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Errata

p 61 para 3, second sentence: “In our model of liquid light, this is evident in Egs. (2.71)
and (2.72)” for “In our mode} of liquid light, this is evident in Eqs. (2.71) and (2.71)”

p 65 para 2, second last sentence: “Recently Silverman and Mallett considered a neu-
tral self-interacting scalar ficld with spontaneocusly brcken symmetry coupled to gravity
I (Silverman and Mallett 20012, 2001b and 2002)” for “Recently Silverman and Mallett

{20012} considered a neutral self-interacting scalar field with spontaneously broken sym-
metry coupled to gravity”

p 213 between the references Silverman and Mallett (2001b) and Sin (1994), insert the

reference:

Silverman, M.P. and Mallett, R.L. (2002), Gen. Rel. Grav. 34, 633.
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Summary

This thesis investigates the formation and dynamics of topological defects that result from

symmetry breaking phase transitions in R?*!, R**! and R1*! spacetime. We examine the
behaviour of vortices, cosmic strings, domain walls and mouopoles from the perspectives
of condensed matter physics and particle cosmology.

Chapter 2 analyzes the evolution of vortex defects in a rotating Bose-Einstein conden-
sate (BEC). Following a phase transition to the BEC state, vortices and anti-vortices form
in pairs as a consequence of conservation of topological charge. It is found that a rotating
BEC imprints a background phase gradient on the condensate, creating a confining (irap)
potential for vortices and expelling anti-vortices. The competition between the confining
potential and repulsive inter-vortex interactions causes an initially random vortex configu-

ration to evolve toward a triangular lattice. The behaviour of quantum vortices in a BEC

is in marked contrast to vortices in a classical condensate. The latter arises in classical

electrodynamics, for example, when light in a cubic-quintic non-lincar medium undergoes
a “phase transition” to a liquid light condensate (LLC). We show that vortices in a LLC
do not experience mutually repulsive interactions; instead they rotate about each other
in a stable configuration. The origin of the difference in vortex behaviour is explored by
examining the role of viscosity in classical and quantum fluids.

Chapter 3 investigates a self-interacting scalar matter field, which has been postulated
to give rise to a weakly interacting degenerate “ether” (WIDGET) in the carly Universe.
Following a late-time cosmological phase transition these scalar particles can form a BEC,
which is considered as a candidate for cold dark matter. The condensate forms a spherical
halo around a rotating protogalaxy. Rotation of the dark matter condensate nucleates vor-
tices and imprints a background phase gradient on the condensate, establishing a trapping
potential for vortices. Numerical simulations show that the vortex number density, n,,, for
an initially Keplerian velocity profile (n, o r~1%), evolves toward a vortex lattice with
number density n, o< r~. This is consistent with a flat velocity profile for the dark mat-
ter condensate, in broad agreement with the observed rotation curves of spiral galaxies.

We also investigate gravitational interactions between dark matter and baryonic matter.




Gravitational drag results in baryonic matter adopting the same (fiat) velocity profile as
the dark matter condensate. This provides a novel explanation for the flat Universal Ro-
tation Curve of spiral galaxies and suggests that vortices in a rotating dark matter (scalar)
condensate may play a significant role in the evolution of spiral galaxies.

Chapters 4 and 5 examine topological defects within the context of particie cosmology.
Monopole defects are predicted to form in numbers that conflict with observational bounds,
based on cosmic magnetic fields and proton decay. Other defects, such as domain walls,
are inconsistent with data from the Cosmic Background Explorer (COBE) and the recent
Wilkinson Microwave Anisotropy Probe (WMAP). Chapter 4 examines the domain wall
problem. We explore the ramifications of symmetry breaking phase transitions, leading to
the formation of hybrid defects in which cosmic strings terminate on a domain wall. These
so called Dirichlet defects (or D-walls) are stable for a wide range of parameters and when
perturbations are imposed on the wall. However, a string connecting two domain walls
causes the walls to move toward each other, resulting in collision and annihilation. This
process is analogous to the Langacker-Pi mechanism for monopoles, and when invoked in
the context of D-walls provides a novel solution to the domain wall problem. Furthermore,
monopoles located between domain walls will also collide with the walls and annihilate.
In this scenario, both monopoles and domain walls are removed from the early Universe.

The topological defect problem is examined furiher in Chapter 5, where we extend
spacetime to 4 + 1 dimensions. We study monopoles in R**! spacetime, where they
behave like strings. It is found that the intercommutation rate for the string network
in R4 is very low. The energy density of a long string network is shown to vary as
Poo & ™15 while the energy density of the Universe has p oc t=2. This is consistent
with Kibble’s scaling model and confirms that a string network in 4 + 1 dimensions does
not have a scaling solution. These results would appear to rule out R*¥! spacetime as a
means of avoiding the monopole problem. However, if the ext:a dimension is compactified,
monopoles exist as loops, which collapse and annihilate in a time scale comparable to the
size of the compactified dimension. This result is then generalized to topological defects
in R%*! spacetime, with d — 3 compactified dimensions. It is found that introducing at
least one (extra) compactified dimension obviates the topological defect problem in the

carly Universe.




Vi

Finally, in Chapter 6 we comment on the implications of our results and identify

directions for future work.
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Units and Conventions

Unless otherwise specified we employ natural units throughout this thesis, in which
c=h=kp=1,
where the conversion between natural units and S1 units uses

GeV~1 =198 x 107 16m

GeV =~ 1.79 x 10~ kg

GeV~! 22 6.57 x 10~ %5,

Many of the simulations reported in the thesis assume a flat spacetime, in which the

Universe has zero curvature {k = 0). In flat spacetime we denote a {d + 1}-dimensional B
Universe by R%+!, where d is the number of spatial dimensions.

Relativistic models assume a spacetime metric with signature diag(+, —, —, —) in R3*+},
or diag(+, —, —, —, —) in R1¥1, Greck indices are used to label the spacetime coordinates,

ie., vy =0,1,2,3 in R3* or p,v, ... =0,1,2,3,4 in R4




CHAPTER 1

Introduction

This thesis presents numerical simulations of topological defects in R?+1, R3*+! and R1+!
spacetime. We investigate the formation and evolution of vortices, cosmic strings, do-
main walls and monopoles, and elucidate their role in condensed matter, astrophysics and
particle cosmology. Chapter 1 presents an overview of the theoretical models and the
underlying physical principles that lead to the formation of topological defects. We start

with a general discussion of phase transitions and topological defects in the early Universe.

1.1 Phase transitions and topological defects

The “Big Bang” model conjectures that the Universe came into being from an infinitely
dense hot state approximately fourteen billion years ago.! According to “Big Bang” cos-
mology the Universe has been expanding ever since the initial singularity. To understand
the very early Universe (i.e., as early as ¢ = 10730 seconds after the Big Bang) requires us
to utilize effective field theories of particle physics (referred te as Grand Unified Theories
or GUTs), which describe particle symmetries and interactions at very high energies. Fur-
ther, to ensure that these effective field theories provide a gauge invariant description of
particle interactions, they must exploit a mechanism known as symmetry breaking (Gold-
stone 1961, Goldstone et al. 1962 and Higgs 1964). Symmetry breaking occurs when
the symmetry of the Lagrangian is higher than that of the ground state of the system.
Particle symmetries that are broken at low temperaturcs are thought to be restored at suf-
ficiently high temperatures. As the Universe expanded and cooled from a dense hot state,
it is postulated that it underwent a series of symmetry breaking phase transitions, where

the strong, weak and electromagnetic forces became distinguishable.? These symmetry

! The most recent data from a one-year probe of the Cosmic Microwave Background Radiation (CMBR)
by the Wilkinson Microwave Anisotropy Probe (WMAP) reveals that the Universe is 13.7 billion years old
(Bennett el al. 2003).

®The GUT scale phase transition describes the separation of the strong and electroweak forces, which
occurred at 10'% GeV, or 163 seconds after the Big Bang. The electroweak phase transition describes
the separation of the weak and eiectromagnetic forces, which occurred at 10° GeV, or 10~!! seconds after
the Big Bang.




breaking phase transitions (based on field theoretic models) have numerous analogues in
condensed matter systems (see e.g., Kirzhnits 1972, Kirzhnits and Linde 1972, Zurek 1996
and Kibble 2002).

Symmetry breaking phase transitions in the early Universe are facilitated by spin-0
Higgs particles (Higgs 1966), described by the Higgs field, ®. For example, the simplest
realistic electroweak symmetry breaking model of Glashow, Salam and Weinberg (Glashow
1961, Salam 1968 and Weinberg 1967) is SU(2) xU(1) — U(1), in which the Higgs field is a
complex doublet.® Following a phase transition the vacuum expectation value of the Higgs
field adopts a non-zero value. Kibble (1976) predicted that topological defects would form
when the Universe underwent a phase transition. These cosmic topological defects can be
classified as monopoles ('t Hooft 1974 and Polyakov 1974), cosmic strings (Nielsen and
Olesen 1973), domain walls (Zel’dovich et al. 1975) or textures (Turok 1989), according
to the homotopy group, m,(M), of the vacuum manifold*, M; each homotopy group (and
thus each type of defect} is topologically distinct.

Monopoles, cosmic strings and domain walls i.¢ characterized by a large energy density.
For example, GUT monopoles have an energy density in the order of 108 GeV4 (~10%%
kgm™~?), GUT cosmic strings have a linear energy density in the order of 10% GeV? (~10%!
kgm™!), and GUT domain walls are characterized by sheets of energy density in the order
of 10%® GeV® (~10% kgm~2). These large densities are attributed to the energy of the
“false vacuum” ({$} = 0). Following a symmetry breaking phase transition an energy
“barrier” develops between the false vacuum (at the local maximum of the potential)
and the “true vacuum” ({(®) # 0) at the minimum of the potential. Topological defects
represent regions of false vacuum “trapped” within the true vacuum. The energy density
of a defect is given by the energy difference between the symmetric state ((®) = 0) and
the non-symmetric state ({2} # 0). Following the GUT phase transition the appearance
of massive topological defects is expected to have observable cosmological consequences.
For cxample, the gravitational effect of cosmic strings should initiate density anisotropy in
the early Universe, leading to Large Scale Structure (LSS) (Zeldovich 1980,Vilenkin 1980

and Avelino and Shellard 1995). Defects should also induce anisotropy in the Cosmic

That is & = (ii

“The homotopy group, #.{M), denotes a topologically distinct mapping between the n-dimensional
sphere, S”, embedded in 3-space, and the vacuum manifold, M. The vacuum manifold represents all
possible orientations of the Higgs field in its ground state.

), where ¢y and ¢2 are complex scalar fields.




Microwave Background Radiation (CMBR) (Vachaspati 1986, Stebbins 1988 and Bouchet
et al. 1988). These predictions have led to tremendous interest in the role of topological

defects in the early Universe, and in the models that predict their formation.

As we have noted, topological defects (predicted by particle cosmology) are subject to

observational constraints, particularly those imposed by LSS formation and the CMBR

anisotropy. Other constraints arise from nucleon decay processes in stars. For example,

monopole production in the early Universe (Zeldovich and Khlopov 1978 and Preskill

1979) is inconsistent with the rate of nucleon decay via the processes, p — #¥ + ¢* or

n = 7~ + et, which take place in the Sun® (Kolb et al. 1982, Dimopoulos et al. 1982

and Freese ef al. 1983). Other topological defects, such as domain walls, are inconsistent

with the magnitude of the temperature anisotropy observed in the CMBR (Zel'dovich
at al. 1975, Stebbins and Turner 1989 and Press ef al. 1989). Therefore, these defects

(monopoles and domain walls) either did not form, or formed und then were removed by

inflation (Guth 1981), or were annihilated by some mechanism (see e.g., Langacker and Pi

1980 and Dvali et al. 1995 and 1998). More encouraging are cosmic strings that exhibit

scaling behaviour®, which means that a network of cosmic strings will not dominate the
cnergy density of the Universe (Kibble 1985, Albrecht and Turok 1989, Allen and Shellard
1990, Bennett and Bouchet 1990 and Martin and Shellard 1996}. For this reason, cosmic

strings are widely studied in the literature (see e.g., Vilenkin 1985, Vachaspati 1986 and
Stebbins 1988).

Although cosmological topological defects have been postulated to form following sym-

metry breaking phase transitions in the early Universe, there is no observational evidence

for their existence. However, topological defects can be produced in condensed matter

systems (see e.g., Gill 1998). For example, domain wall defects are observed in ferro-

magnetic systems (see ¢.g., Forsbergh 1949, Merz 1952 and Hooton and Merz 1955). A

network of string defects has been observed in superfluid helium (see e.g., Zurek 1994 and

1996 and Hendry et al. 1994). String defects (or vortex-lines) have also been cobserved

®Monopoles have a baryon-number-violating coupling and therefore can act as a catalysis for nucleon
decay processes (Rubakov 1981 and 1982). Since monopoles can be captured by stars, nucleon decay within
the Sun sets constraints on the monopole density in the Universe. However, this constraint is inconsistent
with the predicted monopole density.

SScaling behaviour refers to the dilution of the energy density of string defects, which occurs at the
same rate as the dilution of the energy density of the Universe due to its expansion. A scaling solution
is a consequence of the decrease in the energy density of a string network due to the formation of loops,
which subsequently collapse.




in other systems, such as in superconductors (Abrikosov 1957), nematic liquid crystals
(Chuang et al. 1991 and Bowick ef el. 1994) and Bose-Einstein condensates (Madison et
al. 2000). A field theoretic description of phase transitions in these latter systems utilizes
the Ginzburg-Landau phenomenclogical model with symmetry breaking facilitated by an
order parameter (c.g., a wavefunctiont ¥), which is analogous to the Higgs field ® in a
GUT meodel. Studying phase transitions in condensed matter systems may provide insight
inte the behaviour of topological defects in the early Universe.

The formation of topological defects following a phase transition in the early Universe
exploits the Kibble mechanism (Kibble 1976 and 1980). This mechanism can also be in-
voked to describe defect formation in condensed matter systems. For example, Chuang
et al. (1991) and Bowick et al. {1994) studied phase transitions in nematic liquid crys-
tals under a rapid temperature quench, which produces topological defects in the form of
vortex-lines.” Observing the evolution of the vortex-line network shows that the number
density of the network dilutes rapidly when strings exchange ends upon crossing (inter-
commution). This results in the formation of vortex-loops, which collapse due to tension
along the loop. The direct observation of intercommutation in nematic liquid crystals con-
firmed earlier field theoretic simulations of cosmic strings performed by Shellard (1987).
The vortex-line networks in condensed matter systems has provided an important testbed

for elucidating the behaviour of topological defects in the early Universe.

1.2 Effective field theories of symmetry breaking

To understand how topological defects arise, it is necessary to examine the effective field
theories that predict their formation. In this section we discuss several effective field

theories of particle physics that exhibit symmetry breaking.

1.2.1 The Mexican hat potential

The simplest symmetry breaking potential is the “Mexican hat” potential®, given by

V(i) = 5 (#F )’ (1.1)

?Zurek (1985) suggested that vortex-lines could be produced in a rapid pressure quench in liquid helium
(rather than a temperature quench). Consequently, the production of topological defects in condensed
matter systems via this mechanism is often referred to as the Kibble-Zurek mechanism.

®It is so named because the potential when plotted as a function of a two-component (complex) scalar
field has the shape of a Mexican hat.
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Figure 1.1: A one-dimensional cross-section of the Mexican potential, forp =1 and A = 2.
The VEV of the ®-field is located at |®| = 7.

In Eq. (1.1) & denotes the Higgs field with components @, (¢ = 1,2, ...), A is a self-
coupling constant,  is the symmetry breaking scale and |®] = ®,&,, where a repeated
index a implies a summation over the components (i.c., $a®s = & + 3+ ...).

To show that the potential specified by Eq. (1.1} exhibits a vacuum state with broken
symmetry, consider a unitary transformation U corresponding to a “rotation” group G
defined by

U = exp (ioaay), (1.2)

where @, (@ = 1,2, ...} are real scalar functions that describe “rotation” around the
corresponding Lie generators o, (o = 1,2, ...) of the group G.® The “rotation” is given

by the unitary transformation

® = ¥ =1Lid, (1.3)

where the corresponding transformation of the complex conjugate field is ' = U ®. Since
|®'| = |®}, the model potential (1.1) is invariant under the unitary transformation (1.2).
Figure 1.1 represents a one-dimensional plot of the potential, V(18|), as a function

of the magnitude of the Higgs fiedd, |®|. The vacuum expectation value (VEV) of the

®For example, the Lie generators of the threc-dimensional rotation group SO(3) and its universal

covering group SI/(2) are the Pauli spin matrices, oy = (? (1)), oy = (2 _5) and oz = ({1’ _(1))




Higgs field is located at the minimum of the potential, which for our one-dimensional plot
occurs at |®| = 1. The potential is invariant under the transformation ¢ — 4@, and once
a vacuum state of the Higgs field is obtained all the VEVs, (@), can be found by using
the unitary transformation, i.e.,

(@) =Un. (1.4)

Following a phase transition the Higgs field “chooses” a VEV by fixing &/. Once U is fixed
the symmetry of the vacuum state is broken, i.e., the vacuum state is no longer invariant
under the transformation (1.2) for arbitrary i.

The number of components of the Higgs field ¢, (a = 1,2, ...) is dictated by the
symmetry breaking model that gives rise to the topological defect. Fov example, domain
walls, cosmic strings, and monopoles are described by models that are invariant under Zs,
U(1), and SU(2) transformations, respectively (see Sec. 1.2.2). These correspond to a

Higgs field with one, two, and three components.

1.2.2 Higgs model with symmetr; Srenking

The simplest Higgs field model descrits « = siosziin wall with the Lagrangian

L= 8830 V() (1.5)

2

B3| b=

where 8, denotes differentiation with respect to the (flat) spacetime coordinates ({, z,y, z),
and V(J®|) is the symmetry breaking potential {1.1) written in terms of a real Higgs field,
®. The field equation is derived from Eq. (1.5} using the Euler-Lagrange formalism, i.e.,

oc ac
*(_:)5 - ¢ (6(81‘(1’)) = (. (1.6)

Substituting Eq. (1.5) into (1.6) we obtain
09 + ¢ (|@* ~ %) =0, (L.7)

where O = 8,8%. Equation (1.7) is a relativistic equation with a self-interaction term
A[®|2®. Since the Higgs field only has one component, the Lagrangian (1.5} is characterized
by a discrete symmetry group Zz, i.e., the Lagrangian is invariant under the symmetry

transformation

P~ o' = -0, (1.8}




The vacuum state is {®) = +7 and the vacua are invariant under an identity transforma-
tion & — &, so that the unbroken group is I. The formation of a domain wall is therefore
described by the symmetry breaking scheme Z, —> I.

The next level of complexity is the abelian-Higgs model describing cosmic strings. In

this case the Lagrangian is given by
—_— 1
L =D, D" —~ ZFWF“” - V{(|2}, (1.9)

where V(| ®|) is the symmetry breaking potential (1.1) and @ is a two component {complex)
Higgs field, with [®{? = ®} 4 $%. The gauge covariant derivative D, and electromagnetic
field tensor £, are defined by

D, = 8,—icd, (1.10)
F‘m; = 3,1/-1,; - 81;Ap, (1.11)

where A, is the electromagnetic 4-vector potential and ¢ is the coupling strength between
the ®-field ard A,-field. The equations of motion for the Higgs and gauge fields are derived
from Eq. (1.9). Utilizing the Euler-Lagrange formalism we obtain

D, D*® + %cb (% -7*) = o, (1.12)
CA, +ic (®D,® - ®D,%) = 0. (1.13)

The Lagrangian {1.9) is invariant under local U(1) gavge transformations, i.e.,

o(z) = '(z) = *@De(z), (1.14)
Ap(z) = Al(z) = A, —(1/€)8.0(x). (1.15)

Since the VEVs of the Higgs field differ from each other by a rotation %), fixing 8(z)
results in the vacuum being invariant under the identity transformaticn. The model
Lagrangian (1.9} has a U(1) symmetry group, and the symmetry breaking scheme for
the formation of a cosmic string is described by U(1) — I.

Finally, we briefly discuss the Higgs field for a monopole. This is formulated in terms of
an isospin-conserving Yang-Mills ficld theory, with a Mexican hat symmetry breaking po-
tential. The Lagrangian is gauge invariant under SU(2} isospin transformations (Polyakov
1974}, and is given by (see e.g., Quigg 1983)

L= %Dﬂq)ama - %FEVF““” - v{(a|), (1.16)




where V(|®|) is the symmetry breaking potential and & now represents a three-component
Higgs field, with | = ®3+8%+Z; D, denotes the non-abelian gauge covariant derivative
defined by

Dp®o = 9, Py — cearc A D, (1.17)

where e is a coupling constant, €, is the Levi-Civita completely skew-symmetric tensor,
Aj is .- a-th component of the gauge field, A, = Afo®, and Fj, is the Yang-Mills field
given by

F:v = Dud; - DVA:L

A, — 0 AY + ZeeabcAﬁAfj. (1.18)
The field equations derived from the non-abelian model (1.16) are

DD 8, + A, (20®p — 7)) = 0, (1.19)

O F" — 6,50 AL P 4 Qe€apc®yDy®c = 0, (1.20)
where the four-dimensional Laplacian is defined by
DuD*®, = 8, D8y — eean ALD P, (1.21)
The Lagrangian (1.16) is invariant under the local gauge transformations

& = O =UP, (1.22)
A, - AL =UAUT - %(quu)u*‘, (1.23)

where U is the SU(2) symmetry group. Since the Higgs field is a three-component scalar
field, the vactum manifold of the Higgs field is a sphere, §2. A vacuum state is obtained
by fixing the orientation of the Higgs field on the vacuum manifold. However, choosing
an orientation on S? still leaves the Higgs field the freedom to rotate in a two-dimensional
planc perpendicular to the orientation of the Higgs field. Therefore the vacuum state of a
three-component Higgs field is invariant under the U(1) symmetry group. The symmetry
breaking scheme is described Ly SU(2) — U(1).

In the absence of a gauge field, the Lagrangians (1.9) and (1.16) are invariant un-
der “global” symmetry transformations, i.e., transformations that do not depend on the

spacetime coordinates. Models that are invariant under coordinate-dependent symmetry

transformation are referred to as “local”. The introduction of a gauge field changes the




nature of the symmetry transformations, and is expected to have significant ramifications

for defect interactions, In the next section we discuss how interactions differ in local and

global models.

1.2.3 Local and global models

We begin by considering the abelian-Higgs model specified by Eq. (1.9). Goldstone
(1961) predicted that symmetry breaking gives rise to massless particles (called Goldstone
bosons). To see how Goldstone bosons arise in a symmetry breaking model consider a

complex scalar (Higgs) field defined by
B(x,1) = f(x,1)ef*b, (1.24)

where x denotes the Cartesian coordinates (z,y, 2}, #(x,t) is the phase angle around the
vacuum manifold, M, and f(x,t) is the magnitude of the Higgs field. Since the abelian-
Higgs model is invariant under local gauge transformations, the exponential term in Eq.
(1.24) can be transformed away via ®(x, £} — e~ (%P (x, 1), leaving only the magnitude.

Thus in the unitary gauge, it is possible to write the Higgs field as
0
O(x,t) = f(x,1) . (1.25)
1

In this gange, the abelian-Higgs model (1.9} becomes

1 » 1 2
L=08,f0"f — JFuF" = [P A4 — 22 (f* - n*)". (1.26)
Equation {1.26) describes a massive scalar Higgs field me = 74/A/2 and a massive vector
boson m, = e7n. There ars no massless Goldstone bosons in the abelian-Higgs model.
In the absence of the gauge ficld the abelian-Higgs model (1.9) reduces to the Goldstone

model, i.e.,

£=3,8040 — 1A (18 - )", (L.27)

The Goldstone model (1.27) is invariant under a global U(1) transformation, & — %,
In this model, it is not possible to gauge away the exponential term in the Higgs field
(1.24), since such a transformation requires the presence of a gauge field. Substituting Eq.

(1.24) into Eq. (1.27) we obtain

L=0,f0"f+ {28,080 — ’Z\ (f2—n?)°. (1.28)
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The Lagrangian (1.28) describes a massive Higgs field and a massless Goldstone boson.

By varying Eq. (1.28) with respect to f and 8, the equations of motion are

A, 3,
D — | 3,000 + E" )] f+ -—2—f = 0, (1.29)
u9+§(aﬂ 7@ = o. (1.30)

Equation (1.29) is the equation of motion for the magnitude of the Higgs field with an ef-

fective mass 1/72A/2 + 8,00%8; the second equation {1.30) describes a massless Goldstone
boson field, which arises due to the global nature of the symmetry breaking.

Massless Goldstone bosons arise in models with global symmetry, however, there are
no massless Goldstone bosons if the system exhibits local symmetry. The Goldstone
boson “disappears” when the gauge field is introduced, resulting in a massive gauge field!?
which depends on the symmetry breaking scale 7. This is known as the Higgs mechanism,
whereby a massless particle acquires mass via iuteracting with the Higgs field (Higgs 1964).

Since the Goldstone boson it massless, topological defects described by global models
are expected to have long-range interactions. For example, two global vortices experience
a repulsive interaction, whereas a vortex and an anti-vortex experience an attractive in-
teraction (Perivolaropoulos 1992 and Shellard 1987). However, the gauge field removes

the massless Goldstone bosons, and screens the long-range interactions between defects.

1.3 Temperature dependence of the symmetry breaking potential

Although the zero temperature symmetry breaking potential (1.1) provides a simple de-
scription of the vacuum state of the Higgs field following the phase transition, it does not
describe how the Higgs field interacts with particles in the early Universe, nor does it give
any insight into how the phase transition occurred. To describe the symmetry breaking
phase transition and to better understand the formation of topological defects requires a
temperature-dependent symmetry breaking potential.

Following Jackiw (1974) and Dolan and Jackiw (1974}, we write the effective tempera-
ture-dependent potential as the sum of a temperature independent part and a temperature-
dependent part, i.e.,

V(. 8) = Vo(|2]) + > V(121 8), (1.31)
¢

'°In colloquial language we say that the gauge field becomes massive by “eating” the massless Goldstone
bosons.
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where 8 = 1/T. The term Vy{|®[) is the contribution to the eflective potential in the tree
approximation, and Y, Vi{]®|,T) is the sum over connected loop diagrams in the higher
order perturbation series. In the tree approximation the zero temperature symmetry
breaking (Mexican hat) potential is given by Eq. (1.1). Ignoring a constaut term this

potential is
An?

A
Vo(|®]) = ——2—|<I’l2 + Zl‘i’l‘i- (1.32)

To evaluate the exact temperature dependence would require a summation over all con-
nected loop diagrams. We can obtain a qualitative understanding of the symmetry break-
ing phase transition by utilizing only the ! = 1 term in Eq. {1.31). The one-loop correction,
Vi(|®|, B), bas been computed by Jackiw (1974) and Dolan and Jackiw {1974) for the case
of a spin-0 scalar field, i.e., neglecting contributions from the vector boson and fermion
fields. It is found that the temperature-dependent potential at the one-loop level is given
by

m3,

>4 82, (1.33)

(el e = —Sp +
] ? - 90
where mg is the zero temperature Compton mass of the Higgs field defined by

2
m3 = \|®[? — )‘T". (1.34)

The temperature-dependent one-loop correction {1.33) is accurate to O(8!). Additional
terms are not included in V;(|®|, ) because they are unphysical. For example, the next
term in V;(|®}, B) is m3, 871 /127 which can become imaginary when |®| fluctuates about
7°/2. Successive terms in V) {|®|, 8) either do not vanish in the zero temperature limit, or
become infinite (Dolan and Jackiw 1974). However, Dolan and Jackiw (1974) suggest that
the infinite one-loop terms (at zero temperature) are exactly cancelled by temperature-
dependent infinite terms at the two-loop level. Consequently, the temperature-dependent
symmetry breaking potential at the one-loop lrvel may be written as
2 2

V{d.5) = %m‘* + (ﬁ%g - i‘%’f) |82 - 4);% - g{’)’?. (1.35)
We will assume that Eq. (1.35) provides a qualitatively correct description of a phase
transition in the carly Universe. Equation (1.35) corresponds to the Landau-Ginzburg
potential, which describes a second order phase transition in a variety of condensed matter

systems (see e.g., Zurek 1996).
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At zero temperature Eq. (1.35) reduces to the Mexican hat potential (1.1). Since
the last two terms in Eq. (1.35) do not couple to the Higgs field, they do not affect the
vacuum state. From Eq. (1.35) it can be seen that the temperature dependence of the
vacuum state is determined by the term A®[?/2482. Since this term is positive, adding it
to —An?|@]2/2 would effectively decrease the magritude of the Higgs field in the vacuum
state. The decrease in the VEV depends upon the temperature T. More specifically the

temperature-dependent vacuum state of the Higgs field, (®), is determined from

v ([2|,B)

. =0 (@#0) (1.36)

Using the temperature-dependent potential (1.35), we can approximate the VEV of the

Higgs field at non-zero temperature as

1

O =9 ~ .
="~ 5

(1.37)

The critical temperature, T,, for the phase transition is characterized by a vanishing

vacuum expectation, {®) = 0, whence
1
Tc = B— = ]21}‘. (1.38)
[d

Equation (1.38) indicates that the critical temperature of the phase trausition is propor-
tional to the symmetry breaking scale of the Higgs field. It also follows from Eq. (1.34)
that the Compton mass of the Higgs field (in the vacuum state} is proportional to the

symmetry breaking scale, and therefore the critical temperature is given by

1 24
= — =/ —mae. 1.39
TC ﬁc A m¢ ( )

For temperatures T > T, the coefficient of the |@[>-term in the potential (1.35) is positive,
which results in a vanishing VEV. At the critical temperature (T = T¢), the coefficient
vanishes and the potential is described by a quartic term in the ®-field. Below the critical
temperature the coefficient of the |®|3-term is negative, which results in a non-vanishing
VEV for the Higgs field. This results in the symmetry of the vacuum state being broken.
The temperature-dependent behaviour of the potential is shown in Fig. 1.2.

As the temperature of the early Universe decreased below a critical temperature a
phase transition occurred, leading to nou vanishing VEVs of the Higgs field. The broken

symmetry phase will manifest itself as different choices of the local vacua in regions which
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Figure 1.2: Temperature dependence of the symmetry breaking potential given by Eq.
(1.35) (A =2, = 1). (a) Above the critical temperature, T, = V12, (b) at the critical
temperature, and {¢) below the critical temperature. This plot shows the characteristic
features of a syminetry breaking phase transition. The VEV of the Higgs field vanishes
({®) = 0) for T > T, and is non-vanishing {{(®} # 0) when the system passes through the
critical temperature. This results in the VEV of the Higgs field breaking the symmetry of
the Lagrangian.
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are space-like separated. Following the phase transition, these disconnected regions, with
different VEVs, came into contact with each other. This scenario was first discussed by
Kibble (1976) and results in the formation of topological defects, where the defect type is
determined by the symmetry breaking scheme.

1.4 Classification and formation of topological defects

In this section we discuss the classification of topological defects and their formation via
the Kibble mechanism. The classification of topological defects and the manner in which

defects interact is central to the work reported in this thesis.

1.4.1 Classification of topological defects

Topological defects are classified according to the homotopy group of the vacuum manifold,
7o (M). For the symmetry breaking scheme G — H, where G is a symmetry group and
H is a subgroup, the vacuum manifold of the Higgs field M describes the space of ali

possible configurations of the VEV, i.e.,
M=G/H. (1.40)

The n-th homotopy group, w,{ M), classifies distinct mappings from M to the n-dimensional
sphere C' = S™.
Topological defects are constructed from a mapping, f, between the vacuum manifold,

M, and the n-dimensional sphere, in physical space, i.e.,
fiM=C (1.41)

The equations of motion of the Higgs field require that the mapping between M and €
be continuous and differentiable (smooth). Consequently we can only deform the surface
C in physical spacc in such a way that f is continuous and differentiable.

The mapping can be understood by considering a surface € = $" embedded in a
N-dimensional physical space. We start by examining the mapping between the vacuum
manifold of a domain wall Z, and the surface C = S% (embedded in one, two and three
spatial dimensions). The Higgs field, @, of a domain wali has two possible orientations in
the vacuum manifold, ie., ® = 4. Figure 1.3 (a) illustrates the orientation of the Higgs
field of a domain wall and the surface C = 5% embedded in one spatial dimension. As the

surface C is contracted to a point, the orientation of the Higgs field is undefined. To keep




(a)

Figure 1.3: Schematic showing the construction of a domain wall in one, two and three
spatial dimensions. Arrows indicate the orientation of the Higgs field in the vacuum
manifold. (a) As C = S° shrinks to a point (P) the oricntation of the Higgs field is
undefined, and departs from the vacuum manifold. To keep the Higgs field in the vacuum
manifold, C cannot be contracted to a point. This represents a non-trivial mapping
between M and C, i.e., m{M) # I. In one spatial dimension a domain wall is a point
defect, {b) in two spatial dimensions i has a linear extension, and (c¢) in three spatial
dimensions it is a shieet defect.

the Higgs field in its vacuum manifold, the surface C cannot be contracted to a point. This
gives rise to a stable domain wall defect. In higher dimensjons, the surface C can traverse
a path in the additional dimensions and still maintain continuity and differentiability of
/. Thus a domain wall is a line defect in two dimensions and a sheet defect in three
dimensions (see Figs. 1.3 (b) and (¢)).

The Higgs model of a cosmic string is invariant under a U(1) symmetry transformation,
and therefore its vacuum manifold is a circle, i.c., {®) = ne'?. Figure 1.4 (a) illustrates
the orientation of the Higgs field in the vacuum manifold and the embedding of a surface
C = S} in two spatial dimensions. As the loop C is contracted to a point, the oricntation
of the Higes field is undefined. To reconcile this undefined orientation, the magnitude
of the Higgs field must vanish, ie., |®] = 0, which means that the Higgs field departs
frosn the vacuum manifold. It is not possible to contract the loop C to a point without
the Higgs field departing from the vacuum manifold. This gives rise to a stable {cosmic)
string defect. In two dimensions this defect is a vortex (i.e., a point defect). In three

spatial dimensions the loop C can traverse a path in the additional dimension while still

e rm e e 4w




(a) (b)

Figure 1.4: Schematic showing the construction of a (cosmic) string in two and three
spatial dimensions. Arrows indicate the orientation of the Higgs field in the vacuum
manifold. (a) As the loop C = §' shrinks to a point, the orientation of the Higgs field is
undefined. This results in a non-trivial mapping between M and C, i.e., m (M) # I. In
two spatial dimensions this defect is a vortex. (b) In three spatial dimensions the defect

has a linear extension and represents a string.

maintaining continuity and differentiability of f; in this case we have a line defect.

The Higgs model of a monopole is invariant under an SU(2) or an SO(3) symmetry
transformation, therefore the vacuum manifold is a sphere. The orientation of the Higgs
field in the vacuum manifold adopts a “hedgehog” configuration. Figure (1.5) illustrates
the “hedgehog” orientation of the Higgs field. For a surface ¢ = S§2 embedded in three
spatial dimensions it is not possible to contract C' to a point while keeping the Higgs field
in the vacuum manifold. This gives rise to a stable monopole (point) defect.

To preserve continuity and differentiability of the mapping f, the n-dimensional sphere
enclosing the “false vacuum” ({®) = 0) cannot be contracted to a point. When this
situation arises, the homotopy group of the vacuum manifold is said to be non-trivial,
ic., m(M) # I. Domain walls, cosmic strings and monopoles arise when mo{M) # I,
71 (M) # I and 7o(M) # I, respectively; whereas textures arise when n3{M) # I. The
homotopy classification of topological defects is summarized in table 1.1.

The dimensionality of a topological defect depends upon the nurnber of spatial dimen-
sions. In higher spatial dimensious, the non-contractable surface characterizing a defect

has the freedom to traverse the additional spatial dimensions. In four dimensions a domain
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Figure 1.5: Schematic showing the construction of a monopole in three dimensions. Arrows
indicate the orientation of the Higgs field in the vacuum manifold. It is not possible to
contract the surface C = 5? to a point, and consequently the mapping between M and C
is non-trivial, i.e., 72(M) # I. In three spatial dimensions a monopole is a point defect.

wall, cosmic string and monopole become a volume, sheet and line defect, respectively.

1.4.2 Defect formation via the Kibble mechanism

Topologicul defects form when the scalar field {in three-dimersional space) chooses a VEV
for which there is a non-trivial mapping between the vacuum manifold of the Higgs field
and a surface embedded in physical space. A topologically non-trivial configuration of
the Higgs field can arise in a symmetry breaking phase transition. To see how this occurs

consider the formation of string defects.!! Following a symmetry breaking phase transition

the vacua of the scalar field are non-vanishing throughout space.’?> Each point in the

vacuum can be parameterized by the phase (or orientation) of the Higgs field, & € [0, 2x],
where the vacoum at 8 = 0 and at 27 are identified. As there is no energy difference
between two different vacua, @ can adopt a random value between 0 and 2r. The choice of

the vacuum state depends on fluctuations in ® during the phase transition. The distance

1 Other topological defects, such as domain walls and monopoles, form in the same way.

12For the phase transition to cceur simultaneously throughout space, the temperature of the Universe is
assumed to be uniform. This assumption is consistent with the homogeneity of the Universe on the largest
scale, as confirmed by observations of the CMBR.




Topological defect | Dimension of defect | Homotopy classification
Domain wall 2 (M) # 1
Cosmic string 1 (M) # T
Meunopole 0 mo{M) # 1
Texture Not localized my(M) # T

Table 1.1: The homotopy classification of topological defects. Topological defects arise
from a non-contractable mapping of the vacuum mamifold M = G/H into the n-
dimensional sphere S®. The dimensionality refers ic the situation when the defect is
embedded in three spatial dimensions.

over which @ fluctuates is given by the correlation length, £, which is the order of the

inverse Compton mass of the ®-field (see e.g., Kibble 1976), i.e.,
£ ~mgl. (1.42)

From Eq. (1.39) we note that m¢ o T, and hence the correlation length is inversely
proportional to the phase transition temperature in the early Universe.’® For distances
larger than the correlation length, the possible orientations of the Higgs field are not
expected to be correlated and the Higgs field will adopt random values in regions separated
by distances larger than £. Kibble (1976) conjectured that immediately after the phase
transition the Universe can be divided into different regions, or “domains”, with each
“domain” being the size of the correlation length. The ®-field in each “domain” has a
random orientation, but 9 is assumed to smoothly vary over the size of the corrclation
length and it is possible that the vacuum “domain” structure adopts the configuration
shown in Fig, 1.6 (a). Figure 1.6 (b) shows that as the “domain” structure expands and
boundaries collide, there are regions that cannot be contracted to a point without leaving
the vacuum manifold; this results in the formmation of topological defects. This mechanism
for producing topological defects is known as the Kibble mechanism.

Figure 1.7 shows a numerical simulation of a typical phase transition illustrating the
Kibble mechanism. The symmetry breaking scheme is U(1} — I, leading to the formation
of cosmic string defects (which are vortices in two dimensions). The bubbles of new phase

expand and collide, segmenting space into “domains” whose size is the correlation length

mFo]lowing the phase transition the correlation length is censtrained by the caupsal horizon, dy. The
Higgs field in regions separated by a distance larger than dy is not expected to b correlated.




(2) (b}

Figure 1.6: Schematic representation of a possible configuration of the Higgs field during a
phase transition. (a) Initial configuration, and (b) at the end of the phase transition. The
loop € at the center of (b) cannot be contracted to a point without leaving the vacuum
manifold. The ®-field at this point constitutes a topological defect (i.e., a string defect).

¢ (see Fig. 1.7 (c}). Figure 1.7 (d} shows the subsequent formation of string defects.
Once formed, topolcgical defects are characterized by their energy density. The po-
tential energy density of the false vacuum is higher than in the true vacuum, and the false
vacuum traps energy inside the defect. The energy density of the defect can be obtained
by inspecting the symmetry breaking poiential (1.1). Since topological defects are regions
with undefined phase (or orientation), the magnitude of the scalar field must vanish at

the center of the defect. Setting |®| = 0, we obtain the energy density of the defect as
4
p=pt = i3 (1.43)

The mass, mg, of the Higgs particle is currently unknown. However, experiments from
the LEP accelerator at CERN constrain the mass of the Higgs particle to be greater than
115 GeV (McNamara and Wn 2002). A Higgs particle with mass greater than 115 GeV
corresponds to a cosmic string width of less than 2 x 1018 1. Therefore, the size of the
topological defect is expected to be only a fraction of the radius of an atomic nucleus;
however, the defect is very massive. We can estimate the mass per unit length of a cosmic
string from the symmetry breaking scale, 7. Using the energy density in Eq. (1.43), and
estimating the size of the cosmic string {rom the correlation length, £, we write the mass
density as

™
p=ngp=n’ ~n’. (1.44)




Figure 1.7: Numerical simulation based on the global Higgs model (1.27), with symmetry
breaking schemie U{1) — 7. The phase of the Higgs field, ®, is represented by a grey
scale, with black denoting a phase < 0 and white denoting a phase of 27. The spacetime
coordinates are in units of the Compton width of the Higgs field, 1/?‘,'\/)\—/2. Figures (a),
(b} and (c) show the nucleation, expansion and collision of causally disconnccted regions
of size £&. Further evolution at {d) shows that there are regions with 2w phase winding
that cannot be contracted to a point. These represent a non-trivial winding around the
8! vacuum manifold and describe cosmic string defects.
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For realistic Grand Unified Theorics (GUTs) the syminetry breaking scale is n ~ 106
GeV (see e.g., Vilenkin and Shellard 1994).

The large symmetry breaking scale and mass density of primordial topological defects
means that they cannot be produced in a terrestrial laboratory. Much of our understand-
ing of the formation and evolution of topological defects in the early Universe is based on
numerical simuiations. However, since phusr: transitions are common in condensed matter
systems, it is possible to study the formation and evolution of topological defects in ana-
logue models of the early Universe. Despite enormous differences in the length and energy
scales, the same general phenomenon of symmetry breaking phase transitions is exhibited

by the two systems.

1.5 Symmetry breaking phase traunsitions in condensed matter systems

In this section we discuss symmetry breaking phase transitions in condensed matter sys-
tems. An important parameter in describing the thermodynamical properties of a con-
densed matter system is the Eelmboltz free energy, F. The thermodynamics of the system
may be understeod by investigating how the free energy of the system changes with re-
spect Lo the wavefunction, ¥, of the system. We start by deriving the free energy for a
simple symmetry breaking model.

A symmetry breaking phase transition relevant to this thesis is the transition to a
Bose condensate {such as superfluid helium or a Bose-Einstein condensate). We follow
Ginzburg and Landau (1950} in chtaining an expression for the free energy of the system
as a function of the condensate wavefunction ¥. Since |¥}? is the probability density (or
number density) of the condensate, the ground state expectation value of ¥ must be zero
above the critical temperature, T.. Below the critical temperature |¥|? is non-vanishing.
For temperatures close 1o T, the free energy may be expsnded in a power series. An

expression for F accurate for two-body interactions is given by
F = a+b¥| + ¢ ¥)? + d| 0 + ¥4, (1.45)

where the coefficients a, b, ¢, d and e are temperature-dependent parameters. A property

of the free energy is that at equilibrium its value is a minimum, i.e.,

gF 2 3
e = . Y Tl? = 0. 1.46
3T b+ c|¥| + d|T)* + e|¥| (1.46)




Since |¥| = 0 above T, the equilibrium state of the system requires that & = (. Ignoring

a trivial constant term, the free energy hecomes
F = c|¥? + d¥® + )@ (1.47)

The shape r# :ke free energy depends on the parameters ¢,d and e. For example, when
d # 0 it is possible that the free energy could adopt the {form shown in Fig. 1.8. Figure 1.8
shows the free energy at two different tempzratures, 7y and T3. The free energy at 7% does
not exkibit broken symmetry since the ground state of the system occurs at %] = 0. How-
ever, at 75 the system possesses a local minimuir 2t | %4 = 0 (a symmetric ground state), a
local maximum at Pg, and ancther local minimum at £y (a non-symmetric ground state).
The non-symmetric ground state has a free energy lower than the symmetric ground state.
Above the critical temperature the ground state of the system is symmetric, hence the
ground state must change from a symmetric state to a non-symmetric state during the
phase transition. Continuity of the wavefunction requires that the system evolving from
[¥] = 0 to Py must pass through an energy barrier at Pg. The transition from the
symmetric state to a non-Syminetric state is only possible via quantum fluctuations in
the U-field.!* This implics that the change cannot occur continuously and bubbles of
non-syrmimetric phase nucleate inside the bulk symmetric phase. This is characteristic of
a first ordei phase transition.!®

For d = 0 the free energy may be written as
F = W + 0|, (1.48)

which has the same form as the zero temperature symmetry breaking potential (1.32).
Comparing ® in Eq. (1.32) with ¥ in Eq. (1.47), we note that the parameters ¢ and e can
be identified with - n?/2 and X\/4, respectively. This suggests that the Helmholts free
energy in condensed matter physics plays the same role as the potential energy {density)

in the Higgs model. To pursue the analogy between phase transitions in the early Universe

MQuantum fluctuations {in the free energy) are allowed by the uncertainty principle, i.e., AFAf ~ k,
For a short period of time At < /i/Fp (where Fig is the free energy barrier at Pg}, the system in some
regions can temporarily have free energy larger than Fpp. This allows the wavefunction in these regions to
adopt values corresponding to the non-symmetric phase.

15The order of 2 phase trazsition is commonly characterized by the Ehrenfest scheme, i.e., by a disconti-
nuity in the n-th derivative of the free energy. It is first order (n = 1) if the first derivative is discontinuous,
and higher order if the discontinuity occurs for » > 1. In a continuous (second order) phase transition the
system changes smoothly from the symmetric to the non-symmetric state throughout space.
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Figure 1.8: The Helmholtz free energy, F, as a function of |¥| for two different tem-
peratures T} and T5. At T} the free energy corresponds to the system above the phase
trunsition with vanishing ground state, whereas at T the free energy is indicative of a
first order phase transition.

and condensed matter systems, consider the simple temperature-dependent model used to

characterize a phase transition (see e.g., Gil! 1398)
F=co(T-T.) |2 +e|¥|". (1.49)

Ginzburg and Pitaevskii (1958) adopted this form of the free energy to formulate a theory
of phase transitions in superfiuid helium. Zurek (1985) has also employed Eq. (1.49)
to describe a pressure quench of superfluid *He leading to the formation of vortex-lines.
The free energy (1.49) has a simple interpretation. For T > T, the coeflicient of the
| @}2-term is positive and the minimum of the free energy occurs at |¥| = 0 (symmetric
ground state). At T = T, the |®|2-term vanishes and the phase iransition occurs, For
T < T, the coefficient of the |¥[?-term is negative and the minimum of the free energy
occurs at ¥ # 0 (non-symmetric ground state).!® In the present context the behaviour

of the wavefunction (or order parameter) in condensed matter systems is analogous to the

'®The symmetric state corresponds to the “disordered” state and the non-symmetric state to the “or-
dered” state. The symmetric state exists at a temperature above the critical temperature, where there
are large fluctuations in the ¥-field. Further, the symmetric state is described by a ¥-field with phase
angle (or orientation) which is not well defined (since the magnitude of the ¥-ficld vanishes); whereas the
non-symmetric state has a well defined orientation. For this reason the W-field is also known as the order

parameter.

LA R R BTk i T i b i g

LH FrLYik



Ol

behaviour of the Higgs field during a phase transition (see Sec. 1.3).
A kinetic energy term can be added to the free energy (1.48). The total free energy

(Lagrangian) of the system can now be written as

Ay . Hv Y4 -
F =ih e - . Ji2 4. 4
H(\P — ‘I’at) VY VT + T + e, (1.50)

The equation of motion of the condensate order parameter follows from the Euler-Lagrange

formalism. This results in a non-linear Schrodinger equation with broken symmetry, i.e.,

I lIJ 2
9 —%vw + cl + 2¢| BP0 (1.51)

oo,
T
I

In the absence of coupling to the electromagnetic field, Eq. (1.51) represents a global
model, which describes the evolution of the wavefunction of a neutral condensate. The
model (1.51) can be generalized to describe a condensate coupled to the electromagnetic
field (such as in a superconductor). This can be accomplished by incorporating the 4-
vector poiential, (Ag, A}, using the rule of minimal coupling, i.e., via the replacements
/0t — 8{0t — ieAg and V — V — icA.

It can be shown that the parameter —c plays ihe role of the chemical potential of the
system, whilst e is related to the atomic two-body coupling strength (or seli-interaction
strength}. This interpretation will be pursued in Chapter 2. However, to see that —c plays
the role of the chentical potential, replace ¢ by —p in Eq. (1.48). A phase transition occurs
when ¢ is negative, implying that the chemical potential is positive. The negative term,
—u| P2, indicates that the Helmholtz free energy is lower for p > 9. Since a negative
energy term corresponds 10 an attractive inter-particle interaction, positive i suggests
that there is an energy cost in removing a particle from the system, which is consisient
with the role of chemical potential.l?

This interpretation suggests that the chemical potential 4 in a condensed matter system
can be identified with An?/2—XT?/24 in the temperature-dependent Higgs potential (1.35).
In both condensed matter systems and in the Higgs model, a symmetry breaking phase
transition occurs when the chemical potential changes sign from negative to positive (i.e.,
when the system passes through its critical temperature).

Since topological defects arise in a symmetry breaking phase transition, as a conse-

quence of the Kibble me®hanism (Chuang et ¢l. 1991 and Bowick et al. 1994}, it is pozsible

734 costs energy to remove a particle from a system with attractive inter-particle interactions, since
the forces acting on the particle {(due to all other particles) wiil pull the particle back into the system.
However, this is not the case for a particle in a system with repulsive interactions.
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to use laboratory models to explore the role of topological defects in the early Universe.
In later chapters we will examine the formation and evolution of topological defects in

various models of pariicle cosmology and condensed matter.

1.6 Overview of the thesis

This thesis explores topological defects in R2+!, R3*1 and R'*! spacetime, ranging fror
vortices in two-dimensional condensates to domain walls, monopoles and strings in the
carly Universe.

In Chapter 2 we investigate vortex dynamics in a two-dimensional Bose-Einstein con-
densate (BEC). Rotation of the BEC induces a “fictitious” gauge field, which is equivalent
to imprinting a background phase gradient on the condensate. The effect of rotation on
vortices is explored by examining how they interact with the background phase gradient.
This provides a framework for understanding the origin of inter-vortex forces in a BEC,
and the effect of rotation on ihese vortices. In contrast to vortices in a BEC, classical
hydrodynamical vortices orbit each other rather than experiencing mutually repulsive in-
teractions. Chapter 2 also examines vortices in a liquid light condensate (LL.C). A LLC
arises when an electromagnetic wave enters a cubic-quintic non-linear optical inaterial.
This classical condensate provides an unusual arena in which to explore vortex dynamics.

In Chapter 3 we examine the role of vortices in a rotating dark matter condensate.
Measurements of the rotation curves of spiral galaxies and recent observations of the
CMBR suggest that the Universe is flat, with most of the matter in the form of non-
baryonic dark matter {Robinson 1985 and Bahcall et of. 1990).1% We consider a seli-
interacting scalar field as a model of dark matter. This scalar field may exist in the
form of a cosmic BEC. Rotation of the dark matter condensate leads to the nucleation
of quantized vortices. To investigate the cvolution of these vortices, we numerically solve
the scalar field equation of the condensate coupled to gravity in the weak field limit. An
interesting prediction of our simulations is that vortices in the condensate evolve toward a
configuration with a. flat velocity profile. This provides a novel mechanism for explaining

the observed flat rotation curves of spiral galaxies.

BTentative eviderce for the existence of non-baryonic dark matter within the cnvirons of our solar
systam may be found in the acceleration of Fioneer 10 and 11 toward the Sun (Anderson ef el. 2002).
More convincing evidence comes from the recent data from a one-year survey of the CMBR by WMAP
(Bennett et al. 2003). It reveals that the Universe is flat, comprising 4% baryonic matter, 23% dark matter
and 73% dark energy.
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In Chapter 4 we explore the formation and evolution of topological defects in the early
Unriverse. In particular, we examine the evolution of domain walls. The existence of do-
main walls is inconsistent with the magnitude of the temperature anisotropy observed in
the CMBR (Zeldovich at al. 1975, Stebbins and Turner 1989 and Press ef al. 1989). How-
ever, domain walls are predicted to form as a consequence of symmetry breaking phase
transitions in the carly Universe. We address the domain wall problem by investigating
Dirichlet defects!® (D-walls), in which domain walls are connected to cosmic strings. We
consider a Langacker-Pi mechanism for D-walls, and formulate a plausible model for re-
solving the domain wall problem; we also consider the implications of this mechanism for
monopoles.

In Chapter 5 we examine the formation and evolution of cosmic strings in R3*! and
R spacetime. A string network in R**! exhibits scaling behaviour (Albrecht and Turok
1989, Allen and Shellard 1990, McGraw 1998 and Moore, Shellard and Martins 2001), and
we explore whether scaling extends to spacetime with higher dimensions?’. Although
the Hot Big Bang model, based on Einstein’s theory of general relativity, considers the
Universe as having three spatial dimensions and one temporal dimension, the theory does
not say anything about the topoiogy of spacetime, nor the number of spacetime dimensions
(Rey and Luminet 1995). In the context of a symmetry breaking phase transition, higher
spatial dimensions modify the dimensionality (and behaviour) of topological defects. For
example, a cosmic string is a vortex (point) defect in two spatial cimensions, however, it
is a line defect in three spatial dimensions. Similarly, monopoles are string-like in four
spatial dimensions. This suggests that the behaviour of topological defects in R4+ may
be relevant to the monopole problem. To address the monopole problem we discuss the
evolution of monopoles in a compactified extra dimension®!. It is shown that for a sinall
compactified ditrension (of the size of the colierent length of the Higgs field), monopoles
form loops around the compactifie i iz .ension. When the loops cellapse, they annihilate
in a time scale comparable to the size of the compactified dimension, thereby avoiding

the monopele problem. We briefly discuss the implications of this result for topological

"®This is hybrid defect in which one defect terminates on anothier.

20Speculation that the Universe may have additional spatial dimensions has attracted widespread atten-
tion. For example, the Kaluza-Klein theory extends the theory of general relativity to R**! in an attenpt
to urify eleciromagnetism with gravity (sce e.g., Appelquist et al. 1987). Supersiring theory speculates
that the Universe has 10 spacetime dimensions, whereas M-theory considers 11 dimensional spacetime (see
c.g., Kakn 1999).

2! A compactified dimension is curlad up and small compared to the observed three spatial dimensions.




defects in R9t! spacetime, with d — 3 compactified dimensions.
Finally in Chapter 6 we conclude with a summary of the major achievements of the

thesis and identify directions for future work.
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CHAPTER 2

Vortices in Quantum and Classical Condensates

2.1 Introduction

This chapter explores the behaviour of vortices in two-dimensional condensates; in par-
ticular we investigate a Bose-Einstein condensate (BEC) and a novel classical condensate
comprising liquid light. A BEC is a new state of matter that was first predicted by Bose
and Einstein in 1924-1925 (see e.g., Parkins and Walls 1998 and Dalfovo et al. 1999).
A BEC arises when the thermal de Broglie wavelength of an ideal gas exceeds the mean
spacing, a, between atoms, i.e., A = Af/p > a, where fi is Planck’s constant and p is the
linear momentum of the atom. Under these conditions a phase transition occurs in which
all atoms condense into a single quantum state.

To achieve the BEC state an atomic cloud is cooled to very low temperatures (i.e., lower
than 108 K; see e.g., Anglin and Ketterle 2002). To attain such a low temperature involves
multiple steps. First the atoms are trapped by optical laser light. This is accomplished by
exploiting the Zeeman splitting of the energy levels of the atoms in an applied magnetic
field. A selection rule constrains the angular momentum change of the electron to AF = 1,
Amy = 0,21, The resultant energy level splitting exhibits a radial dependence, increasing
with distance i the center of the trap. Three paits of counter-propagating laser beams,
each with frequency slightly less than the corresponding energy level splitting of the atoms,
are then applied to the atomic cloud. Atoms that move away from the center of the trap
with velocity v “sce” the frequency of the incoming photons increase by an amount v - k,
where k is the wavevector of the photons. This results in electronic transitions between
the magnetic sub-levels, i.e., mp = £1 - mp = 0. When an atom absorbs a photon,
momentum is transferred, which results in the alom being scattered toward the center of
the trap. Atoms interact with the applied laser beams in such a way that they experience
a net force directed toward the center of the trap. Following optical trapping the atoms
are loaded into a magnetic trap for evaporative cooling. This trap is produced by applying

a magnetic field which results in a potential energy U = —gu - B for the atoms (where p
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is magnetic dipole moment of the atom and B is a spatially-dependent external magnetic
field). Atoms are cooled by applying radio frequency (rf) energy, which is tuned to ensure
that the magnetic dipole moment of the most energetic atoms is switched. This results
in hot (energetic) atoms being expelled from the magnetic trap, leaving behind the colder
atoms (see Madison et al. 2000). These cold atoms undergo a phase transition to the BEC
state when the temperature of the atomic cloud is sufficiently low. BECs with 2.5 x 10¢
8TRb atoms (at a temperature ~500 nK) have been confined inside an Ioffe-Pritchard
magnetic trap (see Madison et al. 2000).

The experimental realization of Bose-Einstein condensation in dilute ultracold neutral
alkali-metal gases has generated emormous activity in atomic physics (see e.g., Anglin
and Ketterle 2002). An area of particular interest is the study of quantized vortices,
first observed in a BEC by Madison et al. (2000). When the condensate is rotated at an
angular frequency greater than a critical frequency, £, multiple vortices form, which gives
rise to a triangular lattice (Abrikosov lattice). A vortex lattice arises because of mutually
repulsive interactions between vortices, however, vortex dynamics in a rotating BEC are
not weil understood.

A vortex is characterized by a non-vanishing circulation, i.e., the line integral ¢ : '«
velocity field around the vortex is non-zero. There are two kinds of vortices - quui- -
vortices and classical hydrodynamical vortices, Quantum vortices, such as those founu
in a rotating BEC, are characterized by quantized circulation with repulsive interactions
{Shellard 1987). Consequently a multiple vortex configuration is expected to be unstable,
and it is not clear how quantum vortices are confined in a rotating BEC. In this chapter
we iavestigate the origin of vortex interactions and provide a simple mechanisin to explain
how a, vortex lattice develops in a rotating BEC.

Classical vortices do not have quaniized circulation and interact differently to quantum
vortices. A classical hydrodynamical model predicts that vortices will orbit each other (see
e.g., Acheson 2000). In Sec. 2.3 we investigate vortex dynamics in a novel classical system;
namely a liquid light condensate {LCC), which arises when a high intensity laser beam is
sell-focused in a non-linear material (Michinel et el. 2002). The field theoretic model of
a LLC incorporates a symmetry breaking term, which gives rise to classical vortex states.

In Sec. 2.4 we compare vortex dynamics in classical and quantum condensates.




2.2 Vortices in a rotating Bose-Einstein condensate

A BEC is described by a mean-field Gross-Pitaevskii (GP) equation which neglects quan-
tum and thermal fluctuations of the condensate wavefunction (Gross 1961 and Pitaevskii
1961). The GP equation is equivalent to the non-linear Schodinger equation with self-
interactions. It was originally used to describe superfluid helium (Gross 1961 and Pitaevskii
1961) and subsequently applied to understand BECs (see e.g., Holland and Cooper 1996).
A vortex state can be induced in the BEC via axisymmetric rotation of the condensate.
This is accounted for in the GP eguation by introducing an external potential! that rotaies

with angular frequency {2 about the z-axis (see e.g., Dalfovo et al. 1999).

2.2.1 The Gross-Pitaevskii equation

We consider a BEC confined to a magnetic trap, whose strength depends on the frequency,
w, of the external magnetic ficld and the displacement of the atoms from the center of
the trap. The trap can be modeled using a harmonic potential, Virqp. For simplicity we
assume confinement of the BEC in the z direction. The two-dimensional harmonic trap
has the form Viyop = jm(wiz? + wly?), where o1 is the atomic mass. Typical values of
wg and wy are in the order of 10 Hz to 100 Hz, and the size of the atomic cloud is in the
order of microns (see e.g., Parkins and Walls 1998). The GP? equation describing a BEC

with a harmonic trap potential is

. O B oo mooo2 2
— = —— — v w|° P, 2.
h at 2mvlqj+ g " + ¥ (2.1)

where V3 = 8%/8z2 + 82/0y? is the two-dimensional Laplacian, ¥ = ¥(r,{) is the
wavefunction of the condensate normalized to the number of atoms in the z-y plane,
g = 4mhi’Na/m is related to the s-wave scattering length, a, of a binary collision!, N
is the number of condensate atoms and r = /22 +y2. The term Smw?r*¥ describes
the localization of the condensate atoms due to the harmonic trap potential. The trap is
assumed to be isotropic with wy = w, = w. To understand how the condensate is localized

inside the trap, we consider its ground state wavefunciion (sce e.g., Dalfovo ef al. 1999)

U(r,t) = e~/ Mg (r), (2.2)

IThe binary atomic scattering length, e, is an “intrinsic” property of ncutral atoms. For **Na, o = 2,75
nn, for *'Rb, ¢ = 5.77 nm and for "Li, ¢ = —1.45 nm (Abraham et ol. 1995).
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where Wo(r) is the time-independent (stationary) ground state and j is the chemical
potential, which gnarantees that the ground state of the BEC exhibits symmetry breaking?
(see Sec. 1.5). By substituting Eq. (2.2) inio Eq. (2.1), the stationary ground state is
determined from

F2
T2 W+ 2220y + gl W12V — g = 0. (2.3)
2m 2
Equation (2.3) characterizes a BEC with a self-interaction potential,

V(¥ = (Fu?r? - ) 126l + S0 (24)

The stationary ground state can be obtained by minimizing the potential {2.4) with respect
to [¥g|. It is found that there are two solutions for the ground state. One solution cor-
responds to |Wo| vanishing everywhere, whereas the second solution gives the condensate

number density as
2p — mw?r?
[Tl = _‘{__é___
g

From Eq. (2.5) it is evident that without the harmonic trap (w = 0), the condensate is

(2.5)

delocalized due to repulsive atomic (binary) collisions, i.e., the number density is equal
to p/g everywhere. As w is increased from zero the condensate number density decreases
as a function of radial distance from the origin {cznter of the trap). For sufficiently large
values of the trapping frequency, w, the condensate becomes localized and “clumps” at the
origin, with the size of the condensate depend.ing on the value of the irapping frequency
(see Fig. 2.1).

- Equation {2.3) is a non-linear equation amenable to numerical analysis. For simplicity

this equation is transformed to dimensionless form by:

¥, = ./ Ew,, (2.6)
g
i
> r, 2.7
* 7 T 20
o, (2.8)

These transformations eliminate m, \, 1 and g from Eq. (2.3). The ground state at the
origin (where the harmonic poteniial vanishesj occurs for |¥g| = 1. We solve Eq. (2.3) in
cylindrical coordinates by setting

Oyle,y) = [Tolz,y)|e =9, (2.9)

2The BEC is a system with broken symmetry, arising when the neutral atomic gas undergoes 2 . Lase
transition to the condensate state.
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where n is the integer winding number?®, 6(z,y) is the ptase angle, and |Wq(z, y)| is the
magnitude of the condensate wavefunction. The condensate profile is dJetermined from the
radial equation

2T 1 dj¥y| 3 n?

dr” T dr r2

ol — w?r?Wg| — 2|%ol(|To[2 — 1) = 0. (2.10)

Eqyuation (2.10) is solved numerically by using an iterative fixed point method. This
method involves first guessing the wavefunction and then applying a finite difference
scheme (see Appendix A) until the difference in the norm of the wavefunction at two
successive iterations is small, i.e., || ¥o||& — HWollx—1 < 10710 < ||®¢]|x, where &k denotes
the iteration number. In the absence of a vortex state (n = 0) the iterative scheme starts
by assuming that the wavefunction is equal to its ground state (i.e., |¥g| = 1). Figure 2.1
shows |¥g|? for various values of w (with n = 0). As w increases the condensate becomes
localized at the center of the irap.

In the presence of vortex states (n # 0), the solution to Eq. (2.10) requires a different
initial guess for |¥y(r)|. A vortex is characterized by non-vanishiag circulation with ve-
locity inversely proportional to the radial distance from the vortex core. A cylindrically

symmetric vortex located at the origin has a phase angle, &(z,y), given by

6(z,y) = tan~! (%) . (2.11)

The velocity of the cendensate is discontinuous at the center of the vortex, which gives
rise to an undefined phase at the origin (see Eq. (2.11}). As a consequence the magnitude
of the condensate must vanish at the vortex core. Since the condensate number density
vanishes at r = (), the initial guess for the wavefunction is [¥o(0)| = 0 and |To(r 7 0)] = L.

Figure 2.2 shows a static vortex solution. The condensate number density increases
rapidly from the origin to a maximum value and then -lecreases slowly due te localization
of the condensate by the confining potential 1mw?r?{Wef2. There is competition between
the atomic confining poteﬂtial and the angular momentum of the circulating atoms about
the vortex center. The confining potential tends to force the condensate atoms into the
center of the vortex core, whereas angular momentum tends to expél atoms from the
vortex core. Consequently a small displacement of the vortex from the origin results in
the vortex moving out of the condensate (Rokhsar 1997}, and a vortex state in a non-

rotating condensate is unstable.

3The circulation is quantized according to §, v - dl = nh/m, where C s a path enclosing the vortex, v
is the velocity of the condensate and n is the integer winding number.

(LS
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Figure 2.1: The number density |¥g|? as a function of the radial coordinate for various

values of w. As w increases, the condensate number density begins to “clump” at the
center of the trap. This is indicative of localization of the condensate.
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Figure 2.2: A typical static vortex solutio:, (n =1 and w = 0.1). The condensate number
density vanishes at the origin, which is consistent with an undefined phase at the vortex
core.
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A stable vortex state can be obtained by externally rotating the condensate. A con-

densate rotated at angujar frequency £ is described by the modified GP equation

o K2 m
thor = _%vi@ -QL. ¥ + 5“2'"2‘1’ + g%y, (2.12)

where L; is the z-component of angular momentum
8 17
L,=1 — —r—]. .
ih (yax ’Bay) (2.13)
The stationary ground state of the condensate, ¥y, is obtained by substituting ¥ =
e~ %G jnto Eq. (2.12), i.e.,

ﬁ?
~5—VAi% - QL% + gw%?% + g| o2 Wg — ¥y = 0. (2.14)

Since a vortex in a BEC can only have quantized circulation, rotation of the BEC at an
angular frequency, @, corresponds to §.v-dl=Q§.r-dl > h/m. To nucleate a vortex
in the BEC, the condensate must be rotated with angular frequency equal to, or higher

than, a critical value.

2.2.2 Vortex formation

To understand vortex formation in a rotating BEC we consider the velocity profile of the
condensate. Utilizing the GP equation (2.1), the velocity profile, »(r), of the condensate
is determined from

plriv(r) = 5}% (IV, ¥ -0V, 7), (2.15)

where p(r) = |¥(z,y)[* is the number density of the condensate. For a cylindrically

symmetric vortex with unit circulation

¥(z,y) = |#(z, YI?ED = /p(r)edE. (2.16)

The velocity profile is given by

o) = L9 69 = (2.17)

mr

where the last equality follows from Eq. (2.11). Equation (2.17) indicates that the angular

velocity (frequency) of the condensate in the vicinity of the vortex is given by

Q= —. (2.18)
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For a vortex to form, a condensate of radius R must rotate at an angular frequency equal

to, or greater than, 5i/mR2. This defines the critical angular frequency
Q. = h/mR2. (2.19)

Equation (2.19) assumes strong repulsive interactions between condensate atoms. Since a
vortex core i$ devoid of condensate atoms, strongly repulsive interactions make it easier
for a vortex to enter the trap from the boundary. On the other hand, it is harder for a
vortex to enter the trap for the case of weakly repulsive interactions between condensate
atoms. In the weak coupling limit it is expected that a vortex can enter the trap at a
higher angular frequency, i.e., . > h/mR2. ‘

The prediction of Eq. (2.19) can be compared with the experimental value of €2,
measured by Madison ef al. (2000) for a BEC composed of ' Rb atoms. In their experiment
the condensate was confined to R =~ 1 um. Substituting in the mass of an 3"Rb atom
(1456 x 1072 kg), Eq. (2.19) gives the critical frequency for formation of a vortex as
2c/2n = 115 Hz. This value is lower than the experimentally measured valus 152 + 7 Hz
(see Madison et al. 2000). The discrepancy way be due to the assumption of strong
coupling in the model.?

When the condensate rotates at an angular frequency much higher than the critical
frequency, multiple vortices can form. It is energetically favorable for a condensate to have
multiple vortices each with unit circulation, rather than one vortex with a larger circulation
(Pitaevskii 1961). To understand how this arises, consider N overlapping vortices with
n = 1. If each vortex is separated by a distance much greater than its core size, the
Abrikosov ansatz (Abrikosov 1957) for N vortices is ¥ = /pleflit02+-408)  where p' is
the density profile of the condensate and ;. is the phase angle of the k-th vortex. Since
the circulation about each vortex core is identical, if all N vortices are located at the same
position the phase angle of each vortex can be added to give Nd. This implies that a
voriex with a large circulation ¥ = \/ﬁem 9 is equivalent to N overlapping vortices each
with unit circulation. However, vortices exhibit mutual repulsive interactions, therefore
a vortex with n > 1 is unstable and will eventually separate into N vortices \each with
n=1).

4The difference between the theoretical prediction and the experimental value may also be due to the
uncertainty in estimating the size of the condensate R. Since the uncertainty can be AR = 0.2 pm, this
results in the thesretical prediction Qc/2n = 115 £ 46 Hz, which is consistent with the experimental value

152 £ 7 Ha.
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Figure 2.3 shows a schematic representation of a vortex lattice in a rotating BEC.
Vortices are characterized by a discontinuity in the velocity of the condensate at the
vortex core. This is evident in a plot of the y-component of the velocity as a function
of z (see Fig. 2.4). The dashed line in Fig. 2.4 shows the average rotational velocity
of the condensate. The circles with arrows indicate the direction of circulation of each
vortex located on the z-axis. If the circulation of each vortex is unrestricted, then weaker
circulation is favored and more vortices appear in the condensate. In the limit of an infinite
number of vortices, v,(xz) approaches the velocity profile shown by the dashed line in Fig.
2.4. This corresponds to rigid-body rotation.

Before the experimental observation of a vortex lattice in a BEC, Castin and Dum
(1999} studied the minimum energy configuration of a rotating condensate. This is
achieved by evolving an arbitrary ground state until 2 minimum energy configuration
is obtained. The ground state wavefunction, ¥y, is time independent, however, it may be
parameterized by a fictitious time parameter 7. The equation of motion is (Castin and

Dum 1999)

ot 12
—Ii-—é-} = —g—;vi% - QL. %o + %cﬁr?% + gl Wo*Wp — pTy. (2.20)

By identifying 7 with imaginary time (7 = it), Eq. (2.20) is the non-linear Schodinger
equation with a symmetry breaking potential. Evolving the equation of motion m imag-
inary time is equivalent to the method of steepest descent. This method starts with an
arbitrary condensate wavefunction ¥q, then evolves it toward the minimura energy config-
uration. In the limit of large 7 the wavefunction attains the minimum energy (equilibrium)
configuration, consequently 3¥;/8+ = 0, and Eq. (2.20) describes the stationary ground
state of a rotating BEC. From Eq. (2.20) we can show that a triangular vortex lattice is
the minimum energy configuration of a rotating condensate.

Although a triangular lattice configuration minimizes the energy of the rotaling con-
densate, it is not understood how rotation give rises to the formation of a stable vortex
lattice. Since a vortex defect is characterized by an non-contractable phase winding {see
Sec. 1.4), phase is expected to play a significant role in vortex interactions. It has been
shown that a vortex with non-uniform phase winding tends to evolve toward a state with
uniform phase winding (see Thatcher and Morgan 1997). A vortex with non-uniform

phase winding can be considered as a vortex with uniform phase winding “superposed”




Figure 2.3: Schematic representation of a typical vortex configuration in a rotating BEC.
Points represent the center of the vortices. In the limit of large number density the vortex
configuration is characterized by rigid-body rotation.
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Figure 2.4: The y-component of velocity, as a function of the distance from the origin in
the z direction (i.e., vy(z) o< 86/8y), for the vortex configuration shown in Fig. 2.3. This
shows the discontinuity in vortex velocity. Circles and arrows are drawn to illustrate the
circulation of vortices. The dashed line illustrates rigid-body rotation of the condensate.
The discontinuous velocity profile approaches the rigid-body profile in the limit of large

nurber density.
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on a background phase. In what follows we iuvestigate vortex dynamics in a background
phase gradient.

2.2.3 A vortex in a background phase gradient

To study the dynamics of a vortex in a background phase gradient we utilize the GP

equation (2.1). We write the two-dimensional GP equation (in the absence of rotation) as

. O R o m 2.2 2
11‘1—8? = —%VLKIJ + Fwor T+ gl ¥|° P, (2.21)

where wy i3 the harmonic trapping frequency for the neutral atoms. Consider a time-

independent background scalar field, ¥5(r), superposed on the BEC

pa(r) =0, (2.92)

wherer = (z,y), ©(r) is the phase of the background field and we have set the magnitude of
the field to unity. To describe the condensate in the presence of this stationary background

field we utilize the Abrikosov ansatz (Abrikosov 1957)
B(r,t) - B{r, t)Ps(r). (2.23)

Substituting ¥(r,#)¥p(r) into Eq. (2.21) we obtain tke equation of motion

. 2
m%‘tg - _.z%[vﬁ_xp +2V10- V¥ - |V, OPY +i¥V36] + TuwdrY + gl UV, (2.24)
-Now consider a background phase gradient of the form
| e m 04/S] ™m
E’; = —ﬁ—ﬂzy and 5&* = '—EQyiﬂ- (225)

Equation {2.24) reduces to the GP equation (2.12), with w = /Q% + u;g; we have assumed
isotropic rotation for which 2, = 2, = Q. It is evident that onr choice of phase gradient
is exactly that required to establish the velocity field of a rotating BEC (Dalfovo et al.
1999). In the absence of rotation the harmonic trap frequency is «wp; however, when we
introduce a background phase, corresponding to rotation of the condensate, the harmonic
trap frequency is modified to w = /wi + Q2. Since wi > 0, w is always greater than Q.
This accords with the numerical simulations performed by Feder and Clark (2001), and
is consistent with the condensate atoms remaining localized if the trapping potential is

greater than the angular momentum term.




39

The effect of rotation can be understood by investigating how vortices interact with the
background phase gradient. Consider the Lagraugian of a BEC in the absence of external
rotation {£2 = 0), and when the confining potential is set to zero {(w = 0)
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-2 Rval AT IC
vaﬂy v T 2|\11|. (2.26)

A vortex embedded in a constant background phase gradient in the y direction can be
described by the transformation (see e.g., Eq. (2.23)),

T - elvmihy, (2.27)

Utilizing Eqs. (2.27) and (2.16) we can write the Lagrangian (2.26) in the background
phase gradient as

h? 7 200 m 50 g .4
—-2_”‘71\1! V1Y 4+ hao|¥) 55—50 1| --2-|lIf| . (2.28)

From Eq. (2.28) we note that the background phase gradient contributes an effective

poiential to the Lagrangian, i.e.,

668 m
Ver (1)) = ~hef ¥ 5= + Zo® 0P (2.29)

For a vortex located at the origin we have 89/8y = z/r?, which enables us to write
Vers (1)) = —ha ¥ 3 + Za?| 0P, (2.30)

The dynamics of a vortex in the background phase gradient are governed by the asymmet-
ric potential V4 = —ha|¥[2z/r?. The near field solution is given by |¥(r)| = ¢r, where
¢ = 0.58... is a constant (see e.g., Shellard 1987); hence the asymmetric potential close to
the vortex core has the form V4 = —hacz, with a concomitant force, fiec’?, acting on the
vortex in the z direction. Therefore a vortex embedded in a background phase gradient
(in the y direction) experiences a force in the z direction and vice versa. An anti-vortex
in the same phase gradient experiences a force in the opposite direction.

The dynamics of a vortex is governed by the background phase gradient. Since rotation
of the condensate imprints a phase gradient on the condensate given by Eq. (2.25), rotation
will provide a trapping potential for vortices and expel anti-vortices. The dynamics of

vortices in this background phase gradient can be explored using numerical simulations.
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2.2.4 Numerical study of vortex dynamics

Numerical simulations are carried out to explore vortex dynamics in a rotating iwo-
dimensional trap based on Eq. (2.12). We assume N = 200,000 condensate atoms and a
cylindrically symmetric trap with frequency w/2n = 8Hz. These parameters are consis-
tent with experiments at JILA using 8'Rb atoms (see e.g., Feder and Clark 2001). The
stationary ground state solution has been discussed previously (see Eq. (2.2)). However,
to study vortex dynamics we require the ground state to be time-dependent. The evolution

equation can be obtained by using the ansatz
Y(z,y,t) = e~ wtihg, (z,9,t), (2.31) d

where ¥o{z, y,1) is the time-dependent ground state of the BEC. Substituting Eq. (2.31)
into the GP equation (2.12) we obtain

‘ 3;“ = —%vi% — QLo+ %w%ﬂ% + g T2 Ty — ¥y, (2.32)
Equation (2.32) is a non-linear Schrédinger equation which is formally identical to Eq.
(2.20) with + = if.

In our numerical simulations it is convenient to rewrite Eq. {2.32) in dimensionless

form. This is achieved by the following transformations, which eleminate A, m and w:

~3/4
¥ = | i) ¥, (2.33)
\ 1AW
1/2
r — (-—E—) r, (2.34)
m
t - wlt (2.35)

Distance and time are measured in units of 1/fi/mw and w™!, respectively. The chemical

potential is given by

= [ d%r [MV L W2 + QUL g + Lr? T + g To|*]

[ &ri%aP ‘ (236

This definition of chemical potential guarantees that the condensate wavefunction is nor-
malized at each iteration. The transformations (2.33)-(2.34) result in g = 4nNa/\/hfmw =
3458 (N = 200,000, @ = 5.29 nm and /f/mw = 3.85 pm).

Before presenting the numerical simulations we discuss the stability of the non-linear

Schrédinger equation (2.32). The right hand side of Eq. (2.32) can be obtained by varying
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the energy density functional, E[Wg, ¥g], with respect to ¥y, where

I A7 - m o2, G |2
E[\I’o, ‘I’o] =¥~V QL + —wr + *-l‘I’uI —p ) Yo (2.37)
2m 2 2
Equation (2.32) can be written as
ih 3 6@0 [@0~k'0]- (2.38)

The evolution of the energy density functional is

2
> 0. (2.39)

iﬁ%—?[‘l’g,i’o] —h ( OF 0%y OF 8\1’0) _ 2l oE

0%, Ot +81I'0 Bt 8T,

If we start with a random wavefunction, ¥g, the system does not evolve toward a minimum

energy configuration. To remedy this problem we rewrite Eq. (2.38) in the form

vy,

T

oFE .
= 57133[%’ Tol, (2.40)

where 7 = if. The evolution of the energy density functional is now

2
< 0. (2.41)

ﬁg—f[‘pﬂ"%] _ ﬁ,( oFE 8%y OF 6“1’0) 0E

3o o7 8% or ) T (2%

Starting with a random ¥y, the energy density of the system decreases as a function of 7,
until a minimum energy configuration is attained.

Equation (2.40) represents the time-dependent Ginzburg-Landau (TDGL) equatioi..
It is widely used to study the superconducting phase transition and has also been uscd to
study the formation of topological defects in a superfluid (see e.g., Zurek 1996 and Gill
1998). The evolution of the GP equation (2.32) in imaginary time (or the TDGL equation
{2.40)) may be used to describe vortex dynamics in a BEC.

The equation of motion (2.32) is evolved in imaginary time using Runge-Kutta in-
tegration. The numerical scheme utilizes a finite difference approximation to the spatial
derivative, which requires the spatial step Ak < 1 and the imaginary time step Ar £ 1 (see
Appendix A). We utilize a spatial step Ak = 0.1, and an imaginary time step Ar = 0.001,
where Ar < Ah guarantees numerical stability. We begin by investigating the dynamics of
a single vortex located in a rotating trap. The phase winding of the vortex is determined
by

8(z,y) = tan"! (i’;—::—?}) : (2.42)
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where the vortex is located at position (zg,yp). To proceed we first calculate the initial
ground state wavefunction in the absence of rotation (2 = 0). This is achieved by utiliz-
ing a fixed point iterative scheme (see Sec. 2.2.1), which starts by assigning a constant
magnitude to the condensate wavefunction, V. The wavefunction is normalized within
the area of the simulation frame 60 x 60, and vanishes on the boundary.® The phase of
the wavefunction is determined from Eq. (2.42). At each iteration the vortex position is
specified by ¥g(zg,y0) =90. The GP equation (2.32) is evolved in imaginary time 7 until
the difference in both gz and the norm ||¥y|| at two successive iterations is smaller than
0.01A7. Once the initial condition has been found, the vortex is then evolved in a rotating
condensate (€2 # 0) using the equation of motion (2.32). Sincc w = 1 and 2 € w, the
simulations were carried out in the range 0 <2< 1.

The numerical simulations show that when 2 = 0 the condensate does not support
stable vortices (or anti-vortices). The vortex (or anti-vortex) always moves out of the
trap for & = 0. However, as £ is increased from zero the vortex moves into the trap
with an acceleration that depends on the magnitude of €2; 2n anti-vortex is expelled from
the trap. There is a critical frequency, £2., that is just able to confine a vortex. The
numerical simulations show that ., = 0.1. This value is lower than the experimental
value 0.32 < €, < 0.38 (sec Feder and Clark 2001) and lower than the value (2, = 0.3)
obtained in the simulations performed by Feder and Clark (2001). This discrepancy may
be due to the two-dimensional nature of our simulations, where it is assumed that all the
200,000 condensate atoms are confined to the z-y plane. This means that our condensate
will have a larger size than that in the experiments, or in the 3D simulations performed
by Feder and Clark {2001). Since the value of the critical angular frequency is inversely
proportional to the square of the size of the condensate (see Sec. 2.2.2), a larger condensate
results in a smaller critical angular frequency.

Figure 2.5 shows the behavior of a vortex in a rotating trap with €2 = 0.2. The vortex,
initially located at the edge of the trap, moves toward the center (at 7 = 45). Similarly,
an anti-vortex located at the center of the trap is found to move outward (see Fig. 2.6}.
Further ilerations result in an anti-vortex being expelled from the rotating condensate.
For 2 > 0.3 it is found that variation of the phase at the boundary of th. condensate

nucleates vortices that enter the trap, resulting in a multiple vortex configuration. These

>The distance from the origin is given by Ah/i? + j2 (Ah = 0.1), where i and j are the grid coordinates
in the ¢ and y dircction, respectively. Thus a simulation frame 60 x 60 corresponds to 2 grid size 600 x 600.
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simulations show that rotation of the BEC produces a confining potential for vortices (ex-
pelling anti-vortices). Since topological charge is conserved, the formation of vortices will
be accompanied by anti-vortices, however, only the latter are expelled from the rotating
trap.

It is thought that voriex nucleation involves superfluid turbulence. Sirce vortices
can only be nucleated in pairs they enter the condensate via turbulent superflui¢ flow
at the boundary. This can be achieved by perturbing the condensate using a laser beam
(Raman et al. 1999), or by introdusing an anisotropy in the condensate trapping potential
(Madison et al. 2000 and Shacer et al. 2001).° However, since the BEC forms via a
symmetry breaking phase transiiion, vortices (in a two-dimensional condensate) can also
be nucleated locally via the Kibble-Zurek mechanism (see Sec. 1.4). This mechanism
predicts that vortices (and anti-vortices) form immediately after a symmetry breaking

phase transition.

2.2.5 Vortex nucleation via the Kibble-Zurek mechanism

We have performed numerical simulations to explore the formation of vortices via a phase
transition to the BEC state. Immediately following the phase transition the phase of the
wavefunction is expected to be uncorrelated at distances larger than the coherence length
of the wavefunction (see Sec. 1.4), which is comparable to the size of a vortex core.”
Since the size of a vortex core is much smaller than the size of the condensate {see Fig.
2.5), the Kibble-Zurek mechanism can be invoked to simulate the nucleation of topological
defects in the condensate (sce e.g., Kibble 1976 and Zurek 1996). The initial condensate
wavefunction is calculated in the absence of rotation. Once the wavefunction has been
found, each grid point in the simulation frame is assigned a random: phase between 0 and
2n. This has the effect of simulating bubble nucleation during the phase transition to the
BEC state. The initial condition of random phases results in large local phase gradients
in the wavefunction. Since superfluid flow is proportional to the phase gradient (see Eq.
(2.17)}, there will be large fuctuations in the superfluid velocity. This implies that our

initial condition is congistent with turbulent superfluid flow.

%For a three-dimensional system vortices arc observed to nucleate instantaacously when the condensate
rotates with angular frequency above {2, (Madison et al. 2000). This suggests that vortices are nucleated
locally in the condensate (Dalfovo and Stringari 2001, Feder ef al. 2001 and Raman et al. 2001},

"This is only correct immediately following the phase transition. At later times the correlation length
of the wavefunction grows, and it is no longer comparable to the size of the vortex core.




Figure 2.5: The number density, |¥y(r))?, of a dilute BEC with 200,000 " Rb atoms
showing the behaviour of a vortex inside a rotating BEC (Q = 0.2). (a) The vortex is
initially located at (5,0). (b) At 7 = 45 the vortex has moved toward the origin. This
shows that rotation of the BEC may be used to confine vortices.
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Figure 2.6: Number density, |¥g(r)|?, showing the behaviour of an anti-vortex in a rotating
BEC (© = 0.2). (a) The anti-vortex is initially located at (0.1,0}. (b} At 7 = 45 the anti-
vortex has moved out toward the edge of the condensate. Rotation of the 1+%C is found
to expel anti-vortices.
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Following vortex nucleation, the system is evolved in a rotating trap until an equi-
librium vortex configuration is obtained (at v = 100).8 A typical simulation of vortex
nucleation is shown in Fig. 2.7 with £ = 0.6. This value of § gives rise to multipie
vortices In the rotating condensate. Figure 2.7 shows vortex nucleation at random posi-
tions in the condensate accompanied by the corresponding anti-vortices. Initially there
are equal number of vortices and anti-vortices. Figure 2.7 (b) shows an excess of vortices
over anti-vortices. In Fig. 2.7 (c) only vortices are observed, with anti-vortices having
been completely expeiled from the rotating trap. Despite the initial random positions
of the vortices, the system evolves toward a regular lattice. The appearance of a stable
vortex configuration is due to two competing forces. The first is a radial trapping force,
F(r} o< r, that arises from the background phase gradient imprinted on the rotating BEC.
The second is due to inter-vortex forces which exhibit a r—! dependence. This inter-vortex
force arises from interactions with the background phase gradient of the other vortices. To
understand the origin of inter-vortex forces consider a vortex located at the origin inter-
acting with a second vortex located at position (z,y). The background phase experienced
by the second vortex due to the first is (z,y) = tan™(y/z). This gives rise to a force on
the second voriex, whose component in the z direction is proportional to 88/8y = z/r?; in
the y direction the force is proportional to 86/8z = —y/r?. The magnitude of the force is
proportional to r~!. The first vortex experiences a force in the opposite direction, and the
two vortices exhibit an r~! mutually repulsive force. The background phase gradient in
the condensate, established by the vortices, resuits in a net repulsive force on each vortex.
The resultant force on a vortex is zero, since the trapping force due to rotation is exactly
balanced by the repulsive inter-vortex forces.

Figure 2.8 shows multiple vortex configurations for = 0.2,0.4,0.6 and 0.8. Larger
rotational frequencies result in more vortices being confined to the trap. The relationship
between n,, and 2 is obtained by considering a rotating condensate with area S and radius

R. The circulation, I', along the boundary of the condensate is given by

r = [3 (V x v} - AdS (2.43)

= jf v-di, (2.44)
C=885

where C = 3.5 denotes a closed path on the boundary of the condensate containing the

8Since time is measured in units of w™?!, the dimensionless parameter = = 100 is approximately equal
to one second.

R TS L e
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; g (e) . ,(f)

Figure 2.7: Grey scale plots of the phase of a small section (12 x 12) of the condensate,
for @ = 0.6, at (a) 7 = 0.05, (b) » = 0.2 and (¢) 7 = 2. The corresponding number
density, |¥g|?, is shown in (d}, {e) and (f}, respectively. Here black denotes a phase of
0 and white denotes a phase of 2#. The initial condition corresponds to a condensate in
the absence of rotation with phase randomly assigned to each grid point in the simulation
frame. (a) and (d) show the nucleation of vortices accompanied by the corresponding anti-
vortices; (b} and (e) show more vortices than anti-vortices, with the rotating trap acting
as a confining potential for vortices (expelling anti-vortices). Finally, {c) and (f) show
only vortices at random positions. Further evolution of the vortices produces a triangular
vortex configuration.
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() (d)

Figure 2.8: The number density, [¥y|?, at 7 = 100 with (a) @ = 0.2, (b) Q@ = 04, (¢)
Q = 0.6 and (d) 2 = 0.8. The initial condition corresponds to the condensate in the
absence of rotation, with phase randomly assigned to each lattice point. Vortices form at
random positions accompanied by the corresponding anti-vortices as shown in Figs. 2.7
(a) and (d). However, the r~! interactions between vortices produce a triangular lattice
whose number density depends on the magnitude of the confining potential, i.e., on .
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Q

Figure 2.9: Vortex number density, n,, as a function of angular frequency, 2. The values
of ny are obtained from Fig. 2.8. The line of best fit shows that n, o 2. The line does
not pass through the origin since there is a critical angular frequency, Q, == 0.1, for the
formation of vortices. The vortex number dengsity vanishes at € = 0.1.

vortices and dl is infinitesimal path length along C. Assuming uniform rotation Eq. (2.43)
gives

fs (V x v) - hdS = 27 R*S), (2.45)
where we have used |V x v| = 2Q. To evaluate Eq. (2.44) consider the current density, J,
defined by

3= A [IVY — ¥VY] (2.46)
2mi
2

- Mg, (2.47)
m

where the last equality was obtained by noting that ¥ = |¥|e?. Since J = [¥|*v, Eq.
(2.47) reduces to

v= EV&. (2.48)
m
The magnitude of the infinitesimal path length, dl, is given by Rdf. For N vortices we
obtain
j{ v.dl= NR (2.49)
C=a8 m
Equating (2.45) and (2.49) gives
Q=" n, (2.50)

2m
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The relationship between n, and £ can be verified directly by counting the number of
vortices in the condensate (see Fig. 2.8). This relationship will be discussed further in
Chapter 3 for a relativistic model, where we investigate vortices in a rotating dark matter
condensate (see Sec. 3.4).

Repulsive vortex-vortex interactions, in competition with the confining force due to
rotation, explain how an equilibrium vortex lattice arises in a rotating BEC. Since a vor-
tex is characterized by non-vanishing circulation, the mutual repulsive interaction between
vortices results in them moving in the direction perpendicular to the superfluid flow. This
is contrary to our intuitive understanding of vortex dynamics in classical hydrodynamics.
When a classical vortex interacts with another vortex, it moves in the circulating fluid of
the other vortex. Thus in contrast to quantum vortices, classical hydrodynamical vortices
orbit each other (see e.g., Acheson 2000). The difference between vortex interactions in
classical hydrodynamics and quantum condensates is puzzling and warrants closer inves-
tigation. In the remainder of this chapter we examine vortices in a novel classical system
based on the phenomenon of light condensation in a non-linear optical material (Michinel

et al. 2002).

2.3 Vortices in a liquid light condensate

2.3.1 Liquid light condensate

When a high power laser beam propagates through a non-linear optical material (i.c., a
material whose refractive index depends on intensity), self-focusing of the beam occurs
inside the material and the beam propagates without spreading. For some non-linear
optical materials, such as the chalcogenide glasses (Smecktala et al. 2000}, the refractive
index, n(I), can be expanded as a function of light intensity (or irradiance)®, I, according

to (Michinel ef al. 2002 and Chiao ef al. 1964)
n(I) = no + nol — 1% + O(I%), (2.51)

where ny, ny and n4 are positive constants that determine the non-linear response of
the optical material to the light.!? For a typical experimental configuration ng = 1.8,

ng = 2 x 1078 cm?/GW, and ng ~ 2 x 10~* cm?/GW?, at wavelength A = 1600 nm

®Light intensity refers to the flow of electromagnetic energy per unit area per unit time. In optics, this
is referred to as irradiance.

YFor light traveling in a homogeneous and isotropic material with velocity v and permitivity e, the
intensity J is related to the time average of the electric field via 7 = ev(|E|*).
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(Michinel ef al. 2002). This suggests that non-linear effects become significant for a laser
beam with intensity of the order of GW/cm?, which is readily achievable. However, at
this intensity the higher order terms in Eq. (2.51) are not significant and we neglect terms
o(13).

To understand self-focusing consider a laser beam of diameter d propagating inside a
non-linear material. Diffraction results in the beam expanding with angular divergence
Buiv = 1.22) /nod, where A is the wavelength of the light in vacuum. Since the refraction
index of the material within the beam is higher than that outside, there is a critical
angle where total internal reflection occurs, i.e., at the boundary separating regions with
different refraction indices. This angle determines the critical power for self-focusing of
the laser beam.

The equation governing a self-focused laser beam can be derived from Maxwell’s equa-
tions. For a source free'! non-linear dielectric medium, Maxwell’s equations give (in SI
units})

8°D

MG V2E =0, (2.52)

where to is the permeability of free space, D is the displacement vector and E is the

electric field intensity. In an isotropic medium the displacement vector is given by
D =¢E+ P, {(2.53)

where P is the polarization vector. For an isotropic medium the non-linear polarization

vector can also be written as
P = gxE + &[E|’E + ¢4|E{'E, (2.54)

where x. is the electric susceptiblity, €9 is tiic permictivity of free space, and ¢; and ¢4 are
constants that determine the non-linear 1esponse of the medium. It can be shown that
€2 > 0 and ¢4 < 0 (see e.g., Mandel and Wolf 1973).

In general the electric field B in a medium can be represented by two transverse
components and a longitudinal component. The transverse components are orthogonal to
the propagation direction of the laser beam, whereas the longitudinal component is parallel
to the direction of propagation. In a homogeneous isotropic medium the longitudinal

component of E vanishes. The electric field can be represented by a two-component

UThe first Maxwell's equation (Gauss’s law) is V + E = p/eo, where p is the charge density. In the
abscnce of a charge density (or source) the electric field has zero divergence, i.e., V-E =0.
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vector field. For a laser beam traveling in the z direction the two transverse components

are denoted by Er and Ey. Writing E = E; + iEy, the vector equation {2.52) reduces to
a scalar wave equation, i.e.,
8D

e ViE =0, (2.55)

D = €5(1 4 xe)E + €2 E’E + €4\ E|'E. (2.56)

For a plane wave traveling in the z direction
E =U(z,y, z)ei(kz_“’t), (2.57)

v'here ¥(z,y,z) is the (complex) envelope, k is the wavevector and w is the frequency.
Substituting Eq. {2.57) into Eq. (2.55) and assuming that the envelope changes slowly in
tke z direction, so that |8¥/8z| <« k| ¥}, we obtain an approximate equation of motion

for the envelope:

2ik%§ + V3T + wPppea| )P0 + wipoed M0 = 0, (2.58)

where V3 = 0%/82% + 82 /0y® and k = 2T+ xe.

Michinel et al. (2002) used numerical simulations based on Eq. (2.58) to show that
a gas of photons in a cubic-quintic non-linear optical material can “condense” to a state
with physical properties analogous to that of a liquid. For example, when a liquid light
droplet is incident upon a boundary (i.e., the interface between vacuum and the non-linear
material), the collision resembles that of a water droplet impacting on a wall. The phase
transition to a liquid light condensate (LLC}) state is characterized by a symmetry breaking

potential analogous to that of the BEC discussed in Sec. 2.2, i.e.,

L:J2 € Ld2 €
V(e = -5 - =L, (2.59)

To understand the physical significance of the potential (2.59), consider a laser beam
with a Gaussian profile propugating in the z direction centered on r = /z2 + 32 =
0. For a low intensity beara the material responds linearly and no self-focusing occurs.
Increasing the intensity of the laser beam results in non-linear behaviour; in this case the
term —w?pugeq|¥|? /2 becomes significant and the potential decreases with increasing light
intensity. For a Gaussian profile the intensity of the beam in the z and y direction is

greater closer to the center of the beam. Therefore the polential is lower at the center of
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the beam. This results in self-focusing of the beam, with the photon gas becoming unstable
to “collapse”. As the photon gas “collapses” its pumber density increases and eventually
the term -—w?ugeq|P|%/3 becomes significant. Since €4 < 0 the potential increases with
increasing light intensity, thus preventing further “collapse”.

The interplay between the first and second terms in the potential (2.59) determines
the stability of the LLC. The ground state is obtained from 8V/3|¥| = 0. For ¢4 < 0 this
is given by

[Wo| = 4 /—=2. (2.60)

€4
An immediate consequence of Eq. (2.60) is that since ez and €, are constants for a non-
linear material, a beam with |¥| < |¥g| is unstable and experiences strong self-focusing;
however, a beam with |¥| > |¥p}| does not self-focus. For |¥| < {¥| the first term in the
potential (2.59) dominates, whereas for |¥] > [¥g| the second term dominates.

The potential (2.59) is analogous to that for a BEC. The fourth order term in the po-
tential corresponds to attractive “two-body” interactions, which result in the laser beam
collapsing to produce infinite intensity. However, for sufficiently high beam intensity the
sixth order term in the potential becomes significant. Thkis latter term corresponds to
repulsive “three-body” interactions, which prevent the beam from further collapse. A
similar situation arises in a collapsing BEC (see e.g., Kagan et al. 1996, Shuryak 1996,
Stoof 1997, Ueda and Leggett 1998, Sackett ef al. 1998 and Kagan et al. 1998). To
appreciate this analogy consider the stability of the BEC in a confining potential. The
BEC exists as a consequence of the interplay bewween the repulsive two-body interactions
and the external harmonic trapping potential. The sign of the two-body scattering length
can be changed, by exploiting Feshbach resonances (Inouye et al. 1998), from positive (re-
pulsive scattering) to negative (attractive scattering). In this latter case the condensate
is unstable to collapse. When .the condensate collapses its number density rises. Conse-
quently, the three-body repulsive interactions becomes significant and stop the BEC from
further collapse.

The LLC is described by a complex scalar field ¥ and exhibits U(1} symmetry breaking.
The existence of a broken symmetry ground state for the LLC suggests that the condensate
may support topological defects. As the beam enters the non-linear material, topological
defects (e.g., vortices) should form at the interface between vacuum and the medium. For

a stationary propagating beam, the equation of motion (2.58) governing ¥ has the same
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form as a generalized non-linear Schrédinger equation. However, vortices in a classical

system, such as a LLC, are expected to behave differently to quantum vortices in a BEC.

Te study vortex dynamics in 2 LLC we require the condensate to be time dependent.

Consider a plane wave traveling in the z direction
E = (g, y. z,t)elke—wt, (2.61)

Substituting Eq. (2.61) into Eq. (2.55) and assuming that the envelope changes slowly in
the z direction, the equation of motion becomes

(1t xe) ¥ . 2i(1 + xo)w OF O

po (3e2 [D[% + 5eq|T|*)

N T c? ot B2
¥ v\ ?
+igiw (Be2}¥[? + 10¢4|T[*) %t- ~ g (6e2 ¥ + 20¢4|¥*®) (g)
+2='k§E 4 VA + e PP + wpoeg ¥ = 6. (262)

0z

To simplify Eq. (2.62) we aliso assume that the envelope changes slowly with time, so
that |0V /8t <« w|¥|. In this case we obtain an approximate equation of motion for the

envelope:

(14 xe) ¥ 2i(1 + xe)w OV

Z  ai2 2 ot V3V - wlpoea|U° Y ~ wpoes| TP = 0.  (2.63)

Equation (2.63) neglects the term 2i£9¥ /8z, so that we have a two-dimensional system
corresponding to the cross-section of the propagating laser beam. For convenience we

rewrite Eq. (2.63) in dimensionless form by employing the transformations:

U o (Voae) VY, (2.64)
r &+ ¢ (\/Ww) - T, (2.65)
t = wly (2.66)
e = (14 xe)eov—€ae2, (2.67)
g —= (1+ xe)eoegq. (2.68)

The spatial coordinates are measured in units of ¢ (v/T +xew)"1, and time in units of

w™!. With these transformations the equation of motion (2.63) becomes

2
‘ZTE’ — 2:’%1:’- ~ V29 - 20 + [T = 0. (2.69)
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Equation (2.69) contains both first order and second order time derivatives. To understand

the behaviour of ¥ due to these two terms, we decompose the envelope into real and

imaginary parts

P = %‘1*5‘1,91,

(2.70)

where 1y and t; are real scalar fields. Substituting Eq. (2.70) into Eq. (2.69), and

equating the real and imaginary parts we obtain

8;§°—v ‘!.bo+26¢l+¢o(¢0+¢1)(¢0+'¢r1—1) - 0
1y a«¢-

W"'Vﬂbl 3t +1 (5 + 1) (w§ + v ~1) = 0,

(2.71)

(2.72)

The spatial part of these equations correspond to two non-coupled partial differential equa-

tions, which together give rise to a static vortex solution. However, the time-dependent

parts of Egs. (2.71) and (2.72) are coupled-partial differential equations, i.e.,

o 3“.01 _

o +2 e 9
&P 9 _
ot? Bt ’

which have solutions of the form

thg = cos2i

i = sin2i

These solutions satisfy the constraint, 92 + ¥/§ = 1, imposed by the potential.

(2.73)

(2.74)

(2.75)
(2.76)

Since ¥ represents orthogonal transverse components of the electric field, the harmonic

solutions (2.75) and (2.76) suggest that the electric field exhibits oscillatory behaviour.

This solution is different to the non-oscillatory bebaviour of the wavefunction in a BEC.

This suggests that vortices in a LLC behave differently to quantum vortices, despite the

similarities between the model descriptions.

To clucidate vortex dynamics in a LLC we utilize the transformation ¥ — ¢*®¥¥. The

LLC model {2.69) now becomes

Ov - 2:%‘11 -2@a2—§’ + a2V — |20 + 'Y = 0.

Writing ¥ = W(z(t),y(t)), the time derivative of the scalar field is given by

oY _o¥or 0%y
ot dzx ot Byot’

(2.77)

(2.78)
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where 9z/8t and dy/Jdt are the components of the flow velocity in the z and y direciions,
respectively. For a phase gradient in the y direction the condensate flow is opposite 1o the
phase gradient, i.e., Oy/0t = —«. Substituting Eq. (2.78) into Eq. (2.77), the equation of

motion now becomes

v
o — 23 «3—%—”;- + &Y — |99 + |90 = 0. (2.79)

In the LLC a background phase gradient in the y direction exerts a force on a vortex in
the y direction (rather than in the z direction, as is the case for a BEC). Vortex dynamics
in the LLC is therefore dramatically different to that in the Gross-Pitacvskii model of a
BEC. Consider a vortex lecated at the origin of a LLC interacting with a second vortex
located at position (z,0). The background phase gradients experienced by the second
vortex (due to the first) are 86/8y = x/r? and 38/dz = 0. This results in a force on
the second vortex in the y direction; similarly the force on the first vortex is in the —y
direction. Consequently, the two vortices rotate about each other rather than repelling,

as is the case for quantum vortices,

2.3.2 Numerical study of vortex dynamics in a liquid light condensate

A numerical simulation of vortex dynamics in a LLC utilizes the equation of motion (2.69).
The initial condition is obtained from a static vortex solution to the field equation (2.69),

1.e,

20 a1
dr? r dr

~ P (¥ -1} =o0. (2.80)

Equation (2.80) is solved by utilizing an iterative fixed point method {see Sec. 2.2}. This
method requires an initial guess fr [¥]. For large r the field magnitude is expected to
approach a constant value; therefore the first; second and third terms on the left hand side
of Eq. (2.80) vanish. The asymptotic value!'? is |¥(r — oo)| = 1. Since the condensate
field magnitude vanishes at the origin, we set |¥(0)| = 0 and |¥(r # 0)| = 1. Once the
static solution is found (see Fig. 2.10), it is wound onto a two-dimensional Cartesian grid.
The initial multi-vortex configuration is constructed using an Abrikosov ansatz (Abrikosov
1957). A leapfrog method is then employed to evolve the field equation (2.69) in real time.

Our numerical simulations used a spatial step Ah = 0.5 and time step At = 0.1, with

At < Ah imposed for numerical stability. The results of a typical simulation with two

it

12This value corresponds to the ground state expectation value of the condensate. Equation (2.69)
describes a symmetry breaking potential, V(J¥]) = —|¥|*/2 + {¥|°/3. Minimization of this potential gives
the ground state |¥o] = 1.
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. . : . + * . —
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Figure 2.10: Static vortex solution in cylindrical coordinates. The light intensity, |[¥[?,
vanishes at the origin where the phase winding of the vortex is undefined (see Sec. 2.2).

interacting vortices are shown in Fig. 2.11. Figure 2.11 {a) shows the initial condition with
two vortices located on the z-axis. Figures 2.11 (b)-(f) show the vortices orbiting each
other in the anti-clockwise direction, corresponding to the circulation of each vortex. The
. direction of rotation reverses for the case of two anti-vortices, i.e., when the sign of the
winding number (direction of circulation) is changed. In the case of a vortex and an anti-
vortex, the pair move parallel to each other, with the direction raversing when the positions
of the pair are interchanged (or equivalently the sign of the ‘#inding number is changed).
Repulsive interactions are not observed between vortices, or attractive interactions between
a vortex and an anti-vortex.

The stability of vortices in a LLC is examined by numerically simulating a multiple
vortex configuration. We plot the intensity of light in the condensate, in which vortices
appear as dark regions.!® Figure 2.12 shows a typical simulation with iritially random
vortex positions. In the LLC vortices rotate about the origin, with vortices within a group
also exhibiting local rotation. The long term evolution does not produce a triangular

vortex lattice.l? Since vortices orbit each other, it is tempting to think that the long term

"%Vortices in the condensate can be imaged directly. A paper detailing how this may be achieved is
included at the end of this thesis.

19T'his is in contrast to a BEC, where vortices can nucleate at random positions and then evolve toward
a minimum energy configuration.
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-20 -10 O 10 20 -20 -10 0 10 20
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Figure 2.11: Grey scale plot of the phase winding of two vortices. (a) £ = 0, (b) ¢ = 140,
(c) 1 = 280, (d) t = 420, (e} ¢+ = 560 and (f) at the end of the simulation, ¢ = 700. Black
denotes a phase of 0 and white denotes a phase of 27, These figures show two vortices In
the LLC orbiting each other in the anti-clockwise direction. In a classical hydrodynamical
model there are no mpulsive interactions between vortices.
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evolution of a regular vortex lattice is unstable, with any perturbation from the uniform
arrangement initiating local rotation, causing the vortex positions to become random.
We have carried out simulations to investigate the stability of a rotating triangular vortex
configuration. It is found that the entire vortex lattice rotates, with no evidence of peculiar
rotation of vortices within the lattice (see Fig. 2.13).

Classical vortices in a LLC do not display mutually repulsive interactions and their
structure is different to quantum vortices in a BEC. For example, vortices in the LLC are
stable for integer winding numbers n > 1. Consider a vortex in the LLC, which is written
as

U = |Ple ™, (2.81)

The continuity equation is derived from Eq. (2.63), i.e.,

1 [= 1 (8% 8% c? - -
5t I:\I’\I’ ~ 5 (\I'E - ‘I‘E)] + mvl . (‘I‘VJ}I’ - ‘IJVJ_‘P) =0, (2.82)

where the current density is given by

(52

__,_______._,_!— — Y
J= ST )w (IV. ¥ -0V, ¥). (2.83)

Substituting Eq. (2.81) into Eq. (2.83) and using J = |¥|?v, we obtain the velocity profile

of a vortex
n

= —7F—V.0 2.84
rxdw " (284)

Consequently, the circulation over a closed path is

2ncin

1"=fv-dl=—— . 2.85
A (AT (28

Since the frequency, w, is not necessarily fixed, a vortex in the LLC does not have quantized
circulation. Vortices may form in the condensate with any winding number n, however,
the lattice adopts a minimum energy configuration in which each vortex has n = 1, Once

forined, the vortex configuration is stable in the absence . external rotation.

2.4 Vortex dynamics in quantum and classical condensates

A distinctive property of a quantum fluid is that it is frictionless (see ¢.g., Noziéres and
Pines 1990). In the absence of viscosity a vortex does not “feel” the background fluid-

flow. Consider a quantum fluid with velocity vy, = %a’ in the y direction, where « is the
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Figure 2.12: Light intensity of a random vortex configuration (black dots) in the LLC.
(a) t = 0, (b} £ = 120, (c} t = 240, (d) t = 360, (e) ¢t = 480, and (f} at the end of
the simulation, { = 600. The vortex configuration rotates anti-clockwise, with individual
vortices orbiting each other in the anti-clockwise direction. Since there are no repulsive
interactions between vortices the system does not cvolve toward a regular lattice.
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Figure 2.13: Light intensity of a triangular vortex lattice (black dots) in the LLC. (a)
t=0,(b) i =120, (c) t = 240, (d) ¢t = 360, (¢) ¢t = 480, and (f) at the end of the
simulation, ¢ = 600. The vortex configuration rotates in the anti-clockwise direction and
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background phase gradient. In the presence of a background phase gradient, the current
density (2.47) is modified to

2
n'i' V(0 +ay). (2.86)

J =
The non-zero contribution to the current density is in the y direction. For a vortex located

2
J,,:ﬁlq’l (a—l— z ) (2.87)

m z? + 2
If a is independent of time (dJ,/dt = 0) there is no overall fluid motion in the y direction;

at the origin we obtain

consequently, there is no deflection of the vortex in the ¢ direction.

Equation (2.87) suggests that the background fluid-low modifies the y-component of
velocity. The magnitude of the y-component of velocity to the right of the vortex increases
by vpg, whereas to the left of the vortex the velocity decreases by wy,. This produces a
pressure gradient that causes the entire fluid (including the vortex) to drift to the right
(sec Fig. 2.14 (a)). The equation of motion of the fluid is governed by (see e.g., Nozitres

and Pines 1990)
dJ;
dt
where VP is the pressure gradient from left to the right. Equation (2.88) indicates that

= ~V,P. (2.88)

a vortex in a quantuim fluid deflects in the direction perpendicular to the fluid-flow.

In contrast to a quantum fluid, a classical fluid has viscosity. In our model of liquid
light, this is evident in Eqs. (2.71) and (2.71). If we assume that the LLC is in its
ground state, for which 2 + 97 = 1, then 8¢o/8% > O corresponds to d¢; /9t < 0
(likewise d¢g /3t < 0 corresponds to d¢; /8t > 0). This means that the real and imaginary
components of ¥ are damped, and the LLC exhibits “internal friction” {or “viscosity”). A
vortex in this classical fluid “feels” the presence of the background fluid-flow, and moves
in the direction of the fluid-flow (sce Fig. 2.14 (b)). There is no pressure gradient in the
direction perpendicular to the fluid-flow (VP = 0). This is apparent if we transform to a
frame moving with the filuid-flow. In this frame the vortex appears stationary, consequently
vortices in a classical fluid do not deflect in the direction perpendicular to the background
fluid-flow.

The behaviour of a vortex in a background fluid-flow is dictated by the viscosity of
the fluid, with vortices in quantum and classical condensates showing markedly different
dynamics. Two vortices in a quantum condensate repel each other (a vortex and anti-

vortex attract each other), whereas two vortices in a classical condensate orbit each other
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(a) (b)

Figure 2.14: Schematic showing a vortex inside a background phase gradient (in the y
direction). The vortex is indicated by a “hole” with surrounding circulation. Arrows on
tiue left and right of the vortex show the dircction of the fluid-flow, with the length of
the arrow indicating the relative velocity of the fluid. A vortex moves in the direction
indicated by the arrow on the vortex. (a) A quantum fluid is frictionless (inviscid), and
the vortex moves toward a lower pressure region. (b) A classical fluid is viscous, and the
vortex moves in the direciion of the background fluid-flow.

(a vortex and anti-vortex move paralle] to each other) (see Fig. 2.15).

2.5 Concluding remarks

A vortex lattice in a rotating BEC can be understood in terms of minimizing the encrgy
functional (2.37}, however, it i3 not obvious how vortices evolve to a minimum energy
configuration. We have used the GP equation to investigate vortices in a rotating BEC. It
is found that rotation of a BEC is equivalent to establis)-ing a background phase gradient in
the condensate, which results in a confining potential for vortices (cxpelling anti-vortices),
whose strength depends on the rotational frequency of the trap. As a (:onsequen(:('; of
conservation of topological charge, vortices and anti-vortices form following the phase
transition to the BEC state, however, anti-vortices are expelled from the rotating trap.
The competition between mutually repulsive vortex-vortex interactions and the confining
potentiai, due to rotation of the condensate, provides a simple mechanism by which vortices
cvolve toward a stable (minimum) energy configuration.

In contrast to repulsive interactions between quantum vortices in a BEC, classical
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Figure 2.15: Schematic showing vortex dynamics in a quantum condensate (a} and (b),
and classical condensate (c) and (d). (a} The velocity field between two vortices is lower
than at the left and right of the vortices. This leads to lower pressure at the left and right
of the vortices, resulting in the vortices moving away from each other. (b} For a vortex-
anti-vortex pair the velocity field is higher (and the pressure lower) between the pair,
resulting in the pair moving toward each other. (¢) Two vortices in a classical condensate
orbit each other, and (d) a vortex-anti-vortex pair moves parallel to each other.

vortices orbit each other. The origin of this difference is due to fluid viscosity. We have

examined vortex dynamics in a LLC that highlights the role of dissipation in a novel

classical condensate.

The appearance of voriices in disparate systems suggests that a model based on a
mean-field approximation can be used to describe vortex dynamics in systems where direct
experimental observations are not possible. One such system is considered in the next

chapter; namely, vortices in a rotating dark matter condensate.
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CHAPTER 3
Vortices in a Rotating Dark Matter Condensate

3.1 Introduction

Observational evidence indicates that over 90% of matter in the Universe is non-baryonic
(Robinson 1985 and Bahcall et al. 1999). Support for the dark matter hypothesis comes
from the flat non-Keplerian behaviour exhibited by the rotation curves of spiral galaxies
(see e.g., Persic et al. 1996), Large Scale Structure (LSS), and the Cosmic Microwave
Background Radiation! (CMBR). Numerous models have been proposed to explain the
flat velocity profiles of spiral galaxies. One approach is to utilize modified Newionian
dynamics (MOND) (see e.g., Milgrom 2002). MOND modifies Newton’s second law by
replacing F = m*a with F = m*u(a/ao)a, where m® is the mass, u(a/ap) is a dimensionless
parameter comprising the acceleration e and an empirical constant ag ~ 2 x 10710 mg—2
(see e.g., Kirillov and Turaev 2002). The model assumes that on a galactic scale (a < eg)
it = afap and for ¢ > gy we set ¢ = 1. Based on Newton's law for the gravitational
force, F = GyMm*/r?, where G is the Newtonian gravitational constant and M is the
mass of the galaxy, MOND gives asymptotically flat velocity profiles, © = (GxMag)'/?,
for galactic rotation curves. The dimensionless parameter, p, modifies the force or the
inertial mass. To reproduce the observed flat rotation curve of spiral galaxies, MOND
modifies Newtonian gravity by adding terms to the gravitational potential. However, this
is an ad hoc procedure which does not have a sound physical basis - it requires a negative
cosmological constant term to provide an additional attractive force for matter (Bergstrom
and Goodbar 1999 and Bergstrom 2000).

Alternative scenarios consider a spherical distribution of dark matter in the galactic
halo that acts as a self-attracting sphere of ideal gas at uniform temperature - the isother-
mal halo model (see e.g., Binney and Tremaine 1987). Other phenomenological models,

such as the Navarro-Frenk-White model (Navarro ef al. 1996) and the “mildly singuiar”

'The most recent data from a one-year probe of the CMBR by the Wilkinson Microwave Anisotropy
Probe (WMAP) reveals that the Universe is flat, comprising 4% ordinary (baryonic) matter, 23% dark
matter and 73% dark energy (Bennett et al. 2003).
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models (Kravisov ef al. 1998) have been developed to describe the asymptotic behavior
of galactic rotation curves (Persic et al. 1996 and Bergstrom 2000). These models are not
predicated on any particular dark matter candidate and assume an analytical form for the
dark matter distribution, with adjustable parameters chosen to fit the observations.?

The nature of non-baryonic dark matter has also been the subject of widespread discus-
sion in the literature (see e.g., Bergstrom 2000 for a comprehensive review). Candidates
for non-baryonic dark matter include neutrinos, axions and neutralinos (see Sec. 3.3).
Self-interacting scalar matter fields have also been considered as a possible dark matter
candidate (Bergstrom 2000, Guzman and Matos 2000). Following a late-time cosmological
phase transition, pseudo Nambu-Goldstone bosons are predicted to form, and under cer-
tain conditions may condense as a Bose liquid (Sin 1994). The time of the phase transition
can be fine tuned to ensure that the phase transition does not impact adversely on nucle-
osynthesis. Recently Silverman and Mallett (2001a) considered a neutral self-interacting
scalar field with spontaneously broken symmetry coupled to gravity. It is conjectured
that these particles constitute a weakly interacting degenerate “ether” (WIDGET), that
can form a Bose-Einstein condensate (BEC) about one second after the formation of the
Universe (for a detailed discussion of the WIDGET model see Sec. 3.3).

In the present epoch, a cosmic BEC behaves like non-relativistic cold dark matter
(CDM), producing a spherical mass distribution which contributes to the gravitational
potential. An interesting consequence of galactic rotation is that it can give rise to vortices
in the dark matter condensate with quantized circulation. Vortex dynamics in the dark
matter condensate lead to a flat velocity profile for the condensate. In what follows we
discuss the flat Universal Rotation Curve of spiral galaxies and the need for a dark matter

model to explain the observational data.

3.2 The Universal Rotation Curve of spiral galaxies

Consider a galaxy whose mass distribution is M (r), where r is the radial distance from

the center of the galaxy. According to Newtonian mechanics the acceleration, a, of a test

2The analytical form of the dark matter distribution is expressed as a function of radial distance from
the center of the galaxy

Fe
iy ! (3.1}
p(r) {(r/Ra)yre{l+ (rfRo)’N]("ﬁ —vol/m
where p. is the critical density of the Universe, Ry is the core radius of the galaxy, 0, 71 and ¥ are model
dependent dimensionless parameters. For example, the Navarro-Frenk-White model uses (o, 71,92} =
(1,1,3), and the mildly singular models use (yo,m,72) = (0.2,2,3) and (0,71, 72) = (0.4,2,3) (see eg,
Bergstrom 2000). For the isothermal halo model, (0, 11, 72) = (0,2,2).

7 P ST AR e £ e
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body (e.g., a star) is given by
0= Gy M(r)

2 (3.2}
To remain in orbit the ceniripetal acceleration, v2/r, must equal the inward gravitational

acceleration of the body, a. As a consequence the velocity of the test body is written as

v = 1/-———1"? *), (3.3)

To obtain rigid-body rotation, Eq. (3.3) requires that the mass distribution M (r) o
73; whereas for a flat velocity profile the mass distribution M(r) x . Since M{r) =
[ p{r)4nr2dr, to account for the observed rigid-body rotation at the galactic core and flat

rotation outside the galactic center, the required mass density profile must adopt the form

plr) = —;—C"— (3.4

¥ quation (3.4) is identical in form to the isothermal halo model. When r < Ry it gives a
v sdd-body rotation profile, and for r > Ry it produces a flat rotation profile. The values
of Cy and Ry are chosen for each galaxy, however, a value Cy = 4.6 x 108 M kpe~! and
Ry = 2.8 kpc gives a parametric fit to the average rotation curve of spiral galaxies.

Not much is known about the visible mass density distribution at the galactic core.
Since the gravitational potential of a self-gravitating system rapidly vanishes as we ap-
proach the center of the system, a galaxy must have a constant mass density near its
center. This is consistent with the observed rigid-body rotation profile at the galactic
center. What is surprising is the observation of a flat rotation profile outside the galactic
center. Observations indicate that the luminous mass density, o{r), varies as r~° from
the galactic center (see e.g,, Carroll and Ostlie 1996). However, this cannot account for
the observed flat rotation curves, and leads to the astonishing conclusion that there must
be non-luminous matter in the halo that produces the flat velocity profile for spiral galax-
ies. This pon-luminous (dark) matter has been widely discussed in the literature (see e.g.,

Zwicky 1933, Bubin et ol. 1980 and Bosma 1981, Persic ef ¢l. 1996 and Bergstrom 2000).

3.3 Self-interacting scalar field as a model of dark matter

The existence of dark matter is consistent with the theory of formation and evolution of
the Universe in the context of Big-Bang inflationary cosmology (see e.g.. Liddle and Lyth
2000). Further support for dark matter comes from observations of LSS (Bahcall 2000)
and acoustic peaks in the CMBR (Bernardis et ael. 2600 and Lange et al. 2001).
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There is also tentative evidence that the Universe is expanding at an accelerating rate
(Riess ef al. 1998 and Perlmutter et al. 1999), suggesting the existence of dark energy
(Turner 2000 and 2001}, which may be due to a non-vanishing cosmological constant
(A # 0).3 The contribution of dark energy to the total mass density of the Unjverse
(€24} has been estimated by Turner (1999) to be in the range 0.55 < 4 < 0.65. Big-Bang
nucleosynthesis (BBN) of light elements (i.e., D, 3He, ‘He and 7Li) constrains the baryonic
component of the total mass density of the Universe to 25 = 0.04+0.01 (Copi et al. 1995
and Burles et al. 1999). This implies that the dark matter contribution to the total mass
density of the Universe is in the range U.30 < Qp < 0.42. The theory of LSS formation
favors Q25 ~ 0.6, 2p ~ 0.045 and p ~ 0.355 (Ostriker and Steinhardt 1995, Turner 2000,
Roszkowski 2000 and Dalal et al. 2001).

The possibility of non-baryonic dark matter has been strengthened since the discovery
that the neutrino has a small mass (Fukuda et el 1998 and Turner 2000). Experiments
to detect atmospheric neutrino oscillations using the Super-Kamiokande deiector suggest
that the neutrino mass is in the range 0.022 eV - 0.077 eV (Fukuda et al. 1998). Although
it is unlikely that neutrinos contribute more than about 0.3% to the mass of the Universe
(Turner 2000), there are many other possibilities for non-baryonic dark matter. Promising
candidates, such as neutralinos and axions, arise from supersymmetry (SUSY). While
neutralinos are a natural prediction of SUSY (Roszkowski 2000), axions are an inevitable
consequence of solving the strong-CP problem in QCD (Belavin et al. 1975, Callan et al.
1976, Jackiw and Rebbi 1976 and t’ Hooft 1976).? The strong-CP problem led Peccei and
Quinn (1977) to propose an axion self-interacting scalar field with a broken U(1) symmetry
(see e.g., Kim 1987 and Cheng 1988). “While the axion may be a viable dark matter
candidate, axinos (the fermionic SUSY partner of the axion) have also Deen considered
(Covi et al. 1999).

Theoretical modeling of LSS formation suggests that the dominant non-baryonic dark
matter component may be a self-interacting scalar field (Spergel and Steinhardt 2000,
Riotto and Tkachey 2000, Goodman 2000 and Mcdonald 2002). A self-interacting scalar

3The cosmological constant A is proportional to the vacuum energy density, pa, of the Universe, i.e.,
A = 887G pa [c?, where ¢ is the speed of light in vacuum. The cosmological constant governs the rate of
expansion of the Universe. A sufficiently large cosmological constant results in the Universe undergoing
accelerated expansion.

“The violation of CP’ conservation in the sirong intevaction leads to a vanishing quark mass (Kolb and
Turner 1990).
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field may exist in the form of a Bose liquid (Sin 1994). Silverman and Malleit (2001a)
consider such a condensate arising from a gravitationally induced symmetry breaking phase
‘ transition, which results in a high sumber density of very low mass WIDGET particles.

To incorporate a seli-interacting scalar field, ®, we start with the usual line element

ds? = g, dz"dz”, (p,v=10,1,2,3), (3.5)

where g, is the metnc tensor. In the weak field limit of general relativity the model

Lagrangian for the self-interacting scalar ficld may be written as (A =c¢=1)
2
L=g"3,90,® + 52—@[2 —~ %|¢|4, (3.6)

where M° and X are positive coupling constants. The vacuum expectation value is {($) =

ne®, where @ is the phase angle around the vacuum manifold. By defining the WIDGET

scalar field @ as

b = o — (d), (3.7)

the Lagrangian (3.6) can be written as

it

£ = ¢"B,80,% ~ MPIB[" - Malf* - 318 + 2] (38) ]

The essence of the WIDGET model is to interpret all the terms containing & in Eq. (3.8)
as the Lagrangian for the WIDGET, and the term An?/4 as a cosmological constant, A,

ie.,

Ly = 9880, — PR =l - 318 (3.9)
24 |
EA = -';2—’ (3.10) Lo k-

where & is the gravitational coupling constant of the scalar field &, and the cosmological

constant is given by

(3.11)

where m? = An?/2. Equation (3.11) implies that the cosmological constant, A, is due

i st

to non-vanishing vacuum cnergy. The constant An'/4 in the Lagrangian (3.8) causes
acceleration of the expansion of the Universe. To find the WIDGET mass, Silverman and | : »

Mallett (2001a) assume that & = n~!. With this assumption Eq. (3.11) gives A = m?/4.

Utilizing €24 ~ 0.6 and the critical mass density of the Universe p, ~ 1072 kgm™3, we
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can obtain a value for A, namely SIA87G ypc/c? ~ 10752 m~2. This gives the mass of the
WIDGET as mc? ~ 2.5 x 10732 ¢V. This value for the WIDGET mass is similar to that
derived by Silverman and Mallett (2001a); however, in a later paper these authors used
data from the rotational curve of the galaxy M31 to estimate the mass of the WIDGET
to be much higher®, ie., 2 x 107% eV/c? (see Silverman and Mallett 2001b). Adopting
this Jatter value and utilizing p, ~ 6 X 10° ¢Ve™2m™ for the critical energy demsity of the
Universe, the WIDGET number density is n ~ p./m = 3 x 1032 m~3. The number density
is related to the temperature of the phase transition via T, ~ 4.6 x 10~%n!/3 (Silverman
and Mallett 2001a). Using this relationship, the temperature of the phase transition giving
rise to these bosons is T, ~ 3 x 10° K. This value for T, implies that the WIDGET scalar
field can exist as a dark matter Bose-Einstein condensate one second after the Big-Bang.

An interesting consequence of a cosmic BEC is the appearance of quantized vortices
when the condensate rotates. In subsequent sections we show that these vortices naturally
give rise to a flat velocity profile for spiral galaxies. Before proceeding we first discuss
the consequences of rotation of the dark matter condensate. In Chapter 2 we discussed
rotation in the context of an alkali atom BEC (see Sec. 2.2). We now ceansider the effect

of rotation and vortex dynamics in the context of a dark matter condensate.

3.4 Vortex dynamics and interactions in a rotating condensate

3.4.1 Interaction of a vortex with a background phase gradient

We start by considering the WIDGET model (3.6) for a flat spacetime, i.e., g, =
diag(l,~1,-1,—1}. In this spacetime Eq. (3.6) reduces to the Goldstone model which

may be written as

£=5%0,8 - 5 (12 - )", (3.12)

The parameters X and 5 determine the Compton mass of the scalar boson, i.e., m? = An?/2.

The equation of motion derived from Eq. (3.12) is

0o + %@ (|(I>|2 - 7;2) =0. (3.13)

5T'he mass of the WIDGET is an unknown parameter. By relaxing the assumption & = ™, the mass
of the WIDGET can be varied. If the mass of the WIDGET has a different value, then so too does the
WIDGET number density and the temperature of the phase transition.

® Although the existence of dark matter may account for the “missing mass”, it only solves the problem
of flat rotation curves by assuming that the matter density falls off as r~2 away from the galactic center

(see e.g., Eq. (3.4)).
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An axisymmetric static solution to Eq. (3.12), for a string oriented along the z-axis, is

given by the Nielsen-Olesen vortex of the form
&(r) = f(r)e™, (3.14)

where f(r) is the magnitude of the field configuration, r = m, 8 = 8(z,y) is the
phase of the field and 7 is the winding number around the degenerate vacuum manifold,
S1. It can be shown that a voriex with n > 1 is unstable and always decays into multiple
vortices with n = 1. In what follows we set n = 1.7 For a vortex located at the origin,
the phase of the scalar field is given by 8(z,y) = tan~!(y/x). The magnitude of the field,
f(r}), is obtained by numerically finding the static solution to Eq. (3.13) in cylindrical
coordinates.

We consider a vortex embedded in a background scalar field, ¢g. Since we are only
interested in investigating how vortices interact with a background phase gradient, the
magnitude of the background field is assumed to be umity (see Sec. 2.2). Utilizing a

Taylor series expansion we can write the background phase © to first order as
0=054+V0O-r, (3.15)

where r is the displacement vector from the origin (r = 0), and €y is the phase at the
origin. The phase of the background scalar field varies according to VO -r. For simplicity
we assume that the phase gradient is a constant vector in the y direction, in which case
we can write ¢g as

Poly) = 9, (3.16)

where o = 80/8y is a constant. To describe a vortex in a background phase gradient we

use the Abrikosov ansatz (Abrikosov 1957)
o(t, z,y) = (L, T, y)do(y)- {(3.17)

At sufficiently large distances from the vortex core, the field configuration of a vortex is
approximately constant, with magnitude 7 (or 1 after re-scaling}. A vortex in a background
phase is equivalent to overlapping two vortices that are separated by a large distance.

Substituting Eq. (3.17) into the Lagrangian {3.12) we obtain

od a¢0 0% B¢y o2 9% o Ao
+ 8y 5 TIO 5 5 7 (1@

"Vortices with =1 have been d.lSClleed in Chapter 2 within the context of an atemic BEC model.

—?)%,  (3.18)

L= au@a”@ﬁuqnpo + 9|
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where only derivatives of ¢y with respect to y survive. The latter are given by

)

By = iaho (3.19)
O .
"6‘%0 = —iady. {3.20)

By direct substitution of Egs. (3.19) and (3.20) into Eq. (3.18), we obtain

_— ) 4% _9% A 2
= g~ o _ Y2 2 2_ .2
L=0"28,% +ia (@ % cpay) @’ ~ 7 (1ef* —»%)". (3.21)
Utilizing
e 0% 0, _w 20,
@63; @ay @ayfe Q)B—yfe ,
o6
= 922"
2f ot (3.22)
where |®|? = f2, the Lagrangian (3.21) becomes
E:%@ué-}-Zaf:’gg—a?fQ-%(fz—n2)2. (3.23)
Thus the potential may be written as
5 A
wn=—mﬁ%+ﬁ%%ndﬁ—ﬁf. (3.24)

For a vortex with uniform phase winding located at the origin, the phase of the scalar
field is given by #(z,y) = tan"}(y/z) so that

a0 T

% =57 - (3.25)

The potential is now written as

|

V(N =3 (=) 4@ 2ef 5 20

The first term in the potential (3.26) is a symmetry breaking term that gives rise to a
vortex. Since « is a constant and f is cylindrically symmetric, the second term in the
potential (3.26) is symmetric. Therefore the resultant force acting on the vortex due to

this term vanishes. However, the third term represents an asymmetric potential, i.e.,

Vi = —-2af2%. (3.27)
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The form of V4 is determined from the nurmerical solution to the static vortex. The
asymptotic vortex solution approaches the vacuum expectation value (VEV), for which

f{r — 00) = 5. However, the near field solution is given by
J(r = 0) =~ ¢, (3.28)
where ¢ is a constant®, whence we write
Va = -20c3s. (3.29)

The resulting force on the vortex is therefore 7, = 2ac}, whence a vortex embedded
in a phase gradient (in the y direction) experiences a force in the z direction that is
proportional to the magnitude of the phase gradient «. A vortex ® = fe? embedded in
the background field ¢g = ¢*°¥ results in an overall field configuration with phase winding
© = tan~!(y/z) + oy. This corresponds to a vortex with non-uniform phase winding.
Such a configuration is not in equilibrium, since there is a force acting on the vortex. To
attain equilibrium the vortex evolves toward a configuration with uniform phase winding.

Numerical simuiations were performed to confirm that a vortex embedded in a phase
gradient (in the y direction) experiences a force in the z direction. The equation of motion
follows from the Lagrangian (3.21)

0P ~ 2:'%% +o’d+ %@ (|2)* — 7%} =0. (3.30)

Equation (3.30) can be recast in dimensionless form by using the transformations:

Ty~ (PN Pz, w=t1y), (3.31)
® - nd. (3.32)
With the transformations (3.31) and (3.32), sp*+: :.d time are now measured in units

of the Compton length 1/7 \/m The numerical simulation uses a second order leapfrog
difference scheme.® The initial conditions invoke a cylindrically symmetric vortex (see Fig.
3.1), analogous to the vortex solution for the liquid light condensate {see Scc. 2.3).

To complete the simulations in a reasonable time, our numerical scheme uses a time
step At = 0.01 and spatial step Ah = 0.1, where At < Ak guarantees numerical stability.

The simulation frame is 140 x 140, correspording to a grid size of 1400 x 1400 (see Sec.

® A numerical solution to f(r) in cylindrical coordinates gives co == 0.58 (for A = 2 and 9 = 1).
°See Appendix A for a detailed discussion of the numerical scheme and stability criterion.

Cem we e e em ot e
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* . - —L S
2 4 6 8 10

Figure 3.1: Static vortex solution in cylindrical coordinates. The field magnitude, f,
vanishes at the origin where the phase winding of the vortex is undefined.

2.2). However, only a subset of the simulation frame (20 x 20) was chosen for the purpose
of visualization. i -_

Free boundary conditions are employed, in which the spatial derivative of the scalar
field vanishes on the boundary. Imposing boundary conditions can induce numerical noise
in the scalar field. Free boundary conditions allow the scalar field the freedom to “oscillate” i
cn the boundary, however, the derivative of the field on the boundary is only accurate to
second order in the spatial step {see Appendix A). This results in noise propagating into
the visualization frame. To obviate this problem simulations were evolved for 6000 time /
steps, in which case noise does not have sufficient time to propagate into the visualization H
frame. . < ..

Figures 3.3 (a) and 3.4 (a) show the energy density of a vortex in a uniform background i ;..
phase gradient at £ = 0, and at the end of the simulation, £ = 60. Figures 3.3 (b) and
3.4 (b) are the corresponding phase plots. The vortex, initially at rest, experiences an S
acceleration in the z direction whose magnitude depends on a. As the sign of a is changed :
the acceleration of the vortex reverses. At the end of each simulation the phase winding |
of the vortex reveals that the }ines of constant phase are curved. This is a result of the

vortex irying to accommodate the background phase gradient. The long-term evolution
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(a) (b)

Figure 3.2: (a) A grey scale plot of a typical background phase ay (o = 0.01), and (b)
the overlapping phase tan™!(y/z} 4 ay. In (a) the grey level denotes a phase in the range
(—0.1, 0.1], whereas in {b) black denotes 0 and white denotes a phase of 2x. The phase in
(b) is indicative of a vortex with non-uniform phase winding.

of ithe vortex in the background phase gradient is toward a state of constant velocity.
When “coupled” to the background phase, the vortex can be regarded as having a non-
uniform phase winding. This non-uniform phase winding gives rise to a self-force!?, which
attempts to restore the uniform phase winding (Thatcher and Morgan 1997). Once the
uniform phase winding has been restored, the vortex stops accelerating and moves at a
constant velocity.

The consistency of the model is confirmed by deriving the well known 1/r vortex-
vortex interaction (Shellard 1987). Consider a vortex located at the origin, interacting
with a second vortex located at position (z,y) (see Sec. 2.2.5). The background phase
experienced by the second vortex, due to the first vortex, is 6(z,y) = tan~'(y/x). This

gives rise to a force on the second vortex whose components in the z and y directions are

(‘)9(3:1 y) — i £y )y
F, = (3.33)
6(z,y) y
‘Fy S dr = _;:?': (334)

where the magnitude of the force is F = \/.7:}? + Fg oc 1/r. The two vortices exhibit a

A vortex self-force was postulated by Thatcher and Morgan (1997) to arise as a consequence of the
vortex interacting with its surrounding phase field. This sclf-force was iutroduced to explain the scattering
of critically coupled vortices in the abelian-Higgs model.
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Figure 3.3: (a) The energy density, and (b) phase winding of a vortex initially located at
position (—5,0) in a constant background phase gradient (¢ = 0.01}. The phase winding
of the vortex is anti-clockwise with black denoting 0 and white denoting 2.

o-10 x
(a) (b)

Figure 3.4: (a) The energy density, and (b} phase winding of a vortex at ¢ = 60. The
vortex has moved from its initial position (Fig. 3.3) as a consequence of interacting with

the background phase.
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1/r mutually repulsive force. This interaction will be shown to play a significant role in
determining the distribution of vortices in a rotating dark matter condensate.

A vortex embedded in a dark matter condensate is analogous to a vortex in a BEC,
In a BEC it is possible to engineer the background phase gradient to produce a confining
potential - trapping vortices and expelling anti-vortices (see Sec. 2.2). The simplest way
to produce such a background phase gradient is to rotate the condensate. In what follows

we explore vortex dynamics in a rotating dark matter condensate.

3.4.2 Vortices in a rotating condensate

The background phase gradient that provides a harmonic trap potential for vortices (see

Sec. 2.2) has components

80
z
80
dy

(3.35)

(3.36)

The strength of the trap is dictated by the values of {2; and 2. For simplicity we assume

an isotropic trap with axisymmetric rotation,!! for which Q, = Q, = Q. With this

T 8
(‘Pa “I’a—y)]

Lo gae A )
1°1¢] 4( . (3.37)

background phase gradient the Lagrangian (3.12) becomes

L= IO+ [y (q»i - @3—‘1’)

As with the case of an alkali atom BEC, where the background phase modifies the atomic
trapping potential (see Sec. 2.2), the background phase of the dark matter condensate
introduces a WIDGET trapping potential of the forin %QQrQ. The second term {in square
brackets) in the Lagrangian (3.37) describes the harmonic potential due to the background
phase gradient. The strength of the harmonic potential is proportional to Qz in the
x direction and to Qy in the y direction. The equation of motion derived from this

Lagrangian s
ae + %@ (27 ~1) - QL P+ %Q%?@ =0, (3.38)

where

{8 @
Lz =t (y'é; '-:L‘B'—y) ‘ (339)

3Tn the countext of a dark matter condensate there is no evidence to suggest that the galactic halo
exhibits non-axisymmetric rotation.
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1s the angular momentum component, and {2 is interpreted as an angular frequency. The
last term in Eq. (3.38) represents a harmonic trap potential for the condensate. Equation
(3.38) is the reiativistic version of the mean-field Gross-Pitacvskii equation, describing
vortices in a rotating BEC (sece Chapter 2). The phase gradient in Egs. {3.35) and
(3.36) can be written as Q&, x r. Rotation imprints a background phase gradient on
the condensate, which is equivalent to performing a global U(1} transformation on the
wavefunstion. The effect of rotation can be eliminated by transforming to a frame rotating
with the condensate. This is accomplished by introducing a fictitious gauge field and
performing a gauge transformation (see Egs. (1.14) and (1.15)). A background phase
gradient, &, X r, imprinted on the condensate is equivalent to introducing an effective
gauge field, (&, x r)/Q*, where @* is the bosonic “charge”.

The effect of rotation is to produce a confining potential for the vortices. This is
confirmed via numerical simulations based on the field equation (3.38). To perform the
numericzl simulations we first solve Eq. (3.38) for a static vortex in cylindrical coordinates
in the absence of rotation (2 = 0), and then wind the static vortex onto a Cartesian grid.
The initial multiple vortex configuration is constructed by overlapping vortices using the
Abrikosov ansatz. The numerical solution to the equation of motion (3.38) employs a
finite difference scheme. Before proceeding we make a simplification to the model. The
velocity of the rotating dark matter condensate (v = Qr) is of the order 10~ (in natural
units, ¢ = 1). In what follows we neglect the contribution from the term %92?*2. Farther,
to implement the simulations in a reasonable time frame and for a manageable grid size,
the numerical scheme was evolved up to ¢ = 900, with a spatial step Ah = 1.0 and time
step At =0.1.

In analogy with vortices in a rotating BEC comprised of alkali atoms, it i1s expected that
an equilibrinm vortex lattice will form. We utilized an initial configuration with randomly
distributed vortices {sce Fig. 3.5 (a)). Since the initial vortex position is random, the
separation of vortices can be small, and the Abrikosov ansatz is expected to generate
numerical noise as the simulation evolves. To remedy this we introduce a damping term,
b3®/bt, into Eq. (3.38), where b is a small positive constant {6 = 0.5At). Typical
simulations are displayed in Figs. 3.5 {=) and (b). Figure 3.5 (a) shows the initial condition
with vortices distributed randomly and Fig. 3.5 (b) shows that a regular (“triangular”)

vortex lattice develops at thie end of the simulation. A plot of the number of vortices as a
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function of radial distance from the origin is shown in Fig. 3.6. The corresponding number

of vortices, N,, for an ideal triangular vortex lattice, based on rigid body rotation, is
N, =3R(R+1)+1, (3.40)

where B = 0,1,2,... denotes each “sheil” of the ideal vortex arrangement, with B = 0
referring to the vortex at the origin. N, is plotted in Fig. 3.6 as the solid line. The
number of vortices based on an ideal triangular lattice (3.40) is slightly higher than the
number obtained in our simulation. This discrepancy between the theoretical prediction
and the numerical simulation is not well understood (see e.g., Feder and Clark 2001).

It is readily demonstrated that the vortex number density, n,, is proportional to 2,
when § is a constant. Using numerical simulations, we have verified that this relationship
is also valid when ) has a radial dependence. Figure 3.7 shows an example for which
Q o r~!. Vortices that are randomly distributed evolve toward an approximately regular
lattice. Figure 3.8 is a plot of vortex number as a function of radial distance based on
Fig. 3.7 (b). The line of best fit shows that the total number of vortices, N, « r, giving a
vortex number density n,(r) = 77! Nyr~?2 x 71, which implies that n,(r) o« ©(r). This
allows us to investigate vortices in a rotating dark matter condensate (galactic halo) for

which ) has a radial dependence.

3.4.3 Analytical perspective

Following a similar argument to that invoked for an alkali atom BEC (see Sec. 2.2.5),
we obtain the relationship between n, and Q. Consider a large rotating surface, S, with

radius r. The circulation is given by

r = jf v-d (3.41)
C=85
= 27r3Q. (3.42)

To proceed we calculate the current density, J, based on Egq. (3.38) for the dark matter

condensate. The current density is given by

1 = 2 3ve-vael (3.43)
kA

= Mgy | (3.44)
Tt

Since J = f2v, 3q. (3.44) gives
v =—V4. (3.45)
m

—

4 e,

R,

L Lk R i W
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Figure 3.5: Grey scale plot of the energy densiiy based on a typical simulation, showing (a)
a random vortex configuration (white dots) at ¢ = 0, and (b) the vortex configuration at the
end of the simulation (¢ = 900). A minimum energy “triangular” vortex lattice develops as
a result of competition between the repulsive inter-voriex forces and the confining potential
due to rotation of the condensate.
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Figure 3.6: Number of vortices as a function of radial distance. The solid line is the
prediction based on an ideal triangular vortex iattice.
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Figure 3.7: Grey scale plot of the energy density, showing (a) a randoin vortex configura-
tion (white dots) at ¢ = 0, and (b} the vorlex configuration at the end of the simulation
(t = 900). The equilibritun vortex lattice has 71, oc 7).
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Figure 3.8: Nonpnver of vortices as a funetion of radial distance. The line of best fit indicates
that N, is proportional to the radial djstance, in which case 1, « 7= (see text).
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Substituting dl = rdf and |V6| = 1/r into the equation for the circulation (3.41), we

obtain
47Nk
fv.(ﬂ= i (3.46)
C m
Finally, equating {3.42) with (3.46) gives
}
Q= "n, (3.47)
m

For a rotating condensate, Eq. (3.47) predicts that vortices form with number density
proportional to the rotational angular frequency. Our numerical simulations show that
the linear relationship between n, and Q also holds when the angular rotation has a
radial dependence (see Sec. 3.4.2). A galaxy does not rotate with constant £ (outside its
galactic core), and vortices are expected to form (in the galactic dark matter halo) with
a radially-dependent number density. In the remainder of this chapter we investigate the
implications of this conjecture for the rotation curves of spiral galaxies.

The rotation curve of a typical spiral galaxy is composed of two parts. Up to a few
kiloparsecs from its core, the galaxy exhibits rigid-body rctation, where the rotational
velocity rises rapidly from zero to a large value (e.g., v ~ 250 km s™! for the Milky Way
galaxy). The wvelocity profile in this region is approximately given by v o« r, where 7 is
the radial distance from the galactic center. This implies that the aneular frequency, £, is
constant and matter within the rigid-body region has the same orbital period. The second
region corresponds to distances up to the visible edge of the galaxy, i.e., up to aboui 50
kpe - 100 kpe for most spiral galaxies. In this region we observe a flat velocity profile with
oscillatory fine structure superposed on the rotation curve. To understand how a non-
Keplerian velocity profile arises, we consider a self-gravitating dark matter condensate,
consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase

transition (see Sec. 3.3).

3.5 Vortices in a rotating dark matter condensate

3.5.1 Self-gravitating scalar field
Since galaxies are composed mainly of dark matter, we neglect the contribution from
baryonic matter to galactic dynamics.!? The Lagrangian for a gravitationally coupled

self-interacting complex scalar field, with a |®}* potential is given by (see e.g., Schunck

'2Gec. 3.6 considers the role of baryonic matter.
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and Mielke 1998)

L= % {R +K [g””éﬁ@u@ - %m}r‘] } ._ (3.48)

where & is the gravitational coupling constant, g is the determinant of the metric tensor

guw and R is the curvature scalar. Variation of Eq. (3.48) with respect to ® and Guy gives

the coupled Einstein non-linear Klcin-Gordon equations
Guw = &T,(P) (3.49)
A
0Od + §|<I>|2<I) = 0, (3.50)
where Gy, = Ry — %gw,R is the Einstein tensor and T, (®) is the energy-momentum

tensor. In curved spacetime, the energy-momentum tensor and d’Alembertian are given

by

1 — = Guv L
= _ ; ;q) [ _ Juv g5
T, (®) 5 [0.23,® + 3,99,2] War (3.51)
O (V—94"" )
o = -+ = . 3.52
V=g (3.52)
In the weak field limit the metric tensor has the form (see e.g., I'Invernc 1996)

guv = diag(l +2V(z,y,2),-1,-1,~1), (3.53)

where V(z,y, z) is the static gravitational potential. Using Eq. (3.53) the d’Alembertian

is approximated by
1
142V

where a dot denotes a time derivative. In arriving at Eq. (3.54) we have set J,¢" = 0,

0 = §,0"d = - V20, (3.54)

and assumed that the gravitational potential and scalar field is a slowly varying spatial
function, so that the cross-term, VV - V®, can be neglected.

The self-interacting complex scalar field in the Lagrangian (3.48) does not break the
global U(1) symmetry. To obtain stable vortices we require the potential (in the La-
grangian (3.48)) (o exhibit symmetry breaking, which is induced by introducing a chemical

potential, j¢, via the stationarity ansatz
o(t,x,y,2) = € H¢(z,y,2). (3.55)

Substituting Eq.(3.55) into Eq. (3.50) we obtain the non-linear equation for the stationary

state

RIS (|¢|z _ _ﬁ_) b=0 (3.56)
2 1+2V ’ ‘

o R T

AT e SEEAST  ATYE AN
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where > = 2p2 /). Tt is apparent from Eq. (3.56) that the symmetry breaking potential, in
the presence of gravity, is A {|®]2 — #2/(1 + 2V))* /4. Tc obtain stable vortices we replace
the |@{* potential in Eq. (3.48) with A ({®{2 — n2/(1 + 2V}’ /4. The equation of motion

for the scalar field is now given by

! é—v%+%(@ﬁ

17V ¢®—-QL.® =0, (3.57)

1+2V)

where we have explicitly included the angular momentum term, QL,®. This term arises

tVOr  which accounts for axisymmetric rotation of the

from the transformation & — Pe
dark matter condensate as discussed in Sec. 3.4. Such a transformation results in a trap
potential for the dark matter condensate, i.e., $92%r? (see Eq. (3.38)). This trap potential
has been omitted from Eq. (3.57), since Or = 1073 for a typical disk galaxy'® and the
condensaie is confined via gravitational interactions.

Clumping of the dark matter condensate arises because of the gravitational potential
72 /(14 2V) in Eq. (3.57). Since particle number is conserved there will be an increase
in the field magnitude at the center of the condensate. However, for convenicnce we set
® = nat r =0. For V < 1 we approach the flat space limit for which (1 +2V) 1 2= 1-2V;
in this situation the gravitational potential in Eq. (3.57) enters via a term of the form
AV .

‘The equation governing the gravitaticnal potential V is obtained from Einstein's field
equation (3.49), with the source term specified by the energy-momentum tensor (3.51).

Assuming a spherically symmetric dark matter haio, the line element is given by
ds? = (1 4+ 2V)dt% — dr? — 2 (sin® 9dyp® + d9?) . (3.58)

Using Eq. (3 58) it is found that the time component of the Einstein tensor vaaishes, i.c.,
Gy = 0. For a static spherically symmetric scalar field, |¢} = f(r), the Tyo-component of
the energy-momentum lensor is given by

1 + 2V 2Vr Vf? VH

— POV -t iy T G99

Too = %f"(?] (1+2V)+

where a dash denotes differentiation with respect to r. Selting Gog = 5Thg, the equation

governing the gravitational potential (in the weak field limit) reduces to

V4 gvf — f (1 +2V) if‘i (r). (3.60)

BFur example, the rotation curves of 131 spn‘al galaxies 1!btﬁd in Persic et al. (1996) have velocities in
the range 55 kras™* to 320 kms™!, which corresponds to a value of Qr in the range 1.8 x 107% to 1.1 1073,
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In arriving at Eq. (3.60) we have assumed a weak graviiational field, for which the
gravitational potential varies slowly in space. This allows us to omit the term V2 from Tyg.
The term f(r)? is also neglected in deriving Eq. (3.60), since a slowly varying gravitational
potential results in the dark matter condensate density slowly decreasing from the center
of the galaxy. In the Newtonian limit the equation governing the gravitational potential
(3.60) reduces to the well known Poisson equatinn.

Equations (3.57) and (3.60)} indicate that the gravitational coupling constant « deter-
mines the gravitational potential and dark matter {condensate} distribution. Since the
numerical vatue of £ is unknown (see Sec. 3.3), various gravitational potentials and dark
matter distributions are obtained for different values of K. A numerical value of £ must
be chosen to ensure that the gravitational potential is consistent with the weak field as-
sumption, and that the dark matter distribution agrees with the generic profile adopted
in the literature.

The coupled equations (3.57) and (3.60) are solved numerically using an iterative
method (see Appendix A). The paramneters in the coupled equations are rendered dimen-

sionless by the following transformations, which eliminate 5 and A:

e~ (W) g (3.61)
o n'e, (3.62)
- ?’27’\9 (3.63)
£ = g k. (3.64)

To perform numerical simulations we first look for a static solution to the dark mat-
ter distribution, i.e., the gravitationally-coupled scalar field. Numerical solutions for the
condensate distribution can be obtained from Egs. (3.56) and (3.60) by employing a com-
bination of an itcrative leap-frog method and a fixed point finite difference scheme. The
iteration scheme first solves for the gravitational potential (3.60) uwsing a leap-frog scheme
with V and V' set to zero at the origin. The leap-frog scheme starts by computing the
gravitational potentia) witk an initial guess for the scalar field magnitude (e.g., f = 1}.
Once the gravitational potential has been obtained, we solve for the magnitude of the
scalar field f using a fixed point method (see Sec. 2.3). Afier the magnitude of the scalar
field is obtained, we repeat the iteration scheme by using the newly found magnitude of

the scuiar field to fin¢ t¢he gravitational potential. The iteration scheme proceeds until
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Figure 3.9: Radial plot of the WIDGET number density, |®|?, using the gravitational po-
tential shown in Fig. 3.10. The distribution of the WIDGET number density is depcndent
on the coupling constant x. As & increases, |®|? changes from an approximately uniform
number density to one where the dark matter condensate begins to “clump” at the center
of the “protogalaxy”.

50¢ 1000 1500 20040 2500

Figure 3.1¢: Radial plot of the gravitational potential, V', based on the WIDGET number
density, ;#i-, shown in Fig. 3.9. The strength of the gravitational potential is dependent
on k. Larger valuos of & result in a larger gravitational potential.
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ckanges in the gravitational potential and the magnitude of the scalar field at successive
iterations are small (typically ~10-10) 14

The WIDGET number density, |®|2, and the gravitational potential, V', are plotted in
Figs. 3.9 and 3.10 for different values of x. Figure 3.9 shows that |®|? decreases from its
peak value {|@{? = 1) at the origin, indicating clumping of the dark matter condensate.
The degree of clumping depends on the value of x, with larger gravitational coupling
leading to enhanced clumping of the condensate at the origin, i.e., the WIDGET number
density falls off faster for larger values of . Since a galaxy exhibits rigid body rotation
at its cenier (v o< +/M/r), the dark matter condensate number density has a constant
value at the origin. In Fig. 3.10 we note that larger values of & lead to an increase in
the gravitational potential despite the decrease in the WIDGET number density. This is
because WIDGETS induce the gravitational potential, which in furn causes clumping of
the condensate.

Figure 3.9 shows a radial plot of the WIDGET number density for £ = 2 x 1079,
which is consistent with the generic dark matter profile adopted in the literature (see
e.g., Bergstrom 2000). The value x =~ 2 x 10"% also produces a gravitational potential
consistent with the weak field limit for the metric tensor (3.53). Subsequent numerical
simulations of the rotating dark matter condensate adopt this value for tie gravitational

coupling constant.

3.5.2 Vortex formation via rotation

Vortices form in a rotating dark matter BEC when the angular frequency exceeds a critical
value, £2.. Immediately after formation we conjecture that a disk protogalaxy has a Ke-
plerian velocity profile outside its nucleus {r > Rp), whereas for r < Ry the protogalaxy
exhibits rigid body motion (Binney and Tremaine 1987). Rotation establishes a back-
ground phase gradient in the dark matter BEC, which is determined by the initial angular
frequency profile, {{r), of the protogalaxy. When £(r) > £2,, vortices are nucleated in
the condensate. The backgrou. d phase gradient prodnces a harmonic trap for the vortices
{expelling anti-vortices), with the trapping force exhibiting a radial dependence, whose

rmagnitude in the Xeplerian regime (r > Rg) is given by
GMp(r)
Flr) o r(r) = ‘\_/':1-”2—’

The combination of axn iterative ieap-frog method and a fixed pomnt finite difference scheme was used
by Ruffini and Bonazzola (1969} to solve for a gravitationally-coupled non-self iuteracting scalar field.

(3.65'
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where Mp(r) is the mass of dark matter within radius » from the galactic center. Each
vortex has a quantized circulation, h/m, and a vortex lattice forms with number density,
1,(7), proportional to the angular frequency Q(r) (see Eq. {3.47)). Numerical simulations
indicate that to confine vortices within r < Ry, it is necessary to increase the strength of
the vortex irap. This is achieved by including a parameter § in Eq. (3.47) to modify the

trapping potential, thus we write
I
Q(r) = %nv(r). (3.66)

For B =1 Eq. (3.66) reduces to Eq. (3.47). Higher values of 8 result in a stronger trapping
potential for vortices. This implies that a vortex configuration is more stable when 8 is
greater than unity. Numerical simulations are carried out in Sec. 3.5.3 to explore how the
strength of the vortex trap depends on S.

Accourding to Eq. (3.65) the trapping force on a vortex {:lue to the rotation of the
protogalaxy) has a r=1/2 dependence. However, inter-vortex forces also establish a back-
ground phase gradient in the dark matter BEC, with cach vortex experiencing a r~1/2
repulsive force within its causal horizon £y. Initially &y is of the order of the coherence
length of the BEC (following the formation of the condensate). The resultant force on a
vortex is zero, since the trapping force due to rotation is balanced by the net repulsive
force from all other vortices. In the long term evolution of the dark matter condensate, the
scalar field becomes correlated over larger distances and £y increases.!® As £y increases,
each vortex interacts with a larger number of vortices; consequently, a vortex experiences
a non-zero force thal causes it t0 move oul in the radial direction. This results in an
equilibrinm vortex configuration with n, oc !, which implies a flat velocity profile for
the dark matter condensate (outside the gaiactic nucleus). In the vicinity of the nucleus,
rigid body rotation produces a uniform vortex density with a concomitant zero net radial

foree on each vortex.

3.5.3 Numerical simulaticns

To confirm the conjecture that ny,  r~1 we have studied vortex dynamnics in a harmonic

trap using numerical simulations. We assume a spherically symmetric distribution of dark

157 e scalar field exhibits correlations due to drift and/or diffusion of WIDGETs. Drift arises from a
temperature gradient, whereas diffusion is due to a gradient in the WIDGET number density, The latter
process is a consequence of repulsive interactions between WIDGETSs and random (Brownian) motion of
WIDGETs.
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matter (in the galactic halo), and consider vortices in the two-dimensional transverse plane
r = {z,y). The evolution of the scalar field is given by Eqgs. (3.57) and (3.60), with the
initial vortex configuration, ¢, obtained by overlapping the static gravitationally coupled
scalar field, according to the Abrikosov ansatz, i.e.,

o) = ] #e(), (3.67)
k=0

where ¢y is the gravitationally coupled static scalar field with magnitude shown in Fig.
3.9, and ¢ (k # 0) is the vortex solution obtained by solving Eq. (3.56) in cylindrical
coordinates for V = 0. Once the initial condition has been constructed, a leap fiog
discretization method is employed to evolve the equation of motion (3.57). For each time
step we reconstruct the WIDGET number density and solve for the gravitational potential
V using Eq. (3.60).

To obtain the initial condition for the scalar field, ®¢(r), we consider the relationship
between the radial velocity distribution, v(r), and vortex number deusity, n,(r). The

vortex number density is given by (i = m = 1)

v(r)
2rphr’

(3.68)

ny(7) =

To mimic galactic rotation, the velocity profile, v(r), is divided into two parts. The
first part represents rigid-body rotation, where v « r (for r < Rp), and the second part
represents Keplerian rotation, where v o« /M(r}/r (for r > Ry). Rigid-rotation of the

galaxy corresponds to setting the vortex number density
ny(r) = ¢ (r < Ryg), (3.69)

where ¢y is a constant. The spherical mass distribution within radius r (i.c.,, M(r)) in-
creases in the radia} divection. For rigid-body rotation M(r) o #3, whereas the flat veloc-
ity profile gives M(r) oc r. The mass density (of luminous matter) decreases much faster
than the observed flat velocity profile, with the mass distribution specified by M{(r) o r?
(0 < 7 < 1); for a flat velocity profile v = 1. Since we anticipate the vortex number
densily cvolving toward a flat velocity profile (i.e., v = 1) we start with ¥ = 0, i.e.,

v ox /M(r)/r < r~1/2, From Eq. {3.68) we obtain
ny(r)=er¥?  (r > Ry}, (3.70)

where ¢; is a constant.
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To obtain an initial vortex configuration we solve for ¢o and ¢; for a fixed number
of vortices. Details of the calculation of the initial vortex configuration are given in
Appendix B. The actual number of vortices is determined by the rotational velocity
(angular frequency) of the galaxy. For example, the galaxy M31 has an angular frequency
of @ ~ 5%10~17 rad s! at 150 ky.c from its center (see e.g., Silverman and Mallett 2001h).
Using a WIDGET mass m = 2 x 1072 eV/c2, Eq. (3.66) gives the number of vortices as
Ny, == 181, This is the minimum number of vortices expected to form within the M31 halo,
since higher angular frequencies {(at distances less than 150 kpc) produce a larger number
of vortices. Silverman and Mallett (2001b) calculate that approximately 340 vortices are
expected to form within the M31 halo. The number of vortices s therefore expected to
be of order of several hundred for a typical spiral galaxy.

Our simulations use 500 vortices on a grid of size 4600 x 4600, with all vortices ini-
tially placed within a radius R; = 1800; the rigid body regime is specified by a variable
parameter, Rg. The grid size is sufficiently large to ensure that, at the end of the simula-
tion (£ = 500), noise from the briac:-y does not propagate into the visualization frame
(3300x 3300). For these simulat’ - :s we set the spatial step Al = 1 and time step At = 0.2.
Although the initial vortex «-=.} -i7> .ion is prescribed radially, its angular disuribucion is
raidom. A pseudo-randorm numl. - generator is used to establish the angular distribution
(see Fig. 3.15). Since the initial separation of vortices can be small, the Abrikosov ansatz
15 expected to generate numerical noise as the simulation evolves. To remedy this we
introduce a2 damping term 3® /0t into Eq. (3.57), where & is a small positive constant
(b = 0.1At). The radial dependence of the vortex number density is calculated from the
number of vortices inside an annular region (Ar = 2). To find the number of vortices
within the annular region we need to detect the vortex positions at each iteration.

A vortex can be located by detecting the phase winding at each lattice point. However,
since the position of a vortex is well defined at the beginning of the simulation we can
readily track vortices by identifying the minimum in the magnitude of the scalar field,
{®|. The vortex position at the current itcration may correspond to the position at the
previous iteration, or to the position of one of its nearest neighbiors. This provides a

simple and efficient method for finding the vortex position which uses a small number of
16

, or when

Iattice points and minimal computation. It only fails if there is excessive noise

'S Any other vortex detection method will also fail in the presence of excessive noise.
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Figure 3.11: (a} A typical energy density plot in the range z = [0, 1000] and y = [0, 10G0]
showing the vortex positions as white dots. {b) Vortex positions obtained using the vortex
detection method described in the text. The vortex positions in (a) match exactly those
in (b).

vortex collisions occur during the simulation.!” The accuracy of the detection scheme is
demonstrated in Fig. 3.11, where vortex positions match exactly those predicied by the
vortex detection scheme.

Since the vortex nuber density is calculated using a small annular region. this ap-
proach leads to large variations in the vortex number density, i.c., there are some annular
regions where the vortex number density is very high and other regions where the number
density vanishes. To ameliorate this problem we smooth the vortex number density using
a low-pass spatial filter. The smoothed vortex number density, ngf)(‘rg), centered on radial

position rg is given by

B o

where w(r) is the filter (window) function. For simplicity we employ a Gaussisa filter of

n( rg) =

the form
e -0.55%r2

(3.72)

27ns

1
w(r) = —S=—
Vv

where s is the standard deviation {“smoothing” parameter). ‘The value of s defines the

7Vortex positions are stored in an array. When two vortices {e.g., vortex-one and vortex-iv.¢) overlap
during a coilision, two entries in the array register identical positions. The numerical detection scheme
fails Lo distinguish which of the two entries correspond to the position of vortex-one and vortex-two.
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Figure 3.12: Comparison of the original vortex numboer density prier to smoothing, ny,

with the smoothed number density, n.gf). The smoothing parameter, s = 4vin4/3R,

(Rg = 100) corresponds to a full width at half maximum of 3R_/2.

length scaie over which smoothing occurs. A reasonable scale is the size of the rigid-
body region, Ro, and the smoothing parameter is given in terms of Rp. Although the
vortex number density has been smoothed, this procedure does not modify the positions

of vortices in the lattice. Figure 3.12 shows the smoothed vortex number density obtained

using
4vIn4 .
$=—3 Ry (3.73)
This corresponds to a convolution kernel with a full width at half maximum of 3Ry /2.

A comparison between nEf’ and n, in Fig. 3.12 shows that nﬁf ) is higher than n, at
r = (), lower at r =~ Rg and higher for r 3> Rp; however, ns,s)(r — oo} = n,{r — o0).
Since the vortex confining potential depends on the vortex number density, the confining
potentiz] after smoothing is stronger at r =~ 0 and weaker at r &~ Rg. This implies that
setting 8 = 1 in Eq. (3.66) results in a weak confining potential for vortices at r = Fp.
As a consequence vortices around Ry move out, while vortices close tor =0 aré confined.
To maintain rigid-body rotation for r < Ry it is necessary to “fine tune” the strength of

the confining potenti=1 by varying the value of 8. Vortex dynamics for varicus values of 8

are discussed in the next sec” on.
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3.5.4 Results and discussion

To explere vortex dynamics and the consequent rotational velocity profile of the dark
matter condensate, simulations were performed for various values of § and Ry in the
range 1.3 < 2 < 1.5 and 80 < Rp £ 120 (see Figs. 3.13 and 3.14). It is found that
varying f affects the strength of the vortex trapping force (since 8 modifies the confining
potential). Figure 3.13 shows a plot of the rotational velocities for different values of 3.
Higher vaiues of 3 lead to a larger trapping force. This results in more vortices being
trapped within the rigid-body regie~, and consequently to a higher rotational velocity
around r = Ry. A value of § = 1.4 gives an approximately “Hat” velocity profile outside
the rigid-body region.

The parameter Ry defines the “boundary” between rigid-body rotation and the flat
velocity profile. It also defines the scole for smoothing the vortex number density (see
Eq. (3.73)). Since the rotational wic<ity is obtained from the angular frequency (ie.,
v(r) = rQ(r), where 2{r) is proportional to the vortex number derity), the rotation
curve is expected to show more oscillations for smaller values of Ry. The effect of varying
Rjp on the rotation curves is shown in Fig. 3.14 for Rg = 80, 10¢ and 120, with 8§ = 1.4.
All rotation curves show rigid-body rotation within Ry and a “flat” velocity profile for
r > Rg.

Figures 3.15 and 3.16 show the evolution of a vortex configuration using the values
f = 1.4 and Ry = 100. It is observed that the initial vortex configuration evoives toward
a regular lattice, whose number density (outside the galactic nucleus, Ry) falls off as r—1;
this characterizes a flat velocity profile for the rotating dark matter condensate {see Fig.
3.17). The velocity profile shown in Fig. 3.17 has been scaled to facilitate comparison with
the rotation curve of the Milky Way galaxy. Data on the rotation curve of the Milky Way
galaxy were obtained from Clemens (1985). Figure 3.17 shows that the rotation curve,
based on our simulations, is broadly consistent with the profile for the Milky Way galaxy.
Close to the galactic center the velocity profile exhibits rigid body rotation; however, a
flat (non-Keplerian) velocity profile is observed out to large distances from the galartic
center.

In summary, our simulations show that vortices in a dark matter condensate (with an
initially Keplerian profile) evolve toward a configuration that characterizes a flat velocity

profile. To account for the observed flat velocity profile for baryonic matter we assume
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Figure 3.13: Rotational velocities obtainad for three values of 8, with K¢ = 100 and
% = 2 x 1078, The simulations show stzong trapping around Ry for f = 1.5 and weak :
trapping around Ry for § = 1.3. EEE
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Figure 3.14: Rotational velocities obtained for three values of Rp, with 84 = 1.4 and
£ = 2 x 1078, The simulations show significant oscillations for By = 80, and smaller

oscillations for Rg = 120.
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Figure 3.15: Initial configuration of 500 vortices located within i) = 1800, with »z = 2 x
1076 and trap parameter § = 1.4 (see text). The angular distribution of vortices is random.
The vortex number density, ny(r), is constant for r < Ry (Rp = 100), characterizing rigid
hody rotation. For r > Rp the initial vortex configuration exhibits a Keplerian velocity
profile, for which Q(r) o =55

that Juminous matter adopts the same velocity as the dark matier condensate. In Sec.

3.6 we examine this assumption.

3.6 Gravitational drag between dark matter and baryonic matter

For luminous matter to adopt the same velocity profile as the dark matter condensate we
need a mechanism to couple it to dark matter. Since the scalar bosons (which constitute
the cosmic BEC) are uncharged they do not participate in electroweak interactions. If
we neglect mutual friction between dark matter and baryonic matter, the only interaction
between the two components is gravity. Dark matter can couple to baryonic matter via
gravitational “drag”. This eflectively results in both baryonic and dark matter adopting

the same velocity profile. To confirm this conjecture we have performed a small N-body
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Figure 3.16: Final configuration obtained by evolving the vortices in Fig. 3.15. At the
end of the simulation (t = 500) the vortex configuration {with 442 vortices remaining
within the visualization frame) is characterized by a non-Keplerian profile (r > Rp), with
Qr) x r~1,

simulation.

The simplest model for an N-body numerical simulation is the naive particle-particle
model with interactions based on the Newtonian potential.'® For a simulation containing

N particles, the force F; on the ¢-th particle is the sum of the forces due to the remaining

N — 1 particles, 1.e.,

N
e Gym?(x; - xi)

where x; is the position vector of the i-th particle and m is the mass of the particle

(assuming each particle has the same mass). Once the force acting on the i-th particle has

1% Einstein’s theory of gencral relativity gives a better description of gravitational interactions than
Newtonian gravity. However, Newtonian gravity is commonly used in N-body simulations because it is
simpler to implement than Einstein’s formalism. Since mass density is low on a galactic scale, gravitational
interactions can be modeled accurately by a Newtonian potential.
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Figure 3.17: Velocity profiles based on the simulations shown in Figs. 3.15 and 3.16,
compared with the rotation curve for the Milky Way galaxy. Initially, the dark matter
condensate has a Keplerian profile for r > HRj. At the end of the simulation (¢ = 500)
we obtain a flat velocity profile, with oscillatory structure due to local variations in the
vortex number density. The filled circles represent the rotation profile for the Milky Way
galaxy (data obtained from Clemens 1985). Qur simulated rotation curve has been scaled
to facilitate comparison with data for the Milky Way.

been computed, the next position of the particle can be obtained using a finite difference
scheme based on F; = md? xif dt2. Although this method for simulating an N-body system
is time consuming, it is well suited for small N-body simulations (e.g., with N < 50,000).
To implement a small N-body simulation using Eq. (3.74) we regard each particle as a
small sphere of radius r;. We replace [x; — x;| in Eq. (3.74) by rs, when the interparticle
separation is less than r, so that F; — 0 for [x; — x;| — 0.2°

We assume that all the particles are located in the z-y plane at z = 0, so that the
simulations are conducted in two dimensions. We set Gy = m = r, = 1 for simplicity. Qur
N-body calculations use 10 particles with periodic boundary conditions on a simulation
framne 32,000 x 32,000. The simulations were run for 100,000 iterations (with time step
At = 0.1) corresponding to £ = 10, 000 at the end of cach simulation. Although the size of

the simulation, the time scale and total mass can be chosen arbitrarily, they are related to

" 19This can be seen by replacing m? in Bg. (3.74) by mpldnix; — x:*/3) for |x; — xi| < rs, where
p = mjf(4nr3/3) is the mass density of the sphere.
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Figure 3.18: (a) Dark and baryonic matter distribution at the beginning of a simulation,
and (b) at the end of the simnulation, for the case where the initial dark matter velocity
i1s v; = 0.2. The initial velocity of baryonic matter i1s zero. The simulation frame is
32,000 x 32,000 and the simulation was run for 100,000 jterations. The total number of
particles is 10,000, with 10% corresponding to baryonic matter and 90% to dark matter.
Both dark matter and baryonic matter eventually adopt the same velocity profile.

each other. For example, if the simulation frame 32,000 x 32,000 corresponds to a cross-
sectional area of (32 kpc)? and 107 particles contribute to the mass in this cross-sectional
area (i.e., NIOIOM@), then the time scale of the simulation would be of the order of 107
years,20

To illustrate the eflect of gravitational drag on baryonic matter we randomly distribute
particles in the simulation frame, with 90% of the particles corresponding to dark matter
and 10% to baryonic matter. For simplicity we agsume that the dark matier component
has a uniform velocity in the z direction (v, = 0), while the initial velocity of the baryonic
matter is set t0 zero. The results of our simulations are shown in Figs. 3.18 and 3.19.

Figure 3.18 (a) shows the initial random distribution of dark matter and baryonic

matter, At the end of the simulation (see Fig, 3.18 (b)) clumping is observed in the

20The dimensionless velocity of particles in our simulations is of the order of 0.1 (sce Fig. 3.19). Since
the rotational velocity of a typical galaxy is of the order of 100 kms™!, the velocity in our simulations is
measured in units of 1,000 kms™!. By seiting the length scale to parsec, our simulations correspond to a
cross-sectional area of (32 kpc)?, which gives the total mass 25 10'° Mg, Since 1,000 kms™' is the unit of
velocity, one second corresponds to 10° m. The duration of the simulation ¢ = 10,000 is of the order of
ten million years.
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Figure 3.19: Gravitational drag between dark matter (D) and baryonic matter (B). Ini-
tially the velocity of the baryonic matter was set to zero, while the z-component of velocity
of dark matter was set to: (a) v; = 0.1, (b} v, = 0.2, (¢) v; = 0.3, (d) v; = 0.4, (e} v, =05
and (f) vy = 0.6. As the simulations evolve, baryonic matier attains a non-zero velocity
due to gravitational drag. For a larger (dark matter) velocity it takes longer for baryonic
matter to adopt the velocity profile of the dark matter condensate.
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distribution of baryonic and dark matter. Figure 3.19 shows plots of the average velocity,
vy, @s a function of t for both dark matter and baryonic matter (0.1 < v, < 0.6). As
the simulation evolves, baryonic matter gains velocity in the r direction until eventually
it adopts the same velocity profile as the dark matter condensate {see Figs. 3.19 (a)-(c)).
The baryonic matter component in Fig. 3.19 (a) adopts the same velocity profile as the
dark matter condensate at ¢t ~ 6,000, corresponding to a time of the order of six million
years. In Figs. 3.19 (b} and (c} baryonic matter adopts the same velocity profile as dark
matter at ¢ ~ 10,000, corresponding to a time of the order of ten million years. For a larger
initial velocity (see Figs. 3.19 (d)-(f)}, baryonic matter adopts the same velocity profile as
the dark matter component after a longer time. Baryonic matter also exerts gravitational
drag on dark matter, which results in the velocity of the dark matier condensate decreasing
slightly from its initial value.

QOur simulations show that for a velocity difference {between dark matter and baryonic
matter) of the order of 0.1 - 0.3, which corresponds to a velocity of the order of 100 kms™? -
300 kms !, baryonic matter adopts the same velocity as dark matter in approximately ten
miilion years. Since galactic evolution is of the order of one billion years, this implies that
luminous (baryonic) matter quickly adopts the same velocity profile as the dark matter

condensate.

3.7 Concluding remarks

Scalar particles arising in a late-time cosmological phase may be a major component of
dark matter, and under certain circumstances it is possible for these scalar particles to
form a degenerate superfluid (BEC). Rotation of a sclf-gravitating dark matter condensate
gives rise to quantized vortices, which evolve toward a vortex lattice whose number density,
ny o 7~ 1, This suggests that a rotating dark n.stter condensate will have a flat velocity
profile.

In the absence of strong or electroweak interactions, dark matter can only interact with
baryonic matter via gravity. It is found that gravitational “drag” between dark matter
and baryonic matter results in luminous {baryonic) matter adopting the same velocity as
the dark matter condensate. However, to provide a detailed quantitative understanding
of hierarchical clustering and gravitational instabilities will require a large N-body sim-

ulation of structure formation, including a three-dimensional model of vortex dynamics.
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Nevertheless, the current model has demonstrated a hitherto unexpected role for vortex

dynamics in the evolution of disk galaxies.
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CHAPTER 4

Stability of U(1) x U(1) x Z, Dirichlet Defects

4.1 Introduction

Grand unified theories (GUTs), which attempt to unify the electroweak! and strong nu-
clear forces, suggest the Universe underwent a. series of symmetry breaking phase transi-
tions ~1073% seconds after the Big Bang; before this time the strong nuclear force and
electroweak force were indistinguishable. These phase transitions result in the formation
of topological defects, such as cosmic strings, domain walls and monopoles.

Domain walls induce anisotropy in the CMBR whose magnitude is inconsistent with
observations (Zel’dovich at al. 1975, Stebbins and Turner 1989 and Press ef al. 1989).
Similarly monopoles are predicted to form in numbers inconsistent with constraints im-
posed by proton decay processes in the Sun (Zeldovich and Khlopov 1978, Preskill 1979,
Kelb et al. 1982, Dimopoulos et al. 1982 and Freese et al. 1983).

In addition to these canonical topological defects it is possible to form hybrid defects,
in which a defect can serve as a boundary to another defect. For example, a string can
terminate on a domain wall, or on a monopole. The formation and evolution of hybr?d
defects in the early Universe has been considered previously in the literature (sce e.g.,
Langacker and Pi 1980 and Dvali et al. 1998).

An interesting consequence of hybrid defects is that the evolution of one type of defect
can lead to the destruction of the boundary defect, or to the destruction of both defects.
For example, a string terminated by two monopoles pulls the monopoles together resulting
in the annihilation of the hybrid defect. This mechanism (referred to as the Langacker-
Pi mcchanism) was suggested as a way of avoiding the monopole problem in the early
Universe (see Langacker and Pi 1980).

In the case of strings terminating on a domain wall it is known that the wall is unstable

'The electroweak force comprises the clectromagnetic and weak nuclear forces (Glashow 1961, Salam
1968 and Weinberg 1967). In a cosmological context the underlying electroweak symmetry is restored at
very high temperatures (i.e., T ~ 10* GeV), corresponding to the state of the Universe at ~10~" seconds
after the Big Bang (see e.g., Kirzhnits 1972 and Kirzhnits and Linde 1972).
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to the nucleation of holes bounded by string loops (Kibble et el. 1982). Such holes can
result in the eventual decay of the wall defect; however, the time scale involved in hole
formation is thought to be extraordinarily large (Kibble ¢t al. 1982), which would seem
to exclude hybrid topological defects as a way of obviating problems with a domain wall
dominated Universe,

Hybrid defects can also arise in supersymmetric Yang-Mills theories (sce e.g., Witten
1997). A broken (discrete) chiral symmetry gives rise to distinct vacua separated by
domain walls. QCD strings can terminate on these walls. Carroll and Trodden (1998)
suggested that hybrid topological defects also form in the early Universe. This chapter
discusses the stability of I (1) x U (1) x Z; Dirichlet defects® (D-wails). We consider various
configurations - in pariicular two strings terminating on a wall, a single strixg terminating
on a wall and a string segment bounded by two walls. The latter D-wall is analogous
to the Langacker-Pi configuration, and the evolution of this hybrid defect results in the
destruction of the walls and string segment. Finally, we exainine an extended Dirichlet
defect model based on SU(2) x SU(2) x U(1) x U(1) x Zo. This model allows for the
formation of monopoles bounded by domain walls, which in turn are connected by cosmis:
strings. We examine the implications of this Dirichlet defect within the context of the

monopole problera.

4.2 Domain walls

The formation of domain walls is associated with the breaking of a discrete symmetry, Zs,
i.e., H x Z; — H. In the simplest symmetry breaking scheme H is the identity group I.
For models with Z; symmetry the Higgs field that is responsible for the broken symmetry

is a real scalar field, ¢, whence the symmetry breaking potential is written as
A 2 2 2
v(g) =2 (¢ -7) (1)

Equation (4.1) describes a field configuration with vacuum expectation value (VEV) 5 or
—n. When the symmetry is broken the field adopts one of the two VEVs. The region

separating the two vacua represents the domain wall, whose thickness, 4, is given by

1
§ mo . (4.2)
vV
?In general, Dirichlet topological defects arise when one type of defect terminates on another defect.
These defects can have the same, or different, dimensionality, €.g., a string (one-dimensional object) can
terminate on a string, or a string can terminate on a wall (two-dimensional object).
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The energy density of the wall is determined by the energy density difference between the
center of the wall (¢ = 0) and the vacuum, ¢ = (¢} = x7. The energy density at the
center of the wall is p ~ An?, and vanishes in the vacuum, therefore the energy density of

the wall is p ~ Ap'. The surface energy density, o, of the wall is
o~ pb ~ Vo', (4.3)

The evolution of a domain wall in a flat (non-expanding) Universe is described by the
Lagrangian

L = 8,40" ¢~V ($). (4.4)

The corresponding field equation governing the dynamics of the wall is
A 2 _ .2
06+ 56(¢ %) =0, (4.5)
Equation (4.5) can be recast in dimensionless form using the following transformations:
. —— —1
¢—n¢ and z,— ('q\/)\/2) Ly (4.6)

For a wall at z = 0, oriented in the z direction, the static solution is {Zeldovich et al.
1975)
o(2) = tanh(2). (4.7)

Figure 4.1 plots the static solution (4.7), which shows ¢ — *1 for z = *oo, with the
¢-field smoothly varying from 1 (for z > 0} to -1 (for z < 0). A plot of the energy density
as a function of z shows that the potential energy density is a maximum at the center of

the domain wall (sce Fig. 4.2).

4,2.1 Domain wall formation

Domain walls are conjectured to have formed in the early Universe in a manner analogous
to the formation of cosmic strings and monopoles (see Sec. 1.4). The formation of domain
walls via the Kibble mechanism, and their subsequent evolution is studied using numerical
simizlations based on a discretized version of the field equation (4.5) (see e.g., Harvey et al.
1982 and Vachaspati and Vilenkin 1984). To emulate the Kibble mechanism, the initial
condition is obtained by assigning a random value between —1 and 1 to ¢ at each lattice
(grid) point. Since ¢ is random, noise is generated during the simulation, however, the

equation of motion (4.5) conserves energy and noise is not damped. To suppress noise we
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Figure 4.1: Magnitude of the Higgs field as a function of z for a wall located at z =0. As _ ‘1
z — +o0, ¢ = £1.

Figure 4.2: Potential energy density as a function of z for the wall in Fig. 4.1. The energy
density is a maximum at z = 0.
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have added a damping term, bd¢/9i, to the field equation (4.5), where b is a damping
constant. Numerical simulations were performed with various values of b. It is found that
for b 3> At (where At is the time step) the effect of damping is so large that a wall network
does not have enough time to form. On the other hand for b « At there is no significant
reduction in noise. As a compromise we set b = At in our simulations.

The size of a typical lattice is 1003 with spatial step® Ak = 0.5. The time step At = 0.1
is chosen to guarantee stability of the numerical integration scheme. The simulation was
run for 500 iterations. A damping term (with b = 0.1) precludes noise from the boundary
entering the visualization volume, Figure 4.3 shows the formation and evolution of a wall
network at four different times. In Fig. 4.3 (b) small scale structure is evident on the
domain walls. This suggests that immediately ufter formation, domain walls are dominated
by small scale structure. Figure 4.3 (b) also shows that some of the wall “segments” are
not connected to larger walls; these wall “segments” arc in fact closed walls.? As the
simulation evolves, closed walls collapse and small scale structure disappears due to the

large wall tension (see Figs. 4.3 (¢} and (d)).

4.2.2 Evelution of domain walls

The evolution of a domain wall is determined by the surface tension ¢ (Vilenkin 1981},
which causes the wall to oscillate and gain velocity (perpendicular to the wall). Conse-
quently, a closed wall will shrink and eventually collapse. The force per unit area acting on
the wall, due to its surface tension, is F ~ o/R, where R is the mean radius of curvature
of the wall.

The Abrikosov ansatz can be invoked to show that two parallel walls always exist in the
form of a wall and an anti-wall.’> Since a domain wall model exhibits discrete symmetry
breaking, the model does not generate a Goldstone boson. Consequently, two stationary
walls ¢ not interact with each other (in the absence of gravitational interactions) and

will remain stationary. This conclusion has been confirmed by our numerical simulations

3With Ah = 0.5 the grid size 100° corresponds to a simulation volume of 100°Ak® = 50° (see Sec. 2.2).

AThe definition of a closed wall (or an infinite wall) only makes sense in an expanding Universe, where
the rate of expansion is governed by the scale factor, a(2). Due to expansion an observer can only hope to
see objects located within her horizon (or Hubble distance) dy = a/a. In an expanding spacetime the wall
is considered to be infinite if it extends beyond the horizon, otherwise it is referred to as a closed wall.

*Two overlapping walls, described by & = @162, exist in the form of a wall and an anti-wall. This
follows from continuity of the scalar field, $. If wall-one is described by a field configuration & < 0 for
z< —2p, and & > 0 for —zp < z £ 0, then continuity of the P-field at 2 = Q implies that wall-two is
described by a field configuration € > 0 for 0 € z < 2p aud ® < 0 for z > 2.
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Figure 4.3: Isocontour plots (¢ = 0} illustrating the formation and evolution of domain
walls (in a visualizatior: volume 30%) at four different times. (a) { = 10, (b) ¢ = 12.5, (¢}
t = 25, and (d) at the end of the simulation (¢ = 50). These figures show that small scale
structure on the walls is stretched as the walls evolve. Closed walls collapse and annihilate
due to wall tension.
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based on the field equation (4.5).

GUT scale walls in the early Universe are expected to have a large mass density, in
which case wall interactions will be determined by gravity (Lazarides et al. 1982). To
understand the nature of these gravitational interactions, consider a static wall located at

z =0 in the z-y plane. The symmetric energy-momentum tensor is given by

Tyy = Oudp0ud - g L, (4.8)

where g, is the metric tensor. The only non-vanishing derivative of the ¢-field is 03¢.

From Eq. {4.4) and the flat spacc metric tensor gy, = diag(l, ~1. -1, —1) we obtain

T9 = 84406+ V(8) (49)
7 =70 (4.10)
T2 = T? (4.11)
T8 = —50u0s+ V(B), (412)

where V(¢) is the potential specified by Eq. (4.1).
The gravitational potential in the Newtonian limit, for a static distribution of matter,

is governed by Poisson’s equation
V2Vg = 4nCn (TP - TH), (4.13)

where (/n is the Newtonian gravitational constant and Tf = T} + 7% + T3. Using Egs.

(4.9} - (4.12), Poisson’s equation reduces to
Vg = ~8rG NV (¢). (4.14)

In dimensionless form V (¢) = $(#?~1)? and ¢ = tanh(z). Since a domain wall is invariant
under coordinate transformations in the z-y plane we have 8%2Vg/dz? = 82V5/8y? = 0.

Equation (4.14) has the solution
Ve = —-garG w~ [4In{cosh z) ~ sech2z] (4.15)

A plot of the gravitational potential of a domain wall and the force acting on a test object
located at z is plotted in Fig. 4.4. This figure shows that a domain wall gives rise to

a repulsive gravitational force. In a region with uniform mass density the domain wall
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Figure 4.4: (a) Repulsive gravitationa! potential (Gx = 1) of a static domain wall located
at z = 0 in the z-y plane. (b) Gravitational force (Fg = —VV¢) acting on a test body
at z due to the wall. The magnitude of the force approaches a constant value at spatial
infinity. A test body in the vicinity of the wall will be repelled from the wall in the z
direction.

produces a two-dimensional under-density in the matter distribution.® As a consequence
domain walls do not generate a scale invariant spectrum of fluctuations in the matter
distribution (Harrison 1970 and Zel’dovich 1972). Since a scale invariant spectrum is
consistent with the observations of COBE (Smoot et al. 1992), domain walls would appear
to be ruled out on observational grounds.

Small scale structure’ on the wall is also expected to induce a temperature anisotropy
in the CMBR. An analysis based on percolation theory (Stauffer 1979) indicates that a
wall network will evolve toward a single infinite wall® (Vilenkin 1985). As the Universe
expands, wall structure which is comparable to the horizon grows. The density fluctuations
corresponding to this wall structure is of the order 10%05/m,, (Vilenkin 1985), where m,, is
the Planck mass. These fluctuations induce a large temperature anisotropy in the CMBR.
Since the temperature anisotropy in the CMBR is less than 107¢, this constrains the
symmetry breaking scale to be less than 1072 GeV, which is inconsistent with GUT models.
The small temperature anisotropy in the CMBR poses significant problems for any model

that predicts stable domain walls. However, domain walls are an unavoidable consequence

%A single domain wall inside our Hubble horizon will expel matter from the visible Universe. This is
inconsistent with the observed large scale structure.

"This structure is smaller than, or comparable to, the Hubble horizon.

8Since domain walls are two-dimensional objects {in R**?), two non-parallel infinite walls will intersect
in four-dimensional spacetime. '




109

of models with a Z, symmetry, and the domain wall problem must be addressed in realistic

scenarios of symmetry breaking,.

4.2.3 Solutions to the domain wall problem

The accepted paradigm for avoiding the domain wall problem is inflation (Guth 1981). It is
conjectured that within a fraction of a second after the Big Bang the Universe experienced
a short period of rapid expansion driven by vacuum energy A. In the inflationary scenario
the scale factor a(t) oc eVABt The source of the vacuum energy is postulated to arise from
a scalar field (i.e., the inflaton field). Inflation occurs via a phase transition, facilitated by
the negative pressure of the inflatca field. To avoid domain walls in the early Universe, the
inflationary phase transition must have occurred after the GUT phase transition. Prior
to inflation, domain walls are within the Hubble horizon, however, following exponential
expansion of the Universe the walls lie outside the horizon. Consequently primordial
domain walls will not impact on the anisotropy of the CMBR. Another way of avoiding
the domain wall problem, without invoking inflation, is to allow the energy density on one
side of the wall to be different from that on the other side (Zeldovich et ¢l. 1975 and Kibble
1976). The imbalance in the energy density hetween the two sides of the wall results in a
force acting on the wall, which is of the order of the energy density difference, £. This force
causes the side of the wall with the higher energy density to shrink, whilst the other side
expands, resulting in the wall moving toward the region of higher energy density. In this
scenario the wall moves outside our horizon, thereby obviating a domain wall dominated
Universe. In the remainder of this chapter we discuss an alternative solation to the domain

wall problem, based on a model of D-wall topological defects.

4.3 U(1) x U(1) x Z, Dirichlet defects
4.3.1 D-wall model

D-wall topological defects are described by a U(1) x U(1) x Z; symmetry breaking model
(Carroll and Trodden 1998). In this model the spontaneously broken Higgs fields consist
of a real scalar field, ¢, for the domain wall defect and two complex scalar fields, ¢; and
1o, for the string defects. There is no gauge field associated with the ¢-field; however, a
gauge field can be associated with the ;- and yp-fields. A characteristic of 1, and
is that when %, has a non-vanishing VEV, the magnitude of ¢y vanishes and vice versa.

This implies that there is little interaction between the ;- and to-fields. Therefore, the
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presence (or absence) of a gauge field is not expected to significantly affect the stability
of the D-wall. For simplicity we consider a global model where there are no gauge fields
associated with the ;- and ¢»-fields. The model is defined by the Lagrangian

L = 8,08"¢ + 8,1 8"ty + Buthad P2 ~ V (¢, 1, 1h2), (4.16)

where V (¢, 11,92} is a symmetry breaking potential given by

Vigante) = 2o (¢ =5 42 1] + ol? ~ @ +9 (¢ - 37))°
+hir Pl — po (]2 — Inf2]?) - (4.17)

The form of the potential is governed by the coupling parameters Ag, Ay, g,/ and p. If the
parameter p 1s zero, i.e., the interaction between the different fields vanishes, then there are

four degenerate vacuum expectation values (VEVs) which minimize the potential, namely

(py = 20, ([} =w, (i) =0 (4.18)

and

@) =0, () =0, (lgr))=o. {4.19)

As pointed out by Carroll and Trodden (1998}, once the value of u is increased from zero

this degeneracy is removed. In this case there remain only two sets of VEVs given by

(¢> =1, (l"lbll) = 1w, (hb?l) =0 (420)

and

(@) =-v, () =0, (l¥2) =w. (4.21)

A wall located at z = 0 is obtained by setting ¢ = v for 2 > 0, ¢ =0 for z = 0 and
¢ = —v for 2 < 0. The ¥;-ficld terminates on the wall from “above” whbere ¢ = v, whereas
the 1y-field terminates on the wall from “below” where ¢ = ~v. We refer to the string
characterized by the 1), -field as string-one, and the string characterized by the ,-field as
string-two (see Fig. 4.5).

The potential {4.17) has been studied previously by Carroll and Trodden (1998} who
utilized the parameters Ay = 108, 32 =1/24, Ay = 1/24, %% = -3 g =0, h = —1/12 and
1t = 6. This choice of parameters gives v = 1. Figure 4.6 (a) shows that for ¢ = ~v, the

VEV of the ¢)-field vanishes, and the potential does not display symmetry breaking as

PR,
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Figure 4.5: Schematic representation of a D-wall. The domain wall is oriented in the 2
direction, with string-one locaied above the wall and string-two located below the wall.

a function of Re(i;). However, V(¢, 11, 12) exhibits symmetry breaking as a function of
Re{3;), with minima at Re(1;) = w. Figure 4.6 (b) shows that for ¢ = 0, both the VEVs
of the ;- and ts-fields vanish since the potential is a minimum at Re(yn) = Re(iz) = 0.
Figure 4.6 (c) shows that for ¢ = v, the VEV of the 1»-field vanishes, and the potential does
not display symmetry breaking as a function of Re(i2). However, V(¢,11,2) exhibits
symmetry breaking as a function of Re(); ), with minima at Re(1);) = £w. The center of
the wall has ¢ = 0, whereas the two distinct vacua, separated by the wall, have ¢ = fw.

Figure 4.6 (d) shows the potential, V(¢,91,%»), as a function of ¢ and Re(y,) for
o = 0. At Re(¢1) = 0 the minimum of the potential occurs for ¢ = ¥ = 1//24. As
Re(4,) increases toward the VEV w, the ¢-field also increases toward the VEV, v. This
implies that the magnitude of the ¢-field is smaller at the center of the string, and the
energy density of the wall is lower where the string terminates.

Although the potential energy density in Figs. 4.6 (a), (b) and (c) can adopt negative
values, this should not be interpreted as the D-wall haviﬁg negative energy density. A
negative energy density can be avoided by adding a constant positive term to the potential;
this does not change the VEVs of the scalar field, and therefore does not change the

dynamics or the stability of the D-wall. The formation and dynamics of the D-wall is
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Figure 4.6: Potential energy density, V(¢,n,2), as a function of Re{y) and Re(v).
(a) ¢ = —v, (b) ¢ =0, and (c) ¢ = v. In (d) the potential is plotted as function of Re(1)
and @ for 1> = 0. The parameters are Ay = 108, &% = 1/24, Ay = 1/24, #* = -3 g = 0,
h=-1/12 and 4 = 6.
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determined by the energy density difference between the true vacuum and the false vacuum,

The stability of the D-wall depends on how the strings are attached to the wall. When
either of the y-fields terminate ou the wall the corresponding VEV vanishes. In this case
the hybrid defect resembles a free wall, which is expected to be stable, since the Higgs field
corresponding to a Z> domain wall is stable due to conservation of topological charge (see
the numerical simulation shown in Fig. 4.3 for Z2 domain walls). However, to establish
the stability of the D-wall it is necessary to show that the wall is stable for a wide range

of coupling parameters and when perturbations are imposed on the wall.

4.3.2 Stability of the D-wall

The shape of tae potential is governed by a multi-dimensional parameter space. We can
gain insight into the parameters that govern the stability of the D-wall by examining the

minima. of the potential {4.17), which occur at |¢] = v and |$] = w, i.e,
4h50 (v2 — 52) + 2gpv? pw® = 0 (4.22)
2 (W - +g(?* -))-pv = 0. (4.23)

These equations indicate that the VEVs of the ¢~ and 1-fields do not depend on the
parameter b, whicl_: governs the interaction between the two 1-fields. Furthermore, since
1 terminaies on the wall from “above” (i.e., [4;| vanishes “below” the wall), and 3
terminates on the same wall from “below” (i.e., |49| vanishes “above” the wall), the term
Bt [2lap2[? in the D-wall potential (4.17) will be approximately equal to zero everywhere.’
Because the equations governing the vacuyum states of the D-wall do not depend on the
parameter k, and the term hlip; |*|1h2|? is approximately zero (see Fig. 4.7}, the parameter
h is not expected to significantly affect the dynamics of the D-wall.

Using Egs. (4.22) and (4.23) we seek to establish constraints on the other parameters

in the potential, i.e.,

N = ﬁfff’a (4.24)
s = o |- (429
where o and G are defined by
o = Dy (vt - 52)2 (4-26)
B = 2{w-@?)v?+ (0 - ) w (4-27)

At the position where |11 # 0, |t)2| vanishes and vice versa.
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Equation (4.24) determines the conditions under which a D-wall forms. The stability
of the wall is dictated by the sign of Ay in the potential (4.17). We note that Ay, —
too if p = /B, with 4 = a/f representing an unstable configuration. If Ay > 0 we
have a Mexican hat potential which characterizes a symmetry breaking phase transition.
However, for Ay < 0 the potential has local maxima at 3, = £w for z > 0 and ¥ = ®w
for z < 0. Since the potential does not have vacuum minima with non-vanishing ;-
and 1p-fields, this implies that it does not exhibit symmetry breaking, and therefore no
topological defects exist in the <) and o-field. Thus a D-wall is precluded from forming
unless we constrain the parameter u {(which couples the strings to the wall) to 4 > /8.
We know that a single domain wall is stable, therefore varying the self-coupling, Ay, is
unlikely to cause an instability in the D-wall; consequently, we fix the value of Ay in our
numerical simulations. To facilitate comparison with the work of Carroll and Tiodden
(1998), we set 72 = 4, @W? = ~3, v¥ = 1, w? = 69, Ay = 108 and h = ~1/12. For this

choice of symmetry breaking scale Eqs. (4.24) and (4.25) become

842
e 4.2
A 1681y — 3174 (4.28)
12 { ¢
=—{—-—144 4.29

which constrains g > p, where . = 3174/1681 ~ 1.89. Equations (4.28) and (4.29)
show that the parameters A, and g are completely determined for a given value of y. In
our numerical simulations the string-wall coupling parameter, g, is the only independent
parameter, and the stability of the D-wall is explored by varying u.

Although our analysis shows that a D-wall forms for 1 > ¢, negative values of i should
also be possible since the potential given by Eq. (4.17) is symmetric in u. However, the
transformation g — —pu is identical to the transformation 1; — 2. This is equivalent to

swapping the 9;- and 9-fields. Therefore we only explore the stability of the D-wall for
> e
4.3.3 Field equations for the D-wall

The equations of motion of the D-wall are determined from the Lagrangian (4.16), i.c.,

LV = ¢, ). (4.30)

20%’
Equation (4.30) is solved numerically by using a second order leapfrog difference scheme

(see Appendix A). To obtain a complete picture of the D-wall, numerical simulations were
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carried out for one and two strings terminating on the wall. The initial conditious employ

a static D-wall solution of the field equation (4.30) in cylindrical coordinates,

4.3.4 Static D-wall solution

Consider a D-wall in three dimensions, with the domain wall located at z = 0; the strings
are oriented along the z-axis and terminate at the origin (r = /2% + 2 = 0). The static
D-wall solution of the field equation (4.30) is obtained from the coupled equations

&P¢  10¢  0%*¢ 18V

2 “ror T2 T 235 (4.31)
The following ansatzen are assumed
1 = filr,2)eh =y (4.33)
b2 = falr,2)e2CW) (4.34)
¢ = ¢rz), (4.35)

where f1(r,z) is the magnitude of ¢, fa(r, 2} is the magnitude of ¢2, and 61{z,y) and
@2(x,y) are the phase angles around the vacuum minima of ¢; and », respectively. The
magnitude of ¥; vanishes at the center of the string (r = 0) and below the wall (2 < 0),
otherwise its value is w. Similarly the magnitude of 4, vanishes at the center of the string
and above the wall (z > 0), otherwise ifs value is also w. The phase angles around the
vacua depend only on the z and y coordinates.

Since Eqs. (4.31) and (4.32) are non-linear, the solutions that define the D-wall are
found using an iterative finite difference scheme whose convergence is sensitive to the
choice of spatial step. To ensure that the solution converges, we employed a spatial step
Ah = 0.055. Once the vortex solutions have been obtained they are transformed into
Cartesian coordinates using Eqs. (4.33), (4.34) and (4.35), and evolved according to Eq,
(4.30). Causality dictates that the time step must be smaller than the spatial step, hence
we chose At = 0.02. The simulation uses free boundary conditions aund a lattice (grid)
consisting of 200° points. The D-wall is evolved up to ¢ = 20, corresponding to 1000
iterations. This {ime scale is long enough to ensure that any disturbance (e.g., noise) from
the boundary is able to affect the stability of the D-wall.

The numerical solution to Eqs. (4.31) and (4.32) uses a fixed point method (see

Sec. 2.2). Trial initial conditions were used for the scalar fields, fi(r,z2), fa(r, z)} and
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Figure 4.7: Cross-sections (x = 0) of the Higgs fields showing the D-wall located at z =0
(x = 6). (a) @, (b) ltp1l, and (c) |2} String-one (characterized by 1) is oriented along
+2 and string-two (characterized by ) is oriented along —z. The magnitude of ¢ in the
vicinity of the strings is lower than in the vacuum state. The value of [¢1] falls to zero
below the wall (b), whereas |¢2| falls to zero above the wall (c). There is little interaction
between string-one and string-two, and the term Ay {|3o| in the potential is approximately
zero everywhere.
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#(r, z}, and a finite difference scheme was employed to iterate the scalar fields until they
converged.’® The initial conditions exploit our knowledge of the boundary values and
vacuum state of the scalar fields. For example, consider a D-wall located at z = 0, with
string-one terminating on the wall from above and string-two from below. In this case we
set fi(r,z2<0)=0, fi(0,2>0) =0, and f1(r # 0,z > 0) = w. Similarly fo(r,z > 0) =0,
f2{0,2 € 0) =0, and fo(r # 0,z < 0) = w. Finally, the value of ¢ is set to v for 2 > 0
and —v for 2 < 0. Since the stability of the D-wall depends on the parameter y, the
convergence of the numerical algorithm has been explored for various values of g,

As p — 2. the numerical algorithm does not converge to a solution since Ay — co. To
ensure that the sirnulations can be completed in a reasonable time frame we have restricted
> 2.5. The numerical solution for a D-wall configuration with two strings terminating
on the wall is plotted in Fig. 4.7. This figurc shows that the behaviour of ¢, |¢1| and
[4p2] is consistent with the previous analysis based on the D-wall potential (see Sec. 4.3.1).
Various configurations of a D-wall (e.g., one string terminating on the wall) can also be
obtained by modifying the boundary values and vacuum states of the scalar fields. In the

following sections we describe the evolution of these D-wall configurations.

4.3.5 Two strings terminating on a wall

We first consider the stability of a D-wall with two strings terminating on the wail. The
evolution of the D-wall uses a discretization of Eq. (4.30); the initial condition for this D-
wall configuration has been discussed in Sec. 4.3.4. Because of computational constraints
our numerical simulations are performed in the range 2.5 < p < 10, in steps of Ay = 0.5.
Cross-sections of the total energy density of the D-wall at the end of the simulation (¢ = 20)
were plotted and compared to the initial D-wall configuration (see Figs. 4.9 (a) and (b)).
For the range of u-values explored here, the D-wall did not show any instability.

Figure 4.8 shows the energy density of the D-wall for four different values of u. As p
increases, the gradient of the ¢- and ¢-fields also increases, however, this only changes the
encrgy density of the D-wall. There is no evidence to suggest that higher energy densities
result in unstable topological defects. If the D-wall is stable in the range 2.6 < ¢ < 10, it
is plausible to assume stability for larger values of ;. Figure 4.8 also shows that the energy

density of the wall decreases where the two strings terminate. At lower values of u the

YWEor an iterative finite difference scheme to converge we require that the difference ia the norm of the
scalar fields, at two successive iterations, is small, i.e., ||x]le = Ixlle-1 < 10~ & |Ix|le (x = &, f1, f2),
where k denotes the iteration number.
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energy density of the defects is smaller. As the value of u approaches . =~ 1.89 (A — 00},
the energy density of the D-wall vanishes. This confirms that a D-wall is unstable for
= pte {(Ay = £oo) and no D-wall forms for o < ge (Ay < 0.

Figure 4.9 shows a typical simulation for 4 = 6. Comparing the energy density of the
D-wall in Figs. 4.9 (a) and (b) we see no difference between the D-wall at the start and
end of the simulation. For all values of g studied, our numerical simulations suggest that
the D-wall is a stable topological defect. In Sec. 4.3.6 we examine the stability of the

D-wall in the presence of perturbations imposed on the wall.

4.3.6 Perturbations on the D-wall

We have explored the stability of the D-wall when it is perturbed by harmonic perturba-
tions of the form

z = Acos (%) , (4.36)

where A is the perturbation ampiitude, n is a positive integer and —5.5 < L < 5.5 is the
extent of the domain wall in the y direction. Simulations were carried out for n = 1,2 and
3, and for amplitudes in the range 0 < A < 1. A perturbation amplitude A =1 is large
compared to the thickness of the wall, § = 1/,/A5v ~ 0.1 (for i = 6). It is observed that
the perturbations decay, with energy partly transferred to the strings. No instabilities are
observed when A is varied in the range 0 < A < 1. Figures 4.10 and 4.11 show a D-wall
at the beginning and end of a typical simulation for A = 1 and n = 1. The perturbation
amplitude on the wall at the end of the simulation is smaller than that at the start, which
is a consequence of the wall transferring kinetic energy to the strings.

Figure 4.12 shows the oscillations of the wall in the z direction. The effect of the
strings on the wall is evident in Figs. 4.12 (b), (¢) and (d), where the oscillating wall
pulls on the strings. String-one and string-two terminate on the wall (at z =1}, As the
wall oscillates, that part in contact with the strings accelerates more slowly than the rest
of the wall, and lags behind. This results in a kink in the wali, which is evident in Figs.
4.12 (b) and (d). The wall imparts kinetic energy to the strings and the amplitude of the
oscillations decays with time. However, throughout the oscillations the strings are still
firmly attached to the wall. This indicates that the D-wall is stable in the presence of
perturbations. Wall perturbations are also transferred to the strings and the D-wall is

also stable in the presence of these string perturbations.
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(c) (d)

Figure 4.8: Cross-sections (x = 0) of the total energy density of the D-wall. (a) p = 2.5,
(b) £ =5, (c) p = 7.5, and (d) p = 10. The energy density of the D-wail is higher for larger
values of . The wall is located at 2 = 0 and the strings are located at y = 0. String-one
(characterized by 1) is defined for z > 0 and string-two (¢;) is defined for z < 0. The
energy density of string-one decreases as we approach the wall from “above”, whereas the
energy density of string-two decreases as we approach the wall from “below”. The energy
density of the wall also decreases in the region where the two strings terminate.
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Figure 4.9: Cross-sections (x = 0) of the total energy density of the D-wall for x = 6.
(a) t = 0 and (b) t = 20, corresponding to the end of the simulation. These figures show
no difference between the D-wall at the start and end of the simulation. This provides
evidence for the stability of the D-wall.

4.3.7 A single string terminating on a wall

An interesting scenario occurs when a single string terminates on the wall. Figure 4.13
shows a semi-infinite string oriented in the z direction, terminating on the wall from above.
Since the second string is absent there is no non-contractable phase winding in the o-field.
The static initial condition for ¥- is obtained using an iterative finite difference scheme,
based on the time-independent field equations {4.31) and (4.32). In this case 1 is set to
w below the wall and zero above the wall. A typical numerical solution for the ¢ and
tpo-fields is shown in Figs. 4.14 (a) and (b). Without string-two the field configuration of
¢ adopts the VEV everywhere below the wall.

The results of a numerical simulation of a D-wall with a single string terminating on
the wall are displayed in Fig. 4.15. Figures 4.15 (a) and (b) show the D-wall at the start
of the simulation and at ¢ = 13, respectively. The wall was initially located at z = —2.5,
however, it is pulled up by the string due to string tension. As the wall gains kinetic energy
and stretches, its energy density also increases, but the string is still firmly attached to the
wall. No fluctuations are observed in the energy density that could lead to the destruction

of the D-wall. This suggests that a D-wall with a single string is a stable hybrid defect.
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Figure 4.10: Cross-section (x = 0) of the
total energy density of the D-wall. The do-
main wall is located at z = 0, with the Jocus
of the strings along the z-axis at y = 0. The
cross-section corresponds to ¢t = 0. A per-
turbation has been introduced on the wall,
with amplitude A = 1 and “harmonic num-

Figure 4.11: Cross-section (z = 0) of the
total energy density of the D-wall at = 20.
This was evolved from the initial configura-
tion shown in Fig. 4.10. The amplitude of
the perturbation (in the 2 direction) has de-
cayed, indicating that the D-wall is stable
with respect to perturbations on the wall.

ber” n = 1.

4.3.8 Domain walls connected by a string segment

When a single string terminates on a wall it pulls the wall in the direction of the string
tension (see Fig. 4.15 (b}). This phenomenon has some interesting consequences if the
other end of the string terminates on a second wall (see Fig. 4.16}. The string is expected
to exert tension on the walls, pulling them toward each other,

Simulations were performed to confirm this conjecture. Figure 4.16 shows the initial
condition for the D-wall configuration. The string is characterized by ), vanishing below
wall-one and above wall-two. Since there is no second string, there is no non-contractable
phase winding in 49; the t»-field adopts a value w below wall-one and above wall-two,
vanishing between the walls. The ¢-field approaches —v below wall-one and above wall-
two; it adopts a value v between the walls.

Figure 4,17 (a) shows two walls connected by a string segment (the string is not shown).
The system is initially stationary. Due to string tension the two walls are pulled toward
each other (see Fig. 4.17 (b)), which results in the walls colliding. As noted previously
two overlapping walls form a wall-anti-wall pair (see Sec. 4.2.2). It is expected that when

the two walls collide they will annihilate. This is confirmed by our numerical simulations.




122

Figure 4.12: Cross-sections (¢ = 0) showing oscillations of the wall. (a)t=0,(b)t =7,
{c) t = 14, and (d) t = 20. These are based on the simulation shown in Figs. 4.10 and
4.11. (a) Initial condition in which the wall has amplitude A =1 and “harmonic number”
n = 1. (b) A kink develops on the wall as the wall moves down. This is due to the wall
pulling on the strings. In (c) and (d) we see the wall moving up and down. As the wall
oscillates the attached strings follow, indicating that the perturbed D-wall is stable.
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String

Domain wall

Figure 4.13: Schematic representation of a D-wall with a single string (characterized by
the ¢;-field) terminating on the wall from above.

Figure 4.18 shows cross-sections of the total energy density of the D-wall (z = 0) at four
different times. Those parts of the wall that are in contact with the string move toward
each other first. Consequently, the ends of the string come into contact, in which case the
string unwinds and annihilates, thereby nucleating a hole in each wall. This hole expands
outward at almost the speed of light!, resulting in the annihilation of the walls.

The annihilation of a D-wall in this manner is analogous to the Langacker-Pi mech-
anism for monopoles (Langacker and Pi 1980). In this scenario a monopole is drawn
to an anti-monopole by string tension. When the string connecting the monopole and
anti-monopole shrinks to a point it unwinds, and the monopole annihilates with the anti-
monopole. A similar annihilation mechanism is observed for the D-wall.

This observation may have relevance to cosmology, since a network of strings and
walls is expected to form in the early Universe (via a series of symmetry breaking phase
transitions). For example, a D-wall may arise for U (1} x U(1) x Z2 x H — U(1) x U{1) x
H — H, with walls forming in the first phase transition and strings in the second phase
transition. This can result in a hybrid defect in which walls are connected by strings. The
speed at which the walls are pulled together will depend on the string tension. The larger
the tension the faster the walls are pulled together, which increases the annihilation rate

of D-walls. The string tension is proportional to 7?, where n is the symmetry breaking

M1 The speed at which the hole expands can be inferred from Figs. 4.18 (c) and (d). In Fig. 4.18 {c) (at
{ = 5) the two domain walls have just collided. The radius of the hole is A; ~ 0.35 (determined {rom the
peak-to-peak distance in the y direction at 2 = 0). In Fig. 4.18 (d) (at ¢t = 6) the radius of the hole is
e ~ 1.25, which is consistent with a hole expanding at ~90% the speed of light.
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Figure 4.14: Cross-sections (z = 0) through the D-wall with a single string terminating
on the wall. (a) ¢ and (b) |12). The t;-field is the same as the case for two strings
terminating on the wall. Since there is no second string, ¥, adopts its VEV below the
wall and vanishes above the wall.

(b}

Fignre 4.15: Cross-sections (z = 0) of the total energy density of the D-wall, with a single
string terminating on the wall. {(a) £ = 0 and (b) ¢t = 13. The wall is located at z = —2.5
and the string locus is in the z direction (at y = 0). Comparing (a) and {b) shows that the
wall js pulled in the z direction due to string tension. The energy density of the wall in
(b) is higher than in (a) due to stretching of the wall under string tension. No fluctuations
are observed in the energy density of the D-wall that could lead to the destruction of the
hybrid defect.




Wall-one

Figure 4.16: Schematic representation of a Dirichlet defect, in which two walls are con-
nected by a string.

Figure 4.17: Cross-sections (¢ = 0) through two walls connected by a string (not shown).
(a) t = 0 and (b) t = 4. The locus of the string is along the 2 direction. In (a) the hybrid
defect is initially stationary, while in () the two walls are pulled toward each other.
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Figure 4.18: Cross-sections (z = 0) of the total energy density of the D-wall consisting of
two walls connected by a string. (a) £ =0, (b)t =1, (¢) ¢t = 5, and (d) ¢ = 6. Initially the
walls (located at z = £2.5) are undeformed. The string locus is along the z direction (at
y = 0). In {b) the walls are pulled toward each other under string tension, and in (c) the
string unwinds, annihilates and nucleates a hole. The hole expands outward as is evident
in (c) and (d). This results in the annihilation of the walls.
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scale of the strings. Provided that strings form immediately after the walls, the symmetry
breaking scale of the string is comparable to the wall. Under these circumstances, string
tension will play a significant role in the evolution and annmihilation of D-walls. The
annihilation of these D-walls may also have implications for monopoles that form between

the walls.

4.4 D-walls and the monopole problem

Monopoles form in GUT models as an unavoidable consequence of SU(2) - U (1) symme-
try breaking. This poses a problem for GUTs and must be addressed in realistic scenarios
of symmetry breaking. In this section we briefly discuss how the evolution of a D-wall
may resolve the monopole problem.!2

Dvali et al. (1998) ..roposed that monopoles can be “swept” away by domain walls.
As the wall “sweeps” out a volume in space, monopoles collide with the wall. The collision
between monopoles and the wall results in the annihilation of the monopoles, with the
energy transferred to the wall. This scenario is analogous to the way skyrmions collide
ar:d annihilate with a domain wall (see e.g., Dvali ef al. 1998). In order for the wall to
sweep out monopoles it is assumed that the wall forms as a consequence of approximate
Zs symmetry breaking. That is, the magnitude of the Higgs field of the domain wall at
one side of the wall is different from the other side. Since the energy density on one side
of the wall is higher there will be a pressure difference between the two sides. The wall
moves toward the region with lower pressure, thereby “sweeping” out monopoles. If the
wall moves outside our Hubble horizon, this provides a mechanism for avoiding the domain
wall problem.

D-walis can also “sweep” away monopeles without requiring an approximate Zp sym-
metry. Consider a hybrid model in which monopoles form between two walls, which in
turn are connected by a string (see Fig. 4.19). Such hybrid defects may form in a model
with SU(2) x SU(2) x U(1} xU(1) x Zy ~+ U(1) x U(1) symmetry breaking. For simplicity
we assume a global model (i.c., no gauge field). The SU(2)} x SU(2) x U(1) x U(1) x Z»

D-wall model can be constructed in a manner similar to the U(1) x U(1) x Z; D-wall, i.c.,

L =08, D0"® + 0y, 0%y + Op1hod9Py + 8,118 T) + 8,¥20" ¥, — V(®, 41,10, ¥), g),
| (4.37)

2]n Chapter 5 we discuss topological defects in RYF! gpacetime, and address the monopole problem
from a different perspective.
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Figure 4.19: Schematic representation. of a Dirichlet defect, in which monopoles form
between two walls, which are connected by a string,.

where & = ¢ @2 describes the domain walls, ; and 2 describe the cosmic strings and ¥,
and ¥y describe the monopoles. The potential, V{®,1,¥., ¥1, ), is generalized from
Eq. (4.17) for the D-wall. i.e.,

V(®, 91,4, U1, Up) = Ap (B2 7 —T2)° 4 2y [0 2 + o2 — &% + g (82 — 7))
FhlbiP el — 5@ (%112 — |92)?)
Fm 1992 + |2 — @2, + gm (9% —32)]°

Hham| V) P122* ~ p® (8117 — [22%) (4.38)

where Am, gm, hm and u,, are additional coupling parameters. Since we are not concerned
with how a monopole interacts with the strings, we ignore the coupling between monopoles
and strings in the potential. As the values of u and g, increase from zero (see the earlier
discussion of D-walls in Sec. 4.3.1), the VEVs of the fields &, ¥;, ¢, ¥ and ¥, adopt

the following values:

(®y=v, {(l)=w, {el)=0, (¥il}=wnm, (¥:2[}=0 (4.39)
and

(@) =—v, () =0, (g} =w, (¥D=0, (%2} =wm, (4.40)
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where v, w and wy, are obtaine” by minimizing the potential (4.38) with respect to @,
|#1] or fiz|, and |¥,] or [¥2]. The behaviear of ¥; and ¥, is analogous to ; and s,
respectively. For example, ¥ possesses monopole solutions between the walls, however,
it vanishes below wall-on¢ and above wall-two; whereas ¥» has monopole solutions below
wall-one and above wall-two, and vanishes between the walls.

The dynamics of the D-wall are governed by an equation of motion derived from the
Lagrangian (4.37). The behaviour of the D-wall, with monopoles located between the
walls, can be understood by considering the evolution of the U{1) x U(1) x Z; D-wall. In
Sec. 4.3 we showed that two walls connected by a string are pulled toward each other due
to string tension. As the two walls move toward each other they collide with moncpoles
located between the walls. The fate of 2 monopole upon collision with a wall is governed
by the VEV of the ¥;-field. Between the walls (®} = v and {|¥;]} = wy, (see Eq. (4.39)).
Regions between the walls exhibit symmetry breaking in the ¥,-field. However, as a wall
moves past a monopole, the VEV of the wall changes from v to —v at the location of
the monoyole; consequently, {|¥1]} decreases to zero (see Eq. (4.40}). This results in the
resteration of symmetry in the ¥i-field, and the monopole must unwind and annihilate.
As the walls approach each other they remove the monopoles located between the walls.

Once all monopoles are removed, the two walls collide and annihilate. Since hybrid
defects are expected to form in realistic GUT symmetry breaking schemes, our D-wall
model provides a scenario for resolving the overabundance of monopoles and domain walls

in the early Universe.

4.5 Conclusion

It is found that D-walls are stable for a wide range of coupling parameters and under
perturbations imposed on the wall. Our numerical study supports earlier work by Carroll
and Trodden (1998) suggesting that D-walls are stable defects. However, these stable
D-walls would eventuaily dominate the energy density of the Universe, and would appear
to be ruled out on the basis of observation. When two walls are connected by a string
they are pulled toward each other, and in this case the string unwinds, annihilates and
nucleates a hole in the walls. The hole expands outward at almost the speed of light and
annihilate the walls. A network of such D-walls will quickly annihilate, rapidly diluting

the energy density of the network, thereby obviating a domain wall dominated Universe.
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A D-wall may also be invoked to resolve the monopole problem in the early Universe.

As the walls are pulled together, monopoles located between the walls collide with the

walls, unwind and annihilate. The walls subsequently collide and annihilate {after remov-

ing the monopoles), thereby providing a mechanism for avoiding both domain walls and

monopoles in the early Universe.
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CHAPTER 5
Monopoles and Strings in R*+! and R**! Spacetime

5.1 Introduction

Grand Unified theories (GUTs) that exhibit G — U(1) x H symmetry breaking predict the
formation of large numbers of monopoles in the early Universe (Zeldovich and Khlopov
1978 and Preskill 1979). In the present epoch the predicted monopcle number density
is estimated to be ~1071% cm™3, which is incompatible with the upper limit of ~10~3°
cm™3 inferred from magnetic monopole fluxes on Earth, and proton decay processes in
the Sun (Zeldovich and Khlopov 1978, Preskill 1979, Kolb et al. 1982, Dimopoulos et al.
1982, Freese ef al. 1983 and Dvali et al. 1998). This large discrepancy presents a problem
for a GUT model that predicts the formation of monopoles. The monopole problem was
examined briefly in Chapter 4 in the context of hybrid (Dirichlet) topological defects. In
this chapter we examine the monopole problem in higher dimensional spacetime.

It is speculated that the Universe may have dimensions greater than the observed
three spatial dimensions. In 1921 Kaluza showed that Einstein’s theory of gravitation and
Maxwell’s theory of electromagnetism can be formulated within a unified framework by
utilizing an extra dimension! (see e.g., Appelquist et ol. 1987). Kaluza theory assumes
that the extra dimension does not affect the physical processes in the known (3 + 1)-
dimensional spacetime. Klein proposed that this extra dimension is compactified, i.e.,
curled up and simall compared to the observed three spatial dimensions (see e.g., Overduin
and Wesson 1997). Experimental nbservations (such as high-energy particle experiments)
constrain the upper limit on the size of the Xaluza-Klein compactified dimension to be
~107!% m (Kostelecky and Samuel 1991). The successful construction of gauge invariant
field theories of the electromagaetic and weak nuclear forces has provided the impetus to
formulate a “theory of everything” that unifies the fundamental forces. Candidates for

the “theory of everything” include superstring theory and M-thcory, formulated in 9 + 1

!Einstein's field equations in 3 + 1 dimensions (i.e., *Gp = *TL) and Maxwell’s equations can be
derived from the vacuum equations in (4 + 1)-dimensional spacetime, i.e., °Gy =0.
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and 10 + 1 dimensions, respectively (see e.g., Kaku 1999). These theories? are currently
in early stages of development. In the absence of a “theory of everything” we consider a
simple model of monopoles in (4 4 1)-dimenstonal spacetime.

According to the homotopy classification of topological defects (see Sec. 1.4), a
monopole in R**! is a one-dimensional object and may cxhibit string-like behaviour.
It is known that a string network in R3+! does not dominate the energy density of the
Universe (Albrecht and Turok 1989, Allen and Shellard 1990 and Bennett and Bouchet
1990). The evolution of strings in R?*! may provide insight into the monopole problem.
In this chapter we discuss the evolution of monopoles in uncompactified and compactified
R4*! spacetime. The results are then generalized to topological defects in R9*+! spacetime,

with d — 3 compactified dimensions.

5.2 Monopole topological defects

5.2.1 Moncpoles in R3*! spacetime

The simplest monopole is the 't Hooft-Polyakov monopole (’t Hooft 1974 and Polyakov
1974), where the gauge field configuration possesses an SO(3) symmetry with the Higgs
field having a triplet representation, ® = (®;,®2, ®3). The ’t Hooft-Polyakov monopole
is described by the Lagrangian

L= %D,,@avﬂ@a _ %Fﬁ,,F"“" - 3}(@3% 2R, (a=1,2,3), (5.1)
where D, denotes the non-abelian covariant derivative defined by
D@ = 8,8, — ceapeAlde, (a,b,c=1,2,3), (5.2)
and g, is the Yang-Mills field strength
Fl, =8, AL — 8, A% + 2ecqpc ALAT, (5.3)

in which A7, is the a-th component of the gauge field, and g is the Levi-Civita completely

skew-symmetric tensor. The equations of motion follow from the Lagrangian (5.1}, i.e.,

D DHD, + A8 (Bsy —12) = 0, (5.4)

8 PP — Yeq e AL F™ 4 Deeupe®yDypd. = 0. (5.5)

* An alternative theory referred to as loop quantwm gravity attempts a syntlesis of peneral relativity
and guantwm inechanics without purporting to unify the forces of nature (see e.g., Smolin 2003}.
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In the absence of a gauge field the Lagrangian (5.1) describes a global model, in which
monopoles exhibit long-range interactions.® The field equation describing global monopoles
is
08, + A8, (31 + 05 + @3 — %) = 0. (5.6)
This comprises three equations, one for each field component ®, (e = 1,2,3). It can be
shown that (Polyakov 1974)
By = ff-u(r) (5.7)
is the static monopole solution to the field equation (5.6}, where u(r) is a radial real scalar

field. Substituting Eq. {5.7) into the static solution to Eq. {5.6) gives (for each component
of the Higgs field):

1 z\0u 2ydu 220u 2 .
2 oo —- —_—— —_———y — 2 _ 52 =
Vou+2 (:c r_z) 9z 23y %0z 3 Au(u® —n°) 0, 15.8)
2z Bu 1 y\Ou 2z20u 2
2, =X L) == - 2 _ gty =
Vu 7 s +2 (y r2) 3 125, ok Au{u” —n°) 0, (6.9)

2,  4TOU  Zyou 1 z\0u 2 o )
Vu 72 Oz r28y+2(z 7-2) 9 r2Y Au(u® — %) 0. {5.10)

These equations are re-written in sphervical coordinates as
2 2
‘U." -4 ;‘Uf—]— (A‘I]2 — ;5)?;&*/\‘&31'0, (511)

where a dash denotes a derivative with respect to the radial coordinate. Since v isonly a
function of r, the Higgs field of a monopole “points” along the radial direction and describes
a “hedgehog” with spherically symmetric uniform phase winding. The magnitude of the
Higgs field vanishes at the origin and approaches % at spatial infinity.

In the presence of a gauge field the static sclutions to the field equations (5.4) and
(5.5) are ('t Hooft 1974)

Ta .
) (512)
Az(m) = €uabTh (G(T)—?:Q)a (5.13)

where a(r) is a real, radially dependent scalar field.* The real scalar fields u(r) and a{r)

satisfy the equations (Polyakov 1975)

W' 20 (o 2w e = 0, (5.14)
o + éa' _ «:—3-0, — 20233 — 2u2a = 0. (5.15)
r 72

3The distinction between local and global models was discussed in Sec. 1.2.
"Here we utilize the convention €qq6 = 0.
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These equations are non-linear and have no known analytic solutions, however, the asymp-
totic and near field solutions give useful insight into the behaviour of the scalar fields. The
magnitude of the vacuum expectation value of the Higgs field is n at spatial infinity, hence
Eq. (5.14) « plies that a(r — co} = 0; at the origin A% = 0, therefore af{r — 0) = 1/er2.

To explv... monopole formation we perform numerical simulations based on the Kib-
ble mechanism. The simulations use the equations of motion (5.4) and (5.5), recast in

dimensionless form with the following transformations:

& - nd, (5.16)
AS = nAj, (517}
g, = (e x,. (5.18)

Consequently the equations of motion (5.4) and (5.5) depend only on one coupling pa-
rameter, o = A/e¢2. For simplicity we assume that the self-coupling of the Higgs field is
identical to its coupling to the gauge field, ie., o = 1. With this assumption the coor-
dinates are measured in units of the Compton length (1/v/An) and the energy density in
units of An?. The initial condition is constructed by assigning a random value (between
~1 and 1) to ®, at cach grid point, with the magnitude of the vacuum expectation value
constrained to anity, i.e., ® + 2 + ®%2 = 1. A gauge field arises naturally via a local
gauge transformaticn, for siinplicity we set the initial value of the gauge field to zero {sce
e.g., Moore et al. 2001). Because the Higgs field is assigned a random value, there will be
fluctuations in the Higgs and gauge fields as they evolve. These fluctuations do not decay,
and since energy is conserved we add a damping term, 3%, /0, to the evolution equation
for the @,-field. Similarly a term, bOAy; /01, is added to the evolution equation for the
Ag-field. Here b denotes a constant, whose value is chosen to ensure that fluctuations in
the fields are significantly damped during the simulation. For b <« 10A¢ {where At is
the time step) it is impossible to distinguish between monopoles and noise, however, for
b >» 10At the Higgs and gauge fields are heavily damped and monopoles do not Lhave time
to form over the duration of the simulation. For expedience we set & = 10A¢, with spatial
step Ak = 0.5 and time step At = 0.1; At < Ah ensures the stability of the numerical
integration scheme.® The duration and size of the simulations are such that noise from

the boundary does not have time to propagate into the visualization frame (see Sec. 3.4).

5See Appendix A for a discussion «f numerical techniques, including an analysis of the stability criterion.
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Figure 5.1: Isocontour plots of the energy density (E/An! = 0.5) for a typical simulation
in R**!. (a) Formation of monopoles {at ¢ = 10) via the Kibble mechanism, and (b)
monopoles at £ = 50.

The results are displayed using contour plots of the energy density (in units of An?)

1/, 1 1
B = 5| (020 - carcAL®c) (0B — cancly )| + 7 Fa Ffy + 7 (Be%a =112, (519)
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where (a = 1,2,3). Figure 5.1 displays contour plots of the energy density (E/An? = 0.5)
obtained in a typical simulation. Figure 5.1 (a) shows the formation of monopoles as a
consequence of the Kibble mechanism. In Fig. 5.1 (b} monopoles are seen as localized ob-
jects. At a spatial scale much larger than the Compton length of the Higgs field monopoles
are point-like objects.

Immediately following their formation, monopoles were strongly scattered by the sur-
rounding plasma.® This is expected to have a damping (frictional) effect on the motion of
monopoles. As the Universe evolves, the random velocity of monopoles and anti-monopoles
decreases due to interactions with the surrounding plasma, allowing monopoles to be cap-
tured by anti-monopoles (or vice versa). This is known as the diffusive capture mechanism
(Zeldovich and Khlopov 1978 and Preskill 1979), and is effective as long as the mean free

path Iy = my/T?%? (where m is the mass of a monopole, 7 is a damping constant and T

5Before the quark-hadron phase transition (¢ ~ 107°% 5) the Universe was filled with a quark-gluon
plasma. ’t Hooft-Polyakov monopoles possess a gauge field and are strongly scattered by quarks.
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is the absolute temperature) of the monopoles and anti-monopoles is less than the capture
radius r. ~ g%/T (where g is the magnetic charge). A monopole-antimonopole pair forms
a bound state before eventually annihilating. As the Universe expanded, its temperature
decreased; at t ~ 10" s after the Big Bang the mean free path was larger than the capture
radius, and monopole-anti-monopole annihilation ceased (Zeldovich and Khlopov 1978).

Without an efficient energy loss mechanism the evolution of monopoles is quite different
from a string network. 't Hooft-Polyakov monopoles (which possess a gauge field) exhibit
short-range interactions (see Scc. 1.2.3). At large spatial separations they are very weakly
interacting and their point-like structure suggests that they rarely collide with each other.
In the present epoch the monopole number density is estimated to be ~1071° ¢cm=3. This
is many orders of magnitude greater than observational upper limits {10~3% cm—3) inferred
from cosmic monopole fluxes and cosmic magnetic fields (sce e.g., Zeldovich and Khlopov
1978). Similar consiraints on the monopole number density are set by the rate of proton
decay in stars (Kolb et al. 1982, Dimopoulos et al. 1982 and Freese ef al. 1983). This large
discrepancy presents a problem for GUTs that predict the formation of large numbers of
monopoles in the early Universe.

There are at least four known solutions to the monopole problem. One solution invokes
the Langacker-Pi mechanism (Langacker and Pi 1980) (see also Secs. 4.3 and 4.4). This
is based on the Georgi-Glashow SU(5) model (Georgi and Glashow 1974) of symmetry
breaking

SU(5) — SU(3) x SU(2) x U(1) — SU(3) x U(1), (5.20)

where the first phase transition produces strings and the second produces monopoles.
This scenaric presents two possibilities - one in which the phase transition that led to
the formation of monopoles occurs very late so that there is no monopole problem. The
second possibility is that monopoles and anti-monopoles are connected by strings, which
draw the pair together leading to their annihilation, thereby aveiding the problem. A
second solution to the monopole problem is the inflationary scenario (see Sec. 4.2.3),
where the monopole number density is diluted due to exponential expansion of the carly
Universe. A third solution to the monopole problem relies on GUTs that avoid symmetry
restoration at high temperature (Salomonson et al. 1985 and Dvali ef al. 1995). This
approach is predicated on the assumption that there was no GUT phase transition in

the early Universe, and therefore monopoles (or anti-monopoles) never formed. Finally, a
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fourth solution to the monopole problem relies on the symmetry breaking phase transition

(Dvali et al. 1998)
SU((B) x Zz — [SU(3) x SU(2) x U(1))/Zs, (5.21)

which leads to the formation of monopoles and Z; domain walls (hybrid defects). When
the wal! moves, monopoles scatter off the wall and are annihilated. Therefore monopoles
created in this GUT phase transition are “swept away” by domain walls (see Sec. 4.4).
The Langacker-Pi mechanism requires a series of GUT symmetry breaking phase tran-
sitions that have to be fine tuned. Consequently this mechanism is not favored to resolve
the monopole problem. Symmetry non-restoration in the early Universe is also unappeal-
ing, since condensed matter systems provide compelling evidence for symmetry restora-
tion at high temperatures (see e.g., Kirzhnits 1972, Kirzhnits and Linde 1972 and Diolan
and Jackiw 1974}, Further, if there were no symmetry breaking phase transitions in the
early Universe it is not clear how the fundamental forces became distinguishable. A sym-
metry breaking phase traunsition that leads to the simultaneous formation of walls and
monopoles may resolve the monopole problem, however, this model also has to be fine
tuned to “sweep” away monopoles. In any case domain walls have problems of their own,
inducing temperature anisotropy in the CMBR that is inconsistent with ebservations (see
Chapter 4 for a detailed discussion of domain walls). Currently, inflation is considered the
most satisfactory solution to the monopole problem. However, recent speculation that the
Universe may have higher dimensions leads us to investigate an alternative solution to the

monopole problem in R1*! spacetime.

5.2.2 Monopoles in Rit! spacetime

A topological defect is constructed from a non-trivial mapping between the vacuum mani-
fold, M, and an n-surface, S”, embedded in d-dimensional physical space. A p-dimensional

defect in R4*! is given by the non-trivial homotopy group
Tn=d-p-1{M) # & (5.22)

A monopole forms when the vacuum manifold has a non-trivial second homotopy group,
mo(M) # I. In R3*1 the 2-surface encloses a point and the monopole is a zere i-:wnsional
object (i.e., p = d-n—1 = 0). However, in R**! spacetime, the 2-surface does not enclose a

point. For $? to be non-contractable, the monopole must form a closed loop or an infinitely
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long one-dimensional object (see Sec. 1.4). Therefore 2 monopole in R**? is a “string”
(i.e., p=d—n—1=1). Since monopoles in R**? are one-dimensional objects, they may
be expected to exhibit string-like behaviour. To investigate the evolution of monopoles in
R+ spacetime, it is necessary to carry out numerical simulations of a string network in

4 + 1 dimensions. We begin by examining the simpler case of strings in R**! spacetime.

5.3 Abelian cosmic strings

5.3.1 The abelian-Higgs model

Abclian cosmic strings are the simplest gauge strings. They are described by the abelian-
Higgs model, which exhibits local /(1) — I symmetry breaking (see Sec. 1.2). The

Lagrangian for the abelian-Higgs model is

1

£ =D, &D"® - 7 PP — % (18 — )%, (5.23)

where ® is a complex U(1) Higgs field, D, and F,, are the gauge covariant derivative and
electromagnetic field tensor, respectively. These are defined in terms of the U(1) gauge

field, A,:

F}”j = a.u_Ay - apAp- (5.25)
There are three important parameters in the model; namely, two coupling parameters A

and e, and the symmetry breaking scale, . The number of parameters can be reduced

using the transformations:

& — nd, (5.26)
A, o A, (5.27)
z, = (en)_l Ty (5.28)

The equations of motion, derived from the Lagrangian (5.23), are given by

(B, — iAL) (3" — iAP)R + 0B (2P - 1) = 0, (5.29)
04, — 2Im [®(8, —iA,)®] = 0, (5.30)

where o = A/2¢2.
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Interactions between topological defects are mediated by exchanging Goldstone bosons.
In the absence of a gauge field, Goldstone bosons are massless, and the interactions are
long-range. When the gauge field is introduced however, the Goldstone boson becomes
massive and the interactions are short-range (see Sec. 1.2}. The type of interaction depends
ou the value of a. In the abelian-Higgs model, interactions are classified astypeIfora < 1
(attractive interaction), type II for a > 1 (repulsive interaction), and critically coupled
for & = 1 (no long-range interaction).

Topnlogical defects can be studied by numerically solving Eqgs. (5.29) and (5.30).
We utilize a second-order leapfrog finite difference scheme (see Appendix A), with initial
conditions obtained by numerically solving for the static vortex in cylindrical coordinates

(see Sec. 2.3).

5.3.2 Static vortex solution

To ohtain the static vortex solution we consider a string located at r = /22 + 92 = 0,
oriented in the z direction. tor this orientation there is no variation of the gauge field,
Ay(r}, in the z direction (i.e., A; = 0). A static string has the following ansatzen for the

Higes and gauge fields (Nielsen and Qlesen 1973):

pir) = f(r)e ), (5.31)
_ €, X é,
a(r) = =—=b(r), (5.32)

where &, is a unit radial vector, &, is a unit vector in the z direction, b{r) is a real scalar
field, and a(r} is a 2-vector gauge field with components ¢; and ¢,. For a vortex located

at the origin, the phase of the Higgs field is given by
—ten—t (¥ L
8(z,y) = tan (:B) . (5.33)

In component form the gauge fields are

I

adla,y) = —5b(r), (5:34)
ayfz,y) = —5blr). (5.35)

Using Eqs. (5.31) and (5.32), the time-independent equations for the abelian-Higgs model

are written as (in cylindrical coordinates):

il
=

() + %f’(r) — % (b(r) - 1)* — af (r) (f3(r) - 1) (5.36)

¥ (r) }_b'(r) ~2f2(r) (b(r) — 1)

i
=

(5.37)

P
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Figure 5.2: Magnitude of the Higgs ficld, f(r}, and gauge field, b(r), for a critically coupled
vortex (a = 1} in the abelian-Higgs model.

where a dash denotes differentiation with respect to the radial coordinate. The nuinerical

solutions to Egs. (5.36) and (5.37) are obtained using a fixed point method (see Sec. 2.3).
This involves guessing the magnitude of the scalar field and gauge field, and then employing
a finite difference scheme to iterate the fields. To determine the magnitude of the fields
requires knowledge of their “boundary” behaviour. Equations (5.36) and (£.J7) require
f{r = 00) = b{r =+ oo) = 1. At the center (r = 0} of the vortex the vacuumn state is
symmetric, and f(0) = 5(0) = 0. We adopt f{r £0) =b(r #0) =1 and f(0) = b(0) =0
as an initial guess. The solution for a critically coupled vortex (a = 1) is plotied in Fig.
5.2. This shows that both f(r) and b(r) increase quickly as we move out from the origin.
The gradient of the Higgs field, f'(r). does not vanish at the origin, unlike b'(r}.

Once the static solutions for f(r) and b(r) are obtained, the ¢- and a-fields are con-
structed from the Nielsen-Olesen vortex solutions (5.31) and (5.32). String dynamics re-
quires us to superpose multiple vortex-lines (i.e., strings). This is achieved by employing

the Abrikosov ansatz (Abrikosov 1957):
o(r) = [lé(r—ri), (5.38)
i
Aty = Y au(r-ri), (5.39)

1
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where r; dengtes the displacement vector of the i-th vortex and |r| = /% + y% + 22.
5.3.3 String interacticns

There are two jmportant string interactions: string intess:-rammtation (where two strings
exchange ends when they intersect) and loop collapse (where a string loop shrinks to a
point under giring tersion and annthilates). These string interactions provide an effective
energy 1oss mechanisxn for a string network (see Sec. 5.4.2).

Numerica] similations of intercommutation and loop collapse are shown in Figs. 5.3
and 5.4. In these figures striugs are represented using isocontour plots of the energy

density. In upjts of 9 A/2 the energy density is given by (o = 1),
E=|(8u+ iA)8(0" —iA")0] + zll-pﬂ,,pﬂv + % (1817 —1)?. (5.40)

For the purpgse of visualization we have set E = 1 in these figures. Fignre 5.3 shows two
strings moving toward each other in the z direction. When the two strings intersect they
exchange ends (inlercommute). Intercommutation occurs as a consequence of orthogonal
vortex scattering in tne z-y plane (z = 0) (sce e.g., Vilenkin and Shellard 1994).
Following self-intersection of a long string, intercommutation allows a loop to break
off from the giring. The dynamics of a loop are governed by string tension along the
loop, which js deterrmined by the energy density of the string {Vilenkin 1981). String
tension guarantees that a loop will collapse (sce Fig. 5.4). To understand loop annihilation,
consider the phasc winding at opposite points on a loop (see e.g., Fig. 5.4 (a)). The
orientation of 3 platc through a loop containing the z-axis is specified by &, x (vé; +yé,).
Diametrically opposite poinis on the loop have opposite phase winding, and constitute
a vortex-antj.yorlex pair. Once the loop collapses to a point, the phase unwinds and
the loop anyjhilales. After annihilation, energy is radiated away in the form of vector
bosons and Hijggs parxticles (sce e.g., Vilenkin and Shellard 1994). For a string network
in an expandjpg Universe, loop collapse provides the network with an important energy
loss mechanijgm, which works in concert with intercommutation to prevent cosmic stings
from dominagjng the energy of the Universe {Albrecht and Turok 1989, Allen and Shellard
1980 and Benpett and Bouchet 1990} In the following section we discuss string network

evolution in pmore detail.
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(c) {d)

Figure 5.3: Isocontour plots of the energy density (E = 1) of two critically coupled strings
(o = 1) showing string intercommutation. The initial velocity vg = 0.5 (¢ = 1). The
strings are shown at: (a) t =0, (b) t = 12.5, (¢) ¢ = 15, and (d) ¢ = 17.5. In (a) and (b)
the strings are moving toward each other, whereas (¢} and {d) show the strings exchanging
ends (i.e., intercommutation), and subsequently moving away from each other. Note the
formation of kinks after intercommutation that propagate along the strings.




(c) (d)

Figure 5.4: Isncontour plots of the energy density (£ = 1) of a collapsing string loop
{ac = 1). The loop is shown at: (a) t = 5, (b) t = 7.5, {c) t =15, and (d) ¢t = 17.5. Note
that in (c) and (d) the loop has collapsed to a point and annihilated. The energy density
in (d) appears larger than ¢that in (c), because the collapsed loop radiates energy in the
form of Higgs particies and vector bosons.
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5.4 Numerical simulations of a string network in R3*! spacetime

5.4.1 Friedmann equations

The simulation of a string network must account for the expansion of the Universe and the
evolution of its energy density. We start with the Friedmann-Robertson-Walker (FRW)

metric in a homogeneous isotropic Universe:
v = diag(1, —a® (1), —a*(2), —a* (). (5.41)
The line element is given by
ds® = dt? — a?(t)(dr? + dy? + d2°), (5.42)

where a(t) is the scale factor that dictates the expansion of the Universe. The Einsiein
field equations for a flat (k = 0) spacetime with vanishing cosmological constant (A = 0)
are written as

G = 81T, (5.43)

where G, is the Einstein tensor and T}, is the energy-momentuin tensor. For a perfect

fluid model of the Universce

Ty = (p(2) + p(t)) Up Uy — p(t)gpm (5.44)

where p is the energy density, p is the pressure, and v, is the four-velocity of the co-moving
fluid, with ug = 1 and u; = 0. Utilizing the Einstein field ~quations for a perfect Auid

model, we obtain the Friedmann equations

3— = 8mp, (6.45)
=== = —8np, (5.46)

where a dot denotes differentiation with respect to time. If we assuine aft) ox t* (where n
is a real number), then ¢/a = ni~!, and Eq. (5.45) specifies the evolution of the energy
density of the Universe, i.c.,

xt72. (5.47)

Equatious (5.45) and (5.46) give
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Equation {5.48) governs the evolution of the energy density of the Universe in R3*! space-
time. In the radiation era p = :.',— p, whereas p = 0 in the matter era. Usinrg Eqs. (5.47)
and (5.48), the scale factor (expansion) of the Universe is a(t) o< /2 in the radiation era,

and a(t) x t*/3 in the matter cra.

5.4.2 Kihble's scaling model

Numerical simulations allov. us to determine how fast the energy density of a string network
decreases. Before performing these simulations it is important to understand qualitatively
the behaviour of the string network. /. scaling model due to Kibhle (Kibble 1985) predicts
that the decrease in the energy density of long strings in the network is proportional to
the decrease in the energy density of the Universe.

Cosmic strings are made up of false vacuum energy and in an expanding Universe the
strings are stretched. As a string is stretched, its length increases, however, the energy per
unit length remains constant and the total energy of the string incrcases. It is therefore
expected that the energy deunsity of a string network does not dilute as fast as the matter
density in the Universe. As we have shown in Sec. 5.3, string dynamics are governcd
by intercommutation and loop coilapse, which decrease the energy density of the string
network. To appreciatc how the energy density of the network evolves as the Universe
expands, consider a string segment of fength L in a Hubble volume V = L*. The energy,

E, and energy density, poo = E/V, of the string segment {within V) is given by

E = ulL, (5.49)
P = 13, (5.50)

where g i¢ the mass per uniiv length of the siring. If we assuwe that at a given time ¢,
the string has length Lg, then the expansion of the Universe results in the leugs.is of the

string increasing according to
L el
a{ty)
“where a(t)/a(to) is the expansion factor of the Universe relative to time 1. Using Eqs.

Lo, (5.51)

(5.49) and (5.51), the evolution of total energy of the long string network is governed by
E= EE (5.52)

Equation (5.52) indicates that, unlike the total energy of the Universe, which does not

change during expansion, the total energy of long sirings increases as the Universe expands.
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Without an efficient energy loss mechanism (i.e., intercommutation and loop collapse), the
string network will soon come to dominate the energy of the Universe.

Since there is only one string of length L in a volume V, the separation between strings
is L. The string is expected to travel a distance L in time At before encountering arother
string, so the number of collisions (or intercommutations) is proportional to L~1At. The
nunber of coliisions per volume is L~4At. Every time a long string intersects it loses a
segment of length L, 2nd consequently Joses energy’ pL. The total erergy loss, AEy, in

the time interval At (inside the Hubble volume) is

Bt v =-Ea (5.53)

AE, = 22
BL=-1 L

In the Himit At — 0, Eq. (5.53) gives the energy loss rate Ej, = ~E/L, whence the total

energy loss rate becomes

E=tp-E (5.54)
a L
with energy density
. é; »
foo = =22 poo — 2. (5.55)

Using Eq, {5.55), and assuming a(2) o t", the cvolution equation is

. nkL
L=—
t+

Equation (5.56) can be readily solved using a change of variable. Defining v = Lft, we

obtain the general solution

t
- . [,
L=ct"+ 5T (5.57)

where ¢; is an integration constant, For n < 1 {(e.g.. in the radiation cra 1 = 1/2 and in
the matter era n = 2/3) the lincar term in Eq. (5.57) dominates, and the length scale will
approach the lincar reghme over large time scales. Using only the linear term, the long
string energy density is

L -
poo - A(1 —n_}z%. (5.58)

This indicates that the evolution of the energy density of the long string network is pro-
portional to 72, which is commensurate with the rate at which the energy densi*- of the
Universe decreases. This simple scaling argumend shows that the energy of the Universe

is not dominated by the cosmic string network.

"When a string sell-intersects, intercommutation results in a loop brezking off fromn the string. Since
laops collapse and annihilate, a long string loses energy cvery time self-intersection occurs.
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Although Eq. (5.58) provides a simple model for the energy density of a string network,
we have ignored the subtleties of string dynamics, e.g., the model does not take into
account small scale structure of the string.® Therefore, the scaling medel can ouly provide
a qualitative description of the evolution of a string network. To confirm the scaling
behaviour of long strings, it is necessary to carry out detailed numerical simulations.

Numerical simulations of a string network can be performed by utilizing a field the-
oretic model (e.g., based on the equations of motion (5.29) and (5.30)). However, a full
field simulation is inefficient for long term evolution of the string network and very com-
putationally intensive. Az the uetwork evolves, the string number density decreases, but
a full field simuiation uses the same amount of memory regardless of the evolution stage.
A more efficient approach is to exploit the Nambu-Goto action, which describes the dy-
namics of relativistic strings {Goddard et al. 1973), This approach is commonly adopted
in the litrrature (see e.g., Albrecht and Turok 1989, Allen and Shellard 1990 and Bennett
and Bouchet 1990),

5.4.3 Dynamics of relativistic strings

The Nambu-Goto action for a string is given by

§= —,u/dA, (5.59)

where A is the area of the world-sheet swept out by the string and g is the string tension.
For simplicity we assume the string network evolves ip an isotropic and homogeneous
Universe, so that the iine element is given by Eq. (5.42). The equations of motion of the

string are parameterized by conformal coordinates, defined by
dr = a di, (5.60)
where 7 is the conformal time. The line element in conformal coordinates is
ds? = a*(r)(dr? — da? - dy? — d2?). (5.61)

Variation of the Nambu-Goto action yields the evolution equations of the string

AN :

%+2h(1 —%%)x = ¢! (’i\ (5.62) ;

€ ) ;

#Small scale structure includes kinks in the string smaller than the horizon (see Fig. 5.2). These¢ small 4

scale structures frequently self-intersect and hreak off from the string. This results in a significant. increase 3

in the intercommutation rate, which may result in the energy demsity of the string network decreasing
faster than predicted by Kibbles scaling model.

ST P A
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1.
I
|

¥

&

¥

(5.63)
x? 1/2
¢ = (1_—F) : (564)

where a dash denotes differentiation with respect to the spaiial parameter along the string
o, a dot derotes differentiation with respect to conformal time 7, the 3-vector x = x(7,0),

¢ is the energy per unit ¢, and A is Hubble's constant defined as

h= (5.65)

o e

The dynamics of the string are described by Eq. (5.62), whereas Eq. (5.63) determines the
evolution of the energy density of the string (1.e., the energy per unit ¢). In this formalism
do is the separation between points on the string in parameter space 7, rather than the
separation, di, in physical space. There is a simple relationship between the two. If the

string segment is stationary (x = 0), Eq. (5.64) relates do to dl, i.e.,
di
€= EE, (0.66)

where d! = |dx|.

Equations {5.62) and (5.63) are non-linear and the evolution of a cosmic string net-
work can only be determined from numerical simulations. In non-expanding (Minkowski)
spacetime, Hubble’s constant vanishes, and initially we can set dl cqual to do, so that
¢ = 1. In the conformnal gauge the equations of motion of the string are written in terms

of the 3-vector, x = x(t,!) (see e.g., Vilenkin and Shellard 1994}. These equations have

the form
X-x" = 0 (5.67)
x-x = 0 (5.68)
X +x? = 1. (5.69)

The constraint equation (5.68) means that x is always perpendicular to x’, where x is the

velocity of the string and x’ is proportional to the tangent vector, dx/dl, along the siring,

, _dx d

x-—d—1$

5.76)

The equation of motion {5.67) shows that the string acceleration is proportional to the

local curvatuie of the string. The direction of X is such that a curved string tends to
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straighten. In doing so it develops a velocity and begins to oscillate. In an expanding
Universe these oscillations are damped due a2 velocity term (see Eq. (5.62)).

We now consider numerical simulations of a string network in expanding spacetime.
Although simulations can be performed by discretising Eqs. (5.62) and (5.63) using a
leap-frog method, this technique is prone to numerical instabilities. A better approach is
to introduce left movers, 1, and right movers, r, defined as (Bennett and Bouchet 1990

and Albrecht and Turok 1989)

1 = :‘:+"?, (5.71)
!
r = 5;—"?. (5.72)

The equations of motion of the string are now written in the form

I = A[Q-e)N—r1], (5.73)
¥ = A[(l-r)r-1j, (5.74)
é = —he(l-T+1), (5.75)

with the constraint 12 = r? = 1. Equaticus {5.73) - (5.75) arise when we evolve the left
mover, 1, on the characteristic curve ¢ — A7 /e {where A7 is the conformal time step), and
the right mover, r, on ¢ + At/e (see Appendix A). The evolution of the left and right

movers on their characteristic curves proceeds according 1o

o —Arfe,7+ Ar) = lfo,7)+ A'ri(cr, T) (5.76)

ro+Arfe,t+ A7) = r{o,7)+ ATi{o,7), (5.77)

where | has moved to the “left” by an amount A7t/e, and r has moved to the “right” by
an amount At/e.

The initial condition of the Nambu-Goto action is diflferent from the initial condition
used in a field theoretic simulation. This is because the Namnbu-Goto action describes the
string as a structureless one-dimensional object. To generate the initial condition for the

Nambu-Goto action we exploit a method proposed by Vachaspati and Vilenkin (1984).

5.4.4 Vachaspati-Vilenkin initial condition

To emulate the Kibble mechanism, the Vachaspati-Vilenkin (VV) method divides space

into unit cells whose lattice spacing is equal to the coherence length (i.e., £ = 1), Periodic
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Figure 5.5: As we move around the face of the unit cell in real space {schematic on left),
the Higgs field describes a trajectory in phase space {right). (a) A string segment pierces
the face if the trajectory has non-trivial phase winding. (b) No string pierces the face if
the trajectory has a trivial phase winding (adapted from Vachaspati and Vilenkin 1984).

boundary conditiens are assumed. A discrete phase {i.e., 0, 2n/3 or 47/3) is randomly
assigned to each lattice point (unit cell)., These phases are denoted by 0, 1 and 2, respec-
tively. We step through the faces of each unit cell and determine whether a string enters
the cell. This occurs if any of the six faces of the cell are pierced by a string scgment, i.e.,
if the phase winding on the four edges is non trivial (see Fig. 5.5). Numerical simulations
show that the probability that no string enters a cell is 0.23; the probability that one
string enters a cell is 0.66, and the probability that two strings enter a cell is 0.11

Figure 5.6 shows a typical Vachaspati- Vienkin initial condition, with spatial step .. =
1. One of the features of the VV initia} condition is ihat, due to connections between
unit cells, the network is dominated by 90° kinks.® These kink “artifacls” are smoothed
by utilizing a suitable interpolation scheme. Figure 5.7 shows the VV initial condition

obtained from Fig. 5.6 by applying a cubic spline interpolation. Comparing Fig. 5.7 with

When one face of a unit.u:,:'i is pierced by a string, the probability that it pierces the opposite face
is 1/5, while the probability that it pierces the orthogonal faces is 4/56. The initial string network is
dominated by 90° kinks.
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Figure 5.6: Ir.itial condition for a string network generated using the Vachaspati-Vilenkin
method. The initial cordition resembles a random walk with the network dominated by
90° kinks.

5.6 we see that the kinks are smoothed significantly.

Figure 5.8 shows a logarithmic plot of the string number density versus string length.
This shows that, at formation, there are more short strings {loops) thar long strings.'®
Since small loops quickly collapse and annihilate (see Sec. 5.3), it is expected that long

strings will dominate the evolution of the stiing network.

5.4.5 String network evolution

To evolve a string network using the Nambu-Goto zction, detailed siring interactions must
be accurately reproduced. This is achieved by manually implementing string intercom-
mutation and removing loops when they collapse. The evolution of Nambu-Goto loops is
diffrrent from abelian cosmic string loops (see Fig. 5.4). The former do not annihilate

and disappear from the network, but collapse and re-expand in a series of oscillations (see

%Strings are classified as long or short {i.e., loops) according to whether they are larger or smaller than
the horizon (Hubble distance), which is the inverse of Hubble's cunstant (sce Eq. (5.65)).




Figure 5.7: The initial condition in Fig. 5.6 after cubic spline interpolation, which smooths
the 90° kinks.

e.g., Vilenkin and Shellard 1994). To account for the collapse and annihilation of cosmic

string loops, the numerical scheme removes the Nambu-Goto loops when the number of

points that are used to represent a loop is less than a cut-off.!! Numerical simulations

show that a loop is not evolved accurately when fewer than 16 points are used (Allen and
Shellard 1990); therefore we adopt a minimum of 16 points as the cut-off.
Intercommutation has been implemented by detecting if two string segments cross each
other, in which case we exchange ends. To detect string crossings we divide space (i.e.,
the simulation volume) into cells.}? A list of all points in a cell is then constructed. Each
string segment is checked for crossing with all other segments in the same cell and its 26
nearest-neighbor cells. Two string segments cross each other if the scalar triple product

(a x b} - ¢ changes sign in a given time step (sece e.g., Bennett and Bouchet (1990) and

UStrings and loops are represented in terms of points. The cut-off here refers to the smaliest number of
points that make up the loop. Loops are removed from the network when the number of points is smaller

than the cut-off.
12 . . . . . . ] .
In order not to miss detecting string crossings when the strings move at relativistic speeds, the cell is
chosen to have a size larger than the conformal time step A7,
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Figure 5.8: Logarithmic plot of string number density versus string length for a typical
VV initial condition. As the string length increases, the number density decreases ex-

ponentially. Although there is a large number of short strings (loops) compared to the
number of long strings, most segments in the network are associated with long strings.

Allen and Shellard 1990}); here a denotes the separation vector of the two ends of a string
segment, b is the separation vector of the two ends of the other segment, and ¢ is the
separation vector from the center of one string segment to the center of the other segment.
In addition, Albrecht and Turok (1989) transform one string segment into the Galilean
rest frame of the other segment and check if any part of the string segment intersects the
world-sheet of the other segment. While these methods are easy to implement in R3+1
spacetime, it is not obvious how to generalize them to R**!. Since our main aim is to
simulate a string network in 44 1 dimensions, we have chosen to implement an alternative
method for detecting string crossings.

This method is illustrated in Fig. 5.9. The points Fy, Py, P, P, Py, and P; denote the
ends of the string segments at two conformal times (1o and 71). Each point is specified by a

vector with three components. For example, the vector to point P has components P*, PY

and P*. To detect if two string segments, S1 and 52, cross each other in a conformal

time step, we transform 51 to the Galilean rest frame of 5§2. In a given conformal time
step (AT = 11 — 79}, S1 will sweep out a plane and S2 will be a line segment (see Fig.

5.9). Crossing of S§1 and S2 occurs if the plane containing 51 intersects the line §2 (at
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Figure 5.9: Crossing detection method used in the R3+1 simulations. Here Sl and S1.
are segments of a string at two diflerent conformal times, 7 and 7y. The siring segment
S1 is in the Galilean rest frame of the other string segment {denoted by S2). Here u
parameterizes the string segment PoP;, while v parameterizes the line segment Py P;, and
s parameterizes the string segment Py;P;. The string segment S1 (in the rest frame of
52) sweeps out a plane (world-sheet) that intersects the line segment S2 at point P. This
point can be found by solving three linear equations as discussed in the text.

a point). The intersection point is anywhere inside the plane containing S1 and along
the line segment 52. The plane containing S1 is parameterized by v and v, with any
point on the plane determined by Py + u{P, — Fp) + v(P; — P}, where u and » are real-
valued parameters. The line segment §2 is parameterized by s, with any point on the line
determined by Py +s(P;— P;). In general, the intersection point P (see Fig. 5.9), between
an infinite plane containing S1 and au infinitely long line 52, can be obtained from the

solution to three linear equations
Py +u(P{~ P}) +v(P}~ P§) = P{+s(P{ — P}), (i==,9,2),  (5.78)

where the two string segments (S1 and 52) intersect in a given conformal time step if
0 < u,v,8 < 1. This method is easily generalized to R+ since it only involves solving
linear equations.

When two string segments cross, intercommutation is implemented by exchanging the
ends of the strings. This is done by redirecting pointers along the string. Following inter-

commutation, the equations of motion (5.73), (5.74) and (5.75) are no longer satisfied for
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the two string segments that bave exchanged ends. Numerous methods have been reported
in the literature to resolve this problem. For example, Bennett and Bouchet {1990) invuke
a numerical diffusion scheme. From Eq. (5.64) we note that the guantity x* + (x'/¢)?
is conserved for any string segment. The numerical diffusion scheme involves smoothing
points where x° + (x'/¢)? is 5% larger than unity. In our numerical simulations, whenever
two string segments exchange ends, we re-parameterize the string by recalculating the left
and right movers using Eqs. (5.71) and (5.72). The quantities ¢ and Ag are preserved, so
that the network satisfies the Courant-Friedrichs-Lewy (CFL) condition (A+ < ¢As) for
long term evolution (seec Appendix A). Since A7 is kept constant throughout the simula-

tion, to satisfy the definition of ¢ in Eq. (5.64) we must modify the velocity of each string

segment according to

. x2\ 12 4

x = (1 - —?—) Pt (5.79)
where X is the original velocity of the string before intercommutation. The modification
of the velocity during intercommutation does not change the velocity distribution of the
string network. We have tested our simulation code in both the radiation and matter eras.
The scaling solution and root mean squared velocity, Xyms, of the string network are in
good agreement with results based on alternative approaches reported in the literature
(see e.g., Bennett and Bouchet 1990, Allen and Shellard 1990 and Albrecht and Turok
1989).

When the VV initial condition is generated, each point along the string is separated
from another point by a distance Al = £ = 1. An interpolation scheme is implemented
to increase the resolution of each string segment.!® The initial string number density can
be changed by varying the coherence length, £, of the string network. For example, the
initial condition with £ = 0.5 has a string number density eight times that of £ = 1.1
Once the initial string network has been obtained, we initialize the left and right movers
using Eqgs. (5.71) and (5.72). By assuming a stationary initial condition (in which strings
in the network are initially at rest), Ao can be replaced by Al by setting ¢ = 1 (see

Eq. (5.64)). As the string network evolves, the left and right movers are defined on the

3 Two points on a string segment (in the VV initial condition) are separated by a distance Al = 1. To
increase the resolution to Al =< 0.1, nine more points are added in-between the original points. The positions
of the new points are obtained by a cubic spline interpolation, or more simply by linear interpolation. As
noted previously cubic spline interpolation smooths 90° kinks on the string, however, it is hard to make Al
exactly equal 0.1 for all points along the string. For this reason it is expedient to use linear interpolation.

1To obtain the initial condition (with coherence length €} for a simulation of size L, we first generate
the VV initial condition with size L' and then scale according to L' — L = ¢L'.
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characteristic curves ¢ + Ar/e. After Ar the the left mover has moved to o —~ A7/e, and
the right mover to ¢ + A7 /¢ (see Fig. A.1). To find 1 and r at o, a linear interpolation

scheme is implemented.’® The left and right movers are re-scaled to satisfy the constraint

I = r? = 1. The encrgy deusity, ¢, is determined using Eq. (5.75), with periodic boundary

conditions imposed on the string network.
The energy density of the Universe evolves according to p o ¢~2, which implies that

? is a constant quantity. The energy density of a long string network (within the Hubble

pt
volume V') is given by

= 2
Poo = 37 . edo (5.80)

If a string network possesses a scaling solution (as predicied by Kibble’s scaling model),
then the quantity peot?/p will not change with time (in the scaling regime). If pot?/u
is much larger than the scaling solution, high intercommutation rates guarantee that it
decreases toward the scaling solution. Similarly, if peot?/p is smaller than the scaling
sojution it will increase. Since the string network energy density depends on the initial
coherence length, £, the evolution of psot?/ it can be explored by changing £. Alternatively,
since ¢ is defined in terms of 7, the initial value of pot?/i can be determined from the
initial conformal time, 7;. The scaling behaviour of the string network is investigated for
various expansion factors, X, where
- alt)
a(ts) )

In the radiation era X = 7/7;, since a(t) o t1/2 o« 7.

(5.81)

A typical cosmic string network simulation (in the radiation era) is shown in Fig.
5.10. The size of the simulation is 103, with £ = 0.5, Ag = 0.025 and A7 = 0.005,
where A7 < eAc guarantees numerical stability (see Appendix A). The simulation was
run for 4000 conformal time steps. The size and duration of the simulation guarantees
that periodic boundary conditions do not affect the scaling behaviour of the network.
Figure 5.10 shows a visualization volume!® of size 5%. Figure 5.10 (a) displays the VV
initial condition using cubic spline interpolation. Figures 5.10 (a) and (b) show that a

significant number of strings disappear (due to intercommutation and loop collapse) when

®Interpolation can be performed along the great circle in R**!, however, it is not obvious how to
generalize this procedure to R**!. A simpler method is to utilize linear interpolation and re-scaling.

18Gince the string number density depends on the initial coherence length £, the size of the visualization
volume also depends on £&. With ¢ = 0.5 and Ao = 0.025, the visualization volume 5° is equivalent to a
full ficld theory simulation with lattice size (5/0.025¢)% = 400°.




Figure 5.10: String network evolved for 4000 conformal time steps in the radiation era.
(a) X =1 (the VV initial condition uses a cubic spline interpolation), (b) X = 1.2, (c)
X =24, (d) X = 3.6, (¢) X =48, and (f) X = 6. Dilution of the string network results
in it exhibiting scaling behaviour.
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Figure 5.11: Scaling behaviour of long strings for various initial values of pyot?/u, with
£ =05 and 2 £ 7; £ 5. For a network with Poct?/ i < 15, the solution increases toward 15
as the network evolves, whereas for pyt%/u > 15 the solution decreases toward 15. This
implies the existence of a scaling solution for the network (poot?/st = 15), in which strings
do not dominate the energy of the Universe (see text).

the expansion factor is 1.2. Long sirings fragment into small loops, as can be seen in Figs.
5.10 {c) - {I). Figures 5.10 (e) and (f) show that when the expansion factors are 4.8 and
6, the rate of dilution of long strings is such that there are only a few left at the end of
the simulation. The rate of dilution of these long strings gives rise to a scaling solution
for the string network (see Fig. 5.11).

Figure 5.11 shows the scaling behaviour of a long string network for four initial values
of t2peo /1, which were obtained with different values of the initial conformal time, 7. It
is evident that there is a scaling solution!? 2po, [yt = 154 3. If the initial value of 2 pq, st
is much higher (lower) than 15 it will decrease (increase), cventually approaching 15. The
value of 15 is consistent with results reported in the literature (see Albrecht and Turok
1985, Bennett and Bouchet 1988, Allen and Sheilard 1990 and Bennett and Bouchet
1990). Our analysis gives us confidence in the linear interpolation scheme and string

crossing detection method. This is a critical test, since we will extend the methodology

"The exact scaling value is not important. However, measurements of the anisotropy of the Cosmic
Microwave Background Radiation (CMBR) from the Cosmic Background Explorer (COBE), and theories
of large scale structure formation constrain i = 1.5+ 0.5 x 107°¢*/G v, where c is the speed of light and
Gw is the Newtonian gravitational constant (sce e.g., Bennett et al. 1992 and Allen et ol. 1996).




to numerical simulations of a string network in R4*! (see Sec. 5.5).

Various other statistical quantities, such as the mean squared velocity

(5.82)

are readily determined from the numerical simulations, and these are also consistent with

the literature values (Allen and Shellard 1990 and Bennett and Bouchet 1990). Our
simulations show that most strings have a velocity in the range 0.40 t0 0.95 {c = 1). Such
highly relativistic strings increase the rate of string crossing (intercommuiation) and loop
collapse.

A relativistic string network in the early Universe would quickly evolve toward a scaling
regime. However, the scaling behaviour of the long string network is expected to depend
on the number of spacetime dimensions. In the remainder of this chapter we examine the

evolution of a string network in R1*! spacetime.

5.5 Numerical simulations of a string network in R**! spacetime

To understand the evolution of a string network in 4 + 1 dimensions, we examine the
Fricdmann equations in R*+1. The Kibble scaling model is extended to investigate the
evolution of long strings in R4*!; detailed numerical simulations are carried out to eluci-

date the behaviour of the string network.

5.5.1 Friedmann equations in R**! spacetime

To derive the Friedmann equations in RI*+!, consider the metric line element in 4 + 1
dimensions. Introducing a scale factor, a,(t), which governs the expansion of the extra

w-dimension, and utilizing the generalized FRW metric,
guv = diag(1, —a*(2), —a*(2), —a*(t), —ay, (1)), (5.83)
we write the line element in R*! as
ds? = df? — a®(t)(dz? + dy? + dz?) — o2 (t)dw?. (5.84)

Using a perfect fluid model of the Universe, the Einstein ficld equations lead to the gen-
eralized Friedmann equations:

3d(c'mw + ady)

p = 8mp, (5.85)




a®ay + 2080y, + alady, + 24d,)
a?a,,

—8mp, (5.86)

. 2 a
a‘ 4 aa
3 = —8np, (5.87)

where p is the energy density of the Universe and p is the pressure. For the case of a

non-expanding extra spatial dimension (a,, = 1), the evolution of the energy density is

determined by

p+3>(p+p) = 0, (5.88)

,6+2§ (p+20) = C (5.89)

The energy density of the Universe in Ri+! is governed by the same equation as in R3+1.
However, the existence of a flat extra dimension results in an additional constraint equation
(5.89). Equations (5.88) and (5.89) can be satisfied if and only if the pressure equals the
energy density (p = p), unless the Universe is empty, in which case the pressure and
density adopt trivial values, p = p = 0. For a non empty Universe these equations do not
satisfy the equation of state in the radiation era!® (p = p/4), and p = 0 in the matter
era. We therefore conclude that the Einstein field equations do not allow a non-expanding
extra dimension.

Consider the case where the extra dimension expands at a different rate to the other
three dimensions. If we assume that the extra dimension expands as a,,(t) oc £™, and the

other three dimensions expand according to a(t) o £* (where m and n are real numbers),

then Eqgs. (5.86) and (5.87) give
-3 +2nm+m?+n—-m=0. (5.90)

Equation (5.90) has two solutions n = m and n = §(1—m). In the radiation era (p = p/4)
Egs. (5.85) and (5.87) require that m = 4 — 9n. To satisfy thesc equations we require
m = xn. Likewise in the matter era (p = 0} we also obtain m = £n. Therefore in both
the radiation and matter eras, the extra dimmension either expands at the same rate as the
other three spatial dimensions, or contracts at the same rate as these dimensions. This
suggests two possible expansion scenarios for the Universe. In the first scenario the #xtra

dimension expands at the same rate as the other three spatial dimensions. In the second

856 Appendix C for a detailed discussion of the relationship between pressure and density in R*
spacetime.
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scenario the Universe expands at the same rate initially, however, the expansion slows
down and eventually stops. At a later time the three spatial dimensions re-expand and
the extra dimension contracts. This latter scenario requires fine tuning of the expansion
rate, and demands non-vapishing vacuum energy, or a cosmological constant term (see
e.g., Carroll 2001). In what follows we assume the first scenario.

When the expansion rate of the extra dimension is identical to the other three dimen-

sions (a4 (t) = a(t)), the Friedmann equations reduce to

L\ 2
a
ay® 91
6 (a) 87p, (5.91)
02 a
3T o s, (5.92)
a

for which the evolution equation for the energy density is
p+42(p+p) =0, (5.93)

Using a o< t*, Eq. (5.91) gives p o< t~2. In the radiation era (p = p/4) the evolution of the
energy density is determined by
p+ 5-3 p=0. (5.94)

The solution to Eq. (5.94) is of the form p ox =%, which gives a o #%/%. In the matter era
(p = 0) we have

p+azp=0. (5.95)

Equation (5.95) has a solution of the form p « a4, which results in a o t1/2.

A string network in R1*! has a scaling solution if its energy density also evolves as
Poo & t72. Qur investigations of the scaling behaviour of a string network in 7R3+, show
that the qualitative scaling behaviour of the network can be obtained from Kibble’s scaling

model. In Sec. 5.5.2 we extend the scaling model to RI*1.

5.5.2 Kibble’s scaling model in R**! spacetime

In expanding spacetime the energy of a string network is £ = au [edo. Differentiating E
with respect to t, and using € = —2§ev2 (where a dot denotes differentiation with respect
to t and v = dx/d7 = adx/dt), we obtain an expression for the evolution of the energy of

the string network:

E= 23(1 ~a(v?)). (5.96)
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To incorporate intercommutation and loop collapse, consider a siring of length L in a

four-dimensional volume, V' = L% In R**! a string is expected to move 2 distance L2
before encountering another string. The collision (intersection) probability in time At is
— L5A:. Every time the string intersects it loses energy pL. The energy loss, AFy, in a
time interval At and volume V is

At

In the limit At — 0, the energy loss rate is E‘L = uV L5, so that net energy loss rate of

3
the string network is given by "
4

E= EE(I —2(v%)) - 5 (5.98) {

The energy and cnergy density in R are
E

Poo

Consequently, the length of a string changes according to

, 2 L 1
L=n(l+ 5("2))“{ + 37 (5.101)

Equation {5.101) can be solved with a change of variable u = L2?/t, in which case the

differential equation (5.101) is separable. The general solution to Eq. {(5.101) is given by

L2 = ¢34 oot (5.102)

where ¢ is an integration constant and ¢; is defined by

2
T 3 - 6n—4n{v?)’

e (5.103)

where (v?) is constant in the matter and radiation eras. Since the velocity of a string
segment can range from zero to almost unity, it is assumed that on average the velocity
of each string segment is [v| ~ 1/2 (or (v?) ~ 1/4). Using n = 2/5 for the radiation era,
Eq. {6.102) implies that intercommuiation dominates in the long term evolution of the
network, i.e., L? « . Since po, o L7%, the evolution of the energy density of a string
network in R+ is

Poo(t) oc 1715, (5.104)
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To see how string intercommutation in R+ affects the evolution of the energy density of
long strings, consider the case where there is no string intercommutation. In this situation
Eq. (5.102) gives L?  t'4/!5, Consequently, the energy density of the long string network

in R4t dilutes as

Poo(t) oc t™14, (5.105)

Comparing Eq. (5.104) with Eq. (5.105) we see that string intercommutation does not
play a significant role in determining the evolution of the energy density of long strings
in R4*1. Furthermore, Eq. (5.104) suggests that a string network in R**?! does not have
a scaling solution, and consequently the evolution of strings in 4 + 1 dimensions does not
provide a mechanism for resolving the monopole problem in R3*! spacetime.

QOur simple model of long string evolution is based on various assumptions. In par-
ticular, the model does not take into account detailed string dynamics or the small scale
structure of the sirings. To describe accurately string network evolution in R4*1, it is nec-
essary to perform detailed numerical simulations, where these assumptions can be relaxed.

We start with the Vachasnpati-Vilenkin initial condition in R4*!.

5.5.3 Extended Vachaspati-Vilenkin initial condition

The metaod of generating the initial condition for a string network in four-dimensional
{4D) space is similar to the {echnigue used in three dimensions. To proceed we label the
4D space in terms of the spatial coordinates (z,y, z,w). Three-dimensional space can be
thought of as three orthogonal planes: [z,y], [#,2], and [y,z]. Analogously the 4D space
is constructed from four orthogonal three-dimensional volumes: [w, z,y), [z, v, 2], [%, 2, )],
and [z, w, z). We divide the three-dimensional volumes into unit cells of size £ = 1, where £
is the coherence length of the Higgs field. The total size of each three-dimensional volume
is specified by N§€, where N is the number of divisions. Each unit cell has six faces in
three dimensions, whereas the total number of faces in 4D is 24. We assign each corner
of the unit cell a random phase denoted by 0, 1 or 2, and determine if a string segment
pierces any of the 24 faces. By stepping through all unit cells, we generate a stzing network
configuration in the form of a random walk in four spatial dimensions.

Four-dimensional space can be considered as being constructed from four orthogonal
three-dimensional spaces, hence each 4D unit cell can contain up to eight string segments.

The probability of a string segment entering a cell in 4D is shown in Fig. 5.12. The
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Figure 5.12: Probability of a string segment entering a arit cell in 4D. Up to eight string

segments can enter a cell, however, for a cell containing strings the probability is highest
for three or four strings.

probability that no string segment enters a cell is similar i its ~»*«e in three dimensions,
however, there is a high probability that three or four strin. ---;ments enter a cell (sce
Fig. 5.12). This is in contrast to the 3D case, where most cells contain only one string
segment.,

Figures 5.13 and 5.14 show typical three-dimensional plots of the VV initial condition
at w = 0 and w = 0.1, respectively. Four-dimensional space is divided into unit cells, and
strings are aligned along integer values of z,y,7 and w. Therefore strings are observed
when a slice through the string netwerk is plotted at w = 0 (sece Fig. 5.13). A slice
through the string network at non integer values of w (e.g., w = 0.1), shows points which
are interpreted as monopoles in our model. Monopoles in three dimensions are strings in
4D, which are oriented along the direction erthogonal to the w-axis.

Figure 5.15 shows a logarithmic plot of the string number density versus string length
for a typical 4D VYV initial condition. The figure shows that, as the string length increases,
the number density decreases exponentially. This indicates that there are more short
strings than long strings. Since short strings are primarily associated with loops, this
means there are significantly more loops than long stri: gs, however, the network is still

dominated by long strings. As was evident in the VV initial condition in three dimensions,
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Figure 5.13: Three-dimensional slice (at w = 0) of the VV initial condition. The slice
is through the center of the 4D cells and shows string segments. Many string segments
have branches, since up to eight segments can enter a cell. Strings that are criented in a
direction orthogonal to (and intersect at) w = 0 are points in R31! (see Fig. 5.14).

Figure 5.14: Three-dimensional slice (at w = 0.1) of the V'V initial condition showing that
strings in R471 can be interpreted as monopoles in R3+1.
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Figure 5.15: Logarithmic plot of the string number density versus string length for a
typical 4D VV initial condition. This shows that there are more short strings (loops)
than long strings, however, most string segr..ents in the network are associated with long
strings.

most string segments in a network are associated with long strings. It is expected that

the evolution of the string network in R**! is also dominated by long strings.
g &

5.5.4 String network evolution in R**! spacetime

The scale factor, a(t), evolves differently in R4*! than in R3+!, however, Hubble’s constant
remains unchanged (i.e., b = afa o £~'). This implies that the equations of motion for
strings in R1*! are the same as those in R3+! (see e.g., Egs. (5.73), (5.74) and (5.75)).
Evolving a string network in R4*! involves solving for the left movers, 1, and right movers,
r, ua their characteristic curves, o + A7/e (see Sec. 5.4). To find 1 and r along o, it is
necessary t0 exploit an interpolation scheme. The constraint 12 = r? =1 is also valid in

R+ To see this consider the defining relationship for 1:

2
?=x%+2% x' + = (5.106)
where x = (z,7, 2,w). Since x'2/e? = 1 ~%* (sce Eq. (5.64)) and x - x’ = 0, Eq. (5.106)
gives 12 = 1, independent of the number of spatial dimensions. Likewise the constraint
r? = 1 is independent of the number of spatial dimensions. Our numerical simulations use

linear interpolation and re-scaling to satisfy the constraint P=r*=1.
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% Figure 5.16: Crossi:\g detection method used in the (4 + 1)-dimensional simulations. 51,9
and S1;; are scgments of a string (S1) at two different conformal times, 79 and 71; $2,¢
and §2,, _are segments of a string (52) at 79 and 7). Here w parameterizes the string
segment PyP;, while v parameterizes the line segment PyP;; s parameterizes the string .
segment P P;, while ¢ parameterizes the line segment P3i%. S1 and $2 both sweep out ;
planes (world-sheets) that intersect at a point P (in R%+!). This point can be found by
solving four linear equations (see text).

At = SN e = LR I 7

As strings evolve they intercommute, which is modeled by detecting if two string
segments cross. The crossing detection method in R4*! is an extension of the scheme

used in R3*! (see Sec, 5.4.5). Figure 5.16 shows the method used to detect if two string

B3 PR ok A 8 P o L2

segments, 51 and 52, cross in a given conformal time step A7 = 7 — 15. The ends of
the string segments at two conformal times are denoted by Py, P, P, P3, Py, P5 and Ps.
In R**! spacetime each point (P, Py, Py, P, P3, Py, Ps and Pg) is specified by a vector
with four components. For example, the vector to point P has components P*, PY, P?
and P¥. In a given conformal time step, the string segments §1 and S2 sweep out two
planes {world-sheets). The plane containing S1 is parameterized by u and v. The plane
containing S2 is parameterized by s and e. Tle crossing detection method checks if the
two planes intersect in R1*1. The intersection point, P, between two planes containing

51 and S2 is obtained from the solution to four linear equations (cp. Eq. (5.78)):
P§ +u(P} = P§) +v(P} — P§) = Pi + (P} - P{) + e(Ps - Pi), (i = x,y,2,w), (5.107)

where the two string seginents intersect in a given conformal time step if 0 < u,v,5,e < 1.
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For two non-parallel planes there is a unique solution for the parameters v,u,s and e,
which implies that, in 4 + 1 dimensions, the two planes intersect at a point. Once two
string segments cross, intercommutation is implemented by exchanging the ends of the
strings.

Numerical simulations were conducted to study the scaling behaviour of a string net-
work in RY*! spacetime. It is found that string intersections in R!*! are rare (and
therefore the intercommutation rate is very low) compared to R3+!. To fully investigate
the effect of intercommutation on the scaling behaviour of long strings in R+ requires nu-
merical simulations to be conducted at a much higher encrgy density than in ®R3+!. This
also necessitates a much higher string number density. Consequently, a siring network
simulation in 4 4 1 dimensions has to be performed with a smaller value of the coherence
length, €. Numerical simulations show that a s:{iciently high string number density can
be obtained with £ = [0.1,0.2]. We have performed numerical simulations with Ao = 0.03,
which is comparable'® to a full field theory simulation of size 40%. For simplicity we fix
the initial conformal time 7; = 1, for which the expansion factor X = a(7)/a{%) = a(r).
Furthermore, to guarantee that the numerical simulation is stable, the conformal time step
(AT = 0.0025) has been chosen to be much smaller than Ao. Since the CFL condition for
the stability of the sumerical scheme requires eAc > At (see Appendix A}, the evolution
of the energy density obeys the constraint € > Ar/Ac. According to Eq. (5.63) the

fastest rate of decay of the energy density is é = —2he. In the radiation era (b = 2/37),

e(r) = (1)_4!3. (5.108)

T

the energy Jensity evolves as

To ensure stability of the numerical simulation, the string network can only be evolved to
<10 (with ; = 1 and A7 = 0.0025). Since the expansion factor of the Universe is given
by a{r)/a(r;) = (7/7:)%/3, our simulations are implemented for X < 4.5. The behaviour of
the string network in R*+! indicates that an expansion factor of 4.5 is sufficient to study
and quantify the scaling behaviour of the string network.

A typical string network simulation (in the radiation era} is plotted in Fig. 5.17.

This shows the evolution of strings (one-dimensional objects in R***) and monopoles

" The size of the string network depends on the coherence length £, which determines the string number
density, and Ag, which determines the spatial resolution of the string.
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Figure 5.17: Evolution of a typical string network in R%*! (in the radiation era). (a) and
3 {c) are plots at the beginning of the simulation; (b) and (d) show the network at the end

of the simulation, after the Universe has expanded by a factor of 4.5. In (a) and (b) the
string network is plotted for w in the range [~0.2,0.2]. (c) and (d) are plots of a slice
through the network showing the evolution of monopoles. Intercommutation is rare in
R+ and evolution of the network shows no significant dilution of strings.
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Figure 5.18: Evolution of the energy density (in the radiation era) of a string network
in R (€ = 0.12,0.14, and 0.18). Note that a smaller value of £ gives a larger energy
deasity, These curves show little structure because intercommutation is rare in R**!, Al
curves approach a constant value, with the energy deusity of the string network evolving
as ¢-15,

(zero-dimensional objects in R3¥1). To visnalize strings, we plot the network with a non-

vanishing thickness in the w dimension, i.e., for w = {-0.2,0.2]. Figure 5.17 (a) shows

the string network in R*+! at the beginning of the simulation, and Fig. 5.17 (b) shows

the network at the conclusion of the simulation. Comparing Figs. 5.17 (a) and (b) we see
no sign of dilution in the number of strings in the visualization volume. This indicates
that in R4+! (unlike R31t!) string crossings are rare. Figures 5.17 (c) and (d) show a
slice through the 4D string nictwork. Since a slice of the 4D space is a three-dimensional
volume, Figs. 5.17 (¢} and ( {; show the evolution of monopoles in R3+1, Comparing Fig.
5.17 (c) with Fig. 5.17 (d), we see that some of the monopoles disappear. This indicates
that although intercommutation is rare in R*+!, some monopoles are indeed removed from
the network via string intercommutation. This may affect the long term evolution of the
energy density of the monopoles. However, since intercommutation is rare in R*+1, the
decrease in the encrgy density of a string network in R4*! is expected to be slower than
for a string network in R**+!. The behaviour of the string network in R*+! is characterized
by plotting t™ps/p as a function of time, where m is 2 real (sceling) parameter (sce e.g.,

Fig. 5.18). A value m = 2 implies that the energy density of the string network dilutes in
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proportion to the energy density of the Universe. However, for m < 2 the energy density
of the network dilutes more slowly than the energy density of the Universe.

The bebaviour of the string network has also been explored by varying the coherence
length, £, of the network. Figure 5.18 shows the behaviour of peot™/ (m = 1.5) for the
range 0.12 £ £ <0.18. Fort 2 13, the top curve (£ = 0.12} decreases slightly as a function
of t, whereas the bottom curve ({ = 0.18) increases slightly. This is consistent with the
energy density of a string network evolving as py, o t~1°, which is in accord with Kibble’s
scaling model (see Sec. 5.5.2). Our numerical simulations in R4+! give us confidence in
the validity of the analytical results based on Kibble’s scaling model. If we adopt the form
Poo  £71°, the evolution of the energy density of the string network in R*+! is specified
by

poo(t) = psty®t™15, (5.109)

where ts is the time at formation (or when the phase transition occurred), and p; is the
string network energy density at ¢;. The evolution of the energy density of the Universe,
P, is given by

p(t) = pytst=2, (5.110)
where pg is the energy density of the Universe at the time of the phase transition. Equa-
tions (5.109) and (5.110) indicate that the ratio of the energy density of string network to
the energy density of the Universe evolves according to

Poo _ Psy-05y05, (5.111)

o P
From Eq. (5.111) we obtain peo/p  t1/2, which indicates that the energy density of the
string network in R4+! increases with respect to the energy density of the Universe. This

is in marked contrast to the evolution of a string network in R3+1. We conclude that a

e T e P e N T c

string network in R**! spacetime does not exhibit scaling behaviour.

The absence of a scaling solution for strings in R**+! appears to rule out an extra
spatial dimension as a way of resolving the monopole problem. However, an interesting
situation arises if the extra dimension is smaller than the other spatial dimensions. In

what follows we consider the evolution oi a string network in a compactified dimension.’

2y Sec. 5.5.1 we showed that the generalized Friedmann equations in R+ lead to two possible scenarios
for the evolution of the Universe. In the first scenario the extra dimension expands at the same rate as the
other spatial dimensions. If all the spatial dimensions were created simultaneously (at the Big Bang), we
expect each of the dimensions to have the same size. However, if the extra dimension was created at a later

Rt 7 e g o oot i o A it
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5.5.5 Evolution of a string network in a compactified dimension

A naive model for the evolution of the Uriverse, with a compactified dimension, is based
on intorpolating the Friedmann equation between R3t! and R**!, i.e.,

N
it (3+ L—w.) doro=o, (5.112)

where L, /L, is the ratio of the size of the compactified dimension to the three unccmpact-
ified dimensions. As L,, — 0, Eq. (5.112) describes the evolution of the energy density in
R¥*), whereas for Ly, — Ly, Eq. (5.112) describes the evolution in R*+!. In the radiation
era the equation of state also has to be interpolated between R3*! and R*+! spacetinee,

1e.,

I 5
p—-3+£m. (5.113)

The energy density in the radiation and matter eras is found by solving Eq. (5.112), ie.,

pr o afUthe/la), (5.114)

pm o anBtle/l) (5.115)

Using the fact that p is proportional to =%, we obtain the evolution equations for the scale

factor in the radiation and matter eras as

4 o« {FLIE (5.116)
4 o t3TTIE, (5.117)

For a o« t%, where a = in the radiation era and o = m in the matter era,

2
4+Lu/L:
the relationship between time, ¢, and conformal time, 7, is

r=s 1 j-a (5.118)
—

Equations (5.114) - (5.117) show that the energy density of the Universe decreases as
p « t=2, independent of the dimensionality of the Universe. Therefore a string network in
R4+ will only have a scaling solution if the energy density of the network dilutes in the
same way as in R¥*t!, This is possible if the size of the extra dimension approaches zero.

The extent to which the scaling solution deviates from its behaviour in R3*+! is expected to

time, it would be smaller than the other spatial dimensions. Consequently, a compactified dimension is
possible provided it was created at a different time to the three spatial dimensions. In the second scenario
the extra dimension contracts, and a compactified dimension can arise naturally.

o e I S o = )
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depend on the size of the extra (compactified) dimension. Without performing a detailed
numerical simulation in compactified {4-+1)-dimensional spacetime, we can infer the scaling
behaviour as a function of L,,/L.. Interpolating between R3t! and Rt it is plausible
to write

Poo(t) ox ™2+ Lw/2Llz (5.119)

The behaviour of the energy density of the string network will depend on the upper limit
imposed on the size of the compactified dimension; current experiments place this at
1078 m (Kostelecky and Samuel 1991). A GUT scale string has a thickness ~107'8 m
(see Sec. 1.1}, which is comparable to the upper bound on the compactified dimension.
Consequently, the evolution of the energy density of monopoles in a compaciified dime:ision
can not be described by Eq. (5.119). To investigate the evolution of monopoles iz a
compactified dimension we must consider their formation in a symmetry breaking phase

transition.

5.6 Monopoles in a compactified dimension

When a cosmological phase transition occurs, the vacuum expectation value of the monopole
Higgs field adopts a non-zero value in the vacuum manifold (see Chapter 1). The value of

{®) depends on fluctuations of the Higgs field at 7' = T,. The spatial scale over which &

fluctuates is determined by its correlation length £, which is of the order of the Compton

length of the Higgs field (see Sec. 5.5.5). Since the compactified dimension is comparable

to ¢, the Higgs field is correlated over the size of the compactified dimension, i.e., ® is

considered to vary smoothly in the w direction.

Following a phase transition, space is causally connected in the w dimension, and
therefore no “domain” structure forms in w-space. The size of the z, y and z dimensions
is much larger than £. A [z,y, 2] volume can be obtained from the four-dimensional space
by taking a slice at constant w. Below the critical temperafure, P is causally uncorrelated
over distances larger than £ in each of the [z,y,2] volumes. The [z,y,2z] volumes are
divided into “domains” of size £, with the Higgs field in each of these “domaiuns” adopting
a random orientation; however, ® is assumed to vary smoothly over {. A monopole forms
when there is a non-trivial mapping between the 2-surface and the vacuum manifold of
the monopole (see Sec. 1.4).

Figure (5.19) shows the formation of a “domain” structure following a cosmological
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[x,v,2z] volume | | [x,y, 2] vume
(a) (b)

Figure 5.19: (a) “Domain” structure following a cosmological phase transition. (b) For-
mation of monopoles in a [z,y, 2] volume (the w dimension is suppressed). Black denotes a
phase of 0 and white denotes a phase of 2x. In (a) each region (of size £) is causally discon-
nected, and in (b) a monopole forms where the two-dimensional surface is non-contractable
in the 5? vacuum manifold.

phase transition. Figure 5.19 (a) is a slice through the fovr-dimensional space (at constant
w). Since & is causally connected in the w dimension, this slice is identical to other slices
at different w. Figure 5.19 (b) shows monopoles in the {z,y,z] volume. A monopole
becomes a line defect in four dimensional space, with the defect extending in the extra
dimension. Because the extra dimension is curled up, this line defect forms a closed loop
whose size corresponds to the compactified (Kaluza-Klein) dimension.

Figure 5.20 shows two possible configurations of a monopole that can arise in com-
pactified R4*1! spacetime. In Fig. 5.20 (a) the monopole has a linear extension in the w
direction, with the two ends of the monopole identified. Figure 5.20 (b) shows a inonopole
with its linear extension in the z divection. For a slice at constant ¢ we would observe a
discontinuous Higgs field in the w dimension. It is therefore unlikely for a monopole to
form in this configuration. If the w dimension is much larger than the correlation length,
the Higgs field becomes uncorrelated. In this situation a monopole may form, as shown
in Fig. 5.20 (b), adopiing the same configuration as it would in uncompactified RA+H!

spacetime,.

O
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Figure 5.20: Two possible configurations of a monopole in R**! spacetime, with com-
pactified dimension w. (a) The monopole is “oriented” in the w direction, and (b} the
monopole is “oriented” in the z direction. The [z,y, 2] volume is causally disconnected,
aliowing the monopole to “orient” itself in the w direction as shown in configuration (a).
However, the w dimension is causally connected and a monopole never forms in configura-
tion (b). Since the extra dimension is curled up, the monopole forms a closed loop around
the compactified (Kaluza-Klein) dimension.

The formation of monopoles in the compactified dimension is investigated using nu-
merical simulaiions based on the Lagrangian (5.1) (with g, » =0, 1,2,3,4). The equations
of motion are recast in dimensionless form (see Egs. (5.16) - (5.18)). We assume that
compactification occurs when the w dimension is smaller than the observed spatial dimen-
sions (z,y and z). Qur simulations use periodje boundary conditions on a lattice of size
30, with spatial step Ak = 1 in the z,y and z dimensions. Compactification of the w

dimension is achieved by making the spatial step in the w dimension, Ah,,, smaller than

the spatial steps in the z,y and z dimensions. For example, a compactified dimension with

size L,, = 6 is obtained with Ak, = 0.2 (i.e., L, = 30Ah,, = 6). We performed numerical
simulations in the range 0.1 < Ah,, < 1, corresponding to 3 < L,, < 30. To ensure
numerical stability, we choose a small time step, At = 0.05 (see Appendix A). The initial
condition is constructed hy assigning a random value to ¥, (¢ = 1,3,3) at each lattice
point, with ®2 + 2 4 2 = n°. This assignment ensures that the Higgs field is correlated
over £. A gauge field is introduced via a local gauge transformation, as discussed in Sec.

5.2.1. Damping terms 48®/8t and b0AS/3t (with b = 10At) are added to the equations

AR Ky 7272 4l N M R T, A, b R - T e e i e LR




of motion (see Sec. 5.2.1).

A typical simulation is shown in Fig. 5.21. In this example the extra dimension is
not cowpactified (L,, = 30). Monopoles exhibit string-like behaviour, however, they may
appear as loca’ized objects in cross-sectional plots. The results of a simulation with a
compactified dimension {L,, = 6) are shown in Fig. 5.22. The compactified dimension is
six times the size of the correlation length of the Higgs field; on comparing the slices at
w = —1.5, 0 and 1.5, we see that the Higgs field is correlated. Following the symmetry
breaking phasse transition, monopoles form as loops around the compactified dimension,

with the size of the loops corresponding to the size of the compactified dimension. A

monopole adopts a loop configuration even though the size of the compactified dimension

is larger than the correlation length of the Higgs field.

If the size of the compactified dimension is much smaller than the correlation length
of the Higgs field, monopoles cannot fit into the compactified dimension. To understand
what happens in this situation, consider the phase winding of a monopole when it forms
a closed loop around the compactified dimension. The orientation of the phase winding
at each point on the loop is tangent to the loop (see Sec. 5.3.3). Diametrically opposite
points on the loop have opposite phase winding. For a compactified dimension much
smaller than the correlation length of the Higgs field, two diametrically opposite points on
the loop overlap. In this case a monopole either forms and instantly annihilates, or never
forms.

If we assume that the compactified dimension is much smaller than the Hubble hovizon,
monopoles are small loops (which form around the compactified dimension). A loop which
is very small compared to the Hubble horizon will collapse to a point, and can be treated
as though it is in non-expanding spacetinse. In this situation, the equations of motion for

the loop (based on the Nambu-Goto action) are

x(t, 1) — x"(t,0) 0 {5.120)

x(t,1) - x'(t,1) 0 (5.121)

®2(¢,1) + x2(1,0) 1, (5.122)

where x = (z,y,2,w), a dot denotes differentiation with respect to time, #, and a dash

denotes differentiation with respect to length, {. The dynamics of a loop in R4*! can be

understood by considering the evolution of a loop in R**!. For a circular loop in the z-y
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Figure 5.21: Isocontour plots of the energy density (E/Anp? = 0.1), showing the formation
of monopoies in uncompactified R4+! spacetime (¢t = 25, £ = 1). (a), (b), and (c) are
cross-sections at w = —7.5, 0, and 7.5, respectively. These figures show that the Higgs field
is not correlated in the w dimension. {d) Cross-section (z = 0} showing that monopoles
can appear as localized objects.



Figure 5.22: Isocontour plots of the energy density {E/An? = 0.1), showing the formation
of monopoles in compactified R4+! spacetime (t = 25, £ = 1). (a), (b), and (c) are cross-
sections at w = —1.5, 0, and 1.5, respectively. These figures show that the Higgs field is
correlated in the compactified dimension. (d) Cross-section (z = 0) showing the monopole
as an extended object (i.e., a string). Since the two ends of the string are identified, this
corresponds 10 a loop in compactified Kaluza-Klein space, S x R3.
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plane at z = (J, we have (see e.g., Kibble and Turok 1982)

z(t,l) = é [cos (gﬂ(—zfj—t)) + cos (gf—(?—ﬂ)] (5.123)
y(t,l) = —% [sin (gf-(%_-ﬂ) + sin (&L-H))] (5.124)

2(t,l) = 0, (5.125)

where L is the maximum length of the loop. Equations (5.123) - (5.125) describe the
collapse and expansion of the Nambu-Goto loop. The length of the loop at £ = 0is L. The
loop collapses and expands in a series of oscillations with period L/2 (¢ = 1). However,
cosmic strings intercommute when they self-intersect, and the loop will fragment into
smaller loops that eventually annihilate. A cosmic string loop of length L (at ¢ = 0) will
collapse and annihilate at time ¢t = L/4.

The equations describing a loop in compactified Kaluza-Klein spacetime (S? x R3+1)

are obtained by noting that the w dimension is periodic in L,,, whence

Ly _oniseL
= L v, 5.126
w= e ( }

where [/L,, is a path parameter along the w direction, with 0 < {/L,, < 1. Equation
{5.126) is re-written as

w = Wy -+ iws, {5.127)

w =
wy
For an oscillating loop, w is expected to depend on ! and ¢, i.e,
wil, 1) = wi(, ) + iwa(l, 1),

The equations of motion of the loop in the w dimension are:

fl

Wit 1) — w'(t,1) 0 (5.131)

w(t, 1) - w'(t, 1)

I
=t

(5.132)

(8, 0) + w'?(t, 1)




The solutions to Eqgs. (5.131)-(5.133) are

wi (£, ) %:— €os (%;t)) + cos (gf-g—ﬂ)] (5.134)
wolt,l) = —i—: [sin (g%u:t—)) +sin(g£%;-|-—”)] . (5.135)

Equations (5.134) and (5.135) describe an oscillating loop in the w dimension. At ¢t =0
Eqs. (5.134) and (5.135) reduce to Egs. (5.128) and (5.129), respectively. A loop at ¢t =0
has a length corresponding to the size of the compactified dimension. When the loop
collapses the Higgs field unwinds and annihilates, and the monopole is removed from the
[x,y, 2] volume.?!

Following a cosmological phase transition, monopoles in compactified 24** spacetime
collapse and annihilate in a time scale comparable to the size of the compactified dimen-
sion. For a compactificd Kaluza-Klein dimension (~10~!% m), monopoles will be removed
at approximately 10727 seconds after the phase transition.

These results can be generalized to other topological defects. Of particular interest
are domain walls (see Chapter 4). Domain walls forin when mo=g—p~1 (M) # 0. In 3 + 1
dimensions a domain wall is a two-dimensional object, however, in 4 + 1 dimensions it is
a three-dimensional object. The dynamics of the wall (in a plane perpendicular to the
wall) can be described by the same equations of motion as a string (sce e.g., Vilenkin
and Shellard 1994). The dynamics of a wall in the compactified Kaluza-Klein space are
described by the equations of motion (5.131) - (5.133). A wall with length L., (at t =10)
in the compactified dimension, will collapse and annihilate at time ¢ = L, /4.

We can extend this mechanism to defects in d 4 1 dimensions, with d — 3 compactified
dimensions. For a defect described by the nth-homotopy group, the defect dimension

isp =d—n~—1. These defects will form “loops” around each compactified dimension

(1,...,d — 3), whose length corresponds to the size of the compactified dimension. By

extending our results for the collapse and annihilation of a cosmic string loop in R3+!
spacetime (see Sec. 5.3.3), it can be shown that all self-intersecting defect “loops® will
annihilate upon collapsing to a point. Diametrically opposite points on the “loop” have
opposite phase winding. Once the “loop™ collapses to a point the phase unwinds and the

“loop” annihilates. Therefore defect “ loops” in R+! spacetime will quickly collapse and

#1'We assume that spacetime is simply connected, since an investigation of the topology of multiply
connected spacetime is beyond the scope of this thesis (see Chapter G).
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annihilate. This leads to the interesting conclusion that, with at least one compactified

dimension, defects may not pose a problem for GUT models of the early Universe,

5.7 Concluding remarks

Monopoles are one-dimensional objects in 4 +1 dimensions and their dynamics can be de-
scribed by the Nambu-Goto action for strings. In homogeneous isotropic R**! spacetime,
where the extra dimension is large, the evolution of the energy density of monopoles was
found to vary as t~!-%, while the energy density of the Universe varies as ¢~2. This implies
that monopoles in uncompactified R!*! spacetime do not have a scaling solution, and
invoking an extra dimension does not solve the monopole problem as had been initially
anticipated.

The evolution of the energy density of monopoles in R*! should reproduce the be-
haviour of a string network in R3*!, when the size of the compactified dimension is
significantly smaller than the observed spatial dimensions. If the size of the compactified
dimension is comparable to the correlation length of the Higgs field, a monopole forms a
closed loop in the Kaluza-Klein space S! x R3, whose length is equal to the size of the
compactified dimension. In this situation the loop collapses and annihilates in a time scale
corresponding to the size of the compactified dimension.

This result was generalized to topological defects in R4+ spacetime, with d — 3 com-
pactified dimensions. A topological defect forms a “loop” in each of the compactified
dimensions. This “loop” collapses and annihilates in a manner analogous to the col-
lapse of a monopole in a single compactified dimension. In a spacetime with at least one

compactified dimension, topological defects collapse and annihilate quickly following their

formation, and may not pose a problem for GUTs.
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CHAPTER 6
Conclusions and Future Work

Particle cosmology predicts the formation of topological defects in the early Universe, such
as cosmic strings, domain walls and monopoles. These cosmic defects can initiate density
perturbations, resulting in large scale structure, and imprint anisotropy on the Cosmic
Microwave Background Radiation (CMBR) (see e.g., Vilenkin and Shellard 1994). How-
ever, recent observations of the CMBR, based on the Wilkinson Microwave Anisotropy
Probe (WMAP), found no evidence of topological defects in the early Universe (Bennett
et al. 2003). This is puzzling, since topological defects are observed in many condensed
matter systems (see e.g., Hendry et el. 1994 and Zurek 1996), and the underlying principle
of symmetry breaking would appear to be ubiquitous in nature. This thesis is devoted
to understanding the formation and evolution of topological defects arising in symmetry
breaking phase transitions. Numerical simulations were carried out to elucidate the be-
haviour of vortices in two-dimensional condensates, domain walls in R3+! spacetime and
monopoles in R¥+1 spacetime.

in Chapter 2 we examined vortices in a rotating Bose-Einstein condensate (BEC).
Rotation of the condensate leads to the formation of a triangular vortex lattice, whose
structure follows from minimizing the energy functional for the rotating condensate (see
e.g., Castin and Dum 1999). Although the appearance of a vortex lattice follows from the
minimization procedure, this approach does not give insight into how vortices are nucleatc-«
in a BEC, or the dynamics of vortices once they form. We provide a new perspective
on the formation of vortices in a rotating BEC. Rotation of the condensate imprints a
background phase gradient on the condensate, leading to a confining potential for vortices.
Perturbations at the boundary of the condensate, or anisotropy in the atomic trap, can
nucleate vortices {(at the boundary) which move into the rotating condensate. Vortices also
experience mutually repulsive interactions in the BEC, which arise from the phase gradient
of other vortices. The competition between mutually repulsive inter-vortex forces, and the

confining potential (due to rotation), results in a stable triangular vortex configuration.
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We also considered the formation of vortices via the Kibble-Zurek mechanism (Kibble
1980 and Zurek 1985). Following a symmetry breaking phase transition to the BEC state,
conservation of topological charge produces vortex-anti-vortex pairs, whose positions are
randomly distributed in the condensate. Rotation of the BEC expels anti-vortices from
the condensate, leaving vortices to evolve toward a stable lattice.

Vortex dynamics in a BEC is explained by invoking the inviscid {frictionless) nature
of a quantum fluid. In the absence of viscosity, vortices in a rotating quantum fluid do
not “feel” the background fiuid-flow. However, fluid-flow modifies the velocity profile of
the circulating fluid around a vortex, resulting in a pressure difference in the quantum
fluid. In this situation, vortices deflect perpendicular to the background fluid-fiow. The
behaviour of vortices in a BEC i1s in marked contrast to vortices in a classical fluid. In Sec.
2.3 we investigated an unusual condensate, comprising liquid light, which arises when a
high power laser beam enters a material with non-linear (cubic-quintic) refractive index
(see Michinel et al. 2002). In this situation the eleciric field in the medium exhibits “self-
interactions”, analogous to 2- and 3-body interactions in a liquid BEC!. The equation of
motion describing the LL.C contains both first and second order time derivatives. The
former endows the condensate with internal “friction” (or “viscosity”). In the LLC, vor-
tices deflect in the direction of the background fluid-flow, and consequently, rotate about
each other. This is in contrast to vortices in a BEC, which exhibit mutually repulsive
interactions.

In principle, vortices in a LLC may be observed? by directing a high power laser beam
into a non-linear optical material (e.g., chalcogenide glass). When laser light enters the
non-linear medium, a symmetry breaking phase transition to the LLC state occurs at the
boundary between vacuum and the medium. Following the phase transition, the scalar
field of the condensate will settle down quickly to its ground state. The correlation Jlength
of the LLC is expected to be much less than the size of the condensate, and consequently
vortices will form.

Exploring vortex dyhamics in exotic condensates provides insight into systems for

1A liquid BEC may be obtained by exploiting Feshbach resonances to change the two-body interactions
of the condensate atoms from repulsive to attractive. In this case the (gaseous) BEC becomes unstable and
collapses. As it collapses the condensate number density increases, and three-body repulsive interactions
become significant. These stop the BEC from further collapse, and under suitable conditions may allow
the BEC to exist in a liquid state.

2The existence of the LLC state has not been confirmed by experiment. A preprint outlining a methed
for imaging vortices in two-dimensional condensates is included at the end of the thesis.
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which direct observation is not possible. In Chapter 3 we considered a scalar dark matter
condensate, which arises from a weakly interacting degenerate “ether” (WIDGET) (see
Silverman and Mallett 2001a). The dark matter condensate is characterized by a self-
interacting scalar field, ®. In the presence of gravity, the symmetry breaking potential
for the dark matter condensate is obtained using a stationarity ansatz (see Sec. 3.5.1}. It
is found that the symmetry breaking potential, in the weak field limit, can be written as
seP -1/ + 2V})2., where V is the gravitational potential. This symmetry breaking
potential gives rise to vortices in the dark matter condensate (see Sec. 3.5). Rotation of
the condensate induces a confining potential for vortices. Numerical simulations show that
an initially Keplerian vortex number density, n, o r™15, evolves toward an equilibrium
configuration with vortex number density n, o r~1; this corresponds to a flat velocity
profile for the dark matter condensate. To understand how the observed flat velocity
profile for luminous (baryonic) matter arises, we incorporated gravitational interactions
between dark matter and baryonic matter. N-body simulations show that dark matter
exerts gravitational “drag” on baryonic matter, resulting in the latter quickly adopting
the same velocity as the dark matter condensate.

Our numerical simulations highlight an unexpected role for vortices in understanding
the rotation curves of spiral galaxies. However, a quantitative understanding of galactic
dynamics must include hierarchical mass clustering and gravitational instabilities based
on the cold dark matter WIDGET model. This will require a large N-body simulation of
structure formation and a three-dimensional model of vortex dynamics. Future work will
be directed at performing numerical simulations of gravitationally interacting baryonic
matter coupled to the self-interacting dark matter condensate.

Symmetry breaking is pivotal to models of particle cosmology. Grand unified theories
(GUTs) predict that the early Universe underwent a series of symmetry breaking phase
transitions, resulting in topological defects (Kibble 1976). Monopoles are predicted to
form in numbers that conflict with observations inferred from cosmic magnetic fields and
proton decay processes in the Sun (Zeldovich and Khlopov 1978, Preskill 1979, Kolb et
al. 1982, Dimopoulos et al. 1982, Freese et al. 1983 and Dvali et al. 1998). Furthermore,
domain walls induce a temperature anisotropy in the CMBR that is inconsistent with
observations based on the COBE data and the more recent WMAP data. The overabun-

dance of topological defects, predicted by GUTs, must be reconciled with the absence of
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cosmic topological defects in the present epoch. The accepted paradigm for resolving the
overabundance problem is inflation (Guth 1981). However, it is worth emphasizing that
the physical origin of inflation is unknown (see e.g., Kolb and Turner 1990). A major
theme of the thesis was the exploration of alternative scenarios for resolving the cosmic
defect problem.

Chapter 4 investigated hybrid defects (i.e., Dirichlet walls), in which cosmic strings
terminate on a domain wall {Carroll and Trodden 1998). D-walls are found to be stable
for 2 wide range of parameters, and when perturbations are imposed on the wall. Since
stable walls are inconsistent with temperature anisotropy in the CMBR, this would seem
to rule out D-walls in the early Universe.

For a D-wall with one string attached to it, numerical simulations show that the string
exerts tension on the wall, pulling it in the direction of string tension. An interesting
situation arises when two domain walls are connected by a string. Since the string exerts
tension on the walls, they are pulled toward each other. As the walls collide, the ends
of the string come into contact, and the string unwinds and annihilates. This nucleates
a hole in the walls, which propagates outward at almost the speed of light, resulting
in the annihilation of the domain walls. This process is analogous to the Langacker-Pi
mi:chanism for monopoles. Hybrid defects consisting of strings ierminating on domain
walls will quickly annihilate, rapidly decreasing the energy density of the D-wall network.
The annihilation of D-walls has implications for monopoles located between the walls.
As the walls are pulled toward each other, monopoles located between the two domain
walls collide with the walls. Upon collision, symmetry yestoration occurs in the Higgs field
of the monopole, and the monapole annihilates. Once the monopoles are removed, the
walls collide and annihilate. This scenario provides a viable mechanism to obviate both
the monopole and domain wall problem in particle cosmology. However, the D-wali model
requires fine tuning of the coupling parameters and symmetry breaking scale. Quantitative
understanding of D-wall dynamics will require a numerical simulation of a complex D-wall
network, in which multiple cosmic strings terminate on domain walls. Future work will be
directed at elucidating the cosmological implications of a D-wall network in an expanding

Universe.
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In Chapter 5 we considered alternative scenarios for resolving the cosmic defect prob-
lem. Specifically we investigated the formation and evolution of monopoles in 4 + 1 dimen-
sions. In R1*1 spacetime, monopoles are one-dimensional objects, which exhibit string-like
bhehaviour. It is well known that a cosmic string network in 3 + 1 dimensions has a scal-
ing solution, i.e., the energy of the network decreases at the same rate as the energy of
the expanding Universe (Albrecht and Turok 1989, Allen and Shellard 1990, Bennett and
Bouchet 1990). We examined the evolution of a string network in R4+ spacetime, where
the extra dimension was uncompactified, i.e., comparable to the other three spatial di-
mensions. It is found that strings in uncompactified (4 + 1)-dimensional spacetime rarely
collide with each other. The energy density of the string network decreases more slowly
than the energy density of the Universe; consequently, a string network in R**! does not
have a scaling s*af1ui, wd the monopole problem persists in higher dimensions. On
this basis we cay rizie nur . uncompactified (extra) dimension as a way of resolving the
monopole probie a iss vre carly Universe.

Chapter 5 also considered the situvation where the size of the extra dimension is much
smaller than the three spatial dimensions, i.e., compactified Kaluza-Klein space. Exper-
imental observations constrain the size of the compactified Kaluza-Klein dimension to
less than 10718 m (Kostelecky and Samuel 1991), which is of the order of the correlation
length of the Higgs field (following a GUT scale symmetry breaking phase transition).
In this case it is found that monopoles form loops around the compactified Zimension,
with the length of the loop corresponding to the size of the compactified dimension. The
dynamics of the loop can be described by the Nambu-Goto action, which predicts that a
loop will collapse to a point in a time corresponding to ¢ = L/2, where L is the length
of the compactified dimension. When a loop collapses to a point, it self-intersects and
the phase unwinds. This results in the annihilation of the loop. If we set the size of the
compactified dimension to ~10~'® m, monopoles will collapse and annihilate in ~10~%7
seconds following a cosmological phase transition.

This result was generalized to topological defects in R4*? spacetime, with d — 3 com-
pactified dimensions (see Sec. 5.6). The Kibble mechanism predicts that for compactified
dimensions of size less than (or comparable to) the correlation length of the Higgs field,

the defect will form a “loop” in each of the compactified dimensions. A topological defect
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“loop” will collapse and annihilate. This suggests that introducing at least one compacti-
fied {extra) dimension provides a mechanism for avoiding the overabundance of topological
defects in the early Universe.

In arriving at this conclusion we have implicitly assumed that the compactified di-
mension is simply connected. However, neither Einstein’s theory of general relativity, nor
particle physics, prescribes the topology of spacetime. A detailed investigation of multiply
connected spacetime is beyond the scope of this thesis; nevertheless, it is interesting to
speculate on the topology of the compactified dimension and the mechanism by which it
can arise,

If we assume a compactified Kaluza-Klein space, with topology S! x R3*1, the com-

pactified dimension may be written as
w= |w|ewv (6.1)

where 27r|w]| is the compactification size and 8 is the “phase angle” 2round the compactified
dimension. A slice at constant “phase angle” gives R3*! spacetime. BEquation (6.1) is
trivially decomposed into

w=un +iw; (w,w; €R). (6.2)

To construct a simply connected compactified dimension, we postulate that the Universe
is endowed with two extra spatial dimensions, w; and wy. In this case the Universe is
described by {5+ 1)-dimensional spacetime. The compactified Kaluza-Klein space, ST xR3,
can be “constructed” from an R> manifold by ascribing a potential energy® to the two
extra dimensions. If the potential energy density has U (1) symmetry, with minima lying
on a circle §1, then we may consider compactified Kaluza-Klein space, $* x R3, as the
vacuum manifold of RS,

Consider the expansion rate of compactified Kaluza-Klein space. The expansion ve-

locity, v, of the three observable spatial dimensions is given by

v="L= hL, (6.3)
a
where ¢ is the scale factor, A is Hubble’s constant and L is the spatial size of the three

uncompactified dimensions. The expansion velocity, vy, of the compactified dimension

3The cnergy associated with the extra dimensions is analogous to vacuum energy, which is a fandamental
prediction of quantuin field theory. Vacuumn energy is incorporated in Einstein’s theory of general relativity
by invoking a cosmological constant term; this is required to explain the accelerated rate of expansion of
the Universe (see e.g., Carroll 2001).
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may be written as
a
Vo = ai = 2mhy|w), (6.4)

w
where a,, is the scale factor, h,, is Hubble’s constant and 2w |w| is the spatial extent of
the compactified dimension. Assuming ¢ « ¢* and e, o t™ (where n and m are real
numbers), the Friedinann equations predict that h,,/h = 1 (see Sec. 5.5.1). Therefore
we obtain v,, = £2nvjw|/L, and for |w| < L we have v,, <« v. As a first approximation we
assume that the compactified dimension is slatic compared to the three uncompactified
spatial dimensions. The simplest potential for a static compactified dimension, with U(1)
symmetry, is given by
A

Vilol) = 52 (lwf? - n)”, (6.5)

where 7, is the symmetry breaking scale, and A,nl /4 is the energy density difference
between the symmetric and non-symmetric ground states of the compactified dimension.
Figure 6.1 shows the shape of the symmetry breaking potential (6.5), with the compactified
dimension “located” on the ring of minima, §*. Figure 6.1 (b) shows a schematic repre-
sentation of the compactified four-dimensional Kaluza-Klein space, §' x R®. The topology
of the simply connected compactified dimension is $. Simply “connectedness” is evident
in Fig. 6.1 (a), where a loop around the compactified dimension can be contracted to a
point by leaving the vacuum state {Jw|) = n,,. However, since the encrgy density difference
between the “false vacuum” (located at {|w]} = 0) and the “true vacuum” {{|w|) = n,) is
Awi /4, and the length of the compactified ditnension is 2r|w], there is an energy cost of
27|w|Awnl,/4 in contracting the loop.

Without performing detailed numerical simulations, we can appreciate the dynamics
of a defect in the compactified dimension by considering the behaviour of the Higgs field.

The potential of the Higgs field in the compactified dimension can be written as

A Ay . .
V(fol, 12]) = 5(®e®a~ ) + 7 (jwl® = 73)" ®ae, (6.6)

where ®, is the scalar field of the topological defect (2,®, = &% + &3 + ... = |$[2), X is
the self-coupling strength and 5 is the symimetry breaking scale of the ®-field. Minimizing
the potential (6.6) with respect to |®| we obtain

A 2
1917 = o7 — 22 (jof? - 2)”. )
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Plots of |¢{? as a function of jw| are shown in Fig. 6.2. For 7* > JA,9%/2), the ®-field
is non zero at w = 0; however, for 172 < A 2/ 2), the ¥-field vanishes at w = 0. This
suggests that the non-vanishing ®-field is confined to the compactified dimension.

In general, topological defects form loops around the compactified dimensjon, where
the magnitude of the Higgs field is non zero, i.e., |®| # 0. For regions where |w| # 5, the
defects are unstable and move in the direction of decreasing magnitude of the Higgs field.?
Topological defects will form when [w| ~ 7y, with length 27|w] around the compactified
dimension. Due to string tension ~u/|w|, where p is the linear mass density, the loop will
ccllapse inwards. For 72 < Aun?/2), the ®-field vanishes before the loop collapses to a
point. As the loop shrinks, |®| — 0, and symmetry restoration occurs in the ®-field. In
this case, the loop annihilates before collapsing to a point. For 52 > A,n?/2), the loop
collapses to a point, the phase unwinds and it annihilates. Thus topological defects will
be removed in a time comparable to, or less than, the size of the compactified dimension.

A numerical simulation of topological defects in compactified S! x R3+! spacetime will
be computationally intensive. Consider the simpler situation in which cosmic strings wrap
around a compactified dimension in §! x R1*+? spacetime. The Lagrangian for the string
is written as

Aw

—— 1 A
£=D 80" - FuF* - 2 (18 - n*)° = (W - ) (9%, (68)

where ¢ is a complex scalar field describing the string, F,,, is the electromagnetic field
tensor, X is the self coupling strength and 5 is the symmetry breaking scale of the @-field.
In the absence of a gauge field, Eq. (6.8) is analogous to the model of a BEC with an atomic
trap potential given by Ay, {[w|* — ?)3,)2 /4. In principle, experiments can be performed
with a BEC to confirm the collapse and annihilation of a topological defect loop in the
“compactificd” dimension. This may be accomplished by replacing the harmonic trap
potential of the BEC, §mw?(2? + 3?)|¥|?, with the modified trap ﬁotentia,l Mol +y? -
72,)2| %%, where Ay and 7, are parameters used to adjust the location, shape and size of
the condensate. With this trap potential, the BEC will be confined to the “compactified”
dimeusion, i.e., it has the shape of a ring oriented in the z direction with radius n,,. Once

the condensate is obtained, a vortex loop is constructed in the condensate by rotating the

“This is analogous to the behaviour of vortices in a non-rotating Bose-Einstein condensate. A vortex
located outside the center of the condensate will move in the direction of decreasing condensate number
density (see Sec. 2.2.1).
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.RB
(b)
: Figure 6.1: (a) Potential for the compactified dimension §'. The compactified Kaluza-
¥ Klein dimension is simply connected, since a loop around the compactified dimension can
be contracted to a point. (b} Schematic representation of compactified Kaluza-Klein space,
51 x R3.
1 (*
n? > Aund/2a
= Aullg /22
7 < Auni/2a
//\ ' ]
N

Figure 6.2: Plots of |®|* as a function of Jw|, showing confinement of the Higgs field in the
compactified Kaluza-Klein space, S' x R3. For n? < A7l /2A the non-vanishing $-field
is confined to the compactified dimension, with its maximum value at |w| = 1, whereas
for n° > Aunl,/2), the ®-field is non zero at |w| = 0.
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condensate about its center. The behaviour of the loop can be investigated by turning off
the rotation, and observing its collapse and annihilation. The collapse and annihilation of
a vortex loop in a BEC may provide insight into the behaviour of topological defects in
“compactified” dimensions.

In summary, the formation of topological defects in the early Universe is a major
prediction of particle cosmology. However, defects are predicted to form in numbers that
conflict with observation. Various scenarios have been proposed in this thesis to resolve
the overabundance problem. A promising avenue utilizes a simpiy connected compactified
Kaluza-Klein space. Understanding the formation ard evolution of topological defects in

compactified dimensions is a major challenge for future work.
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APPENDIX A
Numerical Techniques

This appendix describes the numerical techniques used for modeling the dynamics of
topological defects, including vortices in two-dimensional condensates (Chapter 2), vortices
in the dark matter condensate (Chapter 3), Dirichlet defects (Chapter 4), and cosmic string

networks in R**! and R!*! spacetime (Chapter 5).

A.1 Finite difference approximation

For the models considered in this thesis we replace the equations of motion with a finite
difference approximation. For example, in 1+ 1 dimensions a continuous function f{¢, z)

is discretized on a lattice, in which case f(¢,z) is replaced by fm », defined as
Jmn = f(mAt, nAz), (A.1)

where At is the temporal step, Az is the spatial step, and m and n are integers representing
the lattice coordinates in 1 + 1 dimensions. Derivatives of f(¢,z), with respective to z,

are described by the central difference approximation (see e.g., Smith 1985)

8f  _ fmn+1 = fmn-1 2 A2

5 = Ay + O(Az?), (A.2)
32f fm,n+l - 2farn.,w + fm,n—l 4 ‘
%3 = s +O(Az?). (4.3)

Clearly the accuracy of the finite different scheme is limited to QO(Az?) % -a apply
the numerical discretization scheme to the equation of motion for the .- "i-.,oue mnodel
(1.27).} Utilizing the central differences (4.2) and (A.3), the evolution of i .1e equation of
motion (1.12) in the absence of a gauge field is obtaived by finding the Higgs field at the
next time step, 41,0, based on the Higgs field at the present timne step and the previous
time, ¥,y 5. Utilizing a leap-frog method, the equation of motion for the Goldstone

model is given by

1The Goidstone model is the abelian Higgs model (1.9) in the absence of a gauge field. The equation
of motion for the Goldstone model is determined from Eq. (1.12) by setting the gauge field to zero.
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At\?
‘I)m-!-l,n = 2¢’m,n - (I'm—l,n + (“A_&:) (‘pm,n—l - 2q’m,n + cI)m,n+1)
~APO g ([Pl —1). (A.4)

The coordinates are measured in units of the Compton length 1/v/An of the Higgs field
(A is the self-coupling strength of the Higgs field and 7 is the symmetry breaking scale).
Equation (A.4) is easily generalized to higher spatial dimensions.

Numerical simulations of a BEC are based on the Gross-Pitaevskii (GP) equation, or
non-linear Schédinger equation, evolved in imagirary time, r = it. Evolution of the GP
equation, based on a leap-frog (Euler) method, is only accurate to O(A7). To improve
the accuracy we use Runge-Kutta integration, which is accurate to O(Ar4).

An alternative approach to modeling cosmic strings is to exploit lattice gauge theory,
where the gauge symmetry is preserved by the discretized fields (Kogut 1982 and Creutz
et al. 1983). However, the finite difference scheme used in this thesis is sufficient to
understand the formation and evolution of topological defects (see Chapters 4 and 5).
Numerical simulations of abelian string dyramics based on finite difference approximations
are consistent with the results obtained using lattice gauge techniques (see e.g., Moriarty
et al. 1988 and Myers et al. 1992). Our numerical schemes utilize the Lorentz condition
9" A, =0, in contrast to lattice gauge techniques, which necessitate the use of the temporal
gauge, A; = 0.

The equaiions of motion are re-scaled by performing transformations of the coordinates
and fields to eliminate free parameters. The re-scaling schemes are discussed in Secs. 2.2.1
and 2.2.4 for the GP equation, Sec. 2.3.1 for the LLC, Secs. 3.4.1 and 3.5.1 for the dark
matter condensate, Sec. 4.2 for the Z, domain wall, and in Secs. 5.2.1 and 5.3.1 fu:
S0(3) monopole formation and the abelian-Higgs model. Tables A.1 - A.8 summarize the

numerical simulations performed in this thesis.

A.2 Initial and boundary conditions

To construct the initial conditions involving vortices and strings, we numerically solve

for a static vortex (see Secs. 2.3.2, 3.4.1, 4.3.4 and 5.3.2). Once the static vortex solu-

tion is obtained, the initial conditions are constructed by utilizing the Abrikosov ansatz

B




Type

Grid size

Lattice spacing

1 Section

2D U(1} vortex formation

400% x 30

Ah =03, At =0.1

1.4.2
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Table A.1: Parameters used to sirnulate vortex formation based on the Kibble mechanism.

Type Grid size Laitice spacing Section

BEC number density 500 Ah=0.05 2.2.1

BEC vortex solution 500 Ah=0.05 2.2.1

BEC vortex dynamics | 600% x 50,000 | Ah=0.1, Ar =0.001 ] 224

BEC vortex formation ﬁ]ﬂz » 100,000 | Ah=10.1, Ar=0001! 225

¥ LLC vortex solution 3,000 Ah=0.5 2.3.2
Two LLC vortices 3,0002x 7,000 | Ah=05 At=0.1 | 2.3.2
| Maultiple LLC vortices | 3,000 x 6,000 | Ah=05, At=0.1 | 2.3.2

Table A.2: Parameters used to simulate vortices in a Bose-Einstein condensate (BEC) (r
denotes imaginary time), and vortices in a liquid light condensate (LLC} (¢ denotes real

time),
Type Grid size Lattice spacing Section
DMC vortex solution 4,060 Ah=0.1 3.4.1
Vortex dynamics 1,400% x 6,000 { Ah=0.1, At =0.01 { 3.4.1
Vortex configuration [ 2,400% x 9,000 | Ak =1.0,At =01 | 3.4.2
DMC distribution 3,000 Ah=1.0 3.5.1
Vortices in a DMC | 4,600% x 2,500 | Ah=1.0,At =02 | 3.54
Table A.3: Parameters used to simulate vortices in a rotating dark matter condensate
(DMCQ).
Type Particles | Simulation frame | Time step | Section
Gravitational drag of DMC 10* 32, 0002 % 10,000 | At=0.1 3.6

Table A.4: Parameters used in the N-body simulation of gravitational drag between dark
matter and baryonic matter.

Type Grid size Lattice spacing Section
Domain wall formation | 200° x 500 Ah =05 At =0.1 4.2.1 _' ‘ s
D-wall dynamics 2003 x 1,000 | Ak =0.055, At =002 | 4.3 N

Table A.5: Parameters used to investigate the stability and dynamics of a Dirichlet domain
wall (D-wall).




Type Grid sizc I Lattice spacing Section

3D S0O(3) monopole formation 140° x 500 | Ah = 0.5, At =0.1| 521
Abelian-Higgs vortex solution 300 Ah =0.1 5.3.2
Intercommutation and loop collapse | 140° x 250 | AL =0.5, At =0.1 | 533

Table A.6: Parameters used to simulate monopoles and strings in 3 + 1 dimensions.

Type Simulation frame Length paramecters Section

3D Cosmic strings | (20€)® x (4,000A7) | Ac =0.05, AT == 0.005 5.4
4D Cosmic strings | {10€)? x (3,500A7) | Ao = 0.05, Ar = 0.0025 5.5

Table A.7: Parameters used to simulate a cosmic string network in R3+? and R4*! space-
time. £ is the correlation length, 7 is the conformal time and ¢ is a length parameter (see
Sec. 5.4.3). In 3 + 1 dimensions £ = 0.5 and the initial conformal time lies in the range
2 < 7; <5, whereas in 4 + 1 dimensions 0.1 <€ <0.2and 7; = 1.

Type Grid size Lattice spacing Section

4D SO(3) monopoles | 30 x 500 { Ak = 1.0,0.1 < Ah,, <1, At=005| 56

Table A.8: Parameters used to simulate monopole formation in compactified R4+! space-
time. Ah is the spatial step in the x, y and z dimensions, whereas Ak, 15 the spatial step
in the compactified dimension.

(Abrikosov 1957)

o) = []el-ro, (A5)
i=1

Ade) = Yaule—ri), (4.9)

i=1
where n, is the number of superposed vortices and r; denotes the position of the i-th
vortex.

Numerical simulation of the formation of topological defects following a phase tran-
sition exploits the Kibble-Zurck mechanism (Kibble 1976 and Zurek 1985). The initial
conditions are obtained by assigning random values (between —1 and 1) to the Higgs field
at each lattice point. The field is constrained to its ground (vacuum) state expectation
value. A gauge field arises naturally via a local gauge transformation; the value of the

gauge field is set to zero initially. For a cosmic string network simulation based on the




Nambu-Goto action (see Secs. 5.4 and 5.5), the initial condition is obtained by using the
Vachaspati-Vilenkin method (Vachaspati and Vilenkin 1984). This method emulates the
Kibble mechanism for the formation of cosmic strings in the early Universe {see Sec. 5.4.4).
In R**! spacetime the initial condition is obtained by extending the Vachaspati-Vilenkin
method to four spatial dimensions (see Sec. 5.5).

The boundary conditions in our numerical schemes depend on the nature of the scalar
field (or wavefunction) on the boundary, or on the topological defect configuration. For
example, the wavefunction of a BEC in a rotating trap vanishes on the boundary. Numer-
ical simulations of vortices in the LLC, vortices in the rotating dark matter condensate
and Dirichlet topological defects, all exploit free boundary conditions, where the gradient
of the scalar field vanishes on the boundary. Periodic boundary conditions are employed
for simulations of defect formation (Secs. 1.4.2, 4.2.1, 5.2.1 and 5.6), N-body simulations
(Sec. 3.6), and numerical simulations of a cosmic string network in R3*! and RI*! space-
time (Secs. 5.4 and 5.5). In these situations the simulation domain has a T?, T3 or T4

topology for two-, three- or four-dimensional simulations.

A.3 Stability criterion

Numerical finite diflerence schemes are prone to instability. To establish the stability

criterion, we utilize the von Neumann method (see e.g., Smith 1985), writing ®, », as

D = _et'anA:cgmj (A?)

1

where the wavevector « is a constant, and £ = e*2! is called the amplification factor.
Equation (A.7)} implies that ®,,, converges for m — oo (i.e., At = 0} if and only if
¢l < 1.

Substituting Eq. (A.7) into the equation of motion, Eq. {(A.4), results in

£2 — 246 +1=0, . (48)
where A is given by
A=1-2 (3‘;) s1n (T) - T ([@m,nl 1) ( . )

Equation (A.8) has the solution

t=AxVA2-1L (A.10)
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The stability criterion requires

|4] < 1. (A.11)

For the simulations reported in this thesis 0 < |®,,,| < I at the start of each simulation
and (At)? < 1. Consequently, At?||®m,|* ~1] « 1. Based on these considerations,
the stability criterion {A.11) becomes At < Az. For a d-dimensional space, the stability
criterion is generalized to the Courant-Friedrichs-Lewy {CFL) coudition (sce e.g., Courant

et al. 1928), where

Az
The CFL stability condition (A.12) for the wave equation (A.4) can be understood in

vd (E) <1 (A.12)

terms of the accumulation of noise in the scalar field &,,,, which propagates over a
distance Az = At. Since the value of the field at the next time step, ®pmiqp, utilizes
Dmnt1y Pman—1 and the field at the previous time step, $p_1 5, any noise induced in
D10 will propagate to ®;nyy and By p—q if At > Az. This results in a numerical
instability when the equation of motion is evolved ior a long time. However, for At < Az
the noise induced in ®,, , .1 can never propagate t0 ®, n4+y and Py 55, and therefore the
numerical scheme is stable.?

The CFL condition in 1 + 1 dimensions also applies to the equations of motion for the
left mover, 1, and right mover, r, that are used to evolve strings in an expanding spacetime
(see Chapter 5). In the next section, we discuss the numerical techniques used to solve

the equations of motion of relativistic strings and the concomitant CFL condition.

A.4 Left and right movers and the CFL condition

The dynamics of relativistic strings in an expanding spacetime are governed by Eqs. (5.62)
and (5.63). A direct numerical solution to Eqs. (5.62) and (5.63) based on a finite difference
scheme is prone to numerical errors, and does not accurately evolve small scale structure
on the strings. The accuracy can be improved by numerically solving the equations of
motion in terms of the left and right movers (see Sec. 5.4). Substituting Egs. (5.71) and
(5.72) into Egs. (5.62) and (5.63), the equations of motion of relativistic strings are given
by

i = lzr+h[(1—r)l—-r], (A.13)

2Noise propagates at the speed of light, so in a time step At (one iteration) it can never reach the
neighboring points at the next time step (iteration).
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P o= —+h[nr+, (A.14)

é = —hel-r+1). (A.15)

The gradient terms in Eqs. {A.13) and (A.14) can be eliminated by considering the next
time step of the left movers at position 0 — A7 /¢ and the right movers at position 0+ A7 /.

Using a first order Taylor expansion, a left mover at position o — A7/e may be written as

A i
1(0' - TT': T+ AT) = 1(01 T) + AT](“& T) - Sil l’(O’, T)’
€

¥
= 1+ A7 [lz+h(l-r)1-—hr] —éil’,
€

I+ hAr([(1-r)l —r]. (A.16)
Likewise a right mover at position o 4+ A7/e is specified by
AT
r{o+ -—6—-,T+A'r) =r+hAr{(l-r)r+1]. (A.1T)
Equations (A.16) and (A.17) can be written as

i = R[1-r1-1], (A.18)
= h[(1-r)r+1], (A.19)

with the left and right movers evolving on the characteristic curves o — A7 /e and o+ A7/e,
respectively.

Figure A.1 shows the evolution of the Jeft and right movers at two different conformal
time steps. Strings are represented by points (parameterized by &), with each point
separated from its nearest neighbor by Ao. These points are marked by a cross in Fig.
A.l. The left and right movers are stored at ... n — 1, n, n + 1, ..., which are half-way
between two nearest neighbor points. ‘The left movers evolve on the characteristic curve
o — Ar/e, with {on, 7 + A7) found by interpolating between 1(on, — AT /en, 7 + A7) and
Kopr1 — A7 feny, 7 + Ar). Similarly the right movers evolve on the characteristic curve
o + A7t/e, with r(o,, T + A7) found by interpolating between r{on..1 — A7/en_1, T + A7)
and r{on + Ar/eq, 7 + AT).

Figure A.l indicates that if A7/e > Aag, the left mover Yoy, — Ar/ey, 7 + A7) will
adopt a value to the left of n — 1, whereas on41 — A7/€ny1, 7 + A7) will adopt a value
to the left of n. In this situation a left mover l{o,, ™ + A7} is found by extrapolating

(o, — A7/en, 7 + A7) and on41 — AT/enq1, 7 + AT). Likewise a right mover r{oy, 7 +




x

Wy
n

Figure A.1: String world-sheet showing the characteristic curves o6 + A7 /fen_y, 0 = AT/ep
and o — A7 [/en1 of the left and right movers (adapted from Albrecht and Turok 1989).
The world-sheet is parameterized using conformal time, 7, and the spatial parameter o.
The positions of a string are stored at points designated by a cross (x). The left and right
movers are stored at the half-way points designated by a circle (). Neighboring points
on the string are separated by Ag.

A7) is found by extrapolating r{g,—1 — AT/€n-1,7 + AT) and r{oy -+ AT/en, 7 + AT).
Numerical extrapolation schemes are prone to error, and may become unstable for long
term evolution. To maintain stability in 2 numerical simulaticn we must constrain Ar/e <
Aa. The left and right movers at the next conformal time step are found by utilizing a
numerical interpolation scheme. There was no evidence to suggest that our numerical
interpolation scheme leads to instability in the long term evolution of the system. The
CFL stability criterion for the evolution of the left and right movers is

14r

- ) A20
e Ao <t ( )

This is consistent with Eq. (A.12) for d = 1, with 7 playing the role of physical time ¢
and eAo = Az (sce Eq. (5.66)).

A.5 Accuracy of string network simulations

Where possible, our string network simulations employ methods that have been adopted
in the literature (see e.g., Albrecht and Turok 1989, Bennett and Bouchet 1990 and Allen
and Shellard 1990). In R4*! spacetime the evolution of the left and right movers use linear

interpolation and re-scaling (see Secs. 5.4.5 and 5.5.4), and the crossing detection method
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is implemented by solving linear equations (see Secs. 5.4.5 and 5.5.4). A major source of
inaccuracy is energy loss due to smoothing of the kinks after intercommution (see Allen
and Shellard 199C). In our simulations, we update the velocity of the intercommuting
string segments to satisfy the energy density relation (see Egs. (5.64) and (5.79)). This
guarantees that the energy of a string is conserved at each iteration. Qur simulations of

a cosmic string network in R3+! are comsistent with the results obtained in the literature

(see Sec. 5.4).

N

G U e

<O A A A N B R it A

Ak




201

APPENDIX B
Vortices in a Dark Matter Condensate

In Sec. 3.5 we discussed the nucleation of vortices in a dark matter condensate. Here we
describe how vortices are “placed” in the condensate. The radial vortr x rumber density,
ne{r), and velocity, v(r), of the condensate are given by Eqs. (3.68), (2.69) and (3.70).
The method requires the total number of vortices, N, the size of the rigid-body region,
Ry, and the size of ihe condensate that contains all vortices, R,. Once N, Ry and R, are

known, we solve for ¢ and ¢; (see Eqs. (3.69) and (3.70)). We “place” Ny vortices within

Ry, according to

Ry
No = 211'00/ rdr = ﬂcoRg, (B.1)
0
and N, vortices between Ry and R;, according to
T 1 1
Ny = 211'c1/ r 2rdr = 47¢ (Ri" - Rg) . (B.2}
R

At r = Ry, continuity of the number density requires that ¢y = clRa'sj 2 Since N =

No + N1, we have
N (B.3)

3 1 1y
w!?% + 47} (Rf - Rg)

CO=

and
3
C] = CoRg . (B4)

Once ¢y and ¢; are known, the initial vortex configuration is constructed with radial
dependence obeying Eqs. (3.69) and (3.70). Each vortex is “placed” in the condensate

according to the following prescription:

¥
211'00/ rdr = 1, (B.5)
ri

for r < Ry and
s
27rc,f r32dr = 1, (B.6)
Ty

for r > Ry. For example, to “place” the first vortex in the condensate we solve Eq. (B.5)

for vy, with r; = 0 (i.e., we start from the center of the condensate). The radial position

[

R ORAR i B AT AT s

ok B A R S S B
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of the vortex is then given by (r; + r5}/2. After finding the radial position for the first
vortex we set 7; = ry, and find the radial position for the next vortex. The process is
repeated until all Ny vortices have heen “placed” within the radial region Rj.

To “place” N; vortices within the radial region Ry < r < R, we solve Eq. (B.6) for
r¢, starting with r; = Rg. Ouce a vortex position is obtained we set r; = ry, and find the

radial position for the next vortex. The process is repeated until the positions of all Ny

vortices have been determinad.




203

APPENDIX C
Density of Staies for a Photon Gas in R*"! Spacetime

To describe the evolution of the Universe in R4+! spacetime necessitates that we solve Eq.
(5.93) for the scale factor. This requires knowledge of the equation of state of the photon
gas (which relates radiation pressure and mass density). To derive the density of states of

a photon gas in R+, we consider standing waves in a four-dimensional hypercube, i.e.,

. [MITWN . [MaE\ . [MIAY\ . [(N4TZ
¢n1,n2,n3,n4(.‘r,y,z,w)=ASIII( iL )sm( 2L )sm( :};y) sm( 4L ), {C.1)

where A is a constant, n), no,n3 and ny are positive integers and L is the edge length of

the hypercube. The four-dimensional wavevector, k, is given by

w iy T T
k= (En! . Enz, "L"n3._. an) y (Cz)
with magnitude
w .
k] = -I:\/nf+n§+n§+n42. (C.3)

The spacing between poinis in k-space is /L, so the volume per cell is (n/L)!. The

surface area of an N-dimensional sphere of radius r is given by

Nre¥-17%
In 4 + 1 dimensions the surface area of a sphere is therefore
S(r) = 2n%3. (C.5)

The positive quadrant in k-space between & and & + dk is 1]—627r2k3dk, and the number of

standing wave modes is

_ 1 2.3 LA
f)dk = 1o (2n°kPdk) (L)
Viidk
- B (C.6)

where V = L4 is the volume of the hypercube. Using the dispersion relation w = ¢k, where
¢ is the speed of light, Eq. (C.6) becomes

3
Sy = B0

n2ct

(1)
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It can be shown that the partition function, Z{7T. V"), for the photon gas is given by (see
e.g., Mandi 1988),

nZ(T,V) = -2 /0 = flw)dwin [1 - e-ﬁ’W] , (C.8)

where T is the absolute temperature, 8 = 1/kgT. and kg is Boltzinann’s constant, The
factor of 2 in Eq. {C.8) is due to the two polarization states of the photon. Substituting for

f(w) into Eq. {C.8), the partition function for a photon gas in 4 + 1 dimensions becomes

Vw3 oo
47['2(:4 0

The Helmholiz free energy, F(T, V)= -kgTIn Z(T,V), is given by

W Z(T,V) = — dwln [1 - e*ﬂﬁw] . (C.9)

F(T,V) = Zkf{ i wdwIn [1—e-ﬁﬁw]. (C.10) 3

Introducing the variable = Sfw, and integrating by parts, Eq. (C.10) becomes

VERT® [® o
F(T,V) = _167(25404 i =74z, (C.11)

3Vk
2?1_2’-14 W C(s)s

(C12)

where ((5) = 1.03693... is the Riemann zeta function evaluated for n = 5. From the
Helmholtz free ¢cnergy we obtain other thermodynamical properties, e.g., the entropy, S,
pressure, p, and energy density, p. These are defined as
OF
5=- (5’%)

15VES,T

- ) (C.13)
__(oF o
E = 8V T Ch
= 2«25 L“C( 5), (G14) S
_ F+TS | o
P v,
6k3,
= 7(25 4‘:() (015) 1 '{

From Egs. (C.14) and (C.15) the equation of state! for a photon gas in R*t! spacetime
is given by
A=p (C.16)

T'he equation of state for a photon gas in B3+ spac.rive is p = p/3.
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Utilizing Eq. (C.16) and the solution to the Friedmann equation (5.93), zve deduce that

the matter density of the Universe in R1+! spacetim. -volves as p & a™% (see Sec. 5.5),

SRS AR E R B

in contrast to p» x a™! for R3*! spacetime.

N
30 G RR A N ol 210 L il
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Abstract

A numerical study of the stability of U(1) x U(1) x Z, Dirichizt topological
defects (D-walls) has been carried out for a classical scalar field theory. 1t
is found that the D-wails are stable for a wide range of coupling parameters
and under perturbations to the wall. However, when two walls are connected
by a string, they annihilate via a mechanism analogous to the Langacker-Pi
mechanism for monopoles.

PACS number; 1127

(Some figures in this article are in colour only in the electronic version)

Topological defects are predicted by field theories with spontaneously broken symmetries
[1). These defects can be classified as monopoles, cosmic strings, domain walls, or textures,
according to the homotopy group of the vacuum manifold. However, since domain walls
and monopoles are associated with adverse cosmological consequences [2], these particular
defects may never have formed, or formed and subsequently annihilated or were removed by
inflation,

Dirichlet defects were originally discussed within the context of superstring theory (ie.,
D-branes [3]), and a cormresponding model for cosmic topological defects was introduced by
Carroll and Trodden {4]. When cosmic strings terminate on a domain wall, it is known that the
wall is unstable io the nucleation of holes bounded by string loops [5]. Such holes can result
in the eventual decay of the wall defect; however, the time scale involved in hole formation
is thought to be extraordinarily large [5], which would seem to exclude hybrid topological
defects as a way of obviating problems with a domain-wall-dominated Universe. In this paper
we examine the stability of a Dirichlet defect (or D-wall) [4], in which cosmic strings terminate
on a domain wall.

Consider a simple abelian mode! based on U(1) x U(1} x Z, glebal symmetry breaking
[4]. In this model the spontaneously broken Higgs fields consist of a real scalar field, ¢, for
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the domain wall defect and two compiex scalar fields, (yr,, ¥5), for the string windings. The
model is defined hy the Lagrangian (withfi = ¢ = 1),

L= 38,3 + 0,91 0" Y1 + 8u¥20" Y2 — VI, Y1, ¥) (1)
where the potential is given by

Vi, Y1, ¥2) = Ap(@? — B2 4 2y [l + al? — 0 + 8% — )]
+ 1l Bl = pud (WP - (y2l?). 2)

The form of the potential is govemed by the coupling parameters, g, Ay, g, # and . If
the parameter u is Zero, i.e., the interaction between the different fields vanishes, then there
are four degencrate sets of vacuum expectaticn values (VEVs) which minimize the potential,
namely,

{$) = b W) =w {(Wal) =0 3

and
{$) =D (yaly =0 (2} = . (4)

As pointed out by Carroll and Trodden [4), for 2 Z; x Z» x Z; Dirichlet defect, once the value
of &t is increased from zero this degeneracy is removed. In this case there remain only two
sets of VEVs,

(@) =v () =w (Y2} =0 (5)

and

() = —~v {lin)y =0 {I¥l) = w. (6)

The boundary beetween regions with different VEVs defines a domain wall defect. String
windings in either of the y-fields can terminate on a domain watl, producing a D-wall, When
either of the y-fields terminate on the wall its VEV vanishes. In this case, the hybrid defect
resembies a free wall and is expected to be stable, since the Higgs field corresponding to a
Z, domain wall is stable. However, to establish the stability of the D-wall, it is necessary to
show that the wall is stable for a wide range of coupling parameters and when perturbations
are imposed on the wall. '

The form of the potential is governed by a multi-dimensional parameter space. We can
gain insigit into the parameters that govern the stability of the D-wali by examining the
minimum of the potential (2), which occurs at {¢) = vand (¢} = w, i.e.

4r40(v* - 7%) +2guv? — pw’® =0 (7
2ig(w? — w2+ g0 — 1)) — v = 0. (8)
These equations indicate that the VEVs of the ¢- and the y-fields do not depend on the
parameter A, which governs the interaction between the two ¥-fields. Because 1, terminates

on the wall from ‘above’ and ¥, terminates on the same wall from “below’, AlYr [*[yry |2 will

be approximately equal to zero everywhere. Using equations (7) and (8), we seek to establish
constraints on the other parameters in the potential, i.e.

w2

9

4= = [gj"’*f’z"wz] (19
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where, following [4], we have set & = ~1/12 and o and B are defined by

a = Myu(? —7%)? (i
B =20 — ) + (v? - D). (12

Equation (9) determines the conditions under which a D-wall forms. The stability of the wall
is dictated by the sign of A, in the potential (2). We note that Ay, — +00 if 4 > a/B, with
# = o/ B representing an unstable configuration. If 4, > O we have a Mexican hat potential
which characterizes a symmetry-breaking phase transition. However, if A4 < 0 the potenzial
does not exhibit symmetry breaking, i.e., the y-fields do not have non-zero VEVs, Thus, a
D-wall is precluded from forming unless we constrain the parameter, 2, which couples the
strings 10 the wali, i.e. ¢ > a/B. We know that a single domain wall is stable, therefore
varying the self-coupling, ). is unlikely to cause an instability in the D-wall; consequently,
we fix the value of A4 in cur numericat simulations. To facilitate comparison with the work
reported by Carroll and Trodden [4), weset 2 = &, ©% = —3, 1% = |, w? = 69 and Ay =

108. For this choice of symmetry-breaking scale, equations (9} and (10). become

8u?
M= lesin 174 13
1274
=33 (1: - 144) (14)

which constrains ¢ > i, where u. = 3174/1681 ~ 1.89. Equations (13) and (14) show
that the parameters Ay and g are completely determined for a given value of u. Thus, in our
numerical simulations, the string-wall coupiing parameter, i, is the only independent variable
and we can explore the stability of the D-wall by varying .

The equations of motion of the D-wall, derived from the Lagrangian (1), are

=3 =, (1)
The numerical solution to equation {15}, utilized a second-order ieapfrog difference scheme
[6]. To obyain a complete picture of the hybrid defect, simulations were carried cut for one
and two strings terminating on the wall, The initial conditions inveked cylindrical symmetric
vortex solutjons. In three dimensions, with the wall located at z = O and the strings located at
r = /x? + y? = 0, the cylindrical symmetric vortex is described by the coupled equations

32¢+1a¢+32¢ 13V

e e T 1% (16)
2 2 14 _
Tl - T TRy N ) (17)
The following ansatzen are assumed:
¥ = filr.2)e™ (18)
V2 = folr, )2 (19)
¢ = ¢, 2}, (20)

Since the resulting equations are non-linear, the solutions which define the D-wall are found
using an iterative finite difference scheme, whose convergence is sensitive to the choice of
spatial step, In order to-ensure that the solution converges, our numerical simulations employed
a spatial step 84 = 0.055. Once the vortex solutions is obtained, they are transformed into
cartesian coordinates and evolved vsing equation (15). Causality dictates that the time step
must be smaller than the spatial step; hence we chose 8f = 0.02. The size of our simulation is




L16s Letier to the Editor

Figure 1. Cross-sectional plot of the total energy density of the D-wall, The domain wall is Jocated
at z = 0 and the locus of the strings is along the z-axis at ¥ = 0. The cross-section corresponds (o
x=10,1=0. A perturbation is introduced on the wall, with amplitude A =1 andn=1.

200°* lattice points and we evolve the D-wall up 10 7 = 20 (correspending to 1000 iterations).
This time scale is long enough to ensure that any disturbance (noise) from the boundary is
able to affect the stability of the D-wall,

As it — p the numerical algorithm does not converge to a solution, since Ay — 00. To
casure that the simulations can be completed in a reasonable time frame, we have restricted
¢ 2 2.5. Numerical simulations were performed in the range 2.5 < ¢ £ 10, in steps of
dp = 0.5. Cross-sections of the iotal energy density of the D-wali {at r = 20), were plotted and
compared to the initial D-wall configuration (see figures 1 and 2). For the range of u-values
explored here, the D-wall showed no signs of instability. As x increases, the gradient of the
¢- and -fields also increases; however, this only changes the energy density of the D-wall
(a similar effect can be achieved by increasing the value of A4). Simulations involving one
string terminating on the wall also show the D-wall to be stable (see figures 3 and 4).

Wehave explored the stability of the D-wall when it is perturbed by harmonic perturbations
of the form

21

where A is the perturbation amplitude, » is a positive integer and —5.5 € L € 5.5 is the extent
of the domain wall in the y-direction. Simulations were carried out forz = 1, 2 and 3 and
for amplitudes 0 £ A £ 1.0. A perturbation amplitude A = 1.0 is large compared to the
thickness of the wall, § = ]/«/)_%v ~ 0.1 (for 4 = 6). 1t is observed that the perturbations
decay with time, with energy partly transferred into the strings. No instabilities are observed
when A is varied in the range 0 € A £ 1. Figures | and 2 show typical results (with A = |
andu=1).

When one string terminates on the wall, for example at z = —2.75 in figure 3, it exerts
tension on the wall, pulling it up to 2 = +2.75 (see figure 4). This phenomenon has some
interesting consequences if the other end of the string terminates on the second wall. Two such
walis connecied by a string are pulled towards each other (see figures 5 and 6). When the ends

wny
=AC S(-—-—)
z O I
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Figure 2. Cross-sectional plot of the total energy density of the D-wall at f = 20, evolved from the
initial configuration shown in figure 1, The ampliluge of the penurbation {in the z-direction) has
been reduced, indicating that the D-wall is stable with respect to perrbations on the wall. The
wall wansfers energy to the strings as is evident from the small peaks on the strings.

Figure 3. Cross-sectional plot of the total energy density of the D-wall (at ¢ = 0 ), with one string
erminating on a wall. The wall is located at z = —2.5 and the string Jocus is in the 2-direction at
y=0.

of the string come into contact, the string unwinds and the section of the wall on which the
string terminates nucleates a hole in the walls (see figure 6). The hole then expands outwards
resulting in the annihilation of the walls, This is analogous to the Langacker-Pi mechanism
[7], in which monopoles and anti-monopoles, connected by sirings, are drawn together and
annihilate.
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Figure 4, Cross-sectional plot of the D-wall at¢ = 13, evolved from the initial configuration shown
in figure 3. Comparison with figure 3 chows that the wall is stable; it is pulled in the z-diroction

due 10 string tension. The energy density of the wall is highesr than that in fipure 3, due 10 streiching
of tha wall under string tension.

Figure 5. Cross-scctional plot of the total energry density of iwo walls connected by a siring at
£ =12, In this frame we sce that the walls have been pulled towards each other under string ension.
Atg = 0 (not shown), the walls (located at z = £2.5) are undeformed. The string locus is along
the z-direction at y =90.

In conclusion, it is found that D-walls are stable for a wide range of coupling parameters
and under perturbations imposed on the wall. Our numerical study supports the carlier
speculation that D-walls are stable defects. The present results may have cosmological
implications, since a network of kybrid topological defects, such as D-walls, is expected to
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Figure 6, Cross-sectional plot of the total energy density of the D-wall ai { = 6, evolved from the
configuration shown in figure 5. As the two walls are pulled towards cach other, the ends of the
strings come into contact and unwind, thereby nucleating a hole in the walls. This hole expands

outwards resulting in the annihitation of the walls.

form in the early Universe. Walls connected by strings will quickly annihilate, rapidly diiuting
the energy density of the network, thereby obviating a domain-wall-dominated Universe,
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Abstract

We examine vortices in a self-gravitating dark matter Bose~Einstein condensate
(BEC), consisting of ultra-low mass scalar bosons that arise during a late-time
cosmological phase transition. Rotation of the dark matter BEC imprints a
back,-round phase gradient on the condensate, which establishes a harmonic
trap potential for vortices. A numerical simulation of vortex dynamics shows
that the vortex number density, n, & r~!, resulting in a flat velocity profile for
the dark matter condensate.

PACS numbers: 9535, G530, 9880C

Qbservational evidence ind:. irs that about 90% of the universe is composed of dark matter
[1,2). Support forthis hypothesis comes from the non-Keplerian fall-off in the rotation curves
of spiral galaxies [3}. Nuinerous models have been proposed to explain the flat velocity profiles.
One approach is 10 modify Newtonian gravity by adding terms to the gravitational potential,
However, this is an ad hoc procedure, which requires a negative cosmological constant [4].
Alternative scenarios consider a spherical distribution of dark matter in the galactic halo,
which acts as a self-attracting sphere of ideal gas at a uniform temperature (isothermal halo
model [5]). Other phenomenoiogical models have been developed to describe the asymptotic
behaviour of galactic rotation curves {3, 6]. These models are not predicated on any particular
dark matter candidate and assume an analytical form for the dark matter distribution, with
adjustable parameters chosen to fit the observations.

The nature of non-baryonic dark matter has also been the subject of widespread discussion
in the literatuse (see, e.g., [6] for a comprehensive review). Scalar matter fields have been
considered as dark matter candidates [6, 7]. Following a late-time cosmological phase
transition, pseudo-Nambu—-Goldstone bosons [8] are prodiced and under certain conditions
may condense as a Bose liquid. Fine tuning is required to ensure that this phase transition does
not impact adversely on nucleosynthesis or the isoiropy constraints imposed by the cosmic
microwave background, Recently, Silverman and Malleit [9, 10] considered a neutral scalar
field coupled to gravity. Spontaneous symmetry breaking of the scalar field gives rise to
uitra-low mass bosons ~2 x 10"2eV ¢2, I is conjectured that these particles constitute a
weakly interacting degenerate ‘ether’ (WIDGET), that can form a Bose~Einstein condensate
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(BEC), with number density n ~ 6 x 10* m~3. The temperature of the phase transition giving
rise 1o these bosons is T, ~ 2 x 10°K, corresponding to the state of the universe about 1 s
afier formation. In the present epoch, a cosmic BEC behaves like non-relativistic cold dark
matter {CDM), producing a spherical mass distribution which confributes to the Newtonian
potential. An interesting consequence of galactic rotation is that it can give rise to vortices
in the condensate with quantized circulation. This letter examines the ramifications of vortex
formation in a cosmic BEC and shows that vortex dynamics Jeads to a flat vefocity profile for
a rotating dark matter condensate.

Our starting point is the Goldstone model. which is specified by a Lagrangian density
with global U(1) symmetry i=c¢=1)

- A
L=38"Wy,V - Z(w[z—q?)z, ()

where ¥ is a self-coupled complex scalar field interacting only with gravity. The potential
energy of the field is modelied by a Ginzburg-Landau potential of the form utilized in a
phenomenological treatment of superfluidity [11]. The parameters A and i determine the

Compion mass of the scalar boson, i.e., m* = An?/2. The equation of motion, derived from
equation {1}, is

D‘P+%'¥(|‘I’lz-—1}2)=0. 2)

An axisymmetric static solution to equation (2), for a string oriented along the z-axis, is given
by the Nieisen—Olesen vortex of the form

¥(r) = f(r)e™, (3

where f(r) is the magnitude of the field configuration, r? = x 1+ y? 0 = @(x, y)is the phase
of the field and » is the winding number around the degenerate vacuum manifold, $!. In what
follows we setn = 1. For a vortex Jocated at the origin, the phase of the scalar field is given by
6(x,y) = tan~'(y/x). The magnitude of the field, f{r), is obtained by numerically finding
the static solution of equation (2} in cylindrical coordinates.

Consider a vortex embedded in a background scalar field, ¢g. The magnitude of the
background field is assumed to be constant; however, its phase varies according to V& - r. If
the phase gradient is a constant vector in the y-direction we can write ¢y as

do(y) = €, 4

where o = 8©/3y. We will return to discuss how a phase gradient is established in a cosmic
BEC. An Abrikosov ansatz is used to describe a vortex embedied in the background field, i.e.,

W(r, x, y) = {1, x, y)do(y). (5}
Substituting W (¢, x, y) into the Lagrangian (1), we obtain
; -0 3P A
L=3"Py,® +ia (¢3— - d)—) — P - =(1D2 — nD)°. (6)
ay dy 4

The scalar field can be represented by the quantum ‘hydrodynamic’ form, ¢, x,y) =
|®(r, x, y)|e*. For a vortex located at the origin we have 38 /3y = x/r?, which enables us to
write the potential energy term in equation (6) as

V(P = —2a|¢|2% +q21cblz + %(lq,:Z _ ??2)2- @

The dynamics bf a vortex in the background field is governed by the asymmetric potential
Vi = —2a|®12x/r2. The form of V, is determined from the numerical solution to the static
vortex f(r). The asymptotic vortex solution approaches the vacuum expectation value (VEV),
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Figure 1, Grey scale plot of the initial phase winding of a vonex embedded in a constant
background phase gradient oriented in the y-direction (with @ = 0.01), We havesei A =2 =2
(i.e., m? = 1}). The phase winding of the vortex, initially al rest a1 (5, (), is anticlockwise with
black denoting a phase of 0 and while representing a phase of 2.

for whicl: f(r ~» o0) = 5. However, the near-field solution is given by f(r) = cr, where
¢ = 0.58, hence V4 & —0.67ax. The resulting force on the vortex is therefore F;, = 0.67a,
whence a vortex embedded in a phase gradient (in the y-direction) experiences a force in
the x-direction that is proportional (o the magnitude of the phase gradient @. Numerical

simulations were performed to confirm this prediction. The equation of motion follows from
the Lagrangian (6}

[]dJ—Zia%;—") +0P P+ %¢(|¢|2~n2) =0. (8)

Equation (8) is numerically solved using a second-order leapfrog difference scheme, with
time step 81 = 0.01 and spatial step §4 = 0.1, where 8¢ < §h guarantees numerical stability.
The size of the simulation frame is 140 x 140, with a subset of data (20 x 20) chosen for
the purpose of visualization. The simulation was evolved for 6000 time steps. This procedure
obviates problems associated with the propagation of noise from the boundary. Figures 1 and
2 show a typical numerical simulation for a vortex in a uniform background phase gradient.
The phase gradient is oriented in the y-direction. The vortex, initially at rest, experiences an
acceleration in the x-direction, whose magnitude depends on a. As the sign of @ is changed
the acceleration of the vortex reverses. At the end of each simulation the phase winding of
the vortex reveals that the lines of constant phase are curved. This is a result of the vortex
trying to accommodate the background phase. The long-term cvolution of the vortex in the
background phase gradient is towards a state of constant velocity. The vortex can be thought
of as having non-uniform phase winding, giving rise to a self-force [12), which attempts to
restore its initial phase winding.

An important example of a phase gradient is that due to the presence of a second vortex,
Consider a vurtex located at she origin, interacting with a second vortex at an arbitrary position
(x, ¥). The background phase due to the first vortex is (x, ¥) = tan~" (y/x). The force acting
on the second vortex has components F, o« 86/3y and F, o« 38/3x. The vortex—vortex force
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Figure 2, Grey scale plot of the phase winding at the end of the simulation (# = 60). The vonex
shown in figure 1 experiences an acceleration in the x-dirrction and moves 10 (5.5, 0). The lines

of constani phase are curved, indicating that the voriex atiempis 1o accommaodate the background
phase gradient.

is long-range, falling off as 1/r, in agreement with the predictions of alternative vortex models
(see,e.g., [13]).

It is possible to arrange for a background phase gradient with components 3© fdx =
—-%SZ,y and 4©/dy = %Q_"x. This provides a harmonic trap potential for the vortices. The
strength of the trap is dictated by the values of Q, and Q,. For simplicity, we assume an
isotropic trap with axisymmetric rotation, for which £, = Q, = €. With this background
phase gradient, the equation of motion becomes

|
00+ S0P ~1)® - QL6 + 1726 =0, ©

where L, = i(y% — x%) is the angular momentum component and  is interpreted as

an angular frequency. The last term in equation (9) represents a harmonic trap potential
for the dark maiter BEC. Equation (9) is the relativistic version of the mean field Gross—
Pitaevskii equation, describing vortices in a stirred BEC [14). In a frame rotating with angular
velocity $2€,. a background phase gradient is imprinted on the dark matter condensate. This
is equivalent to an effective gauge field (€, x r)/Q*, where Q* is the bosonic ‘charge’,

We now consider vortices in a self-gravitating dark matter condensate. Since galaxies
are composed mainly of dark matter, we neglect the contribution to galactic dynamics from
the baryonic matter component, and utilize the Lagrangian for a gravitationally coupled self-
interacting complex scalar field (see, e.g., [15]), with a |®(* potential,

L= % R+ [guv(a,,@)(a.,q)) - -iiwr‘]] . (10)

where ¥ = 8w Gy is the gravitational constani in natural units, g is the determinant of the
metric tensor g, and R is the curvature scalar. Variation of equation (10) with respect to ¢
and g, gives the coupled Einstein noniinear Klein—Gordon equations,

G;w =xﬂw(¢) (]l)

R T P
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by
D¢+~2-|<I>|2¢=0. (12}

where G, = Ry, ~ 38,v R is the Einstein tensor and 7,,,(<P) is the energy-momentum tensor.
In curved spacetime the energy-momentum tensor and d’Alembertian are given by

i " - L
TP} = 2 [(%q’)(au‘b) + (3, ¢)(3u¢)] - f;—_p_—g (13)
Oy (V _ggnuau)
0= =< 14
In the weak field limit the metric tensor has the form (see, e.g., [16])
8uw = diag() +2V(x, y,2), -1, -1, ~1), (15)

where V(x, y, z) is the gravitational potential. Using equation (15) the d’Alembertian is
approximated by

1
1+2V
where a dot denotes a time derivative. In arriving at equation (16) we have set 8,8"Y = 0, and
assumed that the gravitational potential and scalar field are slowly varying spatial functions,
so that the cross-term, VV - V®_ can be neglected.

The self-interacting complex scalar field in the Lagrangian (10) does not break the global
U(1) symmetry. Symmetry breaking is induced by introducing a chemical potential, p, via
the stationarity ansatz

&, x,y,2) = "H(x, y, 2). (17}

Substituting equation (17) into equation (12) we obtain the nonlinear equation for the stationary
state

O~ 3,0"® =

¢ - Vo, (16)

_v2¢+ﬁ(|¢|2_ i )q;.——_.o (18)
2 142V ’
where 72 = 2u2/A. 1t is apparent from equation (18) that the symmetry-breaking potential,
in the presence of gravity, is A(|®2 — n?/(1 + 2V))?/4. Replacing the |®}* potential in
equation(10) with this symmetry-breaking potential, the equation of motion for the scalar
field is now given by

2

| 2 A 2 n

PETANMERE) (]q’l T+2V
where we have explicitly included the angular momentum term, QL,®, which arises from
assuming a background phase gradient due to axisymmetric rotation of the dark mauer
condensate as discussed earlier (see equation (9)). The trap potential for the dark matter
condensate, 1€2%r2, has been omitted from equation (19), since Qr == 1073 for a typical disc
galaxy and the condensate is confined via gravitational interactions.

Clumping of the dark matter condensate arises because of the gravitational potential
72/(1 +2V} in equation (19). Since particle number is conserved, there will be an increase in
the field magnitude at the centre of the condensate. However, for convenience we set ¢ = g at
r = 0. For V & 1, we approach the flat space limit for which (1 +2V)~! =~ 1 — 2V, whence
the gravitational potential in equation (19) enters via a term of the foris p°AV @.

The equation governing the gravitational potential V is obtained from Einstein’s field
equation (11), with the source term specified by the energy-momentum tensor (13). Assuming
a spherically symmetric dark matter halo, the line element is given by

ds? = (1 +2V)dr? —dr? — r2sin? 8de? + dD?). (20)

)¢—QQ¢=Q (19)

'
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Using equation (20}, it is found that the time component of the Einstein tensor vanishes, Le.,

Goo = 0. For a static spherically symmetric scalar field, |¢| = f(r), the Toy-component of

the energy—momentum tensor is given by
2y 2V V72 v
e A A
2 kr k(1+2V)  «
where a prime denotes differentiation with respect to r. Setting Gop = « Ty, the equation
governing the gravitational potential, in the weak field limit, reduces to

Too = %f(r)"(] +2V)+ @2n

” 2 !_£ '?'_ )
v +;-V _2(l+2V)4f(r), (22)

where the terms f'(r)? and V" have heen neglected. Equation (22), governing the gravitational
potential, reduces to the well-known Poisson equation in the Newtonian limit.

The coupled equations {19) and (22) are solved numericaily using an iterative method.
This approach is reminiscent of the Hartree method used in describing many-electron atoms.
The parameters in the coupled equations are rendered dimensionless by rescaling according
101, — nxp, © — 70, Q - n72Q and « — nk. This eliminates #, and for simplicity
we have set A = 2,

Vortices form in a rotating dark matier BEC when the angular frequency exceeds a critical
value, 2, (see e.g., [10]). Immediately after formation, we conjecture that a disc protogalaxy
has a Keplerian velocity profile outside its nucleus (r > Ry), whereas for r £ Ro the
protogalaxy exhibits rigid body motion {53. Rotation establishes a background phase gradient
in the dark matter BEC, which is determined by the initial angular frequency profile, Q(r), of
the protogalaxy. When Q(r) > ., vortices are nucleated in the condensate. The backgrourd
phase gradient produces a harmonic trap for the vortices (expelling antivortices), with the trap
force exhibiting 2 radial dependence, whose magnitude in the Keplerian regime (r > Rg) is
given by

Fry o rQ@(r) = -————-—-W (23)

where Mp(r) is the mass of dark matter within radius r from the galactic centre. Each vortex

has a quantized circulation, #/m, and a voriex lattice forms with number density, n,(r),
determined from

h
Q@)= %’3;:("), (24)

where the parameter 8 is introduced to modify the strength of the vortex trap. According to
equation (23), the trapping force on a vortex (due to the rotation of the protogalaxy} has an
r~12 dependence. However, inter-vortex forces also establish a background phase gradient in
the dark matter BEC, with each vortex experiencing an r ~'/2 repulsive force within its causat
horizon dy. Initially dy is of the order of the coherence length of the BEC. The resultant force
on a vortex is zero, since the trapping force due to rotatien is balanced by the net repulsive
force from all other vortices, As dy increases, each vortex interacts with a larger number of
vortices; consequently, a vonex experiences a non-zero force that causes it to move out in the
radial direction. This results in an equilibrium vortex configuration with n, o r~', which
implies a flat velocity profile for the dark matter condensate (outside the galactic nucleus).
In the vicinity of the nucleus, rigid body rotation produces a uniform vortex density with a
concomitant zero net radial force on each vortex,

To confirm this conjecture, we have studied vortex dynamics in a harmonic trap using
numerical simulations. We assume a spherically symmetric distribution of dark matter (in
the galactic hato), and consider vortices in the two-dimensional transverse plane ry = (x, ¥).
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Figure 3. Radial plot of the WIDGET number density, |®2, in the absence of rowtion (2 = 0},
As « is increased, |12 changes from an approximately uniform numsber density 1o one where the
dark matter condensale begins to ‘clump’ al the centre of the protogalaxy.

We exploit the static vortex solution of equation (19), in the absence of rotation (2 = 0). Once
the static solution is found, it is wound onto a two-dimensional Cartesian grid. The initial
multi-vortex configuration is constructed using an Abrikosov ansatz. A leapfrog method is
then employed to evolve the equation of motion (19). The numerical simnlation arrives at
a final vortex laitice based on an initial Keplerian configuration for r > Rg, and rigid body
motion for r £ Ro. In order to maintain rigid body rotation, for r < Ry, it is necessary to
‘tune’ the strength of the trapping force by choosing a value for the parameter 8. For 8 < 1.4,
it is found that vortices are not confined to the galactic nucleus (r < Rp); consequently, we
have set 8 = 1.4 in our simulations. The vortex configuration is initialized using a number
density n, = ¢cp (£ Rp), and 1, = cir=13 for the Keplerian regime {r > Rg), where ¢p and
¢1 are constants, A grid of radius R; = 1800 is chosen with By = 100. The number of
vortices is determined by the rotational velocity of the protogalaxy, but is expected to be of
the order of several hundred for a typical spiral galaxy [10). The present simulation uses 500
vortices and a grid of size 4600 x 4600. The grid size is sufficiently large that, at the end of
the simulation (¢ = 500), noise from the boundary does not propagate into the visualization
frame (3300 x 3300). For these simulations we set the spatial step 84 = 1 and the time
step 62 = 0.2. Although the initial voriex configuration is prescribed radially, its angular
distribution is random. A pseudo-random number generator is used to establish the angular
distribution (see figure 4). Since the initial separation of vortices can be small, the Abrikosov
ansatz js expected to generate numerical noise as the simulation cvolves. To remedy this we
inireduce a damping term, b3d /812, into equation (19), where b is a small positive constant
ih = 0.18r). The radial dependence of the vortex number density, n,(r}, is calculated from
tha sumber of vortices inside an annular region, with ér = 2. However, with a small number
of vortices this procedure leads to large variations in n,{r). To ameliorate this problem we
smooth the number density using a Gaussian filter, centred on radial position ry. The filter has
the form w(r) = exp[—0.552(r — ro)1, where s = 4+/In4/3 Ry. This corresponds to a kemnel
with a full width at half maximum of 3Ry/2. Although the vortex number density has been
smoothed, this procedure does not modify the positions of vortices in the lattice.

Figure 3 shows a radial plot of the WIDGET number density, [®|?, for various values of k
in the absence of rotation (2 = 0). Rotation produces a centrifugal potential which modifies
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Figure 4. Initial configuration of 500 vortices located within Ry = 1800, with « = 2 x 1078,
The angular distribution of vortices is fandom. The voriex number density, #,(r), is constant for
r % Ry (Rp = 100}, characierizing rigid body rotation, The trap parameter § = 1.4 as discussed
in the ext. For r > Ry, the initial vortex configuration exhibiis 2 Keplerian velocity profile, for
which Q(r) & r=13,
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Fipure 5. Fina! configuration obtained by evolving the vorlices in figure 4. At (he end of the
simulation ( = 500), the vortex configuration (with 442 vortices remaining within the visualization

frame) is characterized by a non-Keplerian profile (r > Ry), with Q(r) o #~\.

the number density. A value of ¥ = 2 x 10~ produces a dark maiter profile consistent with
that adopted in the literature (see, e.g., [6]). Our simulations indjcate that the velocity profile
of the rotating dark matter condensate is insensitive to the value of . Figures 4 and 5 show
typical simulations for a rotating dark matter condensate, with & = 2 x 1075 Tt is observed
that the initial vortex configuration evolves towards a triangular lattice, whose number density

(outside the gatactic nucleus, Ro) falls off as r~'. Figure 6 is a plot of the rotational speed,

i g = TR TR N T Y T
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Figure 6. Velocity profiles based on the situlations shown n figures 4 and 3. Initially, the dark
smatter condensale has a Keplerian profile for r > Rg. At the end of the simulation (¢ = 300) we
obtain a Aat velocity profile, with oscillatory structure du: 10 local variations in the voriex number
density. The filled circles represent th: rotation profile of the Milky Way galaxy (data derived
from [17]). Our simulated rotation curve has been scaled 1o facilitate comparison with data for the
Milky Way galary.

Y (r) = r§2(r), at the start and at the end of the simulation (¢ = 500). The velocity profile
at ¢ = 500 has been scaled in order to facilitate comparison with the rotation curve of the
Milky Way galaxy [17). We sze that close to the galactic centre the velocity profile exhibits
rigid bedy rotation, but has a flat velocity profile out to large distances from the galactic
centre. It is noteworthy that the rotation curve shows o<cillations. These arise because the
angular frequency is determined from the local vortex number density, which is expected 1o
show departures from the r =} dependence. The asymptotically flat velocity profile of the dark
matter component is found to be insensitive to specific values of the model parameters, such
as Rp and x. To account for visible matter in the model of galactic dynamics, we include
a baryonic mass density, pg, in the energy~momentum tensor {13). Since the scalar bosons
are uncharged they do not participate in electroweak interactions—the only coupling between
baryonic and dark matter is via gravity. However, the inclusion of a baryonic mass density
does not affect the qualitative predictions of our model.

In conclusion, scalar particles arising from a late-time cosmological phase may be a
major component of dark matter, and under certain circumstances it is possible for these scalar
particles to form a degenerate superfluid (BEC). Rotation of a self-gravitating dark mauter
condensate gives rise to quaniized vortices, which evolve towards a vortex lattice whose
number density, n,, o r~!. This suggests that a rotating dark matier condensate will have a
flat velocity profile. To provide a quantitative understanding of hierarchical clustering and
gravitational instabilities we will require a large N-body simulation of structure formation,
including a three-dimensional model of vortex dynamics, Nevertheless, the current paper has,
demonstrated a hitherto unexpected role for vortex dynamics in the evolution of disc galaxies.
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Wavefunction reconstruction of complex fields obeying non-linear parabolic equations

Yaw-Ren E. Tan, David M. Paganin, Rotha P. Yu, and Michael J. Morgan
School of Physics and Materiols Engineering, Monash Universily, Victoria 3800, Ausirelia
(Dated: June 26, 2003)

‘We present a generalized Gerchberg-Saxton (GS) algorithm for reconstructing a (2+1)-
dimensional complex scalar wave-field which obeys a known non-linear non-dissipative parabolic
differential equation, given knowledge of the wave-field modulus at three or more values of an evo-
lution parameter such as time. This algorithm is used to recover the complex wavefunction of
a (2+1)-dimensional Bose-Einstein condensate (BEC) from simulated modulus data. The Gross-
Pitaveskii equation is used to model the dynamics of the BEC, with the modulus information being
provided by a temporal sequence of sitnulated absorption images of the condensate. The efficacy of
the generalized GS algorithm is examined for a wide range of simulation conditions, including strong
non-linearities, vortex states and Poisson noise. The general form of this algorithm, which allows
one ie reconstruct a time-dependent wavefunction, will be useful for studying the phase dynamics
of topological defects in coherent quanium systems.

PACS numbers: 03.75.Lwm, 03.75.Kk, 42.30.Rx

I. INTRODUCTION

The celebrated “phase problem” poses the question of
determining the phase of a complex function using infor-
mation about its modulus, supplemented by any relevant
a priori knowledge. Solutions to particular phase prob-
les (i.e., phase retrieval) have been studied in fields as
diverse as astronomical imaging [1], crystallography [2),
optical microscopy [3}, electron microscopy [4], point pro-
jection imaging {5} and x-ray diffraction [6]. These exam-
ples deal with the problem of phase retrieval for matter
or radiation wave-fields whose evolution is governed by
lincar partial differential equations. However, not all sys-
tems are governed by linear equations. For example, non-
lincar electromagnetic wave phencmena such as solitons
(7] have long been studied by the non-linear optics com-
munity. Non-linear evolution also occurs for water waves
8], acoustic waves (9] and plasmas [10]. A topical ex-
ample of non-linear wave-field evolution is Bose-Einstein
condensation, the dynamics of which are modelled at zero
temperature by a non-linear parabolic partial differential
equation for the complex order parameter - the Gross-
Pitacvskii equation [11-13].

There is emerging interest in the problem of phase re-
trieval for wave-fields which obey non-linear equations
(see c.g. [14, 15]). Such studies have made first steps
lowards the goal of routinely determining phase for
strongly non-linear systems. An important motivation
for these studies is the fact that the canonical method of
phase reconstruction, namely interferometry [16), is not
applicable to strongly non-linear systems. Interferomet-
ric phase determination fails because the superposition
principle does not hold for non-linear wave-fields: the
superposition of the “reference wave” and the wave-field
under study is not a valid solution to a given non-linear
equation, even if the two wave-fields separately satisfy
this cquation.

The aim of this paper is to derive a phase-retrieval
methed, applicable to non-linear complex fields, which

generalizes the Gerchberg-Saxton (GS) algorithm [17].
This is applied to the reconstruction of complex
wave-fields that obey known (2+1)-dimensional non-
dissipative non-linear perabolic partial differential equa-
tions, given as data the modulus of the wave-field at three
or more values of a given evolution parameter. This evo-
lution parameter is typically either time ¢ or propaga-
tion distance z; we refer to the evolution parameter as
“time” for the remainder of the paper. Solution to a given
phase problem amounts to ebtaining total knowledge of
a quantum-mechanical complex wave-field (as encoded in
the complex scalar wavefunction, macroscopic wavefune-
tion or order parameter), or of a classical scalar radiation
wave-field (as encoded in its complex analytic signal {16]),
given as data the modulus of the wave over certain sur-
faces in space-time. We will refer to such modulus data
as “holographic snapshots”, since they constitute in-line
holograms in the sense originally formulated by Gabor
[18].

The outline of the paper is as follows. In Sec. II we
describe the algorithm for the phase retrieval of waves
obeying known non-linear parabolic equations, given a
set of holographic snapshots. These snapshots may be
supplemented by any relevant ¢ priori knowledge which
places constraints on the value of the wavefunction on
the surfaces over which the holographic snapshots are
taken. This algorithm is a generalization of the famous
method of phase retrieval due to Gerchberg and Saxton
[17, 19]. As an example of the application of these ideas
to a strongly non-linear vortex-riddled system, Sec. III
gives a robust means for recovering the wavefunction
of a (2+1)-dimensional Bose-FEinstein condensate which
evolves according to the Gross-Pitaevskii equation, given
simulated images of the modulus of the wavefunction at
three or more times. We highlight the efficacy of the
algorithm and discuss its applicability to experimental
observations. We offer a discussion in Sec. IV, and con-
clude with Sec. V.
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II. GENERALIZED GERCHBERG-SAXTON
ALGORITHM

The Gerchberg-Saxton {GS) algorithm [17, 19] is a
well-known solution to the following phase problem:
given the modulus [¥(r )] of a complex scalar function of
two space variables r; = (z,y), together with the mod-
ulus |[F{¥(r1)}| of its Fourier transform with respect
to r1, can obe reconstruct the complex wavefunction
¥{ry)? This phase problem, now known as the “Pauli
problem”, was first considered by Pauli in the context of
guantum mechanics [20].

In its original and simplest form [17], the Gerchberg-
Saxton algorithm claims the following iterative solution
to the Pauli problem:

P . Wy
tIf(rl)=Nli_Jp°°(P1F"P2F) N(r ). (1)

Here, N is the number of iterations of the algorithm
{taken to be sufficiently large for convergence to be at-
tained), F* denotes the operator for Fourier transforma-
tion with respect tor, £=1 is the inverse Fourier trans-
form, Py is a projection operator which replaces the mod-
ulus of the function on which it acts by the known func-
tion [¥{r }{, and P2 is a projection operator which re-
places the modulus of the function on which it acts by the
known function |F¥(r, }|. Note that all operaters in Eq.
(1) act from right to left on the initial estimate |\¥(r }|
for the reconstructed wavefunction, which has the correct
modulus and a constant phase.

Convergence of this algorithm is often problematic,
with stagnation being a common problem {21]. Modi-
fications such as those due to Fienup [21] may be used
to achieve a more robust algorithm for attacking a given
Pauli problem, although one might argue that such modi-
fications lack the compelling simplicity of Gerchberg and
Saxton’s original proposal. For recent work employing
the Gerchberg-Saxton-Fienup algorithm, see Weierstall
et al. [22] and references therein.

In this article, we do not follow Fienup and others
in seeking modified forms of the Gerchberg-Saxton algo-
rithm which better solve the Pauli problem. Rather, we
turn our attention to a class of related but different phase
problems, which make use of slightly larger datasets of
three or more images. With this in mind, note that the
Fourier transform operator, which appears in Eq. (1), is
unitary. This unitary operator :nay be replaced by a dif-
ferent unitary operator [23]. such as the Fresnel transform
(24)(which evolves a solution: Lo the linear parabolic equa-
tion forwards or backwards in time); note that the Eresnel
transform is formally identical to the time evolution oper-
ator for the (2-+1)-dimensional free-space time dependent
Schrédinger equation. One is therefore led to a variant
of the GS algorithm using a sequence of two-dimensional
images related to one another by the Fresnel transform
(25). Superior results may be obtained when more than
two images are incorporated into this elgorithm [26]. In
particular, Allen et al. |27, 28] used a through focal series

(TFS) {|¥(r1,t2)],|®¥(xL, t2)l. |¥(r1,t3)|,+- -} of three or
more images to demonstrate the robustness of the GS al-
gorithm in the presence of both noise and vortices; they
did this for the case of a wavefunction obeying the linear
Schridinger equation:

(ic8/0t + V2 )¥B(r ,t) = 0, (2)

where « is a constant, V2 is the Laplacian in the two-
dimensional plane containing r;, and { is the propa-
gation distance for a time-independent paraxial beam
along a nominal optic axis {29]. When three images
were employed, application of a modified GS algorithun
with Fourier transforms replaced by Fresnel transforms,
namely:

lI'(r,;_,tl)-——'
. P o PN N
lim (P01 PuUs2Pslnafilis) (oL, (3)

N—oo
yielded extremely robust and stagnation-free convergence
to the correct solution, for a wide varicty of numer-
ical experiments. Here, the Fresnel transform U,
{time-evolution operator) for Eq. (2) is defined by
I:-’mm‘l'(r,q_,tm) = ¥(ry,t,), where m,n = 1,2,3, and
B, is a projection operator which replaces the modulus
of the function or which it acts by the known function
|¥(ry,t.)]. The robustness of this algorithm, when ap-
plied to three or more images. was maintained even in the
presence of spontaneously-generated wave-field vortices.

Both Eqgs.(1) and (3) apply an iterated sequence of
operators (projection operator, unitary operator, projec-
tion operator, unitary operator etc.) to an initial esti-
mate for the reconstructed wavefunction which has the
correct modulus and a constant phase. The three images
employed in Eq. (3) were found to lead to considerably
greater robustness in numerical experiments when com-
pared to reconstructions based on two immages. This ro-
bustness was maintained when the Fresnel transform in
Eq. (3) was replaced with a more general class of lin-
ear unitary operators describing <oherent shift-invariant
linear imaging systems [30].

In the context of the present paper, we explore general-
ized forms of Eq. (3} which replace U/ with 2 unitary non-
linear evolution operator. Consider the following class of
non-linear non-dissipative parabolic equations (cf. [15]):

(iad/ot+4VL +B+V + FIEY) ¥ =0,  (4)

where «, 3,7 are real numbers, V = V{(ry,t} is a real
potential, f is a real function of a real variable, and ¥ ==
¥(r,t) is a complex function of two space variablesr, =
(x,y) and one evolytion parameter t. Special cases of
our class of non-dissipative non-linear equations include
the (2+1)-dimensional linear and non-linear Schrédinger
equations [31], the paraxial equation of classical scalar
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optics [29], the (2+1)-dimensional Gross-Pitaevskii equa-
tion {11-13], and the cubic-quintic parabolic equation for
“liquid light” [32].

We address the following non-linears
phase  problem: Given a consecutive series
(UL )l (B, t2)ly -, [U(rL, )]} of M 2 3
holographic snapshots, where ¥(r,,t) obeys a known
equation which is a special case of Eq. (4), can we
reconstruct the full complex wavefunction ¥(ry,¢}? The
wavefunction is to be reconstructed for all times lying
in the time interval ¢t € (¥; — A1,tx + A2), where the
positive real numbers A, and A, are sufficiently small
that, at the mumerical accuracy to which the wavefunc-
tion is approximated and the modulus data measured,
the vaiue of the wavefunction for any ¢t € (t) — A,,%;) or
t € (ta.%ac + Ag) may be accurately obtained from the
houndary values ¥(ry,t,) and ¥(ry,tp), respectively.
Similarly [fm — tm+1|, where sn = 1,2,---,M — 1, must
be sufficiently small that, at the numerical accuracy
to which the wavefunction is approximated and the
modulus data measured, ¥(r,,t} for any t € (tm,tm+1)
may be accurately obtained from either of the respective
boundary values ¥(r),tm) or ¥{ri,tm41)-

We postulate that the following generalized Gerchberg-
Saxton (GGS) algorithm gives a solution to our non-
lincar phase problem (cf. [30]):

qj(rl,tl) =
M=1 2 N

h;Enw ( 11 PlUir4 1_}1[4 P,-'Ui-l.s) |{rL,t1)|. (5)
= =

Since the class of equations (4) is non-dissipative, the
sssociated non-linear time evolution operator U will
be unitary: we definc this operator via the equation
Unn®(ry,ty) = ¥(ry,t,), with U being such that ¥
is a olution to BEq. (4). If no a priori knowledge is
asswned, then P,‘;; = P.,. If, however, additional con-
straints on any or eachAof the wavefunctions ¥{xs,¢.,)
are given, then I:','n = PV P, where P is an operator
which projects the wavefunction upon which it acts into
the space of wavefunctions consistent with the given a
priori knowledge. For example, P/ might be used to im-
pose such a priori knowledge as finite support for a given
value o £,

Equation (5) contains as special cases the GS algo-
rithm [17) of Eq. (1), Misell’s algorithm [25], the TFS
algorithm of Eq. (3), and variations of the TFS used in
[30]. This algorithm retains the compelling simplicity of
Ce:chberg and Saxton’s original proposal, as Egs.(1) and
(5) both comprise an iterated sequence of unitary evolu-
tion and projection operators, which is applied to an ini-
tial cstirnate of the reconstructed wavefunction that has
the correct modulus and a constant phase.
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III. RECOVERING THE WAVEFUNCTION OF
A BOSE-EINSTEIN CONDENSATz

Bose-Einstein condensates [33, 34} give an interest-
ing arena for retrieving the phase distribution of a
wavefunction whose underlying dynamics sre non-linear.
Such condensates provide the opportunity to engineer a
complex-valued macroscopic wavefunction (order param-
eter). For example, rotating a Bose-Einstein condensate
(BEC) gives rise to quantized vortices [35, 36] whii can
be observed using absorption or dispersive imaging tech-
niques (37]. In this context, phase retrieval gives a useful
tool for studying the dynamics of topological phase de-
fects [38). In this section, we apply a special case of Eq.
(5) to the problem of reconstructing the wavefunction of
a (2+1)-dimensional Bose-Einstein condensate.

A. Modelling of a {241)-dimensional BEC

To simulate a BEC we employ a mean-field approach
using the Gross-Pitaevskii (GP) equation [11-13], ne-
glecting quantum and thermal fluctuations. We assume
confinement of the BEC in the z direction, which al-
lows us to describe the eondensate in the two-dimensional
transverse plane r | = (z,y). The simulated BEC is con-
fined in a trap modelled by a harnionic oscillator poten-
tial {39):

. 1
Virap(rL) = Emeri, (6)

where m is the mass of the atomic species, 73 = |ry|?,
and ¢, wy are oscillator frequencies which determine

the trap frequency via w = fwZ+w?l We now in-

troduce dimensicaless harmonic oscillator units [40] in
which the unit of length, ap,, corresponds to the aver-
age width of tie Gaussian ground state wavefunction:
Aho = \ﬁm, where wyo = |/wywy is the geometric
mean of the oscillator frequencies. Using re-scaled vari-
ables, for which wgol, ano and fiwy, are the units of time,
length and energy respectively, the time-dependent GP
equation may be written as:

: d T o 1 2 1 2
i = [ Vi evan)e @)
where ¥ = ¥(r, ,1) is the condensate wavefunction nor-
malized to unity, and Vﬁ_ is the Laplacian in the x — y
plane. We identify the non-linear term V{|¥|) = g|T|?
with atomic interactions in the Bose gas, where g is the
coupling constant (self-interaction coefficient). This con-
stant is related to the s-wave scattering length, ez, of
a binary collision by g = 4nNa,fan,, where N is the
number of atoms in the condensate [40)].
To simulate the BEC, Eq. (7) was evolved through
time using a fourth order Runge-Kutta method with spa-
tial step Ah = 0.15, and time step At = 0.003. These
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parameters were chosen 1o ensure stability of the numer-
ical integration scheme, and were used for all simulations
in this paper. In these simulations, the initial condition
used was the ground stete wavefunction of the condensate
in the given trapping potential. This ground state was
calculated by using the time-independent GP equation
that follows from substituting ¥(ri,f) = ¥(r) Je~ i
into Eq. (7), where u is a real energy parameter {chem-
ical potential). The time-independent GP equation is
then given by:

WO(r2) = |~5VE 4+ e+ W] ). @

Equation (8) was solved for the ground-state wavefunc-
tion using a diffusion Monte Carlo method {41], which
finds the minimum energy configuration using a steepest
descent approach. In the absence of interactions (g = 0),
Eq. (8) reduces to that for the quantum harmonic os-
cillator, whose ground state is a Gaussian wavefunction.
However, for g > 0 the condensate is broadened relative
to the g = 0 case, as a result of repulsive atomic interac-
tions.

B. Absorption imaging of a BEC

BECs can be imaged using absorption, fluorescence
and dispersive techniques [39]. We shall consider simu-
lated absorption images as input to the GGS algorithm in
Eq. (5). However, we emphasize that dispersive imaging
is equally well suited to the phase-retrieval methodology
described here, provided that one is able to use a dis-
persive image to compute the probability density which
forms the input to the GGS algorithm [37).

Here, we assume a thin lens approximation and con-
sider the case where coherent laser probe light, propa-
gating in the z direction, arrives perpendicular to the
& — y plane containing the condensate. The probe light
ficld is assumed to be uniform immediately upstream of
this plane, and the condensate is assumed to be well ap-
proximated by two-level atoms under the rotating-wave
approximation. The intensity of the probe light at the
exit surface of the BEC is then [39]:

I(ry) = Ipexp (—-I-E_E%) . (9)

where fp is the incident intensity of the probe beam, g¢
is the resonant scattering cross-section, i = [ n(r ), z)dz
is the integrated number density of atoms in the con-
densate, and § is the detuning factor measured in half
linewidths of the probe laser. This detuning factor is de-
fined as § = (w — wo)/(3T), where wp is the resonant
lrequency of the BEC, w is the frequency of the probe
light and T is the linewidth of the laser. Note that we
identify 7t(ry,2) with N{¥(r,¢){%

In all simulations presented in this paper, Eq. (9) was
used to model the process of forming an absorption im-
age. Before being used as input into Eq. (5), each series
of simulated absorption images was digitized to 16 bits.
This was achieved by adjusting the detuning parameter
4§, which appears in the normalized absorption coefficient
oo/(1 + %), to ensure that the range of digitized trans-
mitted intensity signals lies within the range 500 to 65000
counts.

C. Case I - Interference of two BECs

We first consider the situation where two spatially sep-
arated BECs are created in a double-well trapping po-
tential, and then allowed to expand and overlap after the
trap is turned off [42] {“Case I”). This double well poten-
tial was modelled by replacing the trap potential 3r in
Eq. (7) with 272 4 Viaser, where Vi, is the potential
associated with a thin static sheet of laser light bisecting
the trap. We modelled the potential of this sheet with
the Gaussian:

I‘/Ee:;.se:l' = exp['_ﬁ: (I - 3:0)2 - ﬁy(y - 90)2], (10)

where & = 100 is the peak value of the potential, 8; =
0.306 and 8, = 0.010 are inversely proportional to the
width of the laser beam in the z and y directions, and
{zo0,y0) = (0,0) gives the centroid of the beam.

In this and all subsequent simulations, the Cartesian
coordinate system {x,y) is mapped onto a square lattice
of 2 x 2™ pixels, where m is a positive integer. The
origin {z,y) = (0, 0) of Cartesian coordinates is identified
with the “central” pixel, whose locaticn is reached by
first moving 2™~ — 1 pixels to the right of the bottom-
left pixel, and then moving 2™~1 — 1 pixels above the
resulting lattice point. The physical width and height
of each pixel was, in all simulations, equal to the spatial
step Ah = 0.15; the time step was in all cases equal to
At = 0.003.

Using the double-well potential %ri +Vigser, and 2™ =
256 pixels, the BEC was modelled with three different self
interaction coefficients: g = 0, g = 100 and g = 1000.
The latter two values for g correspond to a high degree
of non-linearity. The initial condition (ground state} of
the BEC was generated for each value of g using the
procedure described in section A. Figs. 1(a) and 1(b)
respectively show the modulus and phase of the g = 1000
case of the interference of two spatially-separated BECs,
t = 300 timesteps after the trap has been switched off,
allowing the BEC pair to expand and overlap. Note that
Fig. 1{c) will be discussed in Sec. IIIE.

D. Case II - Stirred condensate

We next consider stirring a BEC with a tightly focused
blue-detuned laser beam [43, 44| (“Case II"). This blue-
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FiG. 1: Greyscale plots of (a) simulated modulus and (b)
phase of lwo overlapping BECs, 300 timesteps afler a double-
well (rap has been turned off and the condensate allowed to
expand (g = 1000). (c) Phase reirieved with N = 300 it-
crutions of Fq. (5), using as input data the five simulated
alsorplion tmages at t = 100, 150, 200, 250 and 300 timesteps
after the trap was turned off. In all phase maps, which are
modulo 27, black denoies & phase of 0 and white denotes 27,

detuned laser light was modelled by a moving Gaussian
potential:

Vigser = aexp|=Ba(T — g — v5t)? — By ~ yo — 1)),

(11)
The centroid of this potential has initial coordinates
(%0, Yo ), with this centroid being swept through the con-
densate with velocity (vz, vy). The Gaussian potential of
the moving laser beam was again incorporated into the
GP equation (7) by using the potential 372 + Vigger. The

parameters used in Eq. (11) were o = 30, 5, = 3, =3,
(0. y0) = (-1, —11), (v, vy) = {0,2). The ground-state
initial condition was generated over a 128 x 128 pixel grid
without the laser beam, with g = 100. We then “switched
on” the moving laser potential at ¢ = 0. The parameters
chosen for the potential in Eq. (11) are such that the stir-
ring laser beam, which is initially outside the simulation
frame, is passed through the condensate before leaving
the simulation frame at { = 2900 timesteps. Figs. 2(a)
and 2(b) respectively show the modulus and phase of the
condensate wavefunction, 4600 timesteps after the stir-
ring was completed. A number of counter-propagating
quantized vortex pairs have been nucleated by the laser
stirring, these being evident as screw dislocations in the
multi-valued phase {38} of the wavefunction in Fig. 2{b}.
Fig. 2(¢) will be discussed in the next sub-section.

E. Phase Retrieval of the BEC Wavefunction

Here, we model the phase retrieval of a BEC wavefunc-
tion using Eq. (5), in which the non-linear unitary time
evolution operator U is determined by Eq. (7). The input
to the GGS algorithm in Eq. (5) is obtained from three or
miore sequential absorption images of the BEC. To syn-
thesize these absorption images the condensate is mod-
elled according to either Case I or II, allowed to evolve
for a fixed time, and then imaged according to Eq. (9).
The natural logarithm of each of these absorption images
is proportional to the modulus of the condensate wave-
function.

Since the condensate is disturbed by the absorptive
imaging process, experimental recording of the multiple
images used in Eq. (5) requires identical systems to be
prepared and evolved for different times before being im-
aged. In this way it is possible to record the dynamics
of an evolving BEC [45], and lience obtain the necessary
data for wavefunction reconstruction using Eq. (5). Al-
ternatively, one may use quantitative dispersive imaging
techniques such as those described by Turner et al. [37],
to non-destructively obtain such a series of images using
a single condensate.

Fig. 1 shows the phase reconstruction for the non-
linear double-well simulation described in section C. Here
a sequence of five imagss, at ¢ = 100,150, 200, 250 and
300 timesteps after switching off the double-well trap,
was used as input for Bq. (5). This noise-free simmlation
required 300 iterations of Eq. (5) to yield the recon-
structed phase at ¢ = 300, as shown in Fig. 1(c). Since
the retrieved phase is only known up to an additive con-
stant, the phase of both the true and reconstructed wave-
functions have both been set to 7 at the central pixel.

Qualitatively, the phase in Fig. 1{c) is well recon-
structed over all parts of the image for which the proba-
bility density is non-negligible. However, to give a quan-
titative measure of the the closeness of the kth iterate
Bk} of the reconstructed wavefunction to the true wave-
function ¥, we calculate the normalized root mean square
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FIG. 2: Greyscale plots of {a) modulus and (b) phase of a
simulated BEC, 4600 Limesteps alter completing slirring of
the ground state of a harmonic trap with a moving laser spot
{g = 100). (c) Phase retrieved with N = 20 iterations of Eq.
{5). using as inpul data the nine simulated absorption images
at { = 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500 and 4600
limesteps after stirring was commenced. In all phase maps,
which are modulo 27, Dlack denoles a phase of 0 and white
denotes 27,

{RMS) error by:
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(12)

whore 4, § denote the grid coordinates in the 2™ x 2™
pixel image. Using this error metric, the RMS error in

the wavefunction reconstruction of Fig. 1 is 2.7 x 10~3,
Having completed the g = 1000 “Case I" recoustruction,
the analysis was repeated for two further values of g,
namely g = 0 and g = 100. The g = 0 version of Case 1,
with three images at ¢ = 400, 600 and 800 timesteps after
switching off the trap, required 498 iterations to yield an
RMS reconstruction error of 6.9x 1073, The g = 100 ver-
sion of Case I, with five images at ¢ = 400, 500, 600, 700
and 800 timesteps, required 498 iterations to yield an
RMS reconstruction error of 5.5 x 1073, All of these
RMS reconstruction errors compare favorably with the
RMS error of approximately 1/ V25 = 4 x 10-3 which
was introduced by the 16-bit digitization of the simulated
absorption images, 2s described at the end of section B.

Fig. 2 shows the phase reconstruction for the
stirred BEC (“Case II”), in the presence of mul-
tiple vortices cteated using the procedure described
in section D. A sequence of nine images, at { =
3800, 3900, 4000, 4100, 4200, 4300, 4400,4500 and 4600
timesteps after commencing the stirring, was used as in-
put for Eq. (5). This noise-free simulation required 20
iterations of Eq. (5) to yield the reconstructed phase at
t = 4600 timesteps, as shown in Fig. 2(c). The phase of
both the truc and reconstructed wavefunctions was set
to 7 at the central pixel. Using the error metric in Eq.
(12), the error in the wavefunction reconstruction of Fig.
2 is 6.2 x 1073, Again, this compares favorably to the
RMS error in the input data.

To give more insight into the convergence properties
of wavefunction reconstruction using Eq. (5), Fig. 3

plots the RMS error af,f“) versus iteration number & for
the four scenarios described previously (i.e., Case I with
g = 0,100,1000 and Case II with g = 100). We see that,
in all cases, the RMS efror exponentially approaches a
value comparable to the RMS error (= 4 x 10™3) which
was introduced into the input data by the 16-bit digiti-
zation of the simulated absorption images. Interestingly,
the case with multiple vortices has a significantly more
rapid convergence than the three vortex-free cases. Of
the vortex free cases, it was the most strongly non-linear
{g = 1000} that had the most rapid convergence.

Since the act of imaging a BEC perturbs the conden-
sate, it is preferable to use as few probe photons as possi-
ble in forming an image of this quantuim state: too many
absorbed photons will destroy the condensate. In this
context, we investigate the performance of Eq. (5) in the
presence of significant amounts of noise in the simulated
absorption-contrast images. This noise was added by tak-
ing the noise-free 16-bit absorption images described in
section B, and then replacing the intensity at each pixel
with a random number drawn from a Poisson distribu-
tion; this distribution had a mean given by the noise-free
photon count at each particular pixel, with the photon
count being proportional to the noise-free signal in each
pixel. The noise added to a given image is fixed once
and for all by specifying the RMS Poisson noise £ on the
the maximum intensity of the noise-free image; this cor-
responds to a ray of the laser probe beam which does not
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FIG. 3: RMS error a\(,,k) in wavefuncilion reconstruction, calcu-
lated using Eq. (12), versus iteration number k. Case I, g =10
(solid line); Case I, g = 100 (dotted line); Case I, g = 1000
{dashed line); Case II, g = 100 (dot-dashed line}.

pass through the condensate. Evidently, the RMS noise
level g¢ in the absorption image will be greater (possibly
much greater) than £. Table I summarizes the RMS er-
ror o) in the reconstruction, with £ = 2.8 x 10~2, for
the four scenarios investigated in this paper (i.e., Case ]
with ¢ = 0,100,1000 and Case II with ¢ = 100). All of
these RMS errors compare favorably with the RMS error
a¢ introduced in simulating each of the noisy absorption
images, with a maximum “noise amplification factor” of

o Joe 2 1.36.

TABLE I: RMS error a},’“’ of the wavefunction reconstruction
in the presence of noise. The error was measured after &
iterations, at which point the algorithm had converged. All
simulations, with the exception of those indicated with an
asterisk, were voriex free.

g |€ o k cr.(,k)
0 |0.028 [0.32 498 0.38
100 10.028 [0.22 498 0.30
1000]0.028 (0.19 200 0.21
100*[0.028 |0.21 20 0.25

Wa close this series of simulations by studying the in-
fluence, upon the rate of convergence of the wavefunc-
tion reconstruction, of changing both (i} the number of
images used, and {ii) the number of timesteps allowed to
clapse between consecutive images. For this finel numer-
ical study, we work with Case I, using ¢ = 1000. The
uumerical results are shown in Fig. 4. We see that the
algorithm converges exponentially rapidly to the “noise
floor” for five out of the six studies presented there, We
also note, from Fig. 4, that the algorithm’s exponential
rate of convergence is increased when one increases the
sumber of images, while keeping constant the number
of timnesteps between each of these images. Convergence

FIG. 4: RMS error af,,“ of the reconstrucied wavefunction, as
a function of iteration number k. The different lines represent
different retrieval parameters for Case 1, with g=1000, using:
3 images with 100 iimesteps between images (long dash); 5
images with 25 timesteps between images (dash ellipsis); 9 im-
ages with 25 limesteps {dash dot); 3 images with 50 timesteps
{solid line); 5 images with 50 timesteps {dotted line); 9 im.
ages with 50 timesteps {short dash). In all cases, the firsi
image corresponded to t=100 timesteps after turning off the
double-well trap.

was not achieved for the study which had both the largest
number of timesteps between images and the smallest
number of images (3 images, 100 timesteps in between).
For this non-convergent case, keeping the number of im-
ages fixed while decreasing the number of timesteps be-
tween images (from 100 to 50) led to convergence.

Why did the algorithm fail to converge when the num-
ber of timesteps between images was too large? This is a
manifestation of the well-known “finite memory” of non-
linear systems: sensitive dependence on initial conditions
implies that too great an elapsed time, between a pair of
finite-precision numerically-evolved wavefunctions, pre-
cludes accurately tracing a direct causal link between
the two. The presence of positive Lyapunov exponents
in a volume-preserving phase-space flow implies that the
ball of initial conditions, each consistent with the finite
precision to which the wavefunction is specified, will be
folded/mixed through the accessible phase space during
the flow governed by the non-linear evolution equation
[46]. Too great an evolution time between holographic
snapshots will therefore imply that the reconstruction
fails, since in evolving from snapshot to snapshot the
result of applying the time-evolution operator is strongly
perturbed by fluctuations below the noise level of the
system.
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IV. DISCUSSION
A. Wavefunction movies

The aigoritum of Eq. (5) reconstructs the wavefunc-
tion ¥(ry,t;) corresponding to the time t,, given the
moduli of the wavefunction at all times in the ordered
set {t1,%2,---,ta}. Having obtained ¥(r,,¢;), one can
obtain ¥(r,t;) via ¥(r,,t;) = ng:”],z'll(rl,t,), a pro-
cedure that can be recursively applied to give:

]
Y(ry,t;) = H (pe+1ﬁe,e+1) U(r;,t1),2<j <M.

i=j-1

(13)
One therefore reconstructs the ordered wavefunction se-
quence W(ri, ¢}, =1,---, M corresponding to all times
in the set {t1,12,--,tp}. Moreover, vne may also ob-
tain a wavefunction “movie” by reconstructing the said
wavefunction at any number of times ¢ lying in the con-
tinwum ¢ € (¢ — Ay, ty + Ap) (see Sec. I). To re-
construct the wavefunction ¥(r,¢;:) at any given time
ty € (81 ~ A1ty + Aj), first choose a member tir
of {t],At2,°",t-M} which minimizes |t;; — &;+|, and then
form Upe ¢ ¥(ry, 1) = ¥(ry,t). This allows one to
reconstruct a temporal sequence of complex wavefunc-
tions, which is useful in the context of studying both
non-iinear and linear wavefunction dynamics. This in-
cludes the topological phase dynamics associated with
the nucleation and coalescence of quantized vortices [38].

B. Interference versus interferometry for
non-linear fields

The GP equation is non-linear and therefore does
not obey the superposition principle: if ¥;(r,t) and
¥y(ry,t) are both solutions to Eq. (4}, then ¥y(r) ,¢t) +
¥y(r,,t) will not in general be a solution. Therefore use
of the term “interference” to describe the fringes of Fig.
1, while accurate, must not be visualized as arising from
the linear superposition of two BEC wavefunctions that
are separately valid solutions to Eq. {4). Notwithstand-
ing this, we make the elementary remark that the concept
of interference transcends the linearity assumption upon
which the superposition principle is predicated.

The essence of interference is this: when two spatially-
separated wavefunctions are allowed to come into contact
with one another, the square modulus of the resulting dis-
turbance is not equal to the sum of the squared moduli
of cach separate disturbance. The difference between the
sum of the squared moduli of each separate disturbance,
and the square modulus of the resulting disturbance, is
the “interference term”. In this context let us consider,
as an initial condition, a pair of {2+1)-dimensional wave-
functions ¥y (ry,t} and ¥a(r,,t) which are spatially sep-
arated at ¢ = tg, i.e., [ [|¥1(re,t0)Ta(ry,to})dry = 0.
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Linear case: If the evolution of these initially-
separafed disturbances is governed by a linear equation,
then interference effects occur if |¥;(8)|* + |¥2(2)|? #
[T, (t) + Ta(t)|*> at some later time ¢t > tp. Here,
Wy (t),P2(t) and ¥y(t) + Wy(t) are all solutions to the
relevant linear equation, and functional dependence on
r) has been dropped for clarity. The associated linear
interference term Iy (t) is:

Io(t) = [W1(t) + W2(2))% — &4 (8)® — [To(t)}?
= 2|8 ()| T2(t)| cosips () — #2(t)], (14)

where W;(2) = |U5(2)] exp(ic;(£)) and ds(¢) = arg T(t),
with j = 1, 2. Linear interferometric phase determination
aims to obtain the phase difference cos[¢) (t) ~ @2 (¢)] from
measurements of Iy (£), |¥1(2)| and |¥2(t)]; typically, one
of the wave phases (say, ¢:1(t)} is a known “reference”
wavefront, and one seeks to determine ¢o(2).

Non-linear case: If, instead, our initially-separated dis-
turbances are governed by a non-linear equation, then
interference effects occur when |Fy(#)]2 + |T2(8)|? #
|y () + o (t) + &[T (2), P2(1)]|2, where ¥y (t), Ta(t) and
Ty (t) + Tu(t) + &[Ty (L), ¥a(t)] are all solutions to the
relevant non-linear equation, with x{¥(t), ¥,(t)] being
an appropriate interaction: term which is generated when
T, (t) and T,(t) are not spatially separated. The associ-
ated non-linear interference term Iy (2) is:

Ino (Y = 101 (2) + Walt) + w{T (1), T ()}
= [ (&)? ~ [@oi)?

= Ip(t) + 2Re(k*[¥1(t), ¥2()][ (L (2} + Ta(2))) (15)
+s[ @1 (), T2,

which reduces to Eq. {14) when s = 0. When s # 0, Eq.
{15) could, in principle, be used as a starting point for
non-linear interferometric phase determination; however,
the resuiting non-linear equations are likely to be difticult
to solve,

For both linear and non-linear interferometry, the mea-
sured interference term is sensitive to the phase of the
wave-field, allowing one to consider the problem of in-
ferring this phase from measurements of the wave-field
modulus. This is the idea behind interferogram analysis,
at least for the linear case, and it is motivated by the
fact that it is probability density (or intensity) rather
than phase which is measured by existing detectors of
high-frequency fields.

Rather than secking an interferometric solution to
the problem of phase reconstruction, the phase-retrieval
viewpoint of this paper eliminates the need for a refer-
ence wavefront. This can be done because the modulus
of the wave-field at time ¢ is a function of both the modu-
lus and phase of the wave-field at earlier and later times.
Measurement of the wave-field moduli at more than one
time therefore yields information about both the mod-
ulus and phase of the wave-field, without the need for
interference with a reference wave.
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C. Some open questions

(a) A viable approach to the phase retrieval of both lin-
ear and non-lnear multi-component wavefunctions may
be of utility in the study of topological structures such as
skyrmions [47, 48]. Can the methods of this paper be gen-
eralized to the case of multi-component wavefunctions,
denoted by {¥,{(rs,t}}}, which comprise a set of K com-
plex scalar wavefunctions ¥; = W,(rg,t),7 = 1,---, K,
whererg € R and d > 27 This (d+1 )—dlmenswnal multl—
component wavefunction might obey a system of coupled
non-linear non-dissipative parabolic equations such as:

K
(z‘ajajat +4VE+B+V + Z fkj(l‘I'kD) ¥;=0
k=1
(16)
where a;, 8, ; are real numbers, V3 is the d-dimensional
Laplacian, fi; is a real function of a real variable, &, j are
integers lying between 1 and the number K of complex
scalar components ¥; in the multi-component wavefunc-
tion, and V = V(rg,t) is a known real potential. In
this context, the phase problem consists of reconstructing
the multi-component wavefunction, given the modulus of
each component at a number of given times.
For a first assault on this problem, one might try:

{¥5(re,t1)} = (1)

N
Jim (H Pl H PUin ,,) {19 (ra,t1)]}-

=M

Here, {|¥;(rq,¢)]} ic an array of the known moduli at
t = t;, which forms the initial guess for the desired multi-
component wavefunction {¥;(rg,t1)}. The non-linear
multi-component time-evolution operator is defined by

U {¥i{xg, tm)} = {¥;(ra,tn)}, such that {¥;(re,t)}
is a solution to Eq. (16), and F; is a projection operator
defined by:

Pi{gj{ra,td)} = {|¥;(xa,t:)| exp(iarg g;ra, ti))}. (18)

Additional e prieri knowledge may be incorporated by
appropriate generalization of the method given in Sec.
1, where B is replaced by P”P,

(b) We have restricted ourselves to the problem of
phase retrieval for non-dissipative non-linear fields, for
which the time-evolution operator is unitary and there-
fore norme-preserving. If a field, whether it be linear or

non-linear, obeys a dissipative equation - such as might
be obtained by making a,8,v.V or f complex in Eq.
(4) - then the associated time-evolution operator will not
be unmitary. If such = non-unitary time-evolution oper-
ator is used in Eq. (5), under what circumstances will
the resulting attempt at wavefunction reconstruction be
successful? If the method is successful, how much dissi-
pation can be tolerated before the method breaks down,
for a given level of noise in the data?
V. CONCLUSION

We developed and demonstrated a robust non-
interferometric algorithm for reconstructing the wave-
function of a complex field which obeys a known (2+1)-
dimensional non-dissipative non-linear parabolic partial
differential equation, given as input data the modulus of
the wavefunction at three or more values of the speci-
fied evolution parameter {e.g., time). As a special case
of this formalism we gave a numerical study of the re-
construction of the complex macroscopic wavefunction
associated with a (2+1)-dimensional Bose-Einstein con-
densate, given a series of absorption images as input into
the algorithm. In this numerical study, the algorithm
converged exponentially quickly to the noise floor im-
posed by the input data: the root-mean-square error of
the reconstructed wavefunction was in all cases similar
to the RMS error in the input data. The presence of
both strong non-linearities and quantized vortices was
seen 10 increase the rate of convergence of the algerithm,
The algorithm opens up the possibility of recovering a
movie of the time-dependent macroscopic wavefunction
of a BEC, and thus elucidating the phase dynamics of the
condensate under experimental conditions. This includes
situations where the wavefunction possesses topological
defects. The method is also applicable to a number of
other non-linear complex wave-fields, such as those en-
countere! in paraxial non-linear optics using both radia-
tion and matter waves.
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