MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ON.................. 2 September 2003

Sec. Research Graduate School Committee

Under the Copyright Act 1968, this thesis must be used only under the normal conditions of scholarly fair dealing for the purposes of research, criticism or review. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

ADDENDUM

Regretfully, in some references throughout the thesis, the following names may be spelt incorrectly: Gütlich, Schröder, Ōkawa and Mathionère. The most common misspellings are: Gutlich or Guetlich, Schroder or Schroeder, Okawa and Mathionere.

Acknowledgements

Page xv , line 5: "exemplary" for "supervision in his supervisory"

Chapter 1

Page 6, line 2: \quad Before "metal ion" insert " d -block"
Page 8, Para. 1: Comment: J is used here in a general context and gains the appropriate subscript in a particular model, such as in the trinuclear model on p 414.
Page 16 , line 5: Read "...gain control of the way molecules assemble..."
Page 22, line 25: Read "...TCNE has also been investigated."
Page 26, line 21: After "Simply stated," insert "apart from cases of 'accidental orthogonality',"
Page 27, line 9: \quad " $2_{2 g}{ }^{3} \mathrm{e}_{g}{ }^{2}$ " for " $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{2 \mathrm{~g}}{ }^{2}$ "
Page 30 , line 13:
"...Prussian-Blue like magnets is the series..." for "Prussian-Blue like magnets are the series..."
Page 37, line 5: "This group is in..." for "This group are in..."
Page 43, line 9: Delete "small"

Chapter 2

Page 87, line 12: "...to define a self-penetrated network..." for "to define an selfpenetrated network..."
Page 100, Fig. 2.9: Comment: The sample is cooled in zero field and M is then measured within the field of 5 Oe as the sample is warmed, to yield the $Z F C M$ values.

Chapter 3

Page 132, line 15: "...dissolve and thus no longer possess..." for "...dissolve and are thus no longer possess..."
Page 133, line 5: After "...[Mn(salen)(dca) $]_{n}$." insert ", presumably by air oxidation." Page 151, Table 3.6: Comment: E.s.d. values for g and J are ± 0.01 and $\pm 0.01 \mathrm{~cm}^{-1}$ respectively.
Page 154, line 4:
"...and the corresponding Schiff-base ligand. Except [Fe(salen)(dca)] $]_{n}$, which..." for "...and the corresponding Schiffbase ligand, excepting $[\mathrm{Fe}(\text { salen })(\mathrm{dca})]_{n}$, which..."

Chapter 4

Page 167, line 4: "This is presumably..." for "This presumably..."

Page 167, Sec. 4.2.2: Comment: Precautions were not taken to ensure all iron was $\mathrm{Fe}^{\mathrm{II}}$ during synthesis. There may have in fact been some $\mathrm{Fe}^{\text {III }}$ present. The isolated product was observed to oxidise in air and was hence kept under nitrogen.
Page 176, line 17: Delete "base" and read "acid"
Page 194, line 7: Before "Perusal..." insert "The slight increase in $\mu_{\text {eff }}$ above 200 K in Fig. 4.18 might indicate orbital degeneracy effects."

Chapter 5

Page 234, line 1: Insert reference 74 after "...Heisenberg chain model"

Chapter 6

Page 253, line 9: "...was observed by the Murray group..." for "... was observed members of the Murray group..."

Chapter 7

Page 278, line 9: Delete "The large ground state is a result of ferrimagnetism, the antiferromagnetic coupling of the four central $\mathrm{Mn}^{\mathrm{IV}}$ ions ($S=3 / 2$) and the eight perimeter $\mathrm{Mn}^{\mathrm{II}}$ ions ($S=2$) (Figure 7.2)." and read "The large ground state is due to ferrimagnetism (Figure 7.2), which is the result of the uncompensated spin arrangement involving antiferromagnetic coupling between the two spin subsets (perimeter and central cubane), which are themselves ferromagnetically coupled."

Chapter 8

Page 374, line 11: Comment: E.s.d. values for g, J and θ are $\pm 0.01, \pm 0.1 \mathrm{~cm}^{-1}$ and $\pm 0.01 \mathrm{~K}$ respectively.
Page 374, line 11: After "...+1.95 K." insert "The positive sign of θ results from a very rapid increase in χ_{M}."

Chapter 9

Page 394, Para. 1: Comment: The $\mathrm{Mn}^{\mathrm{fl} \mathrm{\prime}}-\mathrm{O}$ distance for the central manganese atom, $\mathrm{Mn}(1)$, of $2.169(3) \AA$ is longer than the average Mn^{111}-Ligand distance for $\left\{\mathrm{Mn}_{4}\right\}$ or $\left[\left(\mathrm{Me}_{3}-\right.\right.$ tacn $) \mathrm{Mn}^{\mathrm{III}}\left\{(\mu-\mathrm{dmg})_{3} \mathrm{Mn}^{\mathrm{II}}\right\} \mathrm{Mn}^{\mathrm{III}}\left(\mathrm{Me}_{3}-\right.$ $\operatorname{tacn})]\left(\mathrm{ClO}_{4}\right)_{2},{ }^{28}$ both equal to $2.06 \AA$. As a consequence of the $\overline{3}$ symmetry at this site the expected Jahn-Teller distortion of the $\mathrm{Mn}^{\mathrm{III}}$ ion is averaged throughout the crystal to produce the relatively long $\mathrm{Mn}-\mathrm{O}$ distance of $2.169(3) \AA$.
Page $425, \operatorname{Sec} .9 .6 .2$: Comment: The most likely reason for the microanalytical data not being in good agreement with the calculated values is that the sample analysed may be contaminated with a small amount of the aforementioned fine brown solid.
Page 426, line 16: Omit "The latter were most likely $\mathrm{Me}_{4} \mathrm{NClO}_{4}$."

SYNTHESIS, STRUCTURE AND

MAGNETISM IN CLUSTERS AND NETWORKS CONTAINING

DICYANAMIDE AND RELATED

LIGANDS
David James Price B.Sc. (HoNs.)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF CHEMISTRY
MONASH UNIVERSITY
2003
"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foofishmess, it was the epoch of Gelief, it was the epoch of incredulity, it was the season of fight, it was the season of darkness, it was the spring of fiope, it was the winter of despair, we fad everything before us, we fad nothing Gefore us, we were all going direct to feaven, we were all going direct the other way..."

An excerpt from \mathcal{A} Tale of Two Cities 6y Charles Dickens

TABLE OF CONTENTS

Summary xi
Declaration xiv
Acknowledgements xv
Abbreviations xvii
CHAPTER 1: MOLECULE-BASED MAGNETISM, A GENERAL INTRODUCTION 1
1.1 Background 2
1.2 Magnetism, A Brief Overview 4
1.2.1 Paramagnetism in Mononuclear Coordination Complexes 4
1.2.2 Short Range Coupling in Small Cluster Complexes 6
1.2.3 Long Range Order in Extended Network Coordination Complexes 9
1.2.4 Experimental Measurement of Long Range Magnetic Order 12
1.3 Crystal Engineering of Coordination Polymers 15
1.4 Some Examples of Molecule-Based Magnets 21
1.4.1 Donor-Acceptor Charge Transfer Complexes and Related
Systems 22
1.4.2 Prussian-Blue Analogues 24
1.4.3 Multidimensional Molecule-Based Magnets from
Hexacyanometallate and Metal-Chelate Precursors 32
1.4.4 Multinuclear Cyanide Bridged Clusters 38
1.4.5 Oxalate-Bridged Networks and Related Systems 41
1.4.6 Single-Chain Magnets 48
1.4.7 Poly-Cyano Ligands: Dicyanamide, Tricyanomethanide and Dicyanonitrosomethanide 49
1.5 The Present Study 56
1.6 References 60
CHAPTER 2: 1D, 2D AND 3D MANGANESE(II) DICYANAMIDE NETWORK COMPLEXES 85
2.1 A Molecule-Based Magnet, [Mn(dca) $\mathbf{2}_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$], and Self-penetration - a Structural Compromise Between Single Networks and Interpenetration of Networks 86
2.1.1 Introduction 86
2.1.2 Synthesis and Characterisation of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ 87
2.1.3 Crystal Structure of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ 88
2.1.4 Magnetism of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ 99
2.2 Two linear $\mathbf{M n}^{\mathbf{1 1}}$ chain complexes containing dicyanamide and terpyridine: $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{\mathbf{n}}$ and $\left\{\left[\mathbf{M n}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{\mathrm{n}}$ 102
2.2.1 Introduction 102
2.2.2 Synthesis and Characterisation of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ 104
2.2.3 Synthesis and Characterisation of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (verpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$ 104
2.2.4 Crystal Structure of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ 105
2.2.5 Crystal Structure of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ 110
2.2.6 Magnetism of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$ Complexes 116
2.3 Conclusions 118
2.4 Experimental 120
2.4.1 Synthesis of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ 120
2.4.2 Synthesis of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ 120
2.4.3 Synthesis of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ 121
2.4.4 X-Ray Crystallography of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\text { dca })\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{n}$ 122
2.4.5 X-Ray Powder Diffraction of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ 123
2.5 References 124
CHAPTER 3: ID MANGANESE(III) AND IRON(III) COORDINATION POLYMERS CONTAINING SCHIFF-BASE LIGANDS AND DICYANAMIDE 129
3.1 Introduction 130
3.2 Synthesis and Characterisation of $[\mathrm{M}(\mathrm{L})(\mathrm{dca})]_{\mathrm{n}}$ Complexes; $\mathbf{M}^{\mathrm{III}}=\mathbf{M n}$ and $\mathrm{Fe} ; \mathbf{L H}_{\mathbf{2}}=$ salenH $\mathbf{2}_{2}$, sal-o-phenH $\mathbf{2}_{\mathbf{2}}$ and ($\mathbf{~}$)-saltchH $\mathbf{2}_{\mathbf{2}}$ 133
3.3 Crystal Structures of $[\mathrm{M}(\mathrm{L})(\mathrm{dca})]_{\mathrm{n}}$ Complexes; $\mathbf{M}^{\mathbf{H I}}=\mathbf{M n}$ and $\mathrm{Fe} ; \mathbf{L H}_{\mathbf{2}}$ $=$ salenH ${ }_{2}$, sal-o-phenH $\mathbf{2}_{2}$ and (\pm)-saltch H_{2} 134
3.3.1 $\quad[\mathrm{M}(\text { salen })(\text { dca })]_{n}, \mathrm{M}^{\mathrm{III}}=\mathrm{Mn}, \mathrm{Fe}$ 137
3.3.2 $\quad[\mathrm{M}(\text { sal-o-phen })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{HI}}=\mathrm{Mn}, \mathrm{Fe}$ 140
3.3.3 $[\mathrm{M}((\pm) \text {-saltch })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{II} \mathrm{\prime}}=\mathrm{Mn}, \mathrm{Fe}$ 144
3.4 Magnetism of $[M(L)(d c a)]_{n}$ Complexes; $M^{\mathrm{III}}=\mathbf{M n}$ and $\mathrm{Fe} ; \mathbf{L H}_{\mathbf{2}}=$ salenH $\mathbf{2}_{2}$, sal-o-phenH $\mathbf{2}_{2}$ and (\pm)-saltchH \mathbf{H}_{2} 149
3.5 Conclusions 154
3.6 Experimental 155
3.6.1 Synthesis of $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$ 155
3.6.2 Synthesis of $[\mathrm{Fe}(\mathrm{salen})(\mathrm{dca})]_{n}$ 156
3.6.3 Synthesis of $[\mathrm{Mn}(\text { sal }-o-\text { phen })(\mathrm{dca})]_{n}$ 156
3.6.4 Synthesis of $\left[\mathrm{Fe}(\text { sal-o-phen)(dca) }]_{n}\right.$ 157
3.6.5 Synthesis of $[\mathrm{Mn}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$ 157
3.6.6 Synthesis of $[\mathrm{Fe}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$ 158
3.6.7 X-Ray Crystallography 158
3.7 References 160
CHAPTER 4: CHIRAL 3D MANGANESE(II) AND IRON(II)
DICYANAMIDE NETWORKS CONTAINING SCHIFF-BASE LIGANDS 164
4.1 Introduction 165
4.2 Synthesis and Characterization 166
4.2.1 $\quad\left[\mathrm{M}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe 166
4.2.2 $\quad\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe 167
4.2.3 $\left.\quad\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{acenH})_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$ 168
4.3 Crystal Structures 169
4.3.1 $\quad\left[\mathrm{M}\left(a \operatorname{conH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe 169
4.3.2 $\quad\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{Il}}=\mathrm{Mn}$ and Fe 181
4.3.3 $\left[\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{acenH}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$ 190
4.4 Magnetism of $\left[\mathbf{M}(L)(d e a)_{2}\right]$ Complexes; $M^{11}=\mathbf{M n}$ and $\mathrm{Fe} ; \mathbf{L}=\operatorname{acenH}_{2}$ and actch_{2} 193
4.5 Conclusions 197
4.6 Experimental 198
4.6.1 Synthesis of acenH H_{2} and (\pm)-actch H_{2} 198
4.6.2 Synthesis of $\mathrm{Ag}(\mathrm{dcnm})$ and $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ 199
4.6.3 Synthesis of $\left[\mathrm{Mn}\left(a c e n \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ 199
4.6.4 Synthesis of $\left[\mathrm{Fe}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ 200
4.6.5 Synthesis of $\left[\mathrm{Mn}\left(\mathrm{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ 200
4.6.6 Synthesis of $\left[\mathrm{Fe}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$ 201
4.6.7 Synthesis of trans-[$\left.\mathrm{Mn}\left(\mathrm{acenH}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$ 201
4.6.8 X-Ray Crystallography 202
4.7 References 204
CHAPTER 5: ANIONIC MIXED-LIGAND CHIRAL POLYMERIC210
5.1 Introduction 211
5.2 Synthesis and Characterisation 217
5.2.1 $\quad \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni 217
5.2.2 $\quad \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ 219
5.3 Crystal Structures 219
5.3.1 $\quad \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{11}=\mathrm{Co}$ and Ni 219
5.3.2 $\quad \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ 228
5.4 Magnetism 233
5.4.1 $\quad \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{H}}=\mathrm{Co}$ and Ni 233
5.4.2 $\quad \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ 237
5.5 Conclusion 239
5.6 Experimental 240
5.6.1 Synthesis of $\mathrm{Ph}_{4} \mathrm{P}$ (dca) 240
5.6.2 Synthesis of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ 240
5.6.3 Synthesis of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ 241
5.6.4 Synthesis of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ 242
5.6.5 X-Ray Crystallography 243
5.6.6 Magnetic Measurements 244
5.6.7 Powder X-Ray Diffraction 244
5.7 References 245
CHAPTER 6: SYNTHESIS, STRUCTURE AND MAGNETISM OF \{[Mn($\mu-$ $\left.\mathrm{OH})(\mu-\mathrm{OAC})_{2}\right] \cdot \mathrm{HOAC} \cdot \mathrm{H}_{2} \mathrm{O}_{n}$ AND THE FACILITATION OF LONG-RANGE MAGNEIIC ORDER THROUGH HYDROGEN BONDING 252
6.1 Introduction 253
6.2 Synthesis and Characterisation of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}^{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$ 254
6.3 Crystal Structure of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}_{2} \mathrm{H} \mathbf{O}\right\}_{\mathrm{n}}$ 255
6.4 Magnetism of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAC}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$ 260
6.5 Conclusions 266
6.6 Experimental 268
6.6.1 Synthesis of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}^{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ 268
6.6.2 X-Ray Crystallography 269
6.6.3 Magnetic Measurements 270
6.6.4 Thermogravimetric Analyses 270
6.7 References 271
CHAPTER 7: A REVIEW OF POLYNUCLEAR MANGANESE CLUSTER COMPLEXES WITH AN EMPHASIS ON SINGLE MOLECULE MAGNETS 273
7.1 Background 274
7.2 The Origin of Single Molecule Magnetism, and the Occurrence of Quantum Phenomena 277
7.3 Examples of Manganese Carboxylate Cluster Complexes and Single Molccule Magnets 283
7.3.1 Tetranuclear Manganese Carboxylate Complexes 284
7.3.2 Mn_{12}-acetate, its Derivatives and Related Dodecanuclear
Manganese Carboxylate Clusters 291
7.3.3 Other Manganese Cluster Nuclearities 300
7.4 Other Metal Based SMMs 321
7.5 References 333
CHAPTER 8: SYNTHESIS, STRUCTURE AND MAGNETISM OF A NEW SINGLE MOLECULE MAGNET.
$\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAC})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, AND OF A LINEAR MIXED BRIDGE CHAIN. $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ 349
8.1 Introduction 350
8.2 Synthesis and Characterisation of $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathbf{6 H} \mathbf{2} \mathbf{O}\left(\mathrm{Mn}_{16}\right.$-acetate $)$ and $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{\mathrm{n}}$ 351
8.3 Crystal Structures 352
8.3.1 $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ 352
8.3.2 $\quad\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ 363
8.4 Magnetism 366
8.4.1 $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ 366
8.4.2 $\quad\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ 374
8.5 Conclusions 375
8.6 Experimental 377
8.6.1 Synthesis of $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ 377
8.6.2 \quad Synthesis of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ 377
8.6.3 X-Ray Crystallography 378
8.7 References 381
CHAPTER 9: SYNTHESIS, STRUCTURE AND MAGNETISM OFTRINUCLEAR AND TETRANUCLEAR MIXED VALENT
MANGANESE CLUSTERS, AND COPPER(II) AND NICKEL(II)MONONUCLEAR COMPLEXES FORMED FROM
DICYANONITROSOMETHANIDE DERIVED LIGANDS 387
9.1 Introduction 388
9.2 Synthesis and Characterisation 390
9.2.1 $\left.\left[\mathrm{Mn}_{3} \text { (mcoe) }\right)_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and
$\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{cao})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 390
9.2.2 $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ 391
9.3 Crystal Structures 391
9.3.1 $\left.\left[\mathrm{Mn}_{3} \text { (mcoe) }\right)_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 391
9.3.2 $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{CaO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 396
9.3.3 $\quad\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ 403
9.3.4 $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ 410
9.4 Magnetism 413
9.4.1 $\left.\left[\mathrm{Mn}_{3} \text { (mcoe }\right)_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 413
9.4.2 $\quad\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mr}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 417
9.4.3 $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ 421
9.5 Conclusions 423
9.6 Experimental 424
9.6.1 Synthesis of Ag (denm) and $\mathrm{Me}_{4} \mathrm{~N}$ (dcnm) 424
9.6.2 Synthesis of $\left[\mathrm{Mn}_{3}\left(\text { mcoe }_{6}\right)_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 425
9.6.3 Synthesis of $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 425
9.6.4 Synthesis of $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ 426
9.6.5 Synthesis of $\left[\mathrm{Cu}(\text { mcoe })_{2}(\mathrm{MeOH})_{2}\right]$ 426
9.6.6 X-Ray Crystallography 427
9.6.7 Magnetic Measurements 428
9.6.8 X-Ray Powder Diffraction of $\left.\left[\mathrm{Mn}_{3} \text { (mcoe) }\right)_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{CaO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 429
9.7 References 430
Appendix 1: Instrumentation 434
Appendix 2: Publications 436
Appendix 3: Crystaliographic Information 462

SUMMARY

This thesis covers two main areas of interest. Firstly, molecule-based magnetic materials are described with the focus on new d-block metal dicyanamide frameworks (coordination polymers) containing various co-ligands. Secondly, polynuclear mixed valence manganese cluster complexes and single-molecule magnet (SMM) clusters are described. The compounds synthesised have been characterised in detail by means of single-crystal X-ray diffraction studies and magnetic susceptibility measurements. Much of the present work has been published or submitted for publication, details of which are given in Appendix 2.

A new spin-canted antiferromagnet (weak ferromagnet) was discovered, $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{dca}=\right.$ dicyanamide, $\left.\mathrm{N}(\mathrm{CN})_{2}{ }^{-}\right)$, which has an ordering temperature, T_{N} of 6.3 K. It possesses a novel 3D self-penetrating single network structure that can be considered as a structural compromise between the single rutile net of $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]$ and the doubly interpenetrated rutile-like $\left[\mathrm{Mn}(\mathrm{tcm})_{2}\right]$ species ($\mathrm{tcm}=$ tricyanomethanide, $\left.\mathrm{C}(\mathrm{CN})_{3}\right)^{\circ}$. Linear 1D chain dca complexes containing the co-ligand terpyridine, $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ and $\left\{\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$, were formed as part of a study aimed at modifying metal-dca network structures and thus magnetic properties by incorporating chelating ligands. These two complexes display weak antiferromagnetic coupling and no long-range order.
$\left[\mathrm{M}^{\mathrm{III}} \text { (Schiff-base)(dca) }\right]_{n}$ (where $\mathrm{M}^{\mathrm{III}}=\mathrm{Mn}$ and $\mathrm{Fe} ;$ Schiff-base (deprotonated) $=$ salen $^{2-}$, sal-o-phen ${ }^{2-}$ and (\pm)-saltch ${ }^{2-}$), complexes were formed and represent rare examples of trivalent metal-dca species. This series display very similar structures, consisting of linear 1D chains of planar $\mathrm{M}^{\text {liI }}$ (Schiff-base) ${ }^{+}$moieties bridged by $\mu_{1,5}$-dca links, and displays very weak antiferromagnetic coupling.

The structures and magnetism of two new chiral 3D framework types containing neutral acetylacetone-derived Schiff-base ligands were investigated. The complexes, $\left[\mathrm{M}^{\mathrm{II}}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe ; acenH ${ }_{2}=N, N^{\prime}$-ethylenebis(acetylacetoneimine), are isomorphous and consist of 3-fold helical motifs linked by $\mu_{1,5}$-dca ligands to form a chiral 3D network. They are the first examples of single networks with the unusual 'dense' $7^{5} 9$ topology. The second framework type is exhibited by the complexes $\left[\mathrm{M}^{\mathrm{II}}\left(\mathrm{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$, $\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and $\mathrm{Fe} ;(\pm)$-actchH${ }_{2}=(\pm)-N, N^{\prime}$-trans-1,2-cyclohexanebis(acetylacetoneimine). It consists of 2 D square-grid $(4,4)$ sheets of composition $\left[\mathrm{M}(\mathrm{dca})_{2}\right.$] that are connected in the third dimension by μ-actchHH_{2} ligands. This network type displays an unprecedented topology. These 3D network materials also display very weak antiferromagnetic coupling. The structure of a mononuclear complex, trans-[$\left.\mathrm{Mn}^{\mathrm{II}}(\mathrm{acenH})_{2}(\mathrm{dcnm})_{2}\right](\mathrm{dcnm}=$ dicyanonitrosomethanide, ${ }^{-} \mathrm{ONC}(\mathrm{CN})_{2}$), was also investigated. It exhibits an unusual bischelating mode of acer H_{2}.

Heteroleptic anionic dicyanamide dca network complexes were studied with the nitrite ligand. The chiral complexes, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}^{\mathrm{Il}}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni , display 2D square-grid sheets structures with $\mu_{1,5}$-dca and chelating O, O-nitrite groups. A side product was also discovered, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$, which also possesses a chiral structure, consisting of linear anionic 1D helical chains of [$\left.\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]^{\prime}$. These complexes display very weak antiferromagnetic coupling. Traces of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ are thought to be responsible for long-range ordering effects observed in low fields in the nitrite containing complexes, but this is not definitive in the $\mathrm{Co}^{\mathrm{II}}$ case.

While attempting to link Mn_{3} or Mn_{4} oxo-bridged clusters with dicyanonitrosomethanide (dcnm) to form extended network complexes, a new $\mathrm{Mn}^{\text {III }}$ complex, $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, was discovered. The structure consists of infinite 1D linear chains that are hydrogen bonded to form 2D sheets. This compound
undergoes a magnetic phase transition, at $T_{\mathrm{N}}=6.1 \mathrm{~K}$, to an ordered antiferromagnetic phase, probably mediated by the hydrogen bonding pathways. There is also a metamagnetic transition at $c a .1000 \mathrm{Oe}$ from the antiferromagnetic phase to a canted-spin antiferromagnetic (weak ferromagnetic) phase, brought about by increasing the applied field.

Similariy, work aimed towards forming extended network complexes between intact Mn_{3} oxo-centred carboxylate clusters and bridging dca, led to the discovery of a new manganese(III/IV) carboxylate cluster, $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and a new 1D linear manganese(III) complex, $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mathrm{OAc})_{2}\right]$. Detailed magnetic measurements have shown the Mn_{16} complex to be a new single-molecule magnet, while the linear chain complex displays weak antiferromagnetic coupling without long-range order.

Finally, related studies into extended network complexes containing the potentially bridging denm ligand led to ligand transformations and the formation of new trinuclear and tetranuclear mixed valent manganese complexes, $\left[\mathrm{Mn}_{3}(\mathrm{mcoe})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (where mcoe $=$ methyl $(2$-cyano-2-hydroxyimino)ethanimidate, $\mathrm{ONC}(\mathrm{CN}) \mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}{ }^{-}$; and cao $=$cyanoacetamidoximate $\left.\mathrm{ON}=\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right)^{-}\right)$. Separately, two mononuclear complexes were also isolated, $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. The chelating-bridging ligands mcoe and cao were formed, in situ, by nucleophilic addition of solvent to denm. The structural and magnetic properties of these compounds were investigated. Each of these complexes display inter-molecular hydrogen bonding interactions.

DECLARATION

This thesis contains no material that has been accepted for the award of any degree or diploma in any University and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

April 2003

ACKNOWLEDGEMENTS

Ladies and Gentlemen, I hereby welcome you to the acknowledgements section of my Magnificent Octopus (a.k.a. Magnum Opus - Baldrick). To get the ball rolling, I'd like to extend a large measure of heartfelt thanks and appreciation to Prof. Keith Murray for his supervision in his supervisory role as my supervisor. His support and encouragement during the course of my Ph.D. are gratefully acknowledged. It is almost needless to say that his expertise in magnetism has been invaluable.

The work of Dr. Stuart Batten for assistance with crystallography, network theory and reading many drafts of this thesis, is greatly appreciated. My thanks go to The Mad Moroccan, "Dr. Boujemaa Moubaraki", for the variable temperature magnetic measurements, and to Dr. Paul Jensen for additional help with crystallography (esp. twinning). Many thanks also go to: Dr. Kevin Berry (Westernport Secondary College) for the detailed magnetic calculations, Mr. Rod Mackie (School of Physics and Materials Engineering) for the powder X-ray diffraction data collections, Dr. Gary Fallon for help with some of the curly crystallography (instrument, software and theory) problems, and Dr. Phil Andrews for assistance and advice with some air-sensitive chemistry (unfortunately none of which made it into the thesis). I would also like to acknowledge the Sir James McNeill Scholarship for funding.

I would like to thank my fellow members of the Murray group: Lisa, Trish, Jack, Ben, Anna and Marty. Thanks muchly to some other members, former members or de facto members of the chemistry department, who have in some way or another played a part in the tragi-comedy that has been my life as a Ph.D. student (in alphabetical order): Anna F., Anna P., Danny, Jenny, Julia, Karen, Kathy, Mel S., Ned, Phei, Simone, Tim, and Vicky.

Thankyou to my friends from the wider non-chemistry community, for too much to sufficiently mention, but I'll try: Cheryl (of course, thanks for making the past months very enjoyable and here's to many more, you go girlfriend!), Sonya and Tina M. (residing in Frankston), Tina S., Josh and Jill (Brisbane, possibly soon back in Melbourne, who knows?), Steve and Lauren (Rep. of Ireland, soon back in Melbourne, thanks for the stay in Arklow), Dave and Brodie (still in Melbourne), Chantal, Liz, Naomi (somewhere in Canada, last seen enjoying "quality time" with her snowboard), J. L., Dan and Ruth (Rep. of Ireland, thanks for the stay on the living room floor), Nerissa (Cambridge, just handed in!), Andrew L., Andrew M. (flatmate, often in New Zealand), Nadia (currently at Cornell), Malcolm F., Natalie (residing in W.A.), Santina, Robyn (back in Melbourne, thanks for the stay and help in Stuttgart), Ulrike (Leipzig, sorry I didn't visit) and others from the Goethe Institute German Summer School Hobart 2002, and members of MonUCS.

Finally, thanks to my family and my Mum for love and support over the years.

ABBREVIATIONS

χ	Magnetic susceptibility
θ	Weiss constant
C	Curie constant
B.M., μ_{B} or β	Bohr magneton
$\mu_{\text {eff }}$	Effective magnetic moment
N	Avogadro's number
k	Boltzmann constant
S	Spin value
S_{z}	Projection of S on z-axis
M_{S}	Magnetic quantum number
g	Spectroscopic or Lande splitting factor
ΔE or $\mathrm{U}_{\text {eff }}$	Energy barrier to reversal of magnetisation
J	Coupling constant
T_{C}	Curie temperature
$T_{\text {c }}$	Critical temperature
T_{N}	Néel temperature
$T_{\text {B }}$	Blocking temperature
T	Tesla
T	Temperature
D	Axial zero-field splitting paranieter
H	Magnetic field
M	Magnetisation
$H_{\text {c }}$	Coercive field
RM	Remnant magnetisation

$M_{\text {sat }}$	Saturation magnetisation
FCM	Field cooled magnetisation
ZFCM	Zero-field cooled magnetisation
Oe	Oersted
IR	Infrared
K	Kelvin
AC	Alternating current
DC	Direct current
S.I.	Système International d'Unités / International System of Units
χ^{\prime} or $\chi^{\prime \prime}{ }^{\prime}$	In-phase AC susceptibility
$\chi^{\prime \prime}$ or $\chi^{\prime \prime}{ }^{\prime \prime}$	Out-of-phase AC susceptibility
$S_{\text {T }}$	i zol spin value
H.S.	High spin
L.S.	Low spin
oct	Octahedral
tet	Tetrahedral
\AA	Ångstrom
C_{p}	Specific heat capacity
F	Ferromagnetic
AF	Antiferromagnetic
FI	Ferrimagnetic
S-C AF	Spin-canted antiferromagnetic
SCM	Single chain magnet
SMM	Single molecule magnet
WOC	Water oxidation complex
PS III	Photosystem II
O4PE	Orthogonal four-fold phenyl embraces

LIT4PE	Linear infinite chains of translational four-fold phenyl embraces
TGA	Thermogravimetric analysis
EXAFS	Extended X-ray absorption fine structure
XANES	X-ray absorption near edge structure
HFEPR	High-frequency/kigh-field electron paramagnetic resonance
NMR	Nuclear magnetic resonance
OD	Zero dimensional
1D	One dimensional
2D	Two dimensional
3D	Three dimensional
(i) - actch_{2}	N, N^{\prime}-(\pm)-trans-1,2-cyclohexanebis(acetylacetoneimine)
(\pm)-saltch H_{2}	(\pm)- N, N^{\prime}-trans-cyclohexanebis(salicylideneimine)
(S)-pn	(S)-1,2-diaminopropane
1,1-dimen	1,1-dimethylenthylenediamine
2,2'-bipy or bipy	2,2'-bipyridine
2,5-Me ${ }_{2} \mathrm{pyz}$	2,5-dimethylpyrazine
3-MeO-salenH2	N, N^{\prime}-ethylenebis(3-methoxysalicylideneimine)
3-MeO-salpent OH^{2-}	1,5-bis(3-methoxysalicylidenamino)pentan-3-ol
4,4'-bipy	4,4'-bipyridine
4,4'- $\mathrm{Me}_{2} \mathrm{dbmH}$	4,4'-dimethyldibenzoylmethane
5-Cl-salenl ${ }_{2}$	N, N^{\prime}-ethylenebis(5-chlorosalicylaldiimine)
6-Me-hmpH	6-methyl-2-hydroxymethylpyridine
acach	acetylacetone
acenH2	N, N^{\prime}-ethylenebis(acetylacetoneimine)
apym	2-aminopyrimidine
BEDT-TTF	bis(ethylenedithio)tetrathiafulvalene
biphen	2,2'-biphenoxide

bpe	1,4-bis(4-pyridyl)ethene
bpm	bis(1-pyrazolyl)methane
bpym	bipyrimidine
btaH	benzotriazole
Bu^{n} or $n-\mathrm{Bu}$	neo-butyl
Bu^{t} or t - Bu	tert-butyl
$\mathrm{BzO}^{-} / \mathrm{BzOH}$	benzoate/benzoic acid
cao	cyanoacetamidoximate
chp	6-chloropyridonato
chen	trans-1,2-diaminocyclohexane
cit	citrate
Cl -hqnH	5-chloro-8-hydroxyquinoline
$\mathrm{Cp}{ }^{*}$	pentamethylcyclopentadienyl
cyclam	1,4,8,11-tetraazacyclotetradecane
dbmH	dibenzoylmethane
dca	dicyanamide
dcnm	dicyanonitrosomethanide
DCNQIs	N, N-dicyanoquinone diimines
DMF	N, N-dimethylfornamide
DMSO	dimethylsulfoxide
dpmH	dipivaloylmethane
dte	N, N-diethyldithiocarbamato
en	1,2-diaminoethane
Et	ethyl
Et $\mathrm{mal}^{\text {mal }}$	2,2-diethylmalonate
$\mathrm{Et}_{2} \mathrm{O}$	diethylether
EtOH	ethanol

Etrad ${ }^{+}$	2-(1-ethylpyridinium-4-yl)-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide
$\mathrm{H}_{2} \mathrm{Bilm}$	2,2-biimidazole
$\mathrm{H}_{3} \mathrm{bzshz}$	N-phenylsalicylhydrazidine
H_{3} etheidi	N-(1-Hydroxymethylpropyl)iminodiacetic acid
H_{3} heidi	N -1-(hydroxyethyl)iminodiacetic acid
H_{3} metheidi	N-(1-Hydroxymethylethyl)iminodiacetic acid
HAT	1,4,5,8,9,12-hexaazatriphenylene
HCBD	hexacyanobutadiene
hepH	2-(hydroxyethyl)pyridine
Hhfac	hexafluoroacetylacetonate
hmpH	2-(hydroxymethyl)pyridine
hqnH	8-hydroxyquinoline
i-PrOH	iso-propanol
JT	Jahn-Teller
mcoe	methyl(2-cyano-2-hydroxyimino)ethanimidate
Me	methyl
Me3tacn	$N, N^{\prime}, N^{\prime \prime}$-trimethyl-1,4,7-triazacyclononane
MeCN	acetonitrile
MeOH	methanol
$m-\mathrm{MPYNN}^{+}$	m - N-methylpyridinium nitronyl nitroxide
Mn_{12}-acetate	$\left[\mathrm{Mn}_{12} \mathrm{Ol}_{12}(\mathrm{OAc}){ }_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
Mn_{16}-acetate	$\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$
moeH	methoxyethanol
mpdpH ${ }_{2}$	m-phenylenedipropionic acid
NITPh	2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide

NITPhOMe	4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3oxide
N -men	N-methylethylenediamine
$n-\mathrm{PrOH}$	normal-propanol
OAc/HOAc	acetate/acetic acid
opba	ortho-phenylenebis(oxamato)
ox	oxalate
paoh	pyridine-2-aldoxime
pbaOH	2-hydroxy-1,3-propylenebis(oxamato)
pdmH2	pyridine-2,6-dimethanol
Ph	phenyl
phen	1,10-phenanthroline
phth	phthalate
picH	picolinic acid
pn	1,2-diaminopropane
Por	porphyrin
ppor	3-phenyl-3-pyrazolin-5-one
Pr^{i} or $i-\mathrm{Pr}$	iso-propyl
py	pyridine
pyz	pyrazine
pz	pyrazole
salenH2	N, N^{\prime}-ethylenebis(salicylideneimine)
salH	salicylaldehyde
salOH 2	salicylic acid
sal-o-phenH ${ }_{2}$	N, N^{\prime}-o-phenylenebis(salicylideneimine)
salpnH2	$N, N-1,3-$ propylenebis(salicylideneimine)
saltmenH2	$N, N^{\prime \prime}$-(1,1,2,2-tetramethylethylene)bis(salicylidenedimine)

tach	$1,3,5$-triaminocyclohexane
tacn	$1,4,7$-triazacyclononane
tcm	tricyanomethanide
TCNE	tetracyanoethylene
TCNQs	$7,7,8,8$-tetracyano-p-quinodimethanes
terpy	$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine
thmeH	$1,1,1$-tris(hydroxymethyl)ethane
tpt	$2,4,6$-tris(4-pyridyl)-1,3,5-triazine
tren	tris(2-aminoethyl)amine
TTF	tetrathiafulvalene
TXPP	meso-tetrakis(4-halophenyl)porphyrinato

CHAPTER 1: MOLECULE-BASED MAGNETISM,
A GENERAL INTRODUCTION

This thesis covers two distinct but closely related areas of research, namely extended network complexes and single-molecule magnets (SMMs). Therefore this chapter, which is one of two introductions, deals with the background of molecule-based magnetism, theoretical concepts of magnetism, some of the significant literature in the field, and details of the present study (summarising the following chapters). The second introduction, Chapter 7, deals with the 'sub-topic' of single-molecule magnetism. It seeks to describe the background of SMMs, focussing on manganese cluster complexes. Chapter 7 also includes a brief treatment of the theoretical aspects of the physical properties of these species, and concludes with a discussion of non-manganese based SMMs.

1.1 Background

Magnetic materials have played a profoundly important role in the development of modern civilization. Their history can be traced back to ancient Greece with the discovery of naturally occurring magnets such as lodestone $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$, over 3000 years ago. ${ }^{1,2}$ Around the 11 th Century, the Chinese invented the magnetic compass by rubbing lodestone on a steel needle. ${ }^{3}$ It wasn't for another 500 years or so that seafaring western civilisations used the compass as a navigational aid, making global trade and exploration possible as they were less reliant on good weather for navigation by stars and the sun. More recently, in the last hundred years or so, the use of magnets has become particularly widespread with the development of electricity. Today, magnets can be found in vital technologies including electric motors, generators, loudspeakers, frictionless bearings, magnetic switches, magnetic resonance imaging instruments, magnetic separators, and data storage found in the ubiquitous device of our times, the computer.

In 1832 Michael Faraday published the first diagram depicting magnetic field lines around a bar magnet. ${ }^{4,5}$ At that time, the magnet was undoubtedly made of iron. In the intervening 170 years, many advances have been made in materials that display
spontaneous magnetic ordering. ${ }^{4}$ The ferromagnetic metals, e.g. Fe and Co , were the mainstays until transition metal oxides, e.g. CrO_{2}, were introduced in the period around World War II. Today, some of the most powerful and commercially successful magnets are rare earth based e.g. $\mathrm{Co}_{2} \mathrm{Sm}, \mathrm{Co}_{5} \mathrm{Sm}, \mathrm{Co}_{17} \mathrm{Sm}_{2}$ and $\mathrm{Nd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ materials. ${ }^{2}$ These materials have high critical temperatures (T_{c}, see Table 1.1 for some examples) and the latter are particularly hard magnets (high coercivity, see Section 1.2.3). At the critical temperature (Curie temperature) the material undergoes a phase transition to a magnetically ordered state i.e. below this temperature it is a magnet. Traditional nagnets are prepared by high temperature metallurgical techniques and are 'atom based', having d - or f-orbital spins ordering in at least two dimensions. ${ }^{1,3}$

Table 1.1. Critical temperatures of some of today's magnets. ${ }^{2}$

Material	Critical Temperature $T_{\mathrm{c}} / \mathrm{K}$
Iron	1043
Cobalt	1394
Nickel	627
$\mathrm{Fe}_{3} \mathrm{O}_{4}$	858
CrO_{2}	387
SmCo_{5}	993
$\mathrm{Nd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$	585

One of the earliest reports of a molecule-based magnet was in 1967 by Wickman et al. ${ }^{6-8}$ They reported ferromagnetic order below 2.5 K for the complex $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{dtc})_{2} \mathrm{Cl}\right]$ (where dtc ${ }^{*}=N, N$-diethyldithiocarbamato). Reports appeared by Martin and Mitra and other groups in the subsequent decades dealing with ordered d-block phthalocyanines and
anionic Cu^{11} carbonates. ${ }^{9.12}$ Subsequent research, by Day and co-workers into halide bridged d-block magnets, ${ }^{13-17}$ by Carlin and co-workers ${ }^{18,19}$ on weakly interacting mononuclear d-block salts, and by de Jongh and Miedema, ${ }^{20}$ was also particularly important during the 1970-80 period. ${ }^{21}$ In 1985 Miller, Epstein and co-workers reported that $\left[\mathrm{Fe}\left(\mathrm{Cp}^{*}\right)_{2}\right][\mathrm{TCNE}]$ (where $\mathrm{Cp}^{*}=$ pentamethylcyclopentadienyl; TCNE $=$ tetracyanoethenide) ordered ferromagnetically below a T_{c} value of $4.8 \mathrm{~K} .{ }^{22-24}$ This exciting area of new materials research has grown rapidly since then, with many new moleculebased magnets being reported, a small number with T_{c} values above room temperature, which may lead to significant practical applications. ${ }^{25,26}$

Currently the major disadvantages with molecular magnets include their brittleness (conventional magnets are usually quite malleable) and their generally lower T_{c} values. However, they may be prepared by comparatively mild solution-based organic/inorganic synthetic techniques as opposed to the high-temperature methods of atom-based magnets. Additionally, unlike their atom-based relatives, they are amenable to chemical modifications, which may be used to introduce other physical characteristics such as electrical or optical properties, not achievable with traditional magnets. ${ }^{1,27-29}$ Moleculebased magnets also bring together various research disciplines e.g. chemistry, materials science, physics and mathematics in the effort to explain some of the unusual (e.g. quantum) problems these materials present. It is this cooperation that may ultimately lead to the most fruitful and perhaps unexpected results of this research.

1.2 Magnetism, A Brief Overview

1.2.1 Paramagnetism in Mononuclear Coordination Complexes

The theory of magnetism as based on quantum mechanics was developed in the 1930s. ${ }^{30-33}$ The reader is directed to the books of Figsis, ${ }^{34}$ Mabbs and Machin, ${ }^{31}$ Kahn ${ }^{35}$
and Blundell ${ }^{33}$ for in-depth treatments of magnetism as applied to ligand-field effects in transition metal complexes. What follows is an overview of the concepts of magnetism in an effort to illustrate the properties of paramagnets and molecule-based magnets.

Unpaired electrons are the fundamental basis of magnetism. Paramagnetism is a consequence of the interaction of orbital- and/or spin-angular momenta of unpaired electrons with the applied field. ${ }^{31}$ The electron spin can take two values $+1 / 2$ and $-1 / 2$, referred to as 'spin-up' and 'spin-down' respectively. If an atom, ion or molecule has two ε_{i}^{*}, wons in tery orbital, their associated spin varues will cancel, as the electrons must pair with opposim spins. The material will then be diamagnetic and be slightly repelled on application of a magnetic field. This may be understood in terms of Lenz's law by classical treatment of the paired electrons as a current loop. ${ }^{31,36}$ If a molecule has an odd number of electrons the molecule will have one (or more) unpaired spins and thus have a permanent magnetic dipole. Such a molecule is paramagnetic, and is attracted into a magnetic field. Examples of paramagnets include d- and f- block metal complexes and organic radicals. Paramagnets are referred to as magnetically dilute, meaning that the individual spin sites do not communicate (interact) throughout the bulk material. Without an applied magnetic field the spin directions are oriented randomly throughout the lattice due to thermal motion and hence net cancellation occurs and the magnetic moment is zero. When a strong magnetic field is applied the spins align parallel to the field direction. Once the field is removed the spins again randomise.

Paramagnets obey the Curie-Weiss law (Equation 1.1), which relates the magnu.ic susceptibility, χ, to the temperature, T, (where $\chi=M / H=$ Magnetisation/Applied Field; C $=$ the Curie constant; $\theta=$ the Weiss constant). ${ }^{31,35}$ Equation 1.1 is only valid when χ is independent of the applied field, $H{ }^{31}$ Inorganic chemists commonly use a more convenient quantity, the effective magnetic moment, $\mu_{\text {eff }}$, which is defined by Equation 1.2. ${ }^{31.35}$ This
magnetic moment has the non S.I. unit of Bohr Magneton (B.M., μ_{B} or β) and the advantage of being on a scale ($\sim 0-6$ per metal ion) that lends itself to easy comparison. It should be noted that $\mu_{\text {eff }}$ is derived from an arbitrary definition and that magnetic susceptibility, χ, is the fundamental quantity. ${ }^{31}$ Many groups woridwide use the product, χT, rather than $\mu_{\text {efr }}$.

$$
\begin{gathered}
\chi=\frac{C}{T-\theta} \\
\begin{array}{c}
\mu_{e f f}=\left(\frac{3 k}{N \beta^{2}}\right)^{1 / 2} \sqrt{\chi T} \\
=2.828 \sqrt{\chi T}
\end{array} \\
k=\text { Boltzmann constant } \\
N=\text { Avogadro's number }
\end{gathered}
$$

Equation 1.1

Equation 1.2

The Weiss constant, θ, can be zero to negative for mononuclear paramagnetic metal complexes, with the magnitude depending on the nature of the ligand field groundstate and degree of distortion from perfect octahedral or tetrahedral symmetry. ${ }^{31,35}$ Thus, for orbitally non-degenerate ground-state systems (e.g. octahedral $\mathrm{Ni}^{\mathrm{il}},{ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ ground-state) θ is close to zero and μ_{eff} remains independent of temperature as χ simplifies to C / T (the Curie law). In contrast, orbitally degenerate systems such as octahedral $\mathrm{Co}^{11}\left({ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\right)$ or $\mathrm{V}^{\text {III }}$ (${ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$) exhibit non-zero θ values, and consequently μ_{eff} decreases with decreasing temperature.

1.2.2 Short Range Coupling in Small Cluster Complexes

If two or more metal centres are in close proximity the unpaired spins on each centre can couple, that is, interact with each other so that one spin centre is 'aware' of, and is influenced by the presence of the other(s). The spins can align parallel to each other (ferromagnetic coupling) or antiparallel to each other (antiferromagnetic coupling). Hence,
as well as the ligand-field and orbital degeneracy consequences in mononuclear species mentioned in Section 1.2.1, the Weiss constant can also indicate the nature and strength of coupling between adjacent metal centres. Positive θ values indicate ferromagnetic coupling and thus $\mu_{\text {eff }}$ will increase with decreasing temperature, whereas negative θ values indicate antiferromagnetic coupling, in which case $\mu_{\text {cff }}$ will decrease with decreasing temperature. Larger θ values correspond to stronger coupling. Figure 1.1 shows plots of $\chi, 1 / \chi$ and $\mu_{\text {eff }}$ versus temperature, T to illustrate the effects of the Weiss constant.

Figure 1.1 The effect the Weiss constant, θ, has on (a) χ, (b) $1 / \chi$, and (c) $\mu_{\text {eff, }}$ versus temperature (reproduced from reference 2).

Coupling between metal centres is common in dinuclear, trinuclear and larger cluster complexes. This coupling is intra-molecular or short-range, as it does not extend beyond the finite clusters. For these systems the expression for χ is modified to include exponential $-2 J / k T$ terms, where J, the spin-spin coupling constant, gives an indication of the type and magnitude of the magnetic coupling. ${ }^{31,35,37}$ The convention used here is that positive J values indicate ferromagnetic coupling, whereas negative J values indicate antiferromagnetic coupling. Various models have been developed for determining the coupling constants in different systems such as di-, tri- and tetra-nuclear complexes and also extended systems such as 1D chains. ${ }^{31,35}$ There are often multiple constants to represent the many individually considered interactions in multinuclear complexes. Care has to be taken in comparing literature J values since different authors use $-2 / \mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}}$ or $\mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}}$ spin Hamiltonians. Most of these models assume that any orbital degeneracy on the metal ion is zero and thus spin-only formalism can be used. In cases such as ${ }^{4} \Gamma_{1 g}\left(\mathrm{Co}^{11}\right.$ oct $)$ this is a gross approximation and more detailed models are required. ${ }^{38}$

There are two commonly used mechanisms to account for the coupling: (a) direct interaction between d-orbitals, and (b) superexchange. The former situation, for example, exists in the copper(II) acetate monohydrate dimer, $\left[\mathrm{Cu}^{11}(\mathrm{OAc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}{ }^{39}$ Weak overlap of the $d_{x^{2}-y^{2}}$ orbitals on each $\mathrm{Cu}^{\text {II }}(S=1 / 2)$ centre leads to a diamagnetic ground-state. ${ }^{31,39}$ More commonly however, the ability of spin centres to couple can be associated with a 'superexchange' mechanism (or pathway), which is achieved through organic or inorganic bridges between the metal centres. This involves overlap of magnetic orbitals on the metal centres with the orbital's on the bridging ligands. The various superexchange models are explained in detail in reviews by Martin, ${ }^{40}$ Ginsberg, ${ }^{41}$ and Kahn. ${ }^{35,42}$

In molecule-based magnets, mechanisms of superexchange can include pathways via covalent bonds in diamagnetic (or paramagnetic radical) bridging ligands, hydrogen
bonds, or van der Waals interactions. Magnetic interactions can also occur by dipole-dipole through-space interactions or spin-polarisation mechanisms across appropriately substituted aromatic rings. ${ }^{43}$

1.2.3 Long Range Order in Extended Network Coordination Complexes

In contrast with paramagnetic species and small coupled cluster complexes, which can display short-range magnetic coupling, magnetic materials can exhibit long-range coupling between spin centres throughout the entire solid. As such, they are known as magnetically concentrated. Long-range coupling, in special circumstances, can lead to long-range magnetic order with spontaneous magnetisation, which occurs abruptly in a magnetic phase transition to the ordered state below a critical temperature, T_{c}. Long-range order is a cooperative effect and is a property of the bulk solid, not of the individual atomic or molecular components. ${ }^{1,2,19,27,35,44-46}$ Figure 1.2 shows a schematic representation of the ways spins can align in a material. ${ }^{44}$ Ferromagnetic (parallel spins) or antiferromagnetic (antiparallel spins) coupling can lead to long-range ferromagnetic or antiferromagnetic order respectively. Ferrimagnetic ordering is a special case of antiferromagnetism, where adjacent spins are of different magnitudes hence antiparallel alignment leads to a net moment.

e) spin-canted antiferromagnet or weak ferromagnet (2D)

Figure 1.2 A schematic representation of spin-coupling behaviours in two dimensions, including (a) paramagnet disordered spins, (b) antiferromagnetic, (c) ferromagnetic, (d) ferrimagnetic and (e) spin-canted antiferromagnetic or weak ferromagnetic alignment of spins (reproduced from reference 2).

In addition to these magnetic behaviours, other ordering phenomena, such as metamagnetism, spin-canted antiferromagnetism (weak ferromagnetism) and spin-glass behaviour, may occur. ${ }^{44}$ Metamagnetism occurs when a material that displays antiferromagnetic ordering transforms to a high-moment state (e.g. ferromagnetic or spincanted antiferromagnetic) on the application of an external magnetic field, An example of a metamagnetic material is described in Chapter 6. Spin-canted antiferromagnetism, otherwise known as weak ferromagnetism, arises from a relative canting of spins resulting in a net moment, the size of which is dependent on the canting angle. ${ }^{44,47} \mathrm{~A}$ spin glass occurs where local alignment of spins exists, but long-range ordering does not. Whereas for a paramagnet the spin directions vary with time, for a spin glass they remain fixed or
change only very slowly. ${ }^{44,48}$ Figure 1.3 shows the magnetisation, M, versus applied field, H, for the various types of magnetic behaviour.

Figure 1.3 Schematic illustration of magnetisation (M) versus applied field (H) curves for different types of magnetic behaviour (reproduced from reference 2).

A magnet is said to display spontaneous magnetisation below a magnetic ordering, or critical, temperature T_{c}. For ferromagnets this is referred to as the Curie temperature, while for antiferromagnetic interactions or for spin-canting, it is known as the Néel temperature $T_{\mathrm{N}}{ }^{44}$ The term 'spontaneous' can be a little misleading, as a small applied field is required to induce magnetisation. This is due to the presence of regions, or domains, where the spins are spontaneously ordered, but these domains are oriented randomly with respect to each other. Hence, the small applied field causes coalescence of the domains and magnetisation of the material. This situation is illustrated in Figure 1.4. When the external field is removed the magnetisation remains (remnant magnetisation,
$R M$) but will decrease slowly over time as the domain walls reform. If the direction of the field is reversed the magnetisation can be reduced to zero. The value of the applied field required to do this is called the coercive field, H_{c}. This history dependent $M(H)$ behaviour is known as hysteresis. ${ }^{44}$ Magnets with coercive fields, $H_{c}>1000$ Oe are referred to as 'hard' magnets, correspondingly 'soft' magnets have $H_{\mathrm{c}}<1000 \mathrm{Oe}$. Magnetic data storage devices use hard magnets, and soft magnets are found in AC motors and magnetic shielding. ${ }^{2,26,27,44}$

Figure 1.4 Schematic representation of magnetic domains without an applied field (left) and in the presence of a field (right). Reproduced from reference 2.

Above the critical temperature the thermal motion of the spins is enough to prevent long-range ordering. However, below the T_{c} the spin-alignment energy is enough to overcome the randomising effect of thermal motion, so the spins align throughout the solid. ${ }^{2,35,49,50}$

1.2.4 Experimental Measurement of Long Range Magnetic Order

The first indication that a material may be a magnet can be seen in plots of χT or $\mu_{\text {eff }}$ versus temperature in DC fields of $H<1$ Tesla (T). If χT (or $\mu_{\text {eff }}$) increases to values
much higher than those expected for spin-only interactions, this can often indicate the occurrence of long-range magnetic order. This can be confirmed by various plots of magnetisation, M, versus temperature, a typical example of which is shown in Figure 1.5. This plot is generated from the following series of measurements. When the sample is cooled from room temperature in zero-field the magnetisation ($Z F C M$) is zero, then undergoes a small increase and maximum as the T_{c} is reached, but returns to near zero as domains are formed. Then the sample is returned to a temperature above T_{c} and a small field is applied, typically $5 \mathrm{Oe}(\mathrm{NB} .1 \mathrm{~T}=10,000 \mathrm{Oe})$. When the sample is cooled the magnetisation ($F C M$) increases abruptly at T_{c}, then reaches a plateau at low temperature. The field is removed and the sample warmed to above the T_{c}, the remnant magnetisation ($R M$) closely follows the field-cooled magnetisation (FCM, for materials with high $R M$), then above T_{c} returns to zero as the thermal energy causes the spins to randomise. This plot is used to determine the T_{c} of the material.

Figure 1.5 Typical plot of Magnetisation versus Temperature showing Field-Cooled Magnetisation ($F C M$), Zero-Field Cooled Magnetisation (ZFCM) and Remnant Magnetisation ($R M$) for a molecule-based magnet (specifically $\alpha-\left[\mathrm{Ni}(\mathrm{dca})_{2}\right]$, a ferromagnet, $T_{\mathrm{c}}=21 \mathrm{~K}$). Reproduced from reference 51.

Other important measurements used to confirm the occurrence of long-range magnetic order include the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ components of the AC susceptibility. These give a sharp maximum at T_{c}. These are also used to demonstrate single-sholecule magnetic behaviour, where frequency dependence of maxima in $\chi^{\prime \prime}$ indicates slow relaxation of magnetisation. This subject is discussed in more detail in Chapter 7.

The nature of magnetic order is determined by measuring the field dependence of magnetisation for different temperatures below and above the T_{c}. The various types of magnetic behaviour give distinctive plots of M versus H, as shown in Figure 1.3. For example, materials that order ferromagnetically rapidly reach their saturation magnetisation plateau. Saturation magnetisation, $M_{\text {sat }}=2 S_{\mathrm{T}} N \beta$ (where $S_{\mathrm{T}}=$ total spin value), can be used to differentiate between ferromagnetic and ferrimagnetic order in heterometallic systems with centres of unequal spins. For instance, a system with $S_{1}=5 / 2$ (e.g. H.S. oct $\mathrm{Mn}^{\mathrm{lI}}$) and $S_{2}=1 / 2$ (e.g. oct $\left.\mathrm{Cu}^{\mathrm{ll}}\right)$ will have $M_{\text {sat }}$ values of $6 N \beta\left(S_{\mathrm{T}}=6 / 2\right)$ or $4 N \beta\left(S_{\mathrm{T}}=4 / 2\right)$ for ferromagnetic or ferrimagnetic ordering respectively.

As mentioned above, magnetic hysteresis is an important behaviour exhibited by magnets. It is used to determine the 'magnetic hardness' and memory of the material. At a given temperature below the T_{c}, the magnetisation, M, is plotted against applied field, H. As the field is increased from zero to large values, usually up to 5 T , the material typically reaches saturation magnetisation, $M_{\text {sat. }}$. Then the field is reduced and the magnetisation does not follow the same curve, but due to domain formation has a remnant magnetisation, $R M$, at zero-field. The field is then increased in the opposite direction, and the magnetisation is reduced to zero at the value of field known as the coercive field, H_{c}. The
field is increased until $M_{\text {sat }}$ is reached, then cycled back to zero and so on. Thus a symmetrical hysteresis loop is formed, an example of which is shown in Figure 1.6.

Figure 1.6 An hysteresis plot of a spin-canted antiferromagnet (specifically $\alpha-\left\lceil\mathrm{Fe}(\mathrm{dca})_{2}\right]$, embedded in Vaseline, $H_{\mathrm{c}}=17380 \mathrm{Oe}$ and $R M=2330 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{Oe}$). Reproduced from reference 52.

Another important technique to further confirm long-range magnetic order is heat capacity measurement. A plot of total specific heat, C_{p}, versus temperature will exhibit a maximum near the T_{c} indicating a phase change to a magnetically ordered state. ${ }^{47,53,54}$

1.3 Crystal Engineering of Coordination Polymers

The overwhelming majority of molecule-based magnetic matcinis are coordination polymers, since suitable bridging ligands can facilitate superexchange interactions between unpaired spins on metal ions throughour the crystal lattice, thus potentially leading to long-range magnetic order. Hence the design of coordination
polymers and the associated network theory are highly relevant to the field of moleculebased magnetism. Some early coordination polymers were reported by J. C. Bailar many years ago. ${ }^{55-57}$

Crystal engineering involves the analysis and rational design of crystal structures, and ultimately aims to gain control the way molecules assemble in the solid state. There is much impetus to achieve the fully rational design of materials. As many of the physical properties of materials are largely dependent on their structure, control over the structure introduces the potential of constructing materials with desirable and useful properties. These include magnetic (long-range order, spin-crossover behaviour), electrical (conductivity, semiconductivity, superconductivity), optical (non-linear optical behaviour, transparency), physical (microporosity, hardness), and chemical (heterogeneous catalysis, solubility) properties. ${ }^{58}$ For example, one could envisage synthesizing materials with large pores of predetermined size to be new catalysts tailor-made for specific processes. However, presently, the true crystal engineering of useful materials with predetermined structures remains an clusive goal. With some exceptions, many discoveries of new materials with interesting properties and structures have seen made by accident or educated trial and error.

Towards the above goal, the crystal engineering of coordination polymers is currently a very active field of research that has seen rapid growth in recent years. ${ }^{58-73}$ It had its birth in 1990 in a paper by Hoskins and Robson, in which they describe the rational synthesis of new coordination polymers based on simple network prototypes. ${ }^{74}$ For example, the structure of diamond consists of tetrahedral carbon atoms connected together to form a simple 3D network. By replacing the carbon atoms with tetrahedral metal centres (e.g. $\mathrm{Cd}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{lI}}$) and the $\mathrm{C}-\mathrm{C}$ bonds with linear bridging ligands (e.g. CN), one can construct new structures $\left(\mathrm{Cd}(\mathrm{CN})_{2}, \mathrm{Zn}(\mathrm{CN})_{2}\right)$, which possesses the same topology as
diamond. ${ }^{74}$ However, as the tetrahedral centres are no longer linked by C-C bonds (1.54 \AA), but by the much longer M-CN-M bridges ($5.46(\mathrm{Cd})$ and $5.11(\mathrm{Zn}) \AA$), the resulting network is a much more open structure, thus allowing the interpenetration of a second identical, unconnected network. ${ }^{74}$

Therefore, by controlling the geometry of metal ions and ligands it should in theory be possible to control the topology of the network formed. However, as stated above, reality can be unpredictable. Variables such as choice of solvent or counter ion can greatly influence the topology of the resulting network. In addition, even if the metal ions and ligands function as designed, different network topologies are possible for the same nodal geometry. For example, $\mathrm{Cd}(\mathrm{CN})_{2}$ or $\mathrm{Zn}(\mathrm{CN})_{2}$ needn't have formed diamond networks, as there are a number of other topologies it might have formed that also contain tetrahedral nodes (e.g. Lonsdaleite and Quartz networks). ${ }^{58}$ The phenomena of polymorphism and pseudopolymorphism provide an illustration of the challenges facing the crystal engineer. Polymorphs contain the same chemical components but pack differently in the solid-state. For example, the α and β phases of $\left[\mathrm{Cu}^{1}(\mathrm{dca})(\mathrm{bpe})\right]$ (bpe $=$ 1,4-bis(4-pyridyl)ethene) possess 2D and 3D structures respectively, further complicated by the fact that they crystallise together with the addition of a third, as yet unidentified, phase. ${ }^{75}$ Pseudopolymorphism is where the chemical compositions differ only in the amount and/or type of solvent included. Hence, a large element of uncertainty remains in crystal engineering. However, this can be a bonus since it is often the unexpected results, perhaps beyond the original imagination of the chemist, which can be more interesting than the intended structures.

One convenient way of defining the construction of a framework is based on the idea of a net. ${ }^{76}$ Two particularly useful compendia of nets relevant to chemistry were compiled by Wells over twenty years ago. ${ }^{77,78} \mathrm{He}$ defined crystal structures in terms of
their topology by reducing them to a series of points or nodes with certain topologies (3connecting, 4-connecting, 6 -connecting etc.) that are connected to a fixed number of other nodes. The resulting structures can be either discrete (zero-dimensional) polyhedra or infinite (1D, 2D or 3D) periodic nets. ${ }^{63}$ Examples of simple infinite 2D nets given the symbols $(6,3)$ and $(4,4)$, are shown in Figure 1.7. One way of representing the topology or connectivity of any given net is in terms of the general symbol (n, p), where p is the number of pathways or connections to neighbouring nodes that radiate from any centre or node, and n is the number of nodes in the smallest closed circuits in the net. Thus, the number 6 in the symbol $(6,3)$ indicates that the shortest circuits in the net are hexagons and the number 3 indicates that the nodes are three-connecting. A 'shortest circuit' is defined as the shortest circuit possible that includes a given pair of links (outward and inward bound) from a node. Thus, each pair of links from a node has a 'shortest circuit' associated with it. For each link radiating (outward bound) from a p-connected node there are (p-1) other links via which to return to the node (inward bound). Thus, for any node there are $p(p-1) / 2$ 'shortest circuits'. The factor of $1 / 2$ is included so that each 'shortest circuit' is not counted twice, because it does not matter which direction the 'shortest circuit' is travelled. As strange as it may sound, for a given node, the 'shortest circuits' are not necessarily all the same size. The (n, p) notation strictly only applies when all $p(p-1) / 2$ 'shortest circuits' originating from any node are n-gons (as is the case for the (6,3) nets in Figure 1.7(a)). Otherwise, the more complete Schläfli notation, $n^{p(p-1) / 2}$, should be used. Thus, the symbol $(4,4)$ for the net in Figure 1.7(b) is not strictly correct since two of the six 'shortest circuits' for each node involve six nodes (trans links), while the other four involve four nodes (cis links). The correct symbol is $4^{4} 6^{2}$, Wells having simplified this to 4^{4} (or $(4,4)$) by arbitrarily ignoring 'shortest circuits' with collinear links. ${ }^{21}$ The $(4,4)$ notation is used to describe a number of 2D networks presented in this thesis.

Two different geometric forms of the (6,3) net are shown in Figure 1.7(a), emphasising that nets may be distorted without changing connections and retain the same topology. For the same reason, in a topological sense square-planar and tetrahedral nodes should be regarded as simply 4 -connecting centres. However, there are obvious chemical reasons for delineating between them.

Figure 1.7 (a) Two different geometrical arrangements of the $(6,3)$ net, and (b) the $(4,4)$ net. Reproduced from reference 76.

Many infinite nets have real examples such as mirctals, which can provide convenient names for the nets. On the other hand, some nets are only represented by a few real examples or remain theoretical entities. ${ }^{59}$ For instance, Chapter 4 describes both, a net with a topology for which the first real example was reported in $1998,{ }^{79}$ and a net with an unprecedented topology. Some of the simplest infinite 3D nets include: the α-polonium (α Po) net (with 6-connecting octahedral nodes - also known as the ReO_{3} or NaCl net); the diamond, Lonsdaleite, quartz, feldspar-related and zeolite related nets (with four-
connecting tetrahedral nodes); the NbO net (involving 4-connecting square planar nodes with a 90° twist along each link); the PtS net (with tetra².edral and square planar nodes in 1:1 ratio); the rutile $\left(\mathrm{TiO}_{2}\right)$ net (with octahedral and trigonal nodes in a $1: 2$ ratio); the " $\mathrm{Pt}_{3} \mathrm{O}_{4}$ " net (with square planar and trigonal nodes in a $3: 4$ ratio); the $\mathrm{Ge}_{3} \mathrm{~N}_{4}$ net (with tetrahedral and trigonal nodes in a 3:4 ratio) and various three-connected nets described by Wells, ${ }^{78}$ the most symmetrical of which is the chiral (10,3)-a net. ${ }^{59}$ When applying Schläfli notation to nets with more than one type of node, each node is treated separately with the same principles being used for each (see Chapter 2 for an example of this treatment).

Many coordination polymers form with large voids, cavities and/or channels in their networks. In such cases there are three main ways in which networks with such voids may maximise their packing efficiencies. The first is by intercalation, whereby 'guest' molecules occupy the cavities of the network (the 'host'). This is often achieved by inclusion of solvent molecules (commonly disordered). The second is by interdigitation, which may occur for 1D and 2D systems, examples of which can be seen in Chapter 3. The third method is by interpenetration, whereby the voids are occupied by one or more, independent, usually identical frameworks. The key feature of these entangled systems is that they can only be disentangled by the breaking of bonds. This occurs when the rods of one network pass through the rings of another and vice versa. ${ }^{76}$ Interpenetration is uncommon for 1D systems but very common for 2D and 3D systems where numerous examples have been observed with wide raiges of topologies. ${ }^{76}$ Some examples of interpenetration are shown in Figure 1.8 for 2D and 3D frameworks. Chapter 2 describes an unusual self-penetrated or self-entangled structure, which is the polymeric equivalent of a molecular knot. ${ }^{80}$

Figure 1.8 (a) One mode of inclined penetration for 2D $(4,4)$ sheets and; (b) The two (2fold) interpenetrating 3D nets of the rutile-related $\left[\mathrm{M}^{\mathrm{I}}\left(\mathrm{C}(\mathrm{CN})_{3}\right)_{2}\right]$ complexes. Reproduced from references 76 and 59 respectively.

1.4 Some Examples of Molecule-Based Magnets

The number of known molecule-based magnets is increasing rapidly due to the large amount of research attention that has been focused on this field over recent years by many groups worldwide. What follows is an introduction to the main families of moleculemagnets via the illustration of particular examples. They are categorised primarily on the basis of bridging ligand. The metal dicyanamides, which are most relevant to this thesis, are discussed in Section 1.4.7. Further details in the area of molecule-based magnetism (including purely organic molecule-based magnets, which are beyond the scope of this thesis) can be found in Kahn's book ${ }^{35}$ and in excellent reviews and conference reports on the subject. ${ }^{2,27,29,50,81-85}$

1.4.1 Donor-Acceptor Charge Transfer Complexes and Related Systems

In 1985 Miller et al. reported the molecule-based magnet, $\left[\mathrm{FeCp}^{*}{ }_{2}\right]^{0+}[\mathrm{TCNE}]^{*}$ (where $\mathrm{Cp}^{*}=$ pentamethylcyclopentadienyl, $\mathrm{C}_{5} \mathrm{Me}_{5} ; \mathrm{TCNE}=$ tetracyanoethylene, $\left.(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right){ }^{22-24}$ The structure, which is shown in Figure 1.9, consists of chains of alternating radical ferrocenium cationic donors, $\mathrm{D}^{\circ+}$, and radical TCNE anionic acceptors, A^{*}, each of which carries a spin $S=1 / 2$. The salt orders ferromagnetically below the T_{c} value of 4.8 K . Interestingly, this material is one of the few truly 'molecular magnets' in that there is no covalent bonding between the spin carriers. While it has been shown that the majority of the spin is localised on the $\mathrm{Fe}^{\mathrm{III}}$ ion, spin polarisation is proposed to result in a spin of opposite sign on the Cp^{*} rings, which face the TCNE** anions. Ferromagnetic coupling is thought to occur via a spin exchange between the Cp * rings and the TCNE* ${ }^{*}{ }^{86}$ This research into donor-acceptor salts has shown that covalent bonding between spin centres is not essential for long-range magnetic order to occur. However, the low T_{c} is attributable to the weakness of the through-space interaction in comparison to superexchange interactions observed in a coordination polymer network.

Since this work, several additional donor-acceptor and related molecule-based magnets have been reported. ${ }^{25,26,45,87-95}$ These materials show a range of magnetic behaviour. For instance, the series of compounds [$\left.\mathrm{Mn}^{\mathrm{Hl}} \mathrm{TXPP}\right][\mathrm{TCNE}$] (where TXPP $=$ meso-tetrakis(4-halophenyl)porphyrinato, $\mathrm{X}=\mathrm{F}, \mathrm{Br}, \mathrm{I}$) display ferrimagnetic ordering as high as $28 \mathrm{~K}($ for $\mathrm{X}=\mathrm{F}) .^{88}$ However, in these compounds the TCNE* radicals act as bridging ligands between the $\left[\mathrm{Mn}^{\mathrm{III}} \mathrm{TXPP}\right]^{+}$moieties to form linear 1D coordination polymer chains. Thus, enhanced spin interactions may account for the higher T_{c} value compared to the donor-acceptor salt of $\left[\mathrm{FeCp}_{2}{ }_{2}\right]^{++}[\mathrm{TCNE}]^{*}$.

A large series of related electron-transfer salt compounds with $\mathrm{Mn}^{\text {III }}$-porphyrinato, [$\mathrm{Mn}^{\text {III }} \mathrm{Por}$], and polycyano ligands similar to TCNE have also been investigated. These
include those containing TCNQs (7,7,8,8-tetracyano-p-quinodimethanes), ${ }^{96-99} \mathrm{HCBD}$ (hexacyanobutadiene), ${ }^{100-104}$ and DCNQIs (N, N-dicyanoquinone diimines). ${ }^{90}$

Figure 1.9 The chain structure of $\left[\mathrm{FeCp}_{2}^{*}\right]^{0+}[\mathrm{TCNE}]^{*}$. Reproduced from reference 90.

In 1991 Miller et al. reported what is one of the most significant results of the field. They discovered the first room-temperature molecule-based magnet, $\left[\mathrm{V}(\mathrm{TCNE})_{\mathrm{x}}\right] \cdot \mathrm{y}$ (solvent) (where solvent $=\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{x} \approx 2 ; \mathrm{y} \approx 1 / 2$), which is a ferrimagnet with an extrapolated T_{c} value of $\sim 400 \mathrm{~K}$ (higher than the thermal decomposition temperature of 350 K$){ }^{25,26,105-108}$ It was found that due to extreme insolubility and air and water sensitivities, the composition and consequently magnetic properties are highly dependent on solvent and preparative conditions. For example, if MeCN was used, $\left[\mathrm{V}(\mathrm{TCNE})_{\mathrm{x}}\right] \mathrm{y}(\mathrm{MeCN})$ was synthesised, whose T_{c} was found to be only 120 K (again dependent on the preparation). These materials are amorphous and considering the high T_{c}
values, are thought to consist of disordered coordination polymers. It is interesting to note, but perhaps coincidental, that a number of room-temperature molecule based magnets are disordered/non-stoichiometric, as is the case for some of the Prussian-Blue type materials discussed in Section 1.4.2. Miller et al. have also studied analogues of the vanadium complexes, $\left[\mathrm{M}^{\mathrm{l}}(\mathrm{TCNE})_{2}\right] \times\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ and Ni). ${ }^{109}$ These compounds are metamagnets. The Fe compound, for example, has a T_{c} value of 121 K .

1.4.2 Prussian-Blue Analogues

Perhaps the most important family of molecule-based magnets is that of the Prussian Blue analogues and there are a number of excellent reviews covering the subject. ${ }^{50,110-116}$ Prussian Blue itself, $\mathrm{Fe}^{\mathrm{III}}{ }_{4}\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{3} \cdot \mathrm{XH}_{2} \mathrm{O}(\mathrm{x} \approx 14-15)$, is perhaps the first known coordination compound and gives its name to this family of molecule-based magnets. ${ }^{113}$ It was discovered in 1704 by M. Diesbach when he obtained a bright blue pigment after boiling beef blood (!) in a strongly basic medium. ${ }^{117-119}$ It has since enjoyed wide use as a dyeing agent. This compound exhibits long-range ferromagnetic ordering below a T_{c} value of $5.6 \mathrm{~K} .{ }^{120-122}$ Ferromagnetic coupling occurs between the distant (10.18 \AA apart $)^{113}$ high-spin $\mathrm{Fe}^{\mathrm{III}}$ centres via the low-spin diamagnetic $\mathrm{Fe}^{\mathrm{II}}$ centres that are surrounded by the cyano-carbon donors. ${ }^{123}$

The structure of Prussian Blue was first proposed by Keggin and Miles in 1936^{124} and then reformulated by Ludi and Güdel in 1973. ${ }^{113,125,126}$ The Prussian Blue family contains a number of systems of general formulae $\mathrm{C}_{n} \mathrm{~A}_{p}\left[\mathrm{~B}(\mathrm{CN})_{6}\right]_{q} \cdot \mathrm{xH}_{2} \mathrm{O}$, where A and B are divalent or trivalent transition metal ions and C is a monovalent cation (e.g. $\mathrm{Cs}^{+}, \mathrm{Na}^{+}$). The structure of the lattice is face-centred cubic (α-Po related), where A cations occupy the edges and centre of the cell, B occupies the corners and faces (octahedral sites) and C cations are inserted into part of the tetrahedral sites. ${ }^{113}$ Three typical examples are shown in Figure 1.10.

Figure 1.10 Typical cubic structures of Prussian-Blue analogues; (a) $\mathrm{A}_{3}^{\mathrm{II}}\left[\mathrm{B}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$; (b) $\mathrm{A}^{\mathrm{III}}\left[\mathrm{B}^{\mathrm{II}}(\mathrm{CN})_{6}\right]$; (c) $\mathrm{C}^{\mathrm{I}} \mathrm{A}^{\mathrm{II}}\left[\mathrm{B}^{\mathrm{II}}(\mathrm{CN})_{6}\right]$. $\left[\mathrm{B}^{\mathrm{III}}(\mathrm{CN})_{6}\right]$ are the solid octahedra surrounded by CN^{-}(very small spheres); A are the small light spheres; C^{I} are the medium grey spheres at tetrahedral sites in (c); and finally in (a) the $\mathrm{H}_{2} \mathrm{O}$ are shown as the smaller light grey spheres. Reproduced from reference 112.
$q\left[\mathrm{~B}(\mathrm{CN})_{6}{ }^{p}{ }_{(\text {(aq) }}(\right.$ Lewis base $)+p \mathrm{~A}^{q+}{ }_{(\text {aq })}($ Lewis acid $) \rightarrow\left\{\mathrm{A}_{p}\left[\mathrm{~B}(\mathrm{CN})_{6}\right]_{q}\right\}^{0} \cdot \mathrm{xH}_{2} \mathrm{O}_{(\mathrm{s})}$
Equation 1.3

The general reaction scheme to produce neutral Prussian-Blue analogues is given in Equation 1.3. When n, p and q are unity the cubic lattice is complete (Figure 1.10(c)). Each A^{11} metal ion is connected via cyanide bridges to six different B^{111} metal ions and vice versa. The $\mathrm{B}^{\mathrm{III}}$ ions are coordinated by the cyanide carbon atoms and thus are low-spin, whereas the A^{ll} ions are coordinated by the cyanide nitrogens and thus are usually highspin. This lattice contains eight tetrahedral sites within the cell, and half of these are occupied by the C^{\prime} cations. Water molecules can occupy any vacant position in the lattice. In Prussian Blue itself there are no C^{I} cations, hence one quarter of the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ sites are vacant to balance the charge. Each of these vacant sites is occupied by approximately 7 $\mathrm{H}_{2} \mathrm{O}$ molecules (one coordinated to each of the six surrounding Fe ill centres that would
otherwise be coordinated by a cyanide nitrogen donor atom, plus the seventh $\mathrm{H}_{2} \mathrm{O}$ between them). There are two tetrahedral sites within the cubic lattice per A atom, therefore for the four A metal atoms of Prussian Blue there are about eight $\mathrm{H}_{2} \mathrm{O}$ molecules at tetrahedral sites, which gives a total of fifteen for the formula $\mathrm{Fe}^{\mathrm{HI}}{ }_{4}\left[\mathrm{Fe}^{\mathrm{ll}}(\mathrm{CN})_{6}\right]_{3}$.

Due to the structure of the Prussian-Blue system, great potential exists for the production of a wide range of magnetic materials. For instance, different combinations of paramagnetic A and B cations are possible, and the high symmetry allows a degree of control over the type and size of the magnetic interactions between A and B. ${ }^{113}$ Hence, a large number of these materials are now known, ${ }^{116,127-129}$

The first low-temperature magnetic studies of Prussian-Blue analogues were performed by Bozorth and co-workers in the 1950 s, where they reported magnetic ordering temperatures as high as $50 \mathrm{~K} .{ }^{121}$ However, problems with sample purity meant their conclusions were in doubt. ${ }^{50,113}$ Later, during the 1980 s, Klenze and co-workers ${ }^{130}$ and then Babel and co-workers ${ }^{131-133}$ reported several materials with T_{c} values up to 90 K , i.e. above liquid nitrogen. ${ }^{113}$ In more recent times the groups of Verdaguer ${ }^{113,128,124-142}$ and Girolami ${ }^{114,129,143-146}$ have undertaken a systematic approach using the principle of orthogonal orbitals (vide infra) in order to obtain materials with high critical temperatures. ${ }^{50}$ They and others have demonstrated the ability to tune the magnetic properties of these materials using guiding rules, which are described below.

The type of ordering observed in these materials is explained by a superexchange mechanism based on the principle of orthogonal magnetic orbitals. Simply stated, coupling between orthogonal orbitals is ferromagnetic, whereas between non-orthogonal orbitals it is antiferromagnetic. ${ }^{35,50,111,112}$ This is most clearly observed for the highly symmetric Prussian Blues. For the paramagnetic A and B centres, the coupling interaction, $J(\mathrm{AB})$ between the high-spin A centre with a configuration of $t_{2 g}{ }^{x} e_{g}^{y}$, and the low spin B centre
with a configuration $t_{2 g}{ }^{2}$ is a sum of two competing interactions. The $J\left(t_{2 g} t_{2 g}\right)$ A-E interaction involving the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals of unpaired spins on A and B is an antiferromagneti: contribution, and the $J\left(\mathrm{e}_{\mathrm{g}} \mathrm{t}_{\mathrm{g}}\right) \mathrm{A}-\mathrm{B}$ interaction between the orthogonal e_{g} orbitals on A and the $t_{2 g}$ orbitals on B is a ferromagnetic contribution. When both contributions are presen, antiferromagnetic usually dominates. When the spins on A and $\mathrm{B}\left(S_{A}\right.$ and $\left.S_{B}\right)$ are equal this can lead to long-range antiferromagnetic ordering and when they are non-equal ferrimagnetic ordering may occur. To illustrate, $\mathrm{CsNi}^{\mathrm{il}}\left[\mathrm{Cr}^{\mathrm{II}}(\mathrm{CN})_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{134}$ with A and B configurations of $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{2}$ and $\mathrm{t}_{2 \mathrm{~g}}{ }^{3}\left(\mathrm{Ni}^{11}\right.$ and $\mathrm{Cr}^{\text {II }}$ respectively), is a ferromagnet with $T_{\mathrm{c}}=$ s 0 $\mathrm{K} . \mathrm{CsMn}^{\mathrm{II}}\left[\mathrm{Cr}^{\text {III }}(\mathrm{CN})_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O},{ }^{114,143}$ with its $\mathrm{t}_{2 g}{ }^{3} \mathrm{e}_{2 g}{ }^{2}$ and $\mathrm{t}_{2 g}{ }^{3}$ centres, is a ferrimagnet with a: N $=90 \mathrm{~K} .{ }^{147}$ Orthogonality of orbitals in Prussian Blues has lead to the ability to predict tie nature of the magnetic ordering according to the electronic configuration of the metal ions (see Table 1.2). ${ }^{50,112}$

However, these predictions do not account for the magnitude of the A-B interactions and hence the values of the critical temperatures. There are a number of qualitative methods that have been applied to optimise these parameters. Tie superexchange pathway largely responsible for the A-B interaction is thought to be via the empty cyanide anti-bonding π^{*} orbitals. ${ }^{50}$ The $\mathrm{t}_{2 \mathrm{~g}}$ type orbitals of the B ion are delocalise d towards these π^{*} orbitals. This delocalisation is more pronounced when the two orbitals are closer in energy. Increasing this antiferromagnetic $t_{2 g}(A)-t_{2 g}(B)$ interaction is achiever by using B ions with high-energy 3d orbitals (which are more radially expanded), which is the case for the early transition metals in lower oxidations states. ${ }^{50,114,144,148}$

Table 1.2 Prediction of the nature of magnetic ordering in the Prussian Blue-like phases according to the electronic configurations of the high-spin A and low-spin B ion (AF $=$ antiferromagnetic, $\mathrm{F}=$ ferromagnetic and $\mathrm{FI}=$ ferrimagnetic). Reproduced from reference 50.

A	$\begin{aligned} & \text { B } \\ & t_{2 g}{ }^{1} \text { and } t_{2 g}{ }^{5} \end{aligned}$	$\mathbf{t}_{2 \mathrm{~g}}{ }^{2} \text { and } \mathrm{t}_{2 \mathrm{~g}}{ }^{4}$	$\mathrm{t}_{2 \mathrm{~g}}{ }^{3}$
$t_{2 g}{ }^{1} \mathrm{eg}^{0}$	AF	FI	FI
$t_{2 g}{ }^{2} \mathrm{e}_{\mathrm{g}}{ }^{0}$	FI	AF	FI
$\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{\text {0 }}$	FI	FI	AF
$\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{1}$	FI	FI	FI
$\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{2}$	FI	FI	FI
$t_{2 g}{ }^{4} \mathrm{eg}^{2}$	FI	FI	FI
$t_{2 g}{ }^{5} \mathrm{eg}^{2}$	FI	FI	FI
$t_{2 g}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{2}$	F	F	F
$\mathrm{t}_{2 \mathrm{~g}} \mathrm{E}^{6}{ }^{3}$	F	F	F

A related consideration is that the early transition metals possess more unpaired electrons in the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals, which give rise to higher critical temperatures. ${ }^{148}$ This can be illustrated in the isostructural series of ferromagnets $\mathrm{Ni}^{11}{ }_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O},{ }^{149}$ $\mathrm{Ni}^{\mathrm{II}}{ }_{3}\left[\mathrm{Mn}^{\mathrm{HI}}(\mathrm{CN})_{6}\right]_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O},{ }^{114}$ and $\mathrm{Ni}^{\mathrm{II}}\left[\mathrm{Cr}^{1 \mathrm{II}}(\mathrm{CN})_{6}\right]_{2} \cdot 15 \mathrm{H}_{2} \mathrm{O},{ }^{134}$ which have T_{c} values of 23 , 30 and 53 K respectively. These values correlate with the number of unpaired electrons in the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals of the low-spin ions of 1,2 and 3 for $\mathrm{Fe}^{\mathrm{Il1}}, \mathrm{Mn}^{\text {Il1 }}$ and Cr^{111} respectively. ${ }^{148}$

The principle of maximising antiferromagnetic interactions between unequal spins to yield ferrimagnets (vide supra) was successfully employed by Verdaguer et al. in the production of $\mathrm{Cs}_{0.75} \mathrm{Cr}^{11}{ }_{1.125}\left[\mathrm{Cr}^{\mathrm{III}}(\mathrm{CN})_{6}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cr}^{\mathrm{II}}{ }_{3}\left[\mathrm{Cr}^{\mathrm{IIf}}(\mathrm{CN})_{6}\right]_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, which order at 190 and 240 K respectively. ${ }^{128}$ In 1995 the same group reported the first room-temperature

Prussian Blue-like molecule based magnet, $\mathrm{V}^{\mathrm{II}}{ }_{0.4} \mathrm{~V}^{\mathrm{IIf}}{ }_{0.6}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]_{0.86} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, which orders ferrimagnetically below $315 \mathrm{~K} .^{135}$. Verdaguer et al. subsequently reported the two amorphous ferrimagnets with nominal compositions of $\mathrm{V}^{\mathrm{II}}{ }_{0.45} \mathrm{~V}^{\mathrm{III}}{ }_{0.53}\left[\mathrm{~V}^{\mathrm{IV}} \mathrm{O}\right]_{0.02}\left[\mathrm{Cr}{ }^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{0.69}\left(\mathrm{SO}_{4}\right)_{0.23} \cdot 3.0 \mathrm{H}_{2} \mathrm{O} \cdot 0.02 \mathrm{~K}_{2} \mathrm{SO}_{4}$ and $\mathrm{Cs}^{\mathrm{I}}{ }_{0.82} \mathrm{~V}^{\mathrm{II}}{ }_{0.66}-$ $\left[\mathrm{V}^{\mathrm{IV}} \mathrm{O}\right]_{0.34}\left[\mathrm{Cr}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{0.92}\left(\mathrm{SO}_{4}\right)_{0.203} \cdot 3.6 \mathrm{H}_{2} \mathrm{O}$, with T_{N} values of 310 and 315 K respectively. ${ }^{139}$ It has been observed that ferrimagnetism gives the highest ordering temperatures of the Prussian Blues analogues. ${ }^{50}$ Along these lines, Miller et al. also reported a non-stoichiometric Prussian Blue analogue $\mathrm{K}_{0.058} \mathrm{~V}^{1 / 111}\left[\mathrm{Cr}^{\text {III }}(\mathrm{CN})_{6}\right]_{0.79}-$ $\left(\mathrm{SO}_{4}\right)_{0.058} \times \mathrm{XH}_{2} \mathrm{O}$, which has a T_{N} of $372 \mathrm{~K} .{ }^{107,147} \mathrm{An}$ interesting aspect to these materials is that their ordering temperatures are dependent on the amount of hydration present, i.e. they decrease when the materials are dehydrated. This phenomenon has particular relevance for the compound presented in Chapter 6 of this thesis.

At around the same time Girolami et al. reported the related stoichiometric compound $\mathrm{KV}^{\mathrm{Il}}\left[\mathrm{Cr}{ }^{1 \mathrm{II}}(\mathrm{CN})_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{146}$ with a T_{N} value of 376 K . Ordering in this magnet is attributed to the presence of $\mathrm{V}^{11 \mathrm{II}}$ impurities in the lattice. ${ }^{147}$ Additionally, Girolami et al. ${ }^{129}$ have investigated Prussian Blue analogues constructed from $\left[\mathrm{Cr}^{1}(\mathrm{CN})_{5} \mathrm{NO}\right]^{3-}$ anions as a route to high T_{N} ferrimagnets. The compounds, $\mathrm{K}_{0.5} \mathrm{Mn}\left[\mathrm{Cr}^{\prime}(\mathrm{CN})_{5} \mathrm{NO}_{0.83} \cdot 4 \mathrm{H}_{2} \mathrm{O} \cdot 1.5 \mathrm{MeOH}\right.$, $\mathrm{Cs}_{0.5} \mathrm{Cr}\left[\mathrm{Cr}^{1}(\mathrm{CN})_{5} \mathrm{NO}\right]_{0.83} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 0.6 \mathrm{MeOH}$, and $\mathrm{Cr}^{2}\left[\mathrm{Cr}^{1}(\mathrm{CN})_{5} \mathrm{NO}_{0.5} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 1.8 \mathrm{MeOH}\right.$ order below 31,89 and 127 K respectively. However, the $\left[\mathrm{Cr}^{1}(\mathrm{CN})_{5} \mathrm{NO}\right]^{3-}$ anion gave materials with lower ordering temperatures than did the related $\left[\mathrm{Cr}^{111}(\mathrm{CN})_{6}\right]^{3-}$ anion, which they attribute to the lower symmetry of the anion and the fewer unpaired electrons it contains. ${ }^{129}$ Likewise the magnetic, electrical and optical properties of other substituted pentacyanometallate $\left(\left[\mathrm{Fe}(\mathrm{CN})_{5} L\right]^{n-}\right.$, where $L=\mathrm{NO}^{+}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{4}{ }^{2 \cdot}$, or pseudohalide) containing materials have been investigated. ${ }^{150-152}$

Another Prussian Blue-related magnet reported by Entley and Girolami is $\left(\mathrm{E}_{4} \mathrm{~N}\right)_{0.5} \mathrm{Mn}^{\mathrm{nl}}{ }_{1.25}\left[\mathrm{~V}^{\mathrm{ll}}(\mathrm{CN})_{5}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, which ferrimagnetically orders below a T_{N} value of 230 K. ${ }^{144}$ However, it does not possess the face-centred cubic structure common to the Prussian Blue family. Previous reports by Babel et al. showed that inclusion of bulky cations, such as $\mathrm{Me}_{4} \mathrm{~N}^{+}$(as opposed to the alkali cations of the Prussian Blues) force the adoption of lower dimensionalities such as 2D sheets and 1D chains. ${ }^{131,133,153-156}$ For example the series $\mathrm{CsMn}^{11}\left[\mathrm{Cr}^{111}(\mathrm{CN})_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O},{ }^{131} \quad\left(\mathrm{Me}_{4} \mathrm{~N}\right) \mathrm{Mn}^{1 \mathrm{II}}\left[\mathrm{Cr}^{11 \mathrm{II}}(\mathrm{CN})_{6}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O},{ }^{156}$, and $\left(\mathrm{Me}_{4} \mathrm{~N}\right) \mathrm{Mn}^{\mathrm{II}}\left[\mathrm{Mn}^{\mathrm{III}}(\mathrm{CN})_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}^{155}$ have 3D cubic, 2D sheet, and 1D chain structures, and order ferrimagnetically below 90,59 and 29 K , respectively. The decrease in ordering temperatures follows the reduction in magnetic interactions, due to lower dimensionality. ${ }^{148}$ It is therefore believed, on the basis of the high ordering temperature, that $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{0.5} \mathrm{Mn}^{\mathrm{II}}{ }_{1.25}\left[\mathrm{~V}^{\mathrm{II}}(\mathrm{CN})_{5}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ possesses a 3 D structure. ${ }^{144}$

A particularly interesting family of Prussian Blue-like magnets are the series of $\mathrm{A}_{\mathrm{x}} \mathrm{Co}_{y}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \mathrm{xH}_{2} \mathrm{O}$ complexes, which display photo-induced magnetism. In 1996, Fujishima and Hashimoto et al. ${ }^{157-162}$ first observed that ferrimagnetism could be enhanced in CoFe Prussian Blue analogues by photo-irradiation at low temperatures. The proposed mechanism involved a photo-induced electron transfer within pairs of diamagnetic $\mathrm{Co}^{\mathrm{III}}-\mathrm{Fe}^{\mathrm{II}}$ moieties within the structure to give $\mathrm{Co}^{\mathrm{II}}-\mathrm{Fe}^{\mathrm{III}}$ magnetic pairs, thus enhancing magnetisation. ${ }^{163}$ Other groups including, Miller and Epstein, ${ }^{164-168}$ and Verdaguer ${ }^{127,169-173}$ have also investigated the magneto-optical properties of these and similar materials. For instance, $\mathrm{Rb}_{1.8} \mathrm{Co}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3.30} \cdot 13 \mathrm{H}_{2} \mathrm{O}$ reported by Verdaguer et al., ${ }^{113}$ is essentially diamagnetic before being photo-excited in the near IR, after which it is a ferrimagnet with $T_{\mathrm{N}}=21 \mathrm{~K}$. Thermal decay of this excited state occurs above $108 \mathrm{~K} .{ }^{174}$

Fujishima and Hashimoto have also investigated the magnetic, electrical and optical properties of mixed valence chromium cyanide thin films. ${ }^{157,175,176}$ For example,
they demonstrated electrochemical tuning of the ordering temperature of such films, with T_{c} values ranging between 135 and 230 K for reduced and oxidised films respectively. ${ }^{147}$

The nature and high-symmetry of the Prussian Blue-like phases has led to a wealth of molecule-based magnets being discovered and the ability to apply theoretical knowledge to tune the magnetic properties of these materials. However, the cubic symmetry of these phases means they are magnetically isotropic so that features of magnetically anisotropic systems are not observed. In addition, no group has been able to grow single crystals of Prussian Blue-like phases suitable for detailed magnetic measurements. ${ }^{177}$ Hence, research has been focused on different cyanide-bridged species. Kahn and co-workers are interested in synthesising bimetallic compounds using the heptanuclear $\left[\mathrm{Mo}^{\mathrm{III}}(\mathrm{CN})_{7}\right]^{4-}$ precursor, which has a pentagonal bipyramidal structure and is incompatible with cubic symmetry. ${ }^{177}$ Reacting this with Mn^{11} salts in aqueous solution, they grew single crystals of two phases, which both order ferromagnetically at a T_{c} value of $50 \mathrm{~K} .{ }^{178}$ The two phases, $\mathrm{Mn}^{\mathrm{H}} 2_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left[\mathrm{Mo}^{\mathrm{III}}(\mathrm{CN})_{7}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\left(\alpha\right.$-phase) and $\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left[\mathrm{Mo}^{\mathrm{II}}(\mathrm{CN})_{7}\right] \cdot 4.75 \mathrm{H}_{2} \mathrm{O}$ (β-phase) both have similar local coordination environments of the metal sites, but differ in their 3D network structures. Single crystal magnetic measurements revealed that they also exhibit considerable magnetic anisotropy. ${ }^{53,179,180}$ More recently they have reported two 3D magnets, $\left[\mathrm{Mn}^{\mathrm{II}}{ }_{2}(\right.$ tea $\left.) \mathrm{Mo}^{\mathrm{III}}(\mathrm{CN})_{7}\right] \cdot \mathrm{H}_{2} \mathrm{O}\left(T_{\mathrm{c}}=75 \mathrm{~K}\right)$ and $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}}(\right.$ tea $\left.) \mathrm{Mo}^{\mathrm{III}}(\mathrm{CN})_{7}\right]\left(T_{\mathrm{c}}=106 \mathrm{~K}\right)$, (where tea $=$ triethanolamine), with very similar topologies (the MoCN-Mn linkages are the same). The difference in their ordering temperature is attributed to the coordination sphere geometry of a $\mathrm{Mn}^{\mathrm{II}}$ site found to be square-pyramidal and tetrahedral for the former and latter compounds respectively. ${ }^{181}$

Octacyanometallate, $\left[\mathrm{M}(\mathrm{CN})_{8}\right]^{n^{-}}(\mathrm{M}=\mathrm{Mo}$ or W$)$, precursors have been employed by Verdaguer and Hashimoto et al. ${ }^{141}$ to produce Prussian Blue analogues such as
$\left[\mathrm{Mn}^{\mathrm{n}}{ }_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]\left[\mathrm{W}^{\mathrm{V}}(\mathrm{CN})_{8}\right]_{4} \cdot 13 \mathrm{H}_{2} \mathrm{O} .{ }^{182}$ This compound, which possesses a (monoclinic) 3D network structure, orders ferrimagnetically below 54 K .

Recently, Miller et al. have utilised a tetrahedral precursor, the high-spin $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{CN})_{4}\right]^{2-}$ anion ${ }^{183}$ to synthesise the compound $\mathrm{Mn}^{11}\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{CN})_{4}\right]$, ${ }^{184}$ which powder diffraction data indicates possesses a 2 -fold interpenetrated diamondoid (sphalerite) structure akin to the structures of $\left[\mathrm{M}(\mathrm{CN})_{2}\right], \mathrm{M}^{\mathrm{Il}}=\mathrm{Cd}$ and $\mathrm{Zn} .{ }^{74}$ Magnetic measurements are consistent with all sites being high-spin $\mathrm{Mn}^{\mathrm{II}}$ and show the compound to be an antiferromagnet with a T_{N} value of $\sim 65 \mathrm{~K} .{ }^{147,184}$

Very recently, Beauvais and Long reported the synthesis and magnetic properties of $\mathrm{Co}^{11}{ }_{3}\left[\mathrm{Co}{ }^{11}(\mathrm{CN})_{5}\right]_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O},{ }^{185}$ a highly crystalline Prussian Blue analogue. Synthesised with the square-based pyramidal pentacyano precursor, $\left[\mathrm{Co}^{11}(\mathrm{CN})_{5}\right]^{3-}$, the compound is a ferrimagnet with a T_{N} of 48 K . The dehydrated microporous material retains much of its crystallinity and is also a ferrimagnet with a slightly lower T_{N} of 38 K .

1.4.3 Multidimensional Molecule-Based Magnets from Hexacyanometallate and Metal-Chelate Precursors

The utilisation of hexacyanometallates as building blocks for molecule-based magnets is not limited to the Prussian Blue-like phases. Many research groups including those of Dunbar and Coronado, ${ }^{186-189}$ Mallah, ${ }^{190}$ Ohba and Okawa, ${ }^{115,189,191-198}$ Miyasaka and Floriani, ${ }^{199}$ Verdaguer, ${ }^{200}$ and Murray ${ }^{201}$ have focused on using coordinatively unsaturated transition metal chelate complexes, instead of free metal ions, to react with hexacyanometallates to form new bimetallic compounds with lowered symmetry. Due to the variety of metal chelate complexes, and the inclusion of different counter cations and/or anions, there have been many such materials reported. ${ }^{115}$ What follows is a limited number of examples to illustrate this approach to molecule-based magnets.

In 1994 Ohba and Okawa et al. first reported the series of complexes, $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[\mathrm{M}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{M}^{\mathrm{III}}=\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ and Co). ${ }^{202,203}$ They are isomorphous, possessing fascinating rope-like 1D chain structures. The Fe ${ }^{\text {III }}$ complex, whose structure is shown in Figure 1.11, was first reported to be a ferromagnet with a T_{c} of $18.6 \mathrm{~K}^{202}$ Later work revealed single crystals did not order, but that the (rapidly precipitated) polycrystalline material displayed metamagnetic long-range order. ${ }^{203,204}$ It was thought likely that some disorder in the network forming quasi-2D and 3D domains is responsible for the magnetic behaviour. ${ }^{115}$

Figure 1.11 The rope-ladder crystal structure of $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the $b c$ plane (en ligands and $\mathrm{H}_{2} \mathrm{O}$ molecules are omitted for clarity). Reproduced from reference 202.

Ohba and Okawa et al. demonstrated the sensitivity of the structures of these compounds to alterations in the chelate ligands. For instance, N-methylethylenediamine (N -men), where a methyl substituent is introduced to ethylenediamine, was used to generate the series of compounds, $[\mathrm{Ni}(\mathrm{N}-\mathrm{men})]_{3}\left[\mathrm{M}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ (where $\mathrm{M}^{\mathrm{III}}=\mathrm{Fe}$ and
$\mathrm{Co} ; \mathrm{n} \approx 15$), which have 2 D hexagonal $(6,3)$ sheet structures. ${ }^{115}$ The Fe^{111} compound, whose structure is shown in Figure 1.12, orders ferromagnetically below 10.8 K . The dehydrated compound still shows ferromagnetic coupling but no long-range order is observed. In 1996 Verdaguer et al. reported the structure and magnetic properties of $[\mathrm{Ni} \text { (cyclam) }]_{3}\left[\mathrm{Cr}^{111}(\mathrm{CN})_{6}\right]_{2} \cdot 20 \mathrm{H}_{2} \mathrm{O}$ (where cyclam $=1,4,8,11$-tetraazacyclotetradecane), which possesses a similar 2D hexagonal $(6,3)$ sheet structure with numerous hydrogenbonding interactions between the sheets. It showed ferromagnetic coupling but without long-range order. ${ }^{200}$ Very recently, Long et al. ${ }^{205}$ have reported a 2D hexagonal $(6,3)$ network complex $[\mathrm{Ni}(\text { cyclam })]_{3}\left[(\text { tach }) \mathrm{Cr}^{\text {III }}(\mathrm{CN})_{3}\right]_{2} \mathrm{I}_{2}$ (where tach $=1,3,5-$ triaminocyclohexane), in which three fac sites on the $\mathrm{Cr}^{I I 1}$ centre are capped by the tach ligand. It was synthesised during work intended to produce high-nuclearity cyanidebridged metal clusters (see Section 1.4.4 and Chapter 7). The authors suggest metamagnetic behaviour with long-range ordering for this complex, but do not report a critical temperature.

Figure 1.12 The 2D (6,3) hexagonal sheet lattice structure of $[\mathrm{Ni}(\mathrm{N}$ men) $]_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 15 \mathrm{H}_{2} \mathrm{O}$ in the $a b$-plane $\left(\mathrm{H}_{2} \mathrm{O}\right.$ molecules are omitted for clarity). Reproduced from reference 115.

Likewise, Ohba and Okawa et al. reported the series of bimetallic compounds, $\left[\mathrm{Ni}(\mathrm{L})_{2}\right]_{2}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right] \mathrm{X} \cdot \mathrm{nH}_{2} \mathrm{O}$ (where $\mathrm{L}=\mathrm{pn}, 1,1-\mathrm{dmen} ; \mathrm{X}^{*}=$ various counter anions, egg. $\mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}$and PF_{6}^{-}for ph, and those plus $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, \mathrm{BzO}^{-}, \mathrm{NCS}^{-}$and others for 1,1-dmen; $\mathrm{pn}=1,2$-diaminopropane, 1,1 -dimen $=1,1$-dimethylenthylenediamine), which have 2D grid-like $(4,4)$ sheet structures. ${ }^{206,207}$ Intra-sheet ferromagnetic coupling was observed for each compound. Inter-sheet separation, influenced by the diamine, counter-ion and the amount of hydration, was found to govern the type of long-range order. Small inter-sheet separations gave metamagnets due to inter-sheet antiferromagnetic coupling, and large inter-sheet separations gave ferromagnets. Furthermore, the ferromagnets became metamagnets on dehydration due to the reduction in inter-layer separation. For example, $\left[\mathrm{Ni}(1,1-\text { dimen })_{2}\right]_{2}\left[\mathrm{Fe}^{\mathrm{Ill}}(\mathrm{CN})_{6}\right] \mathrm{OBz}^{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ orders below 10 K with a relatively large coercive field (for the series) of 750 Oe , which is attributable to a different packing mode of the sheets in comparison with the other similar compounds. ${ }^{207}$

Figure 1.13 Two views of the 2D $(4,4)$ grid sheet structure of $[\mathrm{Ni}(1,1-$ dimen $\left.)_{2}\right]_{2}\left[\mathrm{Fe}^{\text {III }}(\mathrm{CN})_{6}\right] \mathrm{OBz} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1,1-dimen ligands and $\mathrm{H}_{2} \mathrm{O}$ molecules are omitted for clarity). Left: projection in the $a c$-plane and, right: projection in the $a b$-plane. Reproduced from reference 207.

Miyasaka and Floriani et al. reported compounds of the type, $\mathrm{A}[\mathrm{Mn}(\mathrm{L})]_{2}\left[\mathrm{M}^{\mathrm{III}}(\mathrm{CN})_{6}\right] \cdot \mathrm{nH} \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{A}=$ univalent cation; $\mathrm{M}^{\mathrm{III}}=\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cr}, \mathrm{Co} ; \mathrm{L}^{2-}=$ tetradentate Schiff-bases), ${ }^{199,208-212}$ which similarly have 2D grid-like $(4,4)$ sheet structures. For example, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}^{\mathrm{II}}(5-\mathrm{Cl}-\text { salen })\right]_{2}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right] \quad$ (where $5-\mathrm{Cl}$-salenH $\mathrm{H}_{2}=N, N^{\circ}$ -ethylenebis(5-chlorosalicylaldeneimine)) shown in Figure 1.14, is a metamagnet with ferrimagnetic layers and antiferromagnetic interlayer interactions, and with a T_{N} of 4.0 K. ${ }^{199}$

Figure 1.14 The 2D $(4,4)$ sheet structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}^{\mathrm{III}}(5-\mathrm{Cl} \text {-salen })\right]_{2}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]\left(\mathrm{Et}_{4} \mathrm{~N}^{+}\right.$ counter-ions are omitted for clarity). Reproduced from reference 199.

Recently, Dunbar and Coronado et al. and others have reported several bimetallic compounds with 2D layered structures. ${ }^{186-189}$ For instance, the layered ferromagnet $\left[\mathrm{Ni}(\text { chxn })_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (where chxn $=$ trans-1,2-diaminocyclohexane) has a 2D distorted $(4,4)$ sheet structure, and orders below $14 \mathrm{~K} .{ }^{186}$ The bulky cyclohexane ligands
produce a large inter-layer separation, possibly disfavouring inter-layer antiferromagnetic interactions, as was observed previously for Ohba and Okawa (vide supra). This compound also has a large coercive field of 2.3 kOe at 2 K and displays some unusual AC susceptibility behaviour. ${ }^{186}$ Also of interest is the use of trans-1,2-diaminocyclohexane, which was employed here as a racemic mixture of the two enantiomers. This group are in the process of attempting to use enantiopure samples of the diamine to investigate magneto-optical effects of resulting networks. ${ }^{186}$ This is particularly relevant to the chiral networks reported in Chapter 4 of this thesis where a Schiff-base derived from trans-1,2diaminocyclohexane was used.

Dunbar et al. ${ }^{187}$ have used Mn^{11} bipyrimidine (bpym) chelates with ferricyanide to produce a ferrimagnet, $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left[\mathrm{Mn}(\text { bpym })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, which has a 2D sheet structure and orders below 11 K .

A number of 3D bimetallic compounds using metal chelates and hexacyanometallates have also been reported with a variety of structures and magnetic behaviours. ${ }^{197,198,213,214}$ Inoue et al. recently reported an interesting example, the 3D chiral ferrimagnet $\quad \mathrm{K}_{0.4}\left[\mathrm{Cr}^{\mathrm{III}}(\mathrm{CN})_{6}\right][\mathrm{Mn}(S)-\mathrm{pn}](S)-\mathrm{pnH}_{0.6} \quad$ (where $\quad(S)-\mathrm{pn} \quad=\quad(S)-1,2-$ diaminopropane), which possesses an interesting structure of interconnected helical bimetallic loops, and orders below the T_{N} value of 53 K .

Very recently, Verdaguer et al. reported two isostructural 3D cyano-bridged bimetallic complexes using $\left[\mathrm{Mn}_{2}{ }_{2}(\mu \text {-bpym })\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{4+}$ and the octacyanometallates $\left[\mathrm{M}^{\mathrm{IV}}(\mathrm{CN})_{8}\right]^{4-}, \mathrm{M}^{\mathrm{IV}}=\mathrm{Mo}$ and W , as precursors. ${ }^{215}$ The complexes, $\left[\left(\mathrm{Mn}_{2}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mu-\right.\right.$ bpym $)]\left[\mathrm{M}^{\mathrm{IV}}(\mathrm{CN})_{8}\right]$, possess a complicated 3D structure shown in Figure 1.15. Magnetically, these complexes show weak antiferromagnetic coupling and no long-range magnetic order, which is partly due to the Mo and W centres being diamagnetic. They are presently studying possible analogues with paramagnetic octacyanometallate species.

Julve and Verdaguer et al. ${ }^{216,217}$ have used substituted cyanometallates, including $\left[\mathrm{Fe}^{\mathrm{III}} \text { (phen) }(\mathrm{CN})_{4}\right]^{\circ}$, where phen $=1,10$-phenanthroline, to produce a new heterobimetallic linear chain complex [$\left.\left\{\mathrm{Fe}^{\text {III }}(\text { chel })(\mathrm{CN})_{4}\right\}_{2} \mathrm{Mn}^{11}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ that displays ferrimagnetic behaviour but no ordering above $1.9 \mathrm{~K} .{ }^{217}$

Figure 1.15 The crystal structure of $\left[\left(\mathrm{Mn}_{2}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mu\right.\right.$-bpym $\left.)\right]\left[\mathrm{M}^{\mathrm{IV}}(\mathrm{CN})_{8}\right]$ viewed along the c-axis direction (bpym ligands are omitted for clarity). Reproduced from reference 215.

1.4.4 Multinuclear Cyanide Bridged Clusters

Considerable recent research in transition metal cyanide chemistry has been focused on generating discrete high-spin cyano-bridged cluster complexes. ${ }^{113,201,218-228}$ Using an extension of the approach described above for the design of $\left[\mathrm{M}(\mathrm{CN})_{6}\right]^{n-}$ based networks with lower dimensionality than the Prussian Blue phases, one can produce zerodimensional (OD) systems (clusters). This is achieved by reacting hexacyanometallates with $A^{1 l}$ metal ions that have labile groups in one or two coordination sites, i.e.
[$\mathrm{A}^{\mathrm{II}}\left(\mathrm{L}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] or $\left[\mathrm{A}^{\mathrm{Il}}\left(\mathrm{L}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\right]$, where L_{4} and L_{5} are tetra- and penta-dentate chelating 'capping' ligands, thus impeding the growth of extended network structures. By the suitable choice of metal ions, large clusters with high-spin ground states can be synthesised. Additionally, if significant magnetic anisotropy is introduced, for example by low structural symmetry, these species can exhibit the phenomenon of single-molecule magnetism. This latter topic is described in more detail in Chapter 7.

Parker et al. ${ }^{229,230}$ of Monash University reported the structure and magnetism of the heptanuclear clusters with $\mathrm{Cu}_{6}{ }_{6} \mathrm{Fe}(\mathrm{CN})_{6}$ and $\mathrm{Mn}^{\mathrm{II}}{ }_{6} \mathrm{Cr}^{\mathrm{III}}(\mathrm{CN})_{6}$ cores, which consist of a single hexacyanometallate surrounded by six capped transition metal ions.

Murray et al. have investigated the cluster $\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{bpm})_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{bpm}=\mathrm{bis}\left(1\right.$-pyrazolyl)methane), ${ }^{201}$ which displays long range ferromagnetic order below a T_{c} of 23 K . This magnetic order is possibly facilitated by a 3 D hydrogen bonding network that connects the clusters (Figure 1.16). The dehydrated material does not order magneticaily, indicating the possible importance of the hydrogen bonding to the occurrence of long-range magnetic order. Similar results were shown by the compounds $\left[\mathrm{M}^{\mathrm{II}}(\mathrm{bipy})_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ni}, \mathrm{n}=13 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Cu}, \mathrm{n}=10\right)$, which order below 11 and 13 K respectively ${ }^{231}$ Dunbar has questioned these results and believes something other than hydrogen bonded $\mathrm{H}_{2} \mathrm{O}$ pathways between the clusters is responsible for the long-range order. ${ }^{232}$ The effect of dehydration on magnetic behaviour has also been observed in $\left\{\left[\mathrm{Mn}^{\text {III }}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ described in Chapter 6 in this thesis, and by Hashimoto et al. in Prussian Blue analogues. ${ }^{152}$

(b)

Figure 1.16 Left: the crystal structure of $\left[\mathrm{Ni}^{1 \mathrm{l}}(\mathrm{bpm})_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{II} \mathrm{\prime}}(\mathrm{CN})_{6}\right]_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Fi}_{2} \mathrm{O}\right.$ molecules omitted), and right: two different hydrgoen bonding networks present in the structure (bpm ligands omitted). Reproduced from reference 201.

Some recent discoveries made in this field include those by Long et al., ${ }^{205,225-228}$ Decurtins et al..3,224 and Hashimoto et al. ${ }^{233}$ For instance, $\left[\mathrm{Mn}^{\mathrm{II}}\left\{\mathrm{Mn}^{11}(\mathrm{MeOH})_{3}\right\}_{8}(\mu\right.$ $\left.\mathrm{CN})_{30}\left\{\mathrm{Mo}^{\mathrm{V}}(\mathrm{CN})_{3}\right\}_{6}\right] \cdot 5 \mathrm{MeOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{9} \mathrm{Mo}_{6}\right)$, is reported to have a very high $S=51 / 2$ ground state spin. This material shows ferromagnetic ordering below 44 K due to ferromagnetic inter-cluster coupling. ${ }^{224}$ The structurally analogous $\mathrm{Mn}_{9} \mathrm{~W}_{6}$ cluster also has a high spin ground state $(S=39 / 2) .{ }^{233}$ These are prepared from octacyanometallate precursors.

Recently, Long et al. reported two 'giant' nickel-chromium-cyanide clusters, the larger being $\left[\left(\mathrm{Me}_{3} \operatorname{tacn}\right)_{14} \mathrm{Cr}_{14} \mathrm{Ni}_{13}(\mathrm{CN})_{48}\right] \mathrm{I}_{20} \cdot 70 \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{Me}_{3} \operatorname{tacn}=N, N^{\prime}, N^{\prime \prime}$-trimethyl-1,4,7-triazacyclononane). ${ }^{227}$ The structure consists of a double face-centred cubic unit
sharing a Ni vertex (Figure 1.17). They have also reported the first cyano-bridged single molecule magnet, a $\mathrm{MnMo}_{6}(\mathrm{CN})_{18}$ cluster (see also Chapter 7). ${ }^{228}$

Figure 1.17 The crystal structure of $\left[\left(\mathrm{Me}_{3} \operatorname{tacn}\right)_{14} \mathrm{Cr}_{14} \mathrm{Ni}_{13}(\mathrm{CN})_{48}\right]^{20+}$. Black, crosshatched, shaded and white spheres correspond to $\mathrm{Cr}, \mathrm{Ni}, \mathrm{C}$ and N atoms respectively (hydrogen atoms are omitted for clarity). Reproduced from reference 227.

1.4.5 Oxalate-Bridged Networks and Related Systems

The planar bis-chelating anionic ligand oxalate, $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right.$, ox $)$, has been used quite extensively to produce homometallic and heterobimetallic extended network complexes that display interesting magnetic, optical and electrical properties, including, but not limited to, long-range magnetic order. ${ }^{50,234-261}$ The general synthetic approach to these materials involves the reaction of mononuclear tris(oxalato) transition metal precursors,
$\left[\mathrm{B}^{\mathrm{III}}(\mathrm{ox})_{3}\right]^{3-}$, with transition metal salts $\left(\mathrm{A}^{\mathrm{Il}}\right)$ in the presence of a suitable counter-cation to give anionic network species, $\left[\mathrm{A}^{\mathrm{II}} \mathrm{B}^{111}(\mathrm{ox})_{3}\right]^{-}$.

Two general structural motifs have been regularly observed for oxalate-based networks, which are determined by the nature of the cation. The $\left[\mathrm{B}^{\mathrm{III}}(\mathrm{ox})_{3}\right]^{3-}$ anion is a chiral complex with two enantiomers (Δ and Λ configurations). When bulky achiral cations such as $n-\mathrm{Bu}_{4} \mathrm{~N}^{+}$or $\mathrm{Ph}_{4} \mathrm{P}^{+}$are used with racemic mixtures of the $\left[\mathrm{B}^{\text {III }}(\mathrm{ox})_{3}\right]^{3-}$ anion, 2D hexagonal $(6,3)$ sheet structures are obtained, as shown in Figure 1.18. Metal centres include $\mathrm{A}^{\mathrm{ll}}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$, and $\mathrm{Cu} ; \mathrm{B}^{\mathrm{III}}=\mathrm{Cr}, \mathrm{Fe}$ and $\mathrm{Ru} .{ }^{258}$ The handedness of each A^{II} and $\mathrm{B}^{\text {I' }}$ centres alternate within the sheet. The layers are interleaved by the cations, which determine the inter-layer separation. These complexes behave as ferrimagnets with T_{N} values ranging from 5 to 44 K , and rather weak coercive fields, one of the largest being 320 Oe for the $\mathrm{Fe}^{\mathrm{II}} \mathrm{Cr}^{\text {III }}$ complex. ${ }^{237,262-267}$

Figure 1.18 A single anionic 2D hexagonal $(6,3)$ network in the structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Mn}^{\mathrm{II}} \mathrm{Cr}^{\text {III }}(\mathrm{ox})_{3}\right]$ (reproduced from reference 50).

The second type of structure is the chiral 3D (10,3)-a anionic network, shown in Figure 1.19 ((10,3)-a denotes the most symmetric of the (10,3) nets), formed when the cations are chiral metal complexes such as $\left[Z^{11}(\text { bipy })_{3}\right]^{2+}$ (where $Z^{I I}=\mathrm{Ru}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}$). Decurtins et al. first reported these phases in $1993 .{ }^{268}$ The 3D network has the general formula $\left[Z^{11}(\text { bipy })_{3}\right]\left[M^{1} M^{\text {III }}(\mathrm{ox})_{3}\right]$ or $\left[Z^{11}(\text { bipy })_{3}\right]\left[M^{\mathrm{II}} \mathrm{M}^{\mathrm{II}}(\mathrm{ox})_{3}\right]$ (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Cu}$; $\mathrm{M}^{\mathrm{III}}=\mathrm{Cr}, \mathrm{Fe} ; \mathrm{M}^{1}=$ alkali metal, $\mathrm{NH}_{4}{ }^{+}$). The chirality of the resulting net is the same as the cation. If racemic mixtures of cations are used, racemic mixtures of crystals are produced, though each crystal is of a single hand. The cations and solvent molecules occupy cavities in the framework. The cavities can also accommodate small anions (X^{-}) such as $\mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}$ or $\mathrm{PF}_{6}{ }^{*}$ so that the range of compounds includes $\left[\mathrm{Y}^{\mathrm{III}}(\mathrm{bipy})_{3}\right][\mathrm{X}]\left[\mathrm{M}^{\mathrm{j}} \mathrm{M}^{\mathrm{III}}(\mathrm{ox})_{3}\right]$, $\left[\mathrm{Y}^{\mathrm{III}}(\text { bipy })_{3}\right][\mathrm{X}]\left[\mathrm{M}^{\mathrm{ll}} \mathrm{M}^{\mathrm{II}}(\mathrm{ox})_{3}\right]$ and $\left[\mathrm{Z}^{\mathrm{ll}}(\text { bipy })_{3}\right][\mathrm{X}]\left[\mathrm{M}^{\mathrm{Il}} \mathrm{M}^{\mathrm{III}}(\mathrm{ox})_{3}\right] \quad$ (where $\quad \mathrm{Y}^{\mathrm{HI}}=\mathrm{Cr}$, Rh). ${ }^{239,257,269}$ Magnetically, these complexes are less interesting than the 2D phases. Where the complexes do show long-range magnetic order it is with lower critical temperatures, e.g. $6.6 \mathrm{~K}^{257}$

Figure 1.19 Two representations of the crystal structure of $\left[\mathrm{Co}^{\mathrm{III}}(\text { bipy })_{3}\right]\left[\mathrm{Co}_{2}{ }_{2}(\mathrm{ox})_{3}\right] \mathrm{ClO}_{4}$. Left: the $\left[\mathrm{Co}_{2}{ }_{2}(\mathrm{ox})_{3}\right]^{2 \cdot}$ network in the $b c$-plane and right: the $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{bipy})_{3}\right]^{3+}$ cations (reproduced from reference 239).

Dance et al. ${ }^{270}$ have also reported the occurrence of a chiral 3D (10,3)-a net with the compound $\left(\mathrm{Ph}_{3} \mathrm{MeP}\right)_{2}\left[\mathrm{NaCr}^{\mathrm{ml}}(\mathrm{ox})_{3}\right]$, which is the only published 3D oxalate-based net of its type to include an achiral monopositive cation. The cations also form a supramolecular (10,3)-a net, due to multiple $\pi-\pi$ and $\mathrm{CH} \cdots \pi$ interactions, which interpenetrates the anionic net. There are also supramolecular interactions between the two interpenetrated nets, which provide chiral recognition between the cation and anion lattices. Consequently, the two nets are of opposite chirality. The weak supramolecular interactions of these types are discussed further in Chapter 5 in relation to mixed-ligand anionic dca networks.

Many examples of oxalate-based coordination polymers are now known, with a variety of magnetic behaviours, with examples exhibiting ferro-, ferri-, antiferro- and metamagnetic ordering. Day et al. have observed negative magnetisation at low temperatures in some systems. ${ }^{241,267}$ The nature of magnetic ordering can be predicted by the principle of orthogonality of magnetic orbitals. ${ }^{35}$

Recent work in the field has focused on adding new properties to these networks by incorporating interesting cations such as decamethylmetallocenium $\left(\left[\mathrm{M}^{111} \mathrm{Cp}^{*}\right]^{+}, \mathrm{M}^{\mathrm{III}}=\right.$ Co, Fe), and tetrathiafulvalene (TTF). ${ }^{251,252,258}$ For instance, an example incorporating the cation BEDT-TTF ${ }^{+}$(bis(ethylenedithio)tetrathiafulvalene), which forms the basis of many molecular conductors and superconductors, has exhibited both conductivity and ferromagnetic order. ${ }^{251}$ Figure 1.20 shows the structure of $\left[\mathrm{FeCp}^{*}{ }_{2}\right]\left[\mathrm{MnFe}(\mathrm{ox})_{3}\right]$, which consists of alternating layers of the paramagnetic $\left[\mathrm{FeCp}_{2}\right]^{+}$ions and ferromagnetic $\left[\mathrm{MnFe}(\mathrm{ox})_{3}\right]{ }^{]}$networks. While it has been shown that the bulk magnetic properties of the networks were not significantly affected by replacing non-magnetic cations with paramagnetic ones, the packing of the anionic sheets is altered. ${ }^{252}$

Figure 1.20 Two different views of the structure of $\left[\mathrm{FeCp}^{*}{ }_{2}\right]\left[\mathrm{MnFe}(\mathrm{ox})_{3}\right]$ in the $a b$-plane (top) and the $a c$-plane (bottom). Reproduced from reference 252.

Recently, De Munno and Julve et al. ${ }^{261}$ reported the compound $\left[\mathrm{Fe}^{\mathrm{ll}}{ }_{2}\right.$ (bpym) $\left.(\mathrm{ox})_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, whose structure shown in Figure 1.21 consists of neutral 2 D $(6,3)$ hexagonal sheets related to those of the oxalate networks above, but includes bridging 2,2'-bipyrimidine (bpym) ligands. Intercalated water molecules form hydrogen bonding networks between the sheets. This compound exhibits intra-layer antiferromagnetic coupling between the high-spin Fe^{11} ions, but does not show long range-order. De Munno
and Julve et al. ${ }^{271}$ also reported a chiral 3D $\mathrm{Fe}^{\text {III }}$ magnet $\left\{\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Fe}^{\mathrm{mII}}{ }_{2} \mathrm{O}\left(\mathrm{ox}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, which orders below a T_{c} of 40 K . The chiral anionic network, shown in Figure 1.22, consists of $\mathrm{Fe}^{\mathrm{III}}$ centres bridged by single $\mu-\mathrm{O}^{2-}$ and bisbidentate oxalate ligands forming pseudohexagonal channels. The ammonium cations and water molecules occupy the channels.

Figure 1.21 The crystal structure of $\left[\mathrm{Fe}^{\mathrm{ll}}{ }_{2}(\mathrm{bpym})(\mathrm{ox})_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in the ab-plane $\left(\mathrm{H}_{2} \mathrm{O}\right.$ molecules omitted for clarity). Reproduced from reierence 261.

Figure 1.22 Structure of $\left\{\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{2} \mathrm{O}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ viewed down the pseudohexagonal channels (reproduced from reference 271).

Other related bis-chelating ligands have also been used as precursors for magnetic materials. Kahn, Verdaguer and other groups have employed oxamato, ${ }^{234,249,253,272-27 ;}$ oxamido, ${ }^{277 \cdot 282}$ oximato, ${ }^{283,284}$ and dithiooxalato ${ }^{285}$ ligands to synthesise bimetallic systems. For example, in 1988 Kahn et al. ${ }^{286}$ reported the ferromagnet $\left[\mathrm{Mn}^{\mathrm{II}} \mathrm{Cu}^{\mathrm{II}}(\mathrm{pbaOH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right.$] (where $\mathrm{H}_{4} \mathrm{pbaOH}=$ 2-hydroxy-1,3-propylenebis(oxamide)), which consists of linear bimetallic chains of alternating $\mathrm{Mn}^{\prime \prime}$ and Cu^{11} ions. The intra-chain coupling is ferrimagnetic and inter-chain coupling is ferromagnetic, leading to ferromagnetic order below 4.6 K . Removing the water molecule coordinated to the $\mathrm{Cu}^{\text {II }}$ centre leads to a partially dehydrated material that orders at the higher T_{c} of 30 K . ${ }^{275}$ The increased ordering temperature was attributed to the fact that the chains are closer to each other than in the hydrated phase. ${ }^{275}$

Kahn et al. have also reported some fascinating examples containing three spin carriers by incorporation of a radical cation. For example, the isomorphous complexes $(\text { Etrad })_{2}\left[\mathrm{M}^{\mathrm{II}}{ }_{2}\left\{\mathrm{Cu}^{\mathrm{II}}(\text { opba })\right\}_{3}(\mathrm{DMSO})_{\mathrm{x}}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\left(\right.$ where $\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{x}=0.5 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Co}, \mathrm{x}=$ 1.5; $\mathrm{Etrad}^{+}=2$-(1-ethylpyridinium-4-yl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide; and opba $=$ ortho-phenylenebis(oxamato)). ${ }^{249}$ The structures consist of 2D anionic hexagonal $(6,3)$ sheets, analogous to the oxalate networks, where the Cu (opba) units replace the oxalate ligands (Figure 1.23). Nearly perpendicular two-fold interpenetration of the sheets occurs. The Mn and Co complexes order magnetically below 22.8 and 37 K respectively. The latter is also quite a hard magnet with a coercive field, which is dependent on particle size, measured at 24 kOe at 6 K for very small crystals. ${ }^{249}$

Figure 1.23 Left: the 2D hexagonal anionic sheet structure of $\left[\mathrm{Mn}^{11}{ }_{2}\left\{\mathrm{Cu}^{\mathrm{II}}(\text { opba })\right\}_{3}(\mathrm{DMSO})_{0.5}\right]^{2-}$. Right: the overall interpenetrated structure of the sheets. Etrad ${ }^{+}$cations, DMSO and $\mathrm{H}_{2} \mathrm{O}$ molecules are omitted for clarity. Reproduced from reference 234.

1.4.6 Single-Chain Magnets

A relative newcomer to the field of molecule-based magnetism is the area of socalled 'single-chain magnets' or SCMs. It has evolved very recently, in the last few years, as an offshoot of the field of single-molecule magnets (SMMs), which is described in more detail in Chapter 7. Briefly, SMMs are zero-dimensional entities, often large multinuclear polyoxo metal clusters, with large ground state spin values, which can be magnetised at low temperatures. Due to an energy barrier between the 'spin-up' to 'spin-down' states they display slow relaxation of magnetisation, and hence are 'trapped' or 'frozen' in either one of the two states. Single-chain magnets are similar in that they display slow magnetisation relaxation, but as the name implies, are one-dimensional entities. They usually require 1D Ising-chain behaviour, which derives from orbitally degenerate ions such as octahedral $\mathrm{Co}^{\mathrm{II}} \cdot{ }^{287}$ This phenomenon was first predicted in 1963 by Glauber. ${ }^{288}$ In 2001 Caneschi et al. ${ }^{289-291}$ reported the compound $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{hfac})_{2}(\mathrm{NITPhOMe})\right]($ where $\mathrm{hfac}=$
hexafluoroacetylacetonate, \quad NITPhOMe $=\quad 4^{\prime}$-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), which was the first experimental evidence to confirm Glauber's prediction. The complex has a spiral chain structure. Recently, Clérac et al. ${ }^{292}$ have reported on the structure and SCM behaviour of a heterometallic chain complex, $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{2}(\text { saltmen })_{2} \mathrm{Ni}^{\mathrm{II}}(\mathrm{pao})_{2}(\mathrm{py})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (where saltmenH ${ }_{2}=N, N^{\prime}-(1,1,2,2-$ tetramethylethylene)bis(salicylideneimine) and paoH $=$ pyridine-2-al-doxime), which consists of trinuclear repeating units, shown in Figure 1.24.

Figure 1.24 (Left) A schematic diagram of $\left.\left[\mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}{ }_{2} \text { (saltmen) }\right)_{2} \mathrm{Ni}^{\mathrm{II}}(\mathrm{pao})_{2}(\mathrm{py})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and (Right) its crystal structure with Mn^{111} and $\mathrm{Ni}^{\mathrm{II}}$ centres indicated (reproduced from reference 292).

1.4.7 Poly-Cyano Ligands: Dicyanamide, Tricyanomethanide and Dicyanonitrosomethanide

Research into the chemistry of cyano-based ligands has undergone a renaissance within the field of molecule-based magnetism. In particular, the observation of roomtemperature magnetic ordering in several Prussian Blue phases and in vanadium TCNE compounds (vide supra) has seen researchers looking at ligands that contain non-radical cyano moieties, such as dicyanamide $\left(\mathrm{N}(\mathrm{CN})_{2}{ }^{-}\right.$, dca) and tricyanomethanide $\left(\mathrm{C}(\mathrm{CN})_{3}{ }^{-}\right.$, tcm). ${ }^{147,293,294}$ Their conjugated nature and their ability to bridge multiple metal centres, both of which are essential for the occurrence of long-range magnetic order, have led to
their significance. Despite this, compared to the oxalate and cyanide ligands, dca and tcm are relative newcomers to the field of molecule-based magnetism. However, dca and tcm transition metal complexes were first reported in the 1960s. ${ }^{295-301}$ since Batten et al. reported, in 1998, the occurrence of long-range ferromagnetic order in $\alpha-\left[\mathrm{M}^{\mathrm{II}}(\mathrm{dca})_{2}\right]$ (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni , with T_{c} values of 9 and 20 K respectively), there has been much research focused on using dca and other such poly-cyano ligands as precursors for molecule-based magnets. ${ }^{147,293}$

The structure of dca in its various resonance forms is shown in Figure 1.25. IR and Raman spectroscopic measurements and X-Ray structural analysis have shown that the dicyanamide ion has an angular planar structure, with a central $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle of approximately 120° and $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles of around $175^{\circ} .^{301}$

Figure 1.25 Resonance structures of dicyanamide (dca), the first linear structure is unfavourable.

Dicyanamide is capable of forming covalent and coordination bonds via the amide and/or nitrile nitrogens. The possible coordination modes of dca are shown in Figure 1.26. It has four lone pairs of electrons and thus it is possible for dca to act as a tetradentate
ligand. The rigid structure of dca and the disposition of donor atoms prevent metel chelation and favour multiple bridging.

Figure 1.26 Some possible coordination modes of dicyanamide (dca).

The binary $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ complexes were first described by Köhler in the mid 1960 s. ${ }^{297,298}$ He used spectroscopic studies to gain much insight into the structures of these compounds and their derivatives. ${ }^{301}$ Two phases were reported: $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ (where $\mathrm{M}^{\mathrm{II}}=$ $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Cu) and $\beta-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Co}$ and Zn). The α-phase contains octahedral metal centres and tridentate dca ligands, while the β-phase contains tetrahedral metal centres and bidentate dca ligands. It was not until 1998, when Batten et al. reported the crystal structure of $\alpha-\left[\mathrm{Cu}(\mathrm{dca})_{2}\right]$, that the structure of this phase was unambiguously determined. ${ }^{51}$ The structure, shown in Figure 1.27, consists of a single rutile-like network, and is described in more detail along with that of the related two-fold interpenetrated rutile-like $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ structure in Chapter 2 in relation to the selfpenetrating structure of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Figure 1.27 Rutile-like structure of $\alpha-\left[\mathrm{Cu}(\mathrm{dca})_{2}\right]$. Circles represent in order of decreasing size $\mathrm{Cu}, \mathrm{N}, \mathrm{C}$ (reproduced from reference 51).

In this paper Batten et al. ${ }^{51}$ reported the long-range ferromagnetic order exhibited by the $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni , complexes with T_{c} values of 9 and 20 K respectively. This was closely followed by reports of long-range order for the same and other rutile-like dca species, ${ }^{47,147,302-306}$ which are summarised in Table 1.3. $\alpha-\left[\mathrm{Cu}(\mathrm{dca})_{2}\right]$ was thought until very recently not to order magnetically. This was believed to be due to the presence of Jahn-Telier distortion, which elongates the axial $\mathrm{Cu}-\mathrm{N}_{\text {amide }}$ bonds, thus leading to weaker $\mathrm{Cu} \cdots \mathrm{Cu}$ magnetic interactions. Recently ferromagnetic order has been detected below 1.7 K^{307}

Table 1.3 Magnetic data summary for the rutile-like $\alpha-\left[M^{\mathrm{II}}(\mathrm{dca})_{2}\right]$ series, where $\mathrm{M}^{\mathrm{II}}=\mathrm{Cr}$, $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ and $\mathrm{Ni},(\mathrm{S}-\mathrm{C} \mathrm{AF}=$ spin-canted antiferromagnetic and $\mathrm{F}=$ ferromagnetic).

M^{II}	Type of Ordering	$T_{\mathbf{c}}$ or $T_{\mathrm{N}} / \mathrm{K}$	Coercive Field, $H_{c} /$ Oe	ref
Cr	$\mathrm{S}-\mathrm{C} \mathrm{AF}$	47	300	304
Mn	$\mathrm{S}-\mathrm{C} \mathrm{AF}$	16	$406^{(\mathrm{a})}$	47
Fe	$\mathrm{S}-\mathrm{C} \mathrm{AF}$	19	17800	303
Co	F	9	710	51
Ni	F	21	7975	303

(a) Miller et al. ${ }^{304}$ reported a value of 750 Oe

Köhler first reported the tetrahedral $\beta-\left[M(d c a)_{2}\right]$ series (where $M^{11}=M n, C o$ and $\mathrm{Zn}) .{ }^{297,301,308} \mathrm{In}$ fact, Zn^{11} does not form the rutile-like phase. The tetrahedral $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Co}{ }^{11}$ complexes can be obtained from depyridination of the corresponding [$\mathrm{M}^{\mathrm{II}}(\mathrm{dca})_{2}(\mathrm{py})_{2}$] complexes. ${ }^{297,302,306}$ The crystal structure of $\beta-\left[\mathrm{Zn}(\mathrm{dca})_{2}\right]$ was recently reported ${ }^{306,309}$ and consists of (interdigitated) corrugated 2D $(4,4)$ sheets of $\left[\mathrm{Zn}(\mathrm{dca})_{2}\right]$ with $\mu_{1,5}$-dca ligands (Figure 1.28). On the basis of powder X-ray diffraction data it is believed the tetrahedral Co^{11} complex adopts this same structure. ${ }^{306}$ Since Köhler's work no further reports of β $\left[\mathrm{Mn}(\mathrm{dca})_{2}\right.$] have appeared. ${ }^{301,308}$

Figure 1.28 The crystal structure of a single 2D (4,4) sheet of $\beta-\left[\mathrm{Zn}(\mathrm{dca})_{2}\right]$ (reproduced from $r e$ rence 306).

In recent years research groups worldwide have displayed imrnense interest in dca based coordination polymers with many containing co-ligands. ${ }^{310,311}$ In cases where such studies are particularly relevant to the present study, some of the recent literature will be discussed in the following chapters.

In recent papers by Schnick et al. on the alkaline earth dca compounds, [$\mathrm{M}(\mathrm{dca})_{2}$] (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}$, and Ba) and other dca related work, ${ }^{312-314}$ a different assignment of the IR spectrum of dca to that of Köhler's original work was used. ${ }^{301}$ They swapped the asymmetric $\left(v_{a s}(\mathrm{C} \equiv \mathrm{N})\right)$ and symmetric nitrile stretching modes $\left(\mathrm{v}_{\mathrm{s}}(\mathrm{C} \equiv \mathrm{N})\right.$). For consistency with previous work of Murray et al., the assignment of Köhler is retained in this thesis.

Another ligand included in this investigation was the pseudochalcogenide anion dicyanonitrosomethanide $\left(\mathrm{ONC}(\mathrm{CN})_{2}{ }^{-}\right.$, denm), otherwise known as nitrosodicyanomethanide, shown in Figure 1.29. This ligand has also been known for some time, ${ }^{315}$ with early work by Köhler et al., ${ }^{316-322}$ Chow and Britton, ${ }^{323,324}$ Skopenko et
al., ${ }^{320,321,325-330}$ and later research by Hvastijová and Jäger et al. ${ }^{331-340}$ featuring prominently.

Figure 1.29 The dicyanonitrosomethanide (dcnm) anion.

The first structurally characterised denm compound was Ag(denm), reported by Chow and Britton in $1974 .{ }^{323,324}$ In the structure, which consists of two interpenetrating 3D nets, dcnm is tetradentate, bridging four Ag atoms via both nitrile nitrogens and the nitroso oxygen and nitrogen atoms. ${ }^{76}$

Several other denm complexes have been investigated to date including lanthanide, ${ }^{326,330}$ main group, ${ }^{341,342}$ and transition metal complexes. ${ }^{335,343-349}$ From these structures it is clear that denm is an ambidentate ligand. Some of the coordination modes are shown in Figure 1.30. However, the structures of the simple binary compounds of the first row transition metals, $\left[M^{11}(d c n m)_{2}\right]$, have not been reported. This may be partly due to the tendency of denm to undergo a nucleophilic addition (at one of the nitrile carbon atoms) of solvent molecules (e.g. $\mathrm{H}_{2} \mathrm{O}$ and MeOH) upon coordination to form chelating ligands. Hvastijova et al. ${ }^{32,350}$ in particular have investigated this phenomenon, and it has been experimentally observed in the present study and is described in Chapter 9.

I

II

III

IV

v

VI

Figure 1.30 Some of the possible coordination modes of dicyanonitrosomethanide (dcnm) that have been structurally characterised: monodentate (I and II), bidentate (III, IV and V) and tetradentate (VI).

1.5 The Present Study

The encompassing theme of the present work is molecule-based magnetic materials. Initially, the project involved the synthesis, structural characterisation and magnetic properties of coordination polymers incorporating first row transition metals, dicyanamide or dicyanonitrosomethanide, and various co-ligands such as Schiff-bases. This work led to the discovery of several mixed valence manganese cluster complexes, which in turn led into the field of single-molecule magnets. This thesis is therefore broadly divided into two parts. Chapters 1 to 6 deal with polymeric coordination complexes, whereas Chapters 7 to 9 focus on the cluster studies. For the most part, each chapter is
designed to be self-contained with its own relevant introduction. As such, they need not be read sequentially. A brief summary of all subsequent chapters is provided below.

The majority of crystal structures presented in this thesis were solved by the candidate. For those solved by either Dr. Stuart Batten or Dr. Paul Jensen, due reference is made in the experimental section of each chapter where appropriate. Some crystallographic details, bond lengths and angles are given throughout the text, however full details (i.e. complete tables of bond lengths, angles, coordinates etc.) for all structures are to be found on the attached CD-ROM of Appendix 3.

Chapter 2 describes the structure and magnetic properties of a new moleculebased magnet $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. A hydrated derivative of the parent rutile-like α [$\mathrm{Mn}(\mathrm{dca})_{2}$] species, this complex possesses an interesting self-penetrated single network structure that can be considered a structural compromise between the single rutile net of α $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ and the doubly interpenetrated rutile-like $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ series. $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was discovered to exhibit long-range spin-canted antiferromagnetic order below a T_{N} value of 6.3 K. Additionally, the structures and magnetism of two closely related dca complexes containing terpyridine, $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right) \text { (terpy) }\right](\mathrm{dca})\right\}_{n}$, are discussed. The former complex has a linear 1D chain structure, and the latter also a linear chain structure but hydrogen bonds with the non-coordinated dca ligands form a pseudosheet structure. These two complexes display weak antiferromagnetic coupling.

In Chapter 3 an isostructural series of ID linear chain complexes containing salicylaldehyde derived Schiff-base ligands is investigated. The compounds are $\left[\mathrm{M}^{\mathrm{III}}(\mathrm{L})(\text { dca })\right]_{n}$, where $\mathrm{M}^{\mathrm{III}}=\mathrm{Mn}$ and $\mathrm{Fe} ; \mathrm{LH}_{2}=\operatorname{salenH}_{2} \quad\left(N, N^{\prime}-\right.$ ethylenebis(salicylideneimine)), sal-o-phenH ${ }_{2}$ ($N, N^{\prime}-o$-phenylenebis(salicylideneimine)) and (\pm)-saltchH $\mathrm{H}_{2}\left((\pm)-N, N^{\prime}\right.$-trans-cyclohexanebis(salicylidencimine)). These complexes
display weak antiferromagnetic coupling and are some of the first $\mathrm{M}^{\text {III }}$-dca compounds to be isolated and structurally characterised.

The structures and magnetism of two new chiral 3D framework types containing acetylacetone derived Schiff-based ligands are described in Chapter 4. The complexes $\left[\mathrm{M}^{\mathrm{II}}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe ; acenH ${ }_{2}=N, N^{\prime}$-ethylenebis(acetylacetoneimine), are isomorphous and consist of 3-fold helical $\left.\left\{\left[\mathrm{Fe}(\mu \text {-acenH })_{2}\right)\left(\mu_{1,5}-\mathrm{dca}\right)\right]^{+}\right\}_{n}$ motifs that are linked by $\mu_{1,5}$-dca ligands to form a chiral 3D network. They are the first examples of single networks with the unusual 'dense' $7^{5} 9$ topology. The second framework type is exhibited by the complexes $\left[M^{11}\left(\right.\right.$ actch $\left.\left._{2}\right)(\mathrm{dca})_{2}\right], M^{11}=\mathrm{Mn}$ and $\mathrm{Fe} ;(\pm)$-actchH $\mathbf{H}_{2}=(\pm)$ N, N^{\prime}-trans-1,2-cyclohexanebis(acetylacetoneimine). It consists of 2D square-grid (4,4) sheets of composition $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ that are connected in the third dimension by μ-actch H_{2} ligands. These links are 2-fold helices. This network type possesses an unprecedented topology with the Schläfli symbol $4^{8} \cdot 5^{4} \cdot 6^{3}$, and is compared to the α-polonium type net. These materials also display weak antiferromagnetic coupling. The structure of a mononuclear complex, trans-[$\left.\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{acenH}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$, was also investigated. It exhibits an unusual bis-chelating mode of acenH2.

Chapter 5 details the structures and magnetism of three anionic heteroleptic dca complexes. The first two compounds, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}^{\mathrm{H}}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni , have 2D square-grid sheets structures with $\mu_{1,5}$-dca and chelating nitrite groups. The compound $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ also possesses a chiral structure, consisting of linear anionic 1 D helical chains of $\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]^{-}$. It is the first air-stable tetrahedral cobalt(II) dca network complex. The magnetic properties of the $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{l} \mathrm{\prime}}=\mathrm{Co}$ and Ni , complexes are indicative of very weak antiferromagnetic exchange coupling occurring via $\mu_{1,5}$-dca bridges. Traces of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ are thought to be responsible for long-range ordering
effects observed in low fields but this is not definitive in the $\mathrm{Co}^{\mathrm{Il}}$ case. $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ displays very weak intra-chain antiferromagnetic coupling with no magnetic order.

A new manganese(III) complex, $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}^{2} \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, whose structure consists of infinite 1D linear chains that are hydrogen bonded to form 2D sheets, is described in Chapter 6. The complex displays weak intra-chain antiferromagnetic coupling at higher temperatures and a magnetic phase transition, at $T_{\mathrm{N}}=6.1 \mathrm{~K}$, to an ordered antiferromagnetic phase, probably mediated by the hydrogen bonding pathways. There is also a metamagnetic transition at $c a .1000 \mathrm{Oe}$ from the antiferromagnetic phase to a canted-spin antiferromagnetic (weak ferromagnetic) phase, brought about by increasing the applied field.

The fields of polynuclear cluster complexes with an emphasis on manganese oxo clusters, and single-molecule magnets are reviewed in Chapter 7.

The structures and magnetism of a new manganese(III/IV) carboxylate cluster, $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and a new 1D linear manganese(III) complex, $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mathrm{OAc})_{2}\right]$, are detailed in Chapter 8 . Detailed magnetic measurements have shown the Mn_{16} complex to be a new single-molecule magnet. The linear chain complex displays weak antiferromagnetic coupling.

The final chapter, Chapter 9, investigates the structures and magnetic properties of trinuclear and tetranuciear mixed valent manganese complexes, $\left[\mathrm{Mn}_{3}(\text { mcoe })_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (where mcoe $=$ methyl $(2$-cyano-2-hydroxyimino)ethanimidate, $\mathrm{ONC}(\mathrm{CN}) \mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}{ }^{-}$; and cao $=$cyanoacetamidoximate $\mathrm{ON}=\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right)$). Separately, two mononuclear complexes were also isolated, $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. These are also discussed. The chelatingbridging ligands mcoe and cao were formed in situ by nucleophilic addition of solvent to denm.

1.6 References

1. P. Day, Science, 1993, 261, 431.
2. J. S. Miller and A. J. Epstein, Angew. Chem., Int. Ed. Engl., 1994, 33, 385.
3. M. Pilkington, M. Gross, P. Franz, M. Biner, S. Decurtins, H. Stoeckli-Evans, and A. Neels, J. Solid State Chem., 2001, 159, 262.
4. P. Day and A. E. Underhill, Phil. Trans. R. Soc. London A, 1999, 357, 2851.
5. M. Faraday, Phil. Trans. R. Soc. London A, 1832, 122, 125.
6. H. H. Wickman, A. M. Trozzolo, H. J. Williams, G. W. Hull, and F. R. Merritt, Phys. Rev., 1967, 155, 563.
7. H. H. Wickman and A. M. Trozzolo, Inorg. Chem., 1968, 7, 63.
8. H. H. Wickman, J. Chem. Phys., 1972, 56, 976.
9. C. G. Barraclough, R. L. Martin, S. Mitra, and R. C. Sherwood, J. Chem. Phys., $1970,53,1638$.
10. C. G. Barraclough, A. K. Gregson, and S. Mitra, J. Chem. Phys., 1974, 60, 962.
11. H. Miyoshi, H. Ohya-Nishiguchi, and Y. Deguchi, Bull. Chem. Soc. Jpn., 1972, 45, 682.
12. A. K. Gregson and N. T. Moxon, Inorg. Chem., 1982, 21, 3464.
13. A. K. Gregson, P. Day, D. H. Leech, M. J. Fair, and W. E. Gardner, J. Chem. Soc., Dalton Trans., 1975, 1306.
14. C. Bellitto and P. Day, J. Chem. Soc., Dalton Trans., 1978, 1207.
15. P. Day, Acc. Chem. Res., 1979, 12, 236.
16. C. Bellitto and P. Day, J. Mater. Chem., 1992, 2, 265.
17. P. Day, J. Chem. Soc., Dalton Trans., 1997, 701.
18. R. L. Carlin, K. Kopinga, O. Kahn, and M. Verdaguer, Inorg. Chem., 1986, 25, 1786.
19. R. L. Carlin and A. J. van Duyneveldt, Magnetic Properties of Transition Metal Compounds, Springer-Verlag, New York, 1977, and references therein.
20. L. J. De Jongh and A. R. Miedema, Adv. Phys., 1974, 23, 1.
21. P. Jensen, The Synthesis, Structure and Magnetism of Coordination Polymers Incorporating Dicyanamide, Ph.D. Thesis, Monash University, Clayton, 2002.
22. J. S. Miller, P. J. Krusic, A. J. Epstein, W. M. Reiff, and J. H. Zhang, Mol. Cryst. Liq. Cryst., 1985, 120, 27.
23. S. Chittipeddi, K. R. Cromack, J. S. Miller, and A. J. Epstein, Phys. Rev. Lett., 1987, 58, 2695.
24. J. S. Miller, A. J. Epstein, and W. M. Reiff, Chem. Rev., 1988, 88, 201.
25. J. M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein, and J. S. Miller, Science, 1991, 252, 1415.
26. B. G. Morin, C. Hahm, J. S. Miller, and A. J. Epstein, J. Appl. Phys., 1994, 75, 5782.
27. D. Gatteschi, Adv. Mater., 1994, 6, 635.
28. J. S. Miller and A. J. Epstein, ACS Symposium Series, 1996, 644, 1.
29. J. S. Miller and A. J. Epstein Eds., Molecule Based Magnets, MRS Bulletin, 2000, 25, series of review articles, pp. 21-71.
30. J. H. van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932.
31. F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall, London, 1973.
32. D. C. Mattis, The Theory of Magnetism I, Springer, Berlin, 1981.
33. S. J. Blundell, Magnetism in Condensed Matter, Oxford University Press, Oxford, 2001.
34. B. N. Figgis, Introduction to Ligand Fields, Interscience, New York, 1966.
35. O. Kahn, Molecular Magnetism, VCH, New York, 1993.
36. R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, John Wiley \& Sons, New York, 1985.
37. K. S. Murray, Adv. Inorg. Chem., 1995, 43, 261.
38. M. Gerloch, Progr. Inorg. Chem., 1979, 26, 1.
39. B. N. Figgis and R. L. Martin, J. Chem. Soc., 1956, 3837.
40. R. L. Martin, in New Pathways in Inorganic Chemistry, Eds. E. A. V. Ebsworth, A. G. Maddock, and A. G. Sharpe, Cambridge University Press, 1968, 175.
41. A. P. Ginsberg, Inorg. Chim. Acta Rev., 1971, 5, 45.
42. O. Kahn, Struct. Bonding, 1987, 68, 89.
43. V. A. Ung, S. M. Couchman, J. C. Jeffery, J. A. McCleverty, M. D. Ward, F. Totti, and D. Gatteschi, Inorg. Chem., 1999, 38, 365.
44. J. S. Miller and A. J. Epstein, MRS Bulletin, 2000, 25, 21.
45. J. S. Miller, Inorg. Chem., 2000, 39, 4392.
46. J. S. Miller and A. J. Epstein, Coord. Chem. Rev., 2000, 206-207, 651.
47. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
48. W. E. Buschmann, J. Ensling, P. Gutlich, and J. S. Miller, Chem. Eur. J., 1999, 5, 3019.
49. O. Kahn, Nature, 1995, 378, 667.
50. O. Kahn, Adv. Inorg. Chem., 1995, 43, 179.
51. S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and R. Robson, Chem. Commun., 1998, 439.
52. D. J. Price, Synthesis and Magnetic Studies of Molecular Magnetic Materials Containing the Dicyanamide Ligand, B.Sc. Honours Thesis, Monash University, Clayton, 1998.
53. J. Larionova, O. Kahn, J. Bartolome, R. Burriel, M. Castro, V. Ksenofontov, and P. Gütlich, Chem. Mater., 1999, 11, 3400.
54. H. Kumagai, C. J. Kepert, and M. Kurmoo, Inorg. Chem., 2002, 41, 3410.
55. J. C. Bailar, Jr., Chem. Soc. Spec. Publ., 1961, 15, 51.
56. E. J. Friihauf and J. C. Bailar, Jr., J. Inorg. Nucl. Chem., 1962, 24, 1205.
57. J. S. Oh and J. C. Bailar, Jr., J. Inorg. Nucl. Chem., 1962, 24, 1225.
58. S. R. Batten and K. S. Murray, Aust. J. Chem., 2001, 54, 605.
59. R. Robson, J. Chem. Soc., Dalton Trans., 2000, 3735.
60. S. R. Batten, Curr. Opin. Solid State Mater. Sci., 2001, 5, 107.
61. A. J. Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. A. Withersby, and M. Schroder, Coord. Chem. Rev., 1999, 183, 117.
62. M. O'Keeffe, M. Eddaoudi, H. Li, T. Reineke, and O. M. Yaghi, J. Solid State Chem., 2000, 152, 3.
63. B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
64. O. M. Yaghi, H. Li, C. Davis, D. Richardson, and T. L. Groy, Acc. Chem. Res., 1998, 31, 474.
65. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319.
66. M. Munakata, L. P. Wu, and T. Kuroda-Sowa, Adv. Inorg. Chem., 1998, 46, 173.
67. S. Kitagawa and M. Kondo, Bull. Chem. Soc. Jpn., 1998, 71, 1739.
68. P. J. Hagrman, D. Hagrman, and J. Zubieta, Angew. Chem., Int. Ed., 1999, 38, 2638.
69. D. M. L. Goodgame, S. Menzer, A. M. Smith, and D. J. Williams, J. Chem. Soc., Dalton Trans., 1997, 3213.
70. L. Carlucci, G. Ciani, D. M. Proserpio, and A. Sironi, Chem. Commun., 1994, 2755.
71. O. R. Evans, Z. Wang, R.-G. Xiong, B. M. Foxman, and W. Lin, Inorg. Chem., 1999, 38, 2969.
72. K. A. Hirsch, S. R. Wilson, and J. S. Moore, Chem. Eur. J., 1997, 3, 765.
73. C. J. Kepert and M. J. Rosseinsky, Chem. Commun., 1998, 31.
74. B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1990, 112, 1546.
75. S. R. Batten, A. R. Harris, P. Jensen, K. S. Murray, and A. Ziebell, J. Chem. Soc., Dalton Trans., 2000, 3829.
76. S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460.
77. A. F. Wells, Further Studies of Three Dimensional Nets, ACA Monograph No. 8, American Crystallographic Association, 1979.
78. A. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley-Interscience, New York, 1977.
79. L. Carlucci, G. Ciani, P. Macchi, and D. M. Proserpio, Chem. Commun., 1998, 1837.
80. P. Jensen, D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Eur. J., 2000, 6, 3186.
81. J. S. Miller and A. J. Epstein, Chem. Eng. News, 1995, 30.
82. P. Day and A. E. Underhih Eds., Metal-Organic and Organic Molecular Magnets, Phil. Trans. R. Soc. London A, RSC, London, 1999, 357, 2849, see articles therein.
83. D. Gatteschi, O. Kahn, J. S. Miller, and F. Palacio Eds., Magnetic Molecular Materials, Kluwer Academic, Dordrecht (NATO Scientific Affairs), 1991.
84. G. Christou Eds., The International Conference on Molecule Based Magnetism (ICCM), Polyhedron, 2001, 20.
85. K. R. Dunbar Eds., New Horizons for Magnetic Solids Based on Molecules, J. Solid State Chem., 2001, 159, 251-467.
86. J. Schweizer, A. Bencini, C. Carbonera, A. J. Epstein, S. Golhen, E. LelievreBerna, J. S. Miller, L. Ouahab, Y. Pontillon, E. Ressouche, and A. Zheludev, Polyhedron, 2001, 20, 1771
87. M. Balanda, K. Falk, K. Griesar, Z. Tomkowicz, and W. Haase, J. Magn. Magn. Mater., 1999, 205, 14.
88. D. K. Rittenberg and J. S. Miller, Inorg. Chem., 1999, 38, 4838.
89. K. Falk, M. Balanda, Z. Tomkowicz, F. Mascarenhas, J. Schilling, P. Klavins, and W. Haase, Polyhedron, 2001, 20, 1521.
90. K.-i. Sugiura, S. Mikami, M. T. Johnson, J. W. Raebiger, J. S. Miller, K. Iwasaki, Y. Okada, S. Hino, and Y. Sakata, J. Mater. Chem., 2001, 11, 2152.
91. K. Falk, R. Wemer, Z. Tomkowicz, M. Balanda, and W. Haase, J. Magn. Magn. Mater., 1999, 196-197, 564.
92. M. Balanda, K. Falk, K. Griesar, Z. Tomkowicz, T. Wasiutynski, and W. Haase, Mol. Cryst. Liq. Cryst., 1999, 335, 845.
93. K. Griesar, M. A. Athanassopoulou, E. A. Soto Bustamante, Z. Tomkowicz, A. J. Zaleski, and W. Haase, Adv. Mater., 1997, 9, 45.
94. A. Boehm, C. Vazquez, R. S. McLean, J. C. Calabrese, S. E. Kalm, J. L. Manson, A. J. Epstein, and J. S. Miller, Izorg. Chem., 1996, 35, 3083.
95. J. S. Miller, J. C. Calabrese, R. S. McLean, and A. J. Epstein, Adv. Mater., 1992, 4, 498.
96. C. Kollmar and O. Kahn, J. Chem. Phys., 1992, 96, 2988.
97. M. T. Johnson, A. M. Arif, and J. S. Miller, Eur. J. Inorg. Chem., 2000, 1781.
98. K.-I. Sugiura, S. Mikami, M. T. Johnson, J. S. Miller, K. Iwasaki, K. Umishita, S. Hino, and Y. Sakata, Chem. Lett., 1999, 925.
99. K.-i. Sugiura, S. Mikami, M. T. Johnson, J. S. Miller, K. Iwasaki, K. Umishita, S. Hino, and Y. Sakata, J. Mater. Chem., 2000, 10, 959.
100. D. K. Rittenberg, K.-i. Sugiura, A. M. Arif, Y. Sakata, C. D. Incarvito, A. L. Rheingoid, and J. S. Miller, Chem. Eur. J., 2000, 6, 1811.
101. C. M. Wynn, M. A. Girtu, J. S. Miller, and A. J. Epstein, Phys. Rev. B, 1997, 56, 315.
102. A. J. Epstein, C. M. Wynn, M. A. Girtu, W. B. Brinckerhoff, K. I. Sugiura, and J. S. Miller, Mol. Cryst. Liq. Cryst., 1997, 305, 321.
103. C. M. Wynn, M. A. Girtu, J. S. Miller, and A. J. Epstein, Phys. Rev. B, 1997, 56, 14050.
104. K.-i. Sugiura, A. M. Arif, D. K. Rittenberg, J. Schweizer, L. Öhrstrom, A. J. Epstein, and J. S. Miller, Chem. Eur. J., 1997, 3, 138.
105. J. Zhang, J. S. Miller, C. Vazquez, P. Zhou, W. B. Brinckerhoff, and A. J. Epstein, ACS Symposium Series, 1996, 644, 311.
106. K. I. Pokhodnya, A. J. Epstein, and J. S. Miller, Adv. Mater., 2000, 12, 410.
107. O. Hatlevik, W. E. Buschmann, J. Zhang, J. L. Manson, and J. S. Miller, Adv. Mater., 1999, 11, 914.
108. K. I. Pokhodnya, D. Pejakovic, A. J. Epstein, and J. S. Miller, Phys. Rev. B, 2001, 63, 174408.
109. J. Zhang, J. Ensling, V. Ksenofontov, P. Gütlich, A. J. Epstein, and J. S. Miller, Angew. Chem., Int. Ed., 1998, 37, 657.
110. A. G. Sharpe, The Chemistry of the Cyano Complexes of the Transition Metals, Academic Press, 1976.
111. K. R. Dunbar and R. A. Heintz, Progr. Inorg. Chem., 1997, 45, 283.
112. M. Verdaguer, A. Bleuzen, C. Train, R. Garde, F. F. De Biani, and C. Desplanches, Phil. Trans. R. Soc. London A, 1999, 357, 2959.
113. M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Coord. Chem. Rev., 1999, 190192, 1023.
114. W. R. Entley, C. R. Treadway, and G. S. Girolarni, Mol. Cryst. Liq. Cryst., 1995, 273, 591.
115. M. Ohba and H. Okawa, Coord. Chem. Rev., 2000, 198, 313.
116. J. S. Miller, MRS Bulletin, 2000, 25, 60.
117. Anonymous, Misc. Berolinesia and Incrementum Sci. (Berlin), 1710, 1, 377.
118. J. Woodward, Phil. Trans., 1724, 33, 15.
119. H. M. Powell, Proc. Chem. Soc., 1959, 73.
120. D. Davidson and L. A. Welo, J. Phys. Chem., 1928, 32, 1191.
121. R. M. Bozorth, H. J. Williams, and D. E. Walsh, Phys. Rev., 1956, 103, 572.
122. A. Ito, M. Suenaga, and K. Ono, J. Chem. Phys., 1968, 48, 3597.
123. B. Mayoh and P. Day, J. Chem. Soc., Dalton Trans., 1976, 1483.
124. J. F. Keggin and F. D. Miles, Nature, 1936, 137, 577.
125. H. J. Buser, A. Ludi, W. Petter, and D. Schwarzenbach, Chem. Comrnun., 1972, 1299.
126. A. Ludi and H. U. Güdel, Struct. Bonding, 1973, 14, 1.
127. A. Goujon, F. Varret, V. Escax, A. Bleuzen, and M. Verdaguer, Polyhedron, 2001, 20, 1339.
128. T. Mallah, S. Thiébaut, M. Verdaguer, and P. Veillet, Science, 1993, 262, 1554.
129. S. M. Holmes and G. S. Girolami, Mol. Cryst. Liq. Cryst., 1997, 305, 279.
130. R. Klenze, B. Kanellakopulos, G. Trageser, and H. H. Eysel, J. Chem. Phys., 1980, 72, 5819.
131. W. D. Griebler and D. Babel, Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1982, 37, 832.
132. D. Babel, Comments Inorg. Chem., 1986, 5, 285.
133. W. Kurtz and D. Babel, Solid State Commun., 1983, 48, 277.
134. V. Gadet, T. Mallah, I. Castro, M. Verdaguer, and P. Veillet, J. Am. Chem. Soc., 1992, 114, 9213.
135. S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, and M. Verdaguer, Nature, 1995, 378, 701.
136. T. Mallah, S. Ferlay, C. Auberger, C. Helary, F. L'Hermite, R. Ouahes, J. Vaissermann, M. Verdaguer, and P. Veillet, Mol. Cryst. Liq. Cryst., 1995, 273, 579.
137. M. A. Arrio, P. Sainctavit, C. Cartier, C. Brouder, F. M. F. de Groot, T. Mallah, and M. Verdaguer, J. Phys. Chem., 1996, 100, 4679.
138. B. Siberchicot, T. Mallah, and M. Verdaguer, J. Magn. Magn. Mater., 1996, 157/158, 417.
139. E. Dujardin, S. Ferlay, X. Phan, C. Desplanches, C. C. dit Moulin, P. Sainctavit, F. Baudelet, P. Veillet, and M. Verdaguer, J. Am. Chem. Soc., 1998, 120, 11347.
140. S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, and M. Verdaguer, Inorg. Chem., 1999, 38, 229.
141. R. Garde, C. Desplanches, A. Bleuzen, P. Veillet, and M. Verdaguer, Mol. Cryst. Liq. Cryst., 1999, 334, 587.
142. F. Varret, A. Goujon, K. Boukheddaden, M. Nogues, A. Bleuzen, and M. Verdaguer, Mol. Cryst. Liq. Cryst., 2002, 379, 333.
143. W. R. Entley and G. S. Girolami, Inorg. Chem., 1994, 33, 5165.
144. W. R. Entley and G. S. Girolami, Science, 1995, 268, 397.
145. K. Awaga, T. Sekine, M. Okawa, W. Fujita, S. M. Holmes, and G. S. Girolami, Chem. Phys. Lett., 1998, 293, 352.
146. S. M. Holmes and G. S. Girolami, J. Am. Chem. Soc., 1999, 121, 5593.
147. J. S. Miller and J. L. Manson, Acc. Chem. Res., 2001, 34, 563.
148. K. Van Langenberg, Molecular-Based Magnetic Materials Incorporating Bis- and Tris(pyrazolyl)methane Transition Metal Complexes, Ph.D. Thesis, Monash University, Clayton, 1999.
149. V. Gadet, M. Bujoli-Doeuff, L. Force, M. Verdaguer, K. El Malkhi, A. Deroy, J. P. Besse, C. Chappert, P. Veillet, and J. P. Beauvillian, NATO ASI Ser., Ser. E, 1991, 198, 281.
150. M. Clemente-Leon, E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, and E. Canadell, Inorg. Chem., 2000, 39, 5394.
151. F. Bellouard, M. Clemente-Leon, E. Coronado, J. R. Galan-Mascaros, C. Gimenez-Saiz, C. J. Gomez-Garcia, and T. Woike, Polyhedron, 2001, $20,1615$.
152. Z.-Z. Gu, Y. Einaga, O. Sato, A. Fujishima, and K. Hashimoto, J. Solid State Chem., 2001, 159, 336.
153. D. Babel, Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1982, 37, 1534.
154. D. Babel and W. Kurtz, Stud. Inorg. Chem., 1983, 3, 593.
155. H. Henkel and D. Babel, Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1984, 39, 880.
156. M. Witzel and D. Babel, Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1985, 40, 1344.
157. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, Science, 1996, 272, 704.
158. O. Sato, Z. Gu, H. Etoh, J.-i. Ichiyanagi, T. Iyoda, A. Fujishima, and K. Hashimoto, Chem. Lett., 1997, 37.
159. O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, and K. Hashimoto, J. Electrochem. Soc., 1997, 144, L11.
160. O. Sato, Y. Einaga, A. Fujishima, and K. Hashimoto, Inorg. Chem., 1999, 38, 4405.

16:. Y. Einaga, O. Sato, T. lyoda, Y. Kobashi, F. Ambe, K. Hashimoto, and A. Fujishima, Chem. Lett., 1997, 289.
162. N. Shimamoto, S. Ohkoshi, O. Sato, and K. Hashimoto, Mol. Cryst. Liq. Cryst., $2000,344,95$.
163. A. Bleuzen, C. Lomenech, A. Dolbecq, F. Villain, A. Goujon, O. Roubeau, M. Nogues, F. Varret, F. Baudelet, E. Dartyge, C. Giorgetti, J.-J. Gallet, C. C. D. Moulin, and M. Verdaguer, Mol. Cryst. Liq. Cryst., 1999, 335, 965.
164. A. J. Epstein, MRS Bulletin, 2000, 25, 33.
165. D. A. Pejakovic, J. L. Manson, J. S. Miller, and A. J. Epstein, Phys. Rev. Lett., 2000, 85, 1994.
166. D. A. Pejakovic, J. L. Manson, C. Kitamura, J. S. Miller, and A. J. Epstein, Polyhedron, 2001, 20, 1435.
167. D. A. Pejakovic, J. L. Manson, J. S. Miller, and A. J. Epstein, Synth. Met., 2001, 122, 529.
168. D. A. Pejakovic, J. L. Manson, C. Kitamura, J. S. Miller, and A. J. Epstein, Mol. Cryst. Liq. Cryst., 2002, 374, 289.
169. A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, and M. Verdaguer, J. Am. Chem. Soc., 2000, 122, 6648.
170. C. Cartier dit Moulin, F. Villain, A. Bleuzen, M.-A. Arrio, P. Sainctavit, C. Lomenech, V. Escax, F. Baudelet, E. Dartyge, J.-J. Gallet, and M. Verdaguer, J. Am. Chem. Soc., 2000, 122, 6653.
171. V. Escax, A. Bleuzen, C. Cartier dit Moulin, F. Villain, A. Goujon, F. Varret, and M. Verdaguer, J. Am. Chem. Soc., 2001, 123, 12536.
172. G. Champion, V. Escax, C. Cartier dit Moulin, A. Bleuzen, F. Villain, F. Baudelet, E. Dartyge, and M. Verdaguer, J. Am. Chem. Soc., 2001, 123, 12544.
173. A. Goujon, F. Varret, V. Escax, A. Bleuzen, and M. Verdaguer, Polyhedron, 2001, 20, 1347.
174. F. Varret, H. Constant-Machado, J. L. Dormann, A. Goujon, J. Jeftic, M. Nogues, A. Bousseksou, S. Klokishner, A. Dolbecq, and M. Verdaguer, Hyperfine Interact., 1998, 113, 37.
175. S.-i. Ohkoshi, A. Fujishima, and K. Hashimoto, J. Am. Chem. Soc., 1998, 120, 5349.
176. S. i. Ohkoshi, Y. Einaga, A. Fujishima, and K. Hashimoto, J. Electroanal. Chem., 1999, 473, 245.
177. O. Kahn, Phil. Trans. R. Soc. London A, 1999, 357, 3005.
178. J. Larionova, J. Sanchiz, S. Golhen, L. Ouahab, and O. Kahn, Chem. Commun., 1998, 953.
179. J. Larionova, R. Clérac, J. Sanchiz, O. Kahn, S. Golhen, and L. Ouahab, J. Am. Chem. Soc., 1998, 120, 13088.
180. J. Larionova, O. Kahn, S. Golhen, L. Ouahab, and R. Clerac, Inorg. Chem., 1999, 38, 3621.
181. S. Tanase, F. Tuna, P. Guionneau, T. Maris, G. Rombaut, C. Mathoniere, M. Andruh, O. Kahn, and J.-P. Sutter, Inorg. Chem., 2003, 42, 1625.
182. Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, M. Verdaguer, S.-i. Ohkoshi, and K. Hashimoto, Inorg. Chem., 2000, 39, 5095.
183. W. E. Buschmann, A. M. Arif, and J. S. Miller, Angew. Chem., Int. Ed., 1998, 37, 781.
184. J. L. Manson, W. E. Buschmann, and J. S. Miller, Angew. Chem., Int. Ed., 1998, 37, 783.
185. L. G. Beauvais and J. R. Long, J. Am. Chem. Soc., 2002, 124, 12096.
186. F. Bellouard, M. Clemente-Leon, E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, F. Romero, and K. R. Dunbar, Eur. J. Inorg. Chem., 2002, 1603.
187. J. A. Smith, J.-R. Galan-Mascaros, R. Clérac, and K. R. Dunbar, Chem. Commun., 2000, 1077.
188. E. Coronado, C. J. Gomez-Garcia, A. Nuez, F. M. Romero, E. Rusanov, and h. Stoeckli-Evans, Inorg. Chem., 2002, 41.
189. N. Fukita, M. Ohba, and H. Okawa, Mol. Cryst. Liq. Cryst., 2000, 342, 217.
190. T. Mallah, A. Marvilliers, and E. Riviere, Phil. Trans. R. Soc. London A, 1999, 357, 3139.
191. N. Usuki, M. Ohba, and H. Okawa, Mol. Cryst. Liq. Cryst., 2002, 376, 59.
192. N. Usuki, M. Ohba, and H. Okawa, Bull. Chem. Soc. Jpn., 2002, 75, 1693.
193. H. Okawa and M. Ohba, Bull. Chem. Soc. Jpn., 2002, 75, 1191.
194. M. Ohba, M. Yamada, N. Usuki, and H. Okawa, Mol. Cryst. Liq. Cryst., 2002, 379, 241.
195. M. Ohba, T. Iwamoto, and H. Okawa, Chem. Lett., 2002, 1046.
196. N. Usuki, M. Yamada, M. Ohba, and H. Okawa, J. Solid State Chem., 2001, 159, 328.
197. K. Inoue, H. Imai, P. S. Ghalsasi, K. Kikuchi, M. Ohba, H. Okawa, and J. V. Yakhmi, Angew. Chem., Int. Ed., 2001, 40, 4242.
198. M. Ohba, N. Usuki, N. Fukita, and H. Okawa, Angew. Chem., Int. Ed., 1999, 38, 1795.
199. H. Miyasaka, N. Matsumoto, N. Re, E. Gallo, and C. Floriani, Inorg. Chem., 1997, 36, 670.
200. S. Ferlay, T. Mallah, J. Vaissermann, F. Bartolome, P. Veillet, and M. Verdaguer, Chem. Commun., 1996, 2481.
201. K. Van Langenberg, S. R. Batten, K. J. Berry, D. C. R. Hockless, B. Moubaraki, and K. S. Murray, Inorg. Chem., 1997, 36, 5006.
202. M. Ohba, N. Maruono, H. Okawa, T. Enoki, and J.-M. Latour, J. Am. Chem. Soc., 1994, 116, 11566.
203. M. Ohba, N. Fukita, and H. Okawa, J. Chem. Soc., Dalton Trans., 1997, 1733.
204. H. Okawa and M. Ohba, ACS Symposium Series, 1996, 644, 319.
205. J. Y. Yang, M. P. Shores, J. J. Sokol, and J. R. Long, Inorg. Chem., 2003, 42, 1403.
206. M. Ohba, H. Okawa, T. Ito, and A. Ohto, Chem. Commun., 1995, 1545.
207. M. Ohba, H. Okawa, N. Fukita, and Y. Hashimoto, J. Am. Chem. Soc., 1997, 119, 1011.
208. H. Miyasaka, N. Matsumoto, H. Okawa, N. Re, E. Gallo, and C. Floriani, Angew. Chem., Int. Ed. Engl., 1995, 34, 1446.
209. H. Miyasaka, N. Matsumoto, H. Okawa, N. Re, E. Gallo, and C. Floriani, J. Am. Chem. Soc., 1996, 118, 981.
210. N. Re, E. Gallo, C. Floriani, H. Miyasaka, and N. Matsumoto, Inorg. Chem., 1996, 35, 5964.
211. H. Miyasaka, H. Ieda, N. Matsumoto, N. Re, R. Crescenzi, and C. Floriani, Inorg. Chem., 1998, 37, 255.
212. H. Miyasaka, H. Okawa, A. Miyazaki, and T. Enoki, Inorg. Chem., 1998, 37, 4878.
213. N. Fukita, M. Ohba, H. Okawa, K. Matsuda, and H. Iwamura, Inorg. Chem., 1998, 37, 842.
214. M. S. El Fallah, E. Rentschler, A. Caneschi, R. Sessoli, and D. Gatteschi, Angew. Chem., Int. Ed. Engl., 1996, 35, 1947.
215.
J. M. Herrera, D. Armentano, G. de Munno, F. Lloret, M. Julve, and M. Verdaguer, New J. Chem., 2003, 27, 128.
216. R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, and M. Verdaguer, Inorg. Chem., 2002, 41, 818.
217. R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, M. Verdaguer, R. Llusar, and S. Uriel, Inorg. Chem., 2001, 40, 2065.
218. T. Mallah, C. Auberger, M. Verdaguer, and P. Veillet, Chem. Commun., 1995, 61.
219. A. Scuiller, T. Mallah, M. Verdaguer, A. Nivorozkhin, J.-L. Tholence, and P. Veillet, New J. Chem., 1996, $20,1$.
220. A. Scuiller, V. Marvaud, J. Vaissermann, I. Rosenman, and M. Verdaguer, Mol. Cryst. Liq. Cryst., 1999, 335, 1165.
221. Z. Salman, A. Keren, P. Mendels, A. Scuiller, and M. Verdaguer, Physica B, 2000, 289\&290, 106.
222. J. A. Smith, J.-R. Galan-Mascaros, R. Clerac, J.-S. Sun, X. Ouyang, and K. R. Dunbar, Polyhedron, 2001, 20, 1727.
223. A. Marvilliers, C. Hortholary, G. Rogez, J.-P. Audiere, E. Riviere, J. Cano Boquera, C. Paulsen, V. Villar, and T. Mallah, J. Solid State Chem., 2001, 159, 302.
224. J. Larionova, M. Gross, M. Pilkington, H. Andres, H. Stoeckli-Evans, H.-U. Güdel, and S. Decurtins, Angew. Chem., Int. Ed., 2000, 39, 1605.
225. J. L. Heinrich, J. J. Sokol, A. G. Hee, and J. R. Long, J. Solid Siate Chem., 2001, 159, 293.
226. M. P. Shores, J. J. Sokol, and J. R. Long, J. Am. Chem. Soc., 2002, 124, 2279.
227. J. J. Sokol, M. P. Shores, and J. R. Long, Inorg. Chem., 2002, 41, 3052.
228. J. J. Sokel, A. G. Hee, and J. R. Long, J. Am. Chem. Soc., 2002, 124, 7656.
229. R. J. Parker, D. C. R. Hockless, B. Moubaraki, K. S. Murray, and L. Spiccia, Chem. Commun., 1996, 2789.
230. R. J. Parker, L. Spiccia, G. D. Fallon, B. Moubaraki, K. S. Murray, and K. J. Berry, Chem. Commun., 2001, 333.
231. K. Van Langenberg, D. C. R. Hockless, B. Moubaraki, and K. S. Murray, Synth. Met., 2001, 122, 573.
K. R. Dunbar, private communication to K. S. Murray, 2002.
233. Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, A. Fujishima, S.-i. Ohkoshi, and K. Hashimoto, J. Am. Chem. Soc., 2000, 122, 2952.
234. O. Kahn, Acc. Chem. Res., 2000, 33, 647.
235.
C. J. Nuttall, C. Bellitto, and P. Day, Chem. Commun., 1995, 1513.
236. S. G. Carling, C. Mathonière, P. Day, K. M. A. Malik, S. J. Coles, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1996, 1839.
237. C. Mathoniere, C. J. Nuttall, S. G. Carling, and P. Day, Inorg. Chem., 1996, 35, 1201.
238. P. Day, Mol. Cryst. Liq. Cryst., 1997, 305, 533.
239. M. Hernández-Molina, F. Lloret, C. Ruiz-Pérez, and M. Julve, Inorg. Chem., 1998, 37, 4131.
240. J. Larionova, B. Mombelli, J. Sanchiz, and O. Kahn, Inorg. Chem., 1998, 37, 679.
241. C. J. Nuttall and P. Day, Chem. Mater., 1998, 10, 3050.
242. C. J. Nuttall and P. Day, Inorg. Chem., 1998, 37, 3885.
243. R. Andres, M. Gruselle, B. Malezieux, M. Verdaguer, and J. Vaissermann, Inorg. Chem., 1999, 38, 4637.
244. A. Bhattacharjee, Solid State Commun., 1999, 111, 601.
245. A. Bhattacharjee, R. Feyerherm, and M. Steiner, J. Magn. Magn. Mater., 1999, 195, 336.
246. C. J. Nuttall and P. Day, J. Solid State Chem., 1999, 147, 3.
247. C. J. Nuttall, S. G. Carling, and P. Day, Mol. Cryst. Liq. Cryst., 1999, 334, 615.
248. K. Awaga, E. Coronado, and M. Drillon, MRS Bulletin, 2000, 25, 52.
249. M. G. F. Vaz, L. M. M. Pinheiro, H. O. Stumpf, A. F. C. Alcantara, S. Golhen, L. Ouahab, O. Cador, C. Mathonière, and O. Kahn, Chem. Eur. J., 1999, 5, 1486.
250. S. Benard, P. Yu, J. P. Audiere, E. Riviere, R. Clement, J. Guilhem, L. Tchertanov, and K. Nakatani, J. Am. Chem. Soc., 2000, 122, 9444.
251.
E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, and V. Laukhin, Nature, 2000, 408, 447.
252. E. Coronado, J.-R. Galan-Mascaros, C.-J. Gomez-Garcia, J. Ensling, and P. Gutlich, Chem. Eur. J., 2000, 6, 552.
253. O. Cador, M. G. F. Vaz, H. O. Stumpf, C. Mathoniere, and O. Kahn, Synth. Met., 2001, 122, 559.
254. S. Benard, E. Riviere, P. Yu, K. Nakatani, and J. F. Delouis, Chem. Mater., 2001, $13,159$.
255. S. G. Carling, P. Day, and C. J. Nuttall, Spectrochim. Acta, Part A, 2001, 57, 1971.
256. S. G. Carling and P. Day, Polyhedron, 2001, 20, 1525.
257. E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, and J. M. MartinezAgudo, Inorg. Chem., 2001, 40, 113.
258. E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, J. M. Martinez-Agudo, E. Martinez-Ferrero, J. C. Waerenborgh, and M. Almeida, J. Solid State Chem., 2001, 159, 391.
259. M. Gruselle, R. Andres, B. M. M. Brissard, C. Train, and M. Verdaguer, Chirality, 2001, 13, 712.
260. I. D. Watts, S. G. Carling, and P. Day, J. Chem. Soc., Dalton Trans., 2002, 1429.
261. D. Armentano, G. de Munno, F. Lloret, M. Julve, J. Curely, A. M. Babb, and J. Y. Lu, New J. Chem., 2003, 27, 161.
262. Z. J. Zhong, N. Matsumoto, H. Okawa, and S. Kida, Chem. Lett., 1990, 87.
263. M. Ohba, H. Tamaki, N. Matsumoto, H. Okawa, and S. Kida, Chem. Lett., 1991, 1157.
264.
H. Tamaki, Z. J. Zhong, N. Matsumoto, S. Kida, M. Koikawa, N. Achiwa, Y. Hashimoto, and H. Okawa, J. Am. Chem. Soc., 1992, 114, 6974.
265. H. Tamaki, M. Mitsumi, K. Nakamura, N. Matsumoto, S. Kida, H. Okawa, and S. Iijima, Chem. Lett., 1992, 1975.
266. H. Okawa, N. Matsumoto, H. Tamaki, and M. Ohba, Mol. Cryst. Liq. Cryst., 1993, 233, 257.
267. C. Mathoniere, S. G. Carling, Y. Dou, and P. Day, Chem. Commun., 1994, 1551.
268. S. Decurtins, H. W. Schmalle, P. Schneuwly, and H. R. Oswald, Inorg. Chem., 1993, 32, 1888.
269. S. Decurtins, H. W. Schmalle, R. Pellaux, P. Schneuwly, and A. Hauser, Inorg. Chem., 1996, 35, 1451.
270. V. M. Russell, D. C. Craig, M. L. Scudder, and I. G. Dance, CrystEngComm, 2000, 003.
271. D. Armentano, G. De Munno, F. Lloret, A. V. Palii, and M. Julve, Inorg. Chem., 2002, 41, 2007.
272. R. M. Kadam, M. K. Bhide, M. D. Sastry, J. V. Yakhmi, and O. Kahn, Chem. Phys. Lett., 2002, 357, 457.
273. O. Cador, D. Price, J. Larionova, C. Mathoniere, O. Kahn, and J. V. Yakhmi, J. Mater. Chem., 1997, 7, 1263.
274. Y. Pei, S. S. Turner, L. Fournes, J. S. Miller, and O. Kahn, J. Mater. Chem., 1996, 6, 1521.
275. K. Nakatani, P. Bergerat, E. Codjovi, C. Mathoniere, Y. Pei, and O. Kahn, Inorg. Chem., 1991, 30, 3977.
276. H. O. Stumpf, Y. Pei, O. Kahn, J. Sletten, and J. P. Renard, J. Am. Chem. Soc., 1993, 115, 6738.
277. O. Kahn, J. Larionova, and J. V. Yakhmi, Chem. Eur. J., 1999, 5, 3443.
278. R. Cywinski, J. V. Yakhmi, S. A. Chavan, S. P. Cottrell, and O. Kahn, Synth. Met., 1997, 85, 1751.
279. J. Larionova, S. A. Chavan, J. V. Yakhmi, A. G. Froystein, J. Sletten, C. Sourisseau, and O. Kahn, Inorg. Chem., 1997, 36, 6374.
280. K. Nakatani, J. Sletten, S. Halut-Desporte, S. Jeannin, Y. Jeannin, and O. Kahn, Inorg. Chem., 1991, 30, 164.
281. K. Nakatani, J. Y. Carriat, Y. Journaux, O. Kahn, F. Lloret, J. P. Renard, Y. Pei, J. Sletten, and M. Verdaguer, J. Am. Chem. Soc., 1989, 111, 5739.
282. F. Lloret, K. Nakatani, Y. Journaux, O. Kahn, Y. Pei, and J. P. Renard, Chem. Commun., 1988, 642.
283. F. Lloret, R. Ruiz, M. Julve, J. Faus, Y. Journaux, I. Castro, and M. Verdaguer, Chem. Mater., 1992, 4, 1150.
284. F. Lloret, R. Rinz, B. Cervera, I. Castro, M. Julve, J. Faus, J. A. Real, F. Sapina, Y. Journaux, J. C. Colin, and M. Verdaguer, Chem. Commun., 1994, 2615.
285. H. Okawa, M. Mitsumi, M. Ohba, M. Kodera, and N. Matsumoto, Bull. Chem. Soc. Jpn., 1994, 67, 2139.
286. O. Kahn, Y. Pei, M. Verdaguer, J. P. Renard, and J. Sletten, J. Am. Chem. Soc., 1988, 110, 782.
287. R. Georges, J. J. Borrás-Almenar, E. Coronado, J. Curély, and M. Drillon, in Magnetism: Molecules to Materials, Eds. J. S. Miller and M. Drillon, Weinheim, Wiley-VCH, 2001, 1.
288. R. J. Glauber, J. Mathem. Physics, 1963, 4, 294.
289.
A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M. G. Pini, and M. A. Novak, Angew. Chem., Int. Ed., 2001, 40, 1760.
290. A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M. G. Pini, and M. A. Novak, Europhys. Lett., 2002, 58, 771.
291. A. Caneschi, D. Gatteschi, N. Lalioti, R. Sessoli, L. Sorace, V. Tangoulis, and A. Vindigni, Chem. Eur. J., 2002, 8, 286.
292. R. Clérac, H. Miyasaka, M. Yamashita, and C. Coulon, J. Am. Chem. Soc., 2002, 124, 12837.
293. V. I. Ovcharenko and R. Z. Sagdeev, Russ. Chem. Rev., 1999, 68, 345.
294. F. Thetiot, S. Triki, J. S. Pala, and C. J. Gomez-Garcia, J. Chem. Soc., Dalton Trans., 2002, 1687.
295. S. Trofimenko, E. L. Little, Jr., and H. F. Mower, J. Org. Chem., 1962, 27, 433.
296. J. H. Enemark and R. H. Holm, Inorg. Chem., 1964, 3, 1516.
297. H. Köhler, Z. Anorg. Allg. Chem., 1964, 331, 237.
298. H. Köhler and B. Seifert, Z. Anorg. Allg. Chem., 1966, 344, 63.
299. G. L. Silver, Inorg. Nucl. Chem. Lett., 1968, 4, 533.
300. C. Biondi, M. Bonamico, L. Torelli, and A. Vaciago, Chem. Commun., 1965, 191.
301. H. Köhler, in Chemistry of Pseudohalides, Eds. A. M. Golub, H. Köhler, and V. V. Skopenko, Amsterdam, Elsevier, 1987, 413.
302. J. L. Manson, C. R. Kmety, Q.-z. Huang, J. W. Lynn, G. M. Bendele, S. Pagola, P. W. Stephens, L. M. Liable-Sands, A. L. Rheingold, A. J. Epstein, and J. S. Miller, Chem. Mater., 1998, 10, 2552.
303. M. Kurmoo and C. J. Kepert, New J. Chem., 1998, 22, 1515.
304. J. L. Manson, C. R. Kmety, A. J. Epstein, and J. S. Miller, Inorg. Chem., 1999, 38, 2552.
305. K. S. Murray, S. R. Batten, B. Moubaraki, D. J. Price, and R. Robson, Mol. Cryst. Liq. Cryst., 1999, 335, 313.
306. P. Jensen, S. R. Batten, G. D. Fallon, B. Moubaraki, K. S. Murray, and D. J. Price, Chem. Commun., 1999, 177.
307. C. R. Kmety, J. L. Manson, S. McCall, J. E. Crow, K. L. Stevenson, and A. J. Epstein, J. Magn. Magn. Mater., 2002, 248, 52.
308. H. Köhler, A. Kolbe, and G. Lux, Z. anorg. allg. Chem., 1977, 428, 103.
309. J. L. Manson, D. W. Lee, A. L. Rheingold, and J. S. Miller, Inorg. Chem., 1998, 37, 5966.
310. J. Kohout, L. Jäger, M. Hvastijová, and J. Kozisek, J. Coord. Chem., 2000, 51, 169.
311. S. R. Batten and K. S. Murray, Coord. Chem. Rev., 2003, submitted.
312. B. Jürgens, H. A. Höppe, E. Irran, and W. Schnick, Inorg. Chem., 2002, 41, 4849.
313. B. Jürgens, E. Irran, and W. Schnick, J. Solid State Chem., 2001, 157, 241.
314. B. Jürgens, W. Milius, P. Morys, and W. Schnick, Z. Anorg. Allg. Chem., 1998, 624, 91.
315. G. Longo, Gazz. Chim. Ital., 1931, 61, 575.
316. H. Köhler and B. Seifert, Z. anorg. allg. Chem., 1968, 360, 137.
317. H. Köhler and G. Lux, Inorg. Nucl. Chem. Lett., 1968, 4, 133.
318. H. Köhler and B. Seifert, Z. anorg. allg. Chem., 1970, 379, 1.
319. A. Kolbe and H. Köhler, Z. anorg. allg. Chem., 1970, 373, 230.
320. V. V. Skopenko, Y. L. Zub, V. F. Bolelyi, and H. Köhler, Koord. Khim., 1984, 10, 1317.
321. V. V. Skopenko, N. N. Gerasimchuk, S. I. Tyukhtenko, and H. Köhler, Z. Anorg. Allg. Chem., 1986, 542, 65.
322. H. Köhler, M. Jeschke, and A. Kolbe, Z. Anorg. Allg. Chem., 1988, 559, 131.
323. Y. M. Chow and D. Britton, Acta Crystallogr., Sect. B, 1974, 30, 147.
324. Y. M. Chow and D. Britton, Acta Crystallogr., Sect. B, 1974, 30, 1117.
325. V. V. Skopenko and Y. L. Zub, Ukr. Khim. Zh. (Russ. Ed.), 1978, 44, 1235.
326. Y. L. Zub, V. V. Skopenko, and H. Koehler, Ukr. Khim. Zh. (Russ. Ed.), 1978, 44, 1136.
327. V. V. Skopenko, Y. L. Zub, M. A. Porai-Koshits, and G. G. Sadikov, Ukr. Khim. Zh. (Russ. Ed.), 1979, 45, 811.
328. V. V. Skopenko and V. F. Bolelyi, Ukr. Khim. Zh. (Russ. Ed.), 1979, 45, 816.
329. V. V. Skopenko, Y. L. Zub, R. D. Lampeka, V. K. Bel'skii, and V. E. Zavodnik, Dop. Ak. Nauk Ukr. RSR Ser. B-Geol. Khim. Biol. Nauki., 1983, 60.
330. Y. L. Zub, G. G. Sadikov, V. V. Skopenko, M. A. Porai-Koshits, and V. P. Nikolaev, Koord. Khim., 1985, 11, 532.
331. M. Hvastijová, J. Kozisek, J. Kohout, and L. Jäger, J. Coord. Chem., 1995, 36, 195.
332. M. Hvastijová, J. Kozisek, J. Kohout, and J. Garcia Diaz, Inorg. Chim. Acta., 1995, 236, 163.
333. I. Potocnak, M. Dunaj-Jurco, D. Miklos, M. Kabesova, and L. Jäger, Acta Crystallogr., Sect. C, 1995, 51, 1291.
334. M. Dunaj-Jurco, D. Miklos, I. Potocnak, and L. Jäger, Acta Crystallogr., Sect. C, 1996, 52, 2409.
335. M. Hvastijová, J. Kozisek, J. Kohout, J. Mrozinski, L. Jäger, and I. Svoboda, Polyhedron, 1997, 16, 463.
336. J. Mrozinski, J. Kohout, and M. Hvastijová, Polish J. Chem., 1997, 71, 883.
337. R. Boca, P. Baran, L. u. Dlhan, M. Hvastijová, and G. Wltschek, Chem. Phys. Lett., 1998, 284, 254.
338. J. W. Buchler, M. Hvastijová, J. Kohout, and J. Kozisek, Transition Met. Chem., 1998, 23, 215.
339. M. Dunaj-Jurco, D. Miklos, I. Potocnak, and L. Jäger, Acta Crystallogr., Sect. C, 1998, 54, 1763.
340. M. Hvastijová, J. Kohout, J. Kozisek, and I. Svoboda, J. Coord. Chem., 1999, 47, 573.
341. K. V. Domasevich, A. N. Chernega, S. V. Lindeman, and Y. T. Struchkov, Zh. Neorg. Khim., 1995, 40, 426.
342. K. V. Domasevitch, N. N. Gerasimchuk, and A. Mokhir, Inorg. Chem., 2000, 39, 1227.
343. E. Fritsch, K. Polborn, K. Suenkel, W. Beck, H. Koehler, and L. Jaeger, Z. Anorg. Allg. Chem., 1992, 617, 110.
344. D. S. Bohle, B. J. Conklin, and C.-H. Hung, Inorg. Chern., 1995, 34, 2569.
345. L. Jäger, C. Tretner, H. Hartung, and M. Biedermann, Chem. Ber., 1997, 130, 1007.
346. D. Miklos, I. Potocnak, M. Dunaj-Jurco, and L. Jäger, Acta Crystallogr., Sect. C, 1998, 54, 33.
347. L. Jäger, C. Tretner, H. Hartung, and M. Biedermann, Eur. J. Inorg. Chem., 1998, 1051.
348. V. Jacob, S. Mann, G. Hutmer, O. Walter, L. Zsolnai, E. Kaifer, P. Rutsch, P. Kircher, and E. Bill, Eur. J. Inorg. Chem., 2001, 2625.
349. K. E. Bessler, L. L. Romualdo, P. d. T. Salviano Filho, V. M. Deflon, and C. Maichle-Mossmer, Z. Anorg. Allg. Chem., 2001, 627, 651.
350. M. Hvastijová, J. Kohout, J. W. Buchler, R. Boca, J. Kozisek, and L. Jäger, Coord. Chem. Rev., 1998, 175, 17.

CHAPTER 2: 1D, 2D AND 3D MANGANESE(II)
DICYANAMIDE
NETWORK COMPLEXES

2.1 A Molecule-Based Magnet, [$\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$], and Selfpenetration - a Structural Compromise Between Single Networks and Interpenetration of Networks

2.1.1 Introduction

Work undertaken during the candidate's B.Sc. Honours year included studies of the rutile-like $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]$ species and a new, related hydrated species, $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{1}$ The discovery of this hydrated species seemed to answer some questions regarding the reported formula of $\mathrm{Ni}(\mathrm{dca})_{2} \cdot 0 \cdot 5 \mathrm{H}_{2} \mathrm{O}^{2,3}$ It was proposed that a hydrated species analogous to that above as an impurity could be responsible for the formulation. However, the trihydrate lost water in air and transformed back into the parent rutile-like binary species. Could another hydrate be responsible? In addition to this, the magnetization versus temperature plots of $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]\left(T_{\mathrm{N}}=16 \mathrm{~K}\right)$ showed a small abrupt increase at 6 K that could not be explained as well as the main transition at 16 K . ${ }^{4}$ Subsequently, during the Ph.D. program, a new dicyanamide containing molecule-based magnet was discovered, $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. This mono-hydrated analogue of the parent species behaves as a spin-canted antiferromagnet, ordering below 6.3 K thus explaining the magnetisation anomaly seen in the parent rutile-like $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]$, and is described here. Structurally $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ displayed a new self- or intra-penetrated 3,6-connected (2:1) network topology that can be related back to rutile. This new network car be thought of as a structural compromise between the two interpenetrated rutile-like networks of $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ (where $\mathrm{tcm}=$ tricyanomethanide) and the single rutile-like network of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$. Indeed, an isostructural compound $[\mathrm{M}(\mathrm{dca})(\mathrm{tcm})]$ can be formed in which tem is topologically equivalent to the dca $\cdot \mathrm{H}_{2} \mathrm{O}$ moiety in $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .{ }^{5}$

Entangled systems have received considerable interest due to the interesting physical properties and topologies these species display. ${ }^{6}$ Entanglement on the molecular scale seen, for example, in rotaxanes and catenanes has been reported widely. ${ }^{7}$ Entanglement of ordered polymeric networks is known as interpenetration and many examples have been reported. ${ }^{6}$ Interpenetration occurs where two or more independent networks pass through each other such that they cannot be separated without the breaking of bonds.

The polymeric equivalent of a molecular knot is a self-penetrating (self-entangled or intra-penetrating) network. These single networks contain regions where rods pass through rings in a similar manner to interpenetrated systems. While rods and rings in any network may be chosen such that a rod passes through a ring, a useful and necessary restriction is to define an self-penetrated network as such only when the topological 'shortest circuits' are penetrated by rods of the same network. ${ }^{8,9}$ The magnetism of selfpenetrated nets containing open-shell d ions was essentially unexplored at the onset of this work.

2.1.2 Synthesis and Characterisation of $\left[\mathbf{M n}(\mathrm{dca})_{\mathbf{2}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)\right]$

Crystals of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ were obtained from either a solution of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]$ in a mixture of wet methanol/ethanol or from an aqueous $1: 2$ solution of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}(\mathrm{dca})$. Unlike $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the crystals are not sensitive to solvent loss at room temperature. The infrared spectrum of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ shows a broad absorption at $3388 \mathrm{~cm}^{-1}$ and a sharp peak at $1625 \mathrm{~cm}^{-1}$ due to $\mathrm{v}(\mathrm{OH})$ and $\delta(\mathrm{HOH})$ vibrations respectively, of the coordinated water. Absorptions due to dicyanamide occur at 2310 , 2258 , and $2185 \mathrm{~cm}^{-1}$ corresponding to $\left[v_{a s}(\mathrm{C}-\mathrm{N})+v_{s}(\mathrm{C}-\mathrm{N})\right], v_{\mathrm{as}}(\mathrm{C} \equiv \mathrm{N})$ and $v_{\mathrm{s}}(\mathrm{C} \equiv \mathrm{N})$ vibrations respectively. These values are indicative of bidentate dicyanamide. However,
the absorptions at 1359 and $1326 \mathrm{~cm}^{-1}$ correspond to $v_{\mathrm{as}}(\mathrm{C}-\mathrm{N})$ vibrations of bidentate and tridentate dicyanamide respectively. Likewise the absorptions at 956 and $937 \mathrm{~cm}^{-1}$ are due to $v_{s}(\mathrm{C}-\mathrm{N})$ of tridentate and bidentate dicyanamide respectively. Two different types of dicyanamide i.e. bidentate and tridentate coordination modes are inferred from this spectroscopic evidence, and this was further confirmed by single-crystal X-ray crystallographic analysis (see next section). Microanalytical results on samples prepared by the different routes (see Experimental Section 2.4.1) were consistent with the formulation $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

2.1.3 Crystal Structure of $\left[\mathrm{Mn}(\mathrm{dea})_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)\right.$]

X-Ray structural analysis was performed by Dr. P. Jensen on a single crystal prepared by the candidate. Table 2.1 contains a summary of crystallographic details and Table 2.2 (see page 98) contains selected interatomic distances and angles. The atom labelling scheme for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ is shown in Figure 2.1. The structure consists of a 3D network containing Mn^{11} atoms coordinated in a near octahedral arrangement by (on average) five dca ligands and one water molecule. There are two types of dca ligand - one (dcal) is tridentate, coordinating to three $\mathrm{Mn}^{\mathrm{II}}$ atoms via both nitrile nitrogens $(\mathrm{Mn}(1)-\mathrm{N}(1)=2.191(4) \AA)$ and the amide nitrogen $\left(\mathrm{Mn}(1)-\mathrm{N}\left(2^{\mathrm{ii}}\right)=2.417(4) \AA\right)$. The other (dca2) is bidentate, coordinating directly to two Mn^{11} atoms via the nitrile nitrogens only $\left(\mathrm{Mn}(1)-\mathrm{N}(3)=2.171(5)\right.$ and $\left.\mathrm{Mn}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right)=2.190(4) \AA\right)$. The dca2 ligand also forms a hydrogen bond via the amide nitrogen to the coordinated water molecule coordinated to an adjacent Mn^{11} atom. This moiety dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$ is, however, disordered over two positions related by a mirror plane (Figure 2.2). One nitrile group (N(3) and $\mathrm{C}(2)$) and the amide nitrogen ($\mathrm{N}(4)$) of dca2 (and the $\mathrm{Mn}^{\mathrm{II}}$ atom coordinated by the nitrile group) lie on the mirror plane, whereas the other nitrile group and water ligand do not. The latter, in fact,
have symmetry-related positions that superimpose on each other so that the nitrogen and oxygen atoms have been given the same positional and thermal parameters. Consequently the $\mathrm{O} \cdots \mathrm{N}$ hydrogen-bonding distance is constrained to be equivalent to the NCN distance of the dca2 ligand $(\mathrm{O}(1) \cdots \mathrm{N}(4)=2.633(7) \AA)$, and the position of the nitrile carbon atom is the only site not fully occupied by a non-hydrogen atom. The result of this disorder is the creation of a trigonal pseudo-tridentate 'ligand' dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$, which is structurally almost identical to tcm (see below) and thus the formula of the complex could be written as [$\mathrm{Mn}($ dcal $\left.)\left(\mathrm{dca} 2 \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]$.

Figure $2.1\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ atom labelling scheme (thermal ellipsoids shown at 50% probability).

Table 2.1 Summary of crystal data for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Compound	$\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
Formula	$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{MnN}_{6} \mathrm{O}$
M	205.06
Crystal system	Orthorhombic
Space group	Ama2
a / \AA	$7.5743(2)$
b / \AA	$17.4533(7)$
c / \AA	$5.6353(2)$
U / \AA^{3}	$744.97(4)$
Z	4
$\rho_{\text {calc }} /$ gcm	
T / K	1.828
$\mu($ Mo-K $\alpha) / \mathrm{mm}^{-1}$	$293(2)$
θ range $/{ }^{\circ}$	1.728
Index ranges	$3.56-30.03$
	$0 \leq h \leq 9$,
Completeness to $2 \theta=55^{\circ} / \%$	$-24 \leq k \leq 0$,
Data collected	$0 \leq l \leq 7$
Unique data $\left(R_{\text {int }}\right)$	98.8
Observed reflections $[I>2 \sigma(I)]$	5465
Parameters	$611(0.037)$
Final $R_{1}, w R_{2}[I>2 \sigma(I)]^{(a)}$	554
(all data)	68
Goodness of fit, S	$0.0262,0.0571$
	$0.0333,0.0615$

${ }^{(a)} R_{1}=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{0}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}$

Figure 2.2 A chain in the structure of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ showing the disorder of the $\mathrm{dca} 2 \cdot \mathrm{H}_{2} \mathrm{O}$ moiety over the mirror plane. The two different orientations of the system are shown on the left and the resultant sum on the right. Hydrogen bonds are denoted by open bonds, and the atom labelling scheme is given without distinction of symmetry related atoms.

To effectively describe the topology of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, one must first recognize its close relationship with the rutile-like structures of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ (single net) and $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ (two identical interpenetrating nets). The structure of rutile $\left(\mathrm{TiO}_{2}\right)$ consists of octahedral $\mathrm{Ti}^{\mathrm{iV}}$ atoms (six-connectors) and trigonal O^{2-} atoms (three-connectors) in a 1:2 ratio (Figure 2.3) and can be described in terms of square channels in which the threeconnecting centres form the sides of the channels and the six-connecting centres occupy the comers. These channels can be constructed by cross-linking four adjacent TiO_{2} chains oriented perpendicular to each other. The sides of the channels contain six-membered rings
(alternating three- and six-connectors), which are the second smallest rings in the structure. The smallest rings are four-membered rings within the aforementioned chains that also contain alternating three- and six-connectors ($\mathrm{Ti}-\left(\mathrm{O}_{2}\right)-\mathrm{Ti}$). Both the four- and sixmembered rings are however considered 'smallest circuits' in the topological sense.

Figure 2.3 The TiO_{2} rutile framework. Octahedral Ti centres are represented by blue spheres and trigonal O centres are red spheres. A square channel is highlighted in the centre by purple bonds (the four separate chains) and the green bonds (connections between chains that form the channels. A four-membered ring (left) and a six-membered ring (top left) are also highlighted by green bonds.

In the $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ structures, the distance between the trigonal centres (the central carbon atom of tcm) and the octahedral centres (metals) (ca. 4.5-5.0 \AA) is much greater than for TiO_{2}. This results in a much larger open framework, thus allowing interpenetration of a second network. Interpenetration occurs by the passing of one of the rods (M-NC-C) of one net through the six-membered ring of the other. The four-membered rings are too sterically crowded to permit interpenetration (Figure 2.4).

Figure 2.4 A square channel of $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ network (blue) interpenetrated by a second identical network (red).

In the rutile-like structures of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ two thirds of the trigonal to octahedral node connections are of a similar length to those in the $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ structures, however one third, the $\mathrm{M}-\mathrm{N}_{\text {anide }}$ links, are considerably shorter. Consequently the links between the
chains are shorter, so that the channels are smaller than those of the $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ structures.
The result is a collapsed, denser network (Figure 2.5). Structurally, the size of the fourmembered rings remain relatively unchanged, however the six-membered rings, through which pass the rods of the second net in the $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ structures, are considerably decreased in size. Hence it would appear interpenetration of a second net is not favoured and does not occur.

Figure 2.5 A single square channel in the structure of rutile-related $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$. The $\mathrm{M}-\mathrm{N}_{\text {amide }}$ links (green bonds) are significantly shorter than equivalent links in [$\mathrm{M}(\mathrm{tcm})_{2}$] structures.

In the structure of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ we combine the two different ligands, dcal (with one short and two long links) and dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$ (with three equivalent long links). As in the $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ structures the short link of dcal again occurs between the ML_{2} chains. If we examine the connections between four adjacent chains analogous to those that form the square channels in the previous two rutile-related structures, the similarities and differences of this new network to rutile will become apparent. The chains, all of which are crystallographically equivalent, have the formula $\left[\mathrm{Mn}(\mathrm{dca} 1)\left(\mathrm{dca} 2 \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]$ with dcal ligands on one side of the chain and dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$ one the other. Again, adjoining chains are mutually inclined to one another, and are connected by the third link of the three connecting centres to the axial positions on the manganese centres. The requirement that the $\mathrm{Mn} \cdots \mathrm{Mn}$ distance within the chains must be the same for the dcal and dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$ bridges means the dcal inter-chain lirk must be the $\mathrm{Mn}-\mathrm{N}_{\text {amide }}\left(\mathrm{N}(2)\right.$) bond. The dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$ inter-chain link is the $\mathrm{Mn}-\mathrm{N}_{\text {nitrie }}(\mathrm{N}(3))$ bond that lies on the mirror plane. The result is that the two inter-chain linkages of three-connecting centres to six-connecting centres are of different lengths, depending on whether the ligand is dcal or dca $2 \cdot \mathrm{H}_{2} \mathrm{O}$. The structural consequences of this are shown in Figure 2.6. Moving along the network we can see that the first two inter-chain linkages are of the long dca $2 \cdot \mathrm{H}_{2} \mathrm{O}$ type. The next two linkages are of the shorter dcal type. Therefore, while the four chains in rutile connect to form a square channel, the network of interconnected chains in $\left[\mathrm{Mn}(\mathrm{dca} 1)\left(\mathrm{dca} 2 \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]$ fails to meet back at its starting point, and folds back on itself in the spiral manner shown in Figure 2.6. The interpenetration seen here is similar to that in the $\left[\mathrm{M}(\mathrm{tcm})_{2}\right]$ complexes. The $\mathrm{N}(4)-\mathrm{C}(2) \equiv \mathrm{N}(3)-\mathrm{Mn}(1)$ rods of dea $2 \cdot \mathrm{H}_{2} \mathrm{O}$ (structurally similar to tcm) penetrate the six-membered rings of $\mathrm{Mn}_{3}(\mathrm{dcal})\left(\mathrm{dca} 2 \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}$ (structurally similar to M_{3} tcm ${ }_{3}$ rings). However, in this instance we have a single network folding such that it penetrates itself - hence self- or intrapenetration.

Figure 2.6 The connections of four adjacent orthogonal chains in the structure of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (the dca $2 \cdot \mathrm{H}_{2} \mathrm{O}$ moieties are shown in blue) showing the self-penetration of the network.

The overall network is shown in Figure 2.7. The importance of 'shortest circuits' in the topology of a network for defining a self-penetrating network was discussed in Chapter 1. Inspection of the rutile network (Figure 2.3) shows that there are 15 smallest circuits that start from a six-connected centre $(p=6)$: two four-membered rings, ten sixmembered rings and three eight-membered rings. The smallest circuits radiating out from the three-connecting centres $(p=3)$ are one four-membered ring and two six-membered rings. In the self-penetrated network of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the distribution and size of the smallest rings are the same as rutile: four-, six- and eight-membered rings (2:10:3) for the six-connecting nodes, and four- and six-membered rings (1:2) for each of the two types of
three-connecting nodes (dcal and dca2 $\cdot \mathrm{H}_{2} \mathrm{O}$). Thus, although rutile and [$\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$] have different topologies, they have the same Schläfli notation: $\left(4^{2} .6^{10} .8^{3}\right)\left(4^{1} .6^{2}\right)$.

Recently, a number of other self-penetrating networks have been reported. ${ }^{8,9}$ [$\left.\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ is a new example of a self-penetrating network. This structure also represents a new topology for a network containing three- and six-connectors in a ratio of $2: 1$. Previously described topologies include the afore mentioned rutile and that of $\left[\mathrm{Hg}(\operatorname{tpt})_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot 6 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}\left(\operatorname{tpt}=2,4,6\right.$-tris $\left(4-\right.$ pyridyl)-1,3,5-triazine). ${ }^{10}$

Figure 2.7 Overall view of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ with Mn shown in red, dcal (green) and dca $2 \cdot \mathrm{H}_{2} \mathrm{O}$ (blue).

The shortest $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is through space between a manganese(II) atom of a self-penetrating rod and that of a ring and is equal to the unit cell length $c(5.6353(2) \AA)$. The next shortest $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is via the $\mathrm{Mn}-\mathrm{N} \equiv \mathrm{C}-\mathrm{N}-\mathrm{Mn}$ dcal link (6.2368(7) \AA) and is the shortest Mn -ligand-Mn distance. From previous work, ${ }^{4,11-13}$ it is believed that this particular magnetic exchange pathway of the tridentate dca is important in any observed long-range order. However, it would not appear to be absolutely necessary. For example, $\beta-\left[\mathrm{Co}(\mathrm{dca})_{2}\right],{ }^{14} \mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{Ni}(\mathrm{dca})_{3}\right](\mathrm{E}=\mathrm{P} \text { or } \mathrm{As})^{15,16}$ and $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}(\mathrm{pyz})\right]^{17,18}$ display longrange order despite possessing no $\mathrm{M}-\mathrm{N}_{\text {amide }}$ links. The intra-chain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is equal to the unit cell length a (7.5743(2) \&).

Table 2.2 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

$\mathrm{Mn}(1)-\mathrm{N}(1)$	$2.191(4)$	$\mathrm{Mn}(1)-\mathrm{N}(3)$	$2.171(5)$
$\mathrm{Mn}(1)-\mathrm{N}\left(2^{i i}\right)$	$2.417(4)$	$\mathrm{Mn}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right) / \mathrm{O}\left(1^{\mathrm{i}}\right)$	$2.190(4)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.148(4)$	$\mathrm{N}(3)-\mathrm{C}(2)$	$1.146(7)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.307(4)$	$\mathrm{C}(2)-\mathrm{N}(4)$	$1.325(8)$
$\mathrm{N}(4)-\mathrm{C}(3)$	$1.460(7)$	$\mathrm{C}(3)-\mathrm{N}(5)$	$1.175(6)$
$\mathrm{N}(4) \cdots \mathrm{O}(1)$	$2.633(7)$		
$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}(1)$			$87.8(1)$
$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right) / \mathrm{O}\left(1^{\mathrm{i}}\right)$	$94.8(2)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right) / \mathrm{O}\left(1^{\mathrm{i}}\right)$	$95.9(2)$
$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}\left(2^{\mathrm{ii}}\right)$	$178.7(3)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}\left(5^{\mathrm{iv}}\right) / \mathrm{O}\left(1^{\mathrm{iv}}\right)$	$167.7(2)$
$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}\left(1^{\mathrm{iii}}\right)$	$94.8(2)$	$\mathrm{N}\left(2^{\mathrm{ii}}\right)-\mathrm{Mn}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right) / \mathrm{O}\left(1^{\mathrm{i}}\right)$	$84.4(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Mn}(1)$	$157.3(4)$	$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}\left(3^{\mathrm{iii}}\right)$	$119.2(7)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}\left(1^{\mathrm{v}}\right)$	$118.3(4)$	$\mathrm{C}(3)-\mathrm{N}(5)-\mathrm{Mn}\left(1^{\text {vii }}\right)$	$161.7(4)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{Mn}\left(1^{\text {vi }}\right)$	$120.6(2)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$174.5(4)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{Mn}(1)$	$162.9(5)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(4)$	$178.4(6)$
$\mathrm{C}(2)-\mathrm{N}(4)-\mathrm{C}(3)$	$118.0(3)$	$\mathrm{N}(5)-\mathrm{C}(3)-\mathrm{N}(4)$	$176.2(6)$

Symmetry transformations: (i) $-\mathrm{x},-\mathrm{y}, \mathrm{z}-1$; (ii) $-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}-1 / 2$; (iii) $1 / 2-\mathrm{x}, \mathrm{y}, \mathrm{z}$; (iv) $\mathrm{x}+1 / 2$, $y, z-1 ;$ (v) $-x-1 / 2, y, z$; (vi) $-x, 1 / 2-y, z+1 / 2$; (vii) $-x,-y, z+1$.

2.1.4 Magnetism of $\left[\mathrm{Mn}(\mathrm{dca})_{\mathbf{2}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)\right]$

$\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ is a new example of a growing class of homometallic spincanted antiferromagnets, otherwise known as weak ferromagnets, which includes its parent, the rutile-like $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right] .{ }^{4,12,19-24} \mathrm{In}$ a field of 0.3 T the $\mu_{\mathrm{per}} \mathrm{Mn}$ at 300 K of 5.64 $\mu_{\mathrm{B}}\left(\chi_{\mathrm{M}} T=3.98 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ decreases gradually to $2.62 \mu_{\mathrm{B}}\left(\chi_{\mathrm{M}} T=0.86 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ as the temperature is decreased to 4.2 K (Figure 2.8).

Figure 2.8 Plots of magnetic moment, $\mu_{\text {per } \mathrm{Mn}}$, versus temperature for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ in different applied fields; $20 \mathrm{Oe}(\diamond), 100 \mathrm{Oe}(\Delta)$ and $3000 \mathrm{Oe}(\times)$.

The Weiss constant, θ, from the χ vs. $1 / \mathrm{T}$ plot is -4.2 K indicating antiferromagnetic coupling. In field values below about 200 Oe the magnetic moment shows an abrupt increase at approximately 6 K due to the onset of long-range magnetic order ($\mu_{\text {per } \mathrm{Mn}}$ is $10.9 \mu_{\mathrm{B}}$ at 4.2 K in a field of 20 Oe). The T_{N} value of 6.3 K was confirmed
by measuring zero-field cooled ($Z F C M$) and field cooled magnetization ($F C M, H=5 \mathrm{Oe}$), see Figure 2.9. These diverge at the ordering temperature, 6.3 K .

Figure 2.9 Plots of magnetization of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, M, versus temperature with zerofield cooled ($Z F C M$) and field cooled ($F C M H=5 \mathrm{Oe}$) measurements.

The AC in-phase susceptibility, χ, versus T plot (Figure 2.10) shows a very sharp maximum at 6.3 K indicative of a weak ferromagnet (spin-canted antiferromagnet). M vs. H hysteresis measurements on a neat powder at 2 K gave a remnant magnetization ($R M$) of $112 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{Oe}$ and a coercive field, H_{c}, of 250 Oe , values typical of a soft magnet (Figure 2.11). High field magnetization measurements made at temperatures above and below the ordering temperature, show behaviour consistent with spin-canted antiferromagnetism such as linear plots with low values of M even in the highest fields employed. For example, at 2 K and in $5 \mathrm{~T} M=1.7 N \beta\left(M_{\text {sat }}\right.$ for $\mathrm{Mn}^{\mathrm{II}}$ is $5 N \beta$).

Figure 2.10 Plot of in-phase, χ^{\prime}, AC susceptibility versus temperature in a field of 1 Oe oscillating at 20 Hz .

Figure 2.11 Hysteresis loop for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ of a powder sample at 2 K .

Antiferromagnetic coupling is thought to arise from super-exchange via the M -NC-N-CN-M pathways of bidentate dicyanamide coordinating through their nitrile nitrogens between Mn^{11} centres as in the cases of $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]$ and the $\left[\mathrm{Mn}(\mathrm{dca})_{2} \mathrm{~L}_{2}\right]$ chain complexes ($\mathrm{L}=$ e.g. pyridine) ${ }^{4,12,25}$ Use of Rushbrooke and Wood theory ${ }^{26}$ for the coupling of $S=5 / 2$ centres led to a set of best-fit parameters of the 0.3 T susceptibility data of $\mathrm{g}=$ 1.93 and $J=-0.19 \mathrm{~cm}^{-1}$, although agreement below 30 K was poor. The J value is similar to those seen in the $\left[\mathrm{Mn}(\mathrm{dca})_{2} \mathrm{~L}_{2}\right]$ chain complexes. ${ }^{4,12}$

The occurrence of long-range order from spin-canting is believed to arise from a complex combination of the super-exchange pathway $\mathrm{M}-\mathrm{N} \equiv \mathrm{C}-\mathrm{N}-\mathrm{M}$ i.e. via bonding through the amide nitrogen and orientation of the $\mathrm{Mn}^{\mathrm{II}}$ centre chromophores 60.6° to each other along those same exchange pathways.

2.2 Two linear Mn" chain complexes containing dicyanamide and terpyridine: $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{\mathrm{n}}$

2.2.1 Introduction

In recent years research in polymeric coordination complexes containing dicyanamide has undergone rapid growth. ${ }^{13,16,27-37}$ Of particular interest is the potential of dicyanamide to act as a bridging ligand in molecule-based magnetic materials, particularly in response to the tridentate bridging mode seen in the series of rutile-related complexes α $\left[\mathrm{M}(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Cu , which display long-range magnetic order.

Much work has been undertaken to modify the structures and properties of dicyanamide containing networks by the incorporation of co-ligands giving 3D, 2D and 1D complexes of the general formula [$\mathrm{M}(\mathrm{dca})_{2} \mathrm{~L}_{2}$], where L can be a terminal ligand, for
example, DMF, pyridine, ${ }^{4}$ 4-benzoylpyridine ${ }^{38}$ or 2 -aminopyridine. ${ }^{39}$ The resulting structures often have 1D chain (e.g. $\mathrm{L}=$ pyridine, 4-benzoylpyridine and DMF) or 2 D sheet structures (e.g. $\mathrm{L}=\mathrm{EtOH}$) or in the case of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ both chain and sheet structural types exist in the one material. ${ }^{4}$ The complexes $\left[\mathrm{M}(\mathrm{dca})_{2}(\right.$ apym $\left.)\right]\left(\mathrm{M}^{11}=\mathrm{Co}\right.$ and Ni, apym $=2$-aminopyridine), reported by Jensen et al., ${ }^{39}$ have a 1 D linear tubular structure. ${ }^{39}$ In the above examples dicyanamide bridges through both nitrile nitrogen atoms in the $\mu_{1,5}$ mode, except the apym complexes, which has dicyanamide in the tridentate $\mu_{1,3,5}$ mode bridging through both nitrile and central amide nitrogens, as well as dca ligands in the $\mu_{1,5}$ mode. In fact, the tubular structures of the apym complexes can be described as single square channels of the rutile-like $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ complexes 'coated' by the monodentate apym ligands. ${ }^{39}$

When L_{2} is a linear bridging ligand, for example pyrazine (pyz) or 4,4'bipyridine, ${ }^{17,18,39-42}$ the resulting compiexes can have doubly interpenetrating α-Po related 3D network structures. ${ }^{17}$ Polymorphs also exist such as $\beta-[\mathrm{Cu}(\mathrm{dca})(\mathrm{pyz})]$, which possesses a 2D square grid structure. ${ }^{43}$ - ong-range antiferromagnetic order has been reported in α $\left[\mathrm{Mn}(\mathrm{dca})_{2}(\mathrm{pyz})\right]^{18,40}$ and in $\left[\mathrm{Cu}_{2}\left(2,5-\mathrm{Me}_{2} \mathrm{pyz}\right)(\mathrm{dca})_{4}\right], 2,5-\mathrm{Me}_{2} \mathrm{pyz}=2,5$-dimethylpyrazine, at very low temperatures. ${ }^{30} \mathrm{~N}$-heterocyclic chelating ligands, both bridging and terminal, have also been employed to modify the structures and consequently the properties of dicyanamide containing coordination polymers. Some examples include the twodimensional $\left[\mathrm{Fe}_{2}(\mathrm{dca})_{4}(\mathrm{bpym})\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Fe}_{2}(\mathrm{dca})_{4}(\mathrm{bpym})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ where bpym $=2,2^{\prime}$ bipyrimidine is also bridging $\mathrm{Fe}^{\mathrm{II}}$ centres in a bis-chelating fashion, ${ }^{34}$ and the onedimensional complexes $\left[\mathrm{M}(\mathrm{dca})_{2}(\mathrm{bpym})\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \mathrm{M}=\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe} \mathrm{e}^{\mathrm{II}}$ and Co^{1144} $\left[\mathrm{M}(\mathrm{dca})_{2}(\mathrm{phen})\right], \quad \mathrm{M}=\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$, phen $=1,10$-phenanthroline, ${ }^{45}$ and $\left[\mathrm{Co}_{3}(\mathrm{HAT})(\mathrm{dca})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right], \mathrm{HAT}=1,4,5,8,9,12$-hexaazatriphenylene, where the tris-chelated trinuclear CO_{3} (HAT) units are further bridged by $\mu_{1,5}$-dca ligands. ${ }^{31}$

The present study using terpyridine as a terminal chelate forms part of an extensive study using terminal and bridging co-ligands bonded to $\mathrm{Mn}^{\mathrm{lt}}$ (dca) $)^{4}{ }^{4}$ While the candidate was in the process of solving the structures of the following two $\mathrm{Mn}^{\mathrm{ll}}(\mathrm{dca})_{2}$-terpy species, Escuer et al. reported the same compounds. ${ }^{46}$ It follows on from their related $\mathrm{Mn}{ }^{11}$ azide adduct chemistry. ${ }^{47-49}$

2.2.2 Synthesis and Characterisation of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$

This compound and that described in section 2.2 .3 were initially obtained in the same reaction. To obtain them separately, crystals of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{a}$ were prepared by reaction of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with terpy, in methanol followed by subsequent addition of a methanolic solution of $\mathrm{Na}(\mathrm{dca})$ ($1: 1: 2$ molar ratio). This route for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ is similar to that reported by Escuer et al. ${ }^{46}$ The infrared spectrum of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ shows that absorptions due to dicyanamide occur at 2294,2243 , and $2177 \mathrm{~cm}^{-1}$ corresponding to $\left[\nu_{a s}(\mathrm{C}-\mathrm{N})+v_{s}(\mathrm{C}-\mathrm{N})\right], v_{a s}(\mathrm{C} \equiv \mathrm{N})$ and $\nu_{s}(\mathrm{C} \equiv \mathrm{N})$ vibrations respectively. These values are indicative of bidentate dicyanamide bridging throngh both nitrile nitrogens ($\mu_{1, s}$). Elemental microanalysis supported the above formulation.

2.2.3 Synthesis and Characterisation of $\left\{\left[\mathbf{M n}\left(\text { dca) }\left(\mathbf{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}\right.$

Crystals of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ were prepared by a two step reaction. First, $\mathrm{Mn}($ terpy $) \mathrm{Cl}_{2}$ was prepared by reaction of MnCl_{2} with terpyridine in ethanol. This solid was then reacted with a solution of $\mathrm{Na}(\mathrm{dca})$ in a methanol/water mixture. This contrasts with the synthesis of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ reported by Escuer et al. where they used $\mathrm{Mn}^{\mathrm{II}}$ triflate to prevent the formation of $\left[\mathrm{Mn}(\text { dea })_{2}\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}{ }^{46}$ The infrared spectrum of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$ shows a strong absorption at 3296 cm^{-1} due to $\mathrm{v}(\mathrm{OH})$ of the coordinated water. Hydrogen bonding (vide infra) is responsible for the relative sharpness of the peak. Evidence of two different dicyanamides can be seen
clearly in the $v_{s}(\mathrm{C} \equiv \mathrm{N})$ absorption, as it is split into two peaks at 2166 and $2143 \mathrm{~cm}^{-1}$. The former is consistent with $\mu_{1,5}$ dicyanamide and the latter lower wavenumber value is due to the free uncoordinated, albeit hydrogen-bonded, dicyanamide. In comparison, $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca})$, which has unbound dca and shows $v_{5}(\mathrm{C} \equiv \mathrm{N})$ at $2130 \mathrm{~cm}^{-1}$, whereas $\mathrm{Na}(\mathrm{dca})$, in which dca is bound to the Na^{+}atoms shows $\mathrm{v}_{\mathrm{s}}(\mathrm{C}=\mathrm{N})$ at $2182 \mathrm{~cm}^{-1}$. These spectroscopic data were supported by X-ray crystallographic analysis (see Section 2.2.5). Elemental microanalysis supported the above formulation.

2.2.4 Crystal Structure of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$

Crystallographic details for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ are given in Table 2.3 (see page 109) and selected bond distances and angles are given in Table 2.4 (see page 110). $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ crystallizes in the monoclinic space group $P 2_{1} / n$ with the asymmetric unit containing one formula unit. The structure (Figure 2.12) consists of zigzag chains of manganese atoms linked by single $\mu_{1,5}$-dca bridges $(\mathrm{Mn}-\mathrm{N}=2.221(1)$ and $2.196(1) \AA$). Each manganese atom is seven-coordinate with an approximately pentagonal bipyramidal environment around the metal. The equatorial plane contains the three nitrogens of the chelating terpyridine ligand $(\mathrm{Mn}-\mathrm{N}=2.301(1), 2.278(1)$ and $2.319(1) \AA)$ and two oxygen atoms of a chelating nitrato ligand $(\mathrm{Mn}-\mathrm{O}=2.366(1)$ and $2.399(1) \AA)$. The bridging dea nitrile nitrogens fill the axial coordination sites, so that they are in a trans arrangement. The average bond distance to the axial ligands (2.208(2) \AA) is approximately $0.12 \AA$ shorter than the average equatorial bond distance (2.333(5) \AA). The smallest chelating angle $\left(O(1)-\mathrm{Mn}(1)-O(2)=54.93(4)^{\circ}\right)$ is that subtended by the nitrato ligand. A mean plane defined by the five equatorial donor atoms gave the greatest deviation as $0.1918(9) \AA$ for $N(2)$ (of the central pyridine ring) towards $N(21)$. The manganese atom deviates $0.0721(6) \AA$ away from this plane towards $N\left(25^{\circ}\right)$. The terpyridine ligand is not
entirely planar. The angle between the mean plane of the coordination environment and that of the central pyridine ring is $26.75(7)^{\circ}$, being bent towards $\mathrm{N}(21)$. The angles the other two pyridine rings make to the central one are $17.0(1)$ and $15.0(1)^{\circ}$ for the planes containing $N(1)$ and $N(3)$ respectively.

Recently Escuer et al. reported a very similar complex, $[\mathrm{Mn}(\mathrm{dca})(\mathrm{OAc})(\text { terpy })]_{n}$, which is essentially isostructural with a chelating acetate instead of the chelating nitrate. ${ }^{50}$ It has comparable $\mathrm{Mn}-\mathrm{N}_{\text {dea }}$ and $\mathrm{Mn}-\mathrm{N}_{\text {terpy }}$ bond distances, but slightly shorter chelate bond distances of $\mathrm{Mn}-\mathrm{O}_{\text {acetate }}=2.300(4)$ and $2.269(4) \AA$. The chelating angle of the acetate is slightly larger at $57.1(1)^{\circ}$.

Figure 2.12 The crystal structure of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ with atom labeling scheme (thermal ellipsoids shown at 50% probability).

The chains propagate parallel to the [101] lattice vector. The intra-chain $\mathrm{Mn} \cdot \cdots \mathrm{Mn}$ distance is $8.1713(1) \AA$. The $\mathrm{Mn} \cdots \mathrm{Mn}$ distance between adjacent chains in the a-axis direction is equal to the unit cell length a ($8.7458(1) \AA$). The chains interdigitate with adjacent chains in the ac-plane (Figure 2.13) via weak $\pi-\pi$ stacking interactions, with closest separation of $3.67 \AA$ and a pyridyl centroid \cdots centroid distance of $3.803 \AA$, forming sheets. The chains also participate in weak $\pi-\pi$ interactions, with adjacent chains in the b axis direction, with closest separation of $3.49 \AA$ and a pyridyl centroid \cdots centroid distance of $3.759 \AA$ (Figure 2.14). The Mn \cdots Mn distance between these adjacent chains is $8.6093(5)$ \AA.

Figure 2.13 Packing diagram of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ in the $a c$-plane showing weak π π interactions (dashed green).

Figure 2.14 Packing diagram of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ showing weak π - π interactions (dashed pink/red).

Table 2.3 Summary of crystal data for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$.

Comipound	$\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$	$\left\{\left[\mathrm{Mn}\right.\right.$ (dea)($\left.\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)($ terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$
Formula	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{MnN}_{7} \mathrm{O}_{3}$	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{MnN}_{9} \mathrm{O}$
M	416.27	438.32
Crystal system	Monoclinic	Triclinic
Space group	$P 21 / n$	$P \overline{1}$
a / \AA	8.7458(1)	7.5461(2)
b / \AA	13.7690(2)	8.7787(3)
c / \AA	14.7029(2)	14.7849(5)
$\alpha{ }^{\prime}$		78.309(1)
βl°	95.759(1)	79.923(2)
1^{10}		81.269(2)
U / \AA^{3}	1761.60(4)	937.41(5)
Z	4	2
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.570	1.553
T / K	123(2)	123(2)
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.785	0.737
Index ranges	$\begin{aligned} & -11 \leq h \leq 11, \\ & -18 \leq k \leq 18, \\ & -19 \leq l \leq 19 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 9 \\ & -11 \leq k \leq 11, \\ & -19 \leq l \leq 19 \end{aligned}$
Completeness to $2 \theta=$ 55\% \%	99.9	99.4
Data collected	31142	17431
Unique data ($R_{\text {int }}$)	4344 (0.0543)	4241 (0.0790)
Observed reflections $[1>2 \sigma(I)]$	3281	3005
Parameters	253	279
Final $R 1, w R 2[I>2 \sigma(I)]^{(\mathrm{a})}$	0.0339, 0.0628	0.0427. 0.0762
(all data)	0.0596, 0.0692	0.0821, 0.0920
Goodness of fit, S	1.033	1.020

${ }^{(a)} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$

Table 2.4 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$.

$\mathrm{Mn}(1)-\mathrm{N}(1)$	$2.301(1)$	$\mathrm{O}(1)-\mathrm{N}(4)$	$1.263(2)$
$\mathrm{Mn}(1)-\mathrm{N}(2)$	$2.778(1)$	$\mathrm{O}(2)-\mathrm{N}(4)$	$1.268(2)$
$\mathrm{Mn}(1)-\mathrm{N}(3)$	$2.319(1)$	$\mathrm{N}(4)-\mathrm{O}(3)$	$1.227(2)$
$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.366(1)$	$\mathrm{N}(21)-\mathrm{C}(22)$	$1.151(2)$
$\mathrm{Mn}(1)-\mathrm{O}(2)$	$2.299(1)$	$\mathrm{C}(22)-\mathrm{N}(23)$	$1.311(2)$
$\mathrm{Mn}(1)-\mathrm{N}(21)$	$2.221(1)$	$\mathrm{N}(23)-\mathrm{C}(24)$	$1.308(2)$
$\mathrm{Mn}(1)-\mathrm{N}\left(25^{\mathrm{i}}\right)$	$2.196(1)$	$\mathrm{C}(24)-\mathrm{N}(25)$	$1.151(2)$
$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$71.02(5)$	$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$89.92(5)$
$\mathrm{N}(2)-\mathrm{M}-(1)-\mathrm{N}(3)$	$70.08(5)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$90.28(5)$
$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$140.18(5)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$83.34(5)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$84.25(4)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$93.39(5)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$153.42(4)$	$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$88.30(5)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$135.50(4)$	$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$90.91(5)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$139.15(4)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$87.29(5)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$148.37(4)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$86.76(5)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$80.66(4)$	$\mathrm{Mn}(1)-\mathrm{N}(21)-\mathrm{C}(22)$	$167.0(1)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$54.93(4)$	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{N}(23)$	$174.6(2)$
$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(21)$	$175.59(5)$	$\mathrm{C}(22)-\mathrm{N}(23)-\mathrm{C}(24)$	$119.4(1)$
$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$89.03(5)$	$\mathrm{N}(23)-\mathrm{C}(24)-\mathrm{N}(25)$	$173.5(2)$
$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$100.55(5)$	$\mathrm{C}(24)-\mathrm{N}(25)-\mathrm{Mn}\left(1^{i}\right)$	$177.1(1)$

Symmetry transformations: (i) $x+1 / 2,-y+1 / 2, z+1 / 2$; (ii) $x-1 / 2,-y+1 / 2, z-1 / 2$.

2.2.5 Crystal Structure of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{n}$

Crystallographic details for $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right) \text { (terpy) }\right](\mathrm{dca})\right\}_{n}$ are given in Table 2.3 and selected interatomic distances and angles are given in Table 2.5 (see page 115). $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$ crystallizes in the triclinic space group $P \overline{1}$. The structure
(Figure 2.15) consists of linear zigzag chains, which propagate along the a-axis direction, of manganese atoms linked by single $\mu_{1, s}$-dca bridges. The second dca is non-coordinating and links adjacent chains via hydrogen bonds through the nitrile nitrogens, in the b-axis direction, to the coordinated water on each manganese centre. Thus the overall structure consists of 2D $(4,4)$ sheets in the $a b$-plane (Figure 2.16). Each manganese atom is six coordinate, having three sites filled by the chelating terpyridine ligand ($\mathrm{Mn}-\mathrm{N}=2.288(2)$, $2.235(2)$ and $2.297(2) \AA$), two sites are occupied by the nitrile nitrogens of two $\mu_{1,5}$-dca ligands $(\mathrm{Mn}-\mathrm{N}=2.177(2)$ and $2.167(2) \AA)$ and the sixth site is filled by the water molecule $(\operatorname{Mn}(1)-\mathrm{O}(1)=2.219(2) \AA)$. The nitrile atom $(\mathrm{N}(25))$ of one of the bridging dca ligands occupies a pesition in approximately the same plane as the terpyridine ligand and the other $(N(21))$ perpendicular to this, so that they are in a cis arrangement. The terpyridine ligand is more planar than it is in $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ where the angles the two outer rings make with the central ring are $5.9(1)$ and $3.5(1)^{\circ}$ for the rings containing $N(1)$ and $N(3)$ respectively. Due to this planarity, the coordination mode of the manganese atom is distorted octahedral.

The intra-chain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is equal to the a unit cell length (7.5461(2) \AA), being significantly shorter than the equivalent for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$. The inter-chain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance along the chain of hydrogen bonds is equal to the b unit cell length (8.7787(3) \AA). The shortest inter-chain distance, which is also the shortest metal-to-metal distance, is $6.9946(7) \AA$, between Mn^{11} atoms in adjacent hydrogen bonded sheets. The sheets pack in a "back-to-back" $A B$ fashion (Figure 2.17).

Figure 2.15 A segment of the crystal structure of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ with atom labelling scheme (thermal ellipsoids shown at 50% probability).

Figure 2.16 Hydrogen bonded sheets of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ showing the water and hydrogen bonds (orange) to lattice dicyanamide ligands (blue).

Figure 2.17 Packing diagram of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ viewed along the b-axis direction.

Table 2.5 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$.

$\mathrm{Mn}(1)-\mathrm{N}(1)$	$2.288(2)$	$\mathrm{Mn}(1)-\mathrm{N}(21)$	$2.177(2)$
$\mathrm{Mn}(1)-\mathrm{N}(2)$	$2.235(2)$	$\mathrm{Mn}(1)-\mathrm{N}\left(25^{\mathrm{i}}\right)$	$2.167(2)$
$\mathrm{Mn}(1)-\mathrm{N}(3)$	$2.297(2)$	$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.219(2)$
$\mathrm{N}(21)-\mathrm{C}(22)$	$1.154(3)$	$\mathrm{N}(31)-\mathrm{C}(32)$	$1.156(3)$
$\mathrm{C}(22)-\mathrm{N}(23)$	$1.310(3)$	$\mathrm{C}(32)-\mathrm{N}(33)$	$1.315(3)$
$\mathrm{N}(23)-\mathrm{C}(24)$	$1.302(3)$	$\mathrm{N}(33)-\mathrm{C}(34)$	$1.308(3)$
$\mathrm{C}(24)-\mathrm{N}(25)$	$1.159(3)$	$\mathrm{C}(34)-\mathrm{N}(35)$	$1.158(3)$
$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$71.76(7)$	$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$161.16(7)$
$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$71.26(7)$	$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$94.04(7)$
$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$143.03(7)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$172.90(7)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$85.05(7)$	$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$81.58(7)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$87.30(7)$	$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}\left(25^{\mathrm{i}}\right)$	$94.03(7)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$92.81(7)$	$\mathrm{Mn}(1)-\mathrm{N}(21)-\mathrm{C}(22)$	$164.0(2)$
$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$92.63(7)$	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{N}(23)$	$173.9(3)$
$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$98.36(7)$	$\mathrm{C}(22)-\mathrm{N}(23)-\mathrm{C}(24)$	$120.1(2)$
$\mathrm{N}(21)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$93.07(7)$	$\mathrm{N}(23)-\mathrm{C}(24)-\mathrm{N}(25)$	$174.2(3)$
$\mathrm{N}\left(25^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$121.93(7)$	$\mathrm{C}(24)-\mathrm{N}(25)-\mathrm{Mn}\left(1^{\mathrm{ii}}\right)$	$155.8(2)$
$\mathrm{N}(31)-\mathrm{C}(32)-\mathrm{N}(33)$	$174.3(2)$	$\mathrm{Mn}(1)-\mathrm{O}(1)-\mathrm{H}(16)$	$121(2)$
$\mathrm{C}(32)-\mathrm{N}(33)-\mathrm{C}(34)$	$119.6(2)$	$\mathrm{Mn}(1)-\mathrm{O}(1)-\mathrm{H}(17)$	$117(2)$
$\mathrm{N}(33)-\mathrm{C}(34)-\mathrm{N}(35)$	$173.7(3)$	$\mathrm{H}(16)-\mathrm{O}(1)-\mathrm{H}(17)$	$108(3)$

Hydrogen bonds
$\mathrm{O}(1)-\mathrm{H}(17)$
$\mathrm{H}(17) \cdots \mathrm{N}(31)$
$\mathrm{O}(1) \cdots \mathrm{N}(31)$

$0.86(2)$	$\mathrm{O}(1)-\mathrm{H}(16)$	$0.86(2)$
$1.98(2)$	$\mathrm{H}(16) \cdots \mathrm{N}\left(35^{\mathrm{iii}}\right)$	$1.93(2)$
$2.814(3)$	$\mathrm{O}(1) \cdots \mathrm{N}\left(35^{\mathrm{iii}}\right)$	$2.791(3)$

$\mathrm{O}(1)-\mathrm{H}(17) \cdots \mathrm{N}(31) \quad 166(3) \quad \mathrm{O}(1)-\mathrm{H}(16) \cdots \mathrm{N}\left(35^{\mathrm{iii})} \quad 176(3)\right.$

Symmetry transformations: (i) $x-1, y, z$; (ii) $x+1, y, z$; (iii) $x, y+1, z$

2.2.6 Magnetism of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{\mathbf{3}}\right)(\text { terpy })\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\text { dca })\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{n}$ Complexes

The magnetic moment $\mu_{\text {eff }}$ versus temperature plots for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ are shown in Figure 2.18 and Figure 2.19, respectively. The magnetic properties of the two complexes are very similar and indicative of overall weak antiferromagnetic coupling. At 300 K , in a field of $1 \mathrm{~T}, \mu_{\mathrm{per}} \mathrm{Mn}=5.90 \mu_{\mathrm{B}}$ and $5.80 \mu_{\mathrm{B}}\left(\chi_{\mathrm{M}} T=4.35\right.$ and $\left.4.20 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ respectively. The moments decrease very gradually to 5.85 μ_{B} and $5.72 \mu_{\mathrm{B}}\left(\chi_{\mathrm{M}} T=4.27\right.$ and $\left.4.09 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at around 50 K , then more rapidly to reach 4.57 and $3.58 \mu_{\mathrm{B}}\left(\chi_{\mathrm{M}} T=2.61\right.$ and $\left.1.60 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at 2 K . This rapid decrease arises from a combination of antiferromagnetic coupling and zero-field splitting of the ${ }^{6} \mathrm{~A}_{\mathrm{lg}}$ ions. ${ }^{51}$ Since the latter is expected to be weaker than the spin coupling it is not included in the analysis.

Figure 2.18 Plot of $\mu_{\text {eff }}$ versus T in a field of $H=1 \mathrm{~T}$ for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$, the solid line shows the best-fit theoretical curve (see text).

Figure 2.19 Plot of μ_{eff} versus T in a field of $H=1 \mathrm{~T}$ for $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$, the solid line shows the best-fit theoretical curve (see text).

The magnetic data were fitted to a 1D Heisenberg chain model $\left(S=5 / 2\left\{-2 J S_{\mathrm{j}} S_{\mathrm{j}}\right\}\right)$ derived by Fisher, given by Equation $2.1,{ }^{52}$ yielding the best fit parameters shown in Table 2.6. Those derived by Escuer et al. are given for comparison. The values of g and J are similar for both determinations. The value of J for $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}\left(-0.06 \mathrm{~cm}^{-1}\right)$ is approximately half that for $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}\left(-0.13 \mathrm{~cm}^{-1}\right)$. This may be due to hydrogen bonding interactions between the chains, thus increasing the overall antiferromagnetic coupling.

$$
\begin{array}{r}
\chi=\frac{N \beta^{2} g^{2}}{3 k T} S(S+1)\left(\frac{1+u}{1-u}\right) \tag{Equation 2.1}\\
u=\operatorname{coth} \frac{-2 J S(S+1)}{k T}-\frac{2 J S(S+1)}{k T}
\end{array}
$$

Table 2.6 Best-fit parameters g and J for compounds $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\mathrm{terpy})\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ using the Fisher chain model ${ }^{52}$ with those reported by Escuer et al. ${ }^{46}$ for the same compounds for comparison.

| | This work | | Escuer et al. ${ }^{(a)}$ | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Compound | g | J / cm^{-1} | g | J / cm^{-1} |
| $\left[\mathrm{Mn}(\text { dca })\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ | 1.99 | -0.06 | $2.00(1)$ | $-0.06(1)$ |
| $\left\{\left[\mathrm{Mn}(\text { dca })\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{n}$ | 1.98 | -0.13 | $2.00(1)$ | $-0.10(1)$ |

${ }^{(a)}$ Figures reported by Escuer et al. divided by 2 for comparison as that group used the Hamiltonian $H=-J S_{j} S_{j}$

2.3 Conclusions

The new hydrated phase [$\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$], displays a fascinating rare 3D selfpenetrated structure containing both tridentate $\left(\mu_{1,3}\right)$ and bidentate $\left(\mu_{1,5}\right)$ dicyanamide. The bidentate dicyanamide is further hydrogen bonded to a coordinated water molecule, thus forming a pseudo 3-connecting ligand. $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, like its parent non-hydrated phase $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}\right]$, is a spin-canted antiferromagnet with a T_{N} value of 6.3 K . This leads us to believe that this compound is responsible, as a trace impurity, for a weak transition, at 6 K , seen in the variable temperature magnetization plot of the parent species, α $\left[\mathrm{Mn}(\mathrm{dca})_{2}\right], T_{\mathrm{N}}=16 \mathrm{~K} .{ }^{4}$

The two complexes $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$ were synthesised and structurally elucidated prior to them being reported by Escuer et al. ${ }^{46}$ The structures of each are similar, in that they both consist of linear zigzag chains of manganese(II) atoms linked by $\mu_{!, 5}$-dca ligands. In the structure of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$
weak $\pi-\pi$ interactions between the terpy ligands of adjacent chains that influence the packing of the chains. In the structure of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$ non-coordinated dicyanamide ligands hydrogen bond to the coordinated water molecules, thus forming hydrogen-bonded 2D $(4,4)$ sheets. They were initially synthesised in the same reaction using conditions similar to those used separately for the synthesis of $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$.

The long-range magnetic order shown by $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and the lack of it observed in $\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$ is consistent with our understanding that bidentate dicyanamide, bridging through both the nitrile nitrogens ($\mu_{1,5}$-dca), is a very poor super-exchange pathway and complexes containing only these links are unlikely to display long-range magnetic order. Escuer et al. recently published MO calculations that go towards explaining this, by comparing orbital interactions with the more efficient exchange mediator, $\mu_{1.3}$-azide. From the presence of long-range order in the rutile-like $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ and $[\mathrm{M}(\mathrm{dca})(\mathrm{tcm})]^{5}$ (excluding Cu in the $\mathrm{dca} / \mathrm{tcm}$ compound), and [$\left.\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ species, it is believed tridentate dicyanamide, bridging through both nitrile nitrogens and the amide nitrogen, is important for the occurrence of order. The JahnTeller elongation of the $\mathrm{M}-\mathrm{N}_{\text {amide }}$ bond in the copper complexes, which weakens magnetic exchange, the lack of magnetic order in the $[\mathrm{Cu}(\mathrm{dca})(\mathrm{tcm})]$ compound, ${ }^{5}$ and the occurrence of ferromagnetic order in $\alpha-\left[\mathrm{Cu}(\mathrm{dca})_{2}\right]$ at the very low temperature of $T_{\mathrm{c}}=1.7 \mathrm{~K}^{53}$ may back this assertion. However, recent results for the compounds $\left(\mathrm{Ph}_{4} \mathrm{E}\right)\left[\mathrm{Ni}(\mathrm{dca})_{3}\right], \mathrm{E}=\mathrm{P}$ and As, ${ }^{15}, \beta-\left[\mathrm{Co}(\mathrm{dca})_{2}\right],{ }^{14}$ and $\alpha-\left[\mathrm{Mn}(\mathrm{dca})_{2}(\mathrm{pyz})\right]^{17,18}$ have cast doubt on this conclusion. These compounds display long-range magnetic order at $20 \mathrm{~K}, 9 \mathrm{~K}$ and 2.7 respectively, yet the structures of each contain dicyanamide present only in the $\mu_{1,5}$-dca coordination mode. Clearly the exchange pathways of bridging co-ligands also play an important role and future work yet needs to be done to explain these observations.

2.4 Experimental

2.4.1 Synthesis of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

Method A: $\mathrm{Mn}(\mathrm{dca})_{2}(30 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in 5 mL of hot methanol. On cooling this solution to room temperature, 5 mL of ethanol was added. Crystals of [$\left.\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ suitable for X-ray diffraction were afforded by slow evaporation of this solution over a period of several months. The majerity of crystals were triangular in habit and insensitive to solvent loss. I.R. (cm ${ }^{-1}$, Nujol): $3611 \mathrm{vw}, \mathrm{sh}, 3577 \mathrm{vw}, 3521 \mathrm{w}, 3389 \mathrm{w}, \mathrm{br}$, $3113 \mathrm{vw}, 2310 \mathrm{~s}, 2258 \mathrm{~s}, 2185 \mathrm{~s}, 1626 \mathrm{~m}, 1359 \mathrm{~m}, 1326 \mathrm{~m}, 955 \mathrm{vw}, 937 \mathrm{vw}, 679 \mathrm{vw}, 668$ vw. Anal. (\%): Found: C, 23.6; H, 0.8; N, 41.3. Calculated for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{MnN}_{6} \mathrm{O}: \mathrm{C}, 23.4$; H, 1.0; N, 41.0.

Method B: Aqueous solutions (5 mL each) of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.362 \mathrm{~g}, 1.0$ mmol) and $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ were combined. Slow evaporation over 2 weeks yielded several crystal aggregates and a small number of mainly irregularly shaped single crystals (some were of triangular habit) that were filtered and washed with ethanol. Yield $0.082 \mathrm{~g}, 40 \%$ I.R. (cm^{-1}, Nujol): $3520 \mathrm{~m}, 3388 \mathrm{~m}, \mathrm{br}, 3222 \mathrm{w}, \mathrm{sh}, 3111 \mathrm{w}, 2309 \mathrm{~s}, 2257 \mathrm{~s}$, $2183 \mathrm{~s}, 1625 \mathrm{~s}, 1359 \mathrm{~s}, 1324 \mathrm{~s}, 1057 \mathrm{vw}, 1006 \mathrm{vw}, 956 \mathrm{w}, 938 \mathrm{w}, 681 \mathrm{w}, \mathrm{sh}, 667 \mathrm{w}, \mathrm{sh}$. Anal. (\%): Found: C, 23.5; $\mathrm{H}, 0.8 ; \mathrm{N}, 41.4$. Calculated for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{MnN}_{6} \mathrm{O}: \mathrm{C}, 23.4 ; \mathrm{H}, 1.0 ; \mathrm{N}$, 41.0. The powder XRD pattern matches that calculated from the crystal structure data.

2.4.2 Synthesis of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$

A methanolic solution (5 mL) of terpyridine $(0.117 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added to a methanolic solution (20 mL) of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.126 \mathrm{~g}, 0.5 \mathrm{mmol})$ and a pale yellow solution formed immediately. A methanolic solution (5 mL) of $\mathrm{Na}(\mathrm{dca})$ ($1.0 \mathrm{mmol}, 0.089$ g) was then added to this yellow solution. After about three hours a yellow, crystalline solid had formed. It was subsequently collected by vacuum filtration, washed briefly with
methanol and dried in air. Yield $0.14 \mathrm{~g}, 66 \%$. I.R. $\left(\mathrm{cm}^{-1}\right.$, Nujol): $3583 \mathrm{w}, 3093 \mathrm{vw}, 2294 \mathrm{~s}$, $2244 \mathrm{~s}, 2177 \mathrm{~s}, 1774 \mathrm{vw}, 174 \mathrm{I} \mathrm{vw}, 1595 \mathrm{~m}, 1578 \mathrm{~m}, 1470 \mathrm{~s}, 1438 \mathrm{~s}, 1404 \mathrm{~m}, 1349 \mathrm{~s}, 1308 \mathrm{~s}$, $1240 \mathrm{w}, 1185 \mathrm{w}, 1160 \mathrm{w}, 1096 \mathrm{w}, 1074 \mathrm{vw}, 1053 \mathrm{w}, 1040 \mathrm{w}, 1012 \mathrm{~m}, 934 \mathrm{vw}, 909 \mathrm{vw}, 833 \mathrm{vw}$, 818w, 799w, 774s, 752vw, 738w, 652m, 634m. Anal. (\%): Found: C, 49.2; H, 2.5; N, 23.6.

Calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{MnN}_{7} \mathrm{O}_{3}: \mathrm{C}, 49.0 ; \mathrm{H}, 2.7 ; \mathrm{N}, 23.6$.

2.4.3 Synthesis of $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\mathrm{dca})\right\}_{n}$

Part A: Synthesis of Mn(terpy)Cl2
Terpyridine ($0.233 \mathrm{~g}, 1.0 \mathrm{mmol}$) was added to a hot stirred solution of MnCl_{2} $(0.126 \mathrm{~g}, 1.0 \mathrm{mmol})$ in ethanol $(20 \mathrm{~mL})$. A yellow precipitate formed immediately. The resultant mixture was stirred and heated for a further 15 minutes. The solid was filtered hot and washed briefly with ethanol and dried with ether ($2 \times 10 \mathrm{~mL}$). Yield $0.34 \mathrm{~g}, 96 \%$, assuming the above formulation. This solid was used in Part B.

Part B: Synthesis of $\left\{\left[\mathrm{Mn}(d \mathrm{da})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](d \mathrm{ca})\right\}_{n}$
A solution of Na (dca) $(0.11 \mathrm{~g}, 1.2 \mathrm{mmol})$ in methanol/water ($5 \mathrm{~mL} / 1 \mathrm{~mL}$) was added to a stirred suspension of $\mathrm{Mn}(\mathrm{terpy}) \mathrm{Cl}_{2}(0.172 \mathrm{~g}, 0.48 \mathrm{mmol}$, from Part (a)) in methanol (7 mL). 3 mL of water was added to this suspension after which the Mn (terpy) Cl_{2} had largely dissolved. The solution was filtered to remove a small amount of undissolved residue. After one day many pale yellow block-like crystals had formed. The mother liquor was decanted into another vessel. The crystals were washed with acetone and dried with ether. Yield $50 \mathrm{mg}, 23 \%$. I.R. (cm^{-1}, Nujol): $3599 \mathrm{vw}, 3296 \mathrm{~s}, 3096 \mathrm{vw}$, $3036 \mathrm{ww}, 2312 \mathrm{~s}, 2250 \mathrm{~s}, 2208 \mathrm{~s}, 2166 \mathrm{~s}, 2143 \mathrm{~s}, 1644 \mathrm{w}, 1598 \mathrm{~m}, 1581 \mathrm{~m}, 1572 \mathrm{~m}, 1478 \mathrm{~m}$, $1452 \mathrm{~s}, 1440 \mathrm{~s}, 1407 \mathrm{~m}, 1366 \mathrm{~s}, 1323 \mathrm{~s}, 1246 \mathrm{w}, 1190 \mathrm{w}, 1164 \mathrm{~m}, 1102 \mathrm{w}, 1074 \mathrm{vw}, 1052 \mathrm{vw}$, $1021 \mathrm{~m}, 1012 \mathrm{~m}, 976 \mathrm{vw}, 938 \mathrm{vw}, 912 \mathrm{vw}, 777 \mathrm{~s}, 754 \mathrm{vw}, 736 \mathrm{w} .652 \mathrm{~m}, 638 \mathrm{~m}$. Anal. (\%): Found: C, 52.2; $\mathrm{H}, 3.0 ; \mathrm{N}, 28.8$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{MnN}_{9} \mathrm{O}: \mathrm{C}, 52.1 ; \mathrm{H}, 3.0 ; \mathrm{N}, 28.8$.

2.4.4 X-Ray Crystallography of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right],\left[\mathrm{Mn}(\text { dca })_{2}\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ and $\left\{\left[\mathbf{M n}\left(\text { dca) }\left(\mathrm{H}_{2} \mathbf{O}\right) \text { (terpy) }\right](\text { dca })\right\}_{n}\right.$

Data were collected using a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$, using ϕ and ω rotations with 1° frames. Integration was carried out by the program DENZO-SMN, ${ }^{54}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{54}$ Solutions were obtained by direct methods followed by successive Fourier difference methods using SHELXS 97^{55} for $\left[\mathrm{Mn}(\text { dca })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\operatorname{teXsan}^{56}$ for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{NO}_{3}\right) \text { (terpy) }\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$ (terpy $\left.\left.)\right](\mathrm{dca})\right\}_{n}$, while the final full matrix least squares refinements on $F_{\text {obs }}{ }^{2}$ were performed using SHELXL 97^{55} with the aid of the graphical interface program X-SEED. ${ }^{57}$ All non-hydrogen atoms were refined anisotropically.

For $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ the hydrogen atoms were neither located nor assigned. Atoms $C(3), O(1)$ and $N(5)$ were refined at half occupancy due to the disorder over the mirror plane and $\mathrm{O}(1)$ and $\mathrm{N}(5)$ were constrained to have identical x, y, z and U_{ij} parameters. The structure was refined as a racemic twin. The structure of [$\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$] was also solved in P1, which indicated that the disorder was present even in the absence of any crystallographically imposed symmetry.

For $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{NO}_{3}\right)\right.$ (terpy $\left.)\right]_{n}$ and $\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{n}$ all terpy hydrogen atoms were assigned to calculated positions with isotropic thermal parameters 1.2 times the $U_{c q}$ of the adjoining carbon atom. The water hydrogen atoms of the latter structure were located in the Fourier difference map and refined isotropically with the $\mathrm{O}-\mathrm{H}$ bonds distances restrained to be $0.84(2) \AA$ with the DFIX instruction. ${ }^{58}$

2.4.5 X-Ray Powder Diffraction of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)\right]$

Powder X-ray diffraction data for $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ were collected by Mr. Rod Mackie (School of Physics and Materials Engineering, Monash University, Clayton) on a Scintag Automated Powder Diffractometer using a $\mathrm{Cu}-\mathrm{K} \alpha$ monochromatic radiation source ($\lambda=154.059 \mathrm{pm}$), a solid state Ge detector, 2 mm divergence slit and a 3 mm receiving slit at room temperature. The programs Crystal Diffract ${ }^{59}$ and Unit Cell ${ }^{60}$ were used by Dr. Stuart Batten (School of Chemistry, Monash University, Clayton) to confirm that the single crystal was representative of the bulk sample.

2.5 References

1. D. J. Price, Synthesis and Magnetic Studies of Molecular Magnetic Materials Containing the Dicyanamide Ligand, B.Sc. Honours Thesis, Monash University, Clayton, 1998.
2. H. Köhler, Z. Anorg. Allg. Chem., 1964, 331, 237.
3. H. Köhler, in Chemistry of Pseudohalides, Eds. A. M. Golub, H. Köhler, and V. V. Skopenko, Amsterdam, Elsevier, 1987, 413.
4. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
5. P. Jensen, D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Eur. J., 2000, 6, 3186.
6. S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460.
7. J.-P. Sauvage and C. Dietrich-Buchecker Eds., Molecular Catenanes, Rotaxanes and Knots, A Journey Through the World of Molecular Topology, Wiley-VCH, Weinheim, 1999.
8. S. R. Batten and R. Robson, in Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology, Eds. J.-P. Sauvage and C. Dietrich-Buchecker, Weinheim, Wiley-VCH, 1999, 77.
9. B. F. Abrahams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins, and R. Robson, Angew. Chem., Int. Ed., 1999, 38, 1475.
10. S. R. Batten, B. F. Hoskins, and R. Robson, Angew. Chem., Int. Ed. Engl., 1995, 34, 820.
11. S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and R. Robson, Chem. Commun., 1998, 439.
12. K. S. Murray, S. R. Batten, B. Moubaraki, D. J. Price, and R. Robson, Mol. Cryst. Liq. Cryst., 1999, 335, 313.
13. A. M. Kutasi, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 819.
14. P. Jensen, S. R. Batten, G. D. Fallon, B. Moubaraki, K. S. Murray, and D. J. Price, Chem. Commun., 1999, 177.
15. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and E. H. K. Tan, Polyhedron, 2001, 20, 1129.
16. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Inorg. Chem., 2001, 40, 1718.
17. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Solid State Chem., 2001, 159, 352.
18. J. L. Manson, C. D. Incarvito, A. L. Rheingold, and J. S. Miller, J. Chem. Soc., Dalton Trans., 1998, 3705.
19. S. Martin, M. G. Barandika, L. Lezama, J. L. Pizarro, Z. E. Serna, J. I. R. de Larramendi, M. I. Arriortua, T. Rojo, and R. Cortes, Inorg. Chem., 2001, 40, 4109.
20. M. Hernández-Molina, F. Lloret, C. Ruiz-Pérez, and M. Julve, Inorg. Chem., 1998, 37, 4131.
21. K. Nakayama, R. Ishida, D. Hashizume, M. Yasui, F. Iwasaki, and T. Nogami, Chem. Lett., 1998, 497.
22. M. Kurmoo and C. J. Kepert, New J. Chem., 1998, 22.1515.
23. O. Kahn, Molecular Magnetism, VCH, New York, 1993.
24. S. G. Carling, P. Day, D. Visser, and R. K. Kremer, J. Solid State Cherm., 1993, 106, 111.
25. J. L. Manson, C. R. Kmety, A. J. Epstein, and J. S. Miller, Inorg. Chem., 1999, 38, 2552.
26. G. S. Rushbrooke and P. J. Wood, Mol. Phys., 1963, 6, 409.
27. V. I. Ovcharenko and R. Z. Sagdeev, Russ. Chem. Rev., 1999, 68, 345.
28. J. S. Miller and J. L. Manson, Acc. Chem. Res., 2001, 34, 563.
29. J. Kohout, L. Jäger, M. Hvastijová, and J. Kozisek, J. Coord. Chem., 2000, 51, 169.
30. W.-F. Yeung, S. Gao, W.-T. Wong, and T.-C. Lau, New J. Chem., 2002, 26, 523.
31. S. R. Marshall, A. L. Rheingold, L. N. Dawe, W. W. Shum, C. Kitamura, and J. S. Miller, Inorg. Chem., 2002, 41, 3599.
32. J.-H. Luo, M.-C. Hong, R. Cao, Y.-C. Liang, Y.-J. Zhao, R.-H. Wang, and J.-B. Weng, Polyhedron, 2002, 21, 893.
33. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 3712.
34. S. Triki, F. Thetiot, J.-R. Galan-Mascaros, J. S. Pala, and K. R. Dunbar, New J. Chem., 2001, 25, 954.
35. J. W. Raebiger, J. L. Manson, R. D. Sommer, U. Geiser, A. L. Rheingold, and J. S. Miller, Inorg. Chem., 2001, 40, 2578.
36. H. Miyasaka, R. Clérac, C. S. Campos-Fernandez, and K. R. Dunbar, Inorg. Chem., 2001, 40, 1663.
37. S. R. Batten and K. S. Murray, Coord. Chem. Rev., 2003, submitted.
38. A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, Inorg. Chem., 2000, 39, 1668.
39. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Commun., 2000, 793.
40. J. L. Manson, Q.-z. Huang, J. W. Lymn, H.-J. K.oo, M.-H. Whangbo, R. Bateman, T. Otsuka, N. Wada, D. N. Argyriou, and J. S. Miller, J. Am. Chem. Soc., 2001, 123, 162.
41. J. L. Manson, A. M. Arif, C. D. Incarvito, L. M. Liable-Sands, A. L. Rheingold, and J. S. Miller, J. Solid State Chem., 1999, 145, 369.
42. J. L. Manson, C. D. Incarvito, A. M. Arif, A. L. Rheingold, and J. S. Miller, Mol. Cryst. Liq. Cryst., 1999, 334, 605.
43. P. Jensen, S. R. Batten, G. D. Fallon, D. C. R. Hockless, B. Moubaraki, K. S. Murray, and R. Robson, J. Solid State Chem., 1999, 145, 387.
44. S. R. Marshall, C. D. Incarvito, J. L. Manson, A. L. Rheingold, and J. S. Miller, Inorg. Chem., 2000, 39, 1969.
45. Z.-M. Wang, J. Luo, B.-W. Sun, C.-H. Yan, C.-S. Liao, and S. Gao, Acta Crystallogr., Sect. C, 2000, 56, 242.
46. A. Claramunt, A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, J. Chem. Soc., Dalton Trans., 2000, 2627.
47. M. A. M. Abu-Youssef, A. Escuer, M. A. S. Goher, F. A. Mautner, and R. Vicente, Eur. J. Inorg. Chem., 1999, 687.
48. M. A. M. Abu-Youssef, A. Escuer, D. Gatteschi, M. A. S. Goher, F. A. Mautner, and R. Vicente, Inorg. Chem., 1999, 38, 5716.
49. M. A. M. Abu-Youssef, M. Drillon, A. Escuer, M. A. S. Goher, F. A. Mautner, and R. Vicente, Inorg. Chem., 2000, 39, 5022.
50. A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, Inorg. Chim. Acta., 2002, 340, 163.
51. K. J. Berry, P. E. Clark, K. S. Murray, C. L. Raston, and A. H. White, Inorg. Chem., 1983, 22, 3928.
52. M. E. Fisher, Am. J. Phys., 1964, 32, 343.
53. C. R. Kmety, J. L. Manson, S. McCall, J. E. Crow, K. L. Stevenson, and A. J. Epstein, J. Magn. Magn. Mater., 2002, 248, 52.
54. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
55. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
56. teXsan version 1.6: Single Crystal Structure Analysis Software, Molecular Structure Corporation, The Woodlands,Texas, USA, 1993.
57. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
58. G. M. Sheldrick, 'SHELX-97 Manual', 1997.
59. D. C. Palmer, Crystal Diffract 2.1.0; Crystal Maker Software, Bicester, UK, 1999.
60. T. J. B. Holland and S. A. T. Redfern, Mineral. Mag., 1997, 61, 65.

CHAPTER 3: ID MANGANESE(III) AND
IRON(III) COORDINATION POLYMERS
CONTAINING SCHIFF-BASE LIGANDS AND
DICYANAMIDE

3.1 Introduction

Studies of polymeric coordination complexes, and how the bridging ligands affect magnetic coupling and long-range order, have increased rapidly in recent years. The bridging ligands $\mathrm{CN}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{RCO}_{2}{ }^{-1-11}$ and poly-cyano ligands such as dicyanamide $\left(\mathrm{N}(\mathrm{CN})_{2}{ }^{-} \text {, dca }\right)^{3,12,13}$ have received most attention. Since the discovery, by our group and others, that the rutile-like binary complexes of dicyanamide, $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right], \mathrm{M}^{11}=\mathrm{Cr}, \mathrm{Mn}$, Fe, Co and $\mathrm{Ni},{ }^{12,14,15}$ display long-range magnetic order, we have been undertaking a wide investigation of molecule-based magnetic materials containing terminal and bridging coligands and the dicyanamide ligand. ${ }^{12,14,16-25}$ The present study of ternary transition metal dicyanamide networks containing tetradentate Schiff-base ligands is part of this investigation. It complements the results, described in Chapter 4, with novel dicyanamide chiral 3D network complexes with the acetylacetone derived Schiff-base ligands, acenH ${ }_{2}$ $\left(N, N^{\prime}\right.$-ethylenebis(acetylacetoneimine)) and $\quad(\pm)-$ actch $_{2} \quad\left((\pm)-N, N^{\prime}\right.$-trans-1,2cyclohexanebis(acetylacetoneimine)). Interestingly, the networks containing the achiral Schiff-base ligand are chiral and the crystals are spontaneously resolved.

Metal Schiff-base complexes continue to attract attention in magnetochemicai work, either in their own right, or as building blocks in heterometallic molecule based magnetic materials. For instance, Floriani and Miyasaka et al. have incorporated metal-Schiff-base moieties into 'molecular' Prussian-blue $\mathrm{CN}^{\text {' bridged magnetic materials. For }}$ example, they have combined Schiff-base ligands and hexacyanometallates in the comelex $\left[\mathrm{NEt}_{4}\right][\mathrm{Mn}(5-\mathrm{Cl} \text {-salen })]_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, which consists of $[\mathrm{Mn}(5-\mathrm{Cl} \text {-salen })]^{+}$moieties linked with ferricyanide forming a 2D sheet structure. This complex is a metamagnet with $T_{\mathrm{N}}=$ $4.0 \mathrm{~K} .{ }^{26}$ This is one of many such studies by this group; $[\mathrm{Fe} \text { (salen) }]^{+}$has also been
employed. ${ }^{27}$ More recently Miyasaka et al. also reported using $\mathrm{Mn}^{\text {III }}$ Schiff-base dimers as possible components in magnetic materials as the dimers display ferromagnetic coupling. ${ }^{28}$

Outside of their magnetochemical interest, manganese(III/IV) Schiff-base complexes are also relevant as models for the water oxidation complex (WOC) of photosystem II (PS II) of green plants and cyanobacteria. ${ }^{29-33}$ Homo-chiral manganese(III) Schiff-base complexes hãve been used extensively as enantioselective catalysts for the epoxidation of olefins. ${ }^{34-37}$ The best known of these is Jacobsen's catalyst. ${ }^{38}$ In addition, chiral Schiff-base complexes have also been demonstrated to display non-linear optical properties. ${ }^{39,40}$

Described in this chapter are six new linear chain complexes of the general formula, $[\mathrm{M}(\text { Schiff-base })(\mathrm{dca})]_{n}, \mathrm{M}^{\text {IlI }}=\mathrm{Mn}$ and Fe. These are some of the first trivalent $\mathrm{M}^{\text {IIt }}$-dca complexes to be reported, and the first to be structurally characterised. ${ }^{41}$ The tetradentate Schiff-base ligands chosen for this study were salen $\mathrm{H}_{2}\left(N, N^{\prime}-\right.$ ethylenebis(salicylideneimine)), sal-o-phenH2 ($N, N^{\prime}-o$-phenylenebis(salicylideneimine)) and (\pm)-saltchH $H_{2}\left((\pm)-N, N^{\prime}\right.$-trans-cyclohexanebis(salicylideneimine)) (Scheme 3.1). Initially salen H_{2} was chosen, followed by two variations of salenH2. By selecting the ligand sal-o-phen H_{2}, we could observe the effect that introducing the rigidity of the phenyl ring, as the bridge component of the Schiff-base ligand, may have on the structural and magnetic properties. The (\pm)-saltch H_{2} ligand also possesses a six membered ring as the bridge component, however, it is flexible like salen H_{2} and is also a chiral ligand, similar to that in Jacobsen's catalyst and related complexes. However, in this case a racemic mixture of (\pm)-saltch H_{2} was employed.

salenH H_{2}

sal-o-phenH ${ }_{2}$

(\pm) saltch $H_{2}\left\{\begin{array}{l}1 R, 2 R \\ 1 S, 2 S\end{array}\right.$

Scheme 3.1 Schiff-base ligands salenH2, sal-o-phen H_{2} and (\pm)-saltch H_{2}.

Several $[M(\operatorname{salen})(\mu-X)]_{n}$ linear chain 1D complexes have been reported previously, where $\mathrm{M}^{\mathrm{III}}=\mathrm{Mn}$ or Fe and X is a short anionic bridging ligand including $\mathrm{OAc}^{-42-45} \mathrm{NO}_{3}{ }^{-46} \mathrm{~N}_{3}{ }^{-47}$ or CN^{-}(which has alternating high and low spin Mn^{111} ions) ${ }^{48}$ or a longer bridging ligand such as N -4-pyridylglycinato, 4-(pyridylthio)acetato, ${ }^{49}$ or 1,4-bis(1imidazolyl)butane. ${ }^{50}$ Such compounds are generally weakly exchange coupled, magnetic ordering not being a common feature. However, Rajasekharan et al. very recently reported the 1D helical polymer $\left[\mathrm{Mn}^{\mathrm{III}}(\text { salpn })(\mathrm{NCS})\right]_{n}$ (where salpnH ${ }_{2}=N, N$-Bis(salicylidene)-1,3diaminopropane), which exhibits spin-canted antiferromagnetic ordering below $7 \mathrm{~K} .{ }^{51}$

During the writing of this thesis, the structures and some physical properties of the compounds $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{IIt}}=\mathrm{Mn}$ and Fe , were reported by Shi et al. ${ }^{52}$ However, there are serious shortcomings in this paper. They reported markedly different variable temperature magnetism of the $\mathrm{Fe}^{\mathrm{III}}$ complex compared to our observations (vide infra) and proposed that it contains low-spin $\mathrm{Fe}^{\text {III }}$ with strong antiferromagnetic coupling. They measured electronic spectra and cyclic voltammetry on solutions of the complexes. As these complexes are polymeric, by necessity they must break up to dissolve and are thus no longer possess the reported structures in solution.

3.2 Synthesis and Characterisation of $[M(L)(d c a)]_{n}$ Complexes;

$M^{\prime \prime \prime}=\mathrm{Mn}$ and $\mathrm{Fe} ; \mathrm{LH}_{2}=$ salenH H_{2}, sal-o-phenH2 and (\mathcal{H} -

 salfch H_{2}Reaction of salenH H_{2} and sodium dicyanamide with manganese(II) nitrate in air in a molar ratio of 1:1:1 in methanol led to the formation of $[\mathrm{Mn}(\mathrm{salen})(\mathrm{dca})]_{n}$. Reaction of Fe(salen) Cl with sodium dicyanamide in methanol in a molar ratio of $1: 1$ in methanol led to the formation of $[\mathrm{Fe}(\text { salen })(\text { dca })]_{n} .[\mathrm{Mn}(\text { sal }-o \text {-phen })(\mathrm{dca})]_{n}$ was prepared in an analogous reaction to the synthesis of $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$, replacing salen H_{2} with sal-o-phenH H_{2}, and $\left[\mathrm{Fe}(\text { sal-o-phen)(dca) }]_{n}\right.$ was prepared in a similar reaction to $\left[\mathrm{Mn}(\text { sal-o-phen)(dca) }]_{n}\right.$, replacing the manganese(II) salt with iron(II) tetrafluoroborate. Reaction of (\pm)-saltchH ${ }_{2}$ with sodium dicyanamide and manganese(II) nitrate in a molar ratio of 1:2:1 in a methanol/acetone mixture led to the formation of $[\mathrm{Mn}(\pm \pm)$-saltch $)($ dca $)]_{n} .[\mathrm{Fe}((\pm)$ saltch $)(\mathrm{dca})]_{n}$ was prepared by a similar reaction to the synthesis of $\left[\mathrm{Mn}(\pm \pm \text {-saltch)(dca) }]_{n}\right.$ except the manganese(II) salt was replaced by iron(II) tetrafluroborate and a methanol/DMF solvent mixture was used. No base was needed to deprotonate the salen H_{2}, sal-o-phenH H_{2} or (\pm)-saltch H_{2} ligands.

As indicated above, Shi et al. ${ }^{52}$ very recently reported the synthesis of $[\mathrm{Mn} \text { (salen)(dca) }]_{n}$ and $[\mathrm{Fe}(\text { salen })(\text { dca })]_{n}$ from $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, respectively. In each case the salen H_{2} ligand was formed in situ by reaction of the metal salt with salicylaldehyde and ethylenediamine. Problems with by-products (Fe (salen) Cl) in the synthesis of the $\mathrm{Fe}^{\mathrm{il} \mathrm{\prime}}$ complex were also reported. By using salenH ${ }_{2}$ as a reagent in the present work, rather than forming it in situ, or using $\mathrm{Fe}($ salen $) \mathrm{Cl}$ itself, to form the $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}$ complexes, has reduced the potential of such by-product formation.

Some characteristic vibrational absorptions of the dicyanamide ligand and Schiffbase ligands for the $[\mathrm{M}(\text { Schiff-base })(\text { dca })]_{n}$ complexes are listed in Table 3.1. It can be seen that the selected dicyanamide vibrations have lower wavenumber values for the $[\mathrm{Mn}(\mathrm{Schiff}-\mathrm{base})(\mathrm{dca})]_{n}$ complexes compared to the $\left[\mathrm{Fe}(\text { Schiff-base)(dca)] }]_{n}\right.$ complexes (for equivalent Schiff-base). These values are consistent with bidentate dicyanamide ligands bridging through both the nitrile nitrogens in the $\mu_{1,5}$-dca mode. There are no significant differences in the $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n} v_{\mathrm{as}}(\mathrm{C} \equiv \mathrm{N})$ or $v_{s}(\mathrm{C} \equiv \mathrm{N})$ values here compared to those reported by Shi et al. ${ }^{52}$

Table 3.1 Selected assigned dicyanamide and Schiff-base IR absorptions.

Complex	dicyanamide			Schiff-base	
	$v_{\text {as }}(\mathrm{C}-\mathrm{N})+\mathrm{v}_{\mathrm{s}}(\mathrm{C}-\mathrm{N})$	$v_{\text {as }}(\mathrm{C} \equiv \mathrm{N})$	$v_{s}(\mathrm{C} \equiv \mathrm{N})$	$v(C=N)$	$v(C=C)$
[Mn(salen)(dca)] ${ }_{n}$	2285	2226	2162	1622	1601
[Fe(salen)(dca)] ${ }_{n}$	2317	2246	2179	1625	1598
[Mn(sal-o-phen)(dca) $]_{n}$	2284	2230	2161	1605	1576
$\left[\mathrm{Fe}(\mathrm{sal}-\mathrm{o} \text {-phen)(dca) }]_{n}\right.$	2316	2249	2174	1605	1579
$[\mathrm{Mn}(\pm) \text {-saltch)(dca) }]_{n}$	2278	2229	2164	1620	1598
$[\mathrm{Fe}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$	2315	2248	2182	1618	1594

3.3 Crystal Structures of $[M(L)(d c a)]_{n}$ Complexes; $M^{\prime \prime \prime}=M n$ and

Fe; $\mathrm{LH}_{2}=$ salenH ${ }_{2}$, sal-o-phenH H_{2} and (\pm)-saltch H_{2}

Crystal data for the $\left[\mathrm{M}(\text { Schiff-base)(dca) }]_{n}\right.$ complexes are summarised in Table
3.2. The structures of these complexes are all very similar. They consist of linear 1D zigzag chains of $[\mathrm{M}(\text { Schiff-base })]^{+}$moieties linked by $\mu_{1,5}$-dca ligands via the nitrile nitrogens. In each case the high-spin $\mathrm{M}^{\mathrm{III}}$ atom is coordinated in a near octahedral
environment by the imine nitrogens, $(\mathrm{M}-\mathrm{N}=1.991(2)-2.024(3) \AA(\mathrm{Mn})$, and $2.105(2)-$ $2.127(2) \AA(\mathrm{Fe}))$, and phenolate oxygens, $(\mathrm{M}-\mathrm{O}=1.872(1)-1.888(2) \AA(\mathrm{Mn}), 1.880(1)-$ $1.902(2) \AA(\mathrm{Fe})$), of the appropriate Schiff-base ligand in the equatorial plane and by two nitrile nitrngens of two bridging dicyanamide ligands in the axial positions ($\mathrm{M}-\mathrm{N}=$ $2.252(3)-2.297(2) \AA(\mathrm{Mn})$, and $2.125(2)-2.167(2) \AA(\mathrm{Fe}))$. These distances are comparable to other $\mathrm{M}^{\mathrm{III}}$ salen complexes. For instance, in $\left[\mathrm{M}^{\mathrm{III}}(\text { salen })(\mathrm{OAc})\right]_{n}, \mathrm{M}^{\mathrm{III}}=$ Mn^{45} and $\mathrm{Fe},{ }^{44}$ the equatorial $\mathrm{M}^{\mathrm{MI}}-\mathrm{N}_{\text {iminc }}$ distances are 1.989 and 2.108(3) \AA for Mn and Fe , respectively, and $\mathrm{M}^{111}-\mathrm{O}_{\text {phenolate }}$ distances are 1.888 and $1.894(2) \AA$ for Mn and Fe , respectively. In $\left[\mathrm{Mn}^{\text {III }}(\text { salen })\left(\mu_{1,3}-\mathrm{N}_{3}\right)\right]_{n}^{47}$ the $\mathrm{Mn}^{\text {III }}-\mathrm{N}_{\text {azide }}$ distances are $2.280(2)$ and $2.334(2) \AA$, where the latter distance is significantly longer than the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\text {dca }}$ distances of the present structures.

In Chapter 4 the structures of $\left[M^{11}(L)(d c a)_{2}\right], M^{I I}=M n$ and $\mathrm{Fe} ; L=a \operatorname{cen} H_{2}$ and (\pm)-actch ${ }_{2}$, are reported. The $\mathrm{M}^{\mathrm{II}}-\mathrm{N}_{\text {dca }}$ distances range from 2.204(4) to 2.248(2) $\AA(\mathrm{Mn})$, and 2.112(4) to $2.200(4) \AA(\mathrm{Fe})$. The $\mathrm{M}-\mathrm{N}_{\mathrm{dca}}$ distances for the $\mathrm{Mn}^{\text {II }}$ complexes are shorter than those for the $\mathrm{Mn}^{\mathrm{II}}$ complexes presented here (although they do overlap within error) because the latter show Jahn-Teller elongation in the axial $\mathrm{Mn}^{\mathrm{III}}-\mathrm{N}_{\text {dca }}$ bonds (as expected for a d^{4} ion in near octahedral geometry). The $M-N_{d c a}$ distances for the present $F e^{\text {III }}$ complexes are, however, within the ranges of those distances for the $\mathrm{Fe}^{\mathrm{lt}}$ complexes in Chapter 4.

The asymmetric unit for each complex consists of one octahedral $\mathrm{M}^{\mathrm{IIt}}$ atom, one Schiff-base ligand and one dicyanamide ligand.

Table 3.2 Crystal data for the $[\mathrm{M}(\text { Schiff-base })(\mathrm{dca})]_{n}$ complexes.

Complex	[M(salen)(dca)] ${ }_{n}$		[M(sal-o-phen)(dca)] ${ }_{\text {n }}$		[M(4)-saltch)(dea) ${ }_{\text {\% }}$	
	Mn	Fe	Mn	Fe	Mn	Fe
Formula	$\mathrm{C}_{18} \mathrm{H}_{44} \mathrm{MnN}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FeN}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{MnN}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{FeN}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{MnN}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FeN} \mathrm{S}_{5} \mathrm{O}_{2}$
M	387.28	388.19	435.32	436.23	441.37	442.28
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	Pbca	Pbca	$P 2_{1} / n$	$P 21 / n$	$P 2_{1} / n$	$P 2_{1} / n$
a / A	11.2285(3)	11.3538(2)	7.5424(1)	7.7017(1)	8.6890 (1)	8.7045(2)
b / A	16.8379(8)	16.4929(2)	16.7964(2)	16.9869(3)	15.7419(3)	15.9663(3)
c / A	17.5396(8)	17.7377(4)	15.3008(2)	14.9862(2)	14.2566(2)	14.0241(3)
$\beta{ }^{\circ}$			103.8472(6)	104.2021(8)	92.111(1)	90.973 (1)
U / A^{3}	3316.1(2)	3321.5(1)	1882.05(4)	1900.69(5)	1948.71(5)	1948.77(7)
Z	8	8	4	4	4	4
T/K	123(2)	123(2)	123(2)	123(2)	123(2)	123(2)
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.820	0.932	0.732	0.824	0.708	0.804
Crystal dimensions/mm	$0.4 \times 0.15 \times 0.075$	$0.24 \times 0.21 \times 0.06$	$0.3 \times 0.15 \times 0.15$	$0.23 \times 0.2 \times 0.05$	$0.13 \times 0.13 \times 0.1$	$0.25 \times 0.1 \times 0.1$
Index ranges	$\begin{aligned} &-12 \leq h \leq 14 ; \\ &-22 \leq k \leq 22 ; \\ &-23 \leq l \leq 23 \end{aligned}$	$\begin{array}{r} -14 \leq h \leq 14 ; \\ -20 \leq k \leq 20 ; \\ -23 \leq l \leq 23 \end{array}$	$\begin{array}{r} -9 \leq h \leq 9 ; \\ -22 \leq k \leq 22 ; \\ -20 \leq l \leq 20 \end{array}$	$\begin{array}{r} -10 \leq h \leq 10 ; \\ -22 \leq k \leq 22 ; \\ -19 \leq l \leq 19 \end{array}$	$\begin{aligned} & -11 \leq h \leq 11 ; \\ & -20 \leq k \leq 21 ; \\ & -21 \leq 1 \leq 21 \end{aligned}$	$\begin{array}{r} -11 \leq h \leq 11 ; \\ -20 \leq k \leq 21 ; \\ -18 \leq l \leq 18 \end{array}$
Data collected	46338	43185	25139	29664	25930	25795
Unique data ($\mathrm{R}_{\text {int }}$)	4002 (0.1325)	3933 (0.0897)	4625 (0.0299)	4697 (0.0582)	4795 (0.0600)	4805 (0.0882)
Observed reflections [$[1>2 \sigma(1)]$	2568	3033	3913	3519	3650	3267
Parameters	275	275	327	327	351	351
Final $\mathrm{R}_{1}, w \mathrm{R}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]^{(0)}$	0.0698, 0.1214	0.0520, 0.0989	0.0341, 0.0970	0.0362, 0.0727	0.0470, 0.0920	0.0493, 0.1118
(all data)	0.1373, 0.1402	0.0793, 0.1072	$0.0434,0.1083$	0.0653, 0.0811	0.0750, 0.1007	0.0917, 0.1264
Goodness of fit, S	1.108	1.053	1.114	1.020	1.028	$\xrightarrow{1.057}$

[^0]
3.3.1 $[\mathbf{M}(\text { salen })(d c a)]_{n}, \mathbf{M}^{\text {III }}=\mathbf{M n}, \mathbf{F e}$

The complexes $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{MII}}=\mathrm{Mn}$ and Fe , (Figure 3.1) are isomorphous and crystallize in the orthorhombic space group Pbca. Table 3.3 contains selected interatomic distances and angles (see page 140). The salen ligand is non-planar, such that the phenyl rings of the ligand are bent slightly away from the equatorial coordination plane (defined by mean plane of $\mathrm{MN}_{2} \mathrm{O}_{2}$) and are at $23.4(2)^{\circ}(\mathrm{Mn})$ and $24.0(1)^{\circ}(\mathrm{Fe})$ with respect to each other. The equatorial coordination planes along the chains, which run parallel to the b-axis direction, are at acute angles of $52.38(6)^{\circ}(\mathrm{Mn})$ and $50.70(4)^{\circ}(\mathrm{Fe})$ to each other. Intra-chain $\mathrm{M} \cdots \mathrm{M}$ distances are $8.4596(4) \AA(\mathrm{Mn})$ and $8.3137(1) \AA(\mathrm{Fe})$. The former distance is significantly longer due to the Jahn-Teller elongation in this direction. The inter-chain $\mathrm{M} \cdots \mathrm{M}$ distances of $7.4959(7)$ and $7.5830(8) \AA(\mathrm{Mn})$, and $7.6169(5)$ and $7.6055(5) \AA(\mathrm{Fe})$ are, interestingly, significantly shorter than the intra-chain $\mathrm{M} \cdots \mathrm{M}$ distances.

Shi et al. determined their structures of the [M(salen)(dca)] $]_{n}$ complexes at 293 K , whereas the present structures were determined at 123 K . The structures at the two temperatures are isomorphous (same crystal system and space group), although the unit cell parameters of the former structures are slightly longer (differences of ~ 0.04 to $0.2 \AA$). The coordination bond lengths are the identical (within error) for the equivalent Mn and Fe structures at the two temperatures, with the exception of the $\mathrm{Mn}^{111}-\mathrm{N}_{\text {daa }}$ distances, wbich are $\sim 0.05 \AA$ longer at 293 K .

Figure 3.1 The crystal structure of $[\mathrm{Fe}(\mathrm{salen})(\mathrm{dca})]_{n}$ with atom labelling scheme (thermal ellipsoids shown at 50% probability). $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$ is isomorphous.

The $[M(\text { salen })(\mathrm{dca})]_{n}$ chains interdigitate with adjacent chains in the $b c$-plane (Figure 3.2) via weak $\pi-\pi$ interactions, with closest $C \cdots C$ contacts of $3.494(6) \AA(\mathrm{Mn})$ and $3.443(4) \AA(\mathrm{Fe})$ and phenyl centroid \cdots centroid distances of $3.828 \AA(\mathrm{Mn})$ and $3.772 \AA$ (Fe), thus forming π-stacked sheets. The longer $\pi-\pi$ distances for the manganese(III) structures are due to the Jahn-Teller elongation.

Figure 3.2 Packing diagram of $[\mathrm{Fe}(\text { salen })(\mathrm{dca})]_{n}$, showing interdigitating chains in the $b c$ plane, and $\pi-\pi$ stacking interactions (dashed green).

Table 3.3 Selected interatomic distances (\AA) and angles $\left(^{\circ}\right)$ of $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{III}}=\mathrm{Mn}$ and Fe .

	Mn	Fe		Mn	Fe
$\mathrm{M}(1)-\mathrm{O}(1)$	1.882(3)	1.894(2)	$\mathrm{M}(1)-\mathrm{N}(12)$	2.024(3)	2.105(2)
$\mathrm{M}(1)-\mathrm{O}(20)$	1.883(3)	1.894(2)	$\mathrm{M}(1)-\mathrm{N}(31)$	2.252(3)	2.152(2)
$\mathrm{M}(1)-\mathrm{N}(9)$	2.018(3)	2.114(2)	$\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{i}}\right)$	2.253(4)	$2.167(2)$
$\mathrm{M}(1) \cdots \mathrm{M}\left(1^{1}\right)$	8.4596(4)	8.3137(1)			
	Mn	Fe		Mn	Fe
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(9)$	90.8(1)	88.62(9)	$\mathrm{N}\left(35^{\mathrm{j}}\right)-\mathrm{M}(1)-\mathrm{O}(1)$	91.5(1)	92.42(9)
$\mathrm{N}(9)-\mathrm{M}(1)-\mathrm{N}(12)$	80.3(1)	77.7(1)	$\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}(9)$	88.0(2)	85.8(1)
$\mathrm{N}(12)-\mathrm{M}(1)-\mathrm{O}(20)$	90.5(1)	88.32(9)	$\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}(12)$	88.4(1)	87.90(9)
$\mathrm{O}(20)-\mathrm{M}(1)-\mathrm{O}(1)$	98.4(1)	105.46(8)	$\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{O}(20)$	90.8(1)	90.93(9)
$\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{O}(1)$	91.9(1)	91.90(9)	$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(12)$	171.1(1)	166.21(9)
$\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(9)$	88.7(2)	88.6(1)	$\mathrm{O}(20)-\mathrm{M}(1)-\mathrm{N}(9)$	170.8(1)	165.69(9)
$\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(12)$	87.7(1)	86.55(9)	$\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}\left(35^{\text {j }}\right.$)	175.3(1)	172.87(9)
$\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{O}(20)$	91.9(1)	93.38(9)			

Symmetry transformation: (i) $1 / 2-x, y-1 / 2, z$.

3.3.2 $[\mathbf{M}(\text { sal-o-phen })(\text { dca })]_{n}, M^{111}=\mathbf{M n}, \mathbf{F e}$

The complexes $\left[\mathrm{M}(\text { sal-o-phen)(dca) }]_{n}, \mathrm{M}^{\mathrm{III}}=\mathrm{Mn}\right.$ and Fe , (Figure 3.1) are isomorphous and crystallize in the monoclinic space group $P 2_{1} / n$. Table 3.4 contains selected interatomic distances and angles (see page 144). While the phenyl groups of the salen ligand in the $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}$ complexes are bent away from the coordination plane in a roughly symmetrical fashion, this is not the case for sal-o-phen. One of the phenyl rings is bent $3.9(1)^{\circ}(\mathrm{Mn})$ and $6.0(1)^{\circ}(\mathrm{Fe})$, while the other makes an angle with the
coordination plane of $24.88(8)^{\circ}(\mathrm{Mn})$ and $23.08(9)^{\circ}(\mathrm{Fe})$. In contrast to the $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}$ complexes, the sal-o-phen equatorial coordination planes on adjacent M^{II} atoms are at the larger angles of $78.31(3)^{\circ}(\mathrm{Mn})$ and $73.64(4)^{\circ}(\mathrm{Fe})$ to each other. The chains run parallel to the [101] lattice vector.

Figure 3.3 The crystal structure of $\left[\mathrm{Mn}(\text { sal-o-phen)(dca) }]_{n}\right.$ with atom labelling scheme (thermal ellipsoids shown at 50% probability). $\left[\mathrm{Fe}(\mathrm{sal}-o \text {-phen)(dca) }]_{n}\right.$ is isomorphous.

The intra-chain $\mathrm{M} \cdots \mathrm{M}$ distances of $7.7893(1) \AA(\mathrm{Mn})$ and $7.6974(2) \AA(\mathrm{Fe})$, are almost $1 \AA$ shorter than those of the $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}$ complexes. A contributing factor to the more pronounced angular zigzag nature of the chains described above may be the presence of $\mathrm{CH} \cdots \pi$ interactions between a hydrogen atom ($\mathrm{H}(14)$) on the bridge phenyl ring of sal-o-phen and one of the phenyl rings ($C(2)-C(7)$) of the salicylaldimine moiety (Figure 3.4), with $\mathrm{CH} \cdot \cdots$ centroid distances of $2.593 \AA(\mathrm{Mn})$ and $2.630 \AA(\mathrm{Fe})$. One of the
inter-chain $\mathrm{M} \cdots \mathrm{M}$ distances is equal to the unit cell length $a(7.5424(1) \AA(\mathrm{Mn})$ and $7.7017(1) \AA(\mathrm{Fe})$), and the next shortest $\mathrm{M} \cdots \mathrm{M}$ distances are $7.4666(5) \AA(\mathrm{Mn})$ and $7.2516(5) \AA(\mathrm{Fe})$. As in the $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}$ complexes, these distances are shorter than the intra-chain $\mathrm{M} \cdots \mathrm{M}$ distances.

Figure 3.4 The structure of $[\mathrm{M}(\text { sal }-o-\mathrm{phen})(\mathrm{dca})]_{n}$ showing intra-chain $\mathrm{CH} \cdots \pi$ interactions (dashed green).

The $[\mathrm{M}(\text { sal-o-phen })(\mathrm{dca})]_{n}$ chains interdigitate with adjacent chains in the acplane (Figure 3.5). The bridge phenyl rings associate with one of the phenyl rings ($\mathrm{C}(18)$ $\mathrm{C}(23)$) of the salicylaldimine moiety of sal-o-phen via weak $\pi-\pi$ interactions, with closest C $\cdots \mathrm{C}$ contacts of $3.433(3) \AA(\mathrm{Mn})$ and $3.376(3) \AA(\mathrm{Fe})$, and pheryl centroid \cdots centroid distances of $4.069 \AA(\mathrm{Mn})$ and $3.969 \AA(\mathrm{Fe})$.

Table 3.4 Selected interatomic distances (\AA) and angles (${ }^{(}$) for $[\mathrm{M}(\text { sal-o-phen })(\mathrm{dca})]_{n}, \mathrm{M}^{11 I}$ $=\mathrm{Mn}$ and Fe .

| | Mn | Fe | | $\mathbf{M n}$ | $\mathbf{F e}$ |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: |
| $\mathrm{M}(1)-\mathrm{O}(1)$ | $1.872(1)$ | $1.880(1)$ | $\mathrm{M}(1)-\mathrm{N}(16)$ | $1.994(1)$ | $2.113(2)$ |
| $\mathrm{M}(1)-\mathrm{O}(24)$ | $1.881(1)$ | $1.894(1)$ | $\mathrm{M}(1)-\mathrm{N}(31)$ | $2.275(2)$ | $2.155(2)$ |
| $\mathrm{M}(1)-\mathrm{N}(9)$ | $2.007(1)$ | $2.127(2)$ | $\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{i}}\right)$ | $2.277(2)$ | $2.125(2)$ |
| $\mathrm{M}(1) \cdots \mathrm{M}\left(1^{\mathrm{i}}\right)$ | $7.7893(1)$ | $7.6974(2)$ | | | |
| | | | | | |
| | | | | $\mathbf{M n}$ | Fe |
| | | Fe | | $95.16(6)$ | $96.46(6)$ |
| $\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(9)$ | $92.93(6)$ | $89.83(6)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{O}(1)$ | $9.0(6)$ | $88.64(6)$ |
| $\mathrm{N}(9)-\mathrm{M}(1)-\mathrm{N}(16)$ | $81.64(6)$ | $77.46(6)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}(9)$ | $89.00(6)$ | |
| $\mathrm{N}(16)-\mathrm{M}(1)-\mathrm{O}(24)$ | $92.44(5)$ | $89.93(6)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}(16)$ | $86.74(6)$ | $86.05(6)$ |
| $\mathrm{O}(24)-\mathrm{M}(1)-\mathrm{O}(1)$ | $92.94(5)$ | $102.66(6)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{O}(24)$ | $91.76(6)$ | $92.53(6)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{O}(1)$ | $91.47(6)$ | $92.09(6)$ | $\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(16)$ | $174.23(6)$ | $167.01(6)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(9)$ | $88.82(6)$ | $86.61(6)$ | $\mathrm{O}(24)-\mathrm{M}(1)-\mathrm{N}(9)$ | $173.98(6)$ | $167.23(6)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(16)$ | $86.49(6)$ | $84.57(6)$ | $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{i}}\right)$ | $173.11(6)$ | $170.21(6)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{O}(24)$ | $89.73(6)$ | $90.24(6)$ | | | |

Symmetry transformation: (i) $\mathrm{x}-1 / 2,1 / 2-\mathrm{y}, \mathrm{z}-1 / 2$.

3.3.3 $[\mathbf{M}((\pm) \text {-saltch })(\mathrm{dca})]_{n}, \mathbf{M}^{\mathrm{III}}=\mathbf{M n}, \mathbf{F e}$

The complexes $[\mathrm{M}((\pm) \text {-saltch })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{III}}=\mathrm{Mn}$ and Fe , are also isomorphous and crystallize in the monoclinic space group $P 2_{1} / n$. Table 3.5 contains selected interatomic distances and angles (see page 149). The asymmetric unit contains one R, R-saltch ligand (Figure 3.6). The chains however, which run parallel to the [$\overline{1} 01$] lattice vector, consist of alternating $R_{s} R$-saltch and S, S-saltch ligands, resulting in an overall centrosymmetric structure. Thus the (\pm)-saltch noiation indicates the presence of both enantiomers in the
structure. The coordination planes of the saltch ligands on adjacent M^{111} centres along the chains make angles with respect to each other of $44.87(5)^{\circ}(\mathrm{Mn})$ and $42.22(7)^{\circ}(\mathrm{Fe})-$ smaller than those of the previous complexes. Like sal-o-phen, the phenyl rings of the (\pm)saltch ligand are bent away from the coordination plane at different angles. One phenyl ring makes an angle of $5.7(1)^{\circ}(\mathrm{Mn})$ and $4.5(2)^{\circ}(\mathrm{Fe})$, while the other makes an angle with the coordination plane of $16.6(1)^{\circ}(\mathrm{Mn})$ and $16.0(1)^{\circ}(\mathrm{Fe})$.

Figure 3.6 The crystal structure of $[\mathrm{Mn}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$ with atom labelling scheme and the enantiomeric forms of the saltch ligands indicated (thermal ellipsoids shown at 50% probability). $[\mathrm{Fe}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$ is isomorphous.

The intra-chain $\mathrm{M} \cdots \mathrm{M}$ distances are $8.5297(1) \AA(\mathrm{Mn})$ and $8.3790(2) \AA(\mathrm{Fe})$. Unlike the previous complexes, only one of the inter-chain $\mathrm{M} \cdots \mathrm{M}$ distances, 7.8754(7) \AA (Mn) and $7.7264(8) \AA(\mathrm{Fe})$, is shorter than the intra-chain $\mathrm{M} \cdots \mathrm{M}$ distances. This observation may be due to the larger steric bulk of the cyclohexyl bridge of the saltch ligand hindering closer packing of the chains.

The chains again interdigitate via a series of weak $\pi-\pi$ and $C H \cdots \pi$ interactions. Firstly, the phenyl ring ($C(2)-C(7)$) π-stacks with its symmetry equivalent in an adjacent chain, with $\mathrm{C} \cdots \mathrm{C}$ closest contacts of and $3.465(4) \AA(\mathrm{Mn})$ and $3.453(4) \AA(\mathrm{Fe})$ and phenyl centroid \cdots centroid distances of $3.624 \AA(\mathrm{Mn})$ and $3.608 \AA(\mathrm{Fe})$, and a hydrogen atom $(H(14 A))$ on the cyclohexyl ring on the adjacent chain is directed towards the phenyl ring, with $\mathrm{CH} \cdots$ centroid distances of $2.821 \AA(\mathrm{Mn})$ and $2.774 \AA(\mathrm{Fe})$. These interactions result in the formation of sheets in the (101) plane (Figure 3.7). Secondly, the other phenyl ring of the saltch ligand $(\mathrm{C}(18)-\mathrm{C}(23))$ associates with a hydrogen atom $(\mathrm{H}(12 \mathrm{~B}))$ on a cyclohexyl ring on an adjacent chain, with $\mathrm{CH} \cdots$ centroid distances of $2.817 \AA(\mathrm{Mn})$ and $2.730 \AA(\mathrm{Fe})$, forming sheets in the ac-plane (Figure 3.8).

Figure 3.7 A packing diagram of $[\mathrm{M}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$ showing π-stacking (dashed green) and $\mathrm{CH} \cdots \pi$ (dashed pink/red) interactions forming sheets in the (101) plane.

Figure 3.8 A packing diagram of $[\mathrm{M}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$ in the ac-plane $\mathrm{CH} \cdots \pi$ (dashed pink/red) interactions.

Table 3.5 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $[\mathrm{M}(\pm)$-saltch $)($ dca $\left.)\right]_{n}, \mathrm{M}^{\text {III }}$ $=\mathrm{Mn}$ and Fe .

	Mn	Fe		Mn	Fe
$\mathrm{M}(1)-\mathrm{O}(1)$	$1.875(2)$	$1.883(2)$	$\mathrm{M}(1)-\mathrm{N}(16)$	$2.002(2)$	$2.118(2)$
$\mathrm{M}(1)-\mathrm{O}(24)$	$1.888(2)$	$1.902(2)$	$\mathrm{M}(1)-\mathrm{N}(31)$	$2.295(2)$	$2.154(3)$
$\mathrm{M}(1)-\mathrm{N}(9)$	$1.991(2)$	$2.107(2)$	$\mathrm{M}(1)-\mathrm{N}\left(35^{i}\right)$	$2.297(2)$	$2.148(2)$
$\mathrm{M}(1) \cdots \mathrm{M}\left(1^{i}\right)$	$8.5297(1)$				

| | Mn | Fe | | Mn | Fe |
| :--- | ---: | ---: | :--- | ---: | ---: | ---: |
| $\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(9)$ | $91.20(7)$ | $88.51(9)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{O}(1)$ | $96.15(7)$ | $97.59(9)$ |
| $\mathrm{N}(9)-\mathrm{M}(1)-\mathrm{N}(16)$ | $82.16(8)$ | $78.03(9)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}(9)$ | $88.41(8)$ | $86.94(9)$ |
| $\mathrm{N}(16)-\mathrm{M}(1)-\mathrm{O}(24)$ | $92.44(7)$ | $92.44(7)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}(16)$ | $87.50(8)$ | $87.29(9)$ |
| $\mathrm{O}(24)-\mathrm{M}(1)-\mathrm{O}(1)$ | $94.37(7)$ | $103.69(8)$ | $\mathrm{N}\left(35^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{O}(24)$ | $88.59(8)$ | $88.93(9)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{O}(1)$ | $89.01(8)$ | $89.93(9)$ | $\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{N}(16)$ | $172.35(7)$ | $165.45(9)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(9)$ | $89.56(9)$ | $89.9(1)$ | $\mathrm{O}(24)-\mathrm{M}(1)-\mathrm{N}(9)$ | $173.93(8)$ | $167.54(9)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(16)$ | $87.15(8)$ | $84.60(9)$ | $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{i}}\right)$ | $174.49(8)$ | $171.75(9)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{O}(24)$ | $92.95(9)$ | $92.5(1)$ | | | |

Symmetry transformation: (i) $1 / 2+x, 1 / 2-y, z-1 / 2$.

3.4 Magnetism of $[M(L)(d c a)]_{n}$ Complexes; $M^{I I I}=M n$ and Fe; $L H_{2}$ $=$ salen H_{2}, sal-o-phenH2 and $\left(\pm\right.$-saltch H_{2}

It can be seen from Figure 3.9 to Figure 3.14 (see pages 151 to 154) that the $\mu_{\text {cff }}$ vs. temperature behaviour for all the $\left[\mathrm{M}^{\text {III }}(\text { Schiff-base })(\mathrm{dca})\right]_{n}\left(\mathrm{M}^{\mathrm{III}}=\mathrm{Mn}\right.$, Fe; Schiff-base $=$ salen $^{2-}$, sal-o-phen ${ }^{2-}$, saltch $^{2-}$) series is rather similar and indicative of very weak antiferromagnetic coupling combined, perhaps, with weak zero-field splitting on the $\mathrm{Mn}^{\mathrm{MI}}$
$\left({ }^{5} \mathrm{E}_{g} ; \mathrm{d}^{4}\right)$ and $\mathrm{Fe}^{\text {III }}\left({ }^{6} \mathrm{~A}_{1 g} ; \mathrm{d}^{5}\right)$ centres. The corresponding χ vs. T plots are Curie-Weiss like, without any maxima (above 2 K). The approximation was made that z.f.s. is zero and Heisenberg chain models were used for $S=2\left(\mathrm{Mn}^{\mathrm{II}}\right)$ and $S=5 / 2\left(\mathrm{Fe}^{\text {III }}\right) .{ }^{53}$ The best-fit parameters are given in Table 3.6. Good agreement is obtained with the J values obtained by Shi et al. ${ }^{52}$ for $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$. Their $\left[\mathrm{Fe}(\text { salen)(dca) }]_{n}\right.$ data are clearly wrong and the assumed spin-state S of $1 / 2$ is not compatible with their quoted Fe-ligand distances. Their data are likely to be due, at least in part, to an impurity of the strongly antiferromagnetically coupled $\left[\{\mathrm{Fe}(\mathrm{salen})\}_{2}(\mu-\mathrm{O})\right] .^{54}$ All the J values in Table 3.6 are less than $1 \mathrm{~cm}^{-1}$, which is characteristic of $\mu_{i, 5}$-dca bridged M^{11} species. ${ }^{12}$ This bridging mode provides a poor superexchange pathway and, in the Jahn-Teller elongated $\mathrm{Mn}^{\mathrm{III}}$ species, involves σ-overlap of dca with the $d_{z^{2}}$ "magnetic" orbital on $\mathrm{Mn}^{\text {III }}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{8}\left(d_{z^{2}}\right)^{1}\right)$. Similar overlap occurs in the $\mathrm{Fe}^{\text {III }}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{2}\right)$ compounds.

Somewhat larger negative J values were found for related acetato-bridged chain structures such as $[\mathrm{Mn}(\text { salen })(\mathrm{OAc})]_{n}, J=-1.8 \mathrm{~cm}^{-1}$, reflecting the enhanced superexchange properties of acetate bridging. A recent $\left[\mathrm{Mn}^{\text {III }}(\text { salpn })(\mathrm{NCS})\right]_{n}$ helical (zig-zag) chain has J $=-1.6 \mathrm{~cm}^{-1}$ with ordering to a spin-canted antiferromagnet occurring below $T_{\mathrm{N}}=7 \mathrm{~K}^{51}$ The anisotropy on $\mathrm{Mn}^{\text {III }}$ (negative D) contributes to the spin canting.

There is not a big enough spread in J values in the present compounds to make a search for magnetostructural trends worthwhile. The shorter $\mathrm{M} \cdots \mathrm{M}$ distances in the [M(sal-o-phen)(dca) $]_{n}$ chains do appear to give larger J values. It is not possible to extract any relationship to $\pi-\pi$ or $\mathrm{CH}-\pi$ interactions.

Table 3.6 Best-fit parameters for $\left[\mathrm{M}^{111} \text { (chelate)(dca) }\right]_{n}$ series obtained using Fisher chain models ($S=2, \mathrm{Mn}^{\mathrm{III}} ; S=5 / 2, \mathrm{Fe}^{\mathrm{III}}$).

Complex	g	J / cm^{-1}
$[\mathrm{Mn}(\text { salen })(\text { dca })]_{n}$	$1.91(1.99)^{\mathrm{a}}$	$-0.12(-0.12)^{\mathrm{a}}$
$[\mathrm{Mn}(\text { sal-o-phen })(\text { dca })]_{n}$	1.88	-0.19
$[\mathrm{Mn}(\text { saltch })(\text { dca })]_{n}$	1.95	-0.19
$[\mathrm{Fe}(\text { salen })(\text { dca })]_{n}$	$1.92(2.01)^{\mathrm{b}}$	$-0.12(-7.6)^{\mathrm{b}}$
$[\mathrm{Fe}(\text { sal-o-phen })(\text { dca })]_{n}$	1.90	-0.72
$[\mathrm{Fe}(\text { saltch })(\text { dca })]_{n}$	1.87	-0.03

(a) ref: Shi et al. ${ }^{52}$ (b) ref: Shi et al. ${ }^{52}$ assuming $S=1 / 2 \mathrm{Fe}^{\mathrm{III}}$

Figure 3.9 Plot of μ_{crf} versus temperature for $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$. For this and the following plots, the applied field is $H=1 \mathrm{~T}$ and the solid line indicates the line of best-fit.

Figure 3.10 Plot of μ_{eff} versus temperature for $[\mathrm{Fe}(\mathrm{salen})(\mathrm{dca})]_{n}$.

Figure 3.11 Plot of $\mu_{\text {cff }}$ versus temperature for $\left[\mathrm{Mn}(\text { sal-o-phen)(dca) }]_{n}\right.$.

Figure 3.12 Plot of μ_{erf} versus temperature for $[\mathrm{Fe}(\mathrm{sal}-o-\mathrm{phen})(\mathrm{dca})]_{n}$.

Figure 3.13 Plot of $\mu_{\text {eff }}$ versus temperature for $[\mathrm{Mn} \text { (saltch)(dca) }]_{n}$.

Figure 3.14 Plot of $\mu_{\text {eff }}$ versus temperature for $[\mathrm{Fe}(\text { saltch })(\mathrm{dca})]_{n}$.

3.5 Conclusions

The 1D coordination polymers, $[\mathrm{M}(\mathrm{L})(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{III}}=\mathrm{Mn}$ and $\mathrm{Fe} ; \mathrm{LH}_{2}=$ salenH2, sal-o-phenH H_{2} and (\pm)-saltch H_{2}, were synthesised, in most cases by reaction of a M^{11} salt with dca and the corresponding Schiff-base ligand. Except $[\mathrm{Fe}(\text { salen })(\mathrm{dca})]_{n}$, which was prepared from $\mathrm{Fe}($ salen $) \mathrm{Cl}$ and dca. The complexes consist of octahedral high-spin $\mathrm{M}^{\mathrm{III}}$ atoms coordinated in the equatorial plane by the tetra-chelating Schiff-base ligand and coordinated in the axial positions by single $\mu_{1,5}$-dca bridges, forming infinite linear zigzag chains. The chains of the complexes interdigitate in a parallel fashion with adjacent chains, via weak π-stacking. Variable temperature magnetic susceptibility measurements ($2-300 \mathrm{~K}$; $H=1 \mathrm{~T}$) showed that these compounds display very weak antiferromagnetic coupling, and consequently no long-range magnetic order was observed under these conditions. The data were fitted to Heisenberg chain models ($S=2, \mathrm{Mn}^{\text {III }} ; S=5 / 2, \mathrm{Fe}^{\mathrm{III}}$) and J values obtained
ranged from -0.03 to $-0.72 \mathrm{~cm}^{-1}$. No significant magnetostructural relationships could be drawn due to all the complexes studied displaying very similar magnetic behaviour.

3.6 Experimental

The Schiff-base ligands salen H_{2}, sal-o-phenH H_{2} and (\pm)-saltch H_{2} ligands were prepared by the condensation reaction of salicylaldehyde with the appropriate diamine; ethylenediamine, o-phenylenediamine and trans-(\pm)-diaminocyclohexane respectively in a 2:1 molar ratio. $\mathrm{Fe}($ salen $) \mathrm{Cl}$ was prepared according to the literature. ${ }^{55}$

3.6.1 Synthesis of $\left.^{[1 M n(s a l e n)(d c a)}\right]_{n}$

$\mathrm{Na}(\mathrm{dca})(0.089 \mathrm{~g}, 1.0 \mathrm{mmol})$ and salenH $\mathrm{H}_{2}(0.268 \mathrm{~g}, 1.0 \mathrm{mmol})$ were dissolved in a mixture of 5 mL ethanol and 10 mL methanol by heating to boiling and stirring for approximately 5 minutes. This was subsequently allowed to cool, causing some salenH2 to recrystallise. This mixture was stirred and heated to gentle reflux at which point a methanolic solution (5 mL) of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.251 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added. An instant colour change to a dark brown/black occurred on addition. The recrystallised salenH H_{2} redissolved soon after addition. Less than one third of the solution was placed in a conical flask to evaporate. The remaining solution was placed in a sealed vial. After approximately two weeks the solution in the conical flask had evaporated to dryness leaving behind some black material, and a small amount of red crystalline material. The latter is likely to be $\left[(\mathrm{Mn}(\text { salen }))_{2}(\mu-\mathrm{O})\right]$. The other two thirds of the solution was then allowed to slowly evaporate. After a month, a precipitate of black crystals had formed which was subsequently collected and washed several times with small amounts of methanol, once with water and followed by more methanol. (Yield $0.17 \mathrm{~g}, 44 \%$). IR (Nujol, cm^{-1}): 3575 w , $3056 \mathrm{w}, 2360 \mathrm{vw}, 2285 \mathrm{~s}, 2226 \mathrm{~s}, 2162 \mathrm{~s}, 1696 \mathrm{vw}, 1622 \mathrm{~s}, 1601 \mathrm{~s}, 1542 \mathrm{~s}, 1466 \mathrm{~s}, 1389 \mathrm{~m}$, $1359 \mathrm{~m}, 1292 \mathrm{~s}, 1243 \mathrm{vw}, 1202 \mathrm{~m} 1150 \mathrm{~m}, 1133 \mathrm{~m}, 1090 \mathrm{~m}, 1054 \mathrm{~m}, 1036 \mathrm{~m}, 985 \mathrm{~m}, 973 \mathrm{w}$,
$962 \mathrm{vw}, 948 \mathrm{vw}, 932 \mathrm{vw}, 905 \mathrm{~m}, 854 \mathrm{w}, 799 \mathrm{~m}, 759 \mathrm{~m}, 750 \mathrm{~m}, 649 \mathrm{~m}, 630 \mathrm{~s}, 596 \mathrm{msh}$. Anal. (\%):
Found: C, $55.9 ; \mathrm{H}, 3.7 ; \mathrm{N}, 18.3$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{MnN}_{5} \mathrm{O}_{2}$: C, $55.8 ; \mathrm{H}, 3.6 ; \mathrm{N}, 18.1$.

3.6.2 Synthesis of $[\mathrm{Fe}(\text { salen })(\mathrm{dca})]_{n}$

A methanolic solution (5 mL) of $\mathrm{Fe}($ salen $) \mathrm{Cl}(0.358 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a methanolic solution (5 mL) of $\mathrm{Na}(\mathrm{dca})(0.089 \mathrm{~g}, 1.0 \mathrm{mmol})$. After a period of a week, black crystals suitable for X-ray diffraction analysis had formed. They were filtered and washed with ethanol and dried with diethyl ether. (Yield $0.14 \mathrm{~g}, 35 \%$). IR ($\mathrm{Nujol}, \mathrm{cm}^{-1}$): $3620 \mathrm{vw}, 2317 \mathrm{~s}, 2246 \mathrm{~m}, 2179 \mathrm{~s}, 1625 \mathrm{~s}, 1598 \mathrm{~s}, 1547 \mathrm{~s}, 1446 \mathrm{~s}, 1383 \mathrm{~s}, 1340 \mathrm{~m}, 1297 \mathrm{~s}, 1245 \mathrm{w}$, 1199w, 1149m, 1129w, 1090w, 1054w, 1036w, 985w, 974vw, 958vw, 944vw, 907m, 854w, 797m, 759m, 749m, 595vw. Anal. (\%): Found: C, 55.6; H, 3.5; N, 17.9. Calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FeN}_{5} \mathrm{O}_{2}: \mathrm{C}, 55.7 ; \mathrm{H}, 3.6 ; \mathrm{N}, 18.0$.

3.6.3 Synthesis of [Mn(sal-o-phen)(dca) $]_{n}$

A solution of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.245 \mathrm{~g}, 1.0 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added to a stirred refluxing suspension of sal-o-phenH $\mathbf{2}_{2}(0.316 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Na}(\mathrm{dca})$ $(0.089 \mathrm{~g}, 1.0 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. On addition the solution went deep red/brown. The solution was then left to cool to room temperature and subsequently filtered to remove a fine brown precipitate. After a few days black crystals had formed. Most of the mother liquor was then decanted and the crystals collected by filtration. (Yield $0.01 \mathrm{~g}, 3 \%$). IR (Nujol, cm^{-1}): $2284 \mathrm{~m}, 2230 \mathrm{~m}, 2161 \mathrm{~s}, 1605 \mathrm{~s}, 1576 \mathrm{~s}, 1531 \mathrm{~s}, 1490 \mathrm{vw}, 1442 \mathrm{~m}, 1347 \mathrm{w}$, $1286 \mathrm{w}, 1254 \mathrm{vw}, 1232 \mathrm{vw}, 1193 \mathrm{~m}, 1152 \mathrm{~m}, 1130 \mathrm{w}, 1031 \mathrm{vw}, 968 \mathrm{vw}, 925 \mathrm{vw}, 871 \mathrm{vw}$, 857vw, 810m, 754s, 672vw, 630w. Anal. (\%): Found: C, 60.8; H, 2.7; N, 16.1. Calc. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{MnN}_{5} \mathrm{O}_{2}: \mathrm{C}, 60.7 ; \mathrm{H}, 3.2 ; \mathrm{N}, 16.1$.

3.6.4 Synthesis of $[\mathrm{Fe}(\text { sal-o-phen })(\mathrm{dca})]_{n}$

$\mathrm{Na}(\mathrm{dca})(0.089 \mathrm{~g}, 1.0 \mathrm{mmol})$ was dissolved in a suspension of sal-o-phenH2 ($0.316 \mathrm{~g}, 1.0 \mathrm{mmol}$) in 15 mL of methanol stirred at gentle reflux. A methanolic (5 mL) solution of $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.338 \mathrm{~g}, 1.0 \mathrm{mmol})$ was filtered into this suspension. The resulting mixture instantly turned a dark brown/black colour, and was stirred for a further 20 minutes at gentle reflux, after which time the sal-o- phenH_{2} had dissolved/reacted. The solution was then left to stand at room temperature to slowly evaporate. After a few days, black crystals had appeared. These were filtered, washed quickly with methanol and dried in air (Yield $0.089 \mathrm{~g}, 20 \%$). IR (Nujol, cm^{-1}): $3607 \mathrm{vw}, 3073 \mathrm{vw}, 2316 \mathrm{~s}, 2249 \mathrm{~s}, 2174 \mathrm{~s}$, $1605 \mathrm{~s}, 1579 \mathrm{~s}, 1538 \mathrm{~s}, 1445 \mathrm{~s}, 1384 \mathrm{~s}, 1338 \mathrm{w}, 1314 \mathrm{~s}, 1255 \mathrm{vw}, 1230 \mathrm{vw}, 1189 \mathrm{~m}, 1152 \mathrm{~m}$, $1127 \mathrm{w}, 1108 \mathrm{vw}, 1054 \mathrm{vw}, 1032 \mathrm{w}, 970 \mathrm{w}, 922 \mathrm{~m}, 870 \mathrm{w}, 81 \mathrm{~m}, 756 \mathrm{~m}, 752 \mathrm{~s}, 662 \mathrm{w}, 620 \mathrm{~m}$. Anal. (\%): Found: C, 60.0; H, 3.1; $\mathrm{N}, 15.9$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{FeN}_{5} \mathrm{O}_{2}$: $\mathrm{C}, 60.6 ; \mathrm{H}, 3.2 ; \mathrm{N}$, 16.1.

3.6.5 Synthesis of $[\mathrm{Mn}((\pm) \text {-saltch })(\text { dca })]_{n}$

A solution of (\pm)-saltchH ${ }_{2}(0.322 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ in a $7 \mathrm{~mL} / 3 \mathrm{~mL}$ methanol/acetone mixture was added to a methanolic solution (5 mL) of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.251 \mathrm{~g}, 1.0 \mathrm{mmol})$. The resulting solution changed colour to dark brown/black after about 5-10 minutes. After a couple of days many black crystals were present. The crystals were collected, washed quickly with methanol and dried in air (Yield $0.210 \mathrm{~g}, 48 \%$). IR (Nujol, cm^{-1}): $3562 \mathrm{vw}, 3069 \mathrm{vw}, 2278 \mathrm{~s}, 2229 \mathrm{~s}, 2164 \mathrm{~s}, 1620 \mathrm{~s}, 1598 \mathrm{sh}$, $1542 \mathrm{~s}, 1450 \mathrm{~s}, 1389 \mathrm{~m}, 134 \mathrm{~s}, 1311 \mathrm{~s}, 1285 \mathrm{~s}, 1242 \mathrm{vw}, 1222 \mathrm{~m}, 1200 \mathrm{~m}, 1150 \mathrm{~s}, 1128 \mathrm{~m}$, $1096 \mathrm{vw}, 1039 \mathrm{vw}, 1030 \mathrm{w}, 1020 \mathrm{~m}, 972 \mathrm{w}, 907 \mathrm{~s}, 858 \mathrm{w}, 851 \mathrm{w}, 810 \mathrm{~s}, 786 \mathrm{vw}, 753 \mathrm{~s}, 740 \mathrm{w}$, $688 \mathrm{w}, 624 \mathrm{~s}, 569 \mathrm{~m}$. Anal. (\%), Found: C, $59.4 ; \mathrm{H}, 4.6 ; \mathrm{N}, 16.0$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{MnN}_{2} \mathrm{O}_{2}$:

C, $59.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 15.9$. A suitable crystal for X-Ray diffraction was selected from a sample prepared by an analogous reaction to the preparation of $[\mathrm{Mn}(\mathrm{sal}-o-\mathrm{phen})(\mathrm{dca})]_{n}$.

3.6.6 Synthesis of $[\mathrm{Fe}((\pm) \text {-saltch })(\text { dea })]_{n}$

A methanolic solution (5 mL) of $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.338 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a solution of (\pm)-saltch $\mathrm{H}_{2}(0.322 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ in a 5 $\mathrm{mL} / 5 \mathrm{~mL}$ methanol/DMF mixture. The resulting solution immediately changed colour to dark brown/black. After several days a black crystalline solid had formed. It was collected and washed quickly with methanol (Yield $0.071 \mathrm{~g}, 16 \%$). IR (Nujol, cm^{-1}): 3616 vw , $2315 \mathrm{~m}, 2248 \mathrm{w}, 2182 \mathrm{~s}, 1618 \mathrm{~s}, 1594 \mathrm{~m}, 1545 \mathrm{~m}, 1342 \mathrm{vw}, 1330 \mathrm{vw}, 1312 \mathrm{~m}, 1249 \mathrm{w}, 1218 \mathrm{vw}$, $1193 \mathrm{w}, 1148 \mathrm{w}, 1123 \mathrm{vw}, 1032 \mathrm{vw}, 1016 \mathrm{w}, 977 \mathrm{vw}, 930 \mathrm{vw}, 908 \mathrm{w}, 750 \mathrm{~m}, 738 \mathrm{w}, 620 \mathrm{w}$. Anal. (\%): Found: C, 59.1; H, 4.5; N, 15.8. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FeN}_{2} \mathrm{O}_{2}$: C, 59.4; H, 5.0; N, 15.8.

3.6.7 X-Ray Crystallography

Data were collected using a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). Integration was carried out by the program DENZO-SMN, ${ }^{56}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{56}$ Solutions were obtained by direct methods (SHELXS 97) ${ }^{57}$ followed by successive Fourier difference methods, and refined by full matrix least squares on $F_{0 b s}{ }^{2}$ (SHELXL 97) ${ }^{57}$ with the aid of the graphical interface program X-SEED. ${ }^{58}$ All non-hydrogen atoms were refined anisotropically (unless otherwise stated). Secondary CH_{2} hydrogen atoms were included at calculated positions for [Fe(salen)(dca)] ${ }_{n}$ with isotropic thermal parameters 1.2 times U_{eq} of the adjoining carbon atom. The equivalent hydrogen atoms for $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$ were not included due to the disorder present on one of the CH_{2} carbon atoms (vide infra). All remaining hydrogen
atoms of $[\mathrm{M}(\text { salen })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{III}}=\mathrm{Mn}, \mathrm{Fe}$, and all those for the complexes $[\mathrm{M}$ (sal-ophen)(dca) $]_{n},[\mathrm{M}((\pm) \text {-saltch })(\mathrm{dca})]_{n}, \mathrm{M}^{\mathrm{II} \mathrm{\prime}}=\mathrm{Mn}$ and Fe , were found in the Fourier difference map and refined isotropically.

The methylene carbon, $\mathrm{C}(10)$, of complex $[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$ was found to be disordered over two positions. It was modelled as two atoms, $\mathrm{C}(10 \mathrm{~A})$ and $\mathrm{C}(10 \mathrm{~B})$, which were refined with isotropic thermal parameters. Site occupancies of 0.37 and 0.63 (1-0.37) for $C(10 A)$ and $C(10 B)$ respectively. Hydrogen atoms on $C(10 A)$ and $C(10 B)$ or $C(11)$ were not included due to the disorder present.

3.7 References

1. L. G. Beauvais and J. R. Long, J. Am. Chem. Soc., 2002, 124, 12096.
2. S. Vaucher, E. Dujardin, B. Lebeau, S. R. Hall, and S. Mann, Chem. Mater., 2001, 13, 4408.
3. J. S. Miller and J. L. Manson, Acc. Chem. Res., 2001, 34, 563.
4. O. Kahn, J. Larionova, and L. Ouahab, Chem. Commun., 1999, 945.
5. J. Larionova, R. Clérac, J. Sanchiz, O. Kahn, S. Golhen, and L. Ouahab, J. Am. Chem. Soc., 1998, 120, 13088.
6. O. Kahn, Molecular Magnetism, VCH, New York, 1993.
7. O. Kahn, Adv. Inorg. Chem., 1995, 43, 179.
8. P. Day and A. E. Underhill, Phil. Trans. R. Soc. London A, 1999, 357, 2851.
9. K. R. Dunbar and R. A. Heintz, Progr. Inorg. Chem., 1997, 45, 283.
10. V. I. Ovcharenko and R. Z. Sagdeev, Russ. Chem. Rev., 1999, 68, 345.
11. M. Verdaguer, A. Bleuzen, C. Train, R. Garde, F. F. De Biani, and C. Desplanches, Phil. Trans. R. Soc. London A, 1999, 357, 2959.
12. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
13. M. Kurmoo and C. J. Kepert, New J. Chem., 1998, 22, 1515.
14. S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and R. Robson, Chem. Commun., 1998, 439.
15. J. L. Manson, C. R. Kmety, A. J. Epstein, and J. S. Miller, Inorg. Chem., 1999, 38, 2552.
16. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 3712.
17. A. M. Kutasi, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 819.
18. S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Chem. Commun., 2000, 2331.
19. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Inorg. Chem., 2001, 40, 1718.
20. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and E. H. K. Tan, Polyhedron, 2001, 20, 1129.
21. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Solid State Chem., 2001, 159, 352.
22. P. Jensen, D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Eur. J., 2000, 6, 3186.
23. P. Jensen, S. R. Batten, G. D. Fallon, B. Moubaraki, K. S. Murray, and D. J. Price, Chem. Commun., 1999, 177.
24. P. Jensen, S. R. Batten, B. Moub raki, and K. S. Murray, Chem. Commun., 2000, 793.
25. K. S. Murray, S. R. Batten, B. Moubaraki, D. J. Price, and R. Robson, Mol. Cryst. Liq. Cryst., 1999, 335, 313.
26. H. Miyasaka, N. Matsumoto, N. Re, E. Gallo, and C. Floriani, Inorg. Chern., 1997, 36, 670.
27. N. Re, R. Crescenzi, C. Floriani, H. Miyasaka, and N. Matsumoto, Inorg. Chem., 1998, 37, 2717.
28. H. Miyasaka, R. Clérac, T. Ishii, H.-C. Chang, S. Kitagawa, and M. Yamashita, J. Chem. Soc., Dalton Trans., 2002, 1528.
29. X. Li, D. P. Kessissoglou, M. L. Kirk, C. J. Bender, and V. L. Pecoraro, Inorg. Chem., 1988, 27, 1.
30. C. F. Yocum and V. L. Pecoraro, Curr. Opin. Chem. Biol., 1999, 3, 182.
31. N. A. Law, M. T. Caudle, and V. L. Pecoraro, Adv. Inorg. Chem., 1998, 46, 305.
32. H. Asada, M. Fujiwara, and T. Matsushita, Polyhedron, 2000, 19, 2039.
33. M. U. Triller, W.-Y. Hsieh, V. L. Pecoraro, A. Rompel, and B. Krebs, Inorg. Chem., 2002, 41, 5544.
34. Y. Song, X. Yao, H. Chen, G. Pan, X. Hu, and Z. Zheng, J. Chem. Soc., Perkin Trans. 1, 2002, 870.
35. T. Flessner and S. Doye, J. Prakt. Chem., 1999, 341, 436.
36. K. Bernardo, S. Leppard, A. Robert, G. Commenges, F. Dahan, and B. Meunier, Inorg. Chem., 1996, 35, 387.
37. T. Katsuki, Coord. Chem. Rev., 1995, 140, 189.
38. E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, and L. Deng, J. Am. Chem. Soc., 1991, 113, 7063.
39. F. Averseng, P. G. Lacroix, I. Malfant, F. Dahan, and K. Nakatani, J. Mater. Chem., 2000, 10, 1013.
40. P. Ayyappan, O. R. Evans, Y. Cui, K. A. Wheeler, and W. Lin, Inorg. Chem., 2002, 41, 4978.
41. V. H. Köhler, P. Laub, and A. Frischkorn, J. Less-Common Metals, 1971, 23, 171.
42. B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1557.
43. B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1552.
44. G. Liu, A. M. Arif, F. W. Bruenger, and S. C. Miller, Inorg. Chim. Acta., 1999, 287, 109.
45. J. E. Davies, B. M. Gatehouse, and K. S. Murray, J. Chem. Soc., Dalton Trans., 1973, 2523.
46. H.-L. Shyu, H.-H. Wei, and Y. Wang, Inorg. Chim. Acta., 1999, 290, 8.
47. A. Panja, N. Shaikh, P. Vojtisek, S. Gao, and P. Banerjee, New J. Chem., 2002, 26, 1025.
48. N. Matsumoto, Y. Sunatsuki, H. Miyasaka, Y. Hashimoto, D. Luneau, and J.-P. Tuchagues, Angew. Chem., Int. Ed., 1999, 38, 171.
49. W. Chiang, D. M. Ho, D. Van Engen, and M. E. Thompson, Inorg. Chem., 1993, 32, 2886.
50. N. Matsumoto, N. Takemoto, A. Oyosi, and H. Okawa, Bull. Chem. Soc. Jpn., 1988, 61, 2984.
51. S. Sailaja, K. R. Reddy, M. V. Rajasekharan, C. Hureau, E. Rivière, J. Cano, and J.-J. Girerd, Inorg. Chem., 2003, 42, 180.
52. Q. Shi, R. Cao, X. Li, J. Luo, M. Hong, and Z. Chen, New J. Chem., 2002, 26, 1397.
53. M. E. Fisher, Am. J. Phys., 1964, 32, 343.
54. K. S. Murray, Coord. Chem. Rev., 1974, 12, 1.
55. M. Gerloch, J. Lewis, F. E. Mabbs, and A. Richards, J. Chem. Soc. A, 1968, 112.
56. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
57. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
58. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.

CHAPTER 4: CHIRAL 3D MANGANESE(II) AND

IRON(II) DICYANAMIDE NETWORKS

CONTAINING SCHIFF-BASE LIGANDS

4.1 Introduction

The work presented in this chapter is part of a wider investigation of moleculebased magnetic materials containing terminal and bridging co-ligands and the dicyanamide ligand. ${ }^{1-12}$ The present study of chiral 3D transition metal dicyanamide networks containing acetylacetone derived Schiff-base ligands complements work on the 1D linear chain complexes, $\left[\mathrm{M}^{\mathrm{II}}(\mathrm{L})(\mathrm{dca})\right]_{n}, \mathrm{M}=\mathrm{Mn}$ and Fe , with the salicylaldehyde derived Schiffbase ligands, $\mathrm{LH}_{2}=$ salenH $\mathrm{H}_{2}\left(N, N^{\prime}\right.$-ethylenebis(salicylideneimine), sal-o-phenH2 ($N, N^{\prime}-o-$ phenylenebis(salicylideneimine)) and (\pm)-saltch $\mathrm{H}_{2} \quad(\pm)$ - N, N^{\prime}-trans-cyclohexanebis(salicylideneimine)) described in Chapter 3.

From a synthetic chemical perspective, homo-chiral manganese(III) Schiff-base complexes have been used extensively as enantioselective catalysts for the epoxidation of olefins. ${ }^{13-16}$ The best known of these is Jacobsen's catalyst. ${ }^{17}$ In addition, chiral Schiff-base complexes have also been demonstrated to display non-linear optical properties. ${ }^{18,19}$ There is considerable current interest in synthesising and studying the properties of chiral molecule based magnets. For instance, Coronado et al. have recently reported chiral layered ferromagnets of $\left[\mathrm{Ni}(\mathrm{ch} x n)_{2}\right]_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in two enantiopure forms, $1 \mathrm{~S}, 2 \mathrm{~S}$ and $1 R, 2 R .{ }^{20}$ Other recent papers are cited in this report.

Presented in this chapter are four new 3D transition metal dicyanamide network complexes of the general formula $\left[\mathrm{M}(\right.$ Schiff-base $\left.)(\mathrm{dca})_{2}\right], \mathrm{M}^{11}=\mathrm{Mn}$ and Fe. The Schiffbase ligands (Scheme 4.1) chosen for this study were acenH $H_{2}\left(N, N^{\prime}-\right.$ ethylenebis(acetylacetoneimine)) and the chiral ligand, (\pm)-actchH $\mathbf{2}^{\left((\pm)-N, N^{\prime} \text {-trans-1,2- }\right.}$ cyclohexanebis(acetylacetoneimine)), the latter used as a racemic mixture. Initially, acenH \mathbf{H}_{2} was used. The structures of the dicyanamide acen H_{2} complexes with $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{II}}$ were discovered to be chiral and individual crystals were spontaneously resolved into the
separate enantiomers. Following this isolation of a chiral network from achiral components, it was decided to explore the effect of deliberately introducing chirality by way of a structurally similar chiral Schiff-base ligand (i.e. (\pm)-actch H_{2}). The magnetic properties of these complexes were investigated.

acenH2

(\pm) acteh $_{2}\left\{\begin{array}{l}1 R, 2 R \\ 1 S, 2 S\end{array}\right.$

Scheme 4.1 The Schiff-base ligands acenH2 and (\pm)-actch H_{2}, drawn in conventional tetradentate enamineketone forms.

The pseudochalcogenide ligand dicyanonitrosomethanide (dcnm, ${ }^{\circ} \mathrm{ONC}(\mathrm{CN})_{2}$) was also investigated as a potential bridging ligand for molecule-based magnets by the candidate. Presented here is the structure of a mononuclear species trans$\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{acenH})_{2}(\mathrm{dcnm})_{2}\right]$ that was obtained during an effort to produce an analogous complex to $\left[\mathrm{Mn}\left(a c e n \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ with denm. As only a few crystals of this product were isolated, no further characterisation was performed.

4.2 Synthesis and Characterization

4.2.1 $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe

Aerobic reaction of sodium dicyanamide, acenH2 and manganese(II) acetate or iron(II) perchlorate/tetrafluoroborate in methanol in the mole ratio of 1:1:1 or 2:1.5:1 led to the formation of the compounds $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{11}=\mathrm{Mn}$ and Fe . The formation of by-products such as $\alpha-\left[\mathrm{Fe}(\mathrm{dca})_{2}\right]$ and the solvated species $\left[\mathrm{Fe}(\mathrm{dca})_{2}(\mathrm{MeOH})_{2}\right]$, in the
synthesis of $\left[\mathrm{Fe}\left(\mathrm{acen} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$, led to the use of a slight excess of acenH H_{2} in order to obtain a single phase of the product. No analogous by-products were observed in the synthesis of $\left[\mathrm{Mn}\left(\mathrm{acen} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$. Interestingly, the oxidation state of the $\mathrm{M}^{\mathbf{H}}$ ion remained at $M^{\text {II }}$, which contrasts with the $\left[\mathrm{M}^{\mathrm{III}}(\text { salen })(\mathrm{dca})\right]_{n}$ species of Chapter 3 . This presumably related to a different reduction potential exhibited by $\left[\mathrm{M}^{11 \prime}(\text { salen })(\text { dca })\right]_{n}$, containing the $\mathrm{N}_{2} \mathrm{O}_{2}$ salen ${ }^{2-}$ ligand, compared to $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$, which contains neutral O -donor acen H_{2} groups. The N -donor $\mathrm{M}(\mathrm{dca})_{2}$ components presumably dominate the reduction potential in the acenH2 species. Solubility differences in the polymeric products will also play a part. Mole ratios of reagents are approximately the same in both series.

The infrared spectra of the complexes $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{11}=\mathrm{Mn}$ and Fe , show two absorptions assignable to $v_{s}(\mathrm{C} \equiv \mathrm{N})$ at 2184,2171 and $2188,2172 \mathrm{~cm}^{-1}$ respectively, implying slight differences in dicyanamide coordination environnients within each structure. These values are indicative of bidentate dicyanamide, bridging through both nitrile nitrogens. Subsequent structural data (vide infra) confirmed two distinct, albeit similar, bidentate dicyanamide environments. The $v(\mathrm{C}=\mathrm{O})\left(\mathrm{acen} \mathrm{H}_{2}\right)$ position of $1592(\mathrm{Mn})$ and $1598(\mathrm{Fe}) \mathrm{cm}^{-1}$ for each complex is consistent with the enamineketone tautomeric form for this type of ligand. Structural studies of acenH $\mathrm{H}_{2}{ }^{21}$ and other such acetylacetone derived Schiff-base ligands ${ }^{22-25}$ have shown them to exist in the solid state in the enamineketone form shown in Scheme 4.1. Single crystals suitable for X-ray crystallographic experiments were grown by slow evaporation of dilute methanol solutions of the reactants.

4.2.2 $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathbf{M n}$ and Fe

Aerobic reaction of sodium dicyanamide and actch $_{2}$ with manganese(II) nitrate or iron(II) perchlorate/tetrafluoroborate in methanol in 2:1:1 or 2:1.5:1 mole ratio led to the formation of $\left[M\left(a c t c h H_{2}\right)(d c a)_{2}\right], M^{11}=M n$ and Fe . As in the synthesis of [$\left.\mathrm{Fe}\left(a c e n \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$, a slight excess of the Schiff-base ligand, actch H_{2}, was used to favour
the formation of the desired product, rather than by-products such as $\alpha-\left[\mathrm{Fe}(\mathrm{dca})_{2}\right]$ and/or $\left[\mathrm{Fe}(\mathrm{dca})_{2}(\mathrm{MeOH})_{2}\right]$.

The infrared spectra of the complexes, $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{11}=\mathrm{Mn}$ and Fe , show $v_{s}(\mathrm{C} \equiv \mathrm{N})$ at 2171 and $2172 \mathrm{~cm}^{-1}$ respectively. These values are indicative of bidentate dicyanamide bridging through both nitrile nitrogens. Unlike in the infrared spectra of the $\left[\mathrm{M}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ complexes, no discernable splitting of these bands was observed, thus implying identical, or at least very similar, dicyanamide coordination environments. The $v(\mathrm{C}=\mathrm{O})\left(\right.$ actch $\left._{2}\right)$ position of $\sim 1594 \mathrm{~cm}^{-1}$ for both complexes is (within instrumental error) the same as $v(C=O)\left(1600 \mathrm{~cm}^{-1}\right)$ for the free ligand. Previous structural studies ${ }^{22}$ indicate the free ligand exists in the solid state as the enamineketone form as shown in Scheme 4.1. Crystals suitable for X-ray diffraction were obtained from the nitrate and tetrafluroborate salts of manganese(II) and iron(II). $\left[\mathrm{Fe}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$ was observed to oxidise in air so was kept under an atmosphere of nitrogen.

The chirality of the e complexes (vide infra) is introduced by a racemic mixture $\left(R, R\right.$ - and S, S) of the (\pm)-actch H_{2} ligand. In order to synthesise a homochiral product, a chirally pure sample of S, S-trans-diaminocyclohexane was kindly donated by Prof. G. B. Deacon (Monash University). Unfortunately, attempts to synthesise the Schiff-base ligand and the subsequent crystallisation of a coordination polymer, however, were unsuccessful, yielding brown oils for both ligand and coordination polymer syntheses.

4.2.3 $\left[\mathrm{Mn}^{\mathrm{II}}\left(\text { acenH }_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$

Reaction of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with acen H_{2} and $\mathrm{Me}_{4} \mathrm{~N}($ dcnm $)$ in methanol in a molar ratio of 1:1:1 led to a major product that was a dark brown residue, which was not characterised and a minor product - a very small amount of orange crystals of trans-
$\left[\mathrm{Mn}^{11}(\mathrm{acenH})_{2}(\mathrm{denm})_{2}\right]$ that were characterised solely by single crystal X-ray diffraction. No further attempts were made to synthesise this product in higher yields.

4.3 Crystal Structures

4.3.1 $\left[\mathbf{M}\left(\right.\right.$ acenH $\left.\left._{2}\right)(d c a)_{2}\right], M^{I I}=\mathbf{M n}$ and Fe

Crystal data for the complexes $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe , are summarised in Table 4.1 and selected interatomic distances and angles are listed in Table 4.2 (see page 179). The structures of the two are isomorphous and exist in the trigonal crystal system. The crystals selected had opposite handed chiral space groups, $P 3_{2}(\mathrm{Mn})$ and $P 3_{1}(\mathrm{Fe})$, and were each racemically pure, as indicated by the Flack parameters ${ }^{26}$ of zero (see Experimental Section 4.6.8, page 202) for each respective structure refinement. However, as none of the components are themselves chiral, it is assumed that the bulk samples are racemic mixtures of $P 3_{1}$ and $P 3_{2}$ crystals.

The atom labelling scheme for $\left[\mathrm{Fe}\left(\mathrm{acen} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ is shown in Figure 4.1. The asymmetric unit contains three metal atoms, three μ-acen H_{2} ligands (bridging via the carbonyl oxygen donor atoms), and six $\mu_{1,5}$-dca ligands (bridging via both nitrile nitrogens). Despite being crystallographically distinct the three metal ions and acenH H_{2} ligands are in very similar environments. The six $\mu_{1,5}$-dca ligands are of two types. The first type bridge two metal centres and generate unique helices. The three different μ acen H_{2} ligands also bridge the same metal centres, forming three separate double bridges. The resulting three unique $\left\{\left[\mathrm{M}\left(\mu-\mathrm{acen} \mathrm{H}_{2}\right)(\mu-\mathrm{dca})\right]^{+}\right\}_{n}$ helical chains run parallel to the c axis direction. One such helix is shown in Figure 4.2 (see also Figure 4.4). The second type of $\mu_{1,5}$-dca ligands cross-link these helices in the $a b$-plane to form a single 3D network. The overall 3D structure is shown in Figure 4.3.

Table 4.1 Crystal data for $\left[\mathrm{M}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe .

Complex	Mn	Fe
Formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{MnN}_{8} \mathrm{O}_{2}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FeN}_{8} \mathrm{O}_{2}$
M	411.34	412.25
Crystal system	Trigonal	Trigonal
Space group	$P 3_{2}$	$P 3_{1}$
a / \AA	$15.1415(2)$	$15.0317(3)$
b / \AA	$15.1415(2)$	$15.0317(3)$
c / \AA	$22.8225(2)$	$22.7014(2)$
U / \AA^{3}	$4531.39(9)$	$4442.2(1)$
Z	9	9
T / K	$123(2)$	$123(2)$
$\mu($ Mo-K $\alpha) /$ mm ${ }^{-1}$	0.683	0.792
Crystal dimensions $/ \mathrm{mm}$	$0.4 \times 0.3 \times 0.26$	$0.13 \times 0.13 \times 0.13$
Index ranges	$-19 \leq h \leq 19$,	$-19 \leq h \leq 19$,
	$-19 \leq k \leq 19$,	$-19 \leq k \leq 19$,
Completeness to $2 \theta=55^{\circ} / \%$	99.7	$-29 \leq l \leq 21$
Data collected	60719	61722
Unique data $\left(R_{\text {int }}\right)$	$12995(0.0424)$	$12875(0.0821)$
Observed reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	12364	10181
Parameters	753	730
Final $R_{1}, w R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$($ a)	$0.0637,0.1334$
\quad (all data)	$0.0676,0.1356$	$0.0700,0.1371$
Goodness of fit, S	1.120	1.062
		$0.0974,0.1468$

${ }^{(\mathrm{a})} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$

Figure 4.1 The asymmetric unit for $\left[\mathrm{Fe}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ with atom labelling scheme (thermal ellipsoids shown at 50% probability and hydrogen atoms omitted for clarity). [$\mathrm{Mn}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}$] is isomorphous.

Figure 4.2 (a) A single $\left.\left\{\left[\mathrm{Fe}(\mu \text {-acenH })_{2}\right)(\mu \text {-dca })\right]^{+}\right\}_{n}$ helix in the structure of [$\left.\mathrm{Fe}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ (the vacant trans coordination sites are occupied by cross-linking dca ligands); and (b) a space-filling representation, where metal centres, helix $\mu_{1,5}$-dca and μ acen H_{2} ligands are yellow, red and green respectively.

Figure 4.3 The 3D network structure of $\left[\mathrm{Fe}\left(\mathrm{acen} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ viewed down the c-axis direction. Colours are as in Figure 4.2 and cross-linking $\mu_{1,5}$-dca ligands are purple.

The cross-linking $\mu_{1,5}$-dca bridges form linear $\left\{[\mathrm{M}(\mathrm{dca})]^{+}\right\}_{n}$ chains that exist in 'layers' parallel to the $a b$-plane. Following these layers down the c-axis direction, the next layer is rotated 120° about the c-axis to the one above it, thus the layers show an $A B C$ type packing sequence (Figure 4.4). In a topological sense, the helix $\mu_{1,5}$-dca and μ-acenH ${ }_{2}$ bridges can be treated together as a single link between the metal ions. Thus each metal centre is a 4-connecting node with square planar geometry. The net is then reduced to a 3D network of (topologically) identical square planar centres. Figure 4.5 shows a topological
representation. The resulting 3D chiral network type has been described by $\mathrm{O}^{\prime} \mathrm{Keefe}^{27}$ as having the 'dense' $7^{5} 9$ topology. The first real example of this previously theoretically predicted net ${ }^{27}$ was observed recently by Ciani and co-workers in a (three-fold interpenetrated) Cu^{11} coordination polymer with the linear bridging ligand 1,2-bis(4pyridyl)ethyne. ${ }^{28}$ The structures reported here are the first examples of single, noninterpenetrating networks possessing this topology.

(a)

(b)

Figure 4.4 (a) A side-on and (b) a top view of a single helix in the structure of $\left[\mathrm{Fe}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ with cross-linking $\mu_{1,5}$-dca ligands shown (different colours are used to indicate the $A B C$ stacking sequence).

Figure 4.5 A schematic representation of the $\left[\mathrm{Fe}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ dense $7^{5} 9$ network topology. Only metal centres are shown. Helix dca and acen H_{2} connections have been reduced to the single red bonds and cross-links between helices are coloured as in Figure 4.4 to indicate repeating layers.

The local coordination environment of each metal ion is distorted octahedral. The equatorial coordination plane contains the nitrile nitrogens of four $\mu_{1,5}$-dca ligands - two helix and two cross-linking dca ligands. The two helix dca ligands are symmetry related and are trans oriented $\left(\mathrm{M}_{-1} \mathrm{~N}_{\text {dca }}=2.204(4)-2.234(4) \AA(\mathrm{Mn})\right.$, and $2.147(4)-2.200(4) \AA$
(Fe)). The cross-linking dca ligands are similarly trans oriented $\left(\mathrm{M}-\mathrm{N}_{\text {dca }}=2.168(4)-\right.$ $2.214(4) \AA(\mathrm{Mn})$, and $2.112(4)-2.162(5) \AA(\mathrm{Fe}))$. The axial coordination sites are occupied by the carbonyl oxygen donor atoms of the acen H_{2} ligand $\left(\mathrm{M}-\mathrm{O}_{\text {acen }}=2.152(3)\right.$ $2.174(3) \AA(\mathrm{Mn})$, and $2.074(3)-2.092(3) \AA(\mathrm{Fe}))$. Interestingly, in these structures the acenH2 ligand is in its neutral protonated form with the hydrogens attached to the nitrogen atoms. Intra-ligand hydrogen bonding (Figure 4.6) occurs between the amine $\mathrm{N}-\mathrm{H}$ and the coordinating carbonyl oxygen forming a pseudo six membered ring (average $\mathrm{N} \cdots \mathrm{O}$ distance is $2.62(3) \AA$). Presumably the formation of intra-ligand hydrogen bonding may, in combination with the flexibility of the ligand backbone, influence or stabilise the bridging mode of acenH H_{2}, which involves coordination of the oxygen donor atoms alone.

Figure 4.6 A single $\left\{\mathrm{M}\left(\mu\right.\right.$-acen $\left.\left.\mathrm{H}_{2}\right)(\mu-\mathrm{dca}) \mathrm{M}\right\}$ helix moiety showing the intra-molecular hydrogen bonding of the acenH_{2} ligand (green dashed bonds).

The crystal structure of the free ligand, acenH ${ }_{2}$, was published in 1979 by Calligaris et al. ${ }^{21}$ Their data indicate the molecule is in the enamineketone form as shown
in Scheme 4.1, with intra-molecular hydrogen bonding of the same type observed here. In addition, they note the significant amount of delocalisation across the enamineketone groups. This is supported by the almost planar-trigonal nature of the amine group, as is also the case here, where the N bond angles sum to approximately 360°.

To the best of the candidate's knowledge, this bridging mode of acen H_{2} had not been reported at the time of the present syntheses and characterisations. During the preparation of this thesis, Junk and Smith published the structures of four isostructural lanthanide coordination polymers, $\left.\left\{\mathrm{Ln}^{\text {III }}\left(\mathrm{NO}_{3}\right)_{3}\left(\text { acenH }_{2}\right)_{2}\right]\left[\mathrm{C}_{6} \mathrm{H}_{12}\right]\right\}_{n}$ (where $\mathrm{Ln}^{\mathrm{III}}=\mathrm{La}, \mathrm{Pr}$, Nd and Sm), ${ }^{29}$ in which acen H_{2} adopts two distinct modes of coordination. The first is identical to that observed here, where acenH H_{2} acts as a bis-monodentate bridge via both oxygen atoms, with intra-ligand hydrogen bonding also present. The second mode involves a single acen H_{2} che ${ }^{1}$ ing via the oxygen atoms only, thus forming a 14 membered chelate ring. ${ }^{29}$ This mode is also observed in a mononuclear Mn^{11} complex reported here (see section 4.3.3, page 190). The complexation of the lanthanides by the acen H_{2} ligands by oxygen atoms alone is explained by the hard acid/base relationship - oxygen coordination is preferred over that of nitrogen owing to the former being the harder Lewis base. However, $\mathrm{Mn}^{\mathrm{II}}$ is an intermediate base, equally favouring O - or N -donors. A number of examples of Schiff-base ligands adopting bis-bidentate bridging modes have been reported ${ }^{30-32}$ For instance, in the dinuclear copper (I) complex, $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right\}_{2}(\mu-\right.$ acen) $] \cdot \mathrm{MePh}^{33}$ (Figure 4.7 (b)) and in $\left[\mathrm{Co}_{2}(3-\mathrm{MeO}-\text { salen })_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{DMSO}$ (3-MeOsalen $\mathrm{H}_{2}=N, N^{n}$-ethylenebis(3-methoxysalicylideneimine)), ${ }^{32}$ the Schiff-base acts as a bisbidentate ligand occupying two coordination sites on each metal centre.

(a)

(b)

Figure 4.7 (a) The bridging mode of acen H_{2} in the $\left[\mathrm{M}^{\text {II }}\left(\right.\right.$ acenH2 $\left.\left.\mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ complexes and, (b) acen $^{2-}$ in the structure of $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right\}_{2}(\mu\right.$-acen $\left.)\right] \cdot \mathrm{MePh} .{ }^{33}$

In the present case, the intra-helix $\mathrm{M} \cdots \mathrm{M}$ distances are $8.4111(5)-8.4176(4) \AA$ (Mn), and $8.3511(5)-8.3601(5) \AA(\mathrm{Fe})$. The inter-helix $\mathrm{M} \cdots \mathrm{M}$ distances are significantly longer, ranging from $8.7489(9)$ to $8.7508(9) \AA(\mathrm{Mn})$, and from $8.681(1)$ to $8.689(1) \AA(\mathrm{Fe})$. This observation is noteworthy in light of the fact that the latter bridges consist of a single $\mu_{1,5}$-dca rather than the intra-helix bridges of $\mu_{1,5}$-dca and the longer acen H_{2} ligand. In general, the M -ligand and $\mathrm{M} \cdots \mathrm{M}$ distances are shorter for the iron(II) complex compared to the manganese(II) complex. Consequently, the unit cell dimensions for $\left[\mathrm{Fe}\left(\mathrm{acen} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ are about $0.1 \AA$ shorter than those for $\left.\left[\mathrm{Mn}(\mathrm{acenH})_{2}\right)(\mathrm{dca})_{2}\right]$.

In $\left[\mathrm{Fe}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ it can be seen that the acenH2 ligands follow a left-handed screw whilst the dea ligands describe the path of a right-handed screw. Despite this, the helices follow the symmetry rules of the three-fold screw, 3_{i}. In the structure of $\left[\mathrm{Mn}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ the handedness of the helices is reversed and follow a 3_{2} screw. An interesting feature of these chiral networks is that they contain only achiral components i.e. there is no intrinsic chirality in the precursors, which may lead to a chiral structure. Additionally, spontaneous chiral resolution of crystals occurred.

Many discrete cluster helical coordination complexes, known as helicates, have been reported. ${ }^{34-57}$ Ligands such as benzimidazoles, ${ }^{42,58,59}$ polypyridyls, ${ }^{60-63}$ and Schiffbases, ${ }^{35,64,65}$ many of which possess as part of their backbone the $-\mathrm{CH}_{2^{-}}$group, which can
twist around two or more metal centres giving rise to double or triple helicate structures. The helicity is induced by the geometrical constrains of the tetrahedral methylene group. For instance, Kruger et al. have recently reported some double helicates, $\left[\mathrm{M}^{1 \mathrm{~L}} \mathrm{~L}_{2}\right]$ •Solv (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Co}, \mathrm{Cu} ; \mathrm{L}=\operatorname{bis}\left(\mathrm{N}\right.$-salicylidene-4,4 4^{\prime}-diaminodiphenyl)methane), using a Schiff-base ligand that has a $-\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{Ph}$ - bridge moiety. ${ }^{35}$ Presumably in the $\left[\mathrm{M}^{\text {lI }}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ structures presented here, the formation of heiices is induced, or at least influenced by, the geometrical requirements of the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - bridge of the acenH H_{2} ligand as it 'twists' around to bridge two metal centres.

Some examples of infinite helical chain structures include those of $\left[\mathrm{Mn}^{111}(\text { salpn })(\mathrm{NCS})\right]_{n}$ (where salpnH $_{2}=N, N^{n}-1,3$-propylenebis(salicylideneimine)), ${ }^{66}$ $\left[\mathrm{Co}^{11}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{Bilm}\right)_{2}\right] \mathrm{Cl}$ (where $\mathrm{H}_{2} \mathrm{BiIm}=2,2$-biimidazole), ${ }^{67}$ and $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ (described in Chapter 5) which exist as 2 -fold helical chains bridged by NCS ${ }^{-}$in the first example and by dca in the other two cases.

Table 4.2 Selected interatomic distances (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{M}\left(a \operatorname{cen} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=$ Mn and Fe .

	Mn	Fe		Mn	Fe
$\mathrm{M}(1)-\mathrm{N}(11)$	$2.172(4)$	$2.145(5)$	$\mathrm{M}(2)-\mathrm{N}\left(55^{\mathrm{v}}\right)$	$2.208(5)$	$2.200(4)$
$\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{ii}}\right)$	$2.208(4)$	$2.160(5)$	$\mathrm{M}(2)-\mathrm{O}(801)$	$2.159(3)$	$2.083(4)$
$\mathrm{M}(1)-\mathrm{N}(41)$	$2.216(4)$	$2.162(6)$	$\mathrm{M}(2)-\mathrm{O}\left(816^{\mathrm{iv}}\right)$	$2.160(3)$	$2.078(4)$
$\mathrm{M}(1)-\mathrm{N}\left(45^{\mathrm{iii}}\right)$	$2.228(4)$	$2.182(6)$	$\mathrm{M}(3)-\mathrm{N}(31)$	$2.168(4)$	$2.112(5)$
$\mathrm{M}(1)-\mathrm{O}(701)$	$2.174(3)$	$2.075(4)$	$\mathrm{M}(3)-\mathrm{N}(25)$	$2.207(4)$	$2.152(4)$
$\mathrm{M}(1)-\mathrm{O}\left(716^{\mathrm{i}}\right)$	$2.152(3)$	$2.078(4)$	$\mathrm{M}(3)-\mathrm{N}(61)$	$2.234(4)$	$2.200(4)$
$\mathrm{M}(2)-\mathrm{N}(21)$	$2.193(4)$	$2.113(5)$	$\mathrm{M}(3)-\mathrm{N}\left(65^{\mathrm{vii}}\right)$	$2.204(4)$	$2.147(4)$
$\mathrm{M}(2)-\mathrm{N}(15)$	$2.214(4)$	$2.162(5)$	$\mathrm{M}(3)-\mathrm{O}(901)$	$2.165(4)$	$2.074(3)$
$\mathrm{M}(2)-\mathrm{N}(51)$	$2.228(5)$	$2.148(4)$	$\mathrm{M}(3)-\mathrm{O}\left(916^{\mathrm{vi}}\right)$	$2.159(4)$	$2.092(3)$

$\mathrm{M} \cdots \mathrm{M}$ across $\mu_{1,5}$-dca bridges in $a b$-plane

$\mathbf{M n}$	$\mathbf{F e}$
$8.7495(9)$	$8.684(1)$
$8.7489(9)$	$8.689(1)$
$8.7508(9)$	$8.681(1)$

$\mathrm{M} \cdots \mathrm{M}$ across acen H_{2} and $\mu_{1,5}$-dca bridges parallel to c-axis
$M(1) \cdots M\left(1^{i}\right)$
$M(2) \cdots M\left(2^{i v}\right)$
$M(3) \cdots M\left(3^{\text {vi }}\right)$

Mn
8.4176(4)
$8.3511(6)$
$8.4111(5)$
8.3565(5)
8.4124(5)
$8.3601(5)$

	Mn	Fe		Mn	Fe
$\mathrm{N}(11)-\mathrm{M}(1)-\mathrm{N}(41)$	91.6(2)	94.7(2)	$\mathrm{N}(21)-\mathrm{M}(2)-\mathrm{N}(51)$	90.9(2)	92.1 (2)
$\mathrm{N}(41)-\mathrm{M}(1)-\mathrm{N}\left(35^{\text {ii) }}\right.$)	88.0(2)	88.0(2)	$\mathrm{N}(51)-\mathrm{M}(2)-\mathrm{N}(15)$	88.0(2)	89.2(2)
$\mathrm{N}\left(35^{\mathrm{ii}}\right)-\mathrm{M}(1)-\mathrm{N}\left(45^{\text {iii }}\right.$)	87.5(2)	88.3(2)	$\mathrm{N}(15)-\mathrm{M}(2)-\mathrm{N}\left(55^{\nu}\right)$	87.7(2)	86.1(2)
$\mathrm{N}(11)-\mathrm{M}(1)-\mathrm{N}\left(45^{\text {iii }}\right.$)	93.0(2)	89.9(2)	$\mathrm{N}\left(55^{\mathrm{v}}\right)-\mathrm{M}(2)-\mathrm{N}(21)$	93.5(2)	92.6(2)
$\mathrm{N}(11)-\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{ii}}\right)$	179.3(2)	178.3(2)	$\mathrm{N}(21)-\mathrm{M}(2)-\mathrm{N}(15)$	178.7(2)	178.4 ${ }^{\text {\% }}$)
$\mathrm{N}(41)-\mathrm{M}(1)-\mathrm{N}\left(45^{\text {iii }}\right)$	175.4(2)	175.2(2)	$\mathrm{N}(51)-\mathrm{M}(2)-\mathrm{N}\left(55^{v}\right)$	175.2(2)	175.3(2)
$\mathrm{O}(701)-\mathrm{M}(1)-\mathrm{O}\left(716^{\mathrm{i}}\right)$	i72.9(1)	174.8(2)	$\mathrm{O}(801)-\mathrm{M}(2)-\mathrm{O}\left(816^{\text {iv }}\right)$	173.8(1)	173.0(2)

$\mathrm{O}(701)-\mathrm{M}(1)-\mathrm{N}(11)$	92.9(2)	92.4(2)	$\mathrm{O}(801)-\mathrm{M}(2)-\mathrm{N}(21)$	93.5(2)	91.9(2)
$\mathrm{O}(701)-\mathrm{M}(1)-\mathrm{N}(41)$	94.5(1)	92.6(2)	$\mathrm{O}(801)-\mathrm{M}(2)-\mathrm{N}(51)$	90.3(2)	94.4(2)
$\mathrm{O}(701)-\mathrm{M}(1)-\mathrm{N}\left(35^{\text {i }}\right.$)	87.7(1)	87.4(2)	$\mathrm{O}(801)-\mathrm{M}(2)-\mathrm{N}(15)$	87.1(2)	87.1(2)
$\mathrm{O}(701)-\mathrm{M}(1)-\mathrm{N}\left(45^{\text {iii }}\right)$	86.3(1)	88.5(2)	$\mathrm{O}(801)-\mathrm{M}(2)-\mathrm{N}\left(55^{v}\right)$	87.3(2)	86.1(2)
$\mathrm{O}\left(716^{\mathrm{j}}\right)-\mathrm{M}(1)-\mathrm{N}(11)$	93.3(1)	92.8(2)	$\mathrm{O}\left(816^{\text {iv }}\right)-\mathrm{M}(2)-\mathrm{N}(21)$	92.5(2)	93.7(2)
$\mathrm{O}\left(716^{\mathrm{i}}\right)-\mathrm{M}(\mathrm{i})-\mathrm{N}(41)$	89.0(1)	87.7(2)	$\mathrm{O}\left(816^{\mathrm{iv}}\right)-\mathrm{M}(2)-\mathrm{N}(51)$	87.9(2)	89.6(2)
$\mathrm{O}\left(716^{\mathrm{j}}\right)-\mathrm{M}(1)-\mathrm{N}\left(35^{\text {iii }}\right.$)	86.2(1)	87.4(2)	$\mathrm{O}\left(816^{\mathrm{iv}}\right)-\mathrm{M}(2)-\mathrm{N}(15)$	86.9(2)	87.2(2)
$\mathrm{O}\left(716^{\mathrm{i}}\right)-\mathrm{M}(1)-\mathrm{N}\left(45^{\text {iii }}\right)$	89.8(1)	90.8(2)	$\mathrm{O}\left(816^{\text {iv }}\right)-\mathrm{M}(2)-\mathrm{N}\left(55^{V}\right)$	94.0(2)	89.5(2)
$\mathrm{O}(901)-\mathrm{M}(3)-\mathrm{O}\left(916^{\text {vi }}\right)$	172.7(1)	173.5(1)	$\mathrm{O}\left(916^{\text {vi }}\right)-\mathrm{M}(3)-\mathrm{N}(31)$	92.3(2)	91.8(2)
$\mathrm{O}(901)-\mathrm{M}(3)-\mathrm{N}(31)$	94.5(2)	93.5(2)	$\mathrm{O}\left(916^{\text {vij }}\right)-\mathrm{M}(3)-\mathrm{N}(61)$	86.8(2)	86.6(2)
$\mathrm{O}(901)-\mathrm{M}(3)-\mathrm{N}(61)$	90.1(2)	89.4(2)	$\mathrm{O}\left(916^{\text {vi }}\right)-\mathrm{M}(3)-\mathrm{N}(25)$	86.9(2)	87.2(2)
$\mathrm{O}(901)-\mathrm{M}(3)-\mathrm{N}(25)$	86.3(2)	81.4(2)	$\mathrm{O}\left(916^{\mathrm{vj}}\right)-\mathrm{M}(3)-\mathrm{N}\left(65^{\text {vii }}\right)$	93.8(2)	94.2(2)
$\mathrm{O}(901)-\mathrm{M}(3)-\mathrm{N}\left(65^{\text {vii }}\right)$	88.9(2)	89.4(2)			

Hydrogen bonding

| $\mathrm{N}(707) \cdots \mathrm{O}(701)$ | $2.626(5)$ | $2.607(6)$ | $\mathrm{N}(810) \cdots \mathrm{O}(816)$ | $2.605(5)$ | $2.623(6)$ |
| :--- | ---: | ---: | :--- | ---: | ---: | ---: |
| $\mathrm{N}(710) \cdots \mathrm{O}(716)$ | $2.626(5)$ | $2.625(6)$ | $\mathrm{N}(907) \cdots \mathrm{O}(901)$ | $2.629(5)$ | $2.616(6)$ |
| $\mathrm{N}(807) \cdots \mathrm{O}(801)$ | $2.625(5)$ | $2.631(5)$ | $\mathrm{N}(910) \cdots \mathrm{O}(916)$ | $2.635(5)$ | $2.617(6)$ |
| $\mathrm{H}(707) \cdots \mathrm{O}(701)$ | 1.92 | 1.92 | $\mathrm{H}(810) \cdots \mathrm{O}(816)$ | 1.91 | 1.92 |
| $\mathrm{H}(710) \cdots \mathrm{O}(716)$ | 1.93 | 1.91 | $\mathrm{H}(907) \cdots \mathrm{O}(901)$ | 1.92 | 1.93 |
| $\mathrm{H}(807) \cdots \mathrm{O}(801)$ | 1.91 | 1.93 | $\mathrm{H}(910) \cdots \mathrm{O}(916)$ | 1.94 | 1.91 |
| | | | | | |
| $\mathrm{~N}(707)-\mathrm{H}(707) \cdots \mathrm{O}(701)$ | 136.2 | 134.0 | $\mathrm{~N}(810)-\mathrm{H}(810) \cdots \mathrm{O}(816)$ | 134.8 | 135.4 |
| $\mathrm{~N}(710)-\mathrm{H}(710) \cdots \mathrm{O}(716)$ | 135.0 | 137.4 | $\mathrm{~N}(907)-\mathrm{H}(907) \cdots \mathrm{O}(901)$ | 136.2 | 133.8 |
| $\mathrm{~N}(807)-\mathrm{H}(807) \cdots \mathrm{O}(801)$ | 136.9 | 134.9 | $\mathrm{~N}(910)-\mathrm{H}(910) \cdots \mathrm{O}(916)$ | 135.1 | 136.4 |

Symmetry transformations:
For Mn: (i) $-x+y+1,-x+2, z+1 / 3$; (ii) $x+1, y+2, z$; (iii) $-y+2,2, y+1, z-1 / 3$; (iv) $-x+y+1,-x+1, z+1 / 3$; (v) $-y+1, x-y, z-1 / 3$; (vi) $-x+y+1,-x, z+1 / 3$; (vii) $-y, x-y-1, z-1 / 3$.

For Fe : (i) $-\mathrm{x}+\mathrm{y}-1,-\mathrm{x}+1, \mathrm{z}-1 / 3$; (ii) $\mathrm{x}-1, \mathrm{y}+1$, z ; (iii) $-\mathrm{y}+1, \mathrm{x}-\mathrm{y}+2, \mathrm{z}+1 / 3$; (iv) $-\mathrm{x}+\mathrm{y},-\mathrm{x}+1, \mathrm{z}-1 / 3$; (v) $-y+1, x-y+1, z+1 / 3$; (vi) $-x+y+1,-x+1, z-1 / 3$; (vii) $-y+1, x-y, z+1 / 3$.

4.3.2 $\left[\mathrm{M}\left(\right.\right.$ actch $\left.\left._{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathbf{1 1}}=\mathbf{M n}$ and Fe

The manganese(II) and iron(II) complexes are isomorphous, crystallizing in the chiral orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. The crystals were found to show racemic twinning. The formula $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$ is intended to include the presence of racemic twinning, however, the structures presented here are of the twin component with the R, R actch H_{2} ligand. The asymmetric unit consists of a single formula unit (Figure 4.8). Crystal data for the complexes $\left[\mathrm{M}\left(\operatorname{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe , are summarised in Table 4.3 and selected interatomic distances and angles are listed in Table 4.4 (see page 189).

Figure 4.8 Atom labelling diagram for $\left[\mathrm{Mn}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$ (thermal ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity). $\left[\mathrm{Fe}\left(a c t c h \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ is isomorphous.

Table 4.3 Crystal data for $\left[\mathrm{M}\left(\mathrm{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe .

Complex	Mn	Fe
Formula	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{MnN}_{8} \mathrm{O}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FeN}_{8} \mathrm{O}_{2}$
M	465.43	466.34
Crystal system	Orthorhombic	Orthorhombic
Space group	$P 2,2,21$	$P 2{ }_{1} \mathbf{1}_{1}{ }_{1}$
a / \AA	8.7852(1)	8.7312(2)
b / \AA	15.8152(2)	15.7724(3)
c / \AA	16.0912(2)	16.0549(4)
U / \AA^{3}	2235.71(5)	2206.39(9)
Z	4	4
T/K	123(2)	123(2)
$\mu\left(\mathrm{Mo}-\mathrm{K} \alpha\right.$)/ mm^{-1}	0.624	0.718
Crystal dimensions/mm	$0.13 \times 0.13 \times 0.1$	$0.13 \times 0.13 \times 0.1$
Index ranges	$\begin{aligned} & -11 \leq h \leq 11, \\ & -20 \leq k \leq 21, \\ & -21 \leq l \leq 21 \end{aligned}$	$\begin{aligned} & -11 \leq h \leq 11, \\ & -18 \leq k \leq 20, \\ & -20 \leq l \leq 21 \end{aligned}$
Completeness to $2 \theta=55^{\circ} / \%$	99.8	99.8
Data collected	37306	19983
Unique data ($R_{\text {int }}$)	5531 (0.1010)	5441 (0.0676)
Observed reflections [$1>2 \sigma(\mathrm{I})$]	4462	4387
Parameters	285	285
Final $R_{1}, w R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]^{(\mathrm{a})}$	0.0522, 0.0664	0.0539, 0.0693
(all data)	0.0786, 0.0704	0.0781, 0.0732
Goodness of fit, S	1.066	1.099

${ }^{\text {(a) }} R_{1}=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{0}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}$

The structures consist of $(4,4)$ square grid sheets of octahedral $M^{\text {II }}$ centres connected by $\mu_{1,5}$-dca ligands in the $a b$-plane. The sheets are linked in the c-axis direction
by the actch H_{2} ligand bridging through the both the carbonyl oxygen atoms in a bismonodentate fashion, thus forming a 3D network. The R, R-actch H_{2} links parallel to the c axis form left-handed 2 -fold helices, one of which is shown in Figure 4.9, whereas the other twin component, with S, S-actch H_{2} ligands, has right-handed 2-fold helices. The cyclohexyl moieties of the actch H_{2} ligands are parallel to the $a b$-plane. The sheets are corrugated, with all the troughs parallel, and running in the a-axis direction (Figure 4.10). The troughs of one sheet are above and below the troughs of the two adjacent sheets in the c-axis direction, and hence likewise for the crests. Within the corrugated sheets the metal centres are in two sets of parallel planes. In Figure 4.10 it can be seen that within each M_{n} plane, the equatorial dca N_{4} coordination sets of each metal centre are inclined in the opposite direction with respect to the other M_{n} plane. The direction is reversed in the adjacent $\mathrm{M}(\mathrm{dca})_{2}$ sheets. The actch H_{2} ligands link the sheets trough-to-trough and crest-tocrest such that adjacent sheets are offset to each other and the M centre in an adjacent sheet is almost directly below the centre of the square grid of the sheet above (Figure 4.11). Thus, the stacking of the square-grid sheets is of the infinite $A B$ type (Figure 4.12).

Figure 4.9 A single $\left\{\left[\mathrm{M}\left(\mu-\mathrm{actchH}_{2}\right)\right]^{2+}\right\}_{\mathrm{n}}$ helix in the structure of $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dcta})_{2}\right]$.

Figure 4.10 The structure of $\left[\mathrm{M}\left(a c t c h \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ viewed parallel to the a-axis direction, where actchH ${ }_{2}$ ligands are in purple and the 2D square grid sheets of $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ are shown in red.

Figure 4.11 A view of $\left[\mathrm{M}\left(\mathrm{actchH}_{2}\right)(\mathrm{dca})_{2}\right]$ down the c-axis direction showing two 2D square grid $(4,4)$ sheets of $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ with the bridging actch H_{2} ligands (the upper sheet is shown in red, the lower in purple and the actch H_{2} ligands in green).

Figure 4.12 Three 2D square grid $(4,4)$ sheets of composition $\left[M(d c a)_{2}\right]$ in the structure of $\left[\mathrm{M}\left(a c t c h \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ viewed slightly off the c-axis direction showing the $A B$ stacking (upper sheet is red, middle sheet is purple and lower sheet is green, actch H_{2} ligands are omitted for clarity).

The network formed thus contains 6 -connecting nodes (the metal ions). The most common topology for a 6 -connected network is that related to α-polonium (Figure 4.13(b)), which has the Schläfli symbol $4^{12} \cdot 6^{3} .{ }^{68}$ Examples include the series $\left[\mathrm{M}(\mathrm{dca})_{2} \mathrm{~L}\right]$ (where $\mathrm{L}=$ pyrazine or $4,4^{\prime}$-bipyridine), reported by Jensen et al. ${ }^{1,6}$ However in the case of $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$, the actch H_{2} links between the off-set $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ sheets result in an unusual overall 3D structure. The links 'zig-zag', so that between any two layers, the actch H_{2} ligands are oriented in the same direction parallel to the a-axis, whereas their orientations alternate along the b-axis. This can be seen in a schematic representation of
the connectivity of the network shown in Figure 4.13(a), where the actch H_{2} and dca ligands have been reduced to single connections. A similar situation has been observed for the structure of $\mathrm{Cd}(\mathrm{CN})_{2} \mathrm{pyz}$, reported by Abrahams and Robson et al., ${ }^{69}$ in which corrugated $\left[\mathrm{Cd}(\mathrm{CN})_{2}\right]$ sheets are linked by pyrazine bridges in a 'criss-cross' pattern. However, in that structure the pyrazine orientation alternates in both the a - and b-axis directions, in a criss-cross fashion as shown in Figure 4.13(c). The present structures are the first examples of a new 6-connected 3D network topology, which has the Schläfli symbol $4^{8} \cdot 5^{4} \cdot 6^{3}$.

Figure 4.13 Schematic representation of the connectivity in (a) $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$ network (2D square grid sheets are coloured as in Figure 4.12), (b) the α-polonium-related net, and (c) $\mathrm{Cd}(\mathrm{CN})_{2}$ pyz (reproduced from reference 69).

The local coordination environment of each metal atom is distorted octahedral. The equatorial coordination plane consists of four nitrile nitrogens from the two unique bridging dicyanamide ligands $\left(\mathrm{M}-\mathrm{N}_{\mathrm{dca}}=2.208(2)-2.248(2) \AA(\mathrm{Mn})\right.$, and 2.155(2) $2.194(2) \AA(\mathrm{Fe}))$. The axial coordination sites are filled by the carbonyl oxygen atoms of the bridging actchH${ }_{2},(\mathrm{M}-\mathrm{O}=2.171(2)$ and $2.169(2) \AA(\mathrm{Mn}), 2.095(2)$ and $2.083(2) \AA$ (Fe)). $\mathrm{M} \cdots \mathrm{M}$ distances within the sheets across the $\mu_{1,5}$-dea ligands in the a-axis direction are equal to the unit cell length $a(8.7852(1) \AA(\mathrm{Mn})$ and $8.7312(2) \AA(\mathrm{Fe}))$, whereas, in the b-axis direction, the $\mathrm{M} \cdots \mathrm{M}$ distances are shorter $-8.3416(2) \AA(\mathrm{Mn})$ and $8.2965(3) \AA(\mathrm{Fe})$. The $\mathrm{M} \cdots \mathrm{M}$ distances directly across the actch H_{2} ligand are $10.2008(4) \AA(\mathrm{Mn})$ and $10.0826(4) \AA(\mathrm{Fe})$. The shortest inter-sheet $\mathrm{M} \cdots \mathrm{M}$ distances are $9.1342(3) \AA(\mathrm{Mn})$ and 9.1342(3) $\AA(\mathrm{Fe})$, and are not via direct actch H_{2} links.

As with the $\left[\mathrm{M}^{\mathrm{II}}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ frameworks, intra-molecular hydrogen bonding between the amine $\mathrm{N}-\mathrm{H}$ and the coordinating carbonyl oxygen of the actch H_{2} ligand forms a pseudo six membered ring (Figure 4.14), thus presumably stabilising the bismonodentate bridging mode via the oxygen atoms. The crystal structure of the racemic free ligand, (\pm)-actch H_{2}, was only recently reported by McCann et al. ${ }^{22}$ As with acenH2 (vide supra), this molecule exists in the solid state in the keto-amine form shown in Scheme 4.1, with intra-ligand bonds between the respective amine NH and carbonyl oxygen. In the same paper the authors report the structure of $\left[\mathrm{Co}^{\mathrm{II}}\left((\pm) \text {-actch } \mathrm{H}_{2}\right) \mathrm{Cl}_{2}\right]_{n}$, a 1 D coordination polymer consisting of 2-fold helical chains of tetrahedral Co^{11} centres linked by bridging actch H_{2} ligands, in the same manner observed here, and terminal Cl^{-}ligands. The left- and right-handed 2-fold helices, which contain bridging R, R - and S, S-actch H_{2} ligands respectively, are symmetry related, hence the overall structure is centrosymmetric. The helices are very similar to those observed here, the chief difference being the tetrahedral
$\mathrm{Co}^{\mathrm{II}}$ geometry. Intra-ligand hydrogen bonding between the amine hydrogen atoms and the carbonyl oxygens is also observed in $\left.\left[\mathrm{Co}^{11}((\pm) \text {-actchH})_{2}\right) \mathrm{Cl}_{2}\right]$. To the best of the candidate's knowledge the actch H_{2} bridging mode had not been reported at the time of the present syntheses and characterisations.

Figure 4.14 $\mathrm{A}\left\{\mathrm{M}\left(\mu-a \mathrm{ctch} \mathrm{H}_{2}\right) \mathrm{M}\right\}$ moiety showing the presence of intra-ligand hydrogen bonding (dashed green bonds). Hydrogen atoms attached to carbons are omitted for clarity.

Table 4.4 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[M\left(a c t c h H_{2}\right)(d c a)_{2}\right], M^{\mathrm{II}}=$ Mn and Fe .

Symmetry transformations: (i) $-x+3 / 2,-y, z-1 / 2$; (ii) $-x+1, y+1 / 2,-z+1 / 2$; (iii) $x+1, y, z$; (iv) $x-1$, $y, z ;(v)-x+1, y-1 / 2,-z+1 / 2 ;(v i)-x+3 / 2,-y, z \div 1 / 2$.

4.3.3 $\left[\mathbf{M n}^{11}\left(\text { acenH }_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$

The mononuclear complex, shown in Figure 4.15, crystallises in the triclinic space group $P \overline{1}$. Crystal data for trans-[$\left.\mathrm{Mn}\left(\mathrm{acenH}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$ are summarised in Table 4.5 and selected interatomic distances and angles are listed in Table 4.6 (see page 193). The manganese(II) centre lies on an inversion centre and is coordinated in a distorted octahedral environment by four carbonyl oxygens $(\mathrm{Mn}(1)-\mathrm{O}(1)=2.160(1)$ and $\mathrm{Mn}(1)-$ $\mathrm{O}(16)=2.210(1) \AA$) from two acenH H_{2} ligands in the equatorial plane and by two end- O dcnm coordinated ligands $(\mathrm{Mn}(1)-\mathrm{O}(21)=2.157(1) \AA)$ in the axial positions.

Figure 4.15 The crystal structure of trans-[$\left.\left.\mathrm{Mn}(\operatorname{acenH})_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$ with atom labelling scheme (thermal ellipsoids shown at 50% probability).

Table 4.5 Crystal data for trans-[$\left.\left.\mathrm{Mn}(\mathrm{acenH})_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$.

Complex	trans-[$\left.\mathbf{M n}\left(\mathrm{acenH}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$
Formula	$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{MnN}_{10} \mathrm{O}_{6}$
M	691.66
Crystal system	Triclinic
Space group	$P \overline{1}$
a / \AA	8.9181(3)
b / \AA	10.2670(4)
c / A	10.8182(2)
αl°	67.269(2)
$\beta /{ }^{\circ}$	88.995(2)
$\gamma^{\prime 0}$	71.401(1)
U / \AA^{3}	859.53(5)
Z	1
T/K	123(2)
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.440
Crystal dimensions/mm	$0.09 \times 0.05 \times 0.04$
Index ranges	$\begin{aligned} & -11 \leq h \leq 11, \\ & -13 \leq k \leq 13, \\ & -12 \leq l \leq 14 \end{aligned}$
Completeness to $2 \theta=55^{\circ} / \%$	96.3
Data collected	11926
Unique data ($\mathrm{R}_{\text {int }}$)	4042 (0.0376)
Observed reflections [$\mathrm{I}>2 \sigma(\mathrm{l})$]	3056
Parameters	218
Final $\mathrm{R}_{1}, w \mathrm{R}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]^{(\mathrm{a})}$	0.0418, 0.0752
(all data)	0.0680, 0.0823
Goodness of fit, S	1.048

${ }^{\text {(a) }} R_{1}=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{0}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}$

The acenH H_{2} coordinates in a bidentate chelation mode involving the oxygen donor atoms exclusively, resulting in a 14 membered chelate ring. This unusual chelating mode has also been recently observed by Junk and Smith in four isostructural lanthanide coordination polymers (vide supra), ${ }^{29}$ and in a uranyl complex with salpnH ${ }_{2}\left(N, N^{\prime}-1,3-\right.$ propylenebis(salicylideneimine)). ${ }^{70}$ The complex presented here is the first such example in a first row transition metal complex. Of the various possible donor atom configurations possible, the O_{6} donor set is favoured.

Again, intra-ligand hydrogen bonding, shown in Figure 4.16, occurs in the acen H_{2} ligand involving the amine $\mathrm{N}-\mathrm{H}$ groups and the coordinated carbonyl oxygens with average distances $-\mathrm{H} \cdots \mathrm{O}=1.97 \AA, \mathrm{~N} \cdots \mathrm{O}=2.645(2) \AA$.

Figure 4.16 The structure of trans $-\left[\mathrm{Mn}\left(\mathrm{acenH}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$ viewed parallel to the axial coordination bonds showing the intra-ligand hydrogen bonding (dashed green bonds) in acenH2.

A number of mononuclear complexes with end- O-denm ligands have been reported. ${ }^{71-74}$ For example, trans- $\left[\mathrm{Ni}(\mathrm{dcnm})_{2}(\mathrm{pz})_{4}\right]$ (where $\mathrm{pz}=$ pyrazole), has four pyrazole groups in the equatorial plane and two trans coordinated end- O-denm ligands, with $\mathrm{Ni}-\mathrm{O}=2.085(2) \AA$.

Table 4.6 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for trans$\left[\mathrm{Mn}\left(\mathrm{acenH} \mathrm{H}_{2}\right)_{2}(\mathrm{dcnm})_{2}\right]$.

$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.160(1)$	$\mathrm{Mn}(1)-\mathrm{O}(21)$	$2.157(1)$
$\mathrm{Mn}(1)-\mathrm{O}(16)$	$2.210(1)$		
			$92.13(4)$
$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$87.90(4)$	$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{O}(16)$	$87.87(4)$
$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	$92.10(4)$	$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{O}\left(16^{\mathrm{i}}\right)$	$94.91(4)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(16)$	$85.09(4)$	$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{O}(16)$	
Hydrogen bonding			$2.625(2)$
$\mathrm{N}(10) \cdots \mathrm{O}(16)$	1.99	$\mathrm{H}(7) \cdots \mathrm{O}(1)$	1.94
$\mathrm{H}(10) \cdots \mathrm{O}(16)$			133.3
$\mathrm{~N}(10)-\mathrm{H}(1) \cdots \mathrm{O}(16)$	132.9	$\mathrm{~N}(7)-\mathrm{H}(7) \cdots \mathrm{O}(1)$	

Symmetry transformation: (i) $-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

4.4 Magnetism of $\left[M(L)(d c a)_{2}\right]$ Complexes; $M^{\prime \prime}=M n$ and $F e ; L=$

acen H_{2} and actch H_{2}

The magnetic data for all four compounds are, as in the $\left[\mathrm{M}^{\text {Ill }} \text { (Schiff-base)(dca) }\right]_{n}$ series (see Chapter 3), indicative of very weak antiferromagnetic coupling combined with spin-orbit coupling and zero-field splitting effects. There is consequently no long-range
order. Thus the χ / T data are Curie-Weiss like and the μ_{cff} / T plots (Figure 4.17 to Figure 4.20, see pages 195 to 196) show that $\mu_{\text {eff }}$ is essentially independent of temperature in the range $300-50 \mathrm{~K}$, and then decrease rapidly down to 2 K . The 300 K value of $\mu_{\text {eff }}$ for the $\mathrm{Fe}^{\text {iI }}$ compounds ($\sim 5.3 \mu_{\mathrm{B}}$) are bigger than $\mu_{\text {spin-only }}\left(\mathrm{d}^{6}\right)$ because of orbital degeneracy and spinorbit effects perturbing the (parent) ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}}$ states. However, the constant value of μ_{eff}, above 50 K , is indicative of a large splitting of the ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}}$ state by the low-symmetry ligand-field around the $\mathrm{Fe}^{\text {ll }}$ centres. ${ }^{75}$ Perusal of the Figgis-type calculation for ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}} \mathrm{Fe}^{11}$ monomers ${ }^{75-78}$ show that plots such as Figure 4.18 can be fitted to a monomer model using the spin-orbit constant $\lambda=c a .-100 \mathrm{~cm}^{-1}$ and Δ (the splitting energy ${ }^{5} \mathrm{E}_{\mathrm{g}},{ }^{5} \mathrm{~B}_{2 \mathrm{~g}}$ from ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}}$) of $c a .10,000$ cm^{-1}. The rapid decrease in μ_{eff} below 50 K is then either due to zero-field splitting of the ${ }^{5} \mathrm{E}_{\mathrm{g}}$ or ${ }^{5} \mathrm{~B}_{2 \mathrm{~g}}$ states (into $M_{\mathrm{s}} \pm 2, \pm 1,0$ levels) and/or due to weak antiferromagnetic coupling. Indeed, good fits are obtained using Heisenberg 3D or 2D models for $S=2\left(\mathrm{Fe}^{\text {II }}\right.$) or $S=5 / 2$ $\left(\mathrm{Mn}^{\mathrm{II}}\right)$, respectively, in which spin-orbit coupling effects are subsumed in the g value and zero-field splitting is neglected. The best-fit parameters are given in Table 4.7.

Table 4.7 Best-fit parameters for the $\left[\mathrm{M}^{11}(\mathrm{~L})(\mathrm{dca})_{2}\right]$ compounds.

Compound	g	J / cm^{-1}
$\left[\mathrm{Mn}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$	1.91	-0.05
$\left.\left[\mathrm{Fe}(\mathrm{acenH})_{2}\right)(\mathrm{dca})_{2}\right]$	2.04	-0.007
$\left[\mathrm{Mn}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$	1.95	-0.07
$\left[\mathrm{Fe}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$	2.15	-0.04

Whatever the limitations of the models employed, it is clear that the very weak coupling reflects the poor superexchange properties of the $\mu_{1,5}$-dca bridge and the large $\mathrm{M} \cdots \mathrm{M}$ separations. The acen H_{2} and actch H_{2} links play no part in coupling.

Figure 4.17 Plot of magnetic moment, μ_{cff}, versus temperature, T, for $\left[\mathrm{Mn}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$. The solid line is the calculated line of best-fit using a $S=5 / 2$ Heisenberg model (see text).

Figure 4.18 Plot of magnetic moment, $\mu_{\text {eff }}$, versus temperature, T, for $\left.\left[\mathrm{Fe}(\mathrm{acenH})_{2}\right)(\mathrm{dca})_{2}\right]$. The solid line is the calculated line of best-fit using a 3D model for $S=2$ (see text).

Figure 4.19 Plot of magnetic moment, $\mu_{\text {eff, }}$, versus temperature, T, for $\left[\mathrm{Mn}\left(\operatorname{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$. The solid line is the calculated line of best-fit using a $S=5 / 2$ Heisenberg model (see text).

Figure 4.20 Plot of magnetic moment, $\mu_{\text {eff }}$, versus temperature, T, for $\left[\mathrm{Fe}\left(\right.\right.$ actch $\left.\left.\mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$. The solid line is the calculated line of best-fit using a 3D model for $S=2$, as described in the text.

4.5 Conclusions

The coordination polymers $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ and $\left[\mathrm{M}\left(\right.\right.$ actch $\left.\left._{2}\right)(\mathrm{dca})_{2}\right]\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}\right.$ and Fe) were investigated and found to display interesting chiral 3D network structures. The $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ complexes consist of 3-fold helical $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})\right]^{+}$motifs that are cross-linked by $\mu_{1,5}$-dca ligands. Until very recently, the coordination mode of acenH ${ }_{2}$ displayed here (bridging via the oxygen donor atoms) was unprecedented. It was reported for the first time in four lanthanide coordination polymers. ${ }^{29}$ Nevertheless, the complexes presented here are the first transition metal based examples. These networks exhibit the unusual 'dense' $7^{5} 9$ (chiral) topology, which was only observed in a real example for the first time in 1998 in a 3 -fold interpenetrated Cu^{11} coordination polymer with the linear bridging ligand 1,2-bis(4-pyridyl)ethyne. ${ }^{28}$ Thus, the complexes presented here are the first single networks to possess this topology. Interestingly, the precursors or synthons for these chiral networks do not possess any intrinsic chirality. It is perhaps the 'twist' in the bridging mode of acen H_{2}, which forms helices that result in a chiral network. Additionally, spontaneous resolution of enantiomers in single crystals is observed.

The $\left[\mathrm{M}\left(\mathrm{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$ complexes consist of $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ square-grid $(4,4)$ sheets that are linked by two actch H_{2} ligands in the third dimension to form the overall 3D network. Unlike the previous complexes, the actchH2 ligands are intrinsically chiral. A racemic mixture of R, R - and S, S-actch H_{2} was used, resulting in crystals exhibiting racemic twinning. The twin component described here contained the R, R-actchH H_{2} enantiomer. The $\left\{\left[\mathrm{M}\left(R, R \text {-actch } \mathrm{H}_{2}\right)\right]^{2+}\right\}_{n}$ motifs are left-handed 2-fold helices, and right-handed for the twin component with S, S-actch H_{2} ligands. The actch H_{2} ligands bridge in a similar manner to the acenH H_{2} ligands, via the oxygen donor atoms only. At the time of synthesis and characterisation, these complexes were the first examples for any metal to contain such bridging actch H_{2}. Recently, however, a 1D linear tetrahedral cobalt(II) coordination
polymer was reported with the same actch H_{2} bridging mode. ${ }^{22}$ Additionally, these networks display an unprecedented topology with the Schläfli symbol $4^{8} \cdot 5^{4} \cdot 6^{3}$.

Interestingly, the acenH_{2} and actch H_{2} ligands did not deprotonate or the divalent metals oxidise to M^{II} on formation of the networks, which is unusual for Schiff-base ligands.

Variable temperature magnetic susceptibility measurements (2-300 $\mathrm{K} ; H=1 \mathrm{~T}$) show that these complexes display very weak antiferromagnetic coupling, most probably due to the long Schiff-base and $\mu_{1,5}$-dca linking pathways. No long-range magnetic order for these 3D network compounds was observed under these conditions.

Future work in this area, using different acetylacetone derived Schiff-base ligands, may prove fruitful. In particular, enantiopure chiral Schiff-base ligands in combination with dca may lead to interesting materials that may have interesting structures and potentially useful non-linear optical properties. For instance, as well as further studies with resolved actch H_{2} and derivatives thereof, less bulky chiral Schiff-bases such as R - and S acpnH ${ }_{2}$ (where acpnH ${ }_{2}=N, N^{\prime}-1,2$-propylenebis(acetylacetoneimine)) may lead to network topologies similar to that observed for the $\left[\mathrm{M}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ series here.

4.6 Experimental

4.6.1 Synthesis of acenH $\mathbf{2}_{2}$ and (\pm)-actchH \mathbf{H}_{2}

The Schiff-base ligands, acen H_{2} and (\pm)-actch H_{2}, were prepared from the condensation reaction of acetylacetone and the appropriate diamine; ethylenediamine and (\pm)-trans-1,2-diaminocyclohexane respectively in a 2:1 molar ratio. ${ }^{79}$ acenH ${ }_{2}$: IR (Nujol, cm^{-1}): $3134 \mathrm{w}, 3084 \mathrm{w}, 1574 \mathrm{~s}, 1520 \mathrm{~s}, 1454 \mathrm{~s}, 1354 \mathrm{~s}, 1287 \mathrm{~s}, 1220 \mathrm{~s}$, $1202 \mathrm{~s}, 1144 \mathrm{~m}, 1087 \mathrm{~s}, 1022 \mathrm{~m}, 980 \mathrm{~m}, 940 \mathrm{~m}, 929 \mathrm{w}, 853 \mathrm{~s}, 791 \mathrm{vw}, 759 \mathrm{~m}, 739 \mathrm{~s}, 652$ $\mathrm{vw}, 642 \mathrm{~m}$.
(\pm)-actch ${ }_{2}: 1 \mathrm{IR}\left(\mathrm{Nujol}, \mathrm{cm}^{-\mathrm{i}}\right): 3070 \mathrm{vw}, 1600 \mathrm{~s}, 1512 \mathrm{~s}, 1447 \mathrm{~s}, 1358 \mathrm{~s}, 1304 \mathrm{~s}, 1262 \mathrm{~s}, 1242 \mathrm{~s}$, $1198 \mathrm{~m}, 1150 \mathrm{~s}, 1124 \mathrm{~s}, 1087 \mathrm{~m}, 1024 \mathrm{~s}, 998 \mathrm{~s}, 961 \mathrm{~m}, ~ 932 \mathrm{~m}, 890 \mathrm{~m}, 816 \mathrm{~s}, 766 \mathrm{~m}, 750 \mathrm{~s}, 742 \mathrm{~s}$, 658m, 648m, 634w.

4.6.2 Synthesis of $\mathbf{A g}(\mathbf{d c n m})$ and $\mathrm{Me}_{4} \mathrm{~N}$ (denm)

$\mathrm{Ag}(\mathrm{dcnm})$ was synthesized by Dr. Stuart Batten according to the literature. ${ }^{80}$ $\mathrm{Me}_{4} \mathrm{~N}$ (dcnm) was synthesised by adding a solution of $\mathrm{Me}_{4} \mathrm{NBr}(4.929 \mathrm{~g}, 32.0 \mathrm{mmol})$ in a solvent mixture of 100 mL acetonitrile and 40 mL methanol to a stirred suspension of $\mathrm{Ag}(\mathrm{denm})(6.059 \mathrm{~g}, 30.0 \mathrm{mmol})$ in 50 mL dichloromethane. AgBr was removed by filtration through Celite on a large sinter. The solvent was evaporated from the filtrate by rotary evaporation and the resulting yellow oil recrystallised by vapour diffusion of diethyl ether into a solution in methanol (Yield $5.08 \mathrm{~g}, 95 \%$). IR (Nujol, cm^{-1}): $3438 \mathrm{mbr}, 2212 \mathrm{~s}$, $1654 \mathrm{~m}, 1583 \mathrm{w}, 1487 \mathrm{~s}, 1418 \mathrm{~m}, 1273 \mathrm{~s}, 1233 \mathrm{~s}, 1169 \mathrm{~m}, 951 \mathrm{~s}, 879 \mathrm{vw}, 832 \mathrm{vw}, 779 \mathrm{~m}, 669 \mathrm{~m}$, 580 m.

4.6.3 Synthesis of $\left[\mathbf{M n}\left(\right.\right.$ acenH $\left.\left._{2}\right)(\mathrm{dca})_{2}\right]$

A methanolic solution (5 mL) of $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathrm{acenH} \mathrm{H}_{2}(0.448$ $\mathrm{g}, 2.0 \mathrm{mmol})$ was added with stirring to a mixture of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.490 \mathrm{~g}, 2.0 \mathrm{mmol})$ in methanol (10 mL). After about 10 minutes a colourless precipitate began to form. Stirring was continued for 30 minutes, before the mixture was filtered and the precipitate washed three times with small amounts of methanol. (Yield $0.21 \mathrm{~g}, 46 \%$, based on $\mathrm{Na}(\mathrm{dca})$). Large colourless hexagonal crystals suitable for X-ray diffraction were obtained from a more dilute, but analogous, reaction. IR (Nujol, cm^{-1}): $3613 \mathrm{w}, 3579 \mathrm{w}, 3082 \mathrm{~m}$, $2395 \mathrm{w}, 2310 \mathrm{~s}, 2291 \mathrm{~s}, 2237 \mathrm{~s}, 2169 \mathrm{sbr}, 1592 \mathrm{sbr}, 1556 \mathrm{~s}, 1537 \mathrm{~s}, 1505 \mathrm{~s}, 1434 \mathrm{~s}, 1360 \mathrm{~s}$, $1294 \mathrm{sbr}, 1209 \mathrm{~m}, 1130 \mathrm{~s}, 1078 \mathrm{vw}, 1017 \mathrm{~s}, 992 \mathrm{~m}, 950 \mathrm{~s}, 928 \mathrm{w}, 894 \mathrm{vw}, 848 \mathrm{vw}, 796 \mathrm{~m}, 759 \mathrm{~s}$,
$660 \mathrm{~m}, 628 \mathrm{w}$. Anal. (\%), Found: C, $46.7 ; \mathrm{H}, 4.8 ; \mathrm{N}, 27.3$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{MnN}_{8} \mathrm{O}_{2}$: C, 46.7; H, 4.9; N, 27.2.

4.6.4 Synthesis of $\left[\mathrm{Fe}\left(\mathrm{acenH} \mathbf{H}_{2}\right)(\mathrm{dca})_{2}\right]$

A methanolic solution (5 mL) of $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ and acen $\mathrm{H}_{2}(0.336$ $\mathrm{g}, 1.5 \mathrm{mmol})$ was added to a m thanolic solution $(5 \mathrm{~mL})$ of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.363 \mathrm{~g}, 1.0$ mmol) in air, resulting in an instant colour change to an orange solution. After less than one week the solution was a dark brown/black with many pale yellow hexagonal crystals present. The crystals were collected and washed briefly with methanol and dried in air. (Yield $0.317 \mathrm{~g}, 77 \%$). IR (Nujol, cm^{-1}): $3615 \mathrm{vw}, 3575 \mathrm{vw}, 3080 \mathrm{w}, 2306 \mathrm{~s}, 2284 \mathrm{~s}, 2239 \mathrm{~s}$, 2188s, 2172s, 1598s, 1548s, 1436s, 1346s, 1297s, 1211w, 1132w, 1018m, 954m, 924vw, 798w, 760 m . Anal. (\%), Found: $\mathrm{C}, 46.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 26.9$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FeN}_{8} \mathrm{O}_{2}$: C, 46.6; H, 4.9; N, 27.2.

A crystal suitable for X-ray diffraction was obtained from an analogous reaction using $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ instead of the perchlorate salt. The unit cell of a crystal from the above reaction was measured and found to be identical to the cell of the refined crystal structure.

4.6.5 Synthesis of $\left[\mathbf{M n}\left(\operatorname{actch} \mathrm{H}_{2}\right)(\text { dca })_{2}\right]$

A methanolic solution (20 mL) of $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $(\pm)-\mathrm{actch} \mathrm{H}_{2}$ $(0.278 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a methanolic solution $(20 \mathrm{~mL})$ of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(0.251 \mathrm{~g}, 1.0 \mathrm{mmol})$. The resulting colourless solution was left to stand for several days, after which time a colourless crystalline precipitate formed. A single crystal suitable for Xray diffraction was chosen from this precipitate. The solid was later collected and washed with methanol (Yield $0.081 \mathrm{~g}, 17 \%$). IR (Nujol, cm^{-1}): $3585 \mathrm{vw}, 3200 \mathrm{vw}, 3073 \mathrm{vw}, 2295 \mathrm{~s}$, $2235 \mathrm{~s}, 2171 \mathrm{~s}, 1594 \mathrm{~s}, 1557 \mathrm{~s}, 1369 \mathrm{~m}, 1322 \mathrm{~m}, 1263 \mathrm{w}, 1213 \mathrm{vw}, 1150 \mathrm{w}, 1124 \mathrm{w}, 1086 \mathrm{vw}$,

1006vw, 948w, 923vw, 888vw, 822w, 803vw, 767m. Anal. (\%), Found: C, 51.4; H, 5.6; N, 24.2. Calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{MnN}_{8} \mathrm{O}_{2}$: C, 51.6; H, 5.6; $\mathrm{N}, 24.1$.

4.6.6 Synthesis of $\left[\mathrm{Fe}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right]$

A methanolic solution (20 mL) of $\mathrm{Na}(\mathrm{dca})(0.178 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $(\pm)-a c t c h \mathrm{H}_{2}$ $(0.336 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added to a methanolic solution $(20 \mathrm{~mL})$ of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.363$ $\mathrm{g}, 1.0 \mathrm{mmol}$) in air, resulting in an instant colour change to an orange solution. After approximately three weeks many yellow crystals were present in a deep orange-red solution. These crystals were collected, washed briefly with methanol and dried in air. (Yield $90 \mathrm{mg}, 19 \%$). The sample was kept under N_{2} to prevent oxidation, which occurs over a period of weeks. IR (Nujol, cm^{-1}): $22.90 \mathrm{~m}, 2234 \mathrm{w}, 2172 \mathrm{~s}, 1593 \mathrm{~m}, 1567 \mathrm{~m}, 1366 \mathrm{~s}$, 1322m, 1260w, 1150w, 1124w, 1026w, 950w, 827ww, 769w. Anal. (\%), Found: C, 51.3; $\mathrm{H}, 5.9 ; \mathrm{N}, 24.4$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FeN}_{8} \mathrm{O}_{2}: \mathrm{C}, 51.5 ; \mathrm{H}, 5.6 ; \mathrm{N}, 24.0$.

A crystal suitable for X-ray diffraction was obtained from an analogous reaction using $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ instead of the perchlorate salt. The unit cell of a crystal from the above reaction was measured and found to be identical to the cell of the refined crystal structure.

4.6.7 Synthesis of $\operatorname{trans}-\left[\mathrm{Mn}\left(\mathrm{acenH}_{2}\right)_{2}(\text { denm })_{2}\right]$

A methanolic solution (5 mL) of $\mathrm{acenH}_{2}(0.224 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ $(0.168 \mathrm{~g}, 1.0 \mathrm{mmol})$ was filtered into a methanolic solution (10 mL) of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($0.245,1.0 \mathrm{mmol}$) resulting in a dark yellow/orange solution. The solution was left to slowly evaporate. After several weeks there was a dark brown residue in the bottom of the vessel and a few small orange crystal present on the side of the vessel. One of these was chosen for single crystal structural analysis.

4.6.8 X-Ray Crystallography

Data were collected using a Nonius KappaCCD diffractometer with graphite monochromated Mo-Ka radiation ($\lambda=0.71073 \AA$), using ϕ and ω rotations with 1° frames. Integration was carried out by the program DENZO-SMN, ${ }^{81}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{81}$ Solutions were obtained by direct methods (SHELXS 97) ${ }^{82}$ followed by successive Fourier difference methods, and refined by full matrix least squares on $F_{\text {obs }}{ }^{2}$ (SHELXL 97) ${ }^{82}$ with the aid of the graphical interface program X-SEED. ${ }^{83}$ All non-hydrogen atoms were refined anisotropically except where otherwise stated. Hydrogen atoms were included at calculated positions with U values 1.5 or 1.2 times the $U_{\text {eq }}$ of the adjoining carbon and nitrogen atoms respectively.

For $\left[\mathrm{Mn}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$, the central nitrogen atoms of the cross-linking dca ligands and one of the nitrile carbons of one of the cross-linking dca ligands were found to be disordered over two positions. The nitrogens and carbon were modelled as two atoms each, which were refined isotropically and anisotropically respectively. Individual contributions of the two disordered positions were allowed to refine as free variables, but summing in each case to unity $(\mathrm{N}(130) / \mathrm{N}(131) 0.46 / 0.54, \mathrm{C}(120) / \mathrm{C}(121) 0.49 / 0.51$, $\mathrm{N}(230) / \mathrm{N}(231) \quad 0.67 / 0.33$, and $\mathrm{N}(330) / \mathrm{N}(331) \quad 0.32 / 0.68)$. Face-indexed numerical absorption corrections were applied to the data for $\left[\mathrm{Mn}\left(\mathrm{acenH}_{2}\right)(\mathrm{dca})_{2}\right]$ and trans$\left[\mathrm{Mn}(\mathrm{acenH})_{2}(\mathrm{dcnm})_{2}\right]$ using the XPREP program. ${ }^{84}$ Flack parameters ${ }^{26}$ for $\left[\mathrm{M}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe , were $0.05(2)$ and $0.03(2)$ respectively, indicating the correct absolute structures were assigned. For the racemically twinned complexes $\left[\mathrm{M}\left(\mathrm{actch}_{2}\right)(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}$ and Fe , the contributions of the refined structures were 0.54 (1) for each.

The CO groups of acenH H_{2} and (\pm)-actch H_{2} were assigned as carbonyls on the basis of bond lengths, where average $\mathrm{C}-\mathrm{O}=1.27 \AA$. The $\mathrm{C}-\mathrm{NH}$ groups were also assigned as such on the basis of bond lengths, where average $\mathrm{C}-\mathrm{N}=1.33 \AA$. Additionally, peaks of electron density were located near the amine nitrogens of the Schiff-base ligands. These were assigned as hydrogens but refined unsatisfactory and therefore were subsequently included at calculated positions.

4.7 References

1. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 3712.
2. A. M. Kutasi, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 819.
3. S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Chem. Commun., 2000, 2331.
4. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Inorg. Chem., 2001, 40, 1718.
5. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and E. H. K. Tan, Polyhedron, 2001, 20, 1129.
6. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Solid State Chem., 2001, 159, 352.
7. P. Jensen, D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Eur. J., 2000, 6, 3186.
8. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
9. P. Jensen, S. R. Batten, G. D. Fallon, B. Moubaraki, K. S. Murray, and D. J. Price, Chem. Commun., 1999, 177.
10. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Commun., 2000, 793.
11. K. S. Murray, S. R. Batten, B. Moubaraki, D. J. Price, and R. Robson, Mol. Cryst. Liq. Cryst., 1999, 335, 313.
12. S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and R. Robson, Chem. Commun., 1998, 439.
13. Y. Song, X. Yao, H. Chen, G. Pan, X. Hu, and Z. Zheng, J. Chem. Soc., Perkin Trans. 1, 2002, 870.
14. T. Flessner and S. Doye, J. Prakt. Chem., 1999, 341, 436.
15. K. Bernardo, S. Leppard, A. Robert, G. Commenges, F. Dahan, and B. Meunier, Inorg. Chem., 1996, 35, 387.
16. T. Katsuki, Coord. Chem. Rev., 1995, 140, 189.
17. E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, and L. Deng, J. Am. Chem. Soc., 1991, 113, 7063.
18. F. Averseng, P. G. Lacroix, I. Malfant, F. Dahan, and K. Nakatani, J. Mater. Chem., 2000, 10, 1013.
19. P. Ayyappan, O. R. Evans, Y. Cui, K. A. Wheeler, and W. Lin, Inorg. Chem., 2002, 41, 4978.
20. E. Coronado, C. J. Gomez-Garcia, A. Nuez, F. M. Romero, E. Rusanov, and H. Stoeckli-Evans, Inorg. Chem., 2002, 41.
21. N. Bresciani-Pahor, M. Calligaris, G. Nardin, L. Randaccio, and D. Viterbo, Acta Crystallogr., Sect. B, 1979, 35, 2776.
22. M. McCann, S. Townsend, M. Devereux, V. McKee, and B. Walker, Polyhedron, 2001, 20, 2799.
23. J. N. Femandez-G, R. G. Enriquez, A. Tobon-Cervantes, M. I. Bemal-Uruchurtu, R. Villena-I, W. F. Reynolds, and J. P. Yang, Can. J. Chem., 1993, 71, 358.
24. R. Cea-Olivares, I. Rodriguez, M. Soriano-Garcia, R. A. Toscano, and M. Cordoba, Monatsch. Chem., 1984, 115, 485.
25. N. Bernth, E. Larsen, and S. Larsen, Tetrahedron, 1981, 37, 2477.
26. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876.
27. M. O'Keeffe, Z. Kristallogr., 1991, 196, 21.
28. L. Carlucci, G. Ciani, P. Macchi, and D. M. Proserpio, Chem. Commun., 1998, 1837.
29. P. C. Junk and M. K. Smith, Polyhedron, 2003, 22, 331.
30. M. D. Hobday and T. D. Smith, Coord. Chem. Rev., 1973, 9, 311.
31. M. Calligaris, G. Nardin, and L. Randaccio, Coord. Chem. Rev., 1972, 7, 385.
32. M. Calligaris, G. Nardin, and L. Randaccio, J. Chem. Soc. D, 1970, 1079.
33. E. Solari, M. Latronico, P. Blech, C. Floriani, A. Chiesi-Villa, and C. Rizzoli, Inorg. Chem., 1996, 35, 4526.
34. J. Keegan, P. E. Kruger, M. Nieuwenhuyzen, J. O'Brien, and N. Martin, Chem. Commun., 2001, 2192.
35. P. E. Kruger, N. Martin, and M. Nieuwenhuyzen, J. Chem. Soc., Dalton Trans., 2001, 1966.
36. J. Keegan, P. E. Kruger, M. Nieuwenhuyzen, and N. Martin, Cryst. Growth Des., 2002, 2, 329.
37. O. Mamula, F. J. Monlien, A. Porquet, G. Hopfgartner, A. E. Merbach, and A. Von Zelewsky, Chem. Eur. J., 2001, 7, 533.
38. O. Mamula, A. Von Zelewsky, T. Bark, and G. Bernardinelli, Angew. Chem., Int. Ed., 1999, 38, 2945.
39. G. Muller, J. P. Riehl, K. J. Schenk, G. Hopfgartner, C. Piguet, and J.-C. G. Bunzli, Eur. J. Inorg. Chem., 2002, 3101.
40. B. Bocquet, G. Bernardinelli, N. Ouali, S. Floquet, F. Renaud, G. Hopfgartner, and C. Piguet, Chem. Commun., 2002, 930.
41. N. Andre, R. Scopelliti, G. Hopfgartner, C. Piguet, and J.-C. G. Buenzli, Chem. Commun., 2002, 214.
42. N. Martin, J.-C. G. Buenzli, V. McKee, C. Piguet, and G. Hopfgartner, Inorg. Chem., 1998, 37, 577.
43. C. Piguet, G. Bemardinelli, and G. Hopfgartner, Chem. Rev., 1997, 97, 2005.
44. S. Petoud, J.-C. G. Buenzli, F. Renaud, C. Piguet, K. J. Schenk, and G. Hopfgartner, Inorg. Chem., 1997, 36, 5750.
45. C. Piguet, J. C. G. Buenzli, G. Bernardinelli, G. Hepfgartner, and A. F. Williams, J. Am. Chem. Soc., 1993, 115, 8197.
46. S. G. Telfer, B. Bocquet, and A. F. Williams, Inorg. Chem., 2001, 40, 4818.
47. C. Provent, E. Rivara-Minten, S. Hewage, G. Brunner, and A. F. Williams, Chem. Eur. J., 1999, 5, 3487.
48. C. Provent and A. F. Williams, Perspectives in Supramolecular Chemistry, 1999, 5, 135.
49. A. Williams, Chem. Eur. J., 1997, 3, 15.
50. C. Provent, S. Hewage, G. Brand, G. Bernardinelli, L. J. Charbonniere, and A. F. Williams, Angew. Chem., Int. Ed. Engl., 1997, 36, 1287.
51. L. J. Charbonniere, A. F. Williams, U. Frey, A. E. Merbach, P. Kamalaprija, and O. Schaad, J. Am. Chem. Soc., 1997, 119, 2488.
52. E. C. Constable, M. J. Hannon, P. Harverson, M. Neuburger, D. R. Smith, V. F. Wanner, L. A. Whall, and M. Zehnder, Polyhedron, 2000, 19, 23.
53. G. Baum, E. C. Constable, D. Fenske, C. E. Housecroft, T. Kulke, M. Neuburger, and M. Zehnder, J. Chem. Soc., Dalton. Trans., 2000, 945.
54. E. C. Constable, C. E. Housecroft, T. Kulke, G. Baum, and D. Fenske, Chem. Commun., 1999, 195.
55. E. C. Constable and C. E. Housecroft, Chimia, 1999, 53, 187.
56. E. C. Constable and P. Harverson, Polyhedron, 1999, 18, 3093.
57. G. Baum, E. C. Constable, D. Fenske, C. E. Housecroft, and T. Kulke, Chem. Eur. J., 1999, 5, 1862.
58. C. Piguet, G. Bernardinelli, J.-C. G. Buenzli, S. Petoud, and G. Hopfgartner, Chem. Commun., 1995, 2575.
59. C. Piguet, C. Edder, S. Rigault, G. Bernardinelli, J.-C. G. Bunzli, and G. Hopfgartner, J. Chem. Soc., Dalton. Trans., 2000, 3999.
60. P. Baxter, J. M. Lehn, A. DeCian, and J. Fischer, Angew. Chem., 1993, 105, 92.
61. E. C. Constable, T. Kulke, M. Neuburger, and M. Zehnder, New J. Chem., 1997, 21, 633.
62. E. C. Constable, T. Kulke, M. Neuburger, and M. Zehnder, New J. Chem., 1997, 21, 1091.
63. R. L. Paul, S. M. Couchman, J. C. Jeffery, J. A. McCleverty, Z. R. Reeves, and M. D. Ward, J. Chem. Soc., Dalton. Trans., 2000, 845.
64. M. Vazquez, M. R. Bermejo, J. Sanmartin, A. M. Garcia-Deibe, C. Lodeiro, and J. Mahia, J. Chem. Soc., Dalton Trans., 2002, 870.
65. N. Matsumoto, S. Yamashita, A. Ohyoshi, S. Kohata, and H. Okawa, J. Chem. Soc., Dalton Trans., 1988, 1943.
66. S. Sailaja, K. R. Reddy, M. V. Rajasekharan, C. Hureau, E. Rivière, J. Cano, and J.-J. Girerd, Inorg. Chem., 2003, 42, 180.
67. S. R. Marshall, C. D. Incarvito, W. W. Shum, A. Rheingold, and J. S. Miller, Chem. Commun., 2002, 3006.
68. S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460.
69. B. F. Abrahams, M. J. Hardie, B. F. Hoskins, R. Robson, and E. E. Sutherland, Chem. Commun., 1994, 1049.
70. D. J. Evans, P. C. Junk, and M. K. Smith, Polyhedron, 2003, in press.
71. M. Hvastijová, J. Kozisek, J. Kohout, J. Mrozinski, L. Jäger, and I. Svoboda, Polyhedron, 1997, 16, 463.
72. D. S. Bohle, B. J. Conklin, and C.-H. Hung, Inorg. Chem., 1995, 34, 2569.
73. D. Miklos, I. Potocnak, M. Dunaj-Jurco, and L. Jäger, Acta Crystallogr., Sect. C, 1998, 54, 33.
74. J. W. Buchler, M. Hvastijová, J. Kohout, and J. Kozisek, Transition Met. Chem., 1998, 23, 215.
75. F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall, London, 1973, Ch 5.
76. B. N. Figgis, Introduction to Ligand Fields, Interscience, New York, 1966, Ch 10.
77. O. Kahn, Molecular Magnetism, VCH, New York, 1993, Ch 3.
78. M. Gerloch, J. Lewis, G. G. Phillips, and P. N. Quested, J. Chem. Soc. A, 1970, 1941.
79. P. J. McCarthy, R. J. Hovey, K. Ueno, and A. E. Martell, J. Am. Chem. Soc., 1955, 77, 5820.
80. G. Longo, Gazz. Chim. Ital., 1931, 61, 575.
81. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
82. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
83. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
84. XPREP version 5.03, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1994.

5.1 Introduction

Research into coordination polymers containing dicyanamide has undergone rapid growth since the discovery by Murray and co-workers, and other groups, of long-range magnetic ordering in the binary rutile-like octahedral complexes, $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{II}}=\mathrm{Cr}$, $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ or $\mathrm{Cu}{ }^{1-5}$ A polymorph with tetrahedral metal centres, the β-form, β $\left[\mathrm{M}(\mathrm{dca})_{2}\right], \mathrm{M}^{\mathrm{n}}=\mathrm{Co}, \mathrm{Zn}, \mathrm{Co} / \mathrm{Zn}$ was also reported. ${ }^{6}$ The $\mathrm{C} 0^{11}$ complex displays long-range magnetic order. Since then, modifications have been introduced to dicyanamide networks by the use of various bridging and terminal (monodentate and chelating) co-ligands, resulting in a wide variety of new and interesting topologies. The physical properties (magnetic, electrical, porosity etc.) have been investigated. ${ }^{3,7-25}$

For example, through the use of neutral N-heterocyclic bridging ligands such as 4,4'-bipyridine, ${ }^{19}$ and pyrazine ${ }^{15,26}$ interpenetrated α-Po networks, 2D square grid $(4,4)$ sheets or other topologies can be formed. Monodentate terminal co-ligands such as pyridine, DMF, pyridazine, ${ }^{18}$ 4-benzoylpyridine ${ }^{27}$ or 2-pyrrolidone ${ }^{28}$ typically lead to linear chains with double $\mu_{1,5}$-dca bridges and trans co-ligands. ${ }^{3}$ Protic terminal ligands such as $\mathrm{MeOH},{ }^{3,11} \mathrm{EtOH}^{3}$ and $\mathrm{H}_{2} \mathrm{O},{ }^{3,29}$ where multiple hydrogen bonding interactions can occur, lead to fascinating networks. This is well illustrated by $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}^{3}$ and $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{29}$ In the structure of the former complex, linear chains of $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ lie in the channels formed by $2 \mathrm{D}(4,4)$ sheets of the same composition stacked parailel. The intercalated water molecules participate in complicated 2D hydrogen bonding networks between the chains and sheets. The monohydrate complex, $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, which is discussed in Chapter 2, has a 3D self-penetrated network structure that can be related to the rutile networks of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ and the interpenetrated [$\left.\mathrm{M}(\mathrm{tcm})_{2}\right]$.

In the field of molecule-based magnets the highest T_{c} values have been predominantly obtained with the short bridging ligand cyanide. ${ }^{30-34}$ It was reasoned that another short, potentially bridging ligand, such as nitrite $\left(\mathrm{NO}_{2}{ }^{\circ}\right)$, might provide high temperature molecule-based magnets. The aim of the present work was to study the structures and magnetism of new mixed ligand dicyanamide network complexes with the nitrite ligand.

The nitrite ligand has long been of interest in coordination chemistry because of its ability to function as an ambidentate ligand. An extensive review by Hitchman and Rowbottom ${ }^{35}$ in 1982 covers the various observed coordination modes of the nitrite ion with numerous examples, many of which contain bridging nitrite ligands. Such an example is $\left[\mathrm{Ni}(e n)_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{X}, \mathrm{X}=\mathrm{ClO}_{4}{ }^{-36,37} \mathrm{I}_{3},{ }^{-37}$ or $\mathrm{BF}_{4}{ }^{-38}$ where $\mathrm{NO}_{2}{ }^{+}$bridges each Ni^{11} centre via one oxygen and the central nitrogen to form linear polymeric chains. A number of possible coordination modes of the nitrite ion are shown in Figure 5.1. Of those shown, eight modes are bridging. The shortest bridge is one atom long and the longest is the full three atoms of the nitrite ion. The chelating and bridging mode X was observed by Kahn et al. in a nickel(II) dinuclear complex, $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)\right]_{2}\left(\mathrm{BPh}_{4}\right)_{2} .^{39} \mathrm{Kahn}$ and co-workers also measured strong intrachain magnetic coupling (albeit antiferromagnetic) in the polymeric complex [$\left.\mathrm{Ni}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{ClO}_{4}{ }^{37}$ The magnetic properties of this complex, also known as NENP in the physics community, have been the subject of intense investigation, as it exhibits what is known as Haldane gap behaviour. ${ }^{40-45}$

I

III

IV

VI

VII

IX

Figure 5.1 A number of possible nitrite coordination modes. ${ }^{35}$

As both dicyanamide and nitrite are anionic ligands, it was likely that their mixed ligand complexes would be anionic. Indeed, two isostructural anionic dca/ $\mathrm{NO}_{2}{ }^{-}$complexes were synthesized, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni. In addition, a third anionic complex was obtained, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$. The crystal structures and magnetic properties are presented in this chapter.

Anionic coordination polymers of the type $\left[\mathrm{M}(\mathrm{dca})_{3}\right]^{-},\left[\mathrm{M}(\mathrm{dca})_{4}\right]^{2-46,47}$ and the mixed ligand complexes, $\left[\mathrm{M}(\mathrm{dca})_{2}(\mathrm{NCS})_{2}\right]^{2-47-49}$ were first reported by Köhler et al. but without any crystallographic or magnetic characterisation. The results presented in this chapter form part of a wider investigation by Murray, Batten and co-workers of anionic dicyanamide network complexes. ${ }^{50}$ Recently Murray et al. found that the network topology is dependent on the choice of counter-cation - the anionic networks are in fact cation
template. ${ }^{51,52}$ The structures of $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{M}^{\mathrm{II}}(\mathrm{dca})_{3}\right]$, where $\mathrm{E}=\mathrm{As}$ or $\mathrm{P}, \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Cocr}$ Ni , consist of 2D square grid $(4,4)$ sheets of $\left[\mathrm{M}(\mathrm{dca})_{3}\right]^{-}$with columns of cations separating the 2D layers (Figure 5.2). ${ }^{52}$ The use of coordinating solvents also resulted in the formation of solvated anionic networks with very different topologies. The structures if $\left(\mathrm{Ph}_{4} \mathrm{E}\right)_{2}\left[\mathrm{M}_{2}^{\mathrm{II}}(\mathrm{dca})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot x \mathrm{MeOH}, x=0.5$ or $1 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Co}, \mathrm{Ni} ; \mathrm{E}=\mathrm{P}$, As, consist of layers of 1D ladders that are linked by hydrogen bonding (dea $\cdots \mathrm{H}_{2} \mathrm{O}$) to form 2D $(4,4)$ sheets (Figure 5.3). ${ }^{52}$

Figure 5.2 (Left) the alternating 2D (4,4) sheets of $\left[\mathrm{M}(\mathrm{dca})_{3}\right]^{-}$separated by layers of $\mathrm{Ph}_{4}{ }^{3}{ }^{+}$ cations and (Right) a view of a single sheet showing orientation of cations, in the structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}^{\mathrm{II}}(\mathrm{dca})_{3}\right]$.

Figure 5.3 Three ladder motifs hydrogen bonded to form overall 2D $(4,4)$ sheets in the structure of $\left(\mathrm{Ph}_{4} \mathrm{E}\right)_{2}\left[\mathrm{M}^{11}(\mathrm{dca})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot x \mathrm{MeOH}$.

The structures of $\mathrm{MePh}_{3} \mathrm{P}\left[\mathrm{M}^{11}(\mathrm{dca})_{3}\right]$, where $\mathrm{M}^{11}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ and Ni, consist of a 3D network of $\left[\mathrm{M}(\mathrm{dca})_{3}\right]^{-}$with cavities within the network that are occupied by pairs of cations (Figure 5.4). Alternatively, the structures of $\left(\mathrm{PrPh}_{3} \mathrm{P}\right)_{2}\left[\mathrm{M}^{11}(\mathrm{dca})_{4}\right]$ (where $\mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni) consist of linear chains of $\left[\mathrm{M}(\mathrm{dca})_{4}\right]^{2 \boldsymbol{}}$ containing octahedral $\mathrm{M}^{\prime \prime}$ centres linked by double $\mu_{1,5}$-dca bridges (Figure 5.5). The nitrile nitrogen atoms from two trans terminal monodentate dca ligands occupy the two remaining coordination sites. ${ }^{53}$

Figure 5.4 (Left) Two $\mathrm{Ph}_{3} \mathrm{MeP}^{+}$cations in a cavity and (Right) the anionic [$\left.\mathrm{M}^{\mathrm{II}}(\mathrm{dca})_{3}\right]^{-}$ network, in the structure of $\mathrm{MePh}_{3} \mathrm{P}\left[\mathrm{M}^{\mathrm{II}}(\mathrm{dca})_{3}\right]$.

Figure 5.5 The linear chain structure of $\left(\mathrm{PrPh}_{3} \mathrm{P}\right)_{2}\left[\mathrm{M}^{\mathrm{Il}}(\mathrm{dca})_{4}\right]$.

Murray, Batten and co-workers have also investigated the inclusion of paramagnetic cations within anionic dca networks. ${ }^{54}$ The structures of $\left[\mathrm{M}(\mathrm{bipy})_{3}\right]\left[\mathrm{M}^{\prime}(\mathrm{dca})_{3}\right]_{2}$, where $\mathrm{M}=\mathrm{Fe}, \mathrm{Ni}$; bipy $=2,2^{\prime}$-bipyridine and $\mathrm{M}^{\prime}=\mathrm{Mn}, \mathrm{Fe}$, consist of $2 \mathrm{D}(6,3)$ networks of $\left[\mathrm{M}^{\prime}(\mathrm{dca})_{3}\right]^{\circ}$ with $\left[\mathrm{M}(\text { bipy })_{3}\right]^{2+}$ cations sitting in the hexagonal windows of the sheets (Figure 5.6). These types of "hybrid" networks may have potential spin-crossover and/or long-range order properties. ${ }^{54}$

Figure 5.6 The hexagonal $(6,3)$ sheet structure of $\left[\mathrm{M}(\mathrm{bipy})_{3}\right]\left[\mathrm{M}^{\prime}(\mathrm{dca})_{3}\right]_{2}$.

In general, the $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{M}^{\mathrm{Il}}(\mathrm{dca})_{3}\right]$ series of compounds display weak antiferromagnetic coupling, with one exception. The compounds $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{Ni}(\mathrm{dca})_{3}\right]$, where E $=$ As or P , both appear to display long-range order of the spin-canted antiferromagnetic type below a T_{N} of 20 K . Extensive magnetic measurements were performed to show that the magnetic ordering was not due to possible traces of $\alpha-\left[\mathrm{Ni}(d \mathrm{da})_{2}\right]$, which displays longrange ferromagnetic order with a T_{c} close to $20 \mathrm{~K} .^{51,52}$

A number of groups have reported a number of Cu^{1} mixed ligand anionic dicyanamide compounds that display interesting electric and magnetic properties, using the organic radical cation bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF). The compounds, κ - $(\mathrm{BEDT}-\mathrm{TTF})_{2} \mathrm{Cu}(\mathrm{dca}) \mathrm{X}, \mathrm{X}=\mathrm{Br}, \mathrm{Cl}$ are isomorphous, with the chloride and bromide materials being superconductors ($T_{\mathrm{c}}=12.5,11.6 \mathrm{~K}$, respectively). ${ }^{55-59}$ The cyanide/dca coordination polymers, $\kappa-(\mathrm{BEDT}-\mathrm{TTF})_{2}\left[\mathrm{Cu}_{2}(\mathrm{CN})(\mathrm{dca})\right]$ and $\theta-(\mathrm{BEDT}-\mathrm{TTF})_{2} \mathrm{Cu}(\mathrm{dca})_{2}(\mathrm{CN})$ display superconductivity ($T_{\mathrm{c}}=11.2 \mathrm{~K}$) and 2D Heisenberg antiferromagnetic behaviour (below ca. 220 K) respectively. ${ }^{60-62}$

5.2 Synthesis and Characterisation

5.2.1 $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathbf{1 1}}=\mathrm{Co}$ and Ni

Reaction of a solution of $\mathrm{M}^{11}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{M}^{11}=\mathrm{Co}$ or Ni , in acetonitrile with a solution of $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca}), \mathrm{Ph}_{4} \mathrm{PBr}$, and NaNO_{2} in an acetonitrile/water solvent mixture in a molar ratio of 1:2:2:1 yielded purple needle/rod-like crystals, and green clusters of rod-like crystals, for the cobalt and nickel products respectively.

The infrared spectra of the products showed absorbances at $2180(\mathrm{Co})$ and 2187 (Ni) cm^{-1} due to $v_{s}(\mathrm{C} \equiv \mathrm{N})$ of dicyanamide, and $1587 \mathrm{~cm}^{-1}$ (Co and Ni) due to $v(\mathrm{C}=\mathrm{C})$ of $\mathrm{Ph}_{4} \mathrm{P}^{+}$. The $v_{s}(\mathrm{C} \equiv \mathrm{N})$ value is consistent with the $\mu_{\mathrm{L}, 5}$-dca bridging mode. Comparison with
the infrared spectrum of $\mathrm{Ph}_{4} \mathrm{As}\left[\mathrm{Co}(\mathrm{dca})_{3}\right]$ (provided by P. van der Werff, School of Chemistry, Monash University) shows that the absorbances at $1204(\mathrm{Co})$ and 1212 (Ni) cm^{-1} are due to $v_{\mathrm{as}}(\mathrm{NO})$ of NO_{2}^{-}, which are decreased in energy, upon coordination, compared to the free-ion value of $1260 \mathrm{~cm}^{-1}{ }^{35}$ The elemental analyses of the Co and Ni products were consistent with the formulae obtained from the crystal structures (vide infra). The powder X-ray diffractograms of the Co and Ni samples match those calculated from the crystal structures with the exception of two peaks in each case $2 \theta=11.64^{\circ}$ and $14.66^{\circ}(\mathrm{Co}) ; 11.20^{\circ}$ and $\left.18.19^{\circ}(\mathrm{Ni})\right)$. These peaks could not be indexed to $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{3}\right]$ or $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{M}(\mathrm{dca})_{4}\right]$. The diffractograms were also compared with that of $\mathrm{Ph}_{4} \mathrm{As}(\mathrm{dca}$) (provided by P. van der Werff), which is believed to possess the same structure as $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca})$. The unidentified peaks in the diffractograms of the Co and Ni samples did not correspond to any peaks in the $\mathrm{Ph}_{4} \mathrm{As}(\mathrm{dca})$ diffractogram. Hence, the samples contain as yet unidentified impurities.

The crystal of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ used for X-ray crystallographic analysis was chosen from crystals grown from a reaction of a solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in acetonitrile with a solution of $\mathrm{Ph}_{4} \mathrm{PBr}, \mathrm{Na}(\mathrm{dca})$ and NaNO_{2} in an acetonitrile/ethanol solvent mixture in a molar ratio of 1:3:2:1. Colourless crystals co-crystallized with the Co^{11} product, which were probably NaNO_{2} or $\mathrm{Na}(\mathrm{dca})$ due to their low solubilities in the solvent mixture used.

Independently, Batten and Harris synthesised the nitrate analogue of the above complex, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{3}\right)\right] \cdot \mathrm{MeCN}$, by a reaction similar to that here but with the omission of $\mathrm{NO}_{2}{ }^{-}$. This complex is isostructural with the nitrite complex, and has very similar unit cell parameters. ${ }^{63}$

5.2.2 $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$

$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ was initially obtained as a second product in a reaction that was intended to synthesise $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$. A pure sample was subsequently obtained independently by reaction of a solution of $\left(\mathrm{Et}_{4} \mathrm{~N}_{2} \mathrm{CoBr}_{4}\right.$ in acetonitrile with an acetonitrile solution of $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca})$ in a $1: 1$ molar ratio. Slow evaporation of the solution yielded well-formed dark blue crystals of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ in moderate yield. The infrared spectrum showed absorbances at 2184 and $1586 \mathrm{~cm}^{-1}$ due to $v_{s}(\mathrm{C} \equiv \mathrm{N})$ of dicyanamide and $v(\mathrm{C}=\mathrm{C})$ of $\mathrm{Ph}_{4} \mathrm{P}^{+}$respectively. The former value is indicative of bidentate dicyanamide bridging through both nitrile nitrogen atoms. Elemental analysis was consistent with the above formula. The powder X-ray diffractogram matched that calculated from the single crystal data.

5.3 Crystal Structures

5.3.1 $\mathbf{P h}_{4} \mathbf{P}\left[\mathbf{M}(\text { dca })_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathbf{M e C N}, \mathbf{M}^{\mathbf{I I}}=\mathbf{C o}$ and Ni

Crystallographic data are summarised in Table 5.1 (see page 221). Table 5.2 contains selected interatomic distances and angles (see page 227). The compounds $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}^{\mathrm{I}}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ are isomorphous, crystallising in the chiral orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. The refinement of the structure of the nickel complex was poor compared to that of the cobalt complex. Thus, although the crystallographic data and distances and angles for the nickel complex are included here, only the structure of the cobalt complex is described. The atom labelling scheme for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ is shown in Figure 5.7. The structure was refined as a racemic twin with approximately equal twin component contributions. The asymmetric unit contains one formula unit. Each $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated in a highly distorted octahedral environment by two dca nitrile nitrogens $\left(\mathrm{Co}(1)-\mathrm{N}(41)=2.099(5) \AA\right.$ and $\left.\mathrm{Co}(1)-\mathrm{N}\left(45^{\mathrm{j}}\right)=2.087(5) \AA\right)$ in the axial
positions, and two dca nitrile nitrogens ($\mathrm{Co}-\mathrm{N}=2.077(5), 2.097(5) \AA$) and two oxygens $\left(\mathrm{Co}-\mathrm{O}=2.138(5), 2.164(5) \AA\right.$) of the chelating nitrite (O, O^{\prime}-nitrito, mode IV shown in Figure 5.1, see page 213) ligand in the equatorial plane. The coordination environment of the equatorial plane deviates significantly from a regular square due to the chelating nitrite, which subtends an acute angle of $\mathrm{O}(51)-\mathrm{Co}(1)-\mathrm{O}(53)=58.4(2)^{\circ}$. The nitrite bond angle, $\mathrm{O}(51)-\mathrm{N}(52)-\mathrm{O}(53)=112.2(5)^{\circ}$, is decreased on chelation by $\sim 2^{\circ}$ from the 'free ion' value of $114.9(5)^{\circ}$ in the structure of $\mathrm{NaNO}_{2} .{ }^{64,65}$ To the best of the candidate's knowledge there has been only one other structurally characterised Co^{11} complex containing chelating nitrite ligands, $\left[\mathrm{Co}(\mathrm{L})\left(\mathrm{NO}_{2}\right)_{2}\right]$, where $\mathrm{L}=(-)$-sparteine. ${ }^{66}$ The highly distorted octahedral mononuclear complex has two chelating nitrite ligands that are less symmetrically chelated compared to the present structure $\left(\mathrm{Co}-\mathrm{O}=2.057-2.338 \AA, \mathrm{O}-\mathrm{N}-\mathrm{O}=107.0^{\circ}\right.$ and 110.1°, $\mathrm{O}-\mathrm{Co}-\mathrm{O}=54.2^{\circ}$ and 56.4°) where the sparteine ligand is also bidentate chelating.

Figure 5.7 The crystal structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ with the atom labelling scheme (thermal ellipsoids are shown at 50% probability, hydrogen atoms are omitted for clarity).

Table 5.1 Crystal data for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \quad \mathrm{M}^{\prime \prime}=\mathrm{Co}, \mathrm{Ni}$ and $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$.

Compound	$\mathbf{P h} \mathbf{P} \mathbf{P}\left[\mathbf{M}(\text { dca })_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$		$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$
	Co	Ni	
Formula	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{CoN}_{8} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NiN}_{8} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{CoN}_{3} \mathrm{P}$
M	617.46	617.24	624.17
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	$P 21_{1} 1_{1}{ }_{1}$	$P 2,2,21$	$P 2,2,2{ }_{1}$
a / \AA	7.4914(1)	7.4519(2)	7.3136(1)
b / \AA	16.9427(6)	16.8131(5)	12.3136(2)
c / A	22.6970(7)	22.7773(9)	27.8730(7)
U / \AA^{3}	2880.8(1)		2510.15(8)
Z	4	4	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.424	1.437	1.652
T/K	123(2)	123(2)	123(2)
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.694	0.779	3.950
Crystal dimensions	$0.63 \times 0.15 \times 0.15$	$0.5 \times 0.1 \times 0.1$	$0.25 \times 0.15 \times 0.15$
θ range $/{ }^{\circ}$	2.16-30.05	2.16-28.29	1.81-28.28
Index ranges	$\begin{aligned} & -10 \leq h \leq 6 \\ & -22 \leq k \leq 22, \\ & -29 \leq l \leq 29 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 7, \\ & -18 \leq k \leq 22, \\ & -28 \leq l \leq 30 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 6, \\ & -16 \leq k \leq 15, \\ & -37 \leq l \leq 36 \end{aligned}$
Completeness to $2 \theta=55^{\circ} / \%$	99.9	99.2	99.3
$T_{\text {min }}, T_{\text {max }}$	0.7733, 0.9174		
Data collected	32974	18267	19022
Unique data ($R_{\text {intit }}$)	7549 (0.0743)	6776 (0.1624)	6094 (0.1004)
Observed reflections [$1>2 \sigma(l)$]	5512	3798	3543
Parameters	380	381	299
Final $R_{1}, w R_{2}[I>2 \sigma(I)]^{(a)}$	0.0868, 0.1815	0.1106, 0.1237	0.0880, 0.2371
(all data)	$0.1313,0.1964$	0.2062, 0.1445	0.1563, 0.2712
Goodness of fit, S	1.128	1.043	1.040
$\Delta \rho_{\text {min }}, \Delta \rho_{\text {max }} / \mathrm{e} \AA^{-3}$	-0.801, 2.004	-0.720, 1.080	-1.785, 1.795

${ }^{\text {(a) }} R_{1}=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{0}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}$

Each $\mathrm{Co}^{\mathrm{Il}}$ atom is connected to four others in the $a b$-plane by two crystallographically unique dca ligands coordinating via the nitrile nitrogens in the bidentate $\mu_{1,5}$ mode. This gives square-grid 2D $(4,4)$ sheets, one of which is shown in Figure 5.8. In this figure it can be seen that the chelating nitrite ligands are all oriented in one direction parallel to the a-axis direction, and alternate in direction parallel to the b-axis direction. The overall structure consists of anionic $(4,4)$ square-grid sheets of $\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right]^{-}$that alternate with layers of the $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations, with intercalated acetonitrile molecules also present (Figure 5.9). The anionic sheets are similar to those in the $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{M}(\mathrm{dca})_{3}\right]$ series of compounds (vide supra), except in those cases, half of the links within the sheets are double dca bridges ($\mathrm{M}(\mu-\mathrm{dca})_{2} \mathrm{M}$, see Figure 5.2).

Figure 5.8 A 2D square-grid anionic sheet of $\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right]^{-}$in the structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ (red spheres represent Co^{11} ions, dca ligands are shown in blue and nitrite ligands in green).

Figure 5.9 Packing diagram of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ viewed parallel to the a-axis direction. The purple spheres represent $\mathrm{Co}^{\text {Il }}$ ions, dca and nitrite ligands are shown in blue, $\mathrm{Ph}_{4} \mathrm{P}^{+}$ions in red, and lattice acetonitrile molecules are in blue (nitrogen) and green (carbons).

The sheets pack parallel to the c-axis direction such that adjacent sheets are offset $1 / 2$ of the unit cell length a with respect to each other (Figure 5.10). The resulting packing is of the infinite $A B$ type. In Figure 5.11 it can be seen that the cations do not lie directly below (or above) the centres of the $\left[\mathrm{CO}_{4}(\mathrm{dca})_{4}\left(\mathrm{NO}_{2}\right)_{4}\right]$ squares, but are slightly offset in the $a-a x i s$ direction. Each cation layer is oriented antiparallel to its neighbouring cation layers.

Figure 5.10 Two square-grid sheets of $\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right]$, viewed parallel to the c-axis direction (the upper sheet is shown in blue and lower in red).

Figure 5.11 One square-grid sheet of $\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right]^{\text {; }}$, viewed parallel to the c-axis direction, showing the positions of the $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations (green) with respect to the sheet.

The intra-sheet Co^{\cdots} Co distance across the dea ligand parallel to the a-axis direction is equal to the unit cell length $a(7.4914(1) \AA)$, whereas that across the dea ligand parallel to the b-axis direction is $8.4914(3) \AA$, approximately half the unit cell length b (the Co centres are not collinear in this direction). The sheets are well separated with the shortest inter-sheet Co \cdots Co distance being 12.463(1) \AA.

The $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations layers are involved in multiple phenyl embraces, as described by Dance and co-workers. ${ }^{67}$ Each of the cations is engaged in 'orthogonal four-fold phenyl embraces' (O4PE) with its neighbours involving four separate edge-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. These interactions create linear infinite chains of translational four-fold phenyl embraces' (LIT4PE) in the a-axis direction ($\mathrm{P} \cdots \mathrm{P}$ distance is equal to the unit cell length $a, 7.4914(1) \AA, \mathrm{CH} \cdots$ centroid $=3.085,3.256,3.373$ and $3.625 \AA$). These chains are cross-linked in b-axis direction by furtiner edge-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ($\mathrm{P} \cdots \mathrm{P}=9.313$ \AA and $\mathrm{CH} \cdots$ centroid $=3.228 \AA$) to form 2D sheets (Figure 5.12).

Figure 5.12 Three columns in a single layer of $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations in the structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ showing edge-to-face $\mathrm{CH} \cdots \pi$ interactions. Some LIT4PE interactions are shown as dashed purple and cross-linking $\mathrm{CH} \cdots \pi$ interactions shown in dashed orange.

The cations in the structure of the $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{M}(\mathrm{dca})_{3}\right]$ series are also involved in LIT4PE interactions (Figure 5.2). However, the chains are cross-linked by 'off-set-face-toface' phenyl $\pi \cdots \pi$ interactions to form 2D sheets. ${ }^{51}$ This difference in the type of crosslinking interaction is due to the orientation of the cation chains in the $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{M}(\mathrm{dca})_{3}\right]$ series. Within each layer, the chains of cations are oriented antiparallel with respect to each other. However, in the present compound, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$, the cation chains are oriented parallel to each other.

Table 5.2 Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}^{\mathrm{Il}}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{Il}}=\mathrm{Co}$ and Ni .

| | Co | Ni | | $\mathbf{C o}$ | Ni |
| :--- | :---: | :---: | :--- | :--- | ---: | ---: |
| $\mathrm{M}(1)-\mathrm{N}(31)$ | $2.077(5)$ | $2.037(5)$ | $\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{ii}}\right)$ | $2.097(5)$ | $2.044(5)$ |
| $\mathrm{M}(1)-\mathrm{N}(41)$ | $2.099(5)$ | $2.062(5)$ | $\mathrm{M}(1)-\mathrm{N}\left(45^{\mathrm{j}}\right)$ | $2.087(5)$ | $2.053(6)$ |
| $\mathrm{M}(1)-\mathrm{O}(51)$ | $2.138(5)$ | $2.102(4)$ | $\mathrm{M}(1)-\mathrm{O}(53)$ | $2.164(5)$ | $2.126(4)$ |
| | | | | | |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{ii}}\right)$ | $99.8(2)$ | $100.8(2)$ | $\mathrm{N}(41)-\mathrm{M}(1)-\mathrm{N}\left(45^{\mathrm{i}}\right)$ | $179.1(2)$ | $178.6(2)$ |
| $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}(41)$ | $89.2(2)$ | $90.0(2)$ | $\mathrm{N}(31)-\mathrm{M}(1)-\mathrm{N}\left(45^{i}\right)$ | $91.5(2)$ | $91.2(2)$ |
| $\mathrm{N}\left(35^{\mathrm{ii}}\right)-\mathrm{M}(1)-\mathrm{N}(41)$ | $89.2(2)$ | $89.1(2)$ | $\mathrm{N}\left(35^{\mathrm{ii}}\right)-\mathrm{M}(1)-\mathrm{N}\left(45^{\mathrm{i}}\right)$ | $91.2(2)$ | $91.3(2)$ |
| $\mathrm{O}(51)-\mathrm{M}(1)-\mathrm{O}(53)$ | $58.4(2)$ | $59.5(2)$ | $\mathrm{O}(51)-\mathrm{M}(1)-\mathrm{N}(31)$ | $100.8(2)$ | $100.1(2)$ |
| $\mathrm{O}(51)-\mathrm{M}(1)-\mathrm{N}(41)$ | $91.5(2)$ | $90.9(2)$ | $\mathrm{O}(51)-\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{ii}}\right)$ | $159.4(2)$ | $159.1(2)$ |
| $\mathrm{O}(53)-\mathrm{M}(1)-\mathrm{N}(41)$ | $89.2(2)$ | $89.0(2)$ | $\mathrm{O}(53)-\mathrm{M}(1)-\mathrm{N}\left(35^{\mathrm{ii}}\right)$ | $101.1(2)$ | $99.6(2)$ |
| $\mathrm{O}(53)-\mathrm{M}(1)-\mathrm{N}\left(45^{\mathrm{i}}\right)$ | $89.9(2)$ | $88.3(2)$ | $\mathrm{O}(53)-\mathrm{M}(1)-\mathrm{N}(31)$ | $159.1(2)$ | $159.6(2)$ |

Symmetry transformations: (i) 1-x, y-1/2, $1 / 2-\mathrm{z}$; (ii) $\mathrm{x}+1, \mathrm{y}, \mathrm{z}$.

5.3.2 $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$

Crystallographic data are summarised in Table 5.1 (see page 221). Table 5.3 contains selected interatomic distances and angles (see page 233). The compound $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ crystallizes in the chiral orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. While the crystal chosen for X-ray crystallographic analysis was homochiral, the individual components are achiral, and it is thus expected that the bulk sample is a racemic mixture of chirally pure crystals. The structure consists of linear 1D 2-fold helical anionic chains of $\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ and associated $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations (Figure 5.13). The coordination environment of each cobalt(II) atom is distorted tetrahedral, consisting of two nitrile nitrogens of two symmetry related $\mu_{1,5}$-dca ligands $\left(\mathrm{Co}(1)-\mathrm{N}(1)=2.001(8) \AA, \mathrm{Co}(1)-\mathrm{N}\left(5^{\mathrm{j}}\right)=2.02(1) \AA\right)$ and two terminal bromide ions $(\mathrm{Co}(1)-\mathrm{Br}(1)=2.403(2) \AA$, and the significantly shorter $\mathrm{Co}(1)-\operatorname{Br}(2)=2.315(2) \AA)$. As a comparison, the mononuclear tetrahedral complexes, $\left[\mathrm{Co}\left(2,4-\mathrm{Me}_{2} \mathrm{Py}\right)_{2} \mathrm{Br}_{2}\right]^{68}$ and $\left[\mathrm{Co}(2-\mathrm{BrPy})_{2} \mathrm{Br}_{2}\right],{ }^{69}$ where $2,4-\mathrm{Me}_{2} \mathrm{Py}=2,3$-dimethylpyridine; 2- $\mathrm{BrPy}=2$-bromopyridine, have average bond lengths of $\mathrm{Co}-\mathrm{N}=2.045,2.050 \AA$ and $\mathrm{Co}-\mathrm{Br}=2.394,2.3986 \AA$ respectively.

The amide nitrogen of the dca ligand was found to be disordered over two positions ($\mathrm{N}(3 \mathrm{~A})$ and $\mathrm{N}(3 \mathrm{~B})$). The chains, which are left handed helices, run parallel to the b-axis direction (Figure 5.14). The helical chains and cations pack in layers parallel to the $a b$-plane, such that in the c-axis direction layers of chains alternate with cation layers (Figure 5.15).

Figure 5.13 The crystal structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ with atom labelling scheme, also showing the disordered dca amide nitrogen (thermal ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity).

Figure 5.14 View along the b-axis direction showing the left-handed helical $\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]^{-}$ chains in the structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ (only one of the dca amide nitrogen positions is shown for clarity).

Recently Miller and co workers reported a helical cationic dicyanamide complex, $\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{BiIm}\right)_{2}\right] \mathrm{Cl}$, where $\mathrm{H}_{2} \mathrm{BiIm}=2,2^{\prime}$-biimidazole. ${ }^{70}$ The structure of this complex consists of octahedral C^{12} centres with a N_{6} coordination environment containing two imidazole nitrogens of two $\mathrm{H}_{2} \mathrm{Bilm}$ ligands in the equatorial plane and two nitrile nitrogens of two $\mu_{1,5}$-dca ligands. Thus infinite (2-fold) helical chains are formed.

The shortest Co \cdots Co distance is found between chains in the layers in the $a b$-plane and is equal to the a-axis unit cell length, $7.3136(1) \AA$. The intra-chain Co \cdots Co distance is significantly longer, at $8.333(2) \AA$. The layers of chains are quite well separated - the shortest $\mathrm{Co} \cdots$ Co distance between layers is $11.708(2) \AA$.

Once again, the layers of $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations are involved in multiple phenyl embraces. Each cation is engaged in 'orthogonal four-fold phenyl embraces' (O4PE) with its neighbours parallel to the a-axis direction (perpendicular to the direction of the anionic chains). Thus, 'linear infinite chains of translational four-fold phenyl embraces' (LIT4PE) in this direction are created ($\mathrm{P} \cdots \mathrm{P}$ is equal to the unit cell length $a, 7.3136(1) \AA$, $\mathrm{CH} \cdots$ centroid $=3.089,3.293,3.420$ and $3.432 \AA$). These chains are cross-linked by further $\mathrm{CH} \cdots \pi$ interactions to form corrugated 2 D sheets of cations in the $a b$-plane (Figure 5.16), with two different inter-chain separations ($\mathrm{P} \cdots \mathrm{P}=8.905(4) \AA$ and $\mathrm{CH} \cdots$ centroid $=2.983 \AA$; $\mathrm{P} \cdots \mathrm{P}=9.376(4) \AA$ and $\mathrm{CH} \cdots$ centroid $=3.293 \AA$). There are also a number of weak supramolecular interactions between the cations and the anionic chains. The most significant of these are $\mathrm{H} \cdots \mathrm{N}$ contacts with the disordered dca amide nitrogen of $2.751 \AA$ $\left(\mathrm{C}-\mathrm{H} \cdots \mathrm{N}=144.5^{\circ}\right)$ and $2.805 \AA\left(135.9^{\circ}\right)$; and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ contacts of $2.957 \AA(\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}=$ 129.6°) and $3.005 \AA\left(136.2^{\circ}\right)$.

Figure 5.15 Packing diagram of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ viewed parallel to the a-axis showing the alternating layers of $\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]^{-}$chains (blue) and $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations (red).

Figure 5.16 Three columns in a single corrugated sheet of $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations in the structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ showing edge-to-face $\mathrm{CH} \cdots \pi$ interactions. Some of the LIT4PE interactions are shown as dashed purple. The two different cross-linking $\mathrm{CH} \cdots \pi$ are shown in dashed red and dashed light blue. The corrugated nature of the sheets can also be seen clearly in Figure 5.15.
$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ is the first air-stable structurally characterised tetrahedral cobait complex containing dca ligands. The binary complex, $\beta-\left[\mathrm{Co}(\mathrm{dca})_{2}\right]$, which consists of tetrahedral $\mathrm{Co}^{\text {II }}$ atoms bridged by $\mu_{\mathrm{l}, 5}$-dca ligands into 2D square grid $(4,4)$ sheets, undergoes a phase transition in air to form the octahedral rutile-like phase, α - $\left[\mathrm{Co}(\mathrm{dca})_{2}\right] . \beta$ $\left[\mathrm{Co}(\mathrm{dca})_{2}\right]$ is a spin-canted antiferromagnet below a T_{N} of $9 \mathrm{~K} .{ }^{6}$ This structural isomer of the rutile-like phase, first reported by Köhler et al. ${ }^{7}$ but without detailed magnetism or structural data, was studied as part of the candidate's Honours degree and published by

Jensen et al. with accompanying magnetic data and the crystal structure of the isostructural complexes, $\beta-\left[\mathrm{Zn}(\mathrm{dca})_{2}\right]$ and the doped $\beta-\left[\mathrm{Co} / \mathrm{Zn}(\mathrm{dca})_{2}\right] .{ }^{6}$

Table 5.3 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$.

$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.001(8)$	$\mathrm{Co}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right)$	$2.02(1)$
$\mathrm{Co}(1)-\mathrm{Br}(1)$	$2.403(2)$	$\mathrm{Co}(1)-\mathrm{Br}(2)$	$2.315(2)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}\left(5^{\mathrm{i}}\right)$	$102.4(4)$	$\mathrm{Br}(1)-\mathrm{Co}(1)-\mathrm{Br}(2)$	$111.27(8)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Br}(1)$	$114.4(3)$	$\mathrm{N}\left(5^{\mathrm{i}}\right)-\mathrm{Co}(1)-\mathrm{Br}(1)$	$103.5(2)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Br}(2)$	$109.9(3)$	$\mathrm{N}\left(5^{\mathrm{i}}\right)-\mathrm{Co}(1)-\mathrm{Br}(2)$	$115.1(3)$

Symmetry transformation: (i) $-\mathrm{x}, \mathrm{y}-1 / 2,-z+3 / 2$.

5.4 Magnetism

5.4.1 $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni

The temperature dependence of $\mu_{\text {eff }}$, per Ni , for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ is shown in Figure 5.17. The sample had to be dispersed in a Nujol mull to prevent orientation of crystallites and consequent anomalies in the data such as a maximum in μ_{eff} at $\sim 20 \mathrm{~K}$. These orientation effects are not common in octahedral nickel(II) samples but more so in $\mathrm{Mn}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{II}}$ or $\mathrm{Fe}^{\mathrm{II}}$ systems whose T ground states display large magnetic anisotropy (i.e. $\mu_{\|} \neq \mu_{\perp}$). ${ }^{71}$ The observed data are typical of octahedral Ni^{11} compounds, μ_{ef} at 300 K being $3.2 \mu_{\mathrm{B}}$ because of spin-orbit coupling to the ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ single-ion ground states. The gradual, small decrease in μ_{eff}, between $300-20 \mathrm{~K}$, is indicative of very weak antiferromagnetic coupling occurring. The rapid decrease down to $2.39 \mu_{\mathrm{B}}$, below 20 K , is due to this weak coupling combined with zero-field splitting effects. The data were fitted
to a $S=1$ Heisenberg chain model with best-fit parameter values of $g=2.23$ and $J=-0.18$ cm^{-1}. Zero-field splitting was assumed to be zero. The very small value of J is typical of $\mu_{1,5}$-dca bridging. Interestingly, this complex shows only traces of a long-range ordered material in low fields ($\sim 5 \mathrm{Oe}$), at 21 K , compared to cases of $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{Ni}(\mathrm{dca})_{3}\right]$ (where $\mathrm{E}=\mathrm{P}$ or As) for which great efforts were made to distinguish intrinsic magnetic order from that due to traces of $\alpha-\left[\mathrm{Ni}(\mathrm{dca})_{2}\right]$. The presence of long-range order would appear to be due to traces of $\alpha-\left[\mathrm{Ni}(\mathrm{dca})_{2}\right]$ in the present sample.

Figure 5.17 Plot of magnetic moment, μ_{eff}, versus temperature, T, for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ (dispersed as a Nujol mull), applied field, $H=1 \mathrm{~T}$. The solid line is the best-fit curve to a $S=1$ Heisenberg chain model (see text).

The $\mathrm{Co}^{\text {II }}$ analogue, $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ also presented some magnetic anomalies in very low applied fields. In a 'normal' field of 1 T (Figure 5.18) the $\mu_{\text {eff }}$ versus T plot is typical of those displayed by octahedral $\mathrm{Co}^{\mathrm{II}}$ species. The decrease in μ_{eff} from $4.95 \mu_{\mathrm{B}}$ at 300 K , first gradually then more rapidly, to reach an inflection at $4.05 \mu_{\mathrm{B}}$ at 5 K
and a value of $3.55 \mu_{\mathrm{B}}$ at 2 K , is due to an orbitally degenerate ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ state being split by lowsymmetry ligand-fields and spin-orbit coupling. The plot is very similar to that of $\mathrm{Ph}_{4} \mathrm{As}\left[\mathrm{Co}(\mathrm{dca})_{3}\right]^{51}$

Figure 5.18 Plot of magnetic moment, μ_{cff}, versus temperature, T, for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ in an applied field of $H=1 \mathrm{~T}$.

In low fields (Figure 5.19) there is a sharp increase in μ_{eff} at $\approx 9.0 \mathrm{~K}$ which is tentatively assigned to traces of $\alpha-\left[\mathrm{Co}(\mathrm{dca})_{2}\right] .{ }^{\prime}$ However, the M / H hysteresis plot, measured at 2 K , (Figure 5.20) shows very small coercive field (50 Oe) and remnant magnetisation ($0.01 \mathrm{~N} \beta$) values and a shape typical of antiferromagnetic coupling (canted antiferromagnet) rather than a ferromagnetic increase at $H \approx 0$. 'Spiking' with $1 \% \alpha$ [Co(dca $)_{2}$] (Figure 5.21) gave a more conventional ferromagnetic increase ${ }^{1}$ in M superimposed on the plot of the neat sample. As in the case of $\mathrm{Ph}_{4} \mathrm{As}\left[\mathrm{Ni}(\mathrm{dca})_{3}\right],{ }^{51}$ it is hard to be definitive on the origin of this 9 K transition. A somewhat similar situation was reported for $\mathrm{Co}(\mathrm{dca})_{2}$ (pyrimidine) $\cdot \mathrm{EtOH}{ }^{72}$

Figure 5.19 Plots of magnetic moment, μ_{cff}, versus temperature, T, for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ in applied fields of $10000 \mathrm{Oe}, 1000 \mathrm{Oe}, 100 \mathrm{Oe}$ and 20 Oe. The solid line is not a fitted curve.

Figure 5.20 Hysteresis plot of M versus H for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$.

Figure 5.21 Hysteresis plot of M versus H for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}+1 \% \alpha$ $\left[\mathrm{Co}(\mathrm{dca})_{2}\right]$.

5.4.2 $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$

The magnetic moment versus temperature plot, shown in Figure 5.22, is typical of the behaviour of high-spin tetrahedral Co^{H} systems having ${ }^{4} \mathrm{~A}_{2}$ ground states. The magnetic moment at 300 K of $4.5 \mu_{\mathrm{B}}$ is raised from the spin-only value ($3.87 \mu_{\mathrm{B}}$) because of spinorbit coupling (spin-orbit constant λ negative; $\sim-170 \mathrm{~cm}^{-1}$) and ligand-field splitting (10 $\mathrm{Dq} ; \sim 3500 \mathrm{~cm}^{-1}$) effects combined with a second order Zeeman (temperature independent paramagnetism) term, as follows (Equation 5.1 and Equation 5.2). ${ }^{73}$

$$
\begin{gathered}
\chi\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)=\frac{15 N \beta^{2}}{3 k T}\left(1-\frac{4 \lambda}{10 D q}\right)^{2}+\frac{8 N \beta^{2}}{10 D q} \\
\mu\left(\mu_{B}\right)=\sqrt{15}\left(1-\frac{4 \lambda}{10 D q}\right)
\end{gathered}
$$

Figure 5.22 Plot of magnetic moment, $\mu_{\text {cff }}$, versus temperature, T, for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$. The solid line indicates the best-fit to the data (see text).

Curie-Weiss behaviour should therefore be obeyed (see Figure 1.1, page 7) and this is what is observed with $\theta=-0.35 \mathrm{~K}$, there being a sharp decrease in $\mu_{\text {eff }}$ only below 50 K. This decrease could be due to a combination of zero-field splitting (z.f.s.) of the singleion ${ }^{4} \mathrm{~A}_{2}$ state and very weak antiferromagnetic coupling. If it is assumed that z.f.s. is negligible, fitting to an $S=3 / 2$ Fisher chain model ${ }^{74}$ yields $g=2.3$ and $J=-0.25 \mathrm{~cm}^{-1}$. The increase in the effective g value from 2.0 essentially allows for the spin-orbit coupling effect in the same way as shown above in the equation for μ. Further detailed magnetisation isotherms and calculation of susceptibilities using the thermodynamic equation for χ (involving the field, $H)^{75}$ would be required to separate D and J contributions. Suffice it to say that exchange coupling via the $\mu_{1,5}$-dca bridges in this chain complex is, as usual, very weak.

5.5 Conclusion

The compounds $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$, where $\mathrm{M}^{\mathrm{II}}=\mathrm{Co}$ and Ni , possess interesting structures, which consist of alternating layers of anionic $\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right]^{-2 D}$ square grid $(4,4)$ sheets and $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations. The anionic $\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right]$ sheets have chelating nitrite ligands. The overall structures are similar to those of the $\mathrm{Ph}_{4} \mathrm{E}\left[\mathrm{M}(\mathrm{dca})_{3}\right]$ (E $=$ As or $\mathrm{P} ; \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ or Ni) series, with the exception that in the latter cases half of the links in the $(4,4)$ sheets are double $\mu_{1.5}$-dca bridges (Figure 5.2 , see page 214). Similarly, several weak $\mathrm{CH} \cdots \pi$ and $\pi \cdots \pi$ interactions are present within the layers of $\mathrm{Ph}_{4} \mathrm{P}^{+}$ cations. Additionally, these example are trat stranally characterised coordination polymers to contain both the dca and $\mathrm{NO}_{2}{ }^{-}$ligands.

The compound $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ possesses a chiral structure, which consists of linear anionic 1D helical chains of $\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]^{-}$that pack in layers, which in turn alternate with layers of $\mathrm{Ph}_{4} \mathrm{P}^{+}$cations. It is the first air-stable tetrahedral cobalt(II) dca network complex.

The magnetic properties of the $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}, \mathrm{M}^{11}=\mathrm{Co}$ and Ni , complexes are indicative of very weak antiferromagnetic exchange coupling occurring via $\mu_{1,5}$-dca bridges. Traces of $\alpha-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ are thought to be responsible for long-range ordering effects observed in low fields but this is not definitive in the Co^{11} case.
$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ displays very weak intra-chain antiferromagnetic coupling with no magnetic order.

5.6 Experimental

5.6.1 Synthesis of $\mathrm{Ph}_{4} \mathbf{P}(\mathrm{dca})$

Typical preparation: an aqueous snlution (30 mL) of $\mathrm{Na}(\mathrm{dca})(2.03 \mathrm{~g}, 23 \mathrm{mmol})$ was added to a hot aqueous solution (140 mL) of $\mathrm{Ph}_{4} \operatorname{PBr}(9.82 \mathrm{~g}, 23 \mathrm{mmol})$. The white precipitate of $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca})$ formed immediately. The mixture was left to cool in ice and the precipitate was collected by filtration and recrystallised from acetone (Yield $6.92 \mathrm{~g}, 74 \%$). IR (Nujol, cm^{-1}): $3485 \mathrm{w}, 3061 \mathrm{w}, 2227 \mathrm{~s}, 2188 \mathrm{~m}, 2130 \mathrm{~s}, 1584 \mathrm{~m}, 1482 \mathrm{~m}, 1438 \mathrm{~s}, 1306 \mathrm{~s}$, $1188 \mathrm{vw}, 1162 \mathrm{w}, 1106 \mathrm{~s}, 1027 \mathrm{vw}, 996 \mathrm{~m}, 932 \mathrm{vw}, 901 \mathrm{w}, 862 \mathrm{w}, 760 \mathrm{~m}, 753 \mathrm{~m}, 724 \mathrm{~m}, 692 \mathrm{~m}$.

5.6.2 Synthesis of $\mathrm{Ph}_{4} \mathbf{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$

A solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.146 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 5 mL of acetonitrile was added to a solution of $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca})(0.203 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{Ph}_{4} \mathrm{PBr}(0.210 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(0.017 \mathrm{~g}, 0.25 \mathrm{mmol})$ in a mixture of 20 mL of acetonitrile and $\sim 1 \mathrm{~mL}$ of water. The resulting bright blue solution was left to stand. After one day the blue colour of the solution had weakened and several large clusters of needle/rod-like purple crystals had formed. The mother liquor was decanted and the crystals were washed with acetonitrile (3 $\times 5 \mathrm{~mL}$) then collected by filtration (Yield $0.19 \mathrm{~g}, 60 \%$). IR (Nujol, cm^{-1}): $2308 \mathrm{~s}, 2255 \mathrm{~s}$, $2180 \mathrm{~s}, 1828 \mathrm{vw}, 1587 \mathrm{w}, 1484 \mathrm{~s}, 1456 \mathrm{~s}, 1436 \mathrm{~s}, 1352 \mathrm{~s}, 1309 \mathrm{w}, 1204 \mathrm{~m}, 1178 \mathrm{~m}, 1160 \mathrm{~m}$, $1026 \mathrm{w}, 996 \mathrm{~m}, 944 \mathrm{vw}, 924 \mathrm{vw}, 850 \mathrm{w}, 808 \mathrm{vw}, 756 \mathrm{~m}, 750 \mathrm{~m}, 724 \mathrm{~s}, 689 \mathrm{~s}, 648 \mathrm{w}, 616 \mathrm{w}$. Anal. (\%): Found: C, $57.5 ; \mathrm{H}, 3.6 ; \mathrm{N}, 18.2$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{CoN}_{8} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 57.7 ; \mathrm{H}, 3.7 ; \mathrm{N}, 18.0$. XRD: The diffractogram of the bulk proaluct matches that calculated from the crystal structure, with the exception of two peaks $\left(2 \theta=11.64^{\circ}\right.$ and $\left.14.66^{\circ}\right)$ that could not be indexed to either the title compound or $\alpha-\left[\mathrm{Co}(\mathrm{d} a)_{3}\right], \mathrm{Ph} 4 \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{3}\right]$ or $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Co}(\mathrm{dca})_{4}\right]$.

Crystals suitable for X-ray diffraction analysis were grown from the following reaction. A solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.146 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 5 mL of acetonitrile was
added to a solution of $\mathrm{Ph}_{4} \mathrm{PBr}(0.630 \mathrm{~g}, 1.5 \mathrm{mmol}), \mathrm{Na}(\mathrm{dca})(0.089 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(0.035 \mathrm{~g}, 0.5 \mathrm{mmol})$ in a mixture of 15 mL of acetonitrile and 10 mL of ethanol. The resulting bright blue solution was left to stand. After one day the blue colour of the solution had weakened and several large clusters of rod-like purple/pink crystals had formed. In addition many small colourless crystals had formed, some of which were embedded within the aforementioned clusters. A rod-like crystal suitable for X-ray diffraction analysis was cut from one of the clusters. An infrared spectrum was measured of a portion of one cluster. IR (Nujol, cm^{-1}): $3624 \mathrm{vw}, 3558 \mathrm{vw}, 3093 \mathrm{vw}, 3068 \mathrm{vw}, 2309 \mathrm{~s}$, $2254 \mathrm{~s}, 2180 \mathrm{~s}, 1906 \mathrm{vw}, 1825 \mathrm{vw}, 1778 \mathrm{vw}, 1587 \mathrm{~m}, 1496 \mathrm{~m}, 1484 \mathrm{~m}, 1439 \mathrm{~s}, 1352 \mathrm{~s}, 1315 \mathrm{vw}$, $1293 \mathrm{vw}, 1204 \mathrm{~m}, 1177 \mathrm{~m}, 1160 \mathrm{~m}, 1111 \mathrm{~s}, 1026 \mathrm{w}, 996 \mathrm{~m}, 923 \mathrm{w}, 852 \mathrm{w}, 751 \mathrm{~m}, 725 \mathrm{~s}, 690 \mathrm{~s}$, $648 \mathrm{vw}, 616 \mathrm{vw}$.

5.6.3 Synthesis of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$

A solution of $\mathrm{Ph}_{4} \mathrm{PBr}(0.230 \mathrm{~g}, 0.55 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(0.017 \mathrm{~g}, 0.25 \mathrm{mmol})$ in acetonitrile (10 mL) and water (1 mL) to an acetonitrile solution (10 mL) of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.073 \mathrm{~g}, 0.25 \mathrm{mmol})$. This was left to stand for a minute then an acetonitrile solution (10 mL) of $\mathrm{Ph}_{4} \mathrm{P}(\mathrm{dca})(0.203 \mathrm{~g}, 0.50 \mathrm{mmol})$ was added. After a few minutes a small amount of fine pale green precipitate had formed in the pale green solution. After one day several clusters of light green crystals had formed. The comparatively small amount of fine precipitate was removed from these crystals by successive washings with acetonitrile. The crystals were collected by filtration (Yield 70 $\mathrm{mg}, 44 \%$). IR (Nujol, cm^{-1}): $3632 \mathrm{vw}, 3604 \mathrm{vw}, 3114 \mathrm{vw}, 2309 \mathrm{~s}, 2261 \mathrm{~s}, 2187 \mathrm{~s}, 1654 \mathrm{vw}$, 1587w, 1485m, 1438s, 1352s, 1316w, 1280w, 1212s, 1180w, 1162w, 1111s, 1026w, $996 \mathrm{~m}, 920 \mathrm{vw}, 860 \mathrm{w}, 806 \mathrm{vw}, 757 \mathrm{~m}, 751 \mathrm{~m}, 724 \mathrm{~s}, 689 \mathrm{~s}, 642 \mathrm{vw}$. Anal. (\%): Found: C, 58.0 ; $\mathrm{H}, 3.8 ; \mathrm{N}$, 18.3. Calc. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NiN}_{8} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 58.4 ; \mathrm{H}, 3.8 ; \mathrm{N}, 18.2$. XRD: The diffractogram of the bulk product matches that calculated from the crystal structure, with
the exception of two peaks $\left(2 \theta=11.20^{\circ}\right.$ and $\left.18.19^{\circ}\right)$ that could not be indexed to either the title compound or $\alpha-\left[\mathrm{Ni}(\mathrm{dca})_{2}\right], \mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{3}\right]$ or $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Ni}(\mathrm{dca})_{4}\right]$.

5.6.4 Synthesis of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$

A solution of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{CoBr}_{4}(0.640 \mathrm{~g}, 1.0 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ was added to a solution of $\mathrm{Ph}_{4} \mathrm{Pdca}(0.406 \mathrm{~g}, 1.0 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$. A colour change occurred instantly to a darker blue colour than the original cobalt solution. The solution was left to slowly evaporate. After approximately two weeks the solution had reduced to about 1 mL . Several large clusters of deep blue rod-like crystals had formed. These were collected, quickly washed with acetonitrile and dried in air (Yield $0.21 \mathrm{~g}, 33 \%$). IR (Nujol, cm^{-1}): 2263m, 2218s, 2184s, 1586w, 1483m, 1496s, 1413m, 1313w, 1187vw, 1166vw, $1109 \mathrm{~s}, 1028 \mathrm{vw}, 996 \mathrm{~m}, 937 \mathrm{vw}, 928 \mathrm{vw}, 850 \mathrm{vw}, 763 \mathrm{~m}, 752 \mathrm{~m}, 723 \mathrm{~s}, 690 \mathrm{~s}$. Anal. (\%): Found: C, 50.2; H, 3.3; N, 6.8. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{CoN}_{3} \mathrm{P}: \mathrm{C}, 50.0 ; \mathrm{H}, 3.2 ; \mathrm{N}, 6.7$. XRD: The diffractogram of the bulk product matches that calculated from the crystal structure.

A single blue rectangular crystal for an X-ray diffraction experiment was chosen from a reaction that produced $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ as the major product. This reaction was conducted as follows. A solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.146 \mathrm{~g}, 0.5 \mathrm{mmol})$ in n $\mathrm{PrOH}(10 \mathrm{~mL})$ was added to a solution of $\mathrm{Ph}_{4} \mathrm{PBr}(0.630 \mathrm{~g}, 1.5 \mathrm{mmol}), \mathrm{Na}(\mathrm{dca})(0.089 \mathrm{~g}$, $1.0 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(0.035 \mathrm{~g}, 0.5 \mathrm{mmol})$ in a solvent mixture comprising $35 \mathrm{~mL} n$ $\mathrm{PrOH}, 5 \mathrm{~mL} \mathrm{EtOH}$ and 3 mL MeCN . Immediately on addition the resultant solution became deep blue in colour. After about three hours several clusters of purple-pink crystals of $\left.\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dc})_{2}\right)_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ had formed. After several more hours additional small clusters of fine blue rod-like crystals had formed. The crystal employed in crystallographic studies was cut from one of these clusters.

5.6.5 X-Ray Crystallography

Data were collected using a Nonius KappaCCD diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Integration was carried out by the program DENZO-SMN, ${ }^{76}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{76}$ Solutions were obtained by direct methods (SHELXS 97) ${ }^{77}$ followed by successive Fourier difference methods, and refined by full matrix least squares on $F_{\text {obs }}{ }^{2}$ (SHELXL 97) ${ }^{77}$ with the aid of the graphical interface program X-SEED. ${ }^{78}$ All non-hydrogen atoms were refined anisotropically (unless otherwise stated). Phenyl hydrogen atoms were assigned to calculated positions with isotropic thermal parameters fixed at 1.2 times $U_{\text {eq }}$ of the adjoining carbon atom.

The crystal of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ was face indexed and numerical absorption corrections were applied using the XPREP program. ${ }^{79}$ The structure of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{CO}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ was refined as a racemic twin with a BASF^{80} (twin component) parameter that refined freely to 0.49 . There was a residual electron peak of $0.89 \mathrm{e}^{-3}$, at $1.05 \AA$ from the nitrite nitrogen, indicating the presence of very little NO_{3}^{-} (but perhaps some). Thus, the crystal analysed and therefore the bulk sample may be doped with a very small amount of nitrate. It can be noted that the unit cell length c is approximately $0.4 \AA$ longer for the nitrate complex, which corresponds to the direction of the uncoordinated nitrate oxygen.

The structure refinement for $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ was of a lesser quality than that of the Co structure. The thermal parameters of the dca ligands were less than ideal, consequently $\mathrm{C}(34)$ was refined isotropically to prevent it becoming non-positive definite. Like the Co structure, there was the presence of racemic twinning, but the twin component refined to 0.73 . Similarly, there was a residual electron peak of $1.05 \mathrm{e}^{-3}$ at $1.12 \AA$ from the nitrite nitrogen, indicating perhaps a small amount of nitrate doping.

For $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca}) \mathrm{Br}_{2}\right]$ no numerical absorption corrections were applied. The central amide nitrogen of the dicyanamide ligand was found to be disordered over two positions, modelled as two atoms with site occupancies fixed at 0.5 each, and refined isotropically. The absolute structure was assigned on the basis of the Flack parameter ${ }^{80,81}$ of $0.08(3)$.

5.6.6 Magnetic Measurements

The instrumentation (Quantum Design MPMS 5) DC magnetisation protocols have been described previously. ${ }^{3}$ Crystals of $\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{MeCN}$ were dispersed in a Nujol mull to prevent orientation effects. Dr. B. Moubaraki kindly carried out these magnetic studies.

5.6.7 Powder X-Ray Diffraction

Powder X-ray diffraction data were collected by Mr. Rod Mackie (School of Physics and Materials Engineering, Monash University, Clayton) on a Scintag Automated Powder Diffractometer using a $\mathrm{Cu}-\mathrm{K} \alpha$ monochromatic radiation source $(\lambda=154.059 \mathrm{pm})$, a solid state $G e$ detector, 2 mm divergence slit and a 3 mm receiving slit at room temperature. The programs Crystal Diffract ${ }^{82}$ and Unit Celf ${ }^{83}$ were used by Dr. Stuart Batten (School of Chemistry, Monash University, Clayton) to confirm that the single crystals were representative of the bulk samples.

5.7 References

1. S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and R. Robson, Chem. Commun., 1998, 439.
2. M. Kurmoo and C. J. Kepert, New J. Chem., 1998, 22, 1515.
3. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
4. J. L. Manson, C. R. Kmety, Q.-z. Huang, J. W. Lynn, G. M. Bendele, S. Pagola, P. W. Stephens, L. M. Liable-Sands, A. L. Rheingold, A. J. Epstein, and J. S. Miller, Chem. Mater., 1998, 10, 2552.
5. J. L. Manson, C. R. Kmety, A. J. Epstein, and J. S. Miller, Inorg. Chem., 1999, 38, 2552.
6. P. Jensen, S. R. Batten, G. D. Fallon, B. Moubaraki, K. S. Murray, and D. J. Price, Chem. Commun., 1999, 177.
7. H. Köhler, Z. Anorg. Allg. Chem., 1964, 331, 237.
8. J. Mrozinski, J. Kohout, M. Hvastijová, and H. Köhler, Transition Met. Chem., 1986, 11, 481.
9. J. L. Manson, C. D. Incarvito, A. L. Rheingold, and J. S. Miller, J. Chem. Soc., Dalton Trans., 1998, 3705.
10. P. Jensen, S. R. Batten, G. D. Fallon, D. C. R. Hockless, B. Moubaraki, K. S. Murray, and R. Robson, J. Solid State Chem., 1999, 145, 387.
11. J. L. Manson, A. M. Arif, and J. S. Miller, J. Mater. Chem., 1999, 9, 979.
12. J. L. Manson, A. M. Arif, C. D. Incarvito, L. M. Liable-Sands, A. L. Rheingold, and J. S. Miller, J. Solid State Chem., 1999, 145, 369.
13. S. R. Batten, A. R. Harris, P. Jensen, K. S. Murray, and A. Ziebell, J. Chem. Soc., Dalton Trans., 2000, 3829.
14. I. Dasna, S. Golhen, L. Ouahab, M. Fettouhi, O. Pena, N. Daro, and J.-P. Sutter, Inorg. Chim. Acta., 2001, 326, 37.
15. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Solid State Chem., 2001, 159, 352.
16. J. Carranza, C. Brennan, J. Sletten, F. Lloret, and M. Julve, J. Chem. Soc., Dalton Trans., 2002, 3164.
17. A. M. Kutasi, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 819.
18. A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, Inorg. Chim. Acta., 2002, 340, 163.
19. P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 3712.
20. A. M. Kutasi, S. R. Batten, A. R. Harris, B. Moubaraki, and K. S. Murray, CrystEngComm, 2002, 4, 202.
21. J.-H. Luo, M.-C. Hong, R. Cao, Y.-C. Liang, Y.-J. Zhao, R.-H. Wang, and J.-B. Weng, Polyhedron, 2002, 21, 893.
22. S. R. Marshall, A. L. Rheingold, L. N. Dawe, W. W. Shum, C. Kitamura, and J. S. Miller, Inorg. Chem., 2002, 41, 3599.
23. Z.-M. Wang, B.-W. Sun, J. Luo, S. Gao, C.-S. Liao, C.-H. Yan, and Y. Li, Inorg. Chim. Acta., 2002, 332, 127.
24. W.-F. Yeung, S. Gao, W.-T. Wong, and T.-C. Lau, New J. Chem., 2002, 26, 523.
25. B. Vangdal, J. Carranza, F. Lloret, M. Julve, and J. Sletten, J. Chem. Soc., Dalton Trans., 2002, 566.
26. J. L. Manson, Q.-z. Huang, J. W. Lynn, H.-J. Koo, M.-H. Whangbo, R. Bateman, T. Otsuka, N. Wada, D. N. Argyriou, and J. S. Miller, J. Am. Chem. Soc., 2001, 123, 162.
27. A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, Inorg. Chem., 2000, 39, 1668.
28. B.-W. Sun, S. Gao, B.-Q. Ma, and Z.-M. Wang, Inorg. Chem. Commun., 2001, 4, 72.
29. P. Jensen, D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Eur. J., 2000, 6, 3186.
30. M. Verdaguer, A. Bleuzen, C. Train, R. Garde, F. F. De Biani, and C. Desplanches, Phil. Trans. R. Soc. London A, 1999, 357, 2959.
31. M. Ohba and H. Okawa, Coord. Chem. Rev., 2000, 198, 313.
32. J. S. Miller and J. L. Manson, Acc. Chem. Res., 2001, 34, 563.
33. H. Okawa and M. Ohba, Bull. Chem. Soc. Jpn., 2002, 75, 1191.
34. K. R. Dunbar and R. A. Heintz, Progr. Inorg. Chem., 1997, 45, 283.
35. M. A. Hitchman and G. L. Rowbottom, Coord. Chem. Rev., 1982, 42, 55.
36. F. J. Llewellyn and J. M. Waters, J. Chem. Soc., 1962, 3845.
37. A. Meyer, A. Gleizes, J. J. Girerd, M. Verdaguer, and O. Kahn, Inorg. Chem., 1982, 21, 1729.
38. M. G. B. Drew, D. M. L. Goodgame, M. A. Hitchman, and D. Rogers, Chem. Commun., 1965, 477.
39. A. Gleizes, A. Meyer, M. A. Hitchman, and O. Kahn, Inorg. Chem., 1982, 21, 2257.
40. T. M. Brill, J. P. Boucher, L. C. Brunel, J. P. Renard, and M. Verdaguer, Physica $B, 1995,204,303$.
41. T. M. Brill, J. P. Boucher, L. C. Brunel, J. P. Renard, and M. Verdaguer, J. Magn. Magn. Mater., 1995, 140-144, 1655.
42. J. P. Renard, V. Gadet, L. P. Regnault, and M. Verdaguer, J. Magn. Magn. Mater., 1990, 90-91, 213.
43. J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkelens, J. Rossat-Mignod, J. Ribas, W. G. Stirling, and C. Vettier, J. Appl. Phys., 1988, 63, 3538.
44. J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkelens, J. Rossat-Mignod, and W. G. Stirling, NATO ASI Ser., Ser. B, 1987, 168, 449.
45. J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkelens, J. Rossat-Mignod, and W. G. Stirling, Europhys. Lett., 1987, 3, 945.
46. H. Köhler and B. Seifert, Z. Anorg. Allg. Chem., 1966, 344, 63.
47. H. Köhler, H. Hartung, and A. M. Golub, Z. Anorg. Allg. Chem., 1974, 403, 41.
48. H. Köhler, H. Hartung, and A. M. Golub, Z. Anorg. Allg. Chem., 1973, 403, 41.
49. H. Köhler, T. P. Lischko, H. Hartung, and A. M. Golub, Z. Anorg. Allg. Chem., 1973, 403, 35.
50. S. R. Batten and K. S. Murray, Aust. J. Chem., 2001, 54, 605.
51. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and E. H. K. Tan, Polyhedron, 2001, 20, 1129.
52. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Inorg. Chem., 2001, 40, 1718.
53. J. W. Raebiger, J. L. Manson, R. D. Sommer, U. Geiser, A. L. Rheingold, and J. S. Miller, Inorg. Chem., 2001, 40, 2578.
54. S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, Chem. Commun., 2000, 2331.
55. A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. L. Stupka, D. Jung, and M. H. Whangbo, Inorg. Chem., 1990, 29, 2555.
56. J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, J. M. Kommers, S. J. Boryschuk, A. V. S. Crouch, W. K. Kwok, J. E. Schirber, D. L. Overmyer, D. Jung, and M. H. Whangbo, Inorg. Chem., 1990, 29, 3272.
57. H. H. Wang, A. M. Kini, L. K. Montgomery, U. Geiser, K. D. Carlson, J. M. Williams, J. E. Thompson, D. M. Watkins, W. K. Kwok, U. Welp, and K. G. Vandervoort, Chem. Mater., 1990, 2, 482.
58. U. Geiser, A. M. Kini, H. H. Wang, M. A. Beno, and J. M. Williams, Acta Crystallogr., Sect. C, 1991, 47, 190.
59. A. Umezawa, S. K. Malik, G. W. Crabtree, H. H. Wang, L. K. Montgomery, K. D. Carlson, and J. M. Williams, Physica C, 1991, 185-189, 2665.
60. T. Nakamura, T. Komatsu, G. Saito, T. Osada, S. Kagoshima, N. Miura, K. Kato, Y. Maruyama, and K. Oshima, J. Phys. Soc. Jpn., 1993, 62, 4373.
61. T. Komatsu, H. Sato, T. Nakamura, N. Matsukawa, H. Yamochi, G. Saito, M. Kusunoki, K.-i. Sakaguchi, and S. Kagoshima, Bull. Chem. Soc. Jpn., 1995, 68, 2233.
62. G. Saito, H. Yamochi, T. Nakamura, 'T. Komatsu, M. Nakashima, H. Mori, and K. Oshima, Physica B, 1991, 169, 372.
63. S. R. Batten, A. R. Harris, B. Moubaraki, and K. S. Murray, unpublished results.
64. M. I. Kay and B. C. Frazer, Acta Crystallogr., Sect. B, 1961, 14, 56.
65. G. B. Carpenter, Acta Crystallogr., Sect. B, 1955, 8, 852.
66. Y.-M. Lee, M.-J. Oh, S.-N. Choi, l.-H. Suh, J.-H. Lee, and J.-R. Park, Bull. Korean Chem. Soc., 1998, 19, 1382.
67. M. Scudder and I. Dance, J. Chem. Soc., Dalton Trans., 1998, 3155.
68. J. Kansikas, M. Leskela, G. Kenessey, T. Wadsten, and G. Liptay, Acto Chem. Scand., 1996, 50, 267.
69. L. Hiltunen, L. Niinisto, G. Kenessey, G. M. Keseru, and G. Liptay, Acta Chem. Scand., 1994, 48, 456.
70. S. R. Marshall, C. D. Incarvito, W. W. Shum, A. Rheingold, and J. S. Miller, Chem. Commun., 2002, 3006.
71. B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1552.
72. T. Kusaka, T. Ishida, D. Hashizume, F. Iwasaki, and T. Nogami, Chem. Lett., 2000, 1146.
73. F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal Complexes Chapman and Hall, London, 1973.
74. M. E. Fisher, Am. J. Phys., 1964, 32, 3: 73.
75. K. S. Murray, Adv. Inorg. Chem., 1995, 43, 261.
76. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
77. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
78. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
79. XPREP version 5.03, Siemens Analytical X-ray Insi uments Inc., Madison, Wisconsin, USA, 1994.
80. G. M. Sheldrick, 'SHELX-97 Manual', 1997.
81. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876.
82. D. C. Palmer, Crystal Diffract 2.1.0; Crystal Maker Software, Bicester, UK, 1999.
83. T. J. B. Holland and S. A. T. Redfern, Mineral. Mag., 1997, 61, 65.

CHAPTER 6: SYNTHESIS, STRUCTURE AND
MAGNETISM OF
$\left\{\left(\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right) \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ AND THE
FACILITATION OF LONG-RANGE MAGNETIC
ORDER THROUGH HYDROGEN BONDING

6.1 Introduction

Studies of covalent ligand bridging in extended network coordination polymers and how this influences magnetic coupling and long-range order have increased enormously in recent years. The bridging groups $\mathrm{CN}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{RCO}_{2}{ }^{-1-6}$ and poly-cyano ligands such as $\mathrm{N}(\mathrm{CN})_{2}{ }^{-7.9}$ have received most attention. Less well studied, however, is magnetic order occurring via hydrogen bonding pathways, but this is a growing field within supramolecular magnetochemistry and a number of examples have been discovered recently. ${ }^{10-13}$ Generally, the J values and T_{c} (or T_{N}) values in such systems are very low with the ordering temperatures less than 10 K . However, a T_{c} value of 23 K was observed members of the Murray group at Monash in a heterobimetallic $\mathrm{Ni}_{3} \mathrm{Fe}_{2}$ cluster system in which well ordered hydrogen bonded $\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}$ arrays join the clusters. ${ }^{14}$

Described in this chapter is a new polymeric carboxylate-bridged complex, $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, which displays long-range antiferromagnetic order ($T_{\mathrm{N}}=6.1 \mathrm{~K}$) facilitated by hydrogen bonding, together with a field induced metamagnetic transition. In contrast, the desolvated material, $\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right]_{n}$, does not order magnetically. The solvated complex was discovered during attempts to link Mn_{3} and Mn_{4} carboxylate cluster complexes with pseudohalide and pseudochalcogenide ligands, in this case dicyanonitrosomethanide $\left(\mathrm{ONC}(\mathrm{CN})_{2}{ }^{*}\right.$, dcnm), to form extended networks of clusters. The denm group was not contained in the product. Similar work, described in Chapter 6, with dicyanamide (dca, $\mathrm{N}(\mathrm{CN})_{2}$) recently led to the sinultaneous discovery of a large manganese(III/IV) carboxylate-alkoxo cluster, $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ $\cdot 6 \mathrm{H}_{2} \mathrm{O}$, which is a new example of a single molecule magnet (SMM), and a linear chain $\mathrm{Mn}^{\text {III }}$ complex $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n \cdot}{ }^{15}$ Again, the $\mathrm{N}(\mathrm{CN})_{2}{ }^{-}$ligand was not present in these products.

During the writing of this thesis, and while a paper presenting these results was in press, the preparation, structure and magnetism of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ was reported by Christou et al. ${ }^{16}$ However, the reported magnetic studies were not as detailed as those presented here.

6.2 Synthesis and Characterisation of

$\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAC})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$

Reaction of $n-\mathrm{Bu}_{4} \mathrm{NMnO}_{4}$ with a solution of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(\sim 1: 5$ molar ratio $)$ in acetonitrile/ethanol/glacial acetic acid gave a dark brown solution. After several months of slow evaporation the solution had become colourless and red-orange needles of $\{[\mathrm{Mn}(\mu-$ $\left.\left.\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ were formed. Interestingly, Christou and co-workers ${ }^{16}$ synthesised $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ by reaction of KMnO_{4} with $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in methanol/acetic acid, obtaining a product with no $\mu-\mathrm{OMe}^{-}$groups, which might be expected given the reaction conditions. In Chapter 8, $[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-$ $\left.\mathrm{OAc})_{2}\right]_{n}$ is described, which is synthesised from a methanol/acetic acid mixture using reagents similar to those used by Christou and co-workers to synthesise the complex presented here.

The infrared spectrum of the red-orange crystals shows $v(\mathrm{OH})$ at $3326 \mathrm{~cm}^{-1}$. This peak is relatively sharp due to the presence of hydrogen bonding of both the $\mu-\mathrm{OH}^{-}$and the lattice water. An absorption at $1700 \mathrm{~cm}^{-1}$ is probably due to the $\delta(\mathrm{HOH})$ vibration of the lattice water, while a strong absorption at $1538 \mathrm{~cm}^{-1}$ is due to the $v(\mathrm{C}=0)$ vibrations of the bridging acetates and lattice acetic acid. The first synthetic method, described in the experimental section, employed denm as it was actually aimed at incorporating the pseudochalcogenide bridging ligand. It gave crystals within one week. TGA studies showed the acetic acid and water molecules can be removed to yield $[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-$
$\left.\mathrm{OAc})_{2}\right]_{n}$. The microanalyses of two samples were consistent with a formulation of $\{[\mathrm{Mn}(\mu-$ $\left.\left.\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$.

6.3 Crystal Structure of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$

Crystallographic data for $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ are summarised in Table 6.1. Table 6.2 contains selected interatomic distances and angles (see page 259). The compound $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ crystallizes in the monoclinic space group $P 2_{1} / m$. The asymmetric unit contains half a manganese(III) ion, two half acetates, one half hydroxide, acetic acid and water. The metal lies on an inversion centre whereas all other groups lie on the same mirror plane (excluding the oxygens and two of the hydrogen atoms of the acetates, and the water hydrogen). As seen in Figure 6.1, the crystal structure consists of chains of manganese(III) ions bridged by single $\mu-\mathrm{OH}^{*}$ and double μ-OAc ${ }^{-}$ bridges. These chains run parallel to the b-axis direction. A network of hydrogen bonding exists between each adjacent chain in the $a b$-plane that involves the $\mu-\mathrm{OH}^{*}$, the lattice acetic acid and water molecules. This results in hydrogen bonded sheets (Figure 6.2) that stack parallel to the c-axis direction. The coordination environment of each $\mathrm{Mn}^{\mathrm{III}}$ atom is Jahn-Teller elongated as expected for a near-octahedral d^{4} ion. The equatorial plane contains the shortest coordination bond, which is to the $\mu-\mathrm{OH}^{-}$oxygen $(\mathrm{Mn}(1)-\mathrm{O}(8)=$ $1.8993(8) \AA)$, and also contains one of the $\mu-\mathrm{OAc}^{-}$ligand oxygen atoms $(\mathrm{Mn}(1)-\mathrm{O}(5)=$ $1.939(1) \AA$). The remaining two equatorial sites are filled by the two symmetry equivalents of these atoms. The other μ-OAc ligand oxygen atom and its symmetry equivalent occupy the elongated axial sites $(\mathrm{Mn}(1)-\mathrm{O}(2)=2.179(1) \AA)$. The intra-chain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance, $3.3824(2) \AA$, is equal to half the unit cell length b. Similarly, the shortest inter-chain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance within the hydrogen bonded sheets, $7.9134(2) \AA$, is equal to the unit cell length a. The lattice acetic acid molecule was assigned as such rather than a free acetate
ion for a number of reasons. The manganese ion was assigned as Mn^{111} from coordination bond distance and Jahn-Teller distortion considerations and thus charge balance is obtained by the $\mu-\mathrm{OH}^{-}$and the two $\mu-\mathrm{OAc}^{-}$bridging ligands. Also, the colour (red) of the product is consistent with $\mathrm{Mn}^{\mathrm{III}}$. One of the $\mathrm{C}-\mathrm{O}$ bond distances $(\mathrm{C}(10)-\mathrm{O}(9)=1.191(4) \AA)$ of the acetic acid molecule is consistent with a carbonyl bond and the other $(\mathrm{C}(10)-\mathrm{O}(12)=$ $1.316(4) \AA$) is likewise consistent with a single C-O bond. Finally, a proton was found on $O(12)$ in the direction of the lattice water, $O(13)$, further indicating it to be a molecule of acetic acid.

Figure 6.1 Crystal structure of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}^{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ with atom labelling scheme (thermal ellipsoids shown at 50% probability).

Table 6.1 Crystal data for $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$

Compound	$\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$
Formula	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{MnO}_{8}$
M	268.10
Crystal system	Monoclinic
Space group	$P 2,1 m$
a / \AA	7.9134(2)
b / \AA	6.7648(2)
c / \AA	10.8644(3)
$\beta{ }^{\prime}$	106.90(1)
U / \AA^{3}	556.48(3)
Z	2
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.600
T/K	123(2)
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	1.207
Crystal dimensions/mm	$0.22 \times 0.03 \times 0.03$
θ range $/^{\circ}$	2.69-28.28
Index ranges	$\begin{aligned} & -10 \leq h \leq 9 \\ & -9 \leq k \leq 7 \\ & -14 \leq l \leq 14 \end{aligned}$
Completeness to $2 \theta=55^{\circ} / \%$	99.8
$T_{\text {min }}, T_{\text {max }}$	0.7730, 0.9705
Data collected	4528
Unique data ($R_{\text {int }}$)	1482 (0.0437)
Observed reflections [$I>2 \sigma(I)]$	1224
Parameters	109
Final $R_{1}, w R_{2}[I>2 \sigma(I)]^{(\mathrm{a})}$	0.0329, 0.0835
(all data)	0.0433, 0.0883
Goodness of fit, S	1.081
$\Delta \rho_{\min }, \Delta \rho_{\max } / \mathrm{e} \AA^{-3}$	-0.472, 0.554

Figure 6.2 View of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ slightly off the $a b$-plane showing a single hydrogen bonded sheet (acetate hydrogen atoms are omitted for clarity).

The hydrogen bonding network between chains occurs via the following pathway. The $\mu-\mathrm{OH}^{-}$hydrogen bonds to the carbonyl oxygen atom of the lattice acetic acid molecule $(O(8) \cdots O(9)=2.691(3) \AA)$. The acetic acid then hydrogen bonds to the lattice water $(O(12) \cdots O(13)=2.550(3) \AA)$ which is in turn hydrogen bonded to two acetate oxygen atoms on two $\mu-\mathrm{OAc}^{-}$ligands on the adjacent chain $\left(\mathrm{O}(13) \cdots \mathrm{O}\left(2^{\mathrm{iii}}\right)=2.759(2) \AA\right.$). The shortest inter-sheet $\mathrm{Mn} \cdots \mathrm{Mn}$ distance, $10.8644(3) \AA$, is equal to the unit cell length c. Figure 6.3 shows two such hydrogen bonded sheets.

Figure 6.3 Packing diagram of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ viewed along the b axis, showing covalent chains hydrogen bonding to form sheets.

Table 6.2 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$.

$\mathrm{Mn}(1)-\mathrm{O}(2)$	$2.179(1)$	$\mathrm{Mn}(1)-\mathrm{O}(8)$	$1.8993(8)$
$\mathrm{Mn}(1)-\mathrm{O}(5)$	$1.939(1)$	$\mathrm{Mn}(1) \cdots \mathrm{Mn}\left(1^{\mathrm{ii}}\right)$	$3.3824(2)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(5)$	$91.54(6)$	$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}\left(5^{\mathrm{i}}\right)$	$88.46(6)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(8)$	$92.69(6)$	$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}\left(8^{8}\right)$	$87.31(6)$
$\mathrm{O}(5)-\mathrm{Mn}(1)-\mathrm{O}(8)$	$92.16(6)$	$\mathrm{O}(5)-\mathrm{Mn}(1)-\mathrm{O}\left(8^{i}\right)$	$87.84(6)$
Hydrogen bonding			
$\mathrm{O}(8)-\mathrm{H}(8)$	$0.89(2)$	$\mathrm{O}(12)-\mathrm{H}(12)$	$0.90(2)$
$\mathrm{H}(8) \cdots \mathrm{O}(9)$	$1.82(2)$	$\mathrm{H}(12) \cdots \mathrm{O}(13)$	$1.66(2)$
$\mathrm{O}(8) \cdots \mathrm{O}(9)$	$2.691(3)$	$\mathrm{O}(12) \cdots \mathrm{O}(13)$	$2.550(3)$
$\mathrm{O}(13)-\mathrm{H}(13)$	$0.92(2)$	$\mathrm{O}(13) \cdots \mathrm{O}\left(2^{\mathrm{iii}}\right)$	$2.759(2)$
$\mathrm{H}(13) \cdots \mathrm{O}\left(2^{\mathrm{iii}}\right)$	$1.85(2)$		
$\mathrm{O}(8)-\mathrm{H}(8) \cdots \mathrm{O}(9)$	$166(4)$	$\mathrm{O}(12)-\mathrm{H}(12) \cdots \mathrm{O}(13)$	$170(8)$
$\mathrm{O}(13)-\mathrm{H}(13) \cdots \mathrm{O}\left(2^{\mathrm{iii}}\right)$	$171(3)$		

Symmetry transformations: (i): $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}$; (ii): $1-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z}$; (iii): $-\mathrm{x}+2,-\mathrm{y},-\mathrm{z}$

6.4 Magnetism of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$

Two samples were investigated and gave identical results. In a field of 1 T the magnetic moment of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ decreases gradually from $4.7 \mu_{\mathrm{B}}$ $\left(\chi T=2.76 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at 300 K to $2.9 \mu_{\mathrm{B}}\left(\chi T=1.05 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at $\sim 12 \mathrm{~K}$, then increases to yield a sharp maximum at $\sim 8 \mathrm{~K}$ of $3.5 \mu_{\mathrm{B}}\left(\chi T=1.53 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ before decreasing to reach $1.9 \mu_{\mathrm{B}}$ at $2 \mathrm{~K}\left(\chi T=0.45 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ (Figure 6.4). The $12-300 \mathrm{~K}$ region shows a corresponding Curie-Weiss behaviour with $\theta=-27 \mathrm{~K}$ and $C=2.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$. This is indicative of intra-chain antiferromagnetic coupling. When the sample is desolvated by heating at $80^{\circ} \mathrm{C}$ in vacuo, the sharp transition at 12 K disappears and the moments decrease more quickly than in the parent solvate, from $4.6 \mu_{\mathrm{B}}\left(\chi T=2.65 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at 300 K to $1.25 \mu_{\mathrm{B}}\left(\chi T=0.195 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at 2 K . The corresponding χ_{Mn} values show Curie-Weiss behaviour, without a maximum, which indicates very weak coupling and/or monomer impurity being present which shows a maximum in χ_{Mn}. These differences in behaviour show that intra-chain antiferromagnetic coupling persists in the desolvated species and that a magnetic phase transition to an ordered state below $\sim 12 \mathrm{~K}$ occurs in $\{[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-$ $\left.\left.\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. It is likely that the hydrogen bonded pathways between the chains are responsible for long-range order but this can not be proven unambiguously.

Figure 6.4 Plots of effective magnetic moment, μ_{Mn}, versus temperature in a field of 1 T for $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathrm{O})$ and the desolvated species, $[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-$ $\left.\mathrm{OAc})_{2}\right]_{n}(\square)$ (in these and other magnetic plots in this chapter, the solid lines are not calculated fits).

A range of magnetic measurements was employed to probe the nature of the longrange order in $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. First, the use of lower fields in the DC susceptibility measurements $(20,100,400,800 \mathrm{Oe})$ confirmed the sharp maximum in χ_{Mn} at 6.0 K in these fields, with $\chi_{\text {max }}$ moving only a little to lower temperature and increasing only a little in value when applied fields of 20 to 800 Oe were progressively used (Figure 6.5). The T_{N} value of 6.1 K was confirmed from plots of $\mathrm{d}(\chi T) / \mathrm{d} T$ versus T. The shape of the sharp maxima in $\chi_{M n}$ is indicative of long-range antiferromagnetic order occurring although extrapolation of the χ_{Mn} values to 0 K , below $\chi_{\text {max }}$, in a field of 20 Oe , is close to $1 / 6$ of the value at $\chi_{\max }\left(T_{\mathrm{N}}\right)$ rather than the $2 / 3\left(\chi_{\max }\right)$ expected for a two sublattice collinear-antiferromagnet. Kurmoo has observed similar ratio values in $\mathrm{Co}^{\text {II }}$
carboxylate materials. ${ }^{17}$ It is possible that orientation of crystallites is occurring giving $\chi_{i 1}$ like behaviour, a phenomenon not unknown in anisotropic Mn^{111} species. ${ }^{18}$ Use of a 1500 Oe field showed no maximun but a saturation in χ_{Mn} below $\sim 4 \mathrm{~K}$. The 3000 Oe field data behaved likewise, but the saturation χ value was lower than in the 1500 Oe field and lower again in the 1 T field. This field dependent behaviour in the $20-1500$ Oe region is indicative of either spin-flop behaviour observed in weakly coupled antiferromagnets ${ }^{\text {12,19-21 }}$ or, more likely, of metamagnetic behaviour in which a ferromagnetic phase is induced by increasing the applied field. In the present case the high temperature region (10-300 K) displays antiferromagnetic coupling and thus, if metamagnetism occurs, a ferromagnetic phase must be of the weak ferromagnet / canted-spin antiferromagnet type. The decrease observed in the saturation value of χ, at temperatures below 6 K , as H is increased from 1500 Oe to 3000 Oe and $10,000 \mathrm{Oe}$ is a result of the canted-spin antiferromagnetism that will align spins opposite to the field. Indeed, this can be seen in the magnetization isotherms shown in Figure 6.6 which, at 2, 3 and 4 K , show sigmoidal $M v s . H$ behaviour typical of metamagnetism (critical field $\approx 1000 \mathrm{Oe}$), while at higher fields e.g. 3000 , 10,000 Oe the χ (from M / H) values at $2-5 \mathrm{~K}$ are lower than at 1500 Oe because of the spincanting. The M values increase slowly, and almost linearly, between 1 and 5 T (below T_{N}), reaching $0.79 \mathrm{~N} \beta$ at $H=5 \mathrm{~T}$ (not shown in Figure 6.6 for clarity), a value well below the S $=2$ value of $4 N \beta$. Presumably an enormous field would be required to reach saturation and a ferromagnetic phase. This contrasts with the rapid change from antiferromagnetic to canted-spin phase in small, increasing fields. Recent examples of somewhat similar but not identical field induced antiferromagnetic to canted-spin antiferromagnetic or to ferromagnetic transitions have been given by Kurmoo et al. ${ }^{17}$ and by Mallah et al. ${ }^{22}$ for a 2D $\mathrm{Co}^{\mathrm{II}}$-pyromellitate and a 2D $\mathrm{Cr}^{\text {III }} \mathrm{Ni}^{\mathrm{II}}$ cyano-bridged system, respectively.

Figure 6.5 Temperature dependence of the DC magnetic susceptibilities for $\{[\mathrm{Mn}(\mu$ -$\left.\left.\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ in applied fields of $20(\mathrm{~B}), 100(\mathrm{O}), 400(\triangle), 800(\nabla), 1500$ $(\diamond), 3000(+)$ and $10,000(\times)$ Oe.

Figure 6.6 Isothermal magnetization of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ at $2(\Delta), 3$ $(\odot), 4(\square), 5.5(\nabla), 10(*), 20(+) \mathrm{K}$. Note that at 2 K the M values have a close to linear dependence on H up to 5 T and do not saturate (see text).

The present compound shows essentially no hysteresis in M, at 2 K , in the ± 2000 Oe DC sweep (Figure 6.7), the sigmoidal behaviour being clearly evident. The in-phase AC susceptibility component, χ^{\prime}, measured using a field of 10 Oe and frequency of 100 Hz , shows a sharp maximum at 6.2 K and a shoulder at 3.9 K , while the out-of-phase component $\chi^{\prime \prime}$ shows zero at 6.2 K but, surprisingly, a sharp maximum at 2.3 K (Figure 6.8). These data also support antiferromagnetic order occurring below 6.2 K , the transition at 2.3 K probably being due to the spin-canting. Further work is required to confirm the latter.

Figure 6.7 Isothermal magnetization of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ at 2 K in the field ranges of ± 2000 Oe.

Figure 6.8 (a) Temperature dependence of the AC in-phase magnetic susceptibility, χ^{\prime}, in a field of 10 Oe and frequency of 100 Hz , and (b) temperature dependence of the AC out-of-phase component, $\chi^{\prime \prime}$.

Measurement of the field-cooled magnetization ($F C M ; H=10 \mathrm{Oe}$) and the zerofield cooled magnetization (ZFCM) show identical behaviour at temperatures $4-25 \mathrm{~K}$ with a sharp maximum at 6.1 K and the cusp-like decrease in M, below T_{N} (Figure 6.9). The lack of any bifurcation of the $F C M$ and $Z F C M$ plots is indicative of being in an antiferromagnetic phase in this 10 Oe field. Canted-spin antiferromagnets or ferromagnets would show bifurcation at T_{c} and would show hysteresis.

Figure 6.9 Temperature dependence (4-25 K) of the FCM and ZFCM for $\{[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-$ $\left.\left.\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$.

6.5 Conclusions

A new solvated linear chain manganese(III) complex, $\{[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-$ $\left.\left.\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has been isolated. The chains, similar to those observed in a complex also reported by the candidate, $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{\mathrm{n}}$ (see Chapter 8) are
composed of octahedral $\mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}$ atoms linked by single methoxide bridges and double acetate bridges. The chains are linked via hydrogen bonding pathways through the solvated acetic acid and water molecules, to form 2 D sheets.

Detailed magnetic measurements on this material have revealed fascinating magnetic properties. The magnetic data for the layered structure in $\{[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-$ $\left.\left.\mathrm{OAc})_{2}\right\} \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ are compatible with the occurrence of weak antiferromagnetic coupling along the $\mathrm{Mn}^{\mathrm{mI}}$ chains mediated by the two μ-OAc and one μ - OH^{-}bridges, as often is the case in similarly tri-bridged dinuclear Mn^{111} complexes. ${ }^{23}$ Long-range antiferromagnetic order occurs below a T_{N} of 6.1 K probably involving hydrogen bonded $\left(\mathrm{Mn}-\mathrm{OH} \cdots \mathrm{HO}_{2} \mathrm{CCH}_{3} \cdots \mathrm{OH}_{2} \cdots \mathrm{O}_{2} \mathrm{CCH}_{3}-\mathrm{Mn}\right)$ pathways between the chains. An unusual phase transition from antiferromagnetic to canted-spin antiferromagnetic (weak ferromagnetic) occurs as the field is raised from 0 to $c a .1000 \mathrm{Oe}$, the spin-canting originating from chain-chain interactions containing anisotropic $\mathrm{Mn}^{\text {II }}$ centres. Removal of the solvate molecules removes the 3D magnetic order. The similar Mn ${ }^{\text {III }}$ carboxylate chain, $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mathrm{OAc})_{2}\right]_{n}$, having bridging methoxide groups instead of hydroxide moieties and no acetic acid or water solvent molecules, displays no long-range order. The fact that it possesses no hydrogen bonding pathways and displays no magnetic long-range order would seem to support the conclusion that the magnetic order observed here is indeed facilitated by the hydrogen bonding network.

There are other recent examples of hydrogen bonded networks having ordering temperatures of similar magnitude to that observed here. ${ }^{10.13}$ In one such example, a \{ $\mathrm{Ni}^{1 l}$ alcohol-nitroxyl radical\} heterospin system, a field induced antiferromagnetic to canted-spin antiferromagnetic phase was observed, similar to that observed here. ${ }^{11}$

6.6 Experimental

6.6.1 Synthesis of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}_{\mathbf{H}} \mathrm{O}\right\}_{n}$

An ethanolic solution (10 mL) of $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})(0.195 \mathrm{~g}, 1.16 \mathrm{mmol})$ was added with stirring to a solution of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.284 \mathrm{~g}, 1.16 \mathrm{mmol})$ in 10 mL acetonitrile, 20 mL ethanol and 7 mL glacial acetic acid. Solid $n-\mathrm{Bu}_{4} \mathrm{NMnO}_{4}(0.076 \mathrm{~g}, 0.210 \mathrm{mmol})$ was then added in small portions. At this time the solution was a dark red/brown colour. The solution was stirred for about three hours, after which a small amount of the solution was placed in a Petrie dish to evaporate, the remainder covered and left to stand. After one day many red-orange crystals had formed. These were collected by filtration, washed with ethanol and dried with ether and placed in a sealed vessel (under nitrogen) to prevent desolvation that occurred in air over a period of days. (Yield $\sim 90 \mathrm{mg}, 21 \%$ based on total available Mn). IR (Nujol mull, cm^{-1}): $3336 \mathrm{sbr}, 2601 \mathrm{vw}, 2040 \mathrm{vw}, 1776 \mathrm{vw}, 1699 \mathrm{~s}, 1505 \mathrm{~s}$, 1455s, 1277s, 1148m, 1039m, 963vw, 888w, 676w. Anal. (\%) Found: C, 26.8; H, 4.7; N, 0.0. Calc. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{MnO}_{8}: \mathrm{C}, 26.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, 0.0$.

After about one week many red-orange crystals rod-like crystals were present in the remaining solution. A suitable crystal was chosen for a single-crystal X-ray diffraction experiment.

It was subsequently found that $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ was not necessary for the successful synthesis of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. Thus, solid $n-\mathrm{Bu}_{4} \mathrm{NMnO}_{4}(0.076 \mathrm{~g}$, 0.210 mmol) was added in small portions with stirring to a solution of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(0.284 \mathrm{~g}, 1.16 \mathrm{mmol})$ in 10 mL acetonitrile, 20 mL ethanol and 7 mL glacial acetic acid. The resultant dark black-brown solution was left to stand to slowly evaporate. After several months the solution (now colourless) had almost evaporated to dryness and a solid was present consisting of red-orange needles. About half of this solid was collected by
filtration, washed quickly with ethanol, dried with ether, then placed in a sealed vessel (under nitrogen). (Yield $0.076 \mathrm{~g}, 21 \%$ based on total available Mn). The remainder of the solid was left in the mother liquor. IR (Nujol mull, cm^{-1}): $3326 \mathrm{sbr}, 1700 \mathrm{~s}, 1538 \mathrm{~s}, 1438 \mathrm{~s}$, $1278 \mathrm{~m}, 1150 \mathrm{~m}, 1038 \mathrm{~m}, 888 \mathrm{w}$. Anal. (\%) Found: C, $27.0 ; \mathrm{H}, 4.8$; N, 0.0. Calc. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{MnO}_{8}: \mathrm{C}, 26.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, 0.0$.

6.6.2 X-Ray Crystallography

Data were collected on a dichroic yellow-red rod-like crystal using a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation $(\lambda=0.71073$ \AA). Integration was carried out by the program DENZO-SMN, ${ }^{24}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{24}$ Further face-indexed numerical absorption corrections were applied using the program XPREP. Solutions were obtained by direct methods (SHELXS 97) ${ }^{25}$ foliowed by successive Fourier difference methods, and refined by full matrix least squares on $F_{\text {obs }}{ }^{2}$ (SHELXL 97) ${ }^{25}$ with the aid of the graphical interface program X-SEED. ${ }^{26}$ All nonhydrogen atoms were refined anisotropically. The hydrogen atoms of the chain, the oxygen bound acetic acid hydrogen atom and the water hydrogen atom were located and refined isotropically and their bond lengths were restrained using the DFIX instruction to be $0.96(2)$ and $0.90(2) \AA$ for the carbon and oxygen bound hydrogens respectively. The methyl hydrogen atoms of the acetic acid were not included due to the large thermal motion of the methyl carbon (refinements of such hydrogen atoms presented extremely large $\mathrm{U}_{\text {iso }}$ values) and their relative unimportance with respect to the hydrogen bonding interactions.

6.6.3 Magnetic Measurements

The instrumentation (Quantum Design MPMS 5 and PPMS (AC)), DC magnetisation and AC susceptibility protocols have been described previously. ${ }^{7}$ Care was taken to see that $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ did not partially desolvate in the sample chamber and it was found that use of a gelatine capsule to contain the sample was adequate. Dr. B. Moubaraki kindly carried out these magnetic studies.

6.6.4 Thermogravimetric Analyses

Thermal degradation studies were performed on a Simultaneous Thermal Analyzer (Rheometric Scientific, STA 1500), which was calibrated using a four point melt series (indium, tin, lead, and zinc). Experiments were performed in aluminium pans. Three freshly prepared samples of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ were used. Two experiments were performed under a N_{2} flow, between $25-400^{\circ} \mathrm{C}$ with heating rates of 2 and $10^{\circ} \mathrm{C}$ per minute. One experiment was performed under a flow of dried air, between $25-150^{\circ} \mathrm{C}$ with a heating rate of $0.5^{\circ} \mathrm{C}$ per minute. A mass loss of $27-28 \%$ occurred up to $80^{\circ} \mathrm{C}$, the calculated value of loss of $\mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}$ being 29.1%.

6.7 References

1. O. Kahn, Molecular Magnetism, VCH, New York, 1993.
2. O. Kahn, Adv. Inorg. Chem., 1995, 43, 179.
3. P. Day and A. E. Underhill, Phil. Trans. R. Soc. London A, 1999, 357, 2851.
4. K. R. Dunbar and R. A. Heintz, Progr. Inorg. Chem., 1997, 45, 283.
5. V. I. Ovcharenko and R. Z. Sagdeev, Russ. Chem. Rev., 1999, 68, 345.
6.

M. Verdaguer, A. Bleuzen, C. Train, R. Garde, F. F. De Biani, and C. Desplanches, Phil. Trans. R. Soc. London A, 1999, 357, 2959.
7. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
8. M. Kurmoo and C. J. Kepert, New J. Chem., 1998, 22, 1515.
9. J. S. Miller and J. L. Manson, Acc. Chem. Res., 200i, 34, 563.
10. G. De Munno, W. Ventura, G. Viau, F. Lloret, J. Faus, and M. Julve, Inorg. Chem., 1998, 37, 1458.
11. V. N. Ikorskii, V. I. Ovcharenko, Y. G. Shvedenkov, G. V. Romanenko, S. V. Fokin, and R. Z. Sagdeev, Inorg. Chem., 1998, 37, 4360.
12. H.-L. Sun, B.-Q. Ma, S. Gao, and G. Su, Chem. Commun., 2001, 2586.
13. X. Ren, Y. Chen, C. He, and S. Gao, J. Chem. Soc., Dalton Trans., 2002, 3915.
14. K. Van Langenberg, S. R. Batten, K. J. Berry, D. C. R. Hockless, B. Moubaraki, and K. S. Murray, Inorg. Chem., 1997, 36, 5006.
15. D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Commun., 2002, 762.
16. A. J. Tasiopoulos, N. C. Harden, K. A. Abboud, and G. Christou, Polyhedron, 2003, 22, 133.
17. H. Kumagai, C. J. Kepert, and M. Kurmoo, Inorg. Chem., 2002, 41, 3410.
18. B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1552.
19. S. J. Blundell, in Magnetism in Condensed Matter, Oxford, Oxford University Press, 2001.
20. A. K. Gregson and N. T. Moxon, Inorg. Chem., 1981, 20, 78.
21. A. K. Gregson and P. C. Healy, Inorg. Chem., 1978, 17, 2969.
22. A. Marvilliers, S. Parsons, E. Riviere, J.-P. Audiere, M. Kurmoo, and T. Mallah, Eur. J. Inorg. Chem., 2001, 1287.
23. A. J. Edwards, B. F. Hoskins, R. Robson, J. C. Wilson, B. Moubaraki, and K. S. Murray, J. Chem. Soc., Dalton Trans., 1994, 1837.
24. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
25. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
26. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.

CHAPTER 7: A REVIEW OF POLYNUCLEAR
MANGANESE CLUSTER COMPLEXES WITH AN
EMPHASIS ON SINGLE MOLECULE MAGNETS

This chapter is the second of two introductions, the first of which, Chapter 1 , is a general introduction to molecule-based magnets. It introduces the closely related field of single-molecule magnetism, with a review of manganese cluster complexes. It is noied tha: much of the literature refers to large multinuclear (or oligonuclear) complexes as 'cage complexes, whereas other authors use the term 'cluster'. Both terms are usel interchangeably in this thesis, although 'cluster' is used more often.

7.1 Background

A great deal of current research into Mn cluster chemistry focuses on two man topics of interest. Firstly, in the bioinorganic arena many model complexes have be m made to replicate the properties and function of manganese containing proteins and enzymes, including, significantly, the water oxidation complex (WOC) in the Photosyst m II (PSII) of green plants and cyanobacteria, which is responsible for the catalysis of ihe light driven oxidation of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{O}_{2}{ }^{1.9}$ Despite the absence of definitive structural details, ${ }^{10}$ it has been established that the active site of the protein contains a Mn_{4} aggregate (possit ly a tetranuclear cluster, or a trinuclear cluster located near a single Mn ion, or a pair of dinuclear complexes) bridged by O^{2-} or OH^{+}and ligated by O - and/or N -donor atoms fro n amino acid side chains (aspartate and/or glutamate carboxylate, tyrosine phenoxid:, histidine imidazole). Detailed spectroscopic, EXAFS, XANES and crystallographic studits have been made to probe the $\mathrm{Mn}_{4}(\mathrm{Ca}) \mu$-oxo cluster in the redox states S_{0} to $\mathrm{S}_{4}{ }^{8, \mathrm{fl-14}}$ Secondly, in the field of nanomagnetic materials, some large high-spin manganes: carboxylate clusters display magnetic properties previously only associated with nano sized particles of magnetic metal oxides, that is, they can be magnetized and as such have been termed single-molecule magnets (SMMs). They also display unusual quantum mechanical effects in their single-crystal magnetisation hysteresis plots.

In 1980 the structure of a modecanuclear manganese complex, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (' Mn_{12}-acetate', Figure 7.1) was determined by Lis. ${ }^{15}$ In 1993, Christou et al. ${ }^{16}$ and Gatteschi et al. ${ }^{17}$ discovered that Mn_{12}-acetate functions as a single magnetic domain with slow relaxation of magnetisation (of several months) at temperatures below its blocking temperature (T_{B}) of $4 \mathrm{~K} .{ }^{16}$ There has since been considerable interest in the magnetic properties of Mn_{12}-actetate, which has an unusually high $S=10$ ground state brought about by the antiparallel coupling of $8 \mathrm{Mn}^{\text {III }}$ (total $S=$ $32 / 2$) and $4 \mathrm{Mn}^{18}$ (total $S=12 / 2$). ${ }^{18-31} \operatorname{In} 1996$, it was reported that Mn_{12}-acetate displays quantum tunnelling of magnetization hysteresis and this led to the possibility of use in quantum computing. ${ }^{32-35}$

Figure 7.1 The crystal structure of Mn_{12}-acetate (spheres represent Mn atoms, lattice waters and acetic acid are omitted for clarity).

Classical nanomagnets are prepared by fragmentation of macroscopic ferromagnetic multi-domain particles, whereas SMMs are prepared by solution methods from smaller precursors. ${ }^{36}$ This has been referred to as an 'upscale' approach, i.e. a ground up approach rather than the 'downscale' or fragmentation synthetic procedure. ${ }^{37,38}$ As such SMMs are single domains with a single particle size, not a distribution of sizes. SMMs, like infinite network molecule-based magnets, are amenable to chemical modifications by slight alteration or complete change of the molecular precursors. SMMs can be soluble in a range of solvents, meaning thin films can be prepared. ${ }^{36}$ Additionally, SMMs have the potential to be high-density memory devices or components in quantum computers. ${ }^{36,39,40}$ SMMs also present the opportunity for chemists and physicists to co-operate towards bridging the gap between the classical and quantum theories of magnetism. ${ }^{36}$ The major disadvantage SMMs possess is the extremely low temperatures at which they undergo slow magnetisation relaxation.

Briefly, before discussing these species in more detail below, to date the family of SMMs includes many manganese carboxylate clusters of nuclearities $\mathrm{Mn}_{4},{ }^{41} \mathrm{Mn}_{9},{ }^{42,43}$ $\mathrm{Mn}_{10},{ }^{44-47} \mathrm{Mn}_{12},{ }^{26,48-51} \mathrm{Mn}_{18}{ }^{52}$ and the largest to date, $\mathrm{Mn}_{30} .{ }^{53}$ Very recently a $\mathrm{Mn}^{1 \mathrm{II}}{ }_{26}$ cage complex has been reported to show preliminary evidence of SMM behaviour. ${ }^{54}$ Other nuclearities such as $\mathrm{Mn}_{3}, \quad \mathrm{Mn}_{6}{ }^{55,56} \mathrm{Mn}_{7},{ }^{57} \mathrm{Mn}_{8},{ }^{43,58,59} \mathrm{Mn}_{11},{ }^{60} \mathrm{Mn}_{13},{ }^{61} \mathrm{Mn}_{14},{ }^{62}$ $\mathrm{Ba}_{8} \mathrm{Na}_{2} \mathrm{ClMn}_{16}{ }^{63,64} \mathrm{Mn}_{19}$-oxo-alkoxide, ${ }^{65}$ and $\mathrm{Mn}_{21}{ }^{66}$ do not display SMM behaviour, even though some have high-spin ground states, one of the prerequisites for being an SMM. The best and most well studied class of SMMs are the Mn_{12}-acetate variations, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{36}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{n-}(n=0,1,2 ; x=3,4)$ and their derivatives, which include mixed carboxylates, and partial non-carboxylate substituted species. ${ }^{17,37,38,67-70}$

A comparatively small number of SMMs that do not contain manganese have also been reported. These include $\mathrm{Fe}_{4},{ }^{71} \mathrm{Fe}_{8},{ }^{72-76} \mathrm{Fe}_{10},{ }^{77,78} \mathrm{Fe}_{19},{ }^{79}$ and $\mathrm{V}_{4}{ }^{80,81}$ complexes. Very recently $\mathrm{Ni}_{12},{ }^{82-84} \mathrm{Ni}_{21},{ }^{85} \mathrm{Co}_{4},{ }^{86}$ and $\mathrm{Ni}_{4}{ }^{87}$ clusters have been reported to display SMM behaviour in the millikelvin temperature range. The SMM family is not limited to oxobased species, and now includes a few examples of cyano-bridged clusters (vide infra). ${ }^{88}$

The chief research goals in the field of SMMs are to discover new species with ever-higher ground state spin values, S, and larger negative values of axial zero-field splitting parameter, D. The latter usually requires non-symmetrical cluster geometries. By synthesising larger metal clusters of higher nuclearity and low symmetry, it is thought these goals, and obtaining higher blocking temperatures, can be achieved.

7.2 The Origin of Single Molecule Magnetism, and the Occurrence of Quantum Phenomena

What follows here is a superficial treatment of what is an enormously complex subject that requires a level of understanding of quantum physics beyond the scope of this thesis. The candidate endeavours here to introduce some basic concepts to give the reader, who is not already familiar with this relatively new and multidisciplinary field, a background for the results presented in the following two chapters. The interested reader is directed to some excellent recent review articles on this field by Christou and Hendrickson et al., ${ }^{18,38,89,90}$ and Gatteschi et al., ${ }^{37,91-94}$ some more in-depth than others.

Single molecule magnets (SMMs) are so named because at temperatures below a blocking temperature, T_{B}, each molecule can be magnetized and behaves as a single magnetic domain. Below this T_{B} the thermal encrgy is not sufficient to allow free rotation of the spin (the value of T_{B} depends on the experimental technique). ${ }^{75,95}$ When a sample of an SMM is exposed to a large external magnetic field all of the molecules have their spins
aligned with the external field. When the field is cycled to zero, the rate of magnetization relaxation is very slow. For example, if a molecule of Mn_{12}-acetate is magnetised at 2 K by an applied field, after two months kept at that temperature, the magnetisation is still ca. 40 $\%$ of the saturation value. ${ }^{96}$

The aforementioned archetypal SMM, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, Mn_{12}-acetate, consists of a central $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{4} \mathrm{O}_{4}\right]^{8+}$ cubane unit connected to an outer ring of $\left[\mathrm{Mn}^{111}{ }_{8} \mathrm{O}_{8}\right]^{8+}$. AC magnetic susceptibility and high-frequency electron paramagnetic resonance (HFEPR) ${ }^{24,97,98}$ measurements indicate that it has a ground state spin of $S=10$. The large ground state is a result of ferrimagnetism, the antiferromagnetic coupling of the four central $\mathrm{Mn}^{\mathrm{IV}}$ ions ($S=3 / 2$) and the eight perimeter $\mathrm{Mn}^{\mathrm{III}}$ ions ($S=2$) (Figure 7.2). ${ }^{38} \mathrm{An}$ axial zero-field splitting is present, largely due to the single ion magnetic anisotropy of the eight $\mathrm{Mn}^{\mathrm{III}}$ ions, leading to a splitting of the $S=10$ ground state into 21 levels, each characterised by a spin projection quantum number M_{S}, where $-S \leq M_{S} \leq S$. Each level has an energy given by $E\left(M_{S}\right)=M_{S}^{2} D$, where D is the axial zero-field splitting parameter, which for Mn_{12}-acetate is $c a .-0.46 \mathrm{~cm}^{-1} .{ }^{36}$ The negative sign of D leads to a potential energy barrier between the "spin-up" $\left(M_{S}=-10\right)$ and the "spin-down" $\left(M_{S}=10\right)$ orientations of the individual Mn_{12} molecules. Thus, the inversion of the spin of an individual molecule requires energy to overcome the barrier potential (Figure 7.3). If the barrier height is appreciable the molecule can be "trapped" on one side of the double potential energy well. Thus the SMM is magnetised in one direction. The barrier height energy is given by $\Delta E=E\left(M_{S}=0\right)-E\left(M_{S}= \pm 10\right)=S^{2}|D| .{ }^{38}$

Figure 7.2 A schematic diagram showing ferrimagnetic interactions between central cubane $\mathrm{Mn}^{\mathrm{IV}}$ ions and perimeter $\mathrm{Mn}^{\text {III }}$ ions in the core of Mn_{12}-acetate (smaller spheres represent $\mu_{3}-\mathrm{O}^{2 \cdot}$ ions). The ferromagnetic interactions in the $\mathrm{Mn}^{\mathrm{III}} 8$ perimeter (continuous line) and $\mathrm{Mn}^{\mathrm{JV}}{ }_{4}$ cubane (dotted line) and antiferromagnetic interactions between perimeter and cubane (dot-dashed line) are shown. Reproduced from reference 99.

Figure 7.3 Plot of the potential energy vs. magnetisation direction for an $\mathrm{SMM}\left(\mathrm{Mn}_{12}{ }^{-}\right.$ acetate) with an $S=10$ ground state, in zero external magnetic field. There is an axial zero fiedd splitting, $D<0$ (reproduced from reference 36).

In addition to high spin ground state values, 'easy axis' type (meaning the magnetisation is preferentially oriented in a single direction) magnetic anisotropy is an essential feature of SMMs. ${ }^{99}$ In the case of Mn_{12}-acetate and other Mn based SMMs, it is the Jahn-Teller distortions in the crystal field of the $\mathrm{Mn}^{\mathrm{III}}$ ions, together with spin-orbit interactions that give rise to the single-ion anisotropies. It follows that structural anisotropy is also required to give overall magnetoanisotropy. For example, a $\mathrm{Mn}^{\mathrm{III}}{ }_{6}$ complex ${ }^{55}$ (vide infra) with an $S=12$ ground state has a highly symmetrical arrangement of the $\mathrm{Mn}^{\text {il }}$ centres resulting in magnetic isotropy with $D \approx 0 .{ }^{38}$

The slow relaxation of magnetisation is a key indicator of SMM behaviour and is usually detected as a frequency dependence of the out-of-phase, $\chi^{\prime \prime}$, signal in AC susceptibility measurements (Figure 7.4). A species that possesses a magnetisation relaxation mechanism that is slower than the oscillating applied field cannot stay in phase with this field, and will exhibit a peak in the out-of-phase component of the AC susceptibility. ${ }^{49,100}$ At the temperature at which $\chi^{\prime \prime}$ goes through a maximum, the relaxation frequency of magnetisation is equal to the operating AC field frequency. ${ }^{91}$ The magnetisation relaxation rate is quantified by analysing the frequency dependencies of the $\chi^{\prime \prime}$ signals. The relaxation times at each temperature are determined and the data least squares fit to the Arrhenius equation (Equation 7.1). From this plot, the height of the barrier to reversal of magnetisation $\left(\Delta E=S^{2}|D|\right)$ and the pre-exponential factor, τ_{0}, are determined. Mn_{12}-acetate has a barrier height of $\Delta E=43 \mathrm{~cm}^{-1}(62 \mathrm{~K}) \cdot{ }^{91,100}$

Figure 7.4 Plots of AC $\chi^{\prime \prime}$ versus temperature at different frequencies for an SMM (taken from Chapter 8).

$$
\tau=\tau_{0} e^{-\Delta E / k T}
$$

Equation 7.1
$\tau=$ relaxation time $=1 /(2 \pi v)(s)$,
$\tau_{0}=$ pre-exponential factor,
$v=A C$ frequency (Hz) of applied field,
$\Delta E=$ activation energy or barrier height of the double potential energy well $\left(\mathrm{cm}^{-1}\right)$,
$k=$ Boltzmann constant.

SMMs show magnetic hysteresis due to the presence of the potential energy barrier between the "spin-up" and "spin-down" states. When a sample of SMMs is exposed to a large external field, the magnetisation of each molecule is saturated on one side of the double well and is "frozen" due to the barrier potential, and thus only slowly returns to zero magnetisation. A negative field reduces the height of the barrier and "unfreezes" the spins, thus allowing a rapid reversal of magnetisation. Therefore, hysteresis of a purely molecular origin is observed. Therefore, it is in principle possible to store data on a single
bistable molecule. ${ }^{38}$ The magnetisation hysteresis loop of Mn_{12}-acetate is shown in Figure 7.5.

Figure 7.5 Plot of magnetisation vs. applied field hysteresis loop for a single crystal of Mn_{12}-acetate with the field parallel to the tetragonal axis (c-axis) at 2.1 K , showing 'stepped' hysteresis (reproduced from reference 91).

It has been shown that the magnetic behaviour exhibited by an SMM is entirely due to individual molecules and, unlike long-range ordered materials, is not the result of cooperative effects throughout the bulk solid. This conclusion is supported by several experiments, such as magnetisation measurements on frozen solutions ${ }^{20,23,31}$ or polymer doped films, ${ }^{19}$ which show the same properties as the solid crystalline sample. In addition heat capacity measurements gave no indication of long-range magnetic order, thus ruling out intercluster interactions. ${ }^{91,101}$

An exciting aspect of these systems is that due to their small size they are able to display quantum effects such as quantum tunnelling of magnetisation. In Figure 7.5 'steps' can be seen in the hysteresis loop. These steps correspond to an increased rate of change in
the magnetisation occurring when there is an energy coincidence of the levels on the opposite sides of the double-well potential. The molecules relax via resonant tunnelling through the barrier potential. ${ }^{38}$ This may be understood by remembering that a quantum object possesses a wave nature. The wavefunction of a quantum particle in a potential well with a finite energy barrier has a non-zero value beyond the well. So in the case here, when the energy levels coincide on opposite sides of the finite barrier potential the two wavefunctions can mix or superimpose. Therefore there is a non-zero probability that the quantum particle is on both sides of the well, hence it has tunnelled through the barrier potential. ${ }^{91}$

The observations of quantum phenomena such as quantum tunnelling and quantum coherence in these SMM systems have excited many researchers worldwide. Not only do they bridge the gap between classical and quantum physics, but are potential hardware components in quantum computers, where information is carried in quantum bits or 'qubits' in individual molecules. ${ }^{40,91,102-104}$ The rapid growth of high-speed computing and the need for still faster and smaller magnetic devices for computers has lead to much interest in the field of nano-scale magnetic materials. One of the very difficult challenges is to be able to address individual molecules and read the information stored. The goal of the ultimate miniaturization of information storage to the molecular scale could conceivably lead to massive increases in data storage and processing.

7.3 Examples of Manganese Carboxylate Clusfer Complexes

and Single Molecule Magnets

What follows is not intended to be a totally exhaustive review of manganese carboxylate cluster chemistry, but rather an exposure to the field with a number of examples described to illustrate the considerable structural variation that has appeared in
the literature to date. Winpenny has recently published a detailed review of high-nuclearity 3 d -metal complexes with O - and N -donor ligands. ${ }^{105}$ It is clear from what is presented below, the fascinating structural diversity and resultant magnetic properties possible, are seemingly limited only by the inspiration (and perspiration) of the synthetic chemist. Chance also plays a role - for many years the synthesis leading to $\mathrm{Mn}^{\mathrm{It} / \mathrm{Iv}}{ }_{12}$-acetate was regarded as a method of making " $\mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}$ acetate". The rational design of clusters of particular nuclearities from the given precursors is very difficult - many of those that follow were obtained serendipitously.

7.3.1 Tetranuclear Manganese Carboxylate Complexes

In terms of the field of SMMs, the trinuclear oxo-centred species, $\left[\mathrm{M}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{6} \mathrm{~L}_{3}\right]^{\mathrm{x}}, \mathrm{x}=0, \mathrm{Mn}^{\mathrm{nI}}, 2 \mathrm{Mn}^{\mathrm{IIII}} ; \mathrm{x}=1,3 \mathrm{Mn}^{\mathrm{III}} ; \mathrm{R}=\mathrm{Me}$, Et etc.; $\mathrm{L}=\mathrm{py}, \mathrm{H}_{2} \mathrm{O}$ etc. (also other metals, e.g. $\mathrm{Cr}, \mathrm{V}, \mathrm{Fe}$), are predominantly utilised as starting materials for higher nuclearity complexes. ${ }^{18}$ For example, Christou and co-workers have reacted these complexes with chelating ligands such as $2,2^{\prime}$-bipy to yield a number of Mn_{4} species. ${ }^{7}$ The chief models for the WOC are tetranuclear manganese complexes, consequently, a great number of examples have appeared in the literature. ${ }^{1,4-8,106-108}$ Several structural types of Mn_{4} carboxylate complexes have been reported to date. One of the most frequently observed families is that containing a $\left[\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{r^{+}}, x=6-8\left(\mathrm{Mn}^{\mathrm{HI}}{ }_{2} \mathrm{Mn}^{\mathrm{III}} ; \mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}^{\mathrm{ml}}{ }_{3}\right.$; $\mathrm{Mn}^{\mathrm{IIt}}{ }_{4}$), core with a planar or bent butterfly-like arrangement of four manganese ions bridged by two $\mu_{3}-\mathrm{O}^{2-}$ ions, shown in Figure 7.6, where a line drawn between the two central Mn centres represents the 'body' of the butterfly and the two end Mn centres represent the two 'wingtips'.

(a)

(b)

Figure 7.6 Schematic representations of the $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]$ core with the (a) planar or (b) bent, "butterfly" structure.

Two particular model examples were synthesized by Christou and co-workers, $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{OAc})_{7} \text { (bipy) }\right]^{\mathrm{r}^{+}}\left(x=0 \text { and 1) and }\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{OAc})_{6}(\mathrm{bipy})_{2}\right]\right]^{7}$ The former two complexes possess the bent butterfly structure (Figure $7.6(\mathrm{~b})$) with $\mathrm{Mn}^{\mathrm{II}}, 3 \mathrm{Mn}^{\mathrm{III}}$ (S_{0} model) and $4 \mathrm{Mn}^{\mathrm{III}}$ (S_{1} model) respectively. The latter complex has a planar structure (Figure 7.6(a)), with $2 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}^{\text {II }}$ and is a model for the "superreduced" state, S_{-1}, of the WOC that is apparently not involved in the catalytic cycle. ${ }^{109}$ Other $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]$ type clusters have been reported with peripheral ligation provided, for example, by the anions of picolinic acid (pic), ${ }^{8} 8$-hydroxyquinoline (hqn), ${ }^{110} 5$-chloro-8-hydroxyquinoline (Cl-hqn), ${ }^{110}{ }^{2-}$ (hydroxymethyl)pyridine (hmp), ${ }^{110}$ or dibenzoylmethane (dbm°). ${ }^{111,112}$ These types of complexes generally do not display SMM behaviour. The examples given above have not proven to be useful for the synthesis of higher nuclearity species, presumably due to the chelating ligands blocking further aggregation. ${ }^{18}$ However, a related anionic complex (n $\left.\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}^{\mathrm{III}}{ }_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)\right],{ }^{59,133}$ shown in Figure 7.7 , contains a $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]^{8+}$ bent butterfly core with only $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{PhCO}_{2}{ }^{-}$peripheral ligands, and it has proven to be an excellent starting material for larger clusters, for example a Mn_{8} species. ${ }^{59}$

Figure 7.7 The crystal structure of $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$possessing the bent butterfly core structure (only the ipso carbons of the benzoate groups are shown for clarity, reproduced from reference 18).

A related class of Mn_{4} clusters has a similar core unit to those above, but two $\mu_{3}-$ alkoxo groups from nitrogen-oxygen donor chelates replace the two $\mu_{3}-\mathrm{O}^{2-}$ ions, and four additional μ-alkoxo groups also make up the rhombohedral core (Figure 7.8). This type can be derived from the planar butterfly model by changing the geometry of the planar $\mu_{3}-\mathrm{O}$ centres to trigonal pyramidal, with one either side of the planar Mn_{4} rhombus. By inspection of the resulting core unit, including the four μ-alkoxo groups, it can be seen that it displays the CdI_{2} layered structure with Mn centres occupying octahedral sites sandwiched between two layers of hexagonally packed O atoms.

Figure 7.8 A schematic representation of the CdI_{2}-like core unit of the second type of Mn_{4} cluster, where all bridging oxygen atoms shown are alkoxo groups from nitrogen-oxygen chelates.

This phenomenon of large poly-oxo cluster complexes adopting layered mineral type core structures is not uncommon and is discussed in detail in a review on polynuclear cage complexes by Winpenny ${ }^{84}$ and is mentioned in Chapter 8 in connection with the new hexadecanuclear cluster complex $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ synthesised by the candidate. Several examples of this Min_{4} class have been shown to exhibit SMM behaviour. ${ }^{144.115}$ One example, $\left[\mathrm{Mn}_{4}(\mathrm{OAc})_{2}(\mathrm{pdmH})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(2 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}^{\mathrm{III}}\right)$, (where pdmH $\mathrm{H}_{2}=$ pyridine-2,6-dimethanol), ${ }^{116}$ is shown in Figure 7.9(a). Depending on the type of solvation, the complex possesses either an $S=8$ (desolvated) or $S=9$ (hydrated) ground state. The hydrated species has an axial zero-field splitting parameter of $D / k=-$ 0.45 K and a barrier potential energy, $\Delta E=36.5 \mathrm{~K}\left(25 \mathrm{~cm}^{-1}\right)$. An example without any carboxylate bridging groups is the cationic $\mathrm{SMM}\left[\mathrm{Mn}_{4}(\mathrm{hmp})_{6} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Br}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Figure 7.9 (b)), where hmp is the anion of 2-hydroxymethylpyridine and is the only bridging ligand. It has an $S=9$ ground state with $D / k=-0.498 \mathrm{~K}\left(-0.34 \mathrm{~cm}^{-1}\right)$ and $\Delta E=15.8 \mathrm{~K}$ (11 $\left.\mathrm{cm}^{-1}\right)^{115}$

(a)

(b)

Figure 7.9 The crystal structures of the (a) $\left[\mathrm{Mn}_{4}(\mathrm{OAc})_{2}(\mathrm{pdmH})_{6}\right]^{2+}$ and (b) $\left[\mathrm{Mn}_{4}(\mathrm{hmp})_{6} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cations (thermal ellipsoids shown at 50% probability). Reproduced from references 116 and 115 respectively.

Another major class of Mn_{4} SMMs has the distorted cubane core, $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{Mn}^{\mathrm{III}}{ }_{3}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{O})_{3}\left(\mu_{3}-\mathrm{X}\right)\right]^{6+}$, shown in Figure 7.10 , where one vertex of the cubane is occupied by an X group (halide, ${ }^{\circ} \mathrm{OH},{ }^{-} \mathrm{OMe},{ }^{-} \mathrm{O}_{2} \mathrm{CR}, \mathrm{N}_{3}{ }^{\circ}$ or $\mathrm{NO}_{3}{ }^{-}$) and the $\mathrm{Mn}^{\text {IV }}$ centre resides at the opposite verte\% of the cubane. ${ }^{18}\left[\mathrm{Mn}_{4} \mathrm{O}_{3}(\mathrm{OAc})_{4}(\mathrm{dbm})_{3}\right]$ (Figure $7.11(\mathrm{a})$) has one η^{1}, μ_{3} - OAc , three $\mu-\mathrm{OAc}^{-}$ligands and three chelating dbm^{-}ligands. ${ }^{18,117}$ The benzoate analogue, $\left[\mathrm{Mn}_{4} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}(\mathrm{dbm})_{3}\right]$ (Figure $7.11(\mathrm{~b})$) is less symmetrical, having an $\eta^{2}, \mu_{3}-\mathrm{O}_{2} \mathrm{CPh}$ group, owing to the larger size and resultant steric hindrance of the benzoate ligand.

Interestingly, this distorted cubane core type can be identified at the centre of Mn_{12}-acetate and related complexes, where $\mathrm{X}=\mu_{3}-\mathrm{O}^{2-}$ and all Mn centres are $\mathrm{Mn}^{\mathrm{IV}}$.

Figure 7.10 Distorted cubane core unit of $\left[\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{3}\left(\mu_{3}-\mathrm{X}\right)\right]^{6+}$.

(a)

(b)

Figure 7.11 The crystal structures of $\left[\mathrm{Mn}_{4} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4}(\mathrm{dbm})_{3}\right] \mathrm{R}=\mathrm{Me}(\mathrm{a})$ and $\mathrm{Ph}(\mathrm{b})$, with the central cubanes and surrounding Mn-O bonds highlighted (black). Reproduced from reference 18.

Some examples of Mn_{4} clusters with less common structural types are described below. Using a ligand related to hmp , Yoo et al. ${ }^{115}$ reported a $\mathrm{Mn}^{\mathrm{HI}}{ }_{2} \mathrm{Mn}^{\mathrm{III}} 2$ complex, $\left[\mathrm{Mn}_{4}(6-\mathrm{Me}-\mathrm{hmp})_{6} \mathrm{Cl}_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (6-iMe-hmpH $=6$-methyl-2-hydroxymethylpyridine), which has four manganese ions arranged in a 'bent chain' (Figure '7.12). A ladder-like [$\mathrm{Mn}_{4} \mathrm{O}_{2}$] core is present in a $\mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}^{\mathrm{III}} 3$ complex, $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{OMe})_{3}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{~L}_{2}(\mathrm{MeOH})\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Figure 7.13), where $\mathrm{L}=1,2$-bis(2,2'-bipyridine-6-yl)ethane. This complex is an SMM with an $S=7 / 2$ ground state and axial zero-field splitting parameter $D=-0.77 \mathrm{~cm}^{-1} .{ }^{118}$

Ladder-like cores with the same ligand, L , have been observed previously in the $\mathrm{Fe}^{\mathrm{ml}}$ complexes $\left[\mathrm{Fe}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4} \mathrm{~L}_{2}\right]^{2+}$ and $\left[\mathrm{Fe}_{6} \mathrm{O}_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L}_{2}\right]^{3+} .{ }^{119,120}$

Figure 7.12 The crystal structure of $\left[\mathrm{Mn}_{4}(6-\mathrm{Me}-\mathrm{hmp})_{6} \mathrm{Cl}_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (reproduced from reference 115).

Figure 7.13 The crystal structure of $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{OMe})_{3}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{~L}_{2}(\mathrm{MeOH})\right]\left(\mathrm{ClO}_{4}\right)_{2}$, which possesses the ladder-like $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]$ core (reproduced from reference 118).

7.3.2 $\mathbf{M n}_{12}$-acetate, its Derivatives and Related Dodecanuclear Manganese Carboxylate Clusters

As stated above, the first complex characterised to be what was later called a single-molecule magnet (SMM), was $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{12}-\right.$ acetate) shown in Figure 7.1. The molecule is roughly planar or disc-like in shape. Its structure consists of a central $\left[\mathrm{Mn}^{\mathrm{VV}}{ }_{4}\left(\mu_{3}-\mathrm{O}\right)_{4}\right]^{8+}$ cubane that is linked to an outer perimeter of $8 \mathrm{Mn}^{\text {It }}$ centres by $8 \mu_{3}-\mathrm{O}^{2-}$ ions and $4 \mu-\mathrm{OAc}^{-}$(above and below the disc plane). ${ }^{91}$ Peripheral ligation of these $8 \mathrm{Mn}^{\text {III }}$ centres consist of 8μ-OAc (in the plane of the molecule), $8 \mu-\mathrm{OAc}^{-}$(perpendicular to the plane of the molecule) and 4 terminal $\mathrm{H}_{2} \mathrm{O}$ ligands. The $\mathrm{H}_{2} \mathrm{O}$ ligands are situated on every second Mn^{111} centre, oriented in an 'up-down-up-down' fashion. If we consider only the $\mu_{3}-\mathrm{O}^{2-}$ bridges between the perimeter $\mathrm{Mn}^{\mathrm{III}}$ and cubane $\mathrm{Mn}^{\mathrm{IV}}$ centres, the $\mathrm{Mn}^{\mathrm{III}}$ centres fall equally into two classes. We can define the 'type $\mathrm{I}^{\prime} \mathrm{Mn}^{1 I 1}$ centres as the ones with double $\mu_{3}-\mathrm{O}^{2-}$ bridges to single $\mathrm{Mn}^{\mathrm{IV}}$ centres, whereas 'type II' $\mathrm{Mn}^{\text {III }}$ centres are defined as those with single $\mu_{3}-\mathrm{O}^{2}$ b bridges to two $\mathrm{Mn}^{\mathrm{JV}}$ centres. The arrangement of the four $\mathrm{H}_{2} \mathrm{O}$ ligands in Mn_{12}-acetate has been given the notation 1:1:1:1, meaning that there is one $\mathrm{H}_{2} \mathrm{O}$ ligand per type II $\mathrm{Mn}^{\text {III }}$ centre.
Mn_{12}-acetate is prepared by a reaction of $\mathrm{Mn}^{\mathrm{II}}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with KMnO_{4} in 60% (v/v) acetic acid/water, summarised in Equation 7.2, with typical yields of $80 \%{ }^{18,91}$

$$
44 \mathrm{Mn}^{2+}+16 \mathrm{Mn}^{7+} \rightarrow 5\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{4} \mathrm{Mn}^{\mathrm{IIII}}{ }_{8}\right]^{40+} \quad \text { Equation } 7.2
$$

Today, it remains the most comprehensively studied SMM. ${ }^{91}$ Many diverse experimental techniques have been used to probe the physical properties of this species. ${ }^{24,91,97,121-128}$

Very recently, a low temperature (83 K) crystal structure of Mn_{12}-acetate was determined. ${ }^{129,130}$ The original structural determination by Lis^{15} at ambient temperature
was solved in the highly symmetric tetragonal space group $\overline{4}$, hence the molecule is structurally isotropic. The low temperature study gave evidence for effective symmetry reduction of the Mn_{12}-acetate molecules by structural disorder in the peripheral ligands, induced by hydrogen bonding interactions with the disordered lattice acetic acid molecules (Figure 7.14). Up to six Mn_{12}-acetate isomers are potentially present in the crystal lattice (preserving the crystal tetragonal $/ \overline{4}$ symmetry), which differ in the number and arrangement of the hydrogen-bonded acetic acid molecules, four having symmetry lower than tetragonal. ${ }^{129,130}$

(a)

(b)

Figure 7.14 (a) The crystal structure of Mn_{12}-acetate with the two positions occupied by the acetic acid molecules shown and hydrogen bonds indicated by dashed lines. (b) The disorder induced in the peripheral acetate ligands by hydrogen bonding interactions with lattice acetic acid, where the two positions are shown (reproduced from reference 129).

In addition to Mn_{12}-acetate, several other carboxylate derivatives with the general formula, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]$ Solvent, have been prepared. ${ }^{91}$ Those for which the
structures have been reported are given in Table 7.1. The various carboxylate derivatives are generally obtained by ligand substitution, involving reacting a slurry of Mn_{12}-acetate in a suitable solvent with a large excess of the desired carboxylic acid. The major structural difference is the presence of either three or four $\mathrm{H}_{2} \mathrm{O}$ ligands. Examples of the former case, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{49}$ and $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}^{19}$ (Table 7.1) have three terminal $\mathrm{H}_{2} \mathrm{O}$ ligands, resulting in one $\mathrm{Mn}^{\mathrm{III}}$ centre being five-coordinate. It is believed this is a solid-state effect and that in solution the complexes would have four terminal $\mathrm{H}_{2} \mathrm{O}$ ligands. ${ }^{91}$ Additionally, differences in the arrangements of the peripheral carboxylate and $\mathrm{H}_{2} \mathrm{O}$ ligands have been observed. These are described by the arrangement of the water coordination using the notation given above for Mn_{12}-acetate. For example the p-methybenzoate derivatives, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}-p-\mathrm{Me}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{S}$ where $\mathrm{S}=3 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{12}-\right.$ $\left.\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ and $p-\mathrm{Me}-\mathrm{PhCO}_{2} \mathrm{H}\left(\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot \mathrm{HO}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph}\right){ }^{49,100}$ are structural isomers with 1:2:1:0 and 1:1:2:0 arrangements of the four terminal $\mathrm{H}_{2} \mathrm{O}$ ligands. These structural isomers also exhibit a phenomenon known as Jahn-Teller isomerism (Figure 7.15). ${ }^{49,100}$ While $\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has all eight Jahn-Teller elongation axes of the perimeter $\mathrm{Mn}^{\mathrm{I} \mathrm{\prime} \mathrm{\prime}}$ centres oriented roughly perpendicular to the plane of the molecule, the other isomer $\left(\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot \mathrm{HO}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph}\right)$ has an unusual disordered Jahn-Teller elongation axis directed towards a $\mu_{3}-\mathrm{O}^{2-}$ ion and as such is approximately parallel to the Mn_{12} plane. The AC out-of-phase, $\chi^{\prime \prime}$, susceptibility behaviours of these two isomers are shown in Figure 7.16. $\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ exhibits magnetisation relaxation at $4-6 \mathrm{~K}$, whereas $\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot \mathrm{HO}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph}$ does so at lower temperatures, 2-3 K , which suggests a lower barrier potential to reversal of magnetisation for the latter isomer. As both molecules have identical ground state spin values of $S=10$, the difference is due to the lesser zero-field splitting parameter, D, in $\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot \mathrm{HO}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph}$ because it has one of its Jahn-Teller elongation axes
roughly parallel to the plane of the molecule. As the overall magnetic anisotropy is largely due to the vector sum of the individual Mn^{111} single-ion anisotropies, the sum is clearly less for $\mathrm{Mn}_{12}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph} \cdot \mathrm{HO}_{2} \mathrm{C}-p-\mathrm{Me}-\mathrm{Ph}^{49}{ }^{49}$ When the $4-6 \mathrm{~K}$ and $2-3 \mathrm{~K} \mathrm{AC} \chi^{\prime \prime}$ signals are seen simultaneously, both isomers are present in the sample.

Table 7.1 Mn_{12} derivatives, of formula $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]$.Solvent, with reported structures (modified from reference 91).

R	\boldsymbol{x}	Solvent	Water Coordination	Space Group	GroundState S	Ref
Me	4	$2 \mathrm{MeCO}_{2} \mathrm{H}, 4 \mathrm{H}_{2} \mathrm{O}$	1:1:1:1	$1{ }^{4}$	10	15
$E t^{(a)}$	3	$4 \mathrm{H}_{2} \mathrm{O}$	$1: 1: 1^{(a)}$	$P \overline{1}$	9	19,49
$E t^{(a)}$	3		$1: 1: 1{ }^{\text {(a) }}$	$P 2,1 / c$	9	49
Me, Et	4	$2 \mathrm{H}_{2} \mathrm{O}, 4 \mathrm{EtCO}_{2} \mathrm{H}$	1:1:1:1	14 m	10	131
$\mathrm{CH}_{2} \mathrm{Bu}^{\text {t }}$	4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeNO}_{2}$	1:2:1:0	$P \overline{1}$	10	26
Ph	4		2:2:0:0	$P \overline{1}$	10	16,29
Ph	4	$2 \mathrm{PhCO}_{2} \mathrm{H}$	2:2:0:0	$F d d 2$	10	132
$p-\mathrm{Me}-\mathrm{Ph}$	4	p - $\mathrm{Me}-\mathrm{PhCO}_{2} \mathrm{H}$	1:2:1:0	$\mathrm{C} 2 / \mathrm{c}$	10	49
$p-\mathrm{Me}-\mathrm{Ph}$	4	$3 \mathrm{H}_{2} \mathrm{O}$	1:1:2:0	12/a	10	49
$p-\mathrm{Cl}-\mathrm{Ph}$	4	$8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2:2:0:0	$\mathrm{C} 2 / \mathrm{c}$	10	49
$m-\mathrm{Cl}-\mathrm{Ph}{ }^{\text {(b) }}$	3	$m-\mathrm{Cl}-\mathrm{PhCO}_{2} \mathrm{H}$	1:1:2 ${ }^{\text {(b) }}$	$P \overline{1}$	9	133
$o-\mathrm{Cl}-\mathrm{Ph}$	4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{H}_{2} \mathrm{O}$	1:1:2:0	Pnn2	10	134
$\mathrm{CH}_{2} \mathrm{Ph}$	4		1:2:1:0	$P \overline{1}$	10	26
$\mathrm{CH}_{2} \mathrm{Cl}$	4	$2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 \mathrm{H}_{2} \mathrm{O}$	1:1:1:1	C2/c	10	135
$\mathrm{CH}_{2} \mathrm{Br}$	4	$4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1:1:1:1	I41/a	10	135
CHCHCH_{3}	4	$\mathrm{H}_{2} \mathrm{O}$	1:1:1:1	$l b c a$	10	136

${ }^{\text {(a) }}$ Since there are only three terminal $\mathrm{H}_{2} \mathrm{O}$ ligands, one of the $\mathrm{Mn}^{\text {II }}$ centres is fivecoordinate.
${ }^{\text {(b) }}$ Formula is actually $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(m-\mathrm{Cl}-\mathrm{PhCO}_{2}\right)_{15}\left(m-\mathrm{Cl}-\mathrm{PhCO}_{2} \mathrm{H}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot m-\mathrm{Cl}-\mathrm{PhCO}_{2} \mathrm{H}$, where the terminal $m-\mathrm{Cl}-\mathrm{PhCO}_{2} \mathrm{H}$ and $3 \mathrm{H}_{2} \mathrm{O}$ ligands are in a 1:1:2:0 arrangement.

(a)

(b)

Figure 7.15 Side-on views of the core structures of (a) $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}-\mathrm{p}\right.\right.$ $\left.\mathrm{Me})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and (b) $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}-p-\mathrm{Me}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot\left(p-\mathrm{Me}^{-} \mathrm{PhCO}_{2} \mathrm{H}\right)$. The coordination geometries around each Mn atom are shown. Each of the eight $\mathrm{Mn}^{\text {II' }}$ centres shows Jahn-Teller (JT) elongation. For (a) these are indicated by solid lines, and for (b) the JT elongation axis, dashed line, pointed at an O^{2-} is unusual. There are two dashed lines because the molecule displays a crystallographic C_{2} axis disorder (reproduced from reference 49).

Figure 7.16 Plots of $\chi^{\prime \prime}$ versus temperature for $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}-p-\mathrm{Me}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot(p$-Me$\mathrm{PhCO}_{2} \mathrm{H}$) (upper) and $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}-\mathrm{p}-\mathrm{Me}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (lower) for three different field frequencies (reproduced from reference 49).

A small number of mixed-carboxylate derivatives have also been prepared, including $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{8}\left(\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{S}$, where $\mathrm{R}=\mathrm{CHCl}_{2}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{Bu}^{t}, \mathrm{~S}=$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{R}=\mathrm{CHCl}_{2}, \mathrm{R}^{\prime}=\mathrm{Et}, \mathrm{S}=\mathrm{CH}_{2} \mathrm{Cl}_{2}$, by a 1:1 reaction of the corresponding homocarboxylate species. ${ }^{68}$ In these Mn_{12} derivatives site-specific ligand substitution was observed, i.e. the $\mathrm{O}_{2} \mathrm{CR}$ groups were found at the axial positions and the $\mathrm{O}_{2} \mathrm{CR}^{\prime}$ groups were at the equatorial sites. This was rationalised on the basis of the relative basicities of the different carboxylate groups. It was found the less basic carboxylates would preferentially substitute at the axial Jahn-Teller elongated sites where $\mathrm{Mn}-\mathrm{O}$ bonds were weaker and consequently ligands more easily displaced.

Several Mn_{12} derivatives have been reported with non-carboxylate ligands. Christou et al. ${ }^{69}$ prepared the complexes $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{S}$, where $\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{Bu}^{t}, \mathrm{~S}=\mathrm{MeNO}_{2}$ and $\mathrm{R}=\mathrm{Ph}, \mathrm{S}=3 \mathrm{H}_{2} \mathrm{O}$, by reacting the corresponding carboxylate derivatives with nitric acid in MeCN . In those complexes the four $\mathrm{NO}_{3}{ }^{-}$ligands take the place of four axial $\mu-\mathrm{OAc}^{-}$groups. The nitrate derivatives exhibit almost identical magnetic behaviour to their corresponding homocarboxylate clusters. The diphenylphosphinate derivative also reported by Christou et al., $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{8}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, was prepared by reacting eight equivalents of $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}$ with Mn_{12}-acetate in $\mathrm{MeCN}{ }^{137}$ The eight $\mu-\mathrm{O}_{2} \mathrm{PPh}_{2}$ groups replace the acetate groups at four of the axial $\mathrm{Mn}^{\mathrm{III}}-\mathrm{Mn}^{\mathrm{III}}$ and four of the equatorial $\mathrm{Mn}^{\mathrm{III}}-\mathrm{Mn}^{\mathrm{III}}$ sites. In a similar situation to the p-methylbenzoate derivatives described above, three Jahn-Teller isomers of this mixed acetate/diphenylphosphinate cluster were observed. Similarly, Kuroda-Sowa et al. ${ }^{67}$ recently reported a diphenylphosphate derivative, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{P}(\mathrm{OPh})_{2}\right)_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, by reacting the benzoate cluster with four equivalents of $(\mathrm{PhO})_{2} \mathrm{PO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The four $\mu-\mathrm{O}_{2} \mathrm{P}(\mathrm{OPh})_{2}$ groups substitute at four axial $\mathrm{Mn}^{\mathrm{mII}}-\mathrm{Mn}^{\text {III }}$ positions. The benzoate groups in
the axial $\mathrm{Mn}^{\mathrm{IV}}-\mathrm{Mn}^{\mathrm{IH}}$ sites were not substituted, hence site specific ligand replacement or abstraction occurred.

A number of heterometallic analogues have been prepared with essentially the same core structure as Mn_{12}-acetate. These include $\left[\mathrm{Mn}_{8} \mathrm{Fe}_{4} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right],{ }^{30}$ and $\left[\mathrm{Mn}_{11} \mathrm{CrO}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] .{ }^{138}$ The former complex is prepared by reacting $\mathrm{Fe}(\mathrm{OAc})_{2}$ with KMnO_{4} in 60% aqueous acetic acid. The structure has alternating $\mathrm{Mn}^{\mathrm{III}}$ and $\mathrm{Fe}^{\mathrm{IIf}}$ centres in the perimeter metal sites. The ground state spin, $S=2$, is much lower than Mn_{12}-acetate, but the axial zero-field splitting parameter is much larger, being $D=-1.8 \mathrm{~cm}^{-1}$. However, the authors did not perform AC susceptibility measurements and did not discuss slow relaxation of magnetisation. The $\mathrm{Mn}_{11} \mathrm{Cr}$ analogue was obtained by reacting $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ with $\mathrm{Mn}(\mathrm{OAc})_{2}$ in aqueous acetic acid, and was reported to have the $\mathrm{Cr}^{11 \prime}$ centre occupying $1 / 4$ of one of the two crystallographically independent $\mathrm{Mn}^{\mathrm{III}}$ atoms. The third crystallographically independent Mn site is $\mathrm{Mn}^{\mathrm{IV}}$. A ground state spin of $S=8$ was found for this analogue.

An interesting feature of Mn_{12} clusters is that they remain intact in solution as shown by ${ }^{1} \mathrm{H}$ NMR spectroscopic measurements on the acetate, propionate and benzoate derivatives. ${ }^{19,49,91,139}$ The high stability of the Mn_{12} clusters in solution has led to the study of their redox properties. For instance, Mn_{12}-acetate exhibits four redox processes in acetonitrile, which are summarised in Equation 7.3. ${ }^{16}$
$\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\right]^{+} \Longrightarrow\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\right] \rightleftharpoons\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\right]^{-} \longrightarrow\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\right]^{2-} \quad$ Equation 7.3 $\longrightarrow\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\right]^{3-}$

Consequently, several reduced Mn_{12} species have been reported. ${ }^{19,28,50,51,140,141}$ The first reduction potential is low enough that mild reducing reagents such as iodide have been used to prepare the singly reduced mono-anionic species, $\left[\mathrm{Mn}_{12}\right]^{-}$. For example, the
complexes $\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (where $\mathrm{R}=\mathrm{Et}, \mathrm{Ph}$), ${ }^{19,28,50}$ were obtained by treating the neutral species with $\mathrm{Ph}_{4} \mathrm{PI}^{91}$ The $\mathrm{R}=\mathrm{Et}$ anion has been shown to be trapped valence $\mathrm{Mn}^{\mathrm{IV}}{ }_{4} \mathrm{Mn}^{111}{ }_{7} \mathrm{Mn}^{11}$, ${ }^{19}$ where one of the perimeter $\mathrm{Mn}^{\mathrm{III}}$ centres is reduced to Mn^{11}. These species have a half-integer ground state of $S=19 / 2$, appreciable magnetoanisotropy ($D=-0.62 \mathrm{~cm}^{-1}$) and like the neutral species display slow relaxation of magnetisation. A small number of singly reduced species have been reported with paramagnetic cations, including $[m-\mathrm{MPYNN}]\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (where $\quad m-\mathrm{MPYNN}^{+}=m-N-$ methylpyridinium nitronyl nitroxide), ${ }^{140}$ and $\left[\mathrm{Fe}(\mathrm{L})_{2}\right]\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, (where $\left.\mathrm{L}=\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)^{70,142}$ The former cluster $(S=19 / 2)$ has enhanced magnetisation relaxation due to presence of the organic radical cation ($S=1 / 2$). Unlike the previously mentioned $\left[\mathrm{Mn}_{12}\right]^{-}$species, the clusters with the metallocene cations have ground states of $S=21 / 2$. No significant change was observed in the magnetisation relaxation. ${ }^{70,91}$ Like the non-reduced species, the $\left[\mathrm{Mn}_{12}\right]^{-}$clusters display magnetic hysteresis with steps, including a step at zero field. The occurrence of zero-field quantum tunnelling was not predicted for non-integer ground state spin species.

By using stronger electron withdrawing carboxylate groups, the electron density on the Mn centres is decreased, and hence the first and second reduction potentials are lowered. ${ }^{51}$ Consequently, several $\left[\mathrm{Mn}_{12}\right]^{2-}$ species have been obtained using I^{-}as the reducing agent, as employed for the $\left[\mathrm{Mn}_{12}\right]$ species (vide supra). The addition of two equivalents of Ph 4 PI to the corresponding $\left[\mathrm{Mn}_{12}\right]$ species led to the compounds $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]$, where $\mathrm{R}=\mathrm{CHCl}_{2}, x=3 ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, x=4$ and $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3}-$ 2,4- $\left(\mathrm{NO}_{2}\right)_{2}, x=4{ }^{51}$ These species are trapped valence, $\mathrm{Mn}^{\mathrm{IV}}{ }_{4} \mathrm{Mn}^{\mathrm{III}}{ }_{6} \mathrm{Mn}^{\mathrm{II}}$, where both $\mathrm{Mn}{ }^{\mathrm{II}}$ centres are located on the Mn_{8} perimeter. SMM behaviour is retained with $S=10$ ground states.

Very recently Boskovic and Christou et al. ${ }^{48,143}$ reported a new class of Mn_{12} carboxylate clusters of formula $\left[\mathrm{Mn}_{12} \mathrm{O}_{8} \mathrm{X}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{8} \mathrm{~L}_{6}\right]$, where $\mathrm{X}^{-}=\mathrm{Cl}$ and $\mathrm{L}=\mathrm{hmp}^{-}$(2(hydroxymethyl)pyridinato) or hep ${ }^{-}$(2-(hydroxyethyl)pyridinato); $\mathrm{X}^{-}=\mathrm{Br}$ and $\mathrm{L}=$ hep $^{-}$. These clusters consist of an isomeric $\left[\mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}{ }_{10} \mathrm{Mn}^{\mathrm{II}}{ }_{2}\left(\mu_{4}-\mathrm{O}\right)_{4}\left(\mu_{3}-\mathrm{O}\right)_{4}(\mu-\mathrm{O})_{8}\left(\mu_{3}-\mathrm{X}\right)_{2}\right]$ core but with differing peripheral ligation. The eight μ_{4} - and $\mu_{3}-\mathrm{O}$ atoms are O^{2-} ions and the $\mu-\mathrm{O}$ atoms are provided by the hmp or hep ligands. The crystal structure of $\left[\mathrm{Mn}_{12} \mathrm{O}_{8} \mathrm{Cl}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{8}(\text { hep })_{6}\right]$ is shown in Figure 7.17. The Mn^{11} atoms are the 'end' Mn centres (Mn6 and Mn6' in Figure 7.17). F. $\mathrm{X}^{-}=\mathrm{Cl}_{\mathrm{man}}^{\sim}$ = $=\mathrm{hmp}^{\circ}$ the complex is an SMM with $S=6$ or 7 , and has out-of-phase, $\chi^{\prime \prime}$, signals at higitier temperatures than those of the previous Mn_{12} species above. However, for $\mathrm{X}^{-}=\mathrm{Cl}$ or Br and $\mathrm{L}=$ hep ${ }^{\circ}$, the molecules are low spin with $S=0$ ground states.

Figure 7.17 The crystal structure of $\left[\mathrm{Mn}_{12} \mathrm{O}_{8} \mathrm{Cl}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{8}(\mathrm{hep})_{6}\right]$ (thermal ellipsoids shown at 50% probability) reproduced from reference 48.

7.3.3 Other Manganese Cluster Nuclearities

The most common metal nuclearitics for manganese oxo bridged clusters and consequently SMMs are 4 and 12. However, there is a wide range of species with different nuclearities and interesting structures, some of which are SMMs. Presented below are some examples of the following nuclearities known to date, which are (besides Mn_{4} and Mn_{12}): $\mathrm{Mn}_{6-11}, \mathrm{Mn}_{13}, \mathrm{Mn}_{14}, \mathrm{Mn}_{16}, \mathrm{Mn}_{18}, \mathrm{Mn}_{21}, \mathrm{Mn}_{26}$ and Mn_{30}.

The first hexanuclear Mn cluster was reported by Thomton et al. in 1986. ${ }^{144}$ $\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{HO}_{2} \mathrm{CCMe}_{3}\right)_{4}\left(\mathrm{O}_{2} \mathrm{CCMe}_{3}\right)_{10}\right]\left(4 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}{ }^{\mathrm{III}}\right)$ consists of two MnO_{4} tetrahedra sharing an edge with the four other Mn atoms connected to the core unit via pivalate bridges. In 1988 Caneschi and Gatteschi et al. ${ }^{145}$ reported a hexanuclear Mn ${ }^{11}$ wheel-like complex with a ground state spin $S=12,\left[\mathrm{Mn}(\mathrm{hfac})_{2}(\mathrm{NITPh})_{6}\right.$ (where Hhfac $=$ hexafluoroacetylacetone; NITPh $=$ 2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl 3-oxide), shown in Figure 7.18. The spin results from antiferromagnetic exchange between the $S=5 / 2\left(\mathrm{Mn}^{11}\right)$ and $S=1 / 2$ (NITPh radical) moieties. ${ }^{105}$

Figure 7.18 The crystal structure of $\left[\mathrm{Mn}(\mathrm{hfac})_{2}(\mathrm{NITPh})\right]_{6}$ (large spheres represent Mn centres). Reproduced from reference 145.

Recently, Cañada-Vilalta and Christou et al. ${ }^{146}$ used the dicarboxylate ligand m phenylenedipropionate (mpdp ${ }^{2-}$), to synthesise, in addition to dinuclear and trinuclear Mn complexes, the hexanuclear cluster $\left[\mathrm{Mn}_{6} \mathrm{O}_{7}(\mathrm{mpdp})_{3}\left(2,2^{\prime}-\text { bipy }\right)_{3}\right]\left(\mathrm{ClO}_{4}\right) \cdot 3.5 \mathrm{MeCN}$, shown in Figure 7.19. The Mn_{6} complex was obtained by oxidation of the $\mathrm{Mn}^{\mathrm{III}}{ }_{2}$ species with (n $\left.\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{MnO}_{4}$ in acetonitrile. The core can be described as being composed of two triangular units, $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{3}\left(\mu_{2}-\mathrm{O}\right)_{3}\right]^{6+}$ and the oxo-centred $\left[\mathrm{Mn}^{\mathrm{II}}{ }_{3}\left(\mu_{3}-\mathrm{O}\right)_{4}\right]^{+}$superimposed with a pseudoC_{3} axis perpendicular to both. This complex possesses an $S=3 / 2$ ground state and $D=-$ $0.79 \mathrm{~cm}^{-1} .{ }^{146}$ The authors did not report AC susceptibility data, and did not discuss whether it is an SMM.

Figure 7.19 Crystal structure (of one of the enantiomeric cations of) $\left[\mathrm{Mn}_{6} \mathrm{O}_{7}(\mathrm{mpdp})_{3}\left(2,2^{\prime}-\right.\right.$ bipy $\left.)_{3}\right]\left(\mathrm{ClO}_{4}\right) \cdot 3.5 \mathrm{MeCN}$ with the $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{3}\left(\mu_{2}-\mathrm{O}\right)_{3}\right]^{6+}$ (lower) and $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{3}\left(\mu_{3}-\mathrm{O}\right)_{4}\right]^{+}$(upper) units are highlighted (reproduced from reference 146).

Examples of another structural family of Mn_{6} carboxylate clusters include $\begin{array}{lr}{\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{py})_{2}(\mathrm{MeCN})_{2}\right] \cdot 2 \mathrm{MeCN},{ }^{147}} & {\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{py})_{4}\right] \cdot \mathrm{Et}_{2} \mathrm{O},{ }^{147}} \\ {\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{EtOH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{EtOH},{ }^{148}} & {\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{C}-3,5-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{Ph}\right)_{10}(\mathrm{py})_{2}-\right.}\end{array}$ $\left.\left((\mathrm{Me})_{2} \mathrm{CO}\right)_{2}\right] \cdot 2(\mathrm{Me})_{2} \mathrm{CO} \cdot 2 \mathrm{Et}_{2} \mathrm{O}$ and $\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{MeCN})_{4}\right] .{ }^{149}$ Each of these complexes contain a $\left[\mathrm{Mn}^{11}{ }_{4} \mathrm{Mn}^{\mathrm{III}}{ }_{2}\left(\mu_{4}-\mathrm{O}\right)_{2}\right]^{10+}$ core (Figure 7.20), which consists of two $\mathrm{Mn}^{\mathrm{HI}}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{2}\left(\mu_{4}-\mathrm{O}\right)$ oxo-centred tetrahedra sharing the $\mathrm{Mn}^{\mathrm{III}}-\mathrm{Mn}^{\mathrm{ill}}$ edge.

Figure 7.20 The crystal structure of $\left[\mathrm{Mn}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{MeCN})_{4}\right]$ (left) with only the Mn centres shown with octant slices. A schematic of the structure (right), where $\mathrm{R}=\mathrm{Ph}, \mathrm{L}^{1}=$ $\mathrm{L}^{2}=\mathrm{MeCN}$. The $\left[\mathrm{Mn}^{11}{ }_{4} \mathrm{Mn}^{\mathrm{III}}{ }_{2}\left(\mu_{4}-\mathrm{O}\right)_{2}\right]^{10+}$ core unit is highlighted. Reproduced from reference 149.

The hexanuclear clusters, $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{X}_{4}\left(4,4^{\prime}-\mathrm{R}_{2} \mathrm{dbm}\right)_{6}\right]$ (where $\mathrm{X}=\mathrm{Cl}^{-}$, Br^{-}and $\mathrm{R}=$ $\mathrm{Me}, \mathrm{Et}),{ }^{55.56}$ are obtained by the slow hydrolysis of the mononuclear species $\left[\mathrm{Mn}{ }^{111}\left(4,4^{\prime}-\right.\right.$ $\left.\left.\mathrm{R}_{2} \mathrm{dbm}\right)_{2} \mathrm{X}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$. The structures, shown in Figure 7.21 , contain a $\left[\mathrm{Mn}^{\mathrm{IIf}}{ }_{6}\left(\mu_{3^{-}}\right.\right.$
$\left.\mathrm{O})_{4}\left(\mu_{3}-\mathrm{X}\right)_{4}\right]^{6+}$ core, which consists of a $\mathrm{Mn}^{1 \mathrm{HI}}{ }_{6}$ octahedron whose faces are capped by O^{2-} or Cl^{-}ions. These complexes have a particularly high $S=12$ ground state due to being completely ferromagnetic coupled, however as $D \approx 0 \mathrm{~cm}^{-1}$, these molecules do not display SMM behaviour. The lack of an appreciably negative D value is thought to be due to the high symmetry (near T_{d}) of the complexes, which averages out to zero the individual single-ion anisotropies of the six Jahn-Teller distorted Mn ${ }^{\text {III }} .{ }^{56}$

Figure 7.21 Two different representations of the crystal structure of $\left[\mathrm{Mn}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}\left(4,4^{\prime}\right.\right.$ $\left.\mathrm{Me}_{2} \mathrm{dbm}\right)_{6}$ ((only the ipso carbons of the $4,4^{\prime}-\mathrm{Me}_{2} \mathrm{dbm}^{-}$ligands are shown for clarity). On the left, the near tetrahedron is emphasised by filled bonds. On the right, the $\mathrm{Mn}-\mathrm{Mn}$ vectors are shown to emphasise the Mn_{6} octahedron with O^{2-} and Cl^{-}ions capping the faces (reproduced from reference 56).

The high ground state value of $S=12$ has also been observed in the $\left[\mathrm{Na} \subset \mathrm{Mn}^{\mathrm{III}}{ }_{6}(\mathrm{OMe})_{12}(\mathrm{dbm})_{6}\right]^{+}$complex. ${ }^{150}$ The structure, which is shown in Figure 7.22 is isostructural with the $F \mathrm{e}^{\mathrm{II}}$ analogue, ${ }^{151,152}$ and consists of a $\left[\mathrm{Mn}_{6}(\mathrm{OMe})_{12}\right]$ ring with the 12 -
metallacrown-6 structure that hosts a Na^{+}ion in a trigonally distorted octahedral environment. Interestingly, though not unusually, the $\mathrm{Mn} / \mathrm{Na} / \mathrm{O}$ core adopts the CdI_{2} type layered structure.

Figure 7.22 The crystal structure of $\left[\mathrm{NaMn}^{\mathrm{III}}{ }_{6}(\mathrm{OMe})_{12}(\mathrm{dbm})_{6}\right]^{+}$(left) and a schematic representation of the CdI_{2} type $\mathrm{Mn} / \mathrm{Na} / \mathrm{O}$ core (right), where the $\mathrm{Mn}^{\text {III }}$ Jahn-Teller elongated bonds are highlighted (black). Reproduced from reference 150.

The Mn_{7} compound $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}_{7}(\mathrm{OH})_{3} \mathrm{Cl}_{3}(\mathrm{hmp})_{9}\right] \mathrm{Cl}\left(\mathrm{MnCl}_{4}\right)\left(4 \mathrm{Mn}^{11}, 3 \mathrm{Mn}^{\mathrm{III}}\right)$, contains a heptanuclear complex that has the same layered CdI_{2} core structure of the previous NaMn_{6} complex, where the central Na^{+}ion is replaced by a Mr^{11} ion. ${ }^{57}$ The crystal structure of the cationic complex is shown in Figure 7.23. In addition to the central $\mathrm{Mn}(1)$ being $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Mn}(3), \mathrm{Mn}(5)$ and $\mathrm{Mn}(7)$ are also $\mathrm{Mn}^{\mathrm{I} \mathrm{\prime}}$, with the remainder being $\mathrm{Mn}^{\mathrm{III}}$. The high ground state value of $S \geq 10$ (10 or 11 from two equally good fits to magnetisation vs. field data) possessed by this complex, which is less than the fully ferromagnetically coupled value of 16 , is reported to result from competing exchange
interactions of comparable magnitude. The interactions are assumed to be antiferromagnetic in nature, thus spin frustration causes an intermediate (albeit high) spin ground state value. Despite negative D values $\left(-0.15\right.$ or $\left.-0.18 \mathrm{~cm}^{-1}\right)$ obtained from data fits, this complex does not show out-of-phase AC susceptibility signals, a key indicator of SMM behaviour. An interesting example of a Mn_{7} carboxylate cluster is $\left[\mathrm{Mn}_{7} \mathrm{O}_{4}(\mathrm{OAc})_{10}(\mathrm{dbm})_{4}\right]^{153}$ shown in Figure 7.24 , which can be described as two wingtip sharing, asymmetrically bent butterfly $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]$ units, and has an $S=3$ or 4 ground state.

Figure 7.23 The crystal structure of $\left[\mathrm{Mn}_{7}(\mathrm{OH})_{3} \mathrm{Cl}_{3}(\mathrm{hmp})_{9}\right]^{2+}$ with the Mn coordination environments emphasised (filled bonds). Reproduced from reference 57.

Figure 7.24 The crystal structure of $\left[\mathrm{Mn}_{7} \mathrm{O}_{4}(\mathrm{OAc})_{10}(\mathrm{dbm})_{4}\right]$. The spheres represent Mn ions. Image rendered from CSD simulated SHELX res file from entry JOTTER.

Many octanuclear manganese clusters have been reported, most of which can be described as having formed by the aggregation of smaller $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]$ units. $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{8} \mathrm{O}_{4}(\mathrm{OAc})_{12}(\mathrm{pic})_{4}\right]$ (where pic ${ }^{-}=$picolinate), shown in Figure 7.25 , is obtained by treatment of $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}^{\mathrm{HI}}{ }_{4} \mathrm{O}_{2}(\mathrm{OAc})_{7}(\text { pic })_{2}\right]$, which has the bent butterfly structure, with $\mathrm{Me}_{3} \mathrm{SiCl}$, leading to selective abstraction of the unique Jahn-Teller labilised 'body' μ-OAc ${ }^{\text {- }}$ and dimerization of the resulting fragment to form the octanuclear species. ${ }^{58,154}$ This octanuclear species can also be obtained by reaction of $\left[\mathrm{Mn}^{1 \mathrm{~V}}{ }_{2} \mathrm{O}_{2}(\mathrm{pic})_{4}\right]$ with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{58}$

Figure 7.25 The crystal structure of $\left[\mathrm{Mn}^{11 \mathrm{I}} \mathrm{O}_{4}(\mathrm{OAc})_{12} \text { (pic) }\right)_{4}$] with the two $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right.$] butterfly units highlighted (black). Reproduced from reference 154.

Similarly, treatment of $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}^{\mathrm{liI}_{4}} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ with 2,2diethylmalonate (Et 2_{2} mal) leads to the formation of the mixed-valent (n $\left.\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Mn}_{8} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{12}\left(\mathrm{Et}_{2} \mathrm{mal}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right],\left(2 \mathrm{Mn}^{\mathrm{HI}}, 6 \mathrm{Mn}^{\mathrm{III}}\right) .{ }^{59}$ The structure, shown in Figure 7.26, contains a $\left[\mathrm{Mn}_{8} \mathrm{O}_{4}\right]^{14+}$ core that consists of two $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]^{7+}\left(\mathrm{Mn}^{11}, 3 \mathrm{Mn}^{111}\right)$ butterfly units linked together via two $\mu_{4}-\mathrm{O}^{2-}$ ions.

Figure 7.26 The crystal structure of $\left[\mathrm{Mn}_{8} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{12}\left(\mathrm{Et}_{2} \mathrm{mal}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ (left) and its $\left[\mathrm{Mn}_{8} \mathrm{O}_{4}\right]^{14+}$ core (right); the Mn^{11} ions are Mn 4 and Mn^{\prime} (reproduced from reference 59).

Boskovic and Christou et al. ${ }^{43}$ recently reported the octanuclear and nonanuclear $\mathrm{Mn} \quad$ complexes, $\quad\left[\mathrm{Mn}_{8} \mathrm{O}_{2}(\mathrm{py})_{4}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{8}(\mathrm{~L})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad\left(6 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}^{\mathrm{III}}\right) \quad$ and $\left[\mathrm{Mn}_{9}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{12}(\mathrm{pdm})(\mathrm{pdmH})_{2}(\mathrm{~L})_{2}\right]\left(7 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}^{\mathrm{III}}\right)$, which were formed from the reaction of pyridine-2,6-dimethanol $\left(\mathrm{pdmH}_{2}\right)$ with the trinuclear species $\left[\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{6}(\mathrm{py})_{3}\right]\left(\mathrm{ClO}_{4}\right)$ and $\left[\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{6}(\mathrm{py})_{3}\right]$ respectively. The pentadentate ligand LH_{2} (6-hydroxymethylpyridin-2-yl)-(6-hydroxymethylpyridin-2-ylmethoxy)-methanol), was formed in situ from pdmH ${ }_{2}$. The Mn_{8} complex (Figure 7.27(a)) contains a $\left[\mathrm{Mn}_{6}{ }_{6} \mathrm{Mn}^{1 \mathrm{II}}{ }_{2}\left(\mu_{4^{-}}\right.\right.$ $\left.\mathrm{O})_{2}\left(\mu_{3}-\mathrm{O}\right)_{4}(\mu-\mathrm{O})_{4}\right]^{2+}$ core unit that can be described as two distorted cubane units linked together. The Mn_{9} complex contains a $\left[\mathrm{Mn}^{\mathrm{II}}{ }_{7} \mathrm{Mn}^{\mathrm{II}}{ }_{2}\left(\mu_{3}-\mathrm{O}\right)_{6}(\mu-\mathrm{O})_{6}\right]^{4-}$ core unit, which can likewise be described in terms of two distorted cubanes, but in this case, linked by an additional $\mathrm{Mn}^{\text {" }}$ centre (Figure 7.27 (b)). The Mn_{8} cluster has a ground state spin value of S $=0$, whereas the Mn_{9} cluster has an $S=11 / 2$ value with $D=-0.11 \mathrm{~cm}^{-1}$ with magnetic hysteresis shown below 0.3 K . Thus, the latter is an SMM.

The family of Mn_{8} carboxylate complexes also includes $\left[\mathrm{Mn}_{8} \mathrm{O}_{6} \mathrm{Cl}_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-113,155} \quad\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{dbm})_{2}(\mathrm{bpe})\right]_{2} \quad(\mathrm{dbmH}=$ dibenzoylmethane, bpe $=$ trans-1,2-bis-(4-pyridyl)ethene), ${ }^{156}\left[\mathrm{Mn}_{8} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{14}\left(\mathrm{~L}_{2}\right)_{2}\right]^{2+}\left(\mathrm{L}_{2}\right.$ is a bis-2,2'-bipyridine ligand), ${ }^{157}\left[\mathrm{Mn}^{11}{ }_{8} \mathrm{~L}_{12}\left(\mu_{4}-\mathrm{O}\right)_{2}\right]$ ($\mathrm{LH}=2$-amino-3-bromo-5methylpyridine $),{ }^{158}$ the triple helicate $\left[\mathrm{Mn}_{8} \mathrm{O}_{2}\left(\mathrm{~L}^{\mathrm{Pr}}\right)_{6}\right]\left(\mathrm{H}_{2} \mathrm{~L}^{\mathrm{Pr}}=1,1^{\prime}-(2,6\right.$-Bispyridyl)bis-4-methyl-1,3-pentanedione, a pentadentate tritopic ligand), ${ }^{159}$ and $\left[\mathrm{Mn}_{8} \mathrm{~L}_{8}(\mathrm{HOPr})_{4}\right]\left(\mathrm{H}_{2} \mathrm{~L}=\right.$ diethyl keptinate). ${ }^{160}$ These species are not known to display SMM behaviour.

(b)

Figure 7.27 The crystal structures of (a) $\left[\mathrm{Mn}_{8} \mathrm{O}_{2}(\mathrm{py})_{4}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{8}(\mathrm{~L})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and (b) $\left[\mathrm{Mn}_{9}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{12}(\mathrm{pdm})(\mathrm{pdmH})_{2}(\mathrm{~L})_{2}\right]$ (right), with the respective core units highlighted (black). Reproduced from reference 43.

Other members of the family of Mn_{9} carboxylate complexes include $\left[\mathrm{Mn}_{9} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{8}(\mathrm{salO})(\mathrm{salOH})_{2}(\mathrm{py})_{2}\right]\left(\mathrm{salOH}_{2}=\right.$ salicylic acid, py $=$ pyridine $){ }^{161}$ $\left[\mathrm{Mn}_{9} \mathrm{M}_{2} \mathrm{O}_{7}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{15}(\mathrm{X})_{2}\right]\left(\mathrm{M}=\mathrm{Na}^{+}, \mathrm{X}=\mathrm{MeCN} ; \mathrm{M}=\mathrm{K}^{+}, \mathrm{X}=\mathrm{RCO}_{2} \mathrm{H}\right),{ }^{113,155.162}$ $\left[\mathrm{Mn}_{9} \mathrm{O}_{7}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{13}(\mathrm{py})_{2}\right]^{163}$ and $\left[\mathrm{Mn}_{9} \mathrm{O}_{7}(\mathrm{OAc})_{11}(\mathrm{thme})(\mathrm{py})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad\left(\right.$ thmeH ${ }_{3}=1,1,1-$ tris(hydroxymethyl)ethane, $2 \mathrm{Mn}^{11}, 4 \mathrm{Mn}^{\mathrm{III}}, 3 \mathrm{Mn}^{\mathrm{IV}}$). ${ }^{42}$ The last complex, shown in Figure 7.28, formed from the reaction of $\left[\mathrm{Mn}_{3} \mathrm{O}(\mathrm{OAc})_{6}(\mathrm{py})_{3}\right]$ with thmeH ${ }_{3}$, has an $S=17 / 2$ ground state and frequency dependency of the out-of-phase $A C$ susceptibility signals, and hence is an SMM. It consists of a $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{3} \mathrm{O}\right]^{10+}$ ring unit held within a larger $\left[\mathrm{Mn}^{\mathrm{HI}}{ }_{4} \mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{O}\right]^{4+}$ ring.

Figure 7.28 The crystal structure of $\left[\mathrm{Mn}_{9} \mathrm{O}_{7}(\mathrm{OAc})_{11}(\right.$ thme $\left.)(\mathrm{py})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (reproduced from reference 42).

Thompson et al. ${ }^{164-168}$ have reported a number of novel nonanuclear $\mathrm{Mn}^{\mathrm{HI}} 3 \times 3$ grid or portcullis-like clusters using tritopic 2poap related ligends (Scheme 7.1). For instance, $\left.\left[\mathrm{Mn}_{9}(\mathrm{Cl} 2 \text { poap- } 2 \mathrm{H})_{6}\right]\left(\mathrm{ClO}_{4}\right)\right)_{6} \cdot 10 \mathrm{H}_{2} \mathrm{O},{ }^{168}$ shown in Figure 7.29 , exhibits intracluster antiferromagnetic coupling with an $S=5 / 2$ ground state. Unlike the majcrity of the complexes presented in this chapter, these are the products of rational design. This particularly logical approach to designing and making nanoscale cluster complexes, most of which to date show intra-cluster exchange coupling and/or spin-crossover rather than SMM behaviour, is the 'self-assembly' (supramolecular) method of Lehn et al. ${ }^{169-172}$ and Thompson et al. ${ }^{173,174}$ Polytopic ligands are empioyed which are rigid and able to coordinate two or three (or more) metal ions, which then spontaneously self-assemble into $2 \times 2\left(\mathrm{M}_{4}\right)$ grids or $3 \times 3\left(\mathrm{M}_{9}\right)$ grids (vide supra).

Scheme 7.1 Tritopic 2poap related ligands and the parent, 2poap.

Figure 7.29 The structure of the 3×3 grid cluster $\left[\mathrm{Mn}_{9}(\mathrm{Cl} 2 \text { poap- } 2 \mathrm{H})_{6}\right]^{6+}$ (reproduced from reference 168).

Several decanuclear Mn clusters have appeared in the literature. These include $\left[\mathrm{Mn}_{10} \mathrm{O}_{4} \text { (biphen) } \mathrm{X}_{4} \mathrm{X}_{12}\right]^{4-}$ (biphen $=2,2^{\prime}$-biphenoxide, $\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}$), ${ }^{44-47,175}$
$\left[\mathrm{Mn}_{10} \mathrm{O}_{8}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\text { chel })_{8}\right] \quad\left(\right.$ chel $=$ pic $\left.^{-}, \mathrm{dbm}^{-}\right){ }^{176}\left[\mathrm{Mn}_{10} \mathrm{O}_{4}(\mathrm{OH})_{2}(\mathrm{OAc})_{8}(\mathrm{hmp})_{8}\right]\left(\mathrm{ClO}_{4}\right)_{4}$ (hmpH $=$ 2-hydroxymethylpyridine) ${ }^{18}\left[\mathrm{Mn}_{10} \mathrm{O}_{14}(\text { tren })_{6}\right]^{8+}\left(4 \mathrm{Mn}^{\mathrm{Im}}, 6 \mathrm{Mn}^{\mathrm{IV}} ;\right.$ tren $=\operatorname{tris}(2-$ aminoethyl)amine), ${ }^{177} \quad\left[\mathrm{Mn}_{10} \mathrm{O}_{2} \mathrm{Cl}_{8}\left(\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}_{6}\right]^{2-} \quad\left(2 \mathrm{Mn}^{11}, 8 \mathrm{Mn}^{111}\right),{ }^{178}\right.$ and a $[30]$ metallacrown-10 $[\mathrm{Mn}(\text { bzshz })(\mathrm{MeOH})]_{10} \quad\left(\mathrm{H}_{3}\right.$ bzshz $=$ a pentadentate ligand, N phenylsalicylhydrazidine). $\left.{ }^{179}\left[\mathrm{Mn}_{10} \mathrm{O}_{4} \text { (biphen) }\right)_{4} \mathrm{Br}_{12}\right]^{4-}\left(4 \mathrm{Mn}^{111}, 6 \mathrm{Mn}^{\text {II }}\right.$), shown in Figure 7.30, contains terminal, μ - and $\mu_{3}-\mathrm{Br}^{-}$ions; μ_{3} - and $\mu_{4}-\mathrm{O}^{2-}$ ions; bridging biphen ligands and no carboxylate ligands. The cluster has been characterised as an SMM with an $S=12$ ground state and negative axial zero-field splitting parameter, $D=-0.037(1) \mathrm{cm}^{-1}$. It displays slow relaxation of magnetisation below 1 K with a barrier potential to reversal of magnetisation of $7.7 \mathrm{~K}\left(5.3 \mathrm{~cm}^{-1}\right) .{ }^{46}$

Figure 7.30 The crystal structure of $\left.\left[\mathrm{Mn}_{10} \mathrm{O}_{4} \text { (biphen) }\right)_{4} \mathrm{Br}_{12}\right]^{4-}$ (thermal ellipsoids shown at 50% probability, hydrogens are omitted for clarity). Reproduced from reference 175.

Further examples of Mn_{10} clusters, $\left[\mathrm{Mn}_{10} \mathrm{O}_{8}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{pic})_{8}\right]$ and $\left[\mathrm{Mn}_{10} \mathrm{O}_{8}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{pic})_{6}(\mathrm{dbm})_{2}\right]$, are prepared by reacting $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{MeCN})_{2}(\mathrm{pic})_{2}\right]$
with picH or dbmH respectively, in MeCONMe (DMA) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{176}$ These two related clusters possess the same $\left[\mathrm{Mn}^{111}{ }_{10}\left(\mu_{3}-\mathrm{O}\right)_{6}\left(\mu_{4}-\mathrm{O}\right)_{2}\right]^{14+}$ core (Figure 7.31), which can be described as a segment of the layered CdI_{2} type structure with additional links to six $\mathrm{Mn}^{\mathrm{III}}$ ions, three above and three below the layered segment. Another example, $\left[\mathrm{Mn}_{10} \mathrm{O}_{4}(\mathrm{OH})_{2}(\mathrm{OAc})_{8}(\mathrm{hmp})_{8}\right]\left(\mathrm{ClO}_{4}\right)_{4}\left(10 \mathrm{Mn}^{11 I}\right)$ shown in Figure 7.32 , likewise consists of a core related to the layered CdI_{2} type structure.

Figure 7.31 The crystal structure of $\left[\mathrm{Mn}_{10} \mathrm{O}_{8}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{pic})_{8}\right]$ (left) and the $\left[\mathrm{Mn}^{111}{ }_{10}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{O})_{6}\left(\mu_{4}-\mathrm{O}\right)_{2}\right]^{14+}$ core (right). Reproduced from reference 176.

Figure 7.32 The structure of the $\left[\mathrm{Mn}_{10} \mathrm{O}_{4}(\mathrm{OH})_{2}(\mathrm{OAc})_{8}(\mathrm{hmp})_{8}\right]^{4+}$ cation (reproduced from reference 18).

To date, the Mn cluster nuclearities 11,13 and 14 have only single representatives. In 1991, Christou et al. ${ }^{60}$ reported the preparation and structure of $\left[\mathrm{Mn}_{11} \mathrm{O}_{10} \mathrm{Cl}_{2}(\mathrm{OAc})_{11}(\text { bipy })_{2}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$, shown in Figure 7.33 , obtained by treatment of $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{OAc})_{7}(\mathrm{bipy})_{2}\right]\left(\mathrm{ClO}_{4}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{Me}_{3} \mathrm{SiCl}$ in MeCN . It contains a core that consists of two $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{Mn}^{\mathrm{III}}\left(\mu_{3}-\mathrm{O}\right)_{3}\left(\mu_{3}-\mathrm{Cl}\right)\right]^{6+}$ distorted cubane units, as seen in the $\left[\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{X}\right]^{6+}$ SMMs (Figure 7.11), bridged by a nearly linear $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{3}\left(\mu_{3}-\mathrm{O}\right)_{4}\right]^{+}$moiety. The communication did not include magnetic characterisation. To the best of the candidate's knowledge, the authors have not since published magnetic data for this cluster.

Hendrickson et al. ${ }^{61}$ reported $\left[\mathrm{Mn}_{13} \mathrm{O}_{8}(\mathrm{OEt})_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{12}\right]$, shown in Figure 7.34. It contains a novel 'supercubane' $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{Mn}^{\mathrm{III}}{ }_{6} \mathrm{Mn}^{\mathrm{II}}{ }_{6}\left(\mu_{5}-\mathrm{O}\right)_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{OEt}\right)_{6}\right]^{12+}$ core, which strongly resembles a segment of an extended cubic metal oxide lattice. ${ }^{61}$ Magnetic measurements indicate an $S:=15 / 2$ ground state for this complex with overall antiferromagnetic coupling.

Recently Winpenny et al. ${ }^{62}$ reported the preparation, structure and preliminary magnetic properties of a new tetradecanuclear $\mathrm{Mn}(\mathrm{II} / \mathrm{III})$ complex, $\left[\mathrm{Mn}_{14} \mathrm{O}_{2}(\mathrm{OH})_{4}(\mathrm{ppo})_{18}(\mathrm{Hppo})_{4}\left(\mathrm{NO}_{3}\right)_{4}(\mathrm{MeCN})_{4}\right]\left(12 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}^{\mathrm{II} \mathrm{\prime}} ;\right.$ where $\mathrm{ppoH}=3$-phenyl-3-pyrazolin-5-one), shown in Figure 7.35. As the molecules are centrosymmetric, the core can be described as two connected Mn_{7} fragments. The N/O donor ligands ppo and ppoH display three and one distinct coordination modes respectively. This complex exhibits strong antiferromagnetic coupling leading to an $S=0$ ground state.

Figure 7.33 The crystal structure of $\left[\mathrm{Mn}_{1} \mathrm{O}_{10} \mathrm{Cl}_{2}(\mathrm{OAc})_{11}(\text { bipy })_{2}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$. The spheres represent Mn ions. Image rendered from CSD simulated SHELX res file from entry JOFVIJ.

Figure 7.34 The crystal structure of $\left[\mathrm{Mn}_{13} \mathrm{O}_{8}(\mathrm{OEt})_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{12}\right]$ (left) and the 'supercubane' $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{Mn}^{\mathrm{II}}{ }_{6} \mathrm{Mn}^{\mathrm{II}}{ }_{6}\left(\mu_{5}-\mathrm{O}\right)_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{OEt}\right)_{6}\right]^{12+}$ core (right). Reproduced from reference 61.

Figure 7.35 The crystal structure of $\left[\mathrm{Mn}_{14} \mathrm{O}_{2}(\mathrm{OH})_{4}(\mathrm{ppo})_{18}(\mathrm{Hppo})_{4}\left(\mathrm{NO}_{3}\right)_{4}(\mathrm{MeCN})_{4}\right]$ (left) with intramolecular hydrogen bonds shown. Only the ipso carbons of the phenyl rings are shown. Mn ions are green, O atoms are red, N atoms are blue and C atoms are grey. On the lower right, the Mn_{14} core with $\mathrm{Mn}^{\mathrm{III}}$ ions shown in purple and Mn^{11} ions in green. On the upper right, Hppo and ppo shown in its '4.31' coordination mode. Reproduced from reference 62.

The subject of the following chapter is a new hexadecanuclear manganese(III/IV) carboxylate cluster. There have been only two (II/III) Mn_{16} complex previously reported in the literature,

$$
\left[\mathrm{Ba}_{8} \mathrm{Na}_{2} \mathrm{ClMn}_{16} \mathrm{O}_{4}(\mathrm{OH})_{4}\left(\mathrm{CO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22} \mathrm{~L}_{8}\right] \cdot \mathrm{xH}_{2} \mathrm{O}^{63}
$$

and $\left[\mathrm{Ba}_{8} \mathrm{Na}_{2} \mathrm{ClMn}_{16}(\mathrm{OH})_{8}\left(\mathrm{CO}_{3}\right)_{4} \mathrm{~L}_{8}\right] \cdot 53 \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{L}=$ 1,3-diamino-2-hydroxypropane$N, N, N^{\prime}, N^{\prime}$-tetraacetic acid). ${ }^{64}$ The former complex, which appeared in a US patent and is shown in Figure 7.36 , contains a core of $4 \mathrm{Ba}^{2+}$ and $2 \mathrm{Na}^{+}$ions surrounding a central Cl^{-} ion. The core is surrounded by 16 Mn ions.

Figure 7.36 The crystal structure of $\left[\mathrm{Ba}_{8} \mathrm{Na}_{2} \mathrm{C}_{1} \mathrm{Mn}_{16} \mathrm{O}_{4}(\mathrm{OH})_{4}\left(\mathrm{CO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22} \mathrm{~L}_{8}\right]$ where Mn coordination bonds are represented by double lines; Ba coordination bonds are represented by dashed double lines; and Na coordination bonds are represented by dashed solid lines. Reproduced from reference 63.

The next largest known Mn cluster nuclearity is 18. A few octadecanuclear manganese carboxylate clusters have been reported, including $\left[\mathrm{Mn}_{18} \mathrm{O}_{14}(\mathrm{OMe})_{14}\left(\mathrm{O}_{2} \mathrm{CCMe}_{3}\right)_{8}(\mathrm{MeOH})_{6}\right],{ }^{180}$

$$
\mathrm{K}_{4}\left[\mathrm{Mn}^{\mathrm{III}}{ }_{18} \mathrm{O}_{16}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{22}(\mathrm{phth})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]
$$

10 MeCN (where phth ${ }^{2-}=$ phthalate), 181 and recently, the SMM $\left[\mathrm{Mn}_{18} \mathrm{O}_{14}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{18}(\text { hep })_{4}(\text { hepH })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad\left(2 \mathrm{Mn}^{\mathrm{II}}, 16 \mathrm{Mn}^{\mathrm{III}}\right.$; where hepH $=2-$ (hydroxyethyl)pyridine) ${ }^{52}$ The first example has an interesting core that closely resembles the MnO 'rock salt' mineral structure, which can be thought of as an extension of the core structure in the Mn_{13} cluster described above (Figure 7.34). The latter two examples are distinctly different structures (the former lies on a crystallographic 2-fold axis whereas the latter lies on an inversion centre), despite the cores possessing some similarities, such as the $\mathrm{Mn}_{4} \mathrm{O}_{6}$ fragment (Figure 7.37). The $\mathrm{Mn}^{\text {III }}{ }_{18}$ cluster has an $S=0$ ground state, whereas
the $\mathrm{Mn}^{\mathrm{HI}}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{16}$ cluster has an $S=13$ ground state, which is one of the largest spin ground states for molecules of this type. The cation has an axial zero-field splitting parameter $D=$ $-0.13 \mathrm{~cm}^{-1}$ and a barrier potential to reversal of magnetisation of $\Delta E=14.8 \mathrm{~cm}^{-1}$. Magnetisation hysteresis is observed below $1 \mathrm{~K} .{ }^{52}$

Figure 7.37 The crystal structures of (a) $\mathrm{K}_{4}\left[\mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}{ }_{18} \mathrm{O}_{16}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{22}(\text { phth })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (only ipso carbon atoms of the phenyl groups shown), and $\left[\mathrm{Mn}_{18} \mathrm{O}_{14}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{18}(\mathrm{hep})_{4}(\mathrm{hepH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (colours: $\mathrm{Mn}^{\text {II }}$ green; $\mathrm{Mn}^{\text {II }}$ purple; O red; N blue; C black. Reproduced from references 18 and 52 respectively.

One step up is a novel 'disc-like' $\mathrm{Mn}^{\prime \prime}{ }_{19}$ oxo-alkoxide cluster, $\left[\mathrm{Mn}_{19} \mathrm{O}_{12}(\mathrm{moe})_{14}(\mathrm{moeH})_{10}\right] \cdot \mathrm{moeH}$ (where moeH = methoxyethanol), reported by Westin et al. ${ }^{65}$ as part of their work on metal alkoxide precursors for sol-gel synthesis of ceramics. The Mn / O core of the complex quite clearly resembles a fragment of a layered $\mathrm{Mn}(\mathrm{OH})_{2}$
mineral (Figure 7.38(a)) and is remarkably similar to the Fe_{19} oxo-hydroxide cluster reported by Powell et al. (Figure 7.44). ${ }^{79,182}$ This Mn_{19} complex exhibits antiferromagnetic coupling.

Likewise, Christou et al. ${ }^{66}$ reported a 'disk-like' manganese(III/IV) cluster, $\left[\mathrm{Mn}_{21} \mathrm{O}_{24}(\mathrm{OMe})_{8}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Bu}^{t}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right] \quad\left(12 \mathrm{Mn}^{\mathrm{III}}, 9 \mathrm{Mn}^{\text {IV }}\right)$ that contains a $\left[\mathrm{Mn}_{21} \mathrm{O}_{24}(\mathrm{OMe})_{8}\right]^{16+}$ core. This core consists of a planar $\left[\mathrm{Mn}^{\mathrm{lv}}{ }_{9} \mathrm{O}_{20}\right]^{4-}$ sub-unit with the CdI_{2} type structure, held within a non-planar $\left[\mathrm{Mn}^{111}{ }_{12} \mathrm{O}_{12}\right]^{12+}$ ring (Figure $7.38(\mathrm{~b})$). ${ }^{66}$ Fittings to magnetic measurements reveal this complex displays antiferromagnetic coupling with an $S=13 / 2$ ground state, however no $\chi_{M}{ }^{\prime \prime}$ signals were observed, indicating it is not an SMM.

(a)

(b)

Figure 7.38 The crystal structures of (a) $\left[\mathrm{Mn}_{19} \mathrm{O}_{12}(\mathrm{moe})_{14}(\mathrm{moeH})_{10}\right]$ viewed down the crystallographic 3-fold axis, and (b) $\left[\mathrm{Mn}_{21} \mathrm{O}_{24}(\mathrm{OMe})_{8}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Bu}^{\prime}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right]$ (colours: $\mathrm{Mn}^{\mathrm{IV}}$ red; $\mathrm{Mn}^{\mathrm{III}}$ green; O^{2-} yellow; other types of O atoms off white; C black). Reproduced from references 65 and 66 respectively.

The last two high nuclearity Mn complexes that will be discussed here are $\left[\mathrm{Mn}_{26} \mathrm{O}_{16}(\mathrm{OH})_{10}(\mathrm{OMe})_{6} \mathrm{~F}_{10}(\mathrm{bta})_{20}(\mathrm{btaH})_{2}(\mathrm{MeOH})_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(26 \mathrm{Mn}^{111}\right.$, btaH $=$ benzotriazole $)$ recently reported by Brechin and Collison et al. ${ }^{54}$ and the largest Mn carboxylate cluster known to date, $\left[\mathrm{Mn}_{30} \mathrm{O}_{24}(\mathrm{OH})_{8}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Bu}^{\prime}\right)_{32}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{MeNO}_{2}\right)_{4}\right] \quad\left(3 \mathrm{Mn}^{\mathrm{II}}, 26 \mathrm{Mn}^{\mathrm{III}}, \mathrm{Mn}^{\mathrm{rv}}\right)$ reported by Hendrickson and Christou et al. ${ }^{53}$

The $\left[\mathrm{Mn}_{26}\right]$ complex (Figure 7.39), prepared by reaction of anhydrous MnF_{3} with benzotriazole (btaH) in hot MeOH , contains a complex $\left[\mathrm{Mn}^{\mathrm{Il} \mathrm{\prime}}{ }_{26} \mathrm{O}_{16}(\mathrm{OH})_{10}(\mathrm{OMe})_{6}\right]^{30+}$ core unit. Preliminary magnetic analysis indicates that it exhibits magnetic hysteresis and temperature independent magnetisation relaxation below 1.2 K . Further work by this group is being done to confirm it as a new SMM. ${ }^{54}$

Figure 7.39 The crystal structure of $\left[\mathrm{Mn}_{26} \mathrm{O}_{16}(\mathrm{OH})_{10}(\mathrm{OMe})_{6} \mathrm{~F}_{10}(\text { bta })_{20}\left({ }^{(h t a H}\right)_{2}\right.$ $\left.(\mathrm{MeOH})_{13}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ with the $\left[\mathrm{Mn}^{\mathrm{IIII}}{ }_{26} \mathrm{O}_{16}(\mathrm{OH})_{10}(\mathrm{OMe})_{6}\right]^{30+}$ core unit highlighted (black). Reproduced from reference 54.

The $\left[\mathrm{Mn}_{30}\right]$ cluster also possesses a complex structure. Two different representations are shown in Figure 7.40. Briefly, it contains a $\left[\mathrm{Mn}^{\mathrm{II}}{ }_{3} \mathrm{Mn}^{\mathrm{III}}{ }_{26} \mathrm{Mn}^{\mathrm{IV}} \mathrm{O}_{24}(\mathrm{OH})_{8}\right]^{32+}$ core, where $\mathrm{Mn} 2, \mathrm{Mn} 10$ and $\mathrm{Mn} 10^{\prime}$ are $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Mn} 1$ (approximately at the centre of the molecule) is $\mathrm{Min}^{\mathrm{IV}}$ and the rest are $\mathrm{Mn}^{\mathrm{III}}$. The complex has an $S=7$ ground state with $D=-0.79 \mathrm{~cm}^{-1}$, and shows frequency dependent AC $\chi_{\mathrm{M}}{ }^{\prime \prime}$ signals, indicating it to be an SMM, therefore the largest known to date.

Figure 7.40 Left: the complete crystal structure of $\left[\mathrm{Mn}_{30} \mathrm{O}_{24}(\mathrm{OH})_{8}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Bu}^{\prime}\right)_{32}-\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{MeNO}_{2}\right)_{4}$]. Right: the structure with only Mn and O atoms shown. Reproduced from reference 53.

7.4 Other Mefal Based SMMs

As stated earlier, the SMMs 'club' is not exclusively the domain of manganese carboxylate complexes, although they contain the majority of its members. A number of iron ${ }^{96}$ and vanadium ${ }^{81,183}$ clusters and cyano-based clusters ${ }^{88}$ have been reported to display SMM behaviour and are discussed here briefly.

The tetranuclear methoxy bridged iron(III) cluster $\left[\mathrm{Fe}_{4}(\mathrm{OMe})_{6}(\mathrm{dpm})_{6}\right](\mathrm{dpmH}=$ dipivaloylmethane), ${ }^{71,96}$ is the smallest Fe cluster to be classed as a SMM. The structure of this complex (Figure 7.41) consists of a central Fe ion linked to three terminal Fe ions by three double μ-OMe bridges. Antiferromagnetic coupling between the $\mathrm{Fe}^{\mathrm{II}}(S=5 / 2)$ ions in the manner shown in Figure 7.41 leads to non-compensation of the spins and an $S=5$ ground state. ${ }^{96}$ It is interesting to note, historically, that Martin and Winter et al. ${ }^{184-186}$ and Blake et al. ${ }^{187-189}$ studied first row transition metal alkoxide clusters many years ago, although few crystal structures were obtained.

Figure 7.41 The crystal structure of $\left[\mathrm{Fe}_{4}(\mathrm{OMe})_{6}(\mathrm{dpm})_{6}\right]$, where the Fe ions are red, oxygen atoms are yellow and carbon atoms are grey. The arrows indicate the spin structure in the ground $S=5$ state (reproduced from reference 96).

In 1984 Wieghardt et al. reported the crystal structure of $\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OH})_{12}(\mathrm{tacn})_{6}\right] \mathrm{Br}_{8} \cdot 9 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Fe}_{8} \mathrm{Br}\right){ }^{72}$ (where tacn $=1,4,7$-triazacyclononane), which is shown in Figure 7.42. The complex was prepared by the hydrolysis of $\left[\mathrm{FeCl}_{3}(\operatorname{tacn})\right]$ at pH

9 in the presence of Br^{-}ions. Subsequent magnetic susceptibility measurements showed this complex has an $S=10$ ground state, ${ }^{190}$ and single crystal polarised neutron diffraction experiments have been performed to determine the magnetic spin structure. ${ }^{191}$ High-frequency/high-field EPR (HFEPR) experiments have been used to analyse the magnetic anisotropy of the complex, yielding a zero-field splitting parameter of $D=-0.205 \mathrm{~cm}^{-1}$ measured on a polycrystalline powder. ${ }^{74,75}$ After Mn_{12}-acetate, $\mathrm{Fe}_{8} \mathrm{Br}$ is perhaps the most actively studied SMM to date. ${ }^{76,91}$ Faster magnetisation relaxation and larger transverse anisotropy than Mn_{12}-acetate lead to more pronounced quantum tunnelling. Therefore, $\mathrm{Fe}_{8} \mathrm{Br}$ has proved extremely interesting for the experimental observation of quantum size effects. ${ }^{76}$

Figure 7.42 The crystal structure of $\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OH})_{12}(\operatorname{tacn})_{6}\right]^{6+}$, where nitrogen atoms are in blue and the remainder of colour codes are as in Figure 7.41. The arrows indicate the spin structure determined by single crystal polarised neutron diffraction experiments. ${ }^{191}$ Reproduced from reference 96.

The $\mathrm{Fe}^{\text {III }} 10$ cage complex $\left[\mathrm{Fe}_{10} \mathrm{Na}_{2} \mathrm{O}_{6}(\mathrm{OH})_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{chp})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right]$ (where chp $=6$-chloropyridonato), reported recently by Benelli and Winpenny et al., ${ }^{77,78}$ has an $S=11$ ground state with an activation barrier to reorientation of the magnetisation of 5.3 K . It is the third Fe SMM known and one of the most rapidly relaxing SMMs. ${ }^{84}$ The core can be described as close packed array of oxygen atoms with iron ions occupying the octahedral holes in the lattice (Figure 7.43).

Figure 7.43 The crystal structure of $\left[\mathrm{Fe}_{10} \mathrm{Na}_{2} \mathrm{O}_{6}(\mathrm{OH})_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{chp})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right]$, where iron atoms are shown in dark red, oxygen atoms in red, nitrogens in blue, chlorines in purple and sodium ions in yellow (reproduced from reference 84).

The fourth class of iron based SMM consists of the Fe_{19} oxy-hydroxide clusters reported by Powell et al. ${ }^{79}$ Following their work on the co-crystallized $\mathrm{Fe}_{17} / \mathrm{Fe}_{19}$ system with the tripodal ligand H_{3} heidi (N -1-(hydroxyethyl)iminodiacetic acid, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\right),{ }^{182,192}$ they found that by altering the alcohol side arms of the ligand, i.e. by making methyl and ethyl derivatives, they were able to isolate the Fe_{19}
clusters. The complexes $\left[\mathrm{Fe}_{19}(\mathrm{~L})_{10}(\mathrm{OH})_{14} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\right] \mathrm{X},{ }^{79}$ where $\mathrm{LH}_{3}=\mathrm{H}_{3}$ metheidi $(N-(1-$ Hydroxymethylethyl)iminodiacetic
acid),
H_{3} etheidi
(N -(1Hydroxymethylpropyl)iminodiacetic acid); $\mathrm{X}=\mathrm{NO}_{3}{ }^{-}, \mathrm{Cl}^{-}$, like many polynuclear oxobridged clusters, possess a core with the CdI_{2} type structure and can be described as captured portions of the layered $\mathrm{Fe}(\mathrm{OH})_{2}{ }^{+}$lattice ("captured rusts" or "crusts"). $\left[\mathrm{Fe}_{19}(\text { metheidi })_{10}(\mathrm{OH})_{14} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\right]^{+}$is shown in Figure 7.44. Initial magnetic studies indicated very high ground state spin values, but the presence of both Fe_{17} and Fe_{19} clusters restricted discussion. ${ }^{105}$ The more recent studies have indicated $\left[\mathrm{Fe}_{19}(\text { metheidi })_{10}(\mathrm{OH})_{14} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\right] \mathrm{NO}_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ has an $S=33 / 2$ ground state, zero-field splitting parameter of $D=-0.035 \mathrm{~cm}^{-1}$ and a spin reversal energy barrier of $\Delta E=15.7 \mathrm{~K}$ ($10.7 \mathrm{~cm}^{-1}$), which is small considering the large value of S. The value of S for the etheidi analogue was estimated to lie between $S=31 / 2$ and $33 / 2$. 79

Figure 7.44 The crystal structure of $\left[\mathrm{Fe}_{19}(\text { metheidi })_{10}(\mathrm{OH})_{14} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\right]^{+}$, where $\mathrm{Fe}^{\mathrm{III}}$ ions are cross-hatched circles, oxygen atoms are open circles, carbon atoms are shaded top right to bottom left and nitrogen atoms are shaded circles (reproduced from reference 79).

A small number of vanadium based SMMs have been discovered. ${ }^{80,81,183}$ They belong to the familiar $\left[\mathrm{M}_{4} \mathrm{O}_{2}\right.$] butterfly like core structural family, which also includes many Mn, Cr and Fe examples. ${ }^{112}$ The complexes $\left[\mathrm{V}^{\mathrm{III}}{ }_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{7}(\mathrm{bipy})_{2}\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{R}=\mathrm{Et}$, Ph and bipy $=2,2^{\prime}$-bipyridine) and $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{V}^{\mathrm{HIH}} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{7}(\text { pic })_{2}\right]$ (pic $=$ picolinate) have S $=3$ ground states $\left(D \approx-1.5 \mathrm{~cm}^{-1}\right.$) with a barrier potential energy of $\Delta E \approx 13.5 \mathrm{~cm}^{-1}$ ($c f$. Mn_{12}-carboxylates $\Delta E \approx 42 \mathrm{~cm}^{-1}$). The structure of a representative complex is shown in Figure 7.45.

Figure 7.45 The crystal structure of $\left[\mathrm{V}_{4}^{\mathrm{IH}} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{7}(\mathrm{bipy})_{2}\right]^{+}$(thermal ellipsoids shown at 50% probability). Reproduced from reference 81.

In addition to Mn, Fe and V based SMMs , a small but growing number of other first row transition metal (Ni and Co) based SMMs have appeared in the literature in the last few years. Recently, Winpenny et al. reported the first Ni cluster complex to display SMM behaviour, ${ }^{82,83}$ the cyciic dodecanuclear complex $\left[\mathrm{Ni}_{12}(\mathrm{chp})_{12}(\mathrm{OAc})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{THF})_{6}\right]$ (where $\operatorname{chp}=6$-chloro-2-pyridonate) shown in Figure 7.46. It has an $S=12$ ground state, due to ferromagnetic coupling between the twelve $S=1 \mathrm{Ni}^{\mathrm{II}}$ centres, an energy barrier to
reversal of magnetisation of 10 K and exhibits out-of-phase AC susceptibility signals in the region of $0.4 \mathrm{~K} .{ }^{83}$ The second and larger Ni based SMM is the complex $\left[\mathrm{Ni}_{21}(\mathrm{cit})_{12}(\mathrm{OH})_{10}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right]^{16-}\left(\mathrm{cit}^{4-}=\right.$ citrate, $\left.\mathrm{C}(\mathrm{O})\left(\mathrm{CO}_{2}^{-}\right)\left(\mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\right)_{2}\right)$, reported by Güdel et $a l^{85}$ The complex exists as different stereoisomers. Of the two compounds structurally characterised, one contains an achiral cluster (Figure 7.47) and the second contains a pair of enantiomers. As is the common trend, the core of these clusters, a $\left[\mathrm{Ni}_{7}\left(\mu_{3}-\mathrm{OH}\right)_{6}\right]^{8+}$ unit is a fragment of the extended layered network $\mathrm{Ni}(\mathrm{OH})_{2}$. Magnetic measurements of the achiral compound in the millikelvin range indicate the cluster possesses an $S=3$ ground state and a negative magnetic anisotropy ($D=-0.32 \mathrm{~K}$) with an energy barrier, $\Delta E=2.9 \mathrm{~K}$, to magnetisation reversal at low temperatures.

Figure 7.46 The structure of $\left[\mathrm{Ni}_{12}(\mathrm{chp})_{12}(\mathrm{OAc})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{THF})_{6}\right]$, where Ni centres are light blue spheres, oxygen atoms are red, nitrogen atoms are blue and chlorine atoms are purple (reproduced from reference 82).

Figure 7.47 Different views of the structure of the achiral cluster of $\left[\mathrm{Ni}_{21}(\mathrm{cit})_{12}(\mathrm{OH})_{10}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right]^{16 \cdot}(\mathrm{Ni}$ are black at the centre of green polyhedra, oxygens are red and carbons are grey) and, lower left, a diagram indicating the $\Delta-\Lambda$ configuration of the cluster (reproduced from reference 85).

Recently, Christou and Hendrickson et al. reported the $\mathrm{Co}^{\mathrm{Il}}$ and $\mathrm{Ni}^{\mathrm{II}}$ based SMMs, $\left[\mathrm{Co}_{4}(\mathrm{hmp})_{4}(\mathrm{MeOH})_{4} \mathrm{Cl}_{4}\right]^{86}$ and $\left[\mathrm{Ni}_{4}(\mathrm{OMe})_{4}(\mathrm{sal})_{4}(\mathrm{MeOH})_{4}\right]$ (where Hsal $=$ salicylaldehyde). ${ }^{87}$ Both complexes consist of $\mathrm{M}_{4} \mathrm{O}_{4}$ cubane units. Many such cubanes are known in the literature. ${ }^{112}$ The $\mathrm{Co}{ }^{11}$ complex, shown in Figure 7.48, possesses an $S=6$ ground state with an axial zero field splitting parameter of $D \approx-4 \mathrm{~K}$, and shows hysteresis below 1.2 K . The $\mathrm{Ni}^{\mathrm{II}}$ complex has an $S=4$ ground state and exhibits slow magnetisation relaxation below 0.3 K , with a very low energy barrier of $\sim 5 \mathrm{~K}\left(c . f .62 \mathrm{~K}\right.$ for Mn_{12}-acetate). As in the case of a Mn_{4} hydrogen bonded dimer, ${ }^{41}$ this compound shows inter-dimer antiferromagnetic exchange bias such that there is no step in the hysteresis loop at $H=0$.

Figure 7.48 The crystal structure of $\left[\mathrm{Co}_{4}(\mathrm{hmp})_{4}(\mathrm{MeOH})_{4} \mathrm{Cl}_{4}\right]$ (reproduced from reference 86).

Finally, much recent research has focused on producing large high-spin metal cyanide clusters that display SMM behaviour, as the S and D values can potentially be readily adjusted by substitution of the metal ions involved. ${ }^{88,193-203}$ However, the chief obstacle that needs to be overcome to obtain high negative magnetic anisotropies is the high symmetry often observed in the structures of cyano-based clusters. ${ }^{203}$ Recently, Long et al. reported the first well documented cyano-bridged SMM, $\mathrm{K}\left[\left(\mathrm{Me}_{3} \operatorname{tann}\right)_{6} \mathrm{MnMo}_{6}(\mathrm{CN})_{18}\right]\left(\mathrm{ClO}_{4}\right)_{3}$, (where Me_{3} tacn $=N, N^{\prime}, N^{\prime \prime}$-trimethyl-1,4,7triazacyclononane), shown in Figure 7.49. ${ }^{88}$ The cluster has an $S=13 / 2$ ground state with $D=-0.33 \mathrm{~cm}^{-1}$ and a fitted spin reversal barrier potential of $\Delta E=10 \mathrm{~cm}^{-1}$.

Figure 7.49 The crystal structure of the trigonal prismatic anion $\left[\left(\mathrm{Me}_{3} \mathrm{tacn}\right)_{6} \mathrm{MnNio}_{6}(\mathrm{CN})_{18}\right]^{2-}$, where Mn ions are cross-hatched, Mo ions are black, C atoms are shaded and N atoms are white (reproduced from reference 88).

As detailed in Chapter 1, Decurtins et al. ${ }^{197,204,205}$ and Hashimoto et al. ${ }^{198}$ have recently reported very large cyanide bridged clusters. For instance, $\left[\mathrm{Mn}^{\mathrm{II}}\left\{\mathrm{Mn}^{\mathrm{II}}(\mathrm{MeOH})_{3}\right\}_{8}(\mu-\mathrm{CN})_{30}\left\{\mathrm{Mo}^{\mathrm{v}}(\mathrm{CN})_{3}\right\}_{6}\right] \cdot 5 \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{Mn}^{\mathrm{II}}{ }_{9} \mathrm{Mo}^{\mathrm{v}}{ }_{6}\right)$, shown in Figure 7.50 , has a very high $S=51 / 2$ ground state spin and displays long-range ferromagnetic ordering below 44 K due to inter-cluster ferromagnetic coupling. The structurally analogous $\mathrm{Mn}^{11}{ }_{9} \mathrm{~W}^{\mathrm{V}}{ }_{6},{ }^{198} \mathrm{Ni}^{11}{ }_{9} \mathrm{Mo}^{\mathrm{V}}{ }_{6}{ }^{204}$ and $\mathrm{Ni}^{1 \mathrm{l}}{ }_{9} \mathrm{~W}_{6}^{\mathrm{V}}{ }^{204}$ clusters also have high spin ground states of $S=39 / 2,12$ and 12 respectively. No evidence for SMM behaviour was detected for these clusters.

Figure 7.50 A representation of the $\left[\mathrm{Mn}^{11}{ }_{9}(\mu-\mathrm{CN})_{30} \mathrm{Mo}^{\mathrm{V}}{ }_{6}\right]\left(\mathrm{Mn}^{\mathrm{II}}{ }_{9} \mathrm{Mo}^{\mathrm{V}}{ }_{6}\right)$ cluster core with idealised O_{h} symmetry to accentuate the cluster topology. Red spheres represent Mn centres, green spheres represent Mo centres and the bonds between them are the cyanide ligands (reproduced from reference 197).

Recently, Long et al. ${ }^{193}$ reported two 'giant' nickel-chromium-cyanide clusters, the smaller being $\left[\left(\mathrm{Me}_{3} \operatorname{tacn}\right)_{12} \mathrm{Cr}_{12} \mathrm{Ni}_{12}(\mathrm{CN})_{48}\right]^{12+}\left(24\right.$ metal-species; where Me_{3} tacn $=$ $N, N^{\prime}, N^{\prime \prime}$-trimethyl-1,4,7-triazacyclononane), shown in Figure 7.51(a). It consists of a cube of eight $\mathrm{Cr}^{\prime \prime \prime \prime}$ centres linked along the edges by twelve trans coordinated $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ units. The larger of the two, and the largest to date, is $\left[\left(\mathrm{Me}_{3} \mathrm{tacn}\right)_{14} \mathrm{Cr}_{14} \mathrm{Ni}_{13}(\mathrm{CN})_{48}\right]^{20+}(27$ metalspecies), shown in Figure 7.51 (b). It consists of a double face-centred cubic unit sharing a Ni vertex. Magnetic data were not reported, but as the larger complex is geometrically highly anisotropic, it is thought these types of clusters will be likely to show appreciable magnetic anisotropy and hence SMM behaviour. ${ }^{193}$

(a)

(b)

Figure 7.51 The crystal structure of (a) $\left[\left(\mathrm{Me}_{3} \operatorname{tacn}\right)_{12} \mathrm{Cr}_{12} \mathrm{Ni}_{12}(\mathrm{CN})_{48}\right]^{12+}$ and (b) $\left[\left(\mathrm{Me}_{3} \operatorname{tacn}\right)_{14} \mathrm{Cr}_{14} \mathrm{Ni}_{13}(\mathrm{CN})_{48}\right]^{20+}$. Black, crosshatched, shaded and white spheres correspond to $\mathrm{Cr}, \mathrm{Ni}, \mathrm{C}$ and N atoms respectively (hydrogen atoms are omitted for clarity). Reproduced from reference 193.

7.5 References

1. T. G. Carrell, A. M. Tyryshkin, and G. C. Dismukes, J. Biol. Inorg. Chem., 2002, 7, 2.
2. M. Yagi and M. Kaneko, Chem. Rev., 2001, 101, 21.
3. G. Aromi, M. W. Wemple, S. J. Aubin, K. Folting, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1998, 120, 5850.
4. S. Wang, H.-L. Tsai, E. Libby, K. Folting, W. E. Streib, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1996, 35, 7578.
5. R. J. Kulawiec, R. H. Crabtree, G. W. Brudvig, and G. K. Schulte, Inorg. Chem., 1988, 27, 1309.
6. J. B. Vincent, C. Christmas, J. C. Huffman, G. Christou, H. R. Chang, and D. N. Hendrickson, Chem. Commun., 1987, 236.
7. J. B. Vincent, C. Christmas, H. R. Chang, Q. Li, P. D. W. Boyd, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1989, 111, 2086.
8. E. Libby, J. K. McClusker, E. A. Schmitt, K. Folting, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1991, 30, 3486.
9. K. Wieghardt, Angew. Chem., Int. Ed. Engl., 1989, 28, 1153.
10. P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Seanger, and N. Krauss, Nature, 2001, 411, 909.
11. J. Messinger, J. H. Robblee, U. Bergmann, C. Fernandez, P. Glatzel, H. Visser, R. M. Cinco, K. L. McFarlane, E. Bellacchio, S. A. Pizarro, S. P. Cramer, K. Sauer, M. P. Klein, and V. K. Yachandra, J. Am. Chem. Soc., 2001, 123, 7804.
12. J. H. Robblee, J. Messinger, R. M. Cinco, K. L. McFarlane, C. Fernandez, S. A. Pizarro, K. Sauer, and V. K. Yachandra, J. Am. Chem. Soc., 2002, 124, 7459.
13. C. F. Yocum and V. L. Pecoraro, Curr. Opin. Chem. Biol., 1999, 3, 182.
14. N. A. Law, M. T. Caudle,, and V. L. Pecoraro, Adv. Inorg. Chem., 1998, 46, 305.
15. T. Lis, Acta Crystallogr., Sect. B, 1980, 36, 2042.
16. R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1993, 115, 1804.
17. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature, 1993, 365, 141.
18. G. Aromi, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-L. Tsai, S. Wang, and M. W. Wemple, Polyhedron, 1998, 17, 3005.
19. H. J. Eppley, H.-L. Tsai, N. de Vries, K. Folting, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1995, 117, 301.
20. M. R. Cheesman, V. S. Oganesyan, R. Sessoli, D. Gatteschi, and A. J. Thompson, Chem. Commun., 1997, 1677.
21. B. Barbara, L. Thomas, F. Lionti, A. Sulpice, and A. Caneschi, J. Magn. Magn. Mater., 1998, 177-181, 1324.
22. B. Barbara, L. Thomas, F. Lionti, I. Chiorescu, and A. Sulpice, J. Magn. Magn. Mater., 1999, 200, 167.
23. A. Caneschi, T. Ohm, C. Paulsen, D. Rovai, C. Sangregorio, and R. Sessoli, J. Magn. Magn. Mater., 1998, 177-181, 1330.
24. S. Hill, J. A. A. J. Perenboom, N. S. Dalal, T. Hathaway, T. Stalcup, and J. S. Brooks, Phys. Rev. Lett., 1998, 80, 2453.
25. J. A. A. J. Perenboom, J. S. Brooks, S. Hill, T. Hathaway, and N. S. Dalal, Phys. Rev. B, 1998, 58, 330.
26. Z. Sun, D. Ruiz, E. Rumberger, C. D. Incarvito, K. Folting, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1998, 37, 4758.
27. R. M. Achey, P. L. Kuhns, W. G. Moulton, A. P. Reyes, and N. S. Dalal, Polyhedron, 2001, 20, 1745.
28. A. R. Schake, H. L. Tsai, N. De Vries, R. J. Webb, K. Folting, D. N. Hendrickson, and G. Christou, Chem. Commun., 1992, 181.
29. P. D. W. Boyd, Q. Li, J. B. Vincent, K. Folting, H. R. Chang, W. E. Streib, J. C. Huffman, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1988, 110, 3537.
30. A. R. Schake, H.-L. Tsai, R. J. Webb, K. Folting, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1994, 33, 6020.
31. R. Sessoli, Mol. Cryst. Liq. Cryst., 1995, 274, 801.
32. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett., 1996, 76, 3830.
33. J. R. Friedman, M. P. Sarachik, J. Tejada, J. Maciejewski, and R. Ziolo, J. Appl. Phys., 1996, 79, 6031.
34. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature, 1996, 383, 145.
35. J. Tejada, R. F. Ziolo, and X. X. Zhang, Chem. Mater., 1996, 8, 1784.
36. D. N. Hendrickson, G. Christou, H. lshimoto, J. Yoo, E. K. Brechin, A. Yamaguchi, E. M. Rumberger, S. M. J. Aubin, Z. Sun, and G. Aromi, Polyhedron, 2001, 20, 1479.
37. A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, M. A. Novak, C. Paulsen, and W. Wernsdorfer, J. Magn. Magn. Mater., 1999, 200, 182.
38. G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, MRS Bulletin, 2000, 25, 66.
39. J. Tejada, Polyhedron, 2001, 20, 1751.
40. M. N. Leuenberger and D. Loss, Nature, 2001, 410, 789.
41. W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou, Nature, 2002, 416, 406.
42. E. K. Brechin, M. Soler, J. Davidson, D. N. Hendrickson, S. Parsons, and G. Christou, Chem. Commun., 2002, 2252.
43. C. Boskovic, W. Wemsdorfer, K. Folting, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2002, 41, 5107.
44. D. P. Goldberg, A. Caneschi, and S. J. Lippard, J. Am. Chem. Soc., 1993, 115, 9299.
45. J. Kortus, T. Baruah, N. Bernstein, and M. R. Pederson, Phys. Rev. B, 2002, 66, 092403.
46. A. L. Barra, A. Caneschi, D. Gatteschi, D. P. Goldberg, and R. Sessolici, J. Solid State Chem., 1999, 145, 484.
47. A. Caneschi, D. Gatteschi, R. Sessoli, and J. Schweizer, Physica B, 1998, 241243, 600.
48. C. Boskovic, E. K. Brechin, W. E. Streib, K. Folting, J. C. Bollinger, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 2002, 124, 3725.
49. S. M. J. Aubin, Z. Sun, H. J. Eppley, E. Rumberger, I. A. Guezei, K. Folting, P. K. Gantzel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2001, 40, 2127.
50. S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. Folting, L.-C. Brunel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1999, 38, 5329.
51. M. Soler, S. K. Chandra, D. Ruiz, J. C. Huffman, D. N. Hendrickson, and G. Christou, Polyhedron, 2001, 20, 1279.
52. E. K. Brechin, C. Boskovic, W. Wernsdorfer, J. Yoo, A. Yamaguchi, E. C. Sanudo, T. R. Concolino, A. L. Rheingold, H. Ishimoto, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 2002, 124, 9710.
53. M. Soler, E. Rumberger, K. Folting, D. N. Hendrickson, and G. Christou, Polyhedron, 2001, 20, 1365.
54. L. F. Jones, E. K. Brechin, D. Collison, A. Harrison, S. J. Teat, and W. Wernsdorfer, Chem. Commun., 2002, 2974.
55. G. Aromi, J.-P. Claude, M. J. Knapp, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1998, 120, 2977.
56. G. Aromi, M. J. Knapp, J.-P. Claude, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1999, 121, 5489.
57. M. A. Bolcar, S. M. J. Aubin, K. Folting, D. N. Hendrickson, and G. Christou, Chem. Commun., 1997, 1485.
58. E. Libby, K. Folting, C. J. Huffman, J. C. Huffman, and G. Christou, Inorg. Chem., 1993, 32, 2549.
59. M. W. Wemple, H.-L. Tsai, S. Wang, J. P. Claude, W. E. Streib, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1996, 35, 6437.
60. S. P. Perlepes, J. C. Huffman, and G. Christou, Chem. Commun., 1991, 1657.
61. Z. Sun, P. K. Gantzel, and D. N. Hendrickson, Inorg. Chem., 1996, 35, 6640.
62. G. Aromi, A. Bell, S. J. Teat, A. G. Whittaker, and R. E. P. Winpenny, Chem. Commun., 2002, 1896.
63. S. M. Gorun and R. T. Stibrany, U.S. Patent No. $5,041,575,1991$.
64. M. M. Grush, J. Chen, T. L. Stemmler, S. J. George, C. Y. Ralston, R. T. Stibrany, A. Gelasco, G. Christou, S. M. Gorun, J. E. Penner-Hahn, and S. P. Cramer, J. Am. Chem. Soc., 1996, 118, 65.
65. I. A. M. Pohl, L. G. Westin, and M. Kritikos, Chem. Eur. J., 2001, 7, 3438.
66. J. T. Brockman, J. C. Huffman, and G. Christou, Angew. Chem., Int. Ed., 2002, 41, 2506.
67. T. Kuroda-Sowa, S. Fukuda, S. Miyoshi, M. Maekawa, M. Munakata, H. Miyasaka, and M. Yamashita, Chem. Lett., 2002, 682.
68. M. Soler, P. Artus, K. Folting, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2001, 40, 4902.
69. P. Artus, C. Boskovic, J. Yoo, W. E. Streib, L.-C. Brunel, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2001, 40, 4199.
70. T. Kuroda-Sowa, M. Lam, A. L. Rheingold, C. Frommen, W. M. Reiff, M. Nakano, J. Yoo, A. L. Maniero, L.-C. Brunel, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2001, 40, 6469.
71. A. L. Barra, A. Caneschi, A. Cornia, F. F. de Biani, D. Gatteschi, C. Sangregorio, R. Sessoli, and L. Sorace, J. Am. Chem. Soc., 1999, 121, 5302.
72. K. Wieghardt, K. Pohl, I. Jibril, and G. Huttner, Angew. Chem., Int. Ed. Engl., 1984, 23, 77.
73. A. L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, Europhys. Lett., 1996, 35, 133.
74. S. Hill, S. Maccagnano, K. Park, R. M. Achey, J. M. North, and N. S. Dalal, Phys. Rev. B, 2002, 65, 224410.
75. A. L. Barra, D. Gatteschi, and R. Sessoli, Chem. Eur. J., 2000, 6, 1608.
76. A.-L. Barra, B. Fabio, A. Caneschi, D. Gatteschi, C. Paulsen, C. Sangregorio, R. Sessoli, and L. Sorace, ChemPhysChem, 2001, 2, 523.
77. C. Benelli, S. Parsons, G. A. Solan, and R. E. P. Winpenny, Angew. Chem., Int. Ed. Engl., 1996, 35, 1825.
78. C. Benelli, J. Cano, Y. Joumaux, R. Sessoli, G. A. Solan, and R. E. P. Winpenny, Inorg. Chem., 2001, 40, 188.
79. J. C. Goodwin, R. Sessoli, D. Gatteschi, W. Wemsdorfer, A. K. Powell, and S. L. Heath, J. Chem. Soc., Dalton Trans., 2000, 1835.
80. S. L. Castro, Z. Sun, J. C. Bollinger, D. N. Hendrickson, and G. Christou, Chem. Commun., 1995, 2517.
81. S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1998, 120, 2365.
82. C. Cadiou, M. Murrie, C. Paulsen, V. Villar, W. Wemsdorfer, and R. E. P. Winpenny, Chem. Commun., 2001, 2666.
83. H. Andres, R. Basler, A. J. Blake, C. Cadiou, G. Chaboussant, C. M. Grant, H.-U. Güdel, M. Murrie, S. Parsons, C. Paulsen, F. Semadini, V. Villar, W. Wernsdorfer, and R. E. P. Winpenny, Chem. Eur. J., 2002, 8, 4867.
84. R. E. P. Winpenny, J. Che Soc., Dalton Trans., 2002, 1.
85. S. T. Ochsenbein, M. Murrie, E. Rusanov, H. Stoeckli-Evans, C. Sekine, and H. U. Güdel, Inorg. Chem., 2002, 41, 5133.
86. E.-C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, and G. Christou, J. Appl. Phys., 2002, 91, 7382.
87. M. Nakano, G.-E. Matsubayashi, T. Muramatsu, T. C. Kobayashi, K. Amaya, J. Yoo, G. Christou, and D. N. Hendrickson, Mol. Cryst. Liq. Cryst., 2002, 376, 405.
88. J. J. Sokol, A. G. Hee, and J. R. Long, J. Am. Chem. Soc., 2002, 124, 7656.
89. D. N. Hendrickson, G. Christou, H. Ishimoto, J. Yoo, E. K. Brechin, A. Yamaguchi, E. M. Rumberger, S. M. J. Aubin, Z. Sun, and G. Aromi, Mol. Cryst. Liq. Cryst., 2002, 376, 301.
90. D. Ruiz-Molina, G. Christou, and D. N. Hendrickson, Mol. Cryst. Liq. Cryst., 2000, 343, 17.
91. D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed., 2003, 42, 268.
92. D. Gatteschi, J. Alloys. Comp., 2001, 317-318, 8.
93. D. Gatteschi, Phil. Trans. R. Soc. London A, 1999, 357, 3079.
94. D. Gatteschi and R. Sessoli, ACS Symposium Series, 1996, 644, 157.
95. A. H. Morrish, The Physical Principles of Magnetism, Wiley, New York, 1966.
96. D. Gatteschi, R. Sessoli, and A. Cornia, Chem. Commun., 2000, 725.
97. A. L. Barra, D. Gatteschi, and R. Sessoli, Phys. Rev. B, 1997, 56, 8192.
98. R. Amigo, E. del Barco, L. Casas, E. Molins, J. Tejada, I. B. Rutel, B. Mommouton, N. Dalal, and J. Brooks, Phys. Rev. B, 2002, 65, 172403.
99. D. Gatteschi and L. Sorace, J. Solid State Chem., 2001, 159, 253.
100. S. M. J. Aubin, Z. Sun, H. J. Eppley, E. M. Rumberger, I. A. Guzei, K. Folting, P. K. Gantzel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Polyhedron, 2001, 20, 1139.
101. A. M. Gomes, M. A. Novak, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. $B, 1998,57,5021$.
102. D. P. DiVincenzo and D. Loss, J. Magn. Magn. Mater., 1999, $200,202$.
103. J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez, and T. P. Spiller, Nanotechnology, 2001, 12, 181.
104. F. Luis, F. L. Mettes, J. Tejada, D. Gatteschi, and L. J. de Jongh, Polyhedron, 2001, 20, 1451.
105. R. E. P. Winpenny, Adv. Inorg. Chem., 2001, 52, 1.
106. H. H. Thorp, J. E. Sarneski, R. J. Kulawiec, G. W. Brudvig, R. H. Crabtree, and G. C. Papaefthymiou, Inorg. Chem., 1991, 30, 1153.
107. R. Manchanda, G. W. Brudvig, and R. H. Crabtree, Coord. Chem. Rev., 1995, 144, 1.
108. J. Messinger, Biochim. Biophys. Acta, 2000, 1459, 481.
109. C. Christmas, J. B. Vincent, J. C. Huffman, G. Christou, H. R. Chang, and D. N. Hendrickson, Chem. Commun., 1987, 1303.
110. E. Bouwman, M. A. Bolcar, E. Libby, J. C. Huffinan, K. Folting, and G. Christou, Inorg. Chem., 1992, 31, 5185.
111. S. Wang, K. Folting, W. E. Streib, E. A. Schmitt, J. K. McCusker, D. N. Hendrickson, and G. Christou, Angew. Chem., Int. Ed. Engl., 1991, 30, 305.
112. K. S. Murray, Adv. Inorg. Chem., 1995, 43, 261.
113. S. Wang, J. C. Huffman, K. Folting, W. E. Streib, E. B. Lobkovsky, and G. Christou, Angew. Chem., Int. Ed. Engl., 1991, 30, 1672.
114. A. Bhattacharjee, Y. Miyazaki, M. Nakano, J. Yoo, G. Christou, D. N. Hendrickson, and M. Sorai, Polyhedron, 2001, 20, 1607.
115. J. Yoo, A. Yamaguchi, M. Nakano, J. Krzystek, W. E. Streib, L.-C. Brunel, H. Ishimoto, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2001, 40, 4604.
116. J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C. Huffman, A. L. Maniero, L.-C. Brunel, K. Awaga, H. Ishimoto, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2000, 39, 3615.
117. S. Wang, K. Folting, W. E. Streib, E. A. Schmitt, J. K. McCusker, D. N. Hendrickson, and G. Christou, Angew. Chem., 1991, 103, 314.
118. E. C. Sañudo, V. A. Grillo, M. J. Knapp, J. C. Bollinger, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2002, 41, 2441.
119. C. M. Grant, M. J. Knapp, W. E. Streib, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1998, 37, 6065.
120. E. J. Seddon, J. Yoo, K. Folting, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Chem. Soc., Dalton. Trans., 2000, 3640.

A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel, and M. Guillot, J. Am. Chem. Soc., 1991, 113, 5873.

122. M. A. Novak, R. Sessoli, A. Caneschi, and D. Gatteschi, J. Magn. Magn. Mater., 1995, 146, 211.
123. A.-L. Barra, L.-C. Brunel, D. Gatteschi, L. Pardi, and R. Sessoli, Acc. Chem. Res., 1998, 31, 460.
124. A. Cornia, M. Affronte, A. G. M. Jansen, D. Gatteschi, A. Caneschi, and R. Sessoli, Chem. Phys. Lett., 2000, 322, 477.
125. A. Cornia, M. Affronte, D. Gatteschi, A. G. M. Jansen, A. Caneschi, and R. Sessoli, J. Magn. Magn. Mater., 2001, 226-230, 2012.
126. I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H. U. Güdel, A. V. Irodova, and A. Caneschi, Phys. Rev. Lett., 1999, 83, 628.
127. Y. Zhong, M. P. Sarachik, J. R. Friedman, R. A. Robinson, T. M. Kelley, H. Nakotte, A. C. Christianson, F. Trouw, S. M. J. Aubin, and D. N. Hendrickson, J. Appl. Phys., 1999, 85, 5636.
128. R. A. Robinson, P. J. Brown, D. N. Argyriou, D. N. Hendrickson, and S. M. J. Aubin, J. Phys.: Condens. Matter, 2000, 12, 2805.
129. A. Cornia, A. C. Fabretti, R. Sessoli, L. Sorace, D. Gatteschi, A.-L. Barra, C. Daiguebonne, and T. Roisnel, Acta Crystallogr., Sect. C, 2002, 58, m371.
130. A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A. L. Barra, and C. Daiguebonne, Phys. Rev. Lett., 2002, 89, 257201.
131. Y.-G. Wei, S.-W. Zhang, M.-C. Shao, and Y.-Q. Tang, Polyhedron, 1997, 16, 1471.
132. K. Takeda, K. Awaga, and T. Inabe, Phys. Rev. B, 1998, 57, R11062.
133. J. An, Z. D. Chen, J. Bian, J. T. Chen, S. X. Wang, S. Gao, and G. X. Xu, Inorg. Chim. Acta., 2000, 299, 28.
D. Ruiz, Z. Sun, B. Albela, K. Folting, J. Ribas, G. Christou, and D. N. Hendrickson, Angew. Chem., Int. Ed., 1998, 37, 300.
134. J. An, Z.-D. Chen, X.-X. Zhang, H. G. Raubenheimer, C. Esterhuysen, S. Gao, and G.-X. Xu, J. Chem. Soc., Dalton Trans., 2001, 3352.
D. Ruiz-Molina, P. Gerbier, E. Rumberger, D. B. Amabilino, I. A. Guzei, K. Folting, J. C. Huffiman, A. Rheingold, G. Christou, J. Veciana, and D. N. Hendrickson, J. Mater. Chem., 2002, 12, 1152.
135. C. Boskovic, M. Pink, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 2001, 123, 9914.
136. L. Jin-Yu, X. Hao, Z. Jian-Zhong, X. Zheng, Y. Xiao-Zeng, and Y. Kai-Pei, Polyhedron, 1996, 15, 3325.
137. Y. Furukawa, K. Watanabe, K. Kumagai, Z. H. Jang, A. Lascialfari, F. Borsa, and D. Gatteschi, Phys. Rev. B, 2000, 62, 14246.
138. K. Takeda and K. Awaga, Phys. Rev. B, 1997, 56, 14560.
139. S. M. J. Aubin, S. Spagna, H. J. Eppley, R. E. Sager, G. Christou, and D. N. Hendrickson, Chem. Commun., 1998, 803.
140. T. Kuroda-Sowa, M. Nakano, G. Christou, and D. N. Hendrickson, Polyhedron, 2001, 20, 1529.
141. C. Boskovic, E. K. Brechin, W. E. Streib, K. Folting, G. Christou, and D. N. Hendrickson, Chem. Commun., 2001, 467.
142. A. R. E. Baikie, A. J. Howes, M. B. Hursthouse, A. B. Quick, and P. Thornton, Chem. Commun., 1986, 1587.
143. A. Caneschi, D. Gatteschi, J. Laugier, P. Rey, R. Sessoli, and C. Zanchini, J. Am. Chem. Soc., 1988, 110, 2795.
144. C. Cañada-Vilalta, J. C. Huffman, W. E. Streib, E. R. Davidson, and G. Christou, Polyhedron, 2001, 20, 1375.
145. A. R. Schake, J. B. Vincent, Q. Li, P. D. W. Boyd, K. Folting, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1989, 28, 1915.
146. A. G. Blackman, J. C. Huffman, E. B. Lobkovsky, and G. Christou, Polyhedron, 1992, 11, 251.
147. M. A. Halcrow, W. E. Streib, K. Folting, and G. Christou, Acta Crystallogr., Sect. C, 1995, 51, 1263.
148. G. L. Abbati, A. Cornia, A. C. Fabretti, A. Caneschi, and D. Gatteschi, Inorg. Chem., 1998, 37, 1430.
149. A. Caneschi, A. Comia, A. C. Fabretti, S. Foner, D. Gatteschi, R. Grandi, and L. Schenetti, Chem. Eur. J., 1996, 2, 1379.
150. A. Caneschi, A. Comia, and S. J. Lippard, Angew. Chem., Int. Ed. Engl., 1995, 34, 467.
151. S. Wang, H. L. Tsai, W. E. Streib, G. Christou, and D. N. Hendrickson, Chem. Commun., 1992, 677.
152. E. Libby, K. Folting, J. C. Huffman, and G. Christou, J. Am. Chem. Soc., 1990, 112, 5354.
153. H.-L. Tsai, S. Wang, K. Folting, W. E. Streib, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1995, 117, 2503.
S. Wang, H. L. Tsai, K. Folting, J.
D. Martin,
D. N. Hendrickson, and G. Christou, Chem. Commun., 1994, 671.
154. V. A. Grillo, M. J. Knapp, J. C. Bollinger, D. N. Hendrickson, and G. Christou, Angew. Chem., Int. Ed. Engl., 1996, 35, 1818.
155. C. S. Alvarez, A. D. Bond, D. Cave, M. E. G. Mosquera, E. A. Harron, R. A. Layfield, M. McPartlin, J. M. Rawson, P. T. Wood, and D. S. Wright, Chem. Commun., 2002, 2980.
156. R. W. Saalfrank, N. Loew, S. Trummer, G. M. Sheldrick, M. Teichert, and D. Stalke, Eur. J. Inorg. Chem., 1998, 559.
157. R. W. Saalfrank, N. Low, B. Demleitner, D. Stalke, and M. Teichert, Chem. Eur. J., 1998, 4, 1305.
158. C. Christmas, J. B. Vincent, H. R. Chang, J. C. Huffman, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1988, 110, 823.
159. M. Murrie, S. Parsons, and R. E. P. Winpenny, J. Chem. Soc., Dalton Trans., 1998, 1423.
160. D. W. Low, D. M. Eichhorn, A. Draganescu, and W. H. Armstrong, Inorg. Chem., 1991, 30, 877.
161. L. Zhao, C. J. Matthews, L. K. Thompson, and S. L. Heath, Chem. Commun., 2000, 265.
162. L. K. Thompson, C. J. Matthews, L. Zhao, Z. Xu, D. O. Miller, C. Wilson, M. A. Leech, J. A. K. Howard, S. L. Heath, A. G. Whittaker, and R. E. P. Winpenny, J. Solid State Chem., 2001, 159, 308.
163. L. Zhao, Z. Xu, L. K. Thompson, and D. O. Miller, Polyhedron, 2001, 20, 1359.
164. O. Waldmann, L. Zhao, and L. K. Thompson, Phys. Rev. Lett., 2002, 88, 066401.
165. L. K. Thompson, L. Zhao, Z. Xu, D. O. Miller, and W. M. Reiff, Inorg. Chem., 2003, 42, 128.
166. M. Ruben, E. Breuning, M. Barboiu, J.-P. Gisselbrecht, and J.-M. Lehn, Cheni. Eur. J., 2003, 9, 291.
167. A. Marquis, J.-P. Kintzinger, R. Graff, P. N. W. Baxter, and J.-M. Lehn, Angew. Chem., Int. Ed., 2002, 41, 2760.
168. E. Breuning, G. S. Hanan, F. J. Romero-Salguero, A. M. Garcia, P. N. W. Baxter, J.-M. Lehn, E. Wegelius, K. Rissanen, H. Nierengarten, and A. Van Dorsselaer, Chem. Eur. J., 2002, 8, 3458.
169. E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gutlich, E. Wegelius, and K. Rissanen, Angew. Chem., Int. Ed., 2000, 39, 2504.
170. L. K. Thompson, Coord. Chem. Rev., 2002, 233-234, 193.
171. C. J. Matthews, L. K. Thompson, S. R. Parsons, Z. Xu, D. O. Miller, and S. L. Heath, Inorg. Chem., 2001, 40, 4448.
172. D. P. Goldberg, A. Caneschi, C. D. Delfs, R. Sessoli, and S. J. Lippard, J. Am. Chem. Soc., 1995, 117, 5789.
173. H. J. Eppley, S. M. J. Aubin, W. E. Streib, J. C. Bollinger, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1997, 36, 109.
174. K. S. Hagen, W. H. Armstrong, and M. M. Olmstead, J. Am. Chem. Soc., 1989, 111, 774.
175. M. Cavaluzzo, Q. Chen, and J. Zubieta, Chem. Commun., 1993, 131.
176. S.-X. Liu, S. Lin, B.-Z. Lin, C.-C. Lin, and J.-Q. Huang, Angew. Chem., Int. Ed., 2001, 20, 1084.
177. E. K. Brechin, W. Clegg, M. Murrie, S. Parsons, S. J. Teat, and R. E. P. Winpenny, J. Am. Chem. Soc., 1998, 120, 7365.
178. R. Squire, C., S. M. J. Aubin, K. Folting, W. E. Streib, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1995, 34, 6463.
179. A. K. Powell, S. L. Heath, D. Gatteschi, L. Pardi, R. Sessoli, G. Spina, F. Del Giallo, and F. Pieralli, J. Am. Chem. Soc., 1995, 117, 2491.
Z. Sun, D. N. Hendrickson, C. M. Grant, S. L. Castro, and G. Christou, Chem. Commun., 1998, 721.
180. R. W. Adams, R. L. Martin, and G. Winter, Aust. J. Chem., 1966, 19, 363.
181. R. W. Adams, C. G. Barraclough, R. L. Martin, and G. Winter, Aust. J. Chem., 1967, 20, 2351.
182. G. A. Kakos and G. Winter, Aust. J. Chem., 1969, 22, 97.
183. A. B. Blake, Chem. Commun., 1966, 569.
184. J. E. Andrew and A. B. Blake, Chem. Commun., 1967, 1174.
185. J. E. Andrew and A. B. Blake, J. Chem. Soc. A, 1969, 1456.
186. C. Delfs, D. Gatteschi, L. Pardi, R. Sessoli, K. Wieghardt, and D. Hanke, Inorg. Chem., 1993, 32, 3099.
187. Y. Pontillon, A. Caneschi, D. Gatteschi, R. Sessoli, E. Ressouche, J. Schweizer, and E. Lelievre-Berna, J. Am. Chem. Soc., 1999, 121, 5342.
188. S. L. Heath and A. K. Powell, Angew. Chem., Int. Ed. Engl., 1992, 31, 191.
189. J. J. Sokol, M. P. Shores, and J. R. Long, Inorg. Chem., 2002, 41, 3052.
190. M. P. Shores, J. J. Sokol, and J. R. Long, J. Am. Chem. Soc., 2002, 124, 2279.
191. J. L. Heinrich, J. J. Sokol, A. G. Hee, and J. R. Long, J. Solid State Chem., 2001, 159, 293.
192. R. J. Parker, L. Spiccia, G. D. Fallon, B. Moubaraki, K. S. Murray, and K. J. Berry, Chem. Commun., 2001, 333.
193. J. Larionova, M. Gross, M. Pilkington, H. Andres, H. Stoeckli-Evans, H.-U. Güdel, and S. Decurtins, Angew. Chem., Int. Ed., 2000, 39, 1605.
194. Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, A. Fujishima, S.-i. Ohkoshi, and K. Hashimoto, J. Am. Chem. Soc., 2000, 122, 2952.
195. N. Vernier, G. Bellessa, T. Mallah, and M. Verdaguer, Phys. Rev. B, 1997, 56, 75.
196. K. Van Langenberg, S. R. Batten, K. J. Berry, D. C. R. Hockless, B. Moubaraki, and K. S. Murray, Inorg. Chem., 1997, 36, 5006.
197. A. Scuiller, T. Mallah, M. Verdaguer, A. Nivorozkhin, J.-L. Tholence, and P. Veillet, New J. Chem., 1996, 20, 1.
198. T. Mallah, C. Auberger, M. Verdaguer, and P. Veillet, Chem. Commun., 1995, 61.
199. T. Mallah, S. Ferlay, C. Auberger, C. Helary, F. L'Hermite, R. Ouahes, J. Vaissermann, M. Verdaguer, and P. Veillet, Mol. Cryst. Liq. Cryst., 1595, 273, 579.
200. F. Bonadio, M. Gross, H. Stoeckli-Evans, and S. Decurtins, Inorg. Chem., 2002, 41, 5891.
201. M. Pilkington, M. Gross, P. Franz, M. Biner, S. Decurtins, H. Stoeckli-Evans, and A. Neels, J. Solid State Chem., 2001, 159, 262.

CHAPTER 8: SYNTHESIS, STRUCTURE AND
MAGNETISM OF A NEW

SINGLE MOLECULE MAGNET,

$\left(\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$,

 AND OF A LINEAR MIXED BRIDGE CHAIN, $\left(\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right)_{n}$
8.1 Introduction

The synthetic and physicochemical studies made by Christou and Hendrickson et al., ${ }^{1}$ Gatteschi and Sessoli et al., ${ }^{2}$ and Powell et al. ${ }^{3}$ on high nuclearity manganese and iron oxo/carboxylato cluster complexes have led to significant advances being made in the understanding of nanoscale magnets known as 'single molecule magnets' (SMMs). The archetypal cluster, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (' Mn_{12}-acetate'), was first structurally characterised in 1980 by Lis^{4} and in 1993 it was shown to behave as a single magnetic domain with slow relaxation of magnetisation on the order of several months below a temperature of $4 \mathrm{~K} .{ }^{5}$

In the case of manganese, the nuclearities known to date to display SMM behaviour include particular examples of $\mathrm{Mn}_{4},{ }^{6} \mathrm{Mn}_{9},{ }^{7,8} \mathrm{Mn}_{10},{ }^{9} \mathrm{Mn}_{12},{ }^{10} \mathrm{Mn}_{18},{ }^{11}$ and Mn_{30} (the largest Mn carboxylate cluster isolated to date). ${ }^{12}$ Very recently a $\mathrm{Mn}^{\mathrm{III}}{ }_{26}$ cage complex has shown preliminary evidence of SMM behaviour. ${ }^{13}$ Other nuclearities such as $\mathrm{Mn}_{3}, \mathrm{Mn}_{6},{ }^{14,15} \mathrm{Mn}_{7},{ }^{16} \mathrm{Mn}_{8},{ }^{8,15,17,18} \mathrm{Mn}_{13},{ }^{19}\left(\mathrm{Ba}_{8} \mathrm{Na}_{2}\right) \mathrm{Mn}_{16}(\mathrm{II} / \mathrm{III}),{ }^{20} \mathrm{Mn}_{21}{ }^{21}$ do not, even though some have high-spin ground states, one of the prerequisites for being an SMM. Another key prerequisite for SMM behaviour is a negative anisotropy in the axial zerofield splitting term D, which in the Mn clusters is introduced into the cluster ground state by $\mathrm{Mn}^{\text {III }}$ single-ion centres. The subject of SMMs is dealt with in more detail in Chapter 7.

A limited number of examples of SMM clusters containing metals other than manganese also exist. These include $\mathrm{Fe}_{4},{ }^{22} \mathrm{Fe}_{8},{ }^{23-27} \mathrm{Fe}_{10},{ }^{28,29} \mathrm{Fe}_{19},{ }^{3}$ and $\mathrm{V}_{4}{ }^{30}$ complexes, and very recently particular $\mathrm{Ni}_{12},{ }^{31} \mathrm{Ni}_{21},{ }^{32} \mathrm{CO}_{4},{ }^{33}$ and $\mathrm{Ni}_{4}{ }^{34}$ clusters have been reported to display SMM behaviour in the millikelvin temperature range. The SMM family is not limited to oxo-based species, and now includes a few examples of cyano-bridged clusters. ${ }^{35,36}$

While attempting to link Mn_{3} or Mn_{4} carboxylate clusters together using the dicyanamide ligand, in work aimed at making molecule-based magnetic materials, a new manganese(III/IV) carboxylate cluster $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{Mn}_{16}\right.$-acetate $)$ and a new linear chain Mn^{111} complex $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{\mathrm{n}}$ were obtained. The synthesis and properties are now described and compared to related species.

8.2 Synthesis and Characterisation of

$\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{16}-a c e t a t e\right)$

 and $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAC})_{2}\right]_{n}$Addition of solid n - $\mathrm{Bu}_{4} \mathrm{NMnO}_{4}$ to a stirred solution of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in a mixture of methanol and acetic acid yielded a dark brown solution which was allowed to stand for several weeks. Black, block-like crystals of Mn_{16}-acetate were reproducibly formed, albeit in low yield. If $\mathrm{Na}(\mathrm{dca})$ and $\mathrm{Me}_{4} \mathrm{NBr}$ are included in the reaction, $\mathrm{Mn}_{16}{ }^{-}$ acetate is formed first, followed by small red crystals of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$. Successive filtrations of the reaction to remove the product mixture formed, and subsequent standing yields a pure sample of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$. Infrared spectra show an absorption due to $v(\mathrm{C}=0)$ at 1558 and $1568 \mathrm{~cm}^{-1}$ for Mn_{16}-acetate and $[\mathrm{Mn}(\mu-$ $\left.\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ respectively. The crystals of the two products are readily differentiated by visual inspection.

Attempts were also made to synthesise the benzoate analogue of the Mn_{16}-acetate complex. One method involved using similar reaction conditions to those for Mn_{16}-acetate, but replacing benzoic acid for acetic acid. Another route explored was to attempt to replace the acetate groups of Mn_{16}-acetate with benzoate, in a similar method utilised by Christou et al. and other groups to synthesise a series of $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ derivatives of Mn_{12}-acetate, where R groups include $\mathrm{Ph}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{Bu}^{i}$, $\mathrm{Et}, p-\mathrm{Tol}$, and $m-\mathrm{Cl}-\mathrm{Ph}$, by
substituting acetate groups on Mn_{12}-acetate. ${ }^{3740}$ However, these attempts were unsuccessful and were not extensively pursued. The latter method presents difficulties as the Mn_{16}-acetate complex decomposes when removed from its mother liquor, and it did not dissolve in a range of common solvents tried.

8.3 Crystal Structures

8.3.1 $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Crystal data are summarized for $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Mn_{16}-acetate) in Table 8.1. Selected interatomic distances and angles are given in Table 8.2 and Table 8.3 (see pages $360-362$). Mn_{16}-acetate crystallizes in the triclinic space group $P \overline{1}$. The cluster lies on an inversion centre relating one half of the cluster to the other. The asymmetric unit contains half of the molecule and three lattice water molecules. The complex consists of six $\mathrm{Mn}^{\mathrm{IV}}$ and ten $\mathrm{Mn}^{\mathrm{III}}$ ions held together by fourteen $\mu_{3}-\mathrm{O}^{2-}$, two $\mu-$ O^{2-}, four $\mu-\mathrm{OMe}^{-}$and two $\mu-\mathrm{OAc}^{-}$groups to give an approximately elliptical planar $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{4}(\mathrm{OAc})_{2}\right]^{16+}$ core (Figure 8.1). Peripheral ligation consists of the remaining fourteen $\mu-\mathrm{OAc}^{\circ}$, two μ-OMe groups and three axial water and methanol molecules.

The Mn_{16} core can be divided into two sub-units, a central $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{6} \mathrm{O}_{6}(\mathrm{OMe})_{4}\right]^{8+}$ unit connected to an outer perimeter of ten Mn^{111} ions by ten $\mu_{3}-\mathrm{O}^{2-}$ ions in the plane of the molecule and two $\mu-\mathrm{OAc}^{+}$groups perpendicular (above and below) to the plane of the molecule. The central unit contains six $\mathrm{Mn}^{\mathrm{IV}}$ ions in two rows of three ($\mathrm{Mn}(1), \mathrm{Mn}(2)$, $\mathrm{Mn}(3)$ and the symmetry related $\mathrm{Mn}\left(1^{\mathbf{i}}\right), \mathrm{Mn}\left(2^{\mathbf{i}}\right), \mathrm{Mn}\left(3^{\mathbf{i}}\right)$) lying in a plane that is sandwiched between two planes of oxygen atoms. Each oxygen plane contains two $\mu_{3}-\mathrm{O}^{2-}$, one $\mu-\mathrm{O}^{2 \cdot}$ and two $\mu-\mathrm{OMe}^{-}$ions. One oxygen plane contains $\mathrm{O}(1)$ and $\mathrm{O}(3)\left(\mu_{3}-\mathrm{O}^{2-}\right), \mathrm{O}\left(2^{i}\right)$ $\left(\mu-O^{2-}\right)$ and $O\left(4^{i}\right)$ and $O\left(6^{i}\right)(\mu-O M e)$. The other oxygen plane contains $O\left(1^{j}\right)$ and $O\left(3^{i}\right)$
$\left(\mu_{3}-\mathrm{O}^{2-}\right), \mathrm{O}(2)\left(\mu-\mathrm{O}^{2-}\right)$ and $\mathrm{O}(4)$ and $\mathrm{O}(6)\left(\mu-\mathrm{OMe}^{-}\right)$. The $\mathrm{Mn}^{\mathrm{IV}}$ ions occupy distorted octahedral sites between these two hexagonal close-packed O layers, in the manner seen in many layered manganese oxide minerals, ${ }^{41-43}$ metal dihalides, dihydroxides and disulphides. ${ }^{44}$ A recent review by Winpenny ${ }^{31}$ describes this phenomenon, whereby the cores of many large polynuclear complexes adopt a layered mineral or general CdI_{2} type structure. For example, two Fe_{17} and Fe_{19} oxyhydroxide clusters are related to fragments of goethite or lepidocrocite. ${ }^{3,45}$ The CdI_{2} structure is also present in several examples of manganese clusters, $\mathrm{Mn}^{11 \mathrm{I}}{ }_{6} \mathrm{Na},{ }^{46} \mathrm{Mn}_{7}\left(4 \mathrm{Mn}^{11}, 3 \mathrm{Mn}^{\text {III }}\right),{ }^{16} \mathrm{Mn}_{10},{ }^{1}$ and Mn_{19} (albeit all $\left.\mathrm{Mn}^{\mathrm{II}}\right)^{47}$ clusters and in a recently reported $\mathrm{Mn}_{21}\left(12 \mathrm{Mn}^{\mathrm{III}}, 9 \mathrm{Mn}^{\mathrm{JV}}\right)$ cluster. ${ }^{21}$ Winpenny et al. reported a large Co_{24} cluster, in which the core bears a very obvious relationship to $\mathrm{Co}(\mathrm{OH})_{2}{ }^{48}$ Therefore, just as the Fe_{17} and Fe_{19} complexes have been termed "captured rusts" or "crusts", ${ }^{3,45} \mathrm{Mn}_{16}$-acetate could be thought of as a captured portion of a manganese oxide mineral. The $\mathbf{M n}_{12}$-acetate cluster, $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O},{ }^{4}$ can be described as consisting of two subunits, a central $\left[\mathrm{Mn}^{1 V}{ }_{4} \mathrm{O}_{4}\right]^{8+}$ cubane unit connected to an outer ring of $\left[\mathrm{Mn}^{\mathrm{MH}}{ }_{8} \mathrm{O}_{8}\right]^{8+}$.

Peripheral ligation around the $\mathrm{Mn}^{111} 10$ perimeter in the Mn_{16}-acetate cluster consists of eight equatorial μ-OAc groups, six axial $\mu-\mathrm{OAc}^{-}$groups (three either side of the cluster in an alternating up-down-up fashion) and two μ-OMe ligands (bridging $\mathrm{Mn}(6)$ and $\mathrm{Mn}(7)$). In addition there are three axially coordinated monodentate water and methanol molecules. Eight of the ten perimeter $\mathrm{Mn}^{\mathrm{III}}$ ions experience Jahn-Teller (JT) axial elongation in the direction perpendicular to the plane of the cluster (Figure 8.2). The remaining two $\left(\mathrm{Mn}(4)\right.$ and $\mathrm{Mn}\left(4^{\mathrm{i}}\right)$) experience JT axial compression roughly parallel to the plane of the cluster in the direction of a $\mu-\mathrm{OAc}^{-}$and a core $\mu_{3}-\mathrm{O}^{2-}$. The orientation of the JT axes of SMMs has been shown to be important to the overall cluster magnetic anisotropy and consequently the $\mathrm{AC} \chi^{\prime \prime}$ behaviour, ${ }^{49}$ described later (see section 8.4.1).

Figure 8.1 The crystal structure of $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{16}-\right.$ acetate) with atom labelling scheme of manganese and oxygen atoms only (hydrogen atoms are omitted for clarity and thermal ellipsoids shown at 50% probability). The central $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{6} \mathrm{O}_{6}(\mathrm{OMe})_{4}\right]^{8+}$ sub-unit is highlighted in green.

Table 8.1 Crystal data for $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{16}\right.$-acetate $)$ and $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$.

Compound	Mn $\mathbf{1 6}^{\text {-acetate }}$	$\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$
Formula	$\mathrm{C}_{41} \mathrm{H}_{96} \mathrm{Mn}_{16} \mathrm{O}_{66}$	$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MnO}_{5}$
M	2524.22	204.06
Crystal system	Triclinic	Orthorhombic
Space group	$P \overline{1}$	Pbon
a / \AA	12.8547(2)	14.2547(5)
b / \AA	14.4366(2)	7.1796(2)
c / \AA	14.4590(2)	6.8865(2)
$\alpha 1^{\circ}$	108.276(1)	
$\beta /{ }^{\circ}$	116.273(1)	
γ^{\prime}	96.900(1)	
U / \AA^{3}	2176.49(5)	704.79(4)
Z	1	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.926	1.923
T/K	123(2)	123(2)
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	2.343	1.842
Crystal dimensions/mm	$0.2 \times 0.15 \times 0.15$	$0.09 \times 0.05 \times 0.03$
θ ranges 1°	$2.76-28.30$	4.34-28.33
Index ranges	$\begin{aligned} & -17 \leq h \leq 17, \\ & -18 \leq k \leq 18, \\ & -19 \leq l \leq 19 \end{aligned}$	$\begin{aligned} & -18 \leq h \leq 18, \\ & -9 \leq k \leq 8, \\ & -9 \leq l \leq 9 \end{aligned}$
Completeness to $2 \theta=55^{\circ} / \%$	99.6	99.8
Data collected	37016	9731
Unique data ($R_{\text {int }}$)	10573 (0.0609)	873 (0.0703)
Observed reflections [$I>2 \sigma(I)$]	8648	632
Parameters	669	66
Final $R 1, w R 2[I>2 \sigma(I)]^{(a)}$	0.0424, 0.1032	0.0337. 0.0613
(all data)	0.0580, 0.1101	0.0601, 0.0679
Goodness of fit, S	1.051	1.082
$\Delta \rho_{\min }, \Delta \rho_{\max } / \mathrm{e} \AA^{-3}$	-0.687, 1.794	-0.449, 0.410

${ }^{(a)} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$

Figure 8.2 The crystal structure of Mn_{16}-acetate showing Jahn-Teller elongation (yellow) and compression (green) distortions, of the perimeter $\mathrm{Mn}^{\mathrm{IIII}}$ atoms of Mn_{16}-acetate. Spheres represent Mn atoms.

Several regions of disorder were observed in Mn_{16}-acetate and in the lattice waters. Full details of this disorder are given in Experimental Section 8.6.3. There is positional disorder of the peripheral ligands. In particular, three terminal water ligands and one methanol ligand are disordered over four axial coordination sites $(O(45), O(47)$ and symmetry related partners). Also, another terminal methanol and adjacent acetate group are disordered over two positions (Figure 8.3 and also Figure 8.4). A similar type of disorder has also been seen in mixed carboxylate derivatives of Mn_{12}-acetate, observed by ${ }^{\prime} \mathrm{H}$ NMR solution studies by Christou et al. Axial $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{RCO}_{2}{ }^{\circ}$ ligands exchange rapidly at room temperature. ${ }^{50}$

70 \%
30%

Figure 8.3 A schematic representation of the positional disorder of adjacent axial μ-OAc ${ }^{-}$ and terminal methanol ligands, with approximate percentage occupancies of each configuration of the ligands.

Figure 8.4 The crystal structure of a portion of the $\mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}$ perimeter of Mn_{16}-acetate, showing intra-cluster hydrogen bonding (dashed green), and disordered methanol/acetate and water/methanol (see text).

Several hydrogen bonding interactions were located in this structure (Table 8.4, see page 362). They can be divided into two types: intra-cluster and inter-cluster. Intracluster hydrogen bonding exists on the $\mathrm{Mn}^{111}{ }_{10}$ perimeter (Figure 8.4). The axially coordinated terminal disordered water/methanol $(\mathrm{O}(45))$ on $\mathrm{Mn}(6)$ hydrogen bonds to the adjacent μ-OAc oxygen $(\mathrm{O}(48)$) coordinated to $\mathrm{Mn}(7)$. In addition, the coordinated water/methanol $(\mathrm{O}(47))$ on $\mathrm{Mn}(7)$ (trans to the aforementioned acetate) hydrogen bonds to the adjacent disordered methanol/acetate oxygen $(\mathrm{O}(44))$ on $\mathrm{Mn}(6)$. Each Mn_{16} cluster is hydrogen bonded to two adjacent Mn_{16} clusters through two lattice water molecules $(O(52))$ located between each cluster. The lattice waters hydrogen bond to adjacent clusters via the axial water/methanol, $\mathrm{O}(47)$, on $\mathrm{Mn}(7)$ and an axial μ-OAc oxygen, $\mathrm{O}(31)$ on $\mathrm{Mn}(6)$. The lattice water molecules also hydrogen bond to their symmetry related neighbour. These hydrogen bonded chains of clusters propagate parallel to the c-axis direction (Figure 8.5).

The role that hydrogen bonding may play in the properties of these high-spin polynuclear manganese clusters is now being studied more closely. Recently Cornia and Gatteschi et al. reported the crystal structure of $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ at $83 \mathrm{~K}^{51,52}$ in an effort to explain the significant magnetic anisotropy displayed by this complex despite it being highly structurally symmetrical (S_{4} crystallographic symmetry). They found the two disordered acetic acid molecules of solvation transfer this disorder to the cluster by hydrogen bonding interactions thus lowering the effective symmetry of the cluster. Hence increasing magnetic anisotropy. They also reported that the water of solvation hydrogen bonds to a water ligand coordinated to one of the peripheral $\mathrm{Mn}^{\mathrm{II}}$ atoms. The water ligand also hydrogen bonds to an adjacent bridging acetate. This pattern of hydrogen bonding is very similar to that seen in Mn_{16}-acetate. However, no mention is made of inter-cluster hydrogen bonding interactions.

Figure 8.5 A single hydrogen bonded chain of Mn_{16}-acetate running parallel to the c-axis direction (hydrogen bonds shown in dashed green).

Wernsdorfer and Christou et al. have also recently reported a supramolecular dimer of Mn_{4} SMMs. ${ }^{6}$ They find that due to antiferromagnetic coupling, between the two components, the dimer displays quantum behaviour different from that of the individual tetranuclear components, possibly via six $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and a $\mathrm{Cl} \cdots \mathrm{Cl}$ interaction. The dimer displays an exchange-bias of the quantum tunnelling transition win no tunnelling (i.e. no hysteresis step) at $H=0$. Hendrickson et al. ${ }^{33,34}$ have also made similar observations on M_{4} cubane clusters of Co^{11} and Ni^{11}.

Table 8.2 Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for the central $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{6} \mathrm{O}_{5}(\mathrm{OMe})_{4}\right]^{8+}$ unit and surrounds of Mn_{16}-acetate.

$\mathrm{Mn}(1)-\mathrm{O}(1)$	$1.898(2)$	$\mathrm{Mn}(2)-\mathrm{O}(1)$	$1.893(2)$	$\mathrm{Mn}(3)-\mathrm{O}\left(1^{1}\right)$	$1.917(2)$
$\mathrm{Mn}(1)-\mathrm{O}(2)$	$1.827(2)$	$\mathrm{Mn}(2)-\mathrm{O}(2)$	$1.835(2)$	$\mathrm{Mn}(3)-\mathrm{O}(3)$	$1.920(2)$
$\mathrm{Mn}(1)-\mathrm{O}(6)$	$1.937(2)$	$\mathrm{Mn}(2)-\mathrm{O}(3)$	$1.941(2)$	$\mathrm{Mn}(3)-\mathrm{O}(4)$	$1.942(2)$
$\mathrm{Mn}(1)-\mathrm{O}(8)$	$1.920(2)$	$\mathrm{Mn}(2)-\mathrm{O}\left(3^{i}\right)$	$1.916(2)$	$\mathrm{Mn}(3)-\mathrm{O}\left(6^{i}\right)$	$1.926(2)$
$\mathrm{Mn}(1)-\mathrm{O}(9)$	$1.857(2)$	$\mathrm{Mn}(2)-\mathrm{O}(4)$	$1.945(2)$	$\mathrm{Mn}(3)-\mathrm{O}(11)$	$1.860(2)$
$\mathrm{Mn}(1)-\mathrm{O}(38)$	$1.924(2)$	$\mathrm{Mn}(2)-\mathrm{O}(10)$	$1.896(2)$	$\mathrm{Mn}(3)-\mathrm{O}(12)$	$1.861(2)$
$\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$	$2.7593(6)$	$\mathrm{Mn}(2) \cdots \mathrm{Mn}\left(3^{i}\right)$	$2.8906(6)$	$\mathrm{Mn}(3) \cdots \mathrm{Mn}\left(1^{i}\right)$	$2.8644(6)$
$\mathrm{Mn}(1) \cdots \mathrm{Mn}\left(3^{\mathrm{i}}\right)$	$2.8644(6)$	$\mathrm{Mn}(2) \cdots \mathrm{Mn}\left(2^{i}\right)$	$2.9082(9)$	$\mathrm{Mn}(3) \cdots \mathrm{Mn}\left(2^{i}\right)$	$2.8906(6)$
		$\mathrm{Mn}(2) \cdots \mathrm{Mn}(3)$	$2.9149(6)$		

$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(9)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(1)$
$\mathrm{O}(9)-\mathrm{Mn}(1)-\mathrm{O}(1)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(8)$
$O(9)-\mathrm{Mn}(1)-\mathrm{O}(8)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(8)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(38)$
$\mathrm{O}(9)-\mathrm{Mn}(1)-\mathrm{O}(38)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(38)$
$\mathrm{O}(8)-\mathrm{Mn}(1)-\mathrm{O}(38)$
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(6)$
$\mathrm{O}(9)-\mathrm{Mn}(1)-\mathrm{O}(6)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(6)$
$\mathrm{O}(8)-\mathrm{Mn}(1)-\mathrm{O}(6)$
$\mathrm{O}^{20} \mathrm{y}-\mathrm{Mn}(1)-\mathrm{O}(6)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(1)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(10)$
$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}(10)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}\left(3^{\mathrm{i}}\right)$
$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}\left(3^{\mathrm{i}}\right)$
$\mathrm{O}(10)-\mathrm{Mn}(2)-\mathrm{O}\left(3^{1}\right)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(3)$

$93.9(1)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}(3)$	$96.80(9)$
$84.33(9)$	$\mathrm{O}(10)-\mathrm{Mn}(2)-\mathrm{O}(3)$	$90.40(9)$
$91.90(9)$	$\mathrm{O}\left(3^{\mathrm{i}}\right)-\mathrm{Mn}(2)-\mathrm{O}(3)$	$82.13(9)$
$172.9(1)$	$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(4)$	$96.87(9)$
$82.44(1)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}(4)$	$174.33(9)$
$89.77(9)$	$\mathrm{O}(10)-\mathrm{Mn}(2)-\mathrm{O}(4)$	$91.87(9)$
$92.4(1)$	$\mathrm{O}\left(3^{\mathrm{i}}\right)-\mathrm{Mn}(2)-\mathrm{O}(4)$	$92.28(9)$
$94.2(1)$	$\mathrm{O}(3)-\mathrm{Mn}(2)-\mathrm{O}(4)$	$81.79(9)$
$173.2(1)$	$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(12)$	$85.19(9)$
$93.7(1)$	$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	$176.90(9)$
$91.56(9)$	$\mathrm{O}(12)-\mathrm{Mn}(3)-\mathrm{O}\left(1^{i}\right)$	$96.73(9)$
$172.4(1)$	$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(3)$	$96.73(9)$
$83.47(9)$	$\mathrm{O}(12)-\mathrm{Mn}(3)-\mathrm{O}(3)$	$178.02(9)$
$91.52(9)$	$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Mn}(3)-\mathrm{O}(3)$	$81.37(9)$
$90.7(1)$	$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}\left(6^{\mathrm{i}}\right)$	$94.36(9)$
$84.22(9)$	$\mathrm{O}(12)-\mathrm{Mn}(3)-\mathrm{O}\left(6^{i}\right)$	$88.84(9)$
$92.86(9)$	$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Mn}(3)-\mathrm{O}\left(6^{i}\right)$	$83.26(9)$
$93.63(9)$	$\mathrm{O}(3)-\mathrm{Mn}(3)-\mathrm{O}\left(6^{i}\right)$	$91.44(9)$
$94.73(9)$	$\mathrm{O}(11)-\mathrm{Mn}(3)-\mathrm{O}(4)$	$91.09(9)$
$82.08(9)$	$\mathrm{O}(12)-\mathrm{Mn}(3)-\mathrm{O}(4)$	$97.12(9)$
$170.85(9)$	$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Mn}(3)-\mathrm{O}(4)$	$91.08(9)$
$176.51(9)$	$\mathrm{O}(3)-\mathrm{Mn}(3)-\mathrm{O}(4)$	$82.43(9)$
	$\mathrm{O}\left(6^{\mathrm{i}}\right)-\mathrm{Mn}(3)-\mathrm{O}(4)$	$172.24(9)$

Symmetry transformation: (i) 1-x, 1-y, 1-z.

Table 8.3 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for the outer $\mathrm{Mn}^{1 \mathrm{II}}{ }_{10}$ perimeter of Mn_{16}-acetate.

$\mathrm{Mn}(4)-\mathrm{O}(8)$	$1.863(2)$	$\mathrm{Mn}(5)-\mathrm{O}(41)$	$2.203(3)$	$\mathrm{Mn}(7)-\mathrm{O}(11)$	$1.900(2)$
$\mathrm{Mn}(4)-\mathrm{O}(16)$	$1.948(3)$	$\mathrm{Mn}(5)-\mathrm{O}(35)$	$2.244(3)$	$\mathrm{Mn}(7)-\mathrm{O}(25)$	$1.934(2)$
$\mathrm{Mn}(4)-\mathrm{O}(34)$	$2.029(3)$	$\mathrm{Mn}(6)-\mathrm{O}(9)$	$1.869(2)$	$\mathrm{Mn}(7)-\mathrm{O}(27)$	$1.941(2)$
$\mathrm{Mn}(4)-\mathrm{O}\left(12^{\prime}\right)$	$2.049(2)$	$\mathrm{Mn}(6)-\mathrm{O}(25)$	$1.908(2)$	$\mathrm{Mn}(7)-\mathrm{O}(48)$	$2.216(2)$
$\mathrm{Mn}(4)-\mathrm{O}(17)$	$2.093(3)$	$\mathrm{Mn}(6)-\mathrm{O}(10)$	$1.917(2)$	$\mathrm{Mn}(7)-\mathrm{O}(47)$	$2.237(3)$
$\mathrm{Mn}(4)-\mathrm{O}(39)$	$2.125(3)$	$\mathrm{Mn}(6)-\mathrm{O}(24)$	$1.964(2)$	$\mathrm{Mn}(8)-\mathrm{O}(12)$	$1.883(2)$
$\mathrm{Mn}(5)-\mathrm{O}(9)$	$1.879(2)$	$\mathrm{Mn}(6)-\mathrm{O}(44)$	$2.217(3)$	$\mathrm{Mn}(8)-\mathrm{O}(11)$	$1.905(2)$
$\mathrm{Mn}(5)-\mathrm{O}(8)$	$1.883(2)$	$\mathrm{Mn}(6)-\mathrm{O}(45)$	$2.269(3)$	$\mathrm{Mn}(8)-\mathrm{O}\left(13^{i}\right)$	$1.959(2)$
$\mathrm{Mn}(5) \cdots \mathrm{O}(20)$	$1.914(2)$	$\mathrm{Mn}(6)-\mathrm{Mn}(7)$	$2.9321(6)$	$\mathrm{Mn}(8)-\mathrm{O}(30)$	$1.974(2)$
$\mathrm{Mn}(5)-\mathrm{O}(21)$	$1.956(2)$	$\mathrm{Mn}(7)-\mathrm{O}(10)$	$1.897(2)$	$\mathrm{Mn}(8)-\mathrm{O}(51)$	$2.169(2)$
$\mathrm{Mn}(4) \cdots \mathrm{Mn}(5)$	$3.3818(7)$	$\mathrm{Mn}(4) \cdots \mathrm{Mn}(1)$	$3.4746(7)$	$\mathrm{Mn}(8)-\mathrm{O}\left(31^{i}\right)$	$2.191(2)$
$\mathrm{Mn}(5) \cdots \mathrm{Mn}(6)$	$3.3509(7)$	$\mathrm{Mn}(5) \cdots \mathrm{Mn}(1)$	$2.8066(7)$	$\mathrm{Mn}(7) \cdots \mathrm{Mn}(3)$	$3.3965(6)$
$\mathrm{Mn}(6) \cdots \mathrm{Mn}(7)$	$2.9321(6)$	$\mathrm{Mn}(6) \cdots \mathrm{Mn}(1)$	$3.3761(7)$	$\mathrm{Mn}(8) \cdots \mathrm{Mn}(3)$	$2.7845(6)$
$\mathrm{Mn}(7) \cdots \mathrm{Mn}(8)$	$3.3330(6)$	$\mathrm{Mn}(6) \cdots \mathrm{Mn}(2)$	$3.4126(6)$	$\mathrm{Mn}\left(4^{i}\right) \cdots \mathrm{Mn}(3)$	$3.5317(6)$
$\mathrm{Mn}(8) \cdots \mathrm{Mn}\left(4^{i}\right)$	$3.3828(7)$	$\mathrm{Mn}(7) \cdots \mathrm{Mn}(2)$	$3.4521(6)$		

$\mathrm{O}(8)-\mathrm{Mn}(4)-\mathrm{O}(16)$
$\mathrm{O}(8)-\mathrm{Mn}(4)-\mathrm{O}(34)$
$\mathrm{O}(16)-\mathrm{Mn}(4)-\mathrm{O}(34)$
$\mathrm{O}(8)-\mathrm{Mn}(4)-\mathrm{O}\left(12^{i}\right)$
$\mathrm{O}(16)-\mathrm{Mn}(4)-\mathrm{O}\left(12^{i}\right)$
$\mathrm{O}(34)-\mathrm{Mn}(4)-\mathrm{O}\left(12^{\mathrm{i}}\right)$
$\mathrm{O}(8)-\mathrm{Mn}(4)-\mathrm{O}(17)$
$\mathrm{O}(16)-\mathrm{Mn}(4)-\mathrm{O}(17)$
$\mathrm{O}(34)-\mathrm{Mn}(4)-\mathrm{O}(17)$
$\mathrm{O}\left(12^{i}\right)-\mathrm{Mn}(4)-\mathrm{O}(17)$
$\mathrm{O}(8)-\mathrm{Mn}(4)-\mathrm{O}(39)$
$\mathrm{O}(16)-\mathrm{Mn}(4)-\mathrm{O}(39)$
$\mathrm{O}(34)-\mathrm{Mn}(4)-\mathrm{O}(39)$
$\mathrm{O}\left(12^{i}\right)-\mathrm{Mn}(4)-\mathrm{O}(39)$
$\mathrm{O}(17)-\mathrm{Mn}(4)-\mathrm{O}(39)$
$\mathrm{O}(9)-\mathrm{Mn}(5)-\mathrm{O}(8)$
$\mathrm{O}(9)-\mathrm{Mn}(5)-\mathrm{O}(20)$
$\mathrm{O}(8)-\mathrm{Mn}(5)-\mathrm{O}(20)$
$\mathrm{O}(9)-\mathrm{Mn}(5)-\mathrm{O}(21)$
$\mathrm{O}(8)-\mathrm{Mn}(5)-\mathrm{O}(21)$
$\mathrm{O}(20)-\mathrm{Mn}(5)-\mathrm{O}(21)$

$172.2(1)$	$\mathrm{O}(25)-\mathrm{Mn}(6)-\mathrm{O}(44)$	$87.7(1)$
$91.4(1)$	$\mathrm{O}(10)-\mathrm{Mn}(6)-\mathrm{O}(44)$	$90.3(1)$
$91.1(1)$	$\mathrm{O}(24)-\mathrm{Mn}(6)-\mathrm{O}(44)$	$90.6(1)$
$94.71(9)$	$\mathrm{O}(9)-\mathrm{Mn}(6)-\mathrm{O}(45)$	$87.4(1)$
$92.4(1)$	$\mathrm{O}(25)-\mathrm{Mn}(6)-\mathrm{O}(45)$	$90.1(1)$
$95.39(9)$	$\mathrm{O}(10)-\mathrm{Mn}(6)-\mathrm{O}(45)$	$87.4(1)$
$90.1(1)$	$\mathrm{O}(24)-\mathrm{Mn}(6)-\mathrm{O}(45)$	$91.4(1)$
$82.6(1)$	$\mathrm{O}(44)-\mathrm{Mn}(6)-\mathrm{O}(45)$	$177.0(1)$
$88.1(1)$	$\mathrm{O}(10)-\mathrm{Mn}(7)-\mathrm{O}(11)$	$99.45(9)$
$174.0(1)$	$\mathrm{O}(10)-\mathrm{Mn}(7)-\mathrm{O}(25)$	$79.94(9)$
$93.4(1)$	$\mathrm{O}(11)-\mathrm{Mn}(7)-\mathrm{O}(25)$	$178.8(1)$
$83.4(1)$	$\mathrm{O}(10)-\mathrm{Mn}(7)-\mathrm{O}(27)$	$167.4(1)$
$172.8(1)$	$\mathrm{O}(11)-\mathrm{Mn}(7)-\mathrm{O}(27)$	$92.7(1)$
$89.6(1)$	$\mathrm{O}(25)-\mathrm{Mn}(7)-\mathrm{O}(27)$	$88.0(1)$
$86.5(1)$	$\mathrm{O}(10)-\mathrm{Mn}(7)-\mathrm{O}(48)$	$89.96(9)$
$82.86(9)$	$\mathrm{O}(11)-\mathrm{Mn}(7)-\mathrm{O}(48)$	$93.25(9)$
$176.9(1)$	$\mathrm{O}(25)-\mathrm{Mn}(7)-\mathrm{O}(48)$	$85.66(9)$
$97.6(1)$	$\mathrm{O}(10)-\mathrm{Mn}(7)-\mathrm{O}(47)$	$88.9(1)$
$93.41(1)$	$\mathrm{O}(11)-\mathrm{Mn}(7)-\mathrm{O}(47)$	$92.4(1)$
$175.2(1)$	$\mathrm{O}(25)-\mathrm{Mn}(7)-\mathrm{O}(47)$	$88.7(1)$
$86.0(1)$	$\mathrm{O}(27)-\mathrm{Mn}(7)-\mathrm{O}(47)$	$87.1(1)$

$$
\begin{aligned}
& \mathrm{O}(9)-\mathrm{Mn}(5)-\mathrm{O}(41) \\
& \mathrm{O}(8)-\mathrm{Mn}(5)-\mathrm{O}(41) \\
& \mathrm{O}(20)-\mathrm{Mn}(5)-\mathrm{O}(41) \\
& \mathrm{O}(21)-\mathrm{Mn}(5)-\mathrm{O}(41) \\
& \mathrm{O}(9)-\mathrm{Mn}(5)-\mathrm{O}(35) \\
& \mathrm{O}(8)-\mathrm{Mn}(5)-\mathrm{O}(35) \\
& \mathrm{O}(20)-\mathrm{Mn}(5)-\mathrm{O}(35) \\
& \mathrm{O}(21)-\mathrm{Mn}(5)-\mathrm{O}(35) \\
& \mathrm{O}(41)-\mathrm{Mn}(5)-\mathrm{O}(35) \\
& \mathrm{O}(9)-\mathrm{Mn}(6)-\mathrm{O}(25) \\
& \mathrm{O}(9)-\mathrm{Mn}(6)-\mathrm{O}(10) \\
& \mathrm{O}(25)-\mathrm{Mn}(6)-\mathrm{O}(10) \\
& \mathrm{O}(9)-\mathrm{Mn}(6)-\mathrm{O}(24) \\
& \mathrm{O}(10)-\mathrm{Mn}(6)-\mathrm{O}(24) \\
& \mathrm{O}(9)-\mathrm{Mn}(6)-\mathrm{O}(44)
\end{aligned}
$$

$92.9(1)$	$\mathrm{O}(48)-\mathrm{Mn}(7)-\mathrm{O}(47)$	$174.4(1)$
$92.0(1)$	$\mathrm{O}(12)-\mathrm{Mn}(8)-\mathrm{O}(11)$	$83.32(9)$
$90.1(1)$	$\mathrm{O}(12)-\mathrm{Mn}(8)-\mathrm{O}\left(13^{\mathrm{i}}\right)$	$96.8(1)$
$91.3(1)$	$\mathrm{O}(11)-\mathrm{Mn}(8)-\mathrm{O}\left(13^{\mathrm{i}}\right)$	$178.6(1)$
$85.6(1)$	$\mathrm{O}(12)-\mathrm{Mn}(8)-\mathrm{O}(30)$	$178.6(1)$
$86.4(1)$	$\mathrm{O}(11)-\mathrm{Mn}(8)-\mathrm{O}(30)$	$95.42(9)$
$91.5(1)$	$\mathrm{O}\left(13^{i}\right)-\mathrm{Mn}(8)-\mathrm{O}(30)$	$84.4(1)$
$90.2(1)$	$\mathrm{O}(12)-\mathrm{Mn}(8)-\mathrm{O}(51)$	$90.79(9)$
$177.91(9)$	$\mathrm{O}(11)-\mathrm{Mn}(8)-\mathrm{O}(51)$	$94.74(9)$
$177.2(1)$	$\mathrm{O}\left(13^{i}\right)-\mathrm{Mn}(8)-\mathrm{O}(51)$	$83.85(9)$
$98.60(9)$	$\mathrm{O}(30)-\mathrm{Mn}(8)-\mathrm{O}(51)$	$89.9(1)$
$80.09(9)$	$\mathrm{O}(12)-\mathrm{Mn}(8)-\mathrm{O}\left(31^{i}\right)$	$94.46(9)$
$91.1(1)$	$\mathrm{O}(11)-\mathrm{Mn}(8)-\mathrm{O}\left(31^{i}\right)$	$93.26(9)$
$170.2(1)$	$\mathrm{O}\left(13^{\mathrm{i}}\right)-\mathrm{Mn}(8)-\mathrm{O}\left(31^{\mathrm{i}}\right)$	$88.1(1)$
$94.8(1)$	$\mathrm{O}(30)-\mathrm{Mn}(8)-\mathrm{O}\left(31^{i}\right)$	$84.97(9)$
	$\mathrm{O}(51)-\mathrm{Mn}(8)-\mathrm{O}\left(31^{i}\right)$	$170.89(9)$

Symmetry transformation: (i) 1-x, 1-y, 1-z.

Table 8.4 Hydrogen bonding distances (\AA) angles $\left({ }^{\circ}\right)$ for Mn_{16}-acetate.

$\mathrm{O}(45)-\mathrm{H}(45)$	$0.87(2)$	$\mathrm{O}(47)-\mathrm{H}(47 \mathrm{~A})$	$0.95(7)$
$\mathrm{H}(45) \cdots \mathrm{O}(48)$	$1.90(3)$	$\mathrm{H}(47 \mathrm{~A}) \cdots \mathrm{O}(52)$	$1.81(7)$
$\mathrm{O}(45) \cdots \mathrm{O}(48)$	$2.734(3)$	$\mathrm{O}(47) \cdots \mathrm{O}(52)$	$2.732(4)$
$\mathrm{O}(52)-\mathrm{H}(52 \mathrm{~A})$	$0.89(2)$	$\mathrm{O}(52)-\mathrm{H}(52 \mathrm{~B})$	$0.90(2)$
$\mathrm{H}(52 \mathrm{~A}) \cdots \mathrm{O}\left(52^{\mathrm{ii}}\right)$	$1.96(4)$	$\mathrm{H}(52 \mathrm{~B}) \cdots \mathrm{O}\left(31^{\mathrm{iiii}}\right)$	$1.89(2)$
$\mathrm{O}(52) \cdots \mathrm{O}\left(52^{\mathrm{ii})}\right.$	$2.768(8)$	$\mathrm{O}(52) \cdots \mathrm{O}\left(31^{\mathrm{ii}}\right)$	$2.781(4)$
$\mathrm{O}(47)-\mathrm{H}(47 \mathrm{~B})$	$0.87(2)$		
$\mathrm{H}(47 \mathrm{~B}) \cdots \mathrm{O}(44)$	$2.01(3)$		
$\mathrm{O}(47) \cdots \mathrm{O}(44)$	$2.851(4)$		$163(6)$
			$168(5)$
$\mathrm{O}(45)-\mathrm{H}(45) \cdots \mathrm{O}(48)$	$159(5)$	$\mathrm{O}(47)-\mathrm{H}(47 \mathrm{~A}) \cdots \mathrm{O}(52)$	
$\mathrm{O}(52)-\mathrm{H}(52 \mathrm{~A}) \cdots \mathrm{O}\left(52^{\mathrm{ii}}\right)$	$150(6)$	$\mathrm{O}(52)-\mathrm{H}(52 \mathrm{~B}) \cdots \mathrm{O}\left(31^{\mathrm{iiii}}\right)$	
$\mathrm{O}(47)-\mathrm{H}(47 \mathrm{~B}) \cdots \mathrm{O}(44)$	$160(6)$		

Symmetry transformations: (ii) $1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$; (iii) $\mathrm{x}, \mathrm{y}, \mathrm{z}-1$.

8.3.2 $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$

Crystal data are summarised for $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ in Table 8.1 (see page 355). Selected interatomic distances and angles are given in Table 8.5 (see page 365). $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ crystallises in the orthorhombic space group Pbcn. The asymmetric unit contains one bridging acetate ligand, half a manganese(III) atom and half a bridging methoxide ligand. The structure (Figure 8.6) consists of infinite linear 1D chains of manganese(III) atoms bridged by two μ-OAc ligands and one μ - OMe^{-}. Each manganese(III) is coordinated in a distorted octahedral environment. As expected for a high-spin d^{4} ion, the metal centres are Jahn-Teller distorted with elongation of the axial bonds to one oxygen atom each of the two $\mu-\mathrm{OAc}^{-}$ligands $\left(\mathrm{Mn}(1)-\mathrm{O}\left(6^{\mathrm{ii}}\right)=2.171(2) \AA\right)$. The equatorial coordination plane consists of two oxygen atoms from two $\mu-\mathrm{OMe}^{-}$ligands $(\mathrm{Mn}(1)-\mathrm{O}(1)=1.946(1) \AA)$ and the other two oxygens of the two μ-OAc ligands $(\mathrm{Mn}(1)-\mathrm{O}(3)=1.932(2) \AA)$. The hydrogen atoms of the bridging methoxide group are disordered over two positions due to the methoxide lying on a rotational 2-fold axis. The chains run parallel to the c-axis direction. The intra-chain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is equal to half the unit cell length $c(3.4433(1) \AA)$. The inter-chain Mn $\cdot \cdot \mathrm{Mn}$ distance to adjacent chains in the b-axis direction is equal to the unit cell length $b(7.1796(2) \AA)$. The next shortest interchain $\mathrm{Mn} \cdots \mathrm{Mn}$ distance is equal to half the diagonal of the $a b$-unit cell face $(7.9803(2) \AA$). Figure 8.7 shows five chains viewed parallel to the c-axis.

The structure of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ is rather similar to a related complex, $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, described in Chapter 6. The latter also consists of a triply bridged linear chain of manganese(III) atoms and these chains hydrogen bond to adjacent chains via the $\mu-\mathrm{OH}$ and lattice acetic acid and water molecules to form pseudo 2D sheets. It displays long-range antiferromagnetic order ($T_{\mathrm{N}}=6.1 \mathrm{~K}$) that is probably facilitated by the hydrogen bonding pathways. The lack of magnetic order in the complex
described here (see Section 8.4.2) would seem to support this conclusion, as it is superficially identical but without the hydrogen bonding network.

Figure 8.6 The crystal structure of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ with atom labelling scheme shown (thermal ellipsoids shown at 50% probability). Disorder of methoxide hydrogen atoms is due to site symmetry (see text).

Figure 8.7 Packing diagram of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ viewed parallel to the c-axis (spheres represent Mn ions).

Table 8.5 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$.

$\mathrm{Mn}(1)-\mathrm{O}(1)$	$1.946(1)$	$\mathrm{Mn}(1)-\mathrm{O}\left(6^{\mathrm{ii}}\right)$	$2.171(2)$
$\mathrm{Mn}(1)-\mathrm{O}(3)$	$1.932(2)$		
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(3)$	$93.15(6)$	$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(3^{\mathrm{i}}\right)$	$86.85(6)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(6^{\mathrm{ii}}\right)$	$90.54(6)$	$\mathrm{O}(3)-\mathrm{Mn}(1)-\mathrm{O}\left(6^{\mathrm{iii}}\right)$	$91.54(8)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(6^{\mathrm{iii}}\right)$	$90.54(6)$	$\mathrm{O}(3)-\mathrm{Mn}(1)-\mathrm{O}\left(6^{\mathrm{iii}}\right)$	$88.46(8)$

Symmetry transformations: (i) $1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$; (ii) $1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$; (iii) $\mathrm{x}, 1-\mathrm{y}, \mathrm{z}-1 / 2$.

8.4 Magnetism

8.4.1 $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Magnetic susceptibilities were measured as a function of temperature on freshly isolated samples of Mn_{16}-acetate in a field of 1 T over the range $2-300 \mathrm{~K}$ (Figure 8.8). The same results were obtained on neat powders and on Vaseline mulls. The effective magnetic moment, per Mn_{16}, decreases gradually from $14.0 \mu_{\mathrm{B}}$ at 300 K to ca. $10.5 \mu_{\mathrm{B}}$, then more rapidly, reaching $5.7 \mu_{\mathrm{B}}$ at 2 K and still decreasing. The value of μ_{cif} at 300 K compares to the value of $18.16 \mu_{\mathrm{B}}$ calculated for six uncoupled $\mathrm{Mn}^{\mathrm{IV}}(S=3 / 2)$ and ten $\mathrm{Mn}^{\mathrm{III}}(S=4 / 2)$ and is thus indicative of overall antiferromagnetic coupling.

Figure 8.8 Plot of $\mu_{\mathrm{erf}} \nu s$. temperature in $H=1 \mathrm{~T}$ for Mn_{16}-acetate.

To try to identify the ground spin state of Mn_{16}-acetate, magnetization (M) measurements were made in the ranges of $H=0-5 \mathrm{~T}$ and temperature $=2-20 \mathrm{~K}$ (Figure 8.9). It can be seen that, at 2 K , the M values increase in a smooth, curved fashion between

0 and 5 T to reach $c a .7 N \beta$ in the 5 T field. The M values are still increasing and saturation is not achieved. This is most likely due to thermal population of the ground-state and of other low lying spin-states occurring even at 2 K . Zero-field splitting and Zeeman effects will also influence the shape and size of the M vs. H plots. Weak cluster-cluster interactions, via hydrogen benaing pathways, may also play a part. It is therefore not possible, without fitting of the M / H data, to unambiguously assign the ground state spin. When the M / H data are plotted as $M \nu s . H /$ temperature in the way commonly employed by Hendrickson and Christou, Figure 8.10 is obtained. The separation of the lines indicates zero-field splitting is occurring.

Figure 8.9 Plots of magnetization, $M \nu s$. applied field (Tesla) for Mn_{16}-acetate, at various temperatures $2 \mathrm{~K}(\square), 3 \mathrm{~K}(\mathrm{O}), 4 \mathrm{~K}(\Delta), 5.5 \mathrm{~K}(0), 10 \mathrm{~K}(\mathrm{x})$, and $20 \mathrm{~K}(+)$. The solid lines simply join the isothermal points and are not fitted curves.

Figure 8.10 Plots of Magnetisation, $M v s . H / T$ for the field values (from top): $H=5,4.6,4$, $3.5,3,2.5,2,1.5,1,0.75$ and 0.5 Tesla.

A hysteresis loop measured in low fields ($\pm 0.2 \mathrm{~T}$) on a neat powder at 2 K shows a rapid increase in M in the ± 250 Oe region (Figure 8.11). To observe the characteristic 'stepped' hysteresis loops of SMMs, due to quantum tunnelling, requires the use of single crystals or collections of oriented crystals and so this rapid increase through zero field is unlikely to be such a step.

Figure 8.11 Hysteresis plot of a powder sample of Mn_{16}-acetate dispersed in Vaseline, at 2 K.

Detailed AC susceptibility studies were made as a function of frequency (501500 Hz) in the temperature range $2-10 \mathrm{~K}$, and these are plotted as $\chi^{\prime}{ }_{\mathrm{M}} T v s . T$ and $\chi^{\prime \prime}{ }_{\mathrm{m}} v s . T$ in Figure 8.12. The $\chi^{\prime} \mathrm{m}^{1}$ values between $8-10 \mathrm{~K}\left(\sim 8.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ are independent of frequency and are of similar magnitude to the $D C$ values of $\chi_{\mathrm{M}} T$ in this temperature range. If all the Mn_{16} molecules were populating an isolated $S=3$ ground state, and assuming $g=$ 2.0 , the $\chi^{\prime}{ }_{\mathrm{M}} T$ value would be $6.01 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, while population of only an $S=4$ ground state would yield $\chi^{\prime}{ }_{\mathrm{M}} T=10.01 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$. The observed $\mathcal{X}^{\prime}{ }_{\mathrm{M}} T$ value is of an intermediate value, as is the DC magnetisation value, M, at a temperature of 2 K and a field of $5 \mathrm{~T}(M \sim$ $7 N \beta$). Thus, as indicated earlier, the data suggest that there is not an isolated ground S level, but that levels are close together and zero-field splitting and Zeeman effects play a part. Below 8 K the $\chi^{\prime}{ }_{\mathrm{M}} T$ values for Mn_{16}-acetate decrease rapidly, indicative of the onset of slow magnetic relaxation. At higher frequencies, the decrease in $\chi^{\prime}{ }_{\mathrm{M}} T$ occurs at higher temperatures. The Mn_{12}-carboxylates behave similarly. ${ }^{49}$ There is a hint of another such decrease in $\chi^{\prime}{ }_{\mathrm{M}} T$ occurring below $\sim 3 \mathrm{~K}$. In Figure 8.12(b), the out-of-phase $\chi^{\prime \prime}{ }_{\mathrm{M}}$ values show maxima in the region $5-7 \mathrm{~K}$, which vary in position, width and magnitude as the frequency is varied, typical of SMM behaviour and similar to that in Mn_{12}-acetate type clusters. In contrast to the Mn_{12} species, the values of the maxima in $\chi^{\prime \prime} \mathrm{m}$, of 0.25 to 0.20 $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$, are much smaller than in the Mn_{12} clusters but of similar size to those observed for a Mn_{30} cluster. ${ }^{12}$ It is possible that a second series of maxima occur below 2 K , but further measurements on a separate instrument would be required to confirm this and to obtain the relative intensity compared to the $5-7 \mathrm{~K}$ maxima. Two such series of maxima, at 4-7 K and $2-3 \mathrm{~K}$, have been observed in some of the Mn_{12}-carboxylate clusters ${ }^{37.53}$ and these originated from the presence of two Jahn-Teller isomers in the samples. In that study each isomer could be isolated separately and assigned to the relevant series of maxima in
$\chi^{\prime \prime}$. It is possible that such isomers can exist in Mn_{16}-a :etate, as can be seen in he structural discussion (see section 8.3.1).

Figure 8.12 (a) $\mathrm{AC} \chi^{\prime}{ }_{\mathrm{M}} T v$. temperature and (b) $\mathrm{AC} \chi^{\prime \prime}{ }_{M} v$. temperature for Mn_{16}-acet ite
 of 10 Oe .

The magnetisation relaxation data were analysed using the Arrhenius law for the relaxation time, τ (Equation 8.1):

$$
\tau=\tau_{0} e^{-\Delta E / k T}
$$

Equation 8.1
$\tau=$ relaxation time $=1 /(2 \pi v)(s)$, $\tau_{0}=$ pre-exponential factor, $v=A C$ frequency (Hz) of applied field, $\Delta E=$ activation energy or barrier height of the double potential energy well $\left(\mathrm{cm}^{-1}\right)$, $k=$ Boltzmann constant.

The values of T are the temperatures of the maxima in Figure 8.12(b). The relaxation times, τ, are obtained from the frequencies (v in Hz) of each $\chi^{\prime \prime} \mathrm{m}$ measurement using the relation $\tau=1 /(2 \pi \nu)$, since at each maximum the relaxation frequency of an SMM is equal to the operating AC frequency, v. Figure 8.13 shows the plot of $\ln (1 / \tau) v s .1 / T$, where the solid line is the least-squares best fit to the Arrhenius equation. From this fit, the energy barrier, ΔE, was found to be $52 \mathrm{~cm}^{-1}\left(\text { c.f. } \mathrm{Mn}_{12} \text {-acetate } \Delta E=43 \mathrm{~cm}^{-1}, 62 \mathrm{~K}\right)^{1,49}$ with a pre-expunential factor of $3.00 \times 10^{-9} \mathrm{~s}$. Table 8.6 compares these values with those of other SMMis of Mn .

Figure 8.13 Plot of $\ln (1 / \tau)$ versus $1 / T$ from magnetisation data of Figure 8.12. Solid line represents least squares line of best fit to Arrhenius equation (see text, Equation 8.1).

Table 8.6 Effective energy barrier energies, ΔE, and pre-exponential factors, τ_{0}, for some Mn SMM clusters.

Cluster	$\Delta E\left(\mathrm{~cm}^{-1}\right)$	$\tau_{0}(\mathrm{~s})$	ref
$\left[\mathrm{Mn}_{9} \mathrm{O}_{7}(\mathrm{OAc})_{11}(\mathrm{thme})(\mathrm{py})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{(\mathrm{a})}$	18.9		7
$\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{O}-p-\mathrm{Me}-\mathrm{Bz})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}{ }^{(\mathrm{b})}$	45.0	7.9×10^{-9}	53
$\left[\mathrm{Mn}_{12} \mathrm{O}_{8} \mathrm{Cl}_{4}(\mathrm{OBz})_{8}(\mathrm{hmp})_{6}\right]^{(\mathrm{c})}$	21.1	2.5×10^{-9}	10
$\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$	52.2	3.0×10^{-9}	

(a) H_{3} thme $=1,1,1$-tris(hydroxymethyl)ethane; (b) $\mathrm{O}-p-\mathrm{Me}-\mathrm{Bz}=p$-methylbenzoate; (c) hmpH $=2$-(hydroxymethyl)pyridine

In the absence of fitting of the M / H data to an appropriate Spin Hamiltonian it is possible to estimate the size of $|D|$, the axial zero-field splitting parameter for the coupled ground state, by use of the relationship: $|D| S_{\mathrm{z}}{ }^{2}=\Delta E$, where ΔE is the barrier height. ${ }^{2.54}$ Since the precise value of S is not known, it was assumed to be 4. Thus a $|D|$ value of $52 / 16=3.2 \mathrm{~cm}^{-1}$ is predicted, which is much larger than those determined for Mn_{12}-acetate systems having a ground $S=10$ and $D \approx-0.5 \mathrm{~cm}^{-1}$. It is much more akin to values obtained for $\mathrm{Mn}^{\mathrm{III}}$ monomeric complexes. ${ }^{55}$

Use of the above relationship assumes that only the ground S state, and its M_{S} components $0, \pm 1, \pm 2, \ldots, \pm S$, are thermally populated. In the present Mn_{16}-acetate cluster there are other low-lying S states as indicated by the nature of the $M v s . H$ isotherms in Figure 8.9.

Attempts are currently being made by Mr. K. J. Berry (Westernport Secondary College, Hastings, Victoria) to try to simulate the M / H data and thus obtain the ground state levels and the D values in a more direct manner. At this point it is clear that
calculations of M, at 2 K and 5 T , for an $S=4$ level yield, as expected, $8 N \beta$ for $D=0 ; 6.3$ $N \beta$ for $D=-1 \mathrm{~cm}^{-1}$ and $4 N \beta$ for $D=-3.5 \mathrm{~cm}^{-1}$. Thus, the D value obtained from the AC relaxation data, assuming it is negative $\left(-3.2 \mathrm{~cm}^{-1}\right)$, is not compatible with the Brillouin calculation of M which limits D to being less than $\sim-1 \mathrm{~cm}^{-1}$. The $S=3$ calculations gave an even bigger discrepancy. There is, therefore, a dilemma.

Güdel et al. ${ }^{32}$ have recently discussed somewhat related anomalies in a $\mathrm{Ni}_{21}{ }^{-}$ citrate SMM cluster in which an $S=3$ state was lowest, but with many other excited states (up to $S=9$) close in energy and thermally populated in high-fields (up to 8 T) at temperatures below 1 K . The ΔE value obtained from the $\chi^{\prime \prime} \mathrm{M}$ vs. frequency Arrhenius plot was $\sim 3 \mathrm{~K}$ in this Ni_{21}-cluster and D was estimated to be $-0.22 \mathrm{~cm}^{-1}$ (along the crystallographic c-axis). Rhombic ligand-field terms, E, were thought to be partly responsible for differences in the D value compared to that of Mn_{12}-acetate, and transverse anisotropy terms were also thought to be important, thus rendering the relationship $\Delta E=$ $|D| S^{2}$ invalid because of admixture of M_{S} levels. It is also interesting to note that excited S states are now thought to be important in the Mn_{12}-actetate system e.g. $S=9$ close to $S=$ 10 and $S>10$ under very high fields. ${ }^{49}$

A possible, though unlikely explanation for the AC data and the consequent estimated $|D|$, is that traces of Mn_{12}-acetate are present in the samples and responsible for the frequency dependent $A C$ behaviour. Certainly, there is no evidence for Mn_{12} in the $\mu_{\text {eff }}$ T plot of Figure 8.8, since it would show a ferromagnetic like increase in μ_{eff} as the temperature is decreased towards 2 K . A powder XRD measured on one sample showed, by comparison to calculated line positions that Mn_{16}-acetate was the major species present, with traces of the chain $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ and only a hint of Mn_{12}-acetate. Two of the weakest peaks in the diffractogram could be assigned to Mn_{12}-acetate, being two of the strongest peaks in the calculated pattern for Mn_{12}-acetate.

8.4.2 $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$

The variation of susceptibility and effective magnetic moment, per $\mathrm{Mn}^{11 I}$ with temperature is given in Figure 8.14. A broad maximum in χ_{M} occurs at $\sim 70 \mathrm{~K}$ typical of the behaviour of a Heisenberg antiferromagnetically coupled $S=2$ chain. ${ }^{56}$ The rapid increase in χ_{M} at low temperature could be due to monomer impurity or to ferromagnetic chain-chain interactions. The corresponding μ_{eff} values decrease gradually from $4.16 \mu_{\mathrm{B}}$ at 300 K (less than the uncoupled $4.87 \mu_{\mathrm{B}}$ value) to $0.98 \mu_{\mathrm{B}}$ at 2 K . The inflection below 10 K is due to monomer impurity or chain-chain effects.

The data were fitted to an $S=2$ Fisher chain $\left(-2 J S_{\mathrm{i}} S_{\mathrm{j}}\right)$ model, modified by a ($T-$ θ) term to give an approximate way of expressing inter-chain interactions. The fit is good and is shown in Figure 8.14. The parameters are $g=1.91, J=-7.0 \mathrm{~cm}^{-1}$ and $\theta=+1.95 \mathrm{~K}$. The J value is of similar magnitude to those of some $\left[\mathrm{Mn}^{\mathrm{III}} \text { (Schiff-base) } \mathrm{X}\right]_{n}$ chains $(\mathrm{X}=$ $\left.\mathrm{OAc}^{-}, \mathrm{N}_{3}\right)^{55}$ but much bigger than those obtained in the dca bridged $\mathrm{Mn}^{\text {III }}$ (Schiff-base) systems, described in Chapter 3, because of the large $\mathrm{Mn} \cdots \mathrm{Mn}$ distance and the poor superexchange properties of dca $v s$. the $\mathrm{OMe}^{-} / \mathrm{OAc}^{-}$combination.

The value of J obtained here is approximately half the value of $-13.7 \mathrm{~cm}^{-1}$ obtained for the dinuclear $\mathrm{Mn}^{\mathrm{III}} \mathrm{Mn}^{\mathrm{III}}$ complex $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{2}(3-\mathrm{MeO}\right.$-salpentO$)(\mu-\mathrm{OAc})(\mu-$ $\left.\mathrm{OMe})(\mathrm{MeOH})_{2}\right] \mathrm{Br} \quad$ (where $3-\mathrm{MeO}-$ salpent $\mathrm{OH}^{2-}=$ 1,5-bis(3-methoxysalicylidenamino)pentan-3-ol). ${ }^{57}$ This complex contains one acetate bridge and two alkoxide bridges, one of which is a μ-OMe group while the other is provided by the Schiff-base ligand, with a $\mathrm{Mn} \cdots \mathrm{Mn}$ distance of $2.9278(6) \AA$. The slightly stronger antiferromagnetic coupling for the dinuclear complex can be attributed to the shorter $\mathrm{Mn} \cdots \mathrm{Mn}$ distance compared to $3.4433(1) \AA$ for $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$.

Figure 8.14 Plots of $\mu_{\mathrm{cff}}\left({ }^{(\stackrel{\Sigma}{⿷ 匚}}\right)$ and $\chi_{\mathrm{M}}\left({ }^{\bullet}\right)$, per Mn , versus temperature for $[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-$ $\left.\mathrm{OAc})_{2}\right]_{n}$. The solid lines are those calculated best-fits using the Heisenberg model, $-2 J S_{i} S_{j}$ (see text).

8.5 Conclusions

A fascinating new manganese(III/IV) alkoxo-carboxylate cluster, $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Mn}_{16}\right.$-acetate $)$, has been synthesised and structurally characterised. Extensive magnetic measurements, most notably the frequency dependency observed in the AC $\chi^{\prime \prime}$ (out-of-phase) signal, have demonstrated that $\mathrm{Mn}_{16}-$ acetate is a new member of the family of single-molecule magnets (SMMs). It also represents the first known hexadecanuclear manganese(III/IV) cluster complex. The previously reported Mn_{16} complex, $\left[\mathrm{Ba}_{8} \mathrm{Na}_{2} \mathrm{ClMn}_{16}(\mathrm{OH})_{8}\left(\mathrm{CO}_{3}\right)_{4} \mathrm{~L}_{8}\right] \cdot 53 \mathrm{H}_{2} \mathrm{O}$ where $\mathrm{L}=1,3-$ diamino-2-hydroxypropane- $N, N, N^{\prime}, N^{\prime}$-tetraacetic acid, was determined to be $\mathrm{Mn}^{\mathrm{Il}}{ }_{8.5} \mathrm{Mn}^{\mathrm{III}}{ }_{7.5}$ by X-ray absorption spectroscopy. ${ }^{20}$

Further physical measurements that are desirable on this Mn_{16}-acetate cluster would require external laboratories to be involved. They include (i) high-field/highfrequency EPR (HFEPR) studies in order to determine the D value, ${ }^{58-60}$ and (ii) the use of strong transverse $\left(H_{\perp}\right)$ magnetic fields and magnetic specific heat measurements to obtain detailed information on quantum relaxation and quantum coherence in these "mesoscopicsize" clusters. ${ }^{61,62}$

Future synthetic work in this area could include more rigorous attempts to synthesise different carboxylate derivatives, and mixed ligand Mn_{16} clusters with, for example, nitrate, diphenylphosphinate or diphenylphosphate as reported by Christou et al. ${ }^{63,64}$ and Kuroda-Sowa et al. ${ }^{65}$ for Mn_{12}-acetate. Partial substitution previously achieved with the Mn_{12}-acetate, of some of the perimeter $\mathrm{Mn}^{\text {III }}$ centres with $\mathrm{Fe}^{\mathrm{III}}$ or $\mathrm{Cr}^{\mathrm{III}}$ ions yielding mixed metal clusters, may also be possible. ${ }^{66,67}$ If these modifications are realised, then the effect these modifications have on the magnetic properties of the resulting cluster can be explored.

In addition, the reaction that formed Mn_{16}-acetate yielded a new linear manganese(III) methoxide-carboxylate chain complex, $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$, also unexpectedly. This complex, whose structure consists of octahedral manganese(III) centres linked by two acetates and one methoxide ligand to form a 1D chain, resembles another complex isolated by the candidate, $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ described in Chapter 6. However, the structure of the latter complex contains a number of important differences. It contains a $\mu-\mathrm{OH}^{-}$group in place of the μ - OMe^{-}, which hydrogen bonds via lattice acetic acid and water molecules to μ-OAc* ligands on adjacent chains to form a 2D sheet structure. Probably as a result of these hydrogen bonding pathways the complex displays long-range antiferromagnetic order, whereas the complex described in this
chapter, $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{\mathrm{n}}$, displays antiferromagnetic coupling with no subsequent magnetic order.

8.6 Experimental

8.6.1 Synthesis of $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathbf{6 H} \mathbf{H}_{2} \mathrm{O}$

To a stirred methanolic solution $(120 \mathrm{~mL})$ of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.90 \mathrm{~g}, 11.57$ $\mathrm{mmol})$, and glacial acetic acid (10 mL), $n-\mathrm{Bu}_{4} \mathrm{NMnO}_{4}(1.14 \mathrm{~g}, 3.15 \mathrm{mmol})$ was added in small portions over a period of 30 minutes. The solution was then left to stand. After several weeks a small amount of block-like black crystals of Mn_{16}-acetate formed. The solution was decanted, the crystals collected by filtration and washed quickly with methanol ($0.20 \mathrm{~g}, 8 \%$ based on total available Mn). IR (Nujol, cm^{-1}): $3600 \mathrm{~m}, 3387 \mathrm{mbr}$, $1558 \mathrm{~s}, 1335 \mathrm{~m}, 1027 \mathrm{w}, 960 \mathrm{ww}$.

Many repeats of the reaction show that crystals of Mn_{16}-acetate decompose with time to yield species containing low content of carbon and poor diffraction quality despite a good external morphology. Presumably slow hydrolysis of OMe^{-}and OAc^{-}groups occurs in the solid state. Analysis of a fresh sample, found (\%): C, 18.8; H, 3.8; N, 0.0. Calc. for $\mathrm{C}_{41} \mathrm{H}_{96} \mathrm{Mn}_{16} \mathrm{O}_{66}: \mathrm{C}, 19.6 ; \mathrm{H}, 3.5 ; \mathrm{N}, 0.0$.

8.6.2 Synthesis of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$

When the above reaction also had $\mathrm{Na}(\mathrm{dca})(2.23 \mathrm{~g}, 25.0 \mathrm{mmol})$ and $\mathrm{Me}_{4} \mathrm{NBr}(3.85$ $\mathrm{g}, 25.0 \mathrm{mmol}$) added, black crystals of Mn_{16}-acetate formed first, followed by smaller red rectangular block-like crystals of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$. They were obtained free of the larger black Mn_{16}-acetate crystals by successive filtration of the reaction to remove mixtures of Mn_{16}-acetate and $\left[\mathrm{Mn}(\mathrm{OMe})(\mathrm{OAc})_{2}\right]_{n}$ that formed, and leaving the filtrate to stand until the product appeared homogenous with respect to the smaller red crystals by
inspection under microscope. The crystals were collected by filtration and washed quickly with methanol (Typical yield $0.25 \mathrm{~g}, 8 \%$ based on total available Mn). IR (Nujol, cm^{-1}): 3603vw, 1568s, 1401s, 1355m, 1340s, 1018w, 992m, 945w. Anal. (\%) Found: C, 29.2; H, 4.6; $\mathrm{N}, 0.0$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{5} \mathrm{Mn}: \mathrm{C}, 29.4 ; \mathrm{H}, 4.4 ; \mathrm{N}, 0.0$.

8.6.3 X-Ray Crystallography

Data were collected using a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation $(\lambda=0.71073 \AA$). Integration was carried out by the program DENZO-SMN, ${ }^{68}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{68}$ No further numerical absorption corrections were applied. Solutions were obtained by direct methods (SHELXS 97$)^{69}$ followed by successive Fourier difference methods, and refined by full matrix least squares on $F_{\text {obs }}{ }^{2}$ (SHELXL 97) ${ }^{69}$ with the aid of the graphical interface program X-SEED. ${ }^{70}$ All nonhydrogen atoms were refined anisotropically unless otherwise stated. All hydrogen atoms attached to carbons for Mn_{16}-acetate and $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ were included at calculated positions with isotropic thermal parameters fixed at 1.5 times the U_{eq} of the adjoining carbon atom. For Mn_{16}-acetate, the hydrogens (where assigned) attached to oxygen atoms were located in the difference maps and refined isotropically. The $\mathrm{O}-\mathrm{H}$ bond distances were restrained with the SHELX ${ }^{69}$ (anti-bumping restraint) DFIX instruction to be $0.90(2) \AA$.

The asymmetric unit of Mn_{16}-actetate was found to contain half a Mn_{16} complex as well as three water molecules. Two of the water molecules were disordered. The first disordered water was modelled over two positions, $O(540)$ and $O(541)$, with site occupancies refined to be 0.702 and 0.298 respectively. $O(540)$ and $O(541)$ were refined with isotropic and anisotropic thermal parameters respectively. The second disordered
water was modelled over three positions: $O(530), O(531)$ and $O(532)$, with site occupancies of $0.33(1), 0.36(1)$ and $0.38(1)$ respectively. The sum of the occupancies was restrained to be $1.00(1)$ (calculated 1.07) using the SHELX ${ }^{69}$ SUMP instruction. $\mathrm{O}(530-$ 532) were refined with anisotropic thermal parameters. The third water, $O(52)$, was ordered and refined with anisotropic thermal parameters. Its hydrogen atoms, $\mathrm{H}(52 \mathrm{~A})$ and $H(52 B)$, were located in successive iterations of least squares refinements and difference Fourier maps and refined isotropically with the aforementioned anti-bumping restraints on the $\mathrm{O}-\mathrm{H}$ bond distances. No hydrogen atom positions were assigned for the two disordered lattice water molecules.

Three areas of disorder were located within the cluster. Firstly, an axial μ-OAc ${ }^{-}$ and an adjacent methanol ligand, both on the outer $\mathrm{Mn}^{111}{ }_{10}$ perimeter, were disordered over two positions. The three oxygen donor atoms $O(39), O(41)$ and $O(44)$ were refined at full occupancy. The positions of the two carbon atoms of the acetate group, $C(420)$ and $C(421), C(430)$ and $C(431)$, and the two positions for the methyl carbon of the methanol, $C(400)$ and $C(401)$, were refined to site occupancies in the ratio of $0.684 / 0.316$ (Figure 8.4).

Secondly, two coordinated oxygens ($O(45)$ and $O(47)$) were initially assigned as two water ligands, however peaks near each oxygen were located at positions consistent with partially occupied methanol carbon atoms. They were consequently assigned as such an 1 site occupancies of these carbon atoms and the attached hydrogen atoms were fixed at 0.25 . Thus over the entire cluster four axial positions are occupied by three waters and one methanol. One hydrogen atom for $O(45)$ and two hydrogen atoms for $O(47)$ were located and refined isotropically with the aforementioned anti-bumping restraints applied. Finally, the carbon atom of the μ-OMe bridging between $\mathrm{Mn}(6)$ and $\mathrm{Mn}(7)$ was disordered over
two positions. The site occupancies of these carbon atoms (C(260) and C(261)), and the attached hydrogen atoms, were refined to the ratio of $0.496 / 0.504$ respectively.

As $\mathrm{O}(1)$ and $\mathrm{C}(2)$ of the bridging methoxide of $\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$ lie along a 2 -fold rotational axis the methyl hydrogens are disordered over two positions with equal site occupancies.

8.7 References

1. G. Aromi, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-L. Tsai, S. Wang, and M. W. Wemple, Polyhedron, 1998, 17, 3005.
2. A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Comia, M. A. Novak, C. Paulsen, and W. Wernsdorfer, J. Magn. Magn. Mater., 1999, 200, 182.
3. J. C. Goodwin, R. Sessoli, D. Gatteschi, W. Wernsdorfer, A. K. Powell, and S. L. Heath, J. Chem. Soc., Dalton Trans., 2000, 1835.
4. T. Lis, Acta Crystallogr., Sect. B, 1980, 36, 2042.
5. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature, 1993, 365, 141.
6. W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou, Nature, 2002, 416, 406.
7. E. K. Brechin, M. Soler, J. Davidson, D. N. Hendrickson, S. Parsons, and G. Christou, Chem. Commun., 2002, 2252.
8. C. Boskovic, W. Wernsdorfer, K. Folting, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2002, 41, 5107.
9. J. Kortus, T. Baruah, N. Bernstein, and M. R. Pederson, Phys. Rev. B, 2002, 66, 092403.
10. C. Boskovic, E. K. Brechin, W. E. Streib, K. Folting, J. C. Bollinger, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 2002, 124, 3725.
11. E. K. Brechin, C. Boskovic, W. Wernsdorfer, J. Yoo, A. Yamaguchi, E. C. Sanudo, T. R. Concolino, A. L. Rheingold, H. Ishimoto, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 2002, 124, 9710.
12. M. Soler, E. Rumberger, K. Folting, D. N. Hendrickson, and G. Christou, Polyhedron, 2001, 20, 1365.
13. L. F. Jones, E. K. Brechin, D. Collison, A. Harrison, S. J. Teat, and W. Wemsdorfer, Chem. Commun., 2002, 2974.
14. G. Aromi, J.-P. Claude, M. J. Knapp, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1998, 120, 2977.
15. C. S. Alvarez, A. D. Bond, D. Cave, M. E. G. Mosquera, E. A. Harron, R. A. Layfield, M. McPartlin, J. M. Rawson, P. T. Wood, and D. S. Wright, Chem. Commun., 2002, 2980.
16. M. A. Bolcar, S. M. J. Aubin, K. Folting, D. N. Hendrickson, and G. Christou, Chem. Commun., 1997, 1485.
17. E. Libby, K. Folting, C. J. Huffman, J. C. Huffman, and G. Christou, Inorg. Chem., 1993, 32, 2549.
18. M. W. Wemple, H.-L. Tsai, S. Wang, J. P. Claude, W. E. Streib, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1996, 35, 6437.
19. Z. Sun, P. K. Gantzel, and D. N. Hendrickson, Inorg. Chem., 1996, 35, 6640.
20. M. M. Grush, J. Chen, T. L. Stemmler, S. J. George, C. Y. Ralston, R. T. Stibrany, A. Gelasco, G. Christou, S. M. Gorun, J. E. Penner-Hahn, and S. P. Cramer, J. Am. Chem. Soc., 1996, 118, 65.
21. J. T. Brockman, J. C. Huffinan, and G. Christou, Angew. Chem., Int. Ed., 2002, 41, 2506.
22. A. L. Barra, A. Caneschi, A. Cornia, F. F. de Biani, D. Gatteschi, C. Sangregorio, R. Sessoli, and L. Sorace, J. Am. Chem. Soc., 1999, 121, 5302.
23. K. Wieghardt, K. Pohl, I. Jibril, and G. Huttner, Angew. Chem., Int. Ed. Engl., 1984, 23, 77.
24. A. L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, Europhys. Lett., 1996, 35, 133.
25. S. Hill, S. Maccagnano, K. Park, R. M. Achey, J. M. North, and N. S. Dalal, Phys. Rev. B, 2002, 65, 224410.
26. A. L. Barra, D. Gatteschi, and R. Sessoli, Chem. Eur. J., 2000, 6, 1608.
27. A.-L. Barra, B. Fabio, A. Caneschi, D. Gatteschi, C. Paulsen, C. Sangregorio, R. Sessoli, and L. Sorace, ChemPhysChem, 2001, 2, 523.
28. C. Benelli, S. Parsons, G. A. Solan, and R. E. P. Winpenny, Angew. Chem., Int. Ed. Engl., 1996, 35, 1825.
29. C. Benelli, J. Cano, Y. Journaux, R. Sessoli, G. A. Solan, and R. E. P. Winpenny, Inorg. Chem., 2001, 40, 188.
30. S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1998, 120, 2365.
31. R. E. P. Winpenny, J. Chem. Soc., Dalton Trans., 2002, 1.
32. S. T. Ochsenbein, M. Murrie, E. Rusanov, H. Stoeckli-Evans, C. Sekine, and H. U. Güdel, Inorg. Chem., 2002, 41, 5133.
33. E.-C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, and G. Christou, J. Appl. Phys., 2002, 91, 7382.
34. M. Nakano, G.-E. Matsubayashi, T. Muramatsu, T. C. Kobayashi, K. Amaya, J. Yoo, G. Christou, and D. N. Hendrickson, Mol. Cryst. Liq. Cryst., 2002, 376, 405.
35. C. Cadiou, M. Murrie, C. Paulsen, V. Villar, W. Wernsdorfer, and R. E. P. Winpenny, Chem. Commun., 2001, 2666.
36. J. J. Sokol, A. G. Hee, and J. R. Long, J. Am. Chem. Soc., 2002, 124, 7656.
37. S. M. J. Aubin, Z. Sun, H. J. Eppley, E. Rumberger, I. A. Guezei, K. Folting, P. K. Gantzel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2001, 40, 2127.
38. J. An, Z. D. Chen, J. Bian, J. T. Chen, S. X. Wang, S. Gao, and G. X. Xu, Inorg. Chim. Acta., 2000, 299, 28.
39. Z. Sun, D. Ruiz, E. Rumberger, C. D. Incarvito, K. Folting, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1998, 37, 4758.
40. H. J. Eppley, H.-L. Tsai, N. de Vries, K. Folting, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1995, 117, 301.
41. T. Kohler, T. Armbruster, and E. Libowitzky, J. Solid State Chem., 1997, 133, 486.
42. A. D. Wadsley, Acta Crystallogr., 1952, 5, 676.
43. A. D. Wadsley, Acta Crystallogr., 1955, 8, 165.
44. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, London, 1962.
45. A. K. Powell, Struct. Bonding, 1997, 88, 1.
46. G. L. Abbati, A. Cornia, A. C. Fabretti, A. Caneschi, and D. Gatteschi, Inorg. Chem., 1998, 37, 1430.
47. I. A. M. Pohl, L. G. Westin, and M. Kritikos, Chem. Eur. J., 2001, 7, 3438.
48. E. K. Brechin, S. G. Harris, A. Harrison, S. Parsons, A. G. Whittaker, and R. E. P. Winpenny, Chem. Commun., 1997, 653.
49. D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed., 2003, 42, 268.
50. S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. Folting, L.-C. Brunel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1999, 38, 5329.
51. A. Cornia, A. C. Fabretti, R. Sessoli, L. Sorace, D. Gatteschi, A.-L. Barra, C. Daiguebonne, and T. Roisnel, Acta Crystallogr., Sect. C, 2002, 58, m371.
52. A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A. L. Barra, and C. Daiguebonne, Phys. Rev. Lett., 2002, 89, 257201.
53. S. M. J. Aubin, Z. Sun, H. J. Eppley, E. M. Rumberger, I. A. Guzei, K. Folting, P. K. Gantzel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Polyhedron, 2001, 20, 1139.
54. G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, MRS Bulletin, 2000, $25,66$.
55. B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1552.
56. T. Smith and S. A. Friedberg, Phys. Rev., 1968, 176, 660.
57. C. Palopoli, M. Gonzalez-Sierra, G. Robles, F. Dahan, J.-P. Tuchagues, and S. Signorella, J. Chem. Soc., Dalton Trans., 2002, 3813.
58. S. Hill, J. A. A. J. Perenboom, N. S. Dalal, T. Hathaway, T. Stalcup, and J. S. Brooks, Phys. Rev. Lett., 1998, 80, 2453.
59. A. L. Barra, D. Gatteschi, and R. Sessoli, Phys. Rev. B, 1997, 56, 8192.
60. R. Amigo, E. del Barco, L. Casas, E. Molins, J. Tejada, I. B. Rutel, B. Mommouton, N. Dalal, and J. Brooks, Phys. Rev. B, 2002, 65, 172403.
61. F. Luis, F. L. Mettes, J. Tejada, D. Gatteschi, and L. J. de Jongh, Polyhedron, 2001, 20, 1451.
62. F. Luis, F. L. Mettes, J. Tejada, D. Gatteschi, and L. J. de Jongh, Phys. Rev. Lett., $2000,85,4377$.
63. P. Artus, C. Boskovic, J. Yoo, W. E. Streib, L.-C. Brunel, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2001, 40, 4199.
64. C. Boskovic, M. Pink, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 2001, 123, 9914.
65. T. Kuroda-Sowa, S. Fukuda, S. Miyoshi, M. Maekawa, M. Munakata, H. Miyasaka, and M. Yamashita, Chem. Lett., 2002, 682.
66. A. R. Schake, H.-L. Tsai, R. J. Webb, K. Folting, G. Christou, and D. N. Hendrickson, Inorg. Chem., 1994, 33, 6020.
67. L. Jin-Yu, X. Hao, Z. Jian-Zhong, X. Zheng, Y. Xiao-Zeng, and Y. Kai-Pei, Polyhedron, 1996, 15, 3325.
68. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
69. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
70. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.

CHAPTER 9: SYNTHESIS, STRUCTURE AND
MAGNETISM OF TRINUCLEAR AND

TETRANUCLEAR MIXED VALENT MANGANESE

CLUSTERS, AND COPPER(II) AND NICKEL(II)

MONONUCLEAR COMPLEXES FORMED

FROM DICYANONITROSOMETHANIDE

9.1 Introduction

A great deal of recent research in polynuclear mixed-valent manganese complexes has focussed on two main lines of enquiry. Firstly, in the bioinorganic area, many model complexes have been made to replicate the structure and function of manganese containing proteins and enzymes including, significantly, the water oxidation complex (WOC) in the Photosystem II (PSII) of green plants and cyanobacteria, which is responsible for the catalysis of the light driven oxidation of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{O}_{2} .{ }^{1.4}$ Detailed spectroscopic, EXAFS, XANES and crystallographic studies have been made to probe the $\mathrm{Mn}_{4}(\mathrm{Ca}) \mu$-oxo cluster in the redox states S_{0} to S_{4}. ${ }^{5,6}$ The second area of recent Mn cluster research is that of single molecule magnets (SMMs). The archetypal dodecanuclear cluster, $\left[\mathrm{Mn}^{111 / \mathrm{V}}{ }_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (' Mn_{12}-acetate') and its derivatives are the best and most comprehensively studied SMMs to date. ${ }^{7-13}$

Examples of tetranuclear manganese clusters are now known that behave as SMMs and these include the family of complexes with the $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{Mn}_{3}{ }_{3} \mathrm{O}_{3} \mathrm{X}\right]^{6+}$ core, ${ }^{14-16}$ where X^{-}is, for example, a halide, and other Mn_{4} complexes such as $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{2} \mathrm{Mn}^{\mathrm{HI}}{ }_{2}\right.$] rhomboidal cores. ${ }^{17,18}$ The subject of SMMs is dealt with in more detail in Chapters 7 and 8.

The results discussed in this chapter arose from a combination of interests in Mn cluster chemistry and in 3D molecule-based magnets containing the pseudohalide ligand dicyanamide (dca, $\mathrm{N}(\mathrm{CN})_{2}{ }^{-}$). ${ }^{19}$ From such work the candidate isolated the hexadecanuclear manganese(III/IV) cluster, Mn_{16}-acetate, which displays SMM behaviour (see Chapter 8). ${ }^{20}$

While attempting to synthesise transition metal extended coordination complexes containing the pseudochalcogenide ligand dicyanonitrosomethanide (dcnm, $\mathrm{ONC}(\mathrm{CN})_{2}{ }^{2}$), two new mixed-valent manganese complexes were isolated. They are $\left[\mathrm{Mn}_{3}(\mathrm{mcoe})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{3}\right\}\right)$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(\{Mn4\}), where meoe is methyl(2-cyano-2-hydroxyimino)ethanimidate $\left(\mathrm{ONC}(\mathrm{CN}) \mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}{ }^{-}\right)$and cao is cyanoacetamidoximate $\left(\mathrm{ON}=\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right)\right.$) (Scheme 9.1). Separately, two mononuclear complexes were also isolated, $\left[\mathrm{Ni}(\text { cao })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$. The chelating-bridging ligands cao and mcoe were formed in silu by nucleophilic addition of solvent to denin.

denm

meoe

cao

Scheme 9.1 Dicyanonitrosomethanide (denm, $\mathrm{ONC}(\mathrm{CN})_{2}{ }^{\circ}$), methyl(2-cyano-2hydroxyimino)ethanimidate ($\mathrm{mcoe}, \mathrm{ONC}(\mathrm{CN}) \mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}{ }^{\circ}$) and cyanoacetamidoximate (cao, $\mathrm{ON}=\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right)$).

The structures of the complexes $\left\{\mathrm{Mn}_{3}\right\},\left\{\mathrm{Mn}_{4}\right\},\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ have been elucidated by single crystal X-ray crystallography. The magnetic properties of $\left\{\mathrm{Mn}_{3}\right\}$ and $\left\{\mathrm{Mn}_{4}\right\}$ were investigated in some detail. The magnetic properties of the mononuclear copper(II) and nickel(II) complexes are also discussed.

9.2 Synthesis and Characterisation

9.2.1 $\left[\mathrm{Mn}_{3}\right.$ (mcoe) $\left.\mathbf{6}_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and
 $\left(\mathrm{Me}_{\mathbf{4}} \mathrm{N}\right)_{\mathbf{2}}\left[\mathrm{Mn}_{4} \mathrm{O}_{\mathbf{2}}(\mathrm{cao})_{\mathbf{4}}\left(\mathrm{MeCN}_{\mathbf{2}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{\mathbf{4}} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}\right.$

$\left[\mathrm{Mn}_{3}(\text { mcoee })_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{3}\right\}\right)$ crystallizes out of a solution of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ ($1: 2$ molar ratio) in methanol. $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{CaO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ $\left(\mathrm{NO}_{3}\right)_{4}-2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{4}\right\}\right)$ crystallizes out of a solution of equimolar amounts of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ in acetonitrile. A brown solid, which from IR spectroscopy is likely to be MnO_{2}, is formed in both reactions in small and relatively large quantities for $\left\{\mathrm{Mn}_{3}\right\}$ and $\left\{\mathrm{Mn}_{4}\right\}$, respectively, at the same time as some of the Mn^{11} is oxidized to $\mathrm{Mn}^{\text {III }}$, which is then included in the cluster. This brown solid can be filtered off progressively during the course of the reaction. In latter stages, the majority of the product is $\left\{\mathrm{Mn}_{3}\right\}$ or $\left\{\mathrm{Mn}_{4}\right\}$ and can be successfully separated from the remaining MnO_{2} powder. The yield of $\left\{\mathrm{Mn}_{4}\right\}$ was very low but quite reproducible. The infrared spectrum of $\left\{\mathrm{Mn}_{3}\right\}$ shows absorbances at 2221 and $1645 \mathrm{~cm}^{-1}$ corresponding to the $v(\mathrm{C} \equiv \mathrm{N})$ and $v(\mathrm{C}=\mathrm{N})$ vibrations, respectively, of the mcoe ligand. Likewise for $\left\{\mathrm{Mn}_{4}\right\}$ absorbances at 2224 and $1682 \mathrm{~cm}^{-1}$ correspond to the $v(\mathrm{C} \equiv \mathrm{N})$ and $v(\mathrm{C}=\mathrm{O})$ vibrations of the cao ligand. Elemental analyses are consistent with the formulations given above. The powder X-ray diffractograms of the bulk samples match those calculated from the crystal structures.

The pseudochalcogenide ligand dicyanonitrosomethanide $\left(\mathrm{ONC}(\mathrm{CN})_{2}{ }^{-}\right.$, dcnm) undergoes nucleophilic addition of solvent (methanol and water for $\left\{\mathrm{Mn}_{3}\right\}$ and $\left\{\mathrm{Mn}_{4}\right\}$ respectively) in the coordination sphere of the metal to form the chelating ligands methyl(2-cyano-2-hydroxyimino)ethanimidate ($\mathrm{ONC}(\mathrm{CN}) \mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}{ }^{-}$, mcoe) for $\left\{\mathrm{Mn}_{3}\right\}$ and cyanoacetamidoximate $\left(\mathrm{ON}=\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right)^{-}\right.$, cao $)$for $\left\{\mathrm{Mn}_{4}\right\}$. The nucleophilic addition of solvent to denm has been reported by Hvastijová et al. for $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$ and
$\mathrm{Pd}^{\text {II }}$ complexes (see also sections 9.2.2, 9.3.3 and 9.3.4). ${ }^{21-24}$ The protonated caoH ligand, has been synthesized recently by refluxing the filtrate formed from the reaction of $\mathrm{Ag}(\mathrm{dcnm})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ in water. ${ }^{25}$ Compounds $\left\{\mathrm{Mn}_{3}\right\}$ and $\left\{\mathrm{Mn}_{4}\right\}$ are the first examples of compounds in which the mcoe and cao ligands occupy bridging as weil as chelating coordination modes. The oxidation of $\mathrm{Mn}^{\mathrm{II}}$ to $\mathrm{Mn}{ }^{\text {III }}$ and $\mathrm{Mn}^{\mathrm{IV}}\left(\mathrm{MnO}_{2}\right)$ in these aerobic reactions is not unexpected and the formation of $\mathrm{Mn}^{\mathrm{II}} \mathrm{OMn}^{\mathrm{III}}$ bridges in $\left\{\mathrm{Mn}_{4}\right\}$ under these conditions is common. ${ }^{26}$

9.2.2 $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\text { cao })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

The reaction of a solution of $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ in methanol with a solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in methanol in 2:1 molar ratio yields large well formed dark green needles of $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$. A similar reaction in water with $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ yields dark red-purple crystals of $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. Infrared spectra of $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ show absorbances at 2219 and $2228 \mathrm{~cm}^{-1}$ due to $v(\mathrm{C} \equiv \mathrm{N})$ of mcoe and cao respectively. As for $\left[\mathrm{Mn}_{3}\left(\mathrm{mcoe}_{6}\right)_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, dcnm has undergone nucleophilic addition of solvent on coordination to form the chelating ligands mcoe and cao.

9.3 Crystal Structures

9.3.1 $\left[\mathrm{Mn}_{3}(\text { mcoe })_{6}\right] \mathrm{NO}_{3} \cdot \mathbf{2 H}_{2} \mathrm{O}$

Crystallographic data for $\left[\mathrm{Mn}_{3}(\mathrm{mcoe})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{3}\right\}\right)$ are summarised in Table 9.1. Table 9.2 contains selected distances and angles (see page 395). The compound $\left\{\mathrm{Mn}_{3}\right\}$ crystallizes in the trigonal space group $P \overline{3} 1 c$. The cation is a linear trinuclear complex (Figure 9.1) with the three manganese ions lying along a common three-fold axis and the central manganese atom situated on an inversion centre ($\overline{3}$). Thus the asymmetric
unit contains $1 / 6$ of the formula unit. The cation contains two symmetry related terminal six-coordinate manganese(II) ions chelated by the N -donor atoms of the imine and oxime groups of three mcoe ligands in a trigonal prismatic N_{6} environment $(\mathrm{Mn}(2)-\mathrm{N}(9)=$ $2.189(4), \mathrm{Mn}(2)-\mathrm{N}(2)=2.324(3) \AA$ and $\left.\mathrm{N}(2)-\mathrm{Mn}(2)-\mathrm{N}(9)=72.2(1)^{\circ}\right)$. The two terminal manganese(II) ions are bridged to the central manganese(III) by the oxime groups of the six mcoe ligands, providing an O_{6} coordination environment in a distorted octahedral fashion $(\mathrm{Mn}(1)-\mathrm{O}(1)=2.169(3) \AA)$.

Figure 9.1 The crystal structure of $\left[\mathrm{Mn}_{3}(\mathrm{mcoe})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{3}\right\}\right)$, with the atom labelling scheme shown (thermal ellipsoids shown at 50% probability). Nitrate counterions and lattice water molecules are omitted.

Table 9.1 Crystal data for $\left[\mathrm{Mn}_{3}\left(\right.\right.$ mcoee $\left._{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad\left(\left\{\mathrm{Mn}_{3}\right\}\right)$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{4}\right\}\right)$.

Compound	\{ Mn_{3} \}	\{ $\mathbf{M n}_{4}$ \}
Formula	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Mn}_{3} \mathrm{~N}_{19} \mathrm{O}_{17}$	$\mathrm{C}_{24} \mathrm{H}_{54} \mathrm{Mn}_{4} \mathrm{~N}_{20} \mathrm{O}_{30}$
M	1019.47	1322.62
Crystal system	Trigonal	Monoclinic
Space group	$P \overline{3} 1 c$	C2/c
a / \AA	12.4720(2)	19.2163(3)
b / \AA	12.4720(2)	11.4283(2)
c / \AA	15.8114(4)	24.0215(2)
$\beta /{ }^{\circ}$		90.916(1)
U / \AA^{3}	2129.97(7)	5274.7(2)
Z	2	4
T / K	123(2)	123(2)
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.590	1.666
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.965	1.041
Crystal habit, colour	rhomboidal, red	rhomboidal, orange-red
Crystal dimensions / mm	$0.15 \times 0.125 \times 0.1$	$0.2 \times 0.2 \times 0.1$
θ ranges $/^{\circ}$	2.58-28.32	2.12-28.29
Index ranges	$\begin{aligned} & -16 \leq h \leq 16, \\ & -15 \leq k \leq 16, \\ & -21 \leq l \leq 21 \end{aligned}$	$\begin{aligned} & -25 \leq h \leq 25, \\ & -15 \leq k \leq 15, \\ & -32 \leq l \leq 32 \end{aligned}$
Completeness to $2 \theta=55^{\circ} / \%$	99.9	99.2
Data collected	29281	35448
Unique data ($R_{\text {int }}$)	1775 (0.0908)	6442 (0.0619)
Observed reflections [$I>2 \sigma(I)$]	1390	4578
Parameters	106	292
Final $R_{\mathrm{l}}, w R_{2}[I>2 \sigma(I)]^{(\mathrm{a})}$	0.0759, 0.2172	0.1134, 0.3314
(all data)	0.0968, 02321	0.1502, 0.3563
Goodness of fit, S	1.141	1.097
$\Delta \rho_{\text {min }}, \Delta \rho_{\text {max }} / \mathrm{e} \AA^{-3}$	-1.613, 1.366	-1.483, 1.819

${ }^{(a)} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$

The oxidation states are assigned on the basis of charge balance and on consideration of bond lengths. The two terminal manganese ions are assigned Mn^{11} due to the longer average bond length (2.257(7) \AA) compared to the bond length for the central manganese ion ($2.169(3) \AA$), which was assigned as $\mathrm{Mn}^{\text {III }}$. It would be expected that the central Mn^{111} ion would show Jahn-Teller distortion, having d^{4} configuration in a near octahedral environment. However, due to the $\overline{3}$ symmetry of this metal site, there is only one unique $\mathrm{Mn}-\mathrm{O}$ bond length.

This compound strongly resembles the linear trinuclear mixed oxidation state manganese compounds $\left[\left(\mathrm{Me}_{3}-\operatorname{tacn}\right) \mathrm{Mn}^{\mathrm{III}}\left\{(\mu \text {-niox })_{3} \mathrm{M}^{\mathrm{II}}\right\} \mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}\left(\mathrm{Me}_{3}\right.\right.$-tacn $\left.)\right]\left(\mathrm{ClO}_{4}\right)_{2},\left(\mathrm{M}^{\mathrm{II}}=\right.$ Mn, Cn and $\mathrm{Zn} ; \mathrm{Me}_{3}$-tacn $=1,4,7$-trimethyl-1,4,7-triazacyclononane; H_{2} niox $=$ cyclohexane-1,2-dione) published by Birkelbach et al. ${ }^{27,28}$ In contrast to $\left\{\mathrm{Mn}_{3}\right\}$, these complexes consist of a central $\mathrm{M}^{\mathbf{I \prime}}$ ion chelated by three niox ${ }^{2-}$ ligands in a trigonal prismatic environment with an N_{6} coordination sphere, and are then bridged to the two terminal Mn^{111} ions by the oxime groups of the niox ${ }^{2 \cdot}$ ligands. The terminal Mn^{111} ions are in turn capped by Me_{3}-taen and thus possess a distorted octahedral $\mathrm{N}_{3} \mathrm{O}_{3}$ coordination environment. Other linear $\mathrm{Mn}^{\mathrm{IIt}} \mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}^{\mathrm{III}}$ examples are also known. ${ }^{29}$

Each cation in $\left\{\mathrm{Mn}_{3}\right\}$ is linked to its neighbour along the c-axis via hydrogen bonding between the cation imine hydrogen atoms and the nitrate counter-ion $(\mathrm{N}(9) \cdots \mathrm{O}(111)=2.90(1) \AA$) (Figure 9.2), which is disordered over two positions related by a $48.8(1)^{\circ}$ rotation about the nitrogen atom. This disorder in the nitrate oxygen may be caused by hydrogen bonding between the three imine hydrogens each on adjacent complexes that are staggered 60° with respect to each other.

Figure 9.2 Hydrogen bonding of $\left[\mathrm{Mn}_{3}(\mathrm{mcoe})_{6}\right]^{+}$cations alternating with disordered nitrate anions (H-bonds dashed green, methyl hydrogens omitted for clarity).

Table 9.2 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mn}_{3}(\operatorname{mcoe})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (\{ $\left.\mathrm{Mn}_{3}\right\}$).

$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.169(3)$	$\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$	$3.9177(9)$
$\mathrm{Mn}(2)-\mathrm{N}(2)$	$2.324(3)$	$\mathrm{Mn}(2)-\mathrm{N}(9)$	$2.189(4)$
$\mathrm{O}(1)-\mathrm{N}(2)$	$1.301(4)$	$\mathrm{C}(3)-\mathrm{C}(6)$	$1.490(5)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.303(5)$	$\mathrm{C}(6)-\mathrm{N}(9)$	$1.250(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.410(6)$	$\mathrm{C}(6)-\mathrm{O}(7)$	$1.338(5)$
$\mathrm{C}(4)-\mathrm{N}(5)$	$1.14(1)$	$\mathrm{O}(7)-\mathrm{C}(8)$	$1.462(6)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	$90.7(1)$	$\mathrm{N}(2)-\mathrm{Mn}(2)-\mathrm{N}(9)$	$72.2(1)$
$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	$82.6(1)$	$\mathrm{N}(9)-\mathrm{Mn}(2)-\mathrm{N}\left(9^{\mathrm{ii}}\right)$	$92.7(1)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{\mathrm{ii}}\right)$	$93.5(9)$	$\mathrm{N}(2)-\mathrm{Mn}(2)-\mathrm{N}\left(2^{\mathrm{ii}}\right)$	$85.3(1)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(1^{\mathrm{iii}}\right)$	$174.5(1)$	$\mathrm{N}(2)-\mathrm{Mn}(2)-\mathrm{N}\left(9^{\mathrm{ii}}\right)$	$138.2(1)$
		$\mathrm{N}\left(2^{\mathrm{ii}}\right)-\mathrm{Mn}(2)-\mathrm{N}(9)$	$125.9(1)$

Hydrogen bonding

$\mathrm{N}(9)-\mathrm{H}(9)$	$1.00(7)$		
$\mathrm{H}(9) \cdots \mathrm{O}(110)$	$2.00(7)$	$\mathrm{H}(9) \cdots \mathrm{O}(111)$	$2.02(7)$
$\mathrm{N}(9) \cdots \mathrm{O}(110)$	$2.94(3)$	$\mathrm{N}(9) \cdots \mathrm{O}(111)$	$2.90(2)$
$\mathrm{N}(9) \cdots \mathrm{H}(9) \cdots \mathrm{O}(110)$	$156(5)$	$\mathrm{N}(9)-\mathrm{H}(9) \cdots \mathrm{O}(111)$	$147(5)$

Symmetry transformations: (i) $y-x, y, 3 / 2-z$; (ii) $-1-y, x-y+1, z$; (iii) $1-y, 1-x, 3 / 2-z$.

9.3.2 $\left(\mathrm{Me}_{4} \mathrm{~N}_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathbf{c a o})_{4}\left(\mathrm{MeCN}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4}-\mathbf{2 H}_{2} \mathrm{O}\right.\right.$

Crystallographic data for $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{cao})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (\{Mn4\}) are summarised in Table 9.1 (see page 393). Selected interatomic distances and angles for $\left\{\mathrm{Mn}_{4}\right\}$ are contained in Table 9.3 (see page 402). Compound $\left\{\mathrm{Mn}_{4}\right\}$ crystallizes in the monoclinic space group $C 2 / c$, with the tetranuclear manganese cluster lying on an inversion centre. Figure 9.3 show's the cluster with the atom labelling scheme. The asymmetric unit contains half of the cluster, one tetramethylammonium and two nitrate counter ions and one lattice water. The cluster contains a rhombic $\left[\mathrm{Mr}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{6+}$ core ($2 \mathrm{Mn}^{\mathrm{II}}, 2 \mathrm{Mn}^{\mathrm{II} \mathrm{\prime}}$) in which the four Mn atoms lie in a plane with $\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)=3.546(2) \AA$ being considerably longer than $\operatorname{Mn}(2) \cdots \operatorname{Mn}\left(2^{i}\right)=2.773(2) \AA$. This is due to the latter pair being bridged by two $\mu_{3}-\mathrm{O}^{2-}$ atoms $\left(\mathrm{Mn}(2)-\mathrm{O}(1)=1.844(3) \AA\right.$ and $\mathrm{Mn}\left(2^{\mathrm{i}}\right)-\mathrm{O}(1)=1.837(5)$ \AA), whereas the former pair are bridged by the two atom $\mathrm{N}-\mathrm{O}$ oxime moiety of the cao ligand $(\mathrm{Mn}(1)-\mathrm{N}(3)=2.436(6) \AA$ and $\mathrm{O}(2)-\mathrm{Mn}(2)=2.003(5) \AA)$ and a single $\mu_{3}-\mathrm{O}^{2-}$ atom $\left(\mathrm{Mn}(1)-\mathrm{O}(1)=2.077(5) \AA\right.$). The $\mu_{3}-\mathrm{O}^{2-}$ atom lies $0.190(6) \AA$ out of the plane defined by the four manganese atoms. On the periphery of the $\left[\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{6+}$ core are four chelating cao ligands (two of which are unique) that lie roughly coplanar with the core. In the axial positions of the metal coordination spheres are six terminal water molecules, two each on $\mathrm{Mn}(1)$ and $\mathrm{Mn}\left(1^{i}\right)$ and one each on $\mathrm{Mn}(2)$ and $\mathrm{Mn}\left(2^{\mathrm{i}}\right)$, and two terminal acetonitrile ligands, one each on $\mathrm{Mn}(2)$ and $\mathrm{Mn}\left(2^{i}\right)$.

Figure 9.3 Crystal structure of $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\text { cao })_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (\{ $\left.\mathrm{Mn}_{4}\right\}$) with atom labelling scheme (thermal ellipsoids shown at 50% probability). Counter ions and lattice waters omitted.

The two $\mathrm{Mn}^{\mathrm{II}}$ atoms $\left(\mathrm{Mn}(1)\right.$ and $\left.\mathrm{Mn}\left(1^{\mathrm{j}}\right)\right)$ are thus seven coordinate in an approximate pentagonal bipyramidal arrangement. The carbonyl oxygens $(O(9)$ and $O(17))$ and oxime nitrogens ($N(3)$ and $N(11)$) of two cao ligands and one $\mu_{3}-O^{2-}$ ion ($O(1)$) make up the pentagonal plane of the bipyramid, whereas the apices are filled by the two axial waters $(O(18)$ and $O(19))$. The sum of the five angles around the plane is 360°, attesting to the planarity of the coordination environment. The non-coordinating nitrile groups of the two cao ligands chelating each Mn^{11} ion are bent slightly away from the plane of the $\left[\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{6+}$ core. $\mathrm{Mn}(2)$ (and $\mathrm{Mn}\left(2^{\mathrm{i}}\right)$) was assigned as $\mathrm{Mn}^{\mathrm{III}}$ on the basis of the
significant Jahn-Teller elongation in the direction of the axial water and acetonitrile ligands $(\mathrm{Mn}(2)-\mathrm{O}(20)=2.296(8) \AA$ and $\mathrm{Mn}(2)-\mathrm{N}(21)=2.372(9) \AA$, where the average equatorial bond distance $=1.92 \AA$).

A complex network of hydrogen bonding exists between the clusters and the intercalated water and nitrate anions. Inspection of the cluster shows that there are several sites capable of hydrogen bonding, and the cluster packing mode is primarily determined by the hydrogen bonding interactions. Broadly speaking there are two intersecting hydrogen bonding networks. Firstly, a sheet in the $a b$-plane is formed by hydrogen bonding interactions between adjacent clusters (perpendicular to the plane of the clusters) via the terminal waters, the nitrate anions and the intercalated water molecule. Secondly, another sheet network is formed in the $a c$-plane by hydrogen bonding between the terminal amine and the nitrile groups of the cao ligand on adjacent clusters. The tetramethylammonium cations pack between the sheets in the $a b$-plane.

The network in the $a b$-plane involves multiple hydrogen bonding interactions and can be broken down into two types of intersecting chains. Firstly, the terminal water oxygen atom $\mathrm{O}(19)$ on $\mathrm{Mn}(2)$ hydrogen bonds to two symmetry related nitrate anions $\left(O(19) \cdots O\left(52^{\mathrm{iv}}\right)=3.07(2), \mathrm{O}(19) \cdots \mathrm{O}(53)=2.63(2) \AA\right.$ and $\mathrm{O}\left(52^{\mathrm{iv}}\right) \cdots \mathrm{O}(19) \cdots \mathrm{O}(53)=$ $\left.124.9(7)^{9}\right)$. Both nitrate anions in turn hydrogen bond to a symmetry related $O(19)$ on an adjacent cluster. The pattern thus formed is a stepped chain of clusters (Figure 9.4). The second chain in this plane involves hydrogen bonding from the water $O(18)$ coordinated to $\mathrm{Mn}(2)$ to both a nitrate anion $\left(\mathrm{O}(18) \cdots \mathrm{O}\left(43^{\mathrm{i}}\right)=2.86(2) \AA\right.$) and a disordered water (average $\mathrm{O} \cdots \mathrm{O}$ distance $=2.9(1) \AA$), which in turn hydrogen bond to their symmetry related partners (nitrate-water average $0 \cdots \mathrm{O}$ distance $=2.37(9) \AA$), which then also hydrogen bond to $\mathrm{O}(18)$ on the adjacent cluster (Figure 9.5). The water coordinated to the central $\mathrm{Mn}(1)$ also
hydrogen bonds to the nearby nitrate anion that is also hydrogen bonded to $\mathrm{O}(18)$ $(O(20) \cdots O(43)=2.82(2) \AA)$.

Figure 9.4 The stepped chain section of the hydrogen bond network (dashed green) of $\left\{\mathrm{Mn}_{4}\right\}$ in the $a b$-plane.

Figure 9.5 Second part of the hydrogen bonded network (dashed green) of $\left\{\mathrm{Mn}_{4}\right\}$ in the $a b$-plane.

The sheet in the ac-plane (Figure 9.6) is set up by the terminal amines and nitriles of the two unique cao ligands, so that the amine on one cluster hydrogen bonds to the nitrile on the adjacent cluster $\left(\mathrm{N}(8) \cdots \mathrm{N}\left(6^{\mathrm{iii}}\right)=3.00(1) \AA, \mathrm{N}(8)-\mathrm{H}(8 \mathrm{~B}) \cdots \mathrm{N}\left(6^{\mathrm{iii}}\right)=149.4^{\circ}\right.$ and $\left.\mathrm{N}(16) \cdots \mathrm{N}\left(14^{v}\right)=3.03(1) \AA, \mathrm{N}(16)-\mathrm{H}(16 \mathrm{~B}) \cdots \mathrm{N}\left(14^{v}\right)=152.9^{\circ}\right)$. All hydrogen bonds in the plane are directed parallel to the c-axis direction. The topology of this sheet is $(4,4)$. Viewed parallel to the c-axis direction the sheets undulate due to the planes of adjacent clusters in the a-axis direction being on an angle of $31.48(3)^{\circ}$ to each other (mean planes of Mn atoms). The terminal amine on one of the cao ligands also hydrogen bonds to a nearby nitrate anion $\left(\mathrm{N}(8) \cdots \mathrm{O}\left(43^{\mathrm{ii}}\right)=2.90(2) \quad \AA, \mathrm{N}(8)-\mathrm{H}(8 \mathrm{~A}) \cdots \mathrm{O}\left(43^{\mathrm{ii}}\right)=175.9^{\circ}\right)$ and correspondingly the other amine hydrogen bonds to the disordered lattice water molecule with an average distance of $2.79(7) \AA$. Thus the amine groups also participate in the hydrogen bonded network in the $a b$-plane.

Figure 9.6 Hydrogen bonded network (dashed green) of $\left\{\mathrm{Mn}_{4}\right\}$ in the $a c$-plane.

Table 9.3 Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\left\{\mathrm{Mn}_{4}\right\}\right)$.

$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.077(5)$	$\mathrm{Mn}(2)-\mathrm{O}(1)$	$1.844(5)$
$\mathrm{Mn}(1)-\mathrm{N}(3)$	$1.924(2)$	$\mathrm{Mn}(2)-\mathrm{O}\left(1^{i}\right)$	$1.837(5)$
$\mathrm{Mn}(1)-\mathrm{O}(9)$	$2.241(6)$	$\mathrm{Mn}(2)-\mathrm{O}(2)$	$2.003(5)$
$\mathrm{Mn}(1)-\mathrm{N}(11)$	$2.425(6)$	$\mathrm{Mn}(2)-\mathrm{O}\left(10^{i}\right)$	$1.993(5)$
$\mathrm{Mn}(1)-\mathrm{O}(17)$	$2.226(6)$	$\mathrm{Mn}(2)-\mathrm{O}(20)$	$2.296(8)$
$\mathrm{Mn}(1)-\mathrm{O}(18)$	$2.192(7)$	$\mathrm{Mn}(2)-\mathrm{N}(21)$	$2.372(9)$
$\mathrm{Mn}(1)-\mathrm{O}(19)$	$2.180(9)$	$\mathrm{Mn}(2) \cdots \mathrm{Mn}\left(2^{\mathrm{i}}\right)$	$2.773(2)$
$\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$	$3.546(2)$		
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(19)$			
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(18)$	$93.7(3)$	$\mathrm{O}(17)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$142.9(2)$
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{O}(18)$	$87.3(2)$	$\mathrm{O}(9)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$68.4(2)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(17)$	$176.3(3)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}\left(1^{i}\right)$	$82.3(2)$
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{O}(17)$	$142.3(2)$	$\mathrm{O}\left(1^{i}\right)-\mathrm{Mn}(2)-\mathrm{O}\left(10^{i}\right)$	$93.7(2)$
$\mathrm{O}(18)-\mathrm{Mn}(1)-\mathrm{O}(17)$	$90.0(4)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}\left(10^{i}\right)$	$175.9(2)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(9)$	$91.4(3)$	$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(2)-\mathrm{O}(2)$	$176.5(2)$
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{O}(9)$	$143.1(2)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}(2)$	$94.6(2)$
$\mathrm{O}(18)-\mathrm{Mn}(1)-\mathrm{O}(9)$	$86.7(3)$	$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}\left(10^{\mathrm{i}}\right)$	$89.4(2)$
$\mathrm{O}(17)-\mathrm{Mn}(1)-\mathrm{O}(9)$	$90.3(3)$	$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(2)-\mathrm{O}(20)$	$95.9(3)$
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(11)$	$74.6(2)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}(20)$	$93.8(3)$
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{N}(11)$	$73.9(2)$	$\mathrm{O}\left(10^{i}\right)-\mathrm{Mn}(2)-\mathrm{O}(20)$	$87.0(3)$
$\mathrm{O}(18)-\mathrm{Mn}(1)-\mathrm{N}(11)$	$90.3(3)$	$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(20)$	$82.5(3)$
$\mathrm{O}(17)-\mathrm{Mn}(1)-\mathrm{N}(11)$	$93.4(2)$	$\mathrm{O}\left(1^{i}\right)-\mathrm{Mn}(2)-\mathrm{N}(21)$	$94.9(3)$
$\mathrm{O}(9)-\mathrm{Mn}(1)-\mathrm{N}(11)$	$68.5(2)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{N}(21)$	$93.4(3)$
$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{N}(3)$	$143.0(2)$	$\mathrm{O}\left(1^{i}\right)-\mathrm{Mn}(2)-\mathrm{N}(21)$	$86.4(3)$
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$74.6(2)$	$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{N}(21)$	$87.0(3)$
$\mathrm{O}(18)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$90.8(3)$	$\mathrm{O}(20)-\mathrm{Mn}(2)-\mathrm{N}(21)$	$167.7(3)$
	$86.0(2)$		

Hydrogen bonding			
$\mathrm{O}(19) \cdots \mathrm{O}\left(52^{i v}\right)$	$3.07(2)$	$\mathrm{O}(20) \cdots \mathrm{O}(43)$	$2.82(2)$
$\mathrm{O}(19) \cdots \mathrm{O}(53)$	$2.63(2)$	$\mathrm{N}(8) \cdots \mathrm{N}\left(6^{i i i}\right)$	$3.00(1)$
$\mathrm{O}(18) \cdots \mathrm{O}\left(43^{i}\right)$	$2.86(2)$	$\mathrm{N}(16) \cdots \mathrm{N}\left(14^{v}\right)$	$3.03(1)$
$\mathrm{O}(18) \cdots \mathrm{O}\left(600^{\text {ii }}\right)$	$2.49(5)$	$\mathrm{N}(8) \cdots \mathrm{O}\left(43^{i i}\right)$	$2.90(2)$
$\mathrm{O}(600) \cdots \mathrm{O}(41)$	$2.40(5)$	$\mathrm{N}(16) \cdots \mathrm{O}\left(600^{i v}\right)$	$2.90(4)$
$\mathrm{O}(601) \cdots \mathrm{O}(41)$	$2.34(4)$	$\mathrm{N}(16) \cdots \mathrm{O}\left(601^{\text {iv }}\right)$	$2.67(3)$
$\mathrm{O}\left(52^{\mathrm{iv}}\right) \cdots \mathrm{O}(19) \cdots \mathrm{O}(53)$	$124.9(7)$	$\mathrm{N}(8)-\mathrm{H}(8 \mathrm{~B}) \cdots \mathrm{N}\left(6^{\text {iii }}\right)$	149.4
$\mathrm{~N}(8)-\mathrm{H}(8 \mathrm{~A}) \cdots \mathrm{O}\left(43^{i i}\right)$	175.9	$\mathrm{~N}(16)-\mathrm{H}(16 \mathrm{~B}) \cdots \mathrm{N}\left(14^{v}\right)$	152.9

Symmetry transformations: (i) $1 / 2-\mathrm{x}, 3 / 2-\mathrm{y}, 1-\mathrm{x}$; (ii) $\mathrm{x}-1 / 2, \mathrm{y}-1 / 2, \mathrm{z}$; (iii) $-\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$; (iv) $-\mathrm{x}, 2-\mathrm{y}, 1-$ z; (v) $-x, y, 3 / 2-z$.

9.3.3 $\left[\mathrm{Ni}(\text { cao })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

X-Ray structural analysis was performed by Dr. P. Jensen on a single crystal prepared by the candidate. Crystallographic data for $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ are summarised in Table 9.4. Selected interatomic distances and angles are given in Table 9.6 (see page 410). $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Figure 9.7) crystallises in the monoclinic space group $\mathrm{C} 2 / \mathrm{m}$. The structure of this mononuclear species consists of a Ni^{11} atom lying on an inversion centre (thus the asymmetric unit contains half of the complex), which is coordinated in a near octahedral environment by the carbonyl oxygen $(\mathrm{Ni}(1)-\mathrm{O}(8)=2.053(2) \AA$) and oxime nitrogen $(\mathrm{Ni}(1)-\mathrm{N}(2)=2.068(2) \AA)$ of two cao ligands in the equatorial plane and by two water molecules $(\mathrm{Ni}(1)-\mathrm{O}(9)=2.016(2) \AA)$ in the axial positions. The cao ligand lies on a mirror plane and the axial $\mathrm{Ni}-\mathrm{O}$ bond lies on a perpendicular two-fold rotational axis, therefore the only non-ideal octahedral coordination angles are those within the plane of the cao ligands $\left(\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{O}(8)=78.87(7)^{\circ}\right.$ and its complement $\mathrm{O}\left(8^{i}\right)-\mathrm{Ni}(1)-\mathrm{N}(2)=$ $\left.101.13(7)^{\circ}\right)$.

Figure 9.7 Crystal structure of $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ with atom labelling scheme (thermal ellipsoids shown at 50% probability).

Table 9.4 Crystal data for $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$.

Complex	$\left[\mathrm{Ni}(\mathbf{c a o})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$\left[\mathrm{Cu}(\mathrm{mcoc})_{2}(\mathrm{MeOH})_{2}\right]$
Formula	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{NiO}_{6}$	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{CuN}_{6} \mathrm{O}_{6}$
M	318.89	379.83
Crystal system	Monoclinic	Monoclinic
Space group	$C 2 / m$	$P 2_{1} / c$
a / \AA	$6.8712(2)$	$5.3442(1)$
b / \AA	$7.4908(3)$	$15.8348(6)$
c / \AA	$11.7493(4)$	$9.4068(3)$
$\beta /^{\circ}$	$93.330(2)$	$97.344(2)$
U / \AA^{3}	$603.72(4)$	$789.51(4)$
Z	2	2
T / K	$123(2)$	$153(2)$
$\rho_{\text {calc }} / \mathrm{g}$ cm ${ }^{-3}$	1.754	1.598
$\mu($ Mo-K $\alpha) / \mathrm{mm}^{-1}$	1.642	1.423
Crystal dimensions $/ \mathrm{mm}$	$0.2 \times 0.1 \times 0.07$	$0.3 \times 0.15 \times 0.13$
θ ranges $/{ }^{\circ}$	$3.47-30.01$	$3.37-32.56$
Index ranges	$-9 \leq h \leq 9$,	$-7 \leq h \leq 5$,
	$-10 \leq k \leq 10$,	$-23 \leq k \leq 20$,
Completeness to $2 \theta=55^{\circ} / \%$	99.7	$-12 \leq l \leq 14$
Data collected	4291	99.1
Unique data $\left(R_{\text {int }}\right)$	$937(0.0271)$	8243
Observed data $[I>2 \sigma(I)]$	913	$2635(0.0391)$
Parameters	68	2023
Final $R_{1}, w R_{2}[I>2 \sigma(I)]^{(a)}$	$0.0287,0.0634$	138
\quad (all data)	$0.0296,0.0640$	$0.0340,0.0626$
Goodness of fit, S	1.059	1.111
$\Delta \rho_{\text {min }}, \Delta \rho_{\text {max }} / \mathrm{e} \AA^{-3}$	$-0.957,0.989$	$-1.057,0.904$

${ }^{(\mathrm{a})} R_{\mathrm{t}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$

Because of the types of peripheral groups on the cao ligands and the axial $\mathrm{H}_{2} \mathrm{O}$ ligands, a series of hydrogen bonds links the mononuclear species to form a 3D hydrogen bonded network. For ease of description, this network can be divided into two orthogonal 2D sheets, one in the $a b$-plane and a second in the $a c$-plane. The sheet in the $a b$-plane (Figure 9.8) is formed by hydrogen bonds from the axial water ligands to the oxime oxygen atoms of adjacent complexes $\left(\mathrm{H}(9) \cdots \mathrm{O}\left(1^{\mathrm{iv}}\right)=2.08(3) \AA\right.$ and $\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}\left(1^{\mathrm{iv}}\right)=$ $\left.159(5)^{\circ}\right)$. If each complex is viewed as a node, and the two hydrogen bonds between each adjacent complex are viewed as a single connection, the resulting topology of this sheet is $(4,4)$.

The sheet in the ac-plane (Figure 9.9) is formed by hydrogen bonds occurring between one of the amine hydrogens of the cao ligand to the nitrile group of an adjacent complex in the c-axis direction $\left(\mathrm{H}(7 \mathrm{~A}) \cdots \mathrm{N}\left(5^{\mathrm{ii}}\right)=2.14(4) \AA\right.$ and $\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A}) \cdots \mathrm{N}\left(5^{\mathrm{ii}}\right)=$ $\left.170(4)^{\circ}\right)$, and between the other cao amine and the oxime oxygen on an adjacent complex in the a-axis direction $\left(\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{O}\left(1^{\mathrm{iii}}\right)=2.04(4) \AA\right.$ and $\left.\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{O}\left(1^{\mathrm{iii}}\right)=158(3)^{\circ}\right)$. This sheet also has $(4,4)$ topology and resembles closely the hydrogen bonded sheet of $\left\{\mathrm{Mn}_{4}\right\}$ in the ac-plane described in section 9.3.2 (see Figure 9.6). The shortest $\mathrm{Ni} \cdots \mathrm{Ni}$ distance is equal to half the diagonal of the $a b$ face of the unit cell (5.0825(1) \AA). The next shortest $\mathrm{Ni} \cdots \mathrm{Ni}$ distances are equal to the $a(6.8712(2) \AA)$ and $c(11.7493(4) \AA)$ unit cell lengths.

Figure 9.8 2D hydrogen bonded $(4,4)$ sheet network of $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ in the $a b$-plane (hydrogen bonds shown in dashed green, $(4,4)$ network shown in red and amine hydrogens omitted for clarity).

Figure 9.9 View of $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ showing a hydrogen bonded 2D grid $(4,4)$ sheet in the $a c$-plane.

In 1983 Skopenko et al. reported the structure of this complex at room temperature (295 K). ${ }^{30}$ Their solution is in the orthorhombic space group Cmca. A later unit cell measurement, again at 123 K , on a crystal from another sample of [$\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] prepared by the candidate, gave the same parameters as those obtained by Skopenko et al. Thus, these are two different phases or polymorphs, as they have the same chemical composition but different packing in the solid state. The unit cell dimensions of the previously reported phase are given in Table 9.5 alongside those of the phase reported here for comparison (the former and latter phases are arbitrarily designated α and β respectively).

Table 9.5 Unit cell parameters for the polymorphs α - and $\beta-\left[\mathrm{Ni}(\mathbf{c a o})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (at 295 K , and 123 K$)^{30}$

Complex	$\alpha-\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ at $295 \mathrm{~K}^{30}$	$\beta-\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{2}\right]$ at 123 K
Crystal system	Orthorhombic	Monoclinic
Space group	Cmca	$\mathrm{C} 2 / m$
a / \AA	$7.546(1)$	$6.8712(2)$
b / \AA	$6.880(1)$	$7.4908(3)$
c / \AA	$23.382(5)$	$11.7493(4)$
$\beta /{ }^{\circ}$		$93.330(2)$

Conversion of the α - to the β-phase can conceptually be brought about by taking every second molecule along the c-axis direction and translating them in the b-axis direction (α-phase) a distance of $1 / 2 b$ and then rotating these molecules 180° about the c axis. Consequently, the overall hydrogen bonding networks of the two phases are different. The 2D H-bond network in the axial direction of the molecules (ab-plane) is identical, although every second $a b$-plane network is rotated 180° about the c-axis with respect to the other phase. The H-bond network in the equatorial plane of the molecules in the α-phase, however, has $(3,6)$ topology as opposed to the $(4,4)$ net of the β-phase reported here. Figure 9.10 shows the hydrogen bonding networks in the equatorial plane of the α - and β phases for comparison.

Figure 9.10 The hydrogen bonding nitworks in the equatorial plane of the $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ molecules for (a) the α-phase $(3,6)$ and (b) the β-phase $(4,4)$. The topologies of the nets are indicated by the blue lines. The structure of α - $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ reported by Skopenko et al., ${ }^{30}$ was rendered from a simulated SHELX res file of CSD entry CABTUU.

Table 9.6 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$.

$\mathrm{Ni}(1)-\mathrm{N}(2)$	2.068(2)	$\mathrm{Ni}(1)-\mathrm{O}(8)$	2.053(2)
$\mathrm{Ni}(1)-\mathrm{O}(9)$	2.016(2)		
$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{O}(8)$	78.87(7)	$\mathrm{O}\left(8^{\mathrm{i}}\right)-\mathrm{Ni}(1)-\mathrm{N}(2)$	101.13(7)
Hydrogen bonding			
In the $a b$-plane			
$\mathrm{O}(9)-\mathrm{H}(9)$	0.86(2)	$\mathrm{O}(9) \cdots \mathrm{O}\left(1^{\text {iv }}\right)$	2.898(2)
$\mathrm{H}(9) \cdots \mathrm{O}\left(1^{\text {iv }}\right)$	2.08(3)	$\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}\left(1^{\text {iv }}\right)$	159(5)
In the ac-plane			
$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A})$	0.88(4)	$\mathrm{N}(7)-\mathrm{H}(\mathrm{B})$	0.88(4)
$\mathrm{H}(7 \mathrm{~A}) \cdots \mathrm{N}\left(5^{\mathrm{ii}}\right)$	2.14(4)	$\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{O}\left(\mathrm{i}^{\text {iii }}\right)$	2.04(4)
$\mathrm{N}(7) \cdots \mathrm{N}\left(5^{\mathrm{ii}}\right)$	3.010(3)	$\mathrm{N}(7) \cdots \mathrm{O}\left(1^{\text {iii }}\right)$	2.878(3)
$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A}) \cdots \mathrm{N}\left(5^{\mathrm{ii}}\right)$	170(4)	$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{O}\left({ }^{\text {iii }}\right)$	158(3)

Symmetry transformations: (i) $-\mathrm{x},-\mathrm{y},-\mathrm{z}$; (ii) $-\mathrm{x},-\mathrm{y}, 1-\mathrm{x}$; (iii) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$; (iv) $1 / 2-\mathrm{x}, 1 / 2-\mathrm{y},-\mathrm{z}$.

9.3.4 $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$

X-Ray structural analysis was performed by Dr. S. R. Batten on a single crystal prepared by the candidate. Crystallographic data for $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ are summarised in Table 9.4 (see page 404). Selected interatomic distances and angles are given in Table 9.7 (see page 413). The mononuclear complex $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ crystallises in the monoclinic space group $P 2_{\mathrm{i}} / c$. It consists of a copper(II) atom, which lies on an inversion centre, coordinated in a Jahn-Teller distorted octahedral environment by the imine nitrogen $(\mathrm{Cu}(1)-\mathrm{N}(9)=1.963(2) \AA)$ and oxime nitrogen $(\mathrm{Cu}(1)-\mathrm{N}(2)=2.034(2) \AA)$ of two mcoe ligands in the equatorial plane and by two methanol ligands $(\mathrm{Cu}(1)-\mathrm{O}(10)=2.494(2) \AA)$ in the elongated axial positions (Figure 9.11).

Figure 9.11 The crystal structure of $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ with the atom labelling scheme shown (thermal ellipsoids shown at 50% probability).

Once again, because of the types of peripheral groups on the mcoe ligands, these mononuclear species are linked by intermolecular hydrogen bonds formed between the axial methanol and the mcoe oxime oxygen $\left(\mathrm{H}(10) \cdots \mathrm{O}\left(1^{i i i}\right)=1.94(4) \&\right.$ and $\left.\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}\left(1^{\mathrm{iii}}\right)=178(4)^{\circ}\right)$, and the imine of the mcoe ligand and the methanol oxygen $\left(H(9) \cdots O\left(10^{\mathrm{ii}}\right)=2.27(3) \AA\right.$ and $\left.\mathrm{N}(9)-\mathrm{H}(9) \cdots \mathrm{O}\left(10^{\mathrm{ii}}\right)=153(3)^{\circ}\right)$. Linear 1 D chains are formed that run parallel to the a-axis direction (Figure 9.12). The intra-chain $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is equal to the unit cell length $a(5.3442(1) \AA)$. The shortest inter-chain $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is equal to half the diagonal of the $b c$-plane (9.2091(3) \AA).

The hydrogen bonding interactions link ligands which lie along $\mathrm{Cu}\left(\mathrm{d}_{z^{2}}\right)$ and $\mathrm{Cu}\left(\mathrm{d}_{x^{2}-y^{2}}\right)$ directions and thus any magnetic exchange will be expected to be very weak.

Figure 9.12 A Linear 1D hydrogen bonded chain of $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ running parallel to the a-axis direction.

Table 9.7 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$.

$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.034(2)$	$\mathrm{Cu}(1)-\mathrm{N}(9)$	$1.963(2)$
$\mathrm{Cu}(1)-\mathrm{O}(10)$	$2.494(2)$	$\mathrm{C}(3)-\mathrm{N}(2)$	$1.321(3)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(9)$	$81.39(7)$	$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}\left(9^{i}\right)$	$98.61(7)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}(10)$	$90.74(6)$	$\mathrm{N}(9)-\mathrm{Cu}(1)-\mathrm{O}(10)$	$88.64(7)$

Hydrogen bonding

$\mathrm{N}(9)-\mathrm{H}(9)$	$0.78(3)$	$\mathrm{O}(10)-\mathrm{H}(10)$	$0.79(4)$
$\mathrm{H}(9) \cdots \mathrm{O}\left(10^{\mathrm{ii}}\right)$	$2.27(3)$	$\mathrm{H}(10) \cdots \mathrm{O}\left(1^{\mathrm{iii}}\right)$	$1.94(4)$
$\mathrm{N}(9) \cdots \mathrm{O}\left(10^{\mathrm{ii}}\right)$	$2.989(2)$	$\mathrm{O}(10) \cdots \mathrm{O}\left(1^{\mathrm{iii}}\right)$	$2.726(2)$
$\mathrm{N}(9)-\mathrm{H}(9) \cdots \mathrm{O}\left(10^{\mathrm{ii}}\right)$	$153(3)$	$\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}\left(1^{\mathrm{iii}}\right)$	$178(4)$

Symmetry transformations: (i) $1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$; (ii) $-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$; (iii) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$.

9.4 Magnetism

The help of Mr. Kevin Berry (Westernport Secondary College, Hastings, Victoria) with calculations is gratefully acknowledged.

9.4.1 $\left[\mathrm{Mn}_{3}\left(\right.\right.$ mcoe $\left._{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

In Figure 9.13 it can be seen that the magnetic moment, per Mn_{3}, decreases a little from $9.5 \mu_{\mathrm{B}}$ at 300 K to $\sim 9 \mu_{\mathrm{B}}$ at $\sim 100 \mathrm{~K}$, then more rapidly to reach a shoulder value of 5.5 μ_{B} at 5 K , before reaching $4.7 \mu_{\mathrm{B}}$ at 2 K . The uncoupled $(g=2.0)$ value for $S_{1}=5 / 2, S_{2}=$ $4 / 2, S_{3}=5 / 2$ is $9.70 \mu_{\mathrm{B}}$ and very weak antiferromagnetic coupling is therefore occurring. The 2 K value is suggestive of a $S_{\mathrm{T}}=2$ coupled ground-state but, since the J values are small, there will be many M_{s} energy levels populated because of their close spacing of a few cm^{-1}.

Figure 9.13 Plot of observed μ_{cff} data for $\left\{\mathrm{Mn}_{3}\right\}(2-300 \mathrm{~K}, H=1 \mathrm{~T})$. Calculated lines are obtained using the parameter sets (a) to (c) (see text) are given. (a) $\cdots \cdots \cdots-$, (b) $\cdots \cdots \cdot$, (c) - .

The crossover of relevant S_{T} levels occur at the following α values where $\alpha=$ J_{13} / J_{12} and J_{12} is negative;

$$
\begin{array}{ll}
S_{\mathrm{T}}=3 & \alpha<0.4 \\
S_{\mathrm{T}}=2 & 0.4<\alpha<0.5 \\
S_{\mathrm{T}}=1 & \alpha>0.5
\end{array}
$$

The spin Hamiltonian employed is that commonly used for a linear trimer:

$$
H=-2 J_{12}\left(S_{1} \cdot S_{2}+S_{2} \cdot S_{3}\right)-2 J_{13} S_{1} \cdot S_{3}
$$

Equation 9.1

The field-dependent thermodynamic form of susceptibility was employed. ${ }^{17,18,31}$ Wide ranges of parameter values were explored in trying to fit the whole susceptibility data
between $2-300 \mathrm{~K}$. The region $12-120 \mathrm{~K}$ was the hardest to reproduce. Using χ^{\prime} tip of $300 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, the following three sets gave quite good fits.
(a) $g=1.99, J_{12}=-1.02 \mathrm{~cm}^{-1}, J_{13}=-0.53 \mathrm{~cm}^{-1}, \alpha=0.52, S_{\mathrm{T}}=1$ ground;
(b) $g=2.00, J_{12}=-1.16 \mathrm{~cm}^{-1}, J_{13}=-0.58 \mathrm{~cm}^{-1}, \alpha=0.50, S_{\mathrm{T}}=1$ or 2 ground;
(c) $g=2.02, J_{12}=-1.59 \mathrm{~cm}^{-1}, J_{13}=-0.67 \mathrm{~cm}^{-1}, \alpha=0.42, S_{\mathrm{T}}=2$ ground.

Fit (c) was better than (a) and (b) between $10-120 \mathrm{~K}$ but worse below 6 K (Figure 9.14). It is possible that the small discrepancy below 6 K arises through trimer-trimer interactions. Variable field magnetisation isotherms ($T=2-20 \mathrm{~K}, H=0-5 \mathrm{~T}$) were measured to help to identify the S_{T} ground state. Saturation in M is not complete even at 2 K and 5 T .

Figure 9.14 Plot of observed μ_{eff} data for $\left\{\mathrm{Mn}_{3}\right\}$ in region 2-50 K with calculated lines for parameter sets (a) $\cdots \cdots-\cdots$, (b) $\cdots \cdots$, (c) - (see text).

Calculation of the $M v$. H plots at 2 K and $0-5 \mathrm{~T}$ using the parameter sets (a) to (c) gave the worst agreement for set (c) with calculated M values being bigger than observed at all temperature and field combinations. Sets (a) and (b) gave similar calculated values and showed good agreement for the three temperatures with fields between 0-1.5 T but with calculated M values greater than those observed above 1.5 T (Figure 9.15). It is interesting to note that the $2 \mathrm{~K} / 5 \mathrm{~T}$ calculated values of M are significantly greater than $4 N \beta$ anticipated for $S_{\mathrm{T}}=2$ lowest in energy because of thermal population of the $S_{\mathrm{T}}=3$ and $S_{\mathrm{T}}=1$ Zeeman levels close by. In summary, the α value appears to be close to 0.5 , the crossover point of $S_{\mathrm{T}}=1$ and 2 . The discrepancies between observed and calculated M values above fields of 1.5 T are most likely because of zero-field splitting effects combined with Zeeman effects from ciosely spaced S_{T} levels. There is not an isolated S_{T} ground-state for $\left\{\mathrm{Mn}_{3}\right\}$ and so further attempts to calculate D values have not been made. Plots of observed M vs. $H / \mathrm{T}(\mathrm{K})$, either isothermal $(2-20 \mathrm{~K})$ or isofield, ${ }^{17,18}$ show nonsuperposition of the lines and are thus indicative of zero-field splitting effects. Weak trimer-trimer effects may also play a minor part in the higher field regimes.

Figure 9.15 Plots of isothermal ($2,3,4 \mathrm{~K}$) magnetisation data versus field, H, for $\left\{\mathrm{Mn}_{3}\right\}$.
Calculated lines ($-2 \mathrm{~K}, \cdots-\cdots 3 \mathrm{~K}, \cdots . . .4 \mathrm{~K}$) use parameter set (a) given in the text and the spin Hamiltonian given, which does not include zero-field splitting terms.

The J_{12} value for $\left\{\mathrm{Mn}_{3}\right\}$ of $\sim-1 \mathrm{~cm}^{-1}$, which results from $\mathrm{Mn}^{\mathrm{III}}-\mathrm{O}-\mathrm{N}(\mathrm{R})-\mathrm{Mn}^{\mathrm{II}}$ superexchange pathways, can be compared to the related nioximato- and dimethylglyoximato-bridging in the work of Birkelbach et al. ${ }^{27,28}$ in which J_{12} was +4.7 cm^{-1} (with $J_{13}=-3.0 \mathrm{~cm}^{-1}$). The difference in sign of J_{12} results from the net effects of the ferromagnetic and antiferromagnetic contributions to J_{12}, which in turn will be influenced by subtle coordination differences on the $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{II}}$ centres and, to a lesser degree, by the terminal binding groups. These structural differences have been described above in section 9.3.1.

9.4.2 $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Two freshly prepared samples were measured and very similar μ_{eff} (per Mn_{4}) data were obtained when measured in a field of 1 T and dispersed in Vaseline to prevent
torquing. ${ }^{32}$ The moment decreases, gradually, from $8.65 \mu_{\mathrm{B}}$ at 300 K to reach a plateau value of $\sim 7.8 \mu_{\mathrm{B}}$ between $50-10 \mathrm{~K}$, then more rapidly, reaching $6.85 \mu_{\mathrm{B}}$ at 2 K and still decreasing (Figure 9.16). The spin-only value for two $\mathrm{Mn}^{111}(S=2)$ plus two $\mathrm{Mn}^{11}(S=5 / 2)$ of $\mu=10.86 \mu_{\mathrm{B}}$ is bigger than the observed value at 300 K and thus antiferromagnetic coupling is occurring. The 'butterfly' tetranuclear arrangement of spins, with two $\mathrm{Mn}^{\text {III }}$ (2, 2^{i}) in the body positions and two $\operatorname{Min}^{11}\left(1,1^{i}\right)$ at the wingtips, was employed in the $\left(-2 J S_{\mathrm{j}} S_{\mathrm{j}}\right)$ spin Hamiltonian below ${ }^{17,18,31}$ with the spin centres numbered as in Scheme 9.2 and the approximation $J_{12}=J_{14}=J_{34}=J_{23}$.

Scheme 9.2

$$
H=-J_{12}\left(S_{\mathrm{T}}^{2}-S_{13}^{2}-S_{24}^{2}\right)-J_{13}\left(S_{13}^{2}-S_{1}^{2}-S_{3}^{2}\right)
$$

Equation 9.2

Where $S_{13}=S_{1}+S_{3}, S_{24}=S_{2}+S_{4}$, and $S_{\mathrm{T}}=S_{13}+S_{24}$. The Kambe vector coupling approach has been described for this spin combination. ${ }^{17,18,31}$ There are 110 possible spin states with S_{T}, the total spin of the cluster, varying from 0 to 9 . The field dependent thermodynamic form of susceptibility was employed, in combination with matiix diagonalisation methods, ${ }^{31}$ to fit the susceptibility data.

Figure 9.16 Plot of observed μ_{eff} data for $\left\{\mathrm{Mn}_{4}\right\}(2-300 \mathrm{~K}, H=1 \mathrm{~T})$. Best-fit calculated line obtained using the parameter set given in the text.

The best-fit to the data is obtained for the parameter set $g=1.88, J_{12}=-2.5 \mathrm{~cm}^{-1}$, $J_{13}=-46.0 \mathrm{~cm}^{-1}, \alpha=J_{13} / J_{12}=18.4, J_{24}=0$. These parameters also give good agreement with the 2, 3 and 4 T magnetisation isotherms (Figure 9.17). Interestingly, the ground state under these conditions, viz $\alpha>6, J_{12}$ and J_{13} negative and with J_{13} large, is made up of the six degenerate levels $S_{T}=0,1,2,3,4,5$ ane hey correspond to $S_{13}=0$. Introduction of a tiny J_{24} value of $-0.02 \mathrm{~cm}^{-1}$ has only a minimal effect on the quality of fit. Larger J_{24} values such as $\pm 0.1 \mathrm{~cm}^{-1}$, which correspond to splitting up of the six S_{T} levels, lead to much poorer fits. Thus, an solated S_{T} ground level is not present in $\left\{\mathrm{Mn}_{4}\right\}$ and plots of M versus $H /$ temperature, much used by Hendrickson and Christou ${ }^{17,18}$ to show zero-field splitting of isolated ground states, yield isofield lines all superimposed on each other indicating a lack of zero-field spitting.

Figure 9.17 Plots of isothermal (2, 3, 4 K) magnetisation data versus field, H, for $\left\{\mathrm{Mn}_{4}\right\}$. Calculated lines (----2 K, - $3 \mathrm{~K}, \cdots \cdots .4 \mathrm{~K}$) use the parameter set given in the text and in Table 9.8. The kinks in the calculated curves reflect the number of calculated points used in the plotting routine.

The J and g values and ground S_{T} states for other recently reported $\mathrm{Mn}^{11}{ }_{2} \mathrm{Mn}^{\mathrm{II}}{ }_{2}$ planar-rhomboidal compounds are compared to those of $\left\{\mathrm{Mn}_{4}\right\}$ in Table 9.8. Lower than expected g values are a common feature, the second and third examples being particularly low. The first three compounds have μ_{3}-oxo bridges and J_{13} (body-body $\mathrm{Mn}^{\text {III }} \ldots \mathrm{Mn}^{\text {III }}$) is much more negative for $\left\{\mathrm{Mn}_{4}\right\}$ than for the others. The μ_{3}-phenoxo bridged compounds containing pdmH^{*} and hmp^{-}ligands show ferromagnetic J_{12} and J_{13} values possibly because of the nature of the orbital overlap involving the phenoxo oxygen. These J values lead to large $S_{\text {T }}$ ground state values with negative zero-field splitting. Such features are prerequisites for single-molecule magnetic (SMM) behaviour and this was confirmed for these molecules by observing frequency dependent out-of-phase components $\chi^{\prime \prime} \mathrm{m} \cdot\left\{\mathrm{Mn}_{4}\right\}$
would be predicted not to exhibit SMM behaviour because of a lack of zero-field splitting. Measurements of the $\mathrm{AC} \chi^{\prime \prime} \mathrm{m}$ values versus temperature ($2-10 \mathrm{~K}$; oscillation frequencies $10,50,100,250,500,1500 \mathrm{~Hz}$; AC field amplitude 3.5 Oe) were therefore made and showed no maximum in this temperature range and thus $\left\{\mathrm{Mn}_{4}\right\}$ does not display SMM behaviour.

Table 9.8 Comparison of J values $\left(\mathrm{cm}^{-1}\right)$ and ground spin states for $\mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{2}$ planar rhomboidal species where $\mathrm{Mn}_{1}=\mathrm{Mn}_{3}=\mathrm{Mn}^{\mathrm{II}}$ at body sites.

Cluster	J_{12}	J_{13}	$\begin{gathered} \alpha= \\ J_{13} / J_{12} \end{gathered}$	\boldsymbol{g}	$\begin{gathered} \text { Ground } \\ S_{\mathrm{T}} \\ \hline \end{gathered}$	ref
$\left\{\mathrm{Mn}_{4}\right.$ \}	-2.5	-46.0	18.4	1.88	$0-5{ }^{\text {d }}$	(e)
$\mathrm{Mr}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{6}(\mathrm{bipy})_{2}{ }^{(\mathrm{a})}$	-1.97	-3.12	1.59	1.70	2	33
$\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CCPh}_{3}\right)_{6}\left(\mathrm{OEt}_{2}\right)_{2}$	-1.50	-2.80	1.89	1.47	2	34
$\left[\mathrm{Mn}_{4}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}(\mathrm{pdmH})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}{ }^{\text {(b) }}$	$+0.40{ }^{\text {(1) }}$	$+8.1{ }^{(1)}$	20.4	1.84	8 ± 1	17
$\left[\mathrm{Mn}_{4}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}(\mathrm{pdmH})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	$+1.1{ }^{(1)}$	+8.7 ${ }^{(7)}$	7.94	1.89	9	17
$\left[\mathrm{Mn}_{4}(\mathrm{hmp})_{6} \mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Br}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{(\mathrm{c})}$	$+0.92{ }^{\text {(})}$	$+8.66{ }^{(1)}$	9.43	1.94	9	18

${ }^{\text {(a) }}$ bipy $=2,2^{\prime}$-bipyridine, ${ }^{\text {(b) }} \mathrm{pdmH}^{-}=$monoanion of pyridine-2,6-dimethanol, ${ }^{\text {(c) }} \mathrm{hmp}^{-}=$ anion of 2-hydroxymethylpyridine, ${ }^{(d)}$ six degenerate levels, ${ }^{(\text {c) }}$ this work, ${ }^{(0)}$ these values were incorrectly divided by a factor of two in Price et al. ${ }^{35}$ (see Appendix 2, page 450).

9.4.3 $\left[\mathrm{Ni}(\mathbf{c a o})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and $\left[\mathrm{Cu}(\mathrm{mcoe})_{\mathbf{2}}(\mathbf{M e O H})_{2}\right]$

The magnetic data (Figure $9.18(\mathrm{Ni})$ and Figure $9.19(\mathrm{Cu})$) show Curie-Weiss dependence of susceptibility ($C=1.272 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K} ; \theta=-4.3 \mathrm{~K}(\mathrm{Ni})$ and $C=0.38 \mathrm{~cm}^{3} \mathrm{~mol}^{-}$ $\left.{ }^{1} \mathrm{~K} ; \theta=0.32 \mathrm{~K}(\mathrm{Cu})\right)$. For $\left[\mathrm{Ni}(\text { cao })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ the corresponding $\mu_{\text {eff }}$ values decrease marginally between $300-15 \mathrm{~K}$, then more rapidly reaching $1.95 \mu_{\mathrm{B}}$ at 2 K . This behaviour is anticipated for a combination of zero-field splitting of the ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ state and weak antiferromagnetic coupling, occurring via the hydrogen bonding pathways. For
$\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right] \mu_{\mathrm{cIf}}$ remains at $1.77 \mu_{\mathrm{B}}$ between $300-10 \mathrm{~K}$, with a small decrease to $1.58 \mu_{\mathrm{B}}$ at 2 K . Likewise, the latter behaviour may be indicative of extremely weak coupling occurring via the hydrogen bonding pathways (vide supra).

Figure 9.18 Plots of magnetic moment, $\mu_{\mathrm{eff}}(\boldsymbol{*})$, and inverse susceptibility, $1 / \chi$ (1), for $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (the solid line in the $1 / \chi$ plot is the fit to the Curie-Weiss law).

Figure 9.19 Plots of magnetic moment, $\mu_{\mathrm{cff}}(\boldsymbol{*})$, and inverse susceptibility, $1 / \chi(\boldsymbol{\Pi})$, for $\left[\mathrm{Cu}(\text { mcoe })_{2}(\mathrm{MeOH})_{2}\right]$ (the solid line in the $1 / \chi$ plot is the fit to the Curie-Weiss law).

9.5 Conclusions

Two new mixed valent manganese(II)/(III) compounds and two mononuclear nickel(II) and copper(II) complexes were synthesised in which the starting pseudochalcogenide ligand, dicyanonitrosomethanide ($\mathrm{ONC}(\mathrm{CN})_{2}{ }_{2}$, dcnm), undergoes nucleophilic addition of methanol in $\left\{\mathrm{Mn}_{3}\right\}$ and $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$, and water in $\left\{\mathrm{Mn}_{4}\right\}$ and $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ during coordination to the metal ions. The crystal structures of $\left\{\mathrm{Mn}_{3}\right\}$ and $\left\{\mathrm{Mn}_{4}\right\}$ show the former is a linear trinuclear $\mathrm{Mn}^{\text {l1 }} \mathrm{Mn}^{\mathrm{III}} \mathrm{Mn}^{\mathrm{II}}$ compound containing bridging oxime moieties from the chelating ligand, mcoe. The latter compound has a planar rhomboidal (butterfly) arrangement of $\mathrm{Mn}^{\text {II }} \mathrm{Mn}^{\text {III }} \mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}^{\text {III }}$ with the $\mathrm{Mn}^{\text {III }}$ ions in 'body' positions bridged to the 'wingtip', seven coordinate Mn^{11} ions by μ_{3}-oxo atoms and by the NO oxime groups of the chelating ligand, cao.

A second phase of $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ was found, termed the β-phase, where the first phase, α - $\left[\mathrm{Ni}(\text { cao })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, was reported by Skopenko et al. in $1983 .^{30}$ The α-phase differs in the overall 3D hydrogen bonding network between the molecules, and is related to the β-phase by translation and rotation of half of the molecules (vide supra).

Each of the complexes described in this chapter exhibits interesting supramolecular hydrogen bonding networks largely as a consequence of the functional groups on the ligands cao and mcoe. In particular, the ligand cao has peripheral nitrile and amine groups positioned so that complementary hydrogen bonds can occur between two cao complexes.

Several reasonable fits to the variable temperature magnetic susceptibility data for $\left\{\mathrm{Mn}_{3}\right\}$ gave an intramolecular coupling constant, J_{12}, of $\sim-1 \mathrm{~cm}^{-1}$ (vide supra), indicating
weak antiferromagnetic exchange. The complex $\left\{\mathrm{Mn}_{3}\right\}$ does not possess an isolated ground spin state, S_{T}, but rather thermally populates closely spaced S_{T} levels of 1 and 2.

The best fit to the variable temperature magnetic susceptibility data for $\left\{\mathrm{Min}_{4}\right\}$ yielded 'wingtip-to-body' and 'body-to-body' (vide supra) coupling constants of $J_{12}=-2.5$ cm^{-1} and $J_{12}=-46.0 \mathrm{~cm}^{-1}$ respectively. These values indicate antiferromagnetic coupling within the complex. The 'body-to-body' exchange is particularly strongly antiferromagnetic in comparison to other similar 'butterfly' type tetranuclear complexes. $\left\{\mathrm{Mn}_{4}\right\}$ also does not possess an isolated ground state spin, S_{T}, but instead six degenerate levels of 0 to 5 . No negative zero-field splitting values were observed for either $\left\{\mathrm{Mn}_{3}\right\}$ or $\left\{\mathrm{Mn}_{4}\right\}$, indicating that they are not single molecule magnets (SMMs). The magnetism of the mononuclear Ni^{11} and Cu^{11} complexes follow the Curie-Weiss law, with perhaps the suggestion of extremely weak coupling occurring via the hydrogen bonding pathways.

The initial intention of this work was to synthesise extended network complexes containing denm. However the structural and magnetic results obtained, although largely unexpected, were most interesting.

9.6 Experimental

9.6.1 Synthesis of $\mathbf{A g}(\mathrm{denm})$ and $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{denm})$

$\mathrm{Ag}(\mathrm{dcnm})$ was synthesized by Dr. Stuart Batten according to the literature. ${ }^{36}$ $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})$ was synthesised by adding a solution of $\mathrm{Me}_{4} \mathrm{NBr}(4.929 \mathrm{~g}, 32.0 \mathrm{mmol})$ in a solvent mixture of 100 mL acetonitrile and 40 mL methanol to a stirred suspension of $\mathrm{Ag}(\mathrm{dcnm})(6.059 \mathrm{~g}, 30.0 \mathrm{mmol})$ in 50 mL dichloromethane. AgBr was removed by filtration through Celite on a large sinter. The solvent was evaporated from the filtrate by rotary evaporation and the resulting yellow oil recrystallised by vapour diffusion of diethyl ether into a solution in methanol (Yield $5.08 \mathrm{~g}, 95 \%$). IR (Nujol mull, cm^{-1}): 3438 mbr ,
$2212 \mathrm{~s}, 1654 \mathrm{~m}, 1583 \mathrm{w}, 1487 \mathrm{~s}, 1418 \mathrm{~m}, 1273 \mathrm{~s}, 1233 \mathrm{~s}, 1169 \mathrm{~m}, 951 \mathrm{~s}, 879 \mathrm{vw}, 832 \mathrm{vw}, 779 \mathrm{~m}$, $669 \mathrm{~m}, 580 \mathrm{~m}$.

9.6.2 Synthesis of $\left[\mathrm{Mn}_{3}(\text { mcoe })_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

A methanolic solution (5 mL) of $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})(0.336 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to a methanolic solution (5 mL) of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{l} \mathrm{g}, 1.0 \mathrm{mmol})$. The resultant solution was an orange colour. After one week many red crystals were present in the deep red solution. The crystals had a hexagonal or half-hexagonal cross-section and did not lose solvent in air. The solution was decanted. A fine light-brown solid, which coprecipitated with the crystals was removed by suspending it in methanol (the crystals were far less mobile, sinking rapidly) and decanting the suspension. This process was repeated several times until the methanol wash was free of the light-brown solid. The crystals were collected by filtration, washed with methanol and dried in air. Yield 0.17 g (50% based on total available Mn). An irregular shaped crystal was chosen for X-ray diffraction structural analysis. IR (Nujol mull, cm^{-1}): 3258s, 2221m, 1645s, 1434s, 1385m, 1356s, 1266s, 1192s, 1125s, 952w, 823w, 779m. Anal. (\%) Found: C, 29.5; H, 3.1; N, 24.8. Calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{19} \mathrm{O}_{17} \mathrm{Mn}_{3}: \mathrm{C}, 28.3 ; \mathrm{H}, 2.8 ; \mathrm{N}, 26.1$. Powder XRD: The diffractogram of the bulk product matches that calculated from the crystal structure.

9.6.3 Synthesis of $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\text { cao })_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})(0.596 \mathrm{~g}, 3.54 \mathrm{mmol})$ was stirred in 10 mL of hot acetonitrile to dissolve. There remained a small amount of yellow residue. A solution of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(0.889 \mathrm{~g}, 3.54 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ was then added to this mixture, resulting in an instant colour change to deep red. Over a period of about 30 minutes of stirring the hot mixture changed to an orange colour. The mixture was then fiitered several times to remove a fine brown precipitate (most likely manganese oxide), then covered and left to
stand. After four days the solution was a red/brown colour with a small amount of fine brown precipitate mixed with many red/orange crystals. The fine brown precipitate was removed by suspending it in the solution (the crystals were far less mobile, the majority remaining attached to the glass of the vessel) and filtering the suspension. The filtrate was returned to the crystals, which were then filtered and washed with acetonitrile (Yield 50 $\mathrm{mg}, 4 \%$ based on total available Mn). IR (Nujol, cm^{-1}): $3390 \mathrm{sbr}, 2268 \mathrm{vw}, 2224 \mathrm{~s}, 1682 \mathrm{~s}$, 1606s, 1470s, 1317s, 1224s, 1136s, 1041m, 950m, 831m, 708sh, 666sh. Anal. (\%) Found: C, 22.2; H, 3.0; N, 22.4. Calc. for $\mathrm{C}_{24} \mathrm{H}_{54} \mathrm{~N}_{20} \mathrm{O}_{30} \mathrm{Mn}_{4}: \mathrm{C}, 21.8 ; \mathrm{H}, 4.1 ; \mathrm{N}, 21.2$. Powder XRD: The diffractogram of the bulk product matches that calculated from the crystal structure.

9.6.4 Synthesis of $\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

An aqueous solution (5 mL) of $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})(0.081 \mathrm{~g}, 0.50 \mathrm{mmol})$ was added to an aqueous solution (5 mL) of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.091 \mathrm{~g}, 0.25 \mathrm{mmol})$ in a large sample vial. The resultant yellow solution was sealed and left to stand. After approximately one month several clusters of dark red/purple crystals were present as well as a small amount of colourless crystals. The latter were most likely $\mathrm{Me}_{4} \mathrm{NClO}_{4}$. The red/purple crystais were very sensitive to solvent loss, thus were kept in the mother liquor. IR (Nujol, cm^{-1}): 3356sbr, 3192sbr, 2751w, 2589vw, 2228s, 1667s, 1628s, 1586s, 1454, 1393s, 1299s, $1178 \mathrm{~s}, 1102 \mathrm{~s}, 77 \mathrm{~lm}, 717 \mathrm{~s}, 650 \mathrm{~m}$.

A crystal suitable for X-ray diffraction was cut from one of the clusters and data were collected by Dr. Paul Jensen.

9.6.5 Synthesis of $\left[\mathrm{Cu}(\text { mcoe })_{2}(\mathrm{MeOH})_{2}\right]$

A methanolic solution $(10 \mathrm{~mL})$ of $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{dcnm})(0.081 \mathrm{~g}, 0.50 \mathrm{mmol})$ was added to a methanolic solution (10 mL) of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.060 \mathrm{~g}, 0.25 \mathrm{mmol})$ in a large
sample vial. The resultant dark green solution was sealed and left to stand. After one day large dark green needles had formed. The needles were very sensitive to solvent loss, thus were kept in the mother liquor. IR (Nujol, cm^{-1}): $3499 \mathrm{~s}, 3296 \mathrm{~s}, 2219 \mathrm{~m}, 1644 \mathrm{~s}, 1431 \mathrm{~s}$, $1311 \mathrm{~s}, 1238 \mathrm{vw}, 1207 \mathrm{~s}, 1159 \mathrm{~m}, 1144 \mathrm{~s}, 955 \mathrm{vw}, 787 \mathrm{~m}$.

A crystal suitable for X-ray crystallographic study was cut from one of the dark green needles and data were collected by Dr. Stuart Batten.

9.6.6 X-Ray Crystallography

Data were collected using a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). Integration was carried out by the program DENZO-SMN, ${ }^{37}$ and data were corrected for Lorentz polarisation effects and for absorption using the program SCALEPACK. ${ }^{37}$ Solutions were obtained by direct methods (SHELXS 97$)^{38}$ followed by successive Fourier difference methods, and refined by full matrix least squares on $F_{\text {obs }}{ }^{2}$ (SHELXL 97) ${ }^{38}$ with the aid of the graphical interface program X-SEED. ${ }^{39}$

For $\left[\mathrm{Mn}_{3}\left(\mathrm{mcoe}_{6}\right)_{6} \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$ all non-hydrogen atoms of the cation complex, the two waters of crystallization and the nitrogen atom of the nitrate were refined anisotropically. The unique oxygen atom of the nitrate was found to be disordered over two positions. The two contributions (assigned equal quarter site occupancies) were refined isotropically. The imine hydrogen atom was located in the difference Fourier map and was subsequently refined isotropically. The methoxy hydrogen atoms of the mcoe ligand were included at calculated positions with U values 1.5 times the U_{cq} of the carbon atom. Two regions of electron density not connected to each other were assigned as two water molecules.

For $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ all non-hydrogen atoms of the cluster were refined anisotropically. Dua to significant disorder that was difficult to
model, the non-hydrogen atoms of the tetramethylammonium and nitrate counter ions were refined isotropically and no hydrogen atoms were assigned. A regio 2 of residual electron density was assigned as a water molecule disordered over two positions ($O(600$) and $\mathrm{O}(601)$). Hydrogen atoms on the coordinating acetonitrile molecules and the amine groups of the cao ligands were assigned to calculated positions with U values 1.5 times (for methyl hydrogen atoms) and 1.2 times (for amine hydrogen atoms) the U_{cq} of the attached atom, whereas those on the coordinating water molecules were not located. As can be seen in Table 9.1 the final R-value was relatively high. The crystals were quite small and weakly diffracting and many were tried with poorer quality diffraction. A number of solutions were obtained for different crystals, the best giving the refined structure presented here. Despite the extreme disorder in the counter ions and in a water molecule the cluster itself is well refined.

For $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ all non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located in the Fourier difference maps and refined freely with isotropic thermal parameters, except for the water hydrogen ($H(9)$) of $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ to which was applied an anti-bumping restraint using the DFIX^{40} instruction, but was otherwise refined isotropically. The structures of $\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{caO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ were solved by Dr. Stuart Batten and Dr. Paul Jensen respectively.

9.6.7 Magnetic Measurements

Magnetic measurements were kindly carried out by Dr. B. Moubaraki as described previously ${ }^{19}$ using a Quantum Design MPMS 5 Squid magnetometer for DC magnetisation measurements and a PPMS instrument for AC susceptibility measurements. Since $\mathrm{Mn}^{\mathrm{III}}$ complexes display torquing at low temperatures, ${ }^{32}$ the powder was dispersed in Vaseline.

9.6.8 X-Ray Powder Diffraction of $\left[\mathrm{Mn}_{3}(\text { mcoe })_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{\mathbf{2}}(\mathrm{cao})_{4}(\mathbf{M e C N})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot \mathbf{2 H}_{\mathbf{2}} \mathrm{O}$

Powder X-ray diffraction data were collected by Mr. Rod Mackie (School of Physics and Materials Engineering, Monash University, Clayton) on a Scintag Automated Powder Diffractometer using a $\mathrm{Cu}-\mathrm{K} \alpha$ monochromatic radiation source $(\lambda=154.059 \mathrm{pm})$, a solid state Ge detector, 2 mm divergence slit and a 3 mm receiving slit at room temperature. The programs Crystal Diffract ${ }^{41}$ and Unit Cell ${ }^{42}$ were used by Dr. Stuart Batten (School of Chemistry, Monash University, Clayton) to confirm that the single crystals were representative of the bulk samples.

9.7 References

1. T. G. Carrell, A. M. Tyryshkin, and G. C. Dismukes, J. Biol. Inorg. Chem., 2002, 7, 2.
2. M. Yagi and M. Kaneko, Chem. Rev., 2001, 101, 21.
3. G. Aromi, M. W. Wemple, S. J. Aubin, K. Folting, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1998, 120, 5850.
4. S. Wang, H.-L. Tsai, E. Libby, K. Folting, W. E. Streib, D. N. Hendrickson, and G. Christou, Inorg. Chem., 1996, 35, 7578.
5. J. Messinger, J. H. Robblee, U. Bergmann, C. Fernandez, P. Glatzel, H. Visser, R. M. Cinco, K. L. McFarlane, E. Bellacchio, S. A. Pizarro, S. P. Cramer, K. Sauer, M. P. Klein, and V. K. Yachandra, J. Am. Chem. Soc., 2001, 12., 7804.
6. J. H. Robblee, J. Messinger, R. M. Cinco, K. L. McFarlane, C. Fernandez, S. A. Pizarro, K. Sauer, and V. K. Yachandra, J. Am. Chem. Soc., 2002, 124, 7459.
7. T. Lis, Acta Crystallogr., Sect. B, 1980, 36, 2042.
8. M. Soler, P. Artus, K. Folting, J. C. Huffman, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2001, 40, 4902.
9. Y. Miyazaki, A. Bhattacharjee, M. Nakano, K. Saito, S. M. J. Aubin, H. J. Eppley, G. Christou, D. N. Hendrickson, and M. Sorai, Inorg. Chem., 2001, 40, 6632.
10. T. Kuroda-Sowa, M. Lam, A. L. Rheingold, C. Frommen, W. M. Reiff, M. Nakano, J. Yoo, A. L. Maniero, L.-C. Brunel, G. Chris's, and D. N. Hendrickson, Inorg. Chem., 2001, 40, 6469.
11. S. M. J. Aubin, Z. Sun, H. J. Eppley, E. M. Rumierger, I. A. Guzei, K. Folting, P. K. Gantzel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Polyhedron, 2001, 20, 1139.
12. P. Artus, C. Boskovic, J. Yoo, W. E. Streib, L.-C. Brunel, D. N. Hendrickson, and G. Christou, Inorg. Chem., 2001, 40, 4199.
13. B. Barbara, L. Thomas, F. Lionti, I. Chiorescu, and A. Sulpice, J. Magn. Magn. Mater., 1999, 200, 167.
14. W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou, Nature, 2002, 416, 406.
15. S. M. J. Aubin, N. R. Dilley, L. Pardi, J. Krzystek, M. W. Wemple, L.-C. Brunel, M. B. Maple, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1998, 120, 4991.
16. S. M. J. Aubin, M. W. Wemple, D. M. Adams, H.-L. Tsai, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1996, 118, 7746.
17. J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C. Huffman, A. L. Maniero, L.-C. Brunel, K. Awaga, H. Ishimoto, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2000, 39, 3615.
18. J. Yoo, A. Yamaguchi, M. Nakano, J. Krzystek, W. E. Streib, L.-C. Brunel, H. Ishimoto, G. Christou, and D. N. Hendrickson, Inorg. Chem., 2001, 40, 4604.
19. S. R. Batten, P. Jensen, C. J. Kepert, M. Kurmoo, B. Moubaraki, K. S. Murray, and D. J. Price, J. Chem. Soc., Dalton Trans., 1999, 2987.
20. D. J. Price, S. R. Batten, B. Moubaraki, and K. S. Murray, Chem. Commun., 2002, 762.
21. M. Hvastijová, J. Kohout, J. W. Buchler, R. Boca, J. Kozisek, and L. Jäger, Coord. Chem. Rev., 1998, 175, 17.
22. M. Dunaj-Jurco, D. Miklos, I. Potocnak, and L. Jäger, Acta Crystallogr., Sect. C, 1998, 54, 1763.
23. M. Hvastijová, J. Kohout, J. Kozisek, and I. Svoboda, J. Coord. Chem., 1999, 47, 573.
24. J. W. Buchler, M. Hvastijová, J. Kohout, and J. Koz̈'isek, Transition Met. Chem., 1998, 23, 215.
25. N. Arulsamy and D. S. Bohle, J. Org. Chem., 2000, 65, 1139.
26. G. Christou, Acc. Chem. Res., 1989, 22, 32.8.
27. F. Birkelbach, T. Weyhermuller, M. Lengen, M. Gerdan, A. X. Trautwein, K. Wieghardt, and P. Chaudhuri, J. Chem. Soc., Dalton Trans., 1997, 4529.
28. F. Birkelbach, U. Floerke, H.-J. Haupt, C. Butzlaff, A. X. Trautwein, K. Wieghardt, and P. Chaudhuri, Inorg. Chem., 1998, 37, 2000.
29. X. Li, D. P. Kessissoglou, M. L. Kirk, C. J. Bender, and V. L. Pecoraro, Inorg. Chem., 1988, 27, 1.
30. V. V. Skopenko, Y. L. Zub, R. D. Lampeka, V. K. Bel'skii, and V. E. Zavodnik, Dop. Ak. Nauk Ukr. RSR Ser. B-Geol. Khim. Biol. Nauki., 1983, 60.
31. K. S. Murray, Adv. Inorg. Chem., 1995, 43, 261.
32. B. J. Kennedy and K. S. Murray, Inorg. Chem., 1985, 24, 1552.

33

J. B. Vincent, C. Christmas, H. R. Chang, Q. Li, P. D. W. Boyd, J. C. Huffman, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1989, 111, 2086.

34. H. H. Thorp, J. E. Sarneski, R. J. Kulawiec, G. W. Brudvig, R. H. Crabtree, and G. C. Papaefthymiou, Inorg. Chem., 1991, 30, 1153.
D. J. Price, S. R. Batten, K. J. Berry, B. Moubaraki, and K. S. Murray, Polyhedron, 2003, 22, 165.
35. G. Longo, Gazz. Chim. Ital., 1931, 61, 575.
36. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
37. G. M. Sheldrick, SHELX 97, Program for crystal structure refinement, University of Göttingen, Göttingen, Germany, 1997.
38. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
39. G. M. Sheldrick, 'SHELX-97 Manual', 1997.
40. D. C. Palmer, Crystal Diffract 2.1.0; Crystal Maker Software, Bicester, UK, 1999.
41. T. J. B. Holland and S. A. T. Redfern, Mineral. Mag., 1997, 61, 65.

APPENDIX 1: INSTRUMENTATION

Infrared Spectra

Were recorded on a Perkin Elmer 1600 series FTIR spectrometer in the range 500 $-4000 \mathrm{~cm}^{-1}$ with a resolution of $4 \mathrm{~cm}^{-1}$. Samples were prepared as Nujol mulls between NaCl plates. Intensities are described by the following abbreviations: $\mathrm{s}=$ strong; $\mathrm{m}=$ medium; $\mathrm{w}=$ weak; $\mathrm{vw}=$ very weak; $\mathrm{sh}=$ shoulder and $\mathrm{br}=$ broad.

Single Crystal X-Ray Diffraction Data

Were collected on a Nonius KappaCCD Diffractometer using the phi and/or omega scan collection methods with graphite monochromated Mo-K α radiation ($\lambda=$ $0.71073 \AA$).

X-Ray Powder Diffraction Data

Were collected by Mr. Rod Mackie (School of Physics and Materials Engineering, Monash University, Clayton) on a Scintag Automated Powder Diffractometer using a Cu$\mathrm{K} \alpha$ monochromatic radiation source $(\lambda=154.059 \mathrm{pm})$, a solid state Ge detector, 2 mm divergence slit and a 3 mm receiving slit at room temperature.

Variable Temperature Magnetic Data

Were collected by Dr. Boujemaa Moubaraki (School of Chemistry, Monash University, Clayton). DC susceptibilities were measured using a Quantum Design Magnetic Properties Measurement System (MPMS 5) SQUID magnetometer calibrated by use of a standard palladium sample (Quantum Design) of accurately known magnetisation or by use of magnetochemical calibrants such as $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}(\mathrm{en})_{3}\right] \mathrm{S}_{2} \mathrm{O}_{3}$. AC susceptibilities were measured with a Quantum Design Physical Property Measurement

System (PPMS 7) fitted with an Option P-500 (ACMS) attachment for AC measurements. Samples were contained in gelatine capsules held in the middle of a drinking straw, which was fixed to the end of a sample rod.

Microanalyses

Microanalytical measurements ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed by Campbell Microanalytical Laboratory, Chemistry Department, University of Otago, Dunedin, New Zealand.

Thermogravimetric Analyses

Thermal degradation studies were performed on a Simultaneous Thermal Analyzer (Rheometric Scientific, STA 1500), which was calibrated using a four point melt series (indium, tin, lead, and zinc). Experiments were performed in aluminium pans, under either an atmosphere of nitrogen or dried air.

APPENDIX 2: PUBLICATIONS

Pages 438-447

Self-penetration - A Structural Compromise Between Singie Networks and Interpenetration: Magnetic Properties and Crystal Structures of [Mn(dca) $\mathbf{2}_{\mathbf{2}}\left(\mathrm{H}_{2} \mathrm{O}\right)$] and $[\mathbf{M}(\mathrm{dca})(\mathrm{tcm})], \mathrm{M}=\mathbf{C o}, \mathrm{Ni}, \mathrm{Cu}$, dca $=$ Dicyanamide, $\mathrm{N}(\mathrm{CN})_{2}{ }_{2}$, tcm $=$ Tricyanomethanide, $\mathrm{C}(\mathrm{CN})_{3}{ }^{-}$.

Paul Jensen, David J. Price, Stuart R. Batten, Boujemaa Moubaraki and Keith S. Murray, Chem. Eur. J., 2000, 6, 3186-3195.

Page 448-449

Synthesis, Structure and Magnetism of a New Manganese Carboxylate Cluster: $\left[\mathrm{Mn}_{16} \mathrm{O}_{\mathbf{1 6}}(\mathrm{OMe})_{\mathbf{6}}(\mathrm{OAc})_{\mathbf{1 6}}(\mathrm{MeOH})_{\mathbf{3}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}$.

David J. Price, Stuart R. Batten, Boujemaa Moubaraki and Keith S. Murray, Chem. Commun., 2002, 762-763.

Pages 450-461

Structure and magnetism of trinuclear and tetranuclear mixed valent manganese clusters from dicyanonitrosomethanide derived ligands.

David J. Price, Stuart R. Batten, Kevin J. Berry, Boujemaa Moubaraki and Keith S. Murray, Polyhedron, 2003, 22, 165-176.

Synthesis, structure and magnetism of $\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc}^{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ and the facilitation of long-range magnetic order through hydrogen bonding.

David J. Price, Stuart R. Batten, Boujemaa Moubaraki and Keith S. Murray, Polyhedron, in press.

1D Manganese(III) and iron(III) coordination polymers containing Schiff-base ligands and dicyanamide

David J. Price, Stuart R. Batten, Boujemaa Moubaraki and Keith S. Murray, Indian J. Chem., submitted.

Self-Penetration-A Structural Compromise between Singie Networks and Interpenetration: Magnetic Properties and Crystal Structures of [Mn(dca) $\mathbf{2}^{-}$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $[\mathrm{M}(\mathrm{dca})(\mathrm{tcm})], \mathrm{M}=\mathbf{C o}, \mathbf{N i}, \mathbf{C u}$, dea $=$ Dicyanamide, $\mathbf{N}(\mathbf{C N})_{2}{ }^{-}$, $\mathbf{t c m}=$ Tricyanomethanide, $\mathbf{C}(\mathbf{C N})_{3}{ }^{-}$

Paul Bensen, David J. Price, Stuart R. Batten, Boujemaa Moubaraki, and Keith S. Murray*id

Dedicated to the mentony of Profaswor Olivier Kahn

Abstract: The three-dimensional coordination polymers [Mn(den) $\left.\mathbf{H}_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (1) and $\mathrm{M}(\mathrm{dea})(\mathrm{tcm})], \mathrm{M}=\mathrm{Co}(2) . \mathrm{Ni}(3)$. Cu (4). dea = dicyanamide. $\mathrm{N}\left(\mathrm{CN}^{-}\right)^{-}$, $\mathrm{tcm}=$ triganomethanide $\mathrm{C}(\mathrm{CN})_{h}^{-}$, have isomorphous structures. In 1 half the dica ligands cerordinate directly (through al! three nitrogen atoms) to three Mn atoms (all metal atoms are six-ccordinate). while the other half coordinate to two Mnatoms (through the nitrile nitrogens) and hydrogen bond to water molecules coordinated to a third Mn atom (through the amide nitrogen). This dea- $\mathrm{H}_{2} \mathrm{O}$ structural moiely is disordered over a mirtor plane, and is replaced by the strucuraliy equivalent tem ligand in
compounds 2-4. The resulting struc. tures display a new self-penetrating 3,6connected (2:1) networt topology that can be related to, but is different from. the rutile net. The self-penetrating [$M(\operatorname{den})(t \mathrm{~cm})]$ network can be viewed as a structural compromise between the two interpenetrating ruile-like networks of $[M(t \mathrm{~m})$) $]$ and the single ru-tile-like network of \boldsymbol{r}-[M(dea)].

The temperalure and field dependence of the DC and AC magnetic suseeptibilities and magnetisations has been measured for complexes 1-4. Compounds 1-3 exhibit long-range magnetic order with eritical temperatures of 6.3 K for 1 . 3.5 K for 2 and 8.0 K for 3. The Cu^{11} compound 4 does not order and is essentially a paramagnet. Hysteresis measurements of coercive field and remnant magnetisation show that L. 2 and 3 are soft mapnets, 1 being a canted-spin antiferromagnet (weak ferromagnet), while 2 and 3 are ferromagnets that display some unusual features in their high-field magnetisation isotherms in comparison to their related $a-\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ phases

Infroduction

Entangled systems ate of great chemical interest due to the interesting topological and physical properties displayed by such systems Molecular entanglement, in the form of catenanes, rotuxanes and knots is well known. ${ }^{(1)}$ Enatanglement of ordered polymeric networks thet is interpenetration, is also of great current interest, and numerous well-charncterised systerss are known. ${ }^{[21}$ Interpenetration occurs when two or more unconnected infinite networks pass through each
[a] Poti. K. S. Murtay, R: Jenven, D. 1 Price, Dr. S R. Batien,
Dr. B. Mowheraki
Departnent of Chemianty. P. Q Bma 23
Monash Univenity 3 Hooo (Nusteralia)
Fan: (+61) 3 -4yOS -4597
E-mail: hellhsmurray (hatmonahedunu
other such that they cannot he separated without breaking of bonds within the networks. They are polymeric equivalents of catenanes and rotaxanes.
The polymeric equivalent of a molecular knot is a self. penetrating (selfentongled or intrapenetrating) network. These networks are single networks that nonetheless contain regions in which rods pass through rings in a similar fashion to interpenetrating systems. White rods and riags in any network can be chosen such that a rod passes through a ring, a useful and necessary restriction is to define a network as selfpenetrating only when the smallest topological circuats are penetrated by rods ${ }^{134}$ A smallest circuit is defined as the minimum number of nades it thikes to leave a chosen node along one link and return to the tariing node through a different link. The smallest topological cireuits are not necessarily all the same size.

We report here four now compounds that penseas a new self-penetrating network topology. Three of the comjeunds also show: tong-range magnetic radering. which is related to their unusual structures. The structures arise from our ongoing interest in the structural and magnetic properties of coordination polymets containing the pseudohalide ligands tricyanomethanide ($1 \mathrm{~cm}, \mathrm{C}(\mathrm{CN})_{3}^{-}$) and dicyanamide (des. $\mathrm{N}(\mathrm{CN})_{2}{ }^{-}$). The compounds $\left[\mathrm{M}(\mathrm{cm})_{2}\right] . \mathrm{M}^{\mathrm{II}}=\mathrm{Cr}, \mathrm{Mn} . \mathrm{Fe} . \mathrm{Co}$.

$\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}$ and Hg , contain two inlerpenctrating ruile-
 $\mathrm{M}^{\prime \prime}=\mathrm{Cr}, \mathrm{Mn} . \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Cu, also contain rutile-related networks. although in this case no interpenetration ocecurs. ${ }^{[\mathrm{H}}$ Alhhough investigation of the magnelic properties of [M(tom), uncovered only weak courpling and no long-range ordering, the magnetic properties of $a-[\mathrm{M}(\mathrm{dea}), \mathrm{J}$ were much more varied and interesting, ranging from long-range ferromagnesism ($\mathrm{Co} . \mathrm{Ni}$) to spin-canted antiferromagnelism (Mn , Fe) to simple paramagnetism (Cu).
A number of other coordination polymers containing either
 characterised by different ieams. In particular. we have already reported the formation of two products oblained from the reaction of $\mathrm{Mn}^{\prime \prime}$ and dea in water- $\alpha \cdot[\mathrm{Mn}(d e a)]$, which has o single rutile-like network. and [$\left.\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{j}\right] \cdot \mathrm{H}_{2} \mathrm{O}$. which contains linear chains penetrating $(4,4)$ sheets ${ }^{\text {loh }}$ al We report bere the stracture and magnetism of a third product, namely $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (1). and of [$\mathrm{M}(\mathrm{dec})(\mathrm{tcm})], \mathrm{M}=\mathrm{Co}(2) . \mathrm{Ni}$ (3) and Cu (4). They all contain the same self-penerraling network structure. Indeed. although 1 was obtained fortuitously: compounds 2-4 were the rexult of a deliberate crys-tal-engineering strakgy based on the structure of 1 WC have also found that 1 is responsible for a magnetic transition notedial weakly at 6 K in the magnetisation versus temperature plot of the parent [Mn(dca)]] a spin-canted antiferromagnef with $T_{N}=\mathbf{1 6 K}$. The hydrate was present as a trace impurity. The compounds 2 and $\mathbf{3}$ are new homometallic long-range-ordered magnets, while 4 is esseatially a parsmagnet.

Results and Discussion

Sypiberis and cryaial nitrecturecz Crystals of 1 were obtained th slow evaporation of either solutions of [Mn (dea) f] in wat methanol/ethanol, or of aqueous solutions of $\mathrm{Ma}\left(\mathrm{CiO}_{4}\right)$ $6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}(\mathrm{dca})$. Unlike $\left[\mathrm{Mn}(\mathrm{dea})_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, compound 1 appears not to lase solvent at room temperature upon removal from the mother liquor. The structure of 1 was solved by N-ny crystallopraphy (Table 1).
The structure contains octahedral Mn atoms zoordinated to (on average) five dea ligands and one water ligand. The dea lipands are of two types-one coordisates to three Mn atoms through each of the three nirogen atorns (dcal), while the other coordinates directly so two Mn atons through the nitrile nitrogers only (dca2). The dea2 ligands also form hydrogen bonds through the amide nitrogens to the water molecules, which are also coordinated to the Mn atoms This dea2 $\cdot \mathrm{H}_{3} \mathrm{O}$ moiety, however, is disordered over two positions which are rclated by a mirtor plane. While the amide nitrogen and one of the nitrile groups of deaz (and the Mn atom coordinated to this nitrike) lie on the mirior plane, the other nitrile group and the water ligand do not. In fact they bave symmetry-related positions that superimpose on each other, with the affected nitrogen and oxygen atoms given the same pasitional parameters Consequently the $\mathrm{O} \cdots \mathrm{N}$ bydrogen-bonding distance is constrained to be the same as the NCN distance within the dca2 ligand ($\mathrm{O} 1 \cdots \mathrm{~N} 4=2.633(7) \dot{A}$), and the position of the disordered carbon is the only site without full occupancy by a non-hydrogen atom. The result of this disorder is the creation of a trigonal moiety within the

Thbic 1. Selected crystalkographic and date collection parameters for corapounds 1-4.

	$\begin{aligned} & \{\mathrm{Mn}(\mathrm{dca}),(\mathrm{H}, \mathrm{O})] \\ & (1) \end{aligned}$	$\|C o\{d a)(t e m)\|$ (2)	$\begin{aligned} & \text { [Ni(dca) (con)t } \\ & \text { (3) } 1 \text { fal } \end{aligned}$	10utden (4)	$\text { 4) }(t e m) \mid$	
formula	$\mathrm{MnCan}_{4} \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CoCon}_{\mathrm{A}}$	NiC, N_{4}	$\begin{aligned} & \text { CuC, } \\ & 219.64 \end{aligned}$		
M_{t}	205.8 mi	215.05	21483			
criatal mysten	onthonombic	ortherthombic	ortherbortic	(rathritumbic	erthohombic	
space growe	Amaz (no. 41)	$A_{\text {mal }}(\mathbf{m a n}$ 4i)	$A_{\text {mat }}(\mathrm{ncos} 40)$	Amunt (no. 40)	Amas (na 40 H	
${ }_{*}\|\boldsymbol{A}\|$	75743(2)	7.1129,3)	7.30)(2)	7.2041(3)	$7.1 \mathrm{KR4}(3)$	
b[A]	17.4333(7)	17109s(6)	$16.109(6)$	17.4637(0)	17.683(7)	
$c\|A\|$	$5.6353(2)$	5.5001(2)	5*62(2)	5.7281(2)	5.7395(3)	
$\boldsymbol{v} \mid \boldsymbol{A}^{\boldsymbol{x}]}$	744.9744)	76, 31(5)	69, 9 (3)	721.4*(5)	730.19(6)	
2	4	4	4	4	4	
T\|K		293(2)	173(2)	20s(1)	12M3)	297(2)
Sasat (Ecom ${ }^{-3}$	1.83	2.014	2.065	202	1.698	
$\left.\mathrm{N} \mid \mathrm{cos}{ }^{-1}\right]$	1728	23.67		29.55	29.40	
$\boldsymbol{P}(000)$	404	420		428		
$\begin{aligned} & 2^{\prime} \theta_{\text {mes }} \mathrm{ll} \\ & \text { hat ranges } \end{aligned}$	100.06	55.68	64,64	60.06		
	$0 \leq h \leq 9$	-9 $\leq t \leq 9$		$-10 \leq h \leq 10$	$-10 \leq h \leq 10$	
	$-24 \leq k \leq 0$	-22 $\leq k \leq 22$		-22 $\leq k \leq 23$	$-23 \leq k \leq 24$	
	$0 \leq 1 \leq 7$	$-6 \leq 1 \leq 6$		$-8 \leq 1 \leq 8$	$-8 \leq t \leq 8$	
data enflected	5465	5006		527	5276	
unique dala (R_{w})	611 (0.137)	B6x (0,040)		1115 (0,045)	1126 (0.045)	
ocserved data $[1>20(n)$	554	856		1076	1055	
saramelers	68	66			66	
final $R_{1}, w \cdot R_{3} \mid f>2 \mathrm{ob}(n)^{10+1}$	0.12063 .14571	0.0328, 0.0538		0,4140,0,0585	0,5053, 0.0543	
$R_{1,} w R_{2}$ (all deta)	$0.0333,0.0615$	0.0.244, 0.0534		0.0359.0.0593	0.0297. 0,0554	
weipbling acheme ($a, b)^{(a)}$	0.0184, 0.7932	00155. 15132		0,0276, 1.063	0.0191, 0.70\%	
gnodioces of bit	1.199	1.108		1.115	1.148	
Flack parumeler	$0.62(12)$	ti.03(3)		0.012	$0000(2)$	
$A_{\text {a }}$	0.53, -0.38	036,-033		0.42, $=0.85$	0.36, -0.38	

structure, as shown in Figure 1. A more informntive formula for the structure would thus be $\left[\mathrm{Mn}(\mathrm{dea} 1)\left(\mathrm{dean} 2 \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]$. Selected thond lengths and angless are given in Table 2.
The disordered $\mathrm{Jcma}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ moiety was recognised to the geometrically very similar to the tem anion (Figure 1), so we gitempted to engineer new materials which had the same

Figure t. A chain in the structure of [Min(dea) $(1, \mathrm{O})]$ (1) showing the disonder of the dsa2 $\cdot \mathrm{H}, \mathrm{O}$ nstem ower the enifror plane (thin finc). The wor different oricntations of the system are shown (left and aidede) as well as the resultant sum of the disorder (righ1). The hydrogen bond is denoted by the open boos. and the atom numbering scheme for [A(dea)(tom)] (where different in 1) is shown in trackeis Symaciry reined atoms ofe pot distinguished.

Table 2. Selected intermomic distancer [A] and angles ['] for 1.5 . ${ }^{(4)}$

Mn1-N1	2.191(4)	Mnl-N3	2.571(\$)
Mnl-N51	$2.100(4)$	Mnl-O1'	2.191(4)
Mint-N2"	2.417(4)	$\mathrm{Ni}-\mathrm{Cl}$	1.148(4)
$\mathrm{Cl} 1-\mathrm{N} 2$	$1.307(4)$	N3-C2	1.J46(7)
C-N4	1.335 (x)	$\mathrm{N} 4-\mathrm{C}$	$1.460(7)$
N.-C3	1.17S(6)	O1...Ns	2.633(7)
N3.N(n)-N1	94.14(2)	N3-Mnl-N1 ${ }^{\text {mr }}$	94.x (2)
N3-Mnl-NS	$96.51)$	N1-Minl-N5	87.7(1)
Ni-Mnl-Nsiv	167.7(2)	Ni.Mnl-Nipl	95.9(2)
N-Mnl-A2"	178.7(3)	$\mathrm{N} 1-\mathrm{Mnl}-\mathrm{N}^{\prime \prime}$	171.73)
Nl -Mnl- $\mathrm{N}^{\prime \prime}$	443, 3)	C1-N1-Mnl	1.7.3(4)
C3-N2-Ct ${ }^{\text {a }}$	118.3(4)	Cl- $\mathrm{N} 2-\mathrm{MaI}^{* 1}$	120.6(2)
C2-N3-Mnl	162.9(5)	(2-N4-C3	118.0(3)
C3.N4-C311	$119.2(7)$	$\mathrm{Cl}^{2} \cdot \mathrm{NS} \cdot \mathrm{Mni}{ }^{\text {20 }}$	161.714)
N1-Cl-N2	174.5(4)	$\mathrm{N}_{3}-\mathrm{C} 2-\mathrm{N}_{4}$	178.446)
NS.Ca-N4	176.2(6)		

[a] Symuery transformations:]: $-x,-y, t-1 ; 1\}:-x, 12-y, z-1 / 2 ; 111:$ $1 / 2-x, y, z: I V: x+1 / 2,-x: 2-1: V:-x-1 / 2, y:=$ VI: $-x, 12-y, z+1 / 2 ;$ VII: $-x,-y: z+1$.
network, but with tem replacing the disordered dea2 $\cdot \mathrm{H}_{3} \mathrm{O}$ moiety. Half of the dea in the reaction mixture was replaced with tcm, and crystalline products were obtained for Co, Ni and Cu. X-ray crystaliography sbowed the new producta $[\mathrm{M}(\mathrm{dea})(\mathrm{tcm})], \mathrm{M}=\mathrm{Co}(2)$. Ni (3) and Cu (4), did indeed have the desired topology (while useable single tryatals were
not ohtained for 3, powict X-ray diffraction was used to show it uas isomorphous with 1.2 and 4). In fnct. they possess the same space group and sitnilat cell parameters (Table 1) as L. Bond lengths and angles are given in Table 3. The network thpology is pertaps explainud mare easity for [$\mathrm{M}(\mathrm{dcn})(1 \mathrm{~cm})]$. and in comparison to the rutile networks of $\left[\mathrm{M}(\mathrm{dca})_{2}\right]$ (1 net$)$

	2	$4{ }^{4}$	4 4^{14}
M]-N1	2.099(2)	1.983(2)	1.803(2)
M1-N4 ${ }^{\text {d }}$	2101(2)	1.992(2)	1.689(2)
M1-N3	2122(3)	$2360(3)$	$2390(3)$
M1-N2\%	2182(3)	2.526(3)	2504(3)
N1-Cl	I.152(3)	1.150(3)	1.142(3)
$\mathrm{Cl}-\mathrm{N} 2$	1319(3)	1307(3)	1.305(3)
N3-C2	j.182(6)	1.18*46)	1.197\%
(2-C3	1.464(6)	1.461(6)	1.46\%
C3-C2	$139043\}$	1.378(3)	1.377(3)
$\mathrm{C} 4-\mathrm{N} 4$	1.147(3)	1.148(3)	1.141(3)
N1-M1-N3	925¢(4)	$94.87(9)$	94.0(1)
NJ-M1-NI ${ }^{\text {I }}$	95.7 (1)	93.0 (1)	93.0.1)
N1-MI-N4 ${ }^{1}$	(4.63 ${ }^{(8)}$	$88.40(8)$	
N1.M1-N4t	174.97(9)	174.21(9)	174.2(1)
N1-M1-N2*	86.31(3)	(4)23)	B5.7(1)
N3-M1-N4	92A1(9)	91.22(9)	91.83(9)
$\mathrm{N} 3-\mathrm{Ml}-\mathrm{N}^{\mathrm{Ny}}$	174.4(1)	180,0(1)	180.0.1)
	94.7(1)	92.001)	92.fit
		88.1(1)	8RS(1)
CI-NJ.M1	156.4(2)	155,8(2)	155.6(2)
NI-CJ-N2	175.9(3)	175.0.3)	174.643)
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{Cl}^{\text {N }}$	1173(3)	119.033)	119.2(3)
Cl-N2-M1 ${ }^{\text {vil }}$	1213(2)	130S(4)	130.4(4)
C2-N3-Mt	158.9(4)	150,1(3)	152.2(4)
N3.C2.C3	178.4(3)	177.8(4)	178-3(5)
C2.C3.C4	130.7(2)	120.8(2)	120.18(2)
C4-C3.CAI	117.43)	117.8(3)	117.9(3)
C3-CA-N4	1743(3)	179.8(3)	179.8(3)
C4.N4-M3	160.1(2)	167.5(2)	167.3(2)

 $-\mathrm{E}, 12-5.2+1 / 2$ |b] 123 X [c] 297 X .
and [M(tcm!]] (2 nets). Both structures, bowever, have the same ropolugy and thus the description of [M(dea) $(1 \mathrm{~cm})$] applies equally as well for 1.

As implied above, the structure is closely related to the rutile network. Network topology is an important consideration in the design. construction, analysis and exploitation of new ondered, polymeric networks (whether ccordination polymers or hydrogen-bonded networks), and the rutile network (Figure 2 a) is one of the important hasic networks that result from the combination of three-connecting and sixconnecting centres (in the satio 2:1)! ${ }^{14}$

The rutile structure (TiO_{2} : octahedral Ti, trigonal O) can be described in terms of square channels in which the threeconnecting ocnires form the sides of the channels and the sixconnecting centres oocupy the comers (Figure 2a). These channels can be constructed by cross-linking TiO_{2} chains arranged such that adjacent chains are perpendicular (Figune 2a). The sides of these channels contain six-membered rings (altemating three- and six-connceting centres), which are the second snatlest rings within the structure. The smallest are four-membered rings within the afore-mentioned chains,

 qquate chonnel is highlighted in the centre by the open bonk (the four separate chuins) and the thin bonds the connections between the chains which give

 chains in the atructure of (M (dea) (tomit)). The interchatin amnections wre higblighted by the ppen bonds Compare the result to the square channels generated in $\left[\mathrm{M}(\mathrm{cm})_{\mathrm{h}}\right]$ and $\mathrm{a} \cdot \mid \mathrm{M}(\mathrm{d}=\mathrm{a})_{\mathrm{l}}$]. All figures atc viewed from equivalcat angles
which also contain altemating three- and six-connctting tentres. Both the four- and six-membered rings are, however, "smalest circuits" in a topological sense.

In the $\left.\mid \mathrm{M}(\mathrm{tcm})_{2}\right]$ structures, the dislance between the octahedral centres and the trigonal centres is large (ca. 4.5$5.0 \dot{A}$), and thus a porous network results This allows the interpenetration of a second network. The interpenetration is such that rods of one network pass through the six-membered rings (from a topological point of view-ite. only the nodes are counted) of the second network (IJgure 2b). The fous-
membered rings are too small to stericaliy allow penctration of a rod from the second network.
In the rutile-like structure of $\left[\mathrm{M}(\mathrm{d} a)_{1}\right]$, while two-hirds of the trigonal to octatiedral node distances are similar to those in [$\left.\mathrm{Af}(\mathrm{cmm})_{2}\right]$, one-third are considerably shorter ($\mathrm{M}-\mathrm{N}_{\text {wnisk }}$ va M-NC-C). This results in a considerably denser, less spacious rutile network, which does not allow interpenetration. Suruc* turally, the tonds which ars shorter are the bonds between the chajas that form the square channels (Figure 2c). This meats that the sizes of the four-membered rings are not affected, but

FULL PAPER
the rix-memhered rings through which the fods of the second network pass in the interpenctrating $\left.\mid \mathrm{M}(\mathrm{tem})_{2}\right]$ structures, are considerably smaller. Too small, it appears, to allow penctration, ond thus interpenetration does not occur.

In the structure of [$\mathrm{M}(\mathrm{dcs})(\mathrm{ten})]$, we comhine the three lomg links of tem and the one shorifiwo long linke of dea. In this structure the short dea link pgain oocurs hetween the M12: chains. If we examine the connections between four adjacent chains analogous to those which forn the square channels in the two previous rutile-like structures, the similarities and differences of the new network to nutile become apparent. The chains all of which are crystaltographically equivalent. hsve the formula $[\mathrm{M}(\mathrm{dca})(\mathrm{cm})]$ and have 1 cm ligands on one side of the chain and dea ligands on the other. Again. adjoining chains are mutually inclined to each other, and are connected by the third link of the three-connecting centres joining to the axial positions of the six-connecting metal centres The requirement that the $\mathrm{M} \cdots \mathrm{M}$ distance within the chains must be the same for the daa bridge as for the tem bridge mepns that the metal to amide nitrogen link of the cea must be the interchain bond. This means, however, that the interehain linkages of the three-connecting centres to the sixconnecting centres are of different lengths, depending on whether the ligand is tcm or dea. in other words in this structure we have two types of trigoral nodes-one with three long links of equal length (tem) and oae with two long links and one short link (dca). The structural consequences of this are shown in Figure 2d. The first two intenchain linkages are of the long tem type. The second two linkages between chains, however, are of the short dea type. There[orc, while the four chains in sutile connect to form a square channel, the network of interconnteted chains in $\{\mathrm{M}(\mathrm{dca})(\mathrm{tcm}) \mid$ falls short of returning to its starting point, and folds back through itself in the spiral fushion shown in Figure 2 d . As for $[\mathrm{M}(\mathrm{tem}) \mathbf{3}]$, the penetration occurs such that the six-membered $\mathrm{M}_{3}(\mathrm{~cm})_{3}$ rings are penetrated by C-CN-M rods of the tem anions in this case, however, it is a single network per.etrating iself. Penetration dows not occur through the four-membered rings or the smaller $\mathrm{M}_{3}(\mathrm{den})_{5}$ six-membered rings.

In sumbary, we find that if we combine octabedral metal ions with a ligand with three long links (tcm) we get two interpenetrating rutile-like networks, while combination of octuhedra! metals with a ligand that contains one short and two long links (dea) results in a single rutile-like network. If. however, we use both ligands, we gel a slruetural compromise between the two parent aructures-a single, self-penetrating network with a topology different but closely related to nutile.

A scheratic view of the overall network is shown in Figure 3. We mentioned previously the imporiance of smallest circuits in the topology of a nctwork for defining a selfpenetrating network. The total number of smallest circuits from any given p-connected node in a network (which is simply equal to the number of possible ambinations of any twolinks radiating from the node) is equal to $p(p-1) / 2$. The value is halved so that each circuit is only counted once. To illustrate, inspection of the rutile network (Figure 2a) reveals that there are 15 smallest circuits that start from a sixconnerting centre ($p=6$): two fousprmernbered, ten sixmembered and three cightmembered rings. The smallest

Figure 3. A schematie riew of the [M(den)(tom)] network, with only the
 (H le D$)$] and $\mathrm{M}(\mathrm{dca}$) in the uructure are hiphlighted (see tert).
circuits starting from the three-connecting cenires ($p=3$) are one four-membered and two six-membered rings. In the selfpenetrating network (Figure 3), the distribution and size of the sunallest rings are the same as rutile: four-, six- and eightmembered rings ($2: 10: 3$) for the six-connecting nodes, and four- and six-membered rings (1:2) for each of the two types of three-connecling centres Thas although they have different topologies, rutile and [M(dea)(ten)] have the same Schlufli notation: ($\left.4^{3} 6^{3+8} 8^{3}\right)\left(4^{1} 6^{2}\right)$.
As mentioned above, in the interpenetrating ratile networks of $[\mathrm{M}(\mathrm{tcm})$) the penetration occurs through the sixmembered rings, which are a "smallest circuit" of the rutile network. Similarly, the penetration in the [M(dea)(tem)] nelwork also occurs through the six-membered "smallest circuits". Thus we can deseribe the network as self-penetrating. Recenty a number of other self-penetrating networks have been reported. ${ }^{\text {B. a }}$, The the structure also represents a new nelwork topoligy for 3,6 -coanected networks with the conneetors in the ratio 2:1. Previously described topologies include the atowe-mentioned rutile ${ }^{[5641}$ and ($\left.\mathrm{H}(\mathrm{tpp})_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot 6 \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{Cl}_{4}{ }^{[1 \mathrm{H})}$
The clase sisnilarity of the 1 cm and dea $\cdot \mathrm{H}_{2} \mathrm{O}$ structural moieties also resulted in the structures of 2-4 being doped by swall random amounts of dea $\cdot \mathrm{H}_{2} \mathrm{O}$ (in place of cm). The 1 R specta contained shap $\mathrm{H}_{4} \mathrm{O}$ bending frequencies at 1 N 18 (2), 1616 (3) and $1619 \mathrm{~cm}^{-1}$ (4). and the elemental analyses showed the presence of small amounts of hydrogen. In each structure the thermal parameters for one of the tem carbon atoms (C2; the only atom not replaced by a simitar nonhydrogen atom when tem is replaced by dca $\mathrm{H}_{2} \mathrm{O}$ is a nitrile carbon) were bigher than mosi of the other atoms in the structures This last fact, along with analysis of the powder X-ray diffraction patiem (which showed that the only other
phase present is $\left[\mathrm{M}(\mathrm{tam})_{2}\right]$-the andysis was also consistent with some [$\left.\mathrm{M}(\mathrm{tcm})_{2}\right]$ impurities), Icadis us to telieve that the water is present as a doping in the crystal structure of the icm moiety by the dea - $\mathrm{H}_{2} \mathrm{O}$ mwiety. rather than as separate phasus of $[\mathrm{M}(\mathrm{dca})(\mathrm{Lcm})]$ and $\left[\mathrm{M}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. In addjition, no evidence of $\left[\mathrm{M}(\mathrm{dea})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was seen in the magnetism or powder X-ray diffraction of samples of [$\left.\mathrm{M}(\mathrm{d}=a)_{2}\right]$ previously prepared from water for $\mathrm{M}=\mathrm{Co}, \mathrm{Ni}$ or $\mathrm{Cu}{ }^{\text {(mi) }}$ unlike $\mathrm{M}=\mathrm{Ma}$. as discoussed elsewhere. This indicoles that Im , although it is partially replaced by dea - $\mathrm{H}_{2} \mathrm{O}$, is still in essentinl component in the Co, Ni and Cu strucitures.

Magnetic propertiex: Complex 1 is another example of the growing number of homometallic spin-canted antifertomagnets (weak ferromagnets) ${ }^{\text {lan }}$ ed. cha. $12-1 \mathrm{~N} \mid \mathrm{In}$ a field of 0.3 T this high spin ds species shows a $\mu_{\text {Mn }}$ value al 300 K of $5.64 \mu_{\mathrm{B}}$ ($\alpha T=3.98 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$). As the temperature is decreased the $\boldsymbol{\mu}_{\text {No }}$ values gradually decrease due to antiferromagnetic coupling, reaching $2.62 \mu_{11}\left(\alpha T=0.86 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ at 4.2 K (Figure 4). The Weisc constant from the X versus $1 / T$ plot is

Figure 4. Phoss of magnetic moment, Pun. versis temperature in various applied fields for 1 Ficld values $200 \mathrm{O}(\mathrm{x}), 2000 c(\alpha), 100 \mathrm{Oc}$ (o),
 $29972_{4 m}$?
-4.2 K . In field values below about 200 Oe the magnetic moments show an abrupt increase at approximately 6 K due to the occurence of long-range order. Thus $\mu_{m_{n}}$ is $10.9 \mu_{\beta}$ at 4.2 K in a feeld of 20 Oc . The T_{v} yalue of 6.3 K was confirmed by measuring the magnetisation (M) values in zc:o-fieldcooled (ZFCM) and field-cooled (FCM, 50e) modes (Figure S). The χ^{\prime} versus T plot of the AC in-phase susceptibility

Figure S. Pross of inagnetination, M, vermus rempernare for 1 measwed with sero-fitld cooling (ZFCM) end ficht ensling ($\mathrm{FCM}: D C$ field $=5 \mathrm{Oc}$).
showed a very shapp maximum at 6.3 K typical of a weak fertomagnet. Hysteresis measurements on a ncat powder at 2 K showed a jemnant magoetication (RM) of $112 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} \mathrm{Oc}$ and coercive field of 250 Oe . values typical of a soft magnet (Figure 6). High-ficld magnetisation data, with tem-

Figare 6. Hysteresis loop for 1 measured on a powder sample at $\mathbf{2 K}$
peratures above and helow the ordering temperaturc. again show evidence for spin-canted antiferromagnetism in terms of linear belnaviour and low values of M at the highest field used, for exarople, $1.7 \mathrm{~N} \beta$ at 5 T and 2 K (M_{m} for Mn^{n} would be $5 \mathrm{~N} \beta$).

The key structural features of 1 that give rise to the antiferromagnetic coupling are the three-oomnecting dea and dca $\cdot \mathrm{H}_{2} \mathrm{O}$ bridges, dominated by the chains of $\mathrm{Mn}^{\mathrm{tt}}$ ions bridged through the nitrile nitrogen ators. as in the cases of [$\mathrm{Mn}(\mathrm{dea})$] and $\left[\mathrm{Mn}(\mathrm{dca})_{2} \mathrm{~L}_{2}\right]$ chain systems ${ }^{104}$ ce. br Us Use of Rushbrooke and Wood theory ${ }^{177}$ for the coupling of $S=5 / 2$ centres led to a best fir set of parameters of the 0.3 T susceptibitity data of $g=1.93$ and $J=-0.19 \mathrm{~cm}^{-1}$. agreement thelow 30 K being poor. The J value is similar to those in the $\left[\mathrm{Mn}(\mathrm{dca}), \mathrm{L}_{2}\right]$ series ${ }^{\text {loh }}{ }^{(6)]}$
The nceurrence of long-range spin-canting arises through a combination of bridging through the amide nitrogen atom and, importantly, the disposition of adjacent Mn chromophores at 60.6° to each other along the $\mathrm{N}_{\text {wmekebridged }}$ pathways. This appears to be a common structural feature in other reeent molecule-based examples of spin-canting. ${ }^{12} 16,151$ Self-penciration of the polymeric network does not appear to tead to any interactions between chains

The mixed ligand, high-spin complexes [M(dea)(tcm)], $\mathrm{M}=\mathrm{Co}$ (2) and Ni (3), display long-range order at T_{t} values of 3.5 K and 8.0 K . respectively, emperatures that are approximately one-third of those displayed by the [M(dca) $]^{]}$ parents ${ }^{1 / 2}$ acom The magnetic moment data for 3 in a field of 1 Tare shown in Figure 7. The β_{ni} value at 300 K of $3.05 \mu_{\mathrm{B}}$ ($\alpha T=1.16 \mathrm{~cm}^{3} \mathrm{~mol}^{-} \mathrm{K}$) shows a small but gradual increase as the temperature is decreosed, typical of ferromganetic coupling. with a rapid increase to a moximum of $5.39 \mu_{n}$ at 7.9 K . followed by a mapid decrease to $3.02 \mu_{\mathrm{a}}$ at 2 K . The Weiss constant for susceptibility is +4.9 K over the temperature range 4-300 K. In smaller applied fields the rise to a sharp maximum becomes more abrupt such that in a field of 200 Oe the $\mu_{\text {mas }}$ value is $23 \mu_{\mathrm{n}}\left(x T=66.1 \mathrm{~cm}^{3} \mathrm{mrol}^{-1} \mathrm{~K}\right)$. Such behaviour is typical of use occurence of a magnetic phuse rausition. Confirmation is provided in Figure 8, which shows

FULL PAPER

Figure 7. Phots of μ_{N} versus tempereture for 3 in applied fields of 10 mm 0 O

c)

Fiptre R, n) Phols of FCM, ZFCA and RM (remanni mapoctimation) fies 3 using $\%$ Field of 5 Oe b) Plons of ta-phase (o) and our-ct-phase (x) AC aroceptibilives of 3 veram tentperature in a field of 35 Oc oncilations an 30 Hz, c) Hygteretis loop for 3 mensured as a poonder at 5 K .
plats of FCM, 2FCM and RM in a DC lield of 50 Oe . hysteresis toop al 5 K in fields of $\pm 2000 \mathrm{Oc}$ and the in-phase and out-of-phnse compenents of AC susceptibilities, the inphase plot showing a maximum at T_{s}. The RM is $1151 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{Oe}$ and the coercive field is 100 Oe . which
cun be compared with those for [$\left.\mathrm{Ni}(\mathrm{dcm})_{\mathrm{I}}\right]$ of $5027 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{Oc}$ and 220 Oc (at 5 K ; dependent on temperature and particle size ${ }^{\text {te }}$ (t. © (ta (${ }^{(f)}$). The high-field M versus H ploss measured at temperatures between 2 and 20 K show differences in detail when compared with those of the ferromagnet $\{\mathrm{Ni}(\mathrm{dica})]^{\text {me man }}$ particularly helow: T_{c}. Thus, at 2 K . after a very rapid, ulmast spontaneous, increase in M al Jow fields as anticipated for a ferromagnet. the M volues then xlowly increase and do not saturate below a field of 5 T , heing $1.75 \mathrm{~N} \beta$ at S T. This may be due to a competing ratifertomagnelic ondering. also responsible for the decrease in $\mu_{\text {ch }}$ which occurs at very low temperatures helow $\mu_{\text {max }}$. It may also be due to spin canting as in 1. but the shape of the χ^{\prime} peak in the AC data of Figure B is much more ferromagnetic-like.

DC and AC measurements show that 2 orders at 3.5 K . In Figure 9 it can be seen that the $\mu_{c_{n}}$ versus temperature plot in

Figure 9. Plots of μ_{C}, verus icmperature ($\mathbf{2}$ to 160 K) for 2 in mpplied fields of $3000 \mathrm{Oc}(0) .10000 \mathrm{Oc}(\mathrm{x}) .210 \mathrm{Oc}(0)$. Not thewn here ate the 200 Oc dath, which rise thruptly to a maximum \& 21.99^{141} al very kes temper. atures
a DC field of 0.3 T shows a moment at 290 K of $5.20 \mu_{u}(z T=$ $3,39 \mathrm{~mm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$), which decreases very gradually to reach a broad minimum of $\mathbf{4 . 3 2} \mu_{\mathrm{B}}$ at $\mathbf{2 2 \mathrm { K }}$, reminiscent of ferrimasnetic behaviour but possibly due mainly to single-ion spinortit splitting combined with ferromagnetic order ${ }^{1 \times 1}$ In a field of 200 Oc , the moment reaches a shapp maximum of $6.51 \mu_{\mathrm{g}}$ hefore decreasing to reach $5.89 \mu_{8}$ at 4.2 K . In ematicr applicd fields such as 20 Oe (not shown) the moments increase sharply below tenperatures of 10 K . due to long-range order. such that a value of $21.95 \mu_{i}$ is observed at a shatp maximum at 3 K . Similasly shaped $\mu_{c_{0}}$ versus temperature curves have recenily been observed for other actahedral $\mathrm{Co}^{1 \mathrm{l}}$ systems. ${ }^{[19}$. . M The ordering temperature is confirmed by measurements of ZFCM and FCM (5 Oe DC field) and a x^{\prime} maximum in the AC susceptibilities (Figure 10). The hysteresis loop measured at 2.5 K belween \pm t000 Oe has an RM value of $186 \mathrm{~cm}^{3}$ moll ${ }^{-1} \mathrm{Oe}$ and coercive field of 17 Oe , indicative of a very soft magnet with values much reduced from those in the fenotagenet $\left[\mathrm{Co}(\mathrm{dca})_{2}\right]^{\mathrm{k}, \mathrm{m}} \mathrm{mal}$ Plets of M versus H at temperatures abowe and below the ordering temperature are shown in Figure 11 . A1 2 K , the M values increase very rapidly in very low ficlds on account of ordering, then begin to saturate above 2 Treaching $2.1 \mu_{\beta}$ at 5 T , a valte well below the $S=3 / 2 \mathrm{Man}_{\mathrm{ar}}$ value of $3 \mathrm{~N} \beta$. Similarly reduced values were observed in $\left[\mathrm{CO}(\mathrm{dca})_{1}\right]$ and $[\mathrm{Co}(1 \mathrm{~cm})$) (not ordered) and are due primarily

Figure 10. a) FCM (DC. Field of $\$ O$ c) and ZPCM data for 2. b) In-phuse. χ^{\prime} (x), nnd nul-or-phase, $z^{\mu}(0)$. AC susceptibilities for 2 in a field of 3.500 cwillating at 20 Hz

Figure 1J. Magmetisation isotherms for 2 measured al $2 \mathrm{~K}(\Delta), 3 \mathrm{~K}(0) .4 \mathrm{~K}$ (o). $5.5 \mathrm{~K}(+), 7 \mathrm{~K}(\mathrm{x}) .10 \mathrm{~K}(\mathrm{o}), 15 \mathrm{~K}(\mathrm{c}), 20 \mathrm{~K}(0)$.
to spin-orbit coupling effects within the ${ }^{*} T_{1}$ single ion
 those of a recently reported canted-tpin intiferromagnet $\left(T_{\mathrm{N}}=9 \mathrm{~K}\right) .\left[\mathrm{Co}\left(\mathrm{HCONH}_{2}\right)_{2}\left(\mathrm{HCO}_{2}\right)_{2}\right]^{[12 \mathrm{nn}]}$ in which the M values increase approximately lincarly with H, do not saturate and are of the order of 0.66 NB at $1 f=5.5 \mathrm{~T}$ and 2 K . The [Co(dca) (tem)] complex is much more weakly untifertomagnetically coupled. if at all. than is the formate example. Consideration of all the magnetic data for $\{\mathrm{Co}(\mathrm{dca})(\mathrm{tcm})]$. including the fertomagnetic-like shape of the $\mathrm{AC} \boldsymbol{\chi}$ versus T plot. would sugesest that spin-canting is not important.

A plot of μ_{a} versus temperature for $[\mathrm{Cu}(\mathbf{d r a})(t e n)]$, in an applied field of 1 T . is Curie-like over the whole range ($\mu_{e n}=$ $1.76 \mu_{\mathrm{A}}$), except for a very small increase in $\mu_{\text {efl }}$ evident at low temperatures. This is reminiscent of the behaviour reported for a sample of [Cu(dea)] prepared from ethanol. ${ }^{[6]]}$ The present compound does not sbow any long-range order, most likely due to the Jatar-Telter lengthening of the $\mathrm{Cu}-\mathrm{N}_{\text {umk }}$ bond (Table 3).

We have noled bbove then thexe [M(dea)(1cm)] cumpounds corrsist of a single-phase material plus traces of a separate [M(tem) 2] phase. The single plase is effectively [M(dca) $(1 \mathrm{~cm})_{4}\left(d \mathrm{~cm}_{1} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{1-\mathrm{e}}$]. in which tcm is randomily replaced with small quantities of dea $\cdot \mathrm{H}_{2} \mathrm{O}$. The magnelic studies have clearly shown that the bull samples of 2 and 3 display o single, well-defined magnetic phase iransition. The traces of [M(icm)] present in the samples will not influence the long-range carder since the $\left[\mathrm{M}(1 \mathrm{~cm})_{2}\right]$ compounds are nol ordered. 1×1 While we believe that the $[M(d m a)(t c m)]$ host is responsible for the observed long-range order, it is possible that neat samples of this and of $\left[\mathrm{M}(\mathrm{d} \boldsymbol{\mathrm { m }})\left(\mathrm{dea} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]$ would behave similarly magnetically and have near-identical powder X-ray diffraction pallems. Work is in progress to obtoin such undoped single phases for $\mathrm{M}=\mathrm{Mn}$. Fe, Co. Ni snd Cu , the monohydrate of $\mathrm{Mn}(\mathrm{I})$ being descrited here.

Finally, it is of interest to look at an alternative view of the three-dimensional networks of $1-4$ to try to explain the magnetic features Parallel two-dimensional zig-zag (6,3) sheets of $\mathrm{M}(\mathrm{dea})$ can be distinguished within the network (Figure 3), which altemate with layers that contani two interpenetrating M (tem) (or $\mathrm{M}\left(\mathrm{dca} \cdot \mathrm{H}_{4} \mathrm{O}\right)$) (6,3) shects wisich give rive to the self-penetration. Within the M (dca) sheets the tridentate dea bridges will dominate the exchange coupling and lead to long-range order (except for Cu), as observed in the parent $\alpha \cdot\left[\mathrm{M}(\text { dea })_{2}\right]$ rutile-like phases. The anionic linking groups between the sheets will give rise to weaker coupling. In separate work, we are investigating suncture-magnetism relations in complexes of the sype $\left[R_{Q} E\right]\left(M(d e a)_{3}\right], E=A s . P$. $N_{\text {, }}$ in which two-dimensional sheets are separated by R.E* organic cations of different sizes ${ }^{[21]} \mathrm{D}$ ay et al $^{[p 1}$ bave recently moted the sensitivity of the type of long-range onder and the size of T_{c} in the $\left\{R_{4} E \mid\left\{M^{1+} M^{t+1}\left(C_{2} \mathrm{O}_{4}\right)_{3}\right\}\right.$ sheet structures to the nature of the R, E+ cation used.

Experimental Section

Syubeds of 1

 methunol (5 mil.). On coodirg to roord Iemperatute eithenol (5 mL) was wdiked. Crystale of 1 suitable for X-ray diffraction were stifonted by slow evaporation of this metution ower a perind of several monthe The majovity of the erystals were triangulat in habit and lasenstrive to solve:II loss. IR (Nujol) : $p=3611,3577,3521,3245,3113,2310,2258,2185,1626,1359,1326$, $955.937 .679,668 \mathrm{~cm}^{-1}$; elemeotal analyels caled (\%) fer $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{MnN}_{5} \mathrm{O}$ (20S.06): C 23.A. N 41.0, It 10: found: C 23.6, N 413. H 0.8.
Mediad B : Aqueous solutions $\left\{5 \mathrm{~mL}\right.$ emch) of $\mathrm{Mn}\left(\mathrm{CiO}_{4}\right)_{2}-61 \mathrm{H}: \mathrm{O}$ (362 mg . 10 nomol) and Na(dca) $(178 \mathrm{mg} .2 .0 \mathrm{mmol})$ were combinod. Show evaporation over two wests yielded several apyrequices of crysials and a thall number of mainly ifregulatly zhaped zingle eryntinls (tome of which were of triangular habity that were fitiered and washed witb ethanol. Yseld: $R E$ rafe
 1057. $100 \mathrm{x}, 986.938,681,667 \mathrm{~cm}^{+1}$; elemenual anab) sis catced (\%) for C.H.MiN_O (205.06): C 23.4, N 41.0. H 1.0: tound: C 23.5, N 41.4. H D.8. The purdiet X-ray diffracion patietn matched that calculated frum the crystal sinuctufe data.
Svitheis ar 2: A hot solution (6mL) of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)=6 \mathrm{H}_{3} \mathrm{O}$ (39) mg. $1 \geqslant 4$ manol) mas added to a hot aqueous solation (GmL) of Na (dea) (100 mg .1 .12 mmol) and $\mathrm{K}(\mathrm{tcm})$ ($14.5 \mathrm{mg}, 1.12 \mathrm{mmol}$). The reevting solution was wlowed to acol and a pink/red mictocrystalline pouduct kormed over several days The product was filtered and washed with waler.

 1)35. The matytical figutes are indicative of the presence of small amownts of dca $\cdot \mathrm{H}_{2} \mathrm{O}$ in place of tero. Pouder X.ray diffration alko showed the presence of traces of [Co(tcm). Single ensula were grown by layering an nquetux ullution of $\mathrm{Co}(\mathrm{NO},)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ und $\mathrm{Ne}(\mathrm{dan})$ with $\mathrm{H}_{3} \mathrm{O}$. NcOH , the: 0 moluiots of ($\mathrm{Me}_{4} \mathrm{~N}$)(tem) is MeOH. 5mall pink crystak formed after several days

 ochuion was alluneed to cexol und a huse micecorystalline product formed ever severnal days. The product wist fincted asd washed with water. Yield:
 1616, 1316. 136k. 1254, $1028.972 \mathrm{~cm}^{-1}$; clemental analyok eadid (\%) for
 As in 2, theae fifures are indicative of the pescore of small smounts of den. $\mathrm{H}_{2} \mathrm{O}$ in ploce of tern Powider X-ray dififaction also showed the prisence of Iraces of [$\mathrm{N}\left\{(1 \mathrm{~cm})_{2}\right]$.
 5.19 mimol) was adged to a hot ayucors solution itini) of Ne(dica) (100 mg .1 .22 mmol) and $\mathrm{K}\left(\mathrm{cm} \mathrm{m}^{2}\right.$ (14.5 mg .1 .12 mmol). The fesating solution was allower' to cool and a greenhrown crystallint product formed over reveral days. The product was fitiered and wawhed with water. Yield: $195 \mathrm{~ms}(79 \%):\left(\mathrm{R}\right.$ (Najo人): $\boldsymbol{i}^{2}=3421.3439 .2132,2271.2306 .2181$ (s), 1619, 1360. 1259. 10 $28,904 \mathrm{~cm}^{-1}$: elemental analysis caled (\%) for CuC.N. (219.66): C 32.74, N 38.26, 18 0.00, found: C 30.34, N 28.30, H 0.29. As in 2 sid 3, these figures are indlentive of the presence of atinil anmunis of dex $\mathrm{H}_{2} \mathrm{O}$ in plact of torn.
Cryintallognaphy: Crywial data and detaik of the structure determinations are presegied io Tabie L Dala were colkected on a Nonius KappmeCD
 $0,71073 \lambda$), using ϕ and to motations with \mathfrak{l}^{-1} (rambes The images were procesod witb the HKL suite oi programs ${ }^{(24}$ Data for 4 were aslleced at two different teraperntiten (12) and 297 K). Absorption comrections (factindexed) were applied only to the data for 4 , at hoth temperatures (muin) max. transmission factors $=(0.717 / 0.1862(123 \mathrm{~K}), 0.721 / 0.869(207 \mathrm{~K})$). Solutions were shtained by using either SHELXSS-97/4] or teXsan ${ }^{221}$ fotlowed by suceessive difference Fourict transform meihodt, and atructures were refined against F^{2} using SHELXL.97pol The atrouste config. urations of 3 and 4 wtre xssigned on the hasis of the Flack paranater (Table 1), while 1 was refined as a mecmic jwin. All noo-hydrogen atoms were made onisotoopic. whike the bydogen monss in $1 /$ were neither delected nor astigned. In 1 anons C3. Ol and NS werc refined at half weeuparcy due to the discester over the mirror planc, and Ol and NS were constraines to have identical x. $y . z$ and U_{y} parmoletern The structure of 1 was also solved in Pt, which indicated that the ciisurder was present even in the absence of any crystallogrephicklly impowed symmetry:
Coystatiographic data (excluding situcture factors) for the structures reported in this paper have been deposited with the Cambridge Crysulkmrophic Dala Centre as sugplementary publication mo CCDC 13877.3 (3), CCDC 138774 (2), CCDC 133775 (4 at 123 K) und CCDC 138776 (4 is 297 K). Copien of the dita can be ohlained free of charge an application to
 (233; c-rnuit: deyositerecile (am.aciuk).
Heqnetic atudiat: Delails of the ancasunimenta of DC staceppibilities end maqnetinutions oxing a OUantum Dexign MPMSS SOUID magnetometer Luve been given previous!y! wi The AC susceptitidities were measured with a Ounntum Devign Thysical Property Mearurement Syatem (Pitas-7) titted with an Option P- 500 (ACMS) for AC mensurements Snmptes of about 30 mg were omntained in gelaline capsuites held at the end of a driaking strux, which was fixed to the sample rod. The AC ficld used was 3.50 c cocillating $\mathrm{H}: 20 \mathrm{~Hz}$

Acknowledgement

This wort was aupported by grants from the Austraina Rescarch Council (ARC Large and Small Girnits) to KSM. The receiph of an ARC Posidoctoral Fellownip (to SRB) is grateltlly ack nowlidged

1] Moffecular Cotmanes Rotavarax
 Buchecteri. Hiley-VCH, Wcinheim. 1999.
2] SR. Hatten. R. Robson, Ankew. Chem. 199e, 110, 15s8; Angew Chem. Iht Ed. 1ysen 37, 1460.

 P. Sauzage C. Dietricl-Buchecker). Wiky-VCH. Weiabear. 19\%9, Pp 77-105.
(4) R F. Ahrahark S. R. Fatics, M. 1 Grannas H. Hamit, B. F. Howins K. Rutwor, Angrw: Chem 19\%9, UA, ISks; Angew, Cirm. int. Ed. 1909. 36, 1475.
[5] a) S. R. Batter, B F. Hosking R. Robton. f. Chert. Sor. Chem. Cowimun. 1991, 445; b) R. Rubson, A F. Abtahams S. R. Hatcen, R. W. Gahle, E. F. Hucking S. Liu, in Supremokecular Architechure Symthetic Cournot in Thin Fivens and Solids (Ed.: T. Bein), ACS 5 ymp Ser 1902, 45\%, 25tw c) S. R. Watten, H. F. Hoxkitu H. Moubaraki, K.S Murray, R. Robmon, J. Chem Soc. Duthen Trani 1999. 297t: d) i. L. Mmoson. C. Campara. J. S Mitler. Chem Commur 1998, 251: e) 11 . Hexhinc, K. lide. T. Kowamota, T. Mori, fnorg. Chem. I999, 38, 4229.
(6) a)S. R. Batten. P. Eensen. B. Mouharaki, K. S Murray, R. Roheor. Chem. Cownmew 1998, 479; b) K.S. Murtay. S.R. Baten. \& Nowbarati, D. 1 Price, R. Robwar Alol Crys. Liq. CryIf 1999, 335. 313: c) P. Jensen, S R. Batren. G. D. Fallon. B. Mowharnki, K. S Murray, D. J. Price Chem Commun. 1999, 177, d)S R. Hatten. P. Jenten. C. J. Kepert. M. Kurmox, B. Mopubaraki, K.S. Murray. D. J. Price. J. Chems. Soc. Dallan Thans 1999. 2967; e) J. L. Mannom, C. R. Katy. O.-Z. Humg. J. W. Lyma, Ci.M. Bendele, S. Pafola, R. W. Stephens. L. M. Liable-Sands A. L. Rbsiapold, A. J. Epstein J.S Miller. Chent Maser. 1990, 10, 25S2; 1) L. L. Manwin, C R. Kmety. A.J. Epxtein, I. S. Miller, tharg. Chem 1990. .66, 2552; \&) C. R. Kmely, J. L. Mammon, O.-Z. Huang, J. W. Lynn, R. W. Erwie, J. S. Asilker, A. J. Epacio. Phys Rex is 1999. 00. 60, \&) M. Xurnoa C. J. Kepent. New J.
 Lynn, R. W. Erwin. J. S. Mitler. A.J. Eqsiein, Mol. Opys Lig. Cryst 1909. 334, 63I: j) M. Kurinou, C. J. Kepert. Mot. Cyys Liq. Cryst. $1909,33+4,693$.
 653: Angrut Cheon Inl Ed Engl 1997. 36, 636: b) S R. Batued. B. F. Heskins, R. Robson, New J. Cherm. 1998, 22.173:c) S. R. Batter. B. F. Hoskins, R. Robson, inorg. Clemt. 19\% 2 , 37, 3432;d) S. R. Batten, B. F. Huskins R. Rebeon, Chem. Eur. J. 2010, 6. 15h: e) 1 Konsen, 0. Britton Lmokg. Chem 1966, 5, 1193: I) I. Katisck, M. Hvastijota, I. Kninoul, I Atrorinskt II. Kohler, \& Chem Six. Dation Thans 1991 1773: ©) Y. M. (Tuw, D. Britcon. Acta Civstelhgr. Sect B 1975. 3f, 1914; h) K. Brodersca, J. Hodiman. 2 Alops. Alf. Chens. 1992 009.
 i) M. Hvastipona, J. Kobout. J. Koriwek. IG. Diak, L. Jaqeer. I. Mtotinski, Z Arorg. Alfg. Chemt 19ps, 624. 349; j) I Kohout, J. Mrozioski, M. Hivasijova, Z. Phys Chert. 1889, 270, 975; k) J. Mnxainsi, J. Knhoul, M. Hvalijowa, folyhedfor 1999, R, 157; 1) M. Hxastijows, J. Kohwat. J. Mrozinaki. L Jager, forish J. Chem. 1995, 69. CS 2.
(*) w) Jenswn, S R. Baten, G D. Falkon, D. C.R. Huctless B. Mouharati, K. S : Aurray. R. Retbion, J. Solted Sure Chem. 1999, ids, 3\$7; b) P. Jensea, S. R. Butten, A. Mcohbaraki. K.S Murrpy, Chem. Cornviun 2000, 793; c) J. L. Manson, C. D. Incarvito, A. L. Rheingold. J. S. Mitler, J. Chen. Soc. Dafon Trems. 1905, 3705; d) J. L. Manomn. D. W. Lere, A. L. Rheingold, 1.S Miller, haror: Chem. 1998. $37.5966 ;$ c) 1. L. Manson, A. M. Arit. J. S. Miller. J. Meter Cham. 199\%, 9, 97\%: f) J. L. Manson, A. M. Atif, C. D. Incarvita, L. M. Liabte-Sands, A. L. Rheingold, J. S Millet, J. Solid Stare Chrom. 19\%9. 1स5, 369; g) 1. LMatton, C. D. Incarvito, A. M. Arif, A.L. Rheingotd, J.S. Mitlet. Mof. Crys. Liq. Crws. 1999, 3,3d, 605; b) D. Brition, Y. M. (Thow; Acta
 N, Malsukewa, H. Yamuchi, G. Snilo, M. Kusunoki, K. Sakaguchi. S. Kogoxtirna, fial. Chern Soc. Jpul 1995, 6\$, 2233 .
 Wison, W. Lin, J. Chrm. Sec. Dafiort Jrans, 1998. 4485.
[10] B. f. Abrahams, M. J. Hardie, H. F. Hosking R. Robeon. E.E. Sutherlaw, J. Chent. Soc. Chemt Commun. 1994. 1019.
 Anger. Chem. In. EA. Engl. 1995, 3C. E40
 Am. Chem. Sice. 199n. 119. 8675; b) S. I. Rettic. R. C. Thampson, J Troter. 5 Xin, inorg. Civm. 1999, 3S. 1360.
[13] Q. Kuhn, Motrestar Mosmetism, VCH. New York, 1993, fo 322.
[14] C. Bellitia, F. Federici S. A. Ibrahim, Chems, Ausex. 198s, 10. 1074.
[15] S. G. Carling, B. Day, D. Visser, R. K. Kremer, J. Salid Siate Cherr. 1993. 106, 111 .
[16] R. L. Carlin. A. J. van Dovacveldt, Maynetic Propertiex of Tmunstiont Metal Compowets, Springer, Betin, 1977, it 184.
[17] G.S Rushbrooke, P. I. Wood, Nol. Thys 1943. 6, s(19).
[18] M. G. F. Vaz. I- M. M. Piaheiro. H. O. Stuaqt, A. F. C. Alcentnta, S
 $1999,5,1436$.
[19] a) As. Kurmea Chers Mater, in press; b) M. Nurmoo printe a) A. Kurmeo, Chers Mater, in press; b) M. Nurmoo.
[2i] F. U.trel, G. De Mfurso, M. Julve, J. Canca, R. Ruiz, A. Caneschi
 [21] P. M. van der Werfi, S. R. Batien. F. jensen. H. Moubaraki. K-S Mutray, urquablished results
[22] a) C- Mathonicre. C. T. Nutall, S. G. Carling, P. Day. Inorg. Chem 19\%6, 35, 12m1; b) C. J. Nuttall, F. Day. Chers Hater 19\%3. 10. 3USO
[23] 7 Otwinsucki \& Miner in Methods in Enăyouleqt (Eds: C W

[24] G. M. Sheldrick SHELX.97. Progran for cossul sinucture mfinconient, University of Goctingen, 1997.
125] reXsan: Single Cnisut! Sirwiture Analysit Sinfivare, Version 16 Mutecular Structure Gurporpion, The Woxdlamk, TX T7ak1, 1993

Synthesis, structure anid magnetism of a new manganese carboxylate cluster: $\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{\mathbf{6}}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{\mathbf{3}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{3}}\right] \cdot 6 \mathrm{H}_{\mathbf{2}} \mathrm{O}$

David J. Price, Stuart R. Katten, Boujemaa Mtoubaraki and Keith S. Murray*
Schowl of Chemisiry. Atonash University. Cluyon. Victoria 3Sho, Australia.
E-nail: Keith_S.Aurray@scimonash.cdu.au
Recerined (in Cambridec. UK) 18th December 2001. Accrpted 25th Febreary 2002
First published at on Admante Arricte on the web Jith Afarch 2002

A new manganese(uliv) carboxylate cluster $\left[\mathrm{Mn}_{16} \mathrm{O}_{10}(\mathrm{O}\right.$ $\left.\mathrm{Me})_{0}(\mathrm{OAc})_{4}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{1} \mathrm{H}_{2} \mathrm{O}$ has been structurally charecterised and shown to display net antiferromagaetic coupling with preliminary evidence for single-molecuie magnetic behaviour.

The synthetic and physicochemical studies made by Christou and llendrickson of of. ${ }^{1}$ Gatteschi and Sessoli at af..2 and Powelt at af.3 on high nuclearity manganese and iron oxol carboxylato cluster complexes have led to significant advances being made in the understanding of namoscale nagnets ternod 'single tholecule magnets' (SMMs). In the case of manganese, the nuclearities known to date to display SMM behaviour inclute Mn. Mn_{12} and Mnso ${ }^{4}$ Other nuclearitics such as Mn_{3}
 some have high-spin ground states, one of the prerequisites for being a SMM. Another key prerequisite for SMM behaviour is a negative anisotropy in the axial zero-field spliting term D which in the Ma cluskess is introduced into the cluser ground state by Mnitil single-ion centres.

The arcictypal cluster. $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc})_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}$ HOAc-
 core, bridged to an outer belt of eight Mis ${ }^{\text {til }}$ ions by μ_{5} - O :bridets, the eight Mn^{14} being bridged by OAc-ligands.

We report here details of a new manganese carboxylate etuster. $\left[\mathrm{Ma}_{10} \mathrm{O}_{16}(\mathrm{OMic})_{2}(\mathrm{OAc})_{10}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right)-6 \mathrm{H}_{2} \mathrm{O}$ (i). This complex was firs obtained accidentally when attempting to expand our dicyanamide (dea-, $N\left(\mathrm{CN}_{2}\right)_{2^{-}}$) molecule-based magnes work into networks of Mn_{3} or Mn_{4} clusters bridged by dca-ligandss' It was subsequently found that dea- was nos necensary for its formation. Thus. addition of solid n $\mathrm{Bu}_{4} \mathrm{NMnO}_{4}$ to a stirsed solution of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}$ in a mixture of methanol and acetic acid yielided a dark brown solution which wias allowed to stand for several weeks., with dee fonnation of black hlock.like crystals of 1.1 If Na (dca) and Mean NBr are included in the reaction. 1 is fomied finst followed by smali fed crystats. identified as a triply-bridged linear chain complex $\left[\mathrm{Min}{ }^{\prime \prime \prime}(\mathrm{OMc})(\mathrm{OAc})_{2}\right]_{m}$, which will be described eleswhere. 'The preserce of athoxide bridges in 1 is rare in Mr clusters and probably responsible for the nuclearity obxained.'

In the structure of $1 . \ddagger$ the cluster lies on an inversion cemre relating one half of the cluser to the other. The asymunetric uni contains half of the molecule and three latice water molecules. The cluster consists of six $\mathrm{Man}^{1 \mathrm{~V}}$ and ten MinII toas" teeld together by founcen μ, O^{2-}, two $\mu \cdot \mathrm{O}^{2-}$, four μ - OMe ${ }^{-}$and two ; 1 -OAc- groups to give a roughly ellipticev planar $\left[\mathrm{Mn}_{10} \mathrm{O}_{10}(\mathrm{O}\right.$ Me) A $^{(\mathrm{OAc})_{2}} 1^{\text {is. }}$ core (Fig. 1). Peripleral ligation consists of the
 axial water and methanof molecules.
The Mn_{10} core can be divided into two sub-units, a central
 Mn^{111} ions by ten $\mu_{3}-\mathrm{O}^{2}-\mathrm{i}$ ins in the plane of the melecule and iwo $\mu-\mathrm{OAc}^{-}$groups perpendicular (sbove and below) to the plane of the motecule. The central unit comains six $\mathrm{Mn}^{\mathrm{NV}}$ ions in two row's of thee ($\operatorname{Min}(1)$. Mn(2), Mn(3) and the symumery relased $\operatorname{Mn}\left(1^{2}\right) \operatorname{Mn}\left(2^{\prime}\right)$. $\operatorname{Mn}\left(3^{\prime}\right)$) jying in a plane that is sundwiched betwein two plumes of oxygen atons. Each patane contains two $\mu_{\mathrm{J}}-\mathrm{O}^{-}-$, one $\mu-\mathrm{O}^{-}-$and two μ-OMe- ions. One
oxygen plame contains $O(1)$ and $O(3)\left(11 y^{-}-0^{*}-\right) . O\left(2^{\prime}\right)\left(\mu-0^{2}-\right)$. and $O\left(4^{\prime}\right)$ and $O\left(6^{\prime}\right)$ (μ-OMte e^{-}). The other oxygen plane

 ling scheme of manpariese and orygent atims ondy fhydrogen moms have
 higblightued in groen.

 (A) $\ddagger \mathrm{K}$. $(0) 55 \mathrm{~K}(\times) 10 \mathrm{~K},(+120 \mathrm{~K}$. Solid lines are mef fits.

Fle. 3 (a) Hysueresis plon of a powder sample dispersed in vaselinc. at 2 K and (b) out of phave AC x^{2} plows with $H=3.5 \mathrm{Oe}$.
contains $O(1)$ and $O\left(3^{\prime}\right)\left(\mu,-O^{2-}\right), O(2)\left(1-O^{2-}\right)$, and $O(4)$ and $O(6)\left(1 \mu-\mathrm{MM}^{-}\right)$. The Min ${ }^{1 \mathbf{v}}$ ions occupy distorted octahedral sites tetween these two hexugonal close-packed O fayers, in the manner seen in manganese oxide minerals, ${ }^{9}$ and within two related Fe_{17} and Fe_{19} oxyhydroxide clusters. ${ }^{10}$ Thus 1 couid be thought of as a captured portion of a loyered mangamese oxide mineral. Such is not the case $\mathrm{j}_{11} \mathrm{Mn}_{\mathrm{i}}$-acelate.
Peripheral ligation around the $\mathrm{Mn}^{16 t}$ so perimeter contaits eight equatorial μ-OAc- proups, six axial μ-OAc- groups (three each on either side of the cluster in an alsemating up-down-up fashion) and nwo $\mathrm{p}-\mathrm{OMe}$ - ligands (bridging $\mathrm{Mn}(6)$ and $\mathrm{Mn}(7)$). Eight of the itn perimeter Mnils ions experience Jahn-Teller (JT) axial elongation in the direction perpendicular to the plane of the cluster. The remaining two (Mn(4) and $\mathrm{Mn}\left(4^{\prime}\right)$) experience 5T axial compression roughly parallel to the fiane of the cluster in the direction of a $\mu-\mathrm{OA} c^{-}$and a core $\mu_{3^{\circ}}$ O^{2}. This may the important in regard to $\mathrm{AC} \chi^{\prime \prime}$ behaviour. ${ }^{11}$ Hydrogen bonding from an axial disondered waterfmethanol and an axial $\mu-\mathrm{OAc}^{-}$vio 1 wo Jattice wuter molecules berween each cluster links them into chains that propagate parallel to the $\rightarrow-a x i s$ direction.
-axis darection. ured on freshly isoluled samples of 1 in a field of 1 T over the range 2-300 K (Fig. 2(a)), The same results were obiained on nent powders and or vaselise muils. The effective mapnetic moment. per $\mathrm{Mn}_{\mathrm{ja}}$ decreases gradually from $\mathbf{4 4 . 0} \mu_{\mathrm{B}}$ at 300 K to co. $10.5 \mu_{\mathrm{a}}$. then more rapidly, reaching $5.7 \mu_{\mathrm{B}}$ at 2 K and sill decreasing. The value of $\mu_{\text {er }}$ al 300 K compares to the value of
 $\mathrm{Mn}^{\mathrm{IIt}}(S=\{/ 2)$ and is thas indicative of overall antiferromagnetic couptine. To try to identify the ground spin stnte of 1, magnetization (M) measuremems were made in the ranges of $H=0-5 \mathrm{~T}$ and temperatuse $=2-20 \mathrm{~K}$ (Fig. 2(b)). It can be seen that, at 2 K , the M values increase in a graduad curved fashion between 0 and $5 T$ to reach ca. $7 N \beta$ in the $5 T$ field. The M values are still increasing and saturation is not achieved. This is mosi tikely due to thenmal population of the ground-state and of other low lying spin-states occurring even at 2 K Zero-fuld splitting and Zeeman effects will also influence the shape and
size of the M ws. H plots. Cletrer-cluster interactions, via hydrogen bonding pathways, may also play a pant. It is therefore nol passitule, withoth fitting of the M / H data, to unambiguously assign the ground state spin. A hysteresis foop ($\pm 0.2 \mathrm{~T}$) at 2 K shows a rapid increase in M in the ± 350 Oe region (Fig. 3(a)). shows a rapid increase in M in the 1 ses ore region (Fig- (a)). Preliminary AC $\chi^{\prime \prime}$ susceptibility measurements made in the
range $2-15 \mathrm{~K}$, of two frequencies (20 and 100 Hz) and $H=3.5$ Oe, show a clear maximum whith moves from 3.9 K at 20 Hz to 4.6 K at 100 Hz (Fig. A(b)s. This frequency deperadence of $\chi^{\text {manax }}$ if one of the key experimental criteria for SMM behoviour and we are presently confirming this at different frequencies.

This work was supponted by a Large Grart (to K. S. M.) and a Fellowahip (to S. R. B.) from the Australian Rexeareh Council.

Notes and references

F Trpinal syntheric proceduret 20 a stirted mesturnolic solution (120 maL) of $\mathrm{Min} \mathrm{NO}_{2} \mathrm{~m}_{-1} \mathrm{H}_{3} \mathrm{O}$ ($1157 \mathrm{mmol}, 290 \mathrm{p}$), and ztacial acelic acid (10 mL) $n-\mathrm{Hu}_{4} \mathrm{NMMO}_{4}(3.15$ namol. 1.14 g) was addod in shall protions over a perival of 30 min Thr solution was unea wall ho suad Ales peverai woris a rmall

 $\left.\mathrm{MOH}) 3387 \mathrm{~cm}^{-1}(\mathrm{~B}), \mathrm{XC=0}\right) 1558 \mathrm{~cm}^{-1}$
th reactlons which also hud Nendcs) (25.0 minol, 2.23 g$)$ and MenNBis
 followed by malker red crystuls of [MriniOMexOAch), she laver in higher yiatd $4(C=0) 156 \mathrm{cms}^{-1}$.
Many nupeatio of the rexcthon show thal cyystis of I decompmee with time to yield tpecies contsining low conkert of carton and foor dilitaction quility despite a gooneaternal mophatugy. Presumathy stow hydrolysis of ONe^{-}and OAc- groups necury in the orlid atace. Anndyxis of a firsh
 3.5\%
 $a=128547(2), b=14.4366(2), c=14.4590(2) \lambda . \alpha=168.276(1), \beta=$ $116.2731(1), \gamma=96.500(1)^{m}, U=217649(5) A, T$ F $123(2) K . Z=1$. $\left.F(000)=1270, D_{c}=1.926 \mathrm{Ecm}^{-3}, M \mathrm{Mo}-\mathrm{Ka}\right)=2,43 \mathrm{~mm}{ }^{-1}, 2 A_{\text {mat }}=$ $56,6^{\circ}$. A bieck block ($\left.0.2 \times 0.15 \times 0.15 \mathrm{~mm}\right), \mathbf{2 7 0 6}$ total rellections. 10573 indepersient refoctions ($R_{\text {an }}=0.06099$). of which 8048 were obncrved $l />200(\eta)$. Al final ctovergence $R_{1}\left[i>200(f)=0,0424, \mathrm{nR} R_{2}\right.$

 graphic data in CIF or ofter electronic format.
I G. Aromi. S. M. J. Aution, M. A. Bolcar, C. Christou, H. J. Eppley, X. Fohting. D. N, Hendrickson. J. C. Huffrian R. C. Squire, 11.4 Trai, S. Wany and SM. W. Wemple, Pafythedrom, 1998, 17, 300S.
2 A. Cuneschi. D. Gerrevecti, C. Sangregorio. R. Sessoli, L. Sorase. A.
 Mater. 1999, 200. 182.
1 J. C. Goodwin R. Sersoli, D. Getuescid, W. Wiernadorfer, A. K. Powell and S. L. Heath, J. Chent. Soc., Dalion Trakt., 2000, 1835.
4 M. Solker, E. Rurnterger. K. Fotling. D. N. thenerictaon avd G, Curtatou, M. Suker, E Runtigrger. K. Fo
Podyhedruk 2001, 20.1365 .

5 S. R. Hattin. P. Jenwer. C. J. Kepert. M. Kitnood. B. Mouburaki, K. S. S. R, Hatken. D. Jensin, C. Kepky. M. Kurmon, B. Moutarnki, K.

Marrsy and D. J. Ptiou, J. Chem. Soc, Dation Trublu., 1999, 2987.
6 D. S. Price. S. R. Batien B. Moubaraki and K. S. Murray, unpullivhed 6 D. 1.
7 J. Yoo, A. Yamaquetii, M. Nakeno. 1. Krrystek, W. E. Streib, L.C.
 Bruncl, 11. 2 shimp
$2001,40,4604$.
8 The oxidation stales were so assipged for the following rescons. The central Mn ${ }^{N}$ ienx have toond kagths companble to those seen in the
 Sriti 1
 ione did show sirnifcant lehn-Telier cistonton. This aridetion ato ons did thow Hipul assignment therefore revuires the pyranidal oxyger anoms to the $\mathrm{O}^{-}-$ Talher than OH^{-}, again consistent with Mr_{13} acelats
9 A. D. Wadsky, At7a Cryitallogt, 1955. 8, 165.
10 A. K. Powell, Sirwet. Bondurg iBerlin). 1997, t8, 1.
11 S. M. J. Aubin Z Sun, K. J. Eppley. E. Rumbergur, I. A. (iuczel. K. Foltive- P. K. Gantzel, A. L. Rleelongold, G. Chriacu aux D. N. Hientrict som, fiorg. Chrme 2001, 40. 2127.

Structure and magnetism of trinuclear and tetranuclear mixed valent manganese clusters from dicyanonitrosomethanide derived ligands

David J. Price ${ }^{\text {a }}$, Stuart R. Batten ${ }^{\text {a }}$, Kevin J. Berry ${ }^{\text {b }}$, Boujemaa Moubaraki ${ }^{\text {" }}$, Keith S. Murray ${ }^{\text {a.* }}$

b Hestermpoet Srcondary Coltexe. Hastings. Hici 39IS, Akstialio

Rexcived 25 July 2002: accepied 24 September 2002

Abstract

Abstenct Two new mixed valent clasters of manganese have been synthesised in which the starting paeudochaleogenide ligand, dicyanonitrosomethanide. ($\mathrm{ONC}(\mathrm{CN})_{2}^{-}$. $\left(\mathrm{dcmm}^{-}\right)$) undergocs nucicophilic addition of methanol in complex 1 and water in complex 2 during coordination to the metal ions. Cryatal structures show that complex 1 is a lincar trinuclear $\mathbf{M n}(I I) \mathrm{Mn}(\mathrm{JII}) \mathrm{Mn}(11)$ compound, $\left[\mathrm{Mn}_{3}(\text { moce })_{6}\right]_{\mathrm{NO}_{3}} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, containing bridging oximate moieties from the chelating figand methyl(2-cyano-2-hydroxyiminoxthanimidate ($\left.\mathrm{ONC}(\mathrm{CN}) \mathrm{C}\left(\mathrm{NH}_{3}\right) \mathrm{OCH}_{3}\right]^{-}$, meoe ${ }^{-}$). Compound 2 has a planar rhomboidal (butterfly) arrangement of $\mathrm{Mn}(1) \mathrm{Mn}(1 \mathrm{II}) \mathrm{Mn}\left(11 \mathrm{Mn}(I I)\right.$ with the $\mathrm{Mn}(111)$ ions in "body' positions bridged to the 'wingtip'. seven coordinate $\mathrm{Mn}(\mathrm{II})$ ions by s_{3} " oxo atoms and by the NO^{-}oximato groups of the cyanoncetamidooximate chelaung ligand, cao ${ }^{-},\left[\mathrm{ON}=\mathrm{C}(\mathrm{CN}) \mathrm{CONH}_{2}\right]^{-} .2$ has the formula $\left(\mathrm{Me}_{4} \mathrm{~N}_{2}\left(\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{caO}_{4}\right)_{4}\left(\mathrm{MeCN}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right)\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.\right.$. There are hydrogen bonded cluster weluster interactions in bolh compounds. Detailed susceptibility and magnetisation measurements on 1 and 2 reveal intra-cluster antiferromagnetic coupting with a total spin ground state at the crossover point of $S_{\mathrm{T}}=2$ and 1 for 1 , with other states very close in energy, and a rare sixfold degenerate set of S_{γ} levels, $0,1,2,3,4,5$, lying lowest in the case of 2 . In the latuer cose this is largely because of the large J_{13} (M n(III) Mn(III); body-body) value ($-46.0 \mathrm{~cm}^{-1}$) compared with the wing-body; ($\mathrm{Mn}(\mathrm{JI}) \mathrm{Mn}(1 \mathrm{II})$) J_{12} value of $-2.5 \mathrm{~cm}^{-1}$. These coupling constants and S_{T} states are compared with those of other recent examples of planar rivomboidal mixed valent clusters, some of which show ferromagnetic $/$ vilues and very larse S_{T} ground states. with single-nolecule magnetic behaviour exhibited in those cases. AC susecplibility studics show that complex 2 does not exhibit single-molecule magnetism behaviour. (i) 2002 Elsevier Science Eld, All rights reserved.

Neywords: Dicyanonitrosoncthanide detived oximate lizands; Mixed valent manganese dunters; Trinuchary Tetranuckear: Magnetisnt Crystal structiores

1. Introduction

A great deal of recent rescarch in polynuclear mixed valent manganese complexes has focussed on two main lines of enquiry. Firstly, in the bioinorganic area, many model complexes have teen made to replicate the structure and function of manganese containing proteins and enzymes including, significantly, the water oxidation complex (WOC) in the Photosystem II (PSII) of green plants and cyanobacteria, which is responsibic for

[^1]the catalysis of the light driven oxidation of $\mathrm{H}_{2} \mathrm{O}$ to O_{2} [1-4]. Detailed spectroscopic, EXAFS, XANES and crystallographic studies have been made to probe the $\mathrm{Mn}_{4}\left(\mathrm{C}_{4}\right) \mu$-oxo cluster in the redox states $\mathrm{S}_{\mathbf{0}}$ to S_{4} [5.6]. Secondly, in the field of nanomagnetic materials, some targe high-spin manganese carboxylate clusters display magnetic properties previously only associated witls nano-sized particles of magnetic metal oxides, that is, they can be magnetised and as such have been termed single-molecule magnets (SMMs). They also display unusual quantum machanical effects in their singlecrystal magnetisation hysteresis plots. The archetypal cluster, $\left[\mathrm{Mn}(I \mathrm{II} / \mathrm{V})_{12} \mathrm{O}_{12}\left(\mathrm{OAc}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{HOAc} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$ (' Mn_{12}-ucetate') and its derivatives are the best and most comprehensively studied SMMs to date [7-13]. Other
examples of SMMs include the family of complexea with the $\left[\mathrm{Mn}(\mathrm{iV}) \mathrm{Mn}(\mathrm{III})_{3} \mathrm{O}_{3} \mathrm{X}\right]^{6+}$ core $(14-16]$, where X^{-}is, for example, a halide, and other Mna complexes such as $\left[\mathrm{Mn}(\mathrm{III})_{2} \mathrm{Mn}(\mathrm{II})_{2}\right]$ rhomboidal cores $[17,18]$ as well as a number of $\mathrm{Fe}_{4}, \mathrm{Fe}_{8}$ and V_{4} complexes [19-23]. More recently, a Ni_{12} wheel complex [24] and the first non-oxo-based SMM, the cyano bridged $\mathrm{MnMo}_{(}(\mathrm{CN})_{1 k}$ cluster [25]. have been isolated.

demar

mose

00°

We present here two new mixed valent manganese complexes $\left[\mathrm{Mn}_{3}(\mathrm{mcoc})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1) and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}\left(\mathrm{MeCN}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$ (2), whete meoe" is methyi(2-cyano-2-hydroxyimino)ethanimidate ($\left[\mathrm{ONC}(\mathrm{CN}) \mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]^{-}$) and CHO^{-}is cyunoactamidoximate ([ON= $\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right)^{-}$). Their structures and magnetic properties are described.

This work arose from a combination of interests in Mn cluster chemistry and in 3D-molecular magnets based on pseudohalide and pseudochalcogenide bridges of cyano based ligands [26]. From such work we have recently reported a $\mathrm{Mn}_{1 s}$ cluster which displays aspects of SMM behaviour [27].

2. Exjerimental

$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, methanol and acetonitrile were used as received. All reactions were performed under acrobic conditions. Mce $\mathrm{N}(\mathrm{denm})$ was prepared by a metathesis reaction by adding an acetonitrile solution of Mean NBr to a suspension of $\mathrm{Ag}(\mathrm{denm})$ in dichloromethane (denm ${ }^{-}$is $\mathrm{ONC}(\mathrm{CN})_{2}{ }^{-}$). $\mathrm{AgBr}^{\text {was removed }}$ by filtration. The solvent was removed and the resulting sellow oil was recrystallised by vapous diffusion of diethyl ether into as solution in methanol (Yield 95\%). Ag(denm) was synthesised according to the literature [28].

2.1. Symehesis of $/ \mathrm{AM} \mathrm{m}_{3}(\mathrm{mecoc})_{6} / \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{3} \mathrm{O}$ (I)

A meihanolic solution (5 ml) of $\mathrm{Mea}_{\text {a }} \mathrm{N}$ (denm) (0.336 g. 2.0 mmol) was added to a methanolic solution (5 ml) of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.251 \mathrm{~g}, 1.0 \mathrm{mmol})$. The resultani solution was an orange colour. After a wotk tanany red crystals were present in the deep red solution. The crystals had a hexagonal or half-hexagonal appearance and did not lose solvent in air. The solution was decanted. A fine light-brown solid, which coprecipitated
with the crystals was removed by suspending it in methanol tihe crystals were far less mobile, sinking rapidly) and decanting the suspension. This process was repeated several times until the methanol wash was free of the light-brown solid. The crystals were collected by filtration. washed with methanol and dried in air. Yield $0.17 \mathrm{~g}(50 \%$ based on iotal available Mn$)$. An irregular shaped crystal was chosen for X-ray diffraction structural analysis. IR (Nujol, cm^{-1}), $3258 \mathrm{~s}, 222 \mathrm{tm} .1645 \mathrm{~s}$, 1434 s . $1385 \mathrm{~m}, 13565,1266 \mathrm{~s}, 1192 \mathrm{~s}, 1125 \mathrm{~s}$, $952 \mathrm{w}, 823 \mathrm{~m}$, 779m. Anal. Found; C, 29.5; H. 3.1: N. 24.8. Calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{19} \mathrm{O}_{17} \mathrm{Mn}_{3}$: C, 28.3: H, 2.8; N. 26.1\%. Powder XRD: The diffractogram of the bulk product matches that calculated from the crystal structure.
2.2. Synthesis of
$\left(\mathrm{Mcc} \mathrm{N}_{2}\right)_{2}\left(\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{McCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} /\left(\mathrm{NO}_{3}\right)_{4}\right.$. $2 \mathrm{H}_{2} \mathrm{O}$ (2)

Me4N(denm) ($0.596 \mathrm{~g}, 3.54$ mmol) was stirred in 10 ml of hot acctonitrie to dissolve. There remained a small amount of yellow residuc. A solution of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.889 \mathrm{~g}, 3.54 \mathrm{mmol})$ in acetonitrile (10 ml) was then added to this mixture, resulting in an instant colour change to deep red. Over a period of about 30 min of stirring the hot mixture changed to an orange colour. The mixture was then filtered several times to remove a fine brown precipitate (most ijkely manganese oxide), then covered and left to stand. After 4 days the solution was a red/brown colour with a small amount of fine brown precipitate mixed with many red/ orange erystals. The fine brown precipitate was removed by suspending it in the solution (the crystals were far tess mobile, the majority remaining attached to the glass of the vessel) and filtering the suspension. The filtrate was returned to the crystals, whicl: were then filtered and washed with nectonitrile (Yiek $50 \mathrm{mg}, 4 \%$ based on total available Mn). IR (Nujol, cm^{-1}): 3390 sbr .2268 vw , 2224s, 1682s. 1606s. 1470s, 1317s. 1224s, 1136s, 1041 m . $950 \mathrm{~m} .831 \mathrm{~m} .708 \mathrm{sh}, 666 \mathrm{sh}$. Anal. Found: C, 22.2; H. 3.0; $\mathrm{N}, 22.4$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{54} \mathrm{~N}_{20} \mathrm{O}_{30} \mathrm{Mn}_{4}$: C. 21.8: H. 4.1: N, 21.2% Powder XRD: The diffractogram of the bulk product matches that calculated from the crystal structure.

2.3. X-ray crystallographic studies

Crystal data for 1 and 2 are summarised in Table 1. Data were collected using a Nonius KappaCCD diffractometer with graplite monochromated Mo-Ka radiation ($\alpha=0.71073 \AA$) Integration was carried out by the program Denzo-sme [29], and data were corrected [or Lorentz polatisation effects and for absorption usinp the program scalepack [29]. Solutions were obtained by direet methods (SHELxs-97 [30]) followed by successive Fourier difference methods, and

Table 1
Summary of erystal data

	1	2
Fotmula	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{Mn}_{3} \mathrm{~N}_{19} \mathrm{O}_{19}$	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Mn}_{4} \mathrm{~N}_{20} \mathrm{O}_{39}$
3	1019.47	1322.6
Crystal system	trigonal	moroclinic
Space group		C.2ic
\cdots (A)	12.4720(2)	192163(3)
b (${ }^{\text {d }}$)	$12.4720(2)$	11.4283(2)
- (A)	15.8114(4)	24.021s(2)
0 (i)		90.91 (1)
$U\left(\boldsymbol{\lambda}^{3}\right)$	2129.9771	5274.7(2)
z	2	4
T (k)	123(2)	123(2)
$\begin{aligned} & \mu\left(M_{1}-k x\right) \\ & \left(m m^{-1}\right) \end{aligned}$	0.965	1.041
Crystal hatit. colour	rhmaboidal, red	rhombsidint. orange-rad
Crystal size (mm)	$0.15 \times 0.125 \times 0.1$	$0.2 \times 0.2 \times 0.1$
Index ranges	$\begin{aligned} & -16 \leq h \leq 16 \\ & -15 \leq k \leq 16, \\ & -21 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} & -25 \leq h \leq 25 \\ & -15 \leq k \leq 15 . \\ & -32 \leq 1 \leq 32 \end{aligned}$
Complatenoss to $2 f=55^{\circ}(6)$	99.9	99.2
Data coilected	29281	35448
Unique data $\left.\backslash R_{101}\right\rceil$	1775 [0.0908]	6412 [0.0619]
Observed refloctions [$1>2 \boldsymbol{2}(f)$]	1390	4578
Parameters	106	292
Final R_{1} wr R_{2}	0.6719, 0.2172, 0.15963.	0.1134. 0.3314.
$\begin{aligned} & {[\mid>2 \sigma(f)](\mathrm{all}} \\ & \text { dota }) \end{aligned}$	0.2321	$0.1502,0.3963$
Goodness-wf-fil. S	1.141	1.097

refined by full-maurix least-squares on $F_{\text {nox }}^{2}$ (sheLxi-97 [30]).
For complex 1 all non-hydrogen atoms of the cation complex. the two waters of crystallisation and the nitrogen atom of the nitrate were refined anisolropically. The unique oxygen atom of the nitrate was found to be disordered over two positions. The two contributions (assigned equal quarter site occupancies) were refined isorropically. The imidate proton was located in the diference Fourier map and was subsequently refined isotropically. The methoxy protons of the moce ${ }^{-}$ligand were included at caleulated positions with U values 1.5 times the $U_{\text {eq }}$ of the carbon atom. Two regions of electron density not cornected to each other were assigned as two water molecules. Table 2 contains selected distances and angles.
For complex 2 all non-hydrogen atoms of the cluster were refined anisotropically. Due to significant disorder that was difficult to model the non-hydrogen atoms of the teramethylammonium ard nitrute counter ions were relined isotropically and no hydsogen atoms were assigned. A region of residual electron density was assigned as a water molecule disordered over two

Table 2
Selected thond dimanecs ($A 1$ and anglex (') or 1

Bond kngth			
$\mathrm{Mn}(1)-\mathrm{O}(1)$	2.169(3)		3.9177(9)
$\mathrm{Mn}(2)-\mathrm{N}(2)$	2.32443	Mn(2)-iJ(9)	2.189(4)
$\mathrm{O}(1) \mathrm{N}(2)$	1.301(4)	$\mathrm{C}(3)-\mathrm{C}(6)$	1.490(5)
$\mathrm{N}(2)-\mathrm{Cl} 3)$	L.303(5)	C(6)-N(9)	1.250(6)
C(3)-C(4)	1.41046)	$\mathrm{C}(6)-\mathrm{O}(7)$	1.338(5)
C(4)-N(5)	1.14(1)	O(7)-C18)	1.462(6)
Brawd anglex			
O(l)- $\mathrm{Mn}(1)-\mathrm{O} 1^{\prime}$)	90.7(1)	$\mathrm{N}(2)-\mathrm{Mn}(2)-\mathrm{N}(9)$	72.2(1)
$\left.\mathrm{O}\left(1^{1}\right)-\mathrm{Mm} 1\right)-\mathrm{O}\left(1^{(1)}\right.$	82.6(1)	$\mathrm{N}(9)-\mathrm{Mr}(2)-\mathrm{N}\left(9^{6}\right)$	92.73(14)
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}\left(1{ }^{+5}\right)$	93.3 (9)	$\mathrm{N}(2)-\mathrm{Mr}(2)-\mathrm{N}\left(2^{\prime \prime}\right)$	85.33(12)
$\mathrm{O}(1)-\mathrm{Ma}(1)-\mathrm{O}\left(1^{1 / 4}\right)$	174.5(1)	$\mathrm{N}(2)-\mathrm{Mr}(2)-\mathrm{N}\left(9^{4}\right)$	138.15(13)
		$\mathrm{N}\left(2^{\mathrm{l}}\right)-\mathrm{Mn}(2) \sim \mathrm{N}(9)$	125.91(12)
Hydrugen monding			
$\mathrm{N}(9)-\mathrm{H}(9)$	1.0067)		
H(9). O OL10)	20007	$\mathrm{H}(9) \ldots \mathrm{O}(11)$	2.02(7)
$\mathrm{N}(9)+\mathrm{O}(110)$	29431	$\mathrm{N}(9) \cdot \mathrm{O} 1111$	2.905 21
$\mathrm{N}(9)-\mathrm{H}(9) \cdot \mathrm{CO}(110)$	156(5)	N(9)-H(9) . . O(111)	147(5)

Symmery transformutions (i) $-x+1.3,-z+32 ;$ (ii) $-j+1$. $x-y+1 . z ;$ (iii) $-y+1,-x+1,-z+3 / 2$
positions ($O(600)$ and O (601)). Hydrogen atoms on the coordinating acetonitrile molecules and the amine groups of the cao ${ }^{-}$ligands were assigned to calculated positions with U values 1.5 times (fier methyl protons) and 1.2 times (for umine protons) the $U_{\text {eq }}$ of the attached atom. whereas those on the coordinating water molosules were not located. As can be seen in Table 1 the innal R-value was relatively high. The crystals were quite stmall and weakly diffracting and many were tried with poorer quality diffraction. A number of solutions were obtuined for diferent crystals, the best giving the refined structure presented bere. Despite the extreme disorder in the counter ions and in a water molecule the cluster itself is well refined. Table 3 contains selected distances and angles.

2.4. Atagnetic mousurements

Magnetic measurements werc carried out as described previously [26] using a Quantum Design MPMS 5 Squid magnetometer for DC magnetisation measurements and a PPMS instrumeat for AC susceptibility measurements. Since Mn(lll) complexes display torquing at low temperatures \{31], the powder samples were dispersed in Vareline.

3. Leesults and discussion

3.1. Synthesir and characterisation

Complex 1 crystallises out of a solution or $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$. $4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Me}_{4} \mathrm{~N}(\mathrm{denm})$ ($1: 2$ molar ratio) in methanol. Complex 2 crystallised out of a solution of equimolar

Table 3
Selected bond distances (λ) and angles (') of 1

Bmad lerntht			
Mm(1)-O11)	$2.077(5)$	$\mathrm{Mn}(2)-\mathrm{OC}(1)$	1.844 5)
$\mathbf{M s f (1) - N (3)}$	1.924(2)	$\mathrm{An}(2)-\mathrm{O}(1)$	1.83775)
$\mathrm{Mm}(1)-\mathrm{O}(9)$	2.241(6)	$\mathrm{Mn}(2)-\mathrm{Cx}(1)$	$2.5013(5)$
$\mathrm{Mm}(1)-\mathrm{N}(1)$	$2.42516)$	$\mathrm{Mn}(2)-\mathrm{O}\left(10^{\prime}\right)$	1.994(5)
Ma(1)-O(17)	222616)	$\mathrm{Mn}(2)-\mathrm{O}(20)$	23968)
$\mathrm{Mm}(1)-\mathrm{O}(18)$	2.193(7)	$\mathrm{Mn}(2)-\mathrm{N}(21)$	2.372(9)
$\mathrm{Mm}(1)-\mathrm{O}(19)$	2.184*91	$\mathrm{Mn}(2) \cdots \mathrm{Mn}\left({ }^{2}\right)$	2.7342)
$\mathbf{M n (1)} \cdots \mathrm{Mn}(2)$	3.546(2)		
Rand ongles			
$\mathrm{O}(1)-\mathrm{Mm}(1)-\mathrm{O}(19)$	93.713)	$\mathrm{O}(17)-\mathrm{Mp}(1)-\mathrm{N}(3)$	143.9(3)
$\mathrm{O}(1)-\mathrm{Ma}(1)-\mathrm{O}(18)$	$87.3(2)$	$\mathrm{O}(9)-\mathrm{Ma}(1)-\mathrm{N}(3)$	68.42)
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{O}(18)$	176.3(3)	O(1)-Mn(2)-O(1)	82.3(2)
$\mathrm{O}(1-\mathrm{Mm} 1 \mathrm{H}-\mathrm{O}(\mathrm{T})$	14? M ${ }^{\text {a }}$	$\mathrm{O}\left(1^{1} 1-\mathrm{Mz}(2)-\mathrm{O}\left(10^{+}\right)\right.$	93.712)
O(19)-Mn(1)-0.17)	$90.0(4)$	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(10)$	175.92)
$\mathrm{O}(18)-\mathrm{Mn}(1)-\mathrm{O}(17)$	91.4(3)	$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(2)-\mathrm{O}(2)$	176.5(2)
Ofl-Mn(1)-O(9)	143.1(2)	$\mathrm{O}(1)-\mathrm{Mu}(2)-\mathrm{O}(2)$	94.6(2)
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{O}(9)$	$86.7(3)$	O (2)-Mn(2)-O(10)	89.4(2)
$\mathrm{O}(\mathrm{ts})-\mathrm{Mn}(1)-\mathrm{O}(9)$	$90.3(3)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{C}(20)$	95.9(3)
((1) $^{\text {7 }}$-Mn(1)-O(9)	74.M2)	O(1)-Mn(2)-OK20)	$93.8(3)$
O(1)-Mn(1)-N(1)	73.923	$\mathrm{O}\left(10^{\circ}\right)-\mathrm{Mn}(2)-\mathrm{O}(20)$	$87.0(3)$
$\mathrm{O}(19)-\mathrm{Mg}(1)-\mathrm{N}(11)$	90.3(3)	$\mathrm{O}(2)-\mathrm{Mnt} 2)-\mathrm{O}(20)$	$825(3)$
$\mathrm{O}(1 \mathrm{~g})-\mathrm{Mr}(1)-\mathrm{N}(1)$	93.4 (2)	$\mathrm{O}\left(1^{2}-\mathrm{Mm}(2)-\mathrm{N}(21)\right.$	94.9(3)
$\mathrm{O}(17)-\mathrm{Mn}(1)-\mathrm{N}(\mathrm{l})$	$68.5(2)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{N}(21)$	93.4(3)
$\mathrm{O}(9)-\mathrm{Mn}(\mathrm{l})-\mathrm{N}(11)$	143.0즤)	$\mathrm{O}\left(10^{\prime}\right)-\mathrm{Mn}(2)-\mathrm{N}(21)$	86.4(3)
$\mathrm{O}(1)-\mathrm{Mnt})^{2}-\mathrm{N}(3)$	74.64)	O(2) $-\operatorname{Am}(2)-N(21)$	87.0.3)
$\mathrm{O}(19)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$90.8(3)$	$\mathrm{O}(20)-\mathrm{Mn}(2)-\mathrm{N}(21)$	167.7(3)
$\mathrm{O}(18)-\mathrm{Ma}(1)-\mathrm{N}(3)$	86.0(2)	$\mathrm{Mat} 2 \mathrm{-O}(1)-\mathrm{Mm}\left(\mathbf{2}^{\prime}\right)$	97.7(3)
fiydropen handong			
$\mathrm{O}(19) \cdot \mathrm{O}\left(52^{14}\right)$	3.07(2)	Or $30 . \cdots \mathrm{O}(43)$	2.83(2)
O(19) - O(53)	2.63 (2)	$\mathrm{N}(\mathrm{8}) \cdot \mathrm{N}\left(\mathrm{s}^{\text {i }}\right.$)	3.00(1)
O(18) $\cdots(43)$	2.86(2)	$N(16) \cdots N(14)$	3.03(1)
$O(18) \cdots O\left(600^{\circ}\right)$	2.49\% 5)	$\mathrm{N}(8) .6 \mathrm{O}\left(43^{\text {th }}\right.$)	2.9012)
$\mathrm{O}(600) \cdots \mathrm{O}(41)$	2.40(5)	$\mathrm{N}(16) \cdots \mathrm{O}\left(600^{\circ} \mathrm{l}\right.$	$2.90(4)$
$\mathrm{O}(601) \cdots \mathrm{C}(1)$	2.34(4)	$\mathrm{N}(16) \ldots \mathrm{O}\left(601^{1 /}\right)$	2.67(3)
$\mathrm{O}\left(52^{\text {l/ }}\right.$) . $\mathrm{O}(19) \ldots \mathrm{O}(53)$	124.9(7)	$\mathrm{N}(8)-\mathrm{H}(8 \mathrm{~B}) \cdots \mathrm{N}\left(\mathrm{G}^{\text {i }}\right)$	149.4
$\mathrm{N}(\mathrm{B}) \mathrm{H}(\mathrm{BA}) \cdots \mathrm{O}\left(3^{\text {² }}\right.$)	175.9	$\mathrm{N}(16)-\mathrm{H}(16 \mathrm{~B}) \cdots \mathrm{N}(14)$	1529
Symmetry transformations (i) $-x+1 / 2-y+3 / 2,-z+1 ;$ (ii) $x-1 /$			

amounts of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Me} \cdot \mathrm{N}(\mathrm{denm})$ in hot acetonitrile. A brown solid, which from IR spectroscopy is likely to be MnO_{2}, is formed in relatively large quantities at the same time as some of the $\mathrm{Mn}(11)$ is oxidised to $\mathrm{Mr}(111)$, which is then included in the tetranuclear cluster. This solid can be filtered off progressively during the course of the reaction. In latter stages. the majority of tie product is 2 and can be relatively successfully separated from remaining MnO_{2} powder. The yidd of 2 was very low but quite reproducible.
Infrared spectroscopy of complex 1 shows absorbaires at 2221 and $1645 \mathrm{~cm}^{-1}$ gerresponding to the $v(C \Leftrightarrow \mathrm{~N})$ and $v(\mathrm{C}=\mathrm{N})$ vibrations, respectively, from the mooe- ligand. Likewise for complex 2 absorbances at 2224 and $1682 \mathrm{cn}^{-1}$ correspond to the $v(C=\mathrm{N})$ and $4(\mathrm{C}=\mathrm{O})$ vibrutions of the ca0 ${ }^{-}$ligand.

The pseudochalcogenide ligand dicyanonitrosonethanide ($\mathrm{ONC}\left(\mathrm{CN}^{2}\right)_{2}{ }^{-}$, dcnm ${ }^{-}$) undergoes nucleophilic addition of solvent (methanol and water for complexes 1 and 2. respectivety) in the coordination sphere of the metal to form the chelating ligands, methyl(2 -cyano-2-hydroxyiminolethanimidate
(O ONCICN C(NH)-$\left.\mathrm{OCH}_{3}\right]^{-}$, mene ${ }^{-}$) for \mathbf{t} and cyanoacetamidoximate $\left(1 \mathrm{ON}=\mathrm{C}(\mathrm{CN})\left(\mathrm{CONH}_{2}\right\}^{-}\right.$. CaO^{-}) for 2 . The nucleophilic addition of solvent to denm ${ }^{-}$has been reported by Hvastijova et al. for $\mathrm{Co}(\mathrm{II})$. Ni(II). $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ complexes $[32-36]$. The protonated form of the ligand, caoH , has been syathesised recently by refluxing the Filtrate formed from the reaction of Ag(dcnm) and $\mathrm{NH}_{4} \mathrm{Cl}$ in water [37]. Compounds 1 and 2 are the first examples of complezes in which the meoe- and caOligands occupy bridging as well as chelating coordination modes. The oxidation of $\mathrm{Mn}(\mathrm{II})$ to $\mathrm{Mn}(\mathrm{III})$ and $\mathrm{Mn}(\mathrm{IV})\left(\mathrm{MnO}_{2}\right)$ in these aerobic reactions is not unexpected and the formation of $\mathrm{Mn}(\mathrm{II}) \mathrm{OMn}(\mathrm{III})$ bridges in $\mathbf{2}$ under these conditions is common.

3.2. Crystal structures

3.2.1. $/ \mathrm{Mn}_{3}(\text { meoc })_{6} \mathrm{NOO}_{\mathrm{I}} \cdot 2 \mathrm{H}_{3} \mathrm{O}$ (1)

Complex 1 crystallises in the trigonal space group Pyle. The cation is at tinear trinuclear complex (Fig. I) with the three mangunese ions lying along a threefotd axis and the central manganese utom situated on an inversion centre. Thus the asymmetric unit contains $1 / 6$ of the formula unit. The cation contains two symmetry related terminal six-cerordinate manganese(II) ions chelated by the N -donor atoms of the imidate and oxime groups of three meot - ligands in a trigonal prismatic environment $(\mathrm{Mn}(2)-\mathrm{N}(9)=2.189(4) . \mathrm{Mn}(2)-\mathrm{N}(2)=$ $2.324(3) \hat{A}$ and $\left.\mathrm{N}(2)-\mathrm{Mn}(2)-\mathrm{N}(9)=72.2(1)^{\circ}\right)$. The two teminal manganese(II) ions are bridged to the central manganess(III) by the oxime groups of the six meoe ${ }^{-}$ ligunds. providing an entirely O-donor atom coordination environment in a distorted octahedral fashion $(\mathrm{Mn}(1)-\mathrm{O}(1)=2.169(3) \dot{A})$.
The oxidation states are assigned on the basis of charge balance and on consideration of bond lengths. The two terminal manganest ions are assigned $\mathrm{Mn}(\mathrm{II})$ due to the longer average bond length (2.257(7) A) compared with the bond length for the central manganese ion, which was assigned as $\mathrm{Mn}(\mathrm{III})$. It would be expected that the central $\mathrm{Mn}(\mathrm{III})$ ion would show JahnTeller distortion, having d^{4} configuration in a nearoctahedral environment. However, in this case, there is only one unique $\mathrm{Mn}-\mathrm{O}$ bond length.
This complex strongly resembies the linear crinuciear mixed exidstion state manganese complexes $\left[\left(\mathrm{Me}_{3}-\mathrm{tacn}\right) \mathrm{Mn}(\mathrm{III})(\text { (} \mu \text {-uiox })_{3} \mathrm{M}(\mathrm{II}) \mathrm{Mn}(\mathrm{III})\left(\mathrm{Me}_{3}\right.\right.$-tacn) $\left(\mathrm{ClO}_{4}\right)_{2}$. $\mathrm{M}(\mathrm{II})=\mathrm{Mn}, \mathrm{Cu}$ and $\mathrm{Zn}: \mathrm{Me}$, -tacn $=1,4,7$ trimechyll.,4,7-(riazacyclononane: $\quad \mathrm{H}_{2}$ niox $=$ cyclohex-ane-1,2-dione) published by Birkelbach et al. [36,39]. ln

 waters omitre:i.
contrast to 1 , these complexes consist of a centrul M(II) ion chelated by three niox ${ }^{2-}$ ligands in a trigonal prisfeatic environment with an entirely N -donor atom coordination sphere, and are then bridged to the two terminal $\mathrm{Mn}(\mathrm{III})$ ions by the oxime groups of the niox ${ }^{2-}$ ligands. The terminal Mn(III) ions are in tum capped by Mer-tacn and thus possess a distorted octahedral $\mathrm{N}_{3} \mathrm{O}_{3}$ coordination environment. Other lincar Mn(III) Mn (II)Mn(III) examples are known [40].

Each cation in 1 is linked to its neighbour along the c* axis via hydrogen bonding between the cetion imidate protons and the nitrate counter ion $(\mathrm{N}(9) \cdots \mathrm{O}(11 \mathrm{I})=2.90(1) \dot{\mathrm{A}})($ Fig. 2), which is disordered over two prositions related by a $48.8(1)^{\circ}$ rotation about the nitrogen atom. This disorder in the nitrate oxygen nay be due to the hydrogen bonding between the three imidate protons each on adjacent complexes that are staggered 60° with respect to each other.

3.2.2. $\left(\mathrm{Mc} \mathrm{N}_{4}\right)_{2}\left(\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{caO})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0}\right)-$

 $\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2)Complex 2 crystallises in the monoclinic space group C2fc. with the tetranuclear manganese cluster lying on an inversion centre. Table 3 contains selected bond distances and angles for 2. Fig, 3 shows the cluster and the atom labelling scheme. The asymmetric unit contains half of the cluster, one tetramethylammonium and two nitrate counter ions and one lattice water. The cluster contains a $\left[\mathrm{Mn}_{4}\left(\mathrm{H}_{3}-\mathrm{O}\right)_{2}\right]^{6+}$ core (2 Mn (II). $2 \mathrm{Mn}(\mathrm{III})$) in which the four Mnatoms lie in a diamond shaped plane with $\mathrm{Mn}(\mathrm{f}) \cdots \mathrm{Mn}(2)=3.546(2) A$ being considerably longer than $\operatorname{Mn}(2) \cdots \operatorname{Mn}\left(2^{\prime}\right)=2.773(2) A$. This is due to the latter pair being brideed by two μ_{3} -O^{2-} atoms $\left(\mathrm{Mn}(2)-\mathrm{O}(1)=1.844(3)(2) K\right.$ und $\mathrm{Mn}\left(2^{2}\right)-$ $O(i)=1.837(5) \AA)$. whereus tite former pair are bridged by the two atom N-O moiety of the cao ${ }^{-}$ligand $(\mathrm{Mn}(1)-\mathrm{N}(3)=2.436(6) \AA$ and $\mathrm{O}(2)-\mathrm{Mn}(2)=2.003(5)$

 clarity).

Fig. 3. Crystal strueture of 2 with atom jabeling scheme (thennal ellipswids shown at sorin probability). Hydingen utorns, counter ions and lantice waters onnitled.
A) and a single $\mu_{3}-\mathrm{O}^{2-}$ atom $(\mathrm{Mn}(1)-\mathrm{O}(1)=2.077(5)$ \dot{A}. The $\mu_{3} \mathrm{O}^{2-}$ atom lies $0.190(6) \dot{A}$ out of the plane defined by the four manganese atoms. On the periphery of the $\left[\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{\delta+}$ core are four chelating ca ${ }^{-}$ ligands (two of which are unique) which tie roughly coplanar with the core. In the axial positions of the metal coordination spheres are six terminal water molecules, two each on $\operatorname{Mn}(1)$ and $\mathrm{Mn}\left(\mathrm{l}^{1}\right)$ and one each on $\mathrm{Mn}(2)$ and $\mathrm{Mn}\left(\mathrm{i}^{2}\right)$, and two terminal acetonitrile ligands, one ench on $\mathrm{Mn}(2)$ and $\mathrm{Mn}\left(\mathbf{2}^{i}\right)$.

The two $\mathrm{Mn}(\mathrm{II})$ atoms $\left(\mathrm{Mn}(1)\right.$ and $\mathrm{Mn}\left(\mathrm{b}^{\mathrm{i}}\right)$ are thus seven coordinate in an approximate pentagonal bipyramidal arrangement. The carbonyl oxygens ($O(9)$ and $0(17)$) and oxime nitrogens ($\mathrm{N}(3)$ and $\mathrm{N}(11)$) of two cao ${ }^{-}$ligands and one $\mu_{3}-\mathrm{O}^{2-}$ ion ($\mathrm{O}(1)$) make up the pentagonal plane of the bipyramid, whereas the apices are fitled by the two axial wates ($\mathrm{O}(18$) and $\mathrm{O}(19)$). The five angles around the plane are $68.4(2)^{\circ}$, $68.5(2)^{\circ}$, $73.9(2)^{\circ}, 74.6(2)^{\circ}$ and $74.6(2)^{\circ}$. The sum of these angles being 360° attests to the planarity of the cor rdination environment. The non-coordinating nitrile groups of the two cao ${ }^{-}$ligands chelating each $\mathrm{Mn}(\mathrm{II})$ ion are bent sliglutly away from the plane of the $\left(\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{6+}$ core. $\operatorname{Mn}(2)$ and $\operatorname{Mn}\left(2^{2}\right)$ were assigned us $\operatorname{Mn}(111)$ ions on the basis of the significant Jahn-Teller elongation in the direction of the axial water and acetonitrile ligands $(\mathrm{Mn}(2)-\mathrm{O}(20)=2.296(8) \quad A$ and $\mathrm{Mn}(2)-\mathrm{N}(21)=$ $2.372(9)$ A. where the average equatorial bond dis-
tance $=1.92$ A). as expected for a high-spin $\mathrm{Mn}(1 \mathrm{II})\left(\mathrm{d}^{4}\right)$ in near-octahedral geomelry.
A complex network of hydrogen bonding exists between the clusters and the intercalated water and nitrate anions. Inspection of the cluster shows that there are several sites capable of hydrogen bonding, and the cluster packing is determined by the hydrogen bonding interactions. Broadly speaking there are two intersecting hydrogen bonding networks. Firstly, a sheet in the abplane is formed by bydrogen bonding interactions between adjacent clusters (jerpendicular to the plane of the clusters) via the terminal waters. the nitrate anions and the intercalated water molecule. Secondly, another sheet network is formed in the ac-plane by hydrogen bonding between the tenninal amine and the nitrile groups of the can ${ }^{-}$ligand on adjacent ciusters. The tetramethylammonium cations pack between the sheets in the ab-plane.

The network in the ab-plane involves multiple hydrogen bonding interactions and can be broken down into two types of intersecting chains. The terminal water oxygen atom $\mathrm{O}(19)$ on $\mathrm{Mn}(2)$ hydrogen bonds to two symmetry related nitrate anions $\left(O(39) \cdots O\left(52^{i v}\right)=\right.$ 3.07(2). $\quad O(19) \cdots O(53)=2.63(2) \quad \AA \quad$ and $\left.O\left(52^{i v}\right) \cdots O(19) \cdots O(53)=124.9(7)^{c}\right)$ which in turn both hydrogen bond to a symmetry related O (19) on an adjacent cluster. The pattern thus formed is a stepped chain of clusters (Fig. 4(a)). In addition another chain in

Fig. 4. (i) The suepped chain section of tbe hydrogen bond network, (desbed) of 2 in the ab-plane. (b) Second part of the hydrogen bonded network (dashodl of 2 in the ofr-platic. (c) Hydrogen borndad network (dasbed) of 2 in the or-plane-

Fig. 4 (Continuch $)$
this plane exists that involves hydrogen bonding from the water $O(18)$ coordinated to $\mathrm{Mn}(2)$ to both a nitrate anion $\left(O(18) \cdots O\left(43^{i}\right)=2.86(2) \mathrm{A}\right)$ and a disordered water (average $O \cdots O$ distance $=2.9(1) \AA$) which in turn hydrogen bond to their symmetry related partners (nitrute-water average $0 \cdots 0$ distance $=2.37$ (9) A). which then also hydrogen bond to $O(18)$ on the adjacent cluster (Fig. 4(b)). The water coordinated to the central $\mathrm{Mn}(1)$ also hydrogen bonds to the nearby nitrate anion that is also hydrogen bonded to $\mathrm{O}(18)(\mathrm{O}(20) \ldots \mathrm{O}(43)=$ 2.82(2) A).

The sheet in the ac-plane (Fig. $4(\mathrm{c})$) is set up by the terminal amines and nitriles of the two unique cao ${ }^{-}$ ligands, so that the amine on one cluster hydrogen bonds to the pitrile on the adjacent cluster $\left(\mathrm{N}(8) \cdots \mathrm{N}\left(6^{i \mathrm{iit}}\right)=3.00(1) \quad \AA . \quad \mathrm{N}(8)-\mathrm{H}(8 \mathrm{~B}) \cdots \mathrm{N}\left(6^{i \mathrm{ii}}\right)=\right.$ $149.4^{e^{6}}$ and $N(16) \cdots N\left(14^{4}\right)=3.03(1) \quad \AA$. $N(16)-$ $\left.\mathrm{H}(16 \mathrm{~B}) \cdots \mathrm{N}\left(14^{\mathrm{v}}\right)=152.9^{\circ}\right)$. All hydrogen bonds in the plane are directed parallel to the c-axis direction. The topology of this sheet is $(4,4)$. Viewed parallel to the c axis direction the sheets undulate due to the planes of adjacent clusters in the a-axis direction being on an angle of $3.48(3)^{\circ}$ to each other (mean planes of Mn atoms). The terminal amine on one of the cao ${ }^{-}$ligands also hydrogen bonds to a nearby nitrate anion $\left(N(8) \cdots O\left(43^{\text {bi }}\right)=2.90(2) \quad \dot{A}, N(B)-H(8 A) \cdots O\left(43^{i 1}\right)=\right.$ 175.9°) and correspondingly the other amine hydrogen tonds to the disordered lattice water molecule with an
average distance of $2.79(7) \AA$. Thus the amine groups also participate in the hydrogen bonded network in the ab-plane.

3.3. Magnetion

3.3.1. $/ \mathrm{Mn}_{3}\left(\mathrm{mcoc}_{6} \mathrm{JNO}_{3} \cdot 2 \mathrm{H}_{4} \mathrm{O}\right.$ (1)

In Fig. $5(a)$ it can be seen that the magnetic moment. per Mng. decreases a litte from $9.5 \mu_{\mathrm{B}}$ at 300 K to $\sim 9 \mu_{\mathrm{B}}$ at $\sim 100 \mathrm{~K}$. then more rapidly to reach a shoulder value oi' $5.5 \mu_{\mathrm{g}}$ at 5 K before reaching $4.7 \mu_{\mathrm{p}}$ at 2 K . The uncoupled ($g=2.0$) value for $S_{1}=5 / 2, S_{2}=4 / 2, S_{3}=5 / 2$ is $9.70 \mu \mathrm{~m}$ and thus very weak antiferromagnetic coupling is occurring. The 2 K value is suggestive of $a S_{T}=2$ coupled ground state but, since J values are small, there will be many M_{s} energy levels populated because of their close spacing of a few cm^{-1}. The crossover of relevant S_{T} levels occur at the following α molues where $\alpha=J_{1} J_{12}$ and J_{12} is negative:
$S_{1}=3 \quad \alpha<0.4$
$S_{\mathrm{T}}=2 \quad 0.4<x<0.5$
$S_{\mathrm{T}}=1 \quad \alpha>0.5$
The spin Hamitonian employed is that commonly used for a linear trimer:
$H=-2 J_{12}\left(S_{1} \cdot S_{2}+S_{2} \cdot S_{3}\right)-2 J_{13} S_{2} \cdot S_{3}$
The field-dependent thermodynamic form of suscept-

Fig. 5. (a) Plot of observed $f_{\text {ert }}$ data for complex 1 (2-300 K. $H=1$ T). Calculatod lines are obtained using the parameter sets (in) to (c) (xos texi) afe given. (a) $\cdots \cdots$. (b) $\cdots \cdots$, (c) - . (b) Ploc of observed $/ \mathrm{N}$ dats for comipler t in regiod $2-50 \mathrm{~K}$ with colculated lines for purameter sets (a) $\cdots \cdots$, (b) $\cdots \cdots \cdot$, (c) - (see text).
ibility was employed [17.18.41]. Wide ranges of parameter values were explored in trying to fit the whole susceptibility data between $2-304 \mathrm{~K}$. The region $12-120$ K was the hardest to reproduce. Using $\chi_{\text {trip }}$ of 300 x $10^{-6} \mathrm{can}^{3} \mathrm{~mol}^{-1}$, the following three sets gave quite good fits:
a) $g=1.99, J_{12}=-1.02 \mathrm{~cm}^{-1}, J_{13}=-0.53 \mathrm{~cm}^{-1}$, $\alpha=0.52, S_{\mathrm{T}}=1$ ground;
b) $g=2.00, J_{12}=-1.16 \mathrm{cn}^{-1}, J_{13}=-0.58 \mathrm{~cm}^{-1}$, $x=0.50, \mathcal{S}_{\tau}=1$ or 2 ground;
c) $g=2.02, J_{12}=-1.59 \mathrm{~cm}^{-1}, J_{13}=-0.67 \mathrm{~cm}^{-1}$. $a=0.42, S_{\mathrm{T}}=2$ ground.

Fit (c) was better than (a) uad (b) between 10-120 K but worse below 6 K (Fig. 5 (b)). It is possible that the small discrepancy below 6 K arises through trimertrimer interactions. Variable field magnetisation isotherms ($T=2-20 \mathrm{~K}, H=0-5 \mathrm{~T}$) were measured to help to identify the S_{T} ground state. Saturation in M is not complete even at 2 K and ST .

Calculation of the M versus H plots at 2 K and $0-5 \mathrm{~T}$ using the purameter sets (a) to (c) gave the worst agreement for set (c) with calculated M values being

Fic. 6. Plots of isothernul $(2,3,4 \mathrm{~K})$ magnetisation daty vs. ficld, \boldsymbol{H}. for comptex 1. Celculated lines (-2 K. $3 \mathrm{~K}, \cdots+\cdots \mathrm{K})$ use garameter set (a) given in the text and the apin Hamiltonian given. which does not include reto-field spliting terms.
bigger than observed at all temperature and field combinations. Sets (a) and (b) gave similar calculated values and showed good agreement for the three temperatures with fields between $0-1.5 \mathrm{~T}$ but with calculated M values greater than those observed above 1.5 T (Fig. 6). It is interesting to note that the $2 \mathrm{~K} / 5 \mathrm{~T}$ calculated values of M are significsntly greater than $4 N \beta$ anticipated for $S_{T}=2$ lowest in energy because of thermal population of the $S_{\mathrm{T}}=3$ and $S_{\mathrm{T}}=1$ Zeeman levels close by. In summary, the a value appears to be close to 0.5 . the crossover point of $S_{T}=1$ and 2 . The discrepancies between observed and calculated M values above fieids of 1.5 T are most likely because of zero-field splituing effects combined with Zeeman effects from closely spaced S_{T} levels. There is not an isolated S_{T} grou d state for complex I and so further attempts to calculate D values have not been made. Ploss of observed M versus H / T (K). either isothermal (2-20 K) or isolield [17,18], show non-superposition of the lines and are thus indicative of zero-field splitting effects. Weak trimer-trimer effects may also play a minor part in the higher field regimes.

The J_{12} value for 1 of $\sim-1 \mathrm{~cm}^{-1}$, which results from $\mathrm{Mn}(\mathrm{III})-\mathrm{O}-\mathrm{N}(\mathrm{R})-\mathrm{Mn}(\mathrm{II})$ superexchange pathwnys can be compared with the related nioximuto- and dimethyl-glyoximato-bridging in the work of Birkelbach et al. [38.39] in which J_{12} was $+4.7 \mathrm{~cm}^{-1}$ (with $J_{13}=-3.0$ cm^{-1}). The differenee in sign of J_{12} results from the net effects of the ferromagnetic and antiferromagretic contributions to J_{12} which, in turn, will be inlluenced by subtle coordination differences on the $\mathrm{Mn}(\mathrm{III})$ and $\mathrm{Mn}(\mathrm{II})$ centres and, to a lesser degree by the terminal binding groups. These structural differences have been described above in Section 3.2.1.

[^2]

Fiz 7. Piol of ohserved $\mu_{\text {clf }}$ data for complex $2(2-300 \mathrm{~K}, H=1$ T). Best-fil calculatal lipe obtained using the parameler set given in the text.

Fig. 8. Plats of isothermal (2, 3, 4 K) magnetisation data vs. Fiek. H. for complex 2. Calculated lines (...-2 $\mathrm{K},-3 \mathrm{~K}, \ldots, 4 \mathrm{~K}$) use the parameter sel given in the text and in Tatble 4 . The kinks in the colculated cones reinet the number of cakeukated points uscil in the plotting routine.
field of 1 T and dispersed in Vaseline to prevent torquing. The moment decreases, graduilly, from $8.65 \mu_{\mathrm{H}}$ at 300 K to reach a plateau salue of $\sim 7.8 \mu_{\mathrm{B}}$ between $50-10 \mathrm{~K}$, then more rapidly reaching $6.85 \mu_{\mathrm{B}}$ at 2 K and still decreasing (Fig. 7). The spin-only value for
two $\operatorname{Mn}(111)(S=2)$ pius two $\operatorname{Mn}(11)(S=5 / 2)$ of $\mu=$ $10.86 \mu_{u}$ is bigger than the observed value at 300 K . Thus antiferromagoetic coupling is occurting. The "butterfly" tetranuclear arrangement of spins, with two $\mathrm{Mn}(\mathrm{IIII})\left(22^{\prime}\right)$ in the body positions and two $\mathrm{Mn}(\mathrm{II})\left(1.1^{\prime}\right)$) at the wingtips was employed in the ($-2 / S_{1} \cdot S_{2}$) spia Hamillonian [17,18,41] with the spin centres numbered as follows.

The Kambe vector coupling approach has been described for this spin combination [17.18.41]. There are 110 possible spin states with S_{T}, the total spin of the cluster, varying from 0 to 9 . We use the fiedd-dependent thermodynamic form of susceptibility, in combination with matrix diagonalisation methods, to fit the susceptibility data.
The best-fit to the data is obtained for the parameter set $g=1.88 . J_{12}=-2.5 \mathrm{~cm}^{-1}, J_{13}=-46.0 \mathrm{~cm}^{-1}, x=$ $J_{1} / J_{12}=18.4, J_{24}=0$. These parameters also give good agreement with the 2,3 and 4 T magnetisation isotherms (Fig. 8). Interestingly, the ground state under these conditions. viz $\alpha>6, J_{12}$ and J_{13} negative and with J_{13} large, is made up of the six degenerate levels $S_{\top}=0,1,2$, 3, 4. 5 and they correspond to $S_{13}=0$. Introduction of a ting J_{24} value of $-0.02 \mathrm{~cm}^{-1}$ has only a mininal effect on the quality of fit. Larger J_{74} values such as ± 0.1 mn^{-1}. which correspond 10 splitting un of the six S_{T} levels. lead to much poorer fits. Thus," inot have an isolated S_{T} ground level in 2 and plots of M versus $H /$ temperature, much used by Hendrickson and Christou [17,18] to show zero-field splitting of isolated ground states, yicld isofield lines all superimposed on each other thus indicating a lack of zero-field spliting.

Table 4

Cluster	J_{12}	J_{13}	$\alpha=J_{1} y^{\prime} J_{2}$	\boldsymbol{g}	Ground S_{T}	References
2	-2.5	-46.0	18.4	1.88	$0.5{ }^{4}$	*
$\mathrm{Mar}_{4}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}(\mathrm{bing})_{2}{ }^{-}$	-1.97	-3.12	1.59	1.70	2	[42]
	-1.50	-2.80	1.89	1.47	2	[43]
	+0.20	+4.05	20.4	1.84	8 ± 1	[17]
$\left[\mathrm{Mn}_{4}\left(\mathrm{O}_{2} \mathrm{CCFi}_{3}\right)_{2}\left(\mathrm{pdauH} \mathrm{l}_{6}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right.$	+0.5S	+4.35	7.94	1.89	9	[17]
[Mneflmip) $\mathrm{Br}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1} \mathrm{Br}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}{ }^{\text {c }}$	+0.47	+4.42	9.43	1.94	9	[1k]

[^3]The J values and ground S_{\top} states for other revently reported $\mathrm{Mn}(\mathrm{If})_{2} \mathrm{Mn}(\mathrm{II})_{2}$ planar-rhomboidal compounds are compared uith those of 2 in Table 4. The first three compounds have μ_{x}-oxo bridges and J_{13} (body-body $\mathrm{Mn}(111) \ldots \mathrm{Mn}(111)$) is much more negative for complex 2 than for the others. The μ_{3}-phenoxo bridged compounds containing $\mathrm{pdmH}{ }^{-}$and hmp^{-} ligands show ferromagnetic J_{12} and J_{13} values possibly becuuse of the nature of the orbital overlap involving the phenoxo oxygen. These J values lead to large $S_{\text {T ground }}$ state values with negative zero-field splitling. Such reatures are prerequisites for single-molecule magnetic (SMM) behaviour and this was confirmed for these molecules by observing frequency dependent out ofphase components $x \ddot{\mathrm{M}}$. We would predict that complex 2 should not exhibit SMM behaviour because of a lack of zero-field splitting. Measurements of the AC $\times \ddot{M}$ values versus temperature ($2-10 \mathrm{~K}$; oscillation frequencies $10,50,100,250,500.1500 \mathrm{~Hz}$ AC feeld amplitude 3.5 Oc) showed no maximum in this temperature range and thus 2 does not display SMM behaviour.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Dalu Centre. CCDC Nos. 190372 and 190373 . Copies of this information may be obtained free of charge from the Director. CCDC, 12 Union Road, Cambridge, CB2 IEZ. UK (fax: +44-1223-336033; e-mail: deposit@uode.cam.ac.uk or www: hitp://uww.eede.cam. ac. $\mathbf{u k}$).

Acknowledgements

This work was supported by an ARC Large Grant (KSM), a Sir J. McNeil postgraduate scholarship (D.J.P.) and an ARC Fellowship (S.R.B.).

Reforences

[1] T.G. Currell. A.M. T)ryshkin, G.C. Dismukes. J. Biel. Inorg. Chem. 7 (2(0)02) 2.
[2] M. Yagi, M, Kanko, Chem. Rev. 101 (2001) 2].
[3] O. Aromi, M.W. Wemple, S.J. Aubin, K. Fuling, D.N. Hendrickson. G. Christou, J. Am. Chem. Soc. 120 (1998) 58S0.
$[4]$ S. Wang. H.-L. Tsui. E. Libly, K. Folting, W.E. Streib, D.N. Hendrickson, G. Christou, loorg. Chem. 35 (1996) 7578.
[5] J. Mexsinger, J.H. Rohblee, U. Bergmann. C. Fernunder. P. 6 latzel. H. Visser, R.M. Cinco, K.L. MicFarlade, E. Bellacehio. S.A. Pizarto, S.P. Cranicr, K. Sauer, M.P. Klcin. V.K. Yachandra. J. Anl. Chem. Soc. 123 (2001) 7604.
[6] J.H. Robhlec J. Messinger, R.M. Cinco, K.L. McFarlance C Fernander SA. Pizarto. K. Sauer. V.E. Vachandra. J. Am. Clem. Soc. 124 (2002) 7459.
(7] T. Lis, Actu Cnystallopy., Sect. B 36 (1990) 2042
[8] M. Soler. P. Artus, 若. Folling, J.C. Huftman. D.N. Hendrickson. G. Christou, Enorg. Chem. 20 (2001) 4902 .
[9] Y. Miyaznki, A. Bhatucharjec. M. Nakano, K. Suito. S.MJ. Aubin H.J. Eppley, G. Curiston. D.N. Headrieksom. M. Sorai, Inorg. Chem. 40 (2001) 6632
[10] T. Kuroda-Sown, M. Lam, A.L. Rbeingold, C. Frommerr, W.M. Reiff, M. Nakano, J. Yoo. A.L. Maniero, L.-C. Brunel. G. Coristou. D.N. Hendrickson, Itrorg. Chem. 40 ($2(\mathrm{~N}) \mathrm{I}$) t 46 f .
[1I] S. Aubin, MJ.Z Sun, H.J. Eppley, E. Runterger, I.A. Gucrei, K. Folling. A.L. Rheingold. G. Christou. D.N. Hendrickwen. Polyhedron 20 (3 301) 1139.
[12] P. Artuk, C. Beakovic. J. Yoo, W.E. Strib. I.C. Brund, D.N. Hendrickson, G. Christou, Inerg. Chem. 40 \{2001) 4199.
[13| B. Barbera. L. Thomas, F. Lionii. 1. Chiorescu, A. Sulpior, J. Magn. Megq. Mater. 200 (1999) 167.
114) W. Wersudoffer, N. Aliaga-Akalde. D.N. Hendricksor, G. Christou, Nature $416(2002) 406$.
[15] S.MJ. Aubin, N.R. Dilley, L. Pardi, J. Krryack, M.W. Wemplo. L.-C. Brunel. M.B. Mapic. G. Chrishou, D.N. Hendricksoti, J. Am. Chern. Soc. 120 (1998) 499.
[16] S.M.J. Aubin. M.W. Wampic, D.M. Adams, H.-L. Tsai. G. Christon, D.N. Hendriakser. J. Atn. Chem. Scc. 118 (1996) 7746.
[17] J. Yoo, E.K. Brechin, A. Yamaguchi, M. Nakano, J.C. Huffman, A.L. Maniero, L.C. Brusel, K. Awagh, H. Ishimoto, G. Christot D.N. Elendrickson, Inorg. Cham. 39 (2000) 3615.
[18] 3. Yoo, A. Yamaguchi, M. Nakano. J. Krystick, W.E. Strib. L.C. Brunel. H. Ishitnoto, G. Christou, D.N. Hendrickson, Inore. Chent, 40 (2001) 4694.
[19] A.-L. Barra, D. Fablo, A. Caneschi, D. Gatteschi, C. Paulsen, C. Sangregorio. R. Sessoli, L. Sorace. Chem. Phys. Chern. 2 (2001) 523.
[20] Y. Pontilion, A. Caocscti, D. Gattexhi, R. Sessoli, E. Ressouche, J. Schweixer, E. Lelievte-Beria, J. Am. Chem. Soc. 121 (1999) 53.42.
[2I] A.L. Barry, D. Gatteschi, R. Sessoti, Cbem. Eur, J. 6 (2000) 1608.
[22] A. Cuneschi, D. Gattrechi, C. Sangregorio, R. Seseoti, A. Sornce, A. Comia, M.A. Novak, C. Psulsen, W. Wernedorier, J. Mapn. Mogn. Mattr. 200 (1999) 182.
[(3) S.L. Castro, Z. Sun, C-M. Grant. J.C. Bollinger, D.N. Hendrickson. G. Christow, 3. Am. Ghern. Soc 120 (1998) 2365 .
[24) C. Cudiou. M. Murric, C. Poulsen, V. Villar. W. Werrsdoffer. R.E.P. Winpeuny, J. Chem. Soc. Chen. Commur (2001) 2666.
[25] J3. Sokol. A.G. Hec, J.R. Long, J. Am, Chem. Soc. J24 (2002) 7656.
[2f] S.R. Batken, P. Jensen. C.]. Kepert. M. Kurmoo, B. Moubanuki. K.S. Murray, D.J. Price, J. Chem. Soc., Dalion Trans, (1899) 2987.
[27] D.J. Prike, S.R. Uatten. B. Moubaraki, K.S. Murruy, J. Chem. Soc. Chem. Commun. (20102) 162 .
(2时 G. Longo, Gazz Chim. Ital. 61 (1931) 575.
[19] 2. Otuinowski. W. Minor, Mehods Enzymol. 276 (1997) 307.
[30] G.M. Sheldrick, surix-97, Program for Cyzlal Stricture Refinement. Univerrity of Göttingen. Gottingen, Germady, 1997.
[31] B.J. Kcanedy, K.S. Murray, twor: Chem. 24 (1985) 155 ?
[32] M. Kivastijovi. J. Kohout, J.W, Buchter, R. Boca, J. Kozisk, L. Heter, Coord. Chem Rev. 175 (1998) 17.
[3:] M. Dunaj-Juroo, D. Miklos, L. Potocnak, L. Jafer, Acta Crystalloger. Sect. C $\$ 4$ (1998) 1763.
[34] M. Hustijovi. J. Kohour, J. Kazsek, I. Svoboda, J. Coord. Chem. 47 (1999) 573 .
[35] J.W., Buchler, M. Hvastijovi, J. Kohout, J. Kozizek. Transition Mes. Cbem. 23 (1998) 215.
[36] D. Price, S.R. Batien. B. Moubaraki, K.S. Murray, unpublished results.
[37] N. Anulsamy, D.S. Bohle. J. Oty. Chem. 65 (2000) 1139.
$[3 \$] \mathbf{F}$, Birkelbaih, T. Weyhermuller. M. Leagen. M, Gerdan, A.X Trautwein, K. Wiggharit, P. Chaudburi, J. Chem. Sic., Dalton Trans. (1997) 4529.
[39] F. Birkelhach. U. Hotorke, H.-J. Hauph, C. Butzlaff, Aㅊ․ Trautwein, K. Wieghardi. P. Chaudhuri. Inotg. Chem. 37 (1998) 2000.
[100 X. Li. D.P. Kessiswoglou, M.L. Kirk, C.J. Bender, Y.L. Pworato Inorg. Chern 27 (1948) J
[41] K.S. Murray, Adv. Inong. Chem. 43 (1999) 261.
†tin J.B. Yinmat, C. Clustmas, H.R. Chang. Q. Li. P.D.W. Boyd J.C. Huthman D.N. Hentricksom, G. Christon. J. Am. Chem suc. 111 (1989) 2086.
[43] H.H. Thorp, J.E. Satruaki, RJ. Kulawicc, G.W. Brudvig. R.H Crabtree. G.C. Papselthymiou. Inarg. Chera. 30 (1991) 1153.

APPENDIX 3: CRYSTALLOGRAPHIC

INFORMATION

CD-ROM

The code for each crystal structure gives the file stem for each of the SHELX-97 refinement files on the attached CD-ROM.

CHAPTER 2

Compound	File stem
$\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	dp4_dos
$\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\text { terpy })\right]_{n}$	dp14v2
$\left\{\left[\mathrm{Mn}(\mathrm{dca})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { terpy })\right](\text { dca })\right\}_{n}$	dp13v2

CHAPTER 3

Compound	File stem
$[\mathrm{Mn}(\text { salen })(\mathrm{dca})]_{n}$	dp 07 v 2
$[\mathrm{Fe}(\text { salen })(\mathrm{dca})]_{n}$	tc 01
$[\mathrm{Mn}(\text { sal-o-phen })(\mathrm{dca})]_{n}$	dp 44
$[\mathrm{Fe}(\text { sal-o-phen })(\mathrm{dca})]_{n}$	$\mathrm{dp17}$
$[\mathrm{Mn}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$	$\mathrm{dp27}$
$[\mathrm{Fe}((\pm) \text {-saltch })(\mathrm{dca})]_{n}$	db 02 v 2

CHAPTER 4

Compound	File stem
$\left[\mathrm{Mn}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$	dp 09 v 8 ba
$\left[\mathrm{Fe}\left(\mathrm{acenH} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$	dpl 10 v 2 a
$\left[\mathrm{Mn}\left(\mathrm{actch} \mathrm{H}_{2}\right)(\mathrm{dca})_{2}\right]$	$\mathrm{dp16v} 2$
$\left.\left[\mathrm{Fe}(\mathrm{actchH})_{2}\right)(\mathrm{dca})_{2}\right]$	dpl 5
$\operatorname{trans}-\left[\mathrm{Mn}(\mathrm{acenH})_{2}(\mathrm{dcnm})_{2}\right]$	$\mathrm{dpl1v} 4 \mathrm{a}$

CHAPTER 5

Compound	File stem
$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\mathrm{dca})_{2} \mathrm{NO}_{2}\right] \cdot \mathrm{MeCN}$	dp06abs
$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Ni}(\mathrm{dca})_{2} \mathrm{NO}_{2}\right] \cdot \mathrm{MeCN}$	dp18ov2
$\mathrm{Ph}_{4} \mathrm{P}\left[\mathrm{Co}(\right.$ dca $\left.) \mathrm{Br}_{2}\right]$	dp 36 v 1

CHAPTER 6

Compound File stem
$\left\{\left[\mathrm{Mn}(\mu-\mathrm{OH})(\mu-\mathrm{OAc})_{2}\right] \cdot \mathrm{HOAc} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n} \quad$ dp29av5

CHAPTER 7

Compound	File stem
$\left[\mathrm{Mn}_{16} \mathrm{O}_{16}(\mathrm{OMe})_{6}(\mathrm{OAc})_{16}(\mathrm{MeOH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$	dp24v2
$\left[\mathrm{Mn}(\mu-\mathrm{OMe})(\mu-\mathrm{OAc})_{2}\right]_{n}$	$\mathrm{dp26}$

CHAPTER 9

Compound	File stem
$\left[\mathrm{Mn}_{3}(\mathrm{mcoe})_{6}\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	dp41v2
$\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{cao})_{4}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	dp21atst
$\left[\mathrm{Ni}(\mathrm{cao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	dp01v3
$\left[\mathrm{Cu}(\mathrm{mcoe})_{2}(\mathrm{MeOH})_{2}\right]$	dp9dos

[^0]: ${ }^{(a)} R_{1}=\Sigma| | F_{0}\left|-\left|F_{\mathrm{d}}\right|\right| / \Sigma\left|F_{0}\right|, w R_{2}=\left\{\Sigma\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right\}\right\}^{1 / 2}$

[^1]: - Correspording author. Tel.: +61-3-9905-4512; fax: +61-3-9905 4597

[^2]: 3.3.2. $\left(\mathrm{Me}_{4} \mathrm{~N}_{2}\left(\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{cro})_{d}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} /-\right.\right.$ ($\left.\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2)
 Two fresh samples were measured and very similar $\mu_{\text {elr }}\left(\right.$ per Mn_{4}) data were obtained when measured in a

[^3]: - blpy = 2,2'-bipyridine.
 ${ }^{6}$ pdimH ${ }^{-2}=$ menontion of pyidine-26-dimethanol.
 " hmp" manion of 2-hydroxymethylpyridine.
 ${ }^{0}$ Six degrnerate kevels.
 - This work.

