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Abstract

In this thesis we study the classical mean curvature flow of hypersurfaces with
boundary which satisfly a Neumann boundary condition on an arbitrary, fixed,
stnooth hypersurface in Euclidean space. In particular, the author focuses on the
problem of singularity formation on the free-boundary and the classification of the
limiting behaviour thereof. This is achieved by a careful modification of Huisken's
monotonicity formula that incorporates a reflection principle of Griiter-Jost, devel-
oped in their treatment of the corresponding stationary problem for varifolds, as
well as the curvature of the support surface. Using the monotonicity formila thus
obtained, the author then classifies the possible limiting behaviour of a natural class
of singularities in the case of weakly mean-convex surfaces.

This thesis contains no material which has been accepted for the award of any other
degree or diploma in any university or other institution. To the best of my knowl-
edge, this thesis contains no material previously published or written by another
person, except where due reference is made in the text.
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Chapter 1

Introduction

1.1 Background

A hypersurface in Euclidean space is said to be evolving by mean curvature flow if, for
each point of the surface and at each instant in time, the surface moves in the normal
direction at that point with speed cqual Lo the mean curvature at that point. Thus
a sphere moving by mean curvature flow will move by homothety, either shrinking
to it’s centre with increasing speed and becoming singular, or expand indelinitely,
depending on the chosen orientation.

In the classical setting, Huisken [18] has shown that compact, initially convex,
cmbedded hypersurfaces contracting under mean curvature fiow converge to a single
point in finite time and, after suitable rescaling, asymptotically become spherical.
For the one dimensional case, referred to as curve-shortening, the analogous result -
that initially convex planar curves contract to a point - was subsequently obtained
by Gage and Hamilton in [13] and [12]. This was later generalized to all closed,
embedded planar curves by Grayson [16].

Weak formulations of the flow that allow the continuation past the onset of sin-

gularities are also possible. Though the focus in this work is on the classical mean
curvature flow, results in this ficld are due to Brakke {4} and Ilmanen [22] {or varifold
solutions, and Evans-Spruck {10] for level-sets, amongst others.
The natural question concerning the structure of the singularities formed by non-
convex initial data has always been of particular interest, with a classification of the
limiting behaviour of surfaces moving under the flow being sought. An important
too! in the study of the nature of singularities formed by surfaces under the mean
curvature flow bas been the monotonicity formula of Huisken [19]. This formula is
analogous to the monotonicity formula for minimal surfaces {11] (which are station-
ai v solutions of the mean curvature flow), the monotonicity fortnula of Giga-Kohn
(1.3, that of Struwe for the harmonic map flow [5], as well as Price’s result for the
Yang-Mills heat flow {23]. Most recently, a localized version of the monotonicity
formula for mean curvature flow has also been found by Ecker [6].

Also of particular interest is the behaviour of surfaces evolving by mean curvature
flow with boundary. Results concerning the Dirichlet problem are due to Huisken
[21}, who showed that, for boundaries of positive mean curvature, non-parametric




solutions converge to tninimal surfaces, and Stone [27], among others. Surfaces
possessing boundaries satisfying verious contact angle conditions have also boen
examined, Of particular interest herc is the work of Stahl [25], who examined
hypersurfnces evolving by mean curvature flow which satisfy a Neumann boundary
‘condition on an arbitrary, fixed, smooth support surface. He proved the existence
and uniqueness of solutions for arbitrary smooth support and initial surfaces that
exist on a maximal time interval, which either exist cterzelly or whose curvature
becomes unbounded in finite time. He furthermore classified the limiting behaviour
of all initially strictly convex surfaces with boundary contained in a sphere which
evolve in the sphere’s interior (as opposed to its exterior).

This free-boundary problem has alsc been studied by Griiter-Jost [17] for weak
{varifold) stationary solutions of the flow. They established a monotonicity formula
perfectly analogous to the standard one of miniiaal surface theory, which allowed an
extension to the regularity results of Allard {2} to be made.

The focus of this work is to obtain a monotonicity formula in this setting that
is analogous to Huisken’s, and use rescaling techniques and Huisken's classification
for boundaryless surfaces [20] to classify a natural class of singularities for mean
convex evolving hypersurfaces. The approach undertaken is motivated largely by
Huisken’s work, but incorporates the key idea of Griiter-Jost's work to deal with the
boundary. We remark that, in light of Ecker’s recent local monotonicity formula,
which can be uscd locally over hypersurfaces with boundary in regions not containing
the boundary, the main concern in the current work is with regions centred directly
on the free-boundary.

1.2 Mean Curvature Flow With Free Boundary on
Smooth Hypersurfaces

Throughout this work, . denotes a hypersurface smoothly emnbedded in R™+? which
satisfies a rolling ball condition with ball of maximal radius 1/ky, and whose second
fundamental form As satisfies

Azl + [V Az € A5 < 0. (1.1)
Furthermore, for ease of presentation, we assume that £ contains the origin,
0e X, (1.2)

We let M™ denote a smooth, orientable n-dimensional manifold with smooth, com-
pact boundary dM" and set Mg := Fy (M"), where Fy : M® —s R*F! is a smooth
embedding satisfying

oMy = Fy (BM") = AMyNZXL,

{(ro, im0 Fy) (p) =0 Vp € oM™, (1.3)

for unit normal fields vy and vy to My and ¥, respectively. We then have the
following formal definition for the flow by mean curvature of M with Neumann
free-boundary on the hypersurface ¥:




Definition 1.2.1 {Mean curvature flow with Neumann free-boundary). Let
I C R be an open interval and let Fy = F (-, t) : M™ — R™ be a one-parameter
Jamily of smooth embeddings for all t € I. The family of hypersurfaces (M)er,
where My = F, (M™), are said to be evolving by mean curvature flow with Neumann
free-boundary condition on ¥ if

%—f (nt)y = Hpt) Vipt)eM 1, (1.4)
{
3 ('? U) = I,
Fip,t) C & V{p, i) € OM™ x I,
{,ysoF)(pt) = 0 V(p,t) € OM™ x I,
Here ﬁ(P, t) = —H (p,t)yv(p,t) denotes the mean curvature vert.. of the immer-

sions M, at F (p,t), for a choice of unit normal v for M,.

Whenever possible we will suppress explicit indication of the embedding map and
identify the point F(p,t) simply with its position vector z in R**!, Thus, the
above definition of mean curvature flow with Neumann free-boundary on ¥ may be
interpreted as saying that, for all ¢t € I, we have

%t’-’ = H@) VeeM,
oM, C &
{(rvs) () = O Vx € OM,.

Moreover, for a given embedding F' we adopt the convention that the exterior unit
normal to X with respect Lo this embedding coincides with the unit inner co-normal
of OM, at all intersection points, Thus, by the Neumann boundary condition, if
¥ = 3G for some domain G ¢ R and M; C R"T\G (ic. the surface evolves in
the exterior of the domain), this choice of normal coincides with the standard notion
of an exterior normal field to I; for the case where M; C G, the above convention
coincides with an antiparallel vector to the standard exterior normal to X.

By choosiug special coordinates that account for the curvature of the support sur-
face - so-called generalized Gaussian coordinates - one can (locally) transform the
quasilinear system of parabolic equations (1.4) into an equivalent initial-boundary-
value problem for a scalar function [25], and begin to analyze the problem using the
estabiished theory of partial differential cquations. Though this approach forfeits
much of the insight offered from the geometric approach, standard results from the
parabolic theory allow one to proceed as in [25] and establish the short-time exis-
tence of a unique solution to this problem. In fact, by proceeding as in the work
of Ecker and Huisken in [8], Stahl was able to obtain sharp local gradient estimates
that imply the IBV-scalar problem is, in lact, (locally) unifoerinly parabolic. By then
appealing to standard results of the linear parabolic theory, the following general
existence and regularity result was obtained:

Theorem 1.2.2. [Stahl, [25)] For any smooth hypersurface & and and initial hy-
persurface Mo satisfying (1.3) there exists a unique solution to (1.4) on e mazimal
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time interval [0, 1) which is smooth for t > 0 and in the class CEHY2 for g > 0,
for any a € {0,1). Moreover, if T' < oo then

sup{|A|"* (2,) : 2 & M"} s 00 @8 £ — T (1.5)

‘The focus of this work is the case where 1' < oo, where we wish to study nature of
singularities that occur at points within the evolving boundary of My, with a further
goal being the classification of possible limiting behaviour of the evolving surfaces
as the singulnrity doevelops.
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Chapter 2

Motivation

Here we present a bricf synopsis of the method used by Huisken in [19] and {20] to
show thal hypersurfaces without boundary evolving by the standard mean curvature
How become asymptotically self-similar as the singular time is approached. The key
ingredient in this argument is a monotonicity formula, which describes how the area
of the evolving surfaces behaves when weighted with a backward heat kornel centred
at the singular point in the ambient space. Since the backward heat kernel becomes
sharper as the singular time is approached, showing this weighted area monoton-
ically decreases implies that the area does not concentrate at the singular point.
More specifically, the monotonicity formula y‘clds that, after appropriate rescaling,
the limiting hypersurfaces move by homothety and are thus self-similar. This char-
acterization is captured in an elliptic PDE which, in the case of hypersurfaces with
nonnegative mean curvature, has been solved to give a complete classification of the
limiting surface.

As this approach directly motivates the subsequent analysis concerning the develop-
ment of singularitics within surfaces possessing Neumann free-boundary on smooth
hypersurfaces, the main focus of this section is to simply outline the essential ingre-
dients of Huisken’s work and relegate the technical details to the ensuing analysis.

2.1 Singularities For Hypersurfaces Without Boundary

For this section only, we assume that M™ is an n-dimensional manifold without
boundary, and that F; = F(.,t) : M — R™! is a one-parameter family of
smooth hypersurface embeddings with corresponding image surfaces M; = F, (M™)
evolving by mean curvature flow, That is, we have

%f—-(p,t) = H(p,t), V (nt)e M"x[0,T), (MCF)

F(p,0) Fo(p), V¥V peM".

il

In view of the identity

‘ﬁMrp (p! t) = ﬁ (P; t) ¥




whero Ay, denotes the Luplace-Boltrand operator on My, ono may re-write the
governing equation of (MCF) as

O
_5;"(1"&1) = AMtp(pit)'

Thus it is not surprising that solutions of (MCF) exhibit strong analogies with
solutions to the standard linear heat equation and it would seem plausible to expect
some insight to come from the linear theory.

Indeed, for any fixed point {(xo, ) € R**1x(0, 1), let pzo,7 be the standard backward
hent kernel on R**+, contred at (2p, T'), with time-scaling appropriate to R® ~ that
i3, let

1 | — o]
i exXp |~ 2.1

so that, for all ¢ < T, the function ¥ (z,#) =: mpmm solves the linear back-

ward hent equation,

S @t) = ~Ben¥(p,0).

We then have the following theorem, due to Huisken [19),

Theorem 2.1.1 (Monotonicity Formula). Let M, be a family of hypersurfaces
cvolving by the mean curveture flow (MCF) fort € [0,T). Then for allt < T we

have
2

— Ft
Pao,T diis. {2.2)

d
H"z(zf'-t)

@ Ju, Puo,T Aphy = - fﬁ .

To deduce the asymptotic behaviour of surfaces near the first first singular time,
rescaling techniques are employed. In order to ensure smoothness of the rescaling
limit, we make the following distinction between the nature of singularities.

Definition 2.1.2. A surface M, develops o singularity of Type 1 if the curvature
becomes unbounded as t — T and there exists a constant Cy > 0 such that
Co

ma 4,0 < g (2.3)

Otherwise, the singularity is called Type 1.

For the remainder of this section we assume that M, develops o singularity of type
I at the origin 0 € R®*!, 'That is, for some pnp € M™, we have F (ps,t) — 0 and
|4 (po, {)I* —= 00 as t — T. (For a treatment of singularities of the general type,
the reader is referred to the recent work of limanen [22]; here the simoothness of the

rescaling limit is not ensured and so one must work in a weak setting to obtain a
rescaling limit).

The original rescaling procedure carried out by Huisken to classify type I singularities
in {19] involved setting

~ _ i | 1
F(p,s)= ST =) t)F(p,t), where s(t) = -§log (T -1t
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for p € M", so that the rescaled surfaces M, = F (-, 8) (M™) arc dofined over
~3log T € ¢ < 0o and satisfy the normalized mean curvature flow equation

; F(p,s) = Hps)+ Fpe), (2.4)

where H is the mean curvature vector of M,.
In this rescaled setting we then have

Corollary 2.1.3 (Hulsken, [19}). If the surfaccs M, satisfy the rescaled evolution
equation (2.4), then for all s € [-—%logT, 00) we have

2

=
H - FY pdii,, (2.5)

d 11

— ~d~ _—

dS e p “8 /—:..
where jx) = exp (—-%E) .

For surfaces M; which develop a singularity of type 1, the corresponding rescaled
surfaces M, = F (-, s) (M™) then have uniformly bounded curvature. Moreover, by
examining the evolution equation for the norm of the second fundamental form of
M,, one can establish uniform bounds on all higher derivatives of the curvature:

Theoremn 2,1.4 (Huisken [19]). Suppose the Type I hypothesis (2.3) holds. Then
for each k 2 O there is @ constant Cy, < oo such that the second fundamental form
of the rescaled surfaces M, satisfies

2
max l\?’k Al < Ch (2.6)
M,

uniformly in s.

Since the type I hypothesis also implics that the term F (po, 8) remains bounded
(sce eg. {19]), for any scquence of times s; — oo we obtain the convergence on

compact subsets of R**! of a subsequence of the surfaces Hsj to a stnooth limiting

surface ﬁ‘/foo.

In view of the uniform regularity estimates (2.6), the behaviour of this limiting
hypersurface is then a straightforward cousequence of the rescaled monotonicity
formula:

Theorem 2.1.5 (Huisken [19]). Each limiting hypersurface My satisfies the cqua-
fton
H={z,v). (2.7)

This is a second-order elliptic equation that implies that the rescaled surfaces be-
come asymptotically sclf-similar and, therefore, that the surfaces M; approach a
homothetically shrinking solution of (MCF) as t — T

For surfaces of nonnegative mean curveture, the limiting behaviour can then be
characterized as follows:




Theorem 2.1.6 (Huisken, [20]). If My isa smonth, embedded timiting hypersur-
Jace in RV satisfying (2.7) with nonnegatize mean curvature, H > 0, then M00 18
either 8% or §"~™ x R™,

Remark 2.1.7. If the ecmbeddedness hypothesis of ‘Theorem 2.1.6 is removed then,
in addition to 8" and $"~™ x R™, the limiting hypersurface may also be I' x R*1,
where I" is one of the immersed, homothetically shrinking curves in R? found by
Abrosch and Langer {1} (see {20] for details).

2.2 Outline of Main Ideas

‘The essential tool requirod to mimic the above analysis for solutions to (1.4) is a
monotonicity formula for hypersurfaces with free-boundary on some given smooth
support surface. Obviously some modifications must be made to the classical formula
{2.2), in general, to compensate for the curvature of the support surface, and it is
natural to expert that any formla reduce to that for surfaces without boundary
in the case of planar support surfaces (since, in this case, the Neumaun boundary
condition allows the surfaces M, to be reflected across this hyperplane and be treated
as for the surfaces above - ¢f. proof of Theorem §.2.5).

The starting point for obtaining such a monotonicity formula is the following general
expansion result.

Proposition 2.2.1 (Expansion Formula). Let M = (Mi),cioy) be a solution

of (1.4) and U an open subset of R**! containing M. For any ﬁmctwns fs9
U x [0,T) — R, where f € C3(U), % € C§(0), g € C2(U) and & € CO(U), we
have the following general expansion formula:

5 [ Sedu = gdm + f JQ (9} diy
At M’; M,

+ f (:t Ann) fdpy {2.8)

+ ] (@(DJ, vz} — I (Do, vx)) do,
O,

where here and henceforth the operator Q is defined vy

| Dtgl*

Q(g) = + divy, Dg +

(2.9)




Proof. By (A.2) we have

(i }“AM;) IHI 9= % +(11\M,Dq+2<ﬁ’pq> IH| g

3 -l-dl\M,Dg+2<H Dt > lHl g

)
ID.L9|2 _ lﬁ_ D‘i‘{} P
{ ' g

_ Oy
& + divyy, Dg +

2

- Dt
=Q(9)—iH"—g'£ 9.

Therefors, by (A.5) and the Divergence Theorem (A.1),

d /i
fudp, = / (f“q +9 ~— - IHI fq) dyy
dt Ju, M,

) ‘/.M‘ (f ((jt +AM‘) v lHl q) *9 (d AM‘) f) Ay
N /;,M‘ (f{Dg, ) — a{Df,vx}) doy,

and the result foltows. (W

Remark 2.2.2.
1. Putting g = p, f = 1 and noting (by direct computation) that Q{p) = 0 gives
(2.2) in the case where M, = {).

2. For the case wherc M, # ), we obtain

Lo
dt J s, He M,

The presence of the boundary integral means that the quantity [, M, pdyy is, in
general, no longer monotonically decreasing in time. Other than the cases where
the boundary integral is non-positive - c¢f. Letuna 6.3.1 - there are other special
cases for which the boundnary integral can be sufficiently estimated - ¢f. Lemma
6.3.3.

1

7 Dl

b

pdyy — f (Dp, vs:) doy. (2.10)
OM,

In general the boundary term above is difficult to deal with and so the approach
undertaken for the general case, motivated by the treatment of the stationary prob-
lem for varifolds by Griiter and Jost [17], is to nullify it using reflections. That is,
for the function g above we seek a modified version of the backward heat kernel p
with spatial dependence on some carefully chosen function of x - depending on the
distance to, and the curvature of, the support surface I - such that the boundary
integrands of (2.8) are identically zero.

However, the identity @@ {p) = 0 can no longer be expected to hold for a modified
version of the backward heat kernel and thus one challenge then becomes tv obtain
sufficient control of this term. Secondly, since the distance function will in general

9




only be well-defined within a tubular neighbourhood of the support surface, it will
bo necessary to chooso f to be an appropriate localization function; again, to en-
sure the corresponding boundary integrand vanish identically, this function should
depend spatially upon reflections, T'hus, a second issue is to find suell a function for
which the term (;‘f; — Ap,) f be sufficiently well-behaved.

The resolution of these two problems forms the basis of chapter 4, the culmination
of which is summarized in Proposition 4.1.1 and Lemma 4.2.5. A statement of the
general monotonicity formula then follows in Theorem 4.3.1.

‘I'he majority of the rest of this work is then concerned with the rescaling analysis,
as outlined above, and the extraction and classification of the behaviour of limit
surfaces,

10




Chapter 3

The Distance Function and
Reflections

In this scction we introduce the Euclidean distance function, which measures the
distance to © of a point in R™*!| and establish some links between its derivatives
end the geometry of £, as well as the domain over which it is well-defined. We
then introduce & special reflection function, as discussed in the previous chapter,
and establis! :nme of its fundamental properties.

3.1 Geometric Properties of Distance Function

Definition 3.1.1 (Signed Distance Function). For any point x € R**!, we
denote the minimum distence of = to X = 8G (where G is some domain in R**+1)
by

dy, () := dist (z, L},
whenever it is well-defined.
We then define the signed distance function by

s @) ifzeG ,
d() = { ds(z) if z € RI\G. (3.1)

The following standard result concerning the regularity of the distance function can
be found in {15].

Proposition 3.1.2. Let G C R**! with £ = 0Q € C* (R") for some k > 2. Then
there exists an ¢ > 0 such that d € C* (%), where £, is the e-tubular neighbourhood
of & given by

Te = {r e R"M 1dy (2) <€}

As we shall see in the following section, the reflection of points across the surface
X depends on zero and first order derivatives of the distance function. Hence, to
compute the heat- and Q-operator of functions depending on reflected points - as
will be required in the expansion formula (2.8) - we will firstly need cstimates on
derivatives of the distance function up to order three.

11




Proposition 3.1,3 (Derivatives of Distance Function). Let £ € C* for k > 3
and suppose xg € B¢ and yo € L are such that d(29) = |ro ~ yo|. Then in terms of
a principal coordinute system at yo, we have

1. Dd{wo) = v (P (wo)),
2. D3 (Dd) (xg) = 0

8. D (wo) = diag [141’51::(:‘3)""’ 1-n:;i§(=:o)'0]’

DyhE (0)
4. Dijrd(mo) = ({=#idn(zo))(1-ridu{zo)) (1—-rpdr(e))
0

iflgi,5,k<n,

oltherunse.

Here vy is the (conuentional) outer unit normal to £ (ie. points in the direction of
increasing signed distance), Ps; (o) is the nearest point projection of xo onto L and
i = K; (yo) = ki (P (xg)) is the principal curvature of ¥ in the dircction of the i-th
(principal) coordinate.

Remark 3.1.4.

1. If £ = G and M, evolves in the interior of G, then Dd = -y {where vy, is as
introduced in section 1.2) whenever it is well-defined. If M, evolves in R\ G then
Dd = +uy,.

2. In view of (1.1}, the above proposition implies the estimates

2« e 3
1% < 15— (32)
and ]
D —2 1.3
D%l < ey (89

where here || - || refers to the maximun norm.

Proof. 1. To verify the first claim, we will proceed as follows: firstly, we show the
inner product of the gradient of the distance function and the unit normal to ¥ is
one; secondlyy we show the distance function is Lipschitz continuous with Lipschitz
constant one; then we combine these two facts to obtain the desired conclusion.

First step: For ¥ given by ® : U € R® — R*!, we define the function ¥ :
UxR— R"?! by

¥ (q,8) = ®(q) + s (q).

For some e-neighbourhood E, of X the distance function d : £, — R then gives
d(¥(g,s)) =s

and

d1(0) = X.

12




et

For any fixed point go € U lot us also define the function o : R ~—— R*+1 by
a(s) = ¥ (qo,s)
= ¢ (qo) + s (uo) -
‘Then at any point 2y = ¥ (qg, 89} € , we have
Dd (20) it (q0) = Dd (v (s0)) - &' (sn)
=(doa) (%)
=1 (3.4)
Second step: Let z,y € . and choose 2 € ¥ such that ly — 2| = d (y). Then, by the
triangle inequality
d(2) < o -4
Ske—yl+ly -2l
=fe -yl +d(y).

Since z and y are chosen independently, we can interchange their roles above to
obtain also
d(y) < e -yl +d(x).

Hence,
d(z) - d ()] < |z -y
and su d has Lipschitz constant 1;
|Dd(r)) €1 {3.5)

for all z € 3.
Third step: Combining (3.4) and (3.5}, one obtains

1 = Dd(z0) - v (40)

= |Dd ()} cosé

where @ is the angle between Dd(zp) and uf; (q0). Hence # must be zero and
|Dd (zn)} = 1, which implies the result:

Dd (20) = v (). (3.6)

For ease of presentation in the rest of this proof, we heuceforth drop the superscript
+ and simply write
Dd (z0) = v1: (g0) .

2. Since |Dd| = 1, we have

0= %_D {Dd|?
= Dd o Dd.
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3. We follow the proof of [GT, lemma 14.17] and compute higher derivatives of the
distance function, cvaluated at a point zq € £, in a principal coordinate systom
about the point yo = Pe (70) € X.
Since ¥ is CF, (k 2 3), there exists a neighbourhood N (p) about the point yo such
that X can be given by the graph

Tyl = d’(i)’

where T = (xy,... @), ¢ € CF(Ts (yo) NN (o)) and T (yo) is the tangent hy-
perplanc to E at yo. Furtherinore, by rotating coordinates we can assume that the
Ty ., Ty AXes coincide with the principal curvature directions 82, ..., k% and that
both

D¢ () =0 (3.7)
and . ‘
D¢ (f) = diag [<},..., s3] (3.8)

Let us now define the mapping g : 1% (yo) O N (wo) X R — R"*! by

g7 d) =y+wm(y}d, wherey = (7, (7).
Noting that for any point y = (7, ¢ () € N (yo) N ¥ we have
1

v (y) =TE (@) = e (~Dg (), 1),
L +1D¢ (@I

one computes, for 1 € 4,7 < n,
-DiDid (G Do (7)) Do Gio) Di Dro (g
D7 () = —=2 3¢(?lu)2 + D¢ ) Ded (%) ) 3%i’(:,ro)
/141D )] (1+ D8 )1?)

= By (3.10)

(3.9)

using (3.7) and (3.8). Hence, the Jacobian matrix of g at (75, d (z0)) is given by
Dyg (Fo,d {x0)) = diag [1 ~ k¥ (20}, ..., ) — &2d (x0), 1] {8.11)
and it follows that Dyg is invertible over tho set
1
Liwi={ze€ R dp(2) < :}

We are now in a position to compute the Hessian matrix of d al points within X/,
By part 2 of this proposition, we kiiow that

Dd(2") = vz (yo)
for any point x* of the form z* = yg + ey (yn), € < 1/&. Therefore it follows that

Do Did{20) =0, forlgi<n+1. (3.12)




For the other derivatives, wo write for ¢, 7= 1,...,n,

D;Dyd (wo) = D; (VEJ (w0))
= Py, (T6) Diyk: (20)
= —6%s¥ Dign (o) ,

by (3.10). Since g (7, d (o)) = yo + 1% {¥0) d (wo) = @9, we have y(zo) = g~ * (20)
and so in light of (3.11) the Inverse Function Theorem yields

Dy (z0) = Dg™" (z0)

1 1
- 1 H__m____,‘..’-—-————-—i—-——' . 3‘1:%
ding [1 ~ ryd{xg) 1 — kpd{20) 1 ( )

Hence, for 1 € 4,5 € n we have
6;-‘6}“:\'.;,-
1~ rpd (o)

={—1?‘7 ifi =,
0

Djjd(xo) = ~

if i34
Combining this result with {3.12) thus gives

D2 () = ding | b ___.:f,"_.___‘ )
d(vo) = ding [1—-md(a:o)’ "1 - Kpd(zg)

4. For the samne veasons that yielded (3.12), we have
Dn.{_[DiDjd (1170) ={ f€4,7€<n+ 1.
For the other derivatives, where ¢, 7,k = 1,...,n, we compute
Dyjid (o) = D;D; (D d (20))
= DiDj (v, (P (v0))) by (3.6)
= Dy (D, (P (z0)) D; P {20))
= Dy Dy, (P (20)) D; Py (wo) Di Py (x0)
+ Dy, (P(%0)) D:D;j P (x0)

_ DiDjys, (P(x0)) o o .
T =50 (1= rd) xeDiD; P (xo) by (3.13). (3.14)

We now compute explicitly the two derivative terms on the right-hand side of (3.14).
Observing (3.7} and that

for any z € LN N (yp), we have

Db (P (20)) = Dijedp ('1""(?55) :

15




Thus, noting (3.9) and (3.7) again, wo have

Di Dy, (P (w0)) = ~DiD; Dy (z-’ (u,-u))
= “thﬁ (P ({E(])) .
We also compute for 1 € 4,5,k € n,

P {x) = x4 ~ dDyd,
D"Pk (:I:) = 6}‘ - df),'kd - Dided,
D,' Dj Pk (:n) == -d.Dij;,.d - (ngﬂjkd -+ Ddiikd -+ Ddeijd) '

Since Dd (xp) = ep41, evaluation of (3.15) at xp gives
Di DJP;‘ (:L’u) = -dDij]d (;I?(})

and a0 from (3.14) we have

~Dyhf (T)'("{}'.J')')

Dord (o) = AdD;d.
,Jkd(lro) iz w5d) (1 = mid) + kpdDyjid
Transposing to solve for Djjid yields
—-th% }’ (:Bo)
Dijed (z0) = : ( )

(< red) (1 = t;d) (1 — wped)’

Canvention 3.1.5.

(3.15)

3

Henceforth, we will suppress all indication of the bascpoint z and write simply, for
example, D?d for the Hessian matrix of d evaluated at x, and denote by D% (x) the
linear map D?d applied to the position vector x. Also, we adopt the convention that
vy, denotes the normal to £ at the nearest point projection of x onto X, wherever it

is well-defined.

3.2 Reflections

The following concept concerning the reflection of points across the support surface
¥ is inspired by the work of Griiter and Jost {17] on the corresponding frec-boundary

problem for stationary varifold solutions of (1.4).

Definition 3.2.1 (Tilde-reflection of x across I, r). For any point x € Ly,

we deﬁne
Fi= - 2((1‘, V;;) - d)_;)lq;
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to be the tilde-reflection of ¥ across X, where 1 is the exterior unil normal o X
with respect to the embedding F (as per inbroduction), and set

o= o) o )R

Furthermore, for any xq € R"! we define the translates

..--\__...-’2

e 1= & — mgf* -+ l:r - &y

Romark 3.2.2.

1. By construction, we note that rp, = 0 il & = 2.

2. In view of Proposition 3.1.3 and the definition of the signed distance function,
we note that we also have

Z=1r-2({x,Dd) -~ d) Dd. (3.16)
3. Using the fact that |Dd} = 1, we have
|72 = |x - 2dDd|*

and so we see that the tilde-reflection has the same length as the standard reflection
of  across ¥ (and, also, that |F|* = J2!% for 2 € £). However, even though we will
predominantly be concerned with the function r, the reason for the iutroduction of
Z is because, on I, we have

(r+2Z,vg) = 2{(x ~ (z. Dd) Dd, v} sinced=0on X%,
= 2 ({x, ”13} - (.’L‘, Dd) (DA, VE))
= 2{{z,vx) — (z,v%)) by Remark 3.1.4
=1{,

The same result is not true if we replace Z by the standard refiection T = z — 2dDd.
Thus, particularly when we are analyzing boundary integrals that arise from the Di-
vergence Theorem, it will be convenient to know whether the integrand decomposes
into an ianer product featuring the vector x + 7.
4. 1n the special case of planar support surfaces £, we have {z, vg) = d (when 0 € X)
an so

Z=ui (3.17)

and
r=2zf. (3.18)

The following lemma contains estimates that will be useful in conputing the Q- and
heat-operator of functions depending on 7 in the following chapter.

Lemma 3.2.3 (Derivative Estimates for r). For any r € £,., we have the
following estimates:

2 3202 Ky 16)2{*x2
1. \Dri* < 8r + b 4 )"
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. . 20nknlz| 4!ln§|;n]2

3. {Dryup) =0 jorallze X

Proof. 1. Using |&]? = | — 2dDd|?, we firstly compute

Dr =2+ Dz ~ 2dDd}*
= 2% + (Id ~ 2dD?*d - 2Dd ® Dd) (2v — 4dDd)
= 2 4 22 — 4dDd — 4dD?*d (z) ~ 4 (x, Ddy Dd
= 2 -+ 2F — 4dD?d (x) . {3.19)

Here we recall the adopted ccavention that D?d denotes the Hessian matrix of o
evaluated at the point 2 whereas D%d (i) denotes the lincar map D?*d at z applied
to the position vector @.

Hence, observing that for any vectorficld Z defined over Xy, we have

D*d(Z,vd) = — (Dd,v) D*d(Z,v), (3.20)

{where Vd = Dd — {Dd, v) v denotes the component of Dd tangential to M; at ),
which follows directly from part 2 of propesition 3.1.3, we obtain

|Dr}? = |22 + 25 — 44D (2)|"
= d|z + &f* - 324D (z,x) + 1642 | D2 (2))° . (3.21)
Young’s inequality gives

e+ # =r+2(,7)
< 2, (3.22)

and Cauchy’s inequality, in conjunction with (3.2), gives

D% (z, ) < [P} |z

Kp |-'L|2

g L]
T dns dr, (3.23)

and
2
|D?d ()" < | D*d)f* jaf?
&2 |z

g —E 3.24

(1 — dﬁg}‘e ( )

Hence, by (3.21), the estimates {3.22)-(3.24) and the fact that d < |z} (since 0 € %,
by assumption), we have

320%ky  16]2f K2

Dri? < 8r+ - =
IDri” < 1—drs (1 — dig)?

18




2. From (3.19), noting agnin (3.20}, we have

divay Dr = 20 + 2divy, & — 4ddivy,, (D?d(2))
+4(Dd,v) D (x,v). (3.25)

"To compute the second term on the right we firstly note that
D {{z, Dd) ~ d) = D*d(z),
and so, from (3.16) and (3.20), a straightforward calculation yields
div,, & = n - 2({z, Dd) — d) divy, Dd + 2(Dd,v) D" d (2,%).
Heuce, from (3.25) we have

|div,y, Dr — 4n| < 4{({z, Dd) — d) Qivy,Dd] + 8| D*d (x, v}
+ 4d [divy, (D*d(2))]. {3.26)

Introducing an orthonormal basis 1y, ... 7, {or TM;, we have

n
divy, Dd = ) D (%, 75)

i=1

< nfl D%l
and so by (3.2) and the estimate {{x, Dd) ~ d| < 2}x|, we obtain

2nky (@
[({x, Dd) — d} divy,, Dd] < iﬁ-?fc-ijs‘;l (3.27)
and also 2
271, < fni .
| D%z, v)| < T (3.28)

where the omittance of magnitude parenthesis on the denominators is permitted,
since we are working over Ly /...

"The rewaining term on the right of (3.25) is estimated similarly: using (3.3), we
have

diva, (D%d(x)) Z(Df. (D*d (), )

- >: (D (2, 71,7) + Dd (73, 73))

i=1
< n][D3d( )| + il D%}
< nk? || Ry (3.20)

\(‘l""dﬁag) T l—dry

Using the estimates (3.27)-(3.29) with d < jzf in (3.26) then gives the desired
estimate.
3. Since d{x) = 0 on L, we have

% = - 2{z, Dd) Dd

19
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and so, by (3.19),
Dr =4z - 4 {x, Dd) Dd 3

for all z € 3. Hence, for all @ € &,

(D) = 4z — {a, 1) e, vy) (sce part 3 of Remark 3.2.2)
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Chapter 4

The Monotonicity Formula

In this section we prove a general monotonicity formula for bypersurfaces evolving
by mean curvature flow with free bouudary on some given, sinooth support surface.
As previously stated, in light of the recent discovery of a local monotonicity formula
by Ecker [6], which is valid over regions not containing boundary points, the formmla
obtained is specifically designed for centering on points contained within the support
surface X.

We begin by introducing and proving crucial estimates for the two functions that,
together, form the basis of this result - a localization function and & modified version
of the standard backward hest kernel on R%+!,

In light of Lemma 3.2.3, to nullify the boundary integrals that arise from the Di-
vergence Theorem in the expansion formula (2.8), both of these functions depend
spatially on the function r of the previous section. The first function is thus required,
essentially, to localize the result to a tubular neighbourhood of ¥ wiihin which all
quantities involving the distance function are well-defined. As well as depending
spatially on r, the modified heat kernel also takes into consideration the curvature
of the support surface and exhibits similar characteristic behaviour to the standard
heat kernel,

4.1 The Cut-off Function

A fundamental property required of the cut-off function is that it be compactly
supported over the region

Zijng ={z e R™: d(2) < 1/kx}.

Importantly, also, in view of the expansion formula (2.8) and Proposition 3.2.3, is
that it should depend spatially on the fanction r and, ideally, be a sub-solution of
the intrinsic heat equation on M,. In addition to possessing these crucial properties,
the following function has compact support over a region which shrinks slowly in
time as the critical time 7' is approached. The reason for this lntter feature will
become apparent in the following section, where we estimate the (J-operator of the
modified backward heat kernel over this function’s su pport.

i
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Proposition 4.1.1. Jorany a9 € E, sy 2 0 and 6 € (0, §] let

5 1
. 2?’3;
oo (2:8) = [ 1 (E’éfiis) (1o = 4007} | | (1.1)
»

y |
D) e |2 _(ﬁ /6 ‘

where ry, = | — xof® + I:v - .’L‘g! and 7 =1 ~t, und set 1y = n??——. Then for

each t € [T'— n),T") (or, equivalently, v € (0,ny)) we have ‘

Nxp S 256, (4'2)
SPL 2 © {;r e R*H ¢ jz ~ 20| ks € (nf;r)d} \ (4.9)
1
T €2 on spligg,, (4.4)
d
(-a}: - :fith) o S 0, (4.5)
spt gy, — R as gy — 0. (4.6)

Additionally, for each t € [0,T) we have

n-—1 as Kg-—0 (4.7

Remark 4.1.2. Here the subscript “+" refers to the positive part of the enclosed
function and the power 4 is to ensure that 7 is of class C? (any power p > 2 would
actually suffice).

2

. . o \1-25
Proof. Since for all r € 79 and § € % we Lave (rcs'r)

3 "
< Téom We estimate

- 4
Tre € (1 + 160n (h‘%r)l 26)

<(1+3)*
== 256,

2
To determine the support of 7, it is instructive to set Z = ('E%El‘)-g) (rs, — 40nuT),
N?:T

su that n,, = (1 - Z)i, and then estimate, for each 7 € (0, 1),

spta, = {x € R™' : Z 1}

' ()Y’ ;i
C{rzeR"™: |~ :mlz < —T?%-— + 40nr ;
E

L R TR

2,30\ 2 .
={zeR™ | jz - < (.(fﬁ_i) (:41— + 40n (n;{.f)l'—)a)
4

ST T D
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As above, wo note that (x27)' 7 < (72=) for all 6 < § and 7 < 7, and thus
spt iy C {a: e R™1: jr - ap]ky € (n‘f;r)o}.
Since ag € £ (which inplics d < | -- xg]), the above result inplies that for all

T K To, over the support of Izo WC have

a \2 "
) _ — - .‘2 ‘5> — J .
L—dry 21~ o —apley 2 1~ (k37) 21 ('l(itln) !

from which the looser, more aesthetically pleasing bound (4.4) follows.
To show the intrinsic heat operator acting on 9y, I8 non-positive, we proceed ns
follows:

d d 9
(;&' - AM.) Moo = Trg ( 5 AM‘) -1, IV 2 by (A.4)
l' o 2
. (8£ (h\' My D) - u_.r“ lV?l l)y (A.Q)
y (9 . . "
= ey | 57 +divy, D} 2 since 1y, 2 0
2
2 2dr :
= Mo ((n2 :) a) (407; (26 -1) - (:" + divyy, Drm)
x

(x%7)

noting 7}, <0, § < £, (44) and Lemma 3.2.3.
Henee, since | — zol 6s < (ng’") ( ) for all T € 1y over the support of 7,

we have
2
d 2Ky,
(;ﬁ &,m) o < Iy, (m)

<0

—~

2
DKy,
< -1, (""‘5&3) [ 4n -+ d0nksy |2 -~ To) + 320K} |x ~ -Ln|2]

The final claims regarding behaviour as kg — 0 follow trivially. O

Recall from Remark 3.2.2 that ¥ agrees identically with @ when sy = 0. By working .
over the support of the above localization function we can extend this result and show ;
that Z actually converges nniformly to = over the support of the above localization
function, as Ky, tends to zero, This will become important in chapter 5 when we
investigate the convergence of rescaled solutions. :

Corollary 4.1.3. Let xp € X. Then for any x € spt 1, end eacht € [0, T} we have :

I—x as Ky — 0. {4.8) !

Tt ¥ 2 et




Proof. Without loss of genorality wo take xg = 0 and write o =1y
R RY/4
By (4.3), for all t € {7~ %,T) we have spt  C Xy, and so, for any

e

T € spt 3y and these thnes, we can compute
D ({z, Dd) ~ d) = D% (x). (4.9)
Hence, by (3.16) and the mear. value theorem, we may cstimate

fe ~ # = 2|(z, Dd) - d|
< 2 D%d|f ||
< dry 2|, (4.10)

using (3.2} and (4.4), where the Hessinn matrix of d on the second line is cvaluated
at some intermediate point.

For sufficiently stuall ky, this estimate will hold for all ¢ & [0,T), and for these tines
we have 70 < (1 + 7% =: ¢ (7). Equation (4.3) then gives

sptn ¢ {::: € R ) g C;h‘?f"l}, (4.11)
and so, by (4.10), for eachi t € 0,77, over the support of 1 we have
|'.’B - a“I < 02’53:63

and the result follows. O

4.2 'The Modified Backward Heat Kernel

For the weighting function in our nonotonicity formula, we seek a function based on
the standard backward heat kernel that is dependent spatially upon the function r
and which is perturbed appropriately to take into consideration the curvature of the
support surface. Though such functions will always ensure that the corresponding
boundary integral in the expansion formula of Proposition 2.2.1 is nullified, the term
of (2.8) involving the Q-operator of these functions will, in general, no longer vanish.
Any modified version of the standard backward heat kernel should exhibit the same
characteristic behaviour as Pz, v and concentrate at the point about which it is
centred as the singular time of M; is approached. Also, for reasons concerning the
rescaling analysis (see Chapter 5), it should have time-scaling appropriate to R® and
become singular at a rate of (T —t)™"/2,

Taking these factors into consideration, we introduce the following family of per-
turbed heat kernels as candidates to play the role of the weighting function in our
monotonicity formula.

Definition 4.2.1. Forz € R*"*, t <0 and a > 0 we define the class of perturbed
backward heat kernels g, : R**! x (~00,0] — R by

1 r
Oa (T, 1) 1= (—_—_—E;t—)mexp (m) ' {4.12)




where v = Jaf? + |32,
Purthermore, for any xo € R and ¢t <I', we define olso the translutes

o 1) vem 1 . T2o ,
Casoit (0 ) = (el P ( Bla T 1) (7= f.)) B

Remark 4.2.2.

1. Note that, in view of {3.18), we have go (x,1) = p(a,t) in the case of a planar
stupport surfaco,

2. Siuce g, and its transintes are defined spatially in terms of 7, part 3 of Lemma
3.2.3 implics that

/ (Do, ;) = 0. (4.14)
JOA

For fixed a, we have Q {ga) ~ % (sec proof of Lemma 4.2.5, below) and so this
term becomes infinite as the singular time is approached, with the factor -}: not even
being time-integrable, If this factor were integrable in time, it would allow, by the
introduction of an integrating factor in (2.8), a form of monotonicity formula to be
obtained (see following scction).

By taking e to be a time-dependent fanction depending also on the curvature of the
support surface - the latter notion naturally suggested by the first remark above -
and working over the support of the localization function 1, we can obtain a bound
for Q@ {g) in temns of an integrable function of time. This, as we shall see, suffices to
yield a monotouicity formula with which we can proceed with our rescaling analysis.

Definition 4.2.3 (Modified Backward Heat Kernel). For &y, 2 0 and any
§ > 0 we define the modified backward heat kernel py,. : R* ! x (—00,0] — R by

Pry (T,t) = Cro(-ext )’ (x,t). That is,

T
= e £XP _
(—dme)™/? 8 (lﬁ (~ta2)® + 1) !

P (2,1) , (1.15)

where 7 = |of® + [3°.
Furthermore, for any xp € R™! and t < T we define the translates

1 Tz,
Pspae T (T, ) 1= ——— exp | — > ) (4.16)
i (dmr)*? 8 (16 (k31 + 1) 7

where v =T — 1.

Remark 4.2.4. Note that, for all 7 € {0, 1g}, we have
, 1 iz — xol”
Pry.aaT (@,1) € mﬂxl’ (“T) ' (4.17)

where C = 8 (16 (76—:1—5)2 + 1). That is, independent of the parameter ky, each
function py,, is bounded by an integrable function.
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We then have the following inportant estliwnle,

Lemma 4.2.5. Let 29 € ¥ and 3y, be as in Proposition §.1.4, with kg 2 0 and
s € (0,3]. Then for all T € (0, 7], over the support of 9, we have

Q (Pn-;;.:ru.'l‘) < 6{’&1}.3‘;}.?'”?:676—1 (4‘18)

where C = C {n).

Proof. Without loss of generality, we take zy = 0.

We show that the modified heat kernel (4.16) arises naturally from the broader class
of perturbed heat kernels (4.13) as follows: from the definition of g, 00 = ¢ and the
operator (@ we compute, for any @ = a(r),

2
do | | D+
Qo) = 5 ¥ diva Do+ -
_ ( n ar r _ divy, Dr |Drf?
TA\T T8+ )7 B+ B+ DT Blat )

Working over the support of 7., and using results 1 and 2 of Lemma 3.2.3 and (4.4),
one may further estimate

an a'r + 1
2(0+1)7 8(a+1)r 2{a+1)r

1 3 1.2 ]
64 |z]" Ay + 64 |2]" 8% — 8ar || .
(8((:.—%—])1')3( lal” 2t )

Qo)< e [ (IOnn,: |z} + 8nnd |.n|2)

Setting a (1) = c(n%‘r)'s, where ¢ > 0 is o be chosen later, and noting o’ (r) > 0,
{(4.3) and that (R%T)a < 1 for all 7 € 7, then gives

Q()<§~(—“?‘7)J AP - (16 ~ ¢)
Q“(a-{—l)‘r 2 7 Bla+1)r @

Hence, on choosing ¢ = 16 we have

17n (x27)° o
Qo) < Tnler)e
-
ot, equivalently, s
170 (621} pug 0.1
pu

Q (Prcr;‘ﬂ.'l‘) S
O

By Remark 4.2.2, we have that pg = p. Additionally, we have the following state-
ment, analogous to Corollary 4.1.3.
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Corollary 4.2.6.
For any xy € K, el ng, be as in Proposition J. 1.1 with § € (3‘. ﬁ] Then, for any
& € spt ny, und each ¢ € {0, 1) we have

Pry,zol (Ey 1) = pegr (T, 1) s Ky D (4.19)
Proof. Without loss of generality we take @y = 0. Woe then have

o
ar g (16 (kd7)° 4 1) T

[P = puy| == p[1 —exp

]

and so, for 7> 0, the result follows provided we can show

|.r[2 - . v a3 Ky — 0 (4.20)

2(16(n§r)64-1)

To this end, writing § := 16 (ire',",'r)'s and cstimating [#% = & — 2dDd|? < Hlx]?, we
have

r

2
o - 5D

< (2 + el - 13

< (26+ 1) [laf? - 12} + 10022

Recalling from (4.11) that |z} < k¥~ on spt 5 for each ¢ € [0,7), and the defini-
tion of b, we may lurther cstimate

T

1;12']2 - m ‘§ (320&?‘5 + 1) ||.’B]2 - |EI2[ + 16005&5"2.

Since ¢ > %, equation {4.20) then foliows from Corollary 4.1.3. 0

4.3 The Monotonicity Formula

Before we state the main monotonicity result, let us recall the following quantities
from the previous two sections: for any r¢ € T we have

¢ localization function (centred at xp) -

2
2Ky
oo (z:8) = |1 - ((_C::)If) (7o — 40”7))
5

« modifled heat kernel (centred at (xp,T)) -

4

-+

rzn

_8 (16(&%7)5 + 1) T

I
Pry.zo1 ()] = W exp (
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] i S 2 N
Here ry, = |2 — mg|3 + I.n ~ wu’ , where the tilde denaotes the special reflection intro-
duced in § 3.2, 7 = T —t and 4 is a fixed but arbitrary constant, % <0< %

We recall also that £ is a smooth hypersurface in R that satisfies an inte-
rior/extorior rolling ball condition and whose curvature satisfies the bound

NAsl® + |V Az] < &8 < oo,

Theorem 4.3.1 (General Monotonicity Formula). Let M, be a family of hy-

persurfaces evolving by mean curvature flow with Neumann f’rtze;};mmdary on the
J

hypersurface £ for all t € [0,T), as in (1.4), and sel 7 := hﬁﬁ)—, where k. 2 0

B
bounds the curvature of 5 and & € (,2]). Then for all t € [T ~1,1) and any
2p € 13 we have

-i ((303"%61“s [ NPrx; dm) < —603"%676 f
dt . M,

v M

2

i
B2l Npsg dpn,  (4.21)

Pryy

where Py = Py ol 1= e and Cy is a positive constant depending only on n.

Proof. Taking f = 5 and g = pyg in (2.8), noting (4.18), (4.5) and part 3 of Lemma
3.2.3, gives

d - Dip f?
T NPy dpy < "‘f n|H - frp Pry: diy
dt Jag, M, Prs | 4.22)
n (2 (1"~ t))° (422
(T-1) e dri

Equation (4.21) then follows after introducing the integrating factor

2. pyé
exp 17ns3(T~t) )

Remark 4.3.2.

1. By Remarks 3.18 and 4.2.2 and (4.7), in the case that &5 = 0 bounds the curvature

of ¥ - that is, ¥ is a hyperplane - the ubove formula is valid for all ¢ € [0,T) and

is consistent with Huisken's (2.2).

2. Explicitly, the integrand on the right hand side of (4.21) is given by

2 =l 2 2
_lg_= + T+~ 4dD%d (x, v} v

| 8 (16 (k2r)° + 1) T

Dlﬂﬁ}:
pl‘ig

o
|H -
1

(4.23)

3. The requirement that § > %, though not strictly necessary here, is included abaove
for convenience in view of Corollary 4.2.6 and the following chapter.




Chapter 5

(Classification of Possible Limit
Surfaces

In this section we carry out a rescaling analysis of our evolving surfaces and use the
monotonicity formula of the previous section to classify the limiting behaviour near
singular points.

5.1 Parabolic Rescaling

Let M = (M,);cio,r) be & solution of the mean curvature flow equation (1.4) with
Neumann boundary condition on support hypersurface ¥ and define, for any z €
M, UX and any fixed point zo € R*"!| the change of variables

(z,t) = (y,8)
by
T = Ay + zg, t=Xs+T (5.1)

where A > 0. This implies the equivalences
1

and .
:z:GE#-:#ye:\-(E-—a:o)EEi",

and it ¢an be easily seen that, for cach A > 0 and all 5 € [-—:,%;,0), the surfaces

3("‘“"’-""*‘ evolve by (MCF) with Neumann boundary condition on support suiface

23°. Moreaver, if & has curvature bounded by &y then £3° has curvature bounded
by ARE.

The following two propositions are immediate consequences of the definitions and
convergence results of the previous chapter and the parabolic rescaling of the flow.

Proposition 5.1.1. I'n the rescaled setiing we have

- -—n ~
Nzo N and Pry 2o, " T A PAus
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where

o\ 2 4
. 2 (Any) ! N
(Y, 9) = (1 - (“"(“'('f;))*zr““ (Iyl"’+lul2 + ‘m"“’) (5.2)
+
und
. 1 v’ + 197
Pany: (Y 8) = s exp y : (5.3)
(~dws)" 8 (1 +16 (— (Ag)? s) ) s

Here, § = y — 2 (<y, DJ) - 3) Dd, where d(y) := signed dist (¥, Z7"). Further-
more, the induced mensurcs, dyg (x) and dps (y), of the surfaces My and

{zo,17,A . .

s , respectively, are velated by

dpe () = A" dug (1) . (5.4)

Proposition 5.1.2, Let sy 20 and b € (-:1;, :-f;], and let 7}, § and i, be as above.
Then for each s € [5R,0) end any y € spt 7} we have

g — (55)
ﬁAKn (ys 3) - p (% S) (56)

as A —— 0. Furthermore, for ecach fivred s < 0 we have
spt 7 —R™H! as A~—0 (5.7)
und

- 1 as A— O (5.8)

We then have the following re-formulation of Theorem 4.3.1:

Theorem §.1.3 (Rescaled Monotonicty Formula). Forany A > Q0 andap € &,
let Mém‘”"\ and £3° be as defined above. Then for all s € [-—;’\35,0) we have

4 c(-(we)s) -
T (e ) rizoi 1P dpis | <

: - 2
—- eC(—v(M:e:)z.'i)ai E D sy

pany dits,  (5.9)

~

agfFoeTIA Ary

—)
where H is the mean curvature vector of the surfaces M and € = ¢ (n).




|

Proof. Wo check the scaling bebaviour of ench of the three terms in (4.22); from

(5.1) we have
d 1 d

dl ~ Mds
and so, by Proposition 5.1.1, we have

1 1
Rl f NPy, ity = -;z-L—i- f o Ty Qg
dl Ay A ds Mi“u.lh-\

For the sceond term, we firstly note

= A
] = —,
A
and so, by Proposition 5.1.1,
2 A 2
H - Dl{fﬁg — _1_ § - Dt pagg
Pry, A? PAxs:
and
2 u 2
= Dip, 1 = D
H -~ 1 g dz;=~——~f H - —2 36, du
x/ﬁf.: Prx: 1Pxy, Of /\2 ﬁdmj‘),,\ Prss, 1Pky; Gty
Finally, for the third term we have
5 AN
Uin (K2 (T - 1)) Lo im (- we)?s) f .
(21 - f) M. npﬂ.}; e = 1\28 Mrﬁruﬂ‘).é\ NPy Glhs-
Equation (5.9) then follows after cancellation of A? throughout each of the rescaled
quantities above and introducing the appropriate integrating factor. {J

5.2 Limit Surfaces

We now use the above rescaled monotonicity formula to characterize the limiting
behaviour of the evolving hypersurfaces as the singular time is approached.

. . . (20,1),A4
To this end, we consider the sequence of rescaled solutions (}"r %o e , for some

sequence A; \, (. In general, such solutions will not converge smoothly to a solution
of (MCF) as j — oo (corresponding to ¢ / T’} but, rather, measure-theoreticolly
to a gencralized solution in the sense of Brakke’s weak formulation of the flow (see
[22]). However, as in § 2.1, we can ensure the existence of a smooth, no.drivial
limiting solution of {1.4) by imposing the Type 1 curvature assumption
Co
Tt
on the siurfnces My, for all ¢ € [0, T) and some constant Cp > 0.

A <

(5.10)

The question then becomes onc of which point to rescale about, as, in general,
parabolically rescaling the evolving surfaces about an arbitrary point zg € ¥ will
cause the resulting surface MECTI o drift off to infinity as A; \, 0. This prompts

the following definition.
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Definition 5.2.1 (Limit point). For any point p € M™, we define the imit point
Sunction T : M™ — R by

T () = Jin F (1),

The existence of this limit exists follows directly from the type I assumption and
(1.4).

We are now ready to state the first result of this rescaling analysis.

Theorem 5.2.2 (Existence of Smooth Limiting Surface). Let M = (Mp),ci0.1
be a smooth, embedded solution of (1.4) salisfying the type I curvature assumption
(5.10), and let 29 = Y (p), for some p € M™. Then for every sequence A; \| 0,
corresponding to t /' T, there is a subsequence {A;,} such that the rescaled surfaces
Mﬁ”"‘”"‘f* converge smoothly on compact subsets of R**! x (~00,0) to a non-empty,
embedded limit-surface, M' = (M;), ., such that

1. (M}) evolves by mean curvature flow for s < 0;
2. If p ¢ OM™ then M, has no boundary;

3. If p € OM™ then M, has boundary OM; C L}, where I, is o hyperplane
through the origin y =0, and (U, 7)) = 0 on OM.
Proof. We proceed as in {7}, Chapter 3. Since xp is a limit poiut of the flow, by the

type 1 hypothesis we have
TdF
/ p (P, 7) d’?l

t
T
StlH@mNM

/T nCo
< = d
[ VI“TT

= 2/2Co (T - 1),

lF (p1 t) = mOl ==

and so
dist {zg, My) < 24/nCH (T ~ #). (65.11)
Furthermore, since for any fixed R > 0 we have
C
e )2 <« 20
IA (‘B‘! t)l = »11 -1
for all z € My N Bg (zo) and t € [0,T), for any sequence (A;) \, 0 the corresponding
serquence of rescaled solutions (M_Ewn‘ 13 ) sutisfy
- : O
|AMQ|€:% (5.12)
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for all y € Mg (=0 ~ p {;_ (0) and s € [ ',\!'1 ) Hencee, for any fixed 9 € (0, %)
the incquality

=9

-y 2
A 9| <53

holds for y € Adg @A 3 g & (0) and 8 € [-«-:&,ﬁ”] and thercfore, in particular,
i F)

for y € MDA By (0) and s € {—~J5,9?] if j is large onongh to ensure A; < 9.
The interior estimates of Stahl [25] then imply that

v:30,9)] < e

for y € MEODA B, i (0) and s € [~ 552, 9%} for sufliciently large j, for each

k20, where C is a boundcd constant depending on the curvature of the rescaled
surfaces,
Moreover, by (5.11) we have

dist (0 M fzo.1); ) = ::-_-diSt (3’(1: M,\}s+.'r)
j

1 .
< 1;2\/1100 (T - {\s+ 1))

= 2\/—-?1098.

By the Arzela-Ascoli theorem combined with a diagonal sequence argument when
letting + N, 0 [and hence A; \ 0] for local graph representations of Mém‘T)‘)", we
can therefore find a subsequence of the rescaled solutions which converges smoothly
on compact subsets of R"*! x (~00,0) to a smooth solution (M), of (MCF).

The subsequent claims regarding boundaries are then a direct consequence of the
rescaling procedure - if p ¢ 3M™, {which, be embeddedness, implies ay ¢ OM,) all
points within the boundary will be translated by —z¢ and homothcetically sent to
infinity, whercas if p € dM™, (which implies g € OM; C ¥) the boundary remains
anchored to the origin y = 0 and the rescaled support surface will be straightened
out to a hyperplane under homothetic expansion as A\ 0. O

The monotonicity formula then allows the behaviour of this limit flow to be charac-
terized.

Theorem 5.2.8 (Characterization of Limit Surface). The limiting hypersur-
faces M} as obtained in Theorem 5.2.2 satisfy the equation

el

L
¥
=¥ (5.13)

Jorallye M; and 5 <0.




_-—__—-——-—

Proof. 1f the limil surfaco has been obtained by rescaling about a boundary timit
point, then we firstly note that, as an immediate consequence of the non-positivity
of the right kaund side of the monotonicity formula of Theorem 4.3.1, the quautity

(M, 1, 7)) = }}}1} (ec"gfrd / T d,ug_) {(5.14)

M,
exists. By virtue of the rescaling procedure, for cach fixed s < 0, we have
. 2648 , ~(rpN)is)?
lim (ec"n T f WP d,m) = lim (cc( (xu))s)
1t/ T My ANG
and so, in viaw of Proposition §.1.2 and Theovem 5.2.2, the Dominated Convergence
‘Theorem [9] implies

s i

ﬁjirn.TL‘\

O (M, o, T) = f i, (5.15)
At

L)
2
where p(y, 8) = W exp (lﬂ—) Since M! satsfies a Nenmann boundary con-

dition on a supporting hyperplane, onie can use standard reflection across the planc
to obtain a complete, boundaryless, symmetric limit surface, M7, which evolves by
standard mean curvature flow. For such surfaces, Huisken's wmonotonicity fonnmula
(2.2) applies, implying

d
— Ad o ._./
ds M;’p o My

However, since © (M, 0, 7") is independent of s, equation (5.15) implies that the
integrand on the right of {5.16) must vanish identically, giving the result.

For the case where we have rescaled about an interior limit point, the resulting limit
surface is smooth, possesses no boundary and cvolves by standard mean curvature
flow. Thus, Huisken’s monotonicity formula immediately applics and we can proceed
similarly to above to conclude the desired result - ¢f. Theorem 2.1.5.

2

o .
pdps. (5.16)

v
E 25

a
Corollary 5.2.4. The rescaling limit M’ = (M), satisfics
M; = /=sM_, (5.17)
Jor all s < 0.
Proof. Using (5.13) and the definition of (MCF), one readily checks that the em-
beddings for (M]) satisfy
d (F(4(ps),s)
— =), 5.18
ds ( V—s (6.18)
where ¢ (-, s) M™ — M" is a family of diffeomorphisms satisfving
Pl 3‘
N 9 . OF
DR (0.9),9) (52 0.9)) = ( F @), s)) -
Here T’ denotes the projection onto the tangent space of F (-, 8) (M™).
The result follows upon integration of (5.18). 0
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In the caso of surfaces without boundary, there s 8 extensive vartety of sell-similur,
contracting hyporsurfaces evolving by (MCF) that satisfy condition (5.13), (sce, for
exatnple, {1] and [3]) and a complete classification of all such possible limit hypersur-
faces resulling from the above rescaling procedure has not been obtained. However,
a complete classification in the class of embedded limit hypersurfaces having noun-
negative mean curvature has been obtained, which we can carry over to the current
free-boundary sctting.

Theorem 5.2.3 (Clasgsification of Limit Surfaces with Non-negative Mean
Curvature). If M! is a smooth, embedded limiting hypersurface in R*H!, as 0b-
tained by the ahove rescaling procedure, atisfying (5.13) with nonncgative mean cur-
vature H 2 0, then M, is one of the following:

1. 8%;

2, §hm xR,
g S"nI;
4. Sﬂ-—i‘n ® Rm M H
for seme m < n, where 11 is an n+I-dimensional half-space through the origin.

Proof. As above, the Nenmann boundary condition allows limiting solutions pos-
sessing boundary to be reflected across their supporting hyperplane and be treated
as complete (symmetric) hypersurfaces without boundary. Thus all limit surfaces
can be treated as boundaryless hypersurfaces evolving by stondard mean curvature
flow. Hence, for surfaces of weak mean-convexity, Huisken’s classification ("T'heorem
2.1.6) yields the result. 0

Remark 5.2.6. For compact solutions of (1.4), mean convexity of the limit surface
is guaranteed for initially weakly convex surfaces My by [26, Theorem 3.1}, which
follows from the maximum principie in [25).




Chapter 6

Area/Boundary Length
Estimates and Special Cases

In this chapter we prove a local area and boundary length cstimate and also ob-
tain & monotonicity formula for solutions of {1.4) in two special cases, using more
clemmentary means than those used for the general case.

6.1 A Local Area Estimate

The focus of this section is to obtain a local area bound for solutions of (1.4),
analogous to that of Brakke {4, Chapter 3] and Ecker (7] for the standard mean
curvature flow, but in balls that are allowed to contain the boundary.

The starting point for obtaining such estimates is the following proposition, which
follows directly froin Proposition 2.2.1 on taking ¢ = 1 and re-labelling f to ¢.

Proposition 6.1.1. Let M = (M,),(7) be @ stooth, embedded solution of (1.4)

and U an open subset of R*Y' containing M. Then, for any function ¢ : U x
[0,7) — R which satisfies ¢ € C2 (U) and %% € C we have

d _ d ,
dt Af,_¢d#t = -/Ma ((Zl_t - AM:) ¢ — |H| ¢) dyy + fm“ (D¢, vz} doy.  (6.1)

Furthermore, if ¢ satisfies (& — Apr,) ¢ < O then

4 o diy < -/ |H|? ¢ du +/ (D¢, n) do,y. (6.2}
dt [, M; 3

M,

Inspired by the work of Brakke, for any R > 0 end (x,t) € R**1 x [0, T") we consider
the class of testfunctions given by

dr(z) = (l - }-%)‘1 . where z = 2(2,1). (6.3)




We then have

{
(ét M.) dnr = ¢ ( AM,) — ¢h V2] by (A.4)
= ¢y (-—- - divyy, ) z-¢R|Vel® by (A2)

< ¢ ("“'“‘h"ﬂh ) (6.4)

sinco ¢ (2) = 41 (1~ -ﬁ;] 2 0. Thus, in light of the identity

U 2
(Bi‘ divag, I )(IJ:] +2nt) 0

we have established that the spherically shrinking testfunction

4
o= lof2 + 2ut
erlnt)= (11— E—=0
+
d

-—f wrdi < —-f |H|2<pud;¢¢+f (Don, ) doy. (6.5)
dt S, M Al

sutisfies

For surfaces M, cvolving by mean curvature How without boundary, or possessing
boundary but with M, N By (0) = @ (so that the boundary integral vanishes, since

spt op C Br{0)), one can proceed as in [7] and use equation {(6.5) to establish the
following local arca estimate.

Proposition 6.1.2. (Brakke [4], Ecker [7]) Let (M")re[o ) be a sinooth, embedded
b

solution of the mean curvaturc flow in B (xo) with OM; N Bg (o) = B. Then for
allt € [G, %L:? we have

¢
" (Mtnaﬁ) + f [ LHP? dpsds < SH (Mo Bp).  (6.6)
¢ Af,ﬂng(.ro}

We would like to .nimic this result and obtain a local arca estimate for balls contain-
ing part of the boundary of surlaces evolving by mean curvature fow with Neumann
free-boundary on a given support surface X, To do this we must account for the
fact that any ball intersecting the boundary need not be centred on it, and so the
idea is to reflect Ay across the support surface and consider the sum of the area of
M; and the area of the reflected surface, in this ball.

Proposition 6.1.3. For any x¢ € I, lel (M) be 2 smooth, embedded solution of

(1.4) in Bp(xo) forailt € [ ,-1-2-@;;) and uny R < 5,%;: Then for allt € [0, l.{‘;ﬂ)
we have

,H"(ﬂfgﬂ(ﬂn UB_;}_)) f ‘/Ma ( UBJ’L) '}”2 diis ds

< 161" (Mg a (.BR u 1’3';)) . (6.7)
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whene
Bp = Bp(xg) = {z € R | ~ wo| € R}

and —
BR Bu(:l'()) -——{:!’GR oy Il*’l(}[(R}.

Proof. Setting z = r,,+ct in the testfunction ¢y (2) of (6.3), where v, = e ~ &pf+
T 2

I:n - :lful and ¢ is a constant to be chosen later, and noting (6.1), (6.4) and Lemma
3.2.3, we have

] )A& . ! +
f drdpy < f (qu (( — divy,, Dz) — ¢hn IH])) dpy. (0.8)
df M,

Since 4 R o
z e z
R
we have

Dz 4 z
¢” (._._. - (lwm,[)‘,) o= *é-i; (1 — -}*?- ) ((hvaz - ¢}

< (1-g), (s S

+4m:2 |z~ m§| AR
(1 - dﬁ;})

using the estimate for divy, Dr of Leinma 3.2.3.
Moreover, since

3 ‘
spt (I - _R—z) = {0, eR" x R:ry, -+t < R
C{re R jx~ 29| < R},

for all T £ '2—-‘— and xp € ¥ (for which d{z) € & — 2¢]) we can therefore estimate

0z 4
‘PR ( ~ divyy, D‘,) 33 (1 - -122) (4n + 20n 4+ 8n ~ ¢)

7 (1 Rz,)'i (32n—¢).

On setting ¢ = 320, equation (6.8) therefore gives

1
7 L ondues~ [ oult du, (6.9)
dt Jay, Al

where

reo + 32nt\ 4
¢“(x’”=(l' e )+'
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Intograting (6.9} fu timo yields

¢
[ ondus [ [ onltil dusds< [ uduo (6.10)
J My 0 JM, Mo

where, since ¢ € 1 and .
spt on (4, 0) = {x € R g, € R'z}
C (B}t (zo) U Br (.'-'30)) \

we have

y dpdig K H* (Mo N (Br(xo) U Br{~))). (6.11)
Mo

2 . 3 '
For ry, < % and 32nt < "—:— we have ¢p 2 ]%, and so, sinen

2
{:n: } T |e - zof + !r:—a:u i}

4

R? o~ R?
D({ s - 2o S-E—}U{:n:|x-—m0 g.g.})

(1‘0) uﬁ_‘% (:r-o)) ,

//\

fi

8

we have

1 ~ .
= — M, B U B .
M, ¢rdu; 2 167‘(" ( e Ol ( £ (zo) & (:r{)))) (6.12)
for all £ € &
Using the estimates (6.11) and {6.12) in (6.10) and multiplying through by 16 then
yields the result.
B

6.2 Boundary Length Estimate

For minimal surfaces which intersect a given support surface orthogonally - and are
thus degenerate (stationary) solutious of the mean curvature flow problem (1.4) - the
Divergence Theorem (A.1) provides a natural starting point for obtainiug estimates
on the length of the boundary.

Indeed, taking X == {1 -- 2dn,;)’l+ Dd, for any minimal surface M and support surface
3 the Divergence Theorem yields

H1 (M) = f divay (1~ 2dxz)} Dd) dy
M

- /h 1 (1= 2d2)". divas (Dd) - 85 (1~ 2d55)% V) di
< 27“‘\'-27"“ (M N 21/2,‘3) ’
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using (3.2), where Xy o, is the gi—;tubulm neighbourhood of .

The following leinma establishes a bound, analogous to that above, for general so-
lutions to {1.4).

Lemma 6.2.1 (Time-integrated Boundary Length Estimate). Let M =
(Mi)igiory be a smooth, embedded cohution to (1.4), where Ky 2 0 bounds the cur-
vature of the support surface ©. Then for any t € [0,7") we have

: Coqt
Ky f H L (OM,) ds € 2l / H® (M N2y sy ) ds + -l-lij?‘f" (Mg %, /2,;}:) .
0 A %
(6.13)

Proof. In the general setting, for the vectorfield X = (1 — 2dlf—g)1 Dd the Divergence
Theorem yields

,Hn_l (81\’11:) -~ fhr (l - 2di‘§n)j_ (di\’MlDd + <Dd, ﬁ)) dﬂt
I
__/ 8Ky (1 - Zdﬁ'.g)i ]Vd]2 dyty,
M,

</, 0= 2dsz)t (mn + (Dd, ‘Er)) dite, (6.14)

using (3.2) and noting dig < 3 over the support of {1 — 2dﬂg)§_- Noting then (A.5),
one can also compute

d 5 _ 4
dt M, (1 = 2dks);, dps = —10kx /Mt (1 - 2drs), (Dd,ﬁ) dpy

- f (1~ 2dwy)" HP? dpe,
My

and so

. - 1 d r
: 1~ 26 (Dd, HY dyy € ——~= | {1 = 2drs)° due.
EL[\'fg( ‘hz)+< ) He 164t Mr.\ h'B)-}- e

Hence, by (6.14), we have

R;;Hﬂ-_l (6M;) < 2“&%7{“ (11’[1 N 21/252) ~ i%% -/;f (1 — Zdng)i dj.f,g.
My

Integration from 0 to t then gives the desired result, £

Remark 6.2.2. Since &y, is merely an upper bound for the curvature of the support
surface X, the above formula should be viewed accordingly. That is, in the case that
X is a plane, the above result is valid also for any kg > 0.




6.3 Monotonicity Formula for Special Cases

In this section we vstablish a monotonicity formmla for solutions of (1.4) by directly
estimating the boundary integral

1
—f {Dp, vy} doy = §—f plz,vs) doy (6.15)
6!"{: T (‘JiWQ

of (2.10) in two special cases.

6.3.1 Cancave\Convex Support Surfaces

In the special case where the support surface T is concave\convex and M, meets
from the interior\exterior, we have

{x,r5) €0 forallz € X,

which implies, since M, C X, that

f {z,vy) dor < 0.
M,

Though this statement relies on the assumption 0 € Z, more generally, for any point
rp € X we always have

L
{ (x — xo, ) €0 forallz e X.
Hence, the boundory integral (6.15) has the right sign.

faces)., Let M = (Mt)te[n,'r) be a smooth solution of (1.4). Then, if T is concave\ convex

i
Lemma 6.3.1 (Monotonicity Formula for Concave\Convex Support Sur- ,
and M, intersects ¥ from the interior\exterior, for allt € [0,T) we have .

d
= | pdu <~ /
dat [, ‘ M,

6.3.2 Slow Boundary Growth

pdys. (6.16)

The second special case for which we obtain a monotonicity formula is that where
the evolving boundary 8M, satisfies a certain, specified growth-rate. In this instance
we obtain a uniform bound on the the quantity

T T
/ f (Dp,vg) dodt = f 31- f plz,vs) doydt,
0 JoM, o <7 Jaa,

which arises when we integrate equation (2.10) in time. Though such an estimate
actually suffices for the business of extracting limit surfaces from sequences of rescal-
ings, we merely present the critical bound and refer the reader to the work of Stone
[27] for the subsequent analysis.

41




Definition 6.3.2 (Slow Bou.dary Growth). Let M = (Mi) /0.1y be @ smooth
solution of (1.4). Then M; nas slow boundary growth if, for each xy € X, there

exists positive constants O and Ry such that, for all R < Ry and some a € (0,1),
we have

C Rn—-l

H*~1(6M, N B (7)) § ———
(0M; N Bp (w0)) TOE

(6.17)
Jorallt <T.

Note that compact boundaries satisfying the slow growth rate (6.17) must also be
integrable in time, That is, we have

™
f H* Y (OMy) dt £ C. (6.18)

0

The method employed to estimate the boundary integral (6.15) is based largely on
the work of Stone [27] for the Dirichlet problem. It involves splitting the boundary
OM,; into two sets - one, a ball of a specified time-dependent, shrinking radius, and
the other its complement. The more troublesome boundary integral, that over the
former set, is then estimated by utilizing the bound (6.17).

Lemma 6.3.3 (Boundary Estimate for Slow Growth Boundaries). Let M =
(ﬁ'ft),e (0.1 be o smooth solution of (1.4) with boundary OMy C X satisfying the slow-
growth rate (6.17) for all t € [0,T), where T is compact. Then

§ halC520m)

Proof. Let R = R(t) be a given funciton, to be chosen explicitly later, satisfying
RYNO as t—7T

Pzo ditydt < C. (6.19)

and define
I(t) _/ f p,;0< _ 1o Dd) doy dt
ty JUAL
’ d
= D > do, dt
»/tl -/;ﬁfgnBR(xo) p30< ZT f
T .

+ f / p,.,,.o< - Dd> doy dt

ty JOM\Bg(ro) <7

=1 (t1) + 12 (t1). (6.20)

The estimate (6.19) follows by suitably estimating each of the integrals I) (¢) and
I> (t). Regarding the latter of these, using the compactness of ¥ and (6.18), we have

T -
I(t) = [ [ Pro <T‘9‘sVE> doy di
iy 3Mt\f33(:to) T

. T
< diam (¥) (4x)~"/? / / pon/2=1 = RAT g
2 OMA\Bx(zo)

T
<C j{ F = o R AT gy (6.21)
1
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This estimate will be complete after choosing a suitable function R = R (t), which
we shail do shortly.

Turning our attention to Jy (t) now, we firstly note that, as in (27, since £ is smooth,
there exists constants By and ¢ (depending on k) such that

{x—20,v8) < Colr~wof* VzeTn B, (o). (6.22)

Thus, for all £; sufficiently close to 7" to ensure both R{ty) < Ry and R(#;) € Rp -
t1 2 lo, say ~ where Rp is as in Definition 6.3.2, we have

T _
hﬁﬂ=j‘/ ¢m<£~3%m>dmm
ti JoMnB(zo) 27

l]'t
<C f 2R 4o dt
ty JOIMNBa(zo)

T
£C [ 721~ef2pnil g (6.23)
)

using (6.17).
We now make a choice for R (t). In view of (6.21), it is constructive to choose ()
to satisfy

——%_2: = log (T"/z‘“);

that is,

R(t) = /—dr {n/2+ 1) log~. (6.24)

This then ensures for all
T—1<te<tgT
that
L{t)<C. (6.25)
Turning our attention back to our estimate for I (¢}, we firstly observe that, since
« is strictly less than 1, there exists constants e, v > 0, sufficiently small, such that
1/2+ a/2 + ¢ =:1— < 1. Noting also that, for any 6 < 1 and y > 0, the function

f(¥) = —y®logy is bounded above by (e6)™", we use the above choice of R (2) to
estimate for any ¢ 2 ¢y

T
ney <@+ o / Vot (fog ) g,
t

T 2e 1"3_1
= C’f 771 (-—T?FT log ('r)) di,
t

2ee -(*) 7
< -1
¢ (n + 1) f, T dt

_~T=8
=0 (6.26)

Hence, in view of (6.20), (6.25) and (6.26) the boundary estimate (6.19) follows. OO
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Appendix A

Appendices

A.1 Miscellaneous Formulae

Theorem A.1.1 (Divergence Theorem). Let M be a smooth, orientable hyper-
surface with boundary, embedded in R**!. Then for any Cl-vectorfield X : M —
R** with compact support we have

/ divy X dpu = —/ <X,—ﬁ> dpz-i—j (X, vga) do, (A.1)
M M aM

where H = —Hy = — (divarv) v denotes the mean curvalure vector of M for a
choice of unit normal v to M, and vyp; is the unit inner co-normal to OM.

Proof. See eg. [24). o

Lemma A.1.2 (Heat Operator). Let My = F (M",t) be a family of hypersurfaces
evolving by mean curvature flow and let f = f (x,t) for x = F (p,t), p€ M™. Then

d a
(dt AM;) f (-t)—t- - leMcD) f (A.?)

Proof. One computes,
d d
d oF

and so, by (MCF), we have

-di_?—f—+(bf H>

Also,

Apg, f = divy, (V)
= divy, (Df = (Df,v)v)
= divy, Df ~ (Df,v) H~ (V(Df,v) ,v)

= divy, Df + (Df, HY.
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Thus,

. 9 ‘
g - Ay f = —8{- — divy, D f.
a

Lemma A.1.3 {Product/Chain-rule for Heat Operator). For any twice dif-
Jerentiable functions f,g defined on M,, we have

(G-am) U =1 (5-0m)o+o(F-au)I-2(VA90. (3

Furthermore, if n: R — R is twice-diffcrentiable then the composite function 1) (f)
salisfies

(5—’; - AM.) n(H) =7 (f) (% - AM,) f=n" V2. (A.4)
Proof. One computes

Apy (Fg) = divay, (V(fg))
=divy, (fVg+gVf)
= fAMcg + QAMgf +2 (st VQ') ’

from which the first result follows. For the second result, one simply observes
d o
“n()=v(H)%

and

Aun (f) = divy, (V0(f))
= divyy, (TI’ (f) Vf)
=1 (f) Aurf + 7" [V

0

Lemma A.1.4 (Evolution of Area Element). The area element of a solution
(Mi)c; of (MCF) satisfies the evolution equation

d
<l =— {H? dyy (A.5)

forallitel.

Proof. The area elements of the hypersurfaces M, are given by

dyy (p) = \fdet gij (p, t) dpuan (D),
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0;::, zj)(p, t) denoles the evolving metric and dupy» the volume

measure on the fixed parameter manifold M™.
One computes §

d d ——
dtdﬂt = -—\, det 9ij dp,Mn

= 5 y/det gi; g7 a;.fh'j dptpan

where ¢V := % !. Moreover, by (MCT) we have

where gi; = <

4= L (OF OF
dat¥% = @t \ Bz;’ Oz

oF ar @
( (1), 5F >+(a& (Hu)>
ov OF JF 8v
""“”<a )" H(éz;*é“x:-‘)‘
:_2thj
Hencv,

d fre——
dtdﬁfat — ""Hg Jhu;j dntg;J dﬂMﬂ
= ~H%dpy,.
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