of

critical values for (3.7). On the one hand we could use the N(0,l) distribution

because asymptotically as n tends to infinity, this has the correct distribution. In

the related dynamic linear regression model case with well behaved errors there is

some evidence that the Student's t distribution is a better approximation than the

AT(O,l) distribution in small samples. See for example Nankervis and Savin

(1987), King and Wu (1991) and Atukorala (1999). This led us to use the

Student's t distribution with n degrees of freedom for critical values. (The use of

N(0,l) critical values would have resulted in even higher sizes.)

•Hi!'.
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The size results reported below, were calculated using 1000 iterations; for

n= 20, 40, 60, 80, 100, and 120; y = -0.90, -0.75; -0.60, -0 .45, -0.30,

-0.15, 0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 and a2 = 1. The Newton-Raphson

option of the GAUSS constrained optimization algorithm (Aptech Systems, 1998)

was used to maximized (3.4) for first three strategies as required. A nominal

significance level of 0.05 was used and the t test for maximum likelihood is

denoted by ML(n).

Strategy (iv) is based on the simulated annealing algorithm used for finding

the global maximum of the likelihood function. This algorithm is a good

optimizer for finding a global maximum in the presence of many local maxima.

We used SA as an alternative to the other strategies discussed above where

multiple starting values was employed. Execution of SA depends on the initial

values of different factors. The initial values of different factors we used are

discussed in Section 3.3.2. The SA algorithm was coded in the GAUSS

programming language.

. • • • ; • . - - - \
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Figure 3.1 Flow Chart for Strategies (i), (ii) and (iii)

OLS estimate P

-0 .9999, if p < -0 .4999.

fo=
0.9999, if p > 0.4999,

Numerical optimisation of likelihood

Estimate

ML for 3 other starting
ML for 43 other starting

4 estimated values
44 estimated values

Strategy
(i)

Is estimated
value on
boundary?

Choose the estimate which
has the largest likelihood

Choose the estimate which
has the largest likelihood

Final Estimate
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3.3.2 Initial settings used for the SA strategy

In Chapter 2, we discussed the importance of using the SA method for finding

the global maximum when multiple local maxima exist in the function being

optimised. In this subsection, our main interest is in estimation of the MA(1)

parameter y using simulated annealing. A short description of the starting parameters

we used for the S A method is given in the following subsections.

3.3.2.1 Initial temperature (r0)

One of the important factors of the SA method is the initial temperature.

According to Kirkpatrick et al. (1983), a suitable initial temperature should be chosen

carefully so that about 80% of all positive transitions (i.e., transitions that maximise the

likelihood function) are accepted. In our problem of maximising the likelihood

function, we set the initial temperature to be To = 50.

3.3.2.2 Temperature reduction factor ( r r )

There is a close relationship between temperature reduction within stages and

the number of iterations per stage. An important step is to reduce the temperature and

it can be done by multiplying by a constant factor. The most practical and well-known

temperature reduction form is Tr+1 = aTr where a is a constant close to, but smaller

than, 1. Kirkpatrick et al. (1982) suggested that the constant term should be a - 0.95.

Corana et al. (1987) proposed that the value should be 0.85. In our case, we used a =

0.85.
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3.3.2.3 Boundaries for parameter

The boundary values should be determined by the researcher according to

the scope of the optimisation problem. In our case we used a lower boundary for

y of - 0.9999 and an upper boundary of 0.9999.

3.3.2.4 Number of cycles (nc)

The number of cycles is denoted by nc. When the SA method starts to

execute, it evaluates nc x N (an array of length /:,) functions and then adjusts each

element of the step length vector (V) in such a way that approximately half of all

functions evaluated are accepted. We used nc= 20 for the number of cycles.

3.3.2.5 Number of iterations before temperature reduction {Tl,

A constant number of iterations (n,) is used before temperature reduction

while implementing the SA method. According to Corana et al. (1987), better results

can be obtained by considering the physical background of the SA method and they

suggested the value of the number of iterations before temperature reduction should be

n, = 5. We used n, = 5 as suggested by Corana et al.

3.3.2.6 Termination criterion (rc)

The termination criterion (Tc) is an important factor in the SA algorithm.

To maintain the quality of the estimated value of the parameter we used a stopping

criterion such that the optimal values of the likelihood function for successive

stages are constant or their difference is very small. We stop searching if
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lj+x - lj ^ Tc where lj is the maximized log-likelihood function at the jfti stage.

We used a termination criterion of Tc = 0.00001.

3.4 Discussion of Results

It was mentioned earlier that numerical optimization methods might have

difficulties for finding the optimal value of the likelihood function when

estimating the parameter y . To investigate the difficulties of such problems we

compared sizes that result from strategies (i), (ii), (iii) and (iv) for different sample

sizes and for different values of the moving average parameter y in the linear

model.

The estimated sizes of the ML(n) test for the four different strategies are

reported in Tables 3.1 to 3.10. Note that estimated sizes in the range 0.0365-

0.0635 are insignificantly different from the nominal size of 0.05 at the 5% level

of significance.

3.4.1 Different sample sizes

An obvious feature is that the majority of the estimated sizes are

significantly greater than the nominal size at the 0.05 level. This is particularly

true for small samples. For larger samples, the same trend can be seen for

negative values of y but almost all the estimated sizes are not significantly

different from the nominal size for positive values of y for all strategies except for

y values close to the boundary. Typically improvements are gained in estimated
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sizes through strategy (iii), especially for negative values of y, for moderate (60,

80) and large (100, 120) samples when the y value is close to the boundary.

However, this is not the case for small samples. For greater accuracy, strategy (iii)

is working well to reduce the estimation bias especially for the pile-up effect at the

boundary points. We observed that typically strategy (iii) improves accuracy of

the estimated sizes and dominates the other strategies by producing smaller sizes.

The second improved performance can be seen for strategy (iv). The overall

performance of strategy (i) is poor compared to the other strategies, hi the next

subsection we will discuss and compare results of the estimated sizes for strategies

(i) and (ii).

3.4.1.1 Comparison between strategies (i) and (ii)

Tables 3.1 to 3.3 reveal that the majority of the estimated sizes of the ML(n)

test for MA(1) errors are significantly above 0.05 for sample sizes n= 20 and 40.

On the other hand, there is a clear feature that taking greater care in finding the

global maximum by using strategy (ii) does improve the test size particularly for

small samples and for y values near the negative and positive boundaries. For

example, in Table 3.2 and for testing Ho: /?2 = /?20 when y = -0.45, the estimated

sizes are 0.171 from strategy (i) and 0.140 from strategy (ii) for n = 40. In Table

3.3 for testing Ho: /?3 =ytf30 when / = 0.60, the estimated sizes are 0.159 and

0.142 from strategy (i) and (ii) respectively, for n = 20. Similar trends may also

be noticed for estimated sizes in Tables 3.1 to 3.3 for sample sizes n= 20 and 40

with a few exceptions. For example, we see from Table 3.1 that strategy (i)



e

Chapter 3 Test Size 69

dominates strategy (ii) when y lies between 0.30 to 0.45. This is because the

estimated value very often occurs at the boundary whether the true value is not

even close to the boundary value of the parameter. Sometimes the resultant sizes

that come from strategy (ii) are very high. It is because the resultant estimate has a

non-zero probability of being a boundary value.

For moderate sample sizes, n = 60 and 80, in Tables 3.2, 3.5 and 3.8, a trend

we observe is that near the boundary, strategy (ii) which involves taking some care

in finding the global maximum improves the estimated sizes noticeably as

compared to strategy (i). Another obvious feature of the results is that the majority

of the estimated sizes are close to the nominal size for positive values of y which

are within the interval (0.15 to 0.90) in Table 3.2, (0.15, to 0.45) in Table 3.5 and

(-0.15, 0.30) in Table 3.8 except for y = -0.15 and n = 80. Almost all of the

estimated sizes of the above mentioned intervals of y are approximately the same

for all strategies.

T!^ most important feature is that the estimated sizes of the test statistic for

different values of y within the interval (-0.30 to 0.95) are insignificantly

different from the nominal size. We see that no improvement is found for strategy

(ii) over (i) for sample sizes n = 100 and 120 in Table 3.3 for testing

Ho:/?,=/?,(,. The same trend is also observed in Tables 3.6 and 3.9,

respectively, for testing Ho: J32 = fi2Q for values of y over the interval ( - 0.15 to

0.60) and for testing Ho: y93 = y530 for values of y in the interval ( - 0.15 to 0.45).

tt
1 In),'
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On the other hand, significant improvement is noticed for the test sizes for the rest

of the y values in Tables 3.3,3.6 and 3.9.

The worst scenario is shown in Table 3.3 when y = -0.75 where the

estimated sizes of the test are around 0.42 under strategy (i). This is because the

resultant estimate has a tendency to occur frequently at the boundary where it

helps to produce higher estimated sizes. On the other hand, strategy (ii) helps to

reduce the estimated sizes noticeably, but the improvement in the estimated sizes

is not enough to get close to the nominal size. The estimated sizes from strategy

(ii) dominate those of the strategy (i) for negative values of y except / =-0.90 as

seen in Table 3.8 for testing Ho: /?3 = y93O when n = 60.

3.4.1.2 Comparison between strategies (ii) and (iii)

The overall impression we get through the tables is that many of the

estimated sizes are highly significantly different from the nominal size for small

and moderate sample sizes. This is true for both strategies (ii) and (iii). In

general, no one strategy dominates the other because their estimated sizes are

almost the same. However some noticeable improvements are found for strategy

(iii) in Table 3.5 for all y values except / = - 0 . 4 5 and-0.30 when n = 60 for

testing Ho: fi2 =J320. The opposite scenario can be seen in Table 3.2 where

strategy (ii) dominates strategy (iii) for y = (-0.45 to 0.45 and 0.90) although an

appreciable improvement is observed for y = (-0.75, - 0.60).
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It is clear from Table 3.5 that almost all the estimated sizes obtained from

strategy (ii) are equal to the estimated sizes for strategy (iii) when H = 8 0 .

However improvements are remarkable when the y values are close to either of

the two boundaries. One possible explanation is that the initial estimate from

strategy (i) often occurs on a boundary. It gives us the impression that paying

special attention to finding the global maximum via strategy (iii), is worthwhile.

The same scenario can be seen for n = 100 and 120.

3.4.1.3 Comparison between strategies (ii) and (iv)

In this subsection, we compare the results from strategies (ii) and (iv). For

n = 20, SA unexpectedly produces poorer estimated sizes than strategy (ii). For

example, the estimated size of strategy (iv) produces a 0.40 significance level for

the ML(?i) test when / = - 0 . 3 0 as seen in Table 3.1. On the other hand,

strategies (ii) and (iii) produce much better results than strategy (iv) in the case of

small samples.

An obvious feature we observe is that the estimated sizes of strategy (iv) are

better than strategy (ii) when the y value is close to a boundary, for example,

when y = -0.90, - 0.75, - 0.60 0.75, and 0.90. There are few exceptions, when

« = 100 and x = -0.75. This is true for all sample sizes except « = 60. In

contrast, for the rest of the y values, we observe that strategy (ii) either dominates

strategy (iv) or produces approximately the same sizes where almost all the sizes

are barely significantly different from the nominal sizes. From the above
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discussion we conclude that for the boundary problem, strategy (iv) sometimes

performs better than strategy (ii), but overall, strategy (ii) has the best performance

by producing smaller estimated sizes.

The results of this chapter suggest that multiple starting values to solve the

boundary problem performs well as compared to the use of simulated annealing.

This also gives an indication that sometimes a global maximum from strategy (iv)

may not produce the most reliable estimated sizes in terms of the hypothesis

testing. Theoretically the global maximum of the likelihood may not always

produce a consistent estimate while at the same time, one or more local maxima

can produce a consistent estimate in the case of multiple maxima, see for example,

Kraft and LeCam (1956), LeCam (1979), Bahadur (1958) and Ferguson (1982)

and LeCam (1990).

3.4.1.4 Comparison between strategies (iii) and (iv)

In this subsection we compare strategies (iii) and (iv). Strategy (iii), which

involves taking extra care in finding a global maximum, can dominate strategy (iv)

over an interval of y values for small samples. This can be seen in Table 3.1

when n = 20 for all the y values and in Table 3.4 for y in the range (-0.15 to

0.75). The estimated sizes for the other y values remain the same although the

sizes are highly significantly different from the nominal size. An exception is in

Table 3.4 for n = 20 and y = -0.75 when strategy (iv) dominates strategy (iii).

For moderate samples, most of the estimated sizes over the interval for y of

(-0.15 to 0.60) are barely significantly different from the nominal size and the
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sizes are approximately the same for both strategies. On the other hand, different

features are revealed for the rest of the y values where strategy (iii) dominates

strategy (iv) but the improvement is not that much. There are a few exceptions

where strategy (iv) dominates strategy (iii) in Table 3.2 when y = 0 and for the

same y value in Table 3.7 in the case of n = 60.

For large samples, we also observe that the majority of the estimated sizes

are barely significantly different from the nominal size especially for posiu^

values of y for both strategies. Typically improvements are noticeable for

negative values of y where the estimated sizes from strategy (iii) dominate those

of strategy (iv) with only one exception when n = 100 and y ~ -0.60. Overall we

can conclude that strategy (iii) performs reasonably well in respect of all sample

sizes and almost all y values.

3.4.2 For different P values

A feature is that the regressors of the coefficients being tested do make a

difference to the results. For example, the best estimated sizes are those for testing

Ho:/?3=/?30 for all the strategies. The worst results involve testing

Ho: /3] ~ /?10 for all the strategies.

3.4.3 For different 7 values

There is a tendency for the estimated sizes to increase as y moves away

from zero towards the negative boundary or the positive boundary for small
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samples. Surprisingly, y - -0.90 produces much smaller sizes than the other y

values when n = 20 and they are significantly different from the nominal size as in

Table 3.1. When n= 40, for the same y values, the estimated sizes are barely

significantly different from the nominal size and produce more accurate results

than the rest. In the case of moderate and large sample sizes, for positive values of

y , the estimated sizes are more accurate than for negative values.

The results suggest that the traditional maximum likelihood based t test

using strategy (iii) is more reliable for different y values than the other strategies

with a few exceptions. However the estimated sizes are disappointing in the case

of small samples because they are significantly higher than the nominal size for

almost all the y values. An obvious feature we observe from the results is that

this strategy can make a significant improvement on estimated size when the y

values are close to the boundary point. There is a trend in terms of accuracy that

the sample size increases, and estimated sizes for positive values of y are more

reliable than those for negative values. For large sample sizes and positive values

of y , the majority of the estimated sizes are barely insignificantly different from

the nominal size for all strategies. This is true also for moderate samples sizes.

3.5 Conclusion

In this chapter, a Monte Carlo experiment was conducted to investigate the

effect of using different strategies for applying maximum likelihood estimation to

estimate a nuisance parameter on subsequent hypothesis testing of regression
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coefficients. We used four strategies, which are (i) one starting value, (ii) if the

resultant estimate from strategy (i) is on the boundary, we use an additional three

starting values. The same approach was used for strategy (iii) but with forty-three

starting values in a standard optimisation computer package. Strategy (iv) is based

on the simulated annealing algorithm.

In this study, we used estimated sizes of the test to evaluate the performance

of our four strategies. From the result of the simulation study, we observed that

the traditional likelihood based test statistic ML(n) can be inaccurate and

sometimes provide woefully unacceptable sizes when strategy (i) is used. We

observed an improvement in the estimated size of the test for strategy (ii) and (iii)

in the case of all sample sizes with very few exceptions. For small samples,

strategy (iii) gives better results than strategy (iv), but for moderate and large

samples, the estimated sizes for both strategy (iii) and (iv) are almost the same.

On the other hand, strategy (ii) improves the estimated sizes but does not dominate

strategy (iii) for all the sample sizes. Compared to strategy (iv), strategy (iii) gives

better results when the y values depart from zero towards the positive boundary

or are close to boundary values. On the other hand, for positive values of y,

almost all estimated sizes for strategies (iii) and (iv) are approximately the same.

Strategy (iii) involves only attempting to find the global maximum when we

are suspicious about our estimate. We are suspicious when it is on the boundary.

An interesting result is that strategy (iii) (in particular) generally gives better

results than always attempting to find the global maximum. In one sense this is a
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troubling result. By far the accepted wisdom is that we should always look for the

global maximum, but here we find that dci^g so results in a worse test than if we

only look for the global maximum when we are suspicious aboM our estimate.

Why might this be the case? It could be that some estimates resulting from

global maximum located on boundaries are not consistent. Alternatively, our poor

results overall suggest a poor procedure and that some attention to improving the

test sizes might be needed first before considering whether to advise

econometricians that it can be harmful to always look for -a global maximum.

With some disappointment about the estimated sizes, we will look at this more

closely to find an alternate way to get ciore reliable sizes in terms of accuracy in

the next chapter.
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Table 3.1 Estimated sizes for
strategies for finding

n 20

testing
a global

Test Size

maximum
for small n

40

and

77

different

7
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0,45
0.60
0.75
0.90

(i)
0.083
0.160
0.268
0.369
0.368
0.353
0.284
0.216
0.217
0.179
0.116
0.126
0.115

(ii)
0.082
0.158
0.267
0.365
0.363
0.350
0.281
0.217
0.221
0.180
0.119
0.128
0.116

(iii)
0.082
0.158
0.267
0.365
0.363
0350
0.281
0.217
0.221
0.180
0.119
0.127
0.116

(iv)
0.084
0.160
0.269
0.384
0.403
0.400
0.335
0.283
0.268
0.223
0.141
0.141
0.123

0)
0.067
0.126
0.189
0.189
0.166
0.158
0.100
0.074
0.085
0.076
0.077
0.074
0.066

(")
0.067
0.126
0.181
0.189
0.162
0.153
0.099
0.074
0.085
0.076
0.077
0.074
0.066

(iii)
0.067
0.126
0.181
0.189
0.162
0.153
0.099
0.074
0.085
.0.076
0.076
0.074
0.067

(iv)
0.068
0.126
0.185
0.195
0.176
0.170
0.111
0.075
0.090
0.076
0.078
0.074
0.067

Table 3.2

n

r
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

Estimated sizes for testing HQ: px = /?10

strategies for finding

(i)
0.093
0.179
0.206
0.166
0.125
0.095
0.082
0.069
0.072
0.071
0.060
0.074
0.062

60

(ii)
0.093
0.174
0.192
0.135
0.093
0.073
0.054
0.062
0.068
0.058
0.058
0.068
0.055

a global

(iii)
0.092
0.152
0.155
0.139
0.116
0.095
0.095
0.069
0.072
0.064
0.052
0.064
0.060

maximum

(iv)

0.094
0.155
0.157
0.144
0.119
0.095
0.083
0.069
0.072
0.064
0.052
0.064
0.059

for moderate n

(i)
0.164
0.334
0.277
0.161
0.107
0.097
0.074
0.058
0.054
0.063
0.062
0.060
0.074

80

(ii)
0.163
0.280
0.170
0.115
0.101
0.097
0.074
0.058
0.054
0.058
0.053
0.052
0.066

and different

(iii)
0.161
0.269
0.168
0.114
0.101
0.097
0.074
0.058
0.054
0.058
0.053
0.052
0.065

(iv)

0.162
0.281
0.175
0.116
0.102
0.097
0.074
0.058
0.054
0.058
0.053
0.052
0.065
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Table 3.3 Estimated sizes for testing HQ:/3{=J3l0 for large n and different
strategies for finding a global maximum

n

7
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

(i)
0.256
0.421
0.269
0.131
0.081
0.063
0.055
0.061
0.061
0.057
0.053
0.049
0.047

100

(ii)
0.253
0.258
0.159
0.092
0.077
0.063
0.055
0.061
0.061
0.059
0.056
0.052
0.048

(iii)

0.249
0.312
0.254
0.092
0.077
0.061
0.055
0.061
0.061
0.059
0.056
0.051
0.047

(iv)
0.251
0.334
0.166
0.092
0.078
0.063
0.056
0.061
0.061
0.059
0.056
0.052
0.048

(i)
0.271
0.278
0.169
0.105
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.046
0.065

120

(")
0.266
0.242
0.137
0.100
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.046
0.065

(iii)
0.262
0.220
0.137
0.100
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.047
0.065

(iv)
0.264
0.229
0.140
0.101
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.047
0.065

Table 3.4

n

r
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

Estimated sizes for
strategies for finding

(i)
0.077
0.091
0.113
0.171
0.179
0.184
0.172
0.181
0.165
0.159
0.149
0.168
0.126

20

(ii)
0.077
0.091
0.113
0.170
0.177
0.184
0.168
0.179
0.155
0.141
0.130
0.159
0.126

testing
a global

(iii)

0.077
0.091
0.113
0.170
0.177
0.184
0.168
0.179
0.154
0.140
0.128
0.156
0.125

Ho: fi2 = fi
maximum

(iv)

0.076
0.088
0.116
0.172
0.172
0.208
0.197
0.197
0.177
0.159
0.140
0.171
0.109

f20 f ° r

0)
0.054
0.105
0.171
0.171
0.128
0.105
0.089
0.067
0.073
0.080
0.093
0.151
0.124

small n

40

(ii)
0.054
0.105
0.159
0.140
0.124
0.103
0.089
0.067
0.073
0.080
0.093
0.151
0.124

and different

(iii)

0.054
0.105
0.159
0.139
0.124
0.103
0.089
0.067
0.073
0.080
0.091
0.141
0.119

(iv)

0.054
0.107
0.162
0.145
0.137
0.114
0.100
0.100
0.071
0.081
0.094
0.141
0.120
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Table 3.5 Estimated sizes for testing #0:/?2 = >920 for moderate n and different
strategies for finding a global maximum

60 80

r
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

0)
0.088
0.134
0.150
0.140
0.099
0.071
0.063
0.072
0.068
0.100
0.154
0.210
0.168

(ii)
0.122
0.217
0.148
0.109
0.079
0.074
0.073
0.078
0.070
0.068
0.094
0.162
0.195

(iii)
0.088
0.122
0.113
0.121
0.091
0.071
0.071
0.072
0.065
0.068
0.077
0.101
0.109

(iv)
0.088
0.124
0.116
0.124
0.095
0.071
0.064
0.072
0.061
0.068
0.078
0.101
0.109

(i)
0.112
0.264
0.229
0.137
0.071
0.075
0.058
0.076
0.068
0.077
0.153
0.212
0.204

(ii)
0.111
0.218
0.151
0.097
0.067
0.075
0,058
0.076
0.066
0.061
0.056
0.077
0.139

(iii)
0.109
0.209
0.152
0.096
0.067
0.075
0.058
0.076
0.066
0.061
0.055
0.076
0.125

(iv)
0.110
0.220
0.159
0.102
0.068
0.075
0.058
0.076
0.066
0.061
0.051
0.077
0.126

Table 3.6 Estimated sizes for testing Ho: fl2 = /?20

strategies for llnding a global maximum
for large n and different

n

7
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

0)
0.151
0.320
0.216
0.117
0.089
0.057
0.057
0.050
0.061
0.084
0.150
0.211
0.168

100

(ii)
0.148
0.358
0.127
0.076
0.082
0.057
0.057
0.050
0.061
0.065
0.079
0.074
0.195

(iii)
0.146
0.248
0.124
0.075
0.081
0.054
0.056
0.050
0.060
0.065
0.077
0.074
0.109

(iv)
0.148
0.261
0.135
0.077
0.083
0.058
0.057
0.050
0.063
0.065
0.078
0.075
0.109

(i)
0.236
0.274
0.156
0.092
0.079
0.061
0.055
0.068
0.063
0.063
0.068
0.093
0.204

120

(ii)
0.233
0.239
0.127
0.091
0.079
0.061
0.055
0.068
0.063
0.063
0.067
0.091
0.139

(iii)
0.230
0.222
0.126
0.091
0.079
0.061
0.055
0.068
0.063
0.063
0.067
0.091
0.125

(iv)
0.233
0.234
0.129
0.101
0.079
0.061
0.055
0.068
0.063
0.063
0.067
0.091
0.126



Chapter 3 Test Size 80

Table 3.7: Estimated sizes for testing Ho: Jl3=fi
strategies for finding a global maximum

small n and different

20 40

y (i) (ii) (iii) (iv) (i) 0") (iv)
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

0.075
0.090
0.111
0.157
0.167
0.166
0.164
0.174
0.168
0.169
0.159
0.172
0.119

0.075
0.090
0.111
0.157
0.164
0.165
0.162
0.173
0.156
0.151
0.142
0.165
0.118

0.075
0.090
0.111
0.157
0.164
0.165
0.162
0.173
0.155
0.149
0.140
0.160
0.117

0.074
0.086
0.112
0.159
0.177
0.185
0.190
0.201
0.178
0.167
0.151
0.179
0.127

0.057
0.105
0.180
0.180
0.124
0.105
0.085
0.071
0.079
0.085
0.096
0.151
0.121

0.057
0.105
0.167
0.141
0.120
0.103
0.085
0.071
0.079
0.085
0.096
0.151
0.121

0.057
0.105
0.167
0.140
0.120
0.103
0.085
0.071
0.079
0.085
0.094
0.141
0.114

0.058
0.105
0.171
0.148
0.133
0.112
0.097
0.075
0.084
0.086
0.097
0.141
0.115

Table 3.8: Estimated sizes for testing //0:/?3 =/?30 for moderate n and different
strategies for finding a global maximum

n

Y
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

(i)
0.087
0.127
0.146
0.143
0.096
0.066
0.066
0.073
0.064
0.097
0.157
0.207
0.181

60

(ii)
0.090
0.160
0.175
0.133
0.106
0.073
0.069
0.055
0.083
0.084
0.080
0.162
0.071

(iii)
0.087
0.118
0.113
0.124
0.088
0.066
0.066
0.073
0.061
0.068
0.080
0.103
0.123

(iv)

0.087
0.120
0.116
0.128
0.093
0.066
0.067
0.073
0.061
0.068
0.081
0.102
0.123

(i)
0.164
0.334
0.277
0.161
0.107
0.097
0.074
0.058
0.054
0.063
0.062
0.060
0.074

80

(ii)
0.163
0.280
0.170
0.115
0.101
0.097
0.074
0.058
0.054
0.058
0.053
0.052
0.066

(iii)
0.161
0.269
0.168
0.114
0.101
0.097
0.074
0.058
0.054
0.058
0.053
0.052
0.065

(iv)

0.162
0.281
0.175
0.116
0.102
0.097
0.074
0.058
0.054
0.058
0.053
0.052
0.065
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Table 3.9: Estimated sizes for testing H0:/32=fi
strategies for finding a global maximum

large n and different

n

r
-0.90
-0.75
-0.60
-0.45
-0.30
-0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90

(i)
0.256
0.421
0.269
0.131
0.081
0.063
0.055
0.061
0.061
0.057
0.053
0.049
0.047

100

(ii)
0.253
0.258
0.159
0.092
0.077
0.063
0.055
0.061
0.061
0.059
0.056
0.052
0.048

(iii)
0.249
0.312
0.254
0.092
0.077
0.061
0.055
0.061
0.061
0.059
0.056
0.051
0.047

(iv)

0.251
0.334
0.166
0.092
0.078
0.063
0.056
0.061
0.061
0.059
0.056
0.052
0.048

0)
0.271
0.278
0.169
0.105
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.046
0.065

120

(ii)
0.266
0.242
0.137
0.100
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.046
0.065

(iii)

0.262
0.220
0.137
0.100
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.047
0.065

(iv)

0.264
0.229
0.140
0.101
0.078
0.065
0.056
0.060
0.065
0.062
0.048
0.047
0.065

11:
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CHAPTER 4

Improved Tests of Regression
Coefficients in the Presence of MA(1)

Disturbances

4.1 Introduction

In general, the results of Chapter 3 are somewhat disappointing in the sense

that sizes are often significantly greater than the nominal size. This suggests the

need to look at other ways of constructing the test statistic that might help with this

problem. One obvious approach is to use the maximum marginal likelihood

(MML) method to estimate the nuisance parameter y . As outlined in Chapter 2,

there is a growing literature thrit suggests that the use of the marginal likelihood in

place of the concentrated likelihood can help to reduce estimation bias (see for

example, Cooper and Thompson (1977), Tunnicliffe Wilson (1989), Rahman and

King (1998) and Laskar and King (1998)). We therefore expect nuisance

parameters estimated via the marginal likelihood to result in tests with better small

sample sizes than those from using estimates from the concentrated likelihood.

I l l
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We also consider different approximating distributions for the distribution of the

test statistic under the null hypothesis.

We have seen in Chapter 3 that the traditional likelihood based test,

(ML(n)) often produces inaccurate sizes, which are highly significantly different

from the nominal size. This situation is true for small samples and to some extent

also true for larger samples especially when estimates of the parameter value

frequently occur at the boundary. As a result, we consider a modification to the

test statistic with the idea of reducing the estimation bias by using the maximum

marginal likelihood estimate. Another contribution of this chapter is to consider

all estimated parameters (except the variance term) in the count of the loss of

degrees of freedom rather than the usual approach of only including estimated

regression coefficients in the estimated parameter count.

The aim of this chapter is to investigate these two possible improvements

to the size of the test and reassess the importance of taking care in finding the

global maximum when applying ML and MML techniques.

The rest of this chapter is outlined as follows. In Section 4.2, we discuss

the model and the construction of test statistics using various degrees of freedom

based on estimation by both ML and MML. In Section 4.3, we calculate the

estimated sizes of tests using different strategies for estimating y with different

degrees of freedom for different values of the moving average parameter y using

Monte Carlo simulation. Section 4.4 contains the discussion of the results for
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dit'V_;.at test statistics for various strategies of ML and MML estimation and for

different y values. Concluding remarks are given in Section 4.5.

4.2 The Model and the Test Statistic

4.2.1 The model and estimation issues

Returning to the general linear regression model with MA(1) errors of

Chapter 3, namely

y = X/3 + u (4.1)

where « , = * , + ys,.x. -1 < / < 1, and *, ~ IIN(0, a2). Our interest is in testing

elements of p which requires an estimate the unknown parameter y . One

possibility is to maximise the concentrated likelihood as outlined in Section 3.2 of

Chapter 3. As mentioned in the previous section, an obvious alternative is to

maximize the marginal likelihood for y . According to Tunnicliffe Wilson (1989),

the log marginal likelihood for (4.1) is given by

(y. Y) —llog |2( r ) | -^ log |A 'S- I (y)J f | -^ log( j 2 (y) ) (4.2)

where 2(y) is defined in (3.3), m = n-k, s\y) is given by (3.5) and s2(y)/n

is an
estimate of a2. The MML estimator of y is found by maximising (4.2) with

respect to y . In the remainder of this chapter, we will use f(1) to denote the ML

estimator of y obtained by maximising the concentrated likelihood (3.4) and y{2)

to denote the MML estimator. The corresponding final estimate of fi in each case

can be written as
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(4.3)

where / = 1,2.

As is the case for the concentrated likelihood, we are unable to maximise the

marginal likelihood analytically so have to resort to numerical optimisation. The

minor identification problem discussed in Chapter 3 that results from crz^(y) and

o^Z(/ ,) taking exactly the same value whenever al = a2y2 and y. =1/y also

effects the marginal likelihood in the same manner in which it did effect the

concentrated likelihood. This can be seen from the fact that

4.2.2 The test statistics

Recall from Chapter 3 that our interest is in testing the j th regression

coefficient in (4.1), namely testing H0:fii =pj0 against Hx:Pj*PjQ where

1 < j < k and /3j0 is a known constant. There are now a number of test statistics

for consideration and these are of the form

• i t i t''1
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t-—— - J— 7 - 1 ?
_ / i /^. , ,v \ ' * ~ l>*•> ( 4 4 )

where Pj{y(l)) is the j th element of (4.3) and

is the standard error of Pj(ym) in which (xil.-'l(y<l))xf] represents the jj th

diagonal element of [x1 Z"1 (y(l))xY.

An obvious question that may arise is what should the value of p be?

Because s2 [y) I n is the MLE of a2, p = n is one obvious choice of the value of

p as used in Chapter 3. If the value of y is known then s2(y)/(n-k) is the

unbiased estimator of a2 so another option is p = n-k. Finally observe that if

both P and y are known,

n ( 4 . 6 )

is an unbiased estimator of a2. sz(y) involves replacing the k x 1 vector ft by its

estimated value J3(y) and this results in a loss of k degrees of freedom making

p-n-k the appropriate denominator. By analogy, therefore, if we replace both

P and y by estimates, this might suggest a loss of more than k degrees of

freedom perhaps making p-n-k-\ a more appropriate denominator. In other

words, we could summarize the different statistics as (4.4) with / = 1,2 and

p = n, n-k, n-k~\. However the use of p = n with the MML estimator does

! i

I i .
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not make sense so p = n should only go with / = 1. The critical values come

from the Student's f distribution with p degrees of freedom.

43 Monte Carlo Experiment

A Monte Carlo experiment was conducted to investigate the importance of

taking care in finding the global maximum of the concentrated likelihood and the

marginal likelihood. The second aim was to examine whether the use of different

degrees of freedom resulted in an improvement in the estimated sizes of tests of

regression coefficients in the presence of MA(1) regression disturbances.

4.3.1 Design of the simulation experiment

We reconsidered the four strategies of Chapter 3 in order to re-evaluate their

performance for hypothesis testing in the context of ML and MML estimation of

the MA(1) parameter y. The test statistic used based on maximum likelihood

estimates are ML(m), ML(m-l) and for marginal likelihood estimates are

MML(m) and MML(m-\) with m and m-\ degrees of freedom for w=20, 40,

60, 80, 100 and 120. In order to test the null hypothesis Ho: fij = 0 ; against

alternative Hl: f5} * 0; we used the nominal size of 5%, The experiment involved

1000 replications. The design matrix, different y values, the initial estimate of

the parameter y to start with constrained optimisation and the initial values of the

different factors for the SA algorithm remain the same as used in Chapter 3.
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4.4 Results of the Monte Carlo Experiment

Tables 4.1 to 4.9 contain the Monte Carlo results for testing Ho: /?, = /?10,

Ha: Pi = fiio a n d HQ: /?3 = /?30 respectively for different sample sizes, namely

n =20, 40, 60, 80,100 and 120, different strategies, e.g., strategy (i), (ii), (iii) and

(iv), different moving average coefficients, namely y = - 0.90, - 0.75, - 0.60,

- 0.45, - 0.30, - 0.15, 0, 0.15, 0.30, 0.45, 0.60, 0.75 and 0.90. Estimated sizes in

the range (0.0365, 0.0635) are not significantly different from the nominal level of

0.05 at the 5% level of significance. In the following subsections, we will discuss

the results in terms of different sample sizes, different strategies, different moving

average coefficients, and different test statistics.

The results reflect that the tests based on marginal likelihood estimates of y

produce better estimated sizes than those based on maximum likelihood estimates

in terms of accuracy of sizes (closeness to nominal size) with few exceptions. The

most striking feature is that the sizes of the MML(m -1) test are best compared to

the other tests and the majority of these sizes are insignificantly different from the

nominal size. In the next subsection we will discuss and compare results for

different test statistics.

4.4.1 Different test statistics

The estimated sizes of the four different tests based en ML and MML are

reported in Tables 4.1 to 4.9. When n = 20, the results of these tests are highly

significantly different from the nominal size. However there are a few exceptions
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to this. For instance, when values of y are close to the negative and positive

boundaries, the sizes of the MML(m ~ l) test are insignificantly different from the

nominal size for testing Ho: fix =/3]0. The same trend is observed for testing

#o : Pi ~ P20 and Ho: /?3 = /?30 with the only exceptions being when the values

of y are close to the negative boundary.

In contrast, the sizes of the MML(m -1) test based on strategies (i), (ii), (iii)

and (iv) are not significantly different from the nominal size when n = 40, and for

y values in the interval (-0.30 to 045) when testing Ho: fi2 = fi20 and

Ho: j#3 = y530. From the above discussion we conclude that for small samples, the

test statistic MML(m -1) performs better than the other test statuses., f':• other

words, the performance of the test based on MML is better than the test based on

ML when the sample size is small. On the other hand, the difference between the

existing t tests, i.e., ML{m) and MML(m), and the corresponding tests based on

corrected degrees of freedom, i.e., ML(m-\) and MML(m-\), is wider when

the sample size is smaller. This indicates that for small samples, the test based on

corrected degrees of freedom is better than the traditional test. For example, Table

4.4 shows that when n = 20, y = 0.15 and for strategy (iii) the estimated sizes for

test statistics MML(m-\) and MML(m) are 0.088 and 0.97 respectively while for

n = 120 the estimated sizes become 0.061 and 0.063 respectively in Table 4.6. It

is also observed that as the sample size increases, the sizes of the existing t test

and tests based on corrected degrees of freedom gradually decrease.
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An obvious feature is that as the sample size increases, the estimated sizes of

all the tests based on both likelihoods are insignificantly different from the

nominal size over a widening interval of y values. For example, in Table 4.5

when n = 80 and y in the interval (-0.15 to 0.30), in Table 4.9 when n = 100 for

the same y values and when n = 120 and y in the interval (-0.15 to 0.60), the

estimated sizes are insignificantly different from the nominal size for both ML and

MML tests. Another clear feature is that as the y value departs from -0.15

towards the negative boundary, the estimated sizes become highly significantly

different from the nominal size. Simultaneously, noticeable improvement can be

seen from using the marginal likelihood based test with the corrected degrees of

freedom, i.e., MML{ni - 1 ) , through strategy (iii). A possible reason is that using

strategy (iii) helps to reduce the estimation bias extensively. A similar feature can

be observed for the positive boundary.

The results of the simulation experiment reflect that compared to other test

statistics, MML(m-\) produces more accurate results in the sense that the

estimated size of the test and the nominal size are very close to each other. The

choice of m -1 degrees of freedom in the test has a small but worthwhile effect on

sizes. The test constructed with these degrees of freedom using both ML and

MML estimates shows an appreciable improvement in accuracy. The test based

on maximum likelihood with n-k-l degrees of freedom on average cannot even

beat the test based on the marginal likelihood with n-k degrees of freedom. As

a result, the MML(m -1) test almost always has the most accurate size compared
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to other tests for small sample sizes as well as large sample sizes and all different

values of y . We recommend the MML(m -1) test for use.

4.4.2 Different sample sizes

In this subsection, we will discuss the effect of estimated sizes of the tests

for different sample sizes for testing HQ: /?,. = fii0 where i = 1,2,3. We consider

three categories of sample sizes, namely small (« =20,40), medium (n =60, 80)

and large (n = 100,120) sample sizes. For small samples, the sizes of all the tests

are significantly different from the nominal size except for y = -0.75 and - 0.90,

where most of the tests are not significantly different from the nominal size.

Compared to other tests, the MML(m-l) test gives better results, because it

produces smaller estimated sizes. For example, in Table 4.4, the estimated sizes of

the two tests, ML{rn) and ML(m -1), based on maximum likelihood estimation

for strategy (i) are 0.144 and 0.131 respectively, and for the marginal likelihood

estimates, these values are 0.091 and 0.079, respectively, when the value of y is

- 0.15. Surprisingly, for the value of y = - 0.90, the estimated sizes of the all tests

considered are insignificantly different from the nominal size and the tests based

on the marginal likelihood are undersized.

For moderate sample sizes, that is, when n = 60 and 80, the estimated sizes

of the tests improve slightly compared to those for small sample sizes. The most

striking feature is that the estimated sizes of the tests perform very poorly near the

boundary except when n = 60 and for y = -0.75 and - 0.90. In this category, the
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estimated sizes of the tests perform well in the sense that the estimated size is

close to the nominal size when y lies between 0 and 0.30 for n = 60 and y lies

between -0.30 and 0.45 when n = 80. In the case of large sample sizes, the

estimated sizes of the tests perform very well when y is in the interval -0.15 to

0.30.

The results for different sample sizes show a general trend that as the sample

size increases, estimated sizes move closer to the nominal size. In other words, as

the sample size increases keeping other factors unchanged, there is a tendency for

the estimated size to decrease towards the nominal size.

4.4,1 Different values of the MA(1) parameter

In this subsection, we will discuss the results of the estimated sizes of the

test for different values of the moving average parameter y . The first observable

feature is that for small samples, i.e. when n = 20 and 40, and for y = - 0.90 in the

case of testing #„:/?,- =fii0, the estimated sizes seem to be more accurate in the

sense that they are insignificantly different from the nominal size. The test based

on maximum likelihood produces more reasonable results than the other tests, in

the sense that the estimated sizes are close to the nominal size 0.05 and the

marginal likelihood based tests have a tendency to be slightly undersized. In

contrast, when the value of y departs from zero towards the boundaries except for

the value of y = -0.90, the sizes gradually increase and they are significantly

different from the nominal sizes for testing Ho: fi2 - flYj and Ho: /?3 = /?30.
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For moderate and large samples and values of y close to the boundaries, all

the tests perform very poorly by producing much higher sizes than the nominal

size. Values of y within the interval (-0.15, 0.90) for testing Ho: /?, =J3W

result in more accurate results and surprisingly the ML and MlvtL based tests

provide approximately the same results. The same trend is also observed for

testing Ho: J32 = fi2Q and Ho: /?3 = /?30 when the y value is in the interval

(-0.30, 0.45). The worst scenario revealed in Table 4.2 is for the value of

y = -0.75 where the estimated sizes of different tests are around 0.42 for strategy

(i).

In summary, the) lajority of the estimated sizes are significantly greater than

the nominal size of 0.05 for different values of y . Surprisingly the estimated sizes

are unacceptably high for small samples, particularly, whsn. y values are - 0.60,

- 0.40 and - 0.30; for the ML test as shown in Table 4.1. There is a tendency for

the test sizes to increase as y moves from zero towards either of the boundaries.

On the other hand, as the sample size increases for positive values of y, the

estimated sizes give more accurate results. The corrected degrees of freedom

based test for marginal likelihood, i.e., MML(m-\), produces the best sizes for

different values of y .
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4.4.3 Different strategies

For small samples, the overall performance of strategy (i), i.e., not making

any effort to find the global maximum is the worst of the four strategies. For

maximum likelihood estimation, the performance of strategy (iii) is best and the

estimated sizes of strategy (i) are the worst. In contrast, strategy (iv) dominates all

strategies in the case of marginal likelihood based estimates.

As sample size increases, the gap among different strategies tends to

decrease gradually and the sizes of the tests improve. For y in the interval

(-0.15,0.60), the estimated sizes are barely significantly different from the

nominal size for moderate sized samples. However, near to the negative

boundary, the estimated sizes are woefully significantly different from the nominal

level. Strategy (iii) dominates the other strategies except for strategy (iv) in the

case of marginal likelihood based estimates. This is also sometimes true for

positive values of y. In Table 4.2, we notice that strategy (ii) gives improved

accuracy of the estimated sizes compared to strategy (i) when the estimation is

based on marginal likelihood for negative values of y . The same trend can be

seen while comparing strategy (iii) with (ii), and strategy (iii) with (i). For

example, the estimated sizes of MML(m) and MML(m-\) from strategy (ii) are

0.093, 0.091 respectively and for strategy (iii) are 0.079 and 0.077, respectively

for y = -0.450 and n = 60 in Table 4.8.

For large samples, the performance of strategy (iv) is not satisfactory

compared to other strategies for tests based on maximum likelihood estimates.
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The improvement of strategy (iii) combined with the corrected degrees of freedom

based test is noticeable and works well particularly when the values of y are close

to the boundary. For the marginal likelihood based test, strategy (iv) produces

either trie same sizes or a slight improvement over those of strategy (iii) for y

values close to the boundary.

The most significant result is the improvement in sizes that comes from

strategy (iv) which dominates all strategies when estimation is based on marginal

likelihood. This strategy works well to solve the boundary problem as we

mentioned in the previous chapter where the worst performance is observed in the

case of maximum likelihood estimation. Strategy (iii) and strategy (iv) produce

approximately the same results and the majority of the estimated sizes are

insignificantly different from the nominal size for large samples. But for small

samples, strategy (iv) produces better sizes when estimation is based on marginal

likelihood.

4.5 Conclusion

In Chapter 3, we found unsatisfactory estimated sizes of the test statistics

based on maximum likelihood. In this chapter, an attempt was made to improve

the estimated sizes by proposing modified test statistics based on corrected degrees

of freedom for both the concentrated likelihood and the marginal likelihood

estimates. We investigated whether there is any improvement due to modifying

the test in context of the estimated sizes for different strategies, sample sizes and

moving average parameter values y, through Monte Carlo simulation.
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Our simulation results indicate that the test based on marginal likelihood

estimates and m-\ degrees of freedom, MML(m-1), performs best irrespective

of strategies, samples size, and values of the moving average parameter y, in

terms of accuracy of sizes, i.e., estimated sizes close to the nominal size.

In the context of sample sizes, we observed that there is a close relationship

between sample sizes and estimated sizes. In other words, as the sample size

increases keeping other factors unchanged, there is a tendency to get more

accurate estimated sizes in the sense that the estimated sizes are closer to the

nominal size.

Also, the results revealed that there is a tendency for the tests sizes to

increase as y moves from zero towards boundaries where the majority of the

estimated sizes are significantly different from the nominal sizes for small

samples.

in Chapter 3 we found a rather worrying result that finding the global

maximum does not always work in the case of maximum likelihood estimation of

v . To overcome this problem, we investigated the use marginal likelihood for

finding the global maximum in this chapter. We found that the performance of the

simui;.ied annealing method, which finds the global maximum, gives the best

results., compared to the other strategies when estimation is based on marginal

likelihc >n. This is fortunate because looking for the global maximum of a

likelil ••'. o iocs seems to be the natural strategy for an econometrician to follow.



Chapter 4 Improved Tests 97

The results of our experiment clearly support to use the maximum marginal

likelihood method instead of the concentrated likelihood when finding the global

maximum while estimating the nuisance parameter. In addition, we conclude that

one should use m -1 degrees of freedom rather than m degrees of freedom in the

test statistic and use critical values from the Student's t distribution with m -1

degrees of freedom. This small correction does provide a slight improvement in

the resultant sizes.
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Table 4.1 Estimated sizes fss testing Ho: px = /?10 with
strategies for maximising the concentrated
functions

n=20 and 40 for different
and marginal likelihood

n
Strategies

ML{m)

ML{m-\)

MML(m)

MML{m-\)

ML(m)
ML(m-\)
MML(m)
MML(m-\)

ML{rri)
ML{m-\)
MML(m)
MML{rn-\)

ML(jn)

ML(m-\)
MML(m)
MML(m-l)

ML(m)
ML(m-\)
MML(m)
MML(m-l)

ML(tn)
ML{m-\)
MML(m)

MML{m-\)

(i)

0.058
0.053
0.047

0.043

0.125
0.111
0.084
0.075

0.230

0.214
0.153
0.144

0.337
0.330
0.196
0.193

0.349
0.338
0.182
0.177

0.328
0.317
0.140
0.136

20

(«)

0.058
0.053

0.041
0.039

0.125
0.111
0.072
0.066

0.230
0.214
0.122
0.115

0.333
0.326
0.154

0.151

0.345
0.334
0.157
0.153

0.326
0.315
0.128
0.124

(iii)
Y

0.056
0.051

0.040
0.038

Y

0.122
0.108
0.075
0.066

Y

0.225

0.205
0.126
0.117

Y

0.331
0.320
0.159
0.153

Y

0.339
0.326
0.164
0.159

r
0.321
0.312
0.133
0.129

(iv)
=-0.90

0.058
0.052
0.041

0.039

=-0.75
0.122
0.108
0.071
0.063

=-0.60
0.227
0.207
0.123
0.114

=-0.45
0.346
0.334
0.156

0.151
=-0.30

0.376
0.326
0.157
0.152

=-0.15
0.371
0.363
0.128
0.124

0)

0.060
0.057
0.042

0.040

0.107
0.101
0.074

0.073

0.173
0.171

0.095
0.090

0.173
0.171
0.095
0.090

0.154
0.152
0.080
0.078

0.151
0.145
0.093
0.090

40

(ii)

0.060
0.057
0.043
0.041

0.106
0.099
0.076
0.074

0.164

0.160
0.094
0.090

0.170
0.164

0.088
0.085

0.149
0.147
0.078
0.076

0.147
0.141
0.092
0.084

(iii)

0.060
0.057
0.041
0.039

0.106
0.099
0.074

0.073

0.164

0.160
0.098
0.094

0.170
0.164
0.090
0.087

0.149
0.147
0.079
0.077

0.147
0.141
0.092
0.089

(iv)

0.061
0.058
0.041

0.039

0.106
0.100
0.075
0.074

0.168
0.163
0.094
0.089

0.176
0.170
0.088
0.085

0.161
0.158
0.080
0.078

0.162
0.156
0.093
0.090
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Table 4.1 (continued) Estimated sizes for testing
different strategies for maximising
likelihood functions

#0:y9, =J310 with n=20 and 40 for
the concentrated and marginal

72

Strategies

MUrri)
ML{m-\)
MML(m)
MML(in~\

ML{m)
ML(m-\)
MML(m)
MML{m-\

ML{m)
ML(m-Y)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML(rn-\

ML(m)
ML(m-\)
MML(m)
MML{m-\

ML{m)
ML(m-l)
MML{m)
MML(m-\

(i)

0.268
0.261
0.124
0.112

0.201
0.198
0.094
0.087

0.188
0.181
0.104
0.093

0.143
0.137
0.085
0.080

0.095
0.083
0.059
0.053

0.099
0.088
0.073
0.063

0.094
0.089
0.068
0.064

(ii)

0.267
0.260
0.117
0.104

0.202
0.199
0.090
0.083

0.191
0.183
0.098
0.087

0.144
0.137
0.082
0.077

0.100
0.088
0.056
0.051

0.101
0.091
0.071
0.061

0.095
0.090
0.066
0.061

20
(iii)

0.265
0.265
0.124
0.110

0.201
0.193
0.097
0.088

0.187
0.179
0.101
0.089

0.142
0.134
0.082
0.076

0.092
0.083
0.057
0.051

0.098
0.090
0.074
0.064

0.093
0.087
0.066
0.060

(iv)
Y =0.00

0.316
0.308
0.117
0.103

/=0.15
0.269
0.261
0.092
0.083

Y =0.30
0.239
0.230
0.101
0.089

T =0.45
0.184
0.176
0.085
0.079

Y =0.60
0.115
0.106
0.058
0.052

Y =0.75
0.102
0.097
0.065
0.059

Y =0.90
0.061
0.058
0.041
0.039

(i)

0.095
0.091
0.062
0.058

0.068
0.066
0.055
0.052

0.074
0.070
0.062
0.059

0.067
0.063
0.058
0.058

0.059
0.054
0.054
0.052

0.065
0.059
0.065
0.059

0.056
0.051
0.055
0.050

40
(ii)

0.093
0.090
0.062
0.057

0.068
0.065
0.055
0.052

0.074
0.070
0.062
0.059

0.067
0.063
0.058
0.058

0.059
0.054
0.054
0.052

0.065
0.059
0.065
0.059

0.056
0.051
0.055
0.050

(iii)

0.093
0.090
0.062
0.057

0.068
0.065
0.055
0.052

0.074
0.070
0.062
0.059

0.067
0.063
0.058
0.058

0.058
0.053
0.053
0.051

0.066
0.060
0.062
0.057

0.056
0.051
0.054
0.050

(iv)

0.105
0.102
0.061
0.057

0.069
0.066
0.056
0.053

0.079
0.075
0.061
0.059

0.067
0.063
0.058
0.053

0.060
0.054
0.053
0.055

0.066
0.060
0.062
0.056

0.056
0.051
0.054
0.050
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Table 4.2 Estimated sizes for testing Ho: /?, = J3JQ with
strategies for maximising the concentrated
functions

n=60 and 80 for different
and marginal1, likelihood

11

Strategies

ML(m)
ML{m-\)
MML(m)
MML{m-\)

ML(m)
ML{m-\)
MML(m)
MML(m-\)

Affi(iw)

ML{in-\)
MML{m)
MML(m-\)

ML(m)
ML(m~\)
MML(m)
MML{m-\)

ML(m)
ML(m-\)
MML(m)
MML(m-\)

ML{m)
ML{in-X)
MMLirn)
MML(m-l)

(i)

0.091
0.089
0.076
0.073

0.166
0.160
0.118
0.113

0.195
0.191
0.135
0.132

0.155
0.148
0.108
0.106

0.116
0.116
0.085
0.085

0.087
0.084
0.060
0.060

(")

0.080
0.078
0.063
0.060

0.164
0.160
0.107
0.103

0.180
0.177
0.117
0.113

0.121
0.117
0.087
0.083

0.085
0.082
0.067
0.066

0.063
0.062
0.059
0.058

60
(iii)

0.091
0.088
0.070
0.066

0.142
0.137
0.077
0.074

f\ 1 AC
V/. IT*/

0.142
0.081
0.080

0.128
0.121
0 074
0.073

0.108
0.108
0.067
0.066

0.087
0.084
0.060
0.060

r

r

r

r

r

7

(iv)
=-0.90
0.093
0.090
0.068
0.065

=-0.75
0.146
0.141
0.078
0.075

=-0.60
0.147
0.143
0.076
0.075

=-0.45
0.133
0.126
0.074
0.073

=-0.30
0.111
0.111
0.078
0.078

=-0.15
0.087
0.084
0.060
0.060

(i)

0.153
0.149
0.115
0.111

0.326
0.325
0.226
0.223

0.272
0.268
0.201
0.201

0.157
0.157
0.120
0.118

0.101
0.098
0.075
0.073

0.087
0.088
0.080
0.080

(ii)

0.152
0.148
0.107
0.103

0.274
0.272
0.135
0.132

0.164
0.160
0.080
0.079

0.110
0.110
0.076
0.073

0.095
0.092
0.071
0.069

0.089
0.088
0.080
0.080

80
(iii)

0.150
0.146
0.083
0.081

0.263
0.262
0.113
0.111

0.162
0.158
0.078
0.076

0.109
0.109
0.076
0.073

0.095
0.092
0.072
0.070

0.089
0.088
0.080
0.080

(iv)

0.151
0.147
0.080
0.077

0.275
0.274
0.109
0.106

0.170
0.165
0.076
0.074

0.111
0.111
0.076
0.076

0.096
0.093
0.071
C.069

0.089
0.086
0.080
0.079
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Table 4.2 (continued) Estimated sizes
different
likelihood

n
Strategies

ML(m)
ML(m-l)
MML(m)
MML(m-\

ML{m)
ML{m-\)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML{m-\

ML(m)
ML{m~\)
MML{ni)
MML{m-\

ML(m)
ML(m~l)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MMLini)
MML(m-\

ML(m)
MUm-\)
MML(m)
MML(m-l

(i)

0.075
0.073
0.066
0.066

0.065
0.065
0.060
0.058

0.064
0.061
0.058
0.054

0.065
0.064
0.064
0.063

0.050
0.049
0.049
0.047

0.067
0.062
0.066
0.060

0.056
0.052
0.056
0.052

strategies
functions

60
(ii)

0.050
0.050
0.048
0.044

0.055
0.053
0.054
0.052

0.061
0.060
0.060
0.060

0.053
0.055
0.051
0.048

0.050
0.049
0.048
0.048

0.064
0.059
0.061
0.058

0.050
0.048
0.051
0.048

for testing H0:J3,
for maximising

(iii)

0.087
0.084
0.060
0.060

0.065
0.065
0.060
0.058

0.064
0.061
0.059
0.054

0.057
0.055
0.055
0.054

0.045
0.045
0.045
0.043

0.060
0.056
0.059
0.054

0.053
0.050
0.053
0.050

(iv)
Y =0.00
0.076
0.074
0.060
0.060

r=0.15
0.065
0.064
0.060
0.058

Y =0.30
0.064
0.060
0.058
0.054

Y =0.45
0.057
0.055
0.055
0.054

Y =0.60
0.045
0.045
0.044
0.043

Y =0.75
0.060
0.055
0.059
0.054

Y =0.90
0.052
0.049
0.053
0.050

= 0lo with
the concentrated

(i)

0.067
0.065
0.057
0.057

0.051
0.048
0.047
0.047

0.051
0.051
0.050
0.046

0.060
0.057
0.058
0.056

u.058
0.057
0.058
0.058

0.057
0.057
0.057
0.057

0.070
0.068
0.069
0.066

80
(ii)

0.067
0.065
0.057
0.057

0.051
0.048
0.047
0.047

0.051
0.051
0.050
0.046

0.056
0.054
0.054
0.053

0.049
0.047
0.048
0.047

0.049
0.049
0.049
0.049

0.062
0.059
0.060
0.057

n =60
and

(iii)

0.067
0.065
0.057
0.057

0.051
0.048
0.047
0.047

0.051
0.051
0.050
0.046

0.056
0.054
0.054
0.053

0.049
0.047
0.048
0.047

0.049
0.049
0.049
0.049

0.060
0.057
0.058
0.054

and 80 for I
marginal

(iv)

0.067
0.064
0.057
0.057

0.051
0.048 .
0.047
0.047

0.051
0.051
0.050
0.046 •

0.056 :
0.054 ;
0.054 \
0.052 1

0.049 i
0.047 i
0.048 ;;
0.047

0.052
0.049
0.049 i
0.049

,
0.060
0.056
0.058
0 . 0 5 4 ••»
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Table 4.3 Estimated sizes for testing Ho:^ =>910 with n=100 and 120 for different
strategies for maximising the concentrated and marginal likelihood functions

n
Strategies

ML{m)
ML(m-l)
MML{m)
MML{m-\

ML(m)
ML(m-\)
MML(m)
MML{m-\

ML{m)
ML{m-\)
MML{m)
MML(m-\

ML(m)
ML{m-\)
MML(m)
MML{m~\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML{m)
ML(m-\)
MML(m)
MML(m-\

(i)

0.247
0.245
0.179
0.178

0.415
0.414
0.289
0.288

0.262
0.259
0.200
0.199

0.130
0.129
0.106
0.104

0.075
0.073
0.060
0.058

0.059
0.058
0.053
0.052

(")

0.244
0.242
0.171
0.170

0.254
0.251
0.140
0.140

0.151
0.147
0.087
0.086

0.091
0.090
0.071
0.069

0.071
0.069
0.054
0.053

0.059
0.058
0.053
0.052

(iii)

0.240
0.238
0.126
0.125

0.307
0.306
0.134
0.133

0.148
0.144
0.088
0.087

0.091
0.090
0.071
0.069

0.071
0.069
0.055
0.053

0.059
0.058
0.053
0.052

SA
7 =-0.90

0.243
0.240
0.124
0.123

r=-0J5
0.328
0.327
0.128
0.127

/=-0 .60
0.155
0.153
0.086
0.086

r=-0.45
0.091
0.090
0.071
0.070

r=-0.30
0.072
0.070
0.055
0.054

r=-0.15
0.059
0.059
0.054
0.052

(i)

0.267
0.264
0.137
0.136

0.275
0.274
0.098
0.098

0.168
0.165
0.082
0.081

0.100
0.099
0.075
0.072

0.077
0.075
0.062
0.062

0.063
0.061
0.058
0.058

(ii)

0.262
0.259
0.207
0.205

0.238
0.237
0.142
0.140

0.137
0.134
0.082
0.081

0.095
0.094
0.075
0.072

0.077
0.075
0.062
0.062

0.063
0.061
0.058
0.058

i

(iii)

0.257
0.254
0.133
0.132

0.216
0.215
0.100
0.099

0.137
0.134
0.082
0.081

0.095
0.094
0.075
0.072

0.077
0.075
0.062
0.062

0.063
0.061
0.058
0.058

(iv)

0.259
0.256
0.133
0.132

0.225
0.224
0.097
0.097

0.140
0.137
0.082
0.081

0.096
0.095
0.075
0.072

0.077
0.075
0.062
0.062

0.063
0.061
0.058
0.058
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Table 4.3 (continued) Estimated sizes
ii>r different strategies for
likelihood junctions

for testing #„:/?, =fii0 with n = 100 and 120
maximising the concentrated and marginal

n
Strategies

ML{m)
ML{in-\)
MML{in)
MML(m-\

ML(m)
ML{m-\)
MMLijti)
MML{m-\

ML(m)
ML(m-l)
MML(m)
MML{m-\

ML(m)
ML(m-\)
MML{m)
MML(m-\

ML(m)
ML{m-\)
MML(m)
MML{m-\

ML(m)
ML{pi-\)
MML(m)
MML{ni~\

ML(m)
ML(m-\)
MML(m)
MML(m-\

(i)

0.054
0.052
0.047
0.047

0.058
0.057
0.055
0.055

0.059
0.059
0.056
0.054

0.051
0.049
0.049
0.048

0.053
0.052
0.053
0.051

0.042
0.041
0.042
0.041

0.044
0.043
0.044
0.043

(ii)

0.054
0.052
0.047
0.047

0.058
0.057
0.055
0.055

0.059
0.057
0.056
0.064

0.054
0.052
0.052
0.051

0.055
0.054
0.055
0.052

0.044
0.043
0.044
0.043

0.045
0.044
0.044
0.043

100
(iii)

0.054
0.052
0.047
0.047

0.058
0.057
0.055
0.055

0.059
0.059
0.056
0.054

0.054
0.052
0.052
0.051

0.055
0.054
0.055
0.052

0.044
0.043
0.044
0.043

0.044
0.043
0.044
0.043

(iv)
y =0.00

0.054
0.053
0.047
0.047

/=0.15 -
0.058
0.058
0.055
0.055

y =0.30
0.059
U.059
0.056
0.054

y =0.45
0.055
0.052
0.052
0.051

y =0.60
0.056
0.055
0.055
0.053

Y —C\ T\
1 =VJ. ID

0.044
0.044
0.044
0.043

y =0.90
0.044
0.044
0.044
0.041

(i)

0.055
0.053
0.050
0.049

0.057
0.057
0.055
0.053

0.063
0.062
0.062
0.061

0.058
0.057
0.057
0.057

0.044
0.044
0.044
0.043

0.046
0.046
0.047
0.047

0.CS--J
0.061
0.064
0.063

120
(ii)

0.055
0.053
0.050
0.049

0.057
0.057
0.055
0.053

0.063
0.062
0.062
0.061

0.058
0.057
0.057
0.057

0.044
0.044
0.044
0.043

0.046
0.046
0.046
0.046

0.063
0.061
0.064
0.063

(iii)

0.055
0.053
0.050
0.049

0.057
0.057
0.055
0.053

0.063
0.062
0.062
0.061

0.058
0.057
0.057
0.057

0.044
0.044
0.044
0.043

0.047
0.047
0.047
0.047

0.063
0.061
0.064
0.063

(iv)

0.055
0.053
0.050
0.049

0.057
0.057
0.055
0.053

0.063
0.062
0.062
0.061

0.058
0.057
0.057
0.057

0.044
0.044
0.044
0.043

0.047
0.047
0.047
0.047

0.063
0.061
0.064
0.063
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Table 4.4 Estimated
strategies
functions

n
Strategies

ML(m)
ML(m-l)
MML{in)
MML(m-X)

ML{m)
ML(m-l)
MML{m)
MML{m-\)

ML{m)
ML{m-\)
MML(m)
MML(m-\)

ML(m)
ML(m-\)
MML(m)
MML(m-\)

ML(m)
ML(m-\)
MML(pi)
MML{in-\)

ML(m)
ML(m-\)
MML(m)
MML(m-l)

(i)

0.058
0.051
0.049
0.044

0.073
0.067
0.070
0.059

0.087
0.082
0.071
0.062

0.137
0.129
0.092
0.087

0.156
0.142
0.095
0.082

0.144
0.131
0.091
0.079

sizes for testing
for maximising

20
(ii)

0.058
0.051
0.046
0.042

0.073
0.067
0.065
0.055

0.087
0.082
0.067
0.058

0.136
0.128
0.089
0.084

0.155
0.142
0.091
0.078

0.143
0.130
0.087
0.075

(iii)

0.054
0.046
0.045
0.039

0.072
0.063
0.065
0.054

0.087
0.078
0.067
0.056

0.131
0.122
0.090
0.085

0.150
0.130
0.093
0.079

0.142
0.126
0.090
0.075

0 with
the concentrated

(iv)
/ = - 0 . 9 0

0.053
0,045
0.044
0.038

/ = - 0 . 7 5
0.070
0.060
0.065
0.054

/ = - 0 . 6 0
0.089
0.080
0.066
0.056

7 =-0.45
0.131
0.122
0.090
0.085

7 =-0.30
0.162
0.142
0.090
0.076

r=-o.\5
0.160
0.143
0.087
0.073

(i)

0.045
0.043
0.044
0.039

0.096
0.089
0.074
0.069

0.159
0.152
0.098
0.093

0.159
0.152
0.098
0.093

0.121
0.117
0.069
0.067

0.097
0.093
0.063
0.058

n =20 and <40 for different
and marginal likelihood

40

(ii)

0.045
0.043
0.044
0.041

0.093
0.087
0.074
0.068

0.148
0.142
0.097
0.093

0.131
0.126
0.090
0.084

0.117
0.114
0.069
0.067

0.095
0.091
0.062
0.056

(iii)

0.045
0.043
0.044
0.040

0.093
0.087
0.074
0.069

0.148
0.142
0.100
0.096

0.130
0.125
0.092
0.087

0.117
0.114
0.069
0.067

0.095
0.091
0.062
0.056

(iv)

0.046
0.044
0.043
0.039

0.095
0.087
0.072
0.065

0.151
0.144
0.097
0.094

0.135
0.131
0.089
0.085

0.129
0.126
0.069
0.067

0.105
0.101
0.063
0.057
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Table 4.4 (continued) Estimated sizes
different
likelihood

71

Strategies

ML(m)
ML(ro-l)
MMLim)
MML{m-\

ML{m)
ML{m-\)
MML(m)
MMLipi-\

MLim)
ML(m-\)
MMLipi)
MML{m-\

ML(m)
MLQn-l)
MMLim)
MMLim - 1

MLim)
ML(m-\)
MMLim)
MML{m-\

ML{m)
ML(m-\)
MMLipi)
MMLim-\

ML(m)
MLipi-X)
MML(m)
MMLim-I

(i)

0.138
0.127
0.097
0.089

0.147
0.139
0.101
0.088

0.135
0.131
0.109
0.099

0.136
0.124
0.108
0.100

0.125
0.120
0.117
0.109

0.141
0.132
0.126
0.112

0.099
0.093
0.090
0.080

Strategies
functions

for testing
for maximising

20
(ii)

0.136
0.125
0.095
0.087

0.144
0.137
0.096
0.083

0.125
0.121
0.096
0.086

0.119
0.109
0.083
0.077

0.110
0.106
0.099
0.092

0.133
0.124
0.114
0.100

0.097
0.092
0.082
0.074

(iii)

0.132
0.119
0.095
0.085

0.140
0.126
0.097
0.083

0.124
0.117
0.096
0.086

0.114
0.105
0.082
0.073

0.105
0.098
0.094
0.083

0.130
0.119
0.109
0.093

0.094
0.083
0.080
0.069

(iv)
Y =0.00

0.158
0.145
0.117
0.103

Y=0.15
0.269
0.261
0.092
0.083

Y =0.30
0.239
0.230
0.101
0.089

Y =0.45
0.184
0.176
0.085
0.079

Y =0.60
0.115
0.106
0.058
0.052

Y =0.75
0.112
0.104
0.074
0.064

7 =0.90
0.104
0.093
0.079
0.068

B20 with n
the concentrated

(i)

0.081
0.075
0.069
0.065

0.059
0.058
0.052
0.045

0.063
0.059
0.063
0.061

0.070
0.067
0.068
0.063

0.081
0.079
0.079
0.077

0.137
0.134
0.129
0.126

0.108
0.099
0.104
0.097

40
(ii)

0.081
0.075
0.069
0.065

0.059
0.058
0.052
0.045

0.063
0.059
0.063
0.061

0.070
0.067
0.068
0.063

0.081
0.079
0.079
0.077

0.137
0.134
0.129
0.126

0.108
0.099
0.104
0.097

=20 and 40 for
and

(iii)

0.081
0.075
0.070
0.066

0.059
0.058
0.052
0.045

0.063
0.059
0.063
0.061

0.069
0.066
0.067
0.062

0.079
0.077
0.073
0.071

0.127
0.124
0.115
0.112

0.104
0.095
0.091
0.083

marginal

(iv)

0.092
0.086
0.068
0.065

0.063
0.062
0.053
0.046

0.068
0.064
0.063
0.061

0.070
0.067
0.066
0.062

0.082
0.080
0.074
0.072

a 126
0.123
0.115
0.112

0.106
0.096
0.092
0.084
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Table 4.5 Estimated sizes for testing HO:J32 = fi20 with
strategies for maximising the concentrated
functions

n = 60 and 80 for different
and marginal likelihood

n
Strategies

ML(m)
ML(m-\)
MMLini)
MML(m-l

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML(m)
ML(m-l)
MML(m)
MML{m-\

ML{m)
ML(m-\)
MML{m)
MML{m-\

ML(m)
ML{m-\)
MML{m)
MML(m-\

MLijn)
ML{m-\)
MML{m)
MML{m-\

(i)

0.078
0.077
0.076
0.074

0.116
0.113
0.099
0.095

0.140
0.136
0.106
0.102

0.129
0.127
0.100
0.099

0.092
0.090
0.069
0.066

0.063
0.061
0.055
0.053

(ii)

0.113
0.10'/
0.0S4
0.079

0.205
0.201
0.119
0.116

0.136
0.135
0.067
0.066

0.103
0.101
0.071
0.070

0.073
0.070
0.061
0.065

0.063
0.059
0.054
0.053

60
(iii)

0.079
0.078
0.073
0.071

0.104
0.101
0.074
0.072

0.105
0.102
0.071
0.069

0.110
0.108
0.079
0.078

0.084
0.082
0.064
0.061

0.063
0.061
0.055
0.053

7

7

7

7

V

(iv)
=-0.90
0.079
0.078
0.073
0.071

=-0.75
0.106
0.103
0.073
0.071

= -0.60
0.108
0.105
0.070
0.067

=-0.45
0.115
0.112
0.078
0.077

0.088
0.086
0.064
0.061

0.063
0.061
0.055
0.053

0)

0.108
0.106
0.098
0.096

0.255
0.253
0.175
0.172

0.220
0.217
0.168
0.166

0.133
0.130
0.106
0.106

0.069
0.067
0.057
0.054

0.067
0.062
0.064
0.062

(ii)

0.107
0.105
0.086
0.084

0.211
0.209
0.112
0.110

0.143
0.141
0.081
0.080

0.092
0.089
0.067
0.067

0.065
0.063
0.055
0.052

0.067
0.062
0.064
0.062

80

(iii)

0.105
0.103
0.079
0.077

0.202
0.200
0.101
0.099

0.144
0.142
0.083
0.082

0.091
0.088
0.067
0.067

0.065
0.063
0.056
0.053

0.067
0.062
0.064
0.062

(iv)

0.106
0.103
0.078
0.075

0.213
0.211
0.090
0.088

0.151
0.148
0.079
0.078

0.007
0.094
0.067
0.065

0.065
0.063
0.055
0.052

0.067
0.062
0.064
0.062
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Table 4.5 (continued) Estimated sizes for testing Ho:/32 =fl20 with n=60 and 80 for
different strategies for maximising the concentrated and marginal likelihood
functions

n
Strategies

ML(m)
ML{in-\)
MML{m)
MML{m~\

ML(ni)
ML(m-l)
MML{m)
MML{m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML{m)
ML(m-\)
MML(m)
MML{in-\

ML(m)
ML(m-l)
MML(m)
MML(m-\

ML(m)
ML{m-\)
MML{m)
MML(m-\

ML{m)
ML(m-\)
MML{m)
MML(m-\

(i)

0.057
0.054
0.051
0.051

0.063
0.061
0.064
0.061

0.062
0.058
0.060
0.058

0.089
0.088
0.086
0.085

0.141
0.140
0.141
0.138

0.199
0.196
0.193
0.190

0.161
0.153
0.156
0.148

(ii)

0.071
0.068
0.066
0.066

0.060
0.060
0.059
0.057

0.063
0.060
0.062
0.059

0.065
0.064
0.059
0.056

0.086
0.081
0.069
0.065

0.154
0.151
0.127
0.123

0.185
0.184
0.156
0.155

60
(iii)

0.063
0.061
0.055
0.053

0.063
0.061
0.064
0.061

0.059
0.055
0.057
0.055

0.058
0.057
0.056
0.05^

0.065
0.064
0.062
0.059

0.089
0.086
0.083
0.080

0.100
0.096
0.089
0.086

(iv)
Y =0.00

0.058
0.055
0.051
0.051

7=0.15
0.063
0.061
0.064
0.061

r =0.30
0.059
0.055
0.057
0.055

Y =0.45
0.058
0.057
0.056
0.054

Y =0.60
0.066
0.065
0.063
0.059

V =0.75
0.090
0.087
0.083
0.080

Y =0.90
0.100
0.096
0.088
0.086

(i)

0.053
0.050
0.050
0.048

0.071
0.068
0.069
0.068

0.060
0.059
0.064
0.062

0.074
0.071
0.076
0.073

0.130
0.128
0.130
0.128

0.209
0.207
0.207
0.206

0.199
0.198
0.189
0.188

80
(ii)

0.053
0.050
0.050
0.048

0.071
0.068
0.069
0.068

0.058
0.057
0.062
0.060

0.057
0.054
0.059
0.056

0.051
0.050
0.052
0.051

0.075
0.072
0.074
0.071

0.134
0.133
0.128
0.126

(iii)

0.053
0.050
0.050
0.048

0.071
0.068
0.069
0.068

0.058
0.057
0.062
0.060

0.057
0.054
0.059
0.056

0.050
0.049
0.051
0.050

0.074
0.071
0.070
0.066

0.120
0.119
0.101
0.099

(iv)

0.053
0.049
0.050
0.048

0.071
0.068
0.069
0.068

0.058
0.057
0.062
0.060

0.057
0.054
0.059
0.055

0.051
0.050
0.051
0.050

0.075
0.072
0.070
0.066

0.121
0.120
0.102
0.099
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Table 4.6 Estimated sizes for testing HQ:J32 =/32O with n= 100 and 120 for different
strategies for maximising the concentrated and marginal likelihood functions

n
Strategies

ML{m)

ML(m-\)
MML(m)

MML(m-\

ML(m)

ML{in-\)

MML{m)
MML{m-\

ML{m)
ML{m-\)
MML(m)
MML{m-\

ML{m)
ML{m-\)
MML(m)
MML(m-l

ML{m)
ML{m-\)
MML(m)
MML{m-\

ML{m)
ML(m-\)
MML(m)
MML(m-\

(i)

0.145
0.143
0.120

0.119

0.315

0.311
0.226
0.225

0.209
0.205
0.153
0.151

0.113
0.112
0.093

0.093

0.083
0.081
0.074
0.073

0.052
0.050
0.046
0.045

(ii)

0.142
0.139
0.109
0.109

0.254
0.251
0.140
0.140

0.121
0.117
0.068
0.067

0.072
0.071

0.055
0.055

0.076
0.074
0.067
0.066

0.052
0.050
0.045
0.045

100

(iii)

0.140
0.138

0.089
0.089

0.245
0.242
0.113
0.113

0.119
0.115
0.068
0.066

0.072
0.G71
0.055
0.055

0.076
0.074
0.067
0.066

0.052
0.050
0.046
0.045

(iv)
7 =-0.90
0.142

0.141
0.086
0.086

v n 7^
/ =—u. / J
0.257
0.254
0.106
0.106

/ = - 0 . 6 0

0.130
0.127
0.068
0.066

v n A$
1 = -•• U . H O

0.073
0.073
0.055
0.055

r=-0.30
0.079
0.076
0.067
0.066

r=-0.15
0.053
0.051
0.046
0.045

(i)

0.227
0.225
0.121
0.120

0.269
0.269
0.108
0.108

0.154

0.151
0.080
0.080

0.089
0.087
0.065
0.062

0.074
0.074
0.063
0.062

0.058
0.056
0.058
0.055

120

(")

0.224
0.222
0.172
0.170

0.234
0.234
0.139
0.139

0.125
0.122
0.079
0.079

0.088
0.086
0.065
0.062

0.074
0.074
0.063
0.062

0.058
0.056
0.058
0.055

(iii)

0.221
0.219
0.115
0.114

0.217
0.216
0.107
0.107

0.124
0.121
0.079
0.079

0.088
0.086
0.065
0.062

0.074
0.074
0.063
0.062

0.058
0.056
0.058
0.055

(iv)

0.224
0.222
0.115
0.114

0.228
0.227
0.106

. 0.106

0.127
0.124

0.079
0.079

0.089
0.087
0.065
0.062

0.074
0.074
0.063
0.06'2

0.058
0.056

0.058
0.055
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Table 4.6 (continued) Estimated sizes for testing H0:fi2 = fi20 with «=100 and 120
for different strategies for maximising the concentrated and marginal
likelihood functions

n
Strategies

MLim)
ML(jn-\)
MMLim)
MMLim-I

MLim)
MLim-I)
MMLim)
MMLim-I

MLim)
MLim-I)
MMLim)
MMLim-I

MLim)
ML{m-\)
MMLim)
MMLim-I

MLim)
ML(m-l)
MMLim)
MMLim-I

MLim)
MLim-I)
MMLim)
MMLim -1

MLim)
MLim-l)
MMLim)
MMLim - 1

(i)

0.051
0.048
0.050
0.047

0.048
0.046
0.047
0.046

0.056
0.054
0.056
0.055

0.082
0.082
0.081
0.080

0.148
0.146
0.148
0.146

0.207
0.207
0.204
0.203

0.274
0.273
0.256
0.255

(ii)

0.050
0.048
0.050
0.047

0.048
0.046
0.047
0.046

0.056
0.054
0.055
0.055

0.063
0.063
0.061
0.061

0.077
0.074
0.077
0.075

0.069
0.069
0.067
0.067

0.163
0.161
0.148
0.148

100
(iii)

0.051
0.048
0.050
0.047

0.048
0.046
0.047
0.046

0.056
0.054
0.056
0.055

0.063
0.063
0.062
0.061

0.076
0.074
0.077
0.075

0.069
0.069
0.065
0.064

0.138
0.136
0.103
0.102

(iv)
7 =0.00

0.053
0.048
0.050
0.047

0.048
0.048
0.048
0.046

7 =0.30
0.057
0.054
0.057
0.055

7 =0.45
0.063
0.063
0.062
0.062

/ =0.60
0.076
0.074
0.077
0.075

7 =0.75
0.069
0.069
0.064
0.063

7 =0.90
0.140
0.139
0.104
0.102

(i)

0.052
0.051
0.049
0.047

0.063
0.062
0.063
0.061

0.057
0.054
0.054
0.054

0.061
0.060
0.062
0.062

0.062
0.061
0.061
0.061

0.090
0.090
0.085
0.085

0.175
0.173
0.149
0.146

120
(ii)

0.052
0.051
0.049
0.047

0.063
0.062
0.063
0.061

0.057
0.054
0.054
0.054

0.061
0.060
0.062
0.062

0.061
0.060
0.061
0.061

0.088
0.088
0.088
0.088

0.161
0.159
0.159
0.157

(iii)

0.052
0.051
0.049
0.047

0.063
0.062
0.063
0.061

0.057
0.054
0.054
0.054

0.061
0.060
0.062
0.062

0.061
0.060
0.061
0.061

0.088
0.088
0.084
0.084

0.133
0.132
0.116
0.115

(iv)

0.052
0.051
0.049
0.047

0.063
0.062
0.063
0.061

0.057
0.054
0.054
0.054

0.061
0.060
0.062
0.062

0.061
0.060
0.061
0.061

0.088
0.088
0.084
0.084

133.00
0.132
0.115
0.115
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Table 4.7 Estimated sizes for testing
strategies for maximising the

n
Strategies

ML(m)
ML{m-\)
MML{m)
MML(m-\

ML{m)
ML(m-l)
MML(m)
MML{m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML{m)
ML(m-\)
MML{m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML{m)
ML(m~\)
MML(m)
MML{m-\

(i)

0.061
0.052
0.049
0.045

0.070
0.063
0.068
0.059

0.081
0.075
0.069
0.067

0.123
0.120
0.095
0.089

0.135
0.120
0.086
0.077

0.138
0.125
0.088
0.083

(ii)

0.061
0.052
0.048
0.043

0.070
0.063
0.065
0.057

0.081
0.075
0.067
0.064

0.123
0.120
0.093
0.087

0.135
0.120
0.084
0.075

0.137
0.124
0.080
0.074

20
(iii)

0.058
0.045
0.047
0.040

0.068
0.056
0.064
0.055

0.078
0.071
0.066
0.060

0.122
0.116
0.094
0.087

0.132
0.116
0.085
0.077

0.132
0.117
0.086
0.077

no:P3=/33o with n=20 and 40 for
concentrated and marginal likelihood 1

(iv)
/ = - 0 . 9 0

0.057
0.044
0.046
0.039

X=-0.75
0.065
0.053
0.064
0.055

7 =-0.60
0.080
0.073
0.066
0.060

7 =-0.45
0.125
0.119
0.093
0.086

7 =-0.30
0.143
0.126
0.084
0.075

^=-0.15
0.146
0.133
0.082
0.074

(i)

0.046
0.043
0.043
0.041

0.093
0.088
0.071
0.068

0.164
0.155
0.098
0.095

0.164
0.155
0.098
0.095

0.119
0.117
0.067
0.066

0.089
0.086
0.065
0.063

40

(ii)

0.046
0.042
0.044
0.041

0.091
0.085
0.072
0.069

0.144
0.140
0.098
0.095

0.139
0.129
0.086
0.079

0.115
0.113
0.067
0.066

0.087
0.085
0.064
0.062

(i")

0.046
0.042
0.044
0.041

0.091
0.085
0.072
0.067

0.149
0.140
0.100
0.097

0.133
0.128
0.089
0.081

0.115
0.113
0.067
0.066

0.087
0.085
0.064
0.062

different
functions

(iv)

0.047
0.043
0.043
0.040

0.090
0.086
0.070
0.065

0.151
0.142
0.099
0.095

0.139
0.136
0.087
0.078

0.127
0.124
0.067
0.066

0.099
0.097
0.065
0.063
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Table 4.7 (continued) Estimated sizes for testing H0:fi3 =/33Q with 77 =20 and 40 for different
strategies for maximising the concentrated and marginal likelihood functions

n
Strategies

ML(m)
ML(m-l)
MML(m)
MML{m-\

ML(m)
ML(m-l)
MML(m)
MML{ni-\

ML{m)
ML{m-\)
MML(m)
MML(m-l

ML{m)
ML(m-\)
MML{m)
MML{m-\

ML{m)
ML(m-\)
MML(m)
MML(m-\

ML{in)
ML(m-\)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

(i)

0.138
0.129
0.101
0.092

0.146
0.138
0.101
0.091

0.142
0.131
0.112
0.103

0.134
0.124
0.115
0.105

0.138
0.121
0.126
0.112

0.143
0.134
0.136
0.125

0.094
0.088
0.086
0.079

(ii)

0.137
0.129
0.095
0.089

0.143
0.135
0.095
0.085

0.133
0.122
0.102
0.092

0.116
0.106
0.091
0.080

0.120
0.103
0.102
0.087

0.135
0.124
0.124
0.114

0.097
0.092
0.084
0.079

(iii)

0.135
0.126
0.096
0.090

0.141
0.127
0.097
0.083

0.132
0.117
0.103
0.092

0.111
0.102
0.087
0.077

0.113
0.095
0.099
0.082

0.125
0.117
0.U4
0.103

0.094
0.088
0.083
0.078

(iv)

x=o.oo
0.160
0.146
0.094
0.088

r=0.15
0.169
0.155
0.097
0.084

Y =0.30
0.153
0.137
0.102
0.091

Y =0.45
0.130
0.118
0.089
0.078

Y =0.60
0.125
0.107
0.098
0.081

Y =0.75
0.143
0.133
0.116
0.105

Y =0.90
0.104
0.098
0.083
0.078

(i)

0.074
0.068
0.063
0.059

0.058
0.053
0.050
0.045

0.068
0.065
0.069
0.068

0.076
0.073
0.073
0.069

0.081
0.078
0.085
0.081

0.136
0.132
0.131
0.126

0.108
0.103
0.107
0.103

(«)

0.073
0.068
0.062
0.059

0.058
0.053
0.050
0.045

0.068
0.065
0.069
0.068

0.076
0.073
0.073
0.069

0.081
0.078
0.085
0.081

0.136
0.132
0.131
0.121

0.108
0.103
0.107
0.103

(iii)

0.073
0.068
0.064
0.061

0.058
0.053
0.050
0.045

0.068
0.065
0.069
0.068

0.075
0.072
0.072
0.068

0.078
0.075
0.077
0.072

0.126
0.122
0.118
0.114

0.103
0.097
0.096
0.091

(iv)

0.084
0.080
0.061
0.059

0.062
0.057
0.050
0.046

0.073
0.070
0.069
0.067

0.076
0.073
0.072
0.068

0.080
0.076
0.077
0.070

0.124
0.122
0.118
0.113

0.103
0.097
0.096
0.091
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Table 4.8 Estimated sizes for testing H0:/33=f330 with n=60 and 80 for different

n
Strategies

ML(m)

ML(m-L)
MML{m)
MML{m-\

ML(m)
ML(m-l)
MML{m)
MML{m-\

ML{m)
ML(m-\)
MML(m)
MML{m-\

ML(m)
ML{m-\)
MML{m)
MML(m-\

ML{m)
ML(m-\)
MML{rn)
MML{m-\

ML(m)
ML(m-\)
MML{m)
MML{m-\

(0

0.081
0.076
0.077
0.075

0.119
0.113
0.102
0.098

0.137
0.135
0.103
0.100

0.130
0.129
0.100
0.099

0.088
0.085
0.071
0.068

0.060
0.058
0.054
0.052

(ii)

0.078
0.077
0.065
0.063

0.150
0.145
0.103
0.100

0.173
0.170
0.124
0.123

0.127
0.121
0.093
0.091

0.090
0.088
0.075
0.075

0.066
0.066
0.058
0.056

60
(iii)

0.081
0.077
0.073
0.072

0.105
0.100
0.075
0.075

0.106
0.104
0.073
0.071

0.110
0.108
0.079
0.077

0.079
0.076
0.065
0.061

0.060
0.058
0.054
0.052

(iv)

r=-o.9o
0.081
0.077
0.073
0.072

r=-0.75
0.107
0.102
0.074
0.074

r=-0.60
0.109
0.107
0.072
0.069

/=-0 .45
0.113
0.111
0.078
0.075

X=-0.30
0.084
0.080
0.065
0.062

r=-0.15
0.061
0.059
0.054
0.052

(i)

0.105
0.104
0.095
0.092

0.251
0.247
0.173
0.169

0.220
0.217
0.172
0.168

0.133
0.132
0.109
0.109

0.068
0.067
0.060
0.058

0.068
0.067
0.064
0.062

(ii)

0.104
0.103
0.083
0.080

0.208
0.205
0.111
0.109

0.143
0.141
0.086
0.083

0.091
0.090
0.070
0.070

0.064
0.063
0.058
0.056

0.068
0.067
0.064
0.062

80
(iii)

0.102
0.101
0.077
0.074

0.199
0.196
0.101
0.099

0.144
0.142
0.088
0.085

0.090
0.089
0.070
0.070

0.064
0.063
0.059
0.057

0.068
0.067
0.064
0.062

(iv)

0.103
0.101
0.076
0.072

0.209
0.206
0.091
0.089

0.152
0.150
0.084
0.081

0.095
0.094
0.070
0.068

0.065
0.064
0.058
0.056

0.068
0.067
0.064
0.060
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Table 4.8 (continued) Estimated sizes for testing Ho:/22 =J330 with H = 6 0 and 80 for
different strategies for maximising the concentrated and marginal likelihood
functions

/I
Strategies

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML{m)
ML{m-X)
MMLim)
MML(m-\

ML(m)
ML{m-\)
MML{m)
MML(pi-\

ML{m)
ML(m-\)
MML(m)
MML{m-l

ML{m)
ML{m-\)
MML(m)
MML{m-\

ML(m)
ML(m-\)
MML{m)
MML(m~\

ML(m)
ML(m-\)
MML(m)
MML{m-\

(i)

0.059
0.055
0.055
0.054

0.065
0.063
0.066
0.063

0.056
0.054
0.060
0.056

0.085
0.084
0.086
0.085

0.14f

0.143
0.145
0.145

0.197
0.191
0.192
0.186

0.169
0.166
0.161
0.158

(ii)

0.064
0.064
0.061
0.060

0.049
0.049
0.050
0.049

0.074
0.070
0.074
0.069

0.074
0.074
0.072
0.070

0.075
0.073
0.067
0.065

0.154
0.151
0.127
0.123

0.064
0.057
0.058
0.056

60
(iii)

0.060
0.058
0.054
0.052

0.065
0.063
0.066
0.063

0.054
0.051
0.057
0.053

0.055
0.053
0.056
0.054

0.070
0.068
0.068
0.067

0.095
0.091
0.087
0.082

0.114
0.113
0.095
0.094

(iv)

r =o.oo
0.060
0.055
0.055
0.054

X=0.15
0.065
0.063
0.066
0.063

r =0.30
0.054
0.051
0.057
0.052

Y =0.45
0.055
0.053
0.056
0.054

r =0.60
0.071
0.069
0.068
0.066

Y =0.75
0.094
0.091
0.087
0.082

Y =0.90
0.114
0.113
0.095
0.094

(i)

0.047
0.046
0.044
0.043

0.073
0.071
0.074
0.067

0.065
0.064
0.068
0.066

0.075
0.072
0.075
0.071

0.133
0.132
0.134
0.133

0.214
0.212
0.212
0.210

0.209
0,207
0.198
0.196

(ii)

0.047
0.046
0.044
0.043

0.073
0.071
0.074
0.067

0.063
0.062
0.066
0.064

0.058
0.055
0.058
0.054

0.053
0.053
0.055
0.055

0.075
0.074
0.074
0.070

0.136
0.136
0.127
0.126

80
(iii)

0.047
0.046
0.044
0.043

0.073
0.071
0.074
0.067

0.063
0.062
0.066
0.064

0.058
0.055
0.058
0.054

0.052
0.052
0.054
0.054

0.072
0.071
0.068
0.068

0.123
0.123
0.103
0.101

(iv)

0.047
0.046
0.044
0.043

0.073
0.070
0.074
0.066

0.063
0.063
0.066
0.063

0.058
0.053
0.058
0.052

0.053
0.053
0.054
0.053

0.074
0.073
0.069
0.069

0.124
0.124
0.104
0.102
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Table 4.9 Estimated sizes for testing H0:/33=fi
different strategies for maximising the
likelihood functions

30» 7i=100 and 120 for
concentrated 2nd marginal

n
Strategies

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML(m)
ML(m-Y)
MML(m)
MML{m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML{m-\

ML{m)
ML(m-l)
MML{m)
MML{m-\

ML(m)
ML(m-\)
MML{m)
MML{m-\

(i)

0.149
0.147
0.125
0.123

0.312
0.309
0.223
0.221

0.206
0.205
0.151
0.149

0.111
0.111
0.094
0.093

0.079
0.078
0.070
0.069

0.048
0.047
0.046
0.046

100

(ii)

0.146
0.143
0.113
0.111

0.250
0.248
0.139
0.138

0.119
0.118
0.065
0.065

0.071
0.071
0.056
0.055

0.073
0.071
0.064
0.063

0.048
0.047
0.046
0.046

(iii)

0.144
0.142
0.093
0.091

0.240
0.238
0.112
0.110

0.117
0.116
0.065
0.062

0.071
0.071
0.056
0.055

0.073
0.072
0.064
0.063

0.048
0.047
0.046
0.046

SA (i)
^= -0 .90
0.146
0.145
0.090
0.089

r=-o.
0.252
0.250
0.105
0.103

r=-o.
0.126
0.126
0.066
0.062

0.073
0.072
0.056
0.055

0.232
0.227
0.125
0.122

75
0.271
0.270
0.108
0.107

60
0.155
0.152
0.082
0.082

0.086
0.086
0.062
0.0b2

7=-030
0.075
0.073
0.064
0.063

0.077
0.075
0.065
0.064

r=-0.15
0.049
0.047
0.046
0.046

0.060
0.057
0.059
0.056

(ii)

0.229
0.224
0.175
0.173

0.236
0.235
0.140
0.140

0.124
0.127
0.081
0.081

0.085
0.085
0.062
0.062

0.077
0.075
0.065
0.064

0.060
0.057
0.059
0.056

120
(iii)

0.226
0.221
0.119
0.116

0.219
0.217
0.107
0.106

0.123
0.120
0.081
0.081

0.085
0.085
0.062
0.062

0.077
0.075
0.065
0.064

0.060
0.057
0.059
0.056

(iv)

0.229
0.223
0.119
0.116

0.230
0.228
0.106
0.105

0.126
0.123
0.081
0.081

0.086
0.086
0.062
0.062

0.077
0.075
0.065
0.064

0.060
0.057
0.059
0.056
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Table 4-9 (continued) Estimated sizes of testing H0:/33 =/?30 with ft = 100 and 120 for
different strategies for maximising the concentrated and marginal
likelihood functions

n
Strategies

ML(m)
ML(m-\)
MMLipi)
MML(m-\

ML(m)
ML(m-\)
MML{m)
MML{m-\

ML{m)
ML{m-\)
MML(m)
MML{m-\

ML(m)
ML{m-\)
MML(m)
MML(m-\

ML{m)
ML{m-\)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML(m)
MML(m-\

ML(m)
ML(m-\)
MML{m)
MML{m-\

0)

0.049
0.049
0.048
0.047

0.049
0.045
0.045
0.045

0.055
0.055
0.054
0.052

0.078
0.078
0.078
0.078

0.142
0.142
0.140
0.140

0.208
0.207
0.207
0.204

0.268
0.266
0.249
0.248

(ii)

0.049
0.049
0.048
0.047

0.048
0.044
0.045
0.044

0.055
0.055
0.054
0.052

0.059
0.059
0.059
0.059

0.071
0.071
0.069
0.069

0.070
0.068
0.069
0.066

0.162
0.159
0.150
0.148

100
(iii)

0.049
0.049
0.048
0.047

0.049
0.045
0.045
0.045

0.055
0.055
0.054
0.052

0.059
0.059
0.059
0.059

0.071
0.071
0.069
0.069

0.070
0.069
0.068
0.064

0.140
0.138
0.105
0.104

(iv)

r=o.oo
0.049
0.049
0.049
0.047

0.049
0.045
0.047
0.045
y =0.30
0.055
0.055
0.054
0.054
y =0.45
0.061
0.059
0.059
0.059
y =0.60
0.071
0.071
0.071
0.069
y =0.75
0.069
0.068
0.068
0.064
y =0,90
0.142
0.141
0.106
0.105

(i)

0.053
0.051
0.050
0.050

0.064
0.062
0.061
0.061

0.059
0.058
0.060
0.056

0.063
0.063
0.062
0.062

0.067
0.063
0.065
0.062

0.091
0.091
0.085
0.083

0.188
0.186
0.155
0.154

120
(ii)

0.053
0.051
0.050
0.050

0.064
0.062
0.061
0.061

0.059
0.058
0.060
0.056

0.063
0.063
0.062
0.062

0.066
0.062
0.065
0.062

0.088
0.088
0.088
0.087

0.174
0.172
0.167
0.166

(iii)

0.053
0.051
0.050
0.050

0.064
0.062
0.061
0.061

0.059
0.058
0.060
0.056

0.063
0.063
0.062
0.062

0.066
0.062
0.065
0.062

0.086
0.086
0.083
0.081

0.148
0.145
0.121
0.120

(iv)

0.053
0.051
0.050
0.050

0.064
0.062
0.061
0.061

0.059
0.058
0.060
0.056

0.063
0.063
0.062
0.062

0.066
0.062
0.065
0.062

0.086
0.086
0.083
0.081

0.147
0.145
0.120
0.120



CHAPTER 5

Forecasting Accuracy and the Issue of
Finding the Global Maximum of the

Likelihood Function

5.1 Introduction

Forecasting plays an important role in the field of econometrics, statistics

and many other branches of science. One standard approach to producing a good

forecast is to construct a reliable statistical or econometric model. This typically

involves the estimation of unknown parameters of the model. There is a common

view that a good forecast can only be obtained when the parameters of the model

are estimated in an optimal or near optimal way. In other words, a good estimate

of the parameters of the model will give good forecasts.

In the literature, some of which was reviewed in Chapter 2, various methods

have been suggested for estimating the parameters of the model. One

disadvantage of maximising the likelihood function is that the numerical

optimisation technique sometimes ends up with a local maximum rather than a

I
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global maximum. In Chapter 3 we found the somewhat disappointing result that

finding the global maximum does not always work in the context of sizes of tests

of regression coefficients when estimation is based on the maximum likelihood

method. In Chapter 4 we investigated the use of the marginal likelihood and in

this case, found the global maximum gives encouraging results. This suggests the

need to also look at these issues from the point of view of forecasting accuracy.

The aims of this chapter are manyfold. First to look at the effect of

accepting a possible local maxima on forecasting performance when estimation of

the moving average parameter y is based on the ML and MML methods. The

second is to look at whether there is any difference in the forecasting performance

of the model when the first value of the forecasting error used in the recursive

formula for calculating forecasting errors is replaced by its estimated value or by

zero as suggested by King and McAleer (1987). We investigate these problems in

the context of the linear regression model when the error term follows an MA(1)

process with parameter y .

In order to achieve the first aim, we investigate six different strategies for

estimating the unknown parameter. The first involves accepting the maximum

that comes from maximizing the likelihood from one fixed starting point. The

second and third involve the same approach but taking even greater care to find

the global maximum by using an additional three and twenty-one different starting

values respectively. The fourth and fifth involve taking the best result from an

additional three and twenty-one fixed starting points but only when the initial
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estimated value of y is on the boundary point. The sixth strategy is based on

estimation of y by grid search.

We use the concentrated likelihood and the marginal likelihood to estimate

the moving average parameter through these different strategies and then assess

the resultant forecasting performance in terms of accuracy. We compare the

forecasting performance of the model for different values of y in the case of one-

step-ahead forecasts (OSAF) and two-step-ahead forecasts (TSAF) by calculating

the average mean square forecasted error (AMSFE), average mean absolute error

(AMAE) and average absolute mean forecast error (AAMFE) over 1000

simulations.

A surprise result is that TSAF are often more accurate than OSAF. The

difference between the two sets of forecasts is a term involving the product of the

estimated value of y and the previous forecasted error. The latter is calculated

recursively, and the first value in these recursive calculations may be important.

King and McAleer (1987) suggested using zero as the first value to start the

recursive calculations of forecasted error. We propose to replace it by a non-zero

value rather than zero in such a way that the chosen value gives the minimum

forecast error sum of squares.

The rest of this chapter is organized as follows. In Section 5.2, we discuss

the model and issues related to forecasting performance for this model. In Section

5.3, we calculate AMSFE, AMAFE and AAMFE in order to evaluate the

forecasting performance for different sample sizes and different values of the



Chapter 5 Forecasting Performance 119

parameter y using Monte Carlo simulation. Section 5.4 contains a discussion of

results of the Monte Carlo study. Section 5.5 presents some concluding remarks.

5.2 The Model and Various Issues

5.2.1 The Model

Consider the linear regression model with non-spherical disturbances

(5.1)

where y is an n x 1 vector, X is an n x k matrix of known values and of full

column rank, /? is a k dimensional vector of unknown parameters. The elements

of u are assumed to follow the MA(1) process

u,=e,+ yst_x ,-\<y<\, where s, ~ IIN(0, ar2) (5.2)

which implies that u ~ JV(O, cr2l,(y)) where I,(y) is defined in equation (3.3) in

Chapter 3.

5.2.2 Prediction for MA(1) error processes

In this subsection we will introduce forecasting equations based on model

(5.1) and (5.2) using estimated parameters of the model for different strategies for

finding the global maximum, different likelihood functions and different starting

values. For the next observation, model (5.1) can be written as



Chapter 5 Forecasting Performance 120

where yn+} is the next value of y, xn+1 is the kx.1 vector of observations on the

regressors at time n +1 and un+i is the associated disturbance term. In the presence

of moving average disturbances, the predicted value of yn+1 can be written as

W (5.4)

where y^ is the forecast value of y at time n + 1 , My(l)) is the estimated value of

(3 which is defined by equation (4.3) in Chapter 4, e^ is the estimated forecasted

error component and p ( / ) is the estimated value of the MA(1) parameter. / = 1,2

in which / = 1 indicates the estimated value comes from maximising the

concentrated likelihood and / = 2 indicates the estimated value comes from

maximising the marginal likelihood as in Chapter 4. Following King and McAleer

(1987), the prediction error s^ can be obtained via the recursive procedure starting

with

and then calculating

followed by

(5.5)

(5.6)

for t = l,2, — ,n and / = 1,2.

In the context of a regression with MA(1) errors, the TSAF and the forecasts

of longer lead times are the same. This is due to the fact that the second term in

(5.4) no longer appears in the prediction formula. The TSAF of model (5.i) can

be expressed as

' * ' . : • • . . . • • : . ' :
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where yn+2 is the forecast value of y at time n + 2 and xn+2 is the kxl vector of

observations on the independent variables at time n + 2. The estimated My{l)) is

the same as in (5.4). Equation (5.7) shows that the two-step-ahead forecast formula

does not include the second term of (5.4), which is the product of the estimate of y

and the forecasted error.

In the next subsection we will discuss some related issues of forecasting

performance.

5.2.3 Different issues related to the forecasting
performance

5.2.3.1 The first issue

As we have observed many times in this thesis, numerical optimisation

algorithms can have problems converging to the global maximum and sometimes

may end up with an unexpected local maximum instead of the global maximum. In

Chapter 3, we discussed the consequences of accepting local maxima in hypothesis

testing and introduced different strategies to improve the accuracy of test sizes. In

this subsection, we will discuss the same problem with six different strategies for

estimating the moving average parameter of the model with the aim of looking at

their affect on the forecasting performance. The strategies considered in this

chapter are (i) use of one starting value, which is based on OLS to start a standard

optimisation routine and accepting the estimates as a final estimate. This strategy is

the same as strategy (i) defined in Chapter 3.

One might have some doubt whether the resultant estimates from strategy

(i) are those from a global maximum or a local maximum. With that thought in

..;•• i
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mind, we used an additional two different strategies namely, strategy (ii) and

strategy (iii) for finding the global maximum based on multiple starting values of

the parameter. Strategy (ii) is based on optimisation repeated with an additional

three different starting values and choosing the outcome which provides the largest

maximised likelihood function. Strategy (iii) follows the same procedure except

those three starting values are replaced by 21 different starting values. Strategy (ii)

and strategy (iii) are specially designed to improve the accuracy of the forecasting

performance by searching for the global maximum.

The main drawback of estimation of the MA(1) error model is that there is a

tendency that the estimated value of y occurs either at the positive boundary or the

negative boundary of the y space, which we discussed in detail in Chapter 3. For

the reasons outlined there, we used an additional two strategies namely strategy

(iv) and strategy (v), which use the best results from strategy (ii) and strategy (iii)

but only when the final estimate of strategy (i) is at the boundary. In Figure 5.1

and Figure 5.2, the above mentioned strategies are presented in a concise form.

We also used grid search which we call strategy (vi) and which we will discuss in

the next subsection.

5.2.3.2. Grid search

This section discusses finding the global maximum for estimating the y

parameter by using the grid search technique. We can maximize the likelihood

function with respect to different values of y by a trial and error method. A grid

search evaluates the function at grid points that cover the entire range of possible

values of y . This technique inspects the results and repeats the process with a
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finer grid over a selected zone, which is centred at the y value for the largest

value of the likelihood function..'.

We applied the grid search approach by evaluating the likelihood function

over the parameter range / and w where / is the lower limit and u is the upper

limit of the parameter. The steps involved are as follows. Beginning from the

lower value / , generate a sequence of grid points such that the difference between

any two successive elements of the sequence is equal to <f>, where <j> is a small

number. Calculate the value of the likelihood function for each corresponding y

value; store all the likelihood function values and select the y value that gives the

largest value of the likelihood function as the estimate. Repeat the process with a

finer grid using a smaller increment over a smaller selected region. For example,

let y* is the selected value of y, set two further limits of y* +5 and generate a

new sequence of grid points such that the difference between any two successive

elements of the sequence is equal to <f where $' is a new value such that f < <p.

Using the same procedure discussed above, find the y value say y" that has the

largest value of the likelihood. Again set two further limits of y"TS* and

generate a new sequence of grid points such that the difference between any two

successive elements of the sequence is equal to <j>" where f is a new value such

that </>" < <f>'. Repeat the grid search until changing the 8 and ^ values does not

change the largest value of the likelihood within a prescribed level of tolerance.

Finally, the grid search converges to the global maximum thus giving the estimated

value of the parameter y .
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5.2.3.3 The second issue related to estimation

The joint effect of the estimated parameter and the forecast error has an

impact with respect to producing good quality OSAF. On the other hand, TSAF

are free from the joint effect of the parameter estimate and forecasted errors.

In Section 5.2.2, we mentioned that (5.4) can provide best forecasts once we

know the true forecast error s^. Unfortunately, the true forecast errors are

unknown and need to be estimated. But problems may occur when estimating

s^. Normally, we estimate the forecast error starting with an initial value of fcero,

namely e0 = 0 and then calculate the rest of the estimated error recursively

according to King and McAleer (1987) as in equations (5.5) and (5.6). In order to

understand why the value of the estimated forecast error may cause trouble for the

forecasting performance note that

( 5 ' 8 )

It is obvious that e® depends, among other things, on the first element of

the estimated forecasted error e®. As we discussed in Chapter 3, the estimated

value of y(l) often occurs close to -1 or 1 in which case the term y {l)ns(
0° has quite
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/=i

an effect on e^ and setting e® to an arbitrary value such as zero might not be

appropriate. To rectify this we suggest estimating the first term of the forecast error

by minimising the error sum of squares. We have

(5.9)

which can be minimised to obtain the estimated value s^ by using an optimisation

technique. This is then substituted into equation (5.5) and with (5.6) is used to

calculate the successive forecast errors. Finally the one-step-ahead forecasts can be

obtained as

yll\=<J{9(l))+r{l)^. (5-10)

Equation (5.10) shows that one step-ahead forecasts depend on the combined

effect of e^ and / ( / )and equation (5.7), the two step-ahead forecast, does not

have the combined effect of s^ and f(/). It indicates that there may be a

possibility of better performance from TSAF than OSAF. In the next section, we

will investigate the forecasting performance of the model by Monte Carlo

methods.

Monte Carlo Experiment

In this section, we outline a Monte Carlo study conducted to assess whether

there is any improvement in the forecasting performance using our proposed

strategies. We used average mean square forecasting error (AMSFE), average
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mean absolute forecast errors (AMFE) and average absolute mean forecast error

(AAMFE) to assess the forecasting performance.

5.3.1 Design of the simulation experiment

We investigated the forecasting performance for the six different strategies

outlined earlier. The additional starting values for strategies (ii) and (iv) where

Y = -05,0,0.5; while those for strategies (iii) and (v) were

Y = ±-95, ±.90, ±.80 • • • ±.10,0. For this study, the following design matrices were

used:

XA A constant or intercept plus two white noise regressors generated as

*,., = vft, where v, ~ IN(0,\), i = 2,3.

X2 A constant or intercept plus two autoregressive regressors generated as

xu = 0.8x,_, + v, , where v, ~ IN{0,\), i = 2,3. (5.13)

Xy A constant or intercept plus five autoregressive regressors generated

from (5.13).

X4 A constant or intercept plus two random walk regressors generated as

xu = xu-\ + vu»where vu ~ IN{W) >i = 2> 3.

^ 5 A constant or intercept plus two explosive regressors generated as

xu = 1.02x,.,_, + v;,, where v,, ~ 77^(0,1), i = 2,3.

The above design matrices represent a range of different economic time

series behaviour. The y ' s are generated using (5.1) and (5.2) and the values of

Y = ±0.90, ±0.75, ±0.60, ±0.45, ±0.30, ±0.15, 0. After the generation of the true

model, the parameters of the models were estimated using ML and MML via the
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different strategies, then one-step-ahead forecasts and two-step-ahead forecasts

were calculated.

We generated 400 data points and threw away 100 data points at the

beginning of each sample to avoid the problem of initialization and then divided

the remaining sample into two parts of length «, and n2. The former is for

estimation and later is a sample for prediction. We used prediction sample size,

/I, = 100 and the samples for estimation were taken to be of size

72, = 30, 60 and 120 observations, which meant we discarded the last 170, 140

and 80 observations, respectively, from the generated data.

To perform OSAF, we used the final estimated value of y which come from

different strategies by estimating the regression coefficient vector My**'1) from the

first 7i, observations. Keeping these two estimated values, i.e, y and

unchanged, we estimated the forecasted error according to King and McAleer

(1987) starting with £(
0'

J = 0 by substituting the estimated value of the forecasted

error in equation (5.5) and (5.6) respectively. The experiment involves a total of

1000 (N) repetitions or iterations. The ML or MML estimation was carried out

by using the Gauss constrained optimization (Aptech system, 1996) with the

Newton-Raphson method used to maximise the likelihood. Because of difficulties

with computational time, we implemented strategy (vi) that is, grid search for all

design matrices in case OSAF and for X2 only in case of TSAF. This was done

to make the project manageable in terms of time.
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Figure 5.1 Flow Chart for Finding Estimate Using
Strategy (ii) for Forecasting

Strategy (i): one starling value obtained
from OLS residuals in Chapter 3

V

Strategy (ii): Further three starting values y = -0 .5 , 0 and 0.5

v
Apply ML method

V

Apply MML method

Four sets of optimised values Four sets of optimised values

'(V
Select that one value 7 , which gives

the largest maximised likelihood function.

Select that one value y , which gives the
largest maximised marginal likelihood function

Estimate /? by GLS Estimate J3 by GLS

OSAF(£ 0 = 0 ) OSAF(f0 = e0)

V
TSAF

V

OSAF(£0 = 0 ) 0 =£0)
TSAF

Note: Strategy (iii) follows the same steps, the only difference is that instead of 3

additional starting values, it uses 21 extra starting values as mentioned in strategy

(v).
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Figure 5,2 Flow Chart for Strategies (iv) and (v)

Is estimated value of y on

boundary?

ML or MML for additional
3 starting values

4 estimated values

ML or MML for additional 21
starting values

22 estimated values

Select that one value y , which gives the maximized largest maximized
likelihood function (/=/) or marginal likelihood function {1=2)

Estimate /? by GLS

\ /

\ /

OSAF(£0 = 0) TSAF
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5.3.1.1 Working procedure for grid search

We used -0.9999 and 0.9999 for the lower and upper limits of the

parameter, between where, the estimated value of the parameter is assumed to lie

and the spacmg between two initial grid points was set at 0.000999, which gives us

2000 grid points. For each grid point, we calculated the values of the objective

functions (i.e., concentrated likelihood and marginal likelihood) and stored their

values. The point that gives the maximum value of the objective function is the

first selected value of y , say y'. We set two further limits of with 8 = 0.01, and

calculated 1000 grid points (so the difference between two successive points

becomes much smaller than for the previous grid of points) and repeated the

process mentioned earlier. Let y" be the second selected value. For finer

searches, we chose 8' = 0.001 and 8" = 0.0001 to estimate y'" and y""

respectively. We chose the level of accuracy as 0.00001. The process was repeated

until the difference between the likelihoods for two successive values for y met

this level of accuracy, i.e., the process continued until j / n + 1 - /„ < 0.00001, where

/ is the likelihood for the (n + l)th estimated value of y, which is our final

estimate. Through this very thorough grid search, we are very confident we have

found the global maximum of the likelihood function.

5.3.1.2 Prediction accuracy

Our aim was to measure the forecasting accuracy and compare the results,

which were obtained using different methods and different strategies for the above

model. In order to measure the accuracy of forecasts we used mean square
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forecast error (MSFE), mean absolute forecast error (IvLAFE) and absolute mean

forecast error (AMFE), these being averaged over the 1000 iterations to produce

the average MSFE (AMSFE), average MAFE (AMAFE) and average AMFE

(AAMFE) respectively.

5.3.1.3 Average mean square forecast error

The mean square forecast error is the sum of the squared forecast errors for

each of the observations divided by the number of forecasts made, n2 =100, and

in the case of OSAF is defined as

n2 /

where s^+i = yn+i - yj;'+\ is the forecast error. Because the experiment was

repeated N = 1000 times, producing a total of N MSFE's, the average mean

square forecast error is calculated as

AMSFE = — X MSFE,.

AMSFE is a criterion widely used to evaluate the forecasting performance. The

perception is that the lower the value of AMSFE is, the better the forecasting

procedure is.

5.3.1.4 Average mean absolute forecast error

The MAFE involves obtaining the average of the mean absolute forecast

error defined in the case of OSAF by

I
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MAFE = —
n2 1=1

There are AT =1000 replications so the average mean absolute forecast error is

calculated as

AMAFE = —YMAFE, .

MAFE ignores the signs of the errors and measures the average absolute size of

the forecasting error. It is a measure that is appropriate if the cost of making an

error is proportional to the absolute size of the forecast error. The smaller the

value of AMAFE, the better the forecasting performances is.

5.3.1.5 Average absolute mean forecast error

The AMFE involves obtaining the average of the absolute mean error

defined in the case of OSAF by

AMFE = —
1=1

The experiment was repeated Ar=1000 times, which produces a total of N

AMFE's, and average absolute mean forecast error is calculated as

N1
AAMFE = — YAMFE,

Bias in forecasts is revealed by looking at the sum of forecast errors. A value

close to zero indicates unbiasedness. AMFE is the average absolute value of this

sum. The larger AMFE is, the greater the potential for a problem of biased

forecasts from the forecasting model. Similar formulae apply in the case of TSAF.
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5.4 Discussion of Results

The results of the six different strategies, two estimation methods namely

ML and MML, three different sample sizes and thirteen different values of the

parameter y , are reported in Tables 5.1 to 5.13, for design matrix X,; Tables 5.14

to 5.26 for design matrix X2; Tables 5.27 to 5.39 for design matrix X, and Tables

5.40 to 5.52 for design matrix XA. Our main concern is to see the effect of

accepting local maxima on forecasting performance and to assess the

improvements in terms of accuracy in the context of OSAF and TSAF when

estimation comes from different strategies based on ML and MML.

5.4.1 Comparison between ML and MML

An obvious feature of the simulation results is that the predictions based on

MML estimates are clearly more accurate on average than those based on ML

estimates. In some cases, the difference between the performance of the two

approaches is extremely large particularly for non-stationary design matrices,

OSAF and small and moderate sample sizes. An extreme, example is that of

strategy (iv) for X4 with n = 30 and y = 0.60 where the AMSFE for ML is 126

times higher than that of MML. On the other hand, for stationary design matrices,

differences in performance for small samples are much smaller and for larger

sample sizes the differences are very small for both OSAF and TSAF with a few

exceptions.
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For stationary design matrices, TSAF for ML and MML methods provide

more accurate results compared to OSAF with the only exceptions occurring for

larger sample sizes and y values in the interval [0.60, 0.90]. This is true for all

strategies except strategy (i). On the other hand, almost equal performances are

observed for larger nx values, noiistationary regressors (X3 and XA) and larger y

values. Overall the comparison between the forecasting performances of the ML

and MML estimators reveals that the MML estimator gives a better performance

than does the ML estimator keeping other factors unchanged. In the next

subsection we will compare the forecasting performances between different

strategies.

5.4.2 Comparison between the strategies

The results obtained using the six strategies have differences as well as

similarities in their behavior. Thus, we shall make a comparison between different

strategies in order to find the best possible strategy for use in forecasting. First of

all, we compare the forecasting performance of strategy (i) and strategy (ii). Our

results show that overall, the forecasting performance of strategy (ii) is belter than

that of strategy (i). In particular, we observe that the strategies based on the

maximum marginal likelihood estimator show an on average better performance

for all strategies than do those using the maximum likelihood. Noticeable

improvement is observed for strategy (ii) over strategy (i) in the case of marginal

likelihood for small samples. Similar trends are also observed for moderate and
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large samples where both likelihoods show better performance for strategy (ii)

compared to strategy (i).

There are very few improvements that can be seen from strategy (iii) over

strategy (ii). The same pattern is observed for strategy (iii) over strategy (iv) and

strategy (iv) over strategy (v). None of the strategies are dominating the others.

Forecasts for strategy (vi) based on MML give the best performance over all other

strategies when used for one-step-ahead forecasts for small sample sizes. The

above feature is not true for maximum likelihood based forecasts. The forecasting

performances of the other strategies show a significant improvement over that of

strategy (i) in the case of two-step-ahead forecasts with a few exceptions.

Overall, we see that estimation of parameter by any strategy incorporated

with maximum marginal likelihood estimates gives a better performance than for

maximum likelihood estimates. The forecasting performance for strategy (vi)

based on both likelihoods is better than for other strategies for small sample sizes.

The second best forecasting performance occurs for strategy (v) and the worst

performance can be seen for strategy (i).

5.4.3 Comparison between forecasts when initial term
of the forecast error is estimated or set to zero

In this subsection, the forecasting performance when the initial forecast error

is estimated is compared with that when the initial forecast error is set to zero.

The results show that for different strategies, different sample sizes and for
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different design matrices, estimating the initial forecast error gives a slightly better

forecasting performance.

In the next subsection we will compare the forecasting performance for

different sample sizes keeping other factors fixed.

5.4.4 Comparison over sample sizes

The results very clearly indicate that the forecasting performance almost

always improves as the sample size n, increases, the only exception being for

y - _o.9O and design matrix X2. As the sample ^ize increases, the forecasting

performance based on the method of maximum likelihood gradually improves for

all the strategies and gives the same results as for maximum marginal likelihood.

Another important feature is that for large samples, the forecasting accuracy from

OSAF is approximately the same as for TSAF for different strategies. On the

other hand, for some positive values of y, OSAF are better than TSAF

particularly for design matrix XA in the case of moderate and large sample sizes.

In the next subsection we will look at the forecasting performances for different

design matrices holding other factors constant.

5.4.5 Comparison between different design matrices

The simulation results indicate that the forecasting performance depends on

the design matrix, particularly for small samples. The best results occur for the

design matrices Xx and X2, which contain stationary regressors while design

matrices X3 and XA, which contain nonstationary regressors, yield the worst
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forecasts. The results also reveal that for design matrices X3 and X4 when

n = 30, the forecasting performance is unacceptably bad particularly for negative

y values, Phis is also true in the case of X4 when n = 60. We conclude from

these results that one cannot forecast with great confidence from the linear

regression model with MA(1) errors involving nonstationary regressors and

sample sizes less than 100. In the next subsection, we will look at the forecasting

performances for different measures of forecasting performance keeping other

factors constant.

5.4.6 Different measures of forecasting performance

Now we turn to comparing the forecasting performance for different

measures of forecasting accuracy, namely AMSFE, AMAFE and AAMFE. The

results show that AMSFE, AMAFE and AAMFE tend to be much larger for

negative Y values as compared to positive y values. The largest values of

AMSFE, AMAFE and AAMFE observed for a given design matrix and value of

n , typically occur at y = - 0.30 when « =30, y = - 0.60 when n = 60 and

y = - 0.90 when n = 120. Almost without exception, strategy (i), which involves

no effort to find the global maximum, has the highest AMSFE, AMAFE and

AAMFE. Some exceptions occur for the unreliable cases of X3 and X4 and

«=30.

Almost always the smallest AMSFE, AMAFE and AAMFE occur for all the

strategies based on the MML estimator and the best performance occurs for

strategy (vi). Typically, the differences between the AMSFE, AMAFE and
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AAMFE of the four strategies other than strategy (i) and (vi) are not great. In the

next subsection we will compare the forecasting performances based on one-step-

ahead and two-step-ahead forecasts keeping other factors unchanged.

5.4.7 Comparison between OSAF and TSAF

Now, we turn to compare the prediction performance between OSAF and

TSAF. From the results, we see that TSAF are clearly more accurate on average

than OSAF for different sample sizes, design matrices and values of y. For

design matrix X4 with n = 30 and y = -0.15, we see that the AMSFE for OSAF

is 497 times higher than that of TSAF in the case of ML estimates. One reason

might be the joint effect of the estimated parameter and the forecasted error makes

the forecasting performance worse in the case of OSAF. On the other hand, TSAF

give a more accurate forecasting performance because they are free from this joint

effect. As the sample size increases, the performance of OSAF gradually

improves and sometimes they provide an approximately similar performance to

that of TSAF. Finally the results of the simulation study shows that one-step-

ahead forecasts are not worth using for small samples in econometric data series

for both likelihoods. For larger samples, we find that the forecasting performance

of OSAF is better than that of TSAF in the case of stationary design matrices. On

the other hand m the case of nonstationary design matrices, TSAF are more

accurate compared to OSAF.
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5.5 Conclusion

In this chapter, we carefully looked at the estimation of unknown parameters

by maximizing a likelihood function and then substituting these estimated

parameter values in the model for forecasting. We compared the forecasting

performance for two methods of estimation, six different strategies for finding the

global maximum, three different sample sizes, thirteen different values of the

moving average parameter for one-step-ahead and two-step-ahead forecasts in turn

and evaluated the performances of the estimators using AMSFE, AMAFE and

AAMFE criteria. We looked at the consequences of accepting local maxima when

estimating the unknown parameter and investigated whether taking extra care to

find the global maximum of the likelihood function improves the forecasting

performance. We also looked at the forecasting performance when the initial term

of the forecasting error is estimated (in such a way that the estimated value gives

the minimum error sum of squares) and compared it with that when the initial term

is set to zero in the recursive calculations.

Our simulation results suggest that forecasting based on the MML estimator

is much better than that based on the ML estimator. Furthermore, MML provides

the best forecasts for different values of y, different strategies and different

sample sizes in the context of stationary and non-stationary design matrices.

Strategy (vi), i.e., grid search, combined with the MML estimation almost always

shows the best performance over the other strategies. We have found that the

second best forecasting performance result comes from using the MML estimator

i
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by further searching for the global maximum whenever the initial estimate of the

moving average parameter y , is on the boundary. Estimating the first term of the

forecasted error does not do much to improve forecast accuracy because any

improvement is very small.

The main and most significant contribution of this chapter is that TSAF

combined with MML estimates give a better performance than OSAF for small

and moderate samples for all design matrices. On the other hand for larger sample

sizes, OSAF provide better performances in the case of stationary and non-

stationary design matrices. We found that overall, as the sample size increases,

the forecasting performance for different strategies based on ML and MML

estimators gives improved performances in the case of OSAF and TSAF.

In view of the findings of Chapter 3, searching for the global maximum does

not always provide the satisfactory estimated sizes when estimation is based on

maximum likelihood. As an alternative method, we used the MML method and

found it gives more satisfactory estimated sizes in Chapter 4. Finally we can

conclude that strategy (vi), i.e. grid search combined with the MML method, gives

the best forecasting performance.
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Table 5.1 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = - 0.90

Initial value

o

Zero

Step

OSAF

Sample
size Strategy

AiMSFE

ML MML
AAMFE

ML MML
30

AMAE

ML MML
0)
(i>)
(iii)
(iv)

(v)
(vi)

2.6292
2.6464
2.6254
2.6588
2.6254
2.5462

2.139
2.012
2.012
2.011
2.012
1.944

1.6791
1.6934
1.6771
1.7012
1.6771
1.1043

1.1425
1.0006
1.0002
0.9992
0.9990
0.5547

2.0080
2.0175
2.0066
2.0234
2.0066
2.1982

Estimated OSAF 30 0)
(ii)
(iii)
(iv)

(v)
(vi)

4.4620
4.6677
4.4620
4.6677
4.4667
2.5446

2.987
2.900
2.900
2.900
2.902
1.943

2.6988
3.1327
2.6988
3.1327
2.5828
1.0776

1.5315
1.4598
1.4598
1.4598
1.3326
0.5378

2.9223
3.2806
2.9223
3.2806
2.8650
2.0849

Zero TSAF 30 (i)
(")
(iii)
(iv)

(v)

1.8705
1.8693
1.8705
1.8691
1.8705

1.877
1.879
1.879
1.879
1.879

0.0346
0.0346
0.0345
0.0346
0.0345

0.0354

I J355
0.0355
0.0355

Zero OSAF 60 0)
(>')
(iii)
(iv)
(v)
(vi)

1.5951
1.5796
1.5795
1.5635
1.5620
1.5183

1.436
1.354
1.354
1.322
1.322
1.287

.3498

.3274

.3246

.2990

.2949
0.7682

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)

(v)
(vi)

1.5942
1.5786
1.5783
1.5622
1.5604
1.5194

1.428
1.343
1.343
1.309
1.308
1.287

0.9982
0.8292
0.8292
0.7518
0.7508
0.3890

.1861

.1639

.1625

.1403

.3027
0.7387

0.8749
0.7206
0.7206
0.6632
0.7427
0.3747

.0911

.0907

.0911

.0907

.0911

.6536

.6374

.6363

.6153

.6131

.6626

.5062

.4913

.4907
1.4733
1.621C
1.5361

1.6215
1.5172
1.5171
1.5159
1.5161
1.5962

2.0009
1.9641
1.9641
1.9641
1.8476
1.5380

1.0931
1.0936
1.0936
1.0936
1.0936

1.4163
1.2953
1.2953
1.2455
1.2448
1.2545

1.3053
1.2003
1.2003
1.1646
1.2354
1.1952

Zero TSAF

Zero OSAF

Estimated OSAF

Zero TSAF

60

120

120

120

0)
(ii)
(iii)
(iv)

(v)
(')
(ii)
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)

1.8512
1.8512
1.8512
1.8513
1.8513
1.1669
1.1674
1.1654
1.1616
1.1596
1.1466
1.1640
1.1632
1.1613
1.1562
1.1541
1.1475
1.8265
1.8265
1.8264
1.8264
1.8264

1.852
1.852
1.852
1.851
1.851
1.131
1.107
1.107
1.096
1.096
1.066

1.116
1.086
1.086
1.071
1.071
1.067

1.826
1.826
1.826
1.826
1.826

0.0253
0.0253
0.0253
0.0252
0.0252
0.8913
0.8734
0.8637
0.8404
0.8307
0.8373

0.6586
0.6502
0.6396
0.6274
0.9333
0.8205

0.0156
0.0155
0.0155
0.0156
0.0156

0.0255 1
0.0254 1
0.0254 1
0.0253 1
0.0254 1

0.6167 1
0.4764 1
0.4764 1
0.3760 1
0.3760 1
0.3688

0.4586 1
0.3509
0.3509
0.2910
0.3953
0.3775

0.0157
0.0156
0.0156
0.0156
0.0156

.0863

.0863

.0863

.0864

.0864

.2496

.2404

.2350

.2215

.2161

.1711

.0837

.0819

.0760

.0698

.2980

.2737

.0779

.0779

.0778

.0779

.0778

1.0868
1.0867
1.0867
1.0867
1.0867

1.1001
1.0234
1.0234
0.9665
0.9665
0.9437

0.9844
0.9319
0.9319
0.9030
0.9831
0.9721

5.0777
1.0777
1.0777
1.0777
1.0777
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Table 5.2
using

Initial value

of £a

AMSFE, AMAFE and AAMFE of one and two step anead forecasts
different strategies, sample sizes, X, design matrix when y = - G.75

S**P Sample AMSFE AAMFE AMAE
size Strategy ML MML ML MML ML MML

/.ero OSAF 30 (0
('0
(iii)
(iv)
(v)
(vi)

5.1646
5.1495
5.0913
5.2345
5.0913
4.9506

3.2271
2.7537
2.7533
2.7532
2.7496
2.6328

2.6138
2.6127
2.5858
2.6625
2.5858
1.9905

1.4612
1.1925
1.1924
.1907
.1869
.1799

Estimated OSAF 30 0)
(«)
(iii)
(iv)
(v)
(vi)

5.1638
5.1487
5.0905
5.2338
5.0906
4.9491

3.2231
2.7492
2.7488
2.7419
2.7455
2.6321

2.5915
2.5881
2.5577
2.6323
2.6214
0.9813

2.9315
2.9306
2.9082
2.9721
2.9082
2.P232

.4405

.1821

.1809

.1776

.2024

.1955

2.8935
2.8888
2.8646
2.9267
2.9539
2.9313

Zero TSAF 30 (0
(ii)
(iii)
(iv)

(v)

1.6017
1.6012
1.6012
1.6011
1.6012

Zero OSAF 60 (0
(ii)
(iii)
(iv)

(v)
(vi)

2.5866
2.31 S3
2.2723
2.2865
2.2203
2.1936

.6022

.6011

.6011

.6012

.6011

0.0544
0.0544
0.0544
0.0544
0.0544

0.0546
0.0547
0.0547
0.0546
0.0547

1.0106
1.0105
1.0105
1.0104
1.0105

.9387

.4o04

.4636

.4088

.4084

.3732

1.5387
1.3399
1.3016
1.3018
1.2543
1.1815

0.9379
0.5666
0.5636
0.5141
0.5112
0.5103

1.9452
1.7792
1.7489
1.7497
1.7112
1.7034

Estimated OSAF 60
(ii)
(iii)
(iv)

(v)
(vi)

2.5833
2.3137
2.2675
2.2818
2.2151
2.1932

1.9333
1.4561
1.4557
1.3995
1.3991
1.3731

1.4940
1.3167
1.2809
1.2822
1.2968
1.1796

0.9159
0.5575
0.5552
0.4992
0.5130
0.5067

1.9045
1.7547
1.7261
1.7271
1.7520
1.6957

Zero TSAF 60 (i)
(•i)
(iii)
(iv)
(v)

Zero OSAF 120 0)
00
(iii)
(iv)
(v)
(vi)

Estimated OSAF 120 (i)

(iii)
(iv)

(v)
(vi)

.8512

.8512

.8512

.8513

.8513

.6303

.326!

.3165

.2597

.2476

.2305

.6233

.3172

.3076
1.2492
1.2371
.2307

Zero TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

.5776

.5744

.5743

.5740
1.5738

.8523

.8521

.8521

.8519

.8519

0.0253
0.0253
0.0253
0.0252
0.0252

0.0255
0.0254
0.0254
0.0253
0.0254

1.0863
1.0863
1.0863
1.0864
1.0864

.4885

.0947

.0947

.0683

.0683

.0533

0.7840
0.4915
0.4801
0.4097
0.3942
0.3939

0.5993
0.2062
0.2062
0.1636
0.1636
0.1568

1.3280
1.0956
1.0875
1.0292
1.0182
1.1639

.4806

.0838

.0838

.0572

.0572

.0533

0.7833
0.4693
0.4603
0.3952
0.4189
0.3935

0.6147
0.2064
0.2064
0.1636
0.1637
0.1554

1.3258
1.0748
1.0680
1.0171
1.0384
1.1486

.5775

.5732

.5732
1.5729
1.5729

0.0299
0.0295
0.0295
0.0295
0.0295

0.0299
0.0295
0.0295
0.0295
0.0295

1.0017
1.0007
1.0007
1.0006
1.0005

1.950
1.716
.716
.714
.711
.725
.920
.694
.694
.692
.725
.693

.010

.010

.010

.010

.010

.463

.159

.157

.117

.115

.103

.44}

.147

.145

.100

.113

.092

.086

.086

.086

.086

.086

.193
0.883
0.883
0.852
0.852
0.851
1.202
0.880
0.880
0.848
0.850
0.843

1.001
1.000
1.000
1.000
1,000



Chapter 5 Forecasting Performance 143

Table 5.3 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y-- 0.60

Initialvalue Sti£ SlSpte AMSFE AAMFE AMAE
o f g° size Strategy ML MML ML MML ML MML

Zero OSAF 30 0)
00
(iii)
(ivj
(v)
(vi)

8.0720
7.9946
7.8946
8.3202
7.8946
7.2242

4.0789
2.9397
2.9374
2.9364
2.9341
2.8062

3.1852
3.1572
3.1029
3.2921
3.1029
1.1003

1.4393
1.0274
1.0271
1.0251
1.0249
1.0168

3.5679
3.5399
3.4918
3.6616
3.4918
3.3543

.998

.617

.616

.615

.614

.603
Estimated OSAF 30 (i)

(ii)
(iii)
(iv)
(v)
(vi)

8.0787
7.9929
7.8929
8.3186
7.8929
7.8248

4.0782
2.9373
2.9350
2.9340
2.9317
2.8072

3.2271
3.1932
3.1445
3.3372
3.2305
3.0915

1.4530
1-^392
1.0386
1.0359
1.0472
1.0318

3.5986
3.5662
3.5228
3.6935
3.6182
3.6042

2.002
.623
.622
.619

1.635
1.618

Zero TSAF 30 (i)
(i>)
(iii)
(iv)

(v)

1.4312
1.4306
1.4303
1.4317
1.4303

1.4210
1.4178
1.4178
1.4178
1.4178

0.0718
0.0716
0.0717
0.0717
0.0717

0.0704
0.0703
0.0703
0.0703
0.0703

0.9556
0.9556
J.V554
0.9561
0.9554'

0.952
0.951
0.951
0.951
0.951

Zero OSAF

Estimated OSAF

60 (i)

(<i)
(iii)
(iv)
(v)
(vi)

60 (i)

(ii)
(iii)
(iv)

(v)
(vi)

3.4619
2.6186
2.5016
2.7201
2.4971
2.6015
2.5833
2.3137
2.2675
2.2818
2.2151
2.2012

2.5379
1.3848
1.3855
1.3209
1.3216
1.2966
1.9333
1.4561
1.4557
1.3995
1.3991
1.2967

1.3393
0.9591
0.9012
0.9955
0.8958
0.2615

0.9959
0.9567
0.9557
0.9560
0.8668
0.8665

0.8647
0.3396
0.3404
0.3087
0.3096
0.0418

0.9159
0.5575
0.5552
0.4992
0.5130
0.4990

.8918

.5464 (

.4955

.5812 <

.4910 (

.5850 (

.9045

.7547

.7261

.7271
1.7520
.5560

.473
).999
.000

).971
).971
).966

.441

.147

.145

.100

.113

.109

Zero

Zero

Estimated

Zero

TSAF

OSAF

OSAF

TSAF

60

120

120

120

0)
(ii)
(iii)
(iv)

(v)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)
(vi)
(i)
(ii)
(iii)

(iv)
<v)

1.3958
1.3897
1.3893
1.3904
1.3893
1.6437
1.1440
1.1168
1.1298
1.0961
1.1187
1.6384
1.1384
1.1111
1.1236
1.0898
1.1192
1.3842
1.3783
1.3782
1.3782
1.3781

1.3932
1.3858
1.3858
1.3856
1.3857

1.5738
1.0428
1.0428
1.0411
1.0411
1.0361
1.5683
1.0371
1.0371
1.0350
1.0350
1.0361

1.3838
1.3777
1.3777
1.3777
1.3777

0.0591
0.0592
0.0591
0.0593
0.0591
0.4876
0.1864
0.1735
0.1896
0.1679
0.1688

0.5404
0.1953
0.1824
0.1963
0.1809
0.1847

0.0434
0.0430
0.0430
0.0430
0.0430

0.0589
0.0589
0.0588
0.0589
0.0588

0.4321
0.1183
0.1183
0.1182
0.1182
0.1062

0.4863
0.1216
0.1216
0.U95
0.1205
0.1215

0.0433
0.0429
0.0429
0.0429
0.0429

0.9438
0.9415
0.9414
0.9417
0.9414

1.1395
0.8775
0.8669
0.8776
0.8608
0.8893

1.1833
0.8805
0.8697
0.8797
0.8703
0.8845

0.9387
0.9366
0.9366
0.9366
0.9365

0.943
0.940
0.940
0.940
0.940

1.096
0.824
0.824
0.823
0.823
0.821

1.142
0.824
0.824
0.823
0.824
0.820

0.938
0.936
0.936
0.936
0.936
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Table 5.4 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = - 0.45

Initial value

of ^o

Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 0)

(ii)
(iii)
(iv)

(v)
(vi)

2.3916
1.6581
1.5959
1.7712
1.5952
1.6761

1.8863
1.0919
1.0919
1.0932
1.0894
1.0632

0.7152
0.4173
0.4028
0.4739
0.4025
0.4130

0.4776
0.1699
0.1699
0.1703
0.1672
0.1643

Estimated OSAF 30 (0
(ii)
(iii)
(iv)
(v)
(vi)

2.3895
1.6561
1.5936
1.7692
1.5928
1.6723

1.8846
1.0899
1.0899
1.0912
1.0875
1.0622

0.7333
0.4320
0.4177
0.4888
0.4218
0.4220

0.4830
0.1686
0.1686
0.1685
0.1684
0.1645

.3506

.0748

.0610

.1271

.0607

.0678

.3686

.0861
1.0725
1.1382
1.0787
1.0654

Zero OSAF 60
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

1.2812
2.3916
1.6581
1.5959
1.7712
1.5952
1.7217

1.2661
1.8863
1.0919
1.0919
1.0932
1.0894
1.0876

0.0959
0.7152
0.4173
0.4028
0.4739
0.4025
0.0891

0.0943
0.4776
0.1699
0.1699
0.1703
0.1672
0.0220

0.9075
1.3506
1.0748
1.0610
1.1271
1.0607
1.1296

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)

(v)
(vi)

2.3895
1.6561
1.5936
1.7692
1.5928
1.7223

1.8846
1.0899
1.0899
1.0912
1.0875
L0878

0.7333
0.4320
0.4177
0.4888
0.4218
0.0649

0.4830
0.1686
0.1686
0.1685
0.1718
0.0164

1.3686
1.0861
1.0725
1.1382
1.0787
1.1214

Zero TSAF 60 (i)
('•)
(i'i)
(iv)
(v)

1.2303
1.2256
1.2254
1.2261
1.2254

1.2285
1.2236
1.2236
1.2236
1.2236

0.0774
0.0768
0.0768
0.0769
0.0768

0.0772
0.0765
0.0765
0.0766
0.0766

0.8878
0.8864
0.8863
0.8866
0.8863

Zero OSAF 120 (i)

(iii)
(iv)

(v)
(vi)

1.2889
1.0295
1.0295
1.0295
1.0295
1.0254

1.2819
1.0224
1.0224
1.0224
1.0224
1.0190

0.2350
0.1211
0.1211
0.1211
0.1211
0.0075

0.2278
0.1137
0.1137
0.1137
0.1137
0.0026

0.9222
0.8179
0.8179
0.8179
0.8179
0.8188

Estimated OSAF 120 0)
00
(iii)
(iv)
(v)
(vi)

1.2859
1.0267
1.0267
1.0267
1.0267
1.0255

1.2791
1.0197
1.0197
1.0197
1.0197
1.0190

0.2488
0.1211
0.1211
0.1211
0.1219
0.0068

0.2415
0.1135
0.1135
0.1135
0.1135
0.0026

0.9333
0.8168
0.8168
0.8168
0.8174
0.8181

Zero TSAF 120 (i)
(ii)
(iii)
(iv)

(v)

1.2130
1.2111
1.2111
1.2111
1.2111

1.2129
1.2109
1.2109
1.2109
1.2109

0.0609
0.0607
0.0607
0.0607
0.0607

0.0609
0.0607
0.0607
0.0607
0.0607

0.8801
0.8794
0.8794
0.8794
0.8794

1.1365
0.8507
0.8507
0.8517
0.8488
0.8376
1.1440
0.8488
0.8483
0.84*59
0.8510
0.8322

Zero TSAF 30 (i)
(ii)
(iii)
(iv)

1.2851
1.2835
1.2812
1.2849

1.2701
1.2661
1.2661
1.2661

0.0964
0.0959
0.0959
0.0962

0.0952
0.0948
0.0948
0.0948

0.9088
0.9082
0.9075
0.9087

0.9040
0.9023
0.9023
0.9023

0.9023
1.1365
0.8507
0.8507
0.8517
0.8488
0.8569

1.1440
0.8488
0.8488
0.8489
0.8510
0.8508
0.8871
0.8856
0.8856
0.8856
0.8856
0.9188
0.8143
0.8143
0.8143
0.8143
0.8128

0.9298
0.8132
0.8132
0.8132
0.8132
0.8128

0.8800
0.8793
0.8793
0.8793
0.8793
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Table 5.5 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when /=-0 .30

initial value

of £»
Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size
30

30

30

oO

60

60

120

120

120

Strategy

(»)
('0
(iii)
(iv)
(v)
(vi)

(i)
('0
(iii)
(iv)
(v)
(vi)

(i)
(«)
(iii)
(iv)
(v)

W
(>')
(iii)
(iv)
(v)
(vi)

(0
(ii)
(iii)
(iv)
(v)
(vi)

(')
(ii)
(iii)
(iv)
(v)

0)
(ii)
(iii)
(iv)
(v)
(vi)
(')
(ii)
(iii)
(iv)
(v)
(vi)

(•)
(ii)
(iii)
(iv)
(v)

AMSFE

ML
9.1042
8.8764
7.9872
9.9274
7.9861
8.6761
9.1044
8.8708
7.9876
9.9208
7.9856
7.5745
1.1613
1.1587
1.1575
1.1617
1.1575
1.3658
1.5972
1.1902
1.2717
1.1902
1.2567
1.3654
1.1967
1.1897
1.2712
1.1896
1.2575
1.1215
1.1197
1.1197
1.1198
1.1197
1.0518
1.0266
1.0266
1.0266
1.0266
1.0255
1.0507
1.0255
1.0255
1.0255
1.0255
1.0255
1.1043
1.1041
1.1041
1.1041
1.1041

MML
3.2263
2.3120
2.2681
2.3099
2.2660
2.2332
3.2148
2.3073
2.2693
2.3052
2.2670
2.2112
1.1490
1.1462
1.1462
1.1462
1.1461
1.2743
1.0901
1.0901
1.0611
1.0611
1.0587
1.2740
1.0896
1.0896
1.0609
1.0609
1.0588

1.1211
1.1195
1.1195
1.1195
1.1195

1.0485
1.0233
1.0233
1.0233
1.0233
1.0222

1.0474
1.0222
1.0222
1.0222
1.C222
1.0222

1 1043
1.1041
1.1041
1.1041
1.1041

AAMFE

ML
2.2670
2.2135
2.0183
2.4848
2.0183
2.4054
2.2685
2.2084
2.0132
2.4854
2.0197
2.0051
0.1238
0.1235
0.1236
0.1236
0.1236
0.2543
0.1968
0.1943
0.2270
0.1943
0.0285
0.2563
0.1990
0.1973
0.2333
0.2035
0.0347

0.0933
0.0932
0.0932
0.0932
0.0932

0.1211
0.1120
0.1120
0.1120
0.1120
0.0033

0.1234
0.1129
0.1129
0.1129
0.1128
0.0033

0.0743
0.0742
0.0742
0.0742
0.0742

MML
0.6920
0.5010
0.5008
0.4988
0.4986
0.4473
0.6847
0.5028
0.5026
0.5011
0.5026
0.4324
0.1234
0.1234
0.1234
0.1234
0.1234

0.2158
0.1539
0.1539
0.1441
0.1441
0.0021
0.2143
0.1563
0.1563
0.1441
0.1450
0.0014

0.0934
0.0932
0.0932
0.0932
0.0932

0.1170
0.1078
0.1078
0.1078
0.1078
0.0000

0.1184
0.1078
0.1079
0.1078
0.1079
0.0000

0.0743
0.0742
0.0742
0.0742
0.0742

AMAE

ML
2.8470
2.8012
2.6034
3.0576
2.6031
2.8712
2.8580
2.8032
2.6060
3.0655
2.6139
2.5121
0.8663 (
0.8653 (
0.8649 (
0.8664 (
0.8649 (
0.9371 (
0.8831 (
0.8807 (
0.9107
0.8807
0.9173 (
0.9394
0.8847
0.8828
0.9155
0.8874
0.9144

0.8500
0.8492
0.8492
0.8492
0.8492

0.8253
0.8166
0.8166
0.8166
0.8166
0.8178

0.8267
0.8167
0.8167
0.8167
0.8166
0.8178

0.8432
0.8431
0.8431
0.8431
0.8431

MML
.356
.161
.157
.160
.155
.132
.356
.165
.160
.164
.161
.131

).862
1861
3.861
3.861
).861

3.902
3.844
3.844
3.835
3.835
3.834
3.903
3.847
3.847
3.836
D.836
0.834

0.849
0.849
0.849
0.849
0.849

0.823
0.814
0.814
0.814
0.814
0.814

0.824
0.814
0.814
0.814
0.814
0.814

0.843
0.843
0.843
0.843
0.843
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Table 5.6 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = - 0.15

Initial value

of

Step Sample

size Sti-ategy
AMSFE

ML MML
AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 ©

(ii)
(iii)
(iv)
(v)
(vi)

6 611
«797
''•058
is 071
6.058
5.586

2.2666
1.6430
1.5747
1.6058
1.5747
1.5705

1.2800
1.3120
1.1799
1.584i<
1.1709
0.9982

0.4005
0.2802
0.2802
0.2878
0.2§02
0.2800

1.9446
1.9692
1.8349
2.2322
1.8349
1.2345

Estimated OSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1 L.504
3.488
3.488
3.488
?.485
2.692

1.2166
1.2166
1.2166
1.2166
1.2166
1.0021

2.513?
0.7448
0.744&
0.7448
0.9269

0.1722
0.1722
0.1722
0.1722
0.H22
0.1601

3.1561
1.4261
1.4261
1.4261
1.5363
1.1542

Zero TSAF 30 (i)
(ii)
(iii)
(iv)
(v)

a.096
1.096
L094
1.099
1.094

1.0885
1.0877
1.0877
1.0876
1.0877

Zero OSAF 60

(ii)
(iii)
(iv)
(v)
(vi)

1-202
1.202
J.202
1.212
S.202
1.197

1.0574
1.0574
1.0574
1.0574
1.0574
1.0552

Estimated OSAF 60 (0
(if)

(i»)
(iv)
(v)
(w)

1.202
1.202
1.202
1.212
1.202
1.197

5 ifi'fX
1.0573
1,0573
1.0573
1.0573
1.0552

0.1472
0.1472
0A412
C.!4?5
0.1472

~0l637~
0.1637
G/.1637
«?.17O4
0.1637
S.0I43

"OJ660"
0.1660
0.1660
0.1717
0.1678
0,0143

0.1471
0.1470
0.1469
0.1468
0.1469

0.8487
0.8486
0.8481
0.8500
0.8481

0.1382
0.1382
0.1382
0.1382
0.1382
0.0062

0.8548
0.8548
0.854R
0.8602
0.8548
0.8594

0.1383
0.1383
0.1383
0.1383
0.1383
0.0062

0.8566
0.8566
0.8566
0.8613
0.8581
0.8594

Zero TSAF 60
(ii)

Zero OSAF

Estimated OSAF

M
12<f"""{i)

(iii)
(iv)
(v)

! V ! L<*)
(ii)
(iii)
(iv)
(v)
(vi)

1.054
1.054
1.054
1.054
1.054

1.0535
1.0535
1.0535
1.0535
1.0535

M121
0.1121
0.1121
0.1121
0.1121

0.1120
0.1120
0.1120
0.1120
0.1120

0.8258
0.8258
0.8258
0.8258
0.8258

1.014
1.014
1.014
1.014
1.014
1.014

1.0138
1.0138
1.0138
1.0138
i.0138
1.0140

0.1124
0.1124
0.1124
0.1124
0.1124
0.0037

0.1106
0.1106
0.1106
0.1106
0.1106
0.0036

0.81 IS
0.8118
0.8118
0.81 IS
0.8118
0.8118

120 .S.014
1.014
1.014
1.014
1.014
1.014

1.0137
1.0137
1.0137
1.0137
1.0137
1.0140

0.1124
0.1124
0.1124
0.1124
0.1124
0.0037

0.1107
0.1107
0.1107
0.1107
0.1107
0.0036

0.8118
0.8118
0.8118
0.8118
0.8118
0.8118

Zero TSAF 120 0)
(ii)
(iii)
(iv)

(v)

1.029
1.029
1.029
1.029
1.0.29

1.0292
1.0292
1.0292
1.0292
1.0292

0.0931
0.0931
0.0931
0.0931
0.0931

0.0931
0.0931
0.0931
0.0931
0.0931

0.8154
0.8154
0.8154
0.8154
0.8154

1.0908
0.9726
0.9662
0.9769
0.9662
0.9235
0.8982
0.8982
0.8982
0.8982
0.8982
0.8235
0.8458
0.8456
0.8456
0.8455
0.8456

0.8313
0.8313
0.8313
0.8313
0.8313
0.8304

0.8314
0.8314
0.8314
0.8314
0.8314
0.8304

0.8256
0.8256
0.8256
0.8256
0.8256
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113
0.8113

0.8154
0.8154
0.8154
0.8154
0.8154
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Table 5.7 AMSFE, AMAFE and AAMKS of one and two step ahead forecasts
using different strategies, sample sizes, Xt design matrix when y = 0

Initial value

of ^o

Step Sample

size Strategy

AMSFE

ML MML

AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 (i)

('0
(iii)
(iv)
(v)
(vi)

4.210
4.445
4.149
5.781
4.087
5.460

1.7543
1.6260
1.6171
1.6970
1.5533
1.5467

0.7037
0.7657
0.6961
1.0200
0.6961
0.7174

0.2627
0.2363
0.2363
0.2363
0.2362
0.2266

1.4000
1.4536
1.3893
1.6978
1.3855
1.6659

0.9582
0.9348
0.9330
0.9408
0.9290
0.9379

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

30

30

60

60

60

120

120

120

(i)
00
(iii)
(iv)

(v)
(vi)

0)
(i>)
(iii)
(iv)
(v)

(•)
00
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)
(vi)

0)
(i>)
(iii)
(iv)

(v)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)

4.201
4.449
4.153
5.789
4.093
4.463
1.055
1.056
J.055
1.058
1.055
1.053
1.053
1.053
1.084
1.053
1.078
1.053
1.053
1.053
1.085
1.053
1.078
1.020
1.020
1.020
1.020
1.020
1.015
1.015
1.015
1.015
1.015
1.015
1.015
1.015
1.015
1.015
1.015
1.015
1.005
1.005
1.005
1.005
1.005

1.7490
1.6207
1.6117
1.7406
1.5648
1.5505
1.0518
1.0517
1.0516
1.0518
1.0516
1.0476
1.0476
1.0476
1.0476
1.0476
1.0455
1.0478
1.0478
1.0478
1.0478
1.0478
1.0455
1.0206
1.0206
1.0206
1.0206
1.0206
1.0154
1.0154
1.0154
1.0154
1.0154
1.0153
1.0155
1.0155
1.0155
1.0155
1.0155
1.0155
1.0059
1.0059
1.0059
1.0059
1.0059

0.7060
0.7680
0.6974
1.0158
0.7032
0.7768
0.1698
0.1699
0.1699
0.1699
0.1698
0.1363
0.1363
0.1363
0.1438
0.1363
0.1378

0.1363
0.1363
0.1363
0.1424
0.1363
0.1368

0.1311
0.1311
0.1311
0.1311
0.1311
0.1098
0.1098
0.1098
0.1098
0.1098
0.1090

0.1098
0.1098
0.1098
0.1098
0.1098
0.0033

0.1081
0.1081
0.1081
0.1081
0.1081

0.2640
0.2372
0.2372
0.2372
0.2399
0.2457
0.1699
0.1698
0.1698
0.1698
0.1698
0.1332
0.1332
0.1332
0.1332
0.1332
0.1329
0.1333
0.1333
0.1333
0.1333
0.1333
0.1328
0.1310
0.1310
0.1310
0.1310
0.1310
0.1089
0.1089
0.1089
0.1089
0.1089
0.1032
0.1089
0.1089
0.1089
0.1089
0.1089
0.0032
0.1081
0.1081
0.1081
0.1081
C.1081

1.4048
1.4600
1.3945
1.7009
1.3966
1.6593
0.8370
0.8375
0.8370
0.8381
0.8370
0.8304
0.8304
0.8304
0.8372
0.8304
0.8359

0.8305 .
0.8305
0.8305
0.8363
0.8305
0.8352

0.8168
0.8168
0.8168
0.8169
0.8168
0.8117
0.8117
0.8117
0.8117
0.8117
0.8117

0.8117
0.8117
0.8117
0.8117
0.8117
0.8117

0.8072
0.8072
0.8072
0.8072
0.8072

0.9598
0.9359
0.9342
0.9441
0.9332
0.9259
0.8355
0.8355
0.8355
0.8356
0.8355
0.8278
0.8278
0.8278
0.8278
0.8278
0.8268

0.8278
0.8278
0.8278
0.8278
0.8278
0.8268
0.8168
0.8168
0.8168
0.8168
0.8168
0.8114
0.8114
0.8114
0.8114
0.8114
0.8113
0.8114
0.8114
0.8114
0.8114
0.8114
0.8113
0.8072
0.8072
0.8072
0.8072
0.8072

..,&!
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Table 5.8 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = 0.15

Initial value

of £o

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size !
30

30

30

60

60

60

120

120

120

Strategy

0)
(H)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(Hi)
(iv)
(v)
(vi)
(i)
00
(iii)
(iv)
(v)

0)
(ii)
(iii)
(iv)
(v)
(vi)

(')
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)

(')
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)

AMSFE

ML
3.4125
3.5423
2.9966
5.0928
2.9347
4.8167
1.1532
1.1532
1.1532
1.1532
1.1532
1.0400
1.0731
1.0738
1.0727
1.0752
1.0727
1.0408
1.0408
1.0408
1.0408
1.0408
1.0400
1.0409
1.0409
1.0409
1.0409
1.0409
1.0400
1.0303
1.0303
1.0303
1.0303
1.0303
1.0179
1.0179
1.0179
1.0179
1.0179
1.0168
1.0177
1.0177
1.0177
1.0177
1.0177
1.0168
1.0251
1.0251
1.0251
1.0251
1.0251

MML
2.0162
1.7029
1.5624
1.7533
1.4865
1.3910
1.1342
3.1342
1.1342
1.1342
1.1342
1.0365
1.0699
1.0696
1.0696
1.0699
1.0696
1.0373
1.0373
1.0373
1.0373
1.0373
1.0365
1.0374
1.0374
1.0374
1.0374
1.0374
1.0365
1.0302
1.0302
1.0302
1.0302
1.0302
1.0175
1.0175
1.0175
1.0175
1.0175
1.0165
1.0173
1.0173
1.0173
1.0173
1.0173
1.0165
1.0251
1.0251
1.0251
1.0251
1.0251

AAMFE

ML
0.4350
0.5203
0.4351
0.6821
0.4350
0.4492
0.1799
0.1799
0.1799
0.1799
0.1799
0.1687
0.1940
0.1942
0.1940
0.1939
0.1940
0.1273
0.1273
0.1273
0.1273
0.1273
0.1287
0.1273
0.1273
0.1273
0.1273
0.1273
0.1287

0.1435
0.1435
0.1435
0.1435
0.1435

0.1088
0.1088
0.1088
0.1088
0.1088
0.1016

0.1087
0.1087
0.1087
0.1087
0.1087
0.1016

0.1248
0.1248
0.1248
0.1248
0.1248

MML
0.1936
0.1967
0.1844
0.1963
0.1843
0.0041
0.1726
0.1726
0.1726
0.1726
0.1726
0.1683
0.1936
0.1935
0.1936
0.1934
0.1936
0.1261
0.1261
0.1261
0.1261
0.1261
0.1187
0.1261
0.1261
0.1261
0.1261
0.1261
0.1287
0.1435
0.1435
0.1435
0.1435
0.1435

0.1084
0.1084
0.1084
0.1084
0.1084
0.1016

0.1083
0.1083
0.1083
0.1083
0.1083
0.1014

0.1248
0.1248
0.1248
0.1248
0.1248

AMAE

ML
1.2086
1.2602
1.1754
1.4408
1.1677
1.4158
0.8849
0.8849
0.8849
0.8849
0.8849
0.8243
0.8495
0.8497
0.8494
0.8503
0.8494
0.8245
0.8245
0.8245
0.8245
0.8245
0.8243
0.8246
0.8246
0.8246
0.8246
0.8246
0.8243
0.8230
0.8230
0.8230
0.8230
0.8230
0.81.25
0.8125
0.8125
0.8125
0.8125
0.8121

0.8125
0.8125
0.8125
0.8125
0.8125
0.8121

0.8171
0.8171
0.8171
0.8171
0.8171

MML
0.955
0.935
0.913
0.939
0.905
0.904
0.876
0.876
0.876
0.876
0.876
0.822
0.848
0.848
0.848
0.848
0.848
0.823
0.823
0.823
0.823
0.823
0.822
0.823
0.823
0.823
0.823
0.823
0.822
0.822
0.822
0.822
0.822
0.822

0.812
0.812
0.812
0.812
0.812
0.812

0.812
0.812
0.812
0.812
0.812
0.811

0.817
0.817
0.817
0.817
0.817
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Table 5.9 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when / = 0.30

Initial value

Of

Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML

AMAE

ML MML
Zero

Estimated

OSAF 30 (i)

(ii)
(iii)
(iv)

(v)
(vi)

OSAF 30 (i)
(")
(iii)
(iv)
(v)
(vi)

3.3196
3.4126
2.5877
4.1609
2.4642
4.1304

3.2689
3.4011
2.5957
4.1683
2.5783
2.9096

2.4925
1.7518
1.6864
1.8741
1.6582
1.6377
2.4211
1.7686
1.6966
1.9019
1.7542
1.6080

0.2657
0.3561
0.2666
0.4618
0.2666
0.4524
0.2646
0.3555
0.2655
0.4619
0.2643
0.2709

0.1838
0.1847
0.1848
0.1845
0.1848
0.1758
0.1835
0.1843
0.1845
0.1842
0.1847
0.1744

.1590

.1787

.0699

.2756

.0566

.4305

.1528
1.1766
.0673
.2762

1.0603
1.1551

1.037
0.952
0.942
0.963
0.938
0.935
1.031
0.952
0.942
0.964
0.943
0.936

Zero TSAF 30 0)
(ii)
(iii)
(iv)
(v)

1.1310
1.1304
1.1297
1.1315
1.1297

1.1283
1.1271
1.1270
1.1275
1.1270

0.2169
0.2168
0.2168
0.2170
0.2168

0.2170
0.2170
0.2170
0.2169
0.2170

0.8743
0.8742
0.8738
0.8747
0.8738

0.873
0.873
0.873
0.873
0.873

Zero OSAF 60 (i)
(•i)
(iii)
(iv)

(v)
(vi)

1.3145
1.0654
1.0654
1.0753
1.0517
1.0841

1.2966
1.0474
1.0474
1.0474
1.0474
1.0471

0.1315
0.1316
0.1316
0.1317
0.1317
0.1356

0.1314
0.1316
0.1316
0.1316
0.1316
0.1316

0.8626
0.8306
0.8306
0.8319
0.8285
0.8320

0.858
0.826
0.826
0.826
0.826
0.826

Estimated OSAF 60
(ii)
(iii)
(iv)

(v)
(vi)

1.3128
1.0610
1.0610
1.0873
1.0513
1.0890

1.2988
1.0469
1.0469
1.0469
1.0469
1.0471

0.1314
0.1316
0.1316
0.1316
0.1316
0.1324

0.1314
0.1315
0.1315
0.1315
0.1315
0.1316

0.8631
0.8301
0.8301
0.8328
0.8284
0.8331

0.859
0.826
0.826
0.826
0.826
0.826

Zero TSAF 60 (i)
(ii)
(iii)
(iv)

(v)

1.0731
1.0738
1.0727
1.0752
1.0727

1.0699
1.06%
1.0696
1.0699
1.06%

0.1940
0.1942
0.1940
0.1939
0.1940

0.1936
0.1935
0.1936

0.

0.8495
0.8497
0.8494
O.8503
0.8494

0.848
0.848
0.848
0.848
0.848

Zero OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.0135
1.0135
1.0135
1.0135
1.0135
1.0168

1.0129
1.0129
1.0129
1.0129
1.0129
1.0115

0.1090
0.1090
0.1090
0.1090
0.1090
0.1116

0.1090
0.1090
0.1090
0.1090
0.1090
0.1065

0.8110
0.8110
0.8110
0.8110
0.8110
0.8121

0.810
0.810
0.810
0.810
0.810
0.814

Estimated OSAF 120 0)
00
(iii)
(iv)

(v)
(vi)

1.0128
1.0128
1.0128
1.0128
1.0128
1.0.04

1.0122
1.0122
1.0122
1.0122
1.0122
1.0098

0.1090
0.1090
0.1090
0.1090
0.1090
0.1060

0.1090
0.1090
0.1090
0.1090
0.1090
0.1050

0.8106
0.8106
0.8106
0.8106
0.8106
0.8085

0.810
0.810
0.810
0.810
0.810
0.809

Zero TSAF 120 (0
(ii)
(iii)
(iv)
(v)

1.1004
1.0991
1.0991
1.0992
1.0992

1.1003
1.0990
1.0990
1.0990
1.0990

0.1703
0.1702
0.1702
0.1702
0.1702

0.1703
0.1702
0.1702
0.1702
0.1702

0.8543
0.8537
0.8537
0.8538
0.8538

0.854
0.853
0.853
0.853
0.853
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Table 5.10 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = 0.45

Initial value
Of ^0

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimate.}

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size

30

30

30

60

60

60

120

120

120

Strategy

(i) 2

(«) :

AMSFE

ML
1.1521
(.1060

(iii) 2.3390
(iv) I1.4171
(v) 2.0838
(vi) 2.0547

(') 3
(ii) 1
(iii) 1
(iv) 1

(v) 1
(vi) 1

(i)
(ii)
(iii)
(iv) 1

(v)

(>) :
(ii)
(iii)
(iv)

(v)
(vi)

(i) :
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)

(i)
00
(iii)
(iv)

(v)
(vi)

(i)
('0
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)

.1933

.7034

.7034

.7034

.6496

.2151

.2220

.2209

.2196

.2209

.2195
'.3806
.1920
.1921
.1874
.1874
.1617

>.1325
.1513
.1513
.1444
.1591
.1411

1.2135
1.2105
1.2105
1.2105
1.2105
1.4799
1.0312
1.0312
1.0312
1.0312
1.0286
1.5983
1.0278
1.0278
1.0278
1.0278
1.0286
1.2050
1.2026
1.2026
1.2026
1.2026

MML
2.7425
2.0040
1.9124
1.8822
1.7156
1.5954
3.1586
1.6676
1.6676
1.6676
1.6028
1.4736
1.2205
1.2180
1.2178
1.2180
1.2178
2.3373
1.1814
1.1814
1.1784
1.1784
1.1427
2.0720
1.1402
1.1402
1.1354
1.1501
1.1321
1.2133
1.2103
1.2103
1.2103
1.2103
1.4789
1.0301
1.0301
1.0301
1.0301
1.0276

1.5972
1.0267
1.0267
1.0267
1.0267
1.0276

1.2050
1.2026
1.2026
1.2026
1.2026

AAMFE

ML
0.1996
0.3140
0.2007
0.3674
0.2107
0.2037
0.1897
0.1914
0.1914
0.1914
0.1912
0.1358
0.2413
0.2412
0.2411
0.2413
0.2411
0.1344
0.1354
0.1353
0.1354
0.1354
0.1101
0.1347
0.1356
0.1356
0.1356
0.1356
0.1201
0.1969
0.1974
0.1974
0.1974
0.1974

0.1120
0.1121
0.1121
0.1121
0.1121
0.0070

0.1119
0.1119
0.1119
0.1119
0.1119
0.1117

0.1627
0.1627
0.1627
0.1627
0.1627

MML
0.1703
0.1712
0.1716
0.1711
0.1716
0.1512
0.1899
0.1919
0.1919
0.1919
0.1918
0.1759
0.2413 (
0.2410 (
0.2411 (
0.2410 (
0.2411 (

0.1351 (
0.1361 (
0.1361 (
0.1361 (
0.1361 (
0.1314

0.1353
0.1363
0.1363
0.1363
0.1363
0.1114

0.1969
0.1974
0.1974
0.1974
0.1974

0.1123
0.1123
0.1123
0.1123
0.1123
0.0070

0.1122
0.1122
0.1122
0.1122
0.1122
0.1117

0.1627
0.1627
0.1627
0.1627
0.1627

AMAE

ML
.1841
.1787
.0620
.2063
.0224
.0127
.3099
.0299
.0299
.0299
.0191
.1811

).9146
3.9145
3.9140
3.9146
3.9140
3.9917
3.8503
3.8503
3.8491
3.8491
3.8434
3.9686
3.8464
3.8464
3.8448
3.8461
3.8423
3.9002
3.8993
3.8993
3.8993
D.8993

0.8676
0.8178
0.8178
3.8178
0.8178
0.8168

0.8748
0.8165
0.8165
0.8165
0.8165
0.8168

0.8903
0.8894
0.8894
0.8894
0.8894

MML
1.107
0.997
0.982
0.982
0.957
0.941
1.300
1.019
1.019
1.019
1.006
0.969
0.914
0.913
0.913
0.913
0.913
0.984
0.847
0.847
0.846
0.846
0.840

0.959
0.842
0.842
0.841
0.843
0.841

0.900
0.899
0.899
0.899
0.899

0.867
0.817
0.817
0.817
0.817
0.816

0.874
0.816
0.816
0.816
0.816
0.816

0.890
0.889
0.889
0.889
0.889
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Table 5.11 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = 0.60

Initial value
of £o

Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 (i)

(>•)
(iii)
(iv)

(v)
(vi)

3.9301
3.6652
2.6892
3.5595
2.4267
2.3924

3.4938
2.3960
2.3478
2.1691
2.1202
2.1190

0.2048
0.2635
0.2069
0.2896
0.2072
0.1974

0.1864
0.1885
0.1886
0.1886
0.1889
0.1848

1.3418
1.2052
1.1371
1.1902
1.0890
1.0832

1.272
.086
.077
.050
.041
.040

Estimated OSAF 30 (i)
(ii)
(iii)
(iv)

(v)
(vi)

3.9653
3.6363
2.6640
3.5406
2.5105
2.3613

3.5113
2.3497
2.3087
2.1500
2.2054
2.0645

0.2032
0.2618
0.2053
0.2884
0.2060
0.2043

0.1858
0.1878
0.1879
0.1880
0.1884
0.1746

1.3435
1.1992
1.1317
1.1861
1.1637
1.1549

.274

.079

.071

.046
1.055
1.039

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

30

60

60

60

120

120

120

(>)
(ii)
(iii)
(iv)

(v)

0)
('')
(iii)
(iv)

(v)
(vi)

(')
(•')
(iii)
(iv)

(v)
(vi)

(>)
(ii)
(iii)
(iv)

(v)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

(•)
(ii)
(iii)
(iv)

(v)
(vi)

(')
(ii)
(iii)
(iv)

(v)

1.3743
1.3738
1.3729
1.3736
1.3728
3.0835
1.3979
1.3884
1.2164
1.1854
1.1809
2.8554
1.3615
1.3444
1.1863
1.1654
1.1737
1.3472
1.3415
1.3416
1.3415
1.3415
3.0068
1.1134
1.1116
1.0851
1.0759
1.0643
2.9319
1.1079
1.1062
1.0874
1.0878
1.0606
1.3639
1.3545
1.3545
1.3546
1.3545

1.3732
1.3718
1.3717
1.3717
1.3716
2.8978
1.2731
1.2731
1.1507
1.1507
1.1245
2.6799
1.2312
1.2312
1.1220
1.1363
1.1158
1.3470
1.3414
1.3414
1.3414
1.3414

2.9991
1.0706
1.0706
1.0642
1.0642
1.0468
2.9176
1.0706
1.0706
1.0606
1.0725
1.0426

1.3639
1.3545
1.3545
1.3545
1.3545

0.2699
0.2702
0.2697
0.2703
0.2697
0.1266
0.1289
0.1289
0.1289
0.1289
0.0045
0.1265
0.1288
0.1288
0.1288
0.1287
0.0045
0.2093
0.2087
0.2087
0.2087
0.2087

0.1020
0.1034
0.1034
0.1034
0.1034
0.0000

0.1019
0.1032
0.1032
0.1032
0.1032
0.0000

0.1664
0.1666
0.1666
0.1666
0.1666

0.2699
0.2697
0.2697
0.2697
0.2697

0.1275
0.1300
0.1300
0.1300
0.1300
0.0046
0.1274
0.1299
0.1299
0.1298
0.1298
0.0046
0.2092
0.2087
0.2087
0.2087
0.2087

0.1024
0.3038
0.1038
0.1039
0.1039
0.0001

0.1023
0.1037
0.1037
0.1037
0.1037
0.0001

0.1664
0.1666
0.1666
0.1656
0.1666

0.9730
0.9728
0.9725
0.9729
0.9724

1.1644
0.8871
0.8853
0.8650
0.8598
0.8580
1.1411
0.8795
0.8768
0.8592
0.8557
0.8573

0.9489
0.9470
0.9470
0.9469
0.9469

1.0878
0.8323
0.8317
0.8295
0.8272
0.8250

1.0826
0.8312
0.8306
0.8287
0.8275
0.8242

0.9474
0.9442
0.9442
0.9442
0.9442

0.972
0.972
0.972
0.972
0.972
1.136
0.868
0.868
0.851
0.851
0.845
1.115
0.861
0.861
0.845
0.847
0.844

0.948
0.946
0.946
0.946
0.946

1.085
0.826
0.826
0.824
0.824
0.820

1.079
0.825
0.825
0.822
0.823
0.819

0.947
0.944
0.944
0.944
0.944
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5.12 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = 0.75

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 w(ii)

(iii)
(iv)

(v)
(vi)

3.3809
2.7806
2.7683
2.5411
2.2882
2.7104

3.0919
2.4436
2.4224
2.2226
2.1682
2.3992

0.1566
0.1648
0.1653
0.1838
0.1661
0.0271

0.1579
0.1602
0.1603
0.1606
0.1611
0.0013

1.3553
1.2285
1.2263
1.1533
1.1272
1.1903

1.303
1.162
1.157
1.108
1.096
1.142

Estimated

Zero

OSAF 30 (i)

(ii)
(iii)
(iv)

(v)
(vi)

TSAF 30 (i)
(ii)
(iii)
(iv)
(v)

3.3064
2.7244
2.7144
2.4827
2.3911
2.5445
1.5740
1.5732
1.5733
1.5734
1.5732

3.0882
2.4633
2.4433
2.1759
2.2757
2.2347
1.5733
1.5723
1.5724
1.5722
1.5722

0.1565
0.1648
0.1653
0.1829
0.1666
0.0266
0.2839
0.2840
0.2841
0.2841
0.2841

0.1578
0.1601
0.1602
0.1604
0.1609
0.0013
0.2839
0.2839
0.2840
0.2839
0.2840

.3415

.2135

.2117

.1330

.1412

.1571

.0407

.0403

.0404

.0404 •

.0404

1.298
1.157
1.152
1.091
1.112
1.109
1.040
1.040
1.040
1.040
1.040

Zero OSAF 60

Estimated OSAF 60

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(')
(ii)
(iii)
(iv)
(V)

(vi)

2.9530
1.7199
1.7176
1.5050
1.4956
1.4338
2.6240
1.6347
1.6322
1.4216
1.4689
1.4172

2.7729
1.5621
1.5468
1.3713
1.3408
1.3201
2.4844
1.4976
1.4818
1.3175
1.3415
1.3155

0.1203
0.1221
0.1221
0.1224
0.1224
0.0062
0.1202
0.1220
0.1220
0.1223
0.1224
0.1211

0.1214
0.1234
0.1234
0.1236
0.1236
0.0062
0.1213
0.1234
0.1234
0.1235
0.1236
0.1209

1.2337
0.9828
0.9820
0.9321
0.9296
0.9160

1.1821
0.9644
0.9636
0.9140
0.9213
0.9189

1.198
0.950
0.946
0.906
0.899
0.891
1.153
0.933
0.930
0.892
0.895
0.886

Zero

Zero

TSAF

OSAF

60

120

(>)
(ii)
(iii)

(iv)
(v)
(')

1.5420
1.5374
1.5374
1.5372
1.5373
3.2606

1.5419
1.5373
1.5374
1.5372
1.5372
3.1748

0.2184
0.2177
0.2177
0.2177
0.2176
0.1006

0.2185
0.2178
0.2177
0.2176
0.2176
0.1012

.0141

.0124
1.0124
1.0124
1.0124

1.2222

.014

.012

.012

.012
1.012

.203

(iii)
(iv)
(v)
(vi)

1.3792
1.3536
1.1827
1.1571
1.2458

1.1537
1.1537
1.0651
1.0652
1.0781

0.1027
0.1026
0.1029
0.1029
0.0066

0.1035
0.1035
0.1036
0.1036
0.0066

0.8923
0.8885
0.8533
0,8494
0.8631

Estimated OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

3.0814
1.3459
1.3294
1.1700
1.1340
1.2541

3.0024
1.1499
1.1499
1.0600
1.0491
1.0870

0.1005
0.1027
0.1027
0.1030
0.1030
0.0066

0.1011
0.1035
0.1035
0.1036
0.1036
0.0066

1.1944
0.8850
0.8821
0.8497
0.8431
0.8630

0.843
0.843
0.827
0.827
0.828

1.176
0.840
0.840
0.823
0.822
0.828

Zero TSAF 120 (0
(ii)
(iii)
(iv)

(v)

1.5625
1.5530
1.5530
1.5529
1.5529

1.5624
1.5528
1.5528
1.5527
1.5527

0.1828
0.1827
0.1827
0.1826
0.1826

0.1828
0.1826
0.1826
0.1826
0.1826

1.0140
1.0110
1.0110
1.0110
1.0110

.013

.010

.010

.010

.010
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Table 5.13 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when y = 0.90

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML
AMAE

ML MML
Zero OSAF 30

(iii)
(iv)
(v)
(vi)

2.6905
2.5652
2.5538
2.2979
2.2791
1.4677

2.5655
2.3856
2.3794
2.1727
2.1632
1.4677

0.1640
0.1770
0.1775
0.1776
0.1784
0.1429

0.1652
0.1663
0.1666
0.1671
0.1676
0.1329

1.2830
1.2530
1.2496
1.1789
1.1734
1.8145

1.251
1.205
1.203
1.148
1.145
0.990

Estimated OSAF 30 (i)
00
(iii)
(iv)
(v)
(vi)

2.6487
2.5465
2.3365
2.2691
2.2381
2.1914

2.6050
1.8165
1.8023
1.8165
1.5215
1.4895

0.1491
0.1477
0.1477
0.1493
0.1493
0.1332

0.1615
0.1564
0.1643
0.1564
0.1645
0.1233

1.2380
1.7359
1.7359
1.2628
1.2628
1.1483

1.221
1.078
1.073
1.078
0.985
0.953

Zero TSAF 30 (i)
(ii)
(iii)
(iv)

(v)

1.8089
1.8091
1.8092
1.8091
1.8092

1.8093
1.8093
1.8093
1.8093
1.8094

0.3161
0.3161
0.3161
0.3161
0.3161

0.3162
0.3162
0.3162
0.3162
0.3162

1.1171
1.1172
1.1172
1.1172
1.1172

1.117
.117
.117
.117
.117

Zero OSAF 60
00
(iii)
(iv)

(v)
(vi)

1.7880
1.7875
1.7875
1.7871
1.7871
1.6837

1.7881
1.7875
1.7875
1.7871
1.7872
1.5749

0.2454
0.2452
0.2452
0.2451
0.2451
0.0073

0.2453
0.2452
0.2452
0.2451
0.2451
0.0075

1.0948
1.0946
1.0946
1.0945
1.0945
1.0158

.094

.094

.094

.094

.094
0.983

Estimated

Zero

Zero

Estimated

Zero

OSAF

TSAF

OSAF

OSAF

TSAF

60

60

120

120

120

0)
(ii)
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)
(V)

0)
00
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)

1.6078
1.5015
1.5009
1.3459
1.6164
1.4998
1.7882
1.7875
1.7875
1.7871
1.7871
1.7836
1.7832
1.7831
1.7824
1.7823
1.5235
1.8180
1.6403
1.6383
1.4330
1.7501
1.2914
1.7836
1.7832
1.7831
1.7824
1.4998

1.5727
1.4716
1.4681
1.2976
1.5071
1.4302
1.7881
1.7875
1.7875
1.7871
1.7872
1.7834
1.7824
1.7824
1.7818
1.7818
1.0204

1.6997
1.4354
1.4354
1.2009
1.3200
1.2895
1.7834
1.7824
1.7824
1.7818
1.4312

0.1255
0.1266
0.1266
0.1272
0.1272
0.2273
0.2454
0.2452
0.2452
0.2451
0.2451

0.2099
0.2097
0.2097
0.2098
0.2098
0.2449

0.1071
0.1077
0.1077
0.1084
0.1084
0.1733
0.2099
0.2097
0.2097
0.2098
0.1973

0.1263
0.1273
0.1274
0.1282
0.3283
0.2175

0.2453
0.2452
0.2452
0.2451
0.2451

0.2099
0.2098
0.2098
0.2099
0.2099
0.1563

0.1078
0.1089
0.1089
0.1095
0.1095
0.1833

0.2099
0.2098
0.2098
0.2099
0.1175

1.0029
0.9695
0.9693
0.9220
0.9961
0.9694

1.0948
1.0946
1.0946
1.0945
1.0945

1.0855
1.0855
1.0855
1.0853
1.0853
0.7342

1.0458
0.9953
0.9946
0.9357
1.0224
1.1483

1.0855
1.0855
1.0855
1.0853
0.9694

0.991
0.960
0.959
0.906
0.964
0.948

1.094
1.094
1.094
1.094
1.094

1.085
1.085
1.085
1.085
1.085
0.641

1.012
0.937
0.937
0.870
0.903
0.953

1.085
1.085
1.085
1.085
0.948
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Table 5 14 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when / = - 0.90

Initial value

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size !
30

30

30

60

60

60

120

120

120

Strategy

(0
(ii)
(iii)
(iv)
(v)
(vi)
(i)

00
(iii)
(iv)
(v)
(vi)

(0

(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

AMSFE

ML
2.341
2.341
2.341
2.343
2.341
2.276
2.340
2.340
2.340
2.342
2.340
2.318
1.849
1.849
1.849
1.849
1.849
1.849
1.786
1.765
1.764
1.754
1.749
1.576
1.785
1.764
1.763
1.753
1.748
1.698
1.839
1.839
1.839
1.839
1.839
1.839
1.168
1.167
1.164
1.163
1.161
1.147
1.164
1.163
1.160
1.159
1.155
1.142
1.821
1.821
1.821
1.821
1.826
1.821

MML
1.9509
1.8682
1.8692
1.8681
1.8691
1.8357
1.9469
1.8634
1.8644
1.8631
1.8643
1.1309
1.8510
1.8511
1.8512
1.8511
1.8512
1.8511
1.6121
1.4871
1.4869
1.4404
1.4380
1.3357
1.6048
'..4763
1.4761
1.4279
1.4256
1.2230
1.8392
1.8391
1.8391
1.8391
1.8391
1.8391
1.1323
1.1125
1.1125
1.0985
1.0985
1.0696
1.1190
1.0928
1.0928
1.0741
1.0741
1.0615
1.S213
1.8213
1.8213
1.8213
1.8260
1.8213

AAMFE

ML MML
1.7385 1
1.7385 1
1.7385 1
1.7415
1.7385 1
1.5118
1.6780
1.6780
1.6780
1.6811
1.8250
1.6674
0.0340 (
0.0340 (
0.0340 (
0.0339 (
0.0340 (
0.0339 (
1.4028
1.3762
1.3719 (
.3605
.3536 (
.2118
.2570 (
.2356

1.2336
.2230
.3468

1.3257
0.0250
0.0250
0.0250
0.0250
0.0250
0.0250
0.9228
0.9112
0.9008
0.8806
0.8702
0.7521
0.7231
0.7132
0.7050
0.6863
0.9949
0.9752
0.0160
0.0160
0.0159
0.0159
0.0156
0.0159

.1659

.0643

.0631

.0623

.0611

.0544

.1333

.0295

.0291

.0284

.1050

.0015
3.0347
).O348
3.0348
).O348
3.0348
).O348
1.0777
3.8580
3.8574
3.7737
3.7698
3.7544
3.9657
3.7737
3.7727
3.6975
3.7622
3.7421
3.0250
D.0252
0.0251
D.0251
0.0251
0.0251
0.6471
0.4925
0.4925
0.3975
0.3975
0.2369
0.5028
0.3831
0.3831
0.3072
0.4131
0.4236
0.0159
0.0159
0.0159
0.0159
0.0156
0.0159

AMAE

ML
2.0519
2.0519
2.0519
2.0538
2.0519
2.0503
1.9869
1.9869
1.9869
1.9887
2.1208
1.1791
1.0845
1.0845
1.0845
1.0845
1.0845
1.0845 •
1.7089
1.6875
1.6849
1.6749
1.6705
1.0503
1.5798
1.5643
1.5629
1.5546
1.6743
1.6601
1.0828
1.0828
1.0828
1.0828
1.0828
1.0828
1.2696
1.2651
1.2589
1.2491
1.2429
1.4417
1.1246
1.1209
1.1165
1.1074
1.3459
1.2359
1.0764
1.0764
1.0764
1.0764
1.0778
1.0764

MML
1.6419
1.5670
1.5669
1.5657
1.5655
1.5515
1.6022
1.5253
1.5255
1.5247
1.6015
1.1788
1.0850
1.0850
1.0851
1.0850
1.0851
1.0850
1.4926
1.3349
1.3346
1.2751
1.2721
1.2515
1.3920
1.2577
1.2571
1.2051
1.2671
1.1211
1.0829
1.0829
1.0829
1.0829
1.0828
1.0829
1.1220
1.0379
1.0379
0.9822
0.9822
1.0216
1.0118
0.9547
0.9547
0.9134
0.9946
0.9716

1.0764
1.0764
1.0764
1.0764
1.0777
1.0764
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Table 5 .15 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = - 0.75

Initial value

of £0

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size
30

30

30

60

60

60

120

120

120

Strategy
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(0

(iii)
(iv)
(v)
(vi)

(i)
(•i)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

AMSFE

ML
5.178
5.181
5.176
5.238
5.176
5.000
5.178
5.181
5.175
5.238
5.175
5.231
1.568
1.568
1.568
1.568
1.568
1.568
3.095
2.850
2.827
2.777
2.716
2.212
3.091
2.845
2.822
2.771
2.710
2.669
1.563
1.563
1.562
1.562
1.562
1.562
1.692
1.355
1.340
1.284
1.269
1.254
1.685
1.345
1.330
1.274
1.259
1.254
1.564
1.564
1.564
1.564
1.564
1.564

MML
3.3466
2.9608
2.9589
2.9608
2.9589
2.8685
3.3435
2.9575
2.9556
2.9575
2.9553
2.4856
1.5701
1.5702
1.5702
1.5702
1.5702
1.5702
2.2933
1.6419
1.6419
1.5767
1.5535
1.3432
2.2888
1.6337
1.6337
1.5677
1.5445
1.5320
1.5631
1.5623
1.5623
1.5622
1.5622
1.5622
1.5336
1.1055
1.1055
1.0725
1.0725
1.0573
1.5255
1.0949
1.0949
1.0614
1.0614
1.0576
1.5648
1.5642
1.5642
1.5642
1.5642
1.5642

AAMFE

ML MML
2.6749
2.6793
2.6745 1
2.7134
2.6745
3.9086
2.6683
2.6717
2.6677
2.7006
2.7710
2.7682
0.0540 (
0.0540 (
0.0540 (
0.0540 (
0.0540 (
0.0540
1.6954
1.5459 (
1.5306 (
1.5021 (
.4649

1.9086 (
1.6995
1.5460
1.5306 (
1.4926
1.5166
1.5373
0.0402
0.0401
0.0401
0.0401
0.0401
0.0401
0.8702
0.5366
0.5159
0.4341
0.4135
0.2217
0.8739
0.5235
0.5045
0.4208
0.4483
0.4563
0.0303
0.0300
0.0300
0.0299
0.0299
0.0299

.5253 2

.2994 2

.2994 2

.2994 2

.2994 2

.3998 2
1.5154 2
.2941 2
.2941 2
.2941 2

1.3295 2
1.1273 2
).O544 1
).O544 1
5.0544 1
).O544 1
3.0544 1
3.0544
1.0703 :
3.6326 1
3.6326 1
3.5632
3.5532
3.5998

AMAE

ML MML
.0270 2.0369
.0298 1
.0263 1
1.0574 1
.0263 1
1.2352 1
1.0055 :
.0080 1
1.0048 1
.0318 1
1.1081 1
S.I 697 1
.0001
.0001 1
.0001
.0001
.0001
.0010

1.1206
.9866
.9736 1
.9465
.9162
.2120

1.0746 2.1058
3.6274
3.6274
3.5554
3.5540
3.5977
D.0403 (
3.0401 (
0.0401 (
3.0401 (
0.O4O1 (
0.0401 (
0.6623
0.1971
0.1971
0.1658
0.1658
0.1338
0.6726
0.1917
0.1917
0.1582
0.1677
0.1628
0.0303
0.0299
0.0299
0.0299
0.0299
0.0299

.9710

.9582

.9263

.9604

.4046
3.9987 (
3.9985 (
3.9985 <
3.9985 (
3.9984 (
3.9984 (
1.3969
1.1283 (
1.1129 (
1.0477 (
1.0323 (
1.0941 (
1.3916
1.1141
1.0993
1.0352
1.0614
1.0674

0.9973
3.9971
0.9971
0.9971
0.9971
0.9971

.8390

.8384

.8390

.8384

.2278
'.0196
.8275
.8269
.8275
.8673
.7130
.0007
.0008
.0008
.0008
.0008
.0008
.6004
.2259
.2259
.1684
.1591
.1441
.5947
.2148 •
.2148
.1552
.1573
.1041

3.9986
3.9982
3.9982
3.9982
3.9982
3.9982
.2441

3.8766
3.8766
3.8515
3.8515
3.8524
1.2427
3.8692
3.8691
3.8432
3.8501
3.8464

0.9972
0.997O
0.997O
0.9970
0.9970
0.9970
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Table 5.16 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = - 0.60

Initial value

of £0

Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML
AMAE

ML MML
Zero OSAF 30 (i)

(ii)
(iii)
(iv)
(v)
(vi)

9.0597
9.0014
8.9511
9.2613
8.9511
8.7463

4.4189
3.7492
3.7487
3.7497
3.7487
3.5901

3.4741
3.4585
3.4332
3.5596
3.4332
3.1278

1.5848
.3076
.3075
.3083

1.3075
.9186

Estimated OSAF 30
(ii)
(iii)
(iv)
(v)
(vi)

9.0592
9.0009
8.9505
8.8609
8.8492
8.8405

4.4173
3.7474
3.7468
3.7478
3.7464
3.7417

3.5002
3.4826
3.4607
3.5787
3.5920
3.5586

3.9061
3.8908
3.S676
3.9832
3.8676
3.6890

.5928

.3165

.3164
1.3173
1.3418
1.2108

3.9193
3.9033
3.8822
3.7925
3.7028
3.6131

Zero TSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

1.3805
1.3805
1.3805
1.3805
1.3805
1.3805

1.3806
1.3806
1.3806
1.3806
1.3806
1.3806

0.0719
0.0718
0.0718
0.0719
0.0718
0.0719

0.0713
0.0712
0.0712
0.0712
0.0712
0.0712

0.9398
0.9398
0.9398
0.9398
0.9398
0.9398

Zero OSAF 60 (i) 4.3370
3.4595

3.0484
1.4189

1.6641
1.2544

1.0162
0.3313

2.2007
1.8256

Zero TSAF 60 (i)

(iii)
(iv)
(v)
(vi)

1.3716
1.3703
1.3702
1.3702
1.3702
1.3702

1.3715
1.3697
1.3697
1.3696
1.3696
1.3696

0.0603
0.0603
0.0603
0.0604
0.0603
0.0604

0.0601
0.0599
0.0599
0.0599
0.0599
0.0599

0.9358
0.9353
0.9353
0.9353
0.9353
0.9353

Zeio OSAF 120 (0
(ii)
(iii)
(iv)
(v)
(vi)

1.7506
1.1993
1.1638
1.1823
1.1447
1.1377

1.6681
1.0572
1.0572
1.0543
1.0543
1.0492

0.5666
0.2100
0.2007
0.2007
0.1906
0.1490

0.4928
0.1225
0.1225
0.1195
0.1195
0.1117

1.2105
0.8994
0.8906
0.8904
0.8808
0.9025

Estimated OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.7453
1.1937
1.1578
1.1761
1.1381
1.1238

1.6629
1.0516
1.0516
1.0486
1.0486
1.0491

0.6063
0.2203
0.2099
0.2089
0.2099
0.1451

0.5380
0.1256
0.1256
0.1228
0.1233
0.1201

1.2411
0.9030
0.8935
0.8932
0.8935
0.8952

Zero TSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.3695
1.3686
1.3686
1.3686
1.3686
1.3686

1.3695
1.3686
1.3686
1.3686
1.3686
1.3686

0.0443
0.0440
0.0440
0.0440
0.0440
0.0440

0.0442
0.0439
0.0439
0.0439
0.0439
0.0439

0.9340
0.9336
0.9336
0.9336
0.9336
0.9336

2.167
.911
.911
.911
.911
.797

2.172
.920
.919
.920
.944

1.812
0.939
0.939
0.939
0.939
0.939
0.939
1.624
0.993

(iii)
(iv)
(v)
(vi)

Estimated OSAF 60 (i)
(ii)

(iii)
(iv)
(v)
(vi)

3.3281
3.4463
3.2770
4.2772
4.3329
3.4549
3.3234
3.4418
3.2721
4.2872

1.4189
1.3970
1.3963
2.3223
3.0438
1.4138
1.4138
1.3931
1.3917
2.3773

.1977

.2542

.1763

.7783

.7119

.2853
1.2241
.2890
.2436
.7463

0.3313
0.3237
0.3236
0.9346
1.0447
0.3313
0.3313
0.3255
0.3293
1.3363

1.7734
1.8244
1.7530
2.1466
2.2390
1.8429
1.7884
1.8451
1.8080
2.0466

0.993
0.986
0.986
1.657
1.647
0.988
0.988
0.982
0.987
1.667
0.935
0.935
0.935
0.935
0.935
0.935
1.153
0.828
0.828
0.826
0.826
0.825
1.189
0.829
0.829
0.827
0.827
0.825
0.934
0.933
0.933
0.933
0.933
0.933
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Table 5.17 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = — 0.45

Initial value

of

Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 (i)

(H)
(iii)
(iv)

(v)
(vi)

14.3846
14.5728
14.1118
15.1657
14.1118
14.2627

5.698
4.446
4.446
4.467
4.446
4.227

3.9956
4.0396
3.9393
4.2441
3.9393
3.2113

1.4263
1.0946
1.0946
1.1007
1.0946
0.8204

4.5606
4.6065
4.5046
4.8040
4.5046
3.2445

2.0938
1.7635
1.7635
1.7694
1.7635
1.1169

Estimated OSAF 30

(iii)
(iv)
(v)
(vi)

14.3838
14.5717
14.1109
15.1647
14.1089
9.2009

5.697
4.446
4.445
4.466
4.445
1.640

4.0489
4.1002
3.9969
4.3093
4.1139
3.1753

1.4440
1.1122
1.1121
1.1170
1.1417
0.8104

4.6193
4.6676
4.5645
4.8679
4.6517
3.6492

2.1103
1.7774
1.7773
1.7825
1.8022
0.8169

Zero TSAF 30
(ii)
(iii)
(iv)
(v)
(vi)

1.2402
1.2402
1.2400
1.2405
1.2400
1.2405

1.237
1.237
1.237
1.237
1.237
1.237

0.0962
0.0961
0.0961
0.0963
0.0961
0.0963

0.0947
0.0945
0.0945
0.0945
0.0945
0.0945

0.8936
0.8937
0.8936
0.8937
0.8936
0.8937

0.8925
0.8924
0.8924
0.8924
0.8924
0.8924

Zero

Estimated

OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

OSAF 60 (i)
(»i)
(iii)
(iv)
(v)
(vi)

2.8130
2.0589
2.0402
2.1981
2.0249
2.6270
2.8112
2.0567
2.0381
2.1959
2.0230
2.0000

1.919
1.155
1.155
1.144
1.143
1.336
1.918
1.153
1.153
1.142
1.142
1.312

0.8549
0.5708
0.5537
0.6135
0.5468
0.6995
0.8801
0.5932
0.5765
0.6390
0.5655
0.4525

0.4799
0.1920
0.1920
0.1868
0.1865
0.1892
0.4816
0.1895
0.1895
0.1842
0.1849
0.1712

1.4909
.2240
.2103

1.2659
1.2046
.3401
.5141
.2406

1.2266
.7.866

1.2189
1.2412

1.1425
0.8738
0.8738
0.8694
0.8691
0.8715
1.1492
0.8721
0.8721
0.8677
0.8679
0.8256

Zero TSAF 60 (•)
('«)
(iii)
(iv)

(v)
(vi)

1.2107
1.2098
1.2098
1.2099
1.2098
1.2099

1.210
1.209
1.209
1.209
',.209
1.209

0.0785
0.0782
0.0781
0.0782
0.0781
0.0782

0.0783
0.0781
0.0781
0.0781
0.0781
0.0781

0.8805
0.8803
0.8803
0.8803
0.8803
0.8803

0.8805
O.8&O2
0.8802
0.8802
0.8802
0.8802

Zero OSAF 120
(ii)
(iii)
(iv)
(v)
(vi)

1.3472
1.0364
1.0364
1.0416
1.0364
1.0377

1.340
1.025
1.025
1.025
1.025
1.022

0.2631
0.1294
0.1294
0.1327
0.1294
0.1022

0.2532
0.1168
0.1168
0.1168
0.1168
0.1002

0.9459
0.8229
0.8229
0.8257
0.8229
0.8236

0.9416
0.8162
0.8162
0.8162
0.8162
0.8149

Estimated OSAr 120
(ii)
(iii)
(iv)
(v)
(vi)

1.3441
1.0335
1.0335
1.0388
1.0335
1.0324

1.337
1.022
1.022
1.022
1.022
1.012

0.2901
0.3290
0.1290
0.1335
0.1282
0.1278

0.2806
0.1167
0.1167
0.1167
0.1167
0.1159

0.9671
0.8215
0.8215
0.8255
0.8210
0.8210

0.9629
0.8152
0.8152
0.8152
0.8152
0.8004

Zero TSAF 120 (i)
(>i)
(iii)
(iv)
(v)
(vi)

1.2041
1.2039
1.2039
1.2039
1.2039
1.2039

1.204
1.203
1.203
1.203
1.203
1.203

0.0624
0.0622
0.0622
0.0622
0.0622
0.0622

0.0624
0.0622
0.0622
0.0622
0.0622
0.0622

0.8771
0.8770
0.8770
0.8770
0.8770
0.8770

0.877!
0.8770
0.8770
0.8770
0.8770
0.8770

i l l
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Table 5.18 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = - 0.30

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML
AMAE

ML
Zero GSAF 30 0)

(ii)
(iii)
(iv)
(v)
(vi)

16.C38
15.754
15.596
15.439
15.096
17.754

4.3591
2.9796
2.9794
2.9796
2.9794
2.8551

3.7483
3.6976
3.5494
3.5412
3.5494
3.5436

0.8306
0.6299
0.6298
0.6299
0.6298
0.3489

4.3611
4.3132
4.1566
4.1499
4.1486
4.1433

Estimated OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

16.032
15.753
15.096
15.239
15.094
17.141

4.3506
2.9744
2.9742
2.9744
2.9854
2.8551

3.7557
3.7080
3.5601
3.4522
3.6101
3.8622

0.8278
0.6337
0.6336
0.6337
0.6358
0.5489

4.3767
4.3317
4.1745
4.1921
4.2142
4.0131

Zero TSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.132
1.131
1.132
1.132
1.132
1.132

1.1309
1.1306
1.1306
1.1306
1.1306
1.1306

0.1241
0.1236
0.1240
0.1236
0.1240
0.1236

0.1237
0.1236
0.1236
0.1236
0.1236
0.1236

0.8569
0.8565
0.8566
0.8569
0.8566
0.8569

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.954
1.598
1.538
1.857
1.499
2.466

1.4546
1.1015
1.1015
1.0759
1.0759
1.0212

0.4089
0.3368
0.3075
0.4130
0.2992
0.4259

0.2531
0.1600
0.1600
0.1537
0.1538
0.1345

1.0900
1.0137
0.9881
1.0878
0.9791
1.1776

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.954
1.598
1.538
1.857
1.499
2.387

1.4543
1.1012
1.1012
1.0758
1.0754
1.0015

0.4074
0.3356
0.3084
0.4205
0.3090
0.4542

0.2533
0.1594
0.1594
0.1538
0.1542
0.1215

1.0899
1.0151
0.9905
1.0938
0.9888
1.1219

Zero TSAF 60 ()

00
(iii)
(iv)
(v)
(vi)

1.112
1.112
1.112
1.112
1.112
1.112

1.1123
1.1119
1.1119
1.1119
1.1119
1.1119

0.0975
0.0975
0.0975
0.0976
0.0975
0.0975

0.0974
0.0974
0.0974
0.0974
0.0974
0.0974

0.8468
0.8466
0.8466
0.8467
0.8466
0.8466

Zero OSAF 120 (i)

(iii)
(iv)
(v)
(vi)

1.067
1028
1.028
1.028
3.028
1.028

1.0634
1.0242
1.0242
1.0242
1.0242
1.0131

0.1346
0.1142
0.1142
0.1142
0.1142
0.1040

0.1289
0.1085
0.1085
0.1085
0.1085
^.1013

0.8368
0.8176
0.8176
0.8176
0.8176
0.8091

Estimated OSAF 120 W
(ii)
(iii)
(iv)
(v)
(vi)

1.066
1.023
1.027
1.027
1.027
1.027

1.0623
CM 1.42
1.0232
1.0232
1.0232
1.0232

0.1351
0.1084
0.1142
0.1142
0.1142
0.1142

0.1294
0.8172
0.1084
0.1084
0.1084
0.1084

0.8370
0.8148
0.8172
0.8172
0.8172
0.8172

Aero TSAF 120 (i)

(iii)
(iv)
(v)
(vi)

1.097
1.097
1.097
1.097
3.097
1.097

1.0970
1.0970
1.0970
1.0970
1.0970
1.0970

0.0747
0.0746
0.0746
0.0746
0.0746
0.0746

0.0747
0.0746
0.0746
0.0746
0.0746
0.0746

0.8401
0.8401
0.8401
0.8401
0.840!
0.8401

MML
1.5383
1.3223
1.3223
1.3223
1.3223
.3223
.5395
.3282
.3282
.3282
.3302
.2201

0.8558
0.8557
0.8557
0.8557
0.8557
0.8557
0.9422
0.8500
0.8500
0.8441
0.8441
0.8025
0.94! 4
0.8495
0.8496
0.8441
0.8445
0.8332
0.8467
0.8465
0.8465
0.8465
0.8465
0.8465
0.8344
0.8152
0.8152
0.8152
0.8152
0.8037
0.8346
0.8148
0.8148
0.8148
0.8148
0.8148
0.8401
0.8401
0.8401
0.8401
0.8401
0.8401
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Table 5.19 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y=- 0.15

Initial value

of K
Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size
30

30

30

60

60

60

120

120

120

Strategy

0)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(0

(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(0
(ii)
(iii)
(iv)
(v)
(vi)

(0

(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

AMSFE

ML
15.115
15.849
14.743
14.637
14.711
18.988
15.113
15.827
14.721
14.715
14.707
18.603
1.089
1.089
1.089
1.092
1.089
1.089
1.538
1.353
1.311
1.628
1.311
2.201
1.538
1.354
1.311
1.628
1.311
1.300
1.053
1.052
1.052
1.053
1.052
1.052
1.019
1.019
1.019
1.019
1.019
1.020
1.019
1.019
1.019
1.019
1.019
1.597
1.027
1.027
1.027
1.027
1.027
1.027

MML
2.8664
2.3954
2.3901
2.3954
2.3901
2.2683
2.8830
2.4142
2.4088
2.4142
2.3922
2.1800
1.0837
1.0837
1.0837
1.0837
1.0837

.3837
1.2685
1.0782
1.0782
1.0782
1.0782
1.2512
1.2687
1.0785
1.0785
1.0785
1.0785
1.0765
1.0528
1.0526
1.0526
1.0526
1.0526
1.0526
1.0170
1.0170
1.0170
1.0170
1.0170
1.0174
1.0170
1.0170
1.0170
1.0170
1.0170
10743
1.0270
1.0270
1.0270
1.0270
1.0270
1.0270

AAMFE

ML
2.8316
2.9782
2.7517
3.7788
2.7517
2.1811
2.8806
3.0273
2.7957
3.8354
2,8342
2.3634
0.1478
0.1476
0.1477
0.1482
0.1477
0.1477
0.2432
0.2264
0.2060
0.2S47
0.2060
0.2754
0.2401
0.2246
0.2054
0.2865
0.2056
0.2046
0.5175
0.1176
0.1176
0.1175
0.1176
0.1176
0.1168
0.1168
0.1168
0.1168
0.1168
0.0036
0.1168
0.1168
0.1168
0.1168
0.1168
0.2716
0.0945
0.0945
0.0945
0.0945
0.0945
0.0945

MML
0.5323
0.4212
0.4200
0.42i2
0.4200
0.4280
0.5427
0.4296
0.4296
0.4296
0.4305
0.4220
0.1468
0.1468
0.1468
0.1468
0.1468
0.1468
0.1828
0.1497
0.1497
0.1497
0.1497
0.1575
o i^y\

- 1 ^ 5
0.1494
0.1494
0.1441
0.1174
0.1175
0.1175
0.1175
0.1175
0.1175
0.1126
0.1126
0.1126
0.1126
0.1126
0.0035

0.1126
0.1126
0.1126
0.1126
0.1126
0.1475
0.0945
0.0945
0.0945
0.0945
0.0945
0.0945

AMAE

ML MML
3.5266
3.6784
3.4474
3.4164
3.4446
3.3704
3.5695
3.7175
3.6841
3.6507
3.5154
3.2783
0.8461 (
0.8462 (
0.8460 (
0.8474 (
0.8460 (
0.8460 (
0.9326 <
0.9146
0.8958 (
0.9751
0.8958 (
0.8995
0.9312
0.9539
0.8963
0.9760
0.8973
0.8965
0.8261
0.8260
0.8260
0.8261
0.8260
0.8260
0.8146
0.8146
0.8146
0.8146
0.8146
0.8145

0.8145
0.8145
0.8145
0.8145
0.8145
0.9675
0.8147
0.8147
0.8147
0.8147
0.8147
0.8147

.2494

.1314

.1300

.1314
1.1300
.1248
.2567
.1380
.1368
.1380

1.1369
1.1012
).8439
).8439
).8439
3.8439
3.8439
3.8439
3.8749
3.8417
3.8417
3.8417
3.8417
3.8471
3.8728
3.8415
3.8415
3.8415
0.8415
5.8405
0.8260
D.8259
0.8259
0.8259
0.8259
0.8259
0.8129
0.8129
0.8129
0.8129
0.8129
0.8129

0.8128
0.8128
0.8128
0.8128
0.8128
0.8399

0.8147
0.8147
0.8147
0.8147
0.8147
0.8147
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Table 5.20 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = 0

Initial value

of ^

Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML

AMAE
ML MML

Aero OSAF 30 (0
(ii)
(iii)
(iv)
(v)
(vi)

10.8122
12.3687
10.7673
]O.16T3>
9.5645

15.6980

2.0841
2.0096
2.0014
1.9932
1.9850
1.8730

1.7961
2.0503
1.7919
1.5335
1.3919
1.1954

0.2808
0.2662
0.2642
0.2662
0.2642
0.2356

2.5125
2.7685
2.5043
2.4401
2.3759
2.5789

0.996
0.982
0.980
0.982
0.980
0.985

Estimated OSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

10.8047
12.3629
10.7606
9.8583
9.5560

15.4980

2.0764
2.0028
1.9945
1.9862
1.9779
1.7730

1.7969
2.0486
1.7900
1.5314
1.2728
1.1843

0.2763
0.2636
0.2614
0.2592
0.2570
0.2361

2.5123
2.7674
2.5027
2.5027
2.5027
2.4765

0.994
0.980
0.978
0.976
0.974
0.973

Zero TSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.0720
1.0723
1.0721
1.0758
1.0721
1.0721

1.0662
1.0663
1.0662
1.0663
1.0662
1.0662

0.1705
0.1705
0.1705
0.1709
0.1705
0.1705

0.1708
0.1708
0.1708
0.1708
0.1708
0.1708

0.8425
0.8426
0.8425
0.8439
0.8425
0.8425

0.840
0.840
0.840
0.840
0.840
0.840

Zero OSAF 60

(iii)
(iv)
(v)
(vi)

1.1541
1.1541
1.1541
1.1623
1.1541
2.1459

1.1338
1.1338
1.1338
1.1338
1.1338
1.1238

0.1608
0.1608
0.1608
0,1625
0.1608
0.2599

0.1508
0.1508
0.1508
0.1508
0.1508
0.1506

0.8518
0.851S
0.8518
0.8537
0.8518
2.0499

0.843
0.843
0.843
0.843
0.843
0.841

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.1543
1.1543
1.1543
1.1624
1.1543
2.1533

1.1340
1.1339
1.1340
1.1339
1.1340
1.1556

0.1626
0.1626
0.1626
0.1653
0.1610
0.2805

0.1512
0.1512
0.1512
0.1512
0.1508
0.1509

0.8528
0.8528
0.8528
0.8552
0.8519
1.0858

0.843
0.843
0.843
0.843
0.843
0.843

Zero TSAF 60

(iii)
(iv)
(v)
(vi)

1.0294
1.0294
1.0294
1.0294
1.0294
1.0294

1.0292
1.0292
1.0292
1.0292
1.0292
1.0292

0.1367
0.1367
0.1367
0.1367
0.1367
0.1367

0.1366
0.1366
0.1366
0.1366
0.1366
0.1366

0.8211
0.8211
0.8211
0.8210
0.82i 1
0.8211

0.821
0.821
0.821
0.821
0.821
0.821

Zero OSAF 120
(ii)
(iii)
(iv)
(v)
(vi)

1.0208
1.0208
1.0208
1.0208
1.0208
2.0210

1.0191
1.0191
1.0191
1.0191
1.0191
1.0193

0.1133
0.1133
0.1133
0.1133
0.1133
0.0025

0.1105
0.1105
0.1105
0.1105
0.1105
0.0024

0.8141
0.8141
0.8141
0.8141
0.8141
0.8142

0.813
0.813
0.813
0.S13
0.813
0.813

Estimated OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.0209
1.0209
1.0209
1.0209
1.0209
1.0201

1.0192
1.0192
1.0192
1.0192
1.0192
1.0193

0.1133
0.1133
0.1133
0.1133
0.1133
0.1025

0.1105
0.1105
0.1105
0.1105
0.1105
0.1024

0.8142
0.8142
0.8142
0.8142
0.8142
0.8142

0.813
0.813
0.813
0.813
0.813
0.813

Zero TSAF 120 0)
(ii)
(iii)
(iv)
(v)
(vi)

1.0089
1.0089

1.0089
1.0089
1.0089

1.0089
1.0089
1.0089
1.0089
1.0089
1.0089

0.1096
0.1096
0.1096
0.1096
0.1096
0.1096

0.1096
0.1096
0.1096
0.1096
0.1096
0.1096

0.8088
0.8088
0.8088
0.8088
0.8088
0.8088

0.808
0.808
0.808
0.808
0.808
0.808
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Table 5.21 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = 0.15

Initial value
Of ^0

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample
size !

30

30

30

60

60

60

120

120

120

strategy

(0
(ii)
(iii)
(iv)
(v)
(vi)

0)
('•)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(0
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
00
(iii)
(iv)
(v)
(vi)

AMSFE

ML
7.4980
9.3430
7.3919
7.4408
7.3286

12.9641
7.5146
9.3318
7.2957
7.2596
7.2235

12.1360
1.0979
1.0992
1.0978
1.1012
1.0978
1.0978
1.0536
1.0536
1.0536
1.0744
1.0536
1.0342
1.0539
1.0539
1.0539
1.0746
1.0539
1.0717
1.0491
1.0491
1.0491
1.0491
1.0491
1.0491
1.0202
1.0202
1.0202
1.0202
1.0202
1.0193
1.0200
1.0200
1.0200
1.0200
1.0200
1.0193
1.0491
1.0328
1.0328
1.0328
1.0328
1.0328

MML
1.926
1.936
1.848
1.806
1.756
1.521
1.920
1.911
1.824
1.722
1.711
1.518
1.094
1.094
1.093
1.094
1.093
1.093
1.045
1.045
1.045
1.045
1.045
1.028
1.045
1.045
1.045
1.045
1.045
1.043
1.048
1.048
1.048
1.048
1.048
1.048
1.019
1.019
1.019
1.019
1.019
1.018
1.019
1.019
1.019
1.019
1.019
1.018
1.048
1.032
1.032
1.032
1.032
1.032

AAMFE

ML
0.9479
1.2362
0.9980
0.9598
0.9479
1.9938
0.9418
1.2353
0.9919
0.9597
0.9587
2.9592
0.1954
0.1957
0.1953
0.1957
0.1953
0.1953
0.1393"
0.1393
0.1393
0.1475
0.1393
0.1285
0.1393"
0.1393
0.1393
0.1463
0.1393
O.140O
0.1513
0.1513
0.1513
0.1512
0.1513
0.1513
0.1127
0.1127
0.1127
0.1127
0.1127
0.1122
0.1127"
0.1127
0.1127
0.1127
0.1127
0.1123
0.1513
0.1276
0.1276
0.1276
0.1276
0.1276

MML
0.2041
0.2068
0.2055
0.2036
0.2041
0.2036
0.2019
0.2042
0.2020
0.2041
0.2004
0.1943
0.1947
0.1946
0.1946
0.1946
0.1946
0.1946
0J334
0.1334
0.1334
0.1334
0.1334
0.1305
0.1334
0.1334
0.1334
0.1334
0.1334
0.1323
0.1512
0.1512
0.1512
0.1512
0.1512
0.1512
0.1108
0.1108
0.1108
0.1108
0.1108
0.1022
0.U07
0.1107
0.1107
0.1107
0.1107
0.1104

0.1512
0.1277
0.1277
0.1277
0.1277
0.1277

AMAE

ML
1.7295
2.0154
1.7172
1.7109
1.7100
2.3021
1.7302
2.0197
1.7170
1.5748
1.4248
2.3952
0.5580
0.8585
0.8579
0.8592
0.8579
0.8579
0.8304
0.8304
0.8304
0.8377
0.8304
0.6754
0.8305
0.8305
0.8305
0.8365
0.8305
0.8331
0.8309
0.8309
0.8309
0.8309
0.8309
0.8309
0.8137
0.8137
0.8137
0.8137
0.8137
0.8133
0.8137
0.8137
0.8137
0.8137
0.8137
0.8133

0.8309
0.8206
0.8106
0.8206
0.8206
0.8206

MML
0.9607
0.9602
0.9516
0.9477
0.9410
0.8742
0.9617
0.9618
0.952S
0.9474
0.9400
0.8542
0.8564
0.8564
0.8563
0.8564
0.8563
0.8563
0.8265
0.8265
0.8265
0.8265
0.8265
0.8015
0.8267
0.8267
0.8267
0.8267
0.8267
0.8256

0.8308
0.8308
0.8308
0.8308
0.8308
0.8308

0.8132
0.8132
0.8132
0.8132
0.8132
0.8128

0.8132
0.8132
0.8132
0.8132
0.8132
0.8128

0.8308
0.8206
0.8206
0.8206
0.8206
0.8206
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Table 5.22 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = 0.30

Initial value

of £„

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size Strategy
30

30

30

60

60

60

120

120

120

0)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(0
('0
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(>i)
(iii)
(iv)
(v)
(vi)

0)
(«i)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

AMSFE

ML
5.3049
7.3667
5.2830
5.1993
4.9332

11.8242
5.2757
7.3638
4.9913
4.6188
4.5463

11.5289
1.1716
1.1715
1.1708
1.1747
1.1708
1.1708
1.1723
1.0550
1.0550
1.0550
1.0550
1.3210
1.1714
1.0543
1.0543
1.0543
1.0543
1.0530
1.1251
1.1225
1.1225
1.1225
1.1225
1.1225
1.0143
1.0143
1.0143
1.0143
1.0143
1.0113
1.0135
1.0135
1.0135
1.0135
1.0135
1.0113
1.0950
1.0950
1.0950
1.0950
1.0950
1.0950

MML
1.977
1.705
1.678
1.659
1.642
1.390
1.945
1.696
1.656
1.653
1.641
1.174
1.168
1.168
1.168
1.168
1.168
1.168
1.167
1.050
1.050
1.050
1.050
1.053
1.166
1.0492
1.049
1.049
1.049
1.048
1.125
1.122
1.122
1.122
1.122
1.122
1.013
1.013
1.013
1.013
1.013
1.010
1.012
1.012
1.012
1.012
1.012
1.010
1.095
1.095
1.095
1.095
1.095
1.095

AAMFE

ML
0.6643
0.9758
0.8647
0.8536
0.7647
2.7577
0.6722
0.6871
0.6726
0.6581
0.6750
2.6632
0.2210
0.2214
0.2210
0.2218
0.2210
0.2210
0.1409
0.1405
0.1405
0.1405
0.1405
0.1577
0.1409
0.1406
0.1406
0.1406
0.1406
0.1394
0.1777
0.1771
0.1771
0.1771
0.1771
0.1771
0.1123
0.1123
0.1123
0.1123
0.1123
0.0047
0.1123
0.1123
0.1123
0.1123
0.1123
0.1117
0.1447
0.1447
0.1447
0.1447
0.1447
0.1447

MML
0.1871
0.1875
0.1875
0.1873
0.1874
0.1672
0.1870
0.1873
0.1873
0.1872
0.1371
0.1422
0.2202
0.2203
0.2203
0.2202
0.2203
0.2203
0.1373
0.1370
0.1370
0.1370
0.1370
0.1016
0.1373
0.1370
0.1370
0.1370
0.1370
0.1358
0.1778
0.1772
0.1772
0.1772
0.1772
0.1772
0.1110
0.1110
0.1110
0.1110
0.1110
0.0046
0.1110
0.1110
0.1110
0.1110
0.1110
0.1104

0.1447
0.1447
0.1447
0.1447
0.1447
0.1447

AMAE

ML
1.4584
1.7365
1.4217
1.4299
1.4144
2.9972
1.4603
1.7459
1.5279
1.4299
1.4093
2.3971
0.8909
0.8907
0.8906
0.8919
0.8906
0.8906
0.8460
0.8313
0.8313
0.8313
0.8313
0.9006
0.8461
0.8310
0.8310
0.8310
0.8310
0.8304
0.8640
0.8632
0.8632
0.8632
0.8632
0.8632
0.8121
0.8121
0.8121
0.8121
0.8121
0.8106
0.8117
0.8117
0.8117
0.8117
0.8117
0.8106

0.8474
0.8474
0.8474
0.8474
0.8474
0.8474

MML
0.9741
0.9454
0.9382
0.9388
0.9298
0.9208
0.9700
0.9434
0.9369
0.9380
0.9349
0.9123
0.8897
0.8895
0.8895
0.8895
0.8895
0.8895
0.8434
0.8287
0.8287
0.8287
0.8287
0.8279
0.8435
0.8284
0.8284
0.8284
0.8284
0.8279

0.8640
0.8632
0.8632
0.8632
0.8632
0.8632
0.8117
0.8117
0.8117
0.8117
0.8117
0.8102

0.8113
0.8113
0.8113
0.8113
0.8113
0.8102

0.8474
0.8474
0.8474
0.8474
0.8474
0.8474
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Table 5.23 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = 0.45

Initial value
of

Step Sample

size Strategy
AM5FE

ML MML
AAMFE

ML MML
AMAE

ML MML
Zero OSAF 30 0)

00
(Hi)
(iv)
(v)
(vi)

4.1908
6.1720
3.7752
3.7378
3.6660
8.0343

2.439
1.896
1.828
1.770
1.699
1.531

0.3713
0.6071
0.3971
0.3871
0.3771
0.8179

0.1791
0.1697
0.1699
0.1698
0.1700
0.1321

1.2694
1.4419
.2057
.2045
.1907
.7050

1.0553
0.9825
0.9724
0.9647
0.9541
0.8791

Estimated 30
(ii)
(iii)
(iv)
(v)
(vi)

4.1C96
6.1624
3.7513
3.3402
3.1929
2.9953

2.429
1.872
1.787
1.586
1.505
1.425

0.3776
0.6183
0.3935
0.3687
0.3960
0.3893

0.1798
0.1699
0.1643
0.1623
0.1617
0.1615

.2694

.4451

.2059

.1667
0,9975
0.9883

1.0514
0.9775
0.9656
0.9640
0.9538
0.7738

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

TSAF

OF.AF

OSAF

TSAF

OSAF

OSAF

TSAF

30

60

60

60

120

120

120

(i)
00
(iii)
(iv)
(v)
(vi)

(i)
(•i)
(iii)
{iv)
(v)
(vi)

(«)
(ii)
(iii)
(iv)
(v)
(vi)
(')
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
00
(iii)
(iv)
{v\
(vi)

1.2899
1.2872
1.2856
1.2888
1.2856
1.2856
1.6328
1.1472
1.1472
1.1472
1.1472
1.1343
1.6588
1.1194
1.1194
1.1194
1.1265
1.0950
1.2520
1.2476
1.2476
1.2476
1.2476
1.2476
1.4362
1.0314
1.0314
1.0314
1.0314
1.0290
1.4730
1.0282
1.0282
1.0282
1.0282
1.0290
1.2-351
1.2248
1.2248
1.2248
1.2248
1.2248

1.287
1.283
1.283
1.283
1.283
1.283
1.679
1.143
1.143
1.143
1.143
1.031
1.655
1.115
1 115
1.115
1.122
1.091
1.251
1.247
1.247
1.247
1.247
1.247
1.435
1.030
i.030
1.030
1.030
1.02.8
1.472
1.027
1.027
1.027
1.027
1.028
1.235
1.224
1.224
1.224
1.224
1.22-1

0.2456
0.2453
0.2453
0.2454
0.2453
0.2453
0.1397
0.1404
0.1404
0.1404
0.1404
0.1317
0.1399
0.1406
0.1406
0.1406
0.1406
0.1387
0.1999
0.2004
0.2004
0.2004
0.2004
0.2004
0.1141
0.1141
0.1141
0.1141
0.1141
0.1126
0.1140
0.1140
0.1140
0.1140
0.1140
0.1135
0.1641
0,1639
0.1639
0.1639
0.1639
0.1639

0.2454
0.2453
0.2452
0.2453
0.2452
0.2452
0.1376
0.1384
0.1384
0.1384
0.1384
0.1321
0.1378
0.1385
0.1385
0.1385
0.1385
0.1366
0.1999
0.2004
0.2004
0..'.004
0 2004
0.2004
0.1133
0.1133
0.1133
O.M33
0.1133
0./116
0.H32
0.K32
0.1132
0.H22
0.1132
0.1127

0.1641
0.1639
0.1639
0.1639
0.1639
0.1639

0.9393
0.9384
0.9379
0.9389
0.9379
0.9379
0.9188
0.8458
0.3458
0.8458
0.8458
0.8405
0.9155
0.8429
0.8429
0.8429
0.8437
0.8401
0.9150
0.9137
0.9137
0.9137
0.9137
0.9137
0.8628
0.8181
0.8181
0.8181
0.8181
0.8172

0.S660
0.8169
0.8169
0.8169
0.S169
0.8172

0.9006
0.8976
0.8976
0.8976
0.8976
0.8976

0.9384
0.9373
0.9371
0.9373
0.9370
0.9370
0.9! 70
0.8440
0.8440
0.8440
0.8440
0.8398
0.9137
0.8411
0.8411
0.8411
0.8419
0.8383
0.9149
0.9136
0.9136
0.9136
0.9136
0.9136
0.8624
0.8177
0.8177
0.8177
0.8177
0.8168

0.8656
0.8165
0.8165
0.8165
0.81^5
0.S16&

0.9006
0.89/6
0.8976
0.8976
0.S976
0.8976
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Table 5.24 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using diiTerent strategies, sample sizes, X2 design matrix when y = 0.60

Initialvalue Step" Sample AMSFE AAMFE AMAE
o f g ° size Strategy ML MML ML MML ML MML

Zero OSAF 30

(ii)
(iii)
(iv)

(v)
(vi)

3.0655
2.8011
2.4488
3.5742
2.2031
3.4941

2.734

2.089
1.884
1.874
1.726

0.2350
0.2S13
0.2366
0.3(508
0.2369
0.3305

0.1690
0.1707
0.1706
0.170S
0.1708
0.1704

1.2122
1.1531
1.1034
1.1968
1.0639
1.1904

1.1417
1.0276
1.0272
0.9961
0.9937
0.9042

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

30

30

60

60

60

120

120

120

(i)
(•»)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(»0
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
(ii)
(iii)
(iv)

(v)
(vi)

(i)
('<)
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)
(vi)

0)
(ii)
(iii)
(iv)

(v)
(vi)

3.1228
2.7940
2.4430
3.5403
2.2536
3.1504
1.44u<S
1.4452
1.4449
1.4454
1.4446
1.4446
2.3374
1.3111
1.3028
1.1S68
1.1806
1.1741

1.6588
1.1194
1.1194
1.1194

1.1265
1.0508

2.2273
1.2568
1.2473
1.1532
1.1528
1.1528

2.3421
1.0730
1.0568
1.0657
1.0495
1.0572
2.3434
1.0715
1.0525
1.0663
1.0532
1.0080
1.4243
1.3833
1.3832
1.3833
1.3832
1.3832

2.797
2.081
2.080
1.864

1.931
1.620

1.446
1.442
1.442
1.442
1.442
1.442

2.317
i.256
1.256
1.169
1.168
1.168
1.655
1.115
1.115
1.115
1.122
1.034

2.208
1.218
1.218
1.134
1.141
1.141

2.332
1.048
1.048
1.040
1.040
1.034

2.335
1.046
1.046
1.034
1.034
1.008
1.424
1.383
1.383
1.383
1.383
1.3S3

0.2382
0.2S40
0.2398
0.3620
0.2421
0.3201

0.2752
0.2754
0.2751
0.2756
0.2751
0.2751

0.1382
0.1366
0.1365
0.1365
0.1365
0.1405

0.1399
0.1406
0.1406
0.1406
0.1406
0.1049

0.1380
0.1364
0.1363
0.1363
0.1363
0.1363

0.1052
0.1053
0.1052
0.1053
0.1053
0.1061

0.1051
0.1051
0.1051
0.1051
0.1051
0.1023

0.1699
0.1683
0.1683
0.1683
0.1683
0.1683

0.1692
0.170S
0.1708
0.1710
0.1709
0.1603
0.2750
0.2750
0.2749
0.2749
0.2749
0.2749
0.1373
0.1356
0.1356
0.1356
0.1356
0.1219

0.1378
0.1385
0.1385
0.1385
0.1385
0.1047

0.1371
0.1354
0.1354
0.1354
0.1354
0.1354

0.1050
0.1050
0.1050
0.1050
0.1050
0.1000

0.1048
0.1048
0.1048
0.1048
0.1048
0.1010
0.1698
0.1683
0.1683
0.1682
0.1682
0.1682

1.2187
1.1525
1.1030
1.1940
1.0808
1.1713

0.9975
0.9964
0.9963
0.9965
0.9961
0.9961
1.0530
0.8727
0.8713
0.8558
0.8542
0.8504

0.9155
0.8429
0.8429
0.8429
0.8437
0.8227

1.0435
0.8648
0.8633
0.8504
0.8502
0.8502

1.0021
0.8277
0.8242
0.8261
0.8226
0.8238

1.0042
0.8264
0.8223
0.8252
0.8218
0.7779

0.9658
0.9542
0.9542
0.9542
0.9542
0.9542

1.1470
1.0261

1.0257
0.9943
1.0077

0.8787
0.9968
0.9955
0.9955
0.9953
0.9953
0.9953

1.0478
f- 3640
0.8640
0.8509
0.8506
0.8504

0.9137
0.8411
0.S411
0.8411

0.8419
0.8188

1.0384
0.8586
0.8586
0.8454
0.8468
0.8468

0.9995
0.8222
0.8222
0.8207
0.8207
0.8188

1.0020
0.8206
0.8206
0.8187
0.8187
0.7898

0.9658
0.9541
0.9541
0.9541
0.9541
0.9541
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Table 5.25 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = 0.75

Initial value
of £0

Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30 (i)

00
(iii)
(iv)
(v)
(vi)

3.9323
4.0991
3.5027
5.3615
3.1392

12.1559

2.837
2.444
2.427
2.052
2.012
1.954

0.2686
0.3224
0.2706
0.4001
0.2711
2.9225

0.1598
0.1613
0.1616
0.1619
0.1624
0.1501

1.3648
1.3300
1.2641
1.3342
1.1852
3.2580

1.2537
1.1606
1.1574
1.0752
1.0680
1.0019

Estimated OSAF 30
(ii)
(iii)
(iv)
(v)
(vi)

3.8520
4.0263
3.4395
5.2703
3.1830

12.1997

2.743
2.397
2.374
1.990
2.052
1.844

0.2679
0.3231
0.2698
0.4009
0.2703
2.8852

0.1597
0.1612
0.1615
0.1618
0.1623
0.1425

1.3447
1.3099
1.2449
1.3109
1.1919
2.9779

1.2306
1.1426
1.1392
1.0550
1.0726
1.002

Zerc TSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.6662
1.6655
1.6639
1.6655
1.6638
1.6638

1.663
1.660
1.661
1.660
1.661
1.661

0.2878
0.2877
0.2877
0.2876
0.2876
0.2876

0.2873
0.2872
0.2872
0.2871
0.2872
0.2872

1.0687
1.0684
1.0679
1.0684
1.0679
1.0679.

1.0678
1.0667
1.0670
1.0666
1.0669
1.0669

Zero OSAF 60 0)
(ii)
(iii)
(iv)
(v)
(vi)

2.2594
1.5399
1.528

1.3912
1.3679
1.3231

2.20
1.516
1.504
1.320
1.308
1.254

0.1279
0.1277
0.1276
0.1277
0.1278
0.1262

0.1279
0.1275
0.1276
0.1277
0.1278
0.1071

1.0986
0.9454
0.9429
0.9088
0.9035
0.8334

1.0859
0.939

0.9357
0.8929
0.8894
0.7839

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.4626
1.3760
i .3759
1.2579
1.4854
1.4307

1.440
1.379
1.378
1.234
1.424
1.333

0.1295
0.1304
0.1305
0.1307
0.1308
0.1262

0.1296
0.1304
0.1306
0.1309
0.1312
0.1263

0.9640
0.9363
0.9362
0.8974
0.9631
0.9488

0.9570
0.9371
0.9367
0.8898
0.9448
0.9272

Zero TSAF 60 0)
(ii)
(iii)
(iv)
(v)
(vi)

1.5961
1.5824
1.5824
1.5823
1.5822
1.5822

1.596
1.582
1.582
1.582
1.582
1.582

0.2281
0.2248
0.2248
0.2248
0.2247
0.2247

0.2281
0.2247
0.2248
0.2245
0.2246
0.2246

1.0330
1.0281
1.0281
1.0281
1.0281
1.0281

1.0329
1.0281
1.0281
1.0280
1.0280
1.0280

Zero OSAF 120 (0
(ii)
(iii)
(iv)
(v)
(vi)

2.7565
1.2321
1.2222
1.1162
1.1063
1.1076

2.713
1.142
1.142
1.062
1.062
1.057

0.1060
0.1041
0.1041
0.1043
0.1044
0.0053

0.1060
0.1043
0.1043
0.1044
0.1044
0.0053

1.1338
0.8605
0.8582
0.8390
0.8367
0.8350

1.1243
0.8413
0.8413
0.8266
0.8266
0.8232

Estimated OSAF 120 0)
(ii)
(iii)
(iv)
(v)
(vi)

2.5936
1.2195
1.2022
1.1085
1.0858
1.1613

2.561
1.138
1.138
1.054
1.046
1.000

0.1060
0.1041
0.1042
0.1044
0.1044
0.1138

0.1060
0.1044
0.1044
0.1045
0.1045
0.1023

1.1093
0.8551
0.8517
0.8352
0.8303
0.8476

1.1017
0.8373
0.8373
0.8221
0.8210
0.8192

Zero TSAF 120 (i)
(ii)
(i'i)
(iv)
(v)
(vi)

1.6342
1.5817
1.5817
1.5809
1.5809
1.5809

1.634
1.581
1.581
1.580
1.580
1.580

0.1899
0.1841
0.1841
0.1841
0.1841
0.1841

0.1898
0.1841
0.1841
0.1841
0.1841
0.1841

1.0369
1.0203
1.0203
1.0201
1.0201
1.0201

1.0368
1.0201
1.0201
1.0200
1.0200
1.0200
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Table 5 .26 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X2 design matrix when y = 0.90

Initial value

of
Step Sample

size Strategy
AMSFE AAMFE

ML MML ML MML
AMAE

ML
/.ero OSAF 30 0)

(ii)
(iii)
(iv)
(v)
(vi)

2.4244
2.6099
2.3402
2.5030
2.1549
7.9052

2.0774
2.0001
1.9820
1.8224
1.7996
1.7184

0.2338
0.2614
0.2349
0.2879
0.2360
3.6075

0.167
0.168
0.168
0.169
0.169
0.167

Estimated OSAF 30 (0
(ii)
(iii)
(iv)
(v)
(vi)

2.0394
2.2284
1.9723
2.1695
2.1450
7.8726

1.6862
.1.6224
1.6091
1.4970
1.7868
.3012

Zero TSAF 30 )
(ii)
(iii)
(iv)
(v)
(vi)

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

.8908

.8920

.8915

.8915

.8913

.8913

.9756

.7835

.7827
1.5423
1.5401
2.9952

0.2341
0.2654
0.2351
0.2908
0.2351
3.5453

0.167
0.168
0.168
0.169
0.169
0.J63

.8896

.8901

.8903

.8899

.8901

.8901

0.3202
0.3201
0.3204
0.3200
0.3204
0.3204

0.319
0.319
0.320
0.319
0.320
0.320

.9288

.8257

.8193

.5101

.5028
2.6518

0.1295
0.1305
0.1305
0.1307
0.1308
0.3195

0.129
0.130
0.130
0.130
0.131
0.143

1.2066
1.2194
1.1813
1.1911
1.1288
3.1258
1.1006
1.1183
1.0810
.1005
.1255

3.1212

.1046

.0504

.0501
0.9781
0.9773
1.7580

MML
.1421
.1197
.1144
.0683
.0616
.0191
.0340
.0153
.0117

0.9781
1.0583
0.9941

.0910
1.0600
1.0578
0.9682
0.9657
1.5119

Estimated

Zero

Zero

F-'imated

Zero

OSAF

TSAF

OSAF

OSAF

TSAF

60

60

120

120

120

(i)
(ii)
(iii)
(iv)
(v)
(vi) :
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i) :
('')
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

.4626 1

.3760 1

.3759 1

.2579 1

.4854 1
'.9612 2
.8300 1
.8296 1
.8296 1
.8287 1
.8289 1
.8289 1

'.1376
.8690 1
.8636 1
.5748
.5693 1
.5011
.6309
.4651

1.4628
1.2946
1.5186
1.4811
1.8159
1.8107
1.8107
1.8058
1.8057
1.8057

.4409

.3795

.3785

.2348

.4241
..7515
.8300
.8299
.8300
.8285
.8289
.8289
.9974
.6116
.6116
.3040
.3040
.2331
.5570
,3377
.3377
.1459
.2416
.1989
.8143
.8072

1.8072
1.8042
1.8042
[.8042

0.1295
0.1304
0.1305
0.1307
0.1308
0.2998
0.2504
0.2505
0.2505
0.2497
0.2497
0.2497
0.1097
0.1103
0.1103
0.1105
0.1105
0.1033
0.1098
0.1104
0.1104
0.1107
0.1107
0.9733
0.2140
0.2138
0.2138
0.2131
0.2131
0.2131

0.129 (3.9640 0.9570
0.130 0.9363 0.9371
0.130 0.9362 0.9367
0.130 (
0.131 (
0.130
0.250
0.250
0.250
0.249
0.249
0.249
0.110
0.110
0.110
0.111 (
0.111 (
0.103 (
0.110 (
0.110 (
0.110 (
0.111 (
0.111 (
0.110

0.214
0.213
0.213
0.212
0.212
0.212

).8974 0.8898
).9631 0.9448
.6165

1.1079
1.1075
.1075

1.1072
1.1072
1.1072
1.1326
.0613 (

1.0597 (
3.9785 (
3.9769 (
3.9782 (
3.9971 (
3.9497 (
3.9490 <
3.8984 <
3.9613 1
3.9572

1.0957
1.0944
2.0944
1.0928
1.0927
1.0927

.4637

.1079

.1076

.1077

.1071

.1073
1.1073
.0917

3.9883
3.9883
3.9014
3.9014
3.8803
j.y/M
3.9119
3.9119
3.8538
3.8815
3.7905

1.0953
1.0932
1.0932
1.0923
1.0923
1.0923

i I
I
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Table 5.27 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = - 0.90

Initial value
of £0

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size

30

30

30

60

60

60

120

120

120

Strategy

(i)
(ii)
(iii)
(«v)
(V)

(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)

AMSFE

ML
14.467
14.473
14.467
14.474
14.467
13.733
14.466
14.473
14.466
14.474
14.466
13.738

1.864
1.864
1.864
1.864
1.864
6.948
6.989
6.948
6.998
6.948
4.549
6.948
6.989
6.947
6.998
6.948
4.445
1.844
1.844
1.844
1.844
1.844
5.782
5.373
5.354
4.825
4.805
4.549
5.776
5.366
5.346
4.816
4.795
4.553
1.820
1.820
1.820
1.820
1.820

MML
10.5014
8.7219
8.7369
8.7268
8.7208
8.3022

10.4989
8.7181
8.7331
8.7227
8.7167
8.3061
1.8679
1.8679
1.8682
1.8678
1.8682
4.7991
4.3146
4.3004
4.2309
4.2166
2.3404
4.7912
4.3045
4.2902
4.2201
4.2057
2.4148
1.8448
1.8446
1.8446
1.8446
1.8446
4.1507
3.2795
3.2795
2.4235
2.4235
2.3404
4.1352
3.2602
3.2602
2.3989
2.3987
2.3403
1.8207
1.8207
1.8207
1.8207
1.8207

AAMFE

ML
7.1720
7.1790
7.1720
7.1880
7.1720
6.8094
7.1551
7.1616
7.1551
7.1685
7.2203
7.1949
0.1022
0.1020
0.1022
0.1019
0.1022
2.0231
2.0309
2.0231
2.0315
2.0231
1.4092
1.9327
1.9406
1.9317
1.9436
2.0253
1.3892
0.0677
0.0678
0.0677
0.0678
0.0677
3.1580
3.0119
3.0021
2.7767
2.7669
6.4092
3.1629
3.0131
3.0042
2.7748
2.8483
6.6041

0.0676
0.0675
0.0675
0.0671
0.0671

MML

AMAE

ML MML
5.0882 7.2811 5.3763
4.2004 7.2867 4.5486
4.2040 7.2811 4.5529
4.1942 7.2942 4.5426
4.1888 7.2811 4.5384
3.3241 7.1991 4.4910
5.0662 '7.2495 i5.3438
4.1831 7.2548 4.5225
4.1871 7.2495 4.5271
4.1841 7.2595 4.5236
4.2232 7.3250 4.5667
4.1273 7.2519 4.4639
0.1046 1
0.1054 ]
0.1054 1
0.1053
0.1054 ]

.0934 1

.0934 1

.0934 1

.0933 1

.0934 1
1.3783 2.4194
1.2312 2.4262
1.2266 IU194
1.2158 2.4280
1.2111 2.4194
0.9939
1.3231 :

.9060
'.3059

1.1878 2.3129
1.1840 :
1.1702 :
1.2132 :
0.7892
0.0701
0.0695
0.0695
0.0695
0.0695

2.2730 :
1.8279 .
1.8279 I
1.4196 :
1.4196 :
2.1939 (
2.2810 .
1.8409 .
1.8409 .
1.4230
1.4267 .
2.6739

0.0675
0.0667
0.0667
0.0656
0.0656

'.3054
1.3155
'.4238
.8455
.0859
.0859
.0859
.0859
.0859

5.3473 ;
5.2077 :
$.1984 i
'..9870
2.9777
5.9060 :
$.3287 :
5.1887 i
5.1799 :
2.9655
5.0590
5.8773 .

1.0782
1.0781
1.0781
1.0781
1.0781

.0945

.0944

.0946

.0945

.0946

.8594

.7323

.7282

.7156

.7115

.0457

.7836

.6704

.6671

.6555

.7109

.0321

.0863

.0862

.0862

.0862

.0862
1.5468
1.1385
1.1385
.7606
.7606

$.0457
1.5352
1.1334
1.1334
.7511

1.7646
5.0481

1.0783
1.0781
1.0781
1.0781
1.0781



Chapter 5 Forecasting Performana 168

Table 5.28 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using differeat strategies, sample sizes, X3 design matrix when y= -0.75

Initial value

Of ^o

Zero

Estimated

Step Sample

size
OSAF 30

OSAF 30

Strategy

0)
00
(iii)
(iv)
(v)
(vi)

(i)
(•0
(iii)
(iv)
(v)
(vi)

AMSFE
ML

20.416
20.483
20.376
20.866
20.376
19.701
20.415
20.481
20.374
20.865
20.374
19.700

MML
12.9416
10.0732
10.0701
10.1192
10.0701
9.9562

12.9390
10.0702
10.0672
10.1162
10.0672
9.5914

AAMFE

ML
8.2457
8.2804
8.2263
8.3955
8.2263
5.9963
8.2745
8.3079
8.2566
8.4247
8.2914
5.9843

MML
5.0992
3.8904
3.890S
3.9075
3.8908
2.8562
5.1205
3.9071
3.9076
3.9251
3.9206
2,7453

AMAE

ML
8.3851
8.4180
8.3667
8.5288
8.3667
7.9589
8.4033
8.4349
8.3864
8.5450
8.4341
7.6543

MML
5.4511
4.3192
4.3187
4.3349
4.3187
4.2297
5.4663
4.3305
4.3301
4.3470
4.3439
4.0266

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

30

60

60

60

120

120

120

(i)
(>i)
(iii)
(iv)
(v)
0)
(ii)
(iii)
(iv)
(v)
(vi)
(•)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(i)
('0
(iii)
(iv)
(v)
(vi)

(i)
(»)
(iii)
(iv)
(v)
(vi)

(0
(ii)
(iii)
(iv)
(v)

.592

.592 1

.592

.592

.592

.5957

.5957

.5957

.5957

.5957
13.311 5.6644
12.929 4.0260
12.639 i
12.924 :
12.570 :
11.911 :
13.310 i
12.927 i

kO259
1.9689
(.9512
1.7237
i.6594
1.0193

12.638 4.0192
12.922 :
12.567 :
1 .913 :

.574

.574

.574

.574

.574
10.076 i
4.100
4.028
3.732
3.593
3.468

10.064 !
4.089
4.016
3.719
3.580
3.470
1.563
1.563
1.563
1.563
1.563

1.9623
1.9457
1.7247
.5725
.5724
.5724
.5723
.5723

3.2330
.7721
.7721
.3688
.3688
.3315

5.2214
1.7597
1.7597
1.3559
1.3561
.3313

1.5632
.5630

1.5630
1.5629
1.5629

0.1210
0.1210
0.1210
0.1209
0.1210
2.7184
2.6624
2.5952
2.6575
2.5742
4.2183
2.7190
2.6688
2.599!
2.6622
2.6266
2.5066
0.0991
0.0990
0.0986
0.0991
0.0987
2.9726
1.5565
1.5350
1.4168
1.3630
1.2932
3.0586
1.5782
1.5557
1.4402
1.4049
1.3359
0.1106
0.0988
0.0988
0.0987
0.0986

0.1252
0.1249 1
0.1251 1
0.1250
0.1251 1
1.2872 :
0.9449 :
0.9449 :
0.9332 2
0.9262 :
1.0925 f
1.2739 :
0.9308 :
0.9308 I
0.9196 :
0.9367 :

.0136

.0136

.0136

.0135

.0136
1.2329
1.1800
S.I 158
1.1790
1.0974
5.2219 :
1.2187
1.1693
1.1031
1.1653
1.1713

0.9255 2.2120
0.0950 1
0.0944 1
0.0944
0.0943
0.0944
2.3450 :
0.7027
0.7027
0.5574
0.5574 1
0.4848
2.4073 :
0.7038
0.7038
0.5544
0.5551
0.4804
0.1094
0.0962
0.0962
0.0962
0.0962

.0059

.0059

.0058

.0059

.0059
1.2998 :
.9542
.9337
.8212
.7788
.7576

1.3705 :
.9649
.9429
.8349
.8068
.7647
.0026
.0012
.0012
.0012
.0012

.0155

.0154

.0155

.0154

.0155

.8514

.5225

.5225

.5106

.5050
>.0616
.8323
.5068
.5068
.4965
.5126
.3377
.0052
.0050
.0050
.0050
.0050

1.7364
.1830
.1830
.0472
.0472
.0446

i.7850
.1778
.1778

1.0394
.0416
.0311

1.0025
1.0010
1.0010
1.0010
1.0010
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Table 5.29 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = - 0.60

Initial value

of

Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML

AMAE

ML MML
z.ero

Estimated

Zero

OSAF

TSAF

30

30

30

CO
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)

(iv)
(v)
(vi)

(»)
(ii)
(iii)
(iv)

(v)

31.099
30.971
30.820
30.922
30.820
30.113
31.096
30.969
30.818
30.920
30.817
30.112

1.422
1.422
1.422
1.422
1.422

15.6378
11.9706
11.9669
11.9632
11.9595
11.9558
15.6362
11.9686
11.9649
11.9686
11.9653
11.4251

1.4221
1.4220
1.4220
1.4220
1.4220

96443
9.6137
9.5566
9.8751
9.556(5
9.0665
9.6871
9.6652
9.6007
9.9309
9.6240
9.5729
0.1501
0.1505
0.1504
0.1506
0.1504

4.9262
3.7210
3.7206
3.7210
3.7206
3.6358
4.9268
3.7291
3.7287
3.7291
3.7240
3.7943
0.1506
0.1507
0.1507
0.1507
0.1507

9.8521
9.8193
9.7665
9.7688
9.7665
9.3528
9.8919
9.8674
9.8076

10.1178
9.8539
9.2990
0.9623
0.9624
0.9624
0.9625
0.9624

5.3453
4.1962
4.1958
4.1963
4.1958
4.1137
5.3453
4.2059
4.2054
4.2059
4.2070
4.4220
0.9622
0.9620
0.9620
0.9620
0.9620

Zero OSAF 60 (i)
(>0
(iii)

(iv)
(v)
(vi)

20.235
16.831
16.469
17.467
16.466
15.035

6.7715
3.1617
3.1615
3.0979
3.0977
1.9161

2.8897
2.4807
2.4271
2.5637
2.4234
1.2285

1.0641
0.6410
0.6410
0.6307
0.6307
0.6204

3.519.9
3.0916
3.0393
3.1783
3.0362
1.9992

.6815

.2469

.2469

.2372

.2372

.0142

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)

(v)
(vi)

20.235
16.831
16.469
16.078
15.195
14.312

6.7643
3.1535
3.1533
3.0897
3.0892
2.9379

2.9533
2.5395
2.4862
2.6336
2.5575
2.4294

1.0676
0.6421
0.6421
0.6330
0.6466
0.5696

3.5708
3.1307
3.0793
3.2263
3.1538
3.1447

.6882
,2466
.2466
.2382
.2503

1,1913

Zero TSAF 60 (i)
(ii)
(iii)

(iv)
(v)

1.395
1.393
1.393
1.394
1.393

1.3916
1.3903
1.3903
1.3902
1.3902

0.1384
0.1351
0.1349
0.1363
0.1350

0.1323
0.1314
0.1314
0.1314
0.1314

0.9526
0.9517
0.9516
0.9520
0.9516

0.9503
0.9497
0.9497
0.9497
0.9497

Zero OSAF 120 (i)
(ii)
(iii)
(iv)

(v)
(vi)

3.784
1.148
1.148
1.151
1.148
1.290

3.9476
1.0216
1.0216
1.0216
1.0216
1.0187

0.7204
0.3630
0.3630
0.3670
0.3630
0.2458

0.6885
0.3064
0.3064
0.3064
0.3064
0.2058

1.2500
0.9054
0.9054
0.9086
0.9054
0.8605

1.2325
0.8638
0.8638
0.8638
0.8638
0.8579

Estimated

Zero

OSAF 120 (i) 9.011
(ii) 1

(iii) 1
(iv)

(v)
(vi)

TSAF 120 (i)

(ii)
(iii)
(iv)
(v)

.381

.370

.308

.288

.290

.366

.366

.366

.366
1.366

8.8682
1.0527
1.0527
1.0527
1.0527
1.04S6

1.3664
1.3660
1.3660
1.3660
1.3660

2.0245
0.5484
0.5371
0.5344
0.5229
0.6511

0.1467
0.1346
0.1345
0.1344
0.1344

1.9001 :
0.3597
0.3597
0.3597
0.3593
0.3634

0.1465 (
0.1348 (
0.1348
0.1348
0.1348

'..4663
1.0445
1.0342
1.0308
1.0208
1.1580

3.9444
3.9422
3.9422
3.9422
3.9422

2.3698
0.8914
0.8914
0.8914
0.8910
0.8805

0.9444
0.9423
0.9423
0.9423
0.942



Chapter 5 Forecasting Performance 170

Table 5.30 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = - 0.45

Initial value

of

Step Sample AMSFE AAMFE
size Strategy ML MML ML MML

AMAE

ML MML
Zero OSAF 30 (0

(ii)
(iii)
(iv)
(v)
(vi)

45.211
45.887
44.579
44.271
40.963
40.855

15.9993
9.9430
9.9425
9.9420
9.9425
9.5154

10.6286
10.6995
10.4625
10.2255
10.2215
10.2175

3.8287
2.4298
2.4297
2.4296
2.4297
1.1596

10.9513
11.0190
10.7900
10.5610
10.7900
10.0190

4.3927
3.0344
3.0343
3.0342
3.0343
3.0507

Estimated

Zero

OSAF

TSAF

30

30

(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
00
(iii)
(iv)
(v)

45.208
45.883
44.575
44.267
40.259
40.051

1.310
1.310
1.310
1.312
1.310

15.9982
9.9425
9.9420
9.9415
9.9415
9.5210
1.3047
1.3036
1.3036
1.3036
1.3036

10.7298
10.7975
10.562S
10.3281
10.0934
10.0587
0.1918
0.1927
0.1920
0.1942
0.1920

3.8563
2.4394
2.4393
2.4653
2.4502
2.5896
0.1855
0.1836
0.1836
0.1836
0.1836

11.0440
11.1098
10.8824
10.6550
10.4276
10.2002
0.9321
0.9325
0.9321
0.9332
0.9321

4.4174
3.0415
3.0414
3.0665
3.0529
3.0468
0.9291
0.9283
0.9283
0.9283
0.9283

Zero

Estimated

OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

OSAF 60 (i)
('')
(iii)
(iv)
(v)
(vi)

14.466
11.050
10.438
10.505
10.438
11.503
14.464
11.048
10.435
10.503
10.435
11.497

3.8330
1.9299
1.9298
1.9414
1.9298
1.8820
3.8310
1.9274
1.9273
1.9389
1.9276
1.8795

.8102

.4542

.3901

.6864

.3901

.4332

.8382
1.4689
.4088

1.7071
1.4075
1.5766

0.6290
0.4041
0.4041
0.4089
0.4041
0.3177
0.6390
0.4009
0.4009
0.4063
0.3960
0.3946

2.4657
2.0903
2.0171
2.1137
2.0171
2.6425
2.4873
2.1000
2.0288
2.0974
2.0362
2.3375

.2541

.0156

.0156

.0198

.0156

.0146

.2610

.0118

.0118

.0166

.0087

.0168
Zero

Zero

Estimated

Zero

TSAF

OSAF

OSAF

TSAF

60

120

120

120

0)
(ii)
(iii)
(iv)
(v)

0)
(it)
(iii)
(iv)
(v)
(vi)

(')
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)

(v)

1.246
1.245
1.245
1.245
1.245
1.347
1.036
1.036
1.041
1.036
1.137
3780
1.145
1.145
1.148
1.145
1.138
1.201
1,201
1.201
1.201
1.201

1.2436
1.2431
1.2431
1.2431
1.2431
1.3403
1.0256
1.0256
1.0256
1.0256
1.0185
3.9435
1.0190
1.0190
1.0190
1.0190
1.0185
1.2016
1.2015
1.2015
1.2015
1.2015

0.1654
0.1639
0.1639
0.1641
0.1639
0.2631
0.1294
0.1294
0.1327
0.1294
0.1421
0.7491
0.3654
0.3654
0.3699
0.3683
0.3631
0.1665
0.1634
0.1634
0.1635
0.1634

0.1612
0.1607
0.1607
0.1607
0.1607
0.2532
0.1168
0.1168
0.1168
0.1168
0.1117
0.7204
0.3064
0.3064
0.3064
0.3064
0.3029
0.1663
0.1631
0.1631
0.1631
0.1631

0.9052
0.9045
0.9044
0.9047
0.9044
0.9459
0.8229
0.8229
0.8257
0.8229
0.9178
1.2771
0.9065
0.9065
0.9102
0.9090
0.9084
0.8898
0.8890
0.8890
0.8890
0.8890

0.9036
0.9033
0.9033
0.9033
0.9033
0.9416
0.8162
0.8162
0.8162
0.8162
0.8114
1.2635
0.8630
0.8630
0.8630
0.8630
0.8614

0.8898
0.8890
0.8890
0.8890
0.8890
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Table 5.31 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when r=~0.30

Initial value
Of £<>

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size

30

30

30

60

60

60

120

120

120

Strategy

0)
('0
(iii)
(iv)
(v)
(vi)
(i)
(•i)
(iii)
(iv)
(v)
(vi)

(')
(ii)
(iii)
(iv)
(v)
(')
00
(iii)
(iv)
(v)
(vi)

(')
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(')
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(•0
(iii)
(iv)
(v)

AMSFE

ML
49.022
48.946
46.783
55.749
46.783
52.419
49.019
48.943
46.780
55.745
46.779
52.425

1.229
1.229
1.229
1.231
1.229
6.230
5.262
4.514
6.913
4.506
4.442
6.229
5.262
4.513
6.912
4.505
4.416
1.108
1.108
1.108
1.108
1.108
1.292
1.289
1.289
1.289
1.289
1.256
1.291
1.288
1.288
1.288
1.288
1.256
1.093
1.093
1.093
1.093
1.093

MML
13.6756
8.7914
8.7899
8.7914
8.7899
8.5154

13.6663
8.7906
8.7890
8.7906
8.7893
8.3167
1.2282
1.2267
1.2267
1.2267
1.2267
2.2616
1.3177
1.3177
1.3177
1.3177
1.3048
2.2611
1.3171
1.3171
1.3171
1.3171
1.3051
1.1081
1.1081
1.1081
1.1081
1.1081
1.0204
1.0172
1.0172
1.0172
1.0172
1.0165
LOI95
1.0163
1.0163
1.0163
1.0163
1.0165
1.0933
1.0933
1.0933
1.0933
1.0933

AAMFE

ML
9.4257
9.4039
8.9809

10.6531
8.9809
9.3567
9.4979
9.4775
9.0474

10.7451
9.0808
9.3561
0.2309
0.2305
0.2312
0.2323
0.2312
0.7909
0.6803
0.6363
0 8233
G.6342
0.6172
0.8053
0.6925
0.6485
0.8368
0.6532
0.6080
0.2285
0.2284
0.2284
0.2284
0.2284
0.3383
0.3366
0.3366
0.3366
0.3366
0.2482
0.3418
0.3384
0.3384
0.3384
0.3379
0.3327

0.2018
0.2019
0.2019
0.2019
0.2019

MML
2.48.50
1.6384
1.6383
1.6384
1.6383
1.5473
2.5068
1.6484
1.6483
1.6484
1.6489
1.4410
0.2284
0.2271
0.2271
0.2271
0.2771
0.3693
0.2945
0.2945
0.2945
0.2945
0.2813
0.3693
0.2965
0.2965
0.2965
0.2980
0.2958
0.2284
0.2283
0.2283
0.228J
0.2283
0.2957
0.2940
0.2940
0.2940
0.2940
0.2720
0.2974
0.2940
0.2940
0.2940
0.2940
0.2904

0.2015
0.2016
0.2016
0.2016
0.2016

AMAE

ML
9.8519
9.8320
9.4170

11.0531
9.4170

11.6352
9.9219
9.9052
9.4834

11.1443
9.5112

11.6161
0.9129
0.9129
0.9128
0.9142,
0.9128

.4356

.3166

.2693

.4701

.2671

.2061

.4446

.3230

.2745

.4807

.27/8
;.2056
0.8674
0.8673
0.8673
0.8674
0.8673

0.8940
0.8925
0.8925
0.8925
0.8925
0.7916
0.8968
0.8939
0.8939
0.8938
0.8933
0.8704

0.8604
0.8604
0.8604
0.8604
0.8604

MML
3.1200
2.2825
2.2824
2.2825
2.2824
2.1994
3.1398
2.2908
2.2907
2.2PO8
2.2900
2.0026
0.9118
0.9111
0.9111
0.9111
0.9111
1.0043
0.9215
0.9215
0.9215
0.9215
0.9211
1.0036
0.9219
0.9219
0.9219
0.9226
0.9112
0.8671
0.8671
0.8671
0.8671
0.8671
0.8610
0.8595
0.8595
0.8595
0.8595
0.8578
0.8621
0.8592
0.8592
0.8592
0.8592
0.8578

0.8603
0.8604
0.8604
0.8604
0.8604
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Table 5.32 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = -0.15

Initial value Step Sample ' ~ ~ ~
of size Strategy

AMSFE
ML MML

AAMFE
ML MML

AMAE

ML MML
OSAF 30 (0

(ii)
(iii)
(iv)
(v)
(vi)

41.7958
44.7685
41.6070
57.6594
41.6070
54.3667

7.065
4.784
4.775
4.726
4.717
4.566

6.8543
7.3717
6.7963
9.3246
6.7963
3.5394

1.2837
0.8775
0.8777
0.8663
0.8665
0.8224

7.4096
7.9270
7.3547
9.8430
7.3547

10.1524

1.9515
.5605
.5590
.5495
.5480
.5792

Estimated OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

41.7762
44.7450
41.5875
57.6345
41.5964
54.3687

7.078
4.778
4.772
4.719
4.713
4.533

6.9020
7.4253
6.8430
9.3937
6.8868
9.4428

1.2910
0.8842
0.8844
0.8723
0.8725
0.8817

7.4576
7.9818
7.4019
9.9153
7.4401

10.1073

.9592

.5666

.5655

.5548

.5552

.5750
Zero TSAF 30 (i)

(ii)
(iii)
(iv)
(v)

1.2325
1.2314
1.2323
1.2371
1.2323

1.220
1.220
1.220
1.220
1.220

0.2639
0.2649
0.2641
0.2667
0.2641

0.2567
0.2565
0.2566
0.2565
0.2566

0.9235
0.9233
0.9234
0.9259
0.9234

0.9174
0.9174
0.9173
0.Q174
0.9173

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

3.4186
2.4967
2.4863
3.6252
2.4863
3.4519

1.351
1.167
1.167
1.167
1.167
1.166

0.4781
0.4362
0.4344
0.4990
0.4344
0.0557

0.2983
0.2827
0.2827
0.2827
0.2827
0.0217

1.0984
1.0579
1.0560
1.1292
1.0560
1.1403

0.9159
0.9006
0.9006
0.9006
0.9006
0.8985

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

3.4192
2.4970
2.4867
3.6254
2.4865
3.4512

1.351
1.168
1.168
1.168
1.168
1.166

0.4797
0.4424
0.4397
0.5059
0.4441
0.4714

0.2957
0.2827
0.2827
0.2827
0.2827
0.2784

1.0993
1.0625
1.0600
1.1351
1.0630
1.1370

0.9140
0.9008
0.9008
0.9008
0.9008
0.8985

Zero TSAF 60 (i)
('0
(iii)
(iv)
(v)

1.1087
1.1086
1.1086
1.1088
1.1086

1.108
1.108
1.108
1.108
1.108

0.2285
0.2284
0.2284
0.2284
0.2284

0.2284
0.2283
0.2283
0.2283
0.2283

0.8674
0.8673
0.8673
0.8674
0.8673

0.8671
0.8671
0.8671
0.8671
0.8671

Zero OSAF 120 (i)
(ii)
(iii)
(iv)

(v)
(vi)

1.0162
1.0162
1.0162
1.0162
1.0162
1.0165

1.013
1.013
1.013
1.013
1.013
1.013

0.3018
0.3018
0.3018
0.3018
0.3018
0.3018

0.2897
0.2897
0.2897
0.2897
0.2897
0.2772

0.8596
0.8596
0.8596
0.8596
0.8596
0.8585

0.8543
0.8543
0.8543
0.8543
0.8543
0.8533

Estimated OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.0161
1.0161
1.0161
1.0161
1.0161
1.0165

1.013
1.013
1.013
1.013
1.013
1.013

0.3019
0.3019
0.3019
0.3019
0.3019
0.2986

0.2898
0.2898
0.2898
0.2898
0.2898
0.2867

0.8596
0.8596
0.8596
0.8596
0.8596
0.8585

0.8543
0.8543
0.8543
0.8543
0.8543
0.8533

Zero TSAF 120
(ii)
(iii)
(iv)
(v)

1.0237
1.0237
1.0237
1.0237
1.0237

1.023
1.023
1.023
1.023
1.023

0.2422
0.2422
0.2422
0.2422
0.2422

0.2420
0.2420
0.2420
0.2420
0.2420

0.S428
0.8428
0.8428
0.8428
0.8428

0.8428
0.8428
0.8428
0.8428
0.8428

k
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Table 5.33 AMSFE, AMAFE and AAMFE of oae and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0

Initial value Step Sample AMSFE AAMFE AMAE
o f £° ^ L Strategy ML MML ML MML ML MML

Cero OSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

34.206
39.069
34.1,13
35.156
34.110
49.266

6.1399
3.9950
3.9226
3.9591
3.8867
3.6912

4.6100
5.1542
4.5905
4.9691
4.5905
5.1954

0.8295
0.6806
0.6578
0.6701
0.6473
0.6335

5.2309
5.7644
5.2089
5.5486
5.2085
6.1989

1.5163
1.3597
1.3376
1.3517
1.3296
.2853

Estimated OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

34.197
39.059
34.104
32.200
34.115
49.264

6.1411
3.9R85
3.9161
3.9533
3.8947
3.6887

4.6297
5.1766
4.6082
4.0025
4.6150
5.1919

0.8306
0.6811
0.6583
0.6355
0.6487
0.6328

5.2519
5.7894
5.2283
4.5862
5.2365
6.1823

.5187

.3610

.3390

.3525

.3316

.2523
Zero TSAF 30 (i)

(ii)
(iii)
(iv)
(v)

.254

.256

.254

.262

.254

1.2456
1.2455
1.2453
1.2455
1.2453

0.2963
0.2972
0.2964
0.2986
0.2964

0.2910
0.2909
0.2907
0.2909
0.2907

0.9379
0.9387
0.9380
0.9414
0.9380

0.9335
0.9334
0.9333
0.9334
0.9333

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

.766
1.906
1.766
2.382
1.766
2.252

1.1509
1.1509
1.1509
1.1509
1.1509
1.1491

0.3000
0.3100
0.3000
0.3455
0.3000
0.1243

0.2572
0.2572
0.2572
0.2572
0.2572
0.0069

0.9423
0.9521
0.9423
0.9893
0.9423
1.0179

0.8932
0.8932
0.8932
0.8932
0.8932
0.8911

Estimated OSAF 60 0)
(ii)
(iii)
(iv)
(v)
(vi)

1.766
1.906
1.766
2.382
1.766
2.256

1.1511
1.1511
1.1511
1.1511
1.1511
1.1491

0.2992
0.3083
0.2992
0.3423
0.3030
0.3818

0.2573
0.2573
0.2573
0.2573
0.2573
0.2527

0.9436
0.9529
0.9436
0.9889
0.9436
1.0134

0.8933
0.8933
0.8933
0.8933
0.8933
0.8911

Zero

Zero

Estimated

Zero

TSAF

OSAF

OSAF

TSAF

60

120

120

120

(i) 1
(ii) 1
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)

.114

.114

.114

.114

.114

.016

.016

.016

.016

.016

.016

.016

.016

.016

.016

.016

.016

.004

.004
1.004
1.004
1.004

1.1143
1.1143
1.1143
1.1143
1.1143
1.0149
1.0149
1.0149
1.0149
1.0149
1.0151
1.0150
1.0150
1.0150
1.0150
1.0150
1.0151
1.0048
; 0048
2.O048
1.0048
1.0048

0.2510
0.2510
0.2510
0.2512
0.2510
0.2813
0.2813
0.2813
0.2813
0.2813
0.2804
0.2813
0.2813
0.2813
0.2813
0.2813
0.2778
0.2720
0.2720
0.2720
0.2720
0.2720

0.2507
0.2507
0.2507
0.2507
0.2507
0.2735
0.2735
0.2735
0.2735
0.2735
0.2728
0.2735
0.2735
0.2735
0.2735
0.2735
0.2700

0.2719
0.2719
0.2719
0.2719
0.2719

0.8786
0.8786
0.8786
0.8788
0.8786
0.8533
0.8533
0.3533
0.8533
0.8533
0.8:̂ 22
0.8534
0.8534
0.8534
0.8534
0.8534
0.8522
0.8454
0.8454
0.8454
0.8454
0.8454

0.8785
0.8785
0.8785
0.8785
0.8785
0.8500
0.8500
0.8500
0.8500
0.8500
0.8490
0.8501
0.8501
0.8501
0.8501
0.8501
0.8490
0.8454
0.8454
0.8454
0.8454
0.8454
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Table 5.34 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0.15

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML
AMAE

ML MML
OSAF 30 (i)

00
(iii)
(iv)
(v)
(vi)

34.2062
39.0696
34.1132
52.2106
34.1109
34.5822

6.139
3.995
3.922
3.959
3.886
3.715

4.6100
5.1542
4.5905
6.9691
4.5905
0.9082

0.8295
0.6806
0.6578
0.6701
0.6473
0.5732

5.2309
5.7644
5.2089
7.5486
5.2085
5.1504

1.5163
1.3597
1.3376
1.3517
1.3296
1.2093

Estimated OSAF 30 (i)
(»)
(iii)
(iv)
(v)
(vi)

15.8970
21.8502
15.7666
36.2368
15.7483
34.5498

3.247
3.371
3.176
3.261
3.093
3.049

2.0765
2.8903
2.0526
4.5169
2.0517
3.4125

0.4439
0.4440
0.4440
0.4441
0.4448
0.4357

2.7655
3.5608
2.7342
5.1737
2.7306
5.1387

1.1567
1.1665
1.1483
1.1539
1.1394
1.1229

Zero TSAF 30 (i)
(«)
(iii)
(iv)
(v)

1.31S4
1.3198
1.3176
1.3248
1.3175

1.308
1.310
1.307
1.310
1.307

0.3240
0.3253
0.3239
0.3272
0.3238

0.3222
0.3224
0.3221
0.3223
0.3220

0.9673
0.9682
0.9670
0.9704
0.9670

0.9632
0.9636
0.9630
0.9636
0.9630

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.2675
1.5006
1.2675
1.5006
1.2675
1.4680

1.123
1.123
1.123
1.123
1.123
1.123

0.2710
0.2930
0.2710
0.2930
0.2710
0.0311

0.2500
0.2500
0.2500
0.2500
0.2500
0.0078

0.8900
0.9100
0.8900
0.9100
0.8900
0.9097

0.8790
0.8790
0.8790
0.8790
0.8790
0.8777

Estimated OSAF 60 (i)
(»')
(iii)
(iv)
(v)
(vi)

1.2677
1.5007
1.2677
1.5007
1.2676
1.4669

1.124
1.124
1.124
1.124
1.124
1.123

0.2729
0.2966
0.2729
0.2966
0.2732
0.2814

0.2500
0.2500
0.2500
0.250Q
0.2500
0.2462

0.8984
0.9219
0.8984
0.9219
0.8987
0.9109

0.8791
0.8791
0.8791
0.8791
0.8791
0.8777

Zero TSAF 60 (i)
(ii)
(iii)
(iv)
(v)

1.1509
1.1509
1.1509
1.1509
1.1509

1.150
1.150
1.150
1.350
1.150

0.2838
0.2838
0.2S38
0.2838
0.2838

0.2839
0.2839
0.2839
0.2839
0.2839

0.8974
0.8974
0.8974
0.8974
0.8974

0.8973
0.8973
0.8973
0.8973
0.8973

Zero OSAF 120 0)
(ii)
(iii)
(iv)
(v)
(vi)

1.0158
1.0158
1.0158
1.0158
1.0158
1.0149

1.015
1.015
1.015
1.015
1.015
1.014

0.2841
0.2841
0.2841
0.2841
0.2841
0.0106

0.2785
0.2785
0.2785
0.2785
0.2785
0.0103

0.8520
0.8520
0.8520
0.8520
0.8520
0.8504

0.8499
0.8499
0.8499
0.8499
0.8499
0.8484

Estimated OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1.0156
1.0156
1.0156
1.0156
1.0156
1.0143

1.014
1.014
1.014
1.014
1.014
1.013

0.2841
0.2841
0.2841
0.2841
0.2841
0.2838

0.2785
0.2785
0.2785
0.2785
0.2785
0.2780

0.8520
0.8520
0.8520
0.8520
0.8520
0.8499

0.8499
0.8499
0.8499
0.8499
0.8499
0.8356

Zero TSAF 120 0)
(ii)
(iii)
(iv)
(v)

1.0280
1.0280
1.0280
1.0280
1.0251

1.028
1.028
i.028
1.028
1.025

0.3187
0.3187
0.3187
0.3187
0.1248

0.3187
0.3187
0.3187
0.3187
0.1248

0.8674
0.8674
0.8674
0.8674
0.8171

0.8673
0.8673
0.8673
0.8673
0.8171
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Table 5.35 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0.30

Initial value
Of ^o

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size

30

30

30

60

60

60

120

120

120

Strategy

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)

(iii)
(iv)
(v)
(vi)
(»)

(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)

AMSFE

ML MML
11.882 1
17.596 1
11.641 1
27.823 1
11.589 1
26.472 1
11.888 1
17.603 1
11.651 1
27.819 1
11.667 1
16.430 1

1.431 1
1.431 1
1.428 1
1.435 1
1.428
1.297
1.147 1
1.147 1
1.132
1.132
1.131
1.349
1.141
1.141
1.131
.13!
.131
.246
.244
.244
.244
.244
.011
.011
.011

1.011
1.011
.008
.010
.010

1.010
.010

1.010
1.007
1.092
1.092
1.092
1.092
1.092

.9547

.7154

.ens

.6645

.6266

.5955

.9487

.7054

.6776

.6598

.5046

.4598

.4249

.4220

.4224

.4220

.4224

.2865

.1359

.1359

.1210

.1210

.1208

.3381

.1307

.1307

.1202

.1202

.1208

.2465

.2437

.2437

.2436

.2436

.0104

.0104
1.0104
1.0104
1.0104
1.0071
1.0097
1.0097
1.0097
1.0097
1.0097
1.0071
1.0928
1.0928
1.0928
1.0928
1.0928

AAMFE

ML
1.4458
2.1054
1.4461
3.1332
1.4461
2.0029
1.4507
2.1201
1.4510
3.1593
1.4454
2.0003
0.3516
0.3524
0.3511
0.3552
0.3511
0.2589
0.2583
0.2583
0.2582
0.2582
0.2538
0.2590
0.2584
0.2584
0.2583
0.2583
0.2538
0.3243
0.3226
0.3226
0.3224
0.3224
0.2755
0.2755
0.2755
0.2755
0.2755
0.0078
0.2754
0.2754
0.2754
0.2754
0.2754
0.2723
0.3524
0.3524
0.3524
0.3524
0.3524

MML
0.2802
0.2805
0.2805
0.2804
0.2805
0.2716
0.2805
0.2808
0.2808
0.2807
0.2800
0.2635
0.3494
0.3490
0.3489
0.3489
0.3488
0.2500
0.2494
0.2494
0.2493
0.2493
0.2451
0.2501
0.2495
0.2495
0.2494
0.2494
0.2451
0.3235
0.3217
0.3217
0.3215
0.3215
0.2718
0.2718
0.2718
0.2718
0.2718
0.2685
0.2716
0.2716
0.2716
0.2716
0.2716
0.2685

0.3525
0.3525
0.3525
0.3525
0.3525

AMAE

ML
2.1870
2.8146
2.1564
3.8626
2.1496
2.9400
2.1889
2.8255
2.1598
3.8835
2.1522
2.8430
1.0106
1.0112
1.0098
1.0128
1.0098
0.9026
0.8873
0.8873
0.8850
0.8850
0.8838
0.9037
0.8866
0.8866
0.8847
0.8847
0.8838
0.9435
0.9419
0.9419
0.9418
0.9418
0.8473
0.8473
G8473
0.8473
0.8473
0.8448

0.8470
0.8470
0.8470
0.8470
0.8470
0.8448

0.9032
0.9032
0.9032
0.9032
0.9032

MML
1.0366
1.0066
1.0014
0.9989
0.9937
0.9826
L0335
1.0043
1.0000
0.9980
0.9918
0.9715
1.0082
1.0071
1.0073
1.0071
1.0073
0.8965
0.8811
0.8811
0.8788
0.8788
0.8777
0.8976
0.8804
0.8804
0.8786
0.8786
0.8777
0.9433
0.9417
0.9417
0.9416
0.9416
0.8459
0.8459
0.8459
0.8459
0.8459
0.8434

0.8455
0.8455
0.8455
0.8455
0.8455
0.8434

0.9032
0.9032
0.9032
0.9032
0.9032
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Table 5.36 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0.45

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML
AMAE

ML MML
/.ero OSAF 30

(ii)
(iii)
(iv)
(v)
(vi)

8.6220
5.8512
8.0746
9.8400
5.0094

20.0168

2.545
1.982
1.942
1.884
1.844
1.759

0.8876
0.6508
0.8904
0.9492
0.8905
2.8915

0.3165
0.2943
0.2943
0.2944
0.2944
0.2504

.7110

.2543

.6316

.6783

.1216
2.8451

1.1438
1.0544
.0493
.0397
.0347
.0272

Estimated OSAF 30
(ii)
(iii)
(iv)
(v)
(vi)

8.6186
5.8326
8.0427
9.8453
5.0042
4.9897

2.556
1.962
2.009
2.895
1.866
1.733

0.8880
0.5088
0.8510
0.9579
0.4934
0.3937

0.3157
0.2935
0.2934
0.2936
0.2930
0.2479

.7066

.2495

.6254

.7845

.1239

.0042

.1399

.0481

.0417

.0370

.0347

.0145
Zero TSAF 30 (i)

(ii)
(iii)
(iv)
(v)

1.6220
1.6121
1.6059
1.6156
1.6055

1.615
1.602
1.601
1.602
1.601

0.4104
0.4083
0.4077
0.4094
0.4078

0.4081
0.4063
0.4061
0.4063
0.4061

.0883

.0856

.0836

.0869

.0S36

1.0862
1.0823
1.0820
1.0822
1.0819

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
00
(iii)
(iv)
(v)
(vi)

1.8053
1.1803
1.1803
1.1760
1.1760
1.1510
1.7910
1.1704
1.1704
1.1643
1.1650
1.1512

1.800
1.174
1.174
1.171
1.171
1.146
1.786
1.163
1.163
1.159
1.160
1.146

0.2520
0.2472
0.2472
0.2473
0.2473
0.0044
0.2521
0.2473
0.2473
0.2473
0.2473
0.2432

0.2475
0.2428
0.2428
0.2428
0.2428
0.0041
0.2476
0.2429
0.2429
0.2429
0.2429
0.2388

0.9661
0.8888
0.8888
0.8877
0.8877
0.8843
0.9662
0.8880
0.8880
0.8866
0.8866
0.8843

.0.9632
0.8856
0.8856
0.8849
0.8849
0.8815
0.9633
0.8847
0.8847
0.8837
0.8837
0.8815

Estimated OSAF 60

Zero TSAF 60 (')
(ii)
(iii)
(iv)
(v)

1.4116
1.3932
1.3932
1.3931
1.3931

1.411
1.392
1.392
1.392
1.392

0.3638
0.3526
0.3526
0.3527
0.3527

0.3643
0.3532
0.3532
0.3532
0.3532

.0112

.0022

.0022

.0022

.0022

1.0112
1.0022
1.0022
1.0022
1.0022

Zero OSAF 120 (
(ii)
(iii)
(iv)
(v)
(vi)

1.2517
1.0255
1.0255
1.0255
1.0255
1.0232

1.251
1.025
1.025
1.025
1.025
1.022

0.2786
0.2696
0.2696
0.2696
0.2696
0.0202

0.2760
0.2669
0.2669
0.2669
0.2669
0.0202

0.8813
0.8511
0.8511
0.8511
0.8511
0.8494

0.8804
0.8502
0.8502
0.8502
0.8502
0.8485

Estimated OSAF 120 (0
(ii)
(iii)
(iv)
(v)
(vi)

1.2475
1.0227
1.0227
1.0227
1.0227
1.0232

1.247
1.022
1.022
1.022
1.022
1.022

0.2785
0.2695
0.2695
0.2695
0.2695
0.2669

0.2758
0.2668
0.2668
0.2668
0.2668
0.2642

0.8804
0.8500
0.8500
0.8500
0.8500
0.8494

0.8794
0.8491
0.8491
0.8491
0.8491
0.8485

Zero TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

1.2313
1.2208
1.2208
1.2208
1.2208

1.231
1.220
1.220
1.220
1.220

0.4061
0.3864
0.3864
0.3864
0.3864

0.4059
0.3862
0.3862
0.3862
0.3862

0.9766
0.9593
0.9593
0.9593
0.9593

0.9766
0.9592
0.9592
0.9592
0.9592
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Table 5.37 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0.60

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML
AMAE

ML

Estimated OSAF 60

Zero TSAF 60 (i)
0 0
(>•;>
(iv)
(v)

Zero OSAF 120 (i)
(ii)
(iii)
(iv)

(v)
(vi)

Estimated OSAF 120 (i)

(iii)
(iv)
(v)
(vi)

Zero TSAF 120 0)
(ii)
(iii)
(iv)
(v)

.5679

.5304

.5315

.5300

.5311

1.567
1.531
1.531
1.530
1.530

0.4049
0.3753
0.3759
0.3754
0.3759

0.4045
0.3757
0.3757
0.3756
0.3756

2.6333
.0518
.0330
.0518
.0330
.0646

2.620
1.063
1.063
1.033
1.033
1.027

0.3014
0.2536
0.2535
0.2536
0.2535
0.2083

0.3002
0.2522
0.2521
0.2521
0.2521
0.2088

1.0713
0.8540
0.8501
0.8540
0.8501
0.8539

.3116

.0469

.0274

.0469

.0274

.0703

2.296
1.049
1.049
1.027
1.027
1.027

0.3013
0.2535
0.2534
0.2535
0.2534
0.2506

0.3001
0.2520
0.2520
0.2520
0.2520
0.2490

1.0458
0.8526
0.8483
0.8526
0.8483
0.8546

.4455

.3828

.3826

.3828

.3826

1.445
1.382
1.382
1.382
1.382

0.5121
0.4046
0.4041
0.4046
0.4041

0.5124
0.4043
0.4043
0.4041
0.4041

1.1099
1.0224
1.0223
1.0224
1.0223

MML
Zero

Estimated

Zero

Zero

OSAF

OSAF

TSAF

OSAF

30

30

30

60

0)
('•)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)

0)
(ii)
(iii)
(iv)
(v)
(vi)

6.2646
7.5672
5.6109
8.0324
5.4227

10.7773
6.3433
7.5532
5.5966
8.0159
5.4557

10.6804
.8329
.8221
.8196
.8217
.8187

'..2223
.3060
.3070
.1776
.1787
.2097

2.787
2.218
2.157
1.962
1.894
1.169
2.868
2.217
2.152
1.954
1.926
1.017
1.825
1.813
1.812
1.812
1.811
2.218
1.241
1.241
1.174
1.174
1.207

0.5300
0.7104
0.5321
0.8881
0.5323
1.0949
0.5284
0.7101
0.5305
0.8861
0.5312
0.9151
0.4309
0.4294
0.4295
0.4291
0.4291
0.2468
0.2360
0.2362
0.2361
0.2364
0.0064

0.2660
0.2681
0.2681
0.2683
0.2684
0.2413
0.2661
0.2682
0.2681
0.2684
0.2685
0.2369
0.4301
0.4290
0.4288
0.4287
0.4286
0.2441
0.2335 <
0.2335 (
0.2335 (
0.2335 (
0.0060 (

.4473

.5431
1.3400
1.6855
1.3066
.9588
.4543
.5417
.3375

1.6823
.3163

1.9497
.1549

1.1515
1.1509
1.1512
1.1505
1.0672
).9025 (
3.9029 (
1.8853 (
3.8857 (
3.8856 (

1.1945
1.0925
.0821

1.0567
1.0447
.0069

1.2023
.0916
.0807

1.0559
.0545

1.0025
1.1527
1.1487
1.1485
1.1484
i.1483
1.0652
3.8933
3.8933 .
3.8836
3.8836
3.8842

0) 2
(ii) 1
(iii) 1
(iv) 1
(v) 1
(vi) 1

..3391
.2788
.2799
.1569
.1687
.2038

2.335
1.217
1.217
1.153
1.164
1.202

0.2466
0.2357
0.2359
0.2359
0.2361
0.2328

0.2439
0.2332
0.2332
0.2332
0.2332
0.2303

1.0863
0.8979
0.8983
0.8813
0.8833
0.8851

1.0844
0.8898
0.8898
0.8795
0.8812
0.8838

.0686
0.8534
0.8534
0.8497
0.8497
0.8469
1.0427
0.8507
0.8507
0.8478
0.8478
0.8469
1.1099
1.0223
1.0223
1.0223
1.0223
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Table 5.38 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0.75

Initial value

of
Step

OSAF

Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML
AMAE

ML MML
z.ero 30 (0

(ii)
(iii)
(iv)
(v)
(vi)

6.346
11.195
5.968

12.327
5.613

18.612

4.0516
2.3851
2.3784
2.0753
2.0465
2.0035

0.5375
0.8393
0.5403
0.9425
0.5417
1.1258

0.3350
0.2488
0.2491
0.2499
0.2503
0.6023

1.5582
1.7769
1.4771
1.8017
1.4003
2.6294

1.3602
.1797
.1779
.1117
.1062
.0032

Estimated OSAF 30
(ii)
(iii)
(iv)
(v)
(vi)

6.332
11.166
5.946

12.280
5.720

18.300

4.0179
2.3008
2.2925
2.0169
2.1493
1.8250

0.5402
0.8437
0.5430
0.9488
0.5450
0.9976

0.3356
0.2487
0.2490
0.2497
0.2502
0.2396

1.5526
1.7671
1.4668
1.7905
1.4201
2.6086

.3489

.1543

.1521

.0930

.1228

.0037
Zero TSAF 30 (i)

(ii)
(iii)
(iv)
(v)

2.068
2.063
2.063
2.062
2.063

2.0602
2.0525
2.0533
2.0512
2.0520

0.4468
0.4476
0.4465
0.4474
0.4463

0.4443
0.4431
0.4430
0.4428
0.4428

1.2254
1.2241
1.2237
1.2241
1.2236

.2225

.2203

.2204

.2198

.2199
Zero OSAF 60 (i)

(ii)
(iii)
(iv)
(v)
(vi)

2.032
1.440
1.437
1.307
1.299
2.309

2.0665
1.4678
1.4557
1.3136
1.2982
2.3768

0.2251
0.2196
0.2196
0.2195
0..2193
0.0065

0.2234
0.2183
0.2183
0.2179
0.2178
0.0065

1.0846
0.9505
0.9495
0.9180
0.9158
1.0552

.0913
0.9556
0.9527
0.9188
0.9150
1.0609

Estimated OSAF 60
(ii)
(iii)
(iv)
(v)
(vi)

1.929
1399
1.393
1.259
1.294
2.404

1.9564
1.4044
1.3915
1.2641
1.2927
2.4329

0.2249
0.2196
0.2196
0.2194
0.2192
0.2160

0.2233
0.2182
0.2183
0.2179
0.2178
0.2144

1.0659
0.9393
0.9378
0.9061
0.9126
1.0678

1.0711
0.9402
0.9371
0.9066
0.9116
1.0709

Zero TSAF 60 0)
(ii)
(iii)
(iv)
(v)

1.767
1.746
1.746
1.746
1.745

1.7662
1.7454
1.7458
1.7450
1.7447

0.4027
0.3852
0.3852
0.3845
0.3840

0.4017
0.3846
0.3847
0.3837
0.3834

Zero OSAF 120 )
00
(iii)
(iv)
(v)
(vi)

2.976
1.194
1.183
1.082
1.071
1.665

2.9625
1.1825
1.1825
1.0575
1.0575
1.4207

0.3263
0.2441
0.2438
0.2425
0.2423
0.0023

0.3259
0.2443
0.2443
0.2415
0.2415
0.0023

1.1871
0.8780
0.8757
0.8563
0.8540
0.9063

1.1842
0.8748
0.8748
0.8510
0.8510
0.8827

Estimated OSAF 120
0')
(iii)
(iv)
(v)
(vi)

2.530
1.167
1.152
1.071
1.045
1.679

2.5229
1.1544
1.1544
1.0506
1.0405
1.4192

0.3262
0.2441
0.2438
0.2426
0.2423
0.2397

0.3259
0.2444
0.2444
0.2416
0.2416
0.2387

1.1323
0.8721
0.8692
0.8518
0.8474
0.9058

1.1303
0.8697
0.8692
0.8473
0.8457
0,8819

Zero TSAF 120 0)
(ii)
(iii)
(iv)
(v)

1.655
1.584
1.584
1.583
1.583

1.6555
1.5844
1.5844
1.5829
1.5829

0.6100
0.4295
0.4289
0.4257
0.4251

0.6100
0.4310
0.4310
0.4246
0.4246

.2066

.0899

.0894

.0880
1.0875

1.2065
1.0909
1.0909
1.0874
1.0870
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Table 5.39 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X3 design matrix when y = 0.90

Initial value

Of

Step Sample

size Strategy
AMSFE

ML MML
Zero OSAF

AAMFE

ML MML

AMAE

ML
30

Estimated

(0
(ii)
(iii)
(iv)
(v)
(vi)

3.531
4.325
3.439
4.166
3.277

19.407

2.0996
1.9879
1.9778
1.8328

.8214

.5682
OSAF 30 (0

(ii)
(iii)
(iv)

(v)
(vi)

3.164
3.978
3.107
3.889
3.308

18.636

0.4291
0.4965
0.4300
0.4980
0.4317
1.9166

0.2506
0.2513
0.2515
0.2529
0.2534
0.2321

.7058

.6390

.6375

.8019

.8545

.3783

0.4310
0.4989
0.4319
0.5005
0.4334
1.6817

0.2506
0.2513
0.2515
0.2529
0.2534
0.2235

Zero TSAF 30 (i)
(ii)
(iii)
(iv)
(v)

2.280
2.282
2.282
2.283
2.283

2.2795
2.2809
2.2811
2.2815
2.2816

0.4822
0.4818
0.4817
0.4819
0.4818

0.4818
0.4811
0.4811
0.4813
0.4814

Zero OSAF 60 (i)
(ii)
(iii)
(iv)

(v)
(vi)

1.975
1.783
1.782
1.542
1.540
2.724

1.9288
1.8257
1.8193
1.5101
1.5028
1.6658

0.1295
0.1305
0.1305
0.1307
0.1308
0.2139

0.1297
0.1305
0.1306
0.1309
0.1312
0.1438

.3346

.3802

.3090

.3352

.2629
5614
.2357
.2870
.2190
.2552
.2730
.3151
.2924
.2929
.2928
.2930
.2930
.1046
.0504
.0501

0.9781
0.9773
1.8379

Estimated OSAF 60 (i)

00
(iii)
(iv)
(v)
(vi)

1.431
1.353
1.353
1.230
1.432
2.421

1.4351
1.3635
1.3632
1.2285
1.4291
1.5858

0.1941
0.1950
0.1949
0.1946
0.1945
0.2539

0.1938
0.1938
0.1938
0.1942
0.1942
0.2038

0.9633
0.9384
0.9382
0.8992
0.9584
0.9979

Zero TSAF 60
(ii)
(iii)
(iv)
(v)

1.973
1.970
1.970
1.970
1.970

1.9731
1.9704
1.9705
1.9698
1.9698

0.3738
0.3729
0.3727
0.3698
0.3696

0.3739
0.3715
0.3715
0.3697
0.3697

Zero OSAF 120 (i)
00
(iii)
(iv)
(v)
(vi)

2.102
.711
.708
.376
.373

2.469

Estimated OSAF 120 (0
(ii)
(iii)
(iv)
(v)
(vi)

2.0383
1.7484
1.7484
1.2707
1.2707
1.9314

0.2500
0.2280
0.2281
0.2129
0.2129
0.0049

0.2492
0.2310
0.2310
0.2123
0.2123
0.0056

1.1365
1.0348
1.0338
0.9413
0.9403
2.0539

.530

.353

.353

.282

.324
2.382

1.5040
1.3636
1.3636
1.1309
1.2277
1.1892

0.2499
0.2279
0.2280
0.2128
0.2129
0.2233

0.2491
0.2309
0.2309
0.2122
0.2122
0.2121

0.9927
0.9382
0.9382
0.8833
0.9236
0.9533

MML
1.1669
1.1362
.1334
.0922
.0890
.0064
.0590
.0397
.0392
.0255
.0979
.0093
.2918
.2922
.2922
.2925
.2925
.0910
.0600
.0578
0.9682
0.9657
0.8285
0.9645
0.9409
0.9407
0.8984
0.9571
0.9870
.1798
.1781
.1780
.1774
.1774
.1204
.0441
.0441
0.9113
0.9113
1.6564
0.9850
0.9415
0.9415
0.8678
0.8961
0.6568

Zero TSAF 120 (')
('')
(iii)
(iv)
(v)

1.833
1.825
1.825
1.818
1.818

1.8332
1.8257
1.8257
1.8178
1.8178

0.4939
0.4451
0.4452
0.4101
0.4102

0.4913
0.4510
0.4510
0.4076
0.4076

.1912

.1671

.1671

.1519

.1519

1.1899
1.1695
1.1695
1.1506
1.1506



Chapter 5 Forecasting Performance 180

Table 5.40 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X, design matrix when / = - 0.90

Initial value

of
Step Sample AMSFE

size Strategy ML MML
AAMFE

ML MML
OSAF

AMAE

ML MML
30 0)

(ii)
(iii)
(iv)
(v)
(vi)

415.290
415.806
415.290
416.529
415.290
376.859

287.2989
235.7341
235.7159
235.7344
235.7161
213.5615

14.7023
14.7271
14.7023
14.7630
14.7023
9.1443

10.8071
9.1396
9.1391
9.1396
9.1391
8.0042

16.1352
16.1598
16.1352
16.1954
16.1352
15.4345

Estimated OSAF 30 0)
(•i)
(iii)
(iv)
(v)
(vi)

415.288
415.805
415.288
416.527
415.289
376.854

287.2873
235.7174
235.6994
235.7177
235.6971
213.5570

14.6966
14.7214
14.6966
14.7564
14.7001
14.1654

10.8099
9.1232
9.1227
9.1232
9.1337
9.0020

16.1021
16.1267
16.1021
16.1618
16.1353
15.4010

Zero TSAF 30 (0
(ii)
(iii)
(iv)
(v)

2.305
2.305
2.305
2.303
2.305

2.3689
2.3733
2.3733
2.3733
2.3733

0.5624
0.5625
0.5624
0.5609
0.5624

0.5992
0.6024
0.6024
0.6024
0.6024

1.3080
1.3081
1.3080
1.3069
1.3080

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

529.022
527.793
525.282
527.141
524.630
476.859

327.2419
292.4316
292.3532
284.8694
283.8677
258.1472

19.9814
19.9151
19.8410
19.8826
19.8084
17.1535

13.6542
12.5378
12.5370
12.3133
12.2834
10.7947

20.103V
20.0383
19.9644
20.0064
19.9324
19.0462

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

529.020
527.791
525.281
527.139
524636
474.954

327.2488
292.4396
292.3609
284.8731
283.8755
248.2223

19.9810
19.9161
19.8429
19.8850
19.7841
16.1431

13.6648
12.5555
12.5547
12.3309
12.3122
10.3022

20.0743
20.0104
19.9374
19.9797
19.9188
18.1232

Zero TSAF 60 (i)
(ii)
(iii)
(iv)
(v)

2.153
2.153
2.154
2.153
2.154

2.1636
2.1626
2.1626
2.1624
2.1624

0.6570
0.6560
0.6567
0.6555
0.6562

0.6657
0.6633
0.6633
0.6638
0.6637

1.3173
1.3169
1.3174
1.3167
1.3172

Zero OSAF 120 (i)
(<i)
(iii)
(iv)
(v)
(vi)

15.706
15.361
15.302
15.194
15.135
10.859

10.7317
7.7516
7.7511
6.0234
6.0228
5.1472

3.7502
3.6876
3.6685
3.6607
3.6415
2.1535

2.7693
2.1786
2.1786
1.8499
1.8498
1.7947

3.9874
3.9274
3.9103
3.9014
3.8843
2.0462

Estimated OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

15.703
15.358
15.300
15.191
15.132
13.802

10.7141
7.7276
7.7271
5.9962
5.9946
5.5454

3.7577
3.6921
3.6742
3.6610
3.7470
1.7310

2.7521
2.1507
2.1506
1.8155
1.8673
1.2745

3.9452
3.8838
3.8674
3.8554
3.9726
3.7617

11.9757
10.1825
10.1820
10.1825
10.1820
9.7371

11.9618
10.1641
10.1636
10.1641
10.1876
9.7137
1.3349
1.3372
1.3372
1.3372
1.3372

13.8045
12.6968
12.6960
12.4719
12.4419
11.9519
13.7959
12.6953
12.6945
12.4704
12.4711
11.3112

.3230

.3221

.3221

.3219

.3219
3.0561
2.4914
2.4913
2.1769
2.1768
1.9519
3.0069
2.4431
2.4430
2.1271
2.1787
2.0894

Zero TSAF 120 0)
(ii)
(iii)
(iv)
(v)

.827

.827

.827

.827

.827

1.8270
1.8271
1.8271
1.8270
1.8270

0.1089
0.1090
0.1089
0.1089
0.1088

0.1080
0.1091
0.1091
0.1091
0.1091

1.0834
1.0835
1.0835
1.0835
1.0835

1.0833
1.0834
1.0834
1.0834
1.0834
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Table 5.41 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when / = - 0.75

Initial value

of
Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML
AMAi.

ML MML
Cero OSAF 30 0)

00
(iii)
(iv)
(v)
(vi)

786.168
784.154
783.863
790.665
783.S63
715.159

495.6083
379.5085
379.4439
379.5089
379.4443
343.5661

21.1944
21.1824
21.1518
21.4063
21.1518
20.1228

13.8461
10.8185
10.8177
10.8185
10.8178
9.5244

22.6228
22.6057
22.5753
22.8292
22.5753
21.8284

14.9280
11.6972
11.6965
11.6972
11.6965
11.2056

Estimated OSAF 30 (i)
(«>)

(iii)
(iv)
(v)
(vi)

786.153
784.140
783.848
790.651
783.856
715.093

495.5887
379.4824
379.4174
379.4829
379.4216
343.5408

21.2813
21.2659
21.2361
21.4889
21.2154
20.1245

13.8902
10.8447
10.8439
10.8447
10.8391
9.5151

22.6763
22.6575
22.6279
22.8807
22.6486
21.8055

14.9519
11.7135
11.7128
11.7136
11.7201
11.1986

Zero TSAF 30 0)
(ii)
(iii)
(iv)
(v)

2.338
2.337
2.337
2.332
2.337

2.4053
2.4190
2.4190
2.4190
2.4190

0.7901
0.7893
0.7901
0.7882
0.7901

0.8143
0.8205
0.8205
0.8205
0.8205

1.3885
1.3880
1.3883
1.3864
1.3883

1.4089
1.4132
1.4132
1.4132
1.4132

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

981.828
925.802
915.928
918.955
905.251
831.562

405.4571
261.2874
261.2584
258.5121
254.4298
234.7358

25.5036
24.3510
24.0997
24.1742
23.8191
20.2115

12.4933
9.4076
9.4072
9.3637
9.2569
8.6696

25.6462
24.4980
24.2449
24.3210
23.9644
23.2090

1 2.6590
9.5783
9.5779
9.5337
9.4276
9.1408

Estimated OSAF 60
(ii)
(iii)
(iv)
(v)
(vi)

981.812
925.787
915.912
918.940
905.247
823.321

405.4301
261.2632
261.2340
258.4877
254.4147
224.8562

25.5905
24.4415
24.1873
24.2640
23.8397
20.1201

12.5091
9.4201
9.4197
9.3769
9.2459
8.4021

25.7132
24.5708
24.3135
24.3941
24.0038
22.1216

12.6622
9.5817
9.5813
9.5376
9.4377
8.1218

Zero TSAF 60 (i)
(ii)
(iii)
(iv)
(v)

2.222
2.215
2.215
2.213
2.214

2.2075
2.1954
2.1954
2.1950
2.1941

0.9567
0.9503
0.9517
0.9475
0.9496

0.9383
0.9303
0.9303
0.9302
0.9294

.4534

.4496

.4498

.4479

.4485

1.4428
1.4361
1.4361
1.4360
1.4353

Zero OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

45.568
34.109
32.337
30.008
28.046
28.209

28.1570
5.6666
5.6666
3.1294
3.1293
2.9389

5.2596
4.2023
4.0081
3.8051
3.5885
3.2524

3.4697
1.3589
1.3589
1.1151
1.1151
1.0087

5.5335
4.4992
4.3067
4.1094
3.8956
3.0222

3.7863
1.7243
1.7243
1.4821
1.4821
0.9587

Estimated

Zero

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

45.554
34.094
32.322
29.994
28.033
27.209

1.594
1.593
1.593
1.593
1.593

28.1320
5.6404
5.6404
3.0984
3.0983
2.9389
1.5939
1.5921
1.5921
1.5922
1.5922

5.3993
4.2872
4.0922
3.8883
3.6596
2.8524

0.2344
0.2300
0.2296
0.2297
0.2292

3.5456 i>.6368 :
1.3697 4.5592
1.3697 4.3662
1.1219 <•LI 660
1.1251 3.9545
1.0087 2.7222 (

0.2316
0.2244
0.2244
0.2251
0.2251

.0325

.0312

.0312

.0311

.0311

(.8394
.7269
.7269
.4818
.4857

).9587

.0320

.0301

.0301

.0303
1.0303
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Table 5.42 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y=- 0.60

Initialvaluc Step Sample AMSFE AAMFE AMAE
o f £ ° size Strategy ML MML ML MML ML MML

Z,ero OSAF 30 (i)
(ii)
{iii)
(iv)
(v)
(vi)

1339.0160
1316.9830
1311.6200
1365.3030
1311.6200
1235.0800

666.8769
428.2572
428.1576
427.9450
427.8442
387.9871

27.3612
27.0279
26.9382
27.9213
26.9382
24.7572

14.8021
10.9622
10.9614
10.9508
10.9500
9.6551

29.0131
28.6640
28.5747
29.6043
28.5747
26.3072

15.7799
11.7341
11.7332
11.7226
11.7218
10.9582

Estimated OSAF 30 (i)
(ii)
(iii)
(iv)
(v)
(vi)

1338.9960
1316.9630
1311.6010
1365.2840
1311.6150
1234.9480

666.8354
428.2079
428.1086
427.8961
427.7961
387.9642

27.4643
27.1324
27.0391
28.0296
26.9926
24.3916

14.8707
11.0049
11.0041
10.9937
10.9800
9.6151

29.1045
28.7564
28.6641
29.6955
28.6663
26.3567

15.8288
11.7680
11.7671
11.7567
11.7494
10.9645

Zero TSAF 30
(ii)
(iii)
(iv)
(v)

2.7095
2.7066

2.7047
2.7058

2.7211
2.6993
2.6993
2.6993
2.6993

1.0601
1.0587
1.0586
1.0585
1.0586

1.5658
1.5581
1.5581
1.5581
1.5581

Zero OSAF 60 (i)
00
(iii)
(iv)
(v)
(vi)

1221.3470
966.9406
931.8440

1001.5720
924.2878
906.4593

474.0401
133.9338
133.9133
126.2411
126.2142
115.2288

23.7341
19.6867
19.1017
20.3727
.3.9299
17.0161

11.0820
5.4036
5.4035
5.3295
5.3293
4.8306

23.9057
19.8611
19.2769
20.5453
19.1043
18.6582

11.2692
5.5987
5.5986
5.5244
5.5242
4.3536

Estimated OSAF 60 (i)

00
(iii)
(iv)
(v)
(vi)

1221.326
966.9212
931.8265
1001.550
924.2795
906.2593

473.9949
133.8940
133.8734
126.2026
126.1962
112.008C

23.8192
19.7526
19.1656
20.4397
18.9743
17.0151

11.0955
5.4136
5.4135
5.3390
5.3444
4.8205

23.9869
19.9219
19.3357
20.6072
19.1616
18.2542

11.2806
5.6040
5.6039
5.5295
5.5356
3.9536

Zero

Zero

Estimated

Zero

TSAF

OSAF

OSAF

TSAF

60

120

120

120

(')
(>i)
(iii)
(iv)
(v)
(0
(•i)
(iii)
(iv)
(v)
(vi)

(i)
00
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)

2.5535
2.5112
2.5058
2.5129
2.5050

49.1098
11.7598
11.0954
12.7675
10.7909
11.5781
49.0883
11.7531
11.0794
12.7601
10.7740
11.6781
1.4334
1.4295
1.4295
1.4295
1.4296

2.4939
2.4414
2.4414
2.4414
2.4414

39.9043
2.0928
2.092S
1.7224
1.7225
1.4884

39.8932
2.0874
2.0875
1.7173
1.7173
1.2884
1.4331
1.4292
1.4292
1.4292
1.4292

1.2660
1.2436
1.2400
L2454
{.2396
3.9160
1.7464
1.6857
1.8018
1.6569
1.2458
3.9960
1.7701
1.7080
1.8221
1.6794
1.5597
0.3488
0.3407
0.3412
0.3409
0.3415

1.2307 1
1.2069 1
1.2069 1
1.2069 1
1.2069 1

.6593 1

.6408

.6379 1

.6420 1

.6374 1
3.1295 4.2336 :
0.9245 2.0984
0.9245 2.0348
0.89S1 :J.1518
0.8981 2.0062
0.8207 :

3.1832 <•

1.1536

1.3122 :
0.9222 2.1139
0.9222 2.0503
0.8973 2.1648
0.8969 :
0.8707 :

0.3471
0.3396
0.3396
0.3396
0.3396

>.O239
L0136
.0137
.0096

1.0097
1.0097
1.0098

.6311

.6093

.6093

.6093

.6093
1.4751
.2997
.2997
.2734
.2735
.2263

5.5317
.2960
.2960
.2711
.2708
.2463

1.0133
1.0093
1.0093
1.0093
1.0093
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Table 5.43 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = - 0.45

Initial value

Of ^o

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size

30

30

30

60

60

60

120

120

120

Strategy

0)
(ii)
(iii)
(iv)
(v)
'vi)

(>)
00
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)

(0

(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(>)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)

AMSFE

ML
2063.8880
2019.3050
1987.4500
111.8560

1987.4500
1910.3600
2063.8540
2019.2720
1987.4170
2111.8190
1987.4450
1910.0890

3.4135
3.4019
3.3930
3.4122
3.3930

981.5634
599.8766
553.4246
665.1002
542.5760
542.4117
981.5425
599.8657
553.4116
665.0879
542.5678
541.3772

3.0025
2.9172
2.9137
2.9211
2.9152

23.1591
4.1857
3.5914
4.5426
3.5914
4.3479

23.1535
4.1819
3.5876
4.5386
3.5875
3.2469
1.3254
1.3237
1.3236
1.3237
1.3236

MML
764.4447
387.2031
387.1210
387.2041
387.1214
351.2550
764.3950
387.1499
387.0673
387.1510
387.0820
350.2096

3.2594
3.2213
3.2213
3.2213
3.2213

334.1945
19.2687
19.2683
19.2687
19.2683
17.9874

334.1918
19.2708
19.2704
19.2708
19.2703
16.8253
2.9306
2.8691
2.8691
2.8691
2.8691

18.2763
1.6049

Ii

.6049

.6049

.6049

.3242
5.2714
.6019
.6019
.6019
.6019
.2763

1.3251
1.3232
1.3232
1.3232
1.3232

AAMFE

ML
32.1762
31.6885
31.2251
33.1711
31.2251
30.2009
32.2970
31.8078
31.3438
33.3022
31.2860
30.0912

1.3863
1.3829
1.3837
1.3849
1.3837

16.1092
11.5898
10.9975
12.4224
10.8379
10.0116
16.1442
11.6044
11.0088
12.4388
10.8537
10.0056
1.5655
.5319
.5311
.5333
.5317
.8775
.0689
.0379
.0938
.0379
.1121
.8952
.0765

1.0449
1.1022
1.0465
1.0626
0.4735
0.4720
0.4717
0.4718
0.4717

MML
13.0655
8.0829
8.0823
8.0829
8.0823
7.3950

13.0896
8.0952
8.0946
8.0953
8.0926
7.3861
1.3488
1.3399
1.3399
1.3399
1.3399
7.0062
3.1526
3.1526
3.1526
3.1526
2.1048
7.0154
3.1545
3.1546
3.1545
3.1569
2.0017
1.5385
1.5121
1.5121
1.5121
1.5121
1.6129
0.8803
0.8803
0.8803
0.8803
0.7153
1.6253
0.8814
0.8815
0.8814
0.8813
0.8015

0.4728
0.4710
0.4710
0.4710
0.4710

AMAE

ML
33.8187
33.3496
32.8204
34.8630
32.8204
33.3279
33.W48
3:.4628
32.9327
34.9844
32.9103
33.1434

1.7969
1.7933
1.7924
1.7964
1.7924

16.3071
11.7827
11.1903
12.6160
11.0309
10.1003
16.3439
11.7953
11.1996
12.6312
11.0496
10.0050
1.8806
1.8503
1.8490
1.8512
1.8496

Z.2268
1.4211
1.3904
1.4458
1.3904
1.4405

2.2439
1.4260
1.3947
1.4514
1.3973
1.3801

1.0216
1.0204
1.0203
1.0203
1.0203

MML
13.945
8.778
8.777
8.778
8.777
7.440

13.971
8.788
8.788
8.788
8.788
7.400

.756

.747

.747

.747

.747
7.207
3.354
3.354
3.354
3.354
3.274
7.218
3.354
3.354
3.354
3.357
2.998
1.855
1.833
1.833
1.833
1.833
1.976
1.247
1.247
1.247
1.247
1.201

1.989
.248
.248
.248
.247
.200

1.021
1.019
1.019
.019
.019
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Table 5.44 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = - 030

Initial value

of £•„
Step

OSAF

Sample

size Strategy
AMSFE

ML MML
AAMFE

ML MML

AMAE

ML MML
z,ero 30 (i)

(ii)
(iii)
(iv)
(v)
(vi)

1930.622
1866.668
1784.477
2116.298
1784.477
1794.730

372.5553
147.5764
147.8054
147.5766
147.8056
134.1554

26.6432
26.1092
24.9871
29.6594
24.9871
25.9941

7.4611
4.8497
4.8510
4.8497
4/3510
3.2332

28.0316
27.4440
26.296C
31.1213
26.2960
26.7503

8.0268
5.2755
5.2892
5.2755
5.2892
4.9047

Estimated OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

1930.589
1866.635
1784.445
2116.259
1784.481
1914.361

372.5227
147.5684
147.7750
147.5687
147*7696
134.1379

26.7474
26.2067
25.0852
29.7705
25.0198
27.9994

7.4856
4.8624
4.8637
4.8625
4.8591
3.1394

28.1315
27.5375
26.3890
31.2282
26.3579
27.9543

Zero OSAF 60 (0
(ii)
(iii)
(iv)
(v)
(vi)

415.174
287.711
270.492
403.428
270.492
365.788

131.4279
21.0322
21.0324
21.0322
21.0324
19.5216

8.0449
6.6741
6.5040
7.9440
6.5040
7.8223

4.3299
3.0316
3.0317
3.0316
3.0317
2.4131

8.2452
6.8813
6.7076
8.1588
6.7076
7.8396

8.0474
5.2856
5.2985
5.2856
5.2957
4.1070

Zero TSAF 30 (i)
(ii)
(iii)
(iv)
(v)

4.044
4.028
4.006
4.057
4.006

3.9695
3.8967
3.9085
3.8967
3.9085

1.5949
1.5954
1.5901
1.6016
1.5901

.5822

.5676

.5712

.5676

.5712

.9678

.9678

.9623

.9756

.9623

.9586

.9431

.9467

.9431

.9467
4.5354
3.2388
3.2389
3.2388
3.2389
2.1582

Estimated OSAF 60
(ii)
(iii)
(iv)
(v)
(vi)

415.167
287.708
270.489
403.427
270.487
362.446

131.4249
21.0319
21.0321
21.0319
21.0323
18.9962

8.0620
6.6889
6.5165
7.9519
6.5141
5.8223

4.3348
3.0315
3.0315
3.0315
3.0302
2.4131

8.2618
6.8939
6.7190
8.1644
6.7188
6.9462

4.5408
3.2389
3.2389
3.2389
3.2382
1.9657

Zero TSAF 60 0)
(ii)
(iii)
(iv)
(v)

3.876
3.861
3.857
3.862
3.857

3.8819
3.8673
3.8673
3.8673
3.8^3

1.9185
1.9103
1.9093
1.9102
1.9093

1.9130
1.9069
1.9069
1.9069
1.9069

2.1791
2.1729
2.1719
2.1733
2.1719

Zero OSAF 120 (i)

(iii)
(iv)
(v)
(vi)

1.753
1.485
1.485
1.485
1.485
1.485

1.4464
1.4260
1.4260
1.4260
1.4260
1.4260

0.8998
0.8783
0.8784
0.8783
0.8784
0.8784

0.8365
0.8287
0.8287
0.8287
0.8287
0.8287

2.1766
2.1716
2.1716
2.1716
2.1716
.2140
.2065
.2065
.2065
.2065
.2065

Estimated OSAF 120 (i)
(«i)
(iii)
(iv)
(v)
(vi)

1.751
1.483
1.483
1.483
1.483
1.468

1.4453
1.4249
1.4249
1.4249
1.4249
1.4119

0.9014
0.8785
0.8785
C.8785
0.8785
0.0054

0.8362
0.8287
0.8288
0.8287
0.8288
0.0056

.2134

.2062
1.2062
1.2062
1.2062
1.1920

Zero TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

1.286
1.286
1.286
1.286
1.286

1.2864
1.2865
1.2865
1.2865
1.2865

0.5788
0.5787
0.5787
0.5787
0.5787

0.5786
0.5789
0.5789
0.5789
0.5789

1.0527
1.0526
1.0526
1 .0526
1.0526

1.0527
1.0528
1.0528
1.0528
1.0528
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Table 5.45 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = - 0.15

Initialyalue Sti^ Sample AMSFE AAMFE AMAE
o f g " size Strategy ML MML ML MML ML MML

Zero OSAF 30 (I) 2014.601 237.0345 23.4688 5.0792 24.6194 5.4836
(ii) 2107.810 141.1000 24.1753 3.9457 25.3928 4.3312
(iii) 1970.578 141.0893 22.9301 3.9481 24.0482 4.3334
(iv) 2687.068 141.1000 29.6486 3.9457 31.1148 4.3312
(v) 1970.578 141.0893 22.9301 3.9481 24.0482 4.3334

_ _ _ _ _ _ _ _ _ _ (vi) 2430.573 128.1962 27.7886 2.3559 29.7700 3.1944
Estimated OSAF 30 0)

('0
(iii)
(iv)
(v)
(vi)

2014.555
2107.779
1970.548
2687.026
1970.566
2430.324

237.0156
141.0838
141.0728
141.0838
141.0886
127.1870

23.5450
24.2532
23.0037
29.7413
22.9731
27.7831

5.0838
3.9482
3.9506
3.9482
3.9471
2.3558

24.6929
25.4717
24.1208
31.2116
24.1115
29.7859

5.4832
4.3307
4.3330
4.3307
4.3326
3.1965

Zero TSAF 30
(ii)
(iii)
(iv)
(v)

5.330
5.346
5.327
5.402
5.327

5.1521
5.1455
5.1475
5.1455
5.1475

2.0027
1.9984
2.0001
2.0112
2.0001

1.9696
1.9672
1.9680
1.9672
1.9680

2.3394
2.3376
2.3374
2.3509
2.3374

2.3039
2.3015
2.3023
2.3015
2.3023

Zero OSAF 60
(ii)
(iii)
(iv)
(v)
(vi)

183.895
148.847
148.847
213.131
148.847
193.346

35.8066
7.3417
7.3418
7.3417
7.3418
7.1012

4.4461
4.1824
4.1824
4.8525
4.1824
4.5723

2.8447
2.6757
2.6757
2.6757
2.6757
2.1350

4.6488
4.3852
4.3852
5.0584
4.3852
4.9017

3.0597
2.8907
2.8907
2.8907
2.8907
2.8263

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

183.b90
148.842
148.842
213.124
148.844
193.346

35.8057

7.3408
7.3409
7.3408
7.3409
7.1012

4.4529
4.1883
4.1883
4.8630
4.1878
4.5723

2.8446
2.6758
2.6758
2.6758
2.6758
2.1350

4.6556
4.3911
4.3911
5.0697
4.3910
4.9017

3.0595
2.8907
2.8907
2.8907
2.8907
2.8263

Zero TSAF 60 (i)
(i>)
(iii)
(iv)
(v)

4.646
4.641
4.641
4.650
4.641

4.6301
4.6236
4.6236
4.6236
4.6236

2.1757
2.1754
2.1754
2.1771
2.1754

2.1710
2.1697
2.1697
2.1697
2.1697

2.4094
2.4090
2.4090
2.4104
2.4090

2.4059
2.4046
2.4046
2.4046
2.4046

Zero

Estimated

Zero

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

OSAF 120 (i)
00
(iii)
(iv)
(v)
(vi)

TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

.409

.409

.409

.409

.409

.402

.409

.409

.409

.409

.409
1.398
1.268
1.268
1.268
1.268
1.268

.3723

.3723

.3723

.3723

.3723

.3521

.3722

.3722

.3722

.3722

.3722
1.3624
1.2687
1.2687
1.2687
1.2687
1.2687

0.8253
0.8253
0.8253
0.8253
0.8253
0.0119
0.8253
0.8253
0.8253
0.8253
0.8253
0.0108
0.6692
0.6692
0.6692
06692
0.6692

0.7918
0.7918
0.7918
0.7918
0.7918
0.0101

0.7919
0.7918
0.7919
0.7918
0.7919
0.0099

0.6693
0.6693
0.6693
0.6693
0.6693

.2001

.2001

.2001

.2001

.2001

.1998

.2001

.2001

.2001

.2001

.2001
1.1866

1.0879
1.0879
1.0879
1.0879
1.0879

.1741

.1741

.1741

.1741

.1741

.1712

.1741

.1741

.1741

.1741

.1743

.1613

1.0879
1.0879
1.0879
1.0879
1.0879
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Table 5.46 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0

Initial value

of

Zero

Step

OSAF

Sample

size Strategy
AMSFE AAMFE

ML MML ML MML
AMAE

ML
30 0)

00
(»i)
(iv)

(v)
(vi)

1344.659
1427.210
1324.523
1229.836
1129.149
1116.462

101.9056
110.2126
108.5697
112.9268
102.2839
101.6410

14.6070
15.3438
14.3189
13.7940
12.8691
11.2442

3.2230
3.2047
3.0771
3.2047
3.0771
3.0625

Estimated

15.4786
16.2941
15.1885
15.7555
15.1885
14.7781

OSAF 30 (i)

00
(iii)
(iv)
(v)
(vi)

1344.631
1427.180
1324.496
1228.812
1119.128
1016.444

101.9021
110.1986
107.5586
101.9186
100.2786
35.6386

14.5481
15.2922
14.1982
13.1042
12.0103
) 0.9163

3.2252
3.2075
3.0793
3.2075
3.0817
3.0632

15.5175
16.1440
15.0118
14.8796
13.7474
12.6152

Zero TSAF 30 (i)
(ii)
(iii)
(iv)
(v)

6.504
6.519
6.498
6.624
6.498

6.3464
6.3604
6.3467
6.3604
6.3467

2.2483
2.2532
2.2483
2.2631
2.2483

2.2226
2.2252
2.2210
2.2252
2.2210

2.5761
2.5806

.2.5758
2.5932
2.5758

Zero OSAF 60 0)
(ii)
(iii)
(iv)
(v)
(vi)

29.775
29.775
29.775
37.431
29.775
28.312

6.0705
6.0705
6.0705
6.0700
6.0705
5.8826

29197
2.9197
2.9197
3.0210
2.9197
2.2753

2.5446
2.5446
2.5446
2.5446
2.5446
2.0437

3.1262
3.1262
3.1262
3.2298
3.1262
2.8551

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

29.773
29.773
29.773
37.429
29.772
28.012

6.0702
6.0701
6.0702
6.0701
6.0702
5.422i

2.9211
2.9211
2.9211
3.0228
2.9225
2.2753

2.5447
2.5446
2.5447
2.5446
2.5447
2.0437

3.1279
3.1279
3.1279
3.2318
3.1295
2.8551

Zero TSAF 60 (i)
(ii)
(iii)
(iv)
(v)

5.582
5.582
5.582
5.580
5.582

5.5564
5.5564
5.5564
5.5564
5.5564

2.5020
2.5020
2.5020
2.5012
2.5020

2.4954
2.4954
2.4951
2.4954
2.4954

2.7018
2.7018
2.7018
2.7011
2.7018

MML
3.6090
3.5883
3.4594
3.3405
3.2594
3.1899
3.5096
3.4412
3.3728
3.2144
3.1560
3.0976
2.5477
2.5512
2.5471
2.5512
2.5471
2.7555
2.7555
2.7555
2.7555
2.7555
2.5954
2.7555
2.7555
2.7555
2.7555
2.7555
2.5954
2.6970
2.6970
2.6970
2.6970
2.6970

Zero

Estimated

Zero

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

OSAF 120 (i)
00
(iii)
(iv)
(v)
(vi)

TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

1.430
1.430
1.430
1.430
1.430
1.421
1.430
1.430
1.430
1.430
1.430
1.417
1.380
1.380
1.380
1.380
1.380

1.4047
1.4047
1.4047
1.4047
1.4047
1.3223
1.4048
1.4047
1.4048
1.4047
1.4048
1.3924
1.3801
1.3801
1.3801
1.3801
1.3801

0.8376
0.8376
0.8376
0.8376
0.8376
0.7041
0.8376
0.8376
0.8376
0.8376
0.8376
0.7413

0.8097
0.8097
0.8097
0.8097
0.8097

0.8138 1
0.8138
0.8138 1
0.8138
0.8138 1
0.5712

0.8138
0.8138
0.8138
0.8138
0.8138
0.6401

0.8098
0.8098
0.8098
0.8098
0.8098

.2119

.2119

.2119

.2119

.2119

.1198

.2119

.2119

.2119

.2119

.2119

.1980

1.1849
1.1849
1.1849
1.1849
1.1849

1.1933
1.1933
1.1933
1.1933
1.1933
1.1081

1.1934
1.1934
1.1934
1.1934
1.1934
1.1800

1.1850
1.1850
1.1850
1.1850
1.1850
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Table 5.47 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0.15

Ql %/QlllA QtAV^ f* II 1 ^ — .. ^ ^ ^ial value step
of

sample

size Strategy
AMSFE

ML MML

AAMFE AMAE

ML
-ero OSAF

MML ML
30

Estimated

0)

(iii)
(iv)
(v)
(vi)

521.448
657.857
521.325
1107.437
521.252
522.974

36.1973
34.5251
34.4380
34.3062
34.2191
31.5520

7.2631
8.3773
7.2600
12.2825
7.2601
7.6552

2.5403
2.5182
2.5191
2.5171
2.5180
2.0986

7.8895
9.0167
7.8756
13.0367
7.8692
7.5248

OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

521.458
657.852
521.330

1107.443
521.269
1002.935

36.2111
34.5556
34.4470
34.3447
34.2369
31.5957

7.2651
8.3837
7.2621
12.3055
7.2696

10.6561

2.5419
2.5196
2.5205
2.5185
2.5220
2.0981

7.8981
9.0299
7.8837

13.0685
7.8835

12.5173
Zero TSAF 30 (i)

00
(iii)
(iv)
(v)

7.906
7.916
7.903
7.920
7.903

7.8399
7.8338
7.8296
7.8298
7.8256

2.5197
2.5140
2.5128
2.5178
2.5130

2.5096
2.5057
2.5036
2.5033
2.5011

2.8392
2.8346
2.8341
2.8385
2.8342

Zero OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

6.548
6.548
6.548
6.548
6.548
6.330

5.9140
5.9141
5.9140
5.9141
5.9140
5.7214

2.6319
2.6319
2.6319
2.6319
2.6319
2.4627

2.4921
2.4921
2.4921
2.4921
2.4921
2.2571

2.8389
2.8389
2.8389
2.8389
2.8389
2.7756

Estimated OSAF 60 (i)
(ii)
(iii)
(iv)
(v)
(vi)

6.548
6.548
6.548
6.548
6.548
6.320

5.9142
5.9142
5.9142
5.9142
5.9142
5.6113

2.6319
2.6319
2.6319
2.6319
2.6319
2.3521

2.4920
2.4921
2.4920
2.4921
2.4920
2.2342

2.8390
2.8390
2.8390
2.8390
2.8390
2.5621

Zero TSAF 60
(ii)
(iii)
(iv)
(v)

7.078
7.078
7.078
7.078
7.078

7.0699
7.0698
7.0699
7.0698
7.0699

2.8387
2.8387
2.8387
2.8387
2.8387

2.8325
2.8325
2.8325
2.8325
2.8325

3.0288
3.0288
3.0288
3.0288
3.0288

MML
2.9340
2.9035
2.8974
2.8853
2.8792
2.8217
2.9362
2.9065
2.8991
2.8883
2.8834
2.8225
2.8278
2.8252
2.8231
2.8232
2.8211
2.7053
2.7053
2.7053
2.7053
2.7053
2.6457
2.7054
2.7054
2.7054
2.7054
2.7054
2.4113
3.0235
3.0235
3.0235
3.0235
3.0235

Zero

Estimated

Zero

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

TSAF 120 (i)
(i»)
(iii)
(iv)
(v)

1.403
1.403
1.403
1.403
1.403
1.400
1.403
1.403
1.403
1.403
1.403
1.390
1.504
1.504
1.504
1.504
1.504

1.3866
1.3866
1.3866
1.3866
1.3866
1.3821
1.3865
1.3865
1.3865
1.3865
1.3865
1.3743
1.5046
1.5046
1.5046
1.5046
1.5046

0.8054
0.8054
0.8054
0.8054
0.8054
0.7067

0.8054
0.8054
0.8054
0.8054
0.8054
0.0087
0.9071
0.9071
0.9071
0.9071
0.9071

0.7886
0.7886
0.7886
0.7886
0.7886
0.6038

0.7886
0.7886
0.7886
0.7886
0.7886
0.0081

0.9070
0.9070
0.9070
0.9070
0.9070

.1884 1

.1884 1

.1884 1

.1884 1

.1884 1

.1642 1

.1884

.1884 1

.1884

.1884

.1884

.1753

1.2663
1.2663
1.2663
1.2663
1.2663

.1757

.1757

.1757

.1757

.1757

.1696

.1757

.1757

.1757

.1757

.1757

.1629

.2663

.2663
1.2663
.2663

1.2663
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Table 5.48 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0.30

step
of

iero

Sample

size Strategy
AMSFE

ML MML
AAMFE AMAE

ML MML ML MML
OSAF 30 (0

00
(iii)
(iv)
(v)
(vi)

478.862
974.053
477.272
1353.147
477.242
1224.449

7.7195
7.4778
7.4944
7.4742
7.4908
7.2644

5.7363
8.6491
5.7239
11.6642
5.7241
1.2474

2.2595
2.2539
2.2560
2.2538
2.2559
0.0357

6.2551
9.1800
6.2127
12.4002
6.2093

11.8894

2.6474
2.6196
2.6217
2.6189
2.6210
2.5667

Estimated OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

478.845
974.061
477.285

1353.150
477.320

1224.302

7.7004
7.4838
7.5004
7.4815
7.5696
7.2029

0.6259
0.7974
0.6328
1.2891
0.6377
1.2338

2.2594
2.2537
2.2559
2.2537
2.2551
0.0350

6.2563
9.1922
6.2168

12.4231
6.2120

11.8968
Zero TSAF 30 (0

(•')
(iii)
(iv)
(v)

9.523
9.521
9.421
9.536
9.417

9.4466
9.3244
9.3340
9.3191
9.3288

2.8772
2.8818
2.8682
2.8858
2.8682

2.8750
2.8628
2.8639
2.8623
2.8634

3.1833
3.1881
3.1747
3.1931
3.1746

2.6453
2.6201
2.6222
2.6197
2.6274
2.5617
3.1786
3.1670
3.1681
3.1665
3.1676

Zero OSAF 60

(iii)
(iv)
(v)
(vi)

6.022
5.653
5.653
5.653
5.653
5.479

5.6960
5.3261
5.3260
5.3261
5.3260
5.1646

2.4622
2.4306
2.4306
2.4306
2.4306
2.1023

2.3808
2.3490
2.3490
2.3490
2.3490
2.1018

2.6824
2.6506
2.6506
2.6506
2.6506
2.5927

2.6049
2.5730
2.5730
2.5730
2.5730
2.5173

Estimated OSAF 60 0)
(ii)
(iii)
(iv)
(v)
(vi)

6.062
5.651
5.651
5.651
5.651
5.377

5.7353
5.3242
5.3241
5.3242
5.3241
5.0216

2.1451
2.1049
2.1049
2.1049
2.1049
2.1023

2.3811
2.3492
2.3492
2.3492
2.3492
2.1018

2.6829
2.6504
2.6504
2.6504
2.6504
2.5927

2.6055
2.5728
2.5727
2.5728
2.5727
2.5173

Zero TSAF 60 (i)
00
(iii)
(iv)
(v)

9.173
8.115
8.115
8.115
8.115

9.1825
8.1237
8.1237
8.1237
8.1237

3.1105
3.0429
3.0430
3.0429
3.0430

3.1105
3.0428
3.0428
3.0428
3.0428

3.3047
3.2374
3.2374
3.2374
3.2374

3.3050
3.2376
3.2376
3.2376
3.2376

Zero OSAF 120 (i)

(iii)
(iv)
(v)
(vi)

1.402
1.402
1.402
1.402
1.402
1.397

1.3889
1.3890
1.3889
1.3890
1.3889
1.3653

0.7969
0.7969
0.7969
0.7969
0.7969
0.6988

0.7846
0.7846
0.7846
0.7846
0.7846
0.6764

.1825

.1825

.1825

.1825

.1825

.1765

1.1732
1.1732
1.1732
.1732
.1732
.1544

Estimated OSAF 120 0)
(ii)
(iii)
(iv)
(v)
(vi)

1.401
1.401
1.401
1.401
1.401
1.385

1.3884
1.3884
1.3884
1.3884
1.3884
1.3732

0.8073
0.8073
0.8073
0.8073
0.8073
0.8068

0.7845
0.7845
0.7845
0.7845
0.7845
0.7073

.1821

.1821

.1821
1.1821
1.1821
1.1684

.1728

.1729

.1728

.1729

.1728
1.1594

Zero TSAF 120 0)
00
(iii)
(iv)
(v)

1.705
1.705
1.705
1.705
1.705

1.7050
1.7050
1.7050
1.7050
1.7050

1.3690
1.3690
1.3690
1.3690
1.3690
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Table 5.49 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0.45

Initial value
of

Step

OSAF

Sample
size Strategy

AMSFE AAMFE
ML MML ML MML

AMAE
ML MML

30 (0
(ii)
(iii)
(iv)
(v)
(vi)

111.745
198.529
111.138
382.952
110.979
347.427

6.9122
6.3754
6.3620
6.1557
6.1423
5.9873

2.9787
3.7665
2.9758
5.2312
2.9764
4.3959

2.0024
1.9979
1.9983
2.8832
2.0004
2.1274

3.4883
4.3473
3.4276
5.8117
3.4150
5.6075

2.4783
2.4223
2.4199
2.4066
2.4042
2.3571

Estimated OSAF 30 0)
(ii)
(iii)
(iv)
(v)
(vi)

111.760
198.521
111.123
382.952
111.004
347.319

6.9501
6.3749
6.3655
6.1697
6.2122
5.9939

2.9800
3.7698
2.9770
5.2405
2.9737
4.4027

2.0025
1.9980
1.9984
2.0001
2.0005
2.1274

3.4877
4.3483
3.4250
5.8196
3.4146
4.6101

2.4795
2.4209
2.4192
2.4060
2.4101
2.3569

Zero TSAF 30
(ii)
(iii)
(iv)
(v)

10.616
10.319
10.319
10.325
10.320

10.5463
10.2546
10.2549
10.2577
10.2581

2.9094
2.8796
2.8787
2.8801
2.8780

2.8968
2.8662
2.8667
2.8683
2.8688

3.2741
3.2417
3.2415

3.2435
3.2407

3.2640
3.2309
3.2313
3.2314
3.2318

Zero OSAF 60 ()
(ii)
(iii)
(iv)

(v)
(vi)

6.731
17.766
5.223

17.766
5.222
5.390

6.5851
5.0417
5.0416
5.0413
5.0412
4.8618

2.4179
2.4253
2.3080
2.4261
2.3088
2.0443

2.3721
2.2596
2.2596
2.2604
2.2604
2.0697

2.6809
2.6573
2.5401-
2.6577
2.5405
2.5953

2.6381
2.4938
2.4937
2.4941
2.4941
2.4388

Estimated OSAF 60

(iii)
(iv)
(v)
(vi)

6.731
17.741
5.197

17.740
5.209
4.867

6.6000
5.0163
5.0162
5.0152
5.0280
3.3843

2.4179
2.4247
2.3080
2.4255
2.3088
2.0443

2.3721
2.2596
2.2596
2.2604
2.2604
2.0186

2.6807
2.6554
2.5387
2.6556
2.5393
2.4953

2.6389
2.4923
2.4923
2.4926
2.4929
2.2311

Zero TSAF 60
(ii)
(iii)
(iv)
(v)

12.890
9.297
9.293
9.301
9.296

12.9223
9.3007
9.3007
9.3038
9.3038

3.5201
3.2802
3.2787
3.2816
3.2801

3.5283
3.2820
3.2820
3.2835
3.2835

3.7158
3.4814
3.4800
3.4828
3.4814

3.7230
3.4823
3.4823
3.4837
3.4837

Zero

Estimated

Zero

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

OSAF 120 (i)
(ii)
(iii)
(iv)
(v)
(vi)

TSAF 120 (i)
(ii)
(iii)
(iv)
(v)

.484

.397

.397

.397

.397

.397

.600

.394

.394

.394

.394
1.385
.999

1.980
1.980
1.980
1.980

.4769

.3893

.3893

.3893

.3893

.3890

.5927

.3864

.3864

.3864
1.3864
.3775

1.9992
1.9807
1.9807
1.9807
1.9807

0.8073
0.8033
0.8033
0.8033
0.8033
0.8020
0.8072
0.8033
0.8033
0.8033
0.8033
0.0617

1.1681
1.1568
1.1568
1.1568
1.1568

0.7990 1
0.7951 1
0.7951 1
0.7951 1
0.7951 1
0.7941 1
0.7990 1
0.7951
0.7951
0.7951
0.7951
0.0613

1.1679
1.1566
1.1566
1.1566
1.1566

.2023

.1868

.1868

.1868

.1868

.1865

.2160

.1857

.1857

.1857

.1857

.1732

.5219
1.5116
1.5116
1.5116
1.5116

.1962

.1806

.1806

.1806

.1806

.1800

.2098

.1795

.1795

.1795

.1795

.1673

.5218
1.5115
1.5115
1.5115
1.5115
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Table 5.50 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0.60

Initial value

of £<,

Step Sample

size Strategy
AMSFE

ML MML

AAMFE

ML MML

AMAE

ML MML
Zero OSAF 30

(ii)
(iii)
(iv)
(v)
(vi)

39.555
323.152
38.731

396.256
38.467
358.646

7.3928
6.4837
6.4882
6.2925
6.2319
6.1128

2.4318
4.0719
2.4318
4.8372
2.4329
4.2949

2.0745
2.0710
2.0716
2.0711
2.0728
2.1244

2.9470
4.5273
2.8585
5.2741
2.8298
5.0955

2.5966
2.4996
2.5007
2.4772
2.4705
2.4299

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

30

30

60

60

60

120

120

120

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(vi)

0)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)

(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)

39.585
323.124
38.704

396.255
38.516

358.590
13.192
12.742
12.650
12.755
12.648
7.931
5.439
5.438
5.362
5.362
5.188
7.914
5.412
5.412
5.344
5.360
5.188

18.135
11.773
11.773
11.746
11746
2.401
1.442
1.438
1.414
1.410
1.411
2.426
1.434
1.426
1.412
1.404
1.405
2,420
2.321
2.320
2.321
2.320

7.4082
6.4530
6.4574
6.2867
6.2998
6.0071

13.1409
12.6048
12.6120
12.5953
12.5891
7.8116
5.3388
5.3387
5.2310
5.2309
5.0589
7.7938
5.3012
5.3011
5.2134
5.2251
5.0589

18.1340
11.7919
11.7919
11.7398
11.7398
2.4060
1.4074
1.4073
1.4058
1.4058
1.3998
2.4359
1.4024
1.4024
1.3997
1.3997
1.3886
2.4207
2.3202
2.3202
2.3209
2.3209

2.4310
4.0703
2.4310
4.8391
2.4331
4.2949
3.3509
3.3050
3.2954
3.3047
3.2923
2.5965
2.3371
2.3370
2.3352
2.3352
2.1559
2.5966
2.3372
2.3372
2.3354
2.3353
2.1559
4.2891
3.7067
3.7067
3.7023
3.7023
0.8044
0.7910
0.7909
0.7912
0.7911
0.7843
0.8044
0.7909
0.7908
0.7911
0.7910
0.7039
1.3084
1.2585
1.2582
1.2590
1.2587

2.0744
2.0709
2.0715
2.0710
2.0727
2.1245
3.3516
3.2940
3.2944
3.2920
3.2909
2.5684
2.3087
2.3087
2.3052
2.3052
2.1515
2.5685
2.3089
2.3089
2.3054
2.3054
2.1515
4.2925
3.7138
3.7138
3.7044
3.7044

0.7993
0.7855
0.7855
0.7858
0.7858
0.7382

0.7993
0.7854
0.7854
0.7858
0.7858
0.703S
1.3079
1.2580
1.2580
1.2586
1.2586

2.9513
4.5245
2.8541
5.2784
2.8394
5.0905
3.7070
3.6650
3.6528
3.6649
3.6491
2.9080
2.5837
2.5837
2.5752
2.5752
2.5177
2.9124
2.5799
2.5799
2.5720
2.5743
2.5177
4.4910
3.9172
3.9172
3.9127
3.9127

1.3279
1.1901
1.1894
1.1868
1.1862
1.1852

1.3325
1.1883
1.1868
1.1856
1.1841
1.1738

1.6864
1.6376
1.6374
1.6379
1.6377

2.6006
2.4957
2.4968
2.4769
2.4828
2.4896
3.7039
3.6476
3.6484
3.6451
3.6445
2.8806
2.5585
2.5585
2.5453
2.5453
2.4882
2.8849
2.5535
2.5535
2.5422
2.5438
2.4882
4.4928
3.9222
3.9222
3.9133
3.9133

1.3259
1.1826
1.1826
1.1824
1.1824
1.1693

1.3311
1.1807
1.1807
1.1803
1.1803
1.1679

1.6861
1.6371
1.6371
1.6376
1.6376

If
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Table 5.51 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0.75

Initial value

of £0

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size
30

30

30

60

60

60

120

120

120

Strategy

(')
(ii)
(iii)
(iv)
(v)
(vi)

0)
00
(iii)
(iv)
(v)
(vi)

(0
(ii)
fiii)
(>v)

(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(>)
00
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

0)
00
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)

AMSFE

ML
236.0916
304.1220
261.4522
392.5131
261.1300
355.4910
236.0232
304.0733
261.4067
392.4673
261.1767
355.4115

16.7081
16.3156
16.3231
16.2105
16.2303
6.7517
5.0558
5.0489
4.7834
4.7759
4.6387
6.5774
4.9806
4.9746
4.7482
4.7771
4.6387

16.8045
12.2900
12.2945
11.9884
11.9981
2.7273
1.5356
1.5356
1.4292
1.4292
1.3961
2.6593
1.5245
1.5245
1.4111
1.4107
1.3961
2.8538
2.7009
2.7009
2.7002
2.7002

MML
23.2400

7.1119
7.1813
6.7734
6.8301
6.6673

23.1351
7.0425
7.1157
6.7120
6.8646

11.0908
16.7040
16.2220
16.2784
16.1349
162512
6.7024
4.9772
4.9702
4.6984
4.6908
4.5620
6.5290
4.9082
4.9021
4.6714
4.6961
4.5620

16.8126
12.2790
12.2832
11.9560
11.9653
2.7187

4

.5201

.5201

.4186

.4186

.3870
2.6550
1.5155
1.5155
1.4034
1.4015
1.3870
2.8547
2.7015
2.7015
2.7004
2.7004

AAMFE

ML
3.317
3.748
3.461
4.110
3.464
0.472
0.195
0.120
0.326
0.486
0.334
0.471
3.786
3.736
3.738
3.718
3.722
2.396
2.149
2.150
2.130
2.133
0.137
0.132
0.151
0.150
0.141
0.141
0.137
4.327
3.766
3.767
3.718
3.723
0.812
0.785
0.785
0.786
0.786
0.010
0.012
0.011
0.011
0.010
0.010
0.010
1.469
1.375
1.375
1.375
1.375

MML
2.3247
2.1181
2.1283
2.1189
2.1333
0.1954
2.3253
2.1181
2.1282
2.1189
2.1332
0.1953
3.7801
3.7302
3.7343
3.7141
3.7203
2.3828
2.1282
2.1288
2.1130
2.1157
0.1366
2.3828
2.1282
2.1288
2.1131
2.1158
0.1366
4.3292
3.7533
3.7542
3.7138
3.7179
0.8104
0.7834
0.7834
0.7839
0.7839
«0102
0.8104
0.7834
0.7834
0.7840
0.7840
0.0102

1.4699
1.3764
1.3764
1.3759
1.3759

AMAE

ML
3.8397
4.2401
3.9306
4.5612
3.8914
4.4302
3.8247
4.2280
3.9170
4.5506
3.8961
4.4165
4.1555
4.1070
4.1083
4.0921
4.0943
2.7161
2.4372
2.4372
2.3986
2.3994
2.3449
2.6993
2.4244
2.4245
2.3886
2.3951
2.3449
4.5370
3.9896
3.9905
3.9459
3.9491

.3986

.2022

.2022

.1840

.1840

.1647

.3876

.1973

.1973

.1786

.1789

.1647

1.8573
.7725
.7725
.7722

1.7722

MML
2.8466
2.5804
2.5897
2.5374
2.5480
2.4986
2.8315
2.5655
2.5752
2.5256
2.5532
2.5504
4.1510
4.0983
4.1026
4.0857
4.0913
2.7059
2.4181-
2.4181
2.3806
2.3813
2.3280
2.6890
2.4054
2.4054
2.3718
2.3776
2.3280
4.5403
3.9791
3.9800
3.9420
3.9450
1.3961
1.1986
1.1986
1.1808
1.1808
1.1614

1.3859
1.1946
1.1946
1.1757
1.1755
1.1614

1.8579
1.7730
1.7730
1.7724
1.7724
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Table 5.52 AMSFE, AMAFE and AAMFE of one and two step ahead forecasts
using different strategies, sample sizes, X4 design matrix when y = 0.90

Initial value
Of ^0

Zero

Estimated

Zero

Zero

Estimated

Zero

Zero

Estimated

Zero

Step

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

OSAF

OSAF

TSAF

Sample

size

30

30

30

60

60

60

120

120

120

Strategy

0)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
(vi)

(0
(ii)
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)
0)
(ii)
(iii)
(iv)
(v)
(vi)

(i)
00
(iii)
(iv)
(v)
(vi)

(i)
(ii)
(iii)
(iv)
(v)

AMSFE

ML
109.685
251.844
148.889
283.247
148.709
256.918
109.301
251.485
148.541
282.965
148.784
256.620

17.225
17.230
17.170
17.135
17.103
5.087
4.847
4.842
4.542
4.538
4.404
4.648
4.492
4.488
4.288
4.518
4.304

13.606
13.103
13.080
12.597
12.572
2.191
1.981
1.981
1.729
1.729
1.700
1.762
1.638
1.637
1.521
1.671
1.594
3.224
3.203
3.203
3.198
3.198

MML
6.3835
6.3302
6.3406
6.1582
6.1728
6.2014
5.9833
5.9631
5.9751
7.1463
6.2369
7.1608

17.2190
17.1228
17.1400
17.0599
17.0767
5.0492
4.7704
4.7672
4.4610
4.4653
4.3297
4.6255
4.4392
4.4371
4,2318
4.4540
4.2206

13.5815
13.0030
12.9864
12.5219
12.5240
2.1652
1.9914
1.9914
1.6388
1.6388
1.4321

1.7523
1.6561
1.6561
1.4846
1.5742
1.5304
3.2235
3.2058
3.2058
3.1984
3.1984

AAMFE

ML MML
2.7270 1
3.3650 1
2.8142 1
3.5044 1
2.8251 1
3.0500 1
2.7274 1
3.3650 1
2.8140 1
3.5045 1
2.8217

.9712

.9884

.9913

.9947

.9985

.0400

.9711

.9883

.9912

.9946

.9983
0.0506 0.0395
3.7672 I
3.7720 :
3.7641 :
3.7619 :
3.7562 :
2.0820 I

(.7618
1.7632
1.7644
1.7526
1.7543
'.0759

2.0423 2.0374
2.0410 :'.0377
2.0123 2.0010
2.0120 :
2.0189 :
2.0820 :
2.0424 :
2.0411 :
2.0124 :
2.0121 :
2.0181 :
4.0073 '
3.9007 .
3.8964 .
3.8157 .
3.8127 .
0.8065 (
0.8010
0.8010
0.8086
0.8086
0.8073

0.8064
0.8009
0.8009
0.8084
0.8085
0.8023

1.5602
1.5390
1.5391
1.5418
1.5419

L0054
2.0172
2.0759
2.0375
2.0378
2.OGI2
Z.OO55
2.0162

1.0032
$.8966
3.8954

5.8022
5.8067

18058
3.8022
3.8022
3.8092
3.8092
3.8092

0.8058
3.8021
0.8021
0.8O91
0.8091
0.8039

1.5592
1.5425
1.5425
1.5420
1.5420

A M A E

ML
3.1955
3.8353
3.2756
3.9487
3.2570
3.8542

3.1272
3.7711
3.2118
3.8996
3.2680
3.8107
4.1674
4.1701
4.1626
4.1625
4.1578

2.4333
2.3804
2.3792

2.3245
2.3237
2.2761

2.3596
2.3176
2.3164

2.2762
2.3186
2.2756

4.2436
4.1465
4.1424
4.0642
4.0610

.3721

.3258

.3258

.2714

.2715

.2656

.2702

.2428

.2426

.2183

.2542

.2265

.9774

.9617
1.9618
1.9612
1.9613

M M L

2.4447
2.4438
2.4474
2.4216
2.4263
2.4054

2.3728
2.3789
2.3829
2.4042
2.4383
2.3819
4.1602
4.1578
4.1608
4.1502
4.1534

2.4260
2.3683
2.3683'
2.3088
2.3121
2.2585

2.3544
2.3087
2.3088
2.2640
2.3060
2.2575

4.2416
4.1402

4.1389
4.0523
4.0562

1.3655
1.3274
1.3274

1.2522
1.2522
1.2431

1.2676
1.2460
J.2460
1.2103
1.2317
1.2114

1.9768
1.9637
1.9637
1.9614
1.9614



CHAPTER 6

Some Issues on the Estimation of the
Covariance Matrix in the General

Linear Regression Model

6.1 Introduction

As we discussed in Chapter 2, Godambe (1960) used the score of the

estimating equation to show an optimum property of regular maximum likelihood

estimation. Godambe and Thompson (1974) modified the score of the estimating

equation for regular maximum likelihood estimation as a bias correction.

Mahmood (2000) proposed a method of estimation for the covariance matrix

parameters of the general linear regression model using a bias corrected version

of Mak's (1993) algorithm based on the marginal likelihood. He demonstrated j
i

that the LS method and the marginal likelihood method produce equivalent j
i

estimates thus allowing the normality assumption to be dropped for marginal
1

likelihood based estimation of the general linear regression model. {

We use a different approach in which the general linear model is

transformed and the LS method is applied to the transformed model in the context \
i

of an estimating equation. We transform the linear model by pre-multiplying by

"D-
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the n th root of the determinant of lower triangular Cholesky decomposition of

the covariance matrix times the inverse of the same matrix.

Our aim is to explore whether there is equivalence between the LS method

and the maximum likelihood method. We will compare the estimating equation

for our LS method based on the transformed model v/ith that from the

concentrated likelihood function.

A related contribution is to express the estimating equation as a

polynomial of infinite degree in the case of a non-stationary AR(1) error process

and to use different mathematical expressions to find the roots of an

approximating polynomial up to degree four. A special case is when the design

matrix is a single vector, for then the estimating equation turns into a finite degree

polynomial, i.e., a fifth degree polynomial for this non-stationary AR(1) process.

For the general case, we suggest a way to find the roots of the polynomial and

select an appropriate root as a final estimated value of the parameter of the model

under consideration. Finally we derive an iterative formula for estimating the

parameters based on the least squares method.

This chapter is organized as follows. In Section 6.2 we consider the

model, the likelihood, concentrated likelihood and marginal likelihood for the

general linear regression model. In Section 6.3 we present the score of the

concentrated likelihood as given by Mahmood (2000) and an alternative version.

The score of the marginal likelihood is discussed in Section 6.4. Applying the

least squares method to estimate the parameter in Section 6.5, we show that it

results in the same estimates as those from the estimating equations of the
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concentrated likelihood. In Section 6,6 we discuss estimating the covariance

matrix parameter in the linear regression model with a non-stationary AR(1) error

process. In Section 6.7, we discuss how to find roots of the estimating equations

when they are approximated by polynomials of different degrees. The chapter

ends with some concluding remarks in Section 6.8.

6.2 The Model

Consider the linear model

y = X/3 + u (6.1)

where y is an n x 1 vector, X is an n x k matrix of known values and of full

column rank, P is a k -dimensional vector of unknown parameters and

u ~ N[0, Z{y)) with ?.(/)*a21 where £ ( / ) is a general positive definite

matrix. In the context of (6.1), the most problematic part is the estimation of the

parameter y. Therefore our initial emphasis is on estimating the unknown

parameter y when the parameters of interest are P and cr2. In this case y is an

unknown nuisance parameter. Once y is estimated, P and or can easily be

estimated. The likelihood and the loglikelihood for model (6.1) are respectively

( 6 - 2 )

and
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(6-3)

The above expressions are also known as the classical likelihood and classical log

likelihood. The concentrated log likelihood for the parameter y of the model

(6.1) can be written as

i (6-4)

where

s2 (r) = (j; - AjSfr))' S(r)'' (y - Xfify)) (6.5)

and

J3(y) = (x'Z(y)~lx) XT,(y)~ly. (6.6)

Another useful method for estimating y as discussed in Chapter 2 is to

maximize its marginal likelihood function. According to Tunnicliffe Wilson

(1989), the marginal likelihood function for y in (6.1) is

(6.7)

in which m = n-k. The log of the marginal likelihood is

(6.8)
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6.3 Score of the Concentrated Likelihood

The concentrated likelihood given by equation (6.4) can also be written as

(6.9)

where L(y) is the lower triangular matrix of £ ( / ) defined by I.(y) = L(y)L(y) .

The estimated value of the parameter y can be obtained by setting the

derivative of the concentrated likelihood equal to zero and solving for the

parameter value from that equation. Differentiating equation (6.9) with respect to

y and equating to zero, according to Mahmood (2000), we have

dZ(y) . v
1 i—L fa[ v 1 y

^ =:0 (6.10)
dy 2 dy

n
+ —

2

where

= [2- (y) - s - (y) x{

e{y)'e{y)

(/)] (6.11)

and

(6.12)

If we replace T(y) with 2(y) = L(y)L(y)' in equation (6.10), we have the

following estimating equation of the concentrated likelihood
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dy
• = -tr
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dy
n

e{y)'e{y)

198

= 0 (6.13)

6.4 Score of the Marginal Likelihood

The estimating equation from the marginal likelihood (6.6) for model

(6.1) is given by Mahmood (2000) as

' = tr
dy 2 dy

m = 0
e(y)'e(y)

(6.14)

Substituting

equation we have

= h-](y)--L-i(y)X(XrZ,-l(y)X)~] X^'^y)] in the above

dy --tr dy
--tr

2 dy

(6.15)

e(y)'e(y)

6.5 Least Squares Estimation

In the following subsections, we will discuss two methods of estimating

the covariance matrix parameter in the general linear regression model.

i
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6.5.1 Standard method: estimation of parameters by
minimising sum of squared errors

In this subsection we are interested in estimating parameters of the model

by using the traditional method of minimising the error sum of squares. We

return to the general linear regression model given by (6.1), which can be

transformed as

L-\Y)y = L-x{y)xp+L-\Yy (6 1 6>

which is now a linear regression model with a well behaved error term given that

E(ZT' (y)u) = 0 and Var(lTl (y)u) = <r2/. The method of LS involves finding P

and y which minimise the error sum of squares

S} {y;p,Y) = (r ' {y)y - r1 (y)xp)' (r ' (r)y - V {y)xp)

(6-17)

According to the LS method, we can solve for p by using

dSl{y;P,y)_Q

dp

which results in the generalised least squares (GLS) estimate of p

p(r) = (ATX- {y)X)'i XTX {y)y. (6-18)

We also observe that the estimated 0(Y) depends on y which needs to be

estimated to get the final estimate of P. To formulate the LS estimation equation

for y we have
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dy

We now substitute the value of J3 by /?(/) in

(6.19)

u s i r i g

we have

dy
(6.20)

Mahmood's (2000) work shows that the stochastic part of the estimating

equation for the LS method is equivalent to the stochastic part cf the estimating

equation of ;he concentrated likelihood but that the two estimating equations are

not the same. The estimating equation of the concentrated likelihood contains

two components defined in equation (6.13), one is a constant and the other is a

stochastic part divided by the error sum of squares. In the next section we will

discuss another method which will show that the estimating equation of the LS

method is exactly the same as the estimating equation of the concentrated

likelihood.

6.5.2 Alternative method: estimation of parameters
by modified sum of squared errors

If we pre-multiply model (6.1) by \L(y)\U" L'1 (y), we have

t L-1 (r)y =
The modified error sum of squares can be written as

( y )«*• (6.21)
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S2 (y;P,y) = (\L(yf r ' (y)y - \lfyf r ' (r)^(r))'

= (y- Xp(y))' IT' (7)' I,-1 (y )(>/ - A ^ y ) ) ^ ^ )|2'". (6.22)

In the same way as for the standard method, we can solve for /? by using the LS

method by setting the first derivative of equation (6.22) equal to zero.

To get the final estimate of /?, y needs to be estimated. To formulate the

LS estimation equation for y, we have the first derivative with respect to y set

equal to zero, which can be written as

dS2{y,p,y) ^ =^_x^'^LJli(<y.xp)\L{yf
dY (6.23)

dy

- (y)(y - = 0.

The first part of the above expression is equivalent to —'• except

P = P{y)

for the term \L(y)f>. Replacing the parameter p by p(y), we have

dy P = p{y)
\L(yf+-(y-xp(r))'^(r){y-xp(r))

(6.24)

, . . dS,{y;P,y)
Substituting u -

dy p = p{r)
= -y'A{y)—^-^

dy
in equation (6.24) and

after some simple algebra we get
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- /AG ) ^ A{r)y+-y'A(r)ytr\^ (r)^\ = o. (6.25)

Dividing both sides of equation (6.25) by y'A(y)y gives

=0. (6.26)
J

Multiplying both sides of equation (6.26) by - - , we have

-tf
(v)' e{y)

= 0. (6.27)

Equation (6.27), which has been derived directly from the least squares

estimation equation (6.24), is exactly equation (6.13) which is the estimating

equation of the concentrated likelihood. This implies that the ML estimates and

the least squares estimates are equivalent and we have a least squares

interpretation of the ML estimator without the need for a normality assumption.

Thus we conclude that for the general linear regression model, the normality

assumption is not crucial for ML estimation.

6.6 Non-stationary AR(1) Error Process

In this section, we discuss estimation of parameters of the model using the

alternative method in the case of a nonstationary AR(1) error process. We

express the second part of equation (6.27) in terms of a polynomial expression

and discuss different avenues for estimating parameters.
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6.6.1 Estimation of parameters using method 2

Let us consider the linear model defined by (6.1) with the AR(1) error

process

u, = yut_x + s t w h e n t~2,--- ,n (6.28)

where w, = sx and st is identically and independently distributed N{0,a2) for

t = \,"-,n. This is a nonstationary process and differs from a stationary process

which requires the variance of each u, to be constant. This amounts to assuming

that var(s,) = cr2 for t * 1 and var(£:1) = c r 2 / ( l - ^ 2 ) with \y\<l.

Berenblut and Webb (1973) first considered how to test for non-stationary

autocorrelated errors in the linear regression model. In the light of their work, the

variance-covariance matrix of the nonstationary process (6.28) can be written as

1

Y

y2

ynA y

i +

n +

y

y2

+y

y-2

in which

r
yi+y

y

yn+y

n-l

n-2

(6.29)

\+r
2

-y

0

:

0 ••

-y

l + y2

-y

0

•y

i+r2

o •
0 "

-y ••

-y

•• 0

• 0

• 0

-y
I

(6.30)
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where E(^) and 2T1 [y) are symmetric and positive definite for all y and we can

write 2(y) = L(y)L(y)'. Here L(y) is

1 0 0

x i o

ynA

o
0

0

and the inverse of L(y) can be written as

1 0 0 ••• 0

-y 1 0 ••• 0

0 -y 1 ••• 0

0 0 -y 1

0

1

0

0

0

1

0 •••
0

0 •••

0
0

0

(6.31)

(6.32)

in which

0 0 0 ••• 0"

1 0 0 ••• 0
(6.33)

0 0 ••• 1 0

is known as the back shift matrix.

The last term of the first part of equation (6.27) can be expanded in terms

of a polynomial as follows

tAL
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(6.34)

[ 2ytr(B2)+ ••• -(n-l)y'-}tr(Bn)\ = 0

where

L{y) = I + yB + y2B2+ ••• y- ' f l1-1 . (6.35)

The first part of the equation (6.27) is equal to zero because of (6.34), which

allows us to write equation (6.27) as

or yA^)^lA(r)y = o. (6.36)
dy

Equation (6.36) can be written as

/ [ z - {y) - S- (y)x{X^ (y)xy XT"1 (y)]

[y - X(X^ (y)X)-' X^ [y)y\ Z"1 (y)

dy J

or y'[/ - Z- (y)X{xV (y)xy' X']^ (y)

-1 (yjl - X{X^ {y)X)-i X^ (y)]y =

or

sfe) L-. (r)L _ X{x^ (y)x)" xvrx (r)y\ = o
dy >•

1 1 w>. (6.37)
or

We have
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dy

( 6 3 8 )

= (J - yB)" B{J - yB)" (/ - yB)"' +{l- yB)" (7 - yB)-1' B'{l - yB)"'.

We can write the middle part of equation (6.37) in terms of the B matrix as

= (7 - yB)' (7 - yB){! - yB)'x B{l - yB)'1 (7 - yB)"' (7 - yB)' (7 - yB)

+ (7 - yB)' (7 - yB){l - jB)~' (7 - yB)"' B'{J - yB)"' (7 - yB)' (7 - yB) (6.39)

= {I-yB)' B + B'(l-yB)

= {B + B')~2yB'B.

Substituting (6.39) into equation (6.37), we have

(y - Xp{y)") [{B + B') - 2yB'B\y - XJ3{y)) = 0 (6.40)

which is the final form of the estimating equation. Solving equation (6.40), we

can obtain the final estimate of the parameter. In the next subsection we show it

is possible to express the estimating equation as an infinite or finite degree

polynomial in y .

6.6.2 Expression of the alternative method estimating
equation as a polynomial

In this subsection, we express the estimator of B as a polynomial of y ,

the autoregressive parameter of the error process. This allows us to substitute this

polynomial expression into (6.40) and solve for y . From equation (6.18) we get



[*8,8,X XSX,X)Z* + K{,g + g),x xSx,

x8,8.x x_(x,x)zJ- x{,a+a),x ,.U

{xa,a,x.{x,x)zt-x{,a+a)lxx_(xlx)A+

(xa.8,x ,.{x,x) z* - x{,a + a),x x_{x,

a,8.x ,.(IJ) zt+*{,a + a),x xXx.

{(xa.a.x xXx,x)i*- x{,a + a),x xXx,

[xa.a.x xXx,

[x8,8.x xXx.x)z
A
+x{,a + a),x xXx.xy -1} =

,a+a),x xXx,x){x,xY - xXx,xXx,x)x,x} =

x_{xa,a,xz*+x{,a + 8).x*- x.x} =

S
I (^y "a jo suua; ut '(gl- /) = [X)x_j aouis pire

LOZflDUtpsg UO SBtlSSJ
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'x)-x x'(B'+B)x-r
2 {xxyx X'B'BX+r

2 {{X'xyx
 X'{B- +B)X)2 -

73{XlXY'X'{B' + B)X{X'Xyi X'B'BX-r''

X'(B' + B)X+ yA{{X'X)~x X'B'BX)2 +y

yA({X'Xy' X'(B' + B)X{X'XY X'B'BX(X'XY X'(B' + B)x) -

y4 (X'X)'' X'B'BX{X'X)~X X'{B' + B)X{X'X)'X X'{B' + B)X -

yA[(X'Xy} X'(B' + B)x)\x'Xyx X'B'BX

+-+yA[(X'Xyx X'(B' + B)X)4 +•••]

\b - y{X'X)~x X'(B' + B)y + y2 (X'X)'X X'B'BX^

= b + y{X'X)'] X'{B' + B)Xb -yz{XX)'x X'B'BXb + y2({X'X)'x X'{B' + B)x)'b

Xyx X'B'BX{X'Xyl X'(B' + B)Xb + yA((X'X)'1 X'B'BXJ' b

X'B'BX)ib -y'{X'X)-xX'{B' + B)X{X'X)'X X'B'BX{X'X)'

X'(B' + B)Xb - yA (X'X)'X X'B'BX{X'X)'X X'{B' + B)X{X'X)'X X'(B'

y*{{XXylX'{B' + B)x)2{XlX)'x X'B'BXb+ y\{X'XyxX'(B' +B)x)Ab+-

- y{X'X)'x X'(B' + B)y - y2{XX)'x X'{B' + B)X{X'X)'X X'{B' + B)y +

y\X'xY X'B'BX(X'Xyx X'(B' + B)y - y3((X'X)-x X'B'BX)\x'xyx X'(B' + B)y

+ y\X'XY X'{B' + B)X{X'X)'X X'B'BX{X'X)'X X'(B' + B)y -

y'(X'Xyl X'B'BX{X'Xyx X'{B' + B)X{X'X)'X X'{B' + B)y-

y4((X'X)-x X'(B' + B)X)\X'X)-X X'(B' + B)y+-+y2(X'Xyx X'B'By +

y\X'Xyx X'{B' + B)X(X'X)-X X'B'By - yA{X'XY X'B'BX{X'X)-X X'B'By

- rA((X'X)'' X'{B' + B)X)2(X'X)'X X'B'By+-
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= b + y[(X'Xy X'(B' + B)Xb - {X'Xy1 X'(B' + B)y]

+ r2 [({X'Xy1 X'(B' + B)x)2b - (X'X)~X X'B'BXb

- (X'X)'1 X'(B' + B)X(X'X)-] X'(B' + B)y + (X'X)-] X'B'By]

+ r%{X'Xyi X'{B' + B)x)ib- (XX)~l X'(B' + B)X(XX)-1 X'B'BXb -

'X)'1 X'{B' + B)Xb + {X'X)'' X'B'BX{X'xY X'{B' + B)y

'Xy1 X'(B' + B)X)2 {X'X)'X X'{B' + B)y]

/ [ ( ( IX)" ' X'{B' + B)x)2b- {X'Xy* X'{B' + B)X{XX)'X X'B'BX(XX)']

X'{B' + B)Xb - (X'X)~* X'B'BX(X'X)'1 X'{B' + B)X(X'X)'1 X'(B' + B)Xb -

((X'Xy X'{B' + B)x)\xxyl X'B'BXb + ((X'X)'] X'{B' + B)x)*b +

(XX)'1 X'{B' + B)X(X'XY X'B'BX(XXY X'{B' + B)y
l X'B'BX(X'Xyx X'(B' + B)X{X'X)'i X'{B' + B)y

'XY X'(B' + B)X)\X'X)'1 X'(B' + B)y - (XX)'1 X'B'BX(XXY X'B'By

+ ({XX)'1 X'{B' + B)X)\X'X)'X X'B'By]+-

If we replace the above values in /3(y), we can write

E+-~ (6.41)

where

A = (XX)'1 X'(B' + B)Xb - (X'XY X'(B' + B)y

b = (X'X)~l X'y

C = ((XX)'1 X'(B' + B)x)2b- (X'XY X'B'BXb - (X'xY X'(B' + B)X(X'xY

X'(B' + B)y +(X'X)'X X'B'By

D = ((X'XY X'(B' + B)x)ib - (X'XY X >(B' + B)X(X'X)'1 X'B'BXb -

X'B'BX(X'XY X'(B' + B)Xb + (X'X)'X X'B'BX(X'xY X'(B' + B)y

'XY X'(B' + B)X)2(X'XY X'(B' + B)y
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E = ({XX)-' X'{B' + B)x)2b- {XX)-' X'{B' + B)X{XXyl X'B'BX{XX)'1 X'{B' + B)Xb

- {XX)'1 X'B'BX{XX)'1 X'{B' + B)X{XX)~' X'{B' + B)Xb -

{{XX)'1 X'{B' + B)X)\XX)'X X'B'BXb + ({XX)'1 X'{B' + B)x)*b +

{XX)'1 X'{B' + B)X{XX)'X X'B'BX{XX)'1 X'{B' + B)y

- {XX)'1 X'B'BX{XX)'i X'{B' + B)X{XX)'X X'{B' + B)y - ({XX)'] X'{B'
j

{XX)-)X'{B' + B)y-{XX)-1X'B'BX{XXyiX'B'By + [{X'Xy}X'{B' * %~

{XXy'X'B'By

and B is as in (6.33).

When we replace fl{y)in equation (6.40), we have

(y-Xb-yXA-y'XC-y'XD-y'XE—^B + B1)

{y-Xb-yXA-y2XC-y'XD-yAXE—)-2y{y-Xb-yXA-y2XC-yzXD-yAXE—>l

{B'B)(y-Xb-yXA-y2XC-y3XD-yAXE--) = 0

B'){y-Xb)-yA'X'{B + B'){y-Xb)-y2C'X'{B + B'){y-

'X'{B + B'){y-Xb)-yAE'X'{B + B'){y-
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(y - Xb)' {B + B'){y -Xb)- y[A!X'(B + B'){y -Xb) + {y- Xb)' {B + B')XA

-2(y-Xb)'B'B{y-Xb)]

- A'X'B'B{y - Xb)-(y - Xb)' B'BXA} + y3[D'X'{B + B'){y - Xb)

-C'X'{B + B')XA-A'X'{B + B')XC + (y-Xb)'{B + B')XD

- 2C'X'B'B(y - Xb) + lA'X'B'BXA + 2(y - Xb)' B'BXC]

- rA[E'X'(B + B')(y -Xb)- D'X'(B + B')XA - C'X'(B + B')XC

- A'X'{B + B')XD + (y- Xb)'(B + B')XE + 2 .'X'B'B{y-Xb)

+ 2C'X'B'BXA + 2A'X'B'BXC-2{y - Xb)' B'BXD+—= 0.

Finally we can write equation (6.40) as a polynomial of infinite order

(6.42)

where

P = (y-Xb)'(B + B'){y-Xb)

Q = -[A'X'{B + B'){y-Xb) + (y-Xb)'{B + B')XA~2(y-Xb)'B'B(y-Xb)]

R = -[C'X'(B + B')(y -Xb)- A'X'{B + B')XA + {y- Xb)' {B + B')XC- A'X'B'B{y - Xb)

-(y-Xb)' B'BXA]

- 2C'X'B'B(y -Xb) + 2A'X'B'BXA + 2(y - Xb)' B'BXC]

'{B + B'){y-Xb)-D'X'(B + B'

+ (y- Xb)' {B + B')XE + 2D'X'B'B(y -Xb) + ICX'B'BXA +

lA'X'B'BXC- 2(y - Xb)' B'BXD

and B is as (6.33).
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By using the same approach, we can also express the estimating equation

of the marginal likelihood in terms of an infinite degree polynomial. The only

difference with that for the concentrated likelihood is that the coefficients are

different.

A special case of equation (6.40) is when X is a vector (the order of X is

n x 1). In that case, to get rid of the inverse term, we can multiply through by

(xi.{yXx x\ which is scalar. We then have

[X?WX Xy - XX"L(y)~x y) [B + B'- 2yE 'Bpr£ty)~l Xy - XX^y)'1 y) = 0.

(6.43)

This can be expanded as

= [(yX'X -XX'y)'{B + B')~ y((yX'{B + B')X - XX'{B' + B)y)' {B + B') + 2{yX'X - XX y)' B'B}

+r
2({yX'B'BX-XX'B'By)'(B + B') + 2(yX'(B' + B)X-XX'(B' + B)y)'B'B\

-y*(2(yX'B'BX - XX'B'By) B'B\

[{yX'X - XXy) - y(yX'{B' + B)X - XX'{B' + B)y) + y2(yX'B'BX - XX'B'By))]

I \
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= {yX'X - XX'y)' (B + B'){yXX - XX'y)

-y[(yX'{B' + B)X - XX'{B + B')y)' {B + B'){yX'X ~ XX'y)

+2{yXX - XXy)' B'B(yX'X - XX'y)

+{yX'X - XXy)' {B + B')(yX'{B' + B)X - XX'{B + B')v)]

+y2[{yX'B'BX-XX'B'By)'{B + B')(yX'X-XX'y) +

(yX'(B' + B)X -XX'(B + B')y)' {B + B')(yX'(B' + B)X - XX'(B + B')y)

+2{yX'X - XX'y)' B'B(yX'{B' + B)X - XX'{B + B')y)

+{yX'B'BX - XX'B'By)(yX'X - XX'y)' ]

-y2[2(yX'B'BX - XX'B'By)' B'B(yX'X - XXy) +

(yX'B'BX - XX'B'By)' (S + B')(yX'{B' + B)X - XX'(B + B')y)

+2(yX'{B' + B)X - XX'{B + B')y)' B'B(yX'(B' + B)X - XX'(B + B')y)

+(yX'{B' + B)X - XX'{B + B')y)' (B + B')(yX'B'BX - XX'B'By)

+2{yX'X - XX'y)' B'B{yX'B'BX - XX'B'By)]

+yA[(yX'B'BX - XX'B'By)' (B + B'){yX'B'BX - XX'B'By)

+2(yX'(B' + B)X - XX'(B + B')yj B'B(yX'B'BX - XX'B'By)

+2(yX'B'BX - XX'B'By) B'B(yX'(B' + B)X - XX'{B + B')y)}

-ys[2{yX'B'BX - XX'B'By)' B'B(yX'B'BX - XX'B'By)].

Thus we can write equation (6.43) as a fifth degree polynomial in y , namely

+ej4 +fly
5 • (6.44)

where a, = {yX'X - XX'y)' {B + B'){yX'X - XX'y),

1mi
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r'(B' + B)X - XX'(B + B')y)' (B + B')(yX'X - XX'y) +

2(yX'X - XXy) B'B(yX'X - XXy) + (yX'X - XXy) (B + B')

(yX'(B' + B)X - XX'(B + B')y)]

c, = [(yX'B'BX - XX'B'By)' (B + B')(yX'X - XXy) +

(yX'(B' + B)X - XX'(B + B')y)' (B + B')(yX'(B' + B)X - XX'(B + B')y)

+2(yX'X - XX'y)' B'B(yX'(B' + B)X - XX'(B + B')y) +

(yX'B'BX - XX'B'By)(yX'X - XX'y) ]

d, = -[2(yX'B'BX - XX'B'By) B'B(yX'X - XX'y) +

(yX'B'BX - XX'B'By) (B + B')(yX'(B' + B)X - XX'(B + B')y)

+2(yX'(B' + B)X - XX'(B + B')y) B'B(yX'(B' + B)X - XX'(B + B')y)

+(yX'(B' + B)X - XX'(B + B')y) (B + B')(yX'B'BX - XX'B'By)

+2(yXX - XX'y) B'B(yX'B'BX - XX'B'By)]

e, = [(yX'B'BX - XX'B'By) (B + B')(yX'B'BX - XX'B'By)

+2(yX'(B' + B)X - XX'(B + B')y) B'B(yX'B'BX - XX'B'By)

+2(yX'B'BX - XX'B'By) B'B(yX'(B' + B)X - XX'(B + B')y)],

and

/ , = -[2(yX'B'BX - XX'B'By) B'B(yX'B'BX - XX'B'By)].

Therefore we finally obtain a special form of the estimating equation that

is a fifth degree polynomial when Xis a vector. When Xis not a vector, we

have an infinite order polynomial, which is shown in equation (6.42). Given that

it is a polynomial in y and we are assuming \y\<\, then it can safely be

approximated by a finite degree polynomial. The fact that it is a polynomial does
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suggest strongly the possibility that there may be multiple roots. This translates

into multiple local maxima. This issue was discussed in earlier chapters. It helps

if we can know where these local maxima might be. In the next section, we will

discuss different approaches to finding roots of approximating polynomials with

this in mind.

6.7 Solution for Multiple Roots

In the previous section, we expressed the estimating equation as a

polynomial of infinite degree for general X and fifth degree when A" is a vector

for a nonstationary AR(1) process with \y\ < 1. To approximate an infinite degree

polynomial without this restriction is not feasible. That is, an advantage of this

assumption is that it allows us to take a finite degree polynomial as an

approximation. In this context, there are a few possible approximate solutions

that can be calculated by using an approximating polynomial up to degree four.

For greater accuracy, an iterative procedure based on (6.40) can be used.

One question we must address is whether the roots of the estimating

equation are local or global maxima or minima of the likelihood function. There

also may be circumstances in which some of the roots are imaginary. There is

always the possibility that all roots of the polynomial are imaginary. It is also

possible that the global maxima is not a root but is a boundary point. For

example, we would expect the maxima to occur either at the negative boundary or

at the positive boundary when all roots are imaginary. In the next subsection, we

will discuss a few approximate solutions that exploit the restriction | / | < 1.

It:
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6.7.1 First approximation

Analytically it is impossible to solve a polynomial of infinite onder. So an

ob ious approach would be to approximate this polynomial with a finite

polynomial. In particular we can take account of the fact that \y\ < 1. This allows

us to ignore higher order terms as being zero or near zero.

The simplest polynomial that results from ignoring second order and

higher order terms is P + y Q = 0. After some simple arithmetic we get the

following estimate of the parameter

y=-P/Q (6.45)

where

P = (y-Xb)'(B + B'){y-Xb),

Q = -[A'X'{B + B^y - Xb) + {y - XI}! {B + B')Xi - 2{y - Xb)' B'B(y - Xb)],

b = (X'X) X'y and B is as (6.33).

When the value of y is close to zero, equation (6.45) provides a good

approximate solution .*rtd estimation of y becomes straightforward. On the other

hand, if the value of y is not close to zero, this first oilier approximation may not

provide a good estimate zn4 cousidenttioa of a second-degree polynomial

approximation may be appropriate. We discuss this in the next subsection.
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6.7.2 Second approximation

We now consider the second-degree polynomial approximation to equation (6.42)

that takes the form

(6.46)

Using the quadratic solution we have two roots of the form

y=(-Q± {{-Q)2 - APR}"*) / IP

where P = (y- Xb)' (B + B'){y - Xb)

Xb)' B'B(y-Xb],

R = ~[C'X'(B + B'){y- Xb)- A'X'(B + B')XA + (y - Xb)'(B + B')XC

- A'X'B'B(y-Xb)-(y- Xb)' B'BXA].

The solution of the second-degree polynomial (6.46) may provide

different roots, which will either be real roots or imaginary roots. Our concern is

with choosing the appropriate root from this quadratic equation that will give an

appropriate estimate of the parameters.

When the roots of the quadratic equation (6.46) are both real but different,

we can substitute them into the likelihood function in turn, and choose the one

that produces the largest likelihood function as our desired estimate. On the other

hand, when roots of the quadratic equation are both imaginary, the likelihood

function does not have a turning point. In this situation, the likelihood function is

maximized either at the positive boundary, y = 1, or at the negative boundary,

y = - 1 . As we mentioned in previous chapters, boundary points can be local or
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global maxima. To check whether we have a local or a global maximum, we

should always substitute these boundary values in the likelihood function. In the

next subsection we consider a third degree approximating polynomial.

6.7.3 Third approximation

For greater accuracy, we can use a third order approximation for finding the

approximate root of the polynomial under the assumption that |^j < 1. In this

context, the estimating equation (6.42) is of the form

yiS + y2R + yQ + P = 0 (6.47)

where P = (v - Xb)' {B + B')(y - Xb),

Q = -[A'X'{B + B'){y-Xb) + {y-Xb)i{B + B')XA-2{y-Xb)'B'B(y-Xb)],

R = -[C'X'(B + B'){y -Xb)- A'X'(B + B')XA + {y- Xb)' {B + B')XC

-A'X'B'B{y-Xb)-(y-Xb)'B'BXA],

S = -[D'X'{B + B'){y -Xb)- C'X'{B + B')XA - A'X'(B + B')XC

B + B')XD-2C'X'B'B{y-Xb) + 2A'X'B'BXA + 2{y-Xb)J B'BXC].

We can solve for the roots of equation (6.47) using the Cardan's formula.

We follow the same steps as outlined by Conkright (1951). The steps are as

follows: First eliminate the second degree from (6.47) by using the

transformation

y=Z-R/3S. (6.48)

Substituting (6.48) in equation (6.47), we get the transformed equation
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= 0, (6.49)

where H = (3SQ-R2)/9S2 and G = (2J?3 - 9SRQ + 27S2P) /21S\ It is

convenient to refer to (6.49) as the reduced cubic equation. The roots of equation

(6.47) can be obtained from (6.48) when the roots of (6.49) are known. The next

calculation follows the different steps for solving the roots of equation (6.49).

We wish to choose two numbers in such a way that

Z = o + v (6.50)

satisfies equation (6.49). Substituting (6.50) in equation (6.49) and after some

algebra we have

o3+v3+3(ov + //)(o + v) + G = 0. (6.51)

Observe that equation (6.51) will be satisfied if o and v are chosen such that

o3+v*=-G (6.52)

and

ov = -H. (6.53)

Therefore an appropriate choice of o and v can be found by solving equations

(6.52) and (6.53) simultaneously. From (6.53)

v=-H/o

so that equation (6.52) can be written as

0 » " + G = 0
o

or

o 6 + G o 3 - t f 3 = 0 . (6.54)

Solving equation (6.54) as a quadratic solution in o3 and v3, we have I j
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3o = (6.55)

and

- G - V G 2 + 4 i / 3

The solution (see Conkright (1951)), known as Cardan's formula is

(6.56)

Z=o+v=
"II

(6.57)

where the two cube roots must be chosen to satisfy (6.53), i.e., their product must

be -H. There will be normally three combinations of roots that satisfy this

requirement giving equations (6.55) and (6.56). These three roots are

Z, = o, +v,, Z2 =coo] +fi?2v,, and Z3 =co2ol +<yv, where co and a>2 are the

imaginary cube roots of unity. Once we know the roots of Z , it is easy to find

the roots of y by solving the relation defined in equation (6.48).

The solution of the third degree polynomial may produce one real root or

three real roots. Only one real root can be used directly as our final estimate of

the parameter. For three real roots, we follow the same steps as explained in the

Subsection 6.7.2. When the third degree polynomial produces real and imaginary

roots, we choose the real root as the final root. The question remains unsolved in

the case of multiple maxima where the likelihood function has more than one

turning points. There is also the possibility that the maximum value of the

likelihood is at either the positive or negative boundary. Under these

circumstances, in attempting to choose the root of the polynomial, we should also
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take into account the two boundary points as a part of the maximization. Finally

we choose the point among the real root and the two boundary points which

provides the largest value of the likelihood function. In the next subsection we

will discuss how to find roots of a polynomial of order four for greater accuracy.

6.7.4 Fourth approximation

A fourth degree polynomial approximation of equation (6.42) is

= 0. (6.58)

In order to solve this equation, we introduce r, j and k such that

( ~ \2

y2+^-y + k . (6.59)
2 )

The determination of r, j and k depends on equating the coefficient of the first

and the second order of / or

S 2 (6.60)

o P O ~ P
where S = —, R = ~, Q = — and P = —. From the above expression we can

write

j? -}. r
2 = — + 2)t (6.61)

4

2rj + Q = Sk (6.62)

jz+P = k2. (6.63)

From (6.62) we have
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from (6.61) we have

and from (6.63) we get

(Sk-Q) =

4

f =k2-?.

Using (6.65) and (6.66), we can write (6.64) as

4|

(6.64)

(6.65)

(6.66)

S2k2 -2SkQ + Q2 =4\ -2kP~Rk2 +RP-
?2n2 ~ ~ o r

2 +4RP-S2P)

kQ-Q2 =0

o r k3 --k2 +- (6.67)

In (6.67) A: is unknown. Once k is known, r and j can be obtained by

substituting in (6.61) and (6.62). Adding (ry + jf to both members of (6.59), an

equation is obtained in which both members are perfect squares. We have in fact,

2

S

(6.68)

(6.69)
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and the four roots of (6.59) can be found by solving the quadratic equations

(6.68) and (6.69), which are known as Ferrari's solution (see Conkright (1951)).

We use the same procedure as discussed above to choose the root from the real

roots of the polynomial as the final estimate. That is we choose that root (or

boundary value) that has the highest value of the likelihood function. In the case

of all four roots being imaginary roots, we seek the global maxima by looking at

the values of the likelihood at the two boundary points.

In Subsections 6.7,1 through 6.7.4, we discussed different methods for

finding roots of approximating polynomials that provided an estimator of y with

increasing accuracy. We have seen that the order of a good approximating

polynomial depends to some degree on the value of \y\. For example, for smaller

values of \y\, all higher terms of the polynomial become zero quickly and

equation (6.42) can be approximated by a lower degree polynomial. However,

for higher values of \y\, we need to consider higher degrees for the approximating

polynomial. For greater accuracy, we can use equation (6.40) to derive an

iterative procedure as outlined below.

l
I

'•¥<\
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6.7.5 Numerical approximation
From equation (6.40), we can write

. _ ( 6 7 0 )

We can estimate y by using an iterative procedure that is based on equation

(6.70). For convenience, equation (6.70) can be rewritten as

The iterative procedure begins with a first approximated value of y

namely y0 = -P / Q to start the iterative procedure where P and Q are defined

in equation (6.45). Substitute this estimated value in equation (6.71) to obtain the

updated value of / , ; Jx *> obtain y2 and so on. Repeat the process until the

difference between successive updated values meets a tolerance limit, i.e.,

\y -y\<S where 6 is a small positive number chosen by the researcher.

The final estimate of y is JM.

As we know from the previous discussion,, the likelihood function may

have multiple maxima in the context of MA(1) error process, which raises the

issue of whether we have converged to a local or global maximum. In the context

of a non-stationary AR(1) process, the iterative process converges to one root

which may not be a global maximum. It makes sense to address this issue with

multiple starting values to start up the iterative procedure and investigate the

convergence of local maxima as we discussed in Chapter 3.
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6.8 Conclusion

In this chapter, we investigated the form of the estimating equation for the

LS method and that of the concentrated likelihood for estimating the parameters

in the covariance matrix of the general linear regression model. In the application

of the LS method, we transformed the linear model by pre-multiplying by the n th

root of the determinant of the lower triangular Cholesky decomposition of the

covariance matrix times the inverse of the same matrix.

The main contribution of this chapter is that the estimating equation for

the LS method applied to our modified transformed model is the same as the

estimating equation of the concentrated likelihood. This result tells us that

instead of using the concentrated likelihood with a normality assumption, we can

apply the LS method without the normality assumption when estimating

parameters of the covariance matrix. The later results in the same estimates as

the former approach but does not need normality to be assumed.

We also showed that the estimating equation can be expressed as a

polynomial of fifth degree when X is a vector in the context of the linear model

with a non-stationary AR(1) error process. With the same error process, we

demonstrated that the estimating equation is an infinite degree polynomial of the

parameter when X is not a vector. We conclude that instead of using an infinite

degree polynomial, which is analytically difficult or even impossible to solve, we

can use an approximating polynomial of finite degree, which is relatively easier

to solve.



Chapter 6 j s s u e s on Estimation 226

For smaller values of \y\, we discussed different theoretical solutions for

finding the roots of the polynomial up to degree four. For higher values of y , we

suggest an iterative formula to obtain the approximate roots of the polynomial

with greater accuracy. However, in practice, there is the usual problem

concerning whether the process converges to a local maximum or global

maximum of the likelihood function.

Usually it is difficult to find the solution of the polynomial of higher

order. In this chapter, special attention was paid to the problem of deciding

between multiple roots. Our method works well under the restriction of \y\ < 1

for higher degree polynomials. We have seen that the solution of a polynomial

contains real roots, imaginary roots or both. In the case of real roots, we suggest

choosing the one that gives the largest value of the concentrated likelihood with

appropriate consideration also being given to boundary points. In the case of

when all roots are imaginary, the possible maximum might be either the positive

boundary or negative boundary and we suggest taking the value that makes the

concentrated likelihood function largest.

In light of Chapter 3 and Chapter 5, we found that selection of root on the

basis of maximising the likelihood function may not always achieve the best

estimate of the parameter. It therefore seems a good idea to consider whether the

final estimate that comes from the finding the global maximum is actually a

sensible estimate. When it does not seem sensible, our results from previous



I .

Chapter 6 Issues on Estimation 227

chapters suggest there may be gains in going to a local maximum which gives a

more sensible estimate in the case of the concentrated likelihood.

it



CHAPTER 7

Summary and Concluding Remarks

7.1 Concluding Remarks

Econometrics is concerned with extracting the best possible information

from data in order to make inferences using econometric or statistical models. It

is imperative to study the properties of estimators with particular emphasis on the

accuracy of the ensuing inference. Forecasting plays an important role in mamy

branches of science and it is thought a good forecast depends on the reliable

statistical or econometric model.

The work described in this thesis involved the investigation and analysis

of four major areas. The first was to study the importance of finding the global

maximum of the likelihood function and the consequences of accepting local

maxima on the size of the standard test of a regression coefficient when

estimation is based on maximum likelihood in the presence of MA(1) errors. The

poor results based on maximum likelihood estimates motivated an investigation

of the use marginal likelihood based estimates and the consideration of different

approaches to counting the degrees of freedom in an attempt to improve the
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results. The third major area was to reassess the consequences of accepting local

maxima of the concentrated and marginal likelihood functions on forecasting

performance and make a comparison between OSAF and TSAF. We also

investigated whether estimating the first term of the forecasting error improves

forecasting performance in comparison to the usual approach of setting the first

term to zero.

The fourth area was to examine whether there is equivalence between the

LS and the maximum likelihood estimation methods by using the estimating

equation approach in the case of the general linear regression model. We also

explored the consequences of this estimating equation approach when estimating

the covariance matrix parameter in the context of a non-stationary AR(1) error

process. In the section that follows, the ma]?*'; contributions of the thesis are

summarized and conclusions drawn. We conclude this chapter by giving some

suggestions for topics for future research.

7.2 Summary and Conclusions of the Thesis

Chapter 2 reviewed several topics with particular emphasis on the

estimation of parameters of the linear regression model in presence of MA(1)

errors. The survey began with a brief historical discussion of likelihood-based

inference with particular emphasis on estimation of parameters. We also

surveyed the literature on the simulated annealing algorithm used for

optimization. Our review of numerical estimation difficulties in autocorrelated

linear models highlighted that numerical optimisation techniques can have some
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difficulties in finding the global maxima when estimation is based on maximum

likelihood. The literature also suggests that the use of the marginal likelihood in

place of the concentrate! likelihood can reduce the estimation bias in small

samples. We also reviewed the literature regarding the usefulness of estimating

the parameters in the covariance matrix of the general linear regression model

using estimating equations.

In Chapter 3, we investigated the consequences on the sizes of tests of

regression coefficients, of different strategies, including the use of the simulated

annealing algorithm, for maximising the likelihood function when a local

maximum is distinctly possible. Unfortunately our simulation results found that

the traditional likelihood, based tests statistics often show very inaccurate and

woefully unacceptable sizes particularly in small samples. Our results suggest

that always looking for the global maximum is not necessarily the best approach

for estimation.

In Chapter 4, we reassessed a number of issues v/ith an eye to improving

the accuracy of the estimated sizes. We proposed modified test statistics based

on corrected degrees of freedom for both the concentrated likelihood and the

marginal likelihood estimates. We investigated whether there is any

improvement due to the modified test over the existing test for different

optimisation strategies, sample sizes and moving average parameter values,

through Monte Carlo simulation. The simulation results indicate that tests based

on marginal likelihood perform best irrespective of strategies, samples size, and

values of the moving average parameter, in terms of accuracy of sizes. We
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discovered the not unexpected result that as the sample size increases keeping

other factors unchanged, there is a tendency for test sizes to convergs to the

nominal size. From our results, we recommend the use of the test statistic based

on the marginal likelihood combined with the strategy (iv), which involves the

use of SA. In other words, finding the global maximum of the marginal

likelihood is the best strategy in contrast to that for ML.

In Chapter 5 we looked at the consequences of accepting local maxima on

forecasting performance in the context of the linear regression model when the

error term follows an MA(1) process. We compared the forecasting performance

for two methods of estimation, six different strategies, three different sample

sizes, different values of the moving average parameter for one-step-ahead and

two-step-ahead forecasts in turn and evaluated the performances of the estimators

using AMSFE, AAMFE and AMAFE criteria. We also looked at the issue of

whether the first term of the forecasting error recursion should be estimated from

the data or just set to zero. The simulation results suggest that forecasting based

on the MML estimator is much better than that based on ML estimation.

Furthermore, MML provides the best forecasts for different values of MA(1)

parameter, different strategies and different sample sizes in the context of

stationary and non-stationary design matrices. We found that overall, adaptation

of strategy (vi), i.e., always finding the global maximum via grid search, is

always the optimal choice when estimation is based on MML. We therefore

recommend the use of the MML estimator and strategy (vi) for forecasting with a

linear regression model when the errors follow an MA(1) process. An interesting
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contribution of this chapter is that marginal likelihood based TSAF show an

better performance in forecasting for small samples whereas marginal likelihood

based OSAF are best only for stationary design matrices in the context of

moderate and large samples.

In Chapter 6, we investigated the form of the estimating equation for the

LS method and that of the concentrated likelihood for estimating the nuisance

parameters of the general linear regression model. We found that the estimating

equation for the LS method applied to a transformed model is the same as the

estimating equation of the concentrated likelihood. This result tells us that

instead of using the concentrated likelihood with a normality assumption we can

apply the LS method without the normality assumption when estimating

parameters. We found that the estimating equation can be expressed as a fifth

degree polynomial when there is a single explanatory variable in the context of

the linear model with a non-stationary AR(1) error process and the estimating

equation is an infinite degree polynomial when there are multiple explanatory

variables. We demonstrated that instead of using an infinite degree polynomial,

which is analytically difficult or even impossible to solve, we could use an

approximating polynomial of finite degree, which is relatively easier to solve.

We discussed different theoretical solutions for finding the roots of an

approximating polynomial up to degree four and outlined an iterative formula for

finding the roots of the infinite polynomial. Finally special attention was paid to

the choice of a root as our desired estimate from the multiple roots.



Chapter 7 Summary and Concluding Remarks 233

7.3 Future Work

Given the encouraging results of our research on estimation, testing and

forecasting in a linear regression model with MA (1) error process, there is much

further work that can be done. A few suggestions for future research are outlined

below.

This thesis discusses the issue of finding the global maximum of a

likelihood function when estimating the parameters of the general linear

regression model with an MA(1) error process using different strategies when a

!< cal maximum is distinctly possible. In our case, the error terms are assumed to

)t normally distributed. A possible extension is to repeat the experiments of

Chapter 3 and Chapter 4 for non-normal disturbances and for other error process,

such as, MA(p) and AR(q).

This thesis discussed the problem of multiple roots for the non-stationary

AR(1) processes analytically using an estimating equation. In the literature, there

have been various Monte Carlo studies involving likelihood estimators and tests

see for example Tanaka (1990), Saikkonen and Luukkonen (1993), Davis and

Dunsmuir (1996). There is a question of how much care was taken in some of

these studies in choosing the appropriate roots of the estimating equations as

estimate;. Reworking these studies by taking great care to find the global

maximum of the likelihood function may lead to different conclusions. One

potential area of considerable interest is the application of the estimating equation

to dynamic models.
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Another promising result of this thesis is the use of MML methods to

estimate the parameters of the model and the use the estimated model for OSAF

and TSAF in the context of an MA(1) error process. Further extensions of this

work is possible for one-step-ahead forecasts, two-step-ahead forecast and three-

step-ahead forecast in the context of linear regression model with MA(2) errors

process.

After the simulation experiments in this thesis were largely complete, we

came across the work of Small et al. (2000), who considered a number of

examples of estimating equation with multiple roots. They also tiscussed several

methods for choosing a root of an estimating equation when more than one root is

present (see the discussion in Section 2.6 of Chapter 2). Further work could be

done by looking at their methods in context of the linear regression model with

MA(1) errors through simulation in order to see whether their methods improve

test sizes and forecasting performance as in Chapters 3-5.
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