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Abstract
In this thesis we study the classical mean curvature flow of hypersurfaces with

boundary which satisfy a Neumann boundary condition on an arbitrary, fixed,
smooth hypersurface in Euclidean space. In particular, the author focuses on the
problem of singularity formation on the free-boundary and the classification of the
limiting behaviour thereof. This is achieved by a careful modification of Huisken's
monotonicity formula that incorporates a reflection principle of Griitcr-Jost, devel-
oped in their treatment of the corresponding stationary problem for varifolds, as
well as the curvature of the support surface. Using the monotonicity formula thus
obtained, the author then classifies the possible limiting behaviour of a natural class
of singularities in the case of weakly mean-convex surfaces.

This thesis contains no material which nas been accepted for the award of any other
degree or diploma in any university or other institution. To the best of my knowl-
edge, this thesis contains no material previously published or written by another
person, except where due reference is made in the text.

John A. Buckland
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Chapter 1

Introduction

1.1 Background

A hypersurface in Euclidean space is said to be evolving by mean curvature flow if, for
each point of the surface and at each instant in time, the surface moves in the normal
direction at that point with speed equal to the mean curvature at that point. Thus
a sphere moving by mean curvature flow will move by homothety, either shrinking
to it's centre with increasing speed and becoming singular, or expand indefinitely,
depending on the chosen orientation.

In the classical setting, Huisken [18] has shown that compact, initially convex,
embedded hypersurfaces contracting under mean curvature flow converge to a single
point in finite time and, after suitable rescaling, asymptotically become spherical.
For the one dimensional case, referred to as curve-shortening, the analogous result -
that initially convex planar curves contract to a point - was subsequently obtained
by Gage and Hamilton in [13] and [12]. This was later generalized to all closed,
embedded planar curves by Grayson [16].

Weak formulations of the flow that allow the continuation past the onset of sin-
gularities are also possible. Though the focus in this work is on the classical mean
curvature flow, results in this field are due to Brakke [4] and Ilmanen [22] for varifold
solutions, and Evans-Spruck [10] for level-sets, amongst others.
The natural question concerning the structure of the singularities formed by non-
convex initial data has alwaj's been of particular interest, with a classification of the
limiting behaviour of surfaces moving under the flow being sought. An important
tool in the study of the nature of singularities formed by surfaces under the mean
curvature flow has boon the monotonicity formula of Huisken [19]. This formula is
analogous to the monotonicity formula for minimal surfaces [11] (which are station-
a?y ">olutions of the mean curvature flow), the monotonicity formula of Giga-Kohn
[1 •••. that of Struwe for the harmonic map flow [5], as well as Price's result for the
Yang-Mills heat flow [23]. Most recently, a localized version of the monotonicity
formula for mean curvature flow has also been found by Ecker [6].

Also of particular interest is the behaviour of surfaces evolving by mean curvature
flow with boundary. Results concerning the Dirichlet problem are due to Huisken
[21], who showed that, for boundaries of positive mean curvature, non-parametric



solutions converge to minimal surfaces, and Stone [27], among others. Surfaces
possessing boundaries satisfying various contact angle conditions have also been
examined. Of particular interest here is the work of Stahl [25], who examined
hypersurfaces evolving by mean curvature flow which satisfy a Neumann boundary

"condition on an arbitrary, fixed, smooth support surface. He proved the existence
and uniqueness of solutions for arbitrary smooth support and initial surfaces that
exist on a maximal time interval, which either exist cter::el)y or whose curvature
becomes unbounded in finite time. He furthermore classified the limiting behaviour
of all initially strictly convex surfaces with boundary contained in a sphere which
evolve in the sphere's interior (as opposed to its exterior).
This free-boundary problem has also been studied by Griiter-Jost [17] for weak
(varifold) stationary solutions of the flow. They established a monotonicity formula
perfectly analogous to the standard one of minimal surface theory, which allowed an
extension to the regularity results of A Hard [2] to be made.

The focus of this work is to obtain a monotonicity formula in this setting that
is analogous to Huisken's, and use rescaling techniques and Huisken's classification
for boundaryless surfaces [20] to classify a natural class of singularities for mean
convex evolving hypersurfaces. The approach undertaken is motivated largely by
Huisken's work, but incorporates the key idea of Griiter-Jost?s work to deal with the
boundary. We remark that, in light of Ecker's recent local monotonicity formula,
which can be used locally over hypersurfaces with boundary in regions not containing
the boundary, the main concern in the current work is with regions centred directly
on the free-boundary.

1.2 Mean Curvature Flow With Free Boundary on
Smooth Hypersurfaces

Throughout this work, E denotes a hypersurface smoothly embedded in Rn + ) which
satisfies a rolling ball condition with ball of maximal radius l/tc^, and whose second
fundamental form A% satisfies

IMsl|2 + l|V^||^«?.<oo. (1.1)

Furthermore, for ease of presentation, we assume that E contains the origin,

O e E . (1.2)

We let Mn denote a smooth, orientable n-dimensional manifold with smooth, com-
pact boundary dMn and set Mo := Fo (Mn), where Fo : M

n —+ K"+I is a smooth
embedding satisfying

dMQ == Fo (dMn) = Mo n E,

v* o Fo) (p) = 0 Vp e dMn,
(1.3)

for unit normal fields UQ and ^ to Mo and E, respectively. We then have the
following formal definition for the flow by mean curvature of Mo with Neumann
free-boundary on the hypersurface E:



Definition 1.2.1 (Mean curvature flow with Neumann free-boundary). Let
I c K be an open interval and let Ft ~ F(-,t) : Mn —> R"+1 be a one-parameter
family of smooth ernbeddings for all t £ I. The family of hypersurfnc.es (Mt)tqr,
where Mt = Ft (M

n), aiv said to be evolving by mean curvature flow with Neumann
free-boundary condition on £ if

at
(p,t) = H{P)t)

F(.,0) = Fo

F{p,t) C £
(i>,vv°F)(P,t) = 0

;) G Mn x / ,

, ̂ ) 6 <9A/n x / ,

;) e 5Mn x / .

(1.4)

—V

Here H (p, t) = —H (p, t) v (p, t) denotes the mean curoature
sions Mi at F (p,<), for a choice of unit normal v for Mt.

-, of the immcr-

Whenever possible we will suppress explicit indication of the embedding map and
identify the point F(pJ.) simply with its position vector x in Mri+1. Thus, the
above definition of mean curvature flow with Neumann free-boundary on £ may be
interpreted as saying that, for all t G / , we have

^ = H(x)

dMt C S

x) = 0

Moreover, for a given embedding F we adopt the convention that the exterior unit
normal to E with respect to this embedding coincides with the unit inner co-normal
of dMt at all intersection points. Thus, by the Neumann boundary condition, if
£ = dG for some domain G C E n + 1 and Mt C Rn+l\G (ie. the surface evolves in
the exterior of the domain), this choice of normal coincides with the standard notion
of an exterior normal field to S; for the case where Mt C G, the above convention
coincides with an antiparallel vector to the standard exterior normal to E.

By choosing special coordinates that account for the curvature of the support sur-
face - so-called generalized Gaussian coordinates - one can (locally) transform the
quasilinear system of parabolic equations (1.4) into an equivalent initial-boundary-
value problem for a scalar function [25], and begin to analyze the problem using the
established theory of partial differential equations. Though this approach forfeits
much of the insight offered from the geometric approach, standard results from the
parabolic theory allow one to proceed as in [25] and establish the short-time exis-
tence of a unique solution to this problem. In fact, by proceeding as in the work
of Eckcr and Pluisken in [8], Stahl was able to obtain sharp local gradient estimates
that imply the IBV-scalar problem is, in fact, (locally) uniformly parabolic. By then
appealing to standard results of the linear parabolic theory, the following general
existence and regularity result was obtained:

Theorem 1.2.2. [Stahl, [25]] For any smooth hypersurface £ and and initial hy-
persurface Mo satisfying (1.3) there exists a unique solution to (1.4) on a maximal

'3



time interval [0,T) which is smooth for t > 0 and in the clans
for any a € (0,1). Moreover, if T < oo then

sup

-(-tt.l-HY/J for f £ O j

2 (a:, /) : .r G M"} —• oo a.s ^ —• 7\ (1.5)

The focus of this work is tho case where 7' < oo, where wo wish to study nature of
singularities that occur at points within the evolving boundary of M^ with a further
goal being the classification of possible limiting behaviour of the evolving surfaces
as the singularity develops.



Chapter 2

Motivation

Here we present a brief synopsis of the method used by Huisken in [19] and [20] to
show that hypersurfaces without boundary evolving by the standard mean curvature
flow become asymptotically self-similar as the singular time is approached. The key
ingredient in this argument is a monotonicity formula, which describes how the area
of the evolving surfaces behaves when weighted with a backward heat kernel centred
at the singular point in the ambient space. Since the backward heat kernel becomes
sharper as the singular time is approached, showing this weighted area monoton-
ically decreases implies that the area does not concentrate at the singular point.
More specifically, the monotonicity formula } ;elds that, after appropriate rescaling,
the limiting hypersurfaces move by homothety and are thus self-similar. This char-
acterization is captured in an elliptic PDE which, in the case of hypersurfaces with
nonnegative mean curvature, has been solved to give a complete classification of the
limiting surface.
As this approach directly motivates the subsequent analysis concerning the develop-
ment of singularities within surfaces possessing Neumann free-boundary on smooth
hypersurfaces, the main focus of this section is to simply outline the essential ingre-
dients of Huisken's work and relegate the technical details to the ensuing analysis.

2.1 Singularities For Hypersurfaces Without Boundary

For this section only, we assume that Mn is an n-dimensional manifold without
boundary, and that Ft — F(-,t) : Mn —* Rn + 1 is a one-parameter family of
smooth hypersurface embeddings with corresponding image surfaces Mt ~ Ft (M

n)
evolving by mean curvature flow. That is, we have

dF -»
-jg (p, t) = H (p, t), V (p, t) e Mn x [0, T),

F (p, 0) — Fo (p), V p 6 Mn.

In view of the identity

(MCF)



whoro AA/, denotes tho Laplaoe-Beltraini operator on M,, one may re-write the
governing equation of (MCF) as

Thus it is not surprising that solutions of (MCF) exhibit strong analogies with
solutions to the standard linear heat equation and it would seem plausible to expect
some insight to come from the linear theory.
Indeed, for any fixed point (#o, T) G R7l+I x (0, T), let pXo,r be the standard backward
heat kernel on R n + l , centred at (a.'o, ?")) with time-scaling appropriate to lRn - that
is, let

4 (T - t )

L -\Pxo,T solves the linear back-

(47T (T - t))1

so that, for all t < T, the function $ (#, t) =•

ward heat equation,

We then have the following theorem, due to Huiskon [19],

Theorem 2.1.1 (Monotosiicity Formula). Let Mt be a family of hypersurfaces
evolving by the mean curvature flow (MCF) for t G [U, T). Then for all t < T we
have

d f , f -Ti F1

dt JM, °' JAf'AU
H -

2{T-t)
(2.2)

To deduce the asymptotic behaviour of surfaces near the first first singular time,
resealing techniques are employed. In order to ensure smoothness of the resealing
limit, we make the following distinction between the nature of singularities.

Definition 2.1.2. A surface Mt develops a singularity of Type I if the cuivature
becomes unbounded as t —> T and there exists a constant CQ > 0 such that

(2.3)

Otherwise, the singularity is called Type II.

For the remainder of this section we assume that Mt develops n singularity of type
I at the origin 0 e Rn+1 . That is, for some pa € Mn, we have F(p0, t) —> 0 and
\A (po> t)f —> c«o as t —• T. (For a treatment of singularities of the general type,
the reader is referred to the recent work of Ilmanen [22]; here the smoothness of the
resealing limit is not ensured and so one must work in a weak setting to obtain a
resealing limit).

The original resealing procedure carried out by Huisken to classify type I singularities
in [19] involved setting

F(P.«) =
2{T-t)

F ^ = ~ \ I o g ( T



d_
ds

for p 6 M ' \ so that the roncalod surfaces Ma = F(-, .s)(Mn) arc doKncd over
—7j log?1 ^\ n < oo and satisfy the normalized moan curvature flow equation

(2.4)

where n is the mean curvature vector of Ms>
In this rescaled setting we then have

Corollary 2.1.3 (Huisken, [19]). If the surfaces Ms satisfy the rescaled evolution
equation (2.4), then for alls 6 [— rjlogT1, oo) we have

d f „ __ f
(is Jfc a J^

where p (x) = exp ( —;-^- I.

H - F- r.S> (2.5)

For surfaces Mt which develop a singularity of type I, the corresponding rescaled
surfaces Ms = F(-,s) (Mn) then liave uniformly bounded curvature Moreover, by
examining the evolution equation for the norm of the second fundamental form of
A/a, one can establish uniform bounds on all higher derivatives of the curvature:

Theorem 2,1.4 (Huisken [19]). Suppose the Type I hypothesis (2.3) holds. Then
for each k ^ 0 there is ^constant Ct- < oo such that the second fundamental form
of the rescaled surfaces Ms satisfies

max VkA (2.6)

uniformly in s.

Since the type I hypothesis also implies that the term F (po, s) remains bounded
(see eg. [19]), for any sequence of times $j —* oo we obtain the convergence on
compact subsets of E n + 1 of a subsequence of the surfaces MSj to a smooth limiting

surface MQO-
In view of the uniform regularity estimates (2.6), the behaviour of this limiting
hypersurface is then a straightforward consequence of the rescaled monotonicity
formula:

Theorem 2.1.5 (Huisken [19]). Each limiting hypersurface M<x, satisfies the equa-
tion

H - <ar, u). (2.7)

This is a second-order elliptic equation that implies that the rescaled surfaces be-
come asymptotically self-similar and, therefore, that the surfaces Mt approach a
homothetically shrinking solution of (MCF) as t —* T.
For surfaces of nonnegative mean curvature, the limiting behaviour can then be
characterized as follows:



Theorem 2.1.6 (Huisken, [20]). If M^ is a smooth, embedded limiting hyperuur-
facc in Mn+1 satisfying (2.7) with nonnegativs mean curvature, II > 0, then Mo

either Sn orSn~mxkm.
oo

Remark 2.1.7. If the embeddedness hypothesis of Theorem 2.1.6 is removed then,
in addition to Sn and Sn"m x Rm, the limiting hypersurface may also be F x Rn~\
where F is one of the immersed, homothetically shrinking curves in 1R2 found by
Abrcsch and Langer [1] (see [20] for details).

2.2 Outline of Main Ideas

The essential tool requirod to mimic the above analysis for solutions to (1.4) is a
monotonicity Formula for hypersurfaces with free-boundary on some given smooth
support surface. Obviously some modifications must be made to the classical formula
(2.2), in general, to compensate for the curvature of the support surface, and it is
natural to expert that any formula reduce to that for surfaces without boundary
in th<j case of planar support surfaces (since, in this case, the Neumann boundary
condition allows the surfaces Mt to be reflected across this hyperplane and be treated
as for the surfaces above - cf. proof of Theorem 5.2.5).
The starting point for obtaining such a monotonicity formula is the following general
expansion result.

Proposition 2.2.1 (Expansion Formula). Let M = (Mt)tet0T\ be a solution
of (1.4) and U an open subset of Rn+l containing M. For any functions f,g :
U x [0, T) —> R, where f e Cg ((/), % € Cg (0), g £ C~ (U) and '% € C° (U), we
have the following general expansion formula:

- I fgdfit= I f
dt JMt JMt

+ JMt
g\dt

+ / fQ {g)
JMt

(2.8)

/
dMt

where here and henceforth the operator Q is defined by

(2.9)

8



Proof, By (A.2) we have

1
dt AMt j g g = ® + divA/( A9 + 2 (tf,

H 9

k
dt g

g

Therefore, by (A.5) and the Divergence Theorem (A.I),

and the result follows. D

Remark 2.2.2.
1. Putting g = p, f = 1 and noting (by direct computation) that Q (p) = 0 gives
(2.2) in the case whore dMt = 0.

2. For the case where dMt 7̂  0, we obtain

d f f
— / pdf.it ~ I
(it J frf J fr,

H - pdf,. - f
JOMi

(2.10)

The presence of the boundary integral means that the quantity j M pd/it is, in
general, no longer monotonically decreasing in time. Other than the cases where
the boundary integral is non-positive - cf. Lenuna 6.3.1 - there are other special
cases for which the boundary integral can be sufficiently estimated - cf. Lemma
G.3.3.

In general the boundary term above is difficult to deal with and so the approach
undertaken for the general case, motivated by the treatment of the stationary prob-
lem for varifolds by Griiter and Jost [17], is to nullify it using reflections. That is,
for the function g above we seek a modified version of the backward heat kernel p
with spatial dependence on some carefully chosen function of x - depending on the
distance to, and the curvature of, the support surface E - such that the boundary
integrands of (2.8) are identically zero.
However, the identity Q (p) = 0 can no longer be expected to hold for a modified
version of the backward heat kernel and thus one challenge then becomes to obtain
sufficient control of this term. Secondly, since the distance function will in general

9



only be well-defined within a tubular neighbourhood of the support surface, it will
bo necessary to choose / to be an appropriate localization function; again, to en-
sure the corresponding boundary integrand vanish identically, this function should
depend spatially upon reflections. Thus, a second issue is to find such a function for
which the term (gjr — AA/J / be sufficiently well-behaved.
The resolution of those two problems forms the basis of chapter 4, the culmination
of which is summarized in Proposition 4.1.1 and Lemma 4.2.5. A statement of the
general monotonicity formula then follows in Theorem 4.3.1.
The majority of the rest of this work is then concerned with the rescaling analysis,
as outlined above, and the extraction and classification of the behaviour of limit
surfaces.

10
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Chapter 3

The Distance Function and
Reflections

In this section we introduce the Euclidean distance function, which measures the
distance to £ of a point in ]Rn+1, and establish some links between its derivatives
and the geometry of S, as well as the domain over which it is well-defined. We
then introduce a special reflection function, as discussed in the previous chapter,
and establish ^mo of its fundamental properties.

3.1 Geometric Properties of Distance Function

Definition 3.1.1 (Signed Distance Function). For any point x e Rn+1 , we
denote the minimum distance of x to £ = dG (where G is some domain in Wi+l)
by

rfE (x) := dist (x, E) ,

whenever it is well-defined.
We then define the signed distance function by

d(x):=
~dE (x) itxeG

ifxeRn+l\G.
(3.1)

The following standard result concerning the regularity of the distance function can
be found in [15].

Proposition 3,1.2. Let G c Rn + 1 with E = 5 G € Ck (Rn) for some k ^ 2. Then
there exists an e > 0 such that d € Ck (££), where S^ is the e-tubular neighbourhood
of E given by

£e := {a: e RniM :dE(x)<e}.

As we shall see in the following section, the reflection of points across the surface
X) depends on zero and first order derivatives of the distance function. Hence, to
compute the heat- and Q-operator of functions depending on reflected points - as
will be required in the expansion formula (2.8) - we will firstly need estimates on
derivatives of the distance function up to order three.

11



Proposition 3.1.3 (Derivatives of Distance Function). Let E 6 Ck for k ^ 3
and suppose XQ G S e and yo G E are such that rf(xo) — |rro — yo\. Then in terms of
a principal coordinate system at yo, we have

2. D2d (Dd) (xQ) = 0

S. DH (x0) = diag [r_-̂

0 otherwise.

Here v£ is the (conventional) outer unit normal to E fie. points in the direction of
increasing signed distance), Ps (#o) w /̂ie neaivst point projection of XQ onto E and
Ki = Kj (?/o) = «»(ffc (a-'o)) »'*' the principal curvature o/E in the direction of the i-th
(principal) cooirlinate.

Remark 3.1.4.
1. If E = dG and Mt evolves in the interior of G) then Dd = —v% (where v% is as
introduced iri section 1.2) whenever it is well-defined. If Mt evolves in Rn+1\C? then
Dd - +vs.
2. In view of (1.1), the above proposition implies the estimates

and

\\D'2d\\

\\D*d\\

1 -
(3.2)

(3.3)

where here || • |{ refers to the maximum norm.

Proof. 1. To verify the first claim, we will proceed as follows: firstly, we show the
inner product of the gradient of the distance function and the unit normal to E is
one; secondly^ we show the distance function is Lipschitz continuous with Lipschitz
constant one; then we combine these two facts to obtain the desired conclusion.

First step: For E given by $ : U C
UxR~> Rn+l by

R n + l , we define the function

For some f-neighbourhood S t of E the distance function d : Ee

and

then gives

d~l (0) = E.

12



For nny fixed point e/n 6 U let us also define the function a : IR —-> R' l+1 by

Then at any point ZQ = \I' (</o, >%) G £<• we have

Dd (s0) • *4 (qo) = # d {a («o)) • a' (so)

= (d o a) (so)
1

Second step: Let re, y 6 S c and choose 2 6 S such that | j / — z\

triangle ine(}imlity

(3.4)

d (y). Then, by the

\x - y\ + \v - A

Since x and y are chosen independently, we can interchange their roles above to
obtain also

d(y) <\x-y\ + d(x).

Hence,
\d(x)-d(y)\^\x-y\

and so d has Lipschit/. constant 1;

\Dd(x)\^l

for all x e S f .
VVn'rc? ,sir/f; Combining (3.4) and (3.5), one obtains

(3.5)

= \Dd(zQ)\cos6

where 9 is the angle between Dd(zo) and ^ (q0). Hence 0 must, be zero and
\Dd(zo)\ = 1, which implies the result:

-^«(*oj — ^s (70) • ('»•»)

For ease of presentation in the rest of this proof, we henceforth drop the superscript
+ and simply write

Dd (20) = ̂  (9o) •

2. Since \Dd\ = 1, we have

= D2doDd.

13



3. We follow the proof of [GT, lemma 14.17] and compute higher derivatives of the
distance function, evaluated at a point XQ € £t> in H principal coordinate system
about the point ya s Ps (XQ) e E.
Since E is Ck\ (k > 3), there exists a neighbourhood N (yo) about the point yo such
that E can bo given by the graph

whore x - {xit...,xn), (f> € Ck (T^ (yo) H N (yo)) nnd 7\:(j/n) is the tangent hy-
perplane to E at yo. Furthermore, by rotating coordinates we can assume that the
,'ci,..., xn axes coincide with the principal curvature directions «f, . . . , K% and that
both

D0 (ifi) = 0 (3.7)

and
<^'V (?7o) = diag [«f , . . . , «f^] . (3.8)

Let us now define the mapping g : T% (yo) H iV (yo) x K —>• K"+l by

.9 (ft rf) = ?/ + vx (y) d, where y ~ (y, <f>{y)).

Noting that for any point y = (y,(j> (y)) G N (yo) D E we have

1
vx (y) =

one computes, for 1 < i,j < n,

DiV£j (Vo) =••
Dj(Hvo)Dk<t>{yo)DiDk<t> (Vo)

(3.10)= -5}K? (

using (3.7) and (3.8). Hence, the Jacobian matrix of g at (2/o,rf(xo)) is given by

£><? (!to, d {x0)) - diag [1 - «f rf (.TO) , . . •, 1 - K%d (xo) ,1] (3.11)

and it follows that Dg is invertiblc over the set

n,

We are now in a position to compute the Hessian matrix of d at points within
By part 2 of this proposition, we know that

for any point a:* of the form x* = yo 4- fi*r, (yo), e < l /« . Therefore it follows that

Dn+iDid(x0) = 0, for 1 ̂  » < n + 1. (3.12)

14



For tho other derivatives, wo write for «,;;' = ! , . . . , « ,

j (Vo) DiVk M

by (3.10). Since .9d/O)(/(.To)) = yn + v& (yo)d(xo) = ^o, we have ?;(j;()) ~ g~l (XQ)
mid so in light of (3.11) the Inverso Function Theorem yields

Hence, for 1

- cling

n we have

1 -

X •**"• fo^

0

Combining this result with (3.12) thus gives

if i := j ,

if i ^ j .

1 - Kid (XQ) ' ' " ' ' 1 - Knd (x0)

4. For the same reasons that yielded (3.12), wo have

Dn+1 DiDjd (x0) =-• 0 1 ^ i, j < n + 1.

For the other derivatives, where i, j , fc = 1 , . . . , n, we compute

,0

- A ^ j (Dkd{xQ))

by (3.6)

jfl (.TO) DtP
m

(3.13)

by (3.13). (3.14)

We now compute explicitly the two derivative terms on the right-hand side of (3.14).
Observing (3.7) and that

for any z € £ D N (yo), we have

15



Thus, noting (3.9) and (3.7) again, wo have

, (P(x0)) =

Wo also compute for 1 < i,j, k < ?J,

A- (a;) = xk - dDkd,

DiPk {x) = Si - d.Oikd ~ DidDkdt

DiDj Pk (a;) « -rf.Dy*rf - (DidDjkd +

Since Dd(xo) = er»+i, evaluation of (3.15) at a*o gives

DkdDijd)

and so from (3.14) we have

KhdDijkd

Transposing to solve for Dijkd yields

-Dkhfj[p(xG))

(3.15)

•
Convention 3.1.5.
Henceforth, we will suppress all indication of the base-point ;r and write simply, for
example, D2d for the Hessian matrix of d evaluated at x, and denote by D2d(x) the
linear map D2d applied to the position vector x. Also, we adopt the convention that
v% denotes the normal to £ at the nearest point projection of x onto S, wherever it
is well-defined.

3.2 Reflections

Tho following concept concerning the reflection of points acrass the support surface;
£ is inspired by the work of Griiter and Jost [17] on the corresponding free-boundary
problem for stationary varifold solutions of (1.4).

Definition 3.2.1 (Tilde-reflection of x across S, r). For any point x €
we define

x :« x - 2 ((x, i/*;)

16



to be the tilde-reflection of x acwss S, where u^ is the exterior unit normal to £
with respect to the embedding F (as per intwdnction), and set

Furthermore, for any xo 6 E"+ l we define the translates

- > 2
rxo

 := \x ~ x - X

Remark 3.2.2.
1. By construction, we note that rXo = 0 iff x = a-o.
2. In view of Proposition 3.1,3 and the definition of the signed distance function,
we note that we also have

(3.16)

3. Using the fact that \Dd\ = 1, we have

\x\2 = |a? - 2dDd\2

and so we see that the tilde-reflection has the same length as the standard reflection
of x across E (and, also, that |x|2 = \x\'2 for x Q. S). However, even though we will
predominantly be concerned with the function r, the reason for the introduction of
x is because, on S, we have

{x + x, J-'E) = 2 (x - (a\ Dd) Dd,

2 ((x, i^) - (x,

0.

since d ~ 0 on S,

by Remark 3.1.4

The same result is not true if we replace x by the standard reflection x = x — 2dDd.
Thus, particularly when we are analyzing boundary integrals that arise from the Di-
vergence Theorem, it will be convenient to know whether the integrand decomposes
into an inner product featuring the vector x + x.
4. In the special case of planar support surfaces E, we have (x, i*;} =• d (when 0 € S)
and so

x = x (3.17)

and
(3.18)

The following lemma contains estimates that will be useful in computing the Q- and
heat-operator of functions depending on r in the following chapter.

Lemma 3.2.3 (Derivative Estimates for r). For any x £
following estimates:

I.

j , we have the

17



2.

3. (Dv, vz) - 0 for all x€%.

Proof. \, Using \x\2 — \x — 2dDd\2, we firstly compute

Dr = 2x + D \x - 2dDd\2

= 2x 4- (Id - 2dD2d - 2Dd <S> Dd) (2x -

-— O7* ~t- OT — AtlTifi drlD H (T\ •— 4 / T DA/\ 7")//

~2x-\~2x--4dD2d(x). (3.19)

Here we recall the adopted convention that D2d denotes the Hessian matrix of d
evaluated at the point a1 whereas D2d (x) denotes the linear map D2d at x applied
to the position vector x.
Hence, observing that for any vectorfield Z defined over Si/KE we have

D'ld (Z, W ) = - (Dd, v) D2d (Z, u), (3.20)

(where Vrf = Dd — (Dd, v) v denotes the component of Dd tangential to Mt at :c),
which follows directly from part 2 of proposition 3.1.3, we obtain

\Dr\2 = |2ar + 25; - 4(/D2rf(>)|2

= 4 \x +- 5|2 - 32rfD2d(a;, a?) + 16r/2 \D2d(x)\2.

Young's inequality gives

(3.21)

and Cauchy's inequality, in conjunction with (3.2), gives

D2d(x,x)^\\D2d\\\x2d\\\x\2

ar|

and

1 —

D2d(x)\2 <\\D2d\\2\x\2

AT2 I r l 2

(3.22)

(3.23)

(3.24)

Hence, by (3.21), the estimates (3.22)-(3.24) and the fact that d ^ \x\ (since O e S ,
by assumption), we have

i -

18



2. From (3.19), noting again (3.20), we lmvo

divA,( Dr « 2n + 2divA,,£ - 4ddivA,( (D2d{x))

(3.25)

To compute the second term on the right we firstly note that

and so, from (3.16) and (3.20), a straightforward calculation yields

divA,,£ = n - 2 «.r, Dd) - d) d\vMtDd + 2 (Dd, u) D'd (.'/;, v)

Hence, from (3.25) we have

\divMtDr - 4n| ^ 4 |((a;, /)</) - rf) divM,Z?rf| + 8 \D*d(x} u)\

+ 4d\dWMl(D
2d(x))\.

Introducing an orthonormal basis n , . . ,rn for jfjM(, we have

(3.26)

and so by (3.2) and the estimate \(x, Dd) - d\ < 2 |a:|, we obtain

and also

(3.27)

(3.28)

whore the omittance of magnitude parenthesis on the denominators is permitted,
since we are working over Si /« s .
The remaining term on the right of (3.25) is estimated similarly: using (3.3), we
have

n

divM{ (D
2d(x)) =J2(°n (D2d(x)),Ti)

(3.29)

Using the estimates (3.27)-(3.29) with d ^ | j ; | in (3.2G) then gives the desired
estimate.
3. Since d{x) — 0 on E, we have

x - x - 2 (x, Dd) Dd

19



and so, by (3.19),
Dr^Ax-A{x>Dd)Dd

for all x e S , Hence, for all x G XI,

{Dr, i^) ~A{x- (a\ /^) i^,, us) (see part 3 of Remark 3.2.2)
= 0.

D
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Chapter 4

The Monotonicity Formula

In this section wo prove a general monotonicity formula for hypersurfaces evolving
by mean curvature flow with free boundary on some given, smooth support surface.
As previously stated, in light of the recent discovery of a local monotonicity formula
by Ecker [6], which 1H valid over regions not containing boundary points, the formula
obtained is specifically designed for centering on points contained within the support
surface £.

We begin by introducing and proving crucial estimates for the two functions that,
together, form the basis of this result - a localization function and a modified version
of the standard backward heat kernel on Rn+1.
In light of Lemma 8.2.3, to nullify the boundary integrals that arise from the Di-
vergence Theorem in the expansion formula (2.8), both of these functions depend
spatially on the function r of the previous section. The first function is thus required,
essentially, to localize the result to a tubular neighbourhood of 2 wiilun which all
quantities involving the distance function are well-defined. As well as depending
spatially on r, the modified heat kernel also takes into consideration the curvature
of the support surface and exhibits similar characteristic behaviour to the standard
heat kernel.

4.1 The Cut-off Function

A fundamental property required of the cut-off function is that it be compactly
supported over the region

Ei/«>: = {* € JRn+I -. d(x)<l/Ks}.

Importantly, also, in view of the expansion formula (2.8) and Proposition 3.2.3, is
that it should depend spatially on the function r and, ideally, be a sub-solution of
the intrinsic heat equation on Mt. In addition to possessing these? crucial properties,
the following function has compact support over a region which shrinks slowly in
time as the critical time T is approached. The reason for this latter feature will
become apparent in the following section, where we estimate the Q-operator of the
modified backward heat kernel over this function's support.
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Proposition 4.1.1. For any a?0 G S, Ky4 ̂  0 and S £ (0, jj] /ef.

(rXo - 4()nr) (4.1)

re ra;o — |a: - .TO)'2 + x - and T ~T — t, and set TO :«

each t e[T - ro,7') (or, equivale.ntly, r 6 (O,fo]) we have

VXQ ^ 2,r){i,

7;ro C (# € Rn+1 : \x - .To| nr. <

^ 2 rw spt^o,
1

-

Additionally, for each t € [0,T) UP

?/ — > I a * Ac

0-

0.

«̂ /or

(4.2)

(4.3)

(4.4)

(4.5)

(4.0)

(4.7)

Remark 4.1.2. Here the subscript "-f" refers to the positive part of the enclosed
function and the power 4 is to ensure that // is of class Cl (any power p > 2 would
actually suffice).

Proof. Since for all r ^ TQ mid S ^ \ we have (K^T) ^ T<J5n' w e estimate

- 256.

To determine the support of r/Xo it is instructive to set Z — i Trpb- 1 (TX() — 4()nr),

so that r/In = (1 - Z)+, and then estimate, for each r € (0, To],

spt?/a0 = {x G Rn+1 : Z ^ 1}

C I x e Rn+1 ; \x - xo\
2 $

2K,,

= ^ € : \x - * 0 |
'I
A

22



«N$f) <As above, wo note that («N$f) < (-$$%) for all 6 < | and r $.' TO, and tlniH

: G Rn + 1 : \x - .TO| «

Since .To 6 £ (which implies d ^ |;r -- XQ\), tlio above result implies that for all
r ^ ro, over the support of ijX{) we have

ar - a ? 0 | (N*T)6

from which the looser, more aesthetically pleasing bound (4.4) follows.
To show the intrinsic heat operator acting on T]XQ la non-positive, wo proceed as
follows:

by (A.4)

by (A.2)

Z 0

(K^T)

noting r]'XQ < 0, <5 ^ f, (4.4) and Lemma 3.2.3.

Hence, since |.c — XQ\KS ^
we have

d

- .ro|

div«,

£ |̂  - x-0 |2]
J

T ^ ro o v e r t n o support of

(4J)6,

The final claims regarding behaviour as «5: —> 0 follow trivially. •
Recall from Remark 3.2.2 that x agrees identically with x when KS = 0. By working
over the support of the above localization function we can extend this result mid show
that x actually conveiges uniformly to x over the support of the above localization
function, as K}: tends to zero. This will become important in chapter 5 when we
investigate the convergence of rescaled solutions.

Corollary 4.1.3. Let XQ G E. Then for any x G spt 7]Xi) and each t E [0, T) we. have

x —* x as Kv —•» 0. (4.8)
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Pwof. Without loss of generality wo take x0 « 0 and write tin = w.

By (4.3), for all * e JT - ^ - , ^ J we have npt 17 c S,/Ka and so, for any

x 6 apt 7/ and these times, wo ran compute

(4,9)

Hence, by (3.16) and the raeai. value theorem, we may estimate

< 4 « B M , (4.10)

using (3.2) and (4.4), where the Hessian matrix of d on the second line is evaluated
at some intermediate point.
For sufficiently small KT. this estimate will hold for all t e [0,T), and for these times
we have r6 4 (1 + if =: C'i (T). Equation (4.3) then gives

8ptiyc{;i!€RB+1: M ^ d * ? "

and so, by (4.10), for each * € [0,2'). over the support of r; -ve have

\-x -- x\ ^ C2KI\

and the result follows.

4.2 The Modified Backward Heat Kernel

(4.11)

D

For the weighting function in our monotonicity formula, we seek a function based on
the standard backward heat kernel that is dependent spatially upon the function r
and which is perturbed appropriately to take into consideration the curvature of the
support surface. Though such functions will alwaya ensure that the corresponding
boundary integral in the expansion formula of Proposition 2.2.1 is nullified, the term
of (2.8) involving the Q-operator of these functions will, in general, no longer vanish.
Any modified version of the standard backward heat kernel should exhibit the same
characteristic behaviour as pXQ T and concentrate at the point about which it is
centred as the singular time of Mt is approached. Also, for reasons concerning the
rescaling analysis (see Chapter 5), it should have time-scaling appropriate to R» and
become singular at a rate of (T - t)~nl'2.

Taking these factors into consideration, we introduce the following family of per-
turbed hoat kernels as candidates to play the role of the weighting function in our
monotonicity formula.

Definition 4.2.1. For x € K"+\ t < 0 and a > 0 we. define the clas, of perturbed
backward heat kernels ga : Rn+1 x (-00,0] —> K by

Qa n/2̂ exp (4.12)
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where r *= |*|2 -(- \x\2.
FiirtheTvum:, for any XQ € M"+l and t < T, we define, also the translates

(4.13)

Remark 4.2.2.
1. Note that, in view of (3.18), we have go {x^t) = p(x,t) in the case of a planar
support surface.
2. Since ga and its translates are defined spatially in terms of r, part 3 of Lemma
3.2.3 implies that

(4.14)/
JO flit

For fixed o, we have Q (#n) ~ ^ (st;e jiroof of Lemma 4,2.5, below) and so this
term becomes infinite as the singular time is approached, with the factor ~ not even
being time-integrable. If this factor were integrable in time, it would allow, by the
introduction of an integrating factor in (2.8), a form of monotonicity formula to be
obtained (see following section).
By taking a to be n time-dependent function depending also on the curvature of the
support surface - the latter notion naturally suggested by the first remark above -
and working over the support of the localization function r/, we can obtain a bound
for Q (g) in tcais of an integrable function of time. This, as we shall see, suffices to
yield a monotonicity formula with which we can proceed with our resealing analysis.

Definition 4.2.3 (Modified Backward Heat Kernel). For KY. ^ 0 and any
5 > 0 we define the modified backward, heat kernel pKr : Rn + 1 x (—oo,0] —> R by

P*s fat 0 = <?i6(-«4)' (*' ')* rhal is'

1
V (ar, t) :=

where r — |.r|2 -f j.rj2.
Furthermore, for any xo E Mn+l and t < T we define the translates

, , 1
exp - •

(47rrr'"

where r ~T' — t.

Remark 4.2.4. Note that, for all r € (0, TQ], we have

. .. . 1 I \x-x

where C —

(4,15)

(4.16)

(4.17)

function pKy is bounded by an integrable function.

+ l ) . That is, independent of the parameter KS, each
bl f i
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Wo then have the following important estimate.

Lemma 4.2.5. Let XQ € £ and i)Xo be an in Proposition 4-1>J> with «5: ^ 0 and
S 6 (0, | ] . Than for nil r e (0,ro], over the support ofr}Xi)) we have

(4.18)

where C = C (n).

Proof. Without loss of generality, we take a?o ̂  0.
We show that the modified heat kernel (4.16) arises naturally from tho broader class
of perturbed heat kernels (4.13) as follown: from the definition of Qa,o,T — Q n'id the
operator Q we compute, for any a — a (r),

™ +1

= Q n a'r

8(a+l)2r
<livA,tDr \Dr\

8(a

Working over the support of 7]Xn and using results 1 and 2 of Lemma 3.2.3 and (4.4),
one may further estimate

^iF 87^177 + 2(^1)7

- T T T ^ (641*1"«» + 6 4 1 1 ' 4 *' ~ 8ar

« + J)r j \

Setting a (r) = c (AC|T) , where c > 0 is to be chosen later, and noting a' (r)

(4.3) and that (K£T) < 1 for all r ^ TO, then gives

0,

+ 9n (1C - c)

Hence, on choosing c = Hi we have

T

or, equivalently,
17n(/c|r) p«E,o,

•
By Remark 4.2.2, we have that po = p. Additionally, we have the following state-
ment, analogous to Corollary 4.1.3.
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Corollary 4.2.G.
For any X{\ 6 £, Id 7/,To be as in PwpoMtion ,/.i.V with S e (j|-, $]. Then, for any
;r G spt 7fr0 and each t € [0, T) we have

PKD,XOIT \S$) v * PXQ,T (•''»v ^ lS ^ > ! + '-*•

Pmw/. Without loss of generality we take xo -~ 0. Wo then have

_|2

(4.19)

\p H I - P 1 - nxp

and so, for r > 0, the result follows provided we can show

0 a? 0.

To tins end, writing b :-- 16 (N^T) and eatiniating |5?|2 = |,r -
have

(4.20)

5|2"|2, we

|x|2 -
2(6

r
4- 1)

(26 4

[26 +

• 1 ) 1 *

1) \x

2

2 _

-15|«

-|x|J + 106|a:|2.

Recalling from (4.11) that |ar| ^ CK{?~X on spt ?; for each < € [0,7'), and the defini-
tion of 6, we may further estimate

r ^ ^ 2 C K 2 / 4- l )1 2(6 4-1)

Since S > I, rcjuation (4.20) then follows from Corollary 4.1.3.

4- 160C/C®5-2.

D

4.3 The Monotonicity Formula

Before we state the main monotonicity result, let us recall the following quantities
from the previous two sections: for any XQ € £ we have

• localization function (centred at XQ) -

1]IO (x, t) = l l - (rxo - 40nr)

• modified heat kernel (centred at (xo,T)) -

^XO;V (x, t) - exp I
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Here*1*,, = \x - XQ(2 •+•X ~ XQ , where the tilde denotes the special reflection intro-

duced in § 3.2, T -T ~t and S is a fixed but arbitrary constant, | < S ̂  §.

Wo recall also that £ is a smooth hypersurface in Rn+ l that satisfies an inte-
rior/exterior rolling ball condition and whose curvature satisfies the bound

<oo.

Theorem 4.3.1 (General Monotonicity Formula). Let Mt be a family of hy-
persurfaces evohrinq by mean curvature flow with Neumann free-boundary on the

hypersurface £ for all t G [0,1% as in (1.4), and set TQ :— - ^ y — > where KS > 0

bounds the curvatwe of £ and 6 e (§,§]. Then for all t € [T ~ To,T) and any
XQ G £ we have

d_
dt IMt

H-
Dlp,

VPKV (4-21)

where pKy = pKi;,xo,T, V = t]Xo and Cs is a positive constant depending only on n.

Proof. Taking f = rj and g = pKs in (2.8), noting (4.18), (4.5) and part 3 of Lemma
3.2.3, gives

If H

17n(4(T-t)y
(T ~ t) JMt

/ VpKSdfit.
JMt

(4.22)

Equation (4.21) then follows after introducing the integrating factor

expf nK*s ~
l V D

Remark 4.3.2.
1. By Remarks 3.18 and 4.2.2 and (4.7), in the case that KE = 0 bounds the curvature
of £ - that is, £ is a hyperplane - the &bove formula is valid for alH e [0, T) nnd
is consistent with Huisken's (2.2).
2. Explicitly, the integrand on the right hand side of (4.21) is given by

\H - H -
x1 + x1 - AdD2d (a:, v) v

(4.23)

3. The requirement that b> > | , though not strictly necessary here, is included above
for convenience in view of Corollary 4.2.6 and the following chapter.
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Chapter 5

Classification of Possible Limit
Surfaces

In this section we carry out a rescaling analysis of our evolving surfaces and use the
monotonicity formula of the previous section to classify the limiting behaviour near
singular points.

5.1 Parabolic Rescaling

Let M = (•A/t)te[o,T) be a solution of the mean curvature flow equation (1.4) with
Neumann boundary condition on support hypersurface £ and define, for any x E
Mt U E and any fixed point XQ 6 Rn+], the change of variables

(x, t) H-> ($,, s)

by
x — Xy + XQ,

where A > 0. This implies the equivalences

t = A2 s + T (5.1)

and

j {MX2,+T -

~»6i(E-

= M

and it can be easily seen that, for each A > 0 and all s G [—;$?> 0), the surfaces

Mg' evolve by (MCF) with Neumann boundary condition on support surface
E^°. Moreover, if £ has curvature bounded by «E then S^° has curvature bounded
by AKE.

The following two propositions are immediate consequences of the definitions and
convergence results of the previous chapter and the parabolic rescaling of the flow.

Proposition 5.1.1. In the ivscaled setting we have

T}x0 *-+ V
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whore

V (I/, s) --= 1 - (5,2)

+

\
\y\'

8 (1 + 16 ( - (A«s)
a «) ) *'

(5.3)

Here, y - y - 2 Uy,Dd) - dj Dd, where d{y) :~ signed dist (y, DJ°). Further-

more, the induced measures, dfit {x) and dfis (y), of the surfaces Mt and

Ms' , respectively, are rvlated by

it (a?) = A" dfis (y) • (5.4)

Proposition 5.1.2, Let «E > 0 and 5 6 (3 ,5] , «nrf /ei 7), y and pxKy be as above.
Then for each s £ f^, 0) anrf an /̂ y € spt 7) we have

y

as A —> 0. Furthermore, for each fixed s < 0 we have

spt 7/ -—>Rn+1 as A — • 0

and

A—>0.

(5.5)

(5.6)

(5.7)

(5.8)

We then have the following re-formulation of Theorem 4.3.1:

Theorem 5.1.3 (Rescaled Monotonicty Formula). For any A > 0 andxo € E,
let MJ*OlJr)'A and Ej° be as defined above. Then for all s 6 [ - J , 0 ) we have

T
ds

JMi*O,T),>

H - v dfis, (5.9)

where H is the mean curvature vector of the surfaces Ms and C = C (n).
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Proof, We check the scaling behaviour of each of the three terms in (4.22); from
(5.1) we have

£ - LA.
dl, " A2 da

and so, by Proposition 5.1.1, we have

df , 1 d

For the second term, we firstly note

H
X

and so, by Proposition 5.1.1,

A2 H -

and

Jhft
H -

t,T),\
H -

Finally, for the thin! term we have

17n(4(T-t)) f
L

17n (-(XKvfs)'

Equation (5.9) tlien follows after cancellation of A2 throughout each of the rescaled
quantities above and introducing the appropriate integrating factor. D

5.2 Limit Surfaces

We now use the
behaviour of the

To this end, we

sequence Xj \ 0
of (MCF) as j
to a generalized
[22]). However,
limiting solution

above rescaled monotonicity formula to characterize the limiting
evolving hypersurfaces as the singular time is approached.

consider the sequence of rescaled solutions f iWs ) , for some
. In general, such solutions will not converge; smoothly to a solution

—> oo (corresponding to t / T) but, rather, measure-theoretically
solution in the sense of Brakke's weak formulation of the flow (see
as in § 2.1, we can ensure the existence of a smooth, no. itrivial
of (1.4) by imposing the Type 1 curvature assumption

T-t
(5.10)

on the surfaces Mt, for all t € [0, T) and some constant Co > 0.

The question then becomes one of which point to rescale about, as, in general,
parabolically rescaling the evolving surfaces about an arbitrary point XQ € £ will
cause the resulting surface A/jXo' '' to drift off to infinity as Xj \ 0. This prompts
the following definition.

31



I

Definition 5.2.1 (Limit point). For any point p 6 Mn, ivc define the limit point
function T : Mn —> Rn+I by

The existence of this limit exists follows directly from tfie type I assumption and
(1.4).
We are now ready to state the first result of this resettling analysis.

Theorem 5.2.2 (Existence of Smooth Limiting Surface). Let M -
be a smooth, embedded solution of (1.4) satisfying the type I curvature assumption
(5.10), and let XQ = T(p), for some p G Mn. Then for every sequence Xj \ 0,
corresponding to t /* T, there is a subsequence {Xjk} such that the reseated surfaces
Ms °' ' J* converge smoothly on compact subsets o/R"+1 x (—oo, 0) to a non-empty,
embedded limit-surface, M' = (M'g)s<0 such that

1. {M's) evolves by mean curvature flow for s < 0;

2. Ifp£ dMn then M's has no boundary;

3. If p E dMn then M's has boundary OM'S C £' , where £' is a hyperplane
through the origin y — 0, and o

= 0 on dM's.
Proof. We proceed as in [7], Chapter 3. Since XQ is a limit point of the flow, by the
type 1 hypothesis we have

\F{p,t)-xo\ = (P. 7) dl

an(j so
dist (a?o, Mt) ^ 2y/nC0{T-t).

Furthermore, since for any fixed R > 0 we have

(5.11)

T-t

for all x e Mt D BR (XQ) and t € [0, T), for any sequence (A;) \ 0 the corresponding
sequence of rescaled solutions fA/<? ' } ) satisfy

Us)
— 5

(5.12)
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for all y e A/j ; r i l ' r ) 'A ' n J3_iL (0) and

the inequality

s e |— . Honcc, for any fixed ?? e (0, | )

A(yta)

holds for y e M^'nXj n B& (0) and a €

for ?; G 0 # | (0) and a € [-;£, #*
f S [ ]

Co

- X »92 and therefore, in particular,

if j is large enough to ensure Xj < i9.

The interior estimates of Stahl [25] then imply that

2 (li
V*/f(y,«)

for ;v e MiX0'r) |Ajni? n _ (0) and s e f -^ ,^ 2 ] for sufficiently large j , for each
k ^ 0, where C is a bounded constant depending on the curvature of the rescaled
surfaces.
Moreover, by (5.11) we have

dist (o, Mixo:V)^) = i-dist (arOj MAaa+r)

= 2 y —

By the Arzela-Ascoli theorem combined with a diagonal sequence argument when
letting d \ 0 [and hence Aj \ 0] for local graph representations of Ms J, we
can therefore find a subsequence of the rescaled solutions which converges smoothly
on compact subsets of R n + 1 x (—oo,0) to a smooth solution (Mg)s<() of (MCF).
The subsequent claims regarding boundaries are then a direct consequence of the
rescaling procedure - if p ^ dMn, (which, be embeddedness, implies xo $ dMt) all
points within the boundary will be translated by —aro and homothetically sent to
infinity, whereas if p 6 dM7\ (which implies xo € dMt C E) the boundary remains
anchored to the origin y = 0 and the rescaled support surface will be straightened
out to a hyperplane under homothetic expansion as A \ 0. D

The monotonicity formula then allows the behaviour of this limit flow to be charac-
terized.

Theorem 5.2.3 (Characterization of Limit Surface). The limiting hype.rsur-
faces M's as obtained in Theorem 5.2.2 satisfy the equation

(5.13)

for all y 6 M' and s < 0.
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Proof. If the limit .surface has been obtained by resettling about a boundary limit
point, then we firstly note that, avS an immediate consequence of the non-positivity
of the right hand side of the monotonieity formula of Theorem 4.3.1, the quantity

6 (M% xQi T) s Km (ec"lhA f W,5J rf//,) (5.14)

exists. By virtue of the repealing procedure, for each h'xed s < 0, we have

L
and so, in view of Proposition 5.1.2 and Theorem 5.2.2, the Dominated Convergence
Theorem [9] implies

where p(y,s) = exp . Since M's satsfies a Neumann boundary con-

dition on a supporting hyperplane, one can use standard reflection across the plane
to obtain a complete, boundaryless, symmetric limit surface, M", which evolves by
standard mean curvature flow. For such surfaces, Huisken'a monotonieity formula
(2.2) applies, implying

A
ds
- / pdfl3 = -

,1

2s
(5.16)

However, since O(M,XQ,T) is independent of s, equation (5.15) implies that the
integrand on the right of (5.16) must vanish identically, giving the result.
For the case where we have rescaled about an interior limit point, the resulting limit
surface is smooth, possesses no boundary and evolves by standard mean curvature
flow. Thus, Huisken's monotonieity formula immediately applies mid we can proceed
similarly to above to conclude the desired result - cf. Theorem 2.1.5.

•
Corollary 5.2.4. The reseating limit M! -~ (Mg)a<0 satisfies

Mg — \^sM'_i (5.17)

for all s < 0.

Proof Using (5.13) and the definition of (MGF), one readily checks that the em-
beddings for (M{,) satisfy

p ( ( )
ds I \/-s = o, (5.18)

where <f>(-,s) Mn —> Mn is a family of diffeomorphisms satisfying

Here T denotes the projection onto tha tangent space of F(-ys) (Mn).
The result follows upon integration of (5.18). D
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In the case of surfaces without boundary, there is a. extensive variety of self-similar,
contracting hyporsurfaces ovolving by (MCF) that satisfy condition (5.13), (see, for
example, [1] and [3]) and a complete classification of all such possible limit hypersur-
faces resulting from the above rescnliiig procedure has not been obtained. However,
a complete classification in the class of embedded limit hypersurfaces having non-
negative mean curvature has been obtained, which we can carry over to the current
free-boundary setting.

Theorem 5.2.5 (Classification of Limit Surfaces with Non-negative Moan
Curvature). If M's is a smooth, embedded limiting hypersurface in Kn+1, as ob-
tained by the above reseating procedure, atisfying (5.13) with nonnegativc mean cur-
vature H ^ 0, then M's is one of the folloiuing:

1. S";

—m2. Sn

s. snnn,-
4. sn~171 nn

for sane m ^ n, where VL is an n-f-1-dimensional half-space through the origin.

Proof. As above, the Neumann boundary condition allows limiting solutions pos-
sessing boundary to be reflected across their supporting hyperplane and be treated
as complete (symmetric) hypersurfaces without boundary. Thus all limit surfaces
can be treated as boundaryless hypersurfaces evolving by standard mean curvature
flow. Hence, for surfaces of weak mean-convexity, Huisken's classification (Theorem
2.1.6) yields the result. •

Remark 5.2.6. For compact solutions of (1.4), mean convexity of the limit surface
is guaranteed for initially weakly convex surfaces Mo by [26, Theorem 3.1], which
follows from the maximum principle in [25].
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Chapter 6

Area/Boundary Length
Estimates and Special Cases

In this chapter we prove a local area and boundary length estimate and also ob-
tain a monotonicity formula for solutions of (1.4) in two special eases, using more
elementary means than those used for the general case.

6.1 A Local Area Estimate

The focus of this section is to obtain a local area bound fjr solutions of (1.4),
analogous to that of Brakke [4, Chapter 3] and Ecker [7] for the standard mean
curvature flow, but in balls that are allowed to contain the boundary.
The starting point for obtaining such estimates is the following proposition, which
follows directly from Proposition 2.2.1 on taking g ~ 1 and re-labelling / to <fi.

Proposition 6.1.1. Let M = (Mt)tGr0T\ be a smooth, embedded solution of (1.4)
and U an open subset of Kn+J containing M. Then, for any function <f> : U x
[0, T) —> R which satisfies 4> £ C$ (U) and $$ E C j we have

d f f
— / <$>dnt = /
dt JMt JM

- AMt) 0 - dat. (6.1)

Furthermore, if <j> satisfies ( ^ — A A / , ) 4>^Q then

'Mt Mt JdMi
) dcrt. (6.2)

inspired by the work of Brakke, for any R > 0 and (x, t) € Rn+l x [0, T) we consider
the class of testfunctions given by

4>R{Z)= (1 - -^2 ) ' where z = z(x, t). (6.3)
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Wo then have

- A I V / | ) <f>n =, 4 ( | _ A A / ( ) Z - fn \Vz\'2 by (A.4)

- <t>'n [~ * - by (A.2)

(6.4)

since <?% («) = $ (l - 0. Thus, in light of the identity

we have established that the spherically shrinking testfunetion
4

<PR ( * , t) = 1 1 -
rrj2 -f- 2nt

n?

satisfies

JMt JM

£
dt j h 1 t

/
JdMt

dat. (6.5)

For surfaces Mf evolving by mean curvature flow without boundary, or possessing
boundary but with 3Mt C\ BR (0) = 0 (so that the boundary integral vanishes, since
spt d>n C BR (0)), one can proceed as in [7] and use equation (6.5) to establish the
following local area estimate.

Proposi t ion 6.1.2. (Brakke [4], Ecker [7]) Let (Mt) r, R?\ be a smooth, embedded
'€["> tin )

solution of the mean curvature flow in BR (XQ) with dAif H BR (XQ) — 0. Then for

all t e fo, f Q we have

ftn (hit C\Bn)+ f f \H\2 dfi9 ds ̂  mn (Mo n Dn). (6.6)
v lJ Jo JKUr\Bq(xo)

We would like to aiimic this result and obtain a local area estimate for balls contain-
ing part of the boundary of surfaces evolving by mean curvature flow with Neumann
free-boundary on a given support surface S. To do this wo must account for the
fact that any ball intersecting the boundary need not be centred on it, and so the
idea is to reflect Mi across the support surface and consider the sum of the area of
Mt and the area of the reflected surface, in this ball.

Proposit ion 6.1.3. For any XQ G E, let (Mt) be a smooth, embedded solution of

(1.4) in BR (x0) for ail te [o, j fe ) and any B sC J p Then for all t e [0, ^
we have

unu [[
o JM. VS

, (6.7)
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when*,

and

BR - BR {XQ) := {a: 6 R n + l : \x - a?0| .< R)

X - .To

Proof. Setting z = r#0+<i in the testfunction <)6/e (z) of (0,3), where rXr = \x - ar

a; - .TO

3.2..'i, wo huvo
and c is n constajit to bo chosen Inter, and noting (6.1), (6.4) and Lemma

y (0.8)

Since

we linve

c and —- =

4 / Z \;1 '

4 1 * - *ol2

(i - dKSy

using the estimate for divA/,Dr of Lcimnu 3.2.3.
Moreover, since

spl ( l - ~) - {(x, t) 6 R"+1 x R : rXo -h <:i < R2}

for all /? < 2^7 and a:o € S (for which d(x) ^ |a; — XQ\) we can therefore estimate

<pn (jfi - div (l - -~) (4n + 20» + 8n - c)

On setting c =• 32n, equation (6\8) therefore gives

Mt
tR \H\ (0.9)

where
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Integrating (G.9) in time yields

/ <t>R<tlk+[ f
JMt JO J

where, since 0/j <! 1 and

f
JMO

we have

For rXo < ^ and 32nt ^ ^- we have (f>R ^ ^ , and so, since

x '• r
xo \x ;r - <

x -

we have

(6.10)

(6.11)

2 i?2

5> "*})

« (ar0) U Bn (xQ)
75 ?*

(6.12)

for all t
Using the estimates (6.11) and (6.12) in (6.10) and multiplying through by 16 then
yields the result.

D

6.2 Boundary Length Estimate

For minimal surfaces which intersect a given support surface orthogonally - and are
thus degenerate (stationary) solutions of the mean curvature flow problem (1.4) - the
Divergence Theorem (A.I) provides a natural starting point for obtaining estimates
on the length of the boundary.
Indeed, taking X = (1 — 2dK^)\. Dd, for any minimal surface M and support surface
E the Divergence Theorem yields

) lnn~l (dM) = f divA/ f (1 - 2dKE)
JM V

= / ((1 - 2dKy,)\ divM (Dd) f+ |W|2)
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using (3.2), where Si/2«E is the ^ - t u b u l a r neighbourhood of E.

The following lemma establishes a bound* analogous to that above, for general so-
lutions to (1.4).

Lemma 6.2.1 (Time-integrated Boundary Length Estimate). Let M =
(A/j)tG[Oiy.) he a smooth, embedded solution to (1.4), where «u > 0 bounds the cur-
vature of the support surface E. Then for any t £ [0, T) we have

«c / H11-1 {cUQ da ̂  2ru4. f Hn (Ms n SI /3w.) ds + i-WB (Mo fl S1/2/CK),
^o i/o ^ '

(6.13)

Proof. In the general setting, for the vectorfield X = (1 ~ 2 ( /K S )+ Dd the Divergence
Theorem yields

H11'1 (dMt) =• [ {\- 2d,Kv)i UivMlDd+ (Dd, II)) dm

- f 8KS (1 - 2dKv)3
+ \Vd\2 d»t,

JMt

< J (1 - 2dKsf+ (2n/cE + (Dd, V)) dfH, (6.14)

using (3.2) and noting dns ^ | over the support of (1 — 2d«E)^. Noting then (A.5),
one can also compute

4 = -10/cE

- 2dKs)l \H(
Mt

and so

, Sf\ c/̂  <-~ f (1 -

Hence, by (6.14), we have

,{Hn~l {dMt)
n (Mt n

Integration from 0 to t then gives the desired result. D

Remark 6.2.2. Since KS is merely an upper bound for the curvature of the support
surface S, the above formula should be viewed accordingly. That is, in the case that
X is a plane, the above result is valid also for any K^ > 0.
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6.3 Monotonicity Formula for Special Cases

In this section we establish a monotoniclfcy formula for solutions of (1.4) by directly
estimating the boundary integral

f 1 f
- / (Dp, vs) dat - - - / p (x,

JdMt ZT JdMt

of (2.10) in two special cases.

dat (6.15)

6.3.i Concave\ Convex Support Surfaces

In the special case where the support surface S is concave\convex and Mt meets E
from the interior\exterior, we have

(x, fjj) ^ 0 for all x G E,

which implies, since dMt C £ , that

(x, i>v) dat ^ 0.
JddMt

Though this statement relies on the assumption 0 6 E, more generally, for any point
o-'o G E we always have

(x — .To, ^E) ^ 0 for all x G S.

Hence, the boundary integral (6.15) has the right sign.

Lemma 6.3.1 (Monotonicity Formula for Concave\Convex Support Sur-
faces). LetM. — (-M t̂groT1) ^e a smooth solution of (1.4). Then, i/E is concave\convex
and Mt intersects E from the interior\exterior, for all t G [0, T) we have

I pdm <~
JMt JMt

H-
2r

(6.16)

6.3.2 Slow Boundary Growth

The second special case for which we obtain a monotonicity formula is that where
the evolving boundary dMt satisfies a certain, specified growth-rate. In this instance
we obtain a uniform bound on the the quantity

fT f / v fT 1 f
j I (Dp, vv) dat dt — I — /

Jo JdMt Jo 2 r JdMt
which arises when we integrate equation (2.10) in time. Though such an estimate
actually suffices for the business of extracting limit surfaces from sequences of rescal-
ings, we merely present the critical bound and refer the reader to the work of Stone
[27] for the subsequent analysis.
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Definition 6.3.2 (Slow Boundary Growth). Let M = (Mt)tGi0T\ be a smooth
solution of (1.4). Then Mt has slow boundary growth if, for each x$ € S, there
exists positive constants 0 and RQ auch that, for all R < RQ and some a 6 (0,1),
we havo

l
Hn~l (0Mt n BR (so)) (6.17)

{T-t)nl2

for all t < T.

Note that compact boundaries satisfying the slow growth rate (6.17) must also be
integrable in time. That is, we have

fT
$ a (6.18)

The method employed to estimate the boundary integral (6.15) is based largely on
the work of Stone [27] for the Dirichlet problem. It involves splitting the boundary
dMt into two sets - one, a ball of a specified time-dependent, shrinking radius, and
the other its complement. The more troublesome boundary integral, that over the
former set, is then estimated by utilizing the bound (6.17).

Lemma 6.3.3 (Boundary Estimate for Slow Growth Boundaries). LetM =
(Mi)fetoT) be a smooth solution of (1.4) with boundary dMt C E satisfying the slow-
growth rate (6.17) for all t G [0, T), where E is compact. Then

rTJ I
JO JdMt

X — XQ

~2T
pXo dm dt ^ C. (6.19)

Proof. Let R = R(t) be a given funciton, to be chosen explicitly later, satisfying

R(t)\0 as t—>T

and define

Jti JdMt
° dotdt

[
dMtnBR(x0)

2r

+f l
Jh Jdl

f
dMt\BR(x0)

(6.20)

The estimate (6.19) follows by suitably estimating each of the integrals I\ (t) and
I2 (t). Regarding the latter of these, using the compactness of E and (6.18), we have

rT
h{h)= I I Px0 ( n °>"£ ) datdt

Ju JdldMt\BR(x0)

diam (S)

2r

2
rT

'n/2 f I
Jh JdMt \BR(x0)

^C r-n / 2-v (6.21)

42



This estimate will be complete after choosing a suitable function R = R(t), which
we shall do shortly.
Turning our attention to Ix (t) now, we firstly note that, as in [27], since £ is smooth,
there exists constants Rx and C (depending on KS) such that

(x - . X - xQ\2 V.T G E n BJtl (x0).

Thus, for all tx sufficiently close to T to ensure both R(h) ^ Rx and R{tx)
h ^ <o, say - where Ro is as in Definition 6.3.2, we have

(6.22)

J t\ J9 Aft

<rfrf
Jtx Jd

<c f

PxQ

dMtDBn(xo)

2r

(6.23)

using (6.17).
We now make a choice for R(t). In view of (6.21), it is constructive to choose R(t)
to satisfy

that is,

This then ensures for all

R (t) = v / -4r(n/2+l) logr . (6.24)

that

'2 it) < C. (6.25)

timing our attention back to our estimate for h (<), we firstly observe that, since
a is strictly less than 1, there exists constants e,7 > 0, sufficiently small, such that
1/2 + a/2 + € =: 1 - 7 < 1. Noting also that, for any S < 1 and y ^ 0, the function
fiy) = ~V logy is bounded above by (e£)~\ we use the above choice of R(t) to
estimate for any t ^ to

h (t) ^ (2n +
rr%

C dt,

~ldt

_c(r-*)'
7 (6.26)

Hence, in view of (6.20), (6.25) and (6.26) the boundary estimate (6.19) follows. •
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Appendix A

Appendices

A.I Miscellaneous Formulae

Theorem A. 1.1 (Divergence Theorem). Let M be a smooth, orientable hyper-
surface with boundary, embedded in Rn+1 . Then for any C1 -vectorfield X : M —>
Rn+1 with compact support we have

[ divMXdfi = - [ (xji)dn+ f (X,vdM) da, (A.I)
JM JM X ' JdM

where H = —Hu = — (divA/^) v denotes the mean curvature vector of M for a
choice of unit normal v to M, and PQM is the unit inner co-normal to dM.

Proof. See eg. [24]. •

Lemma A.1.2 (Heat Operator). Let Mt = F (Mn , t) be a family of hypersurfaces
evolving by mean curvature flow and let f = f (x, t) for x = F(p,t), p € Mn. Then

(A.2)

Proof. One computes,

d . ,

and so, by (MCF), we have

Also,

i (V/)
= divMf (Df - {Df, u) v)
= divMl Df - (Df, v)H~(V (Df, v), v)
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Thus,

a
Lemma A.1,3 (Product/Chain-rule for Heat Operator). For any twice dif-
ferentiable functions f,y defined on Mt, we have

j t ~ AA/4) (fg) = / ( | - AA/t) 9 + 9 (jt ~ , Vg). (A.3)

Furthermore, if rj:
satisfies

—> R is twice.-diffcrentiable then the composite function r/ (/)

(it " AM<) *if) = V'(/) {it " AM<) f ~ V" 'V/|2' (A<4)

Proof One computes

, {fg) = dlvM|

2 (V/,

from which the first result follows. For the second result, one simply observes

and

D

Lemma A.1.4 (Evolution of Area Element). The area element of a solution
(Mt)teI of (MCF) satisfies the evolution equation

d . . r r,2 ,
-rdnt = — \H\ d^t

for all tel.

Proof. The area elements of the hypersurfaces Mt are given by

dm (p) = i/detgij (/>, t) d[iMn (p) >

(A.5)
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where g^ = (gj~, g—y fa t) denotes the evolving metric and d/iM" the volume
measure on the fixed parameter manifold Mn,
One computes

d d /1——
dm — -jTV/«et <7ij rt/UA/ndi

1 nr-~ i3d= - Vdet gtj g
 J —

where gV := gtj
L. Moreover, by (MCF) we have

Henco,

£ __ d_
dtyiJ~ dt

dF
dtyiJ~ dt\dxi' dxj

2? L
dxSdx

= -2#/ii

dt
dfit =
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