MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

0) .+ . N | 1 U

Sec. Research Graduate School Cominittee

Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholacly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from i, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
asgistance obtained from this thesis.

ERRATA
p. 37 para 2, 2" line: replace “restrivtion” with “restriction”
p. 80 para 1, last line: insert “to” between “required” and “execute”

p. 80 para 2, 1* sentence: replace “Section 0" with “Section D.3.3”

R

e

o
o

A Novel MPEG-1 Partial Encryption Scheme for the

Purposes of Streaming Video

Jason But

BE (Eng} (Hons), BSc (Comp. Sci.)

A thesis submitted for the degree of
Doctor of Philosophy

in the

Depariment of Electrical and Computer Systems Engineering
Monash University

Ciayton, Victoria 3168, Australia

January 2004

Table Of Contents

Table Of Contents

Table Of Contents i

List Of Figures vil

List Of Tables ix
£ Abstract xi
g Statement xiii
Acknowledgments XV
: Chapter 1 Introduction 1
4 1.1 Internet Applications 1
1.2 Video-on-Demand as an Application 2
1.3 Problems Faced by Video-on-Demand 4
1.4 Copyright Protection 6
1.5 Structure and Contributions of the Thesis 8
“ 1.6 Final Remarks 9
3 Chapter 2 Copyright Protection of Streaming MPEG Video 11
2.1 Next Generation Internet 12
4 2.1.1 lmproved Bandwidth 12
3 212 Quality Of Service 14
213 Applications 15
2.1.4 Video On Demand Systems 16
2.14.1 Network QoS Requirements 17
2.142 Server Requirements 17
% 2.143 Client Requirements 18
3 2.2 Streaming Server Implementation 19
. 22.1 Indexed Playback Mode Implementation 19
i 222 High-Speed Playback Mode Implementation 20
223 Installation of Assets 22
3 2.3 Design of Video on Demand Systems 22
23.1 Single Server Design 23
232 Distributed Server Design 24
233 Multi-Party Distributed Server Design 28
3 234 Non-Technical Issues 31
3 2.34.1 Payment for Access Privileges 31
- 2.34.2 Copyright Concerns 3
3 2.4 Copyright 32
24.1 Digital Rights 32
242 Digital Theft 33
2.4.2.1 Theft from the Central Server 33
2.422 Thefi from Streaming Servers 34
2423 Thef in Transit 34
2424 Client Theft 35
4 2.5 Video Encryption Requirements 35
A 2.5.1 Copyright Owner Requirements 36
3 2.52 Distributed Server Arrangement Requirements 37
i 2.5.3 Streaming Server Requirements 38
b 2.54 Client Requirements 38
2.6 Conclusion 39
Chapter 3 Existing MPEG-1 Encryption techniques 41
3 3.1 Network and Transport Layer Encryption 4

Table Of Contents

3 1PSec Encryption

1.1
3.1.2 SSL Encryption

3.2 Full Encryption

3.3 Partial Encryption

3.3.1 SECMPEG

332 Zig-Zag -ermutation Algorithm

333 Video Encryption Algorithm

336 A Unique Cipher

337 Maulti-Layer Encryption

339 AEGIS Algorithm

3.4 Conclusion

Purposes of Encryption

4

4.2 MPEG-1 Video Stream Encryption

4.3 MPEG-! Audio Stream Encryption

4.4 Prototype System Testing

44.1 Trial Conditions

4.4.1.1 Input Files

4.4.1.2 Test Applications

4.4.13 Test Platforms

4.4,2 Trial Resulis

4.5 Summary

5.1 Selecting a Secure Cipher

. Restrictions on the Cipher

5.1.4.
5.1.42 RC4
5.1.43 SEAL

5.1.5 Conclusion

42
43
44
44
45
46
48
3.34 Video Encryption Algorithm — Number 2 49
3.3.5 Frequency Domain Scrambling Algorithm 51
2
5>
3.3.8 Selective Macroblock Encryption 53
55
55

Chapter 4 A Novel MPEG-1 Partial Selection Scheme for the
57
4.1 MPEG-I System Stream Encryption 57
L1 Examination of the MPEG-1 System Stream 58
412 Processing the MPEG-1 System Stream 59
4.1.2.1 Parsing the MPEG-1 System Stream 60
4.1.3 Summary of MPEG-1 System Stream Encryption 63
64
421 Examination of the MPEG-1 Vidco Strcam 64
4.2.1.1 Restrictions on Encryption of Macroblocks 66
4.2.1.2 Analysis of Selection Criteria .66
422 Processing the MPEG-1 Video Stream 67
4.2.2.1 Designing the Partial Stream Selection State Machine 67
4.222 Designing the Prototype Cipher 70
4.2.2.3 Support for Indexed and High-Speed Playback Modes 71
4.2.3 Summary of MPEG-1 Video Stream Encryption 72
72
4.3.1 Examination of the MPEG-1 Audio Stream 73
432 Processing the MPEG-1 Audio Stream 73
433 Summary of MPEG-1 Audio Stream Encryption 74
75
76
76
76
77
77
4.4.2.1 Percentage of the MPEG- 1 Fite Encrypted 77
4.4.2.2 s the Encryption Process Repeatable and Reversible 78
4423 CPU Requirements for Encryption/Decryption 79
4424 Verification of Functionality with Existing Streaming Video Servers _ 81
83
Chapter 5 A Novel MPEG-1 Partial Encryption Scheme 85
85
11 86
1.2 Public Key Ciphers 86
1.3 Private Key Ciphers — Block Ciphers 87
.14 Private Key Ciphers — Stream Ciphers 87
I Feedback Shift Registers 88
89
92
98
98

5.2 MPEG-I Video Stream Encryption

i T o T i e . - 2 e LT w2 B e e

e S T bl

Table Of Contents

5.2.1 Incorporation of SEAL Strcam Cipher into Existing System 99
5.2.1.1 Security Provided by the Modified SEAL Cipher 100
522 Resynchronisation of Cipher at each Picturc 103
5.3 MPEG-1 Audio Stream Encryption 106
5.3.] Incorporation of SEAL Stream Cipher Into Existing System 107
532 Lack of Resynchronisation Points within the Audio Stream 107
53.3 Calculating the Audic Cipher Resynchronisation Value — n 108
5.4 System Testing 110
5.4.1 Is the Encryption Process Repeatable and Reversible 110
542 CPU Requirements for Encryption/Decryption 11
543 Verification of Functionality with Existing Video Servers 112
544 Summary 113
5.5 Effects on Streaming Video Implenientations 113
5.5.1 Effect of a Bit Ervor 114
552 Effect of Lost or Dropped Bits 116
553 Eifect of Losi or Dropped Packets 116
554 Effect of Late Delivery of a Packet 118
5.6 Conclusion 118
Chapter 6 Application to Streaming MPEG-2 121
6.1 MPEG-2 Scrambling 121
6.2 MPEG-2 Stream Format 121
6.2.1 MPEG-2 Program Stream 122
622 MPEG-2 Transpori Stream 122
6.2.3 MPEG-2 Video Stream 123
6.2.4 MPEG-2 Audio Stream 123
6.3 Compatibility with the Proposed Cipher 124
6.3.1 MPEG-2 Video Stream 124
632 MPEG-2 Audio Stream 125
6.4 Conclusion 126
Chapter 7 Conclusion 129
Appendix A The MPEG-1 Bitstream Format 137
A.l History of MPEG-1] 137
A2 MPEG-I1 138
A2l MPEG-1 System Stream 140
A2l ISO 11172 Layer 140
A21.2 Pack Layer 141
A2L3 Packet Layer 143
A2 MPEG-1 Video Compression 145
A23 MPEG-1 Video Stream 146
A23.1 Sequence Layer 147
A.232 Group Of Pictures Layer 149
A233 Picture Layer 150
A234 Slice Layer 152
A23.35 Macroblock Layer 152
A236 Block Layer 154
A4 MPEG-1 Audio Compression 154
A2S MPEG-1 Audio Stream 156
A25.1 MPEG-1 Audio Stream Packet Header 156
A25.2 MPEG-1 Audio Layer 1 Data Representation 157
A25.3 MPEG-1 Audio Layer 11 Data Representation 158
A254 MPEG-1 Audio Layer 11l Data Representation 158

A.3 MPEG-2 160
A4 MPEG-4 161

e
111

Table Of Contents

163

Appendix B An Introduction to Cryptography
B.1 Basic Cryptographic Techniques

163

Terminology

164

Cryptographic Keys

166

167

1
2
3 One Time Pad Cipher
4 Cryptographic Attacks

169

169

1.4.1 Ciphertext Only Attack
1.4.2 Known Plaintext Aitack

170

B.1.4.3 Chosen Plaintext Attack

170

B.1.44 Adaptive Chosen Plaintext Attack

170

B.2 Pui:vlic Key Cryptography

171

B.2.1 Principles Behind Public Key Cryptography

17

B.2.1.1 One-Way Functions

1

B.2.1.2 Trapdoor One-Way Functions

173

B.2.13 Generating Prime Numbers

173

B.2.1.4 Relative Prime Numbers

173

B.2.1.5 Extended Euclidean Algorithm

174

B.2.1.6 Weaknesses and Practicalities

174

B.22 Current Public Key Cryptographic Algorithins

175

B.2.2.1 RSA Public Key Cryptosystem

175

B2.22 Other Public Key Cryptosystems

176

B.223 Recommended Key Lengths for Public Key Cryptlosystems
B.23 The Trusted Authority Public Key Database

177

178

B.2.4 Amenability to Encryption of Streaming Multimedia

179

B.3 Private Key Cryptography

179

B.3.1 Block Ciphers

180

B.3.1.1 Bleck Cipher Modes

180

B.3.1.2 Principles of Block Cipher Cryptology

183

B.3.1.3 Weaknesses and Practicalities

187

B.3.14 DES Block Cipher

187

B.3.1.5 DES Variations

191

B.3.1.6 Recommended Key Lengths for Block Ciphers

192

B.3.1.7 Amenability to Encryption of Streaming Multimedia

194

B.3.2 Suream Ciphers

194

B.3.2.1 Principles of Stream Cipher Cryptology

195

B.3.2.2 Weaknesses and Practicalities

199

B.3.23 Recommended Key Lengths for Stream Ciphers

200

B.3.24 Amenability to Encryption of Streaming Multimedia

200

B.4 Conclusion

201

Appendix C Source Code

203

C.l1 ClassFactory and StreamCipherBase Classes

203

C.2 Stream Ciphers

204

C.21 XORStreamCipher Class

C.2.2 SEALStrecamCipher Class

204
204

C.3 Parsing and Encrypting the Video and Audio Streams

207

C.3.1 MPEGVideoParser Class

207

C.3.2 MPEGAudioParserClass

208

C.4 Parsing and Encrypting the System Stream

209

C.5 Listings

209

C.6 Applications

230

Cé6.1 MPEG-1 File Encryption

230

C.6.2 DirectShow MPEG-1 Cipher Filter

230

C.6.3 DirectShow Stream Playback Application

231

C6.4 MediaBase Playback Application

23]

C.6.5 Other Applications

232

v

4 P S e B i B e e

RO PUETE NN

PSRRI S SNy IR

S

it S Ve

Table Of Contents

Appendix D Experimental Results

D.1 Input Files

233
233

235

D.2 Proportion of Stream Sclected for Encryption
D.3 Prototype Cipher

236

D.3.1 Testing Repeatability

237

D.3.2 Testing Reversibility

239

D.33 recformance Testing

241

D.3.1 Testing Functionality

247

D.34.1 Microsoft NetShow Theatre Streaming Server

247

D342 SGI Mediabase 3.1 Streaming Server

250

D.3.43 Apple QuickTime Streaming Server

252

D.4 SEAL Based Cipher

254

D.4.1 Testing Repeatability

254

D.4.2 Testing Reversibility

255

D.43 Performance Testing

257

D.44 Testing Functionality

259

D.4.4.1 Microsoft NetShow Theatre Streaming Server
D442 SGI1 Mediabase 3.1 Streaming Server

259

260

D.4.4.3 Apple QuickTime Strcaming Server

261

D.5 Conclusions

262

Appendix E References

263

SRS | |

Table Of Contents 3
List Of Figures

List Of Figures

j Figure 1-1: Digital Networked Applications and their Traditional Counterparis 2

4 Figure 1-2: Different Video-on-Demand Applications 3

Figure 1-3: Parts of a Copyright Protection Scheme for Streaming Video 7
Figure 2-1: Modified MPEG-1 Video Sequence to Implement High-Speed Playback__ 21
1 Figure 2-2: Monolithic Single Server VoD System Design 23

Figure 2-3: Distributed Server VoD System Design 25

Figure 2-4: Multi-Party Distributed Server VoD System 28
; Figure 2.5: Customer Authentication Procedure 36
} Figurc 4-1: State Machine {o Encrypt an MPEG-1 System Stream 62
i Figure 4-2: Selective Encryption of an MPEG-1 Video Stream 67
Figure 4-3: Mechanics of the MPEG-1 Slice Bit Sequence 68
é Figure 4-4: Algorithm to Encrypt Macroblocks Within an MPEG-1 Video Stream 69

| Figure 4-5: State Machine to Encrypt an MPEG-1 Video Stream 70
Figure 4-6: Generalised Cipher Function for MPEG-1 Video Stream Encryption 70
Figure 4-7: Simple Cipher for use in MPEG-1 Video Stream Encryption 71
Figure 4-8: Simple Cipher for use in MPEG-1 Audio Stream Encryption 74
Figure 4-9: State Machine to Encrypt an MPEG-1 Audio Stream 75
Figure 4-10: Performance Resulis Using the Prototype Encryption Scheme 8¢
Figure 5-1: Lincar Feedback Shilt Register Random Stream Generator 89
Figure 5-2: RC4 S-Box Initialisation 90
: Figure 5-3: RC4 Pseudo-Random Sequence Generation 91
Figure 5-4: SEAL G,,(n) function 93
Figure 5-5: SEAL Table Generation 94
Figure 5-6: SEAL Random String Generation 95
2 Figure 5-7: Modification of SEAL XOR Function for usc in Video Stream Encryption 100
! Figure 5-8: Format of 25-bit Time-Stamp within GOP Header 104
ﬁ}g Figure 5-9: Modified State Machine to Encrypt an MPEG-1 Video Stream 105
3 Figure 5-10: Modification of SEAL XOR Function for use in Audio Stream Encryption 107
4 Figure 5-11: Modified State Machine to Encrypt an MPEG-1 Audio Stream 110
g Figure 5-12: Performance Results Using the Secure Encryption Scheme 112
Figure A-1: MPEG-1 System Stream 140
i Figure A-2: MPEG-1 Pack Header Definition 142
§ Figure A-3: MPEG-1 System Header Definition 143
g Figure A-4: MPEG-1 Packet Header Definition 144
: Figure A-5: MPEG-1 Encaded Frame Order 146
§ Figure A-6: MPEG-1 Video Stream 147
z Figure A-7: MPEG-1 Video Sequence Header Definition 148
Figure A-8: MPEG-1 Group Of Pictures Header Definition 150
Figure A-9: MPEG-1 Picture Header Delinition 151
; Figure A-10: MPEG-1 Slice Header Definition 152
Figure A-11: MPEG-1 Macroblock Header Definition 183

Figure A-12: MPEG-1 Audio Header Definition 157

Figure B-1: Basic Cryptographic Framework 165

Figure B-2: Cryptographic System Inclusive of Keys 166

Figure B-3: Private Key Cryptographic System 167

: Figure B-4: CBC Mode Encryption/Decryption Process 181
4 Figure B-5: CFB Modc Encryption/Decryption Process 182
; Figure B-6: OFB Mode Encryption/Decryption Process 183
Figure B-7: DES Encryption Algorithm 189

Figure B-3: DES Fiestel Network f() function 190

Figure B-9: DES Key Schedule 191

Figure B-10: Lin.car Feedback Shift Register Random Stream Generator 196

Figure B-11: Shift Register Sclection Combination 198

Figure C-1: SEAL Sample Implemcentation 206

List Of Figures

Figure D-1: DirectShow Filter Graph for Encrypted Video Playback from NetShow Theatre _245

viii

e
i
A
i
i
L
3
R
o
b
=
i
oA

PR LR SN R PN

Tear v R

List Of Tables

List Of Tables

Table 4-1 Proportions of Test Bitstireams Sclected for Encryption 78
Table 4-2 Reversing the MPEG-1 System Stream Encryption 79
Table 4-3 Regquired CPU Leoad for Plaintext Playback 81
Table 4-4 Streaming an Encrypted MPEG-1 File from a Streaming Video Server 33
Table §-1 SEAL Keys Used in Testing Encryption Scheme 1
Table 5-2 Reversing the MPEG-1 System Stream Encryption 111
Table 5-3 Streaming an Encrypted MPEG-1 File from a Streaming Video Server 113
Table 5-4 Proportion of Video Stream given Frame type 117
Table A-1 MPEG-1 System Stream Unique 32 Bit Byte Aligned Start Codes 141
Table A-2 MPEG Video Stream Unique 32 Bit Byte Aligned Start Codes 148
Table B-1 Common terminology used in the science of cryptology 164
Table B-2 RSA Encryption Recommendations 176
Table B-3 Summary of Block Cipher Modes of Operation 184
Table B-4 Block Cipher cracking times based on key length 193
Table D-1 MPEG-1 Test File Details N 234
Table D-2 Proportions of Bitstireams Selected for Encryption 236
Table D-3 Encryption Statistics and Repeatability of Encryption . ss — Protetype Cipher_237
Table D-4 Byte Count Distribution in Input Streams 238
Table D-5 Comparison of Decrypted File with Original File given (En/De)eryption Key Pair _240
Table D-6 Test Platform Specifications 241
Table D-7 Basic Performance Results on Test Platform 1 243
Table D-8 Basie Performance Results on Test Platform 2 244
Table D-9 Real-time Decryption and Playback Performance Results on Tes¢ Platform 1 246
Table D-10 Real-time Decryption and Playback Performance Results on Test Platform 2 ___ 247
Table D-11 Functionality Tests with Microsoft NetShow Theatre Streaming Server 250
Table D-12 Functionality Tests with SG1 Mcediabase 3.1 Streaming Server 252
Table D-13 Encryption Statistics and Repeatability of Encryption Process — SEAJ, Cipher ___254
Table D-14 Comparison of Decrypted File with Original File - SEAL Cipher 256
Table D-15 Basic Performance Results on Test Platform 1 — SEAL Cipher 257
Table D-16 Basic Performance Results on Test Platform 2 - SEAL Cipher 258

Table D-17 Real-time Playback Performance Results on Test Flatform 1 — SEAL Cipher 2358
Table D-18 Real-time Playback Performance Results on Test Platform 2 - SEAL Cipher 259
Table D-19 Functionality Tests with Microsoft NetShow Theatre Streaming Server - SEAL __260

Table D-20 Functionality Tests with SGI Mediabase 3.1 Streaming Server — SEAL

261

List Of Tables

ol B T Tt T

IR PO,

e k_‘i....x.a PRETI I

[N LS S

R RN T T TUIEL R L A R

i i

Abstract

Abstract

Video-on-Demand (VoD} has often been touted as one of the next killer Intemet
applications. VoD however, is yet to capitalise on its potential to become a highly patronised service,
that is has not succeeded is due to many reasons, technological, economical and legal. Recent
technological advances have largely negated the first issue and significantly contributed to reducing
costs. It is now possible 10 build a functional VoD service at viable cost. It now becomes equaliy
important to consider the legal aspects of providing a VoD service, both guarantee of payment and
protection of the copyright ownership. In this thesis, 1 explore the issue of copyright protection of
streaming MPEG-1 Video and present a novel MPEG-1 Encryption Technique that is compatible with
a wide range of both existing and future streaming video servers. 1 will show how the concepts used in

this approach can also be applied to copyright protection of streaming MPEG-2 Video.

xi

Abstract

Xii

i N R R S Sl B P

e LR W R L - an

IV W

L e e RNyt L e D ot Pl e B arl A A B et 22

Statement

Statement

To the best of my knowledge and beiief, this thesis does not contain any material
previously published or written by any other person, except where due reference is made. The thesis
conlains no material that has been accepted for the award of any other degree or diploma in any

university or other institution.

Xiii

Statement

Xiv

¢ o R e e v Yl R ot s A e e T T et Pl T e e A B 40N :"‘»ﬂ. '

AR AR R el e e A et S A e ntbte A v b, R

1 SR

A e A e s e

Acknowledgments

Acknowledgments

Production of this thesis has been a long and laborious task, ofien leaving me wondering
whether it would ever be completed. The fact that it has been finished is largely due to the input,
assistance, love and badgering of many people. I would like to take the time to thank each of these

people individually.

Firstly, thanks to all members of the Centre for Telecommunications and Information
Engincering (CTUE) at Monash University for convincing me to undertake the task of attempting a

PhD.

Particelar thanks go to my supervisor - Greg Egan — both for his continuing reassurance

that this thesis was on the right track, and for his confidence in the eventual outcome of my work.

Thanks also to those who helped proof read this document —James, and Joc — your

comments brought some much needed polish to the final presentation.

To my family, who encouraged me throughout the entire process. Special thanks to my
wife Elconora, who knew both when 1 needed encouragement and when | required the proverbial ‘kick

up the backside® when my effort was failing.

And finally to my newborn daughter Katia, who has suffered more in the first few weeks

of her life than 1 cver have. She has shown me what life is all about, and taught me what is really

important. This thesis is Tor her.

XV

Acknowledgments

L I S PONPRRL

e S T ke & o S

ntadi asla e e FET R

P e i L A R it R P e i B

L e Py g

- .\MJ '

Chapter 1:
Introduction

Chapter 1

Introduction

High-quality streaming Video-on-Demand (VoD) has often been touted as one of the
next killer applications, afier emai! and Web Browsing, to succeed on the Internet. VoD however, is
yet to capitalise on its potential to become a highly patronised service. That is has not succeeded where
these other applications have is due to many reasons: technological, economical and legal. Recent
technological advances have largely negated the first issuc and significantly contributed to reducing
costs, While these first two issues are by no means rendered insignificant, and further research will
undoubtedly uncover improved solutions, it has now become possible to build a VoD service that is
functional at viable costs. As such, it becomes equaily as important to consider the legal aspect of
providing a VoD service. Much of this issue rests on the guarantee of payment and the protection of
the content owners copyright. In this thesis, 1 will explore the issue of copyrighi protection and
develop an encryption technique whereby digital content is encrypted while in transit on the Internet to
prolect against thefl. Copyright protection is an issue that must be addressed prior to profitable VoD
content being made available for streaming video services.(Gemmell et al., 1995; Fist, 1994; Viiia et

al., 1994; Chang ct al., 1994; Hsing et al., 1993; Little and Venkatesh, 1994; Memon and Wong, 1998)

1.1 Internet Applications

While the Intemet hosts many applications, there arc two that have acquired a user base
that is large enough that the applications themselves have become the predominant reasons for using
the Internet. These applications are email and the World Wide Web (WWW), Email enables users on a
network 10 communicate written messages and files between each other. It is both cheap and simple to
use, and fulfils a perceived need amongst network users ~ the replacement of the nen-digital postal
service. Similarly, the Web is an application that enables network users (o publish information which
can then be searched, read and downloaded by other users on the network. Like email, the Web offered
a digital replacement for existing services — the publishing of information. The advantages of these
applications over their non-digital counterparis in part ensured their success. Email offered a free,
instantancous personal communications tool, while the Web enabled low cost, large scale, anonymous

publishing to all users, providing individuals with the same capability and reach as major corporations.

As an application, Video-on-Demand (VoD) also secks to become a digital replaccment
for an existing service, in this case the Video Hire store. To succeed in a commercial sense, VoD must

offer both a better and cheaper service than its counterpart. VoD has two classes of users:

¢ Content providers — people who own and distribute the media content.

o Content consumers — people who access the provided material.

Chapter 1.
Introduction 3
: Chapter I:
It is important that both these classes of users find a VoD service to be useful for it to be Introduction
heavily patronised. Only patronage by many users will cnsure the success of VoD as an application. , ¢ Playback to an Internet connecied PC ~ this type of application is similar to the scope of
Figure 1-1 shows the aforementioned applications and their traditional counterparts. these applications] VoD scrvices available on the Internet today: low bitrate streaming video served from a single
are in competition with each other. 3 central server. This type of application is not scalable to provide higher quality streaming or

service a Jarger customer base, however it is finding some success in introducing Internet users

1 to the concept of streaming video. At this stage, the content is predominantly either copyright

] free, of little value and therefore not worth stealing, or of sufficiently poor quality to negate
L]

against thefi. This type of application can be found in Intemet streaming of sporting events,

concerts, news media, advertising, and other applications. In these instances, while access to the
E media may be protected and require prior payment, the media content itself is not of sufficient
; quality or value to require protection of the copyright. While higher-quality video may become

popular in this type of application, this would require a change in the server architecture 1o

belter support the streaming of higher bit-rate streams over the Intermet.{Branch and Duman,

1996; Apple, 2002a: Fist, 1994; Microsoft, 2002; Wu et al., 2001)

% Streaming
Video Server

3G Mobite Mwig

Wireless Access
Point

Video Hire Store Video-on-Demand

Figuve 1-1: Digital Networked Apglications and their Traditional Counterparts b -
Personal Computer

Public Access Network

1.2 Video-on-Demand as an Application

Video-on-Demand is an all-encompassing term describing a wide range of applications

that all involve the streaming of individual video content across a network. These applications are

Television with

ouilined in Figure 1-2:
Set-Top Box

¢ Low Bit-rate Wircless VoD — this type ol application covers the concept of st Zaming

video 1o wireless devices such as mobile phones or palm-type hand-held computers. These lead Figure 1-2: Different Video-on-Demand Applications

M H . - . . . ' . : ' Il - . . . N . .
10 a unique environment for implementation where available bandwidth is low with a significant * Entertainment quality YoD - this type of application involves the streaming of high

bit error rate, while the computing power available at the client is low with a subsequer: small : bitrate video, most likely 1o a black box connected to a television set in the users living room,
screen size, While computing power can always be increased, the screen size is likely to remain i but also potentially to an Internet connected PC. This applicaticfn is wflerc VeD s:ecks "? replace
small for the foresceable future. The small screen size coupled with low network bandwidth the local Video Hire storfa, allowing I.lfers 10 select and play a video without lcaving their hc.)u‘se.
ensures that this type of video will be at a low bit-rate and quaiity. 1f we consider possible In this instance, the quality must be high enough 1o allow playback on a large screen television
set at a quality matching VHS tape in the short term and DVD ir. the long term. This is also the

usages for this application, we can see people watching shows during a commute on public) . . X)
type of VoD application where copyright protcction becomes more important as the quality of

transport — the short timc available means we will see short shows, perhaps the news or) L .
the digital material is higher and therefore more valuable.(Rangan et al., 1992; Little and

television comedy shows — or perhaps retrieving information such as movie reviews prior (o) . ,
Y perhap & p Venkatesh, 1994; Lin et al., 2001; Hsing ct al., 1993; Fist, 1994)

attending the cinema.(Microsoft, 2002; Apple, 2002a)

Chapter 1:
Introduction

Onec could conceive of other applications that VoD could be applied to, but those
mentioned above are the obvious applications that are most likely to be adopted at this stage, Of
interest in this thesis is the third type ~ streaming of entertainment quality video. It is this application
where copyright protection becomes an issue to the content owner and therefore, also where it becomes

a major issue in the implementation of this type of VoD service.

1.3 Problems Faced by Video-on-Demand

The major problems that VoD has to overcome are cconomics and the fact that computer
and network requirements for providing a VoD service are higher than for other Internet applications
such as email and the Web. For some time, VoD was not economically feasible, the existing Intemet
could not support a large scale implementation. Similarly, the costs involved in building a Local Area
Network and Streaming Server capable of supporting such an application were extremely high, much
higher that the existing non-networked video application — that of hiring a video tape or DVD from &
local video hire store for viewing at home. Beyond any further considerations, this immediately meant
that technology at the time was not ready for a commercial sireaming video application and any
prototype systems that were implemented were simply that, prototypc applications to showcase the
potential and what could be achirved should implementation costs decrease to a suitable level. More
recently we have seen three changes that can be used 1o argue the case that the time of VoD and
Streaming Video services is nearing:(Cocchi et al., 1993: Comall, 1998; Hsing et al., 1993; Jung et al.,
2000; Liutle and Venkatesh, 1994)

¢ The extremely low cost of implementing a high-bandwidth Local Area Network. Not long
ago, any network equipment other than 10Mb/s Ethernel Repeaters were extremely expensive.
Today 100Mb/s Fast Ethernet Switches cost less than these simple repeaters did only five years
ago. Similarly, the cost ol Gigabit Ethernet (1000Mb/s) Switches and Network Imerface Cards
(NICs) is also dropping rapidly. This means that implementation of a network capable of
supporting high quality streaming video within a fixed structure has become cheap cnough that
it will not provide a major impact on the overall cost of providing this service. While it has not
become commonplace yet, many private residential homes are being wired up with either
100Mb/s Switched Ethermet or 54Mb/s Wireless Ethernet. Also, many believe it is only & matter
of time before both ..+, and new apartment buildings will be supplied with an internal high-
speed network as a matter of course, This would not only supply residents with shared access to
a broadband Internet link, but could also be used to provide access to an in-house Video

Streaming application.(Cocchi et al., 1993)

¢ The performance of the Internet itseif, both in increased bandwidth and better support for
real-time applications. Video Streaming usually requires both sufficient bandwidth and quality-
of-service guarantees. While this can be implemented across the entire network, others have
shown that it is more technologically and cconomically feasible to build a distributed Video
Streaming application uiilising real-time streaming at the cdge of the network rather than a

Centralised Service that requires real-time functionality throughout the core of the Internet. Of

»r-:l“.i-:izsfj\iﬂ

Al i

T i L R L« e e o e [L i gy et n e

P

o

it e e T o CL R fana S S e

Tt G T8 ¥t i

Chapter L:
Introduction

more interest is the recent increase in the bandwidth available in the core of the network., This
means that it has become both cheaper to transfer large files across the Internet as well as raore
likely that thesc transfers can be completed in 2 time frame that could support a large scale —
globalised or rationwide ~ video streaming service.(Comall, 1998; Hsing et al., 1993; Nelson,

1998, Pentiand, 1999; Viiia et al,, 1994)

* There has been a more widespread acceptance and usage of low bit-rate video streaming by
the Intermet community. As the available bandwidth through the core of the network increased,
it improved the performance of a Central Streaming Server Service as long as the required bit-
rate for cach individual siream was kept low. By keeping the bit-rate iow, service providers can
guaraniee to support a high number of consecutive streams from a singiz server, while at the
same time lowering the possibility of a problem occurring due to insufficient bandwidth on a
single link between the server and destination client computer. Unfortunately while these
applications provide video quality which is fine for vizwing in a 320x200 window on a desktop
display, thcy do not provide the necessary quality for viewing on a 72cm television in a
residential living room, Also, these existing services implement the most basic form of a
streaming video service, utilising a single central server rather than a number of distributed
servers closer to cach client, thercby lowering the requirements on the core of the network.
Nevertheless, these applications has fostered the acceptance in the minds of Iniernet users of the
use of the Internet in providing a service such as video and audio streaming. By alerting
potential customers 1o this possibility, it is more likely that a commercial service may be

subscribed to in the future.(Microsoft, 2002; Apple, 2002a)

Many of the other problems of providing a Streaming Video service have also been
solved to a certain degree. The use of distributed servers improves the failsafe capability of the service,
while at the same time imposing fewer requirements on the core of the Internet, requiring only that
sufficient network bandwidth and quality of service issucs be addressed at the edge of the network. A
Distributed Server Design also significantly lowers the implementation costs of providing the service,
however as shown in Chapter 2, these costs are still too high (o enable a true service te be deployed and
put into use.(But and Egan, 2002b; Bui and Egan, 2002a; Chan and Tobagi, 1999; Le, 1998; Jung et al.,
2000: Ramarao and Ramamoorthy. 1991; Rangan et al., 1992; Vidia et al., 1994; Wu et al., 2002)

Also in Chapter 2, 1 propose a modification 1o the basic distributed streaming server
design that will significantly lower the implementation cost by avoiding duplication of equipment by
competing service providers, while allowing smaller independent film producers and content suppliers
to reach a large customer base. Using a distributed server approach will allow a viable commercial
service (10 be built up over a period of time, with each individual addition enabling another group of
users 1o access a high bit-rate streaming video service. We can envisage the concept of an apariment
block with a high-speed internal network and a streaming server in the basement providing a high-
quality video strcaming service to all residents of the apartment block. A second apartment block

could provide a similar service to its residents. By linking these two servers over the slower Internet

core 10 a video distributor, we can begin to build a distributed video server arrangement that

Chapter 1:
Introduction

continuously adds more apartment blocks and their residents to its customer base. Eventually. the

addition of private residential services could be considered.(But and Egan, 2002b)

In theory, these approaches can be used to solve the major cconomic questions facing a
viable VoD implementation. In practice however, there are other issues that must be addressed before
any commercial streaming video application can become economically viable. One of thesc issues is
providing a service that is attractlive to both sets of users — content providers and content consumers.
Content consumers may be willing to pay for access to high-quality streaming video, bul only il ihe
content provided is of sufficient interest to them. Therefore it becomes important also that content
providers are able to provide inferesting content. In order to provide interesting content, providers
must placate the concerns of Copyright owners, who have issues which do not form any technical

impediment to the implementation of a digital streaming system.(Memon and Wong, 1998)

1.4 Copyright Protection

When we consider a digital video strcaming application from a Copyright owners point
of view, it becomes obvious that their major concerns are economic rather than technical. There are
four parts of a functioning VoD system that are related to Copyright protection of streaming video,

outlined in Figure 1-3.

¢ Passive protection of content — Via the use of watermarking, comtent can be embedded
with a non-visible digital signal. This approach does not actively protect against thefl of the
digital asset but can be used to determine the source of the material should theft occur.{(Memon
and Wong, 1998; Bao, 2000; Bac ct al,, 1998; Abdulaziz. 2001)

¢ Guaranteed payment for access — In today's economy, people invest large amounts of
money to own the Copyright on a particular media asset. This ownership gives them the right 1o
control all screenings and presentations of that asset. In real terms, this means that a fee is
charged for each presentation, whether that be at a cinema screening, video hire/purchase or
television broadcast. Monies received due to these screenings form the return on the investment
made in purchasing the Copyright — like any other investment, a retum is expecied by the
Copyright owners, This in turn requires a guarantced payment scheme for any commercially
implemented video streaming application. This issue will not be addressed in this thesis, but is
an important problem that must be addressed beforc Copyright owners will make content

available for use in commercial VoD applications.(Bridie, 1997; Bridic and Branch, 1998)

+ Encryption of Streaming Video - This relates strongly to the issue of theft of Copyright
material in a digital form. The concept is that all content should be encrypted at all times and
decrypted at the user end station prior to playback. The concept of encrypting the video stream
is not only to prevent viewing by unauthorised persons, but also to prevent making digital copies
of the media stream. In this thesis 1 will endeavour to provide a possible solution to this

problem with ihe development of an MPEG-1 Video encryption schenie that will function with a

Virimes, ruﬁk’j

avi B G e, e DEY Cale SRR 2

'.J:l'
i

g S e

Chapter 1:
Introduction

range of existing streaming Video Server products. This approach that has been developed can
also be applied to the encryption of streaming MPEG-2 video(Giao and Nahrstedt, 1996)

Streaming
Server

Content Playback

h A T
Watermarking Encrypied File Encrypted Stream Decoder

3

Plaintext Stream

Cipher Cipher

Key Key/'

¢ Monclary Transaction
Content

Provider Kev Client
Module Module in a Streaming Video Copyright Protection System
User Key User/Service Provider in a Streaming Video Copyright Protection System

Figure 1-3: Parts of a Copyright Protection Scheme for Streaming Video
e Key Management — At the heart of any encryption scheme is the cipher key and its
management, As secure as a cipher is in scrambling the plaintext data, if Key Management is
poor, then the cipher key, and therefore also the plaintext, can be easily retrieved. While
recognising that Key Management is an important aspect of any functional Cipher Protocol, in
this thesis 1 concentrate only on the issue of encryption of the bitstream. The issue of Key
Management is left to further research in this area, most likely involving some form of Public
Key Infrastructure to securely manage media decryption keys and their transfer across the
Internet.(deCarmo, 2000; Menezes et al., 1997; Rivest et al., 1978; Schneier, 1996a; RSA, 1996)

The concems of the Copyright holders of media assets stem from their rights and
expectations, they expect to make a retun on their investment in purchasing the Copyright. A major
part of this problem is the issue of thefl of material. This has been a problem for some time, with users
able to make copies of material from legitimate sources — one can record a television broadcast signal,
and many VHS recorders have facilities to bypass Macrovision protection to record a video source.
While this theft has been going on for some time, it is of relatively minor concern to Copyright owners,

since each copy made is analogue, wilh the quality of each copy degrading in turn. A VHS recording

Chapter 1:
Introduction

from a DVD source similarly is of lower quality that the original. Even a digital recording made from a
DVD source suffers degradation due to the conversion of the digital image to analogue prior to

conversion back to digital for recording.(Memon and Wong, 1998, Bao, 2000; Bloom ct al., 1999)

Once we consider a digital video streaming application, the original content is in digital
form, and it is then transferred in digital form over a publicly accessible network to an end users
equipment, where it again exists in digital form. The fear held by many Copyright owners is that a
digital copy of this stream can be made — either from the network stream or at the end user equipment,
Any digital copy of the original movie asset would be indistinguishable from the original, with
absolutely no degradation in picture quality for that or any subsequent copies. What this means in real
terms is that many copies of cqual quality can be made and then sold by a potential video pirate,
making money for themselves while at the same time minimising the return on the investment of the

original Copyright owner. This type of thefl is serious and is the primary concern of this thesis.

1.5 Structure and Contributions of the Thesis

The layout and content of this thesis is discussed in the following points, indicating what

is presented in each of the chapters as well as my specific contributions to the field,

o In Chapter 2 of this thesis | discuss in more detail the requirements of a VoD application. |
show why a Monolithic Centra! Server design is not suitable for large scale VoD applications
and go on to show that while a basic Distributed Streaming Server design fixes many problems,
it still has technical and economic issues that must be addressed. After considering existing
solutions to the concept of a Video Streaming sclution, 1 propose a range of modifications to the
Distributed Server design thal allows a more economically feasible solution while also enabling
smaller players (o enter the market, This new system design will decreasc implementation costs
while at the same time increasing the size of the serviced customer base. 1 proceed to explore
how streaming servers implement different playback modes such as indexed and high-speed
playback. Finally, | explore the requirements of Copyright protection as concerns Copyright
owners as well as how these concerns relate to end user expectations and requirements, [lista
set of requirements for any proposed video encryption algorithm such that it will function in
either a standard Distributed Streaming Server design or my proposed Third-Party Distributed
Streaming Server design. These requirements are used to show in Chapter 3 that no existing

video encryption algorithms are suitable for use in cneryption of streaming video.,

¢ Chapter 3 forms an examination of existing MPEG-! Ciphers. 1 conclude that none of the
existing proposals are suitable for encryption of stresming video. This is to be expected as the
primary goal of the algorithm designers was the encryption and protection of stored video. Even
50, it is necessary io cxamine the properties of each algorithm to determine its suitability for

streaming video applications,

» in Chapter 4 | proposc a novel MPEG-1 Partial Sclection Scheme for the purposes of

encryption. This scheme is combined with a simple XOR based cipher that offers little

R RS -';':_‘:'f- .l
e A Rt 0 e A R

i K R o i e

e e A

Chapter 1:
Introduction

protection. The prototype cipher is then tested with a range of streaming server products to
cnsure that functionality is retained through all the different playback modes. This verifies the
concept behind the partial selcition scheme and ensures that full functionality is maintained, 1
demonstrate that although the plaintext is easily retrieved due to the poor security offered by the
XOR cipher, the cncrypted bitstream is completely obscured — it cannot be passed through a

decoder 1o retrieve parts of the original video or audio content.

¢ in Chapter 5, | expand upon the concepts developed in Chapter 4, first tying the partial
sclection scheme to a more secure Stream based cipher, as well as making minor modifications
o the partial selection scheme to accommodate the extra requirements of the more secure
cipher. Again full functionality is retained through all playback modes. [also examine the

cffects of network transmission errors and dropped datagrams on encrypted streaming video.

¢ In Chapter 6 1 explore the idea of streaming MPEG-2 video, noting that DVD media is
encoded using the MPEG-2 Formal and that it would be likely that as network bandwidth
further improves, streaming of the even higher bit-ratc MPEG-2 bitstream is inevitable. [show
how the approach taken 1o design the MPEG-1 cipher can also be applied to encryption of an
MPEG-2 bitstream. These modifications are however, only discussed in broad terms, actual

implementation is feft 1o [ater study.

¢+ The Appendices present an introductory review of both the MPEG-1 bitsiream and
cryptographic techniques in general. This material can be used to help judge exisling video
ciphers and in designing any MPEG-1 partial selection scheme. The Appendices also provide a
detailed overview of the source code provided on the accompanying CD as well as presenting

the full set of experimental resulis.

1.6 Final Remarks

While much work has been done in the area of streaming video, all of this work has
focussed on solving the technical limitations inherent in providing such a service. The success of any
networked application however, depends on more than overcoming any technical limitations, It also
depends on how useful the service appears to be to all users. As such, now that technical advances
have put a streaming VoD service within our technological reach, it has become necessary to consider
any non-technical limitations that may hinder the rapid adoption of such a service. In this thesis 1
identify one such issue: the need to protect the rights of the Copyright owners of media assets that are
to be streamed. It is nccessary to protect all streaming media against digital theft which would lead to a
loss of return for this set of users. Also affecled by the same issue is the paying custoner, a service
where undeterred theft occurs would be bereft of content as Copyright owners withdraw their assets
from the service. A lack of assets will inevitably lead to a loss of patronage by paying customers as
well. In this thesis 1 develop a novel MPEG-1 encryption scheme that can be used as part of a

Copyright protection scheme for streaming video.

Chapter 1;
Introduction

o
?

Al el st e TR R T e 1T

- '.‘-'-'."u' P
N ki LIADER

PR T

e

PR

T T

Chapter 2:
Copyright Protection of Streaming MPEG Video

Chapter 2
Copyright Protection of Streaming MPEG Video

In this chapter I explain why there is a requirement for the development of Video
Encryption schemes. The issues that are important include not only the perceived need for protection
of digital assets on the network, but also how this would be accomplished in a likely Video on Demand
(VoD) system. Design considerations of such a system restrict the choices available to us when
considering how to protect the content provided by the system. The potential success of any copyright
protection scheme increases if the process is generic and not tied to a particular brand of Streaming

Server platform,

Another important factor is the perceived need for an encryption system in the first place.
In this case, the concerns of copyright holders on digital assets dictate the requirement for encryption of
the asset. Economicz? success of a networked VoD system depends on the availability of material that
consumers are willing to pay money to view. Before providing this material, copyright owners nced to
be assured that their digital materia) will not be subject to theft, If this assurance cannot be made, then
the desired material will not be made available and any VoD implementation will fail due to lack of
patronage. Whilst not the only non-technical issue that inust be conquered before VoD becomes a
reality, the issuc of encryption is an important component that must be in place before a true

entertainment VoD system can ever be implemented.

The Internet of the future will support improved bandwidth to the client as well as some
Quality of Service (QoS) features within the network. High bandwidth will provide extra speed for
most existing applications whilst QoS will assist in the provision of both current and new streaming
applications. VoD is one application that has been previously proposed but did not succeed, due
mainly to both lack of bandwidth and QoS. VoD implementations are going to become increasingly
possible to implement in the near future, and their requirements need 1o be studied. 1 will examine the
different possible designs for VoD systems and show the disadvantages associated with large single
server systems as well as distributed server systems owned by a single company. I present a distributed

server design opcrated by multiple parties and explain its advantages over traditional VoD» server

designs.

Other important issues relating to VoD system design will also be discussed, including
both non-technical ~ that of copyright and protection against digital media theft — and technical — how
streaming servers provide advanced playback features such as indexed and high-speed playback and
how this impacts on implementation of a copyright protection scheme. Following this, 1 list the
requirements of a Video Encryption system that will meet both the concens of the copyright owners as

well as the issues of supporting a range of different streaming server products.

Chapter 2:
Copyright Protection of Streaming MPEG Video

2.1 Next Generation Internet

The Next Generation Internet is a term that is widely used today, often going by the
terminology Internet2. While both of these tenns imply that a second worldwide network will be built
io replace the current Internet, this is not really the case. Internet2 is a term that embraces the continual
improvements to the current Interet that will bring modern network technology slowly into the
Internet. Whilst new network and bandwidth management concepts are being trialled in network
testbeds throughout different research institutions, those concepts that are found to work well will be
integrated into new network products which will then find their way into the cxisting Internet. The
eventual upshot is that there will be small sections throughout the Internet that support these advanced
services. These islands of advanced functionality will grow as time progresses ~nd the Internet is

progressively replaced with the Next Generation Intemet.(Fowler, 1999; Saunders *.. .*aster, 1997)

There are a number of important new features being integrated into the Next Generation
Internet, including secure data transmission, a polential larger number of connected hosts, better
mobility on the network and better support of existing applications such as host naming. Whilst these
features are undoubtedly important, the Next Generation Internet will introduce two other concepts that
are of far greater importance, Improved Bandwidth and Quality of Service (QoS). These two features
together provide the technical possibility to support a host of real-lime applications that are not possible
using today’s technology. The existence of improved bandwidth will allow more data intensive
applications to be possible whilst the provision of QoS will allow better traffic management of the

network to properly support these applications.(Sikora, 2001)

Video on Demand (VoD) has long been recognised as a potential network application but
the concept has never come to fruition duc to the limited capability of the existing Internet. The Next
Generation Internet promises to overcome the technical limitations that have prevented a true VoD

implementation.{(Chang, 1998)

2.1.1 Improved Bandwidth

One feature of the Next Generation Intemet will be improved bandwidth. This
bandwidth will not only be present in the core of the network but also available to the end consumer.
Limited bandwidth to the end user has been one of the biggest problems with the current Intemet, most
commonly the restriction of a 56kb/s line as afforded by most dialup connections means that users
cannot obtdin data from the Internet at a faster rate than this. A maximum possible bandwidih of
56kb/s provides restrictions on what sort of services a common home user can use. However, the link
to the user, commonly called the “last mile”, is not the only bandwidth bottleneck within the Internet,
large routers within the core of the network also provide bandwidih limitations. Indeed, there is a lot of
potential bandwidth in the form of unused fibre optic cable throughout the world, but this bandwidth is
limiled by the processing throughput that can be handled by the routers that manage the network. The
Next Generation Internet will attempt to fix the bandwidith problem in both these areas; firstly by

improving throughput and network management by routers to alleviate bandwidih problems in the core

Chapter 2:
Copyright Protectior of Streaming MPEG Video

of the network; and secondly through betier access technelogies such as Digital Subscriber Linc (DSL)

and cable modem 10 increase the available bandwidth over the “last mile™,

Bandwidth problems in the core of the network are mainly due to the problems that
routers have to face. Routers have the responsibility of routing IP packets between physical (or virtual)
network ports that they support. Due to the fact that IP packets can be both fragmented and of variable
size, most of the routing of packets is done in software. Unfortunately, the amount of Intemet traffic
has grown at a greater rate than the growth of processing power and routers are falling behind in trying
to process Internet traffic. Due to the amount of processing power required to route a single packet,
routers can often fall behind when a large number of 1P packets arrive simultaneously. This increases
the queue lengih of packets waiting to be processed within the router, which both lowers the overall
throughput within the core of the network and decreases the utilisation of the raw bandwidth provided
by fibre optic links. Similarly, lengthy queucs within the routers can cause [P packets to be dropped
when the queue is full, thus forcing a retransmission of the packet, further underutilising the available
bandwidth. In essence, the problem in the core of the network is not the lack of bandwidth, but rather

its underutilisation due to slow and overloaded iP routers.(Ashmawi ¢t al., 2001; Wang et al., 2002)

Advances in recent tianes have led to more router pre-processing done in hardware,
thereby decreasing the required processing power to route the packets in software. Another recent
development has been that of determining 1P sireams and routing these packets in hardware. This has
the effect of keeping the router queue lengths down and decreasing the processing time absorbed by
cach packet within a router. Smaller queue lengths means that the probability of dropping packets and
thus requiring retransmission is decreased and there is less actual bandwidth used to transmit the same
information. Also, by decreasing processor requirements for each routed packet, the routers can
increase their throughput and thus make better utilisation of the raw bandwidth available in the form of
fibre optic links between the routers, Overall, new core routers will offer improved throughput, which

will make betier use of the raw bandwidth in the Intemet.{Teitelbaum et al., 1999)

The largest bottleneck in Internet bandwidih is found in the “last mile” connection to the
end user. Whilst large businesses can afford the cost of a high speed connection to service the
company, until recently, smaller companies and home users could only connect to the Internet using a
modem over a standard telephone service. The maximum bandwidth offered by this link is 56kb/s and
even this depends on a clean line between the calling parties. This bandwidth, while adequate for
simple information services, does not lend itself to many other applications for which an increase in
bandwidih to the user is requited. Recently, Cable Modem technologies, using the Hybrid Fibre/Co-~
axial Netwotk employed in Cable Television Services, and Digital Subscriber Line technologies
employed over existing telephone twisted pair, have increased the potential bandwidth available to end
users. A Cable Modem connected user can expect to share a connection of approximately SMb/s with a
potential 10-30 other end users. Since not every user will be utilising that bandwidih concurrently,

most users could expect at least 1Mb/s of available bandwidth, a factor of 20 increase over that

available via a standard modem connection. Similarly, Digital Subscriber Line users can expect a

Chapter 2:
Copyright Protection of Streaming MPEG Video

dedicated bandwidth of anywhere between 2Mb/s and 40 Mb/s, at least a factor of 40 improvement
over a standard modem connection. Both of these services also offer a permanently online connection
with the existing telephone line being available for normal use. Other high bandwidih access
technologies such as satellite and 3G mobile telephony will also become riore common. These access
technologies are already available, and the usage cost is rapidly approaching an amount that most end
users would be willing to pay. Overall, high-bandwidth end-user access technologies are becoming
more prevalent and most end users will have a high bandwidth connection to the Internet in the near

future. This will encourage the development of new, higher network speed applications.

The Next Generation Intemet will provide improved bandwidth to the end user using two
different techniques. One of these will be the improvement of routers in the core of the network to
provide better bandwidth utilisation and thus the appearance of improved bandwidth. The second
technique will improve “last mile” bandwidth through the use of new user access technologies. This
improved bandwidth will lead to both existing and new applications being developed or medified to

utilise this bandwidth to provide a better service to end users.

2.1.2 Quality Of Service

Quality Of Service (QOS) can be defined as some form of guarantee on the provision of
network resources. An example is the guarantee of a minimal average available bandwidih and
transmission delay. This is different to the traditional implementation of the Intemet, which is based on
the concept of a packet switched network. This provides hittle or no QOS, as each packet is delivered
using a best-cffort approach, there is no concept of guarantecing the bandwidth or delivery times for
individual datagrams or streams of datagrams. As such, increased network usage leads to congestion
which affects the perceived network availability of all users. This is different to a circuit switched
network like the phone system, which guarantees bandwidth, delay and jitter for all users, regardless of

the number of concurrent calls.(Sikora, 2001; Fowler, 1999)

When the Internet was first developed, the bulk of network traffic was not time-critical
and depended more on guaranteed arrival than on QOS issues. As nctworked applications and
computer systems developed, transfer of graphical information became popular, followed by audio and
then video delivery. Initially, these were done as file transfers that were then accessed and played back
localiy at the receiving station. Later, the concept of streaming took place where the time dependent
multimedia sireams were decoded and played back in real-time as they were received from the
network. In these cases, it was necessary that the network had ample available bandwidth to ensure
that individual datagrams arrived at the destination on time, a congested network resulted in late
delivery and data that was unusable. Other networks, such as ATM, have been developed which
support the concept of QOS, therefore allowing terminals to request the required bandwidth and
datagram delivery constraints. Resources within the network would then be allocated to individual
streams and the required QOS would be guaranteed to the two communicating parties.(Fowler, 1999;
Saunders-MeMaster, 1997; Branch et al., 1996)

14

Chapter 2:
Copyright Protection of Streaming MPEG Video

The Resource Reservation Protocol (RSVP) has been developed to try to extend the QOS
concept and make it applicable in an existing 1P network. RSVP has problems and is <ot widely
implemented, many of these problems have 1o do with scalability. As one of the features that will be
built into the Next Generation Intemet, QOS will allow not only better management of existing
resources, but also the implementation of applications that require real-time or near real-time data
transfer. Multimedia streaming is the most common near real-time data application whereby it is more
important that parts of the stream are delivered to the destination within a certain timeframe than
whether or not they are delivered correctly. In a QOS guranteed network, the client and server can
negotiate their bandwidth requircments with the network which will then ensure that the reguired
network resources are available. Total network resources will be managed better as new streams will
be refused QOS guarantees if the resources are not available, existing streames will not suffer service

failures in a slightly congested network.{(Fowler, 1999; Ashmawi et al., 2001)

Two different technigues are usually applied to implement QOS, Differentiated Services
{DiffServ) and Integrated Services {IntServ). The DilfServ approach categorises each packet into one
of a series of classes. Each packet is then treated differently by routers based on its class type. In this
way, packets of one class can receive better service than packets of a different class. All packets within
a single class are treated equally. DiffServ does not understand the concept of a stream and operates
equally on all packets regardless of their source and destination, The IntServ approach instead
identifies individual data streams through the network and provides a different level of service to each
stream. While more true to the concept of QOS, IntSery is a more complex approach due to not only
the requirement to identify individual streams, but also maintaining different QOS parameters for each

of these streams.(Mohammed, 2002; Ashmawi ctal,, 2001; Teitelbaum et al., 1999)

Due to scalability issues, a wide scale Next Generation Internet implementation will most
likely employ Differentiated Services (DiffServ) QOS in the backbone and Integrated Services
{IntServ} QOS in the local area. By employing DiffServ in the backbone, network traffic can be
allocated into different service classes, with each different class being allocated different priorities
when being routed. This will enable certain types of traffic to traverse the network more quickly than
other types, but will not provide wide area guaranteed QOS to individual streams. In the local area,
IntServ will be employed to provide individual stream QOS between individual communicating parties.
This will allow a local multimedia server lo stream to all client in the local area with guaranteed QOS

to ensure timely data throughput.

2.1.3 Applications

The coming existence of the Next Generation Internct will lead 10 a host of new
applications being developed to take advantage of these new features. New security features will cause
greater confidence ir digital monetary transactions (Bozoki, 1999; Aslam, 1998; Group, 1996; IETF,
1998¢c). Many of these new applications will charge for the provision of a service. Today, a
connection to the Internet conables consumer access to an informatiz: base, future applications will

enable the provision of new services over tiic public network infrastructure for which consumers will

15

Chapter 2:
Copyright Protection of Streaming MPEG Video

be willing to pay for. The new security featurcs of the Next Generation [nternet will ensure both that
consumers have confidence in the billing system, and that service providers have confidence in the

delivery of their service only to paying customers.

Many of these new applications will not require any other featurcs of the Next
Generation Intermnet other than secure transactions, on-line purchases, non-multimedia information
delivery (such as stock market information), and support for registered customers being prime
examples. These sorts of applications can be implemented today, examples such as Amazon
(www.amazon.com), and Internet Banking applications are starting to come on line. Morc of these
types of applications will appear as improved security becomes commonplace within the Internet.
Other applications that take advantage of the improved bandwidth should also be devcloped, as this
bandwidih becomes more generally available. These sorts of applications include those that involve
collaborative computing and large data or file transfers, perhaps similar to the SETI at home

(se:iathome.ssl.berkeley.edu) distributed processing project.

Finally there will be a proliferation of new multimedia applications that will take
advantage of both the improved bandwidth and Quality of Service. These applications will be an
extension to existing low bit rate muliimedia applications, such as Microsofi Media Services and
RealVideo, to provide improved quality video at higher bit rates. There will also be a better integration
of video services with other media to provide a beiter multimedia environment. One of the new
multimedia applications that will be deveioped is Video ¢n Demand (VoD) for entertainment purposes.

This will be examined in more deiail in the nexi seclion,

2.1.4 Video On Demand Systems

The concept of Video on Demand (VoD) encompasses the idea of a client selecting a
video stream that is stored on a remote scrver, and then having the server stream or deliver that asset to
them. The client can then subsequently control the delivered video — pausing, indexed scarches, high-
speed playback — while viewing. This entails providing the same sort of functionality that a user would
have with the movie being delivered from a DVD or VHS player to their television set, but extending

the link such that the source is available somewhere else on the network. (Jain, 1999; Fist, 1994)

VoD has often been proposed as the next “killer” application for the Intenet, however,
today’s Internet cannot support this type of application. High quality video for entertainment purposes
reguires a lot of available bandwidth, at least 2Mb/s (VHS quality MPEG-1 Video) and preferably up
to 8Mb/s (DVD quality MPEG-2 Video), for cach individual video stream transmitted across the
network. Similarly, the real time naturc of networked video delivery requires the presence of a certain
Quality Of Service (QOS) in order to guarantee the timely delivery of the video stream over the
network. As the development of the Next Generation Internct continues, and these capabilities are
progressively introduced into the Internet, the chances of a successful Vo> implementation will
increase. (Gemmell el al., 1995; Hsing et al., 1993; Little and Venkatesh, 1994; Middlcton-Williams,
1993)

= RO

Chapter 2:
Copyright Protection of Streaming MPEG Video

Previous work has shown that if the network is adequately dimensioned, it is possible lo
build a VoD system today. rlowever, the cost of building such a network means that the system will be
confined to a local Intranet environment within a single company or local area. Indeed, there are many
high quality Vidco Strecaming products available on the market, and the weak link holding back a major
implementation is the quality of the available networks. Studies show that none of the currently
available distribution networks will aliow a large scale system to deliver VoD into the kome.(Branch,
1996; Branch and Durran, 1996; Branch ar.d Tonkin, 1997)

The implericatation of a Vol system has to meet stringent requirements. These include
nctwork requirements, server requirements and «lient requirements, each of which will be discussed in
more detail in the following sections. Whilst server anc client requirements can be easily serviced with
oday’s technology, the network requirements either require serious over-dimensioning of the network

or future QoS implementations of the Next Generation Internet.

2.1.4.1 Network QoS Requirements

In order to support a VoD system, the network must be capable of supporting individual
media streams from each server to cach client within the network. A VoD sircam, usually compressed
using the MPEG-1 or MPEG-2 video compression standard, is a variable bit rate stream with a constant
average bit rate. In order to simplify both server design and network management, this stream is
usually delivered over the network at the average bit rale and then buffered at the clieut to reproduce
the required variable bit rate inpul into the decoder. Networked video is a real-time application and it
is imperative that data streamed over the network arrive at the client within a timeframe determined by
the amount of buffering provided by the client playback application. Late delivery due to network
congestion renders the data useless as the moment for displaying that data has already
passed.(Gemmell et al,, 1995; Fist, 1994; Middleton-Williams, 1993)

The average bit rate of high quality video streams is in the range of 2-8 Mb/s, and we
must cnsure that the network is capable of maintaining these bit rates during transmission. This is
relatively simple where the network is over-dimensioned, the available bit rate will always exceed the
required bit rate for streaming. However, in a more reasonably dimensioned network, or one that covers
a large area, the problem is not as simple as providing adequate average bandwidth, The network must
be managed to provide QOS and guarantees on available bandwidih to individual streams. This QOS
must extend from cach server 10 each client that it services and must guarantee the required bandwidth

to ensure that the video stream arrives at the client side on time.(Wu et at,, 2001; Rangan et al., 1992)

2.1.4.2 Server Requiremeats

Video on Demand servers are usually workstations equipped with a large disk array and a
high speed network connection. These systems run software that manage and stream video from disk
storage to network connected clicats. The raw disk and network connection bandwidih requirements
are casily met with today’s technology, much of the complexity of VoD server design rests in the VoD

software and its management of availzble resources. This software must manage access to both disk

Chapter 2:
Copyright Prolection ¢f Streaming MPEG Video

and network bandwidth so as to be able to serve the maximum number of concurrent streams. Whilst
VoD use is not widespread, much work has been performed in developing VoD servers and there are

commer¢ial products available that perform this function well.(Microsoft, 2002; Apple, 2002b)

The basic design principles of these systems fall into one of two catcgories, the first
design uses a separate thread of execution for each video stream. This thread is responsible for
acquiring data from the disk and transmitting it over the network port. This design offers the best
resource uiilisation as disk space and network bandwidth can potentially be used to peak potential. The
difficulties in this design involve scalability issues of how well the system scales to larger numbers of
streams and with the resultant scheduling issues of access to shared resources. The second design also
uses a separate thread of execution for cach video stream, however in this case, resource utilisation is
sacrificed for simplicity of scheduling. The system is set up a for streamiing 2 given bit rate and the
disk and network resources are divided up on this principle, cach thread is then allocated a fixed time
slice to acquire data from the disk and stream it. Whilst scalability is improved. utilisation drops as
video streams requiring half the system bandwidth still take up both disk and network resources of a

full bit rate stream.(Wu et al., 2001; Ramarao and Ramamoorthy, 1991; Jung et al.. 2000)

Finally, streaming video is not a simple matter of streaming a single file at a constant
rate. A video server must also be able to provide digital video functionality such as indexed and high-
speed playback. To provide this {unctionality, a server must recognise the differemt video encoding
formats and be able to extract the required information for these playback modes. As such, VoD
servers support cncdding formats o different degrees and will only allow the installation of valid,

encoded video bit streams.(Anderson, 1996; Lin et al., 2001)

2.1.43 Client Requirements

A VoD client is typically a set-top box that is connected to the Intemet and provides
Internet World Wide Web browsing and VoD video playback which is output to a television set. This
design allows watching the video for entertainment purposes in a comforiable environment, rather than
at a desk in an unconifortable chair on a computer monitor. There is. however, no reason why a
standard PC cannot also be used as a client and such a sct-top box will invariably be a specially

configured PC running similar soflware to a desktop computer.{Jain, 1999)

At the client end, the requirements for videe playback are minimal, The computer need
have an adequate network connection to support the required bit rate and be powerful enough to decode
and display the encoded video in real time. The minimum requircment for MPEG-1 video playback is
a Pentium 200MMX powered computer with 32 MB of RAM. Obviously, the typical configuration of
today’s computers far exceeds this requirement and therefore all current computers are capable of
playing back MPEG-1 compressed video. MPEG-2 video playback is a slightly differemt story, the
higher bit-rate and quality reqaires more processing power in order to cnable playback. A Pentium Nl
configuration would be a borderline case for successful decoding and full screen playback of an

MPEG-2 compressed video stream. With the continuing development in processing power and

18

e T
e E gk Emed

RN yRRNCCLP LI 4 IR TRION L ety

e et B

N TP -

i s SR

Chapter 2:
Copyright Protection of Streaming MPEG Video

memory, future computers will be more than capable of decoding MPEG-2 compressed
video.{Anderson, 1990; Chiariglione, 1997)

2.2 Streaming Server Implementation

A VoD Streaming Server implementation involves a hardware platform running
specialised software to stream locally stored assets to a number of remote clients over a network
connection. This software is responsible for managing the server resources ~ disk capacity, disk
bandwidth, network bandwidth, system bandwidth, system memory, CPU clock cycles — in a way that
the maximum number of concurrent streams can be provided subject to available resources. Since each
stream is independent, developing software to accomplish this task can be complex, especially when

the solution must be scalable to support increased available resources.(Gemmell et al,, 1995)

In practice, the most complex issue to manage is bandwidth — correctly managing
available disk, system and network bandwidth to maximise the data throughput of the server is
challenging. Furthermore, the server musl manage cach stream independently, a task made more
complex in that the current playback mode is selectable by the remote client. Streaming an asset at a
constant playback rate is a matter of transferting data from disk to network at the required rate, a
simple task made challenging by the question of scalability for large numbers of concurrent streams. In
order 1o support different playback modes, the streaming server software must be more aware of the

format of the installed bitstreams.(Gemmell et al., 1995)

In this thesis, | am considering the streaming of an MPEG-| binary bitstream. Inorder to
offer indexed and high speed playback modes, the Streaming Server software must perform some
decoding of the MPEG-1 bitstream. Since the Streaming Server has some knowledge of the bitstream
format, this will become an issue when considering Copyright protection of installed assets — any
changes made to an installed asset must still be compatible with Streaming Server implementations of

these advanced playback modes.

2.2.1 Indexed Playback Mode Implementation

When providing Indexed Playback or Seek funcijonality, a Streaming Server must be
able to locate timestamps within the MPEG-1 System Stream. The bitstream as stored on the server
disk must be modified in order to allow the remote client playback application to resynchronise its
decoder to playback the new bitstream. While implementation can vary between Streaming Server

implementations, invariably one of the following approaches is used:

e Commence Streaming at a Different Pack - Information contained within a Pack Header
includes a clock reference that indicates when the packet should be passed to the decoder. Since
a valid MPEG-1 bitstream consists of a series of Packs followed by the ISO 11172 End Code,
where the first Pack in the bitstreams must have a System Header following the Pack Header; a

new bitstream can be constructed by appending a copy of the original System Header to the end

19

Chapter 2:
Copyright Protection of Streaming MPEG Video

of the Pack Header of the new first Pack in the bitstream. Al MPEG-1 decoders will be able to
decode and playback this modified bitstream. In cffect we are editing the original bitstream by
removing a segment af the start of the media asset.(Jayvanta et al., 1994; Anderson, 1996; Vifa et
al., 1994; Wu et al., 2001)

* Coemmence Streaming at a Different Packet — 1t is possible that the granularity provided
by timestamp information within the Pack Headers is too coarse. The format of the Packet
Header allows — but does not require — further timestamp information. This information could
be more regular and therefore allow more fine-grained indexing information 1o be retrieved.
This approach also requires more work in constructing a valid MPEG-1 bitstream, since a new
Pack Header and System Header must be prepended to the new first Packet in the
bilstream.(Jayanta et al., 1994; Anderson, 1996: Vifia et al., 1994; Wu et al., 2001)

in both cases, it may also be necessary to prepend a new Packet to the stant of the
bitstream that incorporates an MPEG-1 Video Stream Sequence Meader, thereby ensuring that the
contained Video Stream is a valid MPEG-1 Video bitstream and can be successfully decoded by all
decoders. While this may not be necessary for simple Indexed Playback, a change in playback modes
rom either of Paused, Fast-Forward or Rewind, would require resetting the decoder at the client

workstation and therefore the subsequent presentation of a valid bitstream.

2.2.2 High-Speed Playback Mode Implementation

Not all Streaming Server platforms iniplement support for high-speed playback. Suppon
for these playback modes is complex and uses valuable resources on the server, Similarly, the most
common use of high-speed playback modes is to locate a particular scene, this functionality is alrcady
provided with indexed playback (if the scenc timestamp is known). For the server plaiforms that do
provide this high-speed playback, it is not implemented by streaming the installed bitstream over the
network at 2 higher bit-rate. This increases both the disk and bandwidth requircments for an individual
stream, and will result in a lower number of concurrent sireams that can be supported by the server.(Lin
et al., 2001; Leditschke and Johnson, 1995; Jayanta et al., 1994)

Bandwidth requirements can be minimised in two ways, one is to nol stream the
encapsulated Audio Stream as there is no need to perform Audio Playback in a high-speed mode. The
second technique is to not stream every Video Frame - as playback occurs in high-speed, it is not
necessary to display all frames. If this approach is carefully undertaken, it is possible to stream an
MPEG-1 bitstream in a high-speed playback mode with similar bandwidih requirements o streaming at

normal playback speed.(Anderson, 1996; Shanablch and Ghanbari, 2001; Frimout et al., 1995)

High-speed streaming is generally performed by streaming a modified MPEG-1 Video
Stream (containing only 1-Frames). As this stream must be decoded at the client end, this newly
created bitstream must be a valid MPEG-1 Video Stream. A properly formatted Video Stream can be

constructed using the following steps:

oS ol ot L

R s

i

Chapter 2:
Copyright Protection of Streaming MPEG Video

* Existing Group Of Pictures (GOP) Headers do not specify the number of frames contained
within the GOP. As such, it is possible 10 remove any number of frames within the GOP

without changing the contents of the GOP Header itself.

* Existing Picture Headers specify only the frame number in presentation order within the
GOP. Since the I-Frame always forms the first frame of the GOP its frame number will be 1.
As such, it is possible 10 remove other Pictures from the GOP without changing the contents of

the Headers of the remaining Pictures.

¢ An existing Vidco Stream is still valid if individual Pictures are removed from it. By
removing all bar the first Picture within each GOP, the result is a series of GOPs, each

containing a solitary 1-Frame.

¢ When streaming this new bitstream in reverse mode, each GOP should be transmiited in
reverse order, as each GOP conlains ong Picture, each I-Frame will be decoded and displayed in

reverse order — simulating the effect of a reverse, high-speed playback mode.

¢ Indexed High-Speed playback can be achicved by commencing the stream at the start of
any of the newly ¢reated GOPs. This bitstream needs 1o be pre-pended by a copy of the Video

Stream Sequence Header to create a valid MPEG-1 Video Bitstream,

Picture Picture

v Picture [} Picture || Picture o o | Picture
: [-Frame B-Frame

|| I-Frame [} P-Frame || B-Frame B-Frame

SR eI | | L
=-'=}",tig9r§¥j Picture ISR Picture
I'.E}, Y| 1-Frame 2]} I-Frame ' ' XY

Other GOPS

Figure 2-1; Modified MPEG-1 Video Sequence to Implement High-Speed Playback

This approach is shown in Figure 2-1, and is the technique most commonly used to
implement high-specd playback modes on existing Streaming Video Servers. When this modified
bitstrcam is retrieved by the client playback application, it can be passed to any existing MPEG-1
Video Decoder which will then display the {rames as quickly as they arrive. The typical MPEG-1
Video Stream formal is for cach GOP 1o contain 2 frames — ! 1-Frame, 3 P-Frames, and 8 B-Frames.
As such, this approuch yields a bitstream which will display approximately 1 in every 12 frames of the
original video bitstream. This will not yicld a high-speed playback rate of 12x, primarily due to the
fact that 1-Frames usually make up close to half of the data within the original bitstream. The new
playback rate wili be approximately 2x the original playback speed, while using similar disk and

network bandwidth resources at the server.{Frimout et al., 1995}

Chapter 2:
Copyright Protection of Streaming MPEG Video

Chapter 2:
Copyright Protection of Streaming MPEG Video

2.2.3 Installation of Assets

Because streaming server platforms must be able 10 decode the installed bitstream to a
certain level in order to provide advanced streaming functionality, they ofien check the video file prior
1o installation to ensure that the bitstream conforms to the required specification. In the case of
instaliaticn of an MPEG-1 encoded asset, a server would check to ensure that the bitstream conforms fo
the MPEG-1 System Stream specifications. and that timestamps and Packet Payload information can be
retrieved from the file. If the server supported high-specd playback modes, the file would also be
checked to ensure that the encoded Video Strearn conformed to the MPEG-1 Video Stream
specifications, and that individual Pictures can be extracted from the file in order to reconstruct a high-
speed bitstream.(Patrick and Moccio, 1998)

In order to improve performance during streaming, indexing and high-speed playback
information is usually extracted during installation. As an example, the Silicon Graphics MediaBase
3.1 Streaming Server platform constricts a sccond high-speed playback Video Stream during
installation and saves this new bitstream as a scparate file, streaming from this second file when one of
the high-speed playback modes is selected. On the other hand, the Apple QuickTime platform does not
support high-speed playback, however it does generate a hinted fite for installation., containing file

offsets for indexed playback purposes.(Patrick and Moccio, 1998)

As most servers at least offer indexed playback functionality. it is cssential that the
installed MPEG-1 bitstreams conform to the specification so that the server can decode and extract the

required information to support these playback modes.

2.3 Design of Video on Demand Systems

As mentioned previously, there are numerous different VoD products available
commercially, however developing a VoD system that will service users over a large area such as a
nation state or the entire globe, is not as simple as building a single VoD server using available
software. In this section T look beyond the concept of a VoD server to ihe ideas behind a VoD system.
This is equivalent to looking at the design and implementation of a large aetwork like the Internet as
opposed 10 a local intranet. When looking at the design of such a system, it is important to cousider
how it might scale to service a large number of users over a targe area. 1t is alco important 1o consider

the commerciai viability of implementing such a system and wha might cover the installation costs.

Three implementation concepls are examined in this section:

Single Server

Distributed Server

Multi-Party Distributed Server

2.3.1 Single Server Design

If an organisation is interested in providing a VoD service over the Internet, the first and
most obvious solution would be to purchase a powerful workstation equipped with a large disk array
and high quality video streaming software, The next step would be to connect this server to the
Internet using a high bandwidth connection. As long as the customers intended to receive the
streanting video are able 10 receive the required QOS between themselves and the video server, this
system will provide the streaming service adequately. This system design is represented in Figure 2-2,
with a single large video server attempting to provide entertainment guality video over a nationwide
network. The problems with this system design are fourfold: High Bandwidth Cost; High Upgrade
Costs; a Single Point of Failure; and the Ultimate Scalability of the System Design.(But and Egan,
2002a; Branch, 1996; Branch and Tonkin, 1997)

Etreaming Video Client Streaming Videa Client

Stieaming Video Client

Nationwide QoS
Capable Network

Large Streaming
Video Server

Streaming Video Client Streaming Video Client

Figure 2-2: Monolithic Single Server Vo) System Design

The current major limitation of this system is the high cost of network bandwidth, thig
involves not only the connection of the server 10 the Internei, but also the available bandwidth berween
the server and the customers, Whether the customer or the service provider directly pays the cost,
eventually the cost will be passed on to the customer. In the network environment today, high costs of
bandwidih limit the size of the customer base. In the Cinemedia Digital Media Library trial, an 8Mb/s
broadband connection was purchased between the University site and the Cinemedia central offices.
Despite the high cost of this link, only three concurrent video streams could be streamed to the
Cinemedia site from the University site. In order to extend the system to cover a larger customer base
including a range of secondary schools statewide, the overall cost of suppoiting the necessary
broadband links was prohibitive for a complete service implementation. Bandwidth costs have been

steadily decreasing and there is no reason to believe that this trend will not continue. The gradual

Chapter 2:
Copyright Protection of Streaming MPEG Video

introduciion of the Next Generation Internet will provide increased bandwidth, as well as better
management of that bandwidth. This should drive costs cheaper still. As costs decrease, the economic

feasibility of introducing a VoD service will become more likely (Cornall et al., 1999; Comall, 1998)

The second problem inherent in a single server design are the upgrade costs involved
when the customer base exceeds the capabilities of the server. In this case, the single server will need
to be replaced with a larger server to service the increased requirements of a larger customer base,
These costs could involve more hardware (faster computer, hard disk space), more licenses for the
video streaming sofiware, and a more expensive, faster, connection to the Intemet. These increased
costs are uniikely to scale linearly with the number of customers, thus as the service becomes more
popular, the service provider faces increased costs per customer to provide the service, Even multi-

processor based systems eventually reach a limit where further expansion becomes expensive.

The third problem with a single server solution is that the system has a single point of
failure. Should the single, large video server have a system failure, all customers would face a loss of

service, potentiatly at a large cosl to the service provider.

The final. and most severe, problem occurs when considering a system to provide a
service 10 a widespread customer base, such as a nationwide or global service, In this instance, we
have a substantial increase in cost of providing the service, which is due to the existence of a single
server at a central location. The service provider, and therefore the cusiomer, must pay for a high
bandwidth, QOS cnabled link between the server and each customer. The cost of both providing and
managing a QOS enabled link over a large-scale network is extremely high. As such, it is
cconomicaily unfeasible to site a central server in a capital city and expect to provide a video streaming
service 1o the entire nation. The high cost of streaming a single movie to a remote location is

prohibitive, let alone streaming to multiple customers at this location.(Branch and Tonkin, 1997}

A single server solution is economically unfeasible when considering streaming
entertainment quality video to either a large or widespread user base. This effectively limits entrance
to VoD service provision to large corporations with a lot of money, smaller film distributors could not
afford to provide streaming video to a large user base Given the inherent problems with scaling such a
service, a single large VoD server is unlikely to be the design implemented in a real-world VoD
implementation. Indeed, many existing lower quality streaming Internct Video developers (such as
Real Networks, Microsoft Media Services, cte.) are already developing distributed server and caching
syslems to overcome these problems inherent in a single server design. These initiatives will

undoubiedly be utilised in a real VoD service provision solution.

2.3.2 Distributed Server Design

A distributed VoD server design overcomes many of the limitations inherent in a
monolithic single server design. In this configuration, multiple smaller scrvers are cimfigured at

remote locations to service the customer base in the immediate local area, whilst requeste . videos are

3

i
1
¢l
it 1

(e E

T Ty

Chapter 2.
Copyright Protection of Strecaming MPEG Video

transmilied at the available bandwidth without QOS guarantees between streaming video servers on the
network, This system design is shown in Figure 2-3, where two large companies are operating
competing nationwide VoD servicesBranch et al., 1996; Jung et al., 2000; Ramarao and
Ramamoorthy, 1991; Wu et al., 2001)

Since the separate servers only stream video to the local area, the number of customers
that they service is lower and therefore cheaper and less powerful hardware can be utilised. Similarly,
costs in providing a QOS guaranteed network connection are fower between a client and a local server
as compared to a clicnt and a remoie server. An increase in the user base within a local area can be
handied by either increasing the capacity of the distributed server servicing that area, or by insialling a
sccond distributed server to service the same area. Also, increasing the area of coverage by the system
is a simple matter of installing a new distributed server in the new remote location. The only major
drawback remaining in this design is the large costs involved with a single company implementing a
large cnough system to cover a wide arca. This means that smailer video distrifusors are locked out of

the networked video service industry.

Company B Company A Company B Central
Distributed Server Distributed Server Video Server

e
I I

Nationwide High Local QoS
Bandwidth Network Network

Company B

Distributed Server Local QoS

Streaming Clien!

Lacal QoS
Network

I IR l
III III
Local QoS
Company A Central - Network _ Company A
Video Server Company B Company A Distributed Server

Distributed Server Dislributed Server

Figure 2-3: Distributed Scerver VoD System Design

The distributed server design was also trializd in the Cinemedia Digital Media Library
project, whereby two smaller servers were installed at remote locations. Assets were now either
transferred overnight over slower, cheaper, network connections, or transferred to CD and physicaily
transferred to the remote server. The asset was then installed on the remote server, which was then
used to service multiple clienis at the site without the need for an expensive broadband connection back
to the central server. Indced, a remote server with a low speed connection back to the central server
was able 10 serve more concurrent streams at a lower cost than the central server could over the

broadband connection. This demonsirated the viability of the distributed server design, and that overall

Chapter 2:
Copyright Protection of Streaming MPEG Video

costs were lowered. However, even though the video streaming servers were of the same brand, there
were still interoperability issues between the servers to manage, as well as increased complexity in
asset management and transfer between distributed servers on the network.(Comall et al., 1999; Egan,
1998; Cornall and Lipton, 1997)

The operating principles of a distributed server solution lead to a better allocation of
resources, even if a cheap QOS capable nationwide network becomes available. The main reason for
better resource usage lies in the network requirements for video streaming in that each customer
requires QOS guarantees between themselves and the streaming server. In a single server design, this
guarantee must be provided from the central server site, 0 each client currently streaming video, no
matter their location. Not only does this potentially require more data being transferred over greater
distances (for multiple concurrent streams), but that each stream only utilise its required bandwidth for
viewing the video. In a distributed server arrangement, video assets are copied between servers at the
current available bandwidth (which could be faster than the required streaming bandwidth), and only
streamed using QOS guaranteed connections from the end-point server to the customer. As a result,
bandwidth management now becomes simpler as it is only required between the distributed streaming
server and the client, and nationwide data transfer dreps as a single transfer to onc remote disiributed

server will be able to service all potential clients in that area.

When video assets are transferred belween distributed servers, it need not be streamed -
pre-existing data transfer protocols can be used ta perform the transfer. File transfer can be performed
at the available bandwidth, il the nationwide backbone has capacity for an 8Mb/s file transfer, then a
2Mb/s encoded video can be transferred and installed on the remote server at four times the speed than
if the asset was being streamed. The remote server can immediately commence streaming as it is
receiving and instzlling the video asset. Other clients within the same remote area can also access the
video on their local server without a sccond transmission from the central server. In a situation where
there is a popular movie, such as new releases, the asset can even be pre-delivered to the remote

distributed servers during off-peak time to take advantage of cheaper network premiums.

The biggest advantage, however, of a distributed server design versus a single server
design lies in its scalability. The fact that the system can readily scale to a large size, be it national or

global. There are many reasons why a distributed server configuration is more scalable, these are:

s Lower Network Infrastructure Cests or Requirements — With a distributed server
design, a nationwide fully QOS capable network is not required since streaming will not take
place from a remote location. A high bandwidih backbone will be required for content transfer
between distributed servers. The design requires only a QOS guaranteed service between the
client and the closest streaming server, network costs are minimised due to lower QOS

requirements,

¢ Server Infrastructure Costs — The service provider no longer needs 1o purchase an

extremely large system lo service a large number of clients. A file server with a large disk

ERTRINE BN

E e e e e

Chapter 2:
Copyright Protection of Streaming MPEG Video

complement can be utilised as a central store and smaller, cheaper video scrvers can be
distributed around the network. Also, in the event of a system failure of a distributed server, the
load can be shified to another necarby distributed server without loss of service to other

customers. Replacement of a failed server is also simplified.

¢ Growth of Custumer Base -~ {f the customer base grows, the system can be scaled to
support these customers by either the addition of further distributed servers or upgrading an

existing distributed server to a larger model.

+ Extending Range of Service - In a single server design, extending the range of service
provided involved cnsuring that a QOS capable network existed between the central server and
any new customers. In a distributed server arrangement, the solution requires a local QOS
capable network in the new remote area, the addition of a single distributed server to this area,

and adequate average bandwidth from the central server to the new distributed server.

There are still a number of problems with the distributed server design. These involve
the management of such a system, and the overall implementation costs. When looking at a distributed
server design as opposed to a single server design, we have increased the complexity of the
implementation, and thercfore the management of such a large system, In a single server design, asset
management involved solely keeping track of the assets installed on the server, in a distributed server
design, we must keep track of assets installed on each server as well as the location and status of each
distributed server. Whilst this added complexity will certainly make a disiributed server design more
difficult to implement, it is an obstacle that must be overcome in order to provide a scalable VoD
service.{Bridie, 1997; *-idic and Branch, 1998) Indeed, these solutions are already being integrated
into existing lowe. i lity sireaming video server products (Apple QuickTime, Windows Media
Services) as these v~ are moving from a single server design to a distributed server design. Even
so, these solutions i nive a single brand of video streaming sofiware that communicates using
proprietary protocols and therefore forces system operators to select a single brand name to minimise
interoperability issues.(Apple, 2002a; Apple, 2002b; Microsoft, 2002)

The other problem is the overall cost required in setting up a nationwide VoD service
using the distributed server model. Whilst the costs involved are still lower than those required to run a
working single server solution, they are still prohibitive for ail but the largest companies. Also, if two
competing companies set up such a system, there would be a large duplication of hardware outlay in

order to for both companies to provide a similar service to all users nationwide.

A distributed server design will readily scale to provide not only a nationwide, but also a
global service if a capable Internet backbone is available. This service could easily reach all customers
and can handle an influx of new users. However the cost of providing this service is still prohibitive
for smaller companies to consider and effectively limits access to the indusiry to large companies,
Competing VoD services would lead to duplication of equipment within the network and possibly some

arcas being serviced by only one company. So a distributed server design has removed the scalability

27

e L B T R e N A T

Chapter 2:
Copyrigh.. Protection of Streaming MPEG Video

issues inherent in a single server design, but hasn’t addressed the issue of costs and the economic

feasibility of implementing such a system,

2.3.3 Multi-Party Distributed Server Design

As discussed in the previous section, a distributed VoD system design is one that is
inherently scalable and can be used to provide a wide area service 10 a large number or customers. The
failings of such a design however, are the high costs involved in implementing such a system, as well
as the duplication of costs with competing services. The obvious question to ask is if the distributed
server design can be somehow modified to lower the implementation cost to partics interested in setting

up a VoD service.

Streaming Client Company X Compary A Central
Distribuled Server Video Server
Company W 0 Sen
Distribuled Server ey Local QoS - . I Il
|

Local QoS
Network

Local QoS
Network

Nationwide High
Bandwidth Melwork

Baal > [H
Local QoS Il I R Digit. Streaming
Client

] I B)

Company Y
Distributed Server

Company Z Company B Ceniral
Distributed Server Video Server

Figure 2-4: Multi-Party Distributed Server VoD System

This can be achieved by waking the concept of the distributed server solution and sub-
dividing it into smaller components, allowing individual companies to operate and manage these
components separately. In this situation, the implementation cost is shared amongst a large number of

players, thereby reducing the costs involved in providing a service.(But and Egan, 2002b)

The extension to the distributed VoD system design can best be described as a multi-
party distributed server system, shown in rigure 2-4. In this arrangement, we allow third party, neither
distributor nor customer, companies to own and operate the individual distributed video servers. These
small third party operators have no direct contact with the customer, instead the customer deals directly
with the video distributor, which then transmits the video to a third party operated distributed server for
final streaming to the customer. The third party operator then bitls the video distributor for usage of

their server; who in tumn bills the customer dhie<ily, These third party operators can be seen as

28

Chapter 2:
Copyright Protection of Streaming MPEG Video

providing a streaming service to video distributors, offering streaming capabilities to a local area for 2

remote ceniral media store,

In operation, there are three types of companies that are involved i » video streaming

system, along with a central distributed video server network manager:

» Video Distributer — This entity would set up a central server that stores a copy of each of
the assels owned by that company, this server is primarily a file ..~ r and would not be
required to provide any streaming services. As for the previous moa._ he major cost involved

is setting up the scrver to maintain a copy of all available assets.

» Streaming Service Provider - This entity is responsible for the streaming the video to the
customer. This ccinpany would own and maintain a smaller video server whose content is
dictated by the customers and the central servers. The customer conducts business with the
distributor who then utilises the streaming service provider to help deliver the video to the

customer.

» System Manager — This entity is required to keep tabs on al! distributors and streaming
service providers available on the network. 7 his would enable distributors te get information on

which streaming servers service parlicular areas and assist in management of the large network.

This involvement of third party companies in management of distributed servers allows
small companies to enter the video streaming indusiry, even if they do not own any content. This
design also allows competition between small streaming companies, an example of this can be
demonstrated in a rural town. A small business in this town could instali and operate a distributed
server, streaming video managed by a major distributor in a capital city to the residents of the town. If
business proves profitable, a second small business may decide io start up a similar business in
compelition to the first, which will invariably [ead to lower streaming charges and therefore lower costs
io the end user. In this situation, an end user would have no knowledge of the streaming company, nor
of how many distributed video-streaming providers are servicing their area. A small business could
form, register their server in the nationwide videc server network, and provide a streaming service.
Similarly, if the business proves not to be profitable, they could remove their server from ths

nationwide server network and close the business.

An obvious advantage of the multi-party distributed server design is that since the
distributed servers are managed by a number of different operators, a video distributor who owns
content can also become an online provider with little initial outlay. This is mainly because the
distributed server netwark is already in place. In this situation, a video distributor need only set up a
central server containing their content and register this server with the distributed server network. A
remote client can now request the video, which would be delivered to an appropriate distributed server
before being streamed. The advantage of this is that smail videc distribution companies can now be
involved in offering content onlinc, as they no longe: need to finance a ritionwide distribution

network. Either a lai+:. video hire chain siore, or a small independent film | coducer could be involved

Chapter 2:
Copyright Protection of Streaming MPEG Video

with digital streaming. In the example of an independent film producer, they are unlikely to have more
than a2 handful of video assets. They could install a small server containing the content that they own.
A customer could now request to view this video, the small server would then locate the closest
available streaming server to the customer, and transfer the movie to this server for streaming, if the

distributed server already has a copy of the video, it can be streamed immediately.

The greatest advantage of this design is that it has lost none of the advantages of the
general distributed video server design, whilst removing its major disadvantage. The cost of installing
the video service has been spread over a number of companies. The overall cost is reduced as the cost
and effort of installing distributed servers is not duplicated by competitors. Smaller distributors can
new afford to provide a nationwide video streaming service by utilising an exiling neiwork of
distributed servers. Because the cost of implementation is spread over a number of companies, this
network is more economically feasible to construct, and can even be constructed in phases. As a new
distributed server comes online, he range of participating video distributors is extended 1o cover the
region serviced by the new server. Increased competition amoogst managers of the distributed
streaming servers will lead to lower charges 1o the distributors, this in turn leads to a «ower cost to the

customer utilising the service.

The multi-party distributed VoD service design does have some drawbacks, distributed
server operators will be competing against each other and using different video streaming products.
This will serve to emphasize interoperability issues and will require a standard protocol for
communication between servers provided by different companies, but the extra complexity inherent in

the multi-party distributed server design cannot be completely eliminated.

Another new issuc to consider is the trust factor inherent in utilising third party delivery
systems. Since the streaming video servers are now owned and operated by a third party to the
distributor/client relationship, the fear of theft of a digital asset whilst installed on a third party server
becomas real. The issue of copyright ownership and protection of digital video assets is very important
and should not be taken lightly. The use of public network infrastructure already means that digital
video material is subject to theft whilst in transit across the network and the potential use of public or
third party streaming servers means that digital video material is also subject to theft whilst stored on
these servers. As such, we have introduced a new security issuc that must be dealt with to the

satisfaction of copyright owners before such a service could be legally implemented.

The multi-party distributed video server solution lowers the overall implementation cost
and spreads this cost over a number of players, making implementation more cconomically feasiblc.
This improvement has come at the expense of increasing the complexity of managing the system as
well as decreasing the security and protection of digital video assets. There is a very real requirement

to develop a solution to this security problem.

e T

A N

Chapter 2:
Copyright Protection ol Streaming MPEG Video

2.3.4 Non-Technical Issues

The two most important non-technical issues are payment for access to streaming video,
and copyright concerns. The first issue is an e-commerce issue that must protect both the customer and
distributor in regards 10 monetary transactions, the second issue involves the security of the digital

video assets and their protection against theft.

2.3.4.1 Payment for Access Privileges

If « company is considering introducing a nationwide VoD service, even using the multi-
party distributed server model, the overall cost of implementing this service is extremely high. These
costs can be broken into three types, the first being the initial hardware installation costs, which even
shared over a number of companies, are still high. The second major cost is the ongoeing maintenance
and bandwidth costs. These recurring costs are required to ensure that the service is always available to
customers. The final major cost is to the copyright owners of the video to be streamed, the copyright
holders have an investment in a film in panticular and expect a return on that film through royalties °
cach time it is screened.(Memon and Wong, 1998; Bloom et al., 1999; Little and Venkatesh, 1994 Fist,
1994}

All companies involved are going to wanl 1o see a return on their investment, and
therefore it is imperative that customers are charged for utilising the service. Similarly, due to the
online nature of the service, it is highly likely that online payment will be the preferred method of
billing customers. 1f customers are not confident in the online billing system, then the service will be
under-utiiised due 1o insecurity in moncy transfer leading 10 the fear of being over-charged. If service
providers are not confident, there is the possibility of free access to video assets and therefore no return
on their investment. This eCommerce issue is exactly the same for online video as for all other online
money transfers and the solutions being dev.loped for other online business enterprises will be directly

applicable to the VoD industry.(Aslam, 1998)

2.3.4.2 Copyright Concerns

Copyright holders pay a large amount of money to purchase the screening rights to a
particular asset and, as with all investments, they demand a return on that investment through royalties
cach time the material is screened. The problem with the concept of a VoD service is that the video is
streamed over the Internet, a public network infrastructure, and stored on potentially insecure servers,
making the video malerial subject to theft. If this occurs, copyright owners lose potential returns on
their assets. This is less of an issue in non-digital systems, due to the deterioration in quality when
copies are made. Thef} of this material from an online service will result in the loss of a perfect digitat
copy of the asset, which is not subject to quality degradation when making multiple further

copies.(Memon and Wong, 1998; Bloom et al,, 1999)

As such, protection of copyright is critical for providing a VoD service, If copyright

holders are not confident that their material will not be subject to digital thefi, then they will not make

this material available in the provision of an online service. If there is a lack of material available, the

Chapter 2:
Copyright Protection of Streaming MPEG Video

service will not be utilised as heavily by potential customers and will eventually fail due to lack of
customer interest. Copyright holders must be satisfied that their material will be protected before

releasing their material for online distribution.

2.4 Copyright

In the previous section 1 briefly discussed the issue of cCommerce and how it related to
the provision of VoD service. One of the eCommerce or monetary issues of the service providers is the

payment of royalties to copyright holders of the video being streamed.

Copyright ownership provides exclusive rights on a work to make and distribute copies,
prepare derivative works, and to perform and display the work in public. In terms of streaming video
content over a network, it entities only the Copyright owner to make modifications to the content and to
distribute it to other users of the network. Whether this content is distributed freely or at cost is up to

the Copyright owner.(Memon and Wong, 1998; Abdulaziz, 2001}

Ownership of Copyright is an economic investment. Having purchased the Copyright,
the owner expects a retum, commonly called royalty fees, on that investment. Returns on Copyright
ownership of music or audio vecordings are paid by a percentage of every purchase of that recording, or
payment of a fee when that recording is broadcast by a third party such as a radio station. Returns on
Copyright ownership of video assets are paid in a similar way, cither a percentage of a purchase or fee

payment for eacn broadcast.

The concept of delivery of audio or video content over public access networks creates
new problems in the area of Copyright. New issues involve cotlection of royalty fees. protection of
content against digital theft, and which parties will be responsible for ensuring that these requirements
are met. This chalienges not the existing fegal view on Copyright, but rather introduces technical
challenges of how to apply existing Copyright law to the digital domain.(Bloom et al., 1999; Bao,
2000; Bao et al., 1998)

2.4.1 Digital Rights

The issue of copyright was brought to the attention of CTIE during a VoD trial project
including Cinemedia{The State Film Centre of Victoria) and Silicon Graphics. In this project, a VoD
system was designed to stream educational curriculum content 10 secondary schools within the state.
The issue was discovered as Cinemedia began to negotiate with copyright owners 1o - ,, permission
to use their material for this trial. One complex issue was where the origina! copyright did not mention
digital rights for the material in question, as such some copyright owners were unable to release their

" material to :he trial. Whilst this issue could become a problem, especially when considering the
availability of older or historically relevant material, this is only minor in comparison with the concerns
of copyright holders over the security of their assets. In fact, it is this initial concern and problem that

led to the research evident in this thesis project. Copyright holders pay a good deal of money in order

32

Chapter 2:
Copyright Protection of Streaming MPEG Video

10 own the copyright on a particular video asset, and therefore expect a return on this investment. This
expectation is reasonable and the retum is generally paid by broadcasters (advertisers in the case of
frec-t0-air television) or the public {in the case of video hire). In this sitwation, master copies of the
asset are only available to trusted organisations. The copy played to the public is of lower quality and
subsequent reproductions of lower quality still. As such, the possibility of theft is low, and the
potential return for theft of low quality copies is insignificant.(Bsidie and Branch, 1998; Branch, 1996;
Branch and Tonkin, 1997)

With digital streaming video, we have a high quality digital copy being streamed to the
customer and any reproductions will be of the same high quality. Transmission over a public network
can casily lead 10 third party theft of a high quality digital copy of the video asset. Given that the issue

of oniine monetary transactions has not been solved, copyright owners are concerned about the

uncenainty of return on their investment as well as the theft of high quality digital copies of their video

assets. While the act of sicaling a digital copy from the network is not as easy as many copyright

"if; owners perceive. it can be done and therefore the concerns over theft are valid concerms.(Hsing et al.,

1993)

Copyright holders are gencrally not experis in Internet technologies. They ofien perceive

it 10 be a medium whereby any material placed online is frecly available to all. Theft of material from

the Internet, while not simple, is possible. Insecure transmission of digital data over a third party

network is always open to thefi by an authorised administrator of that network. The only way to

reassure copyright owners that their asset will be protected is if it is encrypted while in transit over

public networks and only decrypted direcily before being played back.

Protection of digital material against theft is extremely important. Copyright owners

need o be assured of two things, firstly that their material will be safe from theft by a third party, and

secondly the flow of money from the consumer is both well defined and secure. Until these issues are

addressed, copyright owners will withhold content, thereby ensuring the commercial failure of any

video streaming service.

2.4.2 Digital Theft

Having discussed the imporiance to copyright holders of protection of digita! video

material from theft, it is imperative to look at the vulnerable points of VoD system design to see where

this theft might occur. Only then can we design a set of security requirements that will protect the

digital material.

2.4.2.1 Theft from the Central Server

One of the potential weak links in distributed server system designs is the security

present on the central server. In both cases, this server is owned and managed by the distributor of the

digital' asset. The task of the server is to accept requests for video from the customer and then to

transfer and install the video on a streaming server local o the customer. This system is vulnerable to

Chapter 2:
Copyright Protection of Streaming MPEG Video

theft of its assets by a hacker gaining unauthorised access to the server and to the digital assets installed
on the server. 1f the server is not secure, gaining access may be relatively easy. at this point it would be

a simple maiter of digitally retrieving the video file from the server.

There are two technigues that could be utilised to correct this potential problem; the first
of these is to inyprove the security of the server itself. The reconfiguration of the server to ensure
against unauthorised access could be done using exisling security measures such as terminating
unnecessary services on the server (e.g. telnet) and/or utilising better security measures of the operating
system. The second solution to the problem is to store the videos on the central server in an encrypted
form. This does not secure against thefi of the encrypted asset but, if the encryption is secure, ensures
that the digital asset is secure since the hacker will be unable to retrieve the unencrypted format of the
video file. The unencrypted files could be stored on another server protecied by a firewall tha is
responsible for encrypting and placing the files on the public server. Either of these two solutions, or
both used together, would alleviate the major concern of theft of a digital video asset from a scrver

maintained by a trusted party.

2.4.2.2 Theft from Streaming Servers

If we consider the role of the streaming server in the distributed video server designs we
can concentrate on the issue of how a video is streamed to a paying customer. The video asset is
installed to remote distributed servers for local streaming to the customer. in the case of a simple
distributed server design, it is again imperative that these servers be protected against attack and that

the video be instalied in encrypted form in case an attack is successful.

In the case of the multi-party distributed server design, copyright protected content is
installed on a distributed server — owned and operated by a third party to the transaction — for streaming
purposes. In a true multi-party network, these operators may not be trustworthy. Similarly, these
servers may not be secure. The only solution is to ensure that digital asscts installed on a third party
server are in an encrypted form. Since a multi-party distributed server design may involve a range of
different streaming server products, any encryption technique must function with a large range of video

servers,

2.4.2.3 Theft in Transit

Since the Internet is a public network infrastructure, many parties have access to the daia
as it is transmitted across the network. Because the network is not private and the digital data cannot
be physically protected from other interested parties, the data is open to theft whilst it is within the

network.

Thefi of digital video whilst in transit can occur by listening to network packets as they
traverse the network and storing those of interest. The data within the packets can then be reassemibled
into the original digital file. In the case of a VoD service, the data can be stolen in transit in onc of two

ways, the first of these is o listen into and record the file transfer from the central server to the local

Chapter 1:
Copyright Protection of Streaming MPEG Video

streaming server. The second is to listen into a record the network video stream from the local
streaming server to the customer,

This form of theft is not as simple as it seems, especially when capturing the stream from
the local streaming server to the customer. This is because the video data is usually streamed using a
proprietary protocol, once a hacker has obtained and stored the packets from the network, he still must
decode the streaming protocol to reconstruct the original digital asset. The solution to this problem is
again one of encryption, and that is o ensure that every time the digital asset is transferred across the
network, it is in an encrypted form. In this way, even if the stream were intercepted and the mcrypted

file retrieved, the digital asset is secure since the hacker will be unable to retrieve the unencrypted
format of the video file,

2424 Client Theft

Finally, digital video material can be stolen at the client end. This can occur by paying
for legal deiivery of a video stream, and then making a digital copy of the stream as it is retrieved for
playback. As the content is strcamed in a digital form, it is a relatively simple matter for a programmer
to capture and save 1o disk the video stream before it is decoded and displayed. This copy could then
be used for illegal gain. The solution in this case also involves encryption. 1f the video is streamed (o
the client in an encrypted form, then the process of decryption and decoding for viewing purposes can
be tightly bound into a video playback application. This ensures that the client can sce either the

encrypted video stream or the completely decrypted and decoded video stream only.

2.5 Video Encryption Requirements

Given the likelihood that a commercial video streaming service will involve either a
simple distributed server design, or multi-party distributed server design, and taking into account the
copyright and digital rights issues mentioned in the previous section, it is obvious that a form of
encryption would need to be developed that would function within these system designs. The security
provided by this protection scheme must protect the zsset from theft during transit over the network,
whilst stored on a secured server, whilst stored on a third party streaming server and whilst being
decoded and displayed at the consumer end. From a users perspeclive, we must also ensure that none
of the conveniences of digital video are lost. This means that the functionality of indexed playback,
high-speed playback, and clear still frame must all remain intact and function. Also, the encryption
must be completely unobirusive to the customer, the security must be available without providing a
public face to the potential customer. In order for a new technology to be accepted by the customer
base, it must not only integrate seamlessly with existing technology, but also require no extra effort by
the customer to use it. In this section 1 list the requirements of the ideal digital media encryption
scheme, beginning with those imposed by copyright owners needs, followed by those imposed by the

third party distributed server design and existing streaming server products, and finally the

requircments imposed by the clients.

Chapter 2:
Copyright Protection of Streaming MPEG Video

2.5.1 Copyright Owper Requirements

The copyright owner providing the digital video will impose a set of requirements on a
video streaming service. If these requirements are met, they will be satisfied that their investment is
properly protected. The first requirement imposed is that of customer authentication and payment, this
ensures the proper flow of monies back to the copyright owner. This problem could be sclved using an
appropriate e-commerce model. While the provision of customer authentication, including appropriate
charging and key management, for video playback are absolutely essential in the provision of a secure
networked video streaming system, it can be regarded as an adjunct to the encryption algorithm itself.
This application would be solely responsible for securely delivering the correct decryption key to an
authorised customer, which would then utilise this key to decrypt the encrypted video stream. As noted
in many encryption technology texts, the issue of key management using Public Key Encryption
Schemes is a complex issue in itself,(Denning, 1983; Menezes et al., 1997; Schneier, 1996a) Similarly,
the issue of the video encryption algorithm is also complex. This thesis examines the encryption
problem, leaving the key management/e-commerce issues aside. For reference, the basic Key

Management procedure is outlined in Figure 2-5.

@ Request to view video.

@ 1s client authorised? What is closest
server? Is the video alrcady installed?
@ Install encrypted copy of video.

@ e-Commerce transaction.

® Deliver decryption key.

® Request encrypled video.

@ Stream encrypted video.)
® Decrypt and decode video.

) 4 Y \‘l

Client . Third Party
Playback Device e "| Distributed Server
W

@ Trysted
Distributed Server

ey,

Figure 2-5: Customer Authentication Procedure

The second requirement imposed by copyright owners will be that of active protection of
their asset via encryption. They will demand that the digital video be encrypted at all times whilst it is
in transit over a public network. They will also require that the video be in an encrypted form whilst
stored in any non-secure or pon-trysted device on the network. This requirement imposes a restriction
that al} the streaming servers must be able 10 stream encrypled video. Finally, the copyright owners
will require that the video is only decrypted at the client device and then done such that the client has

no access 10 the decrypted video stream.(Bridie and Branch, 1998)

Copyright owner concerns imposc one restriction on the video streaming system and onc

restriction on the design of the video encryption algorithm. The entire online video service must

Chapter 2:
Copyright Protection of Streaming MPEG Video

provide proper customer authentication and payment facilities, this protects both the copyright owner
and the client from monetary theft. Also, it is required that the video be in an encrypted state from the
time it leaves the trusted central server tiil the time the video stream is decrypted and decoded at the

client playback device.

2.5.2 Distributed Server Arrangement Requirements

The potential presence of non-trused third party streaming servers within the network
imposes a unique restrivtion on the encryption scheme, the digital video must be encrypted whilst it is
stored on third party servers and then delivered from these third party servers in encrypted form to the
customer. In this case, the customer must communicate with the trusted server owned by the
distributor in order to obtain authorisation and the key required to decrypt and view the video whilst the
video is delivered more efficiently from a local third party server. The operators of the third party
servers now have encrypted video installed on their servers that cannot be decoded or viewed. If the
copy of the video is compromised whilst stored on the third party server, the thief will not be able to
make use of it since the video is stored in encrypied form. Unprotected digital copies exist only on a

secure distributor server and in a temporary form whilst being decrypted at the customer end.

The potential for a wide range of servers - including different hardware, opcrating
system and streaming server software — means that the encrypted digital video file must be compatible
with all existing and future video server systems. While it is impossible to predict exactly how future
video server systems will be built, it is possible 10 look at existing systems and extrapolate, An
interesting point is that while some systems will siream any binary file, many require a file that fits the
digital video specifications. As such, if the chosen encryption scheme produces an encrypted digital
video file that has the same format as an unencrypled file, we can be reasonably certain that the
encrypted file can be installed on a server which has no knowledge of the video encryption scheme. If,
however, the chosen encryption scheme produces an encrypted digital video file that requires the video
server 10 have specific knowledge of the encryption scheme itself, then we are enforcing restrictions on
third party video server owners and developers of video server technologies. A system without these
restrictions ensures that all existing video server software thal serves known video formats can be used
to serve the encrypted file. In order to minimise inconvenience to server operaters, the encrypted video

file must instalt on ail video server platforms.

Use of a multi-party distributed server architecture imposes three restrictions on the
design of the video encryption algorithm, These restrictions enforce that the video must be installed on
ail servers, both central servers and third party operated streaming servers, in an encrypted form. Also,
it is essential that the video encryption algorithm used make no special requirements on the
construction of streaming servers. Acceptance of a new system is more widespread if there are
minimal requirements made on existing products. This requirement also benefits implementers of a

simple distributed server architecture, allowing more freedom in choosing streaming server platforms

and not tying them 1o a single platform.

Chapter 2:
Copyright Protection of Streaming MPEG Video

2.5.3 Streaming Server Requirements

Video streaming servers often support playback modes such as seek, fast forward and
fast rewind. Compatibility with these functions creates its own requirements. When looking at the
seek function, the video server is provided with a time index by the client playback application, the
video server must then stop streaming the video and recommence streaming at the supplied time index.
This implies that the video server must be able to index into the compressed video file. When dealing
with unencrypted video, this is not problem as the video bit-rate can be used to locate the appreximate
file position, and plentiful time stamps throughout the file allow for fine tune indexing. If the same
server is to support the same seek functionality on an encrypted file, then the encrypted file must
contain the same time stamps within its binary stream to allow the server to locate particular time
indexes. As a result the decryption process must be able 1o be resynchronised to support time
indexing.(Fist, 1994; Gemmell ¢t al., 1995)

High-speed playback modes, such as fast forward and fast rewind, also need
consideration. In order to minimise network bandwidth usage, existing video streaming servers skip
frames of a video stream rather than serve all of the {rames at a faster rate. This technique saves
bandwidth as only some of the compressed video data is transmitted and the audio stream is omitted
entirely. This is usually done by streaming only the I-frames within the compressed video file as these
frames stand alone and do not require subsequerit frames to be present before decoding. 1f the same
functionality is to be supported with encrypted video, then the video server must be able to locate the
individual frames within the encrypted file, and to determine what type of frames they are. In this way,
the server can still locate individual encrypted frames and stream them to the client. Similarly, the
decryption process must be able to resynchronise to decrypt individual frames.(Anderson, 1996;
Shanableh and Ghanbari, 2001; Wu et al., 2001)

The construction of video streaming servers place particular demands on the video
encryption algorithm. Indexed and high speed playback force the encrypled video file to adhere to
certain parts of the video compression standard, allowing it to be both recognised as a valid compressed
video file by the server, and to allow the server to provide features such as time indexing and frame

skipping. These issues will be explored in more depth in Chapter 4.

2.5.4 Client Requirements

The client viewing the video and the platform he/she is using to playback a networked
video asset also imposes some limitations on the video encryption scheme chosen. The first issue that
must be resolved is that of processing power. Processing power at the customer end is limited and a
certain amount of CPU power is required merely to decode the compressed digital video stream for
playback. There may be little CPU power remaining to decrypt the encrypted video stream. As such,
the first requirement imposed on the chosen encryption algorithm is that decryption at the client end

require minimal CPU cycles.

38

Chapter 2:
Copyright Protection of Streaming MPEG Video

As with strcaming servers, the encryption scheme must be compatible with all existing
and future video decoders. As will be shown in Chapter 3, some existing video encryption techniques
require specialised decoders that decode and decrypt in a single step. This automatically precludes the
use of these aigorithms with third party decoders that do not provide this function. By selecting an
encryption algorithm that will both use minimal CPU load and is able to integrate with existing
decoders, we ensure that clicnts are not restricted in using a particular video decoder, nor will we be
obliged to produce and maintain a specialised video decoder. This allows customers to use expensive,
specialised video decoder hardware, or preferred software decoders, in combination with a secure

decryption module to stream and playback an encrypted video stream.

Aside from the technical issues of playing back an encrypted video stream, it is also
necessary 10 ensure that client user requirements are met. Since clients will be paying for a streaming
video scrvice, they will expect certain digita! video playback features to be available, and these include
pause, seek, slow motion playback and high-speed playback in both directions. These requirements
have aiready been discussed as an issue required by the streaming video server. In the case of the client
it imposes a requirement that the decryption/decoder application must handle these features in an
encrypted scheme. The encryption algorithm must not be reliant on playback speed to function
correctly. It also requires resynchronisation and re-keying capability to support seek and pause
functionality. Finally, and most importantly, the entire security procedure must be completely invisible
10 the client. Once the client has completed the monetary transaction to obtain authorisation to view a
video, there should be nothing further required of the customer to view that video. If the decryption
process is intrusive, there will be no client support for the application{Anderson, 1996; Shanableh and
Ghanbari, 2001; Wu etal,, 2001)

Client platform and user expectations impose four restrictions on the design of the video
encryption algorithm. Client platform restrictions enforce that the decryption process requires minimal
CPU cycles and taat it be compatible with al) existing decoders. User imposed restrictions enforce that
the decryption process requires support of all expected digital video playback functionality and that it

not be intrusive to the user.

2.6 Conclusion

While entertainment quality video streaming is not possible over the Intemet today, it
will be in the near future and any true large-scale video streaming service on the Internet must foliow
the Third Party Distributed Server model. This is the only model that is economically feasible to build,
prevents duplication of expensive hardware, and allows smail companies to provide a service to a large
range of customers. The technical issues in providing such a service are not the only hurdles to
overcome when considering its implementation, we must also consider the copyright owners and
protection of video assets against theft. In fact, unless this protection is ensured, no copyright owner

will make content available for an online streaming service, leading to the ultimate failure of the

service.

Chapier 2:
Copyright Protection of Streaming MPEG Video

Copyright protection can only be guaranteed using some form of encryption. The

requirements identified in this chapter for any proposed encryption scheme are:
¢ Video must be encrypted prior to being placed online.
» Video must be distributed to streaming servers in encrypied form,
e Video must be installed onto streaming servers in encrypted forn,
¢ Video must be streamed to the client in encrypted form.

o All streaming server functionality, such as implementation of indexed and high-speed
playback, must be maintained when streaming encrypted video. The formal of the encrypted
file must ensure that this functionality is provided on a wide range of existing and future

streaming server products.

s All client playback functionality, such as indexed and high-specd playback, must be
maintained when receiving and decoding the streamed encrypted video. The format of the
encrypted stream must ensure that correct decryption can occur regardless of the different

streaming modes.

o All content must be protected. No segment of video or audio should be retrievable given

the encrypted vicoi: asset.

Chapter 3:
Existing MPEG-! Encryption techniques

Chapter 3
Existing MPEG-1 Encryption techniques

In Chapter 2, [defined the requirements for a video cipher algorithm that would function
within the distributed streaming server model. One of the primary requirements was in ensusing that
the encrypted video file would install and stream from existing video streaming servers. Streaming
servers have some knowledge of the video file format that allows them to provide digital video services
to the end user, therefore any encrypied video must appear to be a valid MPEG-1 stream for installation
purposes. Also required when considering existing video ciphers is the level of security they provide
and their speed of execution. To date, there are no existing cipher schemes that meet all of the
requirements listed in Chapter 2. These requirements are quite specific and require that the video

cipher algorithm will:
» Place no extra demands on strcaming server developers.
» Place minima!l demands on customer equipment.

e Satisfy all of the concerns of the copyright owners.

In this Chapier I provide a survey and analysis of existing MPEG-1 encryption methods
against the identified requirements, These existing algorithms can be categorised into one of three

groups depending on their mechanism of operation:

¢ Network and Transport Layer - Includes 1PSec and SSL, where the protection of content

is performed at a layer undemeath the streaming video application.
¢ Full encryption — The entirc contents of the bitstream to be delivered is protected.

o Partial Enryption — Some of the stream is encrypted for protection while other portions

of the bitstream are left as plaintext.

3.1 Network and Transport Layer Encryption

One of the most obvious approaches is to use existing protocols available at lower
network layers — below the application layer —~ such as IPSec or SSL to encrypt the video stream. This
places minimal requirements on system designers as the Copyright protection would be handled

external o the existing infrastructure. Unfortunately, there are many drawbacks associated with these

two approaches as discussed below.

Chapter 3:
Existing MPEG-1 Encryption techniques

3.1.1 IPSec Encryption

IPSe: is a Network Layer protocol (IETF, 1998a; IETF, 1998b; IETF, 1998¢) that
provides for secure communications between any two IP enabled workstations. The standard is usually
used to provide Virtual Private Networks (VPNs) for secure communications between two sites over a
public network infrastructure. In a video streaming solution, 1PSec would be installed either on the
video-streaming server or the gateway router at the site of the company running the server. This would
ensure that all traffic was encrypted as it left the site and not decrypted until it reached the IP stack at
the client computer. IPSec is an extension of the IP Protocol and IPSec datagrams can be routed by any
IP Routers on the network. On the surface, IPSec appears to provide a simple solution to the concept
of streaming protected video as it is implemented in the Operating System as part of the IP Stack.
Since this provides a singie code base which can be used by a number of application, errors and bugs
are minimised. This approach also guarantees compatibility with all existing streaming video
products.(Bozoki, 1999; IETF, 1993c)

While IPSec would provide protection of the steaming video against interception of the

stream by a network eavesdropper, it is unsuitable for use in a streaming video application:

o Speed — IPSec is a slow protocol on older host platforms as it primarily uses Block Based
ciphers to encrypt IP data.(NIST, 19932a)

o Scalability — The server platform - or gateway — would be responsible for applying the
cipher to all streams emanating from the server(IETF, 1998a; 1ETF, 1998c). This would
severely limit thc maximum number of concurrent streams that can be supporfed by an

individual server or site.{Qiao and Nahrstedt, 1996)

o Security — The Streaming Server application has access to the original video as plaintext
data which is sent to the 1PSec layer for encryption prior to delivery. As such, anyonc with
administrator privileges on the server platforn will have access to the plaintext bitstreams. In a
third-party distributed server environmest, ihere will not always be the required level of trust in
the streaming server operators who will have access to the digital video content. Also, thereisa
Jevel of trust required that the streaming server operator have adequately secured their system
against outside attack and subsequent thefi of content stored on the server (1ETF, 1998a; 1IETF,
1998b; 1ETF, 1998c)

e Copy Protection — The Client Playback application will also have access to the original
video as the encrypted IP datagrams are decrypted prior to being passed to the application for
decoding and playback. The owner of a playback PC could easily commit theft of a digital
video stream by legally streaming the video to the playback computer, capture all the decrypied
datagrams afier they leave the IP Stack, then reassemble the IP data into the plaintext video
bitstream.(I\ETF, 1998a; IETF, 1998b; IETF, 1998¢)

These issues are normally not a problem with 1PSec since the protocol is designed for

secure communications between two trusted parties, however a streaming video service would require

Chnapter 3:
Existing MPEG-1 Encryption techniques

distribution from one trusted party (the content owner central server) 10 an untrusted party (the client),

potentially via a second untrusted party (the streaming server operator).

3.1.2 SSL Encryption

SSL (Secure Sockets Layer) is a Transport Layer protocol (Group, 1996) that provides
for secure communications between any two applications running on 1P enabled workstations. It is an
extension of the TCP Protocol and as such, SSI. datagrams can be routed by any IP Routers on the
network and can be understood by any network equipment that processes TCP packets on the network.
Like IPSec, SSL appears to provide a simple solution o the concept of streaming protected video,
indeed it is often used to provide secure web services such as access to purchased digital data and to
personal information such as banking details. However while it may be suitable for these applications,

it is not suitable for the concept of streaming video:

When used to provide secure access to purchased digital content, the content is often
purchased for the permanent use by the consumer who can then use that data as they please. The
concept of streaming video is that the customer purchases the right to view the content but not to store
and re-use the information. Also, when used to provide secure access to personal information — like
banking ~ the data being accessed already belongs to the customer and the protocol attempts to ensure

that other users cannot also access ihat information,

While 1PSec is usually implemented within the communications Protocol Stack, SSL is
usually implemented as part of the application performing secure communications, therefore this means
that existing streaming server platforms and client playback applications would have to be modified to
support SSL, breaking the requirement that the chosen cipher system would not require any
modifications to streaming server platforms. Related to this issue is that SSL provides secure TCP-like
communications, many streaming servers use UDP - or related protocols such RTP - as a Transport
Layer protocol which is not protected by SSL at all. This means that existing streaming server
platforms would not only need to be modified to support SSL, but also to support a TCP based video
stream rather than UDP based streaming.(Group, 1996; Bozoki, 1999)

Finally, with SSL, the same major problems with IPSec are repeated - the video
bitstream is stored in plaintext at the streaming server and again at the playback application prior to
decoding and display, the streaming server must be secured against outside attacks, and the streaming
server has high processor requirements due to the encryption of multiple concurrent streams. This
leaves an SSL based system open to easy theft by an operative working inside the system, as well as
increasing the complexity due to minimising the number of concurrent streams each streaming server
can support.(Qiao and Nahrstedt, 1996; Schneier, 1996a; RSA, 1996)

Chapter 3:
Existing MPEG-1 Encryption techniques

3.2 Full Encryption

A second approach to Copyright protection of streaming video is the encryption of the
entire video stream(Qiao and Nahrstedt, 1996). The technique can be applied in one of two ways. The
first approach is similar in scope 10 IPSec and SSL based systems, with much the same problems and
vulnerabilities as an SSL based system. In this case, the video would be stored as plaintext on each
streaming server platform, the streaming server would then encrypt the entire bitstream before delivery
to the client player for decryption. The drawback to this approach is again that the video must be
stored as plaintext on each streaming server, requiring trust in each streaming server operator not to
engage in theft and to secure their own systems against attack. This approach also has the drawback
that the streaming server must encrypt each active stream on the fly, severely limiting its ability to
handle muitiple streams due to the processing load required to encrypt muhiple streams. Finaliy, this
approach requires many modifications to be made to existing streaming server platforms to ensure that
the video is streamed in encrypted form.(Qiao and Nahrstedt, 1996; Schneier, 1996a; Stinson, 1995;
Menezes et al,, 1997)

The second approach would be to encrypt the bitstream at the central server and then
distribute the encrypted bitstream to the third-party streaming servers for delivery to the customer.
This approach reduces any security flaws due to the administration of the streaming servers, as well as
reducing the processing requirements by these streaming servers — the bitstrecam is already encrypted
and no further load is required to encrypt the streams prior to transmission. Unfortunately, this
approach means that many existing streaming server products cannot be utilised in the system as the
encrypted bitstream will not be in a format that can be understood and used by these platforms. The
streaming server platforms would have to be specifically developed to stream completely encrypted
bitstreams. Even so, these platforms would not be able to provide advanced digital playback
functionality such as indexed or high-speed playback unless further modifications were made to store
metadata about specific index points within the encrypted bitstream. This is so because some decoding
of the installed bitstrearn must be performed by the streaming server in order to provide this
functionality.(Anderson, 1996; Chen et al., 1995; Frimout ¢t al., 1995; Gemmell et al., 1995; Jayanta et
al., 1994, Leditschke and Johnson, 1995; Lin et al., 2001; Shanableh and Ghanbari, 2001)

Complete encryption of the bitstream is not a viable solution when streaming video, A
system where the cipher is applied at a central server rather than at each streaming server obviously
minimises system complexity and streaming server processor requirements, as well as improve the
overall security of the system as trust in operators of the streaming server platforms is no longer

required. This idea also fails when considering the provision of advanced digital playback modes.

3.3 Partial Encryption

Partial Encryption of an MPEG-! bitstream involves the protection of segments of the

original bitstream while other portions are lefi as plaintext. [nitially, partial MPEG encryption was

Chapter 3:
Existing MPEG-1 Encryption techniques

considered due to the processing requirements of encrypting the entire bitstream. CPU processing
power is more abundant today and this issue is iess of a concem. The modern approach to partial
encryption of the MPEG-1 bitstream considers other aspects — indexing into an encrypted file and/or
real-time decryption and playback. Previously, no consideration has been placed on the suitability of
partial encryption o video streaming. In this section I analyse a series of MPEG-1 partial encryption
ciphers and cxamine their applicability to streaming from a server platform that has no concept of the
underlying cipher algorithm, I also explore the suitability of the cipher to support real-time decryption
and playback at the client in both indexed and high-speed playback modes.

3.3.1 SECMPEG

The SECMPEG MPEG-! cipher was designed by Meyer and Gadegast {Meyer and
Gadegast, 1995). This cipher applies one of four partial selection algorithms to the origi..al MPEG-1
bitsiream and protects the selected data using either the DES or RSA ciphers. Once encryption has
taken place, the headers are modified to include extra information so that the protected stream can be

properly decrypted at a later stage. The four different algorithms applied by SECMPEG are:
e Level 1 - Encrypt all of the headers in the MPEG-1 Video Stream.
o Level 2 —~ Encrypt all of the headers plus the DC co-efficients of the I-Blocks.
s Level 3 — Encrypt all [-Frames and I-Blocks in P and B Frames.

¢ Level 4 — Encrypt the entire bitstream.

SECMPEG is not suitable for streaming video. Level 1 & 2 encryption leaves portions
of the bitstream actually representing Video Content intact while protecting the metadata contained in
the headers, this metadata consists of a smali range of possible values and can be guessed relatively
casily, leaving the encrypted bitstream unprotected. Level 3 encryption protects the contents and is
suitable for public storage of video assets but cannot be streamed unless the Streaming Server is aware
of SECMPEG protected streams and the decoder is able to decrypt this stream at the remote end. Level
4 encryption is similar in scope to Full Encryption described in the previous section and is therefore
also not suitable for streaming purposes. Finally, for all partial selection algorithms, the changes made
1o the MPEG-1 headers make them non-compliant to the MPEG-1 bitstream format and as such they

cannot be streamed by any existing Streaming Server products.(Meyer and Gadegast, 1995)

By changing the header format, the Video Stream cannot be streamed by existing server
products. Also, the playback application would either require a decoder capable of parsing the
modified headers or a decryption module to reconstruct the original headers prior to playback. A
further problem with SECMPEG is the inability to index into the bitstream due to both changes in the
header and non-resynchronisation of the cipher employed. This means that SECMPEG encrypted
video can only be played back from beginning to end at normal playback cpeed, precluding

implementation of indexed or high-speed playback modes.(Shanableh and Ghanbari, 2001; Leditschke
and Johnson, 1995; Lin et al., 2001)

T ——————1._ b

Chapter 3:
Existing MPEG-1 Encryption techniques

3.3.2 Zig-Zag Permutation Algorithm

When encoding Macroblocks within the MPEG-1 Video Stream, each block of 8x8
pixels is processed using a Discrete Cosine Transform and encoded in a zig-zag pattem. The
processing order of the zig-zag pattern is fixed and the same for each Macroblock. Tang (Tang, 1996)
has proposed an MPEG-1 Video Cipher which functions by using a random permutation list to map the
8x8 block rather than the fixed zig-zag pattern. As well as re-arranging the order of DCT co-efficients,
the algorithm proposes splitting the DC co-efficient to hide its relatively Jarge value amongst the
smaller AC co-efficients. The same generated random permutation list is applied to all Macroblocks

being encoded or decoded - the cipher key is the random permutation list,

Further modifications are suggested to the basic algorithm, one involves generating two
random permutation lists and selecting which one¢ to apply using a pseudo-random coin flipping
algorithm, while the second groups blocks of 8 DC co-efficients and applies the DES encryption
algorithm. Both approaches increase the key length, the first requires a key that includes both
permutation lists and the seed to the coin flipping algorithm, the second requires an extra 56-bit value

to use as the DES key.(Tang, 1996)

The Zig-Zag Permutation algorithm is particularly vulnerable to attack. Given some
known plaintext, the co-efficients of the encrypted bitstream can be compared against those of the
plaintext. A single known frame of video will contain a large number of Macroblocks, enough to
determine the random permulation pattem. Once this pattern is obtained, it can be re-applicd to the
remainder of the sequence to retrieve all frames. No extra security is offered by using two permutation
pattems — the same procedure can be used to retrieve both patterns. Once both patterns are available,
we can apply both patterns to each Macroblock and select the most likely (high DC co-efficient and
low-order AC co-efficients gathered in the upper-left comer of the block) of the two generated
Macroblocks. The Zig-Zag Permutation Cipher is also vulnerable to a Ciphertext only attack as
described by Qiao {Qiao and Nahrstedt, 1996; Qiao et al., 1997)

While the security afforded by this cipher is questionable, it is interesting to consider
how suitable it is when streaming video. Because the cipher only modifies the contents of the
Macroblocks, the Video Stream headers are primarily left intact. While the contents of these headers
may need to be modified, they will still contain the correct information indicating frame numbers and
timestamps within the bitstream. The encrypted bitstream will appear to be a valid MPEG-1 sequence
and as such can be instailed onto existing Streaming Server platforms. These platforms will then be
able to extract individual frames from the encrypted bitstream for delivery over the nctwork in cither

indexed or high-speed playback modes.

At the client playback application, because each frame is encrypted using the same
random permutation list, resynchronisation of the cipher in each playback mode is not required,
ensuring that the received bitstream could be decrypted and played back correctly regardless of the

selected playback mode.

46

Chapter 3;
Existing MPEG-1 Encryption techniques

The nature of the Zig-Zag Permutation Cipher means that the cipher is most efficiently
applied durirg the encoding and decoding stages of video playback (Tang, 1996). During encryption, it

is possible, but more complex, to apply the cipher to an already encoded bitstream, this would involve
the following steps:

o Decode each Macroblock

* Retrieve each co-efficient through de-compressing the Huffman encoded stream
* Apply the random permutation pattern to the retrieved co-efficients.
» Compress the randomly sorted list using the Huffman compression aigorithm.

¢ Reconstruct the MPEG-1 Video Stream entirely — this last step is necessary since each
Macroblock will now be a different size. The different order of co-efficients will mean that the
Huffman algorithm will not be as efficient and lead to larger Macroblock sizes. This may have
an effect on the contents of the headers of the remainder of the stream. The increased Video

Stream length will require the stream to be re-multiplexed into the MPEG-1 System Stream.

During playback, it is imperative that the decryption process be built into the decoder
being used. A simple decryption process is the same as the encryption of a pre-existing MPEG-1
bitsircamn, the computational effort involved in deconstructing the bitstream, retrieving the co-
efficients, re-ordering the co-efficients, and finally reconstructing the bitstream, is expected to be near
that required to decode a plaintext MPEG-1 Video Stream. This should be true since the procedure
involved is practically the entire decoding process. Tang (Tang, 1996) proposes a decoder with a built-
in decryption module. This allows the random permutation list to be applied after the co-efficients
have been extracted from the bitstream, but before they are decoded back into individual pixel values.
In this instance, the cipher is extremely cfficient with CPU resources as the process of re-organising the
DCT co-efficients is short and processor friendly. This implies that efficient decryption and playback
is only possible with a specially wrilten decoder, this precludes allowing users to choose their own

decoder platform or using a hardware based decoder to playback an encrypted bitstream.

The Zig-Zag Permutation Cipher is not suitable for streaming video. While the
encrypted file can be successfuily installed and streamed from existing Streaming Server platforms in a

variety of different playback modes, there other problems.

¢ Correct client playback can only occur with a specially written decoder that combines an
MPEG-1 Video Decoder with the cipher module, this requires continuous maintcnance of this
software to incorporate improvements as well as not allowing the use of third-party software or

hardware based decoders.

e The algorithm itself leaves the encrypted bitstream vulnerable to attack, The entire
bitstream can be reconstructed using a known-plaintext attack while portions of the video

sequence can be obtained using a ciphertext-only attack.

¢ The encoded audio stream is not protected.

47

Chapter 3;
Existing MPEG-1 Encryption techniques

3.3.3 Video Encryption Algorithm

Qiao and Nahrstedt (Qiao and Nahrstedt, 1997) propose a Video Encryption Algorithm
(VEA). This cipher functions on chunks of data within an individual frame to be protected — All data at
the Picture Layer within the MPEG-1 Video Stream is selected for encryption. The data encoded

within the Picture Layer is then encrypted using the following algorithm:

e Sub-divide the bitstream to be encrypted into blocks of an even number of bytes — the

authors suggest 128.

e Process this 128 byte block into two 64 byte blocks (a,22a3...264 and byb;bs...bes) using a

key to select which bytes to select into List 1 and which to select into List 2.
e XOR the two 64 byte blocks to form a third 64 byte block (¢ caC 3...Coa)-

e The original 128 byte block is replaced with the third 64 byte block (cjcac 5...Ce4) and the
27 64 byte block (bybab,...bss) encrypted using a cipher such as DES.

This cipher is further secured by varying the key used to select bytes into List | and 2
such that the same pattern is not used repeatedly. Continuously varying this sclection property involves
the use of a range of different keys. Rather than incorporate all of this information into a single key,

the authors have chosen to encode some of the keys within the encrypted bitstream.

In order to be able to decrypt the bitstream correctly, the authors have chosen to modify
the contents of the original bitstream from the Picture Layer down. The proposal allows removal of ail
Picture and Slice Start Codes within the Picture to be encrypted followed by the insertion of a new
header block at the start of the Picture that contains information about the number and length of Slices
encoded within the Picture. Also included are details on the key to use to decrypt the given frame. As
explained in (Qiao and Nahrstedt, 1997), this approach does not lengthen the bitstream but rather

shortens it.

Unfortunately, the authors do not discuss how to encrypt the final block in the Picture
Layer which could potentiatly be shorter than 128 bytes. It is not suggested whether this final block

should be extended to the required block size nor what values to insert to perform this function,

The security provided by VEA is excellent. Statistical analysis of an MPEG-1 bitstream
coupled with the chosen biock length of 128 bytes can be shown to prove that List 2 should be a unique
bitstream which can be treaicd as a one-time pad to cnerypt List 1. The encrypted bitstream consists off
the ciphertext and an encrypted copy of the one-time pad. Given that further randomness is introduced
by regularly changing the List selection scheme, the cipher should be as secure as the cipher used to
protect List 2 (Qiao and Nahrstedt, 1997)

The suitability of the VEA for video strcaming is a different proposition. While the

contents of the upper layers of the encrypted bitstream still contain valid MPEG-1 information, all

content from the Picture Layer down is changed to some degree. The contents of the Picture Header

Chapter 3:
Existing MPEG-1 Encryption techniques

remain intact but have been moved to a different section of the original stream and are ne longer
preceeded by the Picture Start Code. This ensures that the Picture Header cannot be located by the
Streaming Server and that the high-speed playback modes cannot be implemented — as these modes

require the extraction of individual I-Frames within the bitstream. For the same reasons, it is possible

that some Streaming Servers will refuse to install the encrypted bitstream.

Furthermore, real-time decryption is also probiematic, primarily because the bitstream

«will be longer in length following decryption. This implies regeneration of the plaintext Video Stream

prior to passing it to a decoder for final processing. Extra processor and memory requirements

complicate implementation of client playback software.

Tie VEA Cipher is not suitable for streaming video. While the encrypted file can be

played back in an indexed playback mode, the cipher design leads to other problems that are not

addressed:.

¢ The cipher modifies the entire Picture Layer, destroying any metadata stored at this point.
While no indexing information is contained within this layer, the Picture Header does indicate
the format of the frame and whether it is an 1-Frame or not. This information is used by many
streaming servers to implement high-speed playback modes, As such, unless the server is

designed specifically to stream VEA encrypted content, these playback modes cannot be

supported.

s The aforementioned changes mean that the encrypted bitstream is no longer a valid MPEG-

1 Video Stream. Some streaming server products may refuse to install the encrypted video for

this purpose.

e The encoded audio stream is not protected.

3.3.4 Video Encrypﬁon Algorithm — Number 2

Shi and Bhargava (Shi and Bhargava, 1998c) propose a different algorithm, also called
Video Encryption Algorithm (VEA). In its initial incamation (Shi and Bhargava, 1998c), this
algorithm requires that the sign bits of all AC and DC co-efficients within the Video Stream be
encrypted. The approach suggested is to use a binary key where cach bit of the key is XORed with the
sign bit selected for encryption. Once the key fength is exhausted, encryption continues again by re-
using the key. The authors also suggest regular resynchronisation at the beginning of each Group Of

Pictures (GOP) by re-starting encryption from the beginning of the key.

The authors later modified their atgorithm (Shi and Bhargava, 1998a; Shi and Bhargava,

1998b) to also include the encryption of the sign bits of the motion vectors. In both algorithms Shi and
Bhargava directly use the key for XOR purposes, although it is possible to use the key to seed a random
bit generator for increased security. Unfortunately, regardless of the cryptographic value of the random
bit generator used, the system does not property secure the video stream and is susceptilie to a known

plaintext attack. A plaintext attack is achieved using the following steps:

Chapter 3:
Existing MPEG-1 Encryption techniques

e Use the VEA approach to determine which bits are sign bits and are therefore sclected for

encryption.

« Compare a known sequence of frames with their encrypted counterparts to determine which
sign bits have been changed and which have been left unaltered — this will result in the pseudo-

random bit sequence used to encrypt those {rames.

» Since the same bit sequence is reused for each GOP, it can be used to decrypi the entire
MPEG-1 bitstream — note that this is true even if the bitstream is truly random, a One-Time Pad,

since the random stream is used repeatedly rather than just once.

As for the Zig-Zag Permutation Cipher (Tang, 1996}, it is imperative that the decryption
of a VEA encrypted bitstream is performed within the MPEG-1 deceder. This process involves:

o Decoding the MPEG-1 ciphertext bitstrecam down to the MacroBlock layer.
» Using the Huffiman codes to retrieve the AC and DC co-efficient values,
e Modifying the sign bits of the co-efficients.

¢ Continue decoding the bitstream.

While decoding the bitstream to locate the MacroBlock contents is a simple procedure,
the decoding process begins properly upon reconstructing the MacroBlocks. This cipher is applied as
part of that procedure, decryption prior to decoding will be time consuming as it requires the co-
efficients to be decoded, corrected and finally re-encoded again. If the cipher is incorporated within the
decoder, CPU utilisation is extremely efficient as decryption involves only a simple XOR for each co-
efficient. The efficiency of the algorithm is decreased when considering scparate decryption prior to
decoding as some stages of the decoder must be performed multiple times. Like for the Zig-Zag
Permutation Cipher, this preciudes allowing us. - choose their own decoder platform or using a

hardware based decoder to playback an encrypted bitstream.

A VEA encrypted bitstream can be successfully installed onto a Streaming Server, The
only modifications to the plaintext bitstream occur within portions of the MacroBlock. The
information that the Streaming Server requires in order to implement different playback functionality
such as indexed and high-speed playback modes is .. i as plaintext ~ the server will successfully stream

a VEA encrypted bitstream.

The altemative VEA Cipher is not suitable for streaming video. While the encrypted file
can be successfully installed and streamed from existing Streaming Server platforms in a variety of

different playback modes, there other problems,

s Correct client playback requires a specially written decoder that combines an MPEG-1
Video Decoder with the cipher module. This requires continuous maintenance of this softwarce
to incorporate improvements as well as not allowing the use of third-party software or hardware

based decoders.

50

Chapter 3:
Existing MPEG-1 Encryption techniques

¢ The cipher is not secure and is vulnerable to a known plaintext attack where the entire
bitstream can be reconstructed. Given that most commercial video sequences would use some
known plaintext — such as a company logo - at the beginning of most bitstreams, this attack
would be easy {o perform..

* The encoded audio stream is not protected,

3.3.5 Frequency Domain Scrambling Algorithm

Like many of the previously presented ciphers, the Frequency Domain Scrambling
Cipher proposed by Zeng and Lei (Zeng et al,, 2002; Zeng and Lei, 1999) operates on information
encoded within the Macroblock layer, in particular the co-efficient values stored within the
Macroblocks. At its basic level, this cipher is similar to the VEA cipher proposed by Shi and
Bhargava, where sign bits of co-efficients are encrypted. The cipher further strengthens the approach

by also considering the following measures:

s Encrypting refinemient bits within s co-efficiext — An AC or DC co-efficient can be
divided into two paris. The significance part signifies the approximate magnitude of the co-
efficient and consists of the most significant 1 bit and any preceeding 0 bits. The refinrement
part consists of the remaining bits. The choice is made as the significance part contains the
main information and compresses well while the refinement part has a relatively even

distribution and can be encrypted without impacting greatly on the compression rate.

¢ Block Shuffting ~ The bitstream is divided into a series of blocks which are shuffled using
a changing shuffling table (determined by a key). Since the actual contents of the stream are
unchanged, compression remains high. Instead, the positions of Macroblocks within the stream

have been moved.

e Block Rotation — A Macroblock is rotated pseudo-randomly to further protcct the original

image. Again the pixel values are unchanged and therefore compression ratio is not affected.

The cipher as discussed by the authors is very secure and would be adequate for the
protection of Copyright. Similarly, as all modifications to the plaintext bitstream are performed on data
encoded within a Macroblock or Slice, header information used by Streaming Server products to
provide advanced playback features such as indexed or high-speed playback remains unaffected. This

means that the cipher is compatible with existing streaming server producis.

The Frequency Domain Scrambling Cipher is more reliant on being implemented as part
of the decoder than any previously presented ciphers. The complexity of operations mean that CPU
efficiency is only realised when decryption is performed as part of the decoding cycle. As for other
ciphers with this problem, this precludes the use of third-party and hardware based decoders in sysiem

implementation.

51

Chapter 3:
Existing MPEG-1 Encryption techniques

The Frequency Domain Scrambling Cipher is niot suitable for streaming video. While the
encrypted file can be successfully installed and streamed from exi<ting Streaming Server platforms in a

variety of different playback modes, other problems are:

e System requires a specially written decoder combining an MPEG-1 Video Decoder with the

cipher module.

* The encoded audio stream is not protected.

3.3.6 A Unique Cipher

Griwodz et all propose a unique algorithm (Griwodz et al., 1998) and approach to
protection of distributed video. First a Poisson process is used to select bytes from the original
plaintext stream at pseudo-random intervals. These bytes are then extracted from the bitstream to form
a new bitstream. The comresponding bytes from the original bitstream are then corrupted, using the
values of nearby bytes to calculate a value that is statistically similar to the original value. Finally the
corrupted plaintext is freely distributed. Playback is affected through purchase of the new bitstream
containing the un-corrupted bytes, which can then be inserted back into the corrupted bitstream prior to

playback. The new bitstream is delivered in encrypted form.

This novel approach is unique, experimentation by the authors show that only 1% of the
origina! bitstream nced be corrupted to render the file unplayble. Since this approach is applied to the
MPEG-1 System Stream, the effect also ensures that audio is protected. The authors envisage a use
where the corrupted bitstream is made freely available on local servers and caches while the smaller,
encrypted bitstream is delivered from a central server. While the system functions well for a download

now and play later system, it will not function in a streaming video implementation.

There is no telling which bytes will be corrupted by the sysiem and there is thorefore the
potential that the corrupted bitstream will not install or be successfully streamed from existing
streaming server products. There is also the issue of providing indexed and high-speed playtack.
Bitstream position information, while readily available when decoding from a file, is usually not
available when being streamed, and these playback modes ensure that this value could change
constantly. Being unable to keep track of the cutrent byte position in the original stream will

complicate the implementation of the decryption module in locating the corrupted bytes.

This cipher, while tackling the issue of video encryption from a completely new angle,
will not function with existing streaming server products and is therefore not suitable for use in

streaming video.

3.3.7 Multi-Layer Encryption

Tosun and Feng (Tosun and Feng, 2000; Tosun and Feng, 2001) propose a modification
on the VEA cipher developed by Qiao and Narhstedt. The new proposal looks at the 64 co-efficients

produced by the DCT transform and breaks them into three scparate layers. The first layer consists of

52

Chapter 3:
Existing MPEG-1 Encryption techniques

the lowest frequency (most significant) co-efficients and is called the Base Layer. The Middle Layer
consists of the mid-range frequency components, while the Enhancement Layer is formed by the

remaining highest frequency co-efficients,

The proposed cipher assumes separate transmission of each of the three layers using
different transport characteristics, ideally guarantecd delivery of the Base Layer high probability of
delivery of the Middle Layer while the Enhancement Layer gets the lowest priority. The three

individual streams are recombined at the clieut prior to decoding and display.

The approach proposed by Tosun and Feng is to apply the VEA Cipher developed by
Qiao and Narhstedt to the Base and Middle Layer only, the Enhancement Layer ~ containing minimal
information on the actual content — is delivered as plaintext. The idea is to enable secure delivery of
content over a network that potentially cannot cope with the required throughput. In this way, even if
ouly the Base Layer is transmitted, it can be decrypted and displayed independenily of the remaining
layers, resulting in poorer quality vidco rather than a discontinuity in playback. Layered approaches to
Streaming Video have been developed to counter networks without Quality of Service provisions, this

paper attempls to merge video cipher techniques with Layered delivery.

This Multi-Layered Cipher is also not suitable for streaming video. It necessary suffers
from the same issues as Qiao and Narhstedt’s original algorithm. Also, not all existing streaming
server products offer Layered Streaming and those that do will not necessarily use the same approach
0 do so. The proposed cipher lacks compatibility with the wide range of products necessary to enable

multi-platform streaming server implementations,

3.3.8 Selective Macroblock Eneryption

Alattar, Al-Regib and Al-Semari (Alattar et al.,, 1999; Alattar and Al-Regib, 1999)

propose a sct of four ciphers which operate on the Macroblocks encoded within the Video Stream:

o Method 0 - Encrypt all I-Macroblocks and the Macroblock headers for all predicted

Macroblocks.
¢ Method 1 - Encrypt every #™* I-Macroblock.

o Method 2 ~ Encrypt every n' I-Macroblock and the Macroblock headers for all predicted

Macroblocks.

e Method 3 — Encrypt every n™® 1-Macroblock and every a™* Macroblock header for all
predicted Macroblocks.

In each method, all data is encrypted using DES. The authors do not specify how 1o
encrypt data when the length of the Macroblock is not a multiple of 64 bits (the DES block-size), an
assumption is that the Macroblock is padded with 0 bits prior to encryption. The algorithm also
recommends resetting the count for every nth slock at the start of each slice and periodically changing

the DES key. The first option ensures correct selection of Macroblocks within a slice, importart if data

33

Chapter 3:
Existing MPEG-1 Encryption techniques

is lost. A dropped Macroblock results in incorrect decryption until the count is reset, in this case at the
start of the next slice. The second recommendation makes attacking the cipher more complex as the

DES key is constantly changed throughout the bitstream.

Experimentation by the authors show that the encrypted video content is not viewable.
Given that the DES Cipher is provably secure against all but a Brute Force Attack (Schaeier, 1996a),
coupled with regular changing of the DES key, makes attacking the security of any of the proposed

methods computationally infeasible.

The Cipher does not modify any contents of MPEG-1 Video Headers and therefore the
resultant stream should install on existing streaming server products and provision of indexed and high-
speed playback modes should not be impaired. However, the use of DES to encrypt Macroblocks and
Macroblock Headers mean that the resultant MPEG-1 Video Stream will not be of the same length as
the plaintext bitstream, since DES can only encrypt data in blocks of 64-bits. The result is that during
both the encryption and decryption process, the Video Stream must be de-multiplexed from the System
Stream before processing. Finally, the System Stream must be reconstructed prior (o decoding. This is
not a major issue during encryption as the 1ask is only performed once, but is a potential problem

during playback as reconstruction of a System Stream for decoding is potentially time-consuming,

The Selective Macroblock Cipher is not suitable for encryption of streaming video, it

suffers from the following problems:

e Decryption during indexed and high-speed playback modes. While the server could
certainly stream the encrypted bitsiream in these modes. Successful decryption will ensue only
if the correct DES key is known for the frame currently being decrypted. The design mentions
frequent changing of the DES key, but not how frequent. The changes must be coupled with
individual GOP boundaries and to the playback timestamp in order for the decryption module to

determine which DES key to use for the current playback mode.

o Reconstruction of the System Stream during Decryption. If the decoder being used at the
client workslation requires inpul of a correctly formatted MPEG-1 System Stream (such as a
hardware based decoder), then the System Stream must be completely reconstructed after
decryption. This means regenerating the headers to allow for the now shorter plaintext Video

Stream. This approach is potentially time cunsuming,

+ Different Length of Plaintext and Ciphertext. 1f the plaintext and ciphertext bitstreams are
of the same length, the decryption process can replace the encrypted data with its plaintext
during processing. Since they are not, all unencrypted data from the encrypted Video Stream
must be copied to generate a new Video Stream. This bulk data copying can consume valuable

CPU resources.

+ The encoded audio stream is not protected.

54

T —

.«

Sl

TR N R AT

A b e i BT A L

S

Sk

R

Chapter 3:
Existing MPEG-1 Encryption techniques

3.3.9 AEGIS Algorithm

Spanos and Maples (Spanos and Maples, 1996) propose an algorithm in which the entire
contents of the I-Frame and the Video Sequence Headers are encrypted. This algorithm employs major
changes to the format of the bitstream as extra information is inserted to locate start and end points,
The resultant bitstream cannot be streamed from existing Streaming Server products due to the non-
conformance of the bitstream to the MPEG-1 bitstream format. Similarly, while the authors suggest
the encryption of [-Frames only will secure the entire video, others (Qiao and Nahrstedt, 1996) have
shown that it is also necessary to consider protection of the content of P and B-Frames. As such, this
algorithm is not suitable for streaming video - it is not compatible with existing Streaming server

preducts and does not totally protect the encoded content.

3.4 Conclusion

Existing video encryption algorithms fail 10 meet all the requirements as proposed for a

distributed video server solution, exhibiting one or more of the following faults:

* The encrypted stream could only be decoded efficiently by specialised decoders: this
precludes the use of standard existing decoders — or hardware based decoder modules - at the

client end.

* Non existence of digital playback features: whilst the encrypted stream could be played
back relatively easily, some schemes preciude indexing which means that seek and variable

speed playback is not supported.

s Enecrypted stream could only be installed on specialised servers: this precludes the use

of existing streaming server products or requires modifications to these systems.

* Audio stream neot encrypted: some schemes protect the video segment of the stream but

not the audio segment.

* Video stream not fully protected: some schemes protect most of the video segment but

allow parts of frames 1o be recovered from the encrypted stream.

¢ Encrypted video is larger than the source: this means that more network bandwidth is

required 1o transmit the encrypted video.
¢ Excessive CPU requircments: some schemes were designed for secure video storage

rather than streaming and the CPU requirements to decrypt the video stream are too high.

Given this analysis, in this thesis | propose a new video encryption algorithm that will

mecet these requirements.

55

*

Chapter 3: .
Existing MPEG-1 Encryption techniques

i it

Chapter 1:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Chapter 4
A Novel MPEG-1 Partial Selection Scheme for the

Purposes of Encryption

In this chapter, 1 present a novel selection scheme for the purpose of partial encryption of
an MPEG-1 bitstream, where pan of the bitstream will be encrypted while part remains as cleariext.
The scheme developed in this chapter demonstrates the viability of partial encryption as a technigue
that can allow encrypted bitstreams to be installed on, and streamed from, existing video streaming
server platforms. This new algorithm is shown to be fast — requiring minimal CPU resources 1o
execute, and is compatible with a range of existing Video Server products of different brands, as well

as different types of MPEG decoder systems.

By examining the formal and contents of the different layers of the MPEG-1 System
Stream, Vidco Stream and Audio Stream, 1 will show that no part of the System Stream need be
protected via encryption and that the Vidco and Audio Streams can subsequently be considered
scparately for the purposes of encryption. The concepl of in-place encryption of the Videe and Audio
Streams within the System Stream is developed. This has the effect of not changing the length of the
encoded bitstream, as well as atlowing the multiplexcd sireams to be encoded while not modifying any
part of the System Stream. A partial selection scheme is then developed for both the Video and Audio
Streams. A practical state machine to select the bytes for encryption and a simple cipher to apply to

these byles is presented, such that all requirements ar¢ met.

Finally, this system is tested to prove its viability. These tests show that the encryption
process is reversible, allowing retrieval of the original plaintext bitstream, and that the processing load
required to support decryption of the bitstream is minimal and does not interfere with the required
processing power for video playback, They also show that a series of existing Streaming Video Server
products have no problems in serving the encrypted files in a variety of different playback modes. Two
separate client playback applications show that the encrypted video can be successfully decrypted and

played back in real time in a varicty of different modes including indexed and high-speed playback.

4.1 MPEG-1 System Stream Encryption

In this section, I explore the issue of encryption of the MPEG-1 System Stream. When
looking at the System Stream, we can ignore the contents of the Video and Audio Streams as they are
encoded as the payload data within packets of the System Stream(ISO, 1996a). There are three layers

within the System Stream which must be examined to determine whether any of the data contained

within each layer must be encrypled in order to protect the content.

Chapter 4: .
A Novel MPEG-] Partial Selection Scheme for the Purposes of Encryption

4.1.1 Examination of the MPEG-1 System Stream

The topmost layer of the System Stream is the ISO 11172 Layer. Al this layer, the
System Stream is defined as a series of one or more packs followed by the 1SO 11172 End Code (the
byte aligned binary sequence 0x00 0x00 0x01 0xb9). Ignoring the contents of the Pack Sequence, the
1SO 11172 Layer can be considered to be a long binary scquence of unidentified length, terminating
with the four byte sequence (0x00 0x00 0x01 0xb9).(1SO, 1996a; Miichelil et al., 1996)

The Pack Layer describes the format of one Pack within the 1SO 11172 Layer. The Pack
bitstream consists of a Pack Header, followed by a System leader and a senies of one or more Packets
— where the System Header is required in the firsc Pack of the System Stream but is optional for any
other Packs (ISO, 1996a; Mitchell et al., 1996). Information contained within both the Pack and

System Header includes:
» A Clock Reference indicating a timestamp for deceding the Pack
* A measurement of rate of arrival of data at the decoder
* An upper bound on the data arrival rate
¢ Anupper bound on the number of multiplexed Audio Streams
e A series of flags that arc used to set up the Video and Audio decoders
* An upper bound on the number of multiplexed Video Streams

¢ Optional data to set up buffer sizes within the Video decoders

The final layer of the System Stream is the Packet Layer and it describes the format of
one Packet within a Pack. The Packet bitstream consists of a Packet Header, followed by the Packet
Payload — a binary series of bytes, the length of which is determined by a ficld within the Packet
Header (1SO, 1996a; Mitchell et al., 1996). Other information conveyed in the Packet Header is:

* An identifier — which Video or Audio Stream the payload belongs to
¢ The required buffer size for the decoder of this stream

= Both, one of, or neither the Presentation Timestamps of the Packet to the Stream Decoder

and to the user

Examing the information encoded within all of these headers, the Pack Header, the
System Header and the Packel Header, 1 note that these fields convey no information on the actual
content of the Video and Audio Streams. This information is used 1o set-up video and audio decoders
prior to decoding and displaying data. The information can also be used to determine whether the
encoded packet payload belongs to a Video or Audio Stream, as well as determining which of the

potential multiple Video and Audio Streams is represented.

58

Tyt i

YRR

T ek R S e A

o B 0 S A S R S b e

5

Tt

Chapter &
A Novel MPEG-] Partial Selection Scheme for the Purposes of Encryption

Some information encoded within the headers of the System Stream must be left as
plaintext, particularly Packet Header information containing the payload size and stream identification.
This information is important for a streaming server when streaming a source with multiple Video or
Audio Streams as it allows selection of the correct stream, ensuring that other Video and Audio
Streams (not viewed) are not transmitted across the network. It also allows the server to pick out and

transmit only the Video Stream for high-speed playback.(Anderson, 1996; Lin et al., 2001)

The remaining information, not only in the Packet Header but in all other layers, while
important in comrectly configuring a decoder for eventual display of the bitstream, does not convey any
information regarding the actual content of the encoded bitstream. Encrypting any of this information

will not protect any vital information in determining the content of the encoded media siream, it may

also cause potential problems:

& Sccurity — Since many of these values are cither known, or can be easily guessed from a
smali range of likely possibilities, it gives a cryptanalyst a piece of known plaintext. Having
some known plaintext can aide in the procedure of breaking the cipher.

» Compatibility - Changing or encrypting some of this information could preclude installing
the encrypted video with most existing MPEG capable Streaming Video Servers. Streaming
Server, must parse the installed bitstream to a degree in order to provide any features beyond
simple playback, such as indexed or high-speed playback. Many servers will refuse to install a

file that cannot be properly parsed or will complain when streaming begins,

Encrypting any of the information encoded within either the 1SO 11172 End Code, or the
Pack, System and Packet Headers will not protect any vital information in determining the contents of
the encoded media stream. Furthermore, encrypting any of this information may cause the encrypted
bitstream not to be accepted by an existing Streaming Server product for installation. If all this
information is lefl as plaintext, the problem can be described as encrypting the payload data of an
MPEG-1 System Stream Packet. Since cach packet payload forms a portion of either a Video or Audio
Stream, we can consider their encryption separately and look at multiplexing the encrypted Video and

Audio Streams within a plaintext System Stream.

4.1.2 Processing the MPEG-1 System Stream

Since there is no relevant data contained within the MPEG-1 System Stream that need be
protected via encryption, a simple approach in processing the System Stream for encryption/decryption
would be to de-multiplex the strcam into its constituent Video and Audio Streams, encrypt/decrypt
these sireams separately, and then re-muitipiex them to form a new MPEG-] System Stream. While
this could be a valid approach at the central server where content need only be encrypted once, there is
a potential problem at the client end as recreating the System Siream would require the use of valuable
CPU cycles. There is the option of simply de-multiplexing the encrypted Video and Audio Streams
and then decrypting these prior to decoding and displaying thers. This technique fails for hardware

MPEGQG decoders that require an MPEG System Stream as input.

59

Chapter 4:)
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

The solution 1 propose, in-situ encryption, involves encrypting and decrypting the Video
and Audio Streams in-place within the MPEG-1 System Stream. This approach requires that the Video
and Audio Stream ciphers do not modify the length of the Video and Audio Streams, and that they can
be written to function with re-startable blocks. If this is the case, we can develop an MPEG-1 System
Stream parser that passes Packet Payload data to the appropriate cipher module for in-place processing.
Since the output data block is the same length, it can be re-inserted into the System Stream at the same
place without making any modifications to the Packet headers. 1In this section] present a state machine
that will parse the MPEG-1 System Stream and cali separate cipher modules to process the Video and

Audio Streams, this in turn will modify the System Stream in-place.

4.1.2.1 Parsing the MPEG-1 System Stream

The main steps required to complete our task are:
¢ Locate a Packet within an MPEG-1 System Stream
e Determine the Stream ID {which Video or Audio Stream) of the Packet

+ Encrypt the Packet Payload

Given the mulii-layered structure of the MPEG-1 System Stream (Mitchell et al., 1996),
it is possible to bypass all data in an MPEG-1 System Stream until a valid Packet Header is
encountered, indicated by the unique byte aligned sequence (0x00 0x00 Ox01 #), where 1 signifies any
byte value in the range Oxbc through Oxff. It is possible to parse the MPEG-1 System Stream by
skipping through the bit stream until we encounter the 24-bit byte aligned code (0x00 0x00 0x01),
which depicts the potential start of a Packet Header. 1f the following byte does not indicatc a Packet
Header, then we jump back to the start of the algorithm looking for a Packet Header. 1{ on the other
hand a Packet Header is found, we process the bytes making up the Packet Header and then pass the
next N bytes, where N is the payload length, to the appropriate cipher module for processing. If the
Header signifies a private or reserved stream, then the payload is skipped and ignored. otherwise the

appropriate cipher is called to encrypt those bytes.

The key to this algorithm is the in-place encryption performed by the Video and Audio
cipher modules. 1f these modules changed the format and/or length of the Packet payloads being
processed, this would require subsequent modification of the System Stream Headers to reflect the new
condition of the multiplexed Video and Audio Streams. In an extreme case, it may even involve
regenerating the System Stream information in order to properly multiplex the encrypted Video and
Audio Streams. While the CPU load required to perform this task is not important during encryption
(as this process is performed only once prior (o installation for streaming), it can become a problem
during playback by the client, especially if the decoder being used only accepts input of an MPEG-1
System Stream. In this case, the playback process will involve the regeneration of the System Stream
to fit the plaintext Video and Audio Streams, stealing valuable CPU cycles from both the decryption

and decoding tasks.

60

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

By imposing two restrictions on the Video and Audio Stream cipher modules, we can
perform in-place encryption of the Video and Audio Streams within the System Stream, remove the
need to re-sequence the Systern Stream, simplify implementation, and decrease overall CPU load. The

restrictions required to achieve these goals are:

* The cipher modules must be able to process an MPEG-1 Video or Audio Stream in re-
startable blocks. A bitstream can either be processed in its entirety or as a series of shorter
bitstreams of any length, and still produce the same output sequence. In this case, we do not
need to extract the entire Video or Audio Stream prior to passing it to the cipher modules. The
cipher module will process a block of data, remembering its state so that it can continue
processing when provided with the next block of data. This means that the payload of each

Packet can be encrypted individually as the packets are parsed within the System Stream.

» The length of the ciphertext is exactly equal to the length of the associated plaintext. if
the output of the cipher module after each re-startable block is the same length as the input, we
can encrypt the bitsircam in-place within the System Stream. The ciphertext will replace the
existing payload within the original System Strcam Packet. Since the payload length is
unchanged, and the payload represents the same stream type (Video or Audio), no details within
the Packet Header or other headers of the System Stream need be updated, allowing the System

Stream to remain completely unchanged.

Assuming that the Video and Audio Stream cipher modules meet these restrictions, a
State Machine that will parse and encrypt an MPEG-1 System Stream is shown in Figure 4-1. The first
sequence of four states are used to locate a valid Packet Start Code, the Statc Machine enters the fourth
state only if the sequence (0x00 0x00 0x01) is encountered, if the next byte is tn the range Oxbc-0xfT,

we have found Packet Header. The fourth byte, or Packet 1D is remembered for later reference.,

The second section of the State Machine consists of four states that process the Length of
the packet, as well as any 0x{Y stuffing bytes and Buffer Size Information. The most significant byte of
the packet length is obtained as input whilst in state 2-1, the least significant byte forms the input whilst
in state 2-2, There is a special case whilst in state 2.2, if the Packet ID is equal to Oxbf, then this is the
end of the Packet Header and so we move 1o the final state, namely 4-5. Whilst in state 2-3, we can
repeatedly process any number of stuffing bytes by looping back to the same state, as well as process
any existing Buffer Size Information by jumping to state 2-4 and then back to 2-3. This State Machine
will also process non valid MPEG-1 System Streams — the State Machine will successfully parse a
Packet Header with stuffing bytes, followed by more than one Buffer Size Information field and repeat
this cycle. A solution to this problen: can be found by creating a new state 2-5 into which we change
following any input from state 2-4. State transitions from stale 2-5 include the three possible
ransitions from state 2-3 to states 3-1, 4-1 and 4-5. For the situation of parsing an existing MPEG-1
System Stream for encryption purposes, it was deemed not necessary 1o perform this extra step based
on the assumption that the original System Strecam is valid. 1f this is the case then the original State

Machine will successfully parse the header. In all states from state 2-3 onwards, the calculated Packet

61

Chapter 4: ’
A Novel MPEG-1 Pantial Selection Scheme for the Purposes of Encryption

Length is decremented by one so that when state 4-5 is reached, this variable will correctly represent

the number of bytes in the payload.

Section 1 default
0x00
0x00 Ox00 .
default oe 0
Oxbe ~ Oxft
default 10 teput
. defaull
Section 2 “:.mm- 256 * Input

For each input byte processed
whilst in states 2-3 and

onwards — the value of Length default
is decremented by one. Length += Jnput

OxAY

0010xxxx default
/ Length += Input
7 001 Exxxs \ 00001 111
Section 3 default default defaule defoull ¢

default

Section 4

default default

Next Length bytes
processed by MPEG -
Audvo Stream Ciphes

Co>

N Pﬂgﬂiﬂ
. Mew Lengih byies
(xe0 < U} = Oxef, processed by MPEG P
Video Smeam Cipher
N
Next Lenpth fiyvtes

skapped -

Figure 4-1: State Machine to Encrypt an MPEG-1 System Stream

We cnter state 3-1 only when there are two timestamps within the Packet lleader, both
the PTS and the DTS. The first of these timestamps takes five bytes of input including the ransition to
state 3-1, this puts us into state 3-5 upon completion. We enter state 4-1 when only one timestamp

remains in the Packet Header, cither only the PTS or the remaining DTS if there were two timestamps.

iR ortle e i

Chapter 4;
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

This timestamp also takes five bytes of input including the transition to state 4-1, this puts us into state
4-5 upon completion. It is also possible to have no timestamps, in which casc we can go to state 4-5
aftcr reading the binary sequence (00001111). Once the final state is reached there is still the Packet
Payload to process, if the Packet ID signifies that the payload forms part of an MPEG-1 Audio Stream,
then the following Packet Length bytes are processed by an MPEG-1 Audio Stream Cipher, if it forms
part of an MPEG-1 Video Stream, they are processed by an MPEG-1 Video Stream Cipher, otherwise
they are skipped and ignored.

In general, cach MPEG-1 System Stream will encapsulate one Video Stream and one
Audio Strcam, however it is possible for there to be up to 16 Video Streams and 32 Audio Streams
multiplexed within the one System Sircam (Mitchell et al,, 1996). If this is the situation, cach
multiplexed Video and Audio Stream needs to be encrypied/decrypted separately such that any one of
these streams can be extracted from the System Stream, decrypled and then played back. In order 1o
build such a system, we must maintain a cipher module for cach possible Video and Audio Stream,
requiring 16 Video Cipher modules and 32 Audio Cipher modules. Each of these modules must
maintain state information on their own Video or Audio Stream being processed and the System
Stream parser must pass the payload data 1o the correct Cipher Module instance based on the Packet ID
within the Packet Header. In practice, this will only be an issue during encryplion — during streaming
and playback, a streaming server will conserve network resources by only streaming the single Video
and Audio stream that the client selects to view/listen t0. This means that packets representing other
Video and Audio streams are dropped. Since cach multiplexed Video and Audio Stream is processed

by the ciphers independently of one another, this can be easily coped with.

4.1.3 Summary of MPEG-1 System Stream Encryption

Noune of the actual information contained within the MPEG-1 System Stream itself needs
1o be protected by a cipher. The content of this information is irrelevant to the media that needs to be
protected and consists of known or easily gucssed information that is used to set up the decoder to
factlitate playback (Mitchell et al., 1996). However, restrictions imposed by different Streaming Server
designs in ~roviding indexed and high speed playback mean that the server must be able to extract
multiplex. 1 stream information from the installed MPEG-1 file (Anderson, 1996; Lin et al., 2001).
Given this, the format of the MPEG-1 System Stream must remain unchanged. In Section 4.1.2.1 1
presented a State Machine that can be used to parse the MPEG-1 System Stream. When this is used
with MPEG-! Video and Audio Siream Cipher Modules that can both process the bitstream in re-
startable blocks, as well as process their respective streams in-place within the System Stream, the
resultant design will encrypt the Video and Audio Streams contained within the System Stream. The
same State Machine can be used in any decoding sofliware to parse and decrypt the System Sircam

prior to decoding by any existing MPEG-! Vlayback Device.

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

4.2 MPEG-1 Video Stream Encryption

In this section I explore the issue of encrypting an MPEG-1 Video Stream, approaching
the issue in the same way as for System Strcam encryption — by exploring each layer of the bitstream

from the top down, examing which information must be encrypted in order to protect the content.

4.2.1 Examination of the MPEG-1 Video Stream

Like the MPEG-1 System Stream, the MPEG-1 Video Stream is a layered bitstream
(1SO, 1996b; Mitcheil et al., 1996; Sikora, 1997; LeGall, 1991). The topmost layer is the Sequence

Layer and consists of a Sequence Header followed by a series of Groups of Pictures {GOPs),

terminated by the Sequence End Code. Further Sequence Headers may be inizrspersed between
individual GOPs. The Sequence End Code is the 24-bit byte aligned sequence (0x00-0x00-0x01-

0xb7). The fields of the Sequence Header convey the {ollowing information:

e Video Height, Width and Aspect Ratio

Video Frame and Bit Rates

ciecoder Buffer Sizes

Quantiser Matrices

Extension and User Data

Each individual GOP within a Sequence is a bitstream that consists of a GOP Header
followed by a series of Pictures, where each Picture represents a single frame in the Video Stream. The

fields within the GOP Header are used to store the following information:
+ Time Stamp of the First Frame within the GOP
¢ Whether the GOP refers to frames within other GOPs
¢ Whether the Frame order within the GOP has been modificd due to editing
¢ Extension and User Data
Each Picture within the MPEG-1 Video Stream is a bitstream made w, ¥ .. Picture

4 Header followed by a series of Slices, where each Slice represents a horizomtal stripe of the individual

frame. Information siored within the Picture Header includes:

¢ Order of the frame within its owning GOP

¢ Picture Type (I, P or B Frame}
1 s Decoding Buffer Delay
e Forward/Backward Motion Vector Scaling Information

¢ Extension and User Data

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Each Slice can also be considered as a bitstream made up of a Slice Header followed by a
series of Macroblocks, where each Macroblock represents a 16x16 block within the Picture.

information stored within the Slice Header includes:
* Vertical Starting Position of Shice within Frame

¢ Quantiser Scale Factor

A Macroblock represents a 16x16 block of picture data within an individual frame and it
is at this layer of the MPEG-1 Video Stream that actval data representing the Video is stored. Each

Macroblock is further divided into a serics of blocks, which are made up of the encoded values of the

%

-
A
& f:
B
i

H

Discrete Cosine Transform (DCT) co-cfficients of the pixels represented. These co-efficients are

stored in compressed format using the Huffman code.

e Rty

Examing the information encoded within all of these headers of the MPEG-1 Video
Stream, 1 note that like for the headers of the System Stream, these fields convey no information on the
actual content of the Video asset. The Sequence Header contains basic video information such as
image size and frame rate, as well as some decoder set-up parameters. GOP and Picture Headers help
to partition the stream into individual frames, and tell us how these frames are encoded, and the

relationship between frames of a sequence. The Slice Header contains positioning information.

It is important to consider the provision of indexed and high-speed playback modes by a

strcaming server. In order to generate a high-speed playback bitstream, the server must be able to

extract individual frames from the original bitstream, and determine their type (Anderson, 1996; Lin et

al., 2001). By not encrypting the contents of the GOP and Picture Headers, we can ensure that the
high-speed bitstream can be extracted from the encrypted bitstream, This has implicztions on how we
encrypt the data contained within an individual frame, as the server can start streaming {rom any frame
in indexed playback mode and deliver a series of non-consecutive frames in high-speed playback
mode. As such, it will be imperative that the cipher applied to data within the Picture Payload must be
able to be resynchronised at the start of each 1-Frame ~ or first frame of a GOP — so that the transmitted

bitstream can be successfully decrypied prior to decoding in each playback mode.

To enable a video server to stream the encrypted asset, it is only necessary to preserve
the contents of the Headers down to the Picture Header. However, since the Slice Header contains ne
information relevant to the actual content, and its contents can be reasonably guessed, the partial
selection scheme will choose to leave the Slice Headers as plaintext and encrypt only the contents of

the MacroBlocks contained within the Slices.

As such, for the purposes of encryption of a Video Stream to protect the encoded content,
it is not necessary to encrypt the contents of the Video Stream Headers, Like for the System Stream, it
is important to note that many of the values within these Headers are either constant or contain values

that can be casily guessed. By encrypting any of this information, the eryptanalyst has some known

o,

Chapter &;
A Novel MPEG-1 Partial Selection Scheme for the Purp ses of Encryption

plaintext which can be used to help break the cipher, leavin:: this known information unencrypted

means that it cannot be used to provide any known plaintext.

1t is, however, necessary to encrypt the Slice Payload or MacroBlock Information as this
portion of the MPEG-1 bitstream contains the data required to reconstruct the originaf video images.
Some existing MPEG-1 cipher algorithms go deeper and apply encryption to the individual DCT co-
efficients within the Macroblock (Qiao and Nahrstedt, 1997; Shi and Bhargava, 1998a; Shi and
Bhargava, 1998b), while others encrypt the order of DCT coefficients within the Macroblock (Qiao et
al., 1997, Tang, 1996). The problem with both of these approaches is that a specialised MPEG-1 Video
Stream decoder is required to decrypt and playback the video. While both these approaches are
efficient in the usage of CPU cycles for decryption purposes, they prohibit the use of hardware or third
paity sofiware MPEG-1 decoders. Since the decryption process is intimately tied in with the decoding
process, the CPU cycle cost of decryption alone is as high as the cost of decoding an unencrypted
stream. When using a hardware decoder, this means that the benefit of offloading the decoding process
from the CPU is lost, when using a third party software decoder, the CPU cycle requirements double.
Instead, 1 suggest that the entire Macroblock be encrypted, thereby removing the intimate connection
between the decryption and decoding cycles. A diagrammatic representation of the Video Partial
Selection Scheme is shown in Figure 4-2, where the shaded blocks indicate which portions of the

Video Stream is encrypted.

4.2.1.1 Restrictions on Encryption of Macroblocks

One important aspect within an MPEG-1 Video Stream is that of MPEG Start Codes.
MPEG Start Codes are a byte aligned, four byte binary sequence in which the first three bytes form the
pattern {0x00 0x00 0x0!). The mechanics of the MPEG-1 Video Stream format means that it is
impossible for this byte aligned 24 bit sequence to appear anywhere but within a valid Start Code - in
practical terms, this allows us to search an MPEG file at speed by looking for particular Start Codes
(ISO, 1996b; Mitcheli et al,, 1996). Since any presence of these Start Codes indicate a valid MPEG-1
header, a further restriction on the cipher we plan to use is that it must not introduce any false Start
Codes, otherwise we would be creating an invalid MPEG-1 Video Stream. In summary, this means
that the output of the cipher that is encrypting Macroblocks must not produce the 24 bit byte aligned
sequence {(0x00 0x00 Ox01).

4.2.1.2 Analysis of Selection Criteria

The proposed MPEG-1 Video Stream cipher requires the complete encryption of the
existing Macroblocks of the vnencrypied Video Streams. The encryption process involves decoding an
existing MPEG-1 Video Stream down to the Slice Layer, maintaining the Slice Header and encrypting
all Macroblocks. The decryption process would invelve aecoding to the Slice Layer and decrypting the
Macroblocks. This would have no eflect on a Video Streaming Server as the Video Server must only
be able to extract information down to the Picture Layer. Also, since decoding down to the Slice Layer

is simple and requires minimal CPU cycles, the decryption process also requires minimal CP'U cycles

above the actual encryption algorithm chosen. Finally, since the partial encryption selection and

Chapter 4;
A Novel MPEG-1 Panial Selection Scheme for the Purposes of Encryption

decryption is cntirely decoupled from the actual decoding phase of playback, the proposed solution is

compatible with a range of existing decoder options.

MPEG-1 Video Stream

J .
f Sequence Layer \

Sequence Header| GOP GOPi:~ *T: ~.‘§Sequence HeadcrEGOP GOPE":..-‘-" :.. Sequence End Code
)_-_-1{...' 0% 4 IOV S R, P

/_ Group Of PicturesLayer \
GOP Header Picture Picture -[Picture i ":..-;m-"’:..‘ -EHH—P-i;t-u-r;““:
.................... | L3 -AF R R p— |
/ Picture Layer J _________ K_ _____________ o pmmma. \
Picture Header Slice Stice —[Slice z‘ '-,,..___“':,_‘ ‘i Sli::; -E
........................ - <y

(_ Slice Layer | \

Slice Header | Macroblock|Macroblock {Macroblocks * <~ ‘Macroblock |

Lo . Lo :
......................... - P P R (S N S

J -

oy

i

(" Mucroblock Layer
Macroblock Header| block(0) blosk(1) | block(2) | blocl(3; [bioeki4)| bloek(5)
J g

/_ Block Layer
¢ o7y Run Length DCT Coefficients

Legend
I Unencrypted Data
=S Encrypted Data

Figure 4-2: Selective Encryption of an MPEG-1 Video Stream

4.2.2 Processing the MPEG-1 Video Stream

In processing the MPEG-1 Video Stream, it is necessary to locate individual
MacroBlocks within the bitstream for encryption purpose. This task can be restated as locating and
encrypting the payload of Slices within the original bitstream. In this section I present a State Machine
that will implement the proposed partial selection algorithm. 1 also describe a simple Cipher that can
be applied to the selected bytes to gencrate an encrypted MPEG-1 Video Stream that conforms to all of
the requirements mentioned in Chapter 2. The same system will also be capabie of decrypting the

Video Stream back its original state.

4.2.2.1 Designing the Partial Stream Selection State Machine

In order to implement encryption of an MPEG-1 Video Stream, it is necessary to build a
state machine that can parse the existing Video Stream such that the selected bytes can be passed to a

cipher for processing. Recailing that the partial selcction criteria has chosen complete encryption of

67

Chapter 4:
A Novel MPEG-1 Pariial Selection Scheme for the Purposes of Encryption

Chapter 4;
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Macroblock data whiist leaving all Sequence, GOP, Picture and Slice headers intact, it seems that we
need to build most of an MPEG-1 Video Stream decoder in order to locate the necessary bytes for
encryption. Fortunately, the multi-layered structure of an MPEG-1 Video Stream, as depicted in Figure
4-2, aliows a more streamlined approach. All MPEG-1 Video Stream Sequences start with a sequence
header and consist of one or more complete Groups of Pictures. This means that when searching for
GOP blocks, it is possible to ignore Sequence Headers and took solely for GOP headers — with the
GOP ending when the next Sequence Header Code, Group Start Code or Sequence End Code is
encountered. The occurrence of valid Picture or Slice Start Codes do not signal the termination of a
GOP since a GOP can contain more than one Picture or Slice segment, noting also that a GOP
sequence does not span between two sequences nor contain another GOP sequence. (Mitchell et al.,
1996)

{| Macroblock || Macroblock |[Macroblock Macroblock {| Macroblock

PICTURE
B e Slice... Bictie Head

—-_—— - - - -

-

Error: An MPEG-1 Video Stream Slice cannot be split across Picture Bit Sequences

SLICE . =
Siceheadas
e

%:{| Macroblock || Stice Macroblock

oo Macroblock || Macroblock

Error: An MPEG-1 Video Stream Slice cannot contain another Slice Bit Sequence

Figure 4-3: Mechanics of the MPEG-1 Slice Bit Sequence

If this argument is continved to the Macroblock Layer, it can be shown that a Slice
Sequence within the Video Stream also contains one or more complete Macroblocks, see Figure 4-3. A
Slice Sequence consists solely of a Slice Header followed by a series of Macroblocks, does not span
between two Picture Sequences, nor contain another Slice Sequence. As such, 1i is possible to define 2
Slice Sequence as beginning with a valid Slice Header code and then continuing until the next valid
MPEG-1 Start Code is found, remembering that anytime the byte-aligned binary sequence (0x00 0x()
0x01}) is located within the Video Bit Stream, it signifies a valid MPEG-1 Start Code. It is therefore
possible to summarise the task of encrypting the Macroblocks to the algorithm proposed in Figure 4-4
where the Video Bit Stream is scanned to locate a valid Slice Header, the Header is left intact and al!
following bytes (making up the Macrobiocks) are encrypted until the next (0x00 0x00 0x01) sequence
is located, these three bytes must remdin unencrypted to preserve the Start Code within the Video

Stream.

Encrypt MPEGl Video Streamf)
while {DatalLeftInStream())
while (Next_ 3_Bytes() != [0x00, 0x00, 0x01])
Read NextBytel); /* Do not encrypt */

Read_3_Bytes({); /* Read 0x00, 0x00, Ox0l1 */
if (NextByte IN [0x0l..0xaf])
/* Pound wvalid slice head.*/
Read_SliceHeader();
while (Next 3 Bytes(} != {0x00, 0x00, 0x01})
{ /* Within Macroblock Data */
Encrypt_NextByte(};

Figure 4-4: Algorithm to Encrypt Macroblocks Within an MPEG-1 Video Stream

A State Machine 1o accomplish this task is shown in Figure 4-5, the first sequence of four
states are used to locate a valid Slice Start Code, the machine enters the fourth and final state only if the
sequence (0x00 0x00 0x01) is encountered, from here a valid Slice Code has the next byte in the range
Ox01-0xaf, this input progresses the State Machine to the Slice Header Processing States where the
Slice Extra Information bits are processed until the end of the Slice Header is encountered. The second
section of the State Machine consists of eight states that locate the end of the Slice Header — each byte
ol extra information is encoded as nine bits, the ninth bit equal to 0 if there is more data. Each of these
cight states checks the state of one of the eight input bits — if it is set then the machine cycles through
the states bypassing the extra information, otherwise the end of the Slice Header has been found and
the State Machine can progress 10 the third section, within the Slice Data. When the State Machine
locates a valid Slice Header, it enters the sixth of the eight states of the second section, this is because
the Slice Start Code is succeeded by a five bit quantiser scale value, the sixth bit of this byte then

indicates the presence of extra information,

The third and fina} section of the State Machine signifies that the input stream being
processed forms the Slice Data or the Macroblocks within the Slice, whilst withiun this section of the
State Machine, all input bytes must be passed through the cipher after being processed. The final
section of the State Machine is similar to the first except that we are now looking for any valid MPEG-
1 Start Code. When the (0x00 0x00 0x01) Sequence is located, the State Machine jumps to the final
state of the first section of the State Machine. This state will then check if the new Start Code indicates
another Slice Header which passes control to section 2, or another MPEG-1 Start Code, therefore
transferring control back to the initial state. Finally, when the State Machine raverses from section 3
back into section 1, the previous three bytes must be returned to their initial values of (0x00 0x00
0x01), thereby preserving the original Start Code for the decryption process. Another important issue
is that the cipher itself never produces the byte-aligned (0x00 0x00 0x01) sequence as this would

introduce a false Start Code ~ in the decryption phase this would mean an incorrect location of the end

of the Slice and corruption of the original Video Stream.

Chapter 4;
A Novel MPEG-1 Partial Selection Scheme for the Purposcs of Encryption

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Section 1 default

0x01 - Oxaf

xxxxxxxd

Section 3

All input to be encrypted
afier processing

default

default

—

Figure 4-5: State Machine to Encrypt an MPEG-1 Video Stream
4.2.2.2 Designing the Prototype Cipher

The design of the Video Stream Partial Selection State Machine requires a cipher that can
encrypt an n-byte, byte-aligned sequence; the simplest technique available to produce this resuit is to
encrypt the existing data in single byte blocks. Since the data to be encrypted is byte aligned,
encrypting byte-sized blocks of data allows us to produce an efficient software solution as bit level
operations are generally inefficient in software. Also, by not encrypting in larger block sizes (16, 32 or
64 bits) we avoid potential alignment problems at the beginning and end of the sequence to be
encrypted. We are now faced with the problem of designing a cipher that Cncrypts a series of
consecutive bytes, yet does not produce the output sequence {0x00 0x00 0x01). The generalised output
function of a cipher that meets these preconditions is shown in Figure 4-6,

f(x): byte = byte
0x00 - 0x00
Ox01 - 0x01

[0x02...0xff] - [0x02...0xfr]

Figure 4-6: Generalised Cipher Function for MPEG-1 Video Stream Encryption

70

The functionality of this cipher is as follows:

e If the input byte is 0x00 or 0x01, then the cipher outputs the same byte - this ensures
that if the cipher encounters a valid MPEG-1 Start Code then that code will remain in the output
stream untouched.

* I the input byte is in the range 0x62-0xfl, then the cipher must ostput a byte within
the range 0x02-0xIT — the security of the cipher rests in how random this transformation is, the
restriction ensures that we do not produce any 0x00 or Ox0] bytes within the stream and
therefore any false Start Codes.

A simple cipher that meets these restrictions is proposed in Figure 4-7. This particular
cipher uses an 8-bit key (k). While such a short key offers minimal protection against a brute force
attack, with only 128 (27) keys needing to be tried on average, this cipher will suffice to demonstrate
that the encrypted stream can be installed to and streamed from an existing server, as well as being
played back using existing decoder technology. The functionality of this cipher is simple, the cipher
functions by XORing the input byte with k. The problem with this approach is that if the input byte is
either equal to & or (k @ 0x01), then the output bytes will respectively be 0100 and 0x01 — also, if the
input byte is equal to 0x00 or 0x01, then the output bytes will respectively be & and (k @ 0x01). This
problem is easily solved by not encrypting the bytes 0x00, 0x01, & and (¥ ® 0x01). Finally, the
proposed cipher is a Private Key Cipher and the same function can be used to decrypt the data, with
0x00, 0x01, k and (k ® 0x01) bytes still retaining their values, and encrypted bytes being XORed with

k to retrieve their original values.

f{xk): byte = byte
0x00 — 0x00
0x01 - 0x01
k -k
k©® 0x01 — k£ & 0x01
X > x@k

Figure 4-7: Simple Cipher for use in MPEG-1 Video Stream Encryption
4.2.2.3 Support for Indexed and High-Speed Playback Modes

It is important to also consider decryption of the Video Stream during indexed and high-
speed playback. As discussed in Chapter 2, indexed playback involves starting playback of the Video
Stream from any GOP within the complete bitstream, while high-speed playback involves playing back
a newly constructed Video Stream generated from the 1-Frames within the original bitstream. This
implies that the Cipher Module must be able to resynchronise itselfl for each of these situations,
resynchronisation must occur at the start of each GOP to allow for indexed playback as well as for each

individual I-Frame to support high-specd playback.

n

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Due to the simplicity of the proposed Cipher, resynchronisation becomes a mute issue.
As the Video Stream structure is maintained during these special playback modes, the partial selection
scheme ensures that the same bytes are always selected for decryption. Since all bytes are encrypted in
the same way, there is no issue of resynchronisation. [t will however be important to consider this

issue when designing a more secure cipher.

4.2.3 Summary of MPEG-1 Video Stream Encryption

By combining the cipher from Section 4.2.2.2 with the State Machine designed in
Section 4.2.2.1, we will end up with an encrypted MPEG-1 Video Siream of exactly the same size as
the original stream. Since the encrypted stream size hasn’t changed, this procedure can be
implemented inplace within an MPEG-1 System Stream, ensuring that the requirernent introduced in
Section 4.1.2 is met. Also, due 10 the design of the cipher module, we can decrypt the MPEG-1 Video
Stream using the same algorithm. As for encryption of the MPEG-1 System Stream, certain parts of
the stream are not encrypted and lefi as plaintext, again, the content of this information is irrelevant to
the media that needs to be protected and consists of known or easily guessed information that is used to
set up the decoder to facilitate playback. The overriding reason for not encrypting this data rests in the
design of Streaming Video Servers, since a server must be able to locate the start of a GOP for indexed
playback as well as the start of all I-Frames for high-speed playback, it is essential that the basic format
of the MPEG-1 Videc Stream remains unchanged so that the necessary information can be
accessed.(Anderson, 1996; Lin et al., 2001; Shanableh and Ghanbari, 2001}

Ease of decryption at the client end is also an important consideration. In simple
playback mode this task involves repeating the encrypiion process, however the task becomes more
complex when considering indexed or high-speed playback. The partial selection scheme ensures that
the overall structure of the Video Stream is maintained when playback in these modes occur, but it is
also necessary to consider re-synchronisation of the cipher module when skipping frames during
playback. Due to the simplistic design of the prototype cipher module, this requirement is not an issue

but must be considered when designing a secure MPEG-1 Video Stream encryption algorithm.

4.3 MPEG-1 Audio Stream Encryption

The MPEG-1 Audic Stream is formatted differently from the MPEG-1 Video Stream -
there is no concept of different layers of encoding. The data is stored in a series of frames that start
with a frame header of four bytes in length (Mitchell et al., 1996; Haskell et al., 1997; Pan, 1993).
While the entire contents of the Audio Stream can be encrypted in theory, at least one video streaming
server implementation will not install an MPEG-1 file with the Audio Stream modiited in this way. As
such T will present a cipher algorithm whereby the frame headers of the Audio Stream are left intact,
allowing the encrypted bitstream to be installed onto a streaming server, while ensuring that the audio

content is protected.

Chapter 4:
A Nove] MPEG-1 Partial Selection Scheme for the Purposes of Encryption

4.3.1 Examination of the MPEG-1 Audio Stream

The MPEG-1 Audio Stream format is explained in its entirety in Appendix A. Unlike the
MPEG-1 Video Stream, it is not made up of a number of layers but rather a single layer of consecutive
frames which are headed by a frame header. The frame header is four bytes in length and contains
information such as which of the three encoding algorithms should be applied to the data, the encoded
avdio bit-rate, and other minor information (Haske!l et al., 1997; Pan, 1995; Shiien, 1994; Noll and
Pan, 1997). The interesting thing to note is that there is no timestamp or other indexing information
present in the Audio Stream, however the frame headers are equally spaced throughout the stream and
a single frame always contains data that decodes to a known time span of raw audio data. In the case of
decoding an MPEG-1 Audio Stream in its own right, time indexing is performed by jumping to a

« ~liple of the frame size to locate an Audio Frame header.

Since time indexing information is not encoded in the Audio Stream itself, it must be
encoded within the System Stream Packet Headers. This has an implication when considering the
decryption of the Audio Stream during indexed playback. We will be required to resynchronise the
cipher module bascd on the time index during piayback, information that cannot be acquired from the
Audio Stream itseif. This means that the cipher module must be resynchronised by some other trigger
point. However, if we consider a cipher with the same complexity as that employed in the MPEG-1
Video Stream cipher, where each byte is XORed with an 8-bit key, resynchronisation is no longer as
issue. When streaming video in one of the high-speed playback modes (fast forward or rewind), there
is no audio data sent and the stream is watched in silence. As such, we do not need to consider

decrypting an Audio Stream during high-speed playback.

1t appears that none of the data within the Audio Stream is of importance to the
Streaming Server and as such we can simply encrypt the entire Stream. Indeed, this was the approach
taken when developing the first prototype system, but when an attempt was made to install the
encrypted MPEG-1 file on the SGI MediaBase server, the installation failed and the Server reported
that the file was not a valid MPEG-1 file. While the Streaming Server does not require any information
from the encoded Audio Stream in order o stream the stored file, it appears that at least this system
checks to see if the Audio Stream is valid. At this point the prototype was changed to leave the frame

headers intact and encrypt only data encoded within the frame data.

4.3.2 Processing the MPEG-1 Audio Stream

A state machine to parse and encrypt the MPEG-1 Audio Stream is much simpler than
one to parse the Video Stream. We simply need to read and parse the frame header, before encrypting
each byte until the next frame header is encountered. A frame header consists of four consecutive
bytes beginning with the 12-bit byte aligned sequence (1111 1111 1111). The state machine needs to
parse input bytes to look for this sequence as well as read the following 20 bits so that the entire frame

header is processed. While the amount of audio data following the {rame header can be determined

from the frame header (from the encoding algorithm and bit rate fields), this calculation can be

Chapter 4:)
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

somewhat laborious. It is much easier to continuously encrypt bytes of data until the next frame header
is encountered. This can be accomplished using a similar approach to encrypting data in an MPEG-1
Video Stream where all bytes are encrypted until the next MPEG-1 Header sequence is encountered,

taking care to ensure that a false Audio Frame Header is not accidentally introduced.

A method of ensuring that an Audio Frame Header is not accidentally created is to avoid
producing the output byte 0xff while encrypting data: via a similar XOR encryption scheme to that
used in encryption of the Video Stream. If the byte to be encrypted is equal to the binary inverse of the
8-bit key value, then the byte is left unencrypted, as the XOR would result in an encrypted byte value
of OxfT. If this output byte is never produced, then the byte aligned 12-bit sequence (1111 11171 1111)
can also never be produced. Similarly, an input byte of Oxff is left as is to ensure that each 8 bit value

has a unique mapping. The details of this cipher are outlined in Figure 4-8.

fxk): byte = byte
OxIf —» Oxff
k & Oxff ~> k @ OxIf
X —> xBk

Figure 4-8: Simple Cipher for use in MPEG-1 Audio Stream Encryption

A State Machine that will correctly parse an Audio Stream is shown in Figure 4-9. This
State Machine will function with all three MPEG-1 Audio Encoding formats and uses the cipher from
Figure 4-8 10 encrypt the actual audio data. The first sequence of four states will read and process the
MPEG-1 Audio frame header. Once the final state of this sequence is exited, the header has been

processed and the audio daia block follows. The second section of the State Machine consists of two

states which are used to locate the start of the next frame header — while input bytes that are not equal

to OxfT are processed, we are still within the audio data block and the input byte is encrypted using the
cipher from Figure 4-8. 1f an input value of 0xff is encountered then it is a candidate for an audio
frame header and we progress to the second state. This state will check whether the next four bits are
set which will indicate the start of the next frame header, if this is the case we progress to State 1-3 to
complete processing the header, otherwise we retum to the previous state {o continue processing data
bytes. Data bytes processed whilst in state 2-2 are not encrypted, this avoids the problem whereby the
four most significant bits of this byte may accidentally be set. As mentioned in the previous section,
resynchronisation of the Audio Stream cipher is not necessary since ait frames are encrypted in the

same way, however this issue must be addressed when designing a more secure cipher,

4.3.3 Summary of MPEG-1 Audio Stream Encryption

As for encryption of the MPEG-] Video Stream, when the State Machine from Figure
4-9 is combined with the cipher from Figure 4-8, we end up with an encrypted MPEG-1 Audio Stream
of exactly the same size as the original stream. As the stream size is the same, the encryption can be

performed in-place within the MPEG-1 Sysiem Stream. The majority of the binary stream is encrypted

R e e L

L

e

i

Chapter 4;
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

as the Audio data blocks are encrypted while the frame headers are left unencrypted. The stream can
be easily decrypted at the client end as the same process is applied to the MPEG-1 Audio Stream after
it has been de-multiplexed from the System Stream. As there is no audio playback or sireaming in
high-speed playback modes, this is not an important consideration, however decryption of the Audio
Stream during indexed playback must be addressed. In the case of the prototype system, this issue is
conveniently ignored as each Audio Frame is encrypted using the same 8-bit key and no
resynchronisation is necessary. However, when considering the decryption of an Audio Stream with a

more secure cipher, it is important to remember that the cipher must be resynchronised to correctly
function during indexed playback.

Section 1 ,
OxiT 111 oo default
default .
c 'dt‘:t‘au]t.
Section 2
P Ixxxx
All input to be encrypted

if processed in Stage 2-1

Figure 4-9: State Machine to Encrypt an MPEG-1 Audio Stream

4.4 Prototype System Testing

Before proceeding with the design of a secure MPEG-1 Cipher, it is necessary to build
the prototype system and ensure that it functions as expected. 1t is also important to ensure that the
encrypted binary stream can be successfully instalied on a range of servers as well as streamed from
those servers without any errors occurring. This means that the streaming server must be capable of
streaming the encrypted video file in a variety of modes including normal, high-speed and indexed
playback, Once this initial testing has been completed, it becomes nccessary to incorporate the

decryption module within a client player. Success of this frial requires:
o That there exists enough CPU cycles to decrypt and decode the video stream in real-time.

e That the mechanism for partial encryption of the MPEG-1 Video and Audio Streams is
valid and that the encryption process can be reversed in a variety of playback modes, including

normal, high-speed and indexed playback.

This section discusses and summarises the results of the prototype system lesting, a

complete set of results can be found in Appendix D,

ki 1 4 i kbl kb £ 1

Chapter 4: .
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

4.4.1 Trial Conditions

This section describes hardware and software platforms used to conduct the trials, as well

as list the input files used.

4.4.1.1 Input Files
Six different test MPEG-1 files were used for trialling the prototype cipher, these test

bitstreams were:

¢ tennis.mpg ~ A standard MPEG-1 test sequence, regularly used in MPEG-1 experiments.
This sequence is an MPEG-1 Video Stream of short duration (approx. 4 seconds)

» flowg.mpg — Another standard MPEG-1 test sequence. This sequence is aiso an MPEG-1

Video Stream of short duration (approx. 4 seconds).

« us.mpg — a stightly longer MPEG-1 Video Stream (approx. 12 seconds). This sequence is
also regularly used in research, but not as common as the previous two sample files. This
sequence was chosen because it is an excerpt from a motion picture and therefore represents the
type of content we wish to protect, All three of these test files were downloaded from

hitp://peipa.essex.ac.uk/ipa/src/formats/mpeg/stanford

+ Chicken.mpg — A sample MPEG-1 System Stream encoded by Microsoft engineers and
provided on the CD containing the initial release of the Microsoft NetShow Theatre Streaming

Server.

e Monash Nusrsing.mpg - MPEG-1 System Stream ecncoded using the Siemens Eikona
MPEG-1 Encoder at Monash University. This sample is cncoded at a high bitrate for MPEG-1
(2.7Mb/s).

» Diable2_S.mpg - MPEG-1 System Stream of a short movie, This scquenc;e was encoded
by Monash University using an Optibase Hardware Encoder as part of a VoD trial run at

Monash University.

44.12 Test Applications

Several test applications were written in order to run the trials. A description of the
development and usage of these applications can be found in Appendix C. These applications can be

used to:

» MPEG]1 Cipher — Encrypt or decrypt an MPEG-1 file on disk. The application can
encrypt either an MPEG-1 System Stream or MPEG-1 Video Stream file. Statistics are

provided on the cipher process.

» DirectShow MPEG Cipher Filter — A DirectShow Transform Filter to enable real-time
decryption of MPEG-1 Video and Audio Streams within the Microsoft DirectShow

environment. Allows further development of other applications to decrypt and playback an

Chapter 4.
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

encrypted file on disk, or to stream, decrypt and playback an encrypted video streamed from a
server with a DirectShow capable Source Filter,

o DircctShow Stream Playback Application — Allows playback of an encrypted MPEG-1
Stream from either the Microsoft NetShow Theatre or the SGI MediaBase 3.1 Streaming Server
platforms. The DirectShow source filter for MediaBase does not support the high-speed
playback modes.

* MediaBase Playback Application — Allows real-time streaming and decryptios of an
encrypted MPEG-1 Stream from the SGI MediaBase 3.1 Streaming Server. The decrypted
bitstreams are saved to disk, later playback can be used to confirn functionalizy. This

application does support the high-speed playback modes.

4.4.1.3 Test Platforms

Various test platforms were used for different purposes. Three different Streaming

Server platforms were used to test functionality of the cipher during streaming:
e Microsofl NetShow Theatre
¢ S5GIMediaBase 3.1

s Apple QuickTime or Darwin Streaming Server

Real-Time Decryption and decoding trials were executed on two different hardware

platforms:
¢ 233 MHz Pentium 1l Workstation with 384 MB RAM, running Windows 2000

* 1.6 GHz Pentium 4 Workstation with 256 MB RAM running Windows 2000

4.4.2 Trial Results

A series of different trials were run to prove the viability of the proiotype system,
culminating in a final trial to stream, decrypt and decode and encrypted stream installed on a streaming

server in real-ime. The trials performed are outlined in the following sections,

4.4.2.1 Percentage of the MPEG-1 File Encrypted

The first experiment performed on each test stream encrypted file was 1o calculate the
actual percentage of the MPEG-1 file selected for encryption. This is primarily used to indicate the
required speed of the cipher implemented in a secure MPEG-1 Cipher - since the required CPU load
for decryption is directly related to the amount of data that needs to be decrypted. The file encryption
program as written produces these results as a set of statistics reported to the user upon completion of
the file encryption task. The complete set of results is presented in Table D-2, a summary of these
results is presented in Table 4-1. The important resuit is the high proportion of the test files that are

selected for encryption, even thougt: practically the entire MPEG-1 Video Stream format is selected as

plaintext and the entire System Stream is sclected as plaintext. This indicates that the ipformation

Chapter 4
A Ylovel MPEG-! Partial Selection Scheme for the Purposes of Encryption

encoded as marroblocks forms a large proportion of the encoded bitstream. The conclusion to be
. ~wn from thic is that the {inal cipher as designed in Chapter 5 must be able to process an encrypted
stream at a very high percentage (> 95%) of the bitstream playback rate while at the same time

ensurirg there are enough remaining CPU cycles to decode and display the bitstream to the user.

W Nideo Streapr W Auddia Stream

e Filenfine 7. - - Total % Selected -

. ey Sclecte# . - Seleeted . e

tennis.mpg 79.5% N/A 99.5%
flowg.mpg 99.8% N/A 99.8%
us.mpg 98.6% N/A 98.6%
Chicken.mpg 99.2% 98.7% 98.2%
Monash Nursing.mpg 99.6% 99.2% 98.2%
Diablo2_5.mpg 99.5% 99.2% 96.3%

Table 4-1 Proportions of Test Bitstreams Selected for Encryption
4.4.2.2 Is the Encryption Process Repeatable and Reversible

The second series of tests were to confirm that an encrypted MPEG-1 file could both be
consistently generated, and that it could be restored to its original state. The first determination would
provide confidence that the second step would be possible. This test would therefore validate that it
would be possible to decrvpt a protected video stream for playback, and that the proposed encryption
scheme is functional. This test involves two parts — the first is to ensure that repeated encryptions of a
test MPEG-1 sequence produces the same encrypted file as output. The second test would confirm that
each byte in the decrypted bitstream compares exactly with the corresponding byte in the plaintext
sequence. A complete description of the sequence of operations required to verify that the encryption
process is repeatable is explained in Section D.3.1 along with the results of these tests which show that
the encryption process is indeed repeatable, as is to be expected when examining the design of the

prototype cipher as presented in this chapter.

At this point it became apparent that the number of bytes selected for encryption
compared against the number of bytes actually encrypted was less than the expecied amount.
Assuming an even distribution of byte values within the bytes selected for encryption, and given that
there are four byte values which will not be encrypted, we would expect **¥,55 = 98.43% of the sclected
bytes encrypled. Instead we find that fewer than 95% of the selected bytes are encrypted. This

anomaly can be explained by two factors:

¢ The first three bytes of the next header (0x00-0x00-0x01) are actually counted as selected
for encryption by the cipher program.

¢ The proportion of 0x00 and 0x01 bytes in the source streams is higher (> 4%) than for a
purely random distribution (< 1%). The mcrniaining byte values in the bitstreams are relatively

evenly distributed.

The complete results are shown in Table D-3 and Table D-3.

-

Chapter 4:
A Novel MPEG-] Partial Selection Scheme for the Purposes of Encryption i

The second test for reversibility was 1o prove two precepts, one, that the original 2
plaintext bitstream could be retrieved if the correct key was used, and two, that the originai plaintext
could not be retrieved if the incorrect key was used. The prototype cipher allows for 256 possible keys, .
255 of which actually modify the plaintext (key 0x00 causes no change to the plaintext). Rather than
perform the test using all keys (which would lead to 256 possibie permutations), a subset of four keys
was selected — requiring 16 separate tests for each of the six test bitstreams (96 separate results). The
four keys chosen for test purposes were 0xff, 0x00, 0x4a and 0x42 — the first key represents inverting

all bits of the bytes selected for encryption, the second performs no encryption, while the third and

fourth key form the ASCH code for my initials. A complete tabulation of the results can be found in

Table D-5. The results proved consistent for each of the six test files, a summary is presented in Table

4-2. From this, we can see that all files were successfully decrypted when the encryption key was

reapplied - also, atlempting to decrypt a file with a different key to which it was encrypted resulied in a
bitstream that was not equivalent to the original file, All 9¢ generated files were passed through both
software and hardware based MPEG-{ decoders. All correctly decrypted files were successfully played

back. Files decrypted with the incomrect key were processed as follows:

+ Software Decoder — Video decoded as a blank screén, audio consists of high-frequency

“cheep”™ type noises.

* Hardware Decoder -~ Video decoded as random green and monochromatic square blocks,

with similar audio output to the software decoder.

Decryptinndsdy
))

Encryption kpy C O] hdn - W2

S ——

Oxif ™ B
0x00 i 4 P &
Oxda {x] b4 | X
0x42 3 3] B &

Table 4-2 Reversing the MPEG-1 System Stream Encryption

We can conclude that the encryption process is reversible and that the original plaintext

can be obtained if the correct key is used.

4.4.2.3 CPU Requirements for Encryption/Decryption

The third test performed was to calculate the CPU time that was required to execute the

cipher. The aim of this test is to show that the decryption process would not place an undue load on the

«lient computer when decrypting and decoding the MPEG-1 Stream for playback. CPU requirements

were measured using two different techniques, the maximum rate and the difference technique.

The maximum rate technique involves timing the encryption process while encrypting a

file on disk. The measurement cannot be performed by simply timing the encryption program as the

application is also performing disk IO in reading the original file and writing the modified file — in

Chapter 4: .
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

fact, the time spent performing disk /O forms a major portion of the execution time of the encryption
program. In order to correctly calculate the execution time required, the test procedure needs to take
the disk I/O time into account so that a valid measurement could be made of the actual time required to
execute the cipher. Also of issue when measuring the time taken to perform encryption is the fact that
the test platform is running a multi-tasking Operating System, meaning that 100% of available CPU
cycles would not be given to the executing test application. It becomes necessary to also take the CPU

joad into account when calculating the actual time required execute the cipher only.

The procedure to calculate approximate times and CPU loads for encryption/decryption,
taking into account disk 1/0 and CPU allocation by the OS, is described in Section 0. There are no
results for the first three test files — the time taken to encrypt the file was too short to be able to make
meaningful measurements of both time and CPU Load. The three longer test bitstreams show that the
prototype cipher can encrypt an MPEG-System Stream at between 60-80 Mb/s on the Pentium 1I Test
Platform, and between 260-500 Mb/s on the Pentium 4 Test Platform. Of more interest is the required
free CPU Load to perform the encryption/decryption at real-time playback speeds, the results show a
required load of between 2.5% and 4% on the Pentium Il and about 0.5% available CPU cycles on the

Pentium 4. The results are summarised in Figure 4-10.

The same figures are then obtained using a difference method. In this case, we measure
CPU Load during both playback of the plaintext bitstream and during simultaneous decryption and
playback of the encrypted bitstream, The difference between the two figures provides the CPU Load
required for decryption only, which can then be compared with the previously calculated resuli. The
complete results are shown in Table D-9 and Table D-10, and summarised in Figure 4-10. In the case
of both the maximum rate method and difference method, less than 6% of CPU cycles are required by
the prototype cipher on the Pentium II platform, while under 1.5% of CPU cycles are required on the

Pentium 4 platform.

—4— Pentium 1l {(Max. Rate
Method)

—&— Pantium 4 {Max. Rate
Method)

—i— Pentium Il (Difference
Method)

—>— Pentium 4 ({Difference
Method}

% CPU Load Reguired

tennis flowg us Chicken Monash Diablo2_5
Nursing

Test Bitstream

Figure 4-10: Performance Results Using the Pratotype Eneryption Scheme

80

Chapter 4.
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Table 4-3 shows the CPU load required for decoding and full-screen playback for each
test file on both test platforms, noting that only “Chicken.mpg” could be played full-screen on the
Pentium II platform. If we compare these results with the graph in Figure 4-10, we see that the cipher
requires about 10% of the CPU load required to decode and display the correspanding plaintext
MPEG-1 Stream. The simplicity of the actual cipher - XOR — suggests that these results reflect the
processing requirements of the stream selection parsers that detcrmine which bytes are to be encrypted.
These figures show that both processes (decryption and decoding) are able to function in parallel and
that there is some leeway on available CPU cycles ~ especially on the faster Pentium 4 platform - to

implement a more complex cipher offering greater security.

<

Filename © CPU Load for Phaintext CPU Load tor Plaintess
. . * Loy back on Pritium 11 ~ Playbuch on Penitum 4

tennis.mpg 47.20% 1193 %
flowg.mpg 59.17 % 16.80 %
us.mpg 4130 % 8.10%
Chicken.mpg 8767 % 12.10%
Monash Nursing. mpg 56.13 % 1517 %
Diablo2_s.mpg 59.60 % 15.03 % ;

Table 4.3 Required CPU Load for Plaintext Playback

4.4.2.4 Verification of Furctionality with Existing Streaming Video Servers

The ultimate test of functionality is to successfully decrypt and decode an encrypted
video that is being streamed from a Streaming Server. This proves the viability of the approach for

real-time decryption of streaming video as opposed to decryption of stored content for later playback.

While impossible to test the cipher on all Streaming Servers, 1 did have access to a range of Servers
which could be used to verify that the file would install and be svccessfully streamed from them.

These servers were:
* A Cluster of Intel Based Windows NT Workstations running Microsoft NetShow Theater
* 5GI Challenge L running MediaBase 3.1

» An Linux Workstation running Apple Darwin Streaming Server

The first set of tests involved the Microsoft NetShow Theatre product and consisted of
the installation of the encrypted assets onto the server and the subsequent streaming and real-time
decryption and playback in all supported playback modes. A full description of the tests and results
can be found in Appendix D. [Installation of MPEG-1 Video Streams is not supported by Microsoft
NetShow Theatre and therefore test results are limited to the three MPEG-1 System Stream test files.
The first step involved the installation of the plaintext version of each test bitstream as well as copies of
the same bitstream encrypted with all three test encryption keys. All files were recogrised as valid

MPEG-1 bitstrcams by the server and the subsequent installation proved successful.

81

g

Chapter 4:)
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

Following installation of all test bitstreams, the assets were streamed to a client player
using the “StreamCipher.exe” application. This application can be used to stream an MPEG-1
bitstream from a Microsoft NetShow Theatre Server using the DirectShow {ramework to decrypt and
decode the stream while providing access to all available playback modes. The same application can
be used to stream 2 plaintext MPEG-1 asset by selecting to use “No Cipher™ on the graphical user
interface. The tests performed using this application involved random — via user inferaction with the
application ~ selection of different playback modes and indexed playback from randomly selected
timestamps. Random selection of playback modes ensured that changing between all playback modes
resulted in comect decryption and playback while random jumps through the bitstream in all available
playback modes ensured that indexed playback was comectly supported by the cipher. Successful
decryption and subsequent playback was confirmed both visually and aurally by observing the resultant
video played back on screen and through the computer sound system. When streaming from the
Microsoft NetShow Theatre Server, the cipher comectly decrypted the bitstream under all test

conditions.

The second set of tests involved the SGI MediaBase 3.1 product, like with the NetShow
Server, the procedure began with the installation of the encrypted assets onto the server and concluded
with the streaming, real-time decryption and playback of those assets in all supported playback modes.
A full description of the tests and results can be found in Appendix D. In the casc of MediaBase,
installation of MPEG-1 Video Streams is supported by the server and thus all six fest files were able to
be tested for installation. All test files were recognised as valid bitstreams by the server and the

subsequent installation proved successful.

Two test applications could be used to stream and playback the encrypted asscts installed
on the MediaBase Server. The DirectShow based application could be used to provide access to
normal speed and indexed playback only as all high-speed playback modes is not supported by the
MediaBase DirectShow source filter. Also, the “SweamCipher.exe” application was specifically
written to support only MPEG-1 System Stream assets and could not be used to test playback of the
three MPEG-1 Video Stream test files. However, the length of these test files mitigate against testing

both high-speed and indexed playback as their duration is too short to provide any meaningful results.

The second test application, “SGIStreamCipher.exe” can be used te test functionality of
the cipher during high-speed playback modes. This application produces a series of output files which
consists of the retrieved bitstream after being passed through the cipher. Functionality can be verified
via playback of these files with a standard MPEG-1 player. Again, the application was written
specifically to support only MPEG-1 System Stream assets and so testing could cniy be performed on
the three shorter test files. The same procedure as for the NetShow Theatre server was used, to employ

the random selection of playback modes and indexed jumps and the same results were observed.

When using the DirectShow enabled player, the encrypted bitstream was correctly
decoded through both paused playback and indexed playback. When using the API enabled player, all

generated output files were correctly played back through Windows Media Player. Files created during

82

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

either of the two high-speed playback modes resulted in MPEG-1 Video Streams that played back the
original video at high-speed.

ii% The final server under test was the Apple Darwin Streaming Server, and by inference,
also the Apple QuickTime Streaming Server since they use the same protocols 1o stream video across a
i(é network. The installation procedure for the Darwin Server is somewhat different, where the test files
¥ had to first be “Hinted™ using the Apple QuickTime application. Any movie file that can be
5 successfully hinted can be correctly installed onto an Apple Darwin or QuickTime server. A full
description of the procedure can be found in Appendix D. The test results showed that all six test files

[were able to be hinted and subsequently installed onto the server.

Testing the streaming and decryption functionality with the Apple product would involve

o the development of an MPEG-1 Cipher module similar to the DirectShow Cipher Filter but using the
Apple QuickTime SDK instead. This software was not developed and therefore streaming from the
a Apple server was not able to be tested. However, documentation verifies that the Server can stream —
q;ﬁ using the RTP and RTSH protocols — any hinted movie file and that the resultant file can be retrieved at
the client end. This implies that streaming of the encrypied bitstream and the subsequent retrieval at
‘é the client is guaranteed, as long as the encrypted bitstream can be successfuily hinted. The Apple
é Server products do not support any of the high-speed playback modes.

3 The results are summarised for each server type in Table 4-4, and described in full in
g Section D.3.4. 1t was verified using the NetShow Theatre server that all playback modes were
§ supperted by the Cipher design through correct decryption and playback. It was verified using the
s MediaBase 3.1 server that all playback modes were supported by the cipher design — real-time

decryption and playback was checked for normal speed playback modes and real-time decryption with " ‘
delayed playback was checked for high-speed playback modes. Finally, installation of encrypted assets '.

was verified on the Apple QuickTime and Darwin Streaming servers,

i b . i‘l:l} ﬁ‘&i\;_.}‘lmlv

JR -

Indesed Plas bach Mode

~ Server 0t dastallftion b TN o o 0 T ow] &
NetShow Theatre

4 I

Mediabase

Quicktime M

A blank entty in the table signifies that the functionality was ot tested.

Table 4-4 Streaming an Encrypted MPEG-1 File from a Streaming Video Server

45 Summary

The prototype encryption scheme was implemented in a variety of applications. One
implementation sllowed for the encryption of an MPEG-1 file stored on disk. These encrypted files
demonstrared the ability to install onto a range of servers. Other applications were usec to successfully

stream the encrypted bitstreams from these servers in a variety of different playback modes, which was

Chapter 4:
A Novel MPEG-1 Partial Selection Scheme for the Purposes of Encryption

then successfully decrypted and displayed on a varicty of end stations. Typically, less than 6% CPU
load is required on a 233 MHz Pentium 11 platform for byte selection and successful decryption,

contributing less than 10% to the total video streaming and display load.

Having shown that the streamed video could be successfully decrypted and decoded in
real time, the next issue to resolve is to upgrade the level of protection afforded by the cipher. in the
next Chapter I will further develop the novel partial selection scheme presented here to increase the
security of the cipher. It is important that whatever algorithm is finally employed, that it break none of

the requirements for the MPEG-1 Cipher that have so far been outlined.

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

Chapter 5
A Novel MPEG-1 Partial Encryption Scheme

; In the previous chapter [presented a new prototype MPEG-! Encryption scheme that met
% the requirements outlined in Chapter 2. The aim of this process was to develop a simple scheme that
would allow an encrypted file 1o be instalied on a varicty of existing video streaming servers and
enable playback of the encrypted video. This was demonstrated through the installation of the
encrypied video of a range of test servers and playback by client playback applications capable of
decrypting the strcamed video. 1showed that the encrypted video could be successfully played back in
a variety of playback modes including pause, indexed playback and high-speed playback.

ﬁ Only one of the requirements from Chapter 2 was not met and that was that the

£ encryption be difficuit (o break. In this chapter I will extend on the prototype encryption scheme

developed in Chapter 4 such that the issues of security are met, while maintaining the flexibility of the

prototype scheme. 1 begin the chapter by looking at the question of selecting a secure cipher that

would be suitable for use in sireaming video. This implies certain restrictions, as the choice must be

compatible with the Partial Stream Selection algorithm employed in Chapter 4, as well as meeting the

other issues previously outlined in the same chapter.

Following this, 1 explain how] incorporated the selected stream cipher (SEAL) into the

prototype encryption schemes for both Video and Audio Stream encryption and how the issue of

resynchronisation of the cipher is handled. [then describe my implementation and testing of this

system to prove its validity, 1 conclude the chapter with an analysis of how the encryption scheme

impacts on the provision of a Streaming Video service, especially when issues such as network

problems (dropped packets, bit errors) are taken into account.

5.1 Selecting a Secure Cipher

The simple XOR Cipher presented in Chzpter 4 does not provide an adequate level of

security and the protected video could easily be retrieved from the encrypted stream. The final aim of

the presenied Cipher icheme is to protect the content such that it becomes practically in:possible w

retrieve the original video, where practically impossible means that the costs involved in retrieving the

video are higher than purchasing the rights to that video.

When considering a new cipher to tie together with the partial selection algorithm, there

are many ciphers to chnzze from, including a variety of Public Key Ciphers, Private Key Block Ciphers

and Private Key Stream Cipbers. There are also a number of restrictions that must be placed on these

ciphers in order that they successfully interoperate with the partial selection scheme and existing Video

Chapter 5;
A Novel MPEG-1 Partial Encryption Scheme

Streaming Servers. In this section | will begin by outlining these restrictions on the cipher before
exploring and discarding the use of Public Key Ciphers and Private Key Block Ciphers. Having
decided on the use of a Private Key Stream Cipher, | will then cxplore the suitability of Feedback Shift
Register ciphers in gencral, as well as two popular software based Stream Ciphers — RC4 and SEAL. 1

will conclude with the selection of the SEAL Stream Cipher to use as a base for development of a

cipher that meets the restrictions previously outlined.

5.1.1 Restrictions on the Cipher

The restrictions on the selected cipher which are oullined below come primarily from
those described in Chapter 2 along with extra restrictions imposed by the design of the pariial selection
criteria as explained in more detail in Chapter 4. When considering all of the limitations with respect

tv selecting a base cipher for use in encryption, the list can be shortened to four basic requirements:
o In-place encryption of data — The cipher does not change the length of the plaintext.

¢ Minimal CPU Losd — There must be enough CPU time to both decrypt the streaming
video and decode the compressed video stream. Experimental results from Chanter 4 show that
if the cipher can process a bitstream at speeds approaching 60 Mb/s on the Pentium 11 test

platform, then real-time decryption and decoding will be possible,

e The cipher must support resynchronisation — This has implications for strcaming of
encrypted video, as the decrypiion module must be able to start its decryption cycle at any of the
key points spreviously specified in order to support special playback modes such as indexed or
high-speed playback. The cipher must be able to be restarted at will without repeating output

ciphertext sequences.

e Prevent the accidental creation of false MPEG-1 headers — Maintaining the integnity of

the MPEG-1 bit-stream as understood by Streaming Video Servers

5.1.2 Public Key Ciphers

Public Key Ciphers are generally not suitable for use when encrypting streaming video,

primarily due to two reasons:

» Public Key Ciphers are too slow — Execution speeds do not allow for processing of the

bitstreamn at rates required by video in real-time situations.

¢ Public Key Ciphers do not allow in-place encryption — If the data block to be encrypted
is not a multiple of the cipher block size, then the data block must be extended, thereby

increasing the the size of the output block.

There is however the outstanding issue of Kcy Management, safely delivering the Private
encryption key (o the client application for playback of an encrypted stream. In this scenario, Public
Key Ciphers provide the basic tools to implement a safe key exchange over the public Internet. While

this thesis will not discuss the Key Management issue, it does note that a Public key Cipher will likely

86

R

Chapter 5;
A Novel MPEG-1 Partial Encryption Scheme

form an important part of an overall streaming video solution in the implementation of a decryption key

delivery system.(Aslam, 1998; Denning, 1983; Menezes et al., 1997; Rivest et al., 1978; RSA, 1996;
Schneier, 1996a)

5.1.3 Private Key Ciphers — Block Ciphers

Private Key Block Ciphers (Schneier, 1996a; Schneier, 1998; NIST, 1993a; Preneel et
al., 1998) are also generally not suitable for the encryption of streaming video. While Block Ciphers
are certainly fast enough to decrypt encrypted streaming video in real-time, and there are a large
number of pre-existing secure Block Ciphers from which to choose, other properties of Block Ciphers

in general means that they are not suitable for the encryption of streaming video. These properties are:

¢ Output is a random bit-stream of the same length as the input block — a 64-bit Block
Cipher will randomly translate one of 2 possible inputs to one of 2% possible outputs. It is
extremely difficult to ensure that the Block Cipher does not create any false MPEG-1 headers,
such as the byte aligned 24-bit value (0x00-0x00-0x01),

* Data is only cncrypted in multiples of the block size - meaning that if the size of the
plaintext data block is not a multiple of the block size it must be extended to enable the use of
Block Ciphers. This rutes out an implementation that uses in-place encryption of Video and

Audio Streams such as the one presented in Chapter 4.

* Running the Block Cipher in CFB (Cipher FeedBack) or CBC ¢ 1zier Block
Chaining) mode is too slow — running the Cipher in one of these modes car % used to reduce
the effective block size to 8 bits, enabling in-place encryption of the Vide« »2d Audio Streams,
in a 64-bit Block Cipher, this would reduce the speed of the cipher by a factor ¢+ ght, making

the cipher too slow,

5.1.4 Private Key Ciphers — Stream Ciphers

This leaves Private Key Stream Ciphers as the final altemative, which, unlike Block
Ciphers or Public Key Ciphers, seem to meet the four basic requirements as previously outlined. A
Stream Cipher functions by XORing the plaintext with a pseudo-random string of the same length in
order to produce the ciphertext. Traditional hardware based Stream Ciphers actually use a pseudo-
random bit generator. For software implementations, it is often more convenient to consider a larger
minimum block size of 8 bits. If the pseudorandom generator outputs larger blocks, they can be broken
down into multiple blocks of the required minimum block length (e.g. 8 bits), ensuring that the

ciphertext and plaintext length remains equal. (Schneier, 19962)

Since the MPEG-1 partial selection scheme processes and encrypts the data stream at
byte level, any cipher that encrypts data in block sizes of 8 bits will allow in-place encryption of the
MPEG-1 stream. Given that all Stream Ciphers can be made to encrypt data with a block size of § bits,
this provides a guarantee that the length of the ciphertext is exactly the same size as the plaintext,

therefore ensuring that in-place encryption of the MPEG-1 System Stream can take place.

87

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

Stream Ciphers also meet the requirements regarding the speed or rate at which data can
be encrypted, since the XOR operation is not time consuming, the cipher encryption rate is dependant
on the speed of the random number generator. While some Stream Cipher designs are engineered
towards hardware solutions, popular sofiware based Stream Ciphers are among the quickest ciphers
available. Indeed, the RC4 cipher can cncrypt data at the rate of approximately 9 machine instructions
per byte while the SEAL cipher can potentially require only 5 machine instructions per byte of data

encrypted. (Schneier, 1996a; Rogaway and Coppersmith, 1998; RSA, 1996)

Stream Ciphers are also more amenable to re-synchronisation than other ciphers,
primarily because a Stream Cipher can be considered to be a state machine where the current state
determines the next output. Re-synchronising the cipher is usuuily a simple matter of resetting the
interna} state to a known value. Sin:: the random number generator is a closed system, generating a
random stream without external input, we can easily reset the internal state. Some Stream Ciphers may

have a large state variable to reset while other may aliow quicker re-synchronisation. (Schneier, 1996a)

The final point of concern involves securing against the production of false MPEG-1
headers, and again Strcam Ciphers prove to be the most amenable to solving this potential problem.
Without going into too much detail here, a similar approach to what was used in Section 42.2.2
protects against the creation of false headers while not overly compromising the security of the Stream
Cipher. Again, this advantage is primarily due to the operuiion of the Stream Cipher where the

pseudorandom byte stream is XORed with the plaintext to produce the ciphertext.

In the next sub-sections, | will discuss a range of Stream Ciphers, discussing their unique
suitability to the task of MPEG-1 encryption. The ciphers that will be explored for suitability include
the entire range of standard Feedback Shift Register Stream Ciphers, and the two most popular
software based Stream Ciphers, RC4 and SEAL. Following this I will outline my reasons for choosing
the SEAL cipher as a base for which to modify before inclusion into the prototype encryption scheme

proposed in the previous chapter.

514.1 Feedback Shift Registers

Linear Feedback Shift Registers (LFSR) and their descendants, Feedback with Carry
Shift Registers (FCSR) and Non-linear Feedback Shift Registers (NLFSR) have been used in hardware
stream encryption systenis by military organisations for a long time (Schneier, 1996a). Their simplicity
in design, see Figure 5-1, leads to extremely simple and fast hardware implementations that can encrypt
a serial bit-stream at extremely high rates — due to the generator producing a single output bit on each
clock cycle. The translation of these ciphers into software implementations often lead to cumbersome
and slow ciphers, primarily due to the weakness of bit-level operations on modern computers. While
the potential speed of an FSR based cipher in a software implementation is compromised, it should st

operate at the speeds required for encryption of streaming video.

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

Shift Register

bn—l bu-! bn-J bu-4 bn-S e b.'i bl bl bo e

) 4

_/

f(): Feedback Function

Figure 5-i: Linear Feedback Shift Register Random Stream Generator

What is of more concern howevei is the difficulty in designing a secure FSR based
stream cipher. F3R systems have considerable mathematical theory behind them to prove their
effectiveness in random number generation, however this theory also provides a good starting point
when attacking the cipher for any weaknesses. Even given that most Stream Ciphers based on LFSRs
are built by combining multiple LFSR systems, guaranteeing the security is difficult, and each extra

LFSR slows down any sofiware implementation. (Schaeier, 1996a)

FCSR based Stream Ciphers are relatively new compared to the simpler LFSR based
ciphers and little crypianalytic work has been done in this field. However, like LFSR based systems,
they are slow to implement in software and therefore unlikely to be useful for encrypting the MPEG-1
System Stream. NLFSR generators are similar 1o LFSR generators except that the feedback function
can be more complex than a simple XOR of the tapped bits. An interesting side point of NLFSR based
ciphers is that while the complexity of the non-linear feedback means that the cipher output is more
difficult to analyse and break, it also means that the randomness of the cipher is more difficult o

analyse. (Schneier, 1996a)

LFSR based Stream Ciphers are not suitable for use in encryption of an MPEG-1 System
Stream. The unique suitability of these ciphers towards a hardware implementstion, and the relative

complexity of a software implemeniation make a compelling case for their non-use.

5142 RC4

RC4 is a fast and simple sofiware based Stream Cipher developed in 1987 by Ron Rivest
of RSA Data Sccurity (Schneier, 1996a). RC4 is a proprictary algorithm whose detzils are only made
available afler signing a non-disclosure agreement. In 1994 however, an algorithm claiming to be the
RC4 algorithm was published online, while RSA has not confirmed that the algorithm is correct,

licensed users of RC4 have confirmed that the random key sequence generated by the published

algorithm for a given key is equal to that produced by RC4 for the same key. As such, the published
RC4 algorithm is often referred to as Alleged RC4 (Schneier, 1996a; Fluhrer il McGrew, 2000;
Golic, 1997). For future reference in this thesis, the Alleged RC4 algorithm will be referred to as RC4.

e

T T

(FT S

Chapter 5: ‘
A Novel MPEG-1 Partial Encryption Scheme

The RC4 algorithm is extremely simple to implement and is one of the primary reasons
why it is such a fast cipher. It consists primarily of a slowly permutating S-Box - 256 8-bit values -
which is used to select one of 256 possible output values to gencrate the key sequence. The cu‘rrem
state of the RC4 cipher is determined by the contents of the S-Box and two 8-bit values, i and j. This
allows for approximately 2'7 (= 256! x 256°) possible states, however, there is no guarantee lhat.tfac
cipher will cycle through all possible states for a given secret key or for any cument state. The initial
state of the S-Box is based on the value of the secret key, and is initialised using the algorithm shown

in Figure 5-2, while the random key sequence - which is XORed with the plaintext — is generated using

the algorithm from Figure 5-3.

.Key =K= KoKlkg.. .K...]

for {i=0 to 2855}

SBox{i] = i:
Init{i) = K, owi
)
j=0;
for {i=0 to 255)
{

= {j + SBox([i] + Init[i])} mod 256;

j -
Swap{SBox [il, SBox[jl};

Execution Times:
> 1* Loop — 512 Machine Operations
s 2™ Loop ~ 2560 Machins Operations

Length of the Secret Key (K) can be any
multipie of 8 bits between 8 and 2048 bits

(1 and 256 bytes)

Figure 5-2: RC4 S-Box Initialisation

There was little cryptanalytic analysis performed on RC4 prior to 1994 due to its status
as a non-published algorithm. However, since its accidental release, it has been analysed by many in a
search for a cryptanalytic attack. Thus far, the avenues of attack on RC4 are twofold — statistical
analysis and tracking analysis -- both of which have concluded that RC4 remains a secure cipher. The
statistical analysis approach involves using digraph probabilities, or the probability of two consecutive
pseudo-random output bytes occurring in the generated key sequence (Fluhrer and McGrew, 2000;

Golic, 1997). For versions of RC4 with smaller output words (2-5 bits), this approach involves the

following steps:

o For each given state — i, j and the S-Box values, calculate the next two output words

o Given all these digraphs, determine the probabilities of each digraph.

For a truly random sequence, these probabilities would be equal, however it has been
. . ' 8 .
found that ce:tain digraphs are more probable than others. This algorithm is of order 27, where n is the

output word size in bits. Executing this algorithm with a word size of 8 bits - the full implementation

Chapter §:
A Novel MPEG-1 Partial Encryption Scheme

of RC4 - is both memory intensive and too slow. For larger sizes of #, RC4 is used with random keys
to produce a long output sequence, digraph probabilities are then calculated on this output sequence,
When # is equal 1o 8, it has been found that 2% output words are required to distinguish the output
scquence from a purely random distribution. The statistical analysis approach has been used to show
that the RC4 output sequence is not purely random, however no attack has been formulated to use this

knowledge so that the pseudo-random stream can be reproduced.(Fluhrer and McGrew, 2000; Golic,
1997; Knudsen et al., 1999)

1}

i (i + 1) med 256;

j (j + SBox[i]) mod 256;

Swap (SBox (i}, SBox'j]);

return SBox[({SBox{i] + $Box[j)) mod 256];

Execution Time: Between 8 and 16 Machine Operations

Figure 5-3: RC4 Pseudo-Random Sequence Generation

The second attack of tracking analysis (Mister and Tavares, 1998a; Mister and Tavares,
1998b) involves knowledge of some portion of the output sequence — obtained by XORing the
ciphertext with some known plaintext — and then attempting to reconstruct the values of the S-Box,
therefore obtaining the current state of the RC4 cipher. Once the current cipher state is known, it can
be used to generate more output bits. This approach uses a recursive algorithm to try all possible
values of S-Box entries until a contradiction in assignment occurs, the algorithm then backtracks and
tries a different value for the S-Box. The algorithm involves assigning all possible values of the S-Box
and therefore is of order 2", as well as increased memory requirements to store the S-Box state at each
level of recursion. While supplying some initial values of the S-Box can decrease the execution time
when # is equal to 8, about half of the S-Box values are required to reproduce the current S-Box state

and a cryptanalyst is unlikely to have this information.

Tracking analysis provides an interesting method of atiack on RC4. As computing power
increases, this approach can eventually be used to break RC4 encrypted material. However, all current
evidence indicates that RC4 will be secure for some time to come. Even if RC4 does become insecure,
its potential application in streaming video protection would involve frequent (approximately twice per
second) resynchronisation of the cipher. This means that the same attack would have to be repeated
twice for each second of cncrypted video. As such, this attack would be rendered impractical due to

the requirements of the streaming video cipher.

Based on current computing capability, RC4 provides a secure level of protection against
attack, however, it is important to see how well RC4 meets the four requirements previously outlined.
[n the first two instances, RC4 has no problem, like all Stream Ciphers it can perform in-place
encryption of the MPEG-1 Stream due to its ability to process plaintext in block sizes of 8-bits. Also,

the simplicity of the key sequence generation algorithm means that each pseudo-random byte can be

3

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

e

calculated using between 8-16 machine operations, ensuring that RC4 is able to encrypt data at a high

rate. The third issue, resynchronisation of the cipher, is also solvable — this involves resetting the

current state of the RC4 cipher and can be done by resetting the S-Box, { and j to known values using a

different key. Finally, a similar approach as was taken in the previous chapter could be used to modify

[aaiantimiintsinisubeti

the XOR operation of the RC4 cipher to guard against the accidental creation of false MPEG-1 headers.

T L

Given that all the requirements are met, RC4 seems to be a potential candidate for use in

the MPEG-1 encryption scheme. A key issue to overcome however is the complexity in re-

synchronisation of the RC4 cipher since this involves the generation of a new key for each re-

synchronisation point and the subsequent regeneration of the S-Box. While the processing load isnot a

key problem given computing power currently available, this extra complexity could potentially cause

R R
W R T

some problems, especially in older and slower machines.

MR SR A

SEAL
SEAL is a very fast software based cipher developed in 1993 by Phil Rogaway and Don

5.14.3

Cro
S

SN

Coppersmith of IBM (Rogaway and Coppersmith, 1993). The design has been optimised for

aley

i Al

.

implementation on 32 bit processors. While a license is required for commercial usage of the SEAL

algorithm, the algorithm has been openly published for peer review (Schneier, 1996a). SEAL differs
from most Stream Ciphers in that it is a member ol the pseudo-random function family — after a lengthy
set-up procedure using a 160 bit secret key, SEAL can be used to produce onc of 2™ different pseudo-
random outputs, which are XORed with the plaintext to produce the ciphertext. SEAL does not strictly
conform to the description of Stream Ciphers since it outputs a random stream of 32 bit values,
however, each random 32 bit value can be treaied as four random § bit values or as 32 independent

random bits if desired.

The SEAL Cipher can be broken up into two stages, the first being a setup stage whereby
the 160 bit secret key is provided as input and approximately 3kB of lookup tables arc calculated and

stored. This is a time consuming process that ideatly should only occur once. The second stage of the

algorithm is the generation of a random string. The pre-calculated tables for SEAL can be used to
produce up to 2°? individual random strings of 32 bit words. The SEAL function is called with a 32 bit
sequence number {#) which is used to choose one of the random scquences. The length of the random
sequence is dependant on the size of the third table used by SEAL. (Rogaway and Coppersmith, 1993;
Rogaway and Coppersmith, 1998)

While the SEAL specifications call for the algorithm to return the entire random string,
the algorithm can b * uken down into individual rounds where four 32 bit values are calculated at

each round. If a finer granularity than 128 bits is required, some extra code is required to separate this

128 bit value into smaller values. As for all Stream Ciphers, the random string provided by the SEAL
algorithm is be XORed with the plaintext to produce the cipbertext. A feature provided by SEAL is the
ability to resynchronise the cipher by selecting a different random sequence through selection of a

different sequence number {n).

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

input:

k?y: /* 160 bit secret key */

n: /* 32 bit selector x/
output:

result: /* 160 bit randem hash *x/
variables:

ho, hl, h2, h3, h4 /* 32 bit variables */

Xfso0] /* 80 * 32 bit array */

A, B, C, D, E, temp /* 32 bit variables */
functions:

fun, (X, ¥, Z): (X n ¥) U (+ (X} N Z)

fun (X, ¥, 2}): X O Y D 2

fun (X, Y, Z): XNnY¥Y) U (XN2ZU (YA 3z

fun, (X, Y, 2): funl(X, Y, 2)
constants:

C, = 0x5a827999

C, = Ox6ed9ebal

C, = Ox8flbbcdc

C, = Oxca62cldé
algorithm:

A = h0 = key, ,,7 B = hl = key i € = h2 = key :

D =h3 = keY:ss..:ln; E = hq = ke;i;;?:svl; A

X[0) = n;

for {§ = 1=79}
case j

115 X[j]
16=579: X[j] =
(X(3-3) @ X[j-8] ® X[j-14] ® X[j-16]1)O,,;

nt

0;

1]

} end case

for{(j = 0=>79)
temp = AD, + fun,,, (8 C, D) + E + X[3} + Cpu
E=D; D=C; C=BY,; B=A4; A= temp;

¥

}

result , ., = (h0 + A); result, ., = (hl + B);
result . = (h2 + C}; result, ,,, = {h3 + D};
result = (h4 + E);

[128..159]

Figure 5-4: SEAL Gi.,(n) function

The table setup phase of the SEAL Cipher utilises a function called Gyy(n), the
implementation of this function is described in Figure 5-4. This function is based on the standardised
SHA-1 160 bit Hash function (NIST, 1993b) which is designed to produce a 160 bit representation of a
longer document. This algorithm is modified to produce the hash value of a 32 bit variable which is
extended to the required 512 bits with the addition of zeroes. The other modification concems the
initial values of the temporary variables - breaking up the 160 bit key into five 32 bit values. In effect,

Gre(n) maps a 32 bit value 10 a 160 bit value via an irreversible process where the procedure is based

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

on the secret key. For more information on the functionality of the SHA-1 algorithms, sce (NIST,

1993b; Schneier, 1996a).

The tables used by SEAL are labelled T, S and R. Table T is a table of 512 32-bit words
and is used by SEAL as a 9 bit * 32 bit S-Box. The entries of the S-Box are set to be the first 102
outputs of the Gy.y(n) function. Only the first 64 bits of Gy,/(102) are required 1o fill up the entirety of
the table. Table S is a table of 256 32-bit words and is used by SEAL as values to either ADD or XOR
to internal loop variables to produce a final output. Each entry in the S table is used only once through
all iterations of the inner loop. As table S requires 1kB of storage to hold the table, alt iterations of the
SEAL inner loop produce exactly 1kB of random data. The S table is also populated with consecutive
Gy(n) calculations, starting with Gi,(819) and offset 32 bits into this vaiue. Table R is sized
depending on how long a random string is required from the SEAL algorithm. Each execution of the
outer loop of SEAL provides 1kB of random data and this loop is executed L, times to produce LkB of
random data. Table R contains (4 * L) 32 bit words that are used to generate starting values for
internal variables at the starl of each outer loop. As for the other tables, we use consecutive Gyey(n)
values starting from the 65" bit of Gy.,(1638) through to however many calculations are required to fili

the table. The table sizes and entries can be seen in Figure 5-5.

ery(o) ley(l) er}'(z) o ch)(lol) thx(loz)

Table T (512 * 32 bit words)

Giy(819) | Giy(820) | Gigy(821) Giey(869) | Giey(870)

Table S (256 * 32 bit words)

Gy (1638) | Gyry(1639) | Grey(1640) § Gy (1641) |Gy, (1642)

Table R (4L * 32 bit words)
Where L is number of kilobytes of random data from each SEAL call §

Figure 5-5: SEAL Table Generation

Finally we come to the SEAL algorithm to generate a random string, which can really be
seen as a function that maps a 32 bit value into an LkB random string, as shown in Figure 5-6. For
each pass though the outer loop, we reinitialise our internal loop variables by combining the 32 bit
sequence selector n with the next four entries in the R table using XOR. We then go through a short
initialisati: n phase where a sequence of instructions update the A, B, C and D variables, these
instru L.ons are executed three times with the values copied into the nl, n2, n3 and n4 variables afler

the second loop. At this stage we arc ready to execute the inner loop.

S i G P LA AR 2t st il

SRR S iy 2

i o o e 3 e,

Chapter 5:
A Novel MPEG-1 Partial Encryptinn Scheme

input:

n: /* 32 bit selector */
output :

randstring: /* L kB random string */
variaf;.;; : count

A, B, C, D, nl, n2, n3, na ﬁ ?3"%1?52??&1?15 :f
functions:

setadd(X, Y, 2):
setxor(X, ¥, 2).
updadd(X, Y, 2):
updxor(X, ¥, 2):

{Y(\Ox?fc);z=z+T[X Jdi Yoo
(Y N 0x7fc); 2 = 2 & T[X%,]: Y%’:
((X + Y) ﬁOx?fC);Z=Z+T[XO]’;Y
({X + ¥} n ox7fc); 2 .

-
ot

Z® TIXp,): Y,

A
It

algorithm:
1{501‘ {loop = 0=3{L - 1))

e
I

n P RM4 * loop];

B = (np,) & R{(2 * loop} + 1];
C=(np,) @ R[(4 * loop) + 2];
D = (nD,) ® R[{4 * loop) + 3];
for (count = 0=2)

setadd(posi,
setadd(posl,
setadd(posi,
setadd{posl,
if (count = 1)

nl = D; n2 = B; n3

' B)r‘
' C}t'
' D)F
3 A):

OnNnw

A; n4d

n
}

for (count = 0=263)

setadd(posl,
setxor(pos2, Cl; C
updadd {posi1, D); D

A, B)? B
B,
C,
updxor({pos2, D, A); A
A,
B,
c,

o

"o
N 0w
+tH+ D
g

updxor {pos1, B);
updadd(pos2, C):
updxor{posi, D);
updadd{pos2, D, A};
append(randstring, B + S[4 * count]);
append(randstring, C ® S[(4 * count) + 1};
append{randstring, D + S[(4 * count) + 2];
append(randstring, A & S[{(4 * count) + 3];
if {odd(count))

A=A +nl; B=B+n2; C=C® nl; D
else

A=A+ n3; B

=

D @ n2;

[}

B+mn4; C=C@®n3; D=D0® nyg;

}

Figure 5-6: SEAL Random String Generation

The inrer loop of the SEAL algorithm generates 1kB of random data. For each cycle
through the loop, it executes a sequence of eight functions to update the intemnal variables. These
functions use 9 bits from one variable to select a value from table T, which is then either ADDed or
XORed with a different variabie. The eight functions perform this operation on different combinations
of the internal variables. Finally, the four intemal variables are then combined with the next four

values from the S table using cither ADD or XOR 1o produce the next 128 bits of the random string,

95

Chapter 5:
A Novel MPEG-1 Pariial Encryptisn Scineme

Refore recommenciny the inner g, ai! four variables are modified by either adding or xoring them to
either n? and n2, or n3 and nd, depending on whether the loop counter is odd or even. Obviously, both

the inner and outer loop counters could be maintained as states to produce an implementation that

reiumns a 128 bit value rather than an Lkb string.

The SEAL Cipher claims its security from a number of different angles:

+ It uscs a large, secret S-Box that is key dependant.
e Using the SHA-1 Hash function ensures that the entries to ali tables are effectively random.

e A random value from table R is used to initialise the internal variables and a random value

is used from table S to modify the final values before output.
s The inner ioop interchanges the ADD and XOR operations, which arc non-commutaiive.

s The intemal variables are updated differently by a random variable at the end of the inner

loop based on the least significant bit of the loop counter.

The security offered by the SEAL Stream Cipher has thus far been strong, with no
successful attacks on the alzorithm in the nine years since its publication. Indeed, the only weakness
found with the cipher has been through the use of the Chi-Squared attack (Handschuh and Gilbert,
1997). This attack involves the use of the x* statistic, which can be used to test the randomness of a
sequence of numbers. The implementation of the attack uses the fact that there is some correlation
between certain intemnal variables of the SEAL algorithm and focuses on the four least significant bits
of every fourth output word of SEAL. The overall result of this attack on SEAL is that given
approximately 2°° consecutive output words from SEAL, it is possible to determine that the sequence is
not a random sequence. This result however, does not provide the original secret key, details of the
values of the R, S and T tables, nor the beginnings of an approach to determine these values, and

therefore not providing a significant threat to the SEAL cipher.

A similar attack based on the same correlation has been made on a modified version of
SEAL where the summation operations are replaced by XOR operations. This attack has been used to
yield portions of the T table. It is important to note however that the cipher was designed with both
summation and XOR operations specifically because these operations do not commute - it is therefore

unlikely that a similar attack could be used on the full version of SEAL.(Handschuh and Gilbert, 1997)

In response to the issues observed using the ¢° statistic, Rogers and Coppersmith released
a modification to SEAL in 1998 (Rogaway and Coppersmith, 1998) named SEAL 3.0 — this is the
version presented in this thesis. In this paper, they explained that SEAL 3.0 was their original design
which they later modified to increase the speed of implementation. Cryptanalysis on the SEAL 3.0
algorithm shows that the x” statistic no longer reveals any potential weaknesses and no attack on SEAL
3.0 has been discovered. SEAL has thus far proven to be a very secure Stream Cipher, however it is a

relatively new cipher and some attacks may be discovered in the future. Even so, its current record

96

- .

e R A o Tt v oL v ety

s

ke

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

suggests that security is not a problem and i:: #hility to output one of many pseudo-ransom values lend

to an efficient resynchronisation ability.

As regards to the four requirements previously outlined, SEAL either directly meets or
can easily be modified to mcet them. When considering in-place encryption of data, this can be
performed with a simple modification, SEAL XORs a 32-bit pseudo-random word with the plaintext at
each stage, this 32-bit word can be broken up into four 8-bit pseudo-ransom words — therefore enabling
in-place encryption of data. It is important to specify however, whether the 32-bit word will be broken
up using little-endian or big-endian byte order, so that the same approach will work on both types of
hardware platforms. The second requirement on the speed of the cipher is also easily met with SEAL
being one of the fastest sofiware based ciphers with a minimum of 5 machine operations required to

encrypt each byte of plaintext.

A minor problem with the SEAL cipher is that the maximum length of the pseudo-
random output for a given valuz of # is 64kB (Rogaway and Coppersmith, 1998), therefore the cipher
must be resynchronised before more than 64k of data is encrypted. A video sequence encoded at
2Mb/s requires 256kB for 1 second of video, a similarly encoded sequence at 1.5Mb/s reguires 192kB
while a 2.5Mb/s video requires 320kB. However, the encoding rate is not constant across individual
frames and is dependent on the encoding used for each frame (I, P or B-Frame). Since the size of the -
Frames within an encoded video sequence can often approach 64kB, it becomes necessary tor
resynchronisation to occur before and after each I-Frame. While resynchronisation is only required at
each GOP header to ensure that all the different playback modes are supported, the smail length of vhe
maximum pseudo-random output of SEAL requires that resynchronisation occur for each frame of

video rather than for each Gronp-Of-Pictures,

It should be noted that the length of this pseudo-random string is determined by the size
of the R-Table used by the cipher. It appears that it would be possible to further increase the size of
this table to allow generation of longer pseudo-random strings. Indeed the algorithm used to fill the R-
Tables does not restrict continuous calculation of values for a larger table. There has been no published
work analysing the effect of increasing the R-Table size and therefore the pseudo-random string output
length but it appears on initial examination to not affect the security of the cipher. The G, function
fills the tables with random values and cach entry in the R-Table is used as part of a formula to
generate part of the pseudo-random string. Since the Gy, function is based on the thoroughly tested
SHA-1 Hash Algorithm, increasing the R-Table length would appear to only increase the potential
length of output without impacting on the security of the cipher as a whole. However, confirming this

hypothesis would take serious examination and is outside the scope of this thesis.

The SEAL cipher can also easily be resynchronised, but this procedure differs from the
approach that would be used with a different cipher such as RC4. As SEAL allows us to produce one
of 2% different pseudo-random bit streams, resynchronisation is a simple matter of selecting a different
random stream from the one curremly being used. This operation would be performed at each

resynchronisation point, even aliowing for 30 resynchronisation points per second of encoded video,

97

LR

e

=5

Chapter 5: .
A Novel MPEG-1 Partial Encryption Scheme

this allows over 39,000 hours of video 1o be encrypted using the same key without re-using a pseudo-
random sequence. Due to the implementation of SEAL, this procedure involves little or no processing
power and is performed by setting the value of # to the newly sclected random stream and restarting the

SEAL generation algorithm from Figure 5-6. Finally, like RC4, SEAL is amenable to modification to

ensure against the production of false MPEG-1 headers.

SEAL meets all of the requirements for selection as a potential base cipher in the

implementation of a secire MPEG-1 cipher.

5.1.5 Conclusion

In conclusion, 1 recommend vsing the SEAL Stream Cipher as the base system for use in

encryption of an MPEG-1 System Stream. The primary reasons for this choice are as follows:

o Security — following a great deal of work, the SEAL cipher has been shown to be secure
such that a brute-force attack is the only viable attack on a SEAL encrypted stream. Despite
mathematical tests being able to prove that the random stream gencrated by the original SEAL
algorithm is not purely random, this approach has failed to produce an avenue of attack against

SEAL. Further, the SEAL 3.0 algorithm has proven to be resistant against the same analysis.

e Speed —as SEAL is highly optimised for software implementation, it can generate pseudo-
random vaijues at a high rate, potentially requiring only 5 machine instructions per random byte.
This ensures that most machines will be capable of performing both decryption and decoding of

an MPEG-1 stream in real-lime,

e Re-synchronisation —as a random number generator SEAL operates using two keys, one is
used to calculate the initial table entrics and is considered to be the key. The second key is used
to select one of 2°? possible output random streams. This allows for simple re-synchronisation
vy selecting a different output stream at each synchronisation point, a range of 2* points is
many more than is required for even a 2-hour video which would only require approximately

216,000 or 2" synchronisation points.

s Ease of modification - SEAL is easily amenable to modification such that it can encrypt
plaintext in block size of 8-bits, ensuring the in-place encryption of the MPEG-1 System Stream
can occur. Also in common with all Stream Ciphers, because the random stream is XORed with

the praintext, it is possible to ensure that false MPEG-1 Headers are not created.

5.2 MPEG-1 Video Stream Encryption

In this section | will examine the issues involved with integrating the SEAL cipher into
the MPEG-1 Video Stream partial selection scheme for encryption that 1 developed in Chapter 4.
Previously, 1 briefly discussed that SEAL could be modified to ensure against the creation of false

MPEG-1 headers, as well as show that SEAL was open 10 casy cipher resynchronisation duc to its

98

SEEL AR AR L e e AT R S et i

T

Ny, 2} S T A R

e e SR e o b e ok
AN S R S KA b e e e el et i

R

T e AR

g
i
£

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

inherent nature, there is still the issue as to how these features should be exploited when used with the

MPEG-1 Video Stream partial selection algorithm. Issues in particular that must be explored include:

¢ Modification of SEAL for 8-bit keystream generation rather than 32-bit.

» How to modify SEAL such that false MPEG-1 headers are not created, and how does this
modification affect the sccurity of the SEAL cipher.

*» How to key the SEAL resynchronisation sequence such that indexed and high-speed

playback remain supported at the client end.

I will begin by explaining how SEAL shoyld be modified so that it can be incorporated
within the existing prototype encryption system. This includes modifying the SEAL output so that the
keystream is generated in block sizes of 8 bits as wel] a5 ensuring that false MPEG-1 headers are not
created. Finally 1 will took at the issuc of resynchronisation in more detail, explaining how 1 plan to

key the resynchronisation of the cipher to ensure that the special playback modes are supported.

5.2.1 Incorporation of SEAL Stream Cipher into Existing System

As previousiy described, the SEAL cipher can be thought of as a random number
generator that outputs one of 2% pseudo-random sequences based on the 160-bit secret key, where each
random sequence is made up of a series of 32-bit values {Rogaway and Coppersmith, 1998; Schneier,
1996a). However, one of the restrictions on the cipher as laid out jn Chapter 4 require that the
ciphertext length be equal to the plaintext length, and that the cipher be able to process input in biock
sizes of 8-bits. On the first count, SEAL has no problem, being a Stream Cipher - the cipheriext length
is always equal to the plaintext length. There is however a slight problem on the second count, as the
standard implementation of SEAL processes data in 32-bit blocks. Therefore, SEAL must be modified
such that it can process data in 8-bit blocks.

Looking more closely at how the cipher functions, note that SEAL produces a series of
psuedo-random 32-bit values, each of which is XORed with 32 bits of plaintext to produce the
ciphertext. I SEAL were modified to break the 32-bit pseudo-random value into four 8-bit values then
these {our separale values could be sequentially XORed with four consecutive 8-bit blocks of plaintext
to produce the same ciphertext sequence. The primary issue is to define how the 32-bit values will be
separated to form the four 8-bit values, since the effect will be different on Little and Big Endian
machines. 1 have chosen 16 adopt the Little Endian format - compatible for Intel implementations,
where a 32-bit pseudo-random value will be divided into four consecutive 8-bit pseudo-random values

with the least significant byte first.

This medification allows SEAL to process plaintext data in 8 bit blocks. Every fourth
call to the modificd SEAL pseudo-random number generator will cause a single call to the 32-bit SEAL
generator — the returned vatue will be divided and used for this and the subsequent three calls to the 8-
bit SEAL generator. This modification does not effect the security of the SEAL cipher in any way as

the same sequence of pseudo-random bits ure being utilised in the XOR process.

Chapter 5:
A Nove] MPEG-1 Partial Encryption Scheme

The second issue that must be examined is to prevent the creation of false MPEG-1
headers, MPEG-! headers can be defined as a 32-bit byte aligned sequence beginning with the 24-bit
value (0x00-0x00-0x01). Because all Stream Ciphers use an XOR operation as the final step in order
to produce the ciphertext, it becomes trivial to modify the cipher such that it doesn’t produce this 24-bit
output sequence. Indeed the simple cipher used in the prototype system and presented in Figure 4-7
can be considered to be a very simple Stream Cipher — where the psuedo-random sequence is a
repeated 8-bit sequence — which has been modified to ensure that the output sequence (0x00-0x00-

0x01) is never produced unless it is already in the plaintext.

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

T em————-

Pr(c, = a|x, & {0x00,0x01)|a & {ox02- 0xff})= -~ 5.1)

When the plaintext byte i in the range (0x02-0x{f), there are three conditions where the
output Ciphertext byte of the cipher presented in Figure 5-7 remains unchanged — when the pseudo-
random byte is equal to one of 0x00, the plaintext byte (x;) or the plaintext byte x; XORed with 0x01.
Given that the value of the pseudo-random byte is equi-probable with probability /s, this means that
the value of the ciphertext byte ¢; will be equal to the value of ihe plaintext byte x; with probability

0.01172="/154(5.2) and will be equai 1o one of t
The same approach can be taken when modifying the SEAL cipher, which (now) consists .3 0.00391=V,s (53, qua ne of the remaining 253 ciphertext values with probability 4
=256 5

i

of an 8-bit pseudo-random number generator and an XOR function. The pseudo-random number ‘i
generator is left untouched, however the generated pscudo-random byte and the plaintext byte are § PI’(C‘, =X) Pr(k 0)+ Pr(;= X,)+ Pr(=X, AOxOl)
inspected before performing the XOR operation. As for the cipher in Figure 4.7, if the seven most . +] + 1 3 52)
significant bits of the plaintext byte are either 0 or equal to the seven most significant bits of the 256 256 256 256
random byte, then the XOR operation is not performed. This cipher is shown in Figure 5-7 where &;
: . . Pr(cj = a|a # x,)= Pr(k.)=——- 3
represents the 8-bit output of the SEAL pseudo-random generator and x; represents the plaintext input 2 /7056 (53)
to be encrypted. f N '
1 The probability that the ciphertext output byte remains unchanged is hi gher than the ideal
b , ! . e . . 7
f(x,k,): byte = byte :-; \alu-e (254). Eve.:n‘ 50 this Pr‘-"h"ab']'t}’ still remains less than 2% and is less than three times the value of /
000 s 0x00 the ideal probability. Assuming that all plaintext byte values are equally likely, all cipheriext byte
X X 4 values remain equally likely with a probability of 0.0039 ="/, (5.4).
0x01 — 0x01 3 oy
k, -k, P, =a)= Y (Pele, = alx, = p)-Pelx, = 5)
5 f=0x02
k, @ 0x01 — k, ® 0x01 |
X; - x; Dk, — [f!’rc —-o:|x =)J
5 ~ 356
B A=0x02
Figure 5-7: Modification of SEAL XOR Function for usc in Video Stream Encryption] a=! Ox
. . . . 53_6- ZPI’(C —-a|cr¢ﬂ) +Pl((.‘ —ﬂ)+ i?r(cfza,a;eﬁ)
5.2.1.1 Security Provided by the Modified SEAL Cipher £ p=0x02 fearl

The question that must now be examined is whether the modification that ensures against = | "Z'E] 43 3 °" Y
the generation of false MPEG-1 headers reduces the security provided by the SEAL cipher. Before % 256 256 ﬁﬂ,”. 2‘56 J 64)

looking at this, it is worth considering the results of recent cryptanalytic work on SEAL, remembering

I e ¢ ——

particularly that there are no known weaknesses or potential attacks on the SEAL 3.0 algorithm. We

R A
I
o
LW .} —
(=)
(3]
Lh | e
[,
P
=
gl
\-——-—.'/
+
LS
+
=
» o
EM&
M
\--—_/

can also consider the cipher from Figure 5-7 differently by saying that if any of the four conditions for

not performing the XOR are met, then the pscudo-randomn byte is replaced with the value 0x00 and the

S e R R A o

XOR is stili performed. This increases the probebility of the value 0x00 in the pseudo-random 1 256 256
sequence. Obviously a lower number of key sequence values are now required to prove that the '_f_'j "'2%
sequence is not random — but does this make the cipher less securc? ,
Similarly, the probability that a ciphertext byte value is equal to 0x00 or 0x01 is equal to

Given that plaintext values of 0x00 and 0x01 remain unchanged, an ideal cipher would the probability that these values are present in the plaintext sequence. Again given that all plaintext

map one of the remaining 254 plainte. - values to a pscudo-random ciphertext value between 0x02 and byte values are cqually likely, this probability is also equal to 0.00391="/5 (5.5) and (5.6).

0xfT with a probability of 0.00394="/s, (5.1).

100

101

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme
1
Pr(c, = 0x00)= Pr(x, = 0x00)= PYT3 (5.5)
1
 =0x01)=Prix, =0x0} j=— (5.6)
Pr(c, X) r(x, x] YT

The modified SEAL cipher is no less secure overall, if a cryptanalyst uncovers a 0x00 or
0x01 value in the encrypted bitstream, he/she can be certain that the plaintext value of this byte remains
0x00 or 0x01 respectively. Similarly, if a cryptanalyst uncovers another byte value in the encrypted
bitstream, he/she can only be certain that the plaintext value of this byte is not 0x00 or 0x01 and that
the probability that the corresponding plaintext byte is unchanged is three times more likely (the
generated pseudo-random value was actually 0x00, was equal to the original plaintext byte x;, or was

equal to x; XOR 0x01) than for any other value (5.7).

3

Pr(x, =¢,)=Pr(c, =x,}= 756 (5.7)

The difference in the probable value of a single plaintext byte is not entirely relevant. In
order to decode the entire plaintext sequence, we require the original pseudo-random sequence. When
attempting to determine this sequence, the tripie probability for the plaintext byte being cqual to the
cipheriext byte devolves into three possibilities for the corresponding byte value in the pseudo-random
sequence — 0x00, x; or x; XOR 0x01 - each with a probability of '/, thereby decreasing the probability
of individual random values back to '/ass (5.8). Even when the ciphertext byte is equal to 0x00 or 0x01
and therefore the plaintext byte is fully known, the pscudo-random byte value for this point in the

sequence could have any value with equal probability of ‘s (5.9) and (5.10)

Given (x, = ¢,): Pr{k, = 0x00)= %-2—2—6- = Eég
Pr{k, —xf)=%--—2-§—g=§%g (5.8)
Pr(k, = (x, ,»\0x01))=%--2-§-g=-2-;E
Given (¢, = 0x00): Pr(k,.) = E:S_G_ (5.9
Given (¢, = 0x01): Pr(kf)=-2—-;-g (5.10)

In conclusion, the modifications to the cipher still ensure that the individual values of the
pseudo-random sequence remain equally likely for any given ciphertext sequence. If an attempt were
made to retrieve the plaintext through breaking the SEAL cipher, the cryptanalyst must first reirieve a
part of the pseudo-random sequence using some known plaintext. Where a ciphertext was 0x00 or
0x01, the pseudo-random byte is completely unknown - since the value of &; is random and equi-
probable. Where the ciphertext and plaintext byte values are equal, the pseudo-random byte value can

be one of three possible values (0x00, x; and x; XOR 0x01) with equal likelihood. This actually

0 AL DA A AT A R SO O | PR 23

T B i R D

Daim e P

ol B s bl A T

2 e T

o

SET L R e e e S

SRR

it P A

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

increases the difficulty in determining the actual pseudo-random stream and therefore mounting an
attack on SEAL itself. Even though the modified Stream Cipher has an increased probability of
outputting the 0x00 byte as input 10 the XOR function, this does not degrade the difficulty in
determining the original SEAL pseudo-random sequence. While the probability that an individual byte
is unchanged is slightly greater than desired, over a sequence of consecutive bytes the effect of this

statistical abnormality is reduced.

5.2.2 Resynchronisation of Cipher at each Picture

It is important 1o be able to resynchronise the cipher at the start of each Group-Of-
Pictures (GOP), allowing us to provide indexed and high-speed playback modes. Indexed playback is
performed by streaming the MPEG-] System Stream from the start of the closest GOP. Since the first
frame s a GOP is always an [-Frame, and other frames in a GOP rely on this I-Frame being decoded
first, it is impossible to commence playback in the middle of a GOP as some frames cannot be
reconstructed. Indexed playback always commences at the start of a GOP, implying that the cipher
must be able to be resynchronised at the start of each GOP within the MPEG-1 Video Stream. During
indexed playback, the first frame will be correctly decrypted as the cipher will be correctly
resynchronised by the GOP header immediately preceding the frame to be decoded, subsequent frames

will be decrypted as for normal playback. (Anderson, 1996; Lin et al., 2001; Jayanta et al., 1994)

High-speed playback is performed by streaming a modified MPEG-1 Video Stream -
containing only I-Frames — across the network. The modified Video Stream is constructed by deleting
all but the first I-Frame Picture from each GOP in the original Video Stream. Sending the GOPs in
reverse order allows playback in fast-rewind mode, this is properly decoded and displayed as each GOP
only contains one frame. As for indexed playback, as long as the cipher is resynchronised at the start
of cach GOP, we will be able to successfully decrypt the stream in the high-speed playback modes.
The high-speed playback modes can be considered to be a form of indexed playback where each jump
involves playback of a single frame only, if indexed playback is properly supported, then so is high-
speed playback with the cipher being resynchrorised at the start of each frame. (Shanableh and
Ghanbari, 2001; Leditschke and Johnson, 1995; Frimout et al., 1995)

While it is only essential to resynchronise the cipher at each GOP header, because the
SEAL cipher can only produce a 64kB pseudo-random sequence (Rogaway and Coppersmith, 1998)
for each value of 1 (the length of an I-Frame can easily approach 64kB), we must instead resynchron.se
the cipher at each Picture Header. The SEAL cipher can easily be resynchronised by selecting a
different pseudo-random stream — by changing the value of # — but the encrypted video stream must
also comtain information as 1o which of the 2** pseudo-random streams to select. This cannot be
encoded into the Video Strear. s extra information as in-place encryption of the MPEG-1 Video
Stream will no longer be possibl:. The information as to which value of » to use must be extracted

from existing information contained within the GOP and Picture Headers,

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

Foilowing the GOP Header marker — the 32-bit byte aligned sequence (0x00 0x00 0x01
0xb8) — is a 25-bit field that contains a time-stamp value for the GOP being decoded. This value is
unique within the MPEG-1 Video Stream and can be used as an input to calculate the value of n to
resynchronise the SEAL cipher — every time a GOP header is processed, this value is updated for future

resynchronisation of the SEAL cipher while processing each Picture header.

Following the Picture Header Marker - the 32-bit byte aligned sequence (0x00 0x00
0x01 0x00) — is a 10-bit field containing the picture order counter for the GOP. This value is unique
within the outlying GOP and can be used as a secondary input to calculate the value of n to
resynchronise the SEAL cipher. Every time a Picture header is processed, the picture count value and
the outlying GOP time-stamp is used 1o resynchronise the SEAL cipher to decrypt the frame of video

represented by this Picture,

The question arises as how to combine the 25-bit time-stamp value with the 10-bit
picture count value to form a single unique 32-bit value - the value of # must be unique to avoid re-use
of the same pseudo-random sequence. The format of the time-stamp is shown in Figure 5-8, note that
five bits have been allocated to encode the value of hours, allowing representation of up 1o 31 hours of
video playback. Also note that the first bit of the time-stamp i1s a drop-frame marker bit, indicating
whether the video is encoded at 29.97 frames per second or not.] propose to reduce the time-stamp
value 1o a length of 22-bits by ignoring the drop-frame marker and the two most significant bits of the
hours field, dropping these fields still provides a unique 22-bit value as long as the video length does
not exceed 8 hours — a good assumption for almost ali video sequences. The 10-bit picture count field
can then be appended to the end of the 22-bit modified time-stamp valuc to {form a unique 32-bit value

for each {rame of video as long as the video sequence is shorter than 8 hours.

24 0

dfth5 hd |h3th21h1 imbimSimajm3im2im1|mb{ s6 |s5 |s4|s3]s2 s [pb|pS|pdip3jp2|p!

Frame count within second — 6 bits

Second value — 6 bits

Marker bit — always set

Minuie value - 6 bits

Flour value - 5 bits

Drop-{lag ~ set if rate = 29.97Hz

Figure 5-8: Format of 25-bit Time-Stamp within GOP Header

If this approach is used, the state machine proposed in Figure 4-5 must be modified. The
existing state machine processes the MPEG-1 Video Stream for Slice Headers in order to encrypt the
Slice Payload. The new state machine must now also search for GOP Headers to extract and store the

modified 22-bit time-stamp value in an internal register, as well as scarch for Picture Headers to exiract

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

the picture count value and combine it with the stored time-stamp value to resynchronise the cipher.
This modified siate machine is presented in Figure 5-9. Note that all the modifications occur in the
first section of the state machine. Once the fourth state of the first section is reached, the MPEG-1

unique header identifier (0x00 0x00 0x01) has been processed, at this stage one of four things can

occur:
. default * defauit default
Section 1 Seed 4o oot re ey
{Input << 11} {loput << 19) (foput & Oalf) <<27
default :
Seed += Oxb8
(loput & 0x80) << 3 |
default
default
Count += (Input & D1¢0} >> 6 0x0) ~Oxaf
Reaynr. Cipher {Seed + Count)
Section 2 xooxx |

Section 3

Al input to be encrypted
affer processing

default

defauit -

Figure 5-9; Modified State Machine to Encrypt an MPEG-1 Video Stream
» If the next byte processed is 0xb8, then we have found a GOP Header, the next four bytes
contain the modified 22-bit time-stamp. We then read and assign the time-stamp to an iniernal
variable (Seed) before returning to the initial state to search for another valid MPEG-1 Video

Stream Header. This procedure is encompassed by states 1-5 through 1-8

 If the next byte processed is 0x00, then we have found a Picture Header, the next two bytes

that are read contain the 10-bit picture count value. We read and assign this value to an internal

Chapter 5:
A Novel MPEG-1 Parntial Encryption Scheme

variable (Counr). Once the picture count value is determined, it is added to the previously
obtained time-stamp value (which has been stored such that the 22-bits occupy the 22 most
significant bits) to form a unique 32-bit value. The SEAL cipher is then resynchronised to this

value before we return to the initial state to search for another valid MPEG-1 Video Stream

Header. This procedure is encompassed by states 1-9 and 1-10.

» Ifthe next byte is in the range 0x01-Oxaf, then we have found a Slice Header and proceed to
the sixth state of the second section of the state machine so that the Slice Payload can be

encrypted as in the original state machine.

o For any other value for the following byte, we return to the initial state to search for another

valid MPEG-1 Video Stream Header.

Wheri this new state machine is combined with the proposed cipher in Figure 5-7 we
have a procedure that is able to encrypt an MPEG-1 Video Stream securely as well as retrieve the
original plaintext stream given a single 160-bit secret key. The key is used as the primary input to the
SEAL cipher to set up the initial tables. While parsing an MPEG-1 Video Sequence, the frame count
field of each Picture header is combined with the timestamnp field of the outlying GOP header to form a
32-bit value, , which is used to select one of the 2*? pseudo-random sequences generated by the cipher
for each individual frame. This output sequence is then modified during encryptiens to ensure that faise

MPEG-1 headers are not created as well as during decryption to retrieve the correct plaingext.

5.3 MPEG-1 Audio Stream Encryption

Encryption of the encapsulated MPEG-1 Audio Stream is more difficult due to the lack
of resynchronisation points available from within the Audio Stream itself. In order to ensure that the
encrypted System Stream will be able to be decoded in all playback modes — indexed, high-speed, etc.

— there are a number of issues that must be addressed, these are:

¢ Modification of SEAL for 8-bit keystream generation rather than 32-bit, the same approach
as that used for encryption of the MPEG-1 Video Stream,

» How to modify SEAL such that the basic Audio Stream: structure is maintained, as required

by certain video servers that check the Audio Siream format.

e How to key the SEAL resynchronisation sequence such that indexed playback remains

supported at the client end, high-speed playback is performed without audio.

As presented in Chapter 4, the Audio Stream partial selection scheme is extremely simple
with all four bytes of each audio frame header lefi as plaintext while the remainder of the stream is
encrypted. I will begin by explaining how SEAL should be modified so that it can be incorporated
within the existing prototype encryption system.] will then explore the lack of resynchronisation
points within the MPEG-] Audio Stream and finally propose a solution whereby we sacrifice some

parts of the plaintext data within the Audio Stream to use as resynchronisation values.

106

AR e P g

-

e e T A et A s L

AT L AT B e

e

AT A S e A

AR

e

R A

A et

S B S it R R

Chapter 5;
A Novel MPEG-1 Partial Encryption Scheme

3.3.1 Incorporation of SEAL Stream Cipher Into Existing System

As described in Section 5.2.1, the SEAL cipher can be again modified to process the
plaintext in block sizes of 8-bits, also, this modification has no effect on the security provided by the
SEAL cipher. This modification is required as the length of the blocks of plaintext to be processed is in
multiples of 8-bits, terminated by a byte aligned sequence that identifies an MPEG-1 Audio Stream
header. As was proposed in the Video Stream Cipher, the 32-bit SEAL output word will be broken up

into four 8-bit words in a Little Endian format, with the most significant byte of the 32-bit output word
first.

The next modification must be made to ensure that the cipher does not create the output
byte Oxff. This modification performy the same function as that required for the MPEG-1 Video
Stream in ensuring against the production of false MPEG-1 Video Stream headers, instead this
guarantees against the production of false MPEG-1 Audio Stream headers. As in Section 5.2.1, where
the SEAL cipher was modified to be similar in operation to the simple cipher presented in Figure 4-7,
so can SEAL be modified as for the Audio Stream cipher presented in Figure 4-8 to ensure against the
production of false MPEG-1 Audio Stream headers, this is shown in Figure 5-10.

f(x,k,): byte = byte
Oxff — Oxff
k; ® Oxff — k, ® Oxff
x; - x® k,.'

Figure 5-10: Modification of SEAL XOR Function for use in Audio Stream Encryption

The same arguments as used in Section 5.2.1.1 apply to show that the security of SEAL
is maintained through the modifications presented here. In this case however, the ideal cipher maps
OxfT to Oxff and randomly maps the remaining 255 values with probability 0.00392 ('/3s). The
modified cipher instead results in the probability that a ciphertext byte is equal to the plaintext byte is
only 0.00781 (%yss), the probability of other output bytes is 0.00391 (fs6). Again, while the
probability that the plaintext byte is equal to the ciphertext byte is slightly higher, it provides no help in
determining the actual SEAL pseudo-random output stream in attempt to compromise the SEAL
cipher. Similarly, regular resynchronisation of the SEAL cipher will mean regular switching between

different pseudo-random streams.

5.3.2 Lack of Resynchronisation Points within the Audio Stream

Unlike the Video Stream, the MPEG-1 Audio Stream does not provide any usable
resynchronisation points within the compressed bit stream (Pan, 1995). While the start of each audio
frame provides an ideal resynchronisation point, the audio frame header contains no information on the
current playback position within the overall stream, thereby also not providing a source for the 32-bit

value of # required to resynchronise the SEAL cipher. In the situation of indexed playback, streaming

107

Chapter 5: .
A Novel MPEG-1 Partial Encryption Scheme

would begin from the start of the relevant I-Frame, the next audio frame decoded would be from the

start of a valid MPEG-1 Audio Header with no information as to the current location within the overall

playback stream.

At this point, there are three potential sources from which a resynchronisation value can
be obtained, the first being the outlying System Stream. Unfortunately, while the System Stream does
contain timestamp information and could be used to provide a resynchronisation value for the SEAL
cipher, this information will not always be available. Using the Microsoft NetShow Theatre product as
an example, the client player libraries allow specification of a server and video 1D and provide as
output and MPEG-1 Video Stream and MPEG-1 Audio Stream — already de-multiplexed from the
MPEG-1 System Stream. In this situation there is no capability of obtaining header information from

the System Stream in order to resynchronise the cipher.

The second option is to use the information encoded in the parallel Video Stream to
provide resynchronisation values for the SEAL cipher. While this approach appears to be suitable, it
can suffer from multi-threaded programming issues as the Audio Cipher must be resynchronised at the
correct timestamp while the Video Stream is being decoded. Ensuring this dual stream correctness will

result in a complex code base.

The final, and most suitable, option is to use the data in the Audio Stream itself in the
same way we used data in the Video Stream to resynchronise the cipher. This option provides some

challenges in selecting a suitable value for 72 which I will discuss below.

5.3.3 Calculating the Andio Cipher Resynchronisation Value —n

Given that there are no useful resynchronisation points within the MPEG-1 Audio
Stream, that the presence of the information within the System Stream is not guaranteed, and that
resynchronising to the Video Stream is extremely complex, it becomes necessary to manufacture a
suitable resynchronisation value from the data contained in the Audio Stream. When considering
resynchronisation of the Audio Cipher, only indexed playback is considered as no audio is streamed
during high-speed (fast-forward or rewind) playback. 1 propose to sacrifice some plaintext data (2
bytes) in order to help generate a suitable value of # to resynchronise the Audio Cipher. Again, when
decrypting the Audio Stream in real-time, this resynchronisation value can be easily extracted and used
with the modified SEAL Cipher - already setup with the 160-bit secret key — to decrypt the Audio

Stream as it is processed.

While it may be easy to find the start of an Audio Frame Header in a stored Stream ~ the
headers are separated by a fixed number of data bytes - it is more difficult to do this when processing
the data as a stream, Therefore, we must process the data in consecutive bytes and discover Audio
Frame Headers as they happen to appear in the strcam. We also know that these headers are fixed
length (32 bits), and begin with the 12-bit byte aligned sequence (1111 1111 1111). We also know that

cach frame of audio data is representative of a short segment of playback time which varies in duration

108

-

S RN i

T T L Tt

b QAR

BT o o i K

Mg R LR TS SRS T ol it

(NSt o

Chapter §:
A Novel MPEG-1 Partia! Encryption Scheme

depending on the encoding format and encoded audio rate. This implies that we will regularly be

resynchronising the Audio Cipher and only using short strings of pseudo-random ouput.

There is no suitable value within the Audio Frame Header to use in calculating a value of
#u for resynchronisation purposes — the contents of the Frame Header is practically constant for each
swudio Frame, | therefore propose to sacrifice the first two data bytes following the Audio Frame
rieader, leaving them as plaintext to use in calcuiating a cipher resynchronisation value. In Layer I and
Layer Il Audio Streams, these two bytes will represent some of the Audio data, but not enough to
successfutly reconstruct a significant portion of the Audio. In Layer 11l Audio Streams, this data forms
part of the “Frame Side Information” which describes decoding variables to the Audio decoder. In all
cases, these two bytes represent changing data ~ their values are different for each Audio Frame within
the Audio Stream. Since these bytes change as the stream is processed, we can use them to calculate
changing values for », such that cach Audio Frame is encrypted with a different pseudo-random output
from the SEAL Cipher. In order to calculate the resynchronisation value, 1 propose using these two
plaintext bytes to form the 16 least significant bits of the SEAL resynchronisation vaiue. The 16 most
significant bits will be all setto *1”. By ensuring that the 16 most significant bits are set, we ensure that
we do not repeat a resynchronisation value used by the Video Stream Cipher — the format of the
timestamp in the GOP precludes this value ever being gencrated as part of the Video Stream Cipher
resynchronisation value. This resynchronisation value will be used to select a different pseudorandom

stream for each frame of Audio Data.

Unlike resynchronisation of the Video Stream Cipher, the two bytes used to caiculate the
resynchronisation value are not necessarily unique within the Audio Stream, meaning that some Audio
Frames will be encrypted with the same pseudo-random stream. This is unfortunate and potentially
leads to a less sccure Audio Cipher implementation than for the Video Cipher, as repeated random
streams decrease the protection afforded by a Stream Cipher. This problem is however difficult to
solve since we must be able to decrypt the Audio Stream as a standalone bitstream. We cannot use
timestamps as for a stored Audio Stream since we only ever see small portions of the bitstream and are

unaware of the playback timestamp.

To summarise the procedure, a modification is made to the Audio Cipher State Machine
presented in Figure 4-9, two extra siates are inserted between the original State 1-4 and State 2-1.
These two new states are used to read the first two bytes following an Audio Frame Header, append
them to the 16-bit value (Ox{ifY) and resynchronise the SEAL Cipher. The effect of these changes are
shown in Figure 5-11. This ensures correct decryption during sequential processing of the Audio
Stream without reference to either the containing System Stream or parallel Video Stream and allows
construction of a simple module to perform decryption of this bitstream. During regular playback,
resynchronisation will occur at the start of each Audio Frame ensuring correct decryption and
playback, this factor will also ensurc correct decryption following an indexed jump into the MPEG-1
stream, High specd playback modes arc implemented without Audio Pi;x)'back and therefore

resynchronisation is not an issue.

109

Chapter 5. . ‘
A Novel MPEG-1 Partial Encryption Sc.ieme
Section 1 " - - .
o Oxff Mihooox . defoult
..-dcfaul_t 0@)
TN e B 1 :
L L : default
EETEREEEIC o 1+ Gnpm <)
S RN '
2-1) 2-2
, . - ' default
Sectiond -~ T oo Seed+= Inpai
: :) Rexyne, Clpher {Seed)
. ' : Oxtf 4
All input to be encrypted
if processed in Stage 3-1 - “ a1 . defaul

Figure 5-11: Maodified State Machine to Encrypt an MPEG-1 Audio Stream

5.4 System Testing

The process of testing the new cipher involves ensuring that the new cipher passes the
tests outlined in Section 4.4. These tests — repeatability and reversibility of the eacryption process,
CPU performance requirements for real-time decryption and ensuring fi.s.:ionality with existing
streaming video servers — are performed using the same set of test {iles. There is no requirement to re-
calculate the proportion of the MPEG-1 file selected for encryption, as this will be equal to the results

presented in Table 4-1. The results of the remaining tests are outlined in the following sub-sections.

5.4.1 Is the Encryption Process Repeatable and Reversible

As in Section 4,422, answering this question involves first proving that repcated
encryption of a test bitstream produces the same encrypted bitstream — as for the tests on the prototype
cipher, the procedure is fully outlined in Section D.4.1 along with the results to show that the process is
indeed repeatable. Of more interest is proving that the procedure is also reversible, and that the

original plaintext can only be retricved if the correct decryption key is used.

Unlike the prototype cipher, the secure cipher developed in this Chapter allows for 2'%

unique keys, making it even more unfeasible to repeat the test using all keys. Again, a subset of four
keys was selected — resulting in the same number of tests as for the prototype cipher. The four keys
chosen for test purposes are listed in Table 5-1. All 2'® possible keys of the SEAL Cipher are

constdered to be secure, therefore any four keys are suitable for testing purposes. The first two keys

P e S AT et <

TN

<1 £ B i

i e i

Ly b, i

b Yoy o ik e e

——

e e T S R 3t

RN

i,

.s‘
1

]
2
¥
f.'
A
%
5
B

Chapter 5;
A Novel MPEG-1 Partial Encryption Scheme

were chosen for simplicity in entering the key for test purposes — 160 zero bits and 160 1 bits. The
remaining two keys were formulatzd as the ASCI! code for a 20 character text string — Key 3 and Key
4 corresponding to the strings “The MPEG SEAL cipher” and “Jason But PhD Thesis™ respectively.

0x 00 00 00 00 00 00 00 GO 00 00 00 00 00 00 00 00 00 00 00 00

Ox £f £f ff ff ff £f ff £f ff £f ff £f £f ff ff ff ff £ff £f ff
Ox 54 68 65 20 4d 50 45 47 20 53 45 41 4c 20 63 69 70 68 65 72
Ox 4a 61 73 6f 6e 20 42 75 74 20 50 68 44 20 54 68 65 73 69 73

Table 5-1 SEAL Keys Used in Testing Encryption Scheme

The testing procedure is identical to when testing the prototype cipher and a complete
tabulation of the results is presented in Table D-14. Again, the results proved consistent for each of the
six test files, a summary is presented in Table 5-2. From this, we can see that all files were
successfully decrypted when the encryption key was reapplied - also, aitempting to decrypt a file with
o different key to which it was encrypted resulted in a bitstream that was not equivalent to the original
file. Again, all 96 output files were passed through software and hardware MPEG-1 decoders with
similar results to the prototype cipher — the bitsiream can be parsed but not decoder. As for the
prototype cipher, we can conclude that the encryption process is reversible and that the original

plaintext can be obtained if the correct key is used.

| . .
Deeryption ey

Fuenption key _T ! :
Key 1 &~

Bd
Key 2 [M = Bl
Key3 Bd = 1| 3]
Key 4 " 3] 3] g]

Table 5-2 Reversing the MPEG-1 System Stream Encryption

5.4.2 CPU Requirements for Encryption/Decryption

The second test ensures that there is sufficient CPU power available to perform real-time
decryption of the MPEG-1 sequence, the procedure is the same as outlined in Section 0. The same two

test platforms were used to generate the results, which are summarised in Figure 5-12.

These results were obtained using both the maximum rate and difference methods
explained in Section 4.4.2.3. As expected, the increased complexity of the secure cipher resulted in
increased requirements for bitstream encryption or decryption, however the speed of a SEAL
implementation has meant that these extra requirements are minimal. Looking at the results, we can
see that the secure SEAL Based Cipher requires approximately 50% more available CPU cycles than
the prototyp2 system presented in the previous chapter, see Figure 4-10.between 3.7% and 6% on the
Pentium 11 and between 0.8% and 1.2% of tolal available CPU cycles on the Pentium 4. While this

Chapter 5:]
A Novel MPEG-1 Partial Encryption Scheme

increase is large, it ’s still small in proportion to the CPU cycles required for decoding and playback as

presented in Table 4-3.

°

2 —<4— Pentium Il (Max. Rate
g_ Method)

d‘é ~—8— Pentium 4 (Max, Rate
- Method)

g —&— Pentium 1 (Difference
- Method)

= . .

o —¢— Pentium 4 (Difference
Q Method)

&

tennis flowg us Chicken Monash Diablo2 5
Nursing

Test Bitstrean

Figure 5-12: Performance Results Using the Secure Encryption Scheme

Given the conclusion that the CPU requirements for the prototype cipher indicated the
processing requirements of the stream selection parsers, we can conclude the SEAL Cipher
implementation is more efficient that the stream parsing algorithms. Again, these figures show that
both processes (decryption arid decoding) are able to function in parallel. The results demonstrate that
even on the slower Fentium [test platform, as long as approximately 15% of CPU cycles are available
when decoding and playing back a plaintext bitsiream, then real time decryption and decoding can

occur in paralle!.

5.4.3 Verification of Functionality with Existing Video Servers

The final test involves verification that the enciyption scheme functions in all playback
modes on a variely of existing streaming servers. Again, the procedure taken here is unchanged from
that described in Section 4.4.2.4. The aim is to ensure that functionality is maintained through all three
test server platforms, this is done using the two Client Player applications — “StreamCipher.exe” and
“SGIStreamCipher.exe” — and the Apple QuickTime Player (o hint movie files for installation on the
Apple QuickTime and Darwin streaming servers. The results — summarised in Table 5-3 - are again
identical, all playback modes are supported by the NetShow Theatre server and correct decryption and
playback was observed when streaming all test files, Playback from the MediaBase server confirmed
that normal speed playback modes were supported by the cipher during real-time playback and that
high-speed playback modes were supported by the cipher through a delayed playback test. Successful
hinting of the encrypted movie files ensured the subsequent installation on the Apple Streaming Server

platforms.

112

L

BT P o N S o DA et LA Py X el S S Pl Lt ol et s e o e

PR S RSP

o
&

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

Server

NetShow Thcarc

Mediabase

Quicktime

A blank entry in the table signifies that the functionality was rot tested.

Table 5-3 Streaming an Encrypted MPEG-1 File from a Streaming Video Server
5.4.4 Summary
To summarise, the tests prove the following three important points:

* The encryption process is reversible — ensuring that it will be possible, through the use of

the correct key, to retrieve the original sequence for decoding and playback.

* CPU requirements for decsyption are low — en--ing that is will be possible to decrypt

and decode the video stream in real-time.

* All playback modes are supported ~ playback functionality is not restricted as a result of
encrypling the video stream, therefore not restricting user interaction with the video streaming

service.

Having passed these requirements, we can say that the proposed video encryplion
scheme can be utilised in a streaming video service while remaining invisible to the end user — enabling
service providers to provide a sccure streaming service for conlent owners while not unduly

Inconveniencing paying customers.

5.5 Effects on Streaming Video Implementations

Having proven the functionality of the MPEG-1 cipher, it remains to be seen what effects
the cipher has on the performance of the MPEG-1 streaming application. Of particular interest are the
effects of network errors on the encrypted video stream as opposed to the same errors occurring on the
un-encrypted video stream. In this section I will discuss the effects of the following transmission
errors, comparing the cases of streaming both the encrypted and plaintext video. In each case, the
comparison will consider the effect on the effective performance — to what extent is the quality of the

video and audio affected as observed by the end user? The types of network errors considered are:

+ Bit Error - an individual bit (or multiple bits) within the stream is flipped o an incorrect

value.
+ Bit Loss — an individual bit (or series of bits) within the stream is lost in transmission.
¢ Dropped Packet — an [P packet is dropped somewhere in the network during transmission.

¢ Late Packet — an 1P dalagram has arrived late (aRer the scheduled decode time) at the

client player.

113

E R L SRR LT

Chapter 5:)
A Novel MPEG-1 Pantial Encryption Scheme

5.5.1 Effect of a Bit Error

A bit error occurs when a single bit - or multiple bits - has its value flipped during
transmission across the network. Since video streaming is often accomplished using the User
Datagram Protocol (UDP), these sorts of errors can usually be detected but not corrected, as data re-
transmission would result in the corrected data arriving too late to be displayed. The probability of this
error occurring is entirely dependent on the medium being used to implement the network connection,
fibre networks provide for extremely reliable data transfer (Bit Error Rate = 10°* - 10''%) while error
rates on wireless links are higher (10 - 10°). The problem is not how to fix the bit errors, since these
are a function of the network and the underlying protocol layers, but rather what effect these bit errors

have on the streaming video being displayed to the user.

If a bit error occurs in the process of streaming back a plaintext video, it will result in one
of a number of visible or audible glitches presented to the user. The overall effect of this glitch is
dependant on which bit in the video stream has been flipped to an incorrect value. Since the video bit
stream is compressed, the bit error will result in a larger number of errors to the un-compressed video
stream which is displayed to the user, ranging between a small area of the screen being in errorin a
single frame, the error propagating over several frames, an instanianzous error in the audio playback
(presented as a squeak or a clicking sound) or no visible or audible error at all. Due to the nature of
video streaming - transmission of a compressed bit-siream over a potentially ctror-prone channcl -
these errors cannot be repaired and are therefore part and parcel of streaming video data. What is of
interest is — if the same bit error occurs in the encrypted video bit-stream, is the resultant effect on
playback equal to or greater than if the bit error occurred in the plaintext bit-stream. There are three

possible scenarios to consider in which the value of a bit is in error:
e The eroneous bit occurs within a macroblock or audio packet that has been encrypted.
¢ The erroneous bit occurs within a part of the video bit-stream that is not encrypted.

o The erroneous bit occurs in a part of the bit stream that is used to determine when t2 switch

the cipher module on or off or to determine a resynchronisation value,

The first of these scenarios can be summarised as resulting in the same playback errors as
the un-encrypted bit-stream, this is due to the underlying XOR nature of a Stream Cipher. At the client
end the same pseudo-random bit-stream will be generated, when this is XORed with the video stream,
the bit that was in error will remain in error — the erroncous bit does not propagate to other bits within
the video stream. In the scenario of an encrypted bit having its value flipped, there is no difference in
playback between the encrypted and plaintext video bit-stream. The second scenario also results in the
same playback errors as the plaintext bit-stream — this is obvious since the error in both bit-streams is

exactly the same.

The final scenario is more interesting. Certain elements of the MPEG-1 Video Stream

and MPEG-1 Audio Stream are used to both synchronise and start and stop encryption of bytes within

2 et AN LA b s - D

Vvt

g T

gy bk

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

the bit-stream. If any bits which encode this information suffer from bit errors, this error will

propagate 10 cause larger ermors in the decoded video. The effects could be catastrophic,

Consider for example a bit within the timestamp of a GOP header being in error, this will
cause an incorrect cipher resynchronisation value to be used for all video frames within that GOP,
resulting in an incorrect pseudo-random bit-stream being used to decrypt the video. The overall effect
will be incorrect video playback for the duration of the GOP, approximately 0.5 seconds of bad data. A
less extreme example occurs if a bit determining the picture count is in error, leading to an incorrect
resynchronisation value for decoding the given video frame. Errors in the two resynchronisation bytes
following an audio frame header will lead to an incorrect resynchroiisation value for the given audio
frame, again completely destroying the data in that frame. Errors in bytes signifying the start of
MacroBlock or audio frame data will result jn the cipher not being started (or stopped), causing
erroncous decoding unti! the next frame header is encountered. While the percentage of the overall
stream that makes these critical points is smali, the potential effects can be dramatic, both visually and
aurally. ‘This implies that streaming the encrypted video over an error prone channel can potentially
cause a lower quality of playback that streaming the plaintext video over the same channel. It is also
important to note that a bit eror in any one of these fields could cause the Video and Audio decoder

modules to incorrectly process that biock of data, leading to problems in playback of the same duration

but not quite as severe.

Another issue that can become a factor is how bit errors are dealt with by the video
streaming software. As noted, video streaming is typically performed using UDP, allowing the
discovery but not the correction of transmission efrors. Different implementations of video playback

software can deal with this scenario in one of two ways:

* Consider the importance of the real-time data and determine that playback of erroneous data
is preferable to no playback. ln this case, the errors described above become a potential issue,
especially in the scenario where the bit that is in emor plays a key role in the implementation of

the cipher.

» Determine that the packet is in error and throw it away, this has the same effect as a

dropped or Iogt packet as described in Section 5.5.3

When considering the effect of a bit ervor in streaming an encrypted video, it is important
to note that if the bit error occurs in a part of the bit stream that is used to synchronise and contro! the
cipher, the error is propagated through a large number of bits, potentially affecting up to half a second
of playback. Seeing that the bytes that synchronise the cipher are limited in number and form a smalil
part of the entire stream, this type of error should not be prevalent. Of greater interest, if the bit error
occurred in another part of the bit-stream, the resultant playback error will be exactly the same as if the
error had occurred in streaming the plaintext video. Combined with the low probability of the
propagated error, we can conclude that using encrypted video has only a minor effect on the perceived

quality of video playback.

e o e b

Chapter 5: -
A Novel MPEG-1 Partial Encryption Scheme

5.5.2 Effect of Lost or Dropped Bits

A lost or dropped bit occurs when the physical transmission medium loses a bit in
transfer. Data is usually transmitted using a serial protocol at the Physical Layer and there is always
the potential for a bit to be lost during transmission. The final result is that the bit-stream received at
the destination is missing a bit. However, it is important to note the effects of the Link, Network and
Transport Layers thai sit underneath the video streaming application. In the instance of the Internet
Protoco! (IP), any packets that suffered from a dropped bit during transmission would cause the IP
packet to be dropped, having the same effect as a lost or dropped packet discussed in Section 5.5.3. To
summarise, lost or dropped bits are handled by lower layers in the protocol stack, therefore ensuring
that a lost bit error does not propagate to the application as a dropped bit emror, but instead as a lost or
dropped packet error. This is fortunate as dropped bit errors are not handled well by cither Stream
Ciphers — which result in all bits following the dropped bit to also be in error — or the MPEG-1 format

— which relies on certain parts of the bit stream being byte aligned.

5.5.3 Effect of Lost or Dropped Packets

A lost or dropped packet in video sireaming occurs when one of the transmitted UDP
datagrams fails to arrive correctly at the client playback application, therefore the data contained within
the datagram cannot be decoded and played back. UDP datagrams can get lost or dropped in transit, as
each datagram is often fragmented into a number of IP packets (dependent on the size of the Maximum
Transmission Unit), an entire UDP datagram is dropped if one of these 1P fragpments is dropped. 1P

fragements can be dropped or lost in one of a number of ways:
e By the router - Due to lack of buffer space within the router queucs.
« By the network — Due to a timeout during transmission of the IP fragment.

¢ By network failure — Causing some packets to be lost while the network repairs and re-

routes traffic.

« By bit error — An error in the bitstream wili cause the 1P Layer to drop the packet.

To minimise the effect of a dropped 1P fragment, the size of the UDP datagrams should
be kept as smail as possible ~ in this way, a single dropped [P fragment would effect a smaller portion
of the overall data stream. However, larger UDP datagrams place less stress on the Operating System
of the streaming server and can lead to more efficient implementation of a Streaming Video Server.
While some streaming servers allow specification of the UDP datagram size. many do not, what is
common however, is that many streaming servers have a default UDP datagram size of 16kB. This
forms a compromise between having many small UDP datagrams of 1500 bytes (Ethernet Frame Size)

and the maximum datagram size of 64kB.

When a UDP datagram is dropped from a plaintext video stream, the effect this has on

the ultimate visual/aural playback of the stream is variable, depending on the size of the UDP datagram

Bt s T S o e e

Chapter §:
A Novel MPEG-1 Partial Encryption Scheme

and what sections of the overall MPEG-1 stream was contained within that packet. The decoder will
not only lose all the data that was contained within the packet, but also all subsequent data until it can
resynchronise itself with a valid MPEG-1 Header sequence within the stream. Considering an MPEG-
1 stream encoded at 1.5Mb/s, this would be streamed as 12 separate 16kB UDP datagrams per second.

Table 5-4 shows average percentages of an MPEG-1 stream given for each of the individual types of
frames.

Frame Tape P bypieal GOP herafl Yool Per-frame % of

stream stresnm -

"~ 1-Frame 1 | 50% 50 %
P-Frame 3 40% 13.33%
B-Frame 8 10% 1.25%

Table 5-4 Proportion of Video Stream given Frame type

Now consider a dropped datagram that contained data from an I-Frame, a single I-Frame
requires approximately 36kB of the overall stream ~ implying that the datagram will contain solely
information from that I-Frame. This will disrupt the decoding and display not only of that I-Frame, but
also of all subsequent frames within the GOP, since they are encoded as varations on the initial I-
Frame. Dropped datagrams that effect P and B-Frames will generally directly effect more than one

actual frame, with the respective sizes of these frames being on average 12kB and 2.5kB.

To summarise the effect of a dropped datagram, missing I-Frame information will affect
the display of all remaining frames within the GOP, causing about 0.5 seconds of discontinuity within
the video playback, audio playback will be less affected since each audio frame is approximately the
same size and the data within the audio frame is independent of previous frames. Missing P-Frame
information will also affect the display of any remaining frames within the GOP, this is because all
subsequent P and B-Frames are dependent on the preceding P-Frame. This effect is not as dominant as
missing I-Frame information but can still lead to discontinuities of up to 0.35 seconds. Missing B-
Frame information will only effect the decoding and display of the frame under consideration, however
the small encoded sizes of B-Frames means that it is likely that a 16kB datagram will not only contain
multiple B-Frames but also portions of other frames as well (I or P-Frames). In a plaintext video
stream, the effect of a dropped datagram leads to considerable video playback discontinuity — the

question remains if this problem is exacerbated for an encrypted video stream.

Dropped datagrams within an encrypted video stream would cause a slightly greater
effect than for the unencrypted stream - this is primarily due to the fact that both the cipher and
MPEG-1 decoding module must be resynchronised instead of just the decoder. 1f any of the data
representing the cipher resynchronisation is lost, all subsequent data cannot be decrypted until the
cipher is resynchronised. To summarise, if a GOP Header is dropped, all subsequent video and audio
for that GOP cannot be decrypted, leading to both visual and aural loss of playback for approximately
0.5 scconds. If a Picture header is dropped, the subsequent frame represented by that Picture also

cannot be decrypted. In many respects, the exira data that cannot be decrypted while waiting for a

Chaapter 5:
A Novel MPEG-1 Partial Encryption Scheme

cipher resynchronisztion point is equal to the block of data that couldn't be decoded correctly due to

missing information from previous frames.

In conclusion, dropped UDP datagrams can happen due to network congestion and
{ransmission errors. When streaming encrypted video, a dropped datagram has a slightly larger effect
than for streaming unencrypted video where there is a potential of up to 0.5 seconds of playback

discontinuity. This means that dropped datagrams are a serious problem for video streaming in general

and pot only to streaming encrypted video.

5.5.4 Effect of Late Delivery of a Packet

Streaming video applications typically use the UDP Protocol to transfer the video across
the network because UDP is more suited to real-lime applications. It allows the data to be put onto the
network at regular time intervals independent on the current state of network congestion. Because of
this dependence on real-time delivery of the video stream, it is essential that the UDP datagrams arrive
at the destination within a given time-period — defined by both the MPEG-1 decoder and the amount of
buffering used at the client. Given the non-QOS nature of the underlying IP network, it is possible for
datagrams to arrive beyond their intended playback time. In this instance, late delivery of a packet or
datagram means that the data cannot be displayed on time, this leads to one of two results depending on

the client player implementation:

o Any late data is not played, as soon as data amival falls within the required time boundaries,

playback recommences — this results in a discontinuity in video and audio playback.

+ When data is not present in the decoder, playback pauses until data arrives and playback

recommences — this results in a pause in video and audio playback.

In all cases, when streaming plaintext video streams, data that arrives fate is still fed into
the decoder, the decoder will determine that the data is late and not process the stream through the
separate Video and Audio decoders. This allows the decoders to process the System Streamn headers
and ensure that playback can commence promptly the instant that data arrives within the scheduled
playback time. Similarly, all received data — even late arrivals ~ must be decrypted to ensure that
cipher resynchronisation is up to date and that the bit-stream will be decrypted for immediate decoding
and playback as soon as possible. As such, the effect of late arrival of an encrypted video stream will
be exactly the same as that for a plaintext video stream, either a discontinuity or a pause of video and

audio playback

5.6 Conclusion

In conclusion, in this chapter I investigated the possibilities of extending the prototype
MPEG-1 cipher presented in Chapter 4 in order to improve the level of protection offered. ! began by
investigating the suitability of certain existing ciphers for their incorporation into the prototype cipher.

This resulted in the conclusion that Stream Ciphers were best suited to the type of modification

118

Chapter 5:
A Novel MPEG-1 Partial Encryption Scheme

required for incorporation into the existing model. A review on two common Stream Ciphers revealed
that the SEAL cipher was particularly suited in that it offered the best encryption speeds and the fastest
cipher resynchronisation times. The next step was to describe the necessary modifications the SEAL
cipher such that it could be incorporated within the framework of the prototype cipher — this included

demonstrating that these modifications would not it any way effect the overall level of security
afforded by the basic SEAL cipher.

Having designed the new cipher, the existing prototype cipher implementation was
extended to support the newly designed cipher, this new implementation was then tested for
functionality. The cipher was subjected to a similar range of tests as those performed in Chapter 4,
which ensured that not only was it possible to retrieve the original MPEG-1 sequence, but also that it
was possible to stream and playback the file from a variety of streaming video servers. Once the
viability of the cipher was proved, it became necessary to compare the effects of network transmission
errors on streaming encrypted video as opposed to the same problems occurring in a plaintext stream.
To this end, an analysis was performed on the possible types of network transmission errors — this
analysis concluded that while the effects of a network error on an encrypted stream resulted in
potentially greater visval and audio playback errors, these errors were considered not to be much
greater than if the same problem occurred in a plaintext stream. Since the importance of copyright
protection is paramount in the provision of a video strcaming service, the trade-off against potentially

minor quality of video problems in streaming encrypled video is considered to be worthwhile.

119

Chapter S:
A Novel MPEG-1 Partial Encryption Scheme

120

Chapter 6:
Application to Streaming MPEG-2

Chapter 6
Application to Streaming MPEG-2

In the previous two chapters I have described the development of a new Pastial MPEG-1
Stream cipher and shown it to be compatible with the requirements of the ideal cipher outlined in
Chapter 2. This cipher is demonstrably secure in the protection of both video and audio content within
the streaming media and has proven to be compatible over a range of existing Video Streaming
products, [have concentrated on the MPEG-1 Video Compression Scheme in particular since this
system is most likely to be used in the first high-quality video streaming applications — while
broadband data rates are likely to support MPEG-2 streaming directly, the extra requirements on the
streaming servers, the network core and the maximum network throughput of these servers mean that
an MPEG-2 service can only service a smaller customer base. While an MPEG-1 based entertainment
streaming video application is the most likely initial product, as network core bandwidth and access
rates improve, it is inevitable that future streaming video applications will offer higher quality MPEG-2

streams (DVD quality as opposed to VHS quality).

It is important to consider how copyright protection could be enacted in an MPEG-2
Video Streaming system. In this chapter 1 will describe the existing MPEG-2 encryption scheme, as
well as briefly explore how the cipher developed in the previous two chapters could be modified to
support MPEG-2 encoded video and audio. This treatment will explore the basic steps required to

develop an MPEG-2 cipher but not continue with the development and testing of such a system.

6.1 MPEG-2 Scrambling

The MPEG-2 standard supports the concept of scrambling, or copyright protection of the
media stream through encryption. Within the MPEG-2 Program and Transport Streams, there is the

capability of specifying details on the cipher chosen and a series of two bits which indicate how the

encoded stream has been encrypted .(Haskell et al,, 1997)

6.2 MPEG-2 Stream Format

There are two different types of valid MPEG-2 bitstreams, commonly referred to as the
MPEG-2 Program Stream and the MPEG-2 Transport Stream, The MPEG-2 Program Stream is
analogous to the MPEG-1 System Stream and was defined primarily to provide the same type of
services. The MPEG-2 Transport Stream was initially designed for streaming over packetised digital
networks. Also forming part of the MPEG-2 standard are the MPEG-2 Video and Audio Stream

formats. In the next sections, ! will briefly describe the basic format and structure of these different

types of bitstreams.(Haskell et al., 1997)

i2]

Chapter 6:
Application to Streaming MPEG-2

6.2.1 MPEG-2 Program Stream

The basic purpose of the MPEG-2 Program Stream is the same as for the MPEG.1
System Stream, and that is to multiplex together muitiple MPEG-2 Video and Audio Streams. While
the structure of the streams — including the MPEG start codes — is different between the two digital
compression standards, the basic structure is similar, The MPEG-2 Program stream takes sections,
referred to as packets in the standards, of the underlying Video and Audio Streams and stores them
sequentially with header information indicating which stream the packet belongs to as well as decoding
and presentation timestamps to indicate the timing at which these packets should be passed to their

respective decoders.(Haskell et al., 1997)

It is interesting to note that the basic structure of the MPEG-2 Program Stream is very
similar to that of the MPEG-1 System Stream (Haskell et al., 1997). This implies that MPEG-2
Program Stream decoders are very similar in construction to MPEG-1 System Stream decoders. 1t also
implies that if a Streaming Video Server was to stream video compressed ac an MPEG-2 Program
Stream, then the construction of the server would be almost identical to the construction of existing
MPEG-1 Streaming Servers. In terms of encryption of Streaming MPEG-2 Program Streams, we can
in general take the same approach to the MPEG-1 Cipher by leaving the Program Stream information

as plaintext.

6.2.2 MPEG-2 Transport Stream

The MPEG-2 Trausport Stream was specifically designed for the application of
streaming MPEG-2 compressed video over networks, considering the probability of transmission
errors. ‘While it is not explicitly stated in the standards, the Transport Stream is particularly suited
towards transmission over an ATM network — indeed, the MPEG-2 Standards were discussed when it
was still considered a real possibility that ATM, and its various Adaptation Layers, would supersede
the Internet Protocol (IP) as the predominant Network Layer protocol in the Internet. This is
particularly evident when we consider the small, fixed-sizes of the Transport Stream Packets.(Bridie,
1997; Comall and Lipton, 1997; Egan, 1998; Grimm and Cornall, 1998)

The current situation suggests that while we are likely .o find ATM networks in the core
of the network, this is to manage bulk data transfer in a point-to-point transfer as opposed to tne
original idea of ATM-io-the-desktop. The failure of ATM in this regard has meant that many of the
factiities provided by the MPEG-2 Transport Stream are either no longer required or not as important

as they once were.

While performing a different function to the MPEG-2 Program Stream, the Transport
Stream is nonetheless similar. This is due to the nature of the MPEG-2 Video and Audio Streams
which are broken up into packets for inclusion into the Program Stream. In MPEG-2, the Video and
Audio Streams are broken up into various sized chunks and termed as a Packetised Elementary Stream

(PES) — packetised because the divisions for inclusion into the Program Stream are defined in the

122

Chapter 6:
Application to Streaming MPEG-2

Video and Audio Streams and elementary because they form a single segment of the combined
multimedia stream.(Haskell et al., 1997)

The packets within the Transport Stream are fragmented into smaller 188 byte payloads,
similar 1o the same way in which the IP Protocol fragments datagrams to fit the Maximum
Transmission Unit. The Transport Stream Header then contains information about the contents of the
payload. It is up to the Transport Stream decoder to reconstruct the PES packets that made up the
original Video and Audio Streams, and forward them to the appropriate decoder (Video or Audio).
While the Transport Stream is more complex than the aforementioned Program Stream, the basic ideas

of encryption of only the encapsulated Video and Audio Streams can still be applied to Transport
Stream encoded media,

6.2.3 MPEG-2 Video Stream

The MPEG-2 Video Stream can be considered to be a superset of the MPEG-1 Video
Stream, a valid MPEG-1 Video Stream can be successfully decoded by an MPEG-2 Video Decoder.
Also, the layers in the MPEG-2 Video Stream have the same names and basic format as per the MPEG-
1 Video Stream. The number and type ot fields contained within the various headers of the stream
differ, but the argument presented earlier that header information can remain as plaintext is also valid
for MPEG-2 Video Streams.(Haskel! et al., 1997)

The basic format of the MPEG-2 Video Stream is the same as for an MPEG-1 Video
Stream - the compressed data representing the actual video content resides wholly in the encoded
Macroblocks. This would seem to imply that the same approach can be taken when selecting which
segments of the MPEG-2 Video Stream (o encrypt — only processing the MPEG-2 Macroblocks with
the chosen cipher. The procedure is not as simple as this however as there still remains the issue of
resynchronisation of the cipher at key points. This will be addressed briefly in Section 6.3.1 when we

discuss applying the previously developed MPEG-1 cipher to an MPEG-2 Siream.

6.2.4 MPEG-2 Audio Stream

The Audic component that makes up an MPEG-2 Media Stream has many options,
including the possibility of simply encoding the Audio using any of the three existing MPEG-1 Audio
coding schemes. The more complex approach is to use the MPEG-2 Audio coding scheme which in
turn is backward compatible with MPEG-1 Audio Streams.(Haskell et al., 1997)

For the MPEG-2 Audio Stream, the basic siructure is very similar to the MPEG-1 Audio
Stream. More particularly, the MPEG-2 Audio Headers contzin the same information as the MPEG-1
Audio Headers. Any extra information for the MPEG-2 Audio Stream (extra encoded channels and
descriptive information) is encoded as ancillary data within the MPEG-1 Audio Stream format. As for
the MPEG-2 Video Stream format, this implies that we can adopt the same basic approach when

considering encryption of an MPEG-2 Audio Stream. Again the predominant issues will involve

123

Chapter 6:
Application to Streaming MPEG-2

resynchronisation of the cipher and more particularly tying the resynchronisation to the MPEG-2 Video

Stream.

-

As a final note, it is interesting to consider that there is also a different option when
encoding multiple Audio channels using MPEG-2. In this case the normal stereo channels are encoded
using either MPEG-1 or MPEG-2 encoding techniques in one Audio Stream while the remaining
channels — centre and rear stereo — are encoded in a separate Audio Stream. While this aliows for more
efficient encoding of both stereo and surround sound tracks, this can seriously complicate matters when
looking at encryption of Audio Streams. In this situation resynchronisation of the cipher becomes not

only more important, but also more complex as both Audio Streams will be decoded simultaneously.

6.3 Compatibility with the Proposed Cipher

One of the key aspects of the cipher developed in Chapters 4 and 5 was that it was
compatible with all existing Video Streaming Servers. Similarly important, decryption could be
performed prior to decoding rather than as a key part of decoding thereby increasing compatibility
amongst existing MPEG-1 decoders. This compatibility with a wide range of existing streaming
servers and decoders was required 10 accommodate the issues of multi-platform distributed server
implementations as well as the proposed Multi-Party Distributed Streaming Server design. When
considering encryption of MPEG-2 compressed video the same conditions are just as important,
therefore we must ensure that any proposed scheme is both compatible with existing server products as

well as existing MPEG-2 decoders.

The basic technique applied for encryption of MPEG-1 streams can also be applied to
encrypt an MPEG-2 stream. The Program and Transport Stream information is left unencrypted as this
would not hide any data that can be used to reconstruct any Video or Audio sequences. On the other
hand, the encapsulated Video and Audio Streams should be encrypted to a level that their content is
protected while any information pertinent to providing indexed or high-speed playback is lefi in a
plaintext format. In the following sections I will discuss the basic procedure for implementation for
each of the MPEG-2 bitstream types.

6.3.1 N.: -2 Video Stream

In Section 6.2.3 1 briefly outlined the major differences between (he formatting of the
MPEG-2 Video Stream as opposed to the MPEG-1 Video Stream, the conclusion being that an MPEG-
2 Video Stream is a superset of the MPEG-1 Video Stream, The same basic approach described 1o
encrypt an MPEG-1 Video Stream in Chapters 4 and 5 can be adopted in order to encrypt an MPEG-2
Video Stream. This in tum will function correctly with the decision not to encrypt any data within the

MPEG-2 Program or Transport Streams, corresponding to not encrypting the MPEG-1 System Stream.

While the basic approach is compatible with MPEG-2 bitsireams, there are a few

technical details that would need to be finalised before an exact algorithm can be proposed. These

124

T

b A T

BT o

.;\E‘

Chapter 6:
Application to Streaming MPEG-2

details revolve arcund the resynchronisation of the underlying cipher module, as well as ensuring
functionality across a range of different server and decoder platforms. This is primarily an

implementation issue - applying applying the aforementioned cipher design to a differently formatted
source bitstream and would involve;

* Analysis of MPEG-2 Streaming Video Servers — How does an MPEG-2 Streaming
Server provide functionality such as indexed and high-speed playback. This enables the
determination of key points within the Video Stream that it is essential that the cipher be

resynchronised in order to enable correct decrypticn in all of these playback modes,

* Playback at the Client - How does the client-end of a Video Stream obtain and decode the
reccived data in various playback modes. This is also important in both the determination of

key cipher resynchronisation points as well as selection of a resynchronisation value.

* Consideration of a base Stream Cipher to use ~ The SEAL Cipher worked well when
encrypting MPEG-1 Streams but the higher bit-rates common to MPEG-2 bitstreams may mean
that pseudo-random string length of the SEAL Cipher (Schneier, 1996a; Rogaway and
Coppersmith, 1998) is unsuitable for encryption of an MPEG-2 Video Siream. If this is the
case, it may be necessary to locate a different Stream Cipher that offers suitable protective
qualities, while at the same time being amenable to frequent and quick resynchronisation. If
another Stream Cipher is chosen, it should be amenable to the modifications outlined in Section

5.2.1 in order to avoid the generation of false MPEG Headers.

6.3.2 MPEG-2 Audio Stream

There is also the requirement to consider how the MPEG-1 Audio Stream Cipher is

amenablc to application to an MPEG-2 Audio Stream. In this case I note two items:

* An MPEG-1 Audio Stream can form a valid Audio Uitstream within an MPEG-2 Program
or Transport Stream. This means that any MPEG-2 Streams containing MPEG-1 Audio can be

encrypted using (he same technique as for the previously developed cipher.

* An MPEG-2 Audio Strean1 has the same basic format as an MPEG-1 Audio Stream using
the same basic header format, again implying that the previously developed technique -
encrypting all data bar the MPEG-! Audio Headers — could be applied to an MPEG-2 Audic

Stream.

The primary issues involved in encrypling an MPEG-2 Audio Siream again revolve
around the problems of resynchronisation of the cipher to enable support of indexed playback. As
when considering the encryption of an MPEG-1 Audio Stream, there are no timed reference points
within an MPEG-2 Audio Stream that can be used to provide a resynchronisation key for the cipher.
Therefore it will again be necessary to use data stored within the Audio Stream to provide the Cipher

resynchronisation values.

125

Chapter 6:
Application to Streaming MPEG-2

The other issue involves the increased complexity of MPEG-2 Audio with its multiple
encoded Audio channels. As previously mentioned, this is possible using multiple Audio Streams -
each encoding 2 or more of the total surround channels — which are then multiplexed in the Program or
Transport Stream. During playback, this potentially involves more than one MPEG-1 or MPEG-2
Audio Streams being decoded and played back simultaneously, thereby requiring more than one Audio
Stream being decrypted simultaneously as weil. To ensure that the security of the cipher afforded is
high, it is necessary to encrypt both Audio Streams using different pseudo-random strings. As the
proposed cipher can potentially re-use resynchronisation values within the Audio Stream, this problem
becomes more prevalent when multiple Audio Streams are considered. It may be necssary to develop
a slightly different approach to protect the encoded Audio content, possibly involving the use of
different primary keys for each encoded stream. This will greatly increase the complexity of the
original proposed cipher, requiring that the Siream 1D of the Audio Streams somehow be incorporated

into the selection of the key used to decrypt and encrypt the Audio Streams,

These issues aside, there is no reason that the basic principle used to encrypt an MPEG-|
Audio Stream cannot be reapplied to encrypt an MPEG-2 Audio Stream, Indeed the partial selection
scheme that determines which parts of the Audio Stream are selected for encryption outlined in Section
4.3 will stitl apply. Similarly, the modifications to the chosen stream cipher to protect the basic format
of the Audio Stream outlined in Section 5.3 will also still apply. A modified MPEG-1 Audio Stream
Cipher would involve revisiting the issue of resynchronisation while at the same time ensuring that

multiple Audio Streams could be encrypted for simultaneous decryption and playback.

6.4 Conclusion

Copyright protection of MPEG-2 streamed video is just as important as for MPEG-1.
The higher bitrates of MPEG-2 encoded video however ensure that streaming MPEG-1 Video is more
likely to be initially adopted as there are lower, and therefore cheaper, network requirements., An
obvious question is whether the previously proposed MPEG-1 encryption algorithms can be applied to
an MPEG-2 Stream. The easy answer to this question is not directly, but the ideas developed in

encryption of an MPEG-1 bitstream are applicable:

¢ Processing of the outlying Program or Transporl Stream is more complex, however the
same approach of leaving this bitstream as plaintext data still applies. 1t still remains possible 10
encrypt the encapsulated Video and Audio Streams in-place within the outlying Program or

Transport Stream.

» Partial selection of only Macroblocks within the Video Stream for encryption purposes also
remains a valid technique for protection of video content, It still remains imperative to ensure

that false Video Stream headers are not created.

o Leaving the Audio Frame Headers intact within the Audio Stream is also valid for MPEG-2

bitstreams.

126

Githonien

o W T b A e e

L v

o s s el

oo i B e

o

T

Gl

ki
)
bt
B3
it
E
P
i
A
R
]
e
&
o
i
k!
N
[
B

Chapter 6:
Application to Streaming MPEG-2

¢ Resynchronisation of the cipher to enable implementation of indexed and high-speed
playback modes remains an issue. This would require an investigation into how this
functionality is implemented ir different Streaming Video Servers. A cipher resynchronisation
scheme must then be developed that both ensures that these features are unaffected white
allowing correct decryption and decoding under the various playback modes. This is also a key

issue when considering indexed playback of the encrypted Audio Stream.

¢ Security considerations are also complicated by the possibility of one or more concusrent
Audio Streams within the outlying Program or Transport Stream. An analysis should be
performed 10 determine whether the existing approach will suffice or whether re-utilisation of
pseudo-random sequences becomes too common. In this case, cach Audio Stream should be

encrypted with a different key ~ this complicates transmission and usage due 10 the existence of
multiple keys.

127

Chapter 6: .' Ch
ster) I’ ; apter 7:
Application to Streaming MPEG ' Conclusion

Chapter 7

A A

Conclusion

Video Streaming is a networked application which has yet to truly come of age. Until
2 recently, the major challenges facing networked video applications have been technical — developing

systems that function under technological throughput and processing power limitations. Now that

Sartiad

technical solutions are starting to become available, it becomes important to address other issues that

are important when constructing a viable, commercial video streaming service. One of those issues is

that of Copyright protection. While not the only issue to be addressed, Copyright is important in that if

not addressed, no content owner will allow content to be made availabie for networked sireaming

R

purposes.

Video Streaming is an encompassing term that covers a range of different applications:

1
it o

+ Low Bit-Rate Streaming to Mobile Terminals — Current and future wireless networks

will have increased capacity to cope with provision of a large scale video delivery service.

s it

Delivery to mobile devices necessarily entail delivery to units with a small playback screen, this

implies that lower bit-rates can be employed as high-resolution picture quality is not required.
This service may find usage in applications such as media access while waiting (public

transport, in a bank queue, elc.) where users may choose to watch short shows (30-60 minute

el

comedies or dramas) or obtain a news/sport update. For this application, the key technical

issues include efficient coding a low bitrates, delivery of a large number of consecutive streams,
coping with network conditions (error rates, congestion) and content access control. While

Copyright is always an issue, the quality of video being delivered to these terminals makes

copying less of a concern than for a high-quality stream.

A + Internect Streaming to a Personal Computer — Delivery of video services over the general
il Internet to any Internet connected workstation. At present, Internet video delivery is either free
ﬁ or uses access control to restrict access to members of a particular site, The video content itself

however is not protected against copying or downloading by a user. Current implementations

are generally not scalable, servers can deiiver a limited number of concurrent sireams and
quality depends on current network conditions between the two parties. Similarly, Internet
video content today is predominantly either copyright free, of little value and therefore not

worth stealing, or of sufficiently poor quality to negate against theft.

« Entertainment quality Video — Delivery of high-quality digital video content to a user for

entertainment purposes. This type of application involves delivery of high resolution video,

most likely to a black box connected to a television set in the users living room, but also

potentially to an Internet connected PC. The general concept is to replace local playback of

128
129

Chapter 7:
Conclusion

video tape or DVD with delivery over the network. The type of content accessed will generally
be of pure entertainment value — movies, sports broadcasts, television shows ~ and its quality

will require some form of protection against theft of the digital stream.

-

For any computer based application to succeed, it must provide 2 beneficial service to all
users of the application. With networked applications in general, there are usually two classes of users,
the service provider and the consumer. For streaming video applications there is a third class of user,
the content provider. The issues involved in providing a successful video streaming service are not
only technical, they also involve placating any concerns of all three user groups. If an implementation
does not appear suitable 1o any one user group, then that group will withdraw its patronage of the
service. For a video streaming service to be viable, ail three groups must be present — if there is no
content provider there is no suitable content to stream, if there is no consumer there are no users to pay

for the service, and if there is no service provider there are no platforms to deliver the service from.

One of the primary concerns of the content provider is that of Copyright and Copyright
protection. The Copyright on entertainment media, such as movies or sporting broadcasts, costs large
sums of money, and is purchased as an investment where the return on that investment is royalty fees
paid by those accessing the content. In the case of free-to-air television broadcasts, the royalty fees are
paid by advertisers. Under current entertainment systems, the fees are well structured. Television
broadcasters pay royalty fees to the Copyright owner and then recoup those costs either from an
advertising base, or customer subscription fees. Cinema theatres pay royalty fees which are recouped
from ticket sales. Video hire store operators pay royalty fees from a poriion of the video rental fee

charged to the consumer.

Similarly, content thefi is not of major concern. While it is possible to make copies from
most sources, these copies are analogue copies and are therefore degraded in quality from the original.
Furthermore, repeated copies further degrade in quality. This implies that while copies can be made for
personal use, the poor quality means that this copy could not be successfully used for re-broadcasting
and denying royally payments to the lawful Copyright owner. While not happy with the of theft of
Copyright material for personal use, conlent owner must live with this loss of income as this theft is

difficult to police.

We can cousider video streaming to be a new method of content delivery, again it is
essential that Copyright owners are paid their due royally fees — to obtain their return on investment
and ensure that content is made available for streaming purposes. Copyright protection becomes a
more contentious issue in the digital realm since perfect digital copies can be made with no degradation
in playback quality. As such, copies of digital streaming video can be used for large scale piracy more
casily and lead to much greater reduced retums to the Copyright owners. This makes many content
providers, who are gencrally not experts in Internet technology, extremely worried against theft and
non-payment for services, This user group can only be placated, and therefore making video streaming

a viable proposition, by addressing these concerns.

Chapter 7:
Conclusion

Copyright protection is one of many issues, both 1echnical and non-technical, that must
be addressed in order for video streaming to become viable. The issuc of Copyright protection itself is

also a large one, and can be sub-divided into a series of smaller problems to be addressed:

* One solution to Copyright protection is the use of watermarking, or passive proiection, of

streaming content. Watermarking does not actively prevent against theft of content but can be
used afier theft has been discovered to determine the source of that theft.

Another approach that can be taken is encryption, or active protection, of streaming content.
In this case the video content itself is protected through the use of a cipher, meaning that even if
the digital stream is stolen, it must still be decrypted before it can be used again. The process of
content encryption can also be broken down into two parts, the actual cipher applied to protect

the streaming content, and the secure delivery of the cipher key to the consumer for successful

decryption and playback of the encrypted stream.

» The major purpose of protecting Copyright is to guarantee a return on investment. This
means that network payment schemes must be adopted. Similarly, the payment scheme must be
tied to an access control scheme to ensure that paying customers have proper access to the

sSystem,

Watermarking and Encryption are not mutually exclusive. Indeed, an ideal solution
would likely incorporate both aspects of content protection — active protection to protect against theft in
the first place, and passive protection to enable prosecution if encryption fails. This thesis explores the

idea of encryption of streaming video and how it might be employed in a real system.

It is possible to construct a video streaming solution that operates with a single central
server. However, this requires guaranteed bandwidth throughout the network, from the streaming
server to each consumer end station — if throughput is not guaranteed, service delivery will falter. Also,
the costs in bandwidth requirements for the server and its associated hardware can become prohibitive.
While many Internet streaming applications today utilise this approach, the number of concurrent users

are smali enough that these issues can be managed.

A more likely scenario for a true video streaming solution is a distributed server
environment. In this case multiple servers together provide a unified streaming service. Content is
delivered to the customer from the closest streaming server. The distributed server design enforces
fewer requirements on network capabilities, only requiring Quality of Service guarantees between each
stecaming server and their locally based client. This moves QoS requireinents to the edge of the
network rather than throughout the core. A distributed server design also allows for improved
scalability since supporting more concurrent streams is a simple matter of installing an extra streaming
server. Further, the design is more fault tolerant since the service is distributed over many platforms
rather than providing a single point of failure on a central platform. Finally, overall costs are lessened

since each individual strcaming server has fewer CPU and bandwidth requirements.

Chapter 7:
Conclusion

We can take the concept of a distributed system further by considering a multi-platform
distributed server design. This design is similar in scope to a distributed server design but allows each
of the individual streaming server platforms to be running a different video streaming solution. This

allows for one of two scenarios:

Single Service Provider — The service provider will not be forced to choose a particular
streaming server platform. This allows them to choose the most suitable streaming platform at the time
it is required. As costs change and new products are made available, this does not lock the service

provider into purchasing from a single source, allowing competition to lower implementation costs.

Multi-Party Service Provision - Allows a group to provide a single streaining service.
A system is made up of many providers, some providing s*.-aming capabilities while others provide
content. The multi-platform design allows this concept as .~ “)es not enforce choice of a streaming
platform onto service providers, allowing competition to flourish. Further, 2 multi-party service can
allow small content owners to reach a wider market than they could otherwise afford to reach if they

were required to provide the video distribution service,

Management of a multi-platform system is more complex and requires standard protocols
to ease communications between server platforms. While the actual streaming protocol that the servers
use can still be unique, the inter-server protocol must be common to allow for delivery of content to
servers. The existence of such a protocol removes platform dependence as a requirement for operators

of a video streaning service.

Some existing streaming server platforms offer encryption of streaming video as part of
their feature set. These servers often apply the encryption in real-time while content is being streamed.
This solution is not scalable due 1o potentially large numbers of concurrent streams needing to be
secured. Further, in a distributed server environment, we will wish the content o be installed onto the

servers already in encrypted format.

When we consider active protection of content in a distributed streaming server
environment, we should also consider the concept of a multi-party distributed server arrangement, if
the video streaming service is being provided by multiple parties, there is no reason for trust to exist
between a Copyright owner and 2 sireaming server operator. There is potential for theft to occur either
deliberately ~ by the streaming server operator ~ or accidently — through poor security measure

implemented by the streaming server operator,

The platform independence advantages of a multi-platform system offer problems when
considering video encryption methods. In order to maintain the same platform independence, it is
necessary for the chosen cipher to also be platform independent. As such it becomes a requirement for
encryption of streaming video that the cipher be compatible with a wide range of existing and future

streaming server products,

132

Chapter 7:
Conclusion

tn order to support multiple streaming server platforms, the cipher must be designed with
an understanding of how video is actually streamed. This becomes a further issue when we consider
that some sireaming server platforms offer advanced playback functionality such as indexed or high-
speed playback modes. The video stream must be encrypted such that it can be streamed from an
existing server without prior knowledge of the cipher algorithm, as well as being successfully
decrypted in all possible playback modes. This restriction implies that the video content can be on the
installed onto the streaming server in encrypted form. In this case, content can be encrypted by the

content owner; the encrypted bitstream can then be made freely available for streaming.

There are also more mundane restrictions required by the Copyright owners. These
include security of the cipher ~ the cipher should not be easy to break and therefore lead to retrieval of
the plaintext bitstream. Further, an attacker should not be able to retrieve even portions of the original

video or audio content contained within the encrypted stream.

These restrictions on the cipher are complex, and not completely met by any existing
MPEG-1 cipher algorithms. In this thesis, ! present a novel MPEG-1 Partial Cipher which does meet

all of the requirements as outlined above:

» Cempatibility with existing streaming servers — By ensuring that the cipher does not
modify the contents of the MPEG-1 System Strcam, as well as maintaining key aspects of the
Video and Audio Streams, an encrypted MPEG-1 bitstream can be successfully installed on
existing streaming server products. The encrypted file appears to be a valid MPEG-] bitstream
{or installation purposes. Streaming servers can also provided advanced playback functionality
such as indexed and high-speed playback modes. In order to provide these playback modes,
servers must partially decode the installed media asset. Indexed playback requires searching for
timestamps within the installed bitstream and high-speed playback involves finding and
extracting individual frames from the installed bitstream. The cipher as presented deliberately
leaves this information in the bitstream in plaintext format, thereby allowing existing streaming
server products to provide these adavanced playback modes without having prior knowledge of

the cipher algorithm itself,

o Compatibility with existing client side decoders — Because the decryption process is
applied at a higher level than many existing ciphers — Slice data in the Video Stream and Audio
Data in the Audio Stream — the decryption module at the client end is not intimately tied to the
decoder. Whiie other ciphers provide an efficient implementation only when the cipher forms
part of the deceder, the proposed cipher is efficient even where decryption is applied prior to
decoding. This means thai cipher implemeniations are removed from decoder implementations,

allowing the developers to select the best available tools for the application.

» Supports decryption in different plasyback modes - Some streaming servers provide
advanced playback modes such as indexed and high-speed playback. In these modes, the
bitstream arriving at the client is necessarily different to a simple sireaming server. In the case

of indexed playback, the delivered stream commences partway through the original bitstream.

133

Chapter 7:
Conclusion

When considering high-speed playback, a variety of individual frames are delivered as the
bitstream. If the decryption module is to support these playback modes, it must be able to
resynchronise its internal state such that the correct plaintext is produced in all playback modes.
The presented cipher uses information within the bitstream to determine resynchronisation

values and as such can correctly decrypt a bitsiream delivered in any of thess playback modes.

o Is secure — The cipher works in two stages, the first is the selection of bytes from the
plaintext bitstream for encryption and the second is the actual encryption of those bytes. The
encryption process is based on the SEAL Stream Cipher. This cipher has been openly published
and is currently considered to be secure with no known potential weaknesses. Another
advantage of the SEAL Cipher is its speed of execution and its ability to allow simple

resynchronisation.

e Ensures the validity of the encrypted bitstream — The algorithm as designed ensures
against the accidental creation of false headers, resulting in an encrypted bitstream that cannot
be successfully parsed down to the Slice Layer. This ensures that streaming server products will
successfully stream the contents as well as enwuring that the same byles are selected for

decryption at the client end.

This new cipher has been successfully tested. Initial tests prove that the plaintext
bitstream is only recoverable with the correct key, and the usage of an incorrect key does not lead to a
recoverable plaintext bitstream. Other tests show the low CPU requirements, typically less than 10%
of the decoding requirements, of the cipher. These results are valid for decryption without decoding of
the bitstream, meaning that there is no performance penalty for not incorporating the cipher with the
MPEG-1 decoder. This test also proved that real-time decryption and playback of an encrypted
MPEG-1 bitstream was possible.

Further, other tests showed that the encrypted bitstream was accepted for installation
onto a range of streaming server platforms. These tests also proved that the encrypted bitstream was
able to be streamed in all playback modes supported by those servers. Furthermore, client piayback
test applications proved that the encrypted bitstream could be successfully decrypted and decoded.
This was verified in all playback modes — normal, indexed and high-speed. The proposed MPEG-1]
Cipher was compatible with a range of streaming server products in a variety of different playback

modes, this verified the design aim of platform independence of the cipher.

The concept of the MPEG-1 Cipher as designed is also amenable to MPEG-2 bitstreams
and their subsequent streaming. This is true since the format of an MPEG-2 bitstream is similar to that
of an MPEG-1 bitstream. Indeed, being backwards compatible, an MPEG-1 bitstream can be
successfully decoded by an MPEG-2 decoder. Streaming server platforms that support streaming of
MPEG-2 bitstreams do so in a similar fashion to streaming of MPEG-1 bitstreams. Having proved the
viability of the MPEG-1 Cipher, implementation of an MPEG-2 Cipher is a development rather than

research problem.,

134

&

Chapter 7:
Conclusion

Video encryption algorithms are a relatively new field of study and a range of different
algorithms have been proposed. While some of these ciphers have proven insecure, many are not and
adequately perform the task of protection of content. However, even though a handful of existing
ciphers are compatible with streaming video, these ciphers were not designed with streaming video in

mind, but rather with the idea of protection of video content.

Similarly, some commercial streaming server platforms implement a proprietary form of
encryption. Unfortunately, these ciphers are often applied in real-time and are tied closely to the
streaming server implementation. This restricts freedom of choice when upgrading systems to support

more concurrent streams. An ideal solution is a cipher that is platform independent of both streaming

server and client end platforms.

In this thesis 1 present a novel MPEG-1 Partial Encryption Algorithm that has been
designed specifically 1o secure streaming video. 1 acknowledge that video encryption is not the only
factor in producing a viable video streaming solution, however it — and Copyright protection — is one of
the important issues that must be addressed. 1t is my hope that this work will serve as a baseline for
further work in this field. Potentially aiding in the development of an improved cipher that also meets
the requirements for encryption of streaming video. Altematively, 1o use as a cipher for development

of suitable key management and access control techniques in 2 complete video streaming solution,

¢

135

?..
'a

I
vl

Chapter 7:
Conclusion

ik L L

Pkl rrripth

B/ T i e S e

S ol P S

Lk PR L e G T S

1

Appendix A:
The MPEG-] Bitstream Format

Appendix A
The MPEG-1 Bitstream Format

In tiis Appendix 1 will provide an overview of ike MPEG-1 Digital Video Compression
Standard. I will present the history and the motives behind the MPEG group of standards. MPEG will
be discussed because it is the predominant video compression standard in the world today in the area of
high quality digitai video. | begin by discussing the history of MPEG and look at why it has become
the dominant video compression standard in the world today. 1 then take a detailed look at the MPEG-
1 Compression Standard, the first standard released by the MPEG group. The information presented in
this Appendix is a summarised representation of that contained in (Anderson, 1990; Haskell et al.,
1997; 1SO, 1996a; iSO, 1996b; ISO, 1996¢; ISO, 1996d; LeGall, 1991; Mitchell et al.,, 19%6; Noll,
1997; Pan, 1993; Pan, 1995; Puri, 1994; Pereira, 1996). Figures presented have been originally taken
from (Mitchell et al., 1996) and modified to better demonstrate their intent,

A.1 History of MPEG-1

The MPEG-1 Standardisation effort commenced in 1988 in an effort to create a single
standard that encompassed high quality compression of digitz! video. Initial meetings elected to devise
an algorithm for compression of digital video and accompanying audio at rat;:s of approximately 1.5
Mb/s, this being the data bit rate supported by single speed CD-ROM drives. In January 1988, the
MPEG(Motion Picture Expert Group) was fommed as a sub group of Working Group 8 of
1SO(International Standards Organisation), this group was numbered as Working Group 11. The first
meeting of the MPEG Group was in May 1988. At this meeting, a consensus was reached not only to
target compressins of video 10 about 1.5Mb/s, but also to devise an asymmetric system: one where the

encoder had more complex requirements than the decoder.

Many representatives from both research and commercial backgrounds contributed to the
work on standardising MPEG-1, with many competing ideas being compared and debated. Work on
the standard progressed until November 1991, where a committee draft was recommended for ballot on
becoming an International Standard. The standard was ratified in March 1992 and the standard was
named ISO 11172 (MPEG-1). The standard was finally published in 1993 ir three parts: Part one of
the standard covered the MPEG system stream and how multiple media streams were multiplexed into
a single bit stream. The second part. of the standard covered MPEG-1 Video Compression whilst part
three covered MPEG-1 Audio Compression. Other parts of the standard would emerge later to cover

details such as conformance testing and software simulation.

Before work on MPEG-! was concluded, the MPEG group commenced work on MPEG-
2. MPEG-2 concerned with compression of digital video at higher quality for purposes such as

137

Appendix A:
The MPEG-1 Bitstream Format

broadcast television. Not long afier, two more proposals were put forward, MPEG-3, which looked at
digital video compression at HDTV quality, and MPEG-4, which is aimed at lower bit rates. 1t was
soon realised that MPEG-2 wouid meet the MPEG-3 requirements and thus MPEG-3 was dropped.

While MPEG-2 is of great interest, prohibitive costs of network bandwidth mean that in a
networked solution, MPEG-2 will incur greater costs than an MPEG-1 or MPEG-4 video streaming
solution. This situation will likely improve in the near future, but even then only in the local Intranet.
The competition for bandwidth in the Internet is likely to mean that the prospects of providing MPEG-2

quality video on the Intemet in the near future are unlikely.

MPEG-4 compressed video is the most Iikely near term solution for streaming video, as
its bandwidth requirements are low. However, the quality of vides provided by MPEG-4 compression,
whilst good, is not good enough to be considered for the provision of digital media services for
entertainment purposes. In this case we must consider MPEG-1 and MPEG-2 compressed video. The
higher bandwidth requirements of MPEG-2 mean that MPEG-1 is likely to become more commonplace

prior to MPEG-2 streaming vid=>o.

A2 MPEG-1

MPEG-1 was the first standard to come out of the MPEG working group. It was initially
targeted at compressed video and audio signals at a bit rate of 1.5Mb/s. This chosen bit rate was not
accidental, it being the data rate achieved from a CD running at normal speed. Work on MPEG-)
began in 1988 and the international standard, 1S 11172-2, was published in 1993. The MPEG-I
standard was published in three parts, the first of these deals with systems aspects, the second with
video compression and the third with audio compression. Together these documents make up a
standard which defines an MPEG-! bit siream as well as the exact requirements for building an MPEG

decoder.

The specifications for an MPEG-1 encoder are deliberately omitted from the standard.
This was done in an attempt to future proof the standard by allowing improvements in encoder design
and implementation as long as the encoder produced a standard MPEG-! bit stream. In tum, this also
meant that as long as the chosen decoder was compliani with the MPEG-1 standard, then any MPEG-1
bit stream could be decoded and played back, regardiess of which encoder was used to compress the

original video source.

Anotiier important point is that MPEG-1 and MPEG in general is a highly asymmeiric
system, The encoder is a2 complex machine that rrust make decisions on motion and optimal motion
vectors, They must also control the bit rate and buiTers, locate repeated macroblocks as well as vary all
of these parameters Jynamically to maximise video quality for a given rate. On the other hand, MPEG
decoders nced merely to decode the bit stream and display the results on the screen. This approach
decreases the cost of implementation in two ways. Firstly, since encoding is usually perfouned only

once while decoding is performed many times, the computationally expensive task of encoding is

138

el i s It

Iy

i .;_':'

G

Rt

I 'r'.,;'_.‘__.."._. R

D,

Appendix A:
The MPEG-1 Bitstream Format

performed a minimal number of times. Secondly, the cost of decoding machires is lessened by lower
processor requirements leading to a cheaper solution for the vast majority of users, expensive
machinery need only be purchased by those encoding video.

The MPEG-1 standar¢ was later extended to include two other parts. The fourth is a
document regarding compliance testing, whilst the fifth refers to a sofiware reference model for
MPEG-1. While originally designed for bit rates of about 1.5Mb/s, it has been shown that acceplibie
quality can be achieved at rates of about 1Mb/s while high quality video can be achieved at higher rates
of about 6Mb/s. Experiments of visual quality perception carried ot at Monash University indicaie

that bit rates of 2Mb/s result in decoded video at a perceived quality better than VHS.

As mentioned carlier, the MPEG-1 standard consists of five parts:

* The first of these deals with the system aspects of MPEG-1. This pant deals with defining a
systems layer that provides an envelope for the comipression layers which actually store the
compressed data. The systems layer concerns itself with two tasks, the first of these is to
multiplex compressed bit streams into a single system stream, while the second is to provide

timing and buffering information to the decoder to assist in the decoding process.

* The second part of the MPEG-1 standard deals with video compressicn and defines a bit
stream that holds compressed video data. The document defines different layers in the MPEG-1
video siream that contain information on the video sequence being represented. The document
does not define how the data is to be compressed, but does define how to decode the data to
achieve a visual representation. The absence of encoding standards allows for new techniques
to be employed in the creation of MPEG-1 bit streams, as long as the ensuing stream is

compalible with the standard.

¢ The third part of the standard deals with audio compression and defines the bit stream for
compressed audio data. This document deals with audio perception models of the human ear
and techniques for lossy audio compression with no perceivable differences in the resulting

audio. As for video compression, only the bit stream and decoder properties are defined.

¢ The fourth part of the standard deals with compliance testing and specifies how bit streams
and MPEG-1 decoders can be tested to ensure that they comply with the standard.

¢ The fifth part of the standard is the software reference model and contains software for both
an encoder and an arithmetically cormect decoder. This allows developers to produce compliant

bit streams as well as comparing output from decoders with output from the reference decoder.

MPEG-1 is a standard that will be with us for some time to come. While the quality of
MPEG-1 video is inferior to that provided by MPEG-2 at highur bit rates, at lower bit rates MPEG-1
provides better quality video. Also, the lower bit rates provided by MPEG-] will mean that its use will
not be simply discarded. While bit rates available on computer hardware are increasing quickly and

MPEG-2 decoders can now be implemented in sofiware on todays machines, the issue of bandwidth

139

e L s L L o R S T

Appendix A:
The MPEG-1 Bitstrearn Format

over telecommunications links become an issue when networked video is considered. The higher
quality provided by MPEG-2 will become more desirable when bandwidth costs decrease cven more

but at the moment, MPEG-1 is ideally suited to delivery over the network.

A.2.1 MPEG-1 System Stream

The MPEG-! System Stream is a binary stream which defines the MPEG-1 file itself
When a movie is stored on disc in MPEG-1 format it is stored as an MPEG-1 System Stream. When a
movie is passed to an MPEG decoder to be decoded and displayed, it is passed as an MPEG-1 System
Stream. Obviously, when a movie is compressed, it must be stored in some specified format so that a

decoder can logically reconstruct the sequence to the final output stage.

18O 11172 System Stream

(sommLayer \
Pack Pack -[Pack [Pack | “ei.nfel ISO 11172 End Code

i el Bl] NP R - -

{_ Pack Layer ﬁ\

-

- e il N U "

.] 1] r - |
Pack Header System Header | Packet | Packet ! gt ' Packet E
¥ 1]]

-

[Packet Layer '\

PackCt Header Data Byte -[Da[a By’le ----------

e i el A

* System Header is required in

the first pack of the 1SO 11172 N Bytes «rhere Nis defined in
System Stream the Packet Header

Figure A-1: MPEG-1 System Stream

In MPEG-1, the information is compressed and stored in a variety of layers, the MI'EG-1
System Stream forms the top three layers. Fach layer further down the chart contains more specific
information than the layer above it. At lower levels, raw video is compressed to form a binary bit-
stream called the MPEG-1 Video Stream and raw audio is similarly compressed to form a binary bit-
stream called the MPEG-! Audio Stream. These streams, in their own right, contain the information
required to reproduce a certain part of the original audio/video asset. The function of the MPEG-I
System Stream is to combine one or more of these s:reams into a single binary bit-stream. In effect, we

are multiplexing the combined information streams into a single data channcl. These layers can be

seen in Figure A-1,

A.2.1.1 IS0 11172 Layer

The 1SO 11172 layer defines the entire MPEG- | System Stream. The bit-strcam consisis

of one or more packs followed by the 1SO 11172 end code, where each single pack is an instance of the

140

TS A

N

o S e S

Appendix A:
The MPEG-] Bitstream Format

pack layer. Note that there must be at least one pack in the MPEG-1 System Stream. The ISO 11172
end code is the unique byte aligned 32 bit start code 0x000001B9). This end code and other unique 32
bit start codes specified in the MPEG-1 System Stream can be found in Table A-1.

- Sturt Code l")cscripli_nn . ' ' o Hexadecimal Valie -

1SO 11172 End Code 000001 b9
Pack 3.art Code 000001 ba
System Header Start Code 00 00 01 bb
Reserved Stream 00 00 01 be
Private Stream 1 000001 bd
Padding Stream 00 0001 be
Private Stream 2 00 00 01 bf
Audio Stream 0 00 0001 c0
Audio Stream 31 000001 df
Video Stream 0 00 G2 01 e0
Video Stream 15 00 0001 ef
Reserved Stream 0 000001 fO
Reserved Stream 15 06 Q001 1Y

Table A-1 MPEG-1 System Stream Unique 32 Bit Byte Aligned Start Codes

A2.1.2 Pack Layer

The pack layer defines a binary bit-stream that makes up a single pack in the MPEG-1
System Stream. The pack layer consists of a pack header, optionally followed by a system header and

zero or more packets, where each single packet is an instarice of the packet layer.

While the presence of the system header is optional in a pack, it is required for the first
pack in the MPEG-1 System Stream. The reason for this is that the system header contains the same
information for the entire MPEG-1 System Stream and therefore does not need to be repeated within

the stream again. 11 is also legal for a pack to contain only a pack header and no packets.

The pack header, as formally specified in Figure A-2, is always twelve bytes long and
begins with the unique byte aligned 32 bit start code 0x000001BA. The next five bytes record the
system clock reference (SCR) which forms a time stamp that determines when this packet should be
passed from the buffer into the decoder. The SCR is a 33 bit value that is broken up with fixed marker

bits to ensure against accidental creation of a start code. The final three bytes of the pack header

141

Appendix A:
The MPEG-1 Bitstream Format

contain the mux_rate. The mux_rate is encoded as a 22 bit value surrounded by fixed marker bits and

measures the rate at which bytes arrive at the decoder in units of 50 bytes per second.

%ack header ()

pack _start_code{32); /* 0x000001ba */
‘0010°; /* 4-bit fixed pattern */
system clock reference(3}; /* Bits 32-30 of SCR */
marker bit(1}; AN S */
system_clock_reference(15); /* Bits 29-15 of SCR */
marker_bit{1}; AR */
system_clock_reference (15); /* Bits 14-0 of SCR */
marker bit(1}; /* 1 */
marker bit{1); /* 1 */
mux_rate (22); /* mux rate */
marker_bit {1); /* 1 */

}

Figure A-2: MPEG-1 Pack Header Definition

The system header contains further information about the MPEG-1 System Stream and is
formally specified in Figure A-3. The length of the system header is variable but has a minimum
length of twelve bytes. The system header begins with the unique byte aligned code 32 bit start code
0x000001BB. Following the sl;'m code is a 16 bit value containing the number of bytes remaining in
the header afier processing the header length value. The value stored in the header length field will be
the entire length of the system header minus 6 for the 32 bit start code and 16 bit header length {iclds.
The next field contains a 22 bit value called rate_bound, this value is bracketed by fixed marker bits.
This forms an upper bound for the mux_rate defined in the pack header and must be equal to or greater
than the value from the pack header. The next six bits set an upper bound on the number of audio
streams in the MPEG-1 System Stream. The next four bits form flags that signify in tum: fixed or
variable bit rate, constratned or unconstrained bitstream, lock SCR to audio or not, and lock SCR 1o
video or not. All these flags have an effec: on how the decoder behaves but are mainly informative.
These flags are then followed by a fixed marker bit and a five bit value setting an upper bound on the
number of ideo streams in the MPEG-1 System Stream. Following this value is a reserved byte which

is set to OxFF. Here ends the fixed twelve byte length of the system header.

The system header can be extended with further information on each stream that is to be
multiplexed within the system strcam. If the next bit in the bitstream is a 1, then the system header
continues, if it is a 0, then the system header ends. I the system header continues then the next 8 bits
in the bits stream signify the stream identifier, a value to identify that the following information
concerns the stream identified by this value. This is followed by two fixed marker bits. The next bit,
STD_buffer_bound_scale, signifies a unit choice for the final parameter, STD_buffer_size_bound,
which forms a thirteen bit vaiue stating the desired buffer size for this stream. 1f the scale parameter is
0, the buffer size is measured in units of 128 bytes, otherwise it is measured in units of 1024 bytes.
Generally 0 is used for audio streams and ! {s used for video streams. This buffer information segment
is exaclly three bytes long and can be repeated for cach of the valid 53 streams in the MPEG-1 System
Stream. When the next bit is no longer a 1, then we have reached the end of the system header and

have found either the beginning of an individual packet or the beginning of the next pack.

Appendix A:
The MPEG-1 Bitstream Format

system header ()

system_header_start_code(32); /* 0x000001bb */
header_length(16) ; /* num. of bytes in header+/
marker_bit (1); /* 1 */
rate_bound (22) ; /* Upper bound on mux rate*/
marker bit{1); /* 1 - */
audio pound(s); /* Upper bound on number */
. /* of audio streams */
fixed_flag(l}; /* Pixed Bit Rate? x/
Csps_flag(i); /* Constirained Bit Stream?+/
system_audio_lock_flag(1); /* SCR locked to audio? +/
system_video_ lock_flag(l); /* SCR locked to video? */
marker_bit (1); /* 1 */
video_bound(5); /* Upper bound on number */
/* of video streams */

reserved_byte(8); /* Always ‘1111 1111’ */
while (nextbit == *1') /* Not a start code */
/* Stream buffer info. */

stream_id (8} ; /* Stream Identifier */
Yil7; /* 2-bit fixed pattern */

STD_buffer bound scale({i); /* Buffer Scale factor */
STD_buffer size_bound{13); /* Buffer size upper bound*/

Figure A-3: MPEG-1 System Header Definition
A.2.1.3 Packet Layer

Tiie packet fayer defines a binary bit-stream that makes up a singie packet in the pack
layer and forms the lowest level layer of the MPEG-1 System Stream. The packet layer consists of a
vacket header followed by a byte stream that makes up the packet information. The packet header
contains information about the bytes included in the packet and therefore also which sub-stream these
bytes belong to. The decoder must process the packet header, extract the encapsulated bytestream and

forward it on to the appropriate decoder for that stream.

The packet header, as formally specified in Figure A-4, is of indeterminate length but can
be described as follows. The packet header begins with a unique byte aligned 32 bit start code in the
range 0x000001BC through 0x000001FF. The last byte of the start code identifies which stream the
packet belongs o and determines where the byte data of the packet should be sent. The next sixteen
bits identify the size of the packet in bytes beginning from immediztely after these 16 kits. The sixteen
bits allow for a maximum size of 65536 bytes minus the remainder of the packet header as the

maximum number of bytes stored in each packet.

Following the packet length field, there is an anomaly in the packet header definition in
which the following information is found in all packet headers except that with stream ID 0xBF or
private data stream 2. In the case of all other stream identifiers we can have an arbitrary number of
stuffing bytes, including tione. These stuffing bytes are always OXFF and are used to pad out the
bitstream if there is not enough data 1o fill the required bit rate. Following the stuffing bytes there are a

number of other optional fields.

Appendix A:
The MPEG-1 Bitstream Form. at

?acket header ()

packet_start_code_prefix(24); /* 0x000001 */

stream id{8):; /* Stream Identifier */
packet_ length(16) ; /* Num. of bytes in packet*/
if (stream_id != Oxbf)} /* If not Private Stream 2%/

while {nextbits{8) == 0xff} /* More stuffing bytes */

stuffing byte(8); /* Always ‘1111 1111 */

:‘{f {nexthits (2} == ‘01’) /* Buffer Size Information*/

‘017 ; /* 2-bit fixed pattern *
STD_. buffer scale{l); /* Buffer scale */
STD buffer size(l13); /* Buffer size */
}
if (nextbits(4) == ‘'0010°’}) /* Only PTS is present */

‘0010 ; /* 4-bit fixed pattern *f
present_time_stamp(3); /* Bits 32-30 of DTS */‘
marker bit(1}; FARRS

present: time stamp(15); /* Bits 29-15 of PTS */
marker bit(17; /* 1’ x/
present_time stamp(15); /* Bits 14-0 of PTS */
marker bit(17; /* 1 */

elseif (nextbits{4) == 0011) /* PTS and DTS is present */

‘0011 ; /* 4-bit fixed pattern */
present_time_stamp{3); /* Bits 32-30 of PTS */
marker bit(1}; J* 1° *f
present_time stamp{(15); /* Bits 29-15 of PTS */
marker bit(1]; J* 1 */
present_time atamp(ls),{* Bits 14-0 ¢f PTS */
marker bit{l). /* ‘1 *x/
‘0001, /* 4-bit fixed pattern */
decode_time_stamp(3); /* Bits 32-30 of DTS */
marker bit(l}; /* ‘1 */
decode_time stamp{l15); /* Bits 29-15 of DTS */
marker bit(1); J* 17 */
decode_time_ stamp(15); /* Bits 14-0 of DTS */
marker_bit(1}; Jrv 1 */

else /* Neither PTS nor DTS v/
!

‘0000 1111*; /* 8-bit fixed pattern */

Figure A-4: MPEG-1 Packet Header Definition

The first of the optional fields indicate the buffer size in the decoder for this stream. If

this field is present, the next two bytes in the header are encoded as two fixed bits of value ‘01

followed by a 1 bit value signifying the buffer scale and a thirteen kit value signifying the buffer size.

These values have the same meaning as the stream information contained in the system header.

Following the buffer size is the timestamps ficld of the packet header. These fields

contain information of the timestamps allocated to this particular packet. 4 pain, the format of this field

is variable and it can contain either both the presentation time stamp (or FTS: the time at which the

packet is presented to the viewer) and the decoding time stamp (or DTS: the time at which the packat is

Appendix A;
The MPEG-1 Bitstream Format

presented to the decoder), the PTS alone or neither. If only the PTS is present, then it is encoded in
five bytes with the first four bits containing the fixed code ‘0010’ followed by the 33 bit PTS encoded
as 36 bits in the same format as the SCR in the pack header. If both the PTS and DTS are present, then
it is encoded as ten bytes with the first four bits containing the fixed code ‘0011° followed by the 33 bit
PTS encoded in the same format as the SCR in the pack header. This is then followed by the four bit
fixed code ‘0001 and the 33 bit DTS encoded in the same format as the SCR in the pack header.

Finally, if no time stamps are present, then it is encoded as a single byte with the fixed byte value 0xOF.

Following the optional time stamps field, the rest of the packet is filled with data bytes to
be de-multiplexed into their respective MPEG-! Video Streams or MPEG-! Audio Streams and
presented to the appropriate decoder.

A.2.2 MPEG-1 Video Compression

The MPEG-1 Video Compression standard is dufined in part two of the MPEG-1
standard. This document is concerned with standardising the MPEG-! Video bit stream as well as
defining a decoder that can reconstruct the video sequence from this bit stream. We will be looking
mainly at the format.of the bit stream itself to help gain a clear picture of nct only the binary format of

the bit stream but also the purpose of each individual layer in the MPEG-1 Video Stream.

A video sequence is made up of & series of frames where each frame can be considered
as a single two dimensional picture. Standard image compression techniques work by removing
redundancy found in the image itself. If this idea was applied to moving picture sequences, we would
have a technique whereby each individual frame was compressed to the smallest size possible. Whilst
some good compression can be obtained in this fashion, final bit rates are an order of magnitude greater
than those that can be achieved using MPEG-1. Compressing ¢ach individual frame removes spatial
redundancy in the images being compressed but not temperal redundancy. Temporal redundancy refers
to similarity between two different frames in the same wvideo sequence. By removing temporal
redundancy during video compression, we can improve compression rates by an order of magnitude.

This is possible since in most video sequences adjacent frames have a high degree of correlation.

Individual frames in MPEG-1 are usually compressed into what are called I, P or B
frames. 1-Frames are encoded without ¢ ference to other frames and are similar to JPEG conipression.
1-Frames serve as a refcrence point where decoding can begin on a random seek into an MPEG Video
Stream as well as markers to remove any error due to predictive coding, P-Frames look for similarity
between the encoded frame and a previously encoded | or P-Frame. They use predictive coding to
remove any temporal redundancy beiween these two frames and the second frame is encoded as the
necessary changes to make {o a previous frame. B-Frames are similar to P-Frames except that they use
both backward and forward prediction, encoding a frame as the differences between both a preceding
and an upcoming ! or P-Frame. B-Frames offer the greatest compression. A fourth type of frame is the
D-Frame, this offers the greatest compression rates with low picture quality. A D-Frame is encoded

independantly of other frames but less coefficients are used wvhen encoding DCT blocks.

Appendix A:
The MPEG-1 Bitstream Format

Frames within the MPEG-! Video Stream are stored in the decoding order which does
not necessarily match the presentation order. A B-Frame must have both frames it depends on encoded
before it is encoded, this means that the succeeding I or P-Frame is encoded in the bit stream before the

B-Frame. An example is shown in Figure A-5.

The heart of MPEG-1 compression is the DCT (Discrete Cosine Transform) transform, a
16x16 block of pixels is broken up into four 8x8 blocks of luminance pixels and two 8x8 blocks of
chrominance pixels. The chrominance pixels are samples at half the resolution of the luminance pixels.
These blocks of pixels are traversed in a zig-zag pattern and their values are converted to the frequency
domain using a DCT transform. The DCT coefficients are then encoded using a huffman code to

ensure maximal compression.

Figure A-S: MPEG-1 Enceded Frame Order

While DCT compression is relatively straight forward, determination of motion vectors
and maintaining good quality video at a specified bit rate are difficult problems that must be solved by
MPEG-1 encoders. Motion vectors are used when encoding P and B Frames. High compression is
achieved by locating a similar block in a preceeding frame and encoding it as a motion vector — the
current macroblock can be copied from a previously decoded frame. Research continues to be

perforined on determining the best method of calculating motion vectors.

A.2.3 MPEG-! Video Stream

The MPEG-1 Video Stream is a binary stream which defines a single video stream within
an MPEG-1 System Stream. The MPEG-1 Video Stream is multiplexed along with other Video
Streams and Audio Streams within the MPEG-1 System Stream. The MPEG-1 Video Stream on its
own provides informution necessary to decode and display a compressed video stream. As in the case
of the System Stream, the MPEG-1 Video Stream is expressed as a number of layers, only in the case
of the Video Stream there are six layers. At lower levels, the layers represent individual macro blocks
within a single frame of the compressed video, at higher levels, these layers represent concepts such a
single frame, a group of frames or the entire video sequence. The format of the MPEG-1 Video Stream

is shown in Figure A-6.

Like the MPEG-1 System Stream, the MPEG-1 Video Stream also has a series of unique
32 bit start codes which are specified in Table A-2.

ST S L sy
(et SRR R

s -E{. R b

s
h
B
[
T

s A

Appendix A:
The MPEG-1 Bitstrcam Format

MPEG-1 Video Stream

J -

[Sequence Laoyer \
""-T:' ,‘-r-'-'-“'""-""':l """"""" L

Sequence Header{ GOP | GOP! ‘-..-‘--?-..‘E Sequence Header | GOP GOPE‘-..---?H Sequence End Code
_/ _...-..l.\..‘ B L K S Lo .2

F Group Of Pictures Layer \

- cEoTETTETYRTC bl My ad LTSI AT E e e

GOP Header Picture Picture Picture i. Seagetey i Picture E

......................... T S IV

f/ Picture Layer \

Picture Header Stice Slice Slice

el I, S

/ Slice Layer ﬂ

i bbby Bt Yt Lot e
Slice Header Macroblock l\&acroblock-[l\dacroblock: Ssope-tso 4 Macroblock :
.................... Leccun” B S

[Macroblock Layer \

-t R

Macroblock Header | block(0) | block(1) | block(2) block(3) | block(4) | block(5){ End of Macroblock'*!

J -
/_ Block Layer \

Run Length DCT Coefficients

* All Sequonue Sleaders alter the first in
an MPEG ".deo Stream are optional,

** End of Macroblock only included if
frame is a D-Picture.

Figure .2 VUEG-1 Video Stream

A231 Sequence Layer

The sequence layer defines the entire MPEG-1 Video Stream. The bitstream consists of
a sequence header, followed by at least one Group of Pictures {(or GOP), where each individual GOP is
an instance of the GOP layer. There can be an arbitrary number of GOPs before the sequence layer is
terminated with the sequence end code. Also, it is possible to insert additional sequence headers into
the scquence layer as long as a GOP both immediately precedes and succeeds it. The purpose of
inserting additional sequence headers may assist in the provision of fast play or random seek

commands.

The sequence header, as formally specified in Figure A-7, can be of variable length but
always begins with the unique byte aligned 32 bit start code 0x000001B3. The next twenty-four bits
are used to encode the picture width and height of the video stream with twelve bits used for each
dimension. Restrictions in these values are that neither is allowed to be zero and that the vertical
picture size must be even. The next four bits signify the pixel aspect ratio of the video stream and the
value is used as a reference into a table of predefined aspect ratios. As we are only describing the

bitstream format and not building a decoder, the actual values are unimportant. The following four bits

also form a reference into a table to signify the frame rate of the video scquence.

Appendix A:
The MPEG-1 Bitstream Format

. Hesadpcimal Value

Picture Start Code 00 00 01 00
Slice 1 Start Code 0000 01 01
Slice 175 Start Code 000001 af
Reserved F G0 00 01 bO
Reserved i 0000 01 bl
User Data Start Code 1000001 b2
Sequence Header Code 00 00 01 b3
Sequence Error Code 060001 b4
Extension Start Code 00 00 01 bS
Reserved 00 0001 b6
Sequence End Code 00 00 01 b7
Group Start Code 00 00 01 b8

Table A-2 MPEG Video Strenm Unique 32 Bit Byte Aligned Start Codes

sequence header ()

sequence_header_code (32); /* 0x000001b3
horizontal_size(l2); /* Picture width
vertical_size(12); /* Picture height
pel_aspect_ratio{4); /* Sample aspect ratio
picture_rate(4}; /* Frame rate
bit_rate(18); /* Bit rate

marker_bit (1}; /* 1

vbv_buffer size(l0}; /* Decoder buffer size,

/* lower bound

constrained parameters_flag(l}); /* Parameters Constrained?*/
load_intra_quantiser_matrix(l); /* Intra Quauntiser matrix?*/

if {load_intra_guantiser matrix} /* Matrix exists

intra_quantiser_matrix{512);/* 64 x 8-bit values

*/
*/

load nintra_quantiser matrix(l); /* NonIntra Quantiser mat?*/

if (load nintra_quantiser matrix)/* Matrix Exists * f
nintra_quantiser matrix(512);/*64 x 8-bit values */
if (nextbits(32) == 0x000001b5) /* If extension start code*/
extension_start_code(32); /* 0x000001b5 */

while (nextbits(24) != 0x000001)

extension_data(8) ;

/* Byte of extension data */

if (nextbits(32) == 0x000001b2) /* If user data start code*/
user_data_start _code (32); /* 0x000001b2 */
while (nextbits(24) '= 0x000001)

user_data(8) ; /* Byte of user data

*/

Figure A-7: MPEG-1 Video Sequence Header Definition

148

Appendix A:
The MPEG-1 Bitstream Format

The next eighteen bits in the bitstream signify the bit rate of the compressed videc stream
in units of 400 bits/s, a maximal value of 0x3FFFF signify a variable bit rate. The bit rate is followed
by a fixed marker bit and a ten bit parameter to signify the lower bound for the decoder buffer size in
units of 2048 bytes. The buffer size is followed by a flag to indicate whether the parameters are

constrained to certain maximum valucs or not, again, these values are not important.

The next section of the sequence header conce~~ - intra quantizer matrix and the non-
intra quantizer matrix. This is encoded as a single flag to dete: iine if the intra quantizer matrix exists.
If the matrix exists, the next 512 bits encode the 64 eight bit values for the matrix. We then encode a
single flag to determine if the non intra quantizer matrix exists, if so, this matrix is represented in the
next 512 bits as the 64 eight bit values to fill the matrix.

Finally the sequence header terminates with the addition of extension data or user data.
We look for the next start code, if it forms the extension start code 0x000001B35, then there exists an
arbitrary number of bytes which form cxtension data until the next start code is reached. We then look
for the uscr start code of 0x600001B2. If this exists, then there are an arbitrary number of bytes which
form user data until the next start code is reached. It should be noted that extension and user data is

optional and need not be encoded into the bitstream.

Once a sequence header is processed, it is immediately followed by a GOP which must
also be processed. At the end of the GOP we can have either another GOP, another sequence header or
the sequence end code. The next MPEG start code needs to be checked t . determine what follows and

how it should be processed.

The sequence layer is terminated by the sequence end code which is the unique byte
aligned 32 bit stari code 0x00000iB7.

A.2.3.2 Group Of Pictures Layer

The Group Of Pictures Layer (or GOP layer) defines a binary bit stream that makes up a
single GOP in the MPEG-1 Video Stream. The GOP layer consists of a GOP header followed by one
or more pictures, where cach single picture signifies an individual frame and is an instance of the

picture layer. Note that the defirition requires at least one picture be present within the GO¥.

The GOP header, as formally specified in Figure A-8, is of variable length and begins
with the unique byte aligned 32 bit start code 0x000001B8, The next 23 bits in the bitstream encode
the time code for the first picture in this grdup of pictures. The time code is the same format as those
used by video recorders. The twenty five bits consists of a drop frame flag which is 1 if the frame rate
is 29.97 Hz, followed by the hours into the video stream encoded as five bits, the minutes encoded as
six bits, one marker bit, the seconds encoded as six bits and the picture number within the second
encodeu as six bits. Following the time stamp for theGOP aie vwvo flags, the first indicates whether the
GOP is closed or open, an open GOP means that some pictures in the GOP refer to pictures located in

other GOPs, a closed GOP means taat the GOP is self-contained. The second indicates if the GOP has

149

Appendix A:
The MPEG-1 Bitstream Format

been broken and that the original sequence of the GOP has been modified by editing. These fields
including the header make up fifty nine bits, five bits of zero padding are required to byte align the end
of the GOP header for the next start code.

group of pictures header{)

group_start_code(32); /* 0x000001b8 */

time code(25); /* SMPTE Time Code * /

closed gop(l); /* Is GOP closed? */

broken link(1l); /* Is GOP broken? */

if (neXtbits(32) == 0x000001bS) /* If extension start code*/
extension_start_code(32); /* 0x000001bS */
while {nextbits(24) != 0x000001)

extension data(8); /* Byte of extension data */

} /* Byte Align Bit Stream */
if (nextbits(32) == 0x000001b2) /* If user data start code*/
user_data_start_code (32); /* 0x000001b2 */
while (nextbits{24) != 0x000001)
user_data(8) ; /* Byte of user data */
}

}

Figure A-8: MPEG-1 Group Of Pictures Header Definition

As for the sequence header, the GOP header has the option of extension or user data

appended to the end of the GOP header. The exact same format for this optional data is used.

A2.3.3 Picture Layer

The picture layer defines a binary bit siream that makes up a single picture in the GOP
layer. The picture layer consists of a picture header followed by one or more slices, where each slice
signifies a section of visual image that makes up the picture. Note that the definition requires at least
one slice to be present within the picture, this is required since at least one slice is needed to encode the

picture itself.

The picture header, as formally specified in Figure A-9, is of variable length and begins
with the unique byte aligned 32 bit start code 0x00000100. The next ten bits in the bitstream form the
temporal reference of the frame in question. This significs the position of the frame within the group of
pictures to help determine display order. The next three bits form the picture coding type and the
values are used as a lookup into a 1able to determine whether the picture is an 1-Frame, P-Frame, etc,
As mentioned previously, as we are only describing the bitstream format and not building a decoder,
the actual values are unimportant. The next sixteen bits form the vbv bufler delay. This value defines

the number of bits that must be in the input buffer before the decoder begins decoding this picture.

The next part of the picture header is dependent on the picture coding type defined earlier

in the header. If the picture is a P-Frame or a B-Frame, then the header encodes the forward motion

Appendix A:
The MPEG-1] Bitstream Format

vector scaling information. This is encoded as four bits, 1 bit signifying 1 pixel and three bits
signifying the vector range. If the picture is a B-Frame, we also need to encode the backward motion
vector scaling information. This is also encoded as four bits with the same format. Note that if the

picture 1s neither a2 P-Frame nor a B-Frame, then none of these bits are contained within the header.

?icture header ()}

picture_start_code (32); /* 0x00000100 */
t?mporalhregerence(lo); /* Picture count MOD 1024 */
picture_coding type(3); /* Picture type */
x_.r}gv_dglayus); . /* VBV Buffer delay */
1f {picture_coding type == 2 or 3)/+P or B-type picture */
full pel forward vector(1l); /* Full or half pel */
forward_f code(3); /* For. mction vect. range*/
%f (picture_coding type == 3) /* B-type picture */
fullupeI“Eackward_vector{1};/* Full or half pel */
backward_f code(3); /* Bwd. motion vect. range*/
while (nextbit == *1’) /* While extra info. */
extra_bit_picture(1}; /* Signifies extra info */
extra_information_picture(8);/*Byte of extra info, */
extra_bit picture(1l); /* *0‘ - No more info. */
_ _ /* Byte Align Bit Stream */
?f (nextbits(32) == 0x000001bS) /* If extension start code*/
extension_start_code(32); /* 0x000001b5S */

while (nextbits(24) != 0x000001)

extension_data(8); /* Byte of extension data */

if (nextbits(32) == 0x000001b2} /* If user data start code*/
user_data_start_code (32); /* 0x000001b2 */
while (nextbits(24) != 0x000001)

user_data(8) ; /* Byte of user Gata */

}

Figure A-9: MPEG-1 Picture Header Definition

The final part of the header contains the extra information. At the momem this
information is undefined but can be present in a valid header. Each byte of extra information takes up
nine bits of the picture header. The first bit is used to signify that there is a byte of extra information
whilst the next eight bits make up this information. This goes on until the more information bit is set to
0. At this point the extra information ends and we have the option of extension or user data appended

to the end of the picture header, exactly the same as for the sequence and GOP headers.

Once the picture header is processed, it is immediately followed by a stice, which must
also be processed. At the end of the slice, we can cither have another slice or we have reached the end

of the picture layer.

Appendix A: : ‘
The MPEG-1 Bitstream Format Appendix A:
- The MPEG-1 Bitstream Format

A.2.3.4 Slice Layer

The slice layer defines a binary bit stream that makes vp a segment of a single picture in

] huffman codes to minimise their lengths. The address increment is encoded with length one to eleven
% bits and is used to determine the horizontal position of this macroblock within the picture. The

H i i i re mac s, where ; . . 4) .
the picture Jayer. The slice layer contains a slice header followed by one or mo roblocks, macroblock type is encoded with length one to six bits and is used in a look up table to determine

have reached the end of the slice layer.

A.2.3.5 Macroblock Layer Figure A-11: MPEG-1 Macroblock Header Definition

The macroblock layer defines a binary bit stream that makes up a single 16x16 block of Following the macroblock type are optional values encoded only if their presence is

;;g"‘:ﬂ.ﬁ}‘-“n T TR "‘_'._-__.'.

pixels within a single picture. The macroblock layer consists of a macroblock header, which is determined by the macroblock type field. 1f the quantiser value has changed then the new value is

each macroblock signifies a 16x16 block within the picture. Note that the definition requires at least ? whether this macroblock is intra or pattern coded, contains forward motion vectors, backward motion

one macroblock to be present within the slice, this is required since no macroblocks would imply a j vectors and whether the quantiser value is changed.

slice that defines no part of a picture, f

macroblock header ()
The slice header, as formally specified in Figure A-10, is of variable length and begins ?; while (nextbits(11}==’'0000000111")
with a unique byte aligned 32 bit start code in the range 0x00000101 to 0x000001AF. The final byte of macroblock stuffing(11) ; /+ 00000001111 y
the slice header defines the number of ilie slice being identified and determines the macroblock row at ' -
. L .)) L i while (nextbits{ll}=='00000001000")

which this slice starts, thereby defining the vertical start point or the screen for this slice. The

horizontal start point is encoded within the macroblock. The next five bits are used to indicate the sJ macroblock_escape (11) ; /* *00000001000° */
: quantiser scale factor, # address_increment (1-11}; /* Field length variable */
] . /* from 1 to 11 bits */
i k: macxoblock _type(l-6); /* Type of macroblock, */
4 slice header() f* length variable from 1 */
i £ * to 6 bits */
_. slice start code {32} ; /* 0x0G0H00101 - 0x000001laf+/ K ; if (macroblock_guant}
1 quantiser scale(S); /* Quantiser scale */
while (nextbit == ‘1') /* While extra info. * [/ & quantiser_scale(5); /* New quantiser scale */
... y.g
extra_bit_slice(l); /* Signifies extra info */ 4 if (macroblock_motion_forward) /* If forward motion vect.*/
1 extra_information_slice(8); /* Byte of extra info,. */ . .
3 fwd motion_ vectors{2-34}; /* Forward motion vectors */
extra_bit_slice({l}; /* ‘0’ - No more info. */ k- /* encoded as four values */
: } 3 /* with total length of */
] _ /* between 2 and 34 bits. */
Figure A-10: MPEG-1 Slice Header Definition . if (macroblock motion_backward) /* If backward motion vect*/
4 The final part of the slice header contains extra information which is encoded in exactly g bkwd_motion vectors{2-34); /* Backward motion vectorst/
1 . . o . o 1 /* encoded as four values */
the same as for the picture header. Each byte of extra information is encoded as nine bits with a zero z /* with total length of */
1 bit determining the end of the extra information segment of the slice header. /* between 2 and 34 bits. */
. . o . if {macro_block pattern)
: Once the slice header is processed, it is immediately followed by a macroblock, which ¥ coded block pattern(3-9) ; /% Coded block pattern of */
: must also be processed. At the end of the macroblock, we can either have another macroblock or we - /* length 3 to 9 bits */

formally specified in Figure A-11, followed by 6 blocks, where cach block defincs an 8x8 grid of encoded as a five bit value. If a forward motion vector exists then this is encoded as four distinct

values used to determine the makeup of the 16x16 pix. ' .aacroblock. If the macroblock is part of a D- values with a length between two and thirty-four bits. The backward motion vector, if required, is

Frame, then the macroblock layer is terminated with an end of macroblock bit which is set to 1.
encoded the same way.

A macroblock begins with zero or more macroblock stuffing codes. This code is cleven If the macroblock is pattern coded, determined by the macroblock type field, then the

coded block pattern is encoded as a huffman code of length three to nine bits. Decoding this field will
tell us which of the six blocks have been coded, if a block is not coded then all of its DCT coeflicients

will be zero and takes up no bits in the bit stream. Otherwise the block is encoded as part of the bit

bits long and is of the format ‘00000001111". This code is then followed by zero or more macroblock

escape codes, which are also eleven bits long and encoded as “00000001000°, Foliowing the cscape

codes are macroblock address increment and macroblock type codes. Each of these are encoded using &

152
153

Appendix A:
The MPEG-1 Bitstream Forinat)

stream. Following this optional field is the block data itself with each of e six blocks encoded unless
specified by the patiem code. If the macrobleck is an intra macroblock, determined by the macroblock
type field, then the block is encoded with a separaic DC coefficient, otherwise the DC coefficient is

encoded with the AC coefTiceients. This fact is used to determine how the block will be decoded.

This is a test to see how many more lines can possibly be squeezed t¢ fit onyo the current
page. it appears that two lines is the upper limit that word will be happy with. Now padding with

rubbish to ensure that all is going to be happy and correct before we try shuffling the position of the

figure

Once all six blocks have been decoded, we reach the end of the macroblock layer. If the
picture is a D-Frame, then we have a single ‘1° bit to terminate the macroblock, otherwise the

macroblock ends at this point.

A.2.3.6 Block Layer

The block layer defines a binary bit stream that encodes a single 8x8 DCT block, it also
forms the lowest layer of the MPEG-1 Video Stream. In cases where ali the DCT coefficients are zero,

the block is stmply skipped, this is usually done in the macroblock layer.

Blocks can be encoded either with the DC coeflicient encoded seperately from the AC
coefficients or with the AC coefficients. Which decoding procedure is used is decided at the
macroblock layer where this information is encoded for each block. If the DC coefficients are encoded
seperately then they are encoded as follows. First we have a value that ranges between two and seven
bits in length, this forms a unique huffman code that determines the bit length of the next value. As for
similar instances mentioned earlier, these cxact values are unimportant. The next value determines the
difference of the DC coefficient from the predicted value. 1f the DC coefficient is encoded with the AC
coefficients, then this is simple encoded as a huffman code of length two to twenty-eight bits at the

start of the block. If we are decoding a D-Frame then the block ends here with a single DC coeflicient

only.

Following the DC coeflicient are the AC coefTicients listed one after the other until all
remaining coefficients are zero. These are encoded in a huffinan code of length three to twenty-eight
bits for each coefficient, the huffman code ‘10" indicates that all following coeflicients are zero and

that the block ends here.

A.2.4 MPEG-1 Audio Compression

The MPEG-i Avd: Compression standard is defined in part three of the MPEG-I
standard. This document is concerned with standardising the MPEG-1 Audio bit strcam as well as
defining a decoded that can reconstruct the audio sequence from this bit stream. We will be looking
mainly at the format of the bit stream itself to help gain a clear picture of the binary format of an

MPEG-1 Audio Stream. We will also take a brief {ook at the principles of audio compression and how

154

R i T

m S gL i el d o i 1 i e i S g

arar s e R e 4 AR i TR s s AL L e B e e Lty S S e

b L e e

Appendix A:
The MPEG-1 Bitstream Format

they are applied tc MPEG-1 Audio. While other audio compression standards exist, it is interesting to

note that MPEG Audio Compression algorithm is the first standard for digital compression of high
quality audio.

MPEG Audio Compression relies heavily on human perception of sounds. In order to
achieve a high rate of audio compression, we must, as in video compression, resort to lossy
compression. This means that the reconstructed audio stream will not be an exact match to the original
audio stream. The main aim is to reproduce an audio stream that whilst not physically matching the
original audio sample, must perceptually match the original, that is, it must sound the same as the
original audio sample. As for MPEG Video Compr ssion, the aim of the standasd is to specify the
format of the MPEG Audio bit stream and how a decoder should decipher this bit stream to reproduce
an audio sample. The standard specifically denies specification of an Audio encoder to allow new
icchnology and compression ideas to be integrated with MPEG Audio; the only requirement is that the

encoder produces a valid MPEG Audio bit stream.

While most lower audio quality compression algorithms take into account special
features of the audio they intend to compress (such as human speech), the MPEG Audio cosnpression
algorithm uses perceptual fimitations of the human auditory system t5 decide which sections of the
original audio sample to discard. By following this model, only perceptually irrelevant audio signals
are discarded, and MPEG Audio compression is suited 10 any audio sample that is meant to be heard by

the human ear.

The key o MPEG Audio compression lies in the psycho-acoustic model, The basic
premise of an encoder is that the original audio stream passes through both a bank of filters that convert
the audio data into multiple subbands of frequency values, and through the psycho-acoustic model
which determines the ratio of zignal energy 10 masking threshold for each subband. What this means is
that the psycho-acoustic model determines the number of bits required to store the information in each
subband such that the reproduced audio signal is perceptually the same as the original audio stream,
The difficult part is in building the psycho-acoustic model to correctly decide on which bits to encode.
The decoder is far easier to build as it merely needs to unpack the bit stream, reconstruct the frequency

samples and finally convert the frequency samples into a raw audio data stream.

The job of the MPEG Audio filter bank is to divide the audio signal into 32 equal width
frequency subbands. These subbands can later be recombined into an audio stream at the decoder. The
process of reconstructing the original audio signal is not lossiess, but the design of the filter bank
minimises this loss to inaudible effects. As mentioned earlier, the psycho-acoustic model is used to
determine how the human ear perceives an audio signal. Many experiments on perceptual hearing were
performed which created statistical data on threshold hearing. These results showed that a strong tonal
frequency masked out the perception of weaker nearby tonal frequencies. They also showed that a load
tonal frequency also masked the ability 1o hear weaker tonal frequencies immediately after the louder
tone stopped. All this data was accumulated into the psycho-acoustic model to help the encoder decide

how miany bits to assign in encoding each subband.

155

Appendix A:
The MPEG-1 Bitstream Format -

The MPEG standard defines 1wo psycho-acoustic models, which offer varying degrees of
complexity in order to produce better compression ratios. As mentioned earlier, the job of an MPEG

Audio decoder is far simpler as it merely needs to unpack the frequency values and reconstruct an

audio signal {or playback.

Finally, the MPEG Audio compression standard defines thrce layers. These layers
should not be confused with the layers defined in the video compression standard. The MPEG Audio
layers refer to differing audie quality at a certain compression ratio. The most complex of these, Layer
111, has become extremely popular as a tool for compression of high quality audio sources for storage
on personal computers. The format of the bit stream varies for each of these three layers and therefore
a compliant MPEG Audio decoder must be able to decode each of these three different types of MPEG

Audio streams.

A.2.5 MPEG-1 Audio Stream

The MPEG-1 Audio Stream is a binary stream which defines a single audio stream
within an MPEG-] System Stream. The MPEG-1 Audio Stream is multiplexed along with other Video
Streams and Audio Streams wilhin the MPEG-1 System Stream. The MPEG-1 Andio Stream on its
own provides the information necessary 1o decode and playback a compressed audio stream. As
mentioned previously, the audio stream can be encoded in one of three different ways, called layers in
MPEG Audio terminology. Each of these three layers depicts a different decoding scheme that must be
used to reconstruct the raw audio data. The gencral format of the MPEG-1 Audio bit stream remains
constant with the same packet header format being used for each of the three audio compression layers.
However, how the data is stored following each packet header differs depending upon which layer has

been used (o represent the encoded audio siream.

A2.5.1 MPEG-1 Audio Stream Packet Header

The MPEG Audio Stream header format is common to all three types of MPEG-1 Audio
compression. The MPEG Audio Stream is periodically broken up into frames where each frame is
begun by the MPEG Audio Stream Packet Header. The packel header is exactly 32 bits long and is
formally defined in Figure A-12. Following the header is the audio frame data, which is of variable
length, and differs depending upon which type of compression has been chosen. The level of audio

compression is stored in a field of the MPEG Audio header.

The MPEG-1 Audio Packet Header always commences with a synchronisation word of
length 12 bits. This word has all its bits set to one to indicate the start of the Audio Header. Following
the synchronisation word is a single bit, which is set to one to identify an MPEG Audio stream. This is
then followed by a two bit field which identifies which of the three layers should be used in decoding
the audio stream. The Layer number field is followed by an crror protection flag and then by a four bit
field signifying the bit rate of the audio stream. This is then followed by a two bit sampling frequency
field, a single padding bit, a single private bit, a two bit mode ficld and a two bit mode exiension fieid.

Finally the header is rounded up with a copyright flag, original/copy {lag and a two bit emphasis field.

156

VR

T b SR AT i e 2 L o b S A e 2

PR ¥
e S g, e L

-

T e e B e e e L 3

o et e P e e Y s T ¢ na

D T L R ook meaers e s e ———

Appendix A:
The MPEG-1 Bitstream: Format

audic header{)

synchronisation word(11); /* *111111111111° */
stream_ID(1); /* ‘1’ for MPEG Audio */
layer(2); /* WMPEG Compression Layer */
e;ror_protection{l); /* Is error CRC present */
bitvate_index{4) ; /* Stream bit rate */
sampling frequency(2); /* Sampling Frequency */
padding_bit(1); /* Padding bit */
private_bit(1); /* Private bit */
mode (2} ; /* Mode information *x/
mode_extension(2}; /* Mode extension info. */
copyright (1) ; /* Copyright on stream */
original(1); /* Is original or copy */
emphasis(2); /* Emphasis field */

}

Figure A-12: MPEG-1 Audio Header Definition

In the interests of defining the MPEG-1 Audio Stream, the only fields in the MPEG
Audio header that are of importance is the Layer field and the error protection flag. The value
contained in the Layer field informs us of the compression layer in use and therefore tells us the format
of the data following the frame header. The value of the error correction flag tells us whether or not
included in the frame data is a 16 bit CRC error-check word. If present, the error-check CRC
immediately follows the audio header and inunediately precedes the audio data itself. The layout and
format of the audio data is dependant on the audio compression layer in use, the format of each layer

will be more fully decziibed in the following sections,

A.2.5.2 MPEG-1 Audio Layer 1 Data Representation

In MPEG-1 Audio Layer | compression, samples from the 32 filter subbands are grouped
in lots of 12 samples. These 384 audio samples are stored in a single frame with the audio header. The
first data field in the Layer I payload represents the bit allocation for each group of 12 samples that are
stored. Each value is of length four bits and represents a value between 0 and 135 bits. An example
value of *0110" would mean that each of the 12 samples for that particular subband are stored as a
value of length six bits. The length of the bits allocation field can be either 128 bits, or 256 bits if the

audio being stored is a stereo sample.

Following the bit allocation field are the scale factors for each sample. If the bit
allocation for a sample group is not zero then six bifs are allocaled as a scale factor. The eventual
sample is multiplied by the scale facior to recover the quantised subband value, If the bit allocation for
a sample group is zero, this means that zero bits are used to store the sample and so no scale factor is
required as the eventual subband value will merely be zero. As such, the scale factor field can be

anywhere from zero bits to 384 bits in length as long as the field length is a multiple of 6 bits.

Finally the sample data for the frame follows the scale factors. The length of this field is
dependant on the values in the bit allocation field which determine the number of bits allocated to each

sample. Once the end of the samples has been reached, there is the option of ancillary data in the

157

Appendix A:
The MPEG-1 Bitstream Format

frame. Ancillary data contains extraneous information about the MPEG Sweam such as lyrics,

composer or other information.

A.2.53 MPEG-1 Audie Layer H Data Representation

The Layer I compression algorithm is a simple enhancement of the Layer I algorithm.
It encodes more samples into each frame, whereas Layer 1 encodes samples in groups of 12 for each
subband per frame, Layer II encodes samples in three groups of 12 for each subband per frame. Layer
11 also imposes restrictions on possible bit alocations for values from middle and higher subbands, as
well as representing the bit allocation, scale factors and samples themselves with more compact code;

thus leaving more bits available to improve audio quality.

The first data field in the Layer I1 payload again represents the bit allocation. One bit
allocation value is assigned to each trio of 12 samples from each subband. This means that therc are a
total of 32 bit allocation fields. These values are cncoded using variable length codes and bit allocation
field can be anywhere from 26 to 188 bits in length. Following the bit allocation fields is the Scale
Factor Selection Information {SCFSI) Field. This field informs the decoder of how the scale factors are
to be applied. In general, one scale factor is assigned to each group of 12 samples from each subband.
However, the presence of the scale factor in the final code is determined the value in the bit allocation
field and the SCFS!I Field for that scale factor. Obviously, if the bit allocation for a sample is zero,
there is no need to encode a scale factor. Similarly, information stored in the SCFSI Field indicate
whether a scale factor for a group of 12 samples in a subband will be shared by any of the other two
groups of 12 samples in the same subband. This is done when the scale factors for two groups are
sufficiently close or when temporal noise masking will hide any distortion caused by using an incorrect
scale factor. What this means is that each trio of 12 samples in a subband wili have either 0, I, 2 or 3
scale factors. The information in the SCFSI Field indicates how the scale factors are to be shared

amongs! the groups. The length of the SCFSI Field can vary from 0 1o 60 bits.

Following the SCFSI Field is the Scale Factor Field. As for Layer I encoding, this (icld
contains all the non zero scale factors required by the groups of samples being coded. Since a more
compact variable length code is being used, this field can have a length ranging in size from 0 to 1080
bits. The actual samples follow the Scale Factor Field, again these are coded using a variable length
code and so produce better compression ratios (or batter quality at the same compression ratio). As for
Layer I encoding, ancillary data on the MPEG-1 Audio strcam can follow the sample data to round out
the frame.

A2.54 MPEG-1 Audio Layer I1I Data Representation

The Layer Ill audic compression algorithm is more complex than the preceding two
algorithms. On the other hand, it provides greater compression rates and therefore better quality sound
at similar bit rates, While the Layer III algorithm is based on the same filters as those in Layer 1 and 11,
it compensates for some of the design deficiencies in the filter bank with a modified discrete cosine

transform. The MDCT furither subdivide the frequency subbands to provide better spectral resolution.

158

Sy T L2 S I s -
D T

i i TV A SR L 2AR ic A

b A o s

L i

L ERET

%
i
£
i
.
H
A
i
A
s
A
3
;ir
:
L3
7
b 5
H
.5
z
i
i
<
4
)y
]
3
4
e
s
=

PR s i ek A

R

A st

Appendix A:
The MPEG-1 Bitstrearn Format

These more accurate va*ues can then be used by the encoder 1o cancel some aliasing introduced by the
filter bank. The MDCT values are then entropy encoded with Huffman codes to produce the shortest
bit stream possible.

An interesting feature of MPEG Layer 111 encoding is that if not much information is
present in a block of audio, then the block is encoded short, at a far lower bit rate than the rest of the
audio stream. This means that Layer 1l coding is the only MPEG audio compression layer that
supports variable bit rate encoding. The Layer 11l algorithm maintains a bit reservoir where it keeps
track of how many bits have been used to encode the bit stream versus how many biis have been
allocated to encode the bit stream. The difference in these two values keeps track of how many extra
bits we currently have to store information. If a block of audio data contains a lot of information, bits
can be borrowed from the bit reservoir to help encode the extra information. Thus we encode
information rich blocks at a higher bit rate than the overall bit rate. 1t is important to note that the bit
rescrvoir is a debit acconnt, while we can invest spare bits in the bit reservoir to be used to encode data
at a later point, we are not allowed to go into credit on the bit reservoir to encode extra data. The
reason for this is twofold: one, if we go into credit, we cannot predict when or if we will ever pay back
the extra bits to the reservoir, and two, if the compressed audio stream is being streamed over a
communications link, we are obliged not to encode pasl the agreed bit rate. Storing extra bits in the
reservoir is OK, data for blocks of audio to be decoded in the future arrive at the decoder a little early
and the decoder processes them when ready. If we go into credit on the bit reservoir, bits that are

needed to decode for this time period will not arrive until the next, at which point it will be too late.

The interesting thing with Layer 111 compression is how the bit reservoir is integrated
into the existing audio bit stream format. As for Layer II, Layer 111 encodes samples in three groups of
12 for each subband per frame, however the data is stored in a different format. Following the audio
header and optional CRC is the audio frame side information and then the main data. The side
infonmation contains information on how the main data for the audio frame is compressed, including
values for the MDCT transforms, aliasing and noise reduction. The side information also contains a
pointer called main_data_begin. This pointer refers to ihe negative offset that needs to be applied to
the start of the main data section t0 where the audio data for this frame begins. The value is a negative
pointer because as mentioned before, the bit reservoir cannot go into credit, so the audio data for this
frame must start by the start of the main data. An offset stored in main_data_begin means that the
audio information for this audio frame actually begins in the main data section of the previous frame.
As such, the actual information for an audio frame can come earlier in the bit stream than the header for

that frame.

When constructing a Layer 1 decoder, we would extract all of the data from the main
data section and place it into a queue. We would then process the audio header and side information
for a frame, from this we could then begin extracting bits from the queue to decode an audio frame.

Whatever bits remain in the queue belong to the next audio frame. When processing the next frame,

159

Appendix A:
‘The MPEG-1 Bitstream Format

we extract the next block of main data and add it to the end of the quene. We then similarly process the

next frames header and side information before extracting bits from the queue to decode audio data,

While the audio frame headers are equally spaced throughout the audio stream, the
location of the start of audio data for each frame is not. For playback putposes commencing from the
middle of an audio stream, this means that the first avdio frame received cannot be player if the
main_data_begin pointer contains an offset. If this is true then the first frame received serves to hold

part of the audio dnta for the next frame to be received and decoded.

A.3 MPEG-2

Work on the MPEG-2 Audio/Visual compression standard begun as the MPEG-]
standard was being finalised. The goal of MPEG-2 was to provide compression of higher quality video
signals for entertainment purposes. Indeed, MPEG-2 not only supports higher resolution images,
HDTYV and interlaced video, but also updates the audio compression standard 1o include multi-channel
audio encoding, predominately for surround sound purposes. MPEG-2 video is the compression

standard employed on the (Digital Versatile Disk) DVD entertainment media,

The basic format of the MPEG-2 Stream is similar to that for MPEG-1. In MPEG-2 the
System Stream has been renamed as the Program Stream, however its contents and purpose is similar
in scope. Similarly for MPEG-2 Video and Audio Streams, the formats have been updated to store
extra information required for the new format. It is interesting to note that an MPEG-2 is backwards
compatible with MPEG-1, an MPEG-? Program Stream decoder can decode any MPEG-1 encoded

bitstream.

A new stream type within MPEG is the Transport Stream which can be used in place of
the System Stream. The Transport Stream was designed with streaming of MPEG-2 video over a
network in mind. Data is stored in much smaller packets of a fixed size, this fixed size allows for
implementation of a hardware system to deliver video over a network. The MPEG-2 Transport stream
is a bold idea for implementation in systems that do not involve direct playback from storage media
and was included in the standards by MPEG committee members mindful of the then new application
entitled video serving. MPEG-2 Transport Stream packets are made up of a 4 byte header followed by
a 184 byte payload.

When it comes to providing video on demand services, it is more likely that this will be
done over a generic data network. The current trend is to move away from one network for each
application and to use a single network for all telecommunications. In this case, we have to look at
supporting the MPEG-2 Transport Stream over existing data networks. The two predominant networks
are ATM and IP: ATM uses fixed 53 byte packets with a 48 byte payload and IP uses variable size

packets. In both cases the packet size does not properly fit the Transport Stream packet size.

160

G

K ramﬂi

Wl e i A R Lk

o
A flwd

PLIE R

ol e

e 0 B T

T S

-
-
=
&
-
E -
it
%
-4

g

Ay e L

AL e

Appendix A:
The MPEG-1 Bitstream Format

In the case of ATM the major issue is that ATM is likely 10 be used only in the backbone
of networks and is unlikely 10 be found at the desktop. For IP networks, while it is possible to have a
188 byte IP packet, this would cause a large number of IP packets to be generated to support a stream
of 6 Mbfs. 1P I’ackets ne.t to be transporied through the network by routers, these routers perform
their fuiction in software and are generally limited in the number of packets that they can route every

second. Smaller IP packets are a waste of resources and would assist in bringing the neiwork down.

A4 MPEG-4

MPEG-4 Audio Visual compression is extremely interesting, rot least because i:z bit rate
aliows it to be the most likely candidate in providing quality video on the Internet. MPEG-4 is geared
towards higher compression rates and specifies for compression of audio and video at bit rates between
64 kB/s and 1 Mb/s. MPEG-4 is.also extremely ambitious in that it also seeks to provide interactive
functions with video rather than using video as a pure entertainment medium such as MPEG-1 and
MPEG-2. As such, MPEG-4 video is highly likely to be used in the Internet, an extremely interactive

environment.

MPEG-4 has many features in cemmon with MPEG-1 and MPEG-2 in compression
techniques but also introduces new concepts. Some of these features include new techniques of
encoding such as wavelet #~:-ding and fractal encoding. With wavelet encoding, an image is
converted 1o the frequency domain, sub sampled with filters and then the frequency components are
compressed. The original image is built up from reassembling in the freqilency domain and then
converting the image back to the spatial domain. Fractal encoding consists of encoding some parts of
the image as an image itself. Other sections of the image are encoded as references to these other parts
at a different magnification and rotation. Fractal compression exploits self-similarities in the image
and can produce extremely high compression rates. Another new feature is the introduction of object
encoding where objects are defined in the original scene and encoded separately. These objects could
then form the background, one major character, a moving object, etc. MPEG-4 would then allow
different ceding technigues to be applied to each object, also the decoder would allow the user to

remove objects from the scene or allow different actions to occur when one object is selected.

While MPEG-4 compression offers hope for immediate use in the Internet, it appears
more likely that it will be used where user interactivity will be at a premium. This is exemplified in
instances such as on line travel agencies, real estate and cwirent affairs services. These provide
environments where (he user is after information more than entertainment and an interactive
multimedia presentation can best convey that information. Encryption of audiovisual content is mainly
important when owners of the material wish to prevent others from illegally using it. This is initially
going to occur in the entertainment market with the provision of movies over a2 public network. 1n this
case, the video provided by MPEG-4 compression is not of sufficiently high quality for entertainment

purposes.

161

Appendix A;
The MPEG-1 Bitstream Format

14

I

e R G L TRt S 1 1 1 AR BT Fin E n R i i e TR P R

AP

AiE s e

P s S R e

L
1
g

T B LA LA T a1

ute e 5w,

Appendix B;
An Introduction to Cryplography

Appendix B
An Introduction to Cryptography

In order to develop a secure system for streaming video over a network, it will be
necessary to use modem digital encryption techniques to protect the video stream whilst it is being
transmitted over an insecure communications medium. In this Appendix, I provide an introduction to
cryptographic technigues for readers unschooled in this area. The science of information protection is
called cryptography, the science of breaking encrypted codes is called cryptanalysis. 1 will not
cryptanalyse different encryption algorithms, details on how secure certain algorithms are can be found

in many of the provided references.

! will begin my review with an introduction into the art of cryptography and a brief look
at basic concepts. | will then look in turn at both Public Key and Private Key cryptography. For Public
Key Cryptography | will examine the principles behind its application, present a description of the RSA
Public Key algorithm, and discuss the applicability of Public Key schemes to streaming multimedia. I
will also discuss the importance of Key Management and how it applies to the application of streaming
video, this issue will be regarded as external to the actual encryption technique and will not be
considered when developing a secure encryption scheme. For Private Key Cryptography, I will
examine the concepts of both Block and Stream Ciphers, again looking at principles and applicability
to our task. 1 will look at a common example of Block Ciphers (DES) and Stream Ciphers (SEAL),
and describe their algorithms. Finally, 1 will conclude by presenting a recommendation on which

algorithm type is best suited to the application of streaming multimedia.

The information presented in this Appendix is a summary of that found in the following
references. {Denning, 1983; Diffie and Hellmann, 1976; Fernandes, 1999; Juritic and Menezes, 1997,
Kaliski and Robshaw, 1996; Menezes et al., 1997, Meyer and Matyas, 1982; NIST, 1993a; Prencel et
al., 1998; Rivest et al., 1978; Rogaway and Coppersmith, 1998; RSA, 1996; Schneier, 1996a; Schneier,

1998; Stinson, 1995}

B.1 Basic Cryptographic Techniques

Up until recent times, secure telecommunications was strictly the purview of military
organisations; the general public only had access to relatively weak cryptography. With the advent of
modem day personal computers, vast computing power is now available to everybody. This puts high
level telecommunications security within reach of the averag. - omputer user, techniques that were

once available only to military organisations are now available to everybody.

Appendix B:
An Introduction to Cryptography

This has caused some consternation in both political and military circles

that eryptography would be a powerful too] in the hands of criminals and terrorists,

with encryption and decryption of a high bitrate datastream such as as multimedia,

B.1.1 Terminology

Before we go any further, it is

science of cryptology. Table B-1 lists the commion terminology in use,

Meaning

Plaintext The message to be sent secrely - from the source fo the
intended destination of the message.
Encryption The process of disguising a message in such a way as to hide
its substance,
Ciphertext An encrypted message that is sent over an insecure
communications medijum.
Decryption The process of reverting ciphertext back into plaintext.
Cryptography The art and science of keeping messages secure,
Cryptographers People who practice cryptography.
Cryptanalysis The art and science of breaking ciphertext.
Cryptanalysts Practitioners of cryptanalysis.
Cryptology Branch of mathematics encompassing both cryptography and
cryptanalysis.
Table B-

I Common terminology used in the science of cryptology

Plaintext is usually denoted by M. A plaintext message need not necessarily be an

ASCII text message, it can be any arbitrary stream of bits, which can be used to denote a text file, a

bitmap, a stream of digitized voice, digital video, etc. For purposes of cryptography, M is simply

binary data which can be intended for either transmission or storage. M is the message to be encrypted

Ciphertext is usually denoted by C. Like plaintext, cyphertext is also a stream of binary

data. Depending on the encryption scheme utilised, € can either be the same size as M, or possibly

larger. The encryption function EQ), operates on M to produce C. Or, in mathematical notation:

EM)=C (B.1)

In the reverse process, the decryption function DQ operates on C to produce M:

DC)=M
(B.2)

y Since the whole point of encrypting and then decrypting a message is to recover the
original plaintext, the following identity must hold true:

D(E(M)) =M (B.3)

164

which believe

! hy wo This Appendix
ignores the political issues of cryptography and instead looks at the implementation issues involved

e A G e i B TN T s R TR

essential to review the main terms that are used in the

-5

13
g 1.1
2]

E;
q
i
&
-1
5

i

PRICHS

Tt
!
:
i

S e g e A

ot

b T

3
bt

Appendix B:
An Introduction to Cryptography

These three equations can be represented diagrammatically as in Figure B-1. This
diagram demonsirates the basic framework in which cryptographic functions operate, the plaintext
message M is encrypted by function EQ) to form a ciphertext message C which can then safely be
transmitted across a possibly compromised telecommunications medium. At the receiver end, the

ciphertext C is decrypted by function D{) to retrieve the plaintext message M.

C

M ————p EQ

4

DO ——————s M

Figure B-1: Basic Cryptographic Framework

As well as being used for the protection of information, techniques developed in

cryptology are also used to provide authentication, integr 'y and non-repudiation.
+ Authentication — A means of proving the originator of the message.
» Integrity — A means of detection of message tampering.

» Non-repudiation — Provides a situation where a sender of the message cannot deny sending

the message.

All these tasks are important in the art of cryptology in general but less so when applied
to protection of streaming multimedia. Authentication and integrity would be used in the key
management stage of strcaming multimedia to ensure that a user is allowed to view the transmitted
media. Once the user has the key required to decrypt and view the encoded multimedia stream, these
issues become irreievant. This is because the viewer is already authorised to decode and view the

stream and that any tampering will be evident in the visual display produced for the viewer.

A cryptographic algorithm, also called a cipher, is the mathematical function that is used
for encryption of plaintext for secure communications and the decryption of the cyphertext back into its
origina! plaintext. Some algorithms obtain their security by keeping the actuzl algorithm secret, these
algorithms are known as restricted algorithms. These are generally considered inadequate, since they
cannot be used effectively by a large or changing group. This is because if one person leaves the
group, all users must switch to a different algorithm. Also, if one user accidentally leaks the algorithm,
then all users must again switch to a different algorithm. Further, these algorithms provide little control
over (he strength of the encryption, every group must develop their own aigorithms to keep secret and
cannot use a product developed by an external source. Despite these problems, restricted algorithms
are widely used for low security applications where merely hiding information is the main goal of
encryption. An example of this type of application would be storing a table of high scores for a game

on disk, this avoids users editing a plaintext file containing the games high scores by hiding the

information.

165

Appendix B:
An Introduction 1o Cryptography

IS

B.1.2 Cryptographic Keys

The problem with restricted cryptographic algorithms is solved using the concept of
cryptographic keys, usually denoted by K. The key is one of a large number of values and the range of
possible values is usuaily referred to as the keyspace. A cryptographic system inclusive of keys can be
described diagrammatically as in Figure B-2. The encryption system now takes as input both the
plaintext M and the encryption key K,, similarly, the decryption system fakes as input both the
ciphertext C and the decryption key K;. In this situation, the plaintext M is encrypted to a ciphertext C
that is dependant not only on the encryption function E(), but also on the encryption key K. Similarly,
in order to retrieve the original plaintext from the ciphentext, the receiver requires knowledge not only

of the decryption function D(), but also of the decryption key Kj.

- C

M ——— EQ » DO

e M

Figure B-2: Cryptographic System Inclusive of Keys

As such, the mathematical encryption and decryption operations become dependant on

the key such that the mathematical notation of these functions become:

E(K,, M\)=C (B.4)
DKz, C)=M (B.S)
D(Ks, E(K,, M) =M (B.6)

The security provided by these algorithms is now based in the secrecy of the chosen
algorithm, as well as the secrecy of the chosen key. If the algorithm can be proven to provide secure
encryption of plaintext regardless of the chosen key, then this algorithm can be freely published and the

security of the algorithm is based in the key.

In general, encryption algorithms can be broken up into two types, the first of these is
where the decryption key is identical to the encryption key, or can be directly caiculated from the
encryption key, These algorithms are termed as private key encryption algorithms and the security that
they provide rests in the secrecy of the key. As long as the key itself remains secret, secure
communications can be provided between two parties. An example of a private key encryption
algorithm is diagrammatically shown in Figure B-3. Within the class of private key encryption,
algorithms can be further classified as either block encryption or stream encryption algorithms. Block
encryption algorithms operate on the plaintext in blocks of a fixed size, typically 64 bits. Stream

encryption algorithms, on the other hand, operate on each individual bit of the plaintext,

The second type of encryption algorithms are called public key encryption algorithms,
where the encryption key is not only different from the decryption key, but also that the decryption key

is not calculable from the encryption key and vice-versa. One of these keys is usually made public

166

R

s i £

Appendix B:
An Introduction to Cryptography

e L R R R PRI

3dm e e A e, 0

e B L B

i e W i g 4 A L T Y o eyt A e A X R T

Pk Srai ey s

£ R o ety e il

R S Ao A LAY 0 3 i e g L5 i

PRk M

whilst the second is kept private. Other people can then securely send a message encrypted with the

well-known public key, as only the person holding the private key can decrypt the message.

In many existing public key ciphers, messages encrypted with the private key can only be
decrypted using "he public key. Here we instantly obtain the property of authentication as if a message
can be decoded using a public key, only the person owning the corresponding private key could have

sent that message.

There are many encryption aigorithms available to be used, each offering differing
degrees of security, however all aigorithms are eventually beaten by a brute force attack in which every
single key in the keyspace is tried until the plaintext is retrieved. When choosing an encryption
algorith= and the degree of security required, it is important to consider the cost required to break the
message encrypted with that algorithm. If the cost is greater than the value of the plaintext message,
then the level of encryption is adequate for the task, as the cost to the cryptanalyst is greater than
obtaining access to the message through legal means. If the message is one of military importance,
then the level of security need be enough to withstand a code breaking effort of many years, If, on the
other hand, the message is a multimedia stream for entertainment purposes, then the cost involved to
break the code need only be more than the cost to legitimately purchase access to view the media in the
first place. Even accounting for access to a digital copy of the media at hand, this cost is likely to be

under a few thousand doliars, As such, the security level of the encrypted multimedia stream need not

ll(
A 4 r

M —— 20 ») ————— M

be of the very highest level available.

Figure B-3: Private Key Cryptographic System

B.1.3 One Time Pad Cipher

Most available encryption algorithms are not guaranteed to provide absolute security.
This is because if the algorithm is known, then the encrypted messages can always be decoded given
enough computing time. By simply trying every single possible key in a brute force approach, we will
eventually decode the message to its original form. Similarly, knowledge of the aigorithm in question
can allow us to tailor our attack in order to decode the encrypted message in a shorter period of time.
There is however, one perfectly secure encryption technique that cannot be broken, called the One
Time Pad Cipher. This encryption method was invented in 1917 by Major Joseph Mauborgne and
AT&T's Gilbert Vernam.

167

Appendix B:
An Introduction to Cryptography

SToiiok

In simple terms, a One Time Pad consists of a large, non repeating set of random key
letters, one key written on each page of the pad. There are two such identical pads, one with the sender
and the second with the receiver of the encrypted message. When sending the message, the sender
adds the random key written on the first page of the pad to the first plaintext character 1o encrypt, once
this is done, the top page of the pad is removed and completely destroyed. When the message is
received at the destination end, the random key written on the top page of the pad is subtracted from the
first character of the received message to retrieve the first plaintext character. The top page of the pad
is again removed and completely destroyed. The random keys in the One Time Pad should never be
used again to encrypt a different message. In the real world, an entire sequence of random keys would
be written on a single page but the rufe remains that once a key from the One Time Pad has been used,

it should be irretrievably destroyed.

In modern cryptography, we can change the concept of a truly random series of keys to a
truly random binary series of bits. These individual bits can then be XORed with the bits that make up
the plaintext. At the destination end, the ciphertext can then be XORed with the same sequence of
random bits to reproduce the originai plaintext. As for the concept of destroying physical pages of a
real pad, we must still ensure that the One Time Pad of bits is destroyed and not retrievable after use.

This can be performed by storing the One Time Pad on a digital tape that is destroyed as it is used.

One of the important features of the One Time Pad Cipher is that the pad consists of a
truly random series of bits, it is in fact this feature that ensures that the cipher is absolutely secure. The
first reason for this is that if the Pad is randomly generated, then each and every Pad the length of the
plaintext is equally likely and as such no information can be obtained about the key stream encoded in
the One Time Pad. Since the Pad bit stream is random and contains no information, once this stream is
encoded into the plaintext to produce the ciphertext, the ciphertext also has the property of being truly
random and containing no information other than the length of the plaintext. As such, the ciphertext
could be decoded into any and all plaintexts of the same length with equal probability: We could
encrypt the word MPEG to form the ciphertext HWEF, this cipher text is just as likely to decode into
MPEG as into CAKE or FISH. Since no information can be obtained from the ciphertext, the
cryptanalyst has no clues to help him decode the ciphertext, Even if some of the plaintext is known or
guessed, and this is used to retrieve a part of the key bit stream, the fact that the key is truly random
would not allow the cryptanalyst to deduce any other part of the key. To underline the importance of a
truly random series of bits, consider using a pseudo-random number generator. Since a pseundo-random
number generator must be deterministic, they are not truly random. As such, their non randomness can
be used against them in a known plaintext attack to deduce the random bit sequence used and therefore

to decode the entire message.

The other important feature is that the random sequence is imetrievably destroyed after
use. If the same random sequence is used twice 1o encrypt two different plaintexts, then some

information is being presented to the cryptanalyst who can use it to determine the random key sequence

Appendix B:
An Introduction to Cryptography

PREN P LA LS B A BRI Ty

NG KR TR S

e 1 A e B

R R
AN ERE R NV e N

3

;|
X
M
g

R
4
.
il

R AN A W e DS H I PR

b

i Tl e o

and therefore both original plaintexts and any other message encrypted using the same random
sequence.

There are two difficulties involved in using the problem of a One Time Pad Cipher, the
first of these is in generating the random bit sequences. This is not a trivial task and can only be truly
performed by samr¥ g a natural, random occurrence, an example of which could be taking the least
significant bit of a regular sampling of a white noise source. The second difficulty lies in distributing
an exact copy of this random sequence to both parties involved in communications. It is obvious that
this technique cannot be used with a random sequence generated in real time as the receiver would

have no way of generating the exact same random key sequence, therefore, the One Time Pads need to

be generated ahead of time and distributed to both parties.

The One Time Pad Cipher is provably secure, regardless of how much computing power
is thrown at the problem. This is due to the fact that the cipheriext contains no information of the
plaintext that has been encrypted. However, the difficulties involved in utilising this scheme make it
impractical for our purpose. While there are problems with using a psuedo-random number generator
in that the random bit sequence produce is deterministic and therefore not truly secure, the concept of
using a psuedo-random generator to emulate the properties of a One Time Pad Cipher is appealing and

discussed with Stream Ciphers.

B.1.4 Cryptographic Attacks

Cryptanalysis is the science of breaking secure ciphers. The aim of cryptanalysis is,
given ciphertext C, to recover either the original plaintext M, the decryption key K, or a weakness in
the cipher algorithm that will eventually lead to the discovery of M or K. Cryptanalysis assumes no
prior knowledge of the key K, if the encryption key is compromised through other means then the
plaintext is retrieved using non cryptanalytic methods, There are four types of attack possible using
cryptanalysis. These are the Ciphertext Only Attack, Known Plaintext Attack, Chosen Plaintext
Attack, and Adaptive Chosen Plaintext Attack.

As a cryptographer, one must always assume that an opposing cryptanalyst has access to
the encryption algorithm being used. If the algorithm is a piece of software, then that software can be
bought and reverse engineered. If the algorithm is implemented as a hardware module, then that
hardware can be obtained and reverse engineered. 1t is important to assume that the crypanalyst will
not only have access to encrypted messages, but also access to which algorithm has been utilised to

implement that encryption.

B.1.4.1 Ciphertext Only Attack

We have the ciphertext of several messages encrypted using the same encryption
algorithm. The task is to recover the plaintext of these messages or to discover the keys used to encrypt

these messages. 'This is the most difficult attack to undertakz as the cryptanalyst has the least amount

Appendix B:
An Introduction to Cryptography

of information available 10 him, this being knowledge of the aigorithm in use and some intercepted

encrypted messages.

A common application of the ciphertext only attack is often referred to as the brute force
attack. In this case a block of cipheriext is decoded with every key within the keyrange. This leads to
a multitude of possible plaintexts. These plaintexts are then analysed for common structures, if the
message was known to be a text message then the plaintexts are analysed for known words, similarly
sounds can be analysed for similarities with human speech. Other types of plaintext usually have some
well defined structures. This analysis reduces the list of possible plaintexts to a smaller number to
choose from. If a multiple number of messages have been encrypted using the same key, then we can
look for intersecting sets of possible plaintexts to reduce the possible list of keys even further, With the
advent of faster computers, this sont of attack is becoming easier to perform. The original DES
encryption algorithm used a 56 bit key which has a key range of over 7 x 10" possible keys. It is now
possible to build a machine to decode DES encrypted messages with all possible keys within a couple

of hours,

B.1.4.2 Known Plaintext Attack

We have the ciphertext of several messages encrypted using the same encryption
algorithm, we also have the corresponding plaintext to either some of these messages or to segments of
these messages. Again our aim is to deduce the keys used to encrypt the messages such that we can
decode the remaining messages. This form of attack was largely used by the English to break the
Enigma code used by the Germans in World War I1. Since most military message have a common
forinat and use known wording for certain parts of the message, English cryptanalysts had some

plaintext to work with when deducing the key used by the Enigma system for that day.

B.1.4.3 - Trosen Plaintext Attack

Like for the Known Plaintext Attack, we have the ciphertext of several messages, the
associated plaintext, but also the ability to encrypt chosen blocks of plaintext. In this scenario, the
cryptanalyst has the ability to enter chosen plaintext into a black box that performs the same encryption
function as that used to encrypt the messages. This technique is more powerful as the cryptanalyst can

now choose ¢ -ecific blocks of plaintext that may indicate certain properties of the key that was used.

B.1.44 Adaptive Chosen Plaintext Attack

The cryptanalyst has better access to the black box and cannot only choose certain
plaintexts to be encrypted, but, based on the results, can select another block of plaintext to be

encrypied again. By repeated access to the encryption module, the cryptanaiyst can more quickly

narrow down the range of possible keys.

ST

T T Ay T
S TR R WP R S0 o ISR ST LA

::‘:4;;_'-‘:,....,;,.‘..

e AR o A ok O

Oy O
MR R AT -SSP e

kN

ST

Appendix B:
An Introduction to Cryptography

B.2 Public Key Cryptography

There is a large amount of interest in Pubiic Ker' Cryptography, which, when introduced
in 1976, changed the world view on crpytographic systems. Until then, the concept of cryptography
meant using a secret key to protect the plaintext and then using the same secret key to retrieve it.
Public Key Cryptography allows us to utilise two scparate keys in the process of protecting
communications, one which is kept secret by the receiver of the ciphertext and the other which is made
public to the world at large. The keys are used as an encryption key/decryption key pair with either of
the two keys able to be used as the encryption key.

This scenario completely does away with the problem of agreeing on a secret key for
secure telecommunications and can be used in such a way as to guarantee the concepts of
authenlication, integrity and nonrepudiation. As long as we can ensure the integrity of the public key,
we can provide secure telecommunications between a large, changing group of people. Integrity of the
public key is important as if a cryptanalyst can incorrectly advertise the public key of an enemy
successfully, then e, having the comresponding private key, can masquerade as his enemy and retrieve
all messages destined for him. This deception can continue by then re-encrypting the plaintext with the
correct public key and forwarding the message to the enemy who remains unaware that his security has
been compromised. The problem of ensuring public key integrity is generally solved through the use
of a trusted authority that maintains a list of all public keys, which can be requested. These systems
would usually be maintained by real world trusted authorities such as governments or banking

institutions,

B.2.1 Principles Behind Public Key Cryptography

Public Key Cryptography algorithms are based on the principle of trapdocr, one-way
functions. The concept of one-way functions in the form of hash values has been known for a long
time in Computer Science. One-way functions in themselves do not provide Public Key Cryptography,
but form a fundamenta! building block not only to Public Key Cryptography, but also to many
protocols governing secure telecommunications. By extending the concept of one-way functions to

include a trapdoor effect, we are generating the concept of Public Key Cryplography.

The point of a one-way function is to use the plaintext as input to the one-way function,
the ciphertext being the output of an irreversible function. In order to retrieve the plaintext, we must
reverse an irreversible function. This task is obviously impossible for a true ore-way function so we
must introduce a trapdoor into this function. A trapdoor consists of knowledge of 2 secret, usually the

secret key, that in conjunction with the ciphertext allows simple reversal of the one-way function.

B.2.1.1 One-Way Functions
Before any further discussion, it is important to note that there is no mathematical proof
for the existence of one-way functions. While it is true to say that we cannat guarantee the existence of

one-way functions, it would also be true to say that there are many functions that are easy to compute

Appendix B:

B

An Introduction to ry} "~ g-aphy

in one direction but extremely difficult to compute in the reverse direction. A simple example is that it
is relatively easy to compuie that 52,396 x 842,412 is equal to 44,139,019,152, On the other hand,
determining the prime factors of 44,139,019,152 is a difficult problem. While it is true 1o say that
reversal of some of these functions is difficult today, that is not to say that new algorithms will be
developed in the future that make these problems relatively simple. In fact, there have been many
algorithmic developmenis in the past ten years that have greatly simplified the task of generating the

factors of = large number.

I have already mentioned that one-way functions are relatively easy to compule, but
significantly harder to reverse. In mathematical terms, this means that given x, it is easy to compute
f{x), but given f{x), it is hard to compute x. In this context, hard can be defined as a similar statement
to: Jt would take millions of years to compute x from f(x), even if all the computers in the world were

assigned to the problem.

A good example of a one-way function was presented by Schneier (Schneier, 1996a). He
illustrated that breaking a plate is a good example of a one-way function, It is extremely casy to smash
a plate into thousands of small pieces, however, it is extremely difficult t¢ reassembie the plate from

the multitude of small pieces.

One-way functions in themselves cannot be used to encrypt a message. There is no point
writing a message on Schneier’s plate before breaking it: it would be teo difficuit to reassemble the
plate and therefore retrieve the plaintext enscripted on the plate, However, one-way functions do find a
great deal of use in secure communications as hash functions. Hash functions are a many-to-one
function, where a large, variable length input is transformed into a small, fixed [ength output,

Properties of a good hash function include:

e All possible hash values should be generated with equal probability. This means that for
any given document, ail possible hash values are equally probable to occur, no one hash value

should be more likely than another.

» A single bit change in the original document should lead to a large and incdeterminate
change in the calculated hash value. This means it should not be possible to predict a new hash

value based on changes to the original document.

¢ Extremely difficult to generate a document that hashes to a particular value. This means it
should be near impossible to create a false replacement document that returns the same hash

value.

Hash functions are commonly used in cryptographic protocols to ensure authenticity of a
document without requiring retransfer of the same document. This sort of functionality provides a
good example where one-way functions are useful in the world of cryptography. Common one-way

hash functions used in eryptographic protocols today include MDS5 and SHA. There exist other one-

172

)

03
£
5
B
253
3
¢
=4

Tamt

Appendix B:
An Introduction to Cryptography

way hash functions that are cither in use or are no longer in use. Details of these hash algorithms and

the security provided can be found in works by A, B and C [references].

B.2.1.2 Trapdoor One-Way Functions

Trapdoor one-way functions consist of a family of functions where calculation in one
direction (encryption) is easy, however the reverse calculation (decryption) is extremely difficult
without knowledge of a secret (private key). Knowledge of the secret or private key reduces the
problem of reversing the one-way function to a simple case. This means that we have now realised our

two-Key cryptographic system described in Figure B-2.

B.2.1.3 Generating Prime Numbers

Prime numbers figurc predominately in Public Key Cryptography. A number is prime if
its factors only include | and iself. In order to gencrate a prime number, one must select a number at
random and then test that number to see if it is prime. There are several probabilistic prime number
tests that can be used to determine if a given number is prime with a certain degree of confide. .» 1F
this degree of confidence is large enough, then we can be reasonably confident that the given number is
indeed a prime. Increasing the degree of confidence with these tests involve increased iterations of the

loops within the tests.

Some Cryptographic algorithms require the use of “Strong Primes”, this is usually the
case when we wish to multiply two primes (p and q) together to form n, and we wish to increase the
difficulty of the problem of factorising #. Even so, there is still speculation as to whether there is a real
need to use “Strong Prime” numbers and if they truly offer a greater level of security. A “Strong

Prime” is a prime number with the following properties:
¢ The greatest common divisor of (p-I) and (g-1} should be smalil.
¢ Both (p-I) and (g-1) should have large prime factors, respectively p’ ané 3*.
¢ Both (p'-1) and (¢'-1} should have large prime factors.
s Both (pt1) and (q+1) should have large prime factors.
o Both (p-1)/2 and (g-1)/2 should be prime.

B.2.1.4 Relative Prime Numbers

One of the concepis vsed in Public Key Cryptography is that of relatively prime
numbers, two numbers are relatively prime when they share no factors in common cther than 1. The
greatest common divisor can be calculated using Euclid’s Algorithm, originally devised over 2,000

years ago. A simple description and implementation of Euclid’s Algorithm can be found in Sedgewick

{ref].

The concept of finding relatively prime numbers is used in RSA Public Key

Cryptography when calculating the both the private and public key of the scheme.

173

kg

Appendix B:
An Introduction to Cryptography

B.2.1.5 Extended Euclidean Algorithm

The Extended Euclidean Algorithm is used to determine the inverse of a number modulo
another numbes. In this situation, finding the modulo # inverse of a number a, means {inding x such
that (ax) mod 72 = 1. In general, this problem has a unique solution if and # are relatively prime, and
no solution if @ and 1 are not relatively prime. An implementation and description of the Extended

Euclidean Algorithm can be found in [reference].

B.2.1.6 Waeaknesses and Practicalities

Most Public Key Cryptographic systems that are in use are based on the difficulty in
factoring large numbers. While new algorithms to solve this problem in a shorter time {rame are being
developed and refined ali the time, cryptographers can always stay one step ahead of cryptanalysts by
using larger keys and therefore Jarger numbers that require factorisation. However usefu} the coacept
of a Public Key system may be, in most practical implementations it is used to secure and distribute
session keys used in Private Key Cryplographic communications. These systems are sometimes called
hybrid cryptosystems. In these systems, all users still utilise a Public Key Cryptographic system, but
this system is not used to secure all communications. Instead, secure communications using Public
Key Cryptography is used to agree on a private key to be used for a Private Key Cryptographic session.
All communications using the private key system are then carried out sccurely. The above procedure is

a brief description of the Diffie-He!llman algorithm for secure telecommunications.

The main reason for using this form of hybrid system is due to the speed of Public Key
Encryption algorithms, which are usually about 1000 times slower than Private Key Encryption
algorithms. This severely limits the rate at which data can be encrypted using Public Key systems,
even with computer speed increasing exponentially as suggested by Moores Law. This is because not
only will required encryption rates increase due to more available bandwidth, but increased computing
power also means extra security requirements in the form of longer keys and increased encryption time,
Another reason for using the hybrid system is that Public Key Cryptography solves an important key
management problem. Because the session keys used for Private Key Encryption are calcutated and
communicated at the last minute, there is less chance of this key being compromised than one that was
communicated earlier by other means. Also, the session key is destroyed once communication ends
and a new key is generated for each communication session. Continuously changing the session key

means that even if one message is compromised and the key discovered, other messages are still secure.

Finally, Public Key Cryptographic systems can be vulnerable to chosen plaintext attacks,
especially if it is known that the plaintext must conform 1o a known format. If it is known that
plaintext M is one of a set of n possible plaintexts, then a cryptanalyst can easily encrypt all possible
plaintexts M, through M, vsing the public key to obtain a set of cyphertexts C; through C,. These
ciphertexts can then be compared to the intercepted ciphertext to determine which of the n tested
plaintexts is equal to the original plaintext. This form of attack could be pasticularly useful in the case
of a scenario where the message fits a common form, and example of this could be details of financial

transactions where differences in a message may merely be the amount of money being transferred.

174

TRR

s i e AR L b e R e i i

3
B

3

o
i
R
A
i
. i
o
o
o
=<
m
b
o
!
2
o
%
[M
£

et SRR it

TSR

Appendix B:
An introduction 1o Cryptography

B.2.2 Current Public Key Cryptographic Algorithms

Since the intreduction of Public Key Cryptographic systems by Whitfield Diffie and
Martin Hellman, and later by Ralph Merkle, a number of Public Key cryptosystems have been
proposed. Of these, some have been proven to be insecure, others have been proven to be suitable for
key distribution but not for data encryption, others have also been proven suitable for digital signatures.
Of ail the proposed algorithms, three Public Key Cryptographic algorithms, RSA, ElGamal and Rabin,
have been proven cryptographically secure and suitable for data encryption. However, all three of
these algorithms are slow and both the encryption and decryption processes are many times slower than
similarly secure Private Key Cryptosystems. For information, I will now present a review of the RSA

Public Key Encryption algorithm, explaining how the algorithm functions,

B.2.2.1 RSA Public Key Cryptosystem

The RSA Public Key Cryptosystem, named for its inventors — Ron Rivest, Adi Shamir
and Leonard Adleman, was the first of Public Key systems that is considered secure and has withstood
many years of cryptanalysis. The security in the RSA algorithm is based on the difficulty in factoring
large numbers. The two cipher keys are calculated as functions of a pair of large prime numbers, of
100 digits and upward in size. It has been proposed that the difficulty in recovering the plaintext given
the public key and the ciphertext is equal to factoring the product of the two primes. This proposal has
not been proven but the algorithm has withstood many years of cryptanalysis which indicates a fair

degree of confidence in it. The RSA algorithm works as follows:

First choose two random large prime numbers p and ¢, for maximum security, these two
numbers should be of approximately equal length. Once the two numbers have been chosen, calculate
1, the product of the two primes, then randomly choose an encryption key e, such that e and (p-1)(g-1)
are relatively prime. Finally, use the extended Euclidean aigorithm to compute the decryption key &
such that e:d = I mod ({p-1){g-1)). At this point 4 and » are also relatively prime, either e or d can be
used to formulate the encryption key. We can then publish ¢ and n as the public key, 4 and n is kept as

the private key, it is also important to discard p and g completely, they must never be revealed.

Now that the private and public keys have been chosen, we can encrypt messages. To
encrypt a plaintext M, we must first divide into blocks smaller than », the product of the two primes.
Each one of these blocks can then be encrypted by raising it to the power of e, and taking the modulus
of the result. In mathematical terms, if the plaintext M is broken up into biocks M, then the

corresponding ciphertext blocks can be calcutated with the formula:
Ci=M"modn B.7)

Decrypting the ciphertext back into plaintext involves taking cach block of ciphertext,
raising it to the power of d, and then taking the modulus # cf the result. This calculation will return the

plaintext block corresponding to that ciphertext block. In mathematical terms, this forms the formuia:

M;=C"modn (B.8)

175

Appendix B:
An Introduction to Cryptography

The formulae required to encrypt and decrypt plaintext using RSA appear relatively
simple and easy to implement, but the difficulty lies in the fact that e, d and » are very large numbers.
Therefore, the processes involve raising a large number to the power of an equally Jarge number which
is time consuming. In fact, the time consuming process of decryption coupled with the recommended

key lengths of over 500 bits make a brute force attack on RSA unfeasible.

The security provided by RSA encryption is assumed to be as difficult as factorising #.
This is because n is known and finding all the known factors of » will allow good guesses for the
values of p and q. Frosm this point the cryptanalyst could calculate (p-1)(g-1) and determine d from e.
It has never been mathematicaily proven that # must be factorised in order to determine the plaintext

from the ciphertext but current approaches to cryptanalysis of RSA tend towards this technique.

Like all Public Key Encryption systems, RSA is liable to chosen plaintext attacks,
especially if the format of the message is known or the message is short. RSA recommendations
include insertion of random numbers throughout the message to guard against chosen plaintext attacks.
There are several other attacks possible on RSA systems that can be guarded against by following a set

of rules as listed in Table B-2.

Reémnm’):mlnﬁun - ~ Reasan _ . : -
A common modulus » should Knowledge of one pair of e and d for a given n

nol be shared in a community enables an attacker to more easily factor n and
of RSA users. therefore calculate other e and d pairs for the same n.
Plaintext should be padded This helps prevent chosen plaintext attacks as it

with random values. effectively randomises the plaintext where it

otherwise might be predictable.

d should be large. An attack developed by Michael Wiener shows that it
is possible to calculate d when it is up to one quarter

the size ol n,

Table B-2 RSA Encryption Recommendations

B.2.2.2 Other Public Key Cryptosystems

The Rabin Public Key Cryptosystem gets its security from the difficulty of finding
square roots modulo a composite number, This problem is as difficult as factoring. The Rabin method
has been extended by Williams to overcome a few shortcomings. Both the original Rabin scheme and
the modified Williams scheme can be proven 1o be as difficult as factoring to cryptanalyse, however

whilst encryption is somewhat faster to implement than RSA, execution speeds are still slow.

The ElGamil Public Key Cryptosystem gets its security from the difficulty in calculating
discrete logarithms in a finite field. One of the major drawbacks of using ElGami! for encryption of
messages is that the ciphertext is twice the length of the plaintext, Encryption and decryption speeds of
ElGami! are comparible to RSA.

. .l T

IR

iomr i, £ e nd

¥ r ..
e e SRR A R ot L AT g it

e

FEAT A TR T e

AR R T T

i -

Al BT

PR L

b
By
k4
E |J.
p ¢

:l
1
¥

Appendix B:
An Introduction to Cryptography

Other algorithms, namely McEliece and Niederreiter are based on forward error
correction codes. Neither of these algorithms have been successfully cryplanalysed and both are
relatively quicker than RSA, but both suffer the drawback of the ciphertext being substantially larger
than the corresponding plaintext.

Still other algorithms exist that use the properties of elliptic curves or finite state
automata. Of course, all Public Key Cryptosystems are interesting in their own right but have the
distinct disability of being slower than their private key counterparts. This is why they are used in most
systems as a means of either encrypting one-ofl short mescages or to enable secure exchange of a
randomly selected private key. The faster private key algorithms are then used to encrypt and decrypt

large, continuous streams of data.

B.2.2.3 Recommended Key Lengths for Public Key Cryptosystems

While not all Public Key Cryptosystems are based on the problem of factoring large
numbers, the most popular are, and the degree of difficulty in cryptanalysing different Public Key
schemes is generally accepted to be equal. With this is mind, we can look at the difficulty of breaking

the RSA encryption scheme and relate this to other Public Key Cryptosystems.

A brute force attack on the RSA Encryption scheme involves finding all of the factors of
n in an attempt to discover the secret prime numbers p and q. Once all possible pairs of p and q are
found, we can use the fact that the public key is relatively prime to (p-1)(g-1) to select the correct p
and q patr and then use the Extended Euclidean Algorithm to determine the private key. Once all
possible choices of private keys are found, we can attempt to decrypt the ciphertext to find the correct
private key and therefore decipher all future ciphertexts as well. The complex step in this procedure is
the factorisation of n. Great advances have been made recently in Mathematics in developing faster
algorithms to calculate the factors of a large number. Using modern techniques such as the General
Number Sieve mean that the length of the key required to provide adequate security using RSA has

double from 512 biis to 1024 bits in the last ten years,

The upshot of all this, is that as a result of better techniques to factor large numbers
coupled with Moores Law which observes that computing power doubles every 18 months, it is
essential to keep increasing the key length in the RSA encryption scheme in order to keep the problem
of cryptanalysis of the ciphertext unfeasible. Unfortunately, an increasing key length afso increases the
complexity and time required to encrypt and decrypt plaintext, therefore keeping encryption speeds

relatively constant, regardless of the increase in processing power,

Current RSA systems use a key length of 1024 bits. More important systems however,
like certificate authorities, use Key lengths of 2048 bits as the information they protect is far more
important. Schneier makes the recommendation in his book that a key length of 2048 bits is required
today to provide good security for approximately 20 years. This is a far larger key than those used with
Private Key Ciphers where key lengths of 64 or 128 bits are the norm. It also puts into perspective the

specd of public key ciphers must perform complex mathematical functions on numbers of this size.

Appendix B:
An Introduction to Cryptography

B.2.3 The Trusted Authority Public Key Database

We have seen the usefulness of a Public Key/Private Key pair and how it allows us to
publicly advertise one key and still allow people o communicate securely with us. If however, Alice
wishes to securely communicate with Bob, then she must be sure that she has Bob’s Public Key. Bob
may have advertised the Public Key but if a malicious hacker can falsely advertise his own Public Key
1o be Bob’s Public Key, then any message Alice encodes for Bob can easily be intercepted and decoded
by the hacker. He can then re-encrypt the message using Bob’s real Public Key and forward the

message to Bob neither partner knows that their communications have been compromised.

The aim in this instance s to ensure that a malicious person cannot impersonate
somebody else by falsely advertising Public Keys. A simplistic solution would be to list everybody’s
Public Key in a printed book such as a Telephone Book, but due to the fact that most Keys are very
long, a single misprint or incorrectly typed in number could lead to errors. We can extend the idea of a
single printed book by moving the solution and putting the database of public keys online. In this case,
Public Keys can be obtained from a central database that maintains a list of all Public Keys. This idea
still hasn’t solved all potential problems, as the database is now vulnerable to attack, we also have to
trust the organisation that supplies and maintains the database, The trust factor is usually solved by
using organisations that are be trusted to maintain such information today - governments or banking
institutions. To guard against the risk of a direct attack on the centralised database, this database is

guarded exceptionaily well against both physical and digital attack by potential wrongdocrs,

Thus the concept of the Trusted Authority Public Key Database is born. A trusted
authority or institution maintains a list of all users and corresponding Public Keys. The repository
itself owns its own Private Key/Public Key pair and its Public Key is very well advertised. This key in
effect becomes a Well Known Public Key, one that would be impossible to forge or falscly represent
because it is so common and known by all. Now if Alice wishes to communicate with Bob, she can
obtain his Public Key from the central authority. Alice encrypts her request for Bob’s key using the
Trusted Authority Public Key. By encrypting the request, Alice knows that only the Trusted Authority,
with its Private Key, can decrypt and read the request. The Trusted Authority then obtains Bob's
Public Key from the database, formulates a reply, encrypts it using its own Private Key and returns the
message to Alice. When Alice receives the message, she decrypts it using the Well-Known Public
Key. If the message decrypts correctly, she can be sure that it came from the Trusted Authority since
only they could encrypt the message with the Private Key. This message now contains Bob’s Public
Key and Alice can send any message to Bob knowing that only he can decrypt the message 1o read the

original plaintext.

There is some debate at the moment on how best to implement the Trusted Authority
scheme is such a way that it can scale to service the entire online community. However, it seems
certain that in the near future the use of Public Key Cryptography will become commonplace, and
Trusted Key Databases will play a major role in secure communications on the Internet. As such, these

databases will form an integral part of the future of telecommunications and be widely available,

178

et s S A N2 P AL
R Ty L e EEIE PR L TR TR

T T AU A S 1)

sl sy

DY Y

N o s T T R 5 e A

AT o o e VL e P

i il

Appendix B:
An Introduction to Cryplography

B.2.4 Amenability to Encryption of Streaming Multimedia

The speed of Public Key Encryption is one of the two major drawbacks to using this
scheme to protect streaming multimedia. Video material encoded using MPEG-1 is usually encoded at
rates between 1.5 Mb/s and 2.0 Mb/s whereas Public Key Encryption schemes encrypt data at the rate
of hundreds of kilobits per second or slower. While the speed of computers and computing power is
increasing all the time, the required key length to ensure security also increases, thereby ensuring that

encryption rates remain relatively constant.

This observation is enough on its own to discount Public Key Encryption in the field of
encrypting streaming multimedia, but there is another valid reason to discount it. Al Public Key
Encryption schemes have one thing in common with Private Key Block Ciphers, and that is that they
operate on the plaintext in blocks of a fixed size. If the data is not a multiple of the block size, then the
plaintext must be padded to make it the required length. To develop an encryption system that will
function correctly with existing MPEG video servers requires a scheme where we can selectively
encrypt individual bytes in the multimedia stream. This will allow us to ensure that the iength of the

encrypted MPEG bitsteam is the same as the length of the plaintext MPEG bitstream.

These two facts in conjunction rule out the use of Public Key Encryption to protect the
actual streaming asset as it is transmitted across the network. It does not, however, rule out its use in a
key management ssheme to transmil a private decryption key to the viewer of the asset. The use of
Public Key Encryption and the Diflie-Hellman algorithm would be quite valid in both validating the
user to view the encrypted stream and then for transmitting the private key required to both decrypt and

view the streaming asset,

B.3 Private Key Cryptography

Private Key Cryptography involves a single key, which must be known by both parties in
order to ensure secure telecommunications. The same key is utilised to both encrypt and decrypt any
data that needs to be communicated securcly. Private Key Cryptography is the oldest known form of
cryptography and can be traced back to some of the oldest ciphers used, including a simple rotated
alphabet scheme used by the Romans in which each textual character was replaced with the character
three places to the right in the alphabet. In this case, the algorithm involves using a shified alphabet
and the Secret Key is the number of characters we shift the alphabet through to both encrypt and
decrypt the message. Obviously a system like this is very insecure, especially given knowledge of the
algorithn used, it would be a simple matter of trying each of the 26 possible Secret Keys in a brute

force atiack until a meaningful message can be retrieved from the ciphertext.

Private Key Cryptographic systems fall into two distinct classes, Block Ciphers and
Stream Ciphers. A Block Cipher operates on a block of plaintext of a fixed size and produces a block
of ciphertext, usually of the same size but possibly longer. Similarly, the decryption algorithm takes a

block of ciphertext to produce the original block of plaintext. On the other hand a Stream Cipher

179

A

Appendix B:
An Introduction to Cryptography

operates on both the plaintext and ciphertext one bit at a time. Each bit of the plaintext is encrypted to
form a single bit of ciphertext, al the destination, each ciphertext bit is then decrypted by the Stream
Cipher to obtain the original plaintext bit. In general, Private Key Cryptographic systems operatc much
faster than their Public Key counterparis, also the required Key Length 1o ensure secure
communications is much shorter. With this knowledge in mind, it is easy to see why most applications
that require a sizeable amount of data transfer utilise Private Key algorithms to implement their

communications.

B.3.1 Block Ciphers

A Block Cipher is a form of encryption algorithm that operates on the input data in
blocks of a fixed size. The most common Block Ciphers in use today operate on input data in blocks of
64 bits. A Block Cipher takes a plaintext block of a specified size and an encryption key, and then
cperates on this data to produce a ciphertext block of the same size. Similarly, the decryption
algorithm takes as input the fixed size ciphertext block and the decryption key, identical to the
encryption key. It then performs the function of retrieving the plaintext block of data. The nature of
this description necessarily implies that a particular block of plaintext will always encrypt to the exact

same ciphertext block given the same encryption key.

Using a Block Cipher in this way is known as using the cipher in Electronic CodeBook
(ECB}) Mode. There are other modes in which we can utilise a Block Cipher which provide us with
various advantages and disadvantages, the other modes are alternatively known as Cipher Block
Chaining (CBC) Mode, Cipher Feedback (CFB) Mode and Output Feedback (OFB) Mode.

B.3.1.1 Block Cipher Modes

In Electronic CodeBook or ECB Mode, the Block Cipher algorithm is used in its most
obvious and simple way. If the algorithm we are using operates on input data in blocks of # bits, then
we break our plaintext M into segments M; of exactly n bits in length. Each one of these n-bit
segments is then encrypted using the chosen cipher to produer a corresponding #-bit block of
ciphertext C;. If the same »-bit block of plaintext is encrypted at some later stage, the same block of
ciphertext will be created. 1f a cryptanalyst wanted to, they could enerypt every possible block of
plaintext with a key to produce every corresponding cipheriext block, these results could then be stored
in a codebook and matched against ciphertext 1o decode and reproduce the original plaintext. While
this may seem like a weakness of this mode, given that most Block Ciphers operate with 64 bit blocks,
there are a total of 2* possible different blocks of plaintext. Storing this information would require an
extreme amount of storage space along with exceptional processing power to access and scarch the
database,

Whilst using a Block Cipher in ECB Mode is secure against a full codebook atlack, a
cryptanalyst can still cause damage with a partial codebook attack where a message can be partially

decoded due to the nature that the beginning and ending of most messages are predictable. Similarly, a

180

s W

s

H e R 2 L

i b

L L L i T BT

VN o Lk e LT A 3 e D e 2 Y SebaR b P £ TN o L A

A MSi,

A A A i g RN Uk R S N ot R T PO e R

Appendix B:
An Introduction to Cryptography

strictly formatted message containing money transfer information could be easy to forge and

manipulate if the cryptanalyst knows which ciphertext blocks contain destination account information.

One of the advantages of using a Block Cipher in ECB Mode is that we have random
access into the encrypted data. Because each block of plaintext is encrypted independantly, we can
decrypt a block of ciphertext independently of any other block. In effect, we could extract a block of
ciphertext from the middle of the message to decrypt and retrieve the corresponding block of plaintext
at that point of the message. This is significant when considering encrypting streaming multimedia
files as random access into the streamed video is considered a major feature of digital video, as such,

we must be able to start decrypting and playing back the streamed data from any point in the stream.

A Block Cipher being used in ECB Mode means that by necessity, the length of the
plaintext must be an exact multiple of the block size. This is usually performed by padding the
plaintext with zero bits so that it is of the comrect length. Obviously, what this means is that the
modified plaintext is of different length to the original plaintext and by default that the ciphertext is of
different length to the original plaintext. There are many situations where this is not a problem,
unfortunately in the case of encrypting streaming data, the length of the data to be encrypted is variable

and this Thesis shows that it is essential that the ciphertext be of the same length as the plaintext.

The sccond type of Block Cipher mode is referred to as Cipher Block Chaining or CBC
Mode. This mode is very similar to ECB Mode except that 2 feedback mechanism is added such that
the block of cipkertext produced by the aigorithm is a function of not only the original block of
plaintext, but also the previous block of ciphertext. In effect, the same block of plaintext will not
always encrypt to a given block of ciphertext. However, two separate messages that have the exact
same beginning will encrypt to the same ciphertext stream up untii the point where the messages
become different. In order fix this, the CBC Made cipher will often seed the aigorithm with a random
key block as the first block to be encrypted. The receiver will then decrypt this key block and throw it
away. The key block need not be secret as it is merely used to ensure that if the first real block of

plaintext is common, it will not always encrypt to the same block of ciphertext,

l Private Key l Private Key
M;—»{3—+] Block Cipher » C; C;———1—»|Block Cipher —»H—>M;
y F
C;.
» Delay !

Figare B-4: CBC Mode Encryption/Decryption Process

These additions make the job of the cryptanalyst more difficult at the expense of
removing the ability to provide random access into the encrypted stream. Unfortunately, however, the

modifications to ECB mode still mean that the length of the plaintext must be a multiple of the cipher

B T e L ot b s b o b e L -

Appendix B:
An Introduction to Cryptography

block size. The exact technique to use a Block Cipher in CBC Mode is demonstrated in Figure B-4.
The first block of plaintext, or more usually the key block, is passed through the cipher to produce the
first block of cipheriext, this block of cipheriext forms part of the encrypted message for transmission
and is designated C,. The next block of plaintext, M;, is then XORed with the previous block of
ciphertext C;, the resuitant modified plaintext is then passed through the cipher to produce the next
block of ciphertext C;. This process is repeated with plaintext block M; being XORed with ciphertext
block C;., before being passed through the cipher to produce C;. The receiver of the encrypted message
receives the blocks of ciphertext in order. They first pass C; through the cipher to reproduce the first
block of plaintext, uswally the key block which would be discarded, M,. When the next bloci. of
ciphertext C; is received, it is passed through the cipher and then XORed with C, to produce M,. This
process is continually repeated with ciphertext block Ci passed through the cipher before being XORed
with ciphertext block C;, to reproduce M;.

Block Ciphers can be modified to svork on block sizes that are smaller than those
specified by the actual encryption algorithm; the final two Block Cipher Modes work in this fashion.
The first of these modes, Cipher Feedback or CFB Mode, uses a large block size Block Cipher and its
inherent security to implement a self synchronising system which operates on a smaller block size.
This technique removes the need of the length of the plaintext being a multiple of the block size. In
CFB Mode, a key block is used to storc the current state of the system. This key biock is passed
through the cipher 1o produce an n-bit cipherblock. As required, the leftmost m bits (where m is less
than #) are then XORed with the next s bits of the plaintext to produce the next block of ciphertext of
size m. The state block is then left shifted by s bits and the recently produced block of ciphertext is
inserted into the recently vacated bits in the state vector. This new state vector is then encrypted to
produce another cipherblock of which the lefimost m bits are XORed with the plaintext. At the
receiver end, the same initial state vector is encrypted to form a cipherblock. The leftmost »1 bits of
this block are XORed with the ciphertext block to retrieve the plaintext block. The state vector is then
left shifted by m bits and the ciphertext block is inserted into the recently vacated bits in the state
vector. An interesting aside is that after the first few ciphertext blocks are decrypted, the state vector is
made up entirely of the last # bits of the ciphertext. The system is called self-synchronising b _ause if
enough random bits are inserted before the plaintext at the encryption end, then the state vec.or will
automatically synchronise to the ciphertext and the initial state is unimportant. This process is

demonstrated in Figure B-5.

Shift Private Key Shift Private Key
i bits m bits
il et L e
State Reg, — Block Cipher m §(n-m) State Reg. . m | (n-m)
2 bits pher b 1ol bits nbits | | ock Cipher =, sl bits
¥ y
_ 2N . O
M; sy, »C G H1—M,

Figure B-5: CFB Mode Encryption/Decryption Process

182

st 4

o e P A T e T

A A S i 1 b e b o e

e

STt T o s P

e

[S S

medta A S e 1

e L

L o el SR e S SR i e R e e

A po e L AL

il e,

iy

Appendix B:
An Introduction to Cryptography

A Block Cipher running in CFB Mode removes the constraints on the length of the
plaintext. It also allows almost random access into the encrypted stream as long as we are prepared to
accept a few blocks of incorrect ciphertext. This makes this technique almost suitable for encryption of
streaming multimedia. For better suitability, we should consider a Block Cipher running in Output
FeedBack of OFB Mode. In OFB Mode, we build a system very similar to that used in CFB Mode
except that the state vector is modified based on the cipherblock at the output of the Block Cipher
instead of the ciphertext block at the output of the entire system. What this means is that the feedback
mechanism is entirely internal to the system and we are in effect producing 2 system which generates
pseudo random m bit blocks which are then XORed with the plaintext, this is shown in Figure B-6. As
for CFB Mode, we have a system where the internal state vector is automatically updated based on the
initial key block used to key the system. As a further advantage, we now have a system whereby a
single bit error in the ciphertext will not propagate through a few blocks of recovered plaintext. Also,
we maintain the ability to encrypt the plaintext in smaller block sizes, down to a possible single bit if
necessary. Inthe implementation, the bits used 1o fili the empty space in the state vector come from the
output of the block cipher instead of the produced ciphertext itself, otherwise the implementation is

exactly the same as for CFB Mode,

e

Shift Private Shift Private
m bits Key m bits Key
il s L - % .
State Reg. Ll Block Cipher > m ("'m) State Reg- Block Cipher 1w m (n-m)
1t bits et bits| bits nbits | |- rock Cipher=¥, el bits
ES :
M, ¥pD—>C ¢ "PH—M,

Figure B-6: OFB Mode Encryption/Decryption Process

The last two modes of operation actually utilise a Block Cipher in a fashion similar to a
Stream Cipher where the plaintext is XORed with a pseudo random string of bits except that the XOR
function is performed on a block larger than one bit in size. In fact, if desired, a Block Cipher can be
used in CFB or OFB Mode reduced to one bit blocks and therefore become a true Stream Cipher, All
Block Encryption algorithms can be utilised in this way, however their speed effectiveness will be
reduced. Each operation to encrypt a block normally of # bits is now being used to encrypt a smaller
block and therefore more operations are required to encrypt a block of plaintext of the same size. A

summary of the advantages and disadvantages of the possible modes of Block Cipher usage can be

found in Table B-3.

B.3.1.2 Principles of Block Cipher Cryptology

The general principles used in most Block Ciphers can be summed up using the
terminology confusion and diffusion. Confusion, in relation to encryption, aftempts to obscure any
relationship between the plaintext and the ciphertext. This can usually be performed with simple

substitution of bits within the plaintext message, in fact the One Time Pad Cipher is a confusion based

Hoowo. L
hy oo

Appendix B:
An Introduction to Cryptography

cipher where each bit in the plaintext is either inverted or left untouched depending on the random key
used. Diffusion, in relation to encryption, tries to remove any redundancies and statistical relationships
in the plaintext by spreading the effect of the plaintext over as much ciphertext as possible. In
reference to an n-bit block cipher, diffusion would attempt to spread the effect of a single bit of
plaintext over all # bits of the ciphertext block produced by the cipher. A strong cipher would succeed
in this whilst an insecure cipher would not be able to ensure that each plaintext bit affected all
ciphertext bits in the block. Ciphers that employ diffusion techniques only are not particularly secure

and can be casily cryptanalysed and broken. Most Block Ciphers use both confusion and diffusion

techniques in their algorithmic designs.

 Cipher Attributes
Concealment of plaintext

pattems. = @ & =

Randomisation of input to

block cipher. ' = & “

Security in reusing the same 7 7 Needs unique Needs unique

key. start register, start register.

Encryption Speed. Same asblock | Same as block | Slower than Slower than
cipher. ciplier. block cipher by |block cipher by

a factor of n/m. |a factor of méo.

Length of Ciphertext equat to

Icng?h ofpla:next. q - = < “

Fault tolerance of ciphertext | Affects one full | Affects one full | Affects Affects

etror, block of block of corresponding | corresponding
plaintext. plaintext and the |bit of plaintext | bit of plaintext.

corresponding [and the next full
bit in thenext | block.
block.

Fault tolerance of bit Unrecoverable. | Unrecoverable. |Recoverable if | Unrecoverable.

lossfinsertion error. m=1,

-

Table B-3 Summary of Block Cipher Modes of Operation

Common features of Block Ciphers are called S-Boxes or Substitution Boxes. These
modules can usually be defined as a black box that takes a range of bits as input and produces a range
of bits as output. The S-Boxes in a Block Cipher are responsible for confusion of the data as they
substitute bits at their input with different bits at their output. The S-Boxes used in the popular DES
algorithm take two inputs, a four bit input which will be substituted by the S-Box and a two bit input
which is used to select one of t'hw four substitutions performed by the S-Box. The chosen substitution
will then produces the four bit output of the S-Box. Obviously, the S-Box in itself is rather insecure
and corresponding input is relatively simple to determine, this is why the S-Boxes usually form part of

a more complex system which will form the entire Block Cipher. The transformation functions of the

184

P oo e b

RN AR

[Tk

e

A i b

e A L A L S W L LA BT R AN AR R

i B i e AR

LT
s

LR

b e

3 e

AT

A s

Appendix B:
An Introduction to Cryptography

S-Boxes, whilst usually known, must also be carefully chosen such that the interaction of the S-Box
with the rest of the Block (ipher will ensure that the ciphertext is adequately randomised and that

statistical properties of the plaintext will not be evident in the ciphertext.

Another common operation of a Block Cipher is a simple permutation. This coniributes
to diffusion of the data over the entire cipherblock. Simple permutations often involve completely
reordering the input bits to produce 2 new value of the same length. In these cases no substitution takes
place as there are exactly the same number of one bits and zero bits as before the operation. This
operation spreads the bits over the length of the cipherblock, ensuring that any subsequent operation
within the Block Cipher will allow input bits to affect each output bit of the cipherblock. As for the S-
Boxes, how the bits are reordered in a simple permutation are usually carefully chosen to ensure that
good diffusion takes place. In some Block Ciphers, the permutation step may choose the reordering

sequence based on the key rather than being fixed.

Another commonly utilised building block is the Expansion Permutation of innut bits. In
this case, not only are bits reordered as in a simple permutation, but some input bits are also repeated ¢r
combined in order to form extra output bits and create a larger output than the input. The main aim of
this module is in diffusion and to help spread the input bits over the output much more quickly.
However, it is also useful in expanding a data set in the middie of a cipher operation so that more bits
are avaiiabie to run through other modules such as S-Boxes, this step can also be useful to expand the

input 1o the same size as the key for an XOR operation.

Other common operational modules in a Block Ciphier include XOR, bit-shift operations
and plaintext splitting. An XOR operation involves a simple XOR between two sets of input bits, one
set of which is usuaily related to the key. A bil-shift operation involves shifting a sct of input bits
through a set number of operations, this operation can be performed on both the input plaintext itself
and the key between steps of the cipher algorithm. Plaintext splitting involves breaking the i..put block

into two and performing different operations on each half the input bits.

Finally, most Block Ciphers involve iterations of repeated steps. In most block ciphers,
the above modules are usually integrated in a sct configuration to form a relatively simple step, this
step is then normally repeated a fixed number of times. By repeating the step, it makes the overail
algorithm more difficult to analyse as each step further confuses and diffuses the input plaintext. If
enough iterations are performed, we can casure that full diffusion of the plaintext to the ciphertext
occurs and that multiple iterations of the nor-iinear S-Boxes cause statistical properties which make
analysis difficult. Using DES as an example, each step of the cipher process is repeated 16 times, this

repetition ensures good diffusion and 16 repelitive applications of the S-Boxes creates ciphenext with

strong confusion properties.

Many Block Ciphers are Feistel Networks. A Feistel Network follows a simple design
principle that ensure that exactly the same algorithm can be used in both encryption and decryption

processes. In g Feistel Network, the u-bit input plaintext is broken into two equat length halves of size

185

Appendix B:
An Iziroduction to Cryptography

it g

n/2. Each sicp of the Feistel network now involves passing the right half of the plaintext through a
function £() and then XORing it with the left half of the plaintext, this result becomes the new right half
of the plaintext whils: the original right half of the plaintext becomes the new left half of the plain text.
The iteration process of block ciphers now occurs as many times as is desired. The calculation and
swapping occurs for each iteration except the lasi, where the two halves are not exchanged. This
allows the entire process to be completely reversible using the same algorithm, regardless of how
complex or irreversible f() happens to be. This works for the following reasons: if there are
iterations involved in the Block Cipher, and the plaintext is originally broken up into two halves Ly and

Ry, then the formulae the left and right halves at each iterative step of the cipher are:

Li=R;, (B.9)
R; = Liy @ f(R;y, Kj) (B.10)

Where K; is the key or permutation of the key used at this step of the cipher. These
formulae hold for ail but the last step of the cipher as the halves are not swapped, in this case the values

of L., and R,, are:

Loy = L. © f{R1s Ko) (B.11)
an = Rm-t (B‘l 2)

As long as our key schedule is used is such a way that K’ = Ky the oxact same
algorithm will work in the decryption process. This can be shown assuming that the cipherblock is
broken into the original two halves L’ and R’ and the keys are K*;. in the first iteration L, is equal to

L and R’ is equal to R,,. The formulae for the left and right halves after the first iterative step of the

cipher are:
» =R’ =R, = Rp (B.13)
R’ =L 8 f(R%, K’)) =La @ (R, Ki) = Ligt B Ry Ki) B Rty Kn) = Ly (B.14)
Similarly, the formulae for the ieft and right hal-es afier the second step become:
L, =R =Ln;=Ruaz (B.15)

R, =L @ f(R’), K"2) = Reyt © f(Lun-ty Kauot) = Linz @ f(Rip2y Kioot) @ f(Revzs Kt} =Lz (B.16)
Which generalise to:

L’ =R, | (B.17)
R,i = Ltn-i (B.IS)

Remembering that the halves are not swapped in the last step of the cipher, we can show;

L’m = l-lm-m = Llll (B.lg)
R’ =Rum =Ry (8.20)

And we have retrieved our original plaintext. This useful property of Feistel Networks

explains why they are often used when designing Block Ciphers.

186

ARG T A ST e

TN b TN TR B Lt H2 L e -V R0 W b e TR e

¥
&
L
g
b3
%11
i
=
X
3
o
-

i P T i A SR

O N I S S R PR 2 3 LA

Appendix B;
An Introduction to Cryptography

B.3.1.3 Weaknesses and Practicalities

There are many Block Cipher algorithms from which 1o choose from, each with their
own individual strengths and weaknesses. Many ciphers are currently considered to be secure,
meaning that a brute force attack is the only known viable attack. This means that as long as this
requirement is taken into consideration, and the keyspace size is suitably large, the choice of which
cipher to use is academic. What is far more important after selecting the actual cipher to use, is to

deterntine in which mode we wish to utilise the cipher.

There are some concems about implementation speed of block ciphers, the same
argument with Public Key Ciphers and increased computing power is valid. However, it is entirely
feasible that real time encryption/decryption of data at the required bit rates can be accomplished by
most block ciphers without many concemns, but note that Stream Cipher implementations are far
quicker than Block Ciphers and should therefore be considered as an aiternative to block ciphers. It is
imperative to consider the required CPU power to perform the decoding and displaying of the MPEG
media stream. Similarly, if we want to encrypt a bytestream without increasing the length of data to be
transmitted, we can only consider using a biock cipher in CFB or OFB Mode. In either of these modes,

running a 64 bit block cipher in 8 bit mode will increase the execution time by a factor of eight.

Block Ciphers are amongst the most difficult algorithms to cryptanalyse, mainly because
they contain non-linear properties. For this reason many algorithms are determined to be very secure
and susceptible only to a brute force attack. On the other hand, the mathematical properties of Stream
Ciphers are well known and easier to cryptanalyse. However, it is conceivable that future study into
Block Ciphers will yield better knowledge and lead to better attacks on algorithms. This may show that
Block Ciphers will not be as secure as once thought. This should not discourage use of Block Ciphers

as they offer extremely good security given today’s knowledge.

B.3.14 DES Block Cipher
The DES (Data Encryption Standard) Block Cipher algorithm was first published in 1976

and was the first government approved encryption standard. Politically this caused many problems as
people assumed that the algorithm was cryptographically insecure as they assumed that government
agencies would only approve a cryptographic algorithm with a backdoor init. However no backdoor to
DES has been found to date. DES is now beginning to date and the security that it affords is no longer
adequate for many applications. When considering the application of protection of streaming media,

we have 1o look at the value of the media compared to the cost of acquiring that media illegally.

DES is an example of a Block Cipher implemented as a Feistel Network. Feistel
Networks were described in the previous section as a means whereby we could continuously apply any
complex function to a set of input data and yet still guarantee to be able to easily reverse the entire
process. The process uses a 56 bit key which makes the total keyspace of over 7x10" possible private
keys. Whilst this may sound like a lot, this keyspace is not large enough to prevent a simple brute force

atlack on the ciphertext 1o retrieve the piaintext. The Fiestel Network in the DES encryption algorithm

187

e

e e e) H e T g R N

Appendix B:
An Introduction to Cryptography Appendix B:

An Introduction to Crypiography

uses a complex function f{) with a changing key for each cycle of the implementation. Standard DES

performs the cycle a total of 16 times. The f(} function takes as input the stage key and the 32 bits

. . . Plaintext (64 bits)
forming the righthand side of the plaintext. These inputs are then put through phases of expansion
permutation, a series of S-Boxes and a simple permutation. Added on to the standard Feistel Network |
implementation is one extra simple permutation at the start of the encryption process and its inverse 1P
permutation at the end of the process. Since this simple permutation is known, it adds no security to T

the actual DES implementation itself. The belief is that this permutation is included to simplify loading

F
Z

the 64 bit plaintext block into the internal shift registers using a hardware design of the 1970’s.

P T R e B S S ot L N T ST S T ELty (O - S

Given this brief description, 2 DES encryption module looks very much like the block y
diagram depicted in Figure B-7, remembering that the left and right halves are not swapped at the end f(K;)
of the last stage of the network. The initial permutation, IP, simply rearranges the bit ordering of the
plaintext block according to a fixed transform, while the final permmutation, 1P, is the inverse function
| of IP.
3
Within each stage of the Feistel Network, we see that the input block, R;.;, of 32 bits in L, R
] passed through the £() function to provide a oulput block which is to be XORed with the left hand input
.;: block Ly to form R;. The breakdown of the f) function within the DES Feiste] Network is presented ; -
in Figure B-8. This diagram demonstrates the function taking an input block, Ry, of 32 bits in length fK2)
and stage key, K;, of 48 bits in length, and produces an output block of 32 bits in length. There are four o
f stages in the () function, the first of these is an expansion permutation whereby the input block of 32 9 "
bits is expanded to be equal to 48 bits in size. The exact details of the expansion permutation can be
I found in [reference] but the permutation has been designed in a way to assist in the third stage of f() \; L, R,
which hosts the S-Boxes. In the expansion permutation, each block of 4 bits is kept intact with two f‘ 1 e :
new bits being inserted between cach of these blocks. These new bits are determined from the values 5 “"“n.,_“ '_',.-""‘ ,.y-“
of the first or fast bits of the blocks that they divide. The second stage of the £) function involves the , -“"‘--.:‘ . e ':‘ ;
interaction with the stage key. At this point, the 48 bit value derived from the cxpansion permutation is et - T Tl R g
XORed with the stage key to provide a new value which will be used in the third stage of (). r_,-—""-’ s ---~>{§:‘,
i :
The third stage of the f() function comprises of 8 different S-Boxes, each of these S- l:s 1:5
Boxes takes two inputs to produce a single output. The S-Box performs a transform of one 4 bit value %
to another 4 bit value with the second input of two bits being used to select from one of four possible 1 ¥
transforms. The 48 bit outpu! from the previous stage is divided into eight groups of six bits of which .'f f‘[\: ((f—(w)
two are used to select the S-Box transform and four are used as input to each $-Box. Looking back at E i
the expansion permutation of the previous stage, the two transform selection bits are taken from the ; A y
four input bits of the surrounding groups of four bits. Since each S-Box pradduces a 4 bit output, the Lis Ris
output from this stage of the f() function is of 32 bits in length, back 1o the original size, Each of the { L T)
eight S-Boxes performs a different set of transforms, the details of the transforms provided by each of 1
the S-Boxes can be found in {reference]. i
A 4
Ciphertext (64 bits)
g Figure B-7: DES Encryption Algorithm
188 f 189
3
!
......... .)

Appendix B:
An Introduction to Cryptography

The final step of the Q) function is just a simple permutation where the locations of the
32 output bits of the previous step are rearranged. The purpose of this step is to spread out the bits so
that each bit causes a greater effect over a larger range of output bits in the cipherblock, assisting us to
perform our intended goal of introducing diffusion into the encryption algorithm. The final step
involved in implementing a DES encryption algorithm is the key schedule, or determining how to
calculate the 48 bit stage key that will be used during each cycle of the Feistel Network. The key
scheduling algorithm for DES is shown in Figure B-9. 1 have already mentioned that the DES private
key is 56 bits in length, for each cycle through the Feistel Network, this key is split into two haives of
28 bits each. Each of these 28 bit values is then circularly left shified through either one or two bits,
depending upon the current round of the algorithm. Following the key shift, the new 56 bit key is then
passed through a compression permutation where the order of the bits are rearranged according to a
fixed transform and 8 of the bits are ignored in order to form a 48 bit key. This 48 bit key is then used
as the stage key for each cycle through the Feiste! Netwark, the new 56 bit key produced as a result of
the circular shifts is used to calculate the stage key for the next cycle of the Feistel Network. The

details of how the circular shifts occur and the transform used in the compression permutation can be

'- ‘ Stage Key - K; (48 bits) E

found in [reference).

() Function Input - R;.; (32 bits)

n

Expansion Permutation

fELW
\J
48 bits

b h h X r

S-Box } S-Box 2 S-Box 3 S-Box 4 S-Box 5 S-Box 6 S-Box 7 S-Box 8

32 bits
r

Simple Permutation

X

f() Function Output (32 bits)

Figure B-8: DES Fiestel Network f() function

Because of the fact that the DES encryption algorithm forms a Feistel Network,
decryption is extremely simple. The initial and Gnal transforms undo their counterpart steps performed
during the encryption process, the Feistek Metwork takes care of reversing the encryption stages as long

as we feed the stage keys in the reverse order. In this case, K¢ becomes the first stage key and K

190

A R

6 bits 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits
y 4

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits

o '.-.-.,-,_-.-.‘E'-'—'-;j;,; 5

R A e G,

E
o
-
E. o

3%
3

;7

e

o

=

o s e T ,.

e Tt

by ' - B L3

Appendix B:
An Introduction to Cryptography

becomes the final stage key used in the decryption process. The schedule of circular shifts selected in
the encryption algorithm are chosen such that the final 56 bit key will be equal to the original key. As
such, we can reverse the key schedule by performing a series of circular right shifis at each stage to
counteract the left shifts used in the encryption process. Therefore, the only differences between the
DES encryption and decryplion algorithms are minor changes in the key scheduling algorithm, which

can be implemented simply.

¥
Key (56 bits)

28 bits 28 bits
L 4 ¥

Circular Left Shift Circular Left Shift

56 bits

4

Compression Permutation

48 bits
y

DES Stage Key - K; (48 bits) I

Figure B-9; DES Key Schedule

B.3.1.5 DES Variations

DES is an extremely good block cipher that has proven to be resistant to practicaily all
statistical attacks since its introduction in 1976. In fact, the best cryptanalysis techniques have only
reduced the complexity of an attack from the brute force technique of 2°° to the order of 2%, This has
proven the sirength of the DES cipher as a whole but it is now being defeated, not to a deficiency in its
design, but to the increasing computing power that is now available. Put simply, the key space
afforded by DES, 56 bits, is too small and a brute force attack on a DES encrypted message is
becoming possible. In fact, as long ago as 1993, it was calculated that a specialised machine
employing brute force to crack a DES encrypted message in 3.5 hours could be built for one million
dollars. Given the time that has passed since then it is reasonable to assume that the cost and speed of
this machine would have improved greatly. There are a number of variations on DES which are
discussed in following paragraphs, however, the American National Institute of Standards (NIST) has

recently called for new algorithms to replace DES as the standard encryption algorithm.

Most variations on DES were originally proposed because of perceived fears of
weaknesses in DES. These fears originally came about because the NSA was involved with the design
of DES and artificially introduced weaknesses into the algorithm to make ciphertext easier to decode.

Cryptanalysis of DES has not found any of these concerns to be proven. Most of the proposed

191

3
3
b
2
r
th.
i
B

Appendix B;
An Introduction to Cryptography

B

variations are concerned with either changing the DES S-Boxes, the permutation modules, the key
scheduling algorithm, or a mixture of these. Suggested changes in the 5-Boxes involved changing their
ordering, changing their transform functions, or selecting S-Box transforms based on the key.
Proposed changes to permutation steps simply involved reordering the bit permutations and changes to
the key scheduling algorithm are rather obvious. Most of these proposed changes statistically
weakened the DES encryption algorithm, those that didn’t also did not improve the strength of DES in
any way. The one technique that did increase the strength utilised a completely different stage key for
each cycle, these 16 48 bit keys were combined to form a single 768 bit private key used to encrypt the
message. This extreme size of private key added a great deal of strength to the encryption algorithm at

the expense of using a larger key.

Other DES variations that have been proposed involve using the exi: i v DES algorithm
more than once. Using DES twice on a block of plaintext, ie. encrypting the plainw.t vsing one key
and then encrypting i again using a second key, can be proven to add no more than a factor of 2
strength to a simple DES implementation. The most common multiple DES variant has been (riple-
DES, where the plaintext is encrypted with one key, decrypted with a second key and then re-encrypted
with the first key again. This leads to a very strong encryption algorithm with a combined key length
of 112 bits. One of the major drawbacks involved in using triple-DES is that processing time is tripled

for both the encryption and decryption cycles.

DES is a very strong encryption algorithm that is losing its strength due to its relatively
small key size. Many people advocate using a DES variant, even if it offers less statistical security, due
to the cheapness in building a DES cracking machine. If speed of encryption/decryption is not a
concern then triple-DES is a good solution. A new standard 1o replace DES is anticipated shortly and

promises a much larger key space to protect against increases in compuling power,

B.3.1.6 Recommended Key Lengths for Block Ciphers

When we look at recommended key lengths for Block Ciphers, the other factor we have
to consider is how good is the encryption aigorithm in the first place. The DES algorithm is considered
very strong because a brute force attack is close 10 the best possible attack we can run on DES. 1In this
section I discuss recommended key lengths for Block Ciphers, assuming that a brute force attack is the
best option open to a cryptanalyst. While the 56 bit key employed by DES is inadequate for secure

implementations today, a 112 bit key should still be secure in 40 years time.

The actual time taken to encrypt a plaintext block will vary from algorithm to algorithm,
but since the time taken to employ brute force attack is exponentially dependant on the key length, the
small constant factor that differentiates different algorithms is insignificant. Let us assume that we will
attempt to decrypt the ciphertext using a unique hardware solution. Given a chip that can encrypt 10
million plaintext blocks a second, this chip could check each of the 2% keys of a DES cipher in 2°¢/ 10
= 7.2 x 10% seconds = 8.3 x 10* days. This is stili an extremely long period of time for a very fast

encryption chip. However, the problem of decryption is very parallelisable in that we can have

TR il
e, T T TR

AR

et A kst

Appendix B:
An Introduction to Cryptography

- Timelrante

multiple encryption chips, each trying a different subset of keys. Consider a machine with one million
of the aforementioned chips executing in parallel: it can check each of the 2° keys of a DES cipher in
2%/ 10" = 7200 seconds = 2 hours. A 56 bit key can be easily cracked by such a dedicated machine.
Even if the decryption phase took three times as long to perform, the time involved would triple to a
still feasible 6 hours. Also, this solution is inberenily scalable, so we could build a machine with two
miltion such processors that could check all possible keys within one hour, Also, given that we do not
know which key is the correct one, we will stumble across the correct key on average half way through

the process, so the mean time 10 decrypt a DES encrypted message would halve again to 30 minutes.

Now continue to assume a hardware solution of ane million processors capable of
checking ten million keys per second. Also assume Moore’s law continues to hold, ie. that computing
power will double every eighteen months (increase by a factor of ten every five years). A series of
results for the mean time taken to determine the correct decryption key is shown in Table B-4. Our 56
bit key will be decoded in an average time of | hour, while a 64 bit key yields 2 time of 10.7 days, A

longer key of 128 bits requires over 10" years to determine the key, providing very strong security.

56 Bits 64 Bits 80 Bits .12 Bits - « 128 Bits
Now 1 hr 10.7 days 1917 yrs 8x 10 yrs 5x 10" yrs
+ 5 years 6 mins 1.07 days 191.7 yrs 8x 10" yrs $x 10" yrs
+ 10 years 36s 2.6 hour 19.2 yrs 8% 10" yrs $x 10" yrs
+15 years 36s 15.4 minutes | 1.9yrs 8 x 10 yrs 5x 10" yrs
+ 20 years 04s 1.5 minutes 70 days §x IO_s yrs Sx 107 yrs
+ 25 years 40 ms 9.2 seconds 7 days 8x 10" yrs 5x 107 yrs
+ 30 years 4 ms 0.9 seconds 16.8 hrs 8x 10° yrs 5x 10" yrs
+ 35 years 0.4 ms 90 ms 1.7 hrs 8x 10° yrs 5x 10°yrs
+ 40 years 40 ps 9 ms 10 mins 8x 10" yrs 5% 10°yrs
+ 45 years 4 ps 0.9 ms I min 8000 yrs 5x 10%yrs
+ 50 years 0.4 us 90 ps 6s 800 yrs 5x 10" yrs

Table B-4 Block Cipher cracking times based on key length

In 50 years time, a 128 bit key will still require over 107 or 50 miilion years of processing
to determine the key, offering more than adequate levels of security. On the other hand, a 64 bit key
will be cracked in 90 microseconds and an 80 bit key in 6 seconds. These figures are also valid in
estimating a massively parallel effort involving a number of computers around the world. Assuming
we could co-opt 300 million computers to test 1 millicn keys every second, the figures in Table B-4

would be out by a factor of 30 and 1.5 million years is still a long time to wait to crack a 128 bit key.

The actual choice of key length is not as important as ensuring that a brute force attack is
the best attack on your Block Cipher. Given a good Block Cipher, a key length of 80 bits would be
adequate for non sensitive data whilst a key length of at least 112 bits is required to protect sensitive

data for the long term. In the case of dealing with multimedia on a network, the data is likely to be

valuable for a small number of years, its value decreasing with time, If a Block Cipher is chosen, one

Appendix B:
An Introduction to Cryptography

with a key length of 80 bits would seem adequate, however, most new Block Ciphers being developed

utilise key lengths of either 112 or 128 bits.

B.3.1.7 Amenability to Encryption of Streaming Multimedia

The question of how suitable Block Ciphers are in encryption of streaming multimedia is
a more difficult question to answer than that of Public Key ciphers. Certainly, Block Ciphers are able
to encrypt and decrypt data at the rates required of streaming MPEG-1 or MPEG-2. Indeed, a
dedicated chip encrypting 1 million blocks a second could encrypt at a rate of about 60 Mb/s.
However, it is also important to consider that a software system would not only encrypt/decrypt data at
a slower rate, but also be required to have remaining CPU cycles to decode and display the video in
real time. This implies that the amount of processing power available to decrypt the streaming data is

minimal and the encryption scheme employed has to take this into account,

It is also interesting to note that unless the Block Cipher is running in CFB or CBC
mode, the length of the ciphertext will not be equal to the length of the plaintext. Chapter 4 shows that
the optimal technique invoives partial encryption of the MPEG stream. As such, the desired system
will need to encrypt the plaintext blocks using a grain size of 8 bits. I a Block Cipher is to be
considered in either of the above two modes, then the decryption efficiency will be lowered by a factor
of eight, causing a heavy Joad on the CPU cycle budget. If we are considering performing the
encryption on the server in real time, then each stream being delivered will need to encrypted causing a
potential high load on the server. The amount of CPU power required to perform this task becomes
even more critical on the server that will be responsible for encrypting many streams of data, The

calculations involving the CPU cycle budget become more complicated when looking at this issue,

It is certainly possible to employ Block Ciphers in an MPEG partial encryption scheme.
However, requirements on mainiaining equal plaintext length and total CPU cycles available to
perform the process mean that a Block Cipher remains a difficult choice. Considering the CPU
processing requiremenis of decoding and decrypting an MPEG stream, it would be more prudent to

consider a Stream Cipher which runs at greater speeds than a Block Cipher.

B.3.2 Stream Ciphers

Stream ciphers are a class of encryption algorithm that try to emulate the properties of
the One Time Pad encryption cipher. From Section B.1.3, a One Time Pad cipher uses a true random
string of bits of the same length as the plaintext. This random string of bits is then combined with the
plaintext via an XOR function to form the ciphertext. 1f the One Time Random Pad is truly random,
then the resultant ciphertext will also be truly random and impossible to cryptanalyse. The same pad of
random bits is available to the receiver of the message who simply reapplies the XOR function to the
ciphertexi to retrieve the original plaintext. This scheme is perfectly secure if the pad is both truly
random and unique. This rules out practical use of this cipher due to difficulties in the distribution of

the random pad or private key.

194

Appendix B:
An Introduction to Cryptography

Stream Ciphers attempt to emulate the One Time P2d Cipher by using a psuedo-random
bit generator to produce a random bit stream that can be regenevated by the receiver. The nad is now
not truly random and therefore susceptible to cryptanalysis, but key distribution becomes simpier as the
entire random string can be represented by a smaller key, which is used to key the random bit
generator. As for a One Time Pad Cipher, the pseudo-random stream generated by the stream cipher is
combined with the plaintext bitstream using XOR. The receiver at the other end has an identical
random bit generator, the pseudo-random stream of which is XORed with the received ciphertext to
retrieve the plaintext. Stream ciphers have long been used in military communications and their design
is based heavily on mathematics. Unfortunately, while this means that the pseudo-random stream
generaiiy has good random properties, it also means that there is a wealth of mathematical knowledge

that can be used to attack these ciphers.

Initial implementations of Stream Ciphers encrypted the plaintext one bit at a time.
These implementations could be implemented extremely efficiently in hardware, especially where
serial transfer of data over a communications link is common. However, software implementations are
somewhat slower, Some stream ciphers can be modified to work one byte or word at a time where the

size of the word is dependent on the bus size of the computer.,

B.3.2.1 Principles of Stream Cipher Cryptology

A Stream Cipher is basically just a random number generator. Its security lies in two
areas, the first of these being how good the random number generator is. What this means is that the
closer the output strecam resembles a truly random source, the better the cipher is. In order to
understand why this is so, we need to look again at the concept of the One-Time Pad Cipher. If the
random source is truly randem, then the plaintext XORed with the random string will also be random
and there are no pattems in the ciphertext to exploit. Since any stream of bits are just as possible as any
other stream of the same length, it is possible to conclude that any stream of bits is a random stream,
including the repetitive *101010101010...° cycle. While this stream is just as likely as any other from a
true random siream generator, it does not qualify as being truly random as there is a simple
representation of the same stream. This is also true of any output produced by a random stream
generator as the random stream can be simply represented by an algorithm and a starting state value
(key). There are many statistical tests that we can apply to streams of bits in order 10 determine how

good the random number generator that produced these bits are.

There are many good random generators that are not cryptographically secure, leading to
the second requirement for a good stream cipher. That is, given a random stream generator and a short
string of random bits produced by that generator, how easy is it to determine the rest of the output from
that random stream gencrator. This unpredictability is what protects us from a known plaintext attack.
If a cryptanalyst knows a short segment of plaintext and the corresponding ciphertext, a simple XOR
operation will reveal the random bits produced by the generator at that stage. Assuming that the
cryptanalyst also knows the random generation algorithm utilised, we do not want them to be able to

recreate the internal state of the generator and therefore produce the rcir of the random bit stream.

195

Appendix B:
An Introduction to Cryptography

Linear Congruential Generators are amongst the simplest of all random number
generators where the next random number X, is calculated from the previous random number X,

using the formula:
X, =(@X,.:+b)modm (B.21)

In this case, the variables a, b and m are constants. Obviously, the random number
produced will be in the range 0 to m-1 and if X; is equal to X; then X;., will be equal to Xj.,. There are
rules for good choices of the constant a, b and m to ensure that the generator has a maximal period.
That is the generator will cycle through all values between 0 and m-1 before repeaiing itself. If a
random bit stream is required, or the random numbers are required in smaller groups of bits, then X,
can be broken into smaller groups and used in this fashion. Altematively, a function may be applied to
X, in order to extract a random number of the required size. While Linear Congruential Generators
make good random number generators, they are not cryptographically secure. Similarly neither are
Quadratic Congruential Generators (X, = (aX,.® + bX..; + ¢) mod m) nor Polynomial Congruential

Generators in general,

Shift Register

»i Doy | boa | bas | Des | bas | .o b b, b, by pb—-—-»

f(: Feedback Function

Figure B-10: Linear Feedback Shift Register Random Stream Generator

Linear Feedback Shift Registers (LFSR) are amongsl the oldest types of technology used
in Stream Ciphers, especially since they can be easily built in hardware and are generally very fast. A
Linear Feedback Shift Register consists of two parts, a register of n bits and a feedback function ()
which is the XOR of certain bits of the shift register. The output of an LFSR is the least significant, or
the rightmost, bit of the shift register. When a random bit is required, the shift register is shified by one
bit to the right with the new lefimost bit being set to the output of the feedback function (), an example
of an LFRS can be seen in Figure B-10. As for Linear Congruential Generators, we must choose which
bits will form the input to the feedback function, with particular choices ensuring we have maximal
petiod of 2" — 1 output bits before the LFSR repeais itself. The security provided by a single LFSR is
not high with a known plaintext of length 2n required to determine future random bits using the
Berlekamp-Massey algorithm. While the mathematics and security of the LFSR are well undesstood,
there are a number of more secure ciphers based on LFSR algorithms that use the LFSR in a non linear

fashion or combine multiple LFSRs in a non linear fashion.

196

ATy .:m’ﬁf’ Tpnee

I e e T S T Y

Appendix B:
An Introduction to Cryptography

Additive Generators are more efficient than LFSR generators because they produce more
than on< random bit per cycle. Whilst they are not cryptographically secure in their own right, they can
be combined to form more secure random number generators as in the FISH and PIKE stream ciphers.
The state generator in an Additive Generator contains n m-bit words rather than n bits as for the LFSR.
The function of an Additive Generator is exactly the same as that for the LFSR except that the feedback

function is of the form:
0 = (X, + Xp + ... + X)) mod 2° (B.22)

Again, good choices for which ward to use und what value of n to use ensures a maximal
period random generator. 1f our additive generator uses ra = 1 bit words and @ = 1, then the generator

degenerates to a simple LFSR.

S-Boxes in Stream Cipher design perform the same function as S-Boxes in Block Cipher
design, they map a sequence of input bits to a sequence of output bits using a non-linear function. S-
Boxes used in Stream Ciphers tend to be larger than those utilised in Biock Cipher but in general they
perform the same function. An interesting aside is the use of dynamic S-Boxes as in the RC4
encryption algorithm. A dynamic S-Box is one where the mapping function of the S-Box changes with
each cycle of the cipher, thereby introducing further non linearity and extending the period of the
random number generator. The RC4 stream cipher can be in one of about 2"’ internal states. While
Jis doesn’t ensure that the period of the cipher is 2" bytes, its non-linearity combined with this

number of possible states ensures a cryptographically secure random stream generator.

Strongly related to LFSRs are Feedback with Carry Shift Registers, or FCSRs. These
differ mainly in the feedback function f(), which employs the use of a carry register. Rather than
performing an XOR on all the bits being tapped from the shift register, we add them together, along
with the value in the carry register. The least significant bit of the result is then used to form the new
bit for the shif register, the result is also right shifted through one bit to form the new value of the carry
register. Using an FCSR requires more tnternal memory to store the catry register as weli as slightly
extra time to compute the feedback function, however the feedback function in an FCSR is less
predictable than that of an LFSR. FCSRs are relatively new and there has been little crypianalysis
performed on these generators, however some mathematical work has been done and FCSRs can be
partially analysed using a mathematical property called 2.adic numbers. There have been some
designs proposed that combine LFSR generators with FCSR generators, assuming that the add with
carry confuses the algebraic properties of LFSR generators, and that XOR confuses the algebraic

properties of FCSR generators.,

Non-linear Feedback Shift Registers, or NLSRs, are also strongly related to LFSR and
FCSR random stream generators, the main differences being that the feedback function f() is a more
complicated non-linear function of the shift register. ln this case, the feedback function would consist
of a complicated series of XOR, AND, OR and ADD functions, all inter-operating on tapped bits from
the shift register and intermediate results of these functions. The problem with NLSRs is that the

feedback function is difficult 1o analyse and it is more difficult to design cither a maximal period

197

i
N
-8
g
r i
a5
*
ey

Appendix B:
An Introduction to Cryptography

generator, or even a good random sequence generator. Some of the potential problems could be biases
in output bits or runs of the same bit, sequence period length may depend on the key, and the generated

sequence may begin randomly but eventually degenerate into a predictable output.

Many of these random stream generators can be combined in different ways to achieve a
more cryptographically secure random stream generators, this is especially useful when considering
Stream <iphers built using Feedback Shift Registers. As mentioned previously, these generators can be
built in hardware to both run quickly and using few components, combining a number of them together
is still going to produce a fast, small random stream generator. These technigues are utilised less often
with stream ciphers based around S-Boxes, mainly because these ciphers are generally implemented in

software and combinations with other generators will merely slow down the generator.

What follows is a brief overview of the techniques that can be employed 1o combine
random bit stream generators: Using Shift Registers to select outputs from other Shift Registers; using
Shift Registers to clock other Shift Registers and using Shifi Registers that clock themselves based on
their output. All these techniques can be applied to LSFRs, FCSRs and NLSRs or a combination of
these types of Shift Registers. All of the shift registers output a pseudo-random bit stream and can
therefore be combined with each other. As {or design of all types of encryption algorithms, the skifl

level involved in designing a secure cipher is high.

We can combine shifl registers by using one register to szlect from the output of two or
more separate shift registers. In a simple case we can combine three generators, labelied SR1, SR2 and
SR3. If the output of SR1 is zero, then our final output is the output of SR2, otherwise we output SR3,
this design can be seen in Figure B-11. This idea can be generalised fo selecting from more than two
shifi registers, however, the security afforded is not that much greater than the individual generators. It

is however possible to use this technique in 2 more complex combination of random bit generators,

SR2

—d

SRI ! »
] j : Random Bit

Stream

SR3

Figure B-11: Shift Register Selection Combination

We can combine Shift Registers by using the output of a shift register to clock another
shift register. In this scenario, if the output of the first gcnérator is a i bst, then we clock the second
generator, otherwise we do not clock the second generator. We can combine a number of generators
using this technique with the output bit being a function of the output of all the shift registers. Only

some of the registers will actually shift on each cycle, making the output of the entire cipher more

198

crpr e

R TE TiT sk

Appendix B:
An Introduction to Cryptography

difficult to predict. A variation of this technique uses shift registers that clock each other based on a

clocking function,

Shift registers can also be programmed to clock themselves, to make their output more
unpredictable. The simplest implementation of this technique uses the output of the shift register to
determine how many times to clock the shift register, with the actual register being clocked multiple

times for each cycle.

There are stiil other methods available to us when building actual Stream Ciphers from
our building blocks. One of these involves using the output of multiple shift registers in a voting
system to determine the final output bit. Another choice is to build a shrinking generator where two
shift registers, SR1 and SR2, are used, for each cycle we continuonsly clock both registers until the
output of SR1 is 1, the random bit is the output of SR2. This can also be reduced to using a single
register and clocking it twice, using both the output bits to determine whether or not to repeat the cycle

until an output bit is produced,

These techniques can be applied when combining random sequence generators to
produce a more cryptographically secure random sequence generator, The speed at which random
sequence generators can run, and their simplicity to build in hardware makes them practical for high bit
rate applications. Also Stream Ciphers are more flexible than Block Ciphers in that the length of the

ciphertext is identical to that of the plaintext.

B.3.2.2 Weaknesses and Practicalities

There are even more Stream Ciphers to choose from than Block Ciphers, and the choice
is a difficult one to make. While we can easily say not to select a Stream Cipher based on a Linear
Congruential Generator, there are still a number of choices available to us. Stream Ciphers based on
Feedback Shift Registers are very well understood but their weaknesses are also well known. A
common approach is to use a Shift Register based Stream Cipher where the key is reset regularly. This
means that only a small portion of plaintext is encoded using a single key. Since there is little
cipheriext associated with a single key, the cryplanalyst has less data to work with. Also, if a single
key is broken, then only a small portion of plaintext becomes legible. We how have a more secure

system overall whilst stiil having the convenience of a fast Stream Cipher,

As well as the Feedback Shift Register based Stream Ciphers, there are a number of other
Random number generators that can be used as Stream Ciphers. These generators — exampies include
RC4 and SEAL — produce a series of random n bit numbers which are subsequently XORed with the
plaintext to produce the ciphertext. While many Stream Ciphers are optimised for hardware
implementations, these variants are specifically designed for optimal software implementations, at very
high encryption rates when compared to Block Ciphers. Stream Ciphers offer good security, especially
if they are nnly used to encrypt short spans of ciphertext and then re-keyed. However, one must be

carefl whew: selecting the encryption algorithm that it contains no known weaknesses.

199

Appendix B:
An Introduction to Cryptography

B.3.2.3 Recommended Key Lengths for Stream Ciphers

Required key lengths for Stream Ciphers form a slightly more complex question than for
Block Ciphers, this is because the concept of a key in a Stream Cipher is different than a key in a Block
Cipher. In a Block Cipher, the key is integrated with the plaintext in order to produce a block of
ciphertext. On the other hand, in a Stream Cipher, the key is used to set the initial intenal state nf the
cipher. Since a Stream Cipher consists of a pseudo-random stream being XORed with the plaintext, the
security lies in the generation of the random bit stream. This random bit stream is not dependant at all
on the plaintext but instead on the current internal state of the random sequence generator. The length
of the key is therefore the number of bits required to represent all possible internal states of the random
sequence generator. A Stream Cipher consisting of two 32 bit Linear Feedback Shift Registers requires
a 64 bit value to set the initial state of the two shift registers, whilst a Stream Cipher consisting of three
64 bit LFSRs requires a 192 bit key. On the other hand, a Stream Cipher like RC4 requires a minimum

size 40 bit key to set its initial state.

Most Stream Ciphers based on Feedback Shift Registers are vulnerable to an attack better
than a brute force attack, however this can be circumvented if we re-key the cipher regularly. In fact,
the length of the key in this type of cipher is less important that the regularity of which the cipher is re-
keyed. For a single LFSR, a simple attack requires only 2n bits of known plaintext, we can therefore
state that the register should be re-keyed every n bits. This period can be made- longer through the
combination of more than one register, the optimal re-keying period should be uniquely calculated for

the cipher that is being used.

The security offered by Stream Ciphers based on S-Boxes and other Block Cipher
techniques depends on the actual algorithm chosen, but there are some for which a brute force attack is
the currently best known attack. These ciphers offer a larger period utilising a somewhat smaller key.
If the brute force attack is the best option available, then the recommended key lengths would be of the

same order as those for Block Ciphers.

B.3.2.4 Amenability to Encryption of Streaming Multimedia

Stream Ciphers are perhaps the most easily amenable to the task of encrypting streaming
muitimedia. In fact, Stream Ciphers are suitable for many different types of application where speed of
encryption is a prime consideration. While not generally considered to be as secure as Block Ciphers,
Stream Ciphers have many other advantages apart from their speed. Stream Ciphers are the most
flexible ciphers that can encrypt plaintext in block sizes as low as one bit which means that any block

of plaintext can be encrypted without increasing its length.

A Siream Cipher is only as secure as its random bit generation algorithm. Shift register
based Stream Ciphers are considered to be vulnerable unless the key is changed regularly. This tactic
improves the strength of all Stream Ciphers as it gives the cryptanalyst less cipheriext per key to work
with. The frequency of re-keying required and the amount of time required to re-key the Cipher can be

of concern when regarding the overall speed of the Cipher, however, re-keying tumns out 1o be a useful

200

T AR G e

L R TR e P 0 B B i S s A A

; '-“H

Eep Vr R

o e i Ly

R R T

S

AP

Appendix B:
An Introduction to Cryptography

feature when talking about streaming multimedia. Amongst the features of streaming media is the
ability 1o seek to a different part of the stream, as well as fast playback. A seek feature would require
the ability to start decoding the stream from set marker points within the stream, in the case of MPEG-1
at the beginning of ¢ach I-Frame. If we are employing a Stream Cipher, then we must be able to restart
our random bit generator at each of these marker points. Restarting the Cipher with the same key
reduces security as the same random bit stream is being used repetitively, however re-keying the
Cipher at each marker point solves one of the security issues of Stream Ciphers as welt as allowing a
seek to any one of these marker points. This issue becomes more prevalent when considering the issue
of fast playback as only select frames of the stream are transmitied, again re-keying the generator
allows us to decrypt these segments of the total stream even when bits of the total ciphertext are

missing.

A Block Cipher running in CBC mode can be considered to be a Stream Cipher, however
this will generaily run slower than most dedicated Stream Ciphers. Re-keying that would increase the
strength of the Stream Cipher is required to provide interactive multimedia, and the flexibility provided
by the Stream Cipher in maintaining ciphertext length makes these types of Ciphers ideal candidates
for the task of encrypting streaming multimedia. Finally, the speed afforded by # good Stream Cipher
means that the CPU time penalty due to encryption is minimised. While this is a minor problem on the
client side where only one stream is being decrypted and viewed, it could make a large difference on

the server side if we choose to employ a scheme whereby the stream is encrypted in real time.

B.4 Conclusion

This thesis recommends the use of a Private Key Stream Cipher when designing an
encryption scheme for the purpose of streaming multimedia. Combined with a good partial encryption
algorithm which will select some bits of the stream for encryption, a regularly re-keyed Stream Cipher
will provide the required security for the streaming asset as well as accessibility to digital media
features such as seeking and different speed playbacks. The choice of which Stream Cipher to empioy,
or indeed to use a Block Cipher in CBC mode, '+ an academic decision which will need to be based on
a number of ideas. These include the speed of encryption, the time taken to re-key the Cipher, the
required re-keving frequency of the Cipher, the required re-keying frequency of the multimedia stream

and of course the strength of the Cipher in its own right.

Public Key Ciphers and Private Key Block Ciphers are not suitabie for streaming
multimedia. Block Ciphers have restrictions in that the ciphertext length has to be a multiple € the
block size and are not as fast as Stream Ciphers. While Public Key Ciphers are too slow to apply to
this streaming multimedia, they should be considered when solving the Key Management issue. In
order to allow an authorised person to view an encrypted stream, they require the decryption key. Key
Management algorithms using Public Key Ciphers will allow us to securely transmit the Private Key to

the authorised viewer to allow them to decode the encrypted multimedia stream.

201

tan e PN -‘.J,_:»r_l__._‘.‘?l'_. PR e

bt ' ST [Y

¢

T

Appendix B:

An Introduction to Cryptography Appendix C;

Source Code

Appendix C

Source Code

In the accompanying CD to this thesis, you will find both the source code fistings that
implement the MPEG-1 Ciphers as well as compiled applications and modules that wil! allow you to
us¢ this software immediately. In this Appendix [will discuss and present relevant portions of the
source that are responsible for implementing the Cipher design presented earlier in this thesis. Source
code not shown or discussed in this Appendix is not concerned with the task of MPEG stream

encryption ot decryption, but rather with enabling the specified module or application to correctly

S e o A S R S O T N e TG D o b

function within the Microsoft Windows environment. Each section of this Appendix will discuss a

,1-"- different aspect of the source code listings. All source can be found in the “\Development”
é subdirectory on the provided CD, all applications can be built through the Microsoft Visual C++
Workspace file “PhD Thesis Development.dsw”.
‘__‘; C.1 ClassFactory and StreamCipherBase Classes
Two classes are defined in the two header files “ClassFactory.h” and
y “SireamCipherBase.h”. These two classes enable generic Ciphker Parser modules to be built that can
' use a range of different base ciphers. This allows ths sume code-base to be used for both the prototype
'f cipher and the more secure SEAL based cipher. A further advantage to this approach is that further
experimentation with new cipher bases can be easily performed througl: inheritance from the base class
" StreamCipherBase. The ClassFactlory class is a generic template which can be used in a variety of
f applications. It enables specific class instantiation at real-time, selecting one type irom a range of
f’ registered classes. While this task can be performed in many ways, the class factory approach enables
the addition of new class is z¢s to the factory, without any modification of any existing code. A short
\ description of how to use the ClassFactory template is included in the source cede listing.
Of more interest is the StreamCipherBase class, this class provides a base modei for a
Stream Cipher that can be use« for encryption of an MPEG-! bitstream. This class is pure, and as such
:f: cannot be directly instantiated — however it docs provide a range of virtual methods that are intended to
:) be overloaded. Note that the Stream Cipher can be used to generate two separate pseudorandom
E streams, one each for encrypting the Video and Audio Stream. The base class supports five virtual '
% methods, the first two are used to respectively resynchronise the Video and Audio Cipher modules
3 within the class instance given a unique 32-bit value, this value is not a secret key but instead a publicty
E known sequence number that can be used re-synchronise the pseudorandom stream. The next two
l methods respectively return pseudorandom bytes to encrypt the Video and Audio Streams, each call to :
,é these methods returns a single byte. The final virtual method is used to inform the cipher of the secret
e 203

Appendix C:
Source Code

e = I e s L St e

key to be used for encryption. While these two classes do not perform any of the encryption process in

themselves, they are used to simpiify the actual implementations discussed in the next section.

C.2 Stream Ciphers

In this section 1 will discuss the code that implements the XORStreamCipher and
SEALStreamCipher classes. These classes are inherited from StreamCipherBase and are used to
generate the pseudorandom streams as used in the prototype cipher design (Chapter 4) and the secure

cipher design (Chapter 5) respectively,

C.2.1 XORStreamCipher Class

The XORStreamCipher class is implemented in the “XORStreamCiphrer.cpp” file, this
class inherits from the StreamCipherBase base class and is used {0 implement the prototype cipher as
designed in Chapter 4. The prototype cipher design is very stmple, using a single 8-bit key which is
used as the (not-so) pseudorandom value to be retumed. This allows for a very simple implementation,
the 8-bit key is stored in an internal member variable and returned with each cail to cither
GetNextRandomAudioByte) or GetNextRandomVideoByte(). the resynchronisation methods are not
implemented as there is no resynchronisation 10 occur with the prototype cipher. Also within this
implementation file is the registration of the XORStreamCipher base with the Class Factory described

in the previous section.

C.2.2 SEALStreamCipher Class

The SEALStreamCipher ciass is implemented in the “SEALMacros.h” and
“SEALStreamCipher.cpp” files, like XORStreamCipher, this class alsc inherits from the
StreamCipherBase base class and is used to implenient the secure cipher as designed in Chapter 5.
The implementation is broker: into two parts, that of a basic SEAL Cipher (in “SEALMacros.ht™), and
its modification for the generation of synchronised pseudorandom byte streams (in
“SEALStreamCipher.cpp™). The basic SEAL Cipher is primarily implemented through the macros
defined in the “SEALMacros.h” header file. The core SEAL code is implemenied as macros to
improve the execution speed of the potentially time critical code. The macios as imjriemented perform
parts of the SEAL task as described in [x] and [y). The macros themselves do not produce a single
pseudo-random byte output, but instead are designed to be used as per the original algorithm to produce
an L kB pseudo-random string with the appropriate loop code. 1 will describe how these macros are

used to produce a singie pscudo-random byte when discussing the actual SEALStrea mCipher class,

The first set of macros are used 1o define asrays to store the SEAL T, S and R lookup
Tables. The first three macros define arrays of 32 bit words while the next three define the required
offsets into these arrays to correctly define the Tables. As shown in the definition of the SEAL cipher

in Figure 5-4 and Figure 5-5, the T and S Table are of fixed size while the size of the R Table is

204

A e T TRy

T

LE

o

hot

E2aTE

ikt e S S A O et

el
iy

i
Fos

R TR P

s e SRR

Lo

%t e T
oy

Appendix C:
Source Code

dependant on the maximum length of pscudo-random string produced — also the number of cycles

through the SEAL genecration function outer loop.

The next set of macros defines the basic functions of rotation of 32 bit values to the right
through a specified number of bits, followed by a set of which macros define the four functions and
constants used in the SEAL G, function. Another macro, SEAL._GKEY is a straight implementation
of Giey, taking as input a 160-bit secret key and a 32-bit selector/hash value. The 160-bit output hash
valuc is stored in the desired location. This macro is called to fill the T, S and R Tables. Following the
Gy.y macro, there is a sel of macros, one to fill an array with a continuous set of Gyy results, and three
macros that use this preceding macro to fill the T, S and R Tables. These final macros will be used by

the calling code to fill the arrays defined by the first set of macros in this header file.

The final set of macros perform the actual SEAL code, as shown in Figure 5-6 there are
two loops required to produce a pseudo-random output string from SEAL, an inrer loop which
generates four 32-bit values for each of its 64 iterations, and an outer loop which sets some variables
for the next cycle of the inner loop. Each of these two code segments have been implemented as
sepatate macros, simplifying any SEAL code to containing two loops with one macro being called
inside cach loop. These macros take as input pointers to the Lookup Tables to be used in random string
generation as well as stale variables used to store calculations during each cycle. The inner loop macro

also takes a pointer to an array where it can store its 16-bytes of pseudo-random output.

The SEAL macros can be combined to implement the SEAL cipher using the following

steps, some sample code is also provided in Figure C-1:
» Define variables to store the state information of the SEAL Cipher.

e Define the Lockup Tables using the provided macros.

o Define pointers to the comect offsets into the Lookup Tables using the provided macros.
e Fill the Lookup Tables given the 160-bit secret key.

o lmplement the basic inner and outer lcop code.

It is however, important to consider how these macros can be used to gentrate a single
byte of the pseudorandom streains produced by the SEAL Cipher — these maodifications, along with
resynchronisation, are implemented by the code in the file’ SEALStreamCipler.cpp”. The purpose of
the SEALStreamCipher class is to allow for the generation of 2 pseudo-random stream of bytes,
(herefore it will be necessary to tum the SEAL generation function inside out to produce a series of
bytes rather than a complete string as per the original algorithm. It is also necessary o allow for
resynchronisation, for the SEAL Cipher we will use the 32-bit resynchronisation value to select
between one of the 2*% possible pseudorandom strings that SEAL can generate, remembering to reset to
the beginning of the newly selected pseudorandom stream. Finally, we should remember that it is

essential for SEALStreamCipher to generate two different pseudo-random streams, one for each of

the Video and Audio Streams. Since the secret key for both streams is identical, and the SEAL Cipher

205

i
£
r
i

e, - k-

Appeadix C:
Source Code 4

does not modify the contents of the R, S and T Tables during execution, it is prudent o use the same

set of tables for both ciphers — as such the class maintains a single instance of the R, § and T tables, . %
?define OUTERLOOPS 64 i
{

uint32 A, B, ¢, D, N1, N2, N3, N4, index = 0; 5
uint32 puil2Random{256 * OUTERLOOPS] ; g
SEAL_DEFINETTABLE (pui32TTable) ; i
SEAL_DEFINESTABLE (pui32STable) ; :
SEAL DEFINERTABLE (pui32RTable, OUTERLOOPS); J:
uint32 *pui32T = SEAL_TTABLEOFFSET (pui32TTable) ; $
uint32 *puil2s = SEAL_STABLEOFFSET (pui32STable) ; i
uint32 *pui32R = SEAL_RTABLEOFFSET (pui32RTable) ; :
SEAL_FILLTTABLE (pui32Key, pui32TTable); I
SEAL_FILLSTABLE (pui32Key, pui32STable) ; 3
SEAL_FILLRTABLE (pui32Key, OUTERLOOPS, pui32RTable); 7

for (int loop = 0; loop < OUTERLOOPS, loop++)
SEAL_OUTERLOOP(loop, n, puil2R, pui32T, A, B, C, D, 5

_ N1, N2, N3, N4); ' b/

for (int count = 0; count < 64; count++} 5
SEAL_INNERLOOP (count, pui32S, puil2T, A, B, C, D,

indexi= 4, N1, N2, N3, N4, pui320utput + index}; -.

|

) } §
]

3

Figure C-1: SEAL Sample Implementation

e o

The tables are created as member variabies of the class and the sizes are defined at
fzompile time, however the offscts into these tables are calculated and stored when the class is
instantiated. When the SetKey() method is called, we need to populate the R, S and T tables based on
the secret key, this is performed by calling the three SEAL_FILLXTABLE macros, At this stage we

also resynchronise the ciphers, choosing by default 10 generate the pseudo-random string identified by
the » resynchronisation value of 0.

.

N

5y

i e e

In order to reverse the implementation of the SEAL loops, we must permanently

maintai . s .
aintain the inner and outer loop counters within class variables, these are both resel to zero when the

cipher is resynchronised. We turn the two SEAL loops inside-out through the use of ifthen statements

and look at the implementation of the basic algorithm in the inner loop. The inner loop produces four

32-bit pseudorandom words (or 16 bytes). The class maintains an array of 16 bytes that is filled with

each call to the SEAL_INNERLOOP macro, as well as an index as 10 how many of these bytes have

been retumed in previous requests fora byte. If this index is zero, then the random byte array is empty

and must be filled via a cail to SEAL_INNERLOOP before a value can be returned. Once

) the arrp
contains data — Y

or the index value is non-zero, indicating the array containg partially valid dats - we

retrieve i
the next random value from the array and increment the index before returming. When the

206

i B B e

. = A

Appendix C:
Source Code

index becomes 16, we have run out of data in the array, the index is reset to zero so that when the next

random byte is requested, SEAL_INNERLOOP is called again to fill the random array.

If the 16 byte random array must be filled, we first need to check if the outer loop code
must be executed before the inner loop macro is called to fill the array. This is the case when the inner
loop counter is 0 — at this stage we must execute the outer loop code and increment the outer loop
counter prior 10 running the inner loop code. Once this is complete, we execute the inner loop code
before incrementing the inrer loop counter which resets to zero if it reaches 64. This ensures that the

outer loop code is only executed once the inner loop code is executed 64 times.

This implementation is more cfficient than generating the entire pseudorandom string
and extracting bytes as required, a single video or audio frame may require only 2 small number of
pseudorandom bytes and CPU time can be otherwise wasted generating random bytes that will never be
used. This implementation generates the pseudo-random string in blocks of 16 bytes, minimising the
number of non-utilised bytes, the average number of generated random bytes which will not be used for

each resynchronisation value is 8.

C.3 Parsing and Encrypting the Video and Audio Streams

In this section I will discuss the code that implements the MPEGVideoParser and
MPEGAudioParser classes. These classes i*.pic:ant the two stream parsers whose final design is
outlined in Chapter 5 and utilise instances ¢ rther XORStreamCipher or SEALStreamCipher 1o
generate bytes to XOR with the plaintex:. % uese classes also implement the minor changes to the
generic Stream Cipher to ensure against the g~—+cation of unviable Video and Audio Streams (e.g.

False MPEG-1 Headers).

C.3.1 MPEGVideoParser Class

The MPEGVYideoParser class is implemented in the “MPEGVideoParser.h” and
“MPEGVideoParser.cpp” files, and is used to parse an MPEG-1 Video Strecam, selecting the
MacroBlock data to pass to the provided Stream Cipher instance to either encrypt or decrypt the Video
Stream. This class implements the State Machine described in Figure 5-9 and consists of two major

steps:

« The initialisation phase generates a lookup table that can determine the next state based on

both the current state and the next byte in the stream to be parsed.

o The parsing phase will parse the stream in re-startable blocks, the current state being stored
within the class instance member variables. The actions defined in the State Machine are
implemented based on the cument state as well as passing the necessary bytes through the
cipher. All of the actions defined in the State Machine are implemented here, including the
calculation of the Stream Cipher resyncrhonisation values and the subsequent resynchronisation

of the cipher. Itis here that the final modification to the basic SEAL and XOR Stream Ciphers

207

Appendix C:
Source Code

are performed — the cipher module retums a byte for XOR, its value is checked before
determining whether to actually perform the XOR.

Note ihat the class implementation requires specification of a cipher module to use
during the parsing process. This allows the same code to be used with both tke SEAL b..: ~d cipher and
the basic prototype XOR based cipher. When parsing an MPEG-1 Video Stream, the output using the
XOR module will be identicat to if the original State Machine (Figure 4-5) was used — the medified
state machine will perform more work by calculating the values /GOPTimeStamp and IPictuteCount,

but these will not change the eventual stream generated when using the XOR module.

Finally, this ciass can be used in different ways, when implementing DirectShow filters,
the Cipher class is created by the filter along with the MPEGVideoParser class, the cipher is
registered with the parser and the Video Stream is parsed directly after it has been extracted from the
System Stream. On the other hand, when developing entire bitstream encryption applications, we are
processing complete System Streams and therefore use the MPEGSystemParser class presented in the
next section to modify the bitstream, this class is then responsible for generating the instances of the

cipher class and MPEGVideoParser classes.

C.3.2 MPEGAudioParserClass

The MPEGAudioParser class is implemented in the “MPEGAudioParser.hh” and
“MPEGAudioParser.cpp” files, and is used to parse an MPEG-1 Audio Stream, selecting the
compressed audio data to pass to the provided Stream Cipher instance to either encrypt or decrypt the
Audio Stream. This class implements the State Machine described in Figure 5-11 and, like the

MPEGVidcoParser class, consists of the same two major implementation steps.

Also like the MPEGVideoParser class, the MPEGAudioParser class implementation
requires specification of a cipher module to use during the parsing process — again allowing the same
code to be used with both the SEAL based cipher and the basic prototype XOR based cipher. What is
different however, is that the modified State Machine for the Audio Cipher (Figure 5-11) used in
MPEGAudioParser will generate a slightly different stream as compared to the original State
Machine (Figure 4-9) when using the XOR Cipher module. This is due to the extra two bytes of the
data stream being left as plaintext for cipher resynchronisation purposes. While this means that
software changes would be necessary in order to exactly reproduce the cipher designed in Chapter 4, it
was deemed more useful to have a single code base that implemented both the prototype and secure
ciphers. As such, the prototype XOR based cipher implemented in the source code uses the proposed

simple cipher from Chapter 4, while using the more complex State Machine presented in Chapter 5.

Finally, the MPEGAudioParser class is designed to be used as a standalone moduie for
encrypting and decrypting an MPEG-1 Audio Stream. Like the MPEG VideoParser implementation,

it should be used directly within a DirectShow type application where iw: Video and Audio Streams

T N

5 ¥
A

S b

S

fon, T

i

i e en

oot e

Y

L

A

faii e e

Y T T AT

ittt

x {‘-;w» hnty w o

™

o T K et T L

Appendix C:
Source Code

can be acceised after they have been de-multiplexed from the Systern Stream, but through the

MPEGSystemParser class in an application that must process the Systen: Stream direcily.

C.4 Parsing and Encrypting the System Stream

In this section 1 will discuss the code that implements the MPEGSystemParser ¢’ -
This class implements a simple parser for the MPEG-1 System Stream and passes the multiplexed
streams contained within to instances of the MPEG VideoParser and MPEGAudioParser classcs for
actual encryption of the overall bitstream. The MPEGSystemParser class is not needed in
applications where access to the contained Video and Audio Streams is available ~ such as in a

DirectShow application — but is where only access to the System Stream is possible,

The implementation of the MPEGSystemParser class allows for processing of an intact
MPEG-1 System Stream and the in-place encryption or decryption of the multiplexed Video and Audio
Streams. The implementation is very similar to the MPEGVideoParser and MPEGAudioParser
clasges, whereby an initialisation phase builds a lookup table to implement the State Machine defined
in Figure 4-1, and an execution phase which processes the System Stream in blocks, passing sub-blocks

of Video or Aud.o Stream data to their respective parsers for processing.

The implementation is straightforward, the class creates a single instance of a cipher
module, which is shared between the Video and Audio Stream parsers as well as single instances of a
Video Parser and an Audio Parser. Ideally, multiple Video and Audio Stream parsers should be created
for the potential case of multiple Video/Audio Streams multiplexed within the System Stream, hut for
testing purposes we assume that there is only one stream of each type. This means that the
MPEGSystemParser class as shown will not correctly encrypt or decrypl a bitstream containing

multiple Video or Audio Streams and that the code must be modified to support this extra functionality.

C.5 Listings

The following twenty pages contain printouts of the full listings of the files desctibed
above. These files form the part of the total supplied source code that implements the primary
functionality of the encryption scheme developed in this thesis. Other source code is available on the
included CD, but this code pertains to using the aforementioned classes to implement a working
module or application and has more to do with user interface and system development than encryption

of an MPEG-1 bitstream. Of course, the code included in the following listings is also available on the

CD.

Source Code

)
X
L=
£
b
%
[N
-

B3O Nk e T e SR R e S B T S T e B T M N L Rl et S e e S ey o

g uosef Aq pajuilg

U Asye48serd

y Aiojoedssen

€002 'S0 A Aepuopy

T (22UwISUTANRID SWRPMIT) SN AERIHIN IS TRey < (} SRS UL ¢ ToadA LA eErAI ARIE S VTD

\ttb...h-h._-bhhcth|tls-thtiﬁbn...thittiﬁ.tt.i.th.lb-btttttt.thh.h.httb.btttiit.\
/e Y Areionpssers (a[T4 30 PUT ./

\Ilhb.I'.'lIli.Q‘Illlﬁ..h'li.thh.'_-I.IIll'l‘hhlI..Itﬁﬁll.Ilh“.ﬂﬁﬁltitl.tihhll.t\
FTOT

]
fiadippeaenay sew) . SAALSSTY) tIRGex H

ssuvisiIeans1n, odipsseg o1atas

{

{¥oPTTY Buoy nncuo-hquqhﬂnuvuuvotow
£25grd)

AapaowgurIe s iy ssegd
<pdijpeieea) ssels ‘adileswg sreras tuﬂ.a..uu

\.btt‘lll.\!inlhhii|ihﬂﬁhlt.I‘lllth.hlllI.‘hh"..bhl.lli-!llh.i.ht..tt‘lnllttt‘\
Fa T{uPRATINT, | PRATINGRE <3PRATINT ‘JesrgnirosongurIvaetlot ./
\\.- L PPEg,) BRegned <Ja0nZ ‘Hevngrlioaovjurrsasihvy f
* /
/s P FPURULNGS MY ATA DRIPARTBAX #q PIvouY Ay n\

£r CuPRATIMI, PUd (PFRG, FIPEFTAUSRY BUTISF PQQ YITA PRIEID B 03 PIR ARYY
/e CIPBATINT PRIINS SPRID RIATING ¥ pUT JRFEQ DITIED FIRLD BIvZ ¥ Lutunery ./

s ipEREY of
Lo o/
e C BOURIFUT o/
Fa FERTS oA PACPID ATTeNade o Aicioegrenyn Bugpusdrerios "
e I3 UFaRe parTes DUTes pedgety ‘ATIS8ITR PIIIWS M ot
J¢ 3O DPINONS CrEwIZd PRIZICMAS Y3 JO PIUNASUT UR FRIERL) i [)RIUNISUIRITREL) L./
Ao PRIVASTONX By AV awyl sdAa FEEIS Uoas 203 EEIAREID M 2
r FINCYs souwmaruy prlurr vy Arcaowgere Surpusdrarros vy
Ve A AR POIWD (] ROLURIFUTRICRID FENTD PUY SXRASTONN JQATNEIACWD o/
“. SRIR PROYIRK L1BQEMY STTANY WL ./
-
/e 150 1o pRINRIS BT n“

Je PINOYE #¥ET3 MY IRYIRTA PUTAISSPP 03 ISTFEIUWPT ue e pamm adiy A2 pue 7
r pclds preyd PaATIND BIn 0dA) FANTD e W3 IDRISUT SRkaaized Pavrdes o
e LE CPjaRrs uwd Afdzow) fewiD aya avys 2AAD FRRID WoORP Ao ATV EOHD o/
Ja PRAERID B PTROYS FERTO FYYR JO FOUNACTUT VY FAVRID URD L10ADey RENTD W2)
Fa 3NN FReTS MY JO UOTINIARTESD 10T AOTIR &1 PRIM #7 #9RID #; (TOWM #TUL ./

s
e Kapsswgurzeorsiey panydasl sevrd n\

._.Q‘-....lhh‘t.li‘!I‘bhbﬂ...‘tlt.“‘ht\.ti‘.til\tl..-.‘.lllh..“it..‘thb..‘ﬁ..t_

{

y Aioyoe4sse|n 246 £0 20 Aew

L e P S A T S P O s P

SN PE o

£00Z 50 Aepy Aepuow

»

fllpamans® (WpITT,) AN a2
1R S TEVTICNS STIDIIN A2 ({JPUS *SEvdvINgAionsnd e WPUIT) FT
FEMRpUTT PV I " BSREVavgAloaaRd » NELUTT JOIWISRT SHUOD: HEVEFRIHAD

Asuss (RAPUETY BUoT a3} -ac._"u.cuzuou“aqﬂahcuu-uv...hueuo-h:-ﬂw

» BALDRIWRIY

<pdALEdaven) saelor slvTdwen
\"‘t...Ih...ﬁ.‘.hhhiI.h‘.l..thl“.‘ttﬁh.ll.‘.nntlhh.h“h‘..t‘h‘.ti\t‘h!“il“ﬁ\
i ‘AT Iy uoTaxdeoTe uw BPRIAIRAD o/
Je 'DPEIMINE BNTA €3] PUR PI{TED T WOTISM] #Ieeg: Suppuedrrrros syz eIeEP o/
Je AT FT ‘wengeamgdIoasej Up gIUENID 107 A13WR Ut 107 FX00T AT QIFIRID Aq o/
Fe DRTYITAUSST FRRT3 PYA JO WIURIFUT WR MASEES TLTA POWAMN Jhqadw J7rqed eTUL .“
.“n n!cﬁﬁqn.!ﬁn_ﬁﬂuuﬂoﬂu-:guncambtu-!a\%».!nb n\

\iltt.t..‘ttt.“'tbb....t.litlhh0ttlthh‘\..lt.0.‘tttﬁttt..“n...‘tt‘-h-t...‘ll.\

!
}

oung shvesay ‘NepUITY OUST A0S IDUNISIRRIZISMMTESY ! (<adiipaansao ARl vdSE VD
P Fes
<pdAlpeavary SEeposx savidway

\thc‘uhhotof-cttth“-ttt-as«ot'ts-hh\‘s‘-hsu‘stt‘uuuttotuhhtitonottthh-tottttt-\

founge [wopuTy] asvavaedAioaoed

N ~drposr IRaRT JOF PREGRACAATORONS WA UT IPFFTIUepY Buipuoderriod ./
7 P PR UOTISUMG UOTANMID PRRTO ¥ EIAFTORT POIpARa TaQume I7rqrd FTSL of
Fe o/
rn (SUMY BARRIJUT ‘TrRUTTT DuoY AFuDajMIBICEIDIPIPTEIY PIOA /7

\\QQQ‘\“iiiihQt.‘i"t‘tt.‘thI..ithhh.“‘htﬁ‘\0.‘tht..llhhhhi\thittlhhﬁt\tttttl\

{
1

() eoreysu] ¢ e dAIRA WAL I0AD LSSV
» wpdAtpadvaidslacuonissel)
<edALpeavezy sswrsr eavlduia
.h.tt....ttt‘thtt.‘.lt.t..-h.i\

IapUvasULsy WEel
fRounasuln <AIPRAINAINFATONSYYSERTY DTN

\-“t.“inttt““.ltlI-‘-tt...tlttb-tt....ttt..t

le CBSURIFUT PRAICIIS BYI 03 InaUTod & suUmMIPT UMpE ay ‘#diy Areaoed 4/
.\\n oFFyosdy s Fo FIAFPIna Jpquia STaeaV & FRINFIS POVIPE IFQUse DSTaAF FTLL o F

'
\n () eouRasuy , <RAIPRIRRIDFAACIZEIPFNLD n_\
\tch-tttttl.tt.h“ttili.‘ttihh‘t*illthth"ttthhhtii‘hh.ht.‘-bttsb.t.h-hhthi'u.._
A WSTACIRMBTNT LI010ufFMTD FARTIURL FRRLd o/

T PPy PP P PP Yy P P PR Y S LT Y R

#

fasued {WMPpuTTY SUOT ASULD) SERTLHMINRID » sdfapslvasy
fiowmgz saweapuy ‘xapurts Svor AswdlamgadesanIednsthey FTaA
! fagwnasul, Aieaouisswl) st

i{ peaeastleracHss¥IoAls | loaag wRLF
oprand

I {shaoaoegsser) asund}sioaelisdoy Arcaowisseld

T{sAA00ORIFTwlh AU AISIDNIFSNTS
{} tiAacnavisser)

LI (RLMISUT L) o SELIPIIERIY Fpadia
ieawatad
}
Agandegsterd SEATd
<pdAIDIIwSIS FERID> SAVTdwMd

214

P N N LT T TP PP Y PP P PP PP PP R TP P T PP P PP PP PP PR Frryyy

i= FITIRAEDID () BIRAPUL i DR IRGEAIQAINSRIITD = PRATIMIADE o f
s TED)RIEBLD " () BIUNARUL : : DRPUTILIOADEIFIRTT & IFEGABU ,f
r) ,
“» epUTeDS B3 DUTen pRiedss 3q Ued DPRATINT ..\\.
o pife SRR JO FROURIPUT EIFAr¥Dax UNRY RARY SRFFRTD RRATIPD TTE DU o
/e coBwRy of
/a of
e *ZOFFTAUMRT pUpTASId 3 AT prupwIRaRp 1 o/
e yorga Jo »dda myn ‘seeld w 20 POURISUT v FRIEBIT i () rRRTSRIREID of
sadIoAse B WATA OTIOUNT USTARRIS SRRTS v pIvawibay i)2ungrawsidavavitey o/
M ‘FFALD AIGWINLRIRLD BUI JO MOURIFUT PYI FUIMIGY f) ecutwreuy o/
“. B FROUIMY IPQEBy ZTTORS WLL o/

-
s ‘ERrded aq wUUrs AI0a2ulEeers yo mIuwsISY u“
7 Ur OF POpTAcId FT [IINEZRP WPAF 30U Joonrasusn Adoo oy CIROUAM
e oY3ear VENOIy Paerediy g AFRa PUN PACAPIS BT TOASRIANUOD [P W o/
L L2

e NUCSTISUNT USTARRID PUR pIPTITIUNFDY SPRLS dRNCOT $YI #21NIY IDTUN FesstIDqR o
Fa #diy 3o {pevguregdrosowy) PIQETItA YRRIPIUT SUO #T BIBYY "RIETD MUY UTNITH o/

) -
“s ‘URFISURT USTIRRIZ #Eelo BUTPUGARPIIOS BYR PUw RIBYFFIUSE, ,“
e FRRTD PIPTACES FTA BOmART dira ¥ SAUTIRR USTHA MIA2 ¥ ~ FRESRIDGR i/
o saeps ayn Surasmrasuos uRys semn o3 vlesravard adeoow ot
2 1 PRpFTPOw By uxs syt CedCipraers) o3 Xejuyede swmaar ol
S PUR sraapunIad ou FEyR) IWYL UCTHASUNF ¥ FRUTIR YOTYA Ay y - sdemaluy L/
e pMILFeE drw #MAL AT A TERETD PYI UTVITM o/
£ ‘Aroaseg FeRr) Ayax vaumoardar ATTMmMade paeldary STUZ of
v of
i “Aroaongrrel) pavidusl seern o/

\!‘-.Q\ﬁ-.tibb.tt*-QiQ‘i"‘iti-‘.‘t\ii.tttill.it“h!it.‘Oﬁtit..hhhb!‘.‘lb.‘tb.‘.\

«<BUTIAS> FPRIOUTH

«dww> sphoUTE

.\t-‘._‘htt.-uhh‘t.bs‘. “l‘ttt\cl‘.b..ttt‘t‘t.t.th.t.lh.h.tulituhhhtbntiitnlunht_
Za “FRITd Xrpery wanydanr pur Arerqyl +45 pASpURAS pmlaUT L/

R R P AR d P R PR d P r b b AR R AR A A PR LA AN N SR F RS B R R AE RSP A A RP R Rss s raasarraararsannss)

o _ SUTSAOEITA> BDRTOUTE
H_AEGIDVILSYTD WU IApe

B IdGLOvigs1d JwpuiTe
_Qthllb..t‘lhh.tttIhl.Illlltli.hhlt...llll.l..I\t-.‘.It\l\..liltl.tttt..tt’t\tt\
N PPEMTIUT ADwrX[E JT RBR o2 ROWMD ./
.\l-tlﬁ.ltt-‘hhttttlls0.ihtb.s‘hstt.Olvts.bitﬁ.‘.|l\!\tlshh!"-l\!-stlhhhﬁt‘t.‘ﬁ\

\t-n-tt..t.htcao.q-bot‘.-..u..otttltta....hust.s‘uuuhhots.hht\ﬁshhtt'htt\-uhtht\

Y TeTTRIANRY AITRIPATY YWRUOY o/
e cBrtrasuruy wWOTIWMIOIUT PUR FUSTACITIMGMOOSTRL JOF #I3UE) o
£ ‘worsddroug ospTA DUFDEIIIS UT FFRALL (N X0y of
e E00Z-656T P3G of
Fa ang uorsy AG PAITAN o
\‘..“lb..‘“...‘.\h“*-llb-hhll‘hl‘tlllhhIlt.lt‘tltll“hhtt\h‘h.llt.l.“hl.l‘ﬁt.\
I FHLON of

\httt.-tb‘.‘-b..‘tﬁ‘.tintill b-lbﬂn-lbb!.‘tl-.iiit.t-t.istbthtibh“vb...‘thhbi\‘
fa IPTITAUGRT WA O PNTXA U UC PRICQ FFRID PRATIFD 22PXI0D B3 BICPID DU of
Fu IFIFFIUPPY BUTIIR ¢ wxNa TTFA A2090eg wewyy ML “IPESNID PRATIFR Jo »EUMa of
Je € JO UOTINRID BY1 PIROANE O FEIATSORL ¢4D FUOF FPIRPID DTTY IVPeR| STUL o/

fasegeandiionsyy RS ART P \-..os-s:--s._-c:-uo.n:os:s:--s..-:-‘s-t--uo.tn-:--uus-.-‘::.u-_
rs L ALOIDRIEFRTD VTS oF
fsaFSwIDOp <sawnIsu] ‘SucrTrdww! tpas Jwpadin F T T R T T T R L

y-Aiojoe{ssein ZL6 €0 20 Ao

Yy A10)084SSB|D ZL6 £0 2O A

Appendix C
Source Code

Ing uose” AqQ pajuid

210

(]} ddo seudinwennsyoOX £00T 'S0 Aey Aepuoty =
(o]

s ‘wreraribey udry o/
\l.II‘l.hl.0.......‘..““‘*..“bilO‘Itb.h‘h&tb...thhi.......tlll‘bhh..iih..t\\
£
[tAeueuwatagqd, » Aeyq | tAeysawarzgqd, »MQAMIIS praa (eI {

& FAsq winaiey) FAAFCAPT AMCTIDrg 2NN AN A TENSITA

fAsyqG WITAML () B3AGOTPrwMCPTR T AR IND kg TSI

: (PRTWAZEIN ZEIUTH) IUAIOMPTAYTASEY pyoe TUIITA

{ONTRAZC TR TEIUEN) I2UIT) OTPRL LS Nt FRas {enazra

{} tegdzpwwazagyuox- TWEIEA

{} tissearagdrsmweaas’ ¢ () amgdrpeveInzyoxn
oyyand
tAnyg »3ig
paasagoxd
asvgrmpdrouessas orrand @ aeudpyeweazsgox uu-.nw
\"hhtt‘..'llbﬁhhh-|tt-ii\-ts-“"\ilhlis‘it\..btthill‘hb.\ﬁhihthhtiilh“h.!t\h\
s E(G UT entra BYd FRICAS PUR AT FRSURIBIRIGR ‘Ieaurod Bafq ¥ 03 L/
/e aeiurod pYoA W KIS AWY PIATIS WYY A 0N POVANG TYNAILA UL AWAG uf
7 Jo ¥nTEA PR3 UINIRT OF FRPOO-PINY PIE PU¥A WOPUNL B UIMIRL O3 rPOYINS ,/
e genaira syz Cewp g o3 rpesu Supmou sourr spoyare Axder sxe reudio ./
fa BU3 COUKPRI OL FPOINM TRNIITA BNL CUDTATUTIIP FIRTS MYI UTYITA OP BT o
Ao WD FUSTINILIUSTAIT PYI 'LATITTNFF 00 PRI CINTEA PEXTT ¥ WAL AXFIUT TS LS
Ze UL HOX TARATE TITA Ioudfd awsiag Y3 "POUTISTT wpyn LT ARN sawarrg .f
L PY3 03 TeRDE BE MHlEA UINQRT WOpURT-opmided pya pus nrea wakq spbure o
“. ® #F Awy aeaTIs WG RIeya I3gdio sddaonond prdate v wapranad FERLS FTRL A/
\u T n“ -
\‘IQC"‘I‘l."Ihhb..Oﬁl'.tl.llIh‘hl‘lhh‘.‘hb.h...‘l‘il.llII"Il'..hh.tlhll.l.-h\ -

Fe CAMEI TR P IASHOY PEELD o e

\t-thhttttt-tt\t"ouuﬁn‘tttsa-tt\lnhnhtt..hhhhbs..hh!ttt.,hiitnﬁhh\ttttttsu-iou\

~UOX - ¥Qorad, HOLLADEISIA_Mox WU Faps .

] HIMATLDS HON STRIIpe *

o XIUT YOX *IT3epe :
\\\.ﬁtl-hl"llhhl‘chhl.“b‘tttt.hll l“‘.lltl\h‘hll.ﬂ\‘hhﬁ..‘tbltilliﬁtiilltt‘\
/e Iaarar 2000 PEOAT 0 FIRICUDD DRUTING L/

\hottsuhhu...tuhntn.sutt"ttt\-t.‘..t.-nh.t\|tsuh.-hn_-tisssttt-thahhio.sstb-iu-\

JAamisTy, spnioute
gLy, SPRTIUTE

\.t‘t‘.\t\O\ll\il\l‘hlt\ﬁﬁl\.lhh.. PRRAAASAPRS P AR appbas
N ‘sraerdara Lroaow 7O UCTITUTIOR vpnl. of
_\hvit.h1‘h\i.‘.hht"-tttt.00tl‘tt.tttt.\!.-hlltt\‘nt.hht!tth‘bhﬁnh\..\nli.tIhhh\\q

P T P Y P PP P P P PP TP T P FPPT Y TTY PP P PP PP pprr ey

i ‘eFrEarny AaysiRaTun HeEUGy ot

' ‘Euetrpaurbuy UDTIMMIOTUT PUS FUOTIRITUMBROIBIEL JOT PIIATES o/

i ‘woradAroug oaprs Supwraray Uy FEIFIUL (Ud ASF uf

’r CQOF-454T FRIARE o/

R R R R R A P RS B B B PR B R R P P AP R R R RS S P I AR AR S SRR R b a s sssasan] e ang werrys Ag ANEEY of
Fa) OB - sydTouesIISHOT (TS FOo PR W/ P T L TP P P P P PP PP P P PP PP P Py P e
L Py P P P P P P P P PP Sy e BIGK o
\‘.h‘t‘.“h.tt...lll\‘...Iilli‘l‘I.i\.i.‘hh“\"'ihhh....‘.lh....“ii. ‘hii.‘ht\

- { i ‘CIpTY puv oWpTA [-OBdy Dutwerilg yo woypsdLisas ,f
1IXIMT BOX) UATHHOKENI <IMdTIneIIISUCY "esvaIsydiyunasagrAIoid wiug Teas TEMY - trr #vm 207 aMgdrn yor sddioierd mpa rausaRrpdar puv FRRgARQITONERIAS of
1 Je PERID BERQ TENMIIEA NP3 SOIF PRATIFR FE REEIS FIYL O SReTS IBGITDMCRIIASTOX of

*andsavmy . YR P JO USTARIUBURTANT DUW UOTATYIFAR FUS Supeavos FrFr eerboxd v o/

L Y Ty T P E Yy PP TP T P PR TP P eIy L T T T P P Py PP NP PP Y T PR PP PY TP PP P PP PP PR PP e ey
D ~A203384 FRAL) MYI WaTa TIGSTD wERIAS W3 Jo uoiaentifed ./ e dd2° TPl roaRBIASNOF PITS of
\‘ \\ \.‘.‘..\hIlllﬁ.llIlh...i.hh..h'.b‘..l..l“i.lb‘bll.'..‘hiiillhh‘.‘ﬂ....'.‘...'lli.\

Zre abed ddousydiswesnSNOX ZL6 £0 20 fe 21\ ebed ddolsydiowesisyOx 716 €0 20 Aoy
ing uosep Aq paitict

Appendix C:
Source Cede

S R T T

P T e e A e i A

e B A AT PR ey TR el S U LA e

W yesegioudipwenns £002 ‘50 A Aepuoiy

1o = {SATYAZETR ZEIUTR) JadIn0apTAYSMAs Wy PTOs TWIAITA
19 = (MNTYAZCEN ZEIUTN} asydEaoTpnaaAis ey PIGA TENAZTA

;-:o:mnosﬂolsuume eI A
() asegisudryuweIny
tortqnd }

asngandIomesIas SEWID
__t..-hm-.utt-tou.tttohhh-cut-t‘hh.ttsshh-tu.utht.o0'|ttt‘t'tsthtttbtssstttutuut\

e A3y M3 &3 rejurod »f
Fa * ¥pnToUY aXpaveezed syl e 03 IeElrn N2 »f
Fa a7 Avy #3vATId M2 €23F ROYIPW TERIITA PR (A5 of
S ‘erdlag oTRNY af
i M BuTadirous Wy MM J07 wady acpuwri-opmed o/
i v Piespudl 03 DIFR BT POWANN [ENALTA FTUD © ([MIAGOPRTAWOPURY IIPNAYD of
i ‘WERILS OFENY o
N M BuradAirsus uy eem 107 saig acpusr-opmed -
fe ¢ ReIal o3 PPEN FY POWINN TEDALTA #TUL ¢ () RAAGOTPIYQOPUSNITININD of
F) ‘ERI¥A APQ-ZE pRpRaczd YA qaTA IMEND »f
e SEPTA MUY FRRTUCIDULIPE POUIME TRNAITA T [i () 2eydiperprageudeey o/
r “dnyes ATY-IE POPFa0IS MY GATA IW N o/
i CTRIY MYy FREATUCIDUAFRT POYIMA [ENIXTA FPL 11 23ydioo TPyl sey u“

. ET .
“u PhATIep Wj3 A PRARIOTIE S8OINGFRT AUt FIFERL¥ . {JroamIarng ./
e "TTORIMIIAICD BFET> PRATI?P V2 UT B PITOUN af
e HOYIWSFTREATUT xaydro rre ‘radys sya eejaeIn ()} Fo o0z MDD u“

L L)
“u PRI o f

I FenTa Fiya Aq pepincsd Fpoyaed ML CPEpeOlIAAd M DINOYE WATHA FPOULIES o)
S IWHATEA 207 PAeTdAra w PpTACAd ZaAwT AN ATADRITP PAM Mg O3 UM 30U LS
7. T woRlr PRyl CUOTAdAIOUR 738 SUTWARIDS UT FeN I0F [ZO1eIsual IRQURU L/
/s wopusropmmed) 2aUdyn UeNEIS € JOF PHETS FRNG TENZATLH ¢ SIDYAOID #WRID PTUL o/

N “FERGIFYSTIRERIIAS FRRTD ,f

Y P T T T PP P PP P PP P PPy PP P PP PP PP Y PP VY PPPY T P T4

Tzeaim Juy pediysun zepadin

In3hg Zays paubyrun 3jwpadia
_‘lt.t.ttIlh..l.thth..l‘hhh.Qiti‘hl.l.‘l.\\i‘h.Qii\\“‘\\\t\‘h\hb.ltl\“b\lﬁh.‘\
N rreys peulimm = #idq #dAa ARU Jo MOTATUIFET of
_OllntttttIUObtbtt‘t.thh-ittll-.lhhb.ﬁh‘nllbthlbt.t.c.bbt-.Isl‘.t...nbtt..in..“»\
TH_SSYEAINATONYIHLS SUT IV

H ISYEEAHAIONYTULS Jwu}Te

\-thﬂﬂ.-...-tt‘tili-th‘lhtl.l‘ba‘.“‘-5-‘1..-*iﬁbt\ihl“iiit“‘-h..‘b-ttﬁttoti\\
/s ‘RERRTIE ApeaITE JT Roy 03 NOMD o/

T T T L Y P TR T PP Y P PP P PPy PP PT F Py

PP PP T L L T TP TP P P P PP PO P TV P T T PP PE T PP PR TR P P T PP PP PR T PY Y g

L TETIRIAINY AITPIRATUT YFvuoW s
Fa "By rrpURSey DOFOIEIIOIUT PUE FROTICAITURCEROI BRI IOy PIAURD at
i WoadLIoug OPPTA SUTQRRIAS VF FEFPYL WS iI0f of
I fo0L-646T L2aeF of
RN L I PR AR B ISR R RIS PR PR AP PR AR RN AR AR RIS AMsssasrEpRnshtannssbpnetasnal £ ing uosar Ay WANEIH o/
i Y SFINEATuUeBIIE RIS Jo BT L) \-:-.u::ss-:uu:a?.-g:-.-:--s-v-au--.-s-so‘--s:uouss:‘u:-.atyuo.-\
P T P P T PPV T Py P PP PR PP YT EY Fr i SAIOH o
\‘.ihll‘lhht...ii‘.‘.‘..Ihhlb.“h...il-hiII“'i.I.‘IIIﬁﬁlﬂﬂ..l‘l“.‘..“.‘ﬁ.“‘h\
Jhung Fa COYpTY puR OWTA T-DHIH
/2 Buressris jo werad{rour wr sen 107 rreqdys W¥RII5 JUIIMTITR auvsnErdal ted o/
| /a FRPERYD PRARIFP ARYA YOUF SFR{O pPRq [WNZIfa & FAIoF #éel> STUL CFRNID o/
‘e Tg = tAeywawatigqd, sakq)iayses Proa Tenaita Fa »RegIPYdTAERZAS M P O UOTATUTIFP PUY FUTHIUSGD ST)F warboxd sTyi ./
[] u T bttt Rl il At il
‘m 14 = |} 92 AgoepTAnCPUVI AR 1%D ¥l TMmsATA /e T RF4GIBYIIQUEPTIS S RITS o/
.vln. o g & () 83AgOTPrguopaICd IV HIeD 34T TeIITA SRR r r R R AR PR R P R P a B AR P RS R P PP R R PR R E PP RO PR A R AR EE RO AR R s pu s paprrranr it artins)
S - —— : — -
£ 8 iz obeg y asegusydiowesns 246 €0 20 Aew i ebeq y-ssegiaudioweans 216 £0 20 Aen
=
&2 P
< G 18 UCSEr AG PaJULd

Appendix C:
Source Code

£ Y SRS IvVas £00Z ‘50 ey Aepuopy
A 1 iAsragizeynd ‘WZeIn ‘qIeTn dwWALICTN) GOMLIS_ TV DAOGHT LTS
N PRt I LAREE i ey LN b jo o omen G TUBE B2 IR0 O8 POPRORIEY 2iv pasdea pemid v
"szew ‘azem QILES_ TYE /e {ATRLYTILL FWES * DITAESTILE vES ' () TIVLLTILI TS
” fAwagrzernd "@ZEIn wZETn Cdmarremng QML TVES \n..‘.v--:--nt::.-t-tcnoot--:a:ss:--tnn-r.:nns..:-.q-uu\ussnangu“
A fIE (g >» wpdoopisngt) | Aearzeind | (owdszeEn SZALNIH * gZET i
v L+ (2 o aumpdosrisngy) IAIavHZEInd | (owASTEIM) STAINLOE = JZETH y frdunizgrnd *wmonT “ARNTEMdl RIS TvES
\ T + {Z »» nopdoorasanot) JAvaanzetnd | (SWASTETIGTINLE = G2 \ {5 mecagzeTnd ‘++aumopy SPUTT =3 JTOQT FIINAST = WNEOT Uy} 16)
” iz »» 3mepdeoqasanotjAvinguzemd | ouASZET™ = YEEmM A Avangeynd = davizeind, Eum
A
A\ fdmarzem i A% tAvaagzoInd ‘guIt “havast TAsyzoend) ISSACANTINGS TVES !.wu._z
/ w __-hil\iht-i.Q‘ﬂ.t.lhtl-“tciii.‘.ht..tt-hhﬁ‘ib‘iil-i.h.\'t‘itittlbt..‘hiiithﬁht\
” 'ENECTN CENZETR MIMEZEER ‘QTET COICIR .num«:.wr_.mmﬁn “. oa » r ama dso TEITNERE YD 1ITA o/
- - g [7
A ‘Amazyiremd CAvIngrzernd Coudgze™ ' aunopdocTIsINOT) JOOTHELAG TYES YUTFWN AR M Touer Faeind ndur o - ebors tam e

\.‘I‘...l.‘..l‘.'..ll...‘t‘l...‘..‘"‘.h‘h‘.\‘ll1“.‘.‘..‘.“"'.'Ihh“‘..‘t“‘.h\
Ao ‘door Tene of
Js 3 ySmorn equnu eredl s Pl SRIRA USEINFTIDIVOULNRY AURIInD 1 ‘AR L/
e BIRATIS WA AQ PRPIRITRD SBEQEa I PUM i PYL wo BRRRq N PUR €4 CR ‘IR o/
/e T D "G Y Jo renfEa PR serederd 37 agagrobIv UCIIwIIUdD wopuws-opensd ./

R TYES MR Jo A&7 [IRNS wya asd TR SUBTISTNOTES MYy matozrsd OXows UL .F
Lo - o/
7 () IOOTHRLND TV3S »f

\ttt.tbtt-tInttttthhhntt.uhlttoh»-sus.ttttlttnt-'oo-tott-u‘-noo't-tohhlntn.._

{TuwangzZeIN)oIIYLOH » TewawdTypn
17 << dadizeinjAraagigesnd o, ruwdefZem
o)L T (IwITdECIn + dwatzern) = dWALZE
(Avangrzernd ‘Zueivgzeivn ‘Imeanizewn CdwaLITOUKNGIN TYES SUTIMDS

TiTwwIegZeIn) 6AINLOY » TRwIRIZEW
A Tz << daprzemldmangiziynd e paviniZem
\ fajLwg 1 {(awaedzem ¢ dwagzgyng = dwaizem
\ fAvaryrzernd ‘ruviedreIn CIMeIsdreIn ‘dwalZc) AQYadn TVES TSR

-

FITNIVIZEITIGRIMION » TeviwiZipn
\ iz << dmdrzeynidvinizernd o fawIvgIcin
A [3ZLNG ¥ YTweledgEin = duairgm
A (AR DL TrmRANIIETR TRRITAZETN CdualreTh UCKLES TVES WUl

L{TREINLZETNISTIMIOE « TewiwgIgm

\ 1 4¢ dmapzeynjAviavizeend =e ruwinzem

\ {23080 ¥ Tuwingrern & duaiiem

\ Av1agLzcynd "ZwRINdZEIN TREIVAZETR ‘ANALZETN} AWLES VIS SUTIOP
\q..“hItl“ln.tb\‘..‘..ltll‘llhlI.Iilhﬁ.‘.t‘ll..hlh.‘...h‘tt‘lli“lhiﬁth.l.‘...\.
I T#raaold UWDTARINUMS IMANY QORI =apnMHd L)
. TWIS PY1 PRFFUT ATPATATINIRE Faen SUCTISURE JPITREF DIOZIBI FOIZES BRMLL .7
/e - - - i o/
/e [¥argdn IVAS ° 1 EoVidn TYES ' (INOXLES WSS () GIWLAS IES of

R R R R P s s P R PR R PR R AR R R R R PP ARSI SRS r A i g bt psnardaannbasrrnn)

tAvzagzemnd ‘(5 / (1 + SIOOTININOKENT & K}) + SEOT -
A\ ‘EE9t “AmEeInd) I TSSROANILHOD TS
f 3:2«2.&.33.73355ﬁ..nﬂﬁ__m._m&.ﬁ._ﬂaq.&.ﬁuﬁ.

(Avzayzetnd 'oip ‘610 “AMBZEInd) LDIOSHOAHILNGD 1VES
A\ (Aezayzepnd ‘AeazeTnd) ITAVLISTIIL TvEs N)wp)

{Avzrgreind 'zoY ‘g .htﬁﬁaqﬂubmvsmgﬁ.rzglda
A tAvaaggernd CAEeInd) 2IEVLLIIIS TV S1GFams
\ctts‘Qa-...nch\.tttcosotttts'ﬂttt-ttQOn\t\Qn-htt'OOQt00's..ht-u..tot.t-hhuttan\
I RIS PATTIT SU3 OAWE o/
' PIOA AFT-ZE oma wURling ATTmasy Ae2ay o P93 PUR FTqRD PRITIT MG COUT o/
le oA 17q-Lf Buo surleq Ayrenaor Aerry § aya aeyd R3oN CTIEF €3 PRTAYE o/
e 3 03 reaurod v pur ABY FUa TRATE wARTre ¥ pux ‘'S L R ITTF AT0R3200 4

e Axwar Py ‘ABY IFQepIT W BPRTOUT FIeaveesnd anduy PUL CokSwe fwyn VIS »
r sya BUFTns JO Fainess sATInOMNEe) Yaps Aerre andano uw PTEEF caxnea TYL of

- LA
A 11 ARUDNOANTLIC TS o

\.th-hti..'0...hohhotu-.ntctt-h-i'-.-huh'u.-o._-t_-ott.-ttt.hhhh.ttut.t-t-houtt!_

TEZET + VHTEIN = [plAvisysegzernd n
IGTeP + EHILEN = [¢lAwirgsedzernd
DZEM + IREETn # (2)Avangsegiind
TEZEM + THICTN = [TlAvazyswzernd
IZEP » OHZETR = 10)Avamysezeynd

ISWLZCTR = YIETR YIS = gZEM
FLEZETNI ZALNLOY = DTEIN FOzeTn » GZETN Iqepy = azegm
, 0L vas b IdooTTinzemd ¢ azvEn
4 {QRET™ '2TEIN TETCEMIRALINS WIS ¢ (WIS LZAIVION o dualzemn

(++doors fog > dowqT log & dooir) 307

{
Idwadzern « w2Etn IYZem e grem
fU2TETR ZALNIOW » DTEIN 1DZEIN = JICTN fQTETR » ZIEM
TeolTin VB3 ¢ (decririuzemd + azEIn
*(EZEP COZETN CETEYW CAIFNN YIS ¢ (WIETH) LTRANIOHW = dumizem
{++dooqT fog > dooqs fop = doeqD) uow
{
{duatzein = YIEIh MYZgm « gZem
TUEZEID) ZAIMLOM = DZEER O20PN » JIETn IQZET = JI¢™
, fzae 1as + {dooryixzernd + Fzem
+ (QZEPR COTETR ETCTN) ZLLAHD IWES + (MZETRILZAIMION = dwarzim)
{++d00Tt fOy > dooMT for = doo1T) 203
{
famalyege = YIETR IyZem = grem
H{EZETN) TANLOE = JZETN FOZEFN = JZETN LQZETh = FTET
I1EE TvES ¢ {dooTriyzemd + FICIn
+ {QTEPY TOZEIN TEZEYR) TALIRND TYIS + (WITUMILTILVION » denrzem)

(+edaony [z » does fg = dooTty 103

{191 - dootrlNrend !

« I*T - dooqlyzeind
« 18 - dooqx)yzeind
« 1§ - dooqplxreTnd) TEINLGY & [dooyrlygernd

T o o o ol gt B ot B o 8 ot o e o g B B i gt e ol B e i g g g it et

b ebiey

U'soa2ey1v3Is L5 £0 20 Ay

g ebed

(9T =< d00TF} 1%
Y soideWIvyds 216 €0 ‘20 Aewy

ng uoser 4q pajuid

£/l

T g e e e e T e st e e

Y saUoeENTYIS

£007 50 Aeyy Aepuopy

o O R R s g e e et et

P PR Py P P Py PPy P P Ty PP YT VPP T TP TY VPR P PP Py

\‘01"t‘t\ﬁttt‘\.\‘th‘i\\QQhQhﬁ\\‘-\hhb\\.\\\t\\hb‘\“‘..‘-th3)“01.0‘.‘;0..0..\

\t-.t.-h-totcnnuuitt:"t\‘uﬁcq\\s\ssn\ti\t\Qhu\tht\tt\\\ht.lttttn..hv-tchon-t.._

i = (docnyixzeInd)

{++dooTy fgp > dooy f1 » dooiy 297
Trasoeteszem » folizeynd

TrplAMZEINd w pHZEM * gzEW
flelAngzend » CIZET = qzE™
flzlAegzend = B2gm » Dzem
T(T]AeuETnd » THZIST = AZET
f(pl1AaNIEInd & OHZICTh = YEETD

famssmzeynd = Awsrgsoyretnd

fdeoTy sy

tAnsayssyzemd, ‘duarzem C [0glazeInd ZE WM

TRZEW EEYR CDIETR CEriIn YICm IE3Um
TIHZER CEHZETM CZHZET THIETh CQMIET™ reIum A

ITRINYZERNG ICSeTesZET™ ‘AMUZETRd) LINS YIS ST IPa

“Aezse ,
ATNSFLZEING PIA UF FIYI UINIBS Sn ‘INTaa Yebwy 3ufing ATq=090 ¥ MErmass -“
PUE {ANTEA UOTIDITIF ITQ=EC & PUC £pY 19108F AT4~037 W) widiasusled anduy ./
oMy PRYEY cIotw ML CIAAE) Tefs Ria BUTHITETITUE RITURN FRIQEL } puUe o/
S ‘W 3 i BuTIARS UFGa PRFR FR WDTIDURY APND PUD PRISIRIIED oXaWE STUL ./

— o/
4340 WIS o/

FPTOTIwIND 2L TAT VIS N IR
P29 30N CoLERD YIS suvjape
TaR ERRGND OIS INIS MUTIDe
t4SLIEYSYD TH1TUY TVES U jvpa

LEZF . (AL L (W)} (T A XIPARINS IVIS SUTIIpm
(hizy 2 (A | ociEy g) | (tA T N 12 ‘A WIS TUES aUrepy
2y , A1, (e (3 "4 'WPLLLINS YIS AUTIpR
CEeZy ¥ (=3 | LA 1 (e (T *A '¥ITILENS TVES AUTIWE

TeIoca) AAND TYEE MUY . f
A% paIn P FARCASUCS ZRATIY PUT FUOTIOUMT ZRATN JURNR FAGT FOTONG BIMYL L/

4 _ _ _ o/
I _ - YOATXSTINES ‘COAGED IVAS "DIAAITIVAS of
e TAXAND THBE O RAATND TNTS () CAAZAD INEAS T (JTIAIND TWAS (I WIAINDTTIVAS oF
\\5‘ﬁﬁiﬁﬂﬁﬁﬁbiﬁﬁ.‘.iith“‘\\‘i\\i.“‘ﬁ.“t...Q‘I‘QC..&‘I.\..‘.‘bl.!tistﬁiltiﬁtt\

LT 22 (2emy) | (I6 << (ZEYR))) (ZETN) TCILYLGE #5jope
(45 »> (2CWREE | {4z << {(2ETNIIF (ZEIMLZTIVLOM WUTIepa
LB 22 (ZeI) | {62 <4< {Z€INED) (ZEVR) PITLVLON suTlepy
LT »» (ZEMI) | (9T <« {ZEFn)d) (ZETRI 9TALNLGI SUTFwpa
(4ez 2> (ze¥nl) | (8 << {ZzEIMIb) (ZEW)AL #UTIWER
[ZE) SALVLOL #ITIvpe
(ZEW) SHAYLOM suTivps

tiez »» (zewmil | (6 << (zeTRI D)
{i0g »> (ZE¥N)) | (¢ << {zgwnid)

oQtI'h‘hh-ItI.t.t"lIhIﬁ'll.IIi\'......h..lthh..t.ﬁhht.bt-hh‘..httt‘.blhtbbﬁt.
e TRURTARIRIIND o f
s #2730 o ginonyn peede IeUTY PO BRIIOUY $1 UDWROS v ¥¥ Uwid IMAET L/
s Arravreder suop P UCTINIOZ PRITNSIS YIN4 T O340 MY UL UACHP #Y L/
/s PARG ZO 2eqane #yy wEROSY auSTX SYY 03 #NTEs DITQ ZE ¥ PIVLOT FOIDEN BIMY ./
\s t\
/e [TERINLOY () LTRLVION () ¥THINION of
i) ITALYLOE * {) GRIMLOY * () 6ZINLOY * 1} ERINIOW »f

tOIQ‘...!‘Ih.0..5\th.t.I‘.\i.‘tthlltl.ttl.l.t..lltklilI\thhh.l.lthh.h.l.lh.hh'ﬁ
£+ Amannzerrd ez nyz €1nd) LASAIOTTECLY TYIS ST ODs
AT I STEONGILISLIOTTILE THIS »UTIPe

Ava gLz etnd) LIS L1 0TTHCLL TYAS #UT %P

1 + Avtayszotnd
Avaryireind

TLis / {9 + SAOCTININGNTNT & #)] o Slauviherzyeeynd 2¢aomm
\ (sdooTseancuTUT aRTRATLIVZ EIRd) ATEIAINIARG THES POTIeLN

foszlawegAvazyzeend zesumn (ewmwiAnaayIeInd) 2GS ANTIAT VIS BT IPe

fEsts)emaAvasyzerrd zesum (vewmilesavzeInd) ATOULLANT LA TVIS SUTIvpe
\.t“h.ttt“.ththlt..ibbtt..ns“.ttttﬁﬁ"tttsiilﬂﬂnnlh‘lttttt"lhi!tt‘-.hhhfﬁﬁi.t_
/» O RTEVIETILS TVES) #eqes sedpa TLYF O3 of
Je FOIIGW YA O3 FIIES WA RRITTY v sdwiiv mpa Cauy (Fpava 27q-fE T) readlq ./
Za g AREFIO FY BIANL ¥ NI PUR UT (P04 QTG-ZE T) FRSAQ F IRSJIO WF MIAWL 5 o/
Ao W e 2avsrory #Y L Crfexav derya M3 Jo SUTWUTER] M1 FO SUOTIRSOT ./
Ja2802260 Wi 03 auyed Ayl PRIqe] YA OIUT INFFTO UL WINIM FOXOEU IM0 ML ./

o XY TEES VI UTHTA #dool S8ITO Jo SRR QEArIND FD WO ATIPTINE ./
N T OBTGRD ¥ ML FO BETY UL AWYA BION CTOXIR INOWIFA PUw ATdoTe FRTGYE L1
v HPUR 5 L BUT PTOW 03 PRITARES SLelts M) FUYIED O PN ACTTH FOIDWE BRI o/
e - - - 7
e .a-bm.m.tnndg.ueﬁm ”C.&ﬂmbowglqa ‘1) LRELSOTVIVLL TWEE of
g () SIVIVINLISG W3S ' OITTELEINTAT TYIS * O TTEVLLANLIIST W3S of
\t"it\.‘.tl.\\l.h‘I'illtt.l....t.‘tI.‘I!‘hhl.‘tt!t.]JIll.t.ithh.‘.I.th....ll.t\
/a TwaAlg wopter-opnded YIS o WOTAA U - LYY €T AU 03 FOIIN of
\tt...‘.th..hl‘.l‘hhh'ﬁ‘lhhh.ll‘bhl.i'il‘li.l“‘.l‘Ilhﬂe ..‘h“h.ttt...l.‘hl..t.\

Teeaum Juy prubyeim Jepedi

\thht\‘\\h..h'.\b.‘hh‘hl‘lbh."lth‘_'i.‘It\ii.thll.‘I‘.Ilit“h.l..‘h.‘i.i.bhIhti’\
Fa C{RATg-2E) Auy poulyem - poaurn A4 A o UGTATUTIINT o

P P Py PP P T TP R e PP PP P PP P F R Py

“H_SGUOWWIWLS_ autiepe
H SQUDWWIYIS JapuUITa
\l‘h..hhthhttllit.hh-'l‘Ihhll‘Ot..tll‘tlll..l...hh.h.l..tbh.‘lt‘lt.t.tt.llh.tl_
/e CPIRTIUT APEBITE JT BBF 02 NINUD o

R P T P T L PP Y P PP T F P PP r PP gy |

P I P L R Py P P PP P T PF PP Y PP PR P T PP P Ur S PP PP PP PPy P ey

e eprrzarny {IFEIRATIYY UPeUSK »f
rr “BUTIWRPUTRE WD FIRIIONUT DUe FUCTIRSITUNDROIP[RL ST »I3URD o
I woradlIsug orpra DuysesIng UT SEPMYL QU s10d of
L fO0L-4856T 2 E10
Fe Ing vorer Ag UBPIITIM ./
\.t.‘..hlt..lllQI"h..I.h‘hl‘\ll|h.t.“I\\i..’\.I...h...."hh‘.llhh. ttttt .il.\lt__
a FAION
_.b“htb“U'.lhhhh.\‘...‘ﬁﬁ“II...hllI“IIll.ll‘lhh‘h‘li‘h‘bh““b‘ll“‘hlllsbht\
s CfUDTineToTide SUTHSRIoUY) STERS USTISUNT OU SUTRAWSD)

FedPo2 TRUTY PHL JEYD RINFUP O3 FROIIIN FRELS IC FUDTISUNZ UHLS Ieinel #0rowa ./
Fa #0 pEAtBaxpTADY #F Bpo) Creydln WERIAS DCE WIS WA AWRSRTAT Aeifd roddem L/
Aa 3o aByRI ¢ Jo USTIRIDWATENT PUN UOTATUPFHP SU3 sUTHIvod aTF7 awaford syl of
R R R PR R R R R R R A R R R A AR AR R P SRR AR R SRR A P AR R R AR AR a bt asa)
’e W FOJININVIE (3 TTL of

L N L N L P Y F P P T P PPy Y Y Y FPP T R Py PP Ty,

%z obed

Y soIoeW VIS ZL6 €0 ‘20 Aew

.
Gy ofied

Y sOI0eNIVIS 216 €0 0 Ae

Appendix C:
Source Code

1§ uoser Aq perng

215

2 : wn
. D Printed by Jason But |&.2
B (% EI -
" 1]
May 02, 03 9:12 SEAlLMacros.h Page 5/5 83
A) =
SEAL_SETADD {uid2Temp, uid2h, uidZD, puid2TArrayls Y o -
SBAL SETAUD {ull ZTemp, uidzB, uid2e, pulldZfprrayds \ B0
SEAL_SETADP (a3 2Twap, uld2C, uildld, puillThrray); \ .
SEAL_SETADD (vi22Temp, wil2D, uid2h, puidZihrray); }
WiIIN] e uidZD; wid2N? = uildZB; WD e uid2h; uide o uid20; }
SEAL SETADD (widdTenp, wi32A, uildd, paid2TArray); \
SEALTSETAOD (uid2Temp, utd2B, uid2e, puild2TArray); \
SEAL SETRDD {uidZTemp, wld2C, uidX paidiThreay); 1
) SEAL SETHOD (wil2Tenp, wid2D, uidZh, puldzTArray); A\
/‘Ifll"‘fl.!!"'l!""""'!'""'"""'."ll"'.‘l!"l‘.l""fl'l’.'."'lll!../
/* SEAL DHNERLOOP{] .y
7 b
/* This macro performd the calculacicns as per tia Innar Locp of the SEAL L
/% psuado-random generation elgoricthm. It updates the values of &4, B, ¢, D, +*/
A4 N1, N1, N3 and N4 based on tha S and T vables celculated by the Private b
Fad xqr and tha pass number through tha fnner 200p. The resultant 26 bytes of */
/' psusdo-randon scring are scored in the puiditucput arrsy, A
f!...""l‘IC"l"l‘ll'..."'l'...lo.‘.Ill-.i.-'ti,...l"”‘-'CCCQQOOOOIDDCCID‘.,
sdatfine SEAL_INNERLOOP {1Innarleoplours, pull2Shrray. puildZTPeray. uildzA,
M1MEE, wid2C, unm W32, wWIMNZ, willN3, uilDi4,
- { pmszou:pu-.a
- wntlz wid2Tenpl, uid2Tewpl;
SEAL_SETADD {wl32Templ, wid2A, wid2B, pulld2TArray); wid2B “e uidlfy
1 SEAL SETXOR {ui32Tenp2, uid2h, uid2(, puildZTArray); wi32C +a widd;

EAL'UPDDN\A!TI‘!W}. widaC, wid2Dd, puld2TArray)y widiD " uidl¢;

SEAL_UPDXOR (\i3ZTemp2, ui32p, uid2A, puid2Thrray); wid2h +w uidID;

SEAL_DPDXOR (i daTumpl, wid2a, uildep, puilTArray)s

- SEAL_UPDIDD {ul32Temp2, widlB, uid2¢, puil2TArrayls

m:.“trmmmdamap:. uwid2d, uildiD, puldiTArrayly
SEAL_IPDRRD (ud 32Temp2, uidZh, uilddh, puld2Thrray)

M puidutpue [0] » uidZD » puliddS[iInnerloepCount <« 2] 4

faiduepucili = wid2C * pal2iE((LInrmrleooplount << 2} + 1)
puiddutpue (2] » ull3dD + puiddS| i Inrericoplount << 2) « 2}
puldadutpae [3] = uldldh * pudd2S[WInnerleoplount << I} + 3]

if (iinnerLoeplount & Oxbl)

l 1‘.\132#- wl32N]y wid2Ben W3NG 320w uidA]y widD e wl3M2,
" 21K

wi3ZAen wid2NDy vid2Bew uwidZHe; wid2C's WIN3; uldD = uidB4;

o e o b o o it et B ot B o it o

1

sangil

/Ul‘!ii‘l"d‘l"i.’!!."l!'!Otl'ti.ll’IIilill!lt!...""‘l'!l‘i.!!..l‘!lltii!il"
/7 Ert of File: SEALMacrow.h

Pl L e L L R r L L L L L e R R S L R R L Ll il

v Monday May 05, 2003 SEALMacros.h 3

sidsinim cual v

L A A R L

Printed by Jasan But
May 02, 03 9:12 SEALStreamCipher.cpp Page 14 May 02, 03 8.12 SEALStreamCipher.cpp Page 2/4

P e e e T T T S T L L L Ll

apu)) 3xanog
D xipuaddy

" /* File: SEALStreanCipher.cpp s // Loop counters and variabla storage for genaracing Audic peaudoranden bytes
P e L P T L L L oy int thudinByraCount, iAudiolmarQoune, ilwdioduterCount
/4 This progrsm tils contains the dafinition apd iwplemencation of the the v uint 32 wihudich, uidihdiod, wWi2hadicd, wW32hudlad) .
/7 SEALStraawCiphar class. This class 1s darived £rom tha vircusl base class */ ulnc 32 wWizhadicl, widZhudioll, widdPutioNd, uid2Padicld;
/* ScraasCipherDass and foplements the prototype SEAL Cipher for use in */ uint32 wuidzhadissSyncValue, puldZiuvdisRardonBlock(1]
W /¢ ancrypeien of Screaningy MPEG-2 dee and Audis. v/
/ﬁl.p-si-ppu-ll ntctllvp,pllctopp'CItcptttsn:cppppnrlr.pppo1-sptp¢¢n’ot¢ll-potl¢f r/a pr counters and variable aAtorags for g’lMt‘tﬁdg Audis> p.audo-rmdon .b)’tl‘
/* HOTB: L7 ine VideDytefouwnt, iVidsoImerdnme, 1VidecOutartounty
L e e L Y R Ty utng3l wh32videoh, wi3d?WVidesd, wW3IIVideot, wliddeady
/* Rricten Py: Jeaon Buc 7 wing 32 wl32Videctl, uidIVideoNZ, uildaVideoNd, uwid2Videal4y
. /* Daca: 1985-3083 [74 wine ul32VidecSyncvalue, pul3ViderRandombiock(4],
/* For: D Thesis in Straaming Video fncryprion. o/
FAd Cantre for Telecoomunloations and Informaticn Engineering.) public:
- /* Manash Untversicvy Australia, L4 SEhlStreanCiphar () 5
. P L L e e T P e T virtual ~SEALStraawdiphari) {]
* Pt L R LR LT LT e L L e R L e L L L S L i LT L wittual void RasynchiunlioCipher (uint 32 uid2Valus}
/¢ Include definition of basa clees and CassFacrory Lacpletes, -
f'!¢tOO00"'tO'v!lO-!l’toc!ioooocl1c-oO0ctttloOrot:l-nnntlatnpotvoccotttncacctnf unszs\mwalm - “1329;1“‘
v Hnelude “StmamCiherBateh™ idudiofiytatount = iAudicInnerCows = tAwtotirertunt = Of
sinclude *CloFmty b
virpaal veid RegynchVideoCipher {uine32 uilddValual
f‘..'....""l’l'..".4"...."0..."".00.-.'l'l'.l't"UCOC"‘Q.IC"'."‘D".."'"{
/* Include wacros for jwmplavancacion of the SEAL slgoritho. 172 uwl3dVideoSyncValue = ui3dValue;
,ti”nict'l!C!!Ulttfl.o.ttrl'toctsriflttlocttlttla.ccl"cclllicoit"fvoctl"cccf VideoBytetount & VideaInnertouns s LVideoOuerCount = O
#Hnelude *SEALMacrosh®
Fabdd ot bl dd L g Ll L R T L L e L R L L e L Y L L virtml byte GatHextRandowbudioBytel) §
f' Datined conscants te avoid eagic nunebars. ')’ viroml byte GutNextRandowWideobytel) ¢
}' Tra Lirsac chree wacros define information presentdd te the codd wing this '} virvml veid SetFey(byte *pbPrivateXeyl;
/* cipher, The 1ast macro defines che maximel leagth of & pdeudo—randen ./ }s
/* scring produced Py a given synchranisacion code, In chis case 64%P. The =/
f‘ c‘mr 1w1‘me.e_‘m v‘ll f‘ﬂ‘c che ‘trm' i mora "ss” randon m‘ ., /;.'l"'!l‘..ll!!i.‘li!."i‘iilivd!'.‘titt"it!l’.ctl!f.i!ll"!..."lt!.“ll'l.f
/* are required. o/ ,v" Ciphar Registracien. *
fl'I....‘.--..'."I.l....".....f..."lIl‘....l.‘l........-llll.l.-.DDOI'.i¢‘.'/ .!
tdafine SEAL_INDEX 1 f‘ Registracion of the Stresm Uipher with cthe Class Factory. ¢/
.‘.‘m. m 'm 1‘0 fl.‘I.l..l"l.“l‘l..!l‘.‘ill’.'.o..‘.ll'..““".l!"l“'l‘.“l.l‘..""‘..'."f
fdefine SEAL_DESCRIPTION =SEAL" namefpace
Sdafine SEAL MAXOUTERLOOPS 64
RagiscexrInfactory«<StreanCipherBate, SEALStrsantipher)> regSEALCipher (SEAL INDEX),
f‘..tdCI-...l..ll"’l’l.Il..OCCCIO.I...O.'II"O..-"I.. 'l.l‘..ll"......t‘..."f }
class SEALScr. nC!p.h Wi
f...lii!!'..ttut Fr R didt g npidadenkRigr il dgranntay c.p......./ /l’...OO0"'.'.!"‘.""'!."‘!!‘ CIO-.l'l00-000l"1ttia”.!OOll"‘0.0'II!.OOIIIO.f
/* Invarface. 7 /* Inplemencation. *
/' .f f...ll.l...lIII...lO..CI..'I.IIIO.IIt.ll..lbl.‘.'l'..ll.’lO...‘ﬂll"..llll.".d/
/* This clase provides s SEAL cipher which can be used to provide two L4 /* Construetor. LA
/* separste pavedo-randow strescs sa required for MPEG-1 Video and Mudio L7 Vi -
/* stream encryption. Are nunbar of protected mambar variables #ra dafinad r/ £ This fa the canatyuccor for che SEALStreacCiphar claas, we obtain and '/
/' o store SEAL svate informcion during random-scring generscion, The L7 . /* stora the offsscs of tha T, S snd R tablaa [for tha SEAL ciphar.
/* overloaded resyncironisstion nachods seply reset sood stetd variables to */ f'"*""'"""""""“"""""""""""“""“‘"'“'""“"'"""'/
/* ansura corslscent pssudo—randon string ganaracion., ©ILjplecentaticn decails */ SEALScrewanCipher: : SEALSCreanfipheri) : ScreawCipharBasel)
/* for other wirtual mathods are decribed in che inmplepentacion cowwant 7
/* plocks, 74 Puid2T = SEAL TTADLEOFFSET{puid2TTabls) ;
jcn-o-v-"oon-»-nocoonnnc.o-nnun-"con-p..-onotnctncnorltvvt:nooo:::ncn/ Puildzs = EERL ! ﬂmlsol’mlpuﬁ!zmhlll:
¢lass SEALStreamfipher : publie Stream@ipherSate Pui3iR » SEAL RTAELEOFFSETIpulllRTable)
protactad; }
74 R, & and T cadles used to generatce preudo-readon values P LR S L R L T L R L L L L L T Yy g
DEFINETOABLE {pui3ZTTable) 5 A vold SecKayibyre 'obPrivaceXeys o/
ssan'bzrmsmr.ztpmzmm ’* =/
SEAL DEFNZRTRABLE{puidIRTakle, SBAL_MANOUTERIOONS) ¢ /* This wethod is called co resac cha cipher with a nev Privsta Key. For the */
/* SEAL Cipher this involves Lirsc recalculacing vhe valuss of cha T. 5 and R ¢/
wine 32 *puli2R, *putddF, *pulI2T; /* tibles end then resynchroniaing tha c¢iphers private incernsl values., The */

LiT

Moriday May 05, 2003 SEAL StreamCipher.cpp 12

hY

K
-
I

i

RO

giT

b
—
o

LR

Printed by Jason But

May 02, 03 512 SEAL StreamCipher.cpp Page 3/4

May 02, 03 9:12 SEAL StreamCipher.cpp Page 4/4

/¢ cables are £i31led vias ¢3lla to che SEAL FILLXTABLE() macred, the Ciphers b
/* are r onised vis calla to the ResychKXXSipher() methods. ’

fl'iOOIIOIIO"..!0!”0"0!.00!’!i!ttllnOiltit!i"!ji‘f!'#tit!I'itii'.l'!'iii"!/
woid
?Bhl.st:reant‘.‘iphnr: 1 SetKey (byte *pbRrivateHey)

uint32
SERL_FILUTTABLE {pui3ZRey, puid2TTabiels
SEAL_FILLSTABLE (pui3ZRey, puild2STable);
SEAL_FILIRTABLE {puid2Fey, SEAL_MAXOUTERLCOPS, puilZRTable};

*puldZley = (uintd2 *)pdPrivateKeyy

RarynchiuxiioCipher (93

ResynchVideasCipher (0);
}
/i.‘.'..ll"i.Ill'I'.O."I'I.IIOO.."I"‘..I'.I‘...l'.‘."l.".".."l'..""’C.f
5' byte CetNextRandooludioByter) ';
L] L]
/* This vircual mechod is called Tt return the hexe o, d: put byte */

/* produced by the SEAL Qipher for encrypricn of the oud(o wun The SEAL */
/* algorichinn is wsunlly presented xs two loops producing » large array filled */
/* with peuede-pandom values, Sinca wve need che ourput Just & byta 2t 2 tina ¢/
/* we nead 6o tum the algorithm inside cut, [a maincain the loop countars L4
/% in class oenber vartables. A
/* - Searcing with the innermese loop, this produces 4 12-%ic pesudo—random */

e values which ere scored in the puiJJﬁudloRandoﬂB!ocl: array. If our LF4
” posician counter inge this array is net 1arp, than rhe array contains */
Fad rapdem valuga o can revurpn. HWa obcedn chis trndexad valua from che A
il #rray and increment the pesition counter. If chis counter is nowv 1§, */
/* va have pessed the end of che arrsy snd sc resec it co Zero. 7
#* = In the inivial conditian tha randoe erray position councer ifa zaro, gt ¢/
Vil is als¢ Yero vhan ww have colawned 311 encries in the array. This f
Fiad indicacas that we havd to gcaleculate 3 nav set of peeudo-randon values. */
’ If the Inner Loop counter is not rero then we are nominally inside the ¢/
i inner loop of the SEAL algerichm, Wae execute the code for the iansr -/
Fad locp viz » call vo che SEAL INNERLOOP(! macre, thia will f£111 the -7
I pullizAudiofendomBlock arrey. Finally, we increment the inner ioop ./
A councer, Ef ic f5 egqurl to €4 vw should terminste the inner loop for L7
Fid the [ext pass #o wa rTesst the innar locp councter te zaro., XNow that che */
Al arrey of randon valuts Contains data wa chd ratukn the firec byve and */
Vi ANCTemdnta the posltion ¢counter aa per sbove, 7
/* = In che inicisl condicion the inner loop counteér le rero, it la alse 174
’* zaro whan ve complece all &4 cycles of the ilnner loop, In this case v */

i ars nomtnaily insids cha Cucer Loop of cthe SEAL slgoriche. We execute +/
A the code for the outer loop via » call ce che SERL CUTERLOOPS) omcro, */
Fid inicialising variasblas for che inner loop. We also AncTement bhe outer */

Pk locp counter, if it is equal to SERL MAXOUTERLOOPS, we Trestt this L4
Pl counter to zero, Thia indicetes that the next tiwe that the inner loop */
Fid countas 14 rare, the generacion of rasndom bytes will resac to produes L
/" che Sibe SEQUENCE 38 2ONG AF tha Key 14 not reset. The nimber of bytes */
Pid gcm:aecd Lefora cha sequente is repeated Ls squal to SEAL MURDUTERLOCPS®/
/* ¥ Ig24. Once the outer loop 1s inicialised we chen procedd to axecure */
P the innar loop ¢ode »s cutlinad abova. o/

Ve R L P N e L e L L E R L S L L L

Eyte

iﬁkl.s:zcmciphcn :GatHent diotyte {}
byte bRecurnValue s

if (tAudicBynefouwnt == 0)

if (thudioInrerCount == O}

SEAL_OUTERLOCP [iAudictuterCount, uidhiudinSyncValus, puidlR, puild2T,
uil2hudioh, uﬂZMioB ui3d2paddiod, uﬂ?h&did) i 3TPadicll,
uiamiom wh A2ddod, i 22Audiold)

LaudisOucerCount +é
1f (LAvdioOutsrCount == SERL_HAACUMERLOOPS) ihuwdinOucerCount = Oy

SEAL_INHERLOOP {ihwdielnnesrCount, pullzs, puilaT, ul3d2fAwdich, widliudicB,
uildZfodisd, wi22fedioD, uwildZhuwdlioHl, wid2PudioN2, uillAudicll,
wi3d2AudioNd, pullZhudiofardonBlaak) ¢

LAudioInne r CounE++
AaudiolnneyCounc &« IxdL;

}

bReturnValue = {({byte *} puldZhudioRandonBlodk} [iAudisByreCoume ++] ¢
jiAudiaByceCount &= OxDE

retutn LRecumValue;

)

‘foltiititttitt..!'!'Ciltll"titilt‘illllllll.oli“lllt!l‘o.o!t!ltill.“!tii!iii,
£* byte GecNexcRandoxVideoByrer) LY

/* This virvual vachod fe called to recwn the nexc peuedo-randow osutput byts */
/* produced My the SEAL Cipher for encryption of che video scream, The coda +/
/* 14 ldencical to chat for GecNextRandomAudlioSyte () axcept thee a differenc */

/" sec of svate wember variables are
f.i‘flll'p""l““l""'.lI'l."‘.ll

L L L L e

byte
SERLEtreaniipher:: GetHent domifidacbytel)
{ yce ERetwrnValue;y

if (iVidaoByteCount os O}

t if (iVidesInnecCount aw O}

SZAL_OUTERLOOP {{VidecOut sr Coumne, wildidesSynoValue, puil2R, puldlT,
uid2Videod, uild2VideoB, ull2Videol, wuil2Videol, uil2VideodNl,
ui32Videcl?, uld2Vidwcils, uldIVideol4}f

Videpduter Couant ++ ¢
if {iVideeduterCouns we SEAL_MAXOUTERLOOPS) iVideoQutercount = 9y

SEAL_IHHERLOOP | 1Videolnner Count, puidds, puid?T, uiddidech, uil2Videal,
ulld2Videod, uid2VidesoD, uiddVidwoNl, ulBZVidmllz unzum.om
uil2Videokd, wi)NlduPAtﬂnhBlockl I

AVideoInnarCoantss ;
} VidesInmr Count im Qu3f;
tReturnValue = [(byte *) puid2VidesRandssblack} (1VideoBytelount+s] 5
VidesByteCount &= AxOC)
return bRecumValue,

)

P N g L N P L e L IR R L L e Rl L Ly

/* Enit of File: SEALScresmCipher cpp LA

/iiiicllt‘vol‘ii'lco!coicvol-noocu!:nnoooiooottt‘cvotl.oottcol"votoo'ir)ccct!"/

Monday May 05, 2003

SEALStreamCipher.cpp

Printed by Jason But

May 02, 03 9:12 MPEGVideoParser.h Page 1/2

May 02, 03 912 MPEGVideoParser.h Page 2/2

IO T T T T
/¢ File: MPEGVidecParsar.h */

P L L L L L L R L

/* This program file contains che definition of the che MPECVidacParser class '/

/T This class can process en Mpag Video Stream for che purposes of elther s
/? encrypelon or decrypeion. che clids requires sccess vo » fully L7
/¢ synchronised scresm ciphar. o/

ficttl:nvoc---Icncttv:f!-n-t!t'o-vn‘con'-o-occp-.oococ---tcc-c--c-cc---ntnccn-t,
/' NOTE: .
’~ This Lile contains some Conditional code which is compiled amly 1f v

Pl rhe CALLD CIPHER STATS necro is dafined during complle time. This is */
Fid true when corpiling che ‘MPEGl Ciphert spplication but not the 'MPECY ¢/
- Cipher Filcar*' DirsccShow filter. This code conpiles scatistica .7

’* dur che olpher proctés. '/
f‘.'"r-"l.l."..."ll"."‘l"'l..'..‘."".'..'ll‘-‘.‘.l‘..'.l"‘.'ll‘.""."’.',
/* Mriccen By: Jason Buc LY
/f Data: 1899-2003 LA
#* For: PhD Thesis in Streaming Video Eneryprion. ./
Pal Cencra Lor Talacomounicaticns and Inforvacion Enginesring. v/
4 Monaah Universicy Auscrelia. 74

FAa A AL R E L b L e Ll L L L R L I

(Il...l"'!..l’""l'.'.""II'III."’,"I""‘..I".‘...'.’I"’..ll"..ll"“."l‘f
/* Chack to sex If alrsady includsd. .
f.'-’"'.‘.’.l"‘.’ll'..Il"‘.“f.-I.P.'l..'."”..’I‘O."..."'.II"'.O"-l'l"'l‘/
tifndat WPESQUIDEOPARSER H
ddafine nmmnmm’h"

Pl AL AR L b LA e A Ll RS g el A L Lt e A L L E A L PP L L L L vy

/* Forvard inicion of Strea iBaée class. «/

f'.l.'l"..l.."'.."ll...ll.,'l-0..".0...!-"’..l...‘."‘..I.ll.lll.".'lll,'/
clazz StrwamCipherBase;

ALt ALl E L g S L L L L e L e e P T L Ty

/* Numbar of scates in che MFEC Audio Parser Stace Maschine. L

Fadtnid A Rl AL bRl R L LAt LR P PR P L L T T L L N L Yy

#dsfine VIDED NUM_STRTES n

SO R P R R OV N IR T I PN NN A AR TR R R F PR PR SRR BRI G PRI VAP

/" Candicional code. */
*f
"' The following code is compiled only if she EALC CIPHER STATS macic is v/

f' dafined during cerpile ties. This s true vhen corpiling the *MPECY b7
/* Cipher’ sppltcavien but not the ‘MPEGL Ciphex Filter' Direccshow filcer. ¢/
/* The wacros defined in this section define the variables used €O maintain o
/* staciatica for the pa &, othdrvise the macros resolve to no code.*/

g inodul
/b".’..l’.."".""l". trErid TR drig s III....I'.ll....lll....’.".."".f

sifdef CALC_CLDHER _STRTS

¥datine DEFIHE_VARIABLES () loag

%elae

18ycexProceszed, 1Bycesfelecnad, lDytesEncrypted

Mdafine DEFIRE_VARIABLES ()
fendif

b L e L L L L T L e T L L L T L e Ly

’{‘ class MPECVidacParser. ./
'’ ‘/
/4 Thia clasa will pacse an MPEC-1 Vides Straam in blockd, selecting bytes L4
/% Irom cha stream o phasd to the ciphar. The ciphar is *+ wodifiad straan L4

/* cipher pointad to by poCipher ~ which preduces psuedo-random bytes - the ¢/
/¢ modificacions ensure sgainst creation of Islse MPEG-I1 Hesdara, decails of +/
/* the modificacions can be found in the corresponding source code Lila, Tha */

/% public maxber machods of this class sre: :;
/'

/7 Canscructor r Creates and initiallsss the scave wachine wsed to */
” parse the binary stream. Ragilscers the provided 74
A cipher to b4 used to generated random values. 74
#* ResesScacaMachine (! : Resats the Stace Michine to tha inicisl acsce, uwsed ¥/
" during indexed playback to raset the module to uuu.u'f
A correct parsing of the naviy indexed stream.

£* PoraeBufler() : Pareas & block of dats from the Vides Stramm, the '/
it state 1s remtebared at tha end of the dita block 4o */
/* that pProcessing can contifiue on the nexe provided Lr A
Iad dacs bleek. ./

P T e R e LT e L R L R L L L L L Fy

class MPESVideoParssr

protected:
s 15cacey
int ppiSuttl'.aok\.rp[\FmEO NUN_STATES) (256]
long 1GOPTinaStanp, 1PLctureciunt;
SrreamCipharBasw *peCipher;
void InicialiselockupTablal) ;
Public:
HPEGWideoParsari);
) void RegiscarCipher (ScraamciphacBase *peScreanCipher) [potipher = peStraamci
rhar;
woid ResetStateMachine(} s
void ParsaBuffer (byce *pbBuffer, 2ong 1DufferSize);
DEFINE_VARIRBLES () ;
Ve
f".ll..l.'..l!l'...ll!‘..'--IO.‘."Q.COIIII‘..‘IIII'.‘III.““"‘Il'l.“ll!“‘f
/* Un-define macres tha% are ne longsr needed. *

N T T T P TP L T R P

mundef LEFINE_VARIABLES

rendif
;‘..""".“.“'...‘...'ll.‘..."i"‘..-i“'..'..."O...C’..Ol....ll'l"".-..'z
/* End of File: MPEQVideoParser.h v/

oL e L L L e A LA LR L el L L i ALy

Monday May 05, 2003

MPEGVideoParser.h 7

22

2p0)) 224N0%
2 xipuaddy

.

apo)) 3N0S
O xjpuaddy

.

12

(HA4

Printed by Jason But

May 02, 03 812 MPEGVideoParser.cpp Page 1/5 May 02, 03 9:12 MPEGVideoParser.cpp Page 2/5
f'-..'cllii"‘lDi"'Iili'l'.l..'I-‘...'I-O...ICv'..Dl"c"D..I.I....IIII'..I.'., /i F‘rl‘,lal $e1.ctim o: V!Cfdo scr‘.m Ior Eﬂcwgion' '/
/% File: MPEGVideoParaar. . & vy
/'Il.'.'ll.'I'I"IC'ICC'CIIIl"f.'l""".'l“..".'."..'..l.."""'.."l’.l"'! /l MMPM‘I vxd” stf‘.m c'n b‘ broken uto a2 ‘em. a‘ ‘wc‘“‘“ .b].ﬂlry '/
/¥ This program fila containa tha irplasantasfion of the the MPEGVideoPrrser L4 /" blocks called Seq . ench Sag c& can ba furcher sub-dividad tneo & LY
/* clags. THiS S1MAa RN procdss a0 Mpag Video Straam for tha purposes of L7 /* series of Groups of Picturza (GOPa). Each GOP ta furcher construcced of a */
/* aicher encryption or decrypticon. the class veguires accsas %o a fully i /' asries of Picrures vhich are in turn wads of a series of Slices vhich are +/
/* aynchronised avresm cipher. 174 /* formxd by & group of Macraflocks. The hesder Lor anch of chess conscruces */
/lvttt:---cv-nn--vtn--c-t--nnoot:ntvvotnoovt.t:ttccn!tvc:l-nctor-.’t-n:covo:oc;} At iz »)vaya byte aligned and begiria with the three byta sequence Q0-49=01. L¥s
/¢ NOTE: 7 /* The aneryption algorithm outlindd in ay thesia selectsa the Slice paylozd ¢/
Vid This £1le contalne sone Condivional code which L& ceaplled only Af L7 At Loy encryption. Howewer ve mush alsc enaura Ehat we do fov ~reate any .
it the CALL CIPHER _STATS macro is defined during cowpile time. This is */ /¢ falee MPEG-) Handers nor eodify any exiscing hesders, Thia is dana by ner */
o true when corpiling che 'MPEGI Ciphar® applicacisn but not che *HPEGY «/ /* encrypting asay byte that has either of cha valugd 0x30 op 0x0). He also */
Fiad Cipher Filver' DlreceShow filcer, This code coipilea ataciatics L7 4 /% apsure that no bytd encrypts o either of these two valugs., Outlined LF
,* duripg the cipher process. o/ St s » Staca Machine which will parss an MPEI-) Vides Stream and sslsce b
PRI R P L L e LR e LR L R Lt Ll Lt g #* bytes for sncoryption. .y
/* Wrictgen By: Jeacn Put ./ /* 4
/* Dave: 1225-2002 L4 /* STATE priding NEXAT STATE ACTION L7
/* For: PAD Theals in Stresming Video Bacryphion. -/ £t —— ———— JEp— o7
i~ Captre for Telecommunicavions snd Inforration Engineering. L FAd 1-1 xdd 1-3 oy
7 Monash Dniversity Rustralia. «/ A defaule 1=2 o/
XOOOIII"OOO'-'IICI.CI'Il"'l."!.."'!."I.l.,!"'.l'..!.."'l'l’l"".'.‘l"""/ f' I,
FAd 1-2 axeg 1-3 .y
FUFP e d P PR AR IR P A AR A SR SR P A PP R RSP PP PR B SRR P I PR dR R R FR P R bR) Vil defaule I v
/* Include Seendard C Libraries. . Viid .z
P e T e L L R R L R L TR LR e L L R R L R R LT X N Fad 123 [i1r1+] J=3 . v}
Mnelude <stdlidb. b Vil exdd -4 . LA
’ dafaulc 1-1 . Y
f‘..ltt‘ll..t'..'l.'..i’i..l"-l'..iIl.ll..il".ll’.i"‘."-c.'.‘D’;'i'.oo-"iif /l ',
/* Definition of ScresmCipharDase cless. - Fils 1-4 i 1~9 (Pievure Headaz; . "
/vtttctli.oo:i-t‘ctcniiovcncl-t---.oollcconﬂcclov¢00¢cv-nocc-vooc:::nccv-nolncta,{ i xbd 1=5 C0P Hawdar) . L
#include “StmamCipherBaseh” 7 xel-vxaf 2-6 (52ice Hander). L4
/e defaule 1-2 . I
f!ll!‘i."“li'l““lilti.O‘til'l‘l’l’iti!“!.tlt’ci.tloit"lnnﬁllv'i"iv"i‘l’it'f i Lrd
/* Includa class heasdar files, . L 1-5 dafaulc 1-6 INPUT & tlf « 5 MSP of Tinastanp.*/
/OOOC'-IC'IO'O."'t'..OO"'C'O‘lii..‘.it’.!!t..I-OC..-“'.CC"O'.-"I-".IO-’O0.0; /l f/'
Hnclude “MPEGYidesParser b Fad 18 dafruitc 1-7 Hext § Pita of Timwatamp. L0
» 7
f".!‘dd"l.l'."!.l'.C'l.!"l'.'..CPOO.'Il."t.'..'.....l'i..l..-.‘.--..-...ch ﬁ‘ 1‘7 m!‘u: 1-' *‘!e s B‘:‘ 0‘ Tm‘c‘w‘ ‘}
f* Canditionsl code, i 7. o7
IAd ./ P 1-8 dafaule -1 INDUT & (x84 = LED of Tinestacp, *7
/* The follewing code 1a compiled enly 1f the CALS CIPHER_STATS nwcro is o/ VA o/
/7 defined during coopile Siem. This L8 true when compiling vhe "MPEG2 L¥ I 1-# dafaule 1-1¢ 8 MED Bics of Plctura Counc. o/
/* Cipher’ spplicacion but not the ‘MPEGQL Cilphar Filter’ DirsctShow filver. */ Vi +/
/* The wacroa defined In this secclon etther radet or wpdsce scaciscie LV Fad 1-1¢ defaulc 3.1 INPUT & Oxc@ = 2 ESB of Pic Count +/
/* councdrs for the parsing 1#, othervise the mazroa resclva to ne code. */ i Resynchronisd Screan Cipher. o
/4.’O"'"OCl‘!.""i.Oicincvlidlttovb'l'itvt!l'....'iti('it!v!'titi'voottltlnc; re L
sirdef CALC_CIFHER_STWTS PAd 2-1 lxxx-xxxx 2-3 b
’ xrx-zzxrx 3-1 LY4
Wdef ine FESET VARIABEES () IByresbrocessed = laytesSalected = MytesEncrypted « & /* .}
Mdefine DNC FROCESSEL(1Amsunt) 1Byreskrocessedss lhsours FiAd 2-2 rlrr-xrxx 2.1 LA
Sdafine INCTLELECIED () IBytesSelecteds « ’ X0xz-XXEE 31 s
Mefine INC_ENCRIDPTED() 1pytesEncrypuades Fa o/
P 2-3 x=lx-xexx 2-4 .7
telse Fad axbx-xoex 31 ’5
P .
sdaf o ESET VARIADLIES(} /* 2-4 xxrl-xzxx 2-% - A
Mefine INC_IOCESSED! Amount} /. =x0-xxxx 3-1 . */
blefine JHCT SELECTED () Al MGt
Safine INC_ENCRYPTED() FAd 2-5 exx=-1xxx 2.8 LA
Pl xxxx-0xxx 3-1 Y
Sendil FLl ./
’r 2-§ oaAx-xixx 3-7 */
,’.f.!!ll'.'l‘i..‘lIDOOOO!ltt.'!iti'l‘!!t".!!!t!“‘ll!’!O"O"fl""...‘t!"éo/ /- =Ix-x0xrx 3-1 Of
/¢ MPEC Video Stream Encryption +/ /* WA
i v i -7 Ek-xxlx -8 '
Monday May 05, 2003 MPEGVideoParser.cpp 13
A W s e e i g g T = - o - i e b - R) s ke e e :, bl s z.
Printed by Jason Bul
May 02, 03 ¢12 MPEGVideoParser.cpp Page 3/5 May 02, 03 9:12 MPEGVideoParser.cpp Page 4/5
Fid XXX OE 3-1 n; /OO'I'C.“‘OOOItl!l’..t’itttlllO!.!tl'o'l‘.‘O..’"il‘."l!i'l.!ilt!.‘!t“.t.ii!tf
) A void
;“' 2-8 cxexxrl e} L7 MIEGVideoParser: :InitislizataskupTablell
- XexT-xxTO 3-1 -/
i, L7 t{‘or (ing ilnput e 0xG0; ilnput < ONIL; 1Inpmes)
Fd 3-1 xee 3-2 Pass INPUT vhrough cipher. v/
- 'PUT chrough . A PPiStataleskup [STRTE_1_1) [1Impue] « {iInput)?STATE_L 1:STRTE L 2;
e defazr 372 Pres 1t ough eiphar o TriStateloakipl STVME 1_2 [{Irput] » (AInpuc) 7STATE 1 1:STRTE 13
- - <l . L4 isratelookup I STRTE_L_3 11lnpuk) = (ilnput) 25TATE 1 1:STRTE 1 3y
,';: 3-2 é'.‘ﬁf..u g-i 3::: g;% ﬁ&'ﬁﬁ cxgmh::. v/ g;s-:n:-mouwlmm:l_ﬂ (ilrpare] = {ilnput <= Oxal) 2 6THIRTE_ L 1y
" </ ppisStacelookup [SIRTE_1_ 5] [Linput] « STATE_1_6;
,” 3-3 x¢o 3-3 Fass INPUT chrowgh cipher. */ ppisutllaoklp{mﬁ_i_ﬂ{ﬁmutl " gn'm’__{ :;
- PUT ch. n i . o/ pristatelookup| STRTE L _° mpucl = STKRTE_L_8;
i: é'.‘iim ;—; g::: g:rw Ehrough :};ﬁ:i, vt ppiStatelookup [STATE 18t (1lepur] = STATE 1),
Va L7 ppistatelockup] STRTE_1 9] 1iIrput] = STATE 1710;
'l v/ rRiStatelookus {STRTE_L_1&] {1Inpuel « STATE X 1
/7 Resynchronlsacion eccurs at the and of processing each Plovure Hesdar, o/
/* Ehis 4nAures chat che pasudo rahdom sStresm generaced ls correct fer ./ sniSeateloskvp (STRTE 2 11 11lnpuc] = {ilnput & Oxml?ﬂhﬁ_z_ﬂzmﬁ_L:I
¢* deacryption during indexed and high-speed playback. Details of how the L4 . oiSeacelookup [STRIE_2_ 21 (1Inpuc] = (ilnput & O=4Q) 7m§_2_3xm1z_3_ i
/* modifled atresn Ciphar does not produce sny fals+ MPEG-1 haaders Ls 7 Y- iStatelookp | STRTE_2_3] [11mput] = (AInput & Ox20) 2STK _2_;:8‘!!\'1‘5 3 1y
/* outlined in conmants for the ParseBuffer() vathod. L4 o Scacelookup ISTRTE_2_4] [LInput] = (iInput & Ox10) ?8TATE 2 S:STRTE 3 1y
P L T L T L e AL L L L L ppiseatelogiop [STRTE _2_5] HiInpuc) = (iInput & Ox08} 25TATE 2 6:5TNTE 3_1;
poiStatelookup i STRTE 2_6) 1ilnput] « (iinput & OxO4) PFIATE_Z_T:STRTE_3 1,
P T T e e L ppiStacelaokup (STRTE_2_7) [1Irput] = {iInpuc & Ox02)7STATE I E:STRTE 3 14
#* Definicion of State Nmmes for huvan readable purposes. \4 ppiStat elookup{STATE_2_6) [SImput] = {iInput & OxD1}?5TATE 2 1:STRATE_3 1y
f“...’l.ll".l..".lllI.IIlll..l"'CCCI“‘l'..'t.‘.."l...ll‘ll...l!d.i"‘..."; [3 1 ' :rp l tiI l ‘IE 3 l m‘m 3 2
ddefine STATE L 1] priScatalookvp [STRTE_3_1) [1lrpuc) = nput} 25TATE 3 1: =5
m::in: STATE 1_2 1 ppiStatelockup [STRTE_3 2} [1Input) e (SInput} ?STATE 3 1:STRTE_3_ 3
tdefine STATE_1_3 2 ppiStatelookupiSTRTE_2 3| [iInput] « (iInpuc) ?STATE_3_1:5TRTE_3_3;
sdefine STATE 1 3 !
adafing SOATE 17 & £ ppiStatelookup | STRTE_1_3] [0x01F = STRTE_1 4;
wdefine STATE L s prlStatelookup (STATE_L_4] [Ox00] = STHTE 1 9;
sdefine STATE_1_7 & PPiStatelockup [STRTE_L_4110xb8) « STHTE_) §;
#define STRTE_1_8 ki ppistatalookup [STATE_3_31 (0a01l] = STRTE_L 4,
tdefine mg o 8 }
:::glig: gﬁl-‘b gﬂ /coccctlu‘lt:l'nttavcacpc.vvtcnccotll‘npoc-oooivlocc-tvntcittl..ont.oa-.uclvplof
sdefine STATE 2_2 1L /* void Re.ecStateMachine() A
tdefine STATE 2_3 12 i)
sdefine STATE 2_4 13 /* This wathod allows us £ reset the stake wachind To the indtial stace of A
adefine STATE 25 1a /* STATE 1 1. ¢/
sdafine STATE 2 & 15 /nootv‘oocooc-.¢--.nnc-pp-gcocnprooso:--v::ooccn---nocool-u.o..o--'oo-:o-o-o/
vlefine STATE 2_7 16 void
tdefine STATE_ 2 3 1 MPEGVIdecParser: tResenStaceMachore)
sdefine STATE 3 1 18
4define STATE_3 2 1 iState = STATE 1 1y
idefine STATE_3 3 20 FESET VARIABLET (3¢
’('II"‘.'l’....-.".-ICIIJ..C'..,l".l...‘..."l’....’..l".l..l"l...'lIOIICII'-"(]
/* Constructor -/ ft---cocptnv‘ca-cn-cccnco--gnp---oc.c:cvov-.n--ncunn---c--po.c-:.:.o-otcop-noonf
* . /" void ParsaBulfar (byte *pbbuffer, long lBufferSize) */
/* This s the canscrucrsr for the MPEGVidesParser clase. e inicialise the */ ’ :f
/* Scave Mechine Lookup Table baford resevting the current scaste. ' /* This wachod parses » buffer cancainiag » part of an MPEG Vidio Strasm and */
/ooo..--p..oc-".'-.....-'¢.¢¢u.o.n.p»,gn-cc'.nn'uvo.'..p-ptncnnp-orppnlcvcvtttf Fad passes cthe relevens .by‘tl& From tha buffer to cha <cipher, Tha pethod takes */
MREGVideoParser: :nPEQVideoParseri) : poCipher (HULL) /* & poincer to che buffer and che laagch of that bufler. =7
/¥ The parcial selection procedurs ts outlined skove, when the staze wachine */
InteialiselohupTaislef) ; /¥ is in Statas 3-1, 3-2 or 3-3, the bytes mut be ancrypted, Tha cipher 10 ¢/
BagecStateMachine) /% & modified stresm ciphir, £f will not ganérate » Gkdd or O0x¢2 byte, nor o
/' will ic tmodify sn extseing 0xd0 or 0x0l byts, ss these bytas are used as ¥/
/" markars for the Scate Maching to locate MPEQ-1 Header Codes. This ia A
Pl L L /* actiiaved by chacking the erxiacing value (shifved right one bic} prior ko ‘o
J* wold InicialisebockupTable(} ./ /¢ performing the XOR, 1f the shifted byta ‘& 0x0d loriginal value of 0x08 or */
Ped i /% Uxtl), or the genersted randon byce value shiftad right tarcugh one kit o/
/¥ Taic wevhod 18 called to initilalise the lookup table Fo gonfer with the A4 /* (original value of bRandow or BRapdom XOR 0xdl), the XOF g0 noc parforwad. */
/* state Machine descrikbed sbove. 7 /% The £irst check ensures we do not change any existing ‘200 or 0x0l marker */

Monday May 05, 2003

MPEGVideoParser.cpp

3p07) 934108

3 xapuaddy

L2
Emx
-

I
ca
gz‘
nn

T o] kLA

r— - n — m T o o L T o T el e e o+

2 " o
83 Printed by Jason Bul | &
~ B3
AR
H]
May 02, 03 8:12 MPEGVideoParser.cpp Page 5/5 &8
/* bytea and the ssecand ensuras vo do noc craace a Lelse MPEG-1 Handar Code. '/ 9 ;‘
/* = bRandom " LRandom = 0x0¢ */ a.
‘//: - bRandom " @x¢l ~ bRandom » O0x61 :‘/f Y ﬁ
/* Hhan che Scacs Machine is in States 1-5 chrough 1-8, we are processing cha */
/* cimecode within s COP Headar and vw Ators chis valus in the class variable '/
/* 1GOPTimaStamp. HKhen the value is fully read, it fs #2t in che cipher. v/
/* When cha Stats Mezhine is in Scates 1-P and 1-10, we »re procedsing the */
/* Pilecura Coune walue in the Picture header and wva stora this value in the ¢/
/* class variable lPiccureCount. WKhen the value 1s fully read, it is set tn */
/* cha ciphar and the stresm cipher musc be resec for pynchronisatton L4
/* purposes, ensuring produccion of the correct saguence of random byces for */
/* tha follewing Slice payloads. o/
o /% audio freme and mre abour vo complecte processing che header, the nexc byte */
W /% will form part ¢f the paylaad snd must be passed through the cipray. For */
S FeaynohIonisstion Durposes, WA Gust Tesst che stream cipher rapdem number '/
/* generator to ensure ve produce cha correct sequence of random bytea. A
/* Afcar the ciphar process is complese, wve muat updatd the current State, U
/* this is done using the State Machine Lookup Tabla. ¢
/DI..I’OIC'I..."I.'.O.‘."OOOOI'C'.OO..'C"II...lI‘.‘.t..,l.'t..O.t'l.lI'OCCIII/
void
MPEQVidecParser: :ParseButfer Myre *phbuffer, leng 1BufferSize}
byte HTemp, bRandsow, *pbInpus, *phEndbBuffer = phBuffer + l1BufferSizay !
if (pcliphar == NULLY returng
tor (pblnput = pbBuffar; pbinput. !=» pEEndBuffer; phImput++)
rrit.d: {iScate}
caxa STATE 1 5: IGOPTimeTtanp » {*phInpuk & 9a)f) <« 27; break;
cass STRTE_1_6: 1G0FTineStampen *phTiput <« 19; break;
- case STATE 1 7: 1G0PTime Scanpen *pbInput << 11; break; \
case STATE_1_ 8: 1Z0PTineStampe s (*phinprats & Ox80} <« 35 braak; !
- case STATE_L_9: 1PictureCount = *pbImput << 2y breik; i
craa STATE 1 13- 1Picturetount+s (*pbInpuc & Oxcd} »» 6) i
gcci.);)hﬁt-bnclyneh\lidwctphettl@omns:::np + 1PictureCount) |
rasky
. case STATE_3 1:
casa STATE 3 2:
case HTATE_3_3: ERandom = peCipher=»>CerHasatRandonVideaBycell s
THC_SELECTED ()
: bTeup = {(*pblnput) >» 1;
- if ((bTemp] &6 {(DTemp t= (bRandom »»> 11}
*phYnpuc”s bRandow;
) INC_ENCRYPTED() ;
)
1ftate » ppiStavelLockupliState) (*phIpuel;
e) LIC_PROCSSS!DIMIO:'Sixt) i
/‘l"!""l..'.’""."lfl""ll"l‘"t"ll"‘l’""“"“.‘f!'l‘.."“f.ll.“‘l[
/* End of File: MPEGVideoParser.ipp A
/l'.."".Oi"IOO"D"'."""'-JI"DDD-l-IOOIOI"'0.0"..OOIOI"“'II'ti’o-'it‘l'f
Monday May 05, 2003 MPEGVideoParser.cpp 3

R

Printed by Jason But

o
E=
- - 7R
May 02, 03 9:12 MPEGAudioParser.h Page 1/2 May 02, 03 912 MPEGAudioParser.h Page 2/2 8 3
P e e L T T L e s P P L S R AL A Rl L /* file. The puh}.ic mamnber swchods of this class are: LFd (') ;‘
/¢ File: MPEGAudioPszser.h vy ’- “/ 2
L R E Ll L L R /% Canscrutter : Qresces and inicialicses the 45284 sushine used to ./ = 0
/* Tnis prograw file contains the definivion of the the MPJGAudioPsrser claws.'/ Fikd pArée the Pinary scresm. Raglatera the prorided L4 LI
/* Thie clasa cen process sn Fpeg Audio Sctreaw for che purposes of sithar 4 FAd ciphar o be uaed to genaraced randon velued. 4
. /* encryption or decryption. the clads requires sccess vo » Lully L7 /* ResapScaceMachine () : Resecs the Scate Machine to che fnjitisl stace, used */
/* aynchrontsed screwnm cipher. L4 IAd during indexed playtack to redec the nodule €0 enauret/
P L L L R L LR L L Rl sy re corract parsing of the prawly indexed scream s
5' NOTE: " ‘; . ﬁ' ParsaBuffer(} H P.ll(lll bloc:b:: dace fron‘;ac;}udio .:enmi Ehe ‘5
™~ * This fila contalna scme Condicional oode which ls comptled anly 1f . * srate ds rems red at tha tha dests block g0 *
;: che avabf_czpmflmrs mc:rgmg gd.incd Mi..:g cglﬁ cime. thm‘:wé;l :5 ;' ;fu: g;ac;umg oan continue on che next previded ./
crus T e " s = £ Dot * * t11] eck. *
Vil Ciphar Fileer' Dmc:;w fj,}:g_ffm;?u‘ 2:4. compiles .g.gg‘g:g‘ L4 P L e e L L L e L L L L L L
’”~ during che SIipher procéds. * class HFBGAUdioParser
f‘.l..'ODJOt-tD‘Il".'.l"'..l’i"l."'IIIDI'--IOOO.I'.l...."‘t'l.'l“‘i.!‘ll",
/¢ Hricter Py: Jasen Buc */ protected:
/t Date: 1999-2003 L int iState;
/* For: PhD Theais in Scresming Vides Encryprion, */ inte priScatelookup IAUDIC_WUW_STRTES) (I56)
Fd Cencra Loy Talecommunicacions and Inforaation Engineering. s leng 1Raz ncValue)
Fad Monagh University Australis, */ StreamCipherBage meCiphary
. /’l"..'”IIIil."l.IlI.lIl"II'..l’IIOII'I.l'l'l'IiIll“.IIIl'l’.""l...""!."l/
void InitialiselockupTable{};
. f'l'"O.'Ol’...l’l"Oil.OI’.ICIIOOI’.IIII.“O..C.-"'l’l.""'.'."’"..‘C'-’O"l’.l"".{
s /* Chack to see il already included. L7 public:
- ; f..".""... sFd i '....I..'.l"'.'.l-l.."'.-'--Ol.lIll!l..l'l."."..!‘/ "PEM‘DP"“:‘}J
A ifndef WPEGAUDIORARSER H vold iscarfiphar (ScreastiprarBase *poStramcipher Ci est i
| sdefine _MPEGAUDTOPARSER H_ phary } e phert ® P pher) { pocipner » pestran
: P AL TR L Ed L L ey T R L Ty R T P R L T R L) FrddenisdT vty z:g %:::g:;:::::;::.f;gmffln lorlg J.Buugrsj.:.l;
= /* Forward definicisn of Stresoil.pherPass clhsd, 7
- }..lI..CIICI..I'l....'.,...tl..."l"‘..l‘.ll’.l.--.DIO..OI'l‘l..""l’lil".‘l"l’f mrlm_vmhsst"
clars StreamCipherBase; s
- ,‘.I-.'I-I-."'I.."I'l.’.'II"l"CI".llO..C..f’"'tl'iI'O.Cl"l..l."‘l."l""f /DCII'C.!"J!CCCIIII."'-IIIIIJOIIOCCOOOllli."I-..1..-..llll.lll..."-l‘.-4...!
/¢ Humber of statas ir che MPEG Audio Peraer Stace Machine. L7 /% Un-gefins macros that sre no longer needed. g
f;f;.II';;;l.I‘II.“‘l'.QC'"....O..I'-.l"CI.,...IOC..“IICI‘I’..IIIICC.C'IIOCIIIf fl'."..'lIII'.I.‘l‘ICOCCOOOIII.CDOOOI.IC.'llIiCCO.‘IIOCI.....“‘IIII'.‘CQIIl..f
¥dafine AUDIO NUM_STAHTES & #undef DEFINE_VFRIABLES ’
/'.‘J.CCI..II'.‘.‘.CII"'"'.IICI.IIIC.‘"C'I'..i'IOOO0.0I...O.t'...'..".l..l...'.f .mt‘
- /* Conditional corts. LY
H Fa -’(/n-o-cocv-:nnoo:-iuvtu ocvtnoo“ctuoactc:uoontinn-n---l;v’vi:r‘-;civ‘{
- /* Tha Lollowing cods 1 conplled only 1f che CALC UIPHER STATS macio is o/ /4t End of Fitle: MPECAudicParser.h L7
EY St defined during complle tioe. This 15 Srus vhen m”],,g the *‘MPEC] o/ L L L L L L L g e L L L L L T L Ly
i ﬁ: Cﬁhc:' app:lmi?‘:u:ha:oe tut'ﬁf-‘*ﬂ?l Cipher Filter‘ DirectShowv L[iltar. */
. nacros de . & section define the variables used to vaincain "W
- /* scavlatics for the parsing vodule, Sthervise tha macros resclve te no code. v/
. /llll‘l'l.".O".’I'I"..III..I.IC. .I".‘..I"’....lli'l’..."'.ll’l'l'd.llIl/
e Vifdef CALC_CIPHER STATS
_:‘ #define DEFINE VARIABLES () deng 1ByresFProcessed, 1BytesSelected, 1Ey-esEncrypted
-?:'- talsa
" #define DEFIRE_VARIADLES ()
B L1, 1.H
N /..".."Q"IIl".'O'IIIl...0'...l'l'.'.'".OI"O...'.IIC..l.’...l’l..‘.-‘l‘.‘.i'l’/
b 5‘ class MPEGAuLiOoPerder. L
L ¢/
/* This class will parsa an MPEC-1 Nudio Stream in blocks, salacting bytes 7
/* from the scres to pass to the cipher. The cipher is 3 modifled scream 174
/* cipher pointed to by peClpher - which produces p do-random bytes - che */
/* modificavions ensure againsc crantion of false MPEG-1 Audio Readers, L7
/% datails of the modificitions can be frund in che correspmding source cods '/

[
[
W

Monday May 05, 2003 MPEGAudioParser.h 11

1 -

11 L

Ve kg e

ey

ot

§2¢

Printed by Jason Bul

May 02, 03 9:12 MPEGAudioParser.cpp Page 1/4

MPEGAudioParser.cpp

May 02, 03 812

Page 2/4

/Illll.t"l..Il-IIIl"!l!l..II.‘...'I'CI"I..I"‘O'C'I'I. (TR RS d ’...'/
/* File: MPEGAudioParser.cpp s
/l."l’."l'.ll'l.‘l"'l't’...!".CI""."I."'l!'C""‘.."""..."Ill‘.ll”'/
/* This progranm £ile contalns che implesancasion of the tha MPECiudioPsrser */
F* cleas, This class can process sn Mpeg Aundic Stream for the purposes of v
/* either ancryption or decryprtian., the clros requires access o a fully ';
-

/* synchronised svreasm cipher.
/‘.II'I.‘I’."I...l""l.l"...""‘Il"...‘!."I--..."-l',."l"'Il".""."l"x

r

This Fila contains sone Sonditional code which 14 compiled anly LF

the CALL CIPHER_STATS macre is defined during compile cime. This is

trus when conpiling the ‘MPECY Ciphert application but not che '‘MPEG)

Cipher Filcer' DireceShov filver. This code corpiles svaciscics

during che clpher process.
‘}'irl‘i0t!'.iCl!ttlit"!..‘tiii!i'!.."i.til."Cttt!Onll!rl"o‘titi!'..‘.tt“tt!/

/t"..l-l‘.'tl".'..."'...".t!"O.it"..'l'l.‘t.t....lt't'.'.t...!"'tt't'loo',
Hricten Py: Jason Buv
Daca: 1925-2003
For: PhD Thesis in Stresming Videe Encrypcion.
Cancre for Telecconunications and Inforxstion Engineering.

4h Universicy Australis.
/I'OO'O-"O"l".O'-"'O..."Ol""'."I-I'I.-'OO'I...I’OO."-l'...“""“"!!‘f

/"....I'.-‘”"....".‘.‘.‘..."',-‘.‘-‘.‘”'"'"..“.."..l'.."-..“'-..I..I.l‘l'/
/* Includs Sctandard € Librarias. ‘7
f.‘"""‘"".‘..".‘..'."'l'III"..'.‘.."lI'..'"'I"..-""....".l..'.‘""‘.../

rinclude <scdlib.h>

Fad LA T T E L e T ey e e R R L R R LR T R L Ll DR AL A e L

/* Dafinitien of ScreamCipherBase class. v/

free LR P L R R T R T Pl s N L R PR L IR S PR R L L L

sinelude *"SmamCiphectarah=

PR L R L L L L R L L L L e R AL Ly

nincluds "MPEGAudicParme=h*

Fad i ri L LR L L L L L L P L L L el S L L Ll L F

/t Conditionsl coda.

Fid

/* The following code is compiled only Af che CALS CIPRER_STATS wacro is
/* defined during coopile cire. This ls crue vhen compliling che *MPEGL

/* Ciphar’ spplication but not che *MPECY Ciphar Filter® DirecvShow filtar.
/¢ Tha sacros dufined In this $ection atthar reset or updats statfettis

/* counvara for cha parsing sodule, ochervise the macros rasclve ne ne oode.
f..'l!'l""..l’.""“"‘tl’l"l‘l'.l'.l....!l".t'l!t'.t't’II"O'.‘I'."“O"",

eifasf CALC_CIPHER_STRTS

#define FESET VARLABLES(} 1BytesProcassed »)DytasSelected » lByresEncrypted = O
#define DHC_FROCESSED(lAwsnmr) 1BycesProsessed+s lhmours

vdefine NG SELECTED () 1BytesSelacred+e

Sdefine IHC_ENCRYPTED() 1ByceasEncryptedss

felse

#define FESET_VARIABLES(}
#deline INC_PROCESSED [lhmcunt}
Wdefine INC_SELECTED{}

#define INC_ENCRYPTED()}

Sandif

P e R R Ly L R Ll Ty Ty

MFEQ Rudic Scream Encrypticn
Parcisl Selectlon of Audlo Seream for Encryption.

Ay MPEG~1 Audic Scresa can be hroken into & ssgquence ¢f succarsive Andio
Frames, «ach with & four byta Audio Frame Headar. Tha header is always
Lyte aligned and che firse twelve bicy are slvays set. Thia allova for
axay locavion of the fheader. The ancnmpeion algorithm outlined in my
thastis selects the sudio payicad for encryprdon, Howvever ve misr also
ersurd chat we do not create any false Audio Beaders nor rodify any
existing haaders. Thia 14 done by net eacrypring any byce that has the
waluea GXff (a byce sligned value ¢f eight set bics) nor any byrve ivlleving
chis yce. H4 2lsc arsure that no byte ansrypts to che value Oxff.
Cut2ined halow 1s » State Machine which will parse asn MPEG-1 Audio Straam
and aelect byras lor encryprimm.

STATE INpUT NEXT STATE ACTION

173 1132-2111 2-2
defauls 1=1

1-2 012-xxzx 1=)
defaulc 1=2

gefault 1-4
defaunlt -1
dafaule 2-2 INPUT » ind 2 LS8 of Resync Valus

defavlc A~ INPUT = 3 L5P of Rasync Yalus

Resynchranise Screasm Ciphar,

Pans INPUT chrough clphar.
Pass INPUT through cipher.

1113-1211 3-2
default 3-1

N1i-xxxx 1-3
defaulr 3

/¢ Resynchronisacion occurs afver cbraining a 1é-biv resynchronisavion value

/* in scates 3-1 and 2-2. Trie value is added co AxILL££000% to produce a 332

/% bic resynchronisation value. Thié ensurss thit the preuds random strasm

/* generated ls correct for decryption dwring indaxed playbsck, Details of

/* the wodified stresm cipher ¢o not produce any L£alse headars is ourlinad tn ¢/
/" comants for the ParaeBufler(] oathod. .

P L T T L e L R L L L L L L L Ll Ly

PO e e A L L Rt AR L L L L Lt L R L Ly

/* Definicvion of Scasce Nemes for human resdsble purposes. ./
/.....'."‘"l"‘l‘.'.""l‘...'"".."..".."-“..."".“""‘.“"""‘"l’.'f

#dafine STATE 1 L
Sdefine STATE_L 2
sdatine

STATE 3 2
fl'!'0..0""“"'!.'!!l.tlth"‘lIth“O't".“ltt““"l‘"‘..."‘l".li.‘.‘l-/
Castructor. LV
¢/
This 18 the canstructor for vhe MPEGAvdicPerser olass. e dnicialise the
Scace Machine Lockup Tabla befors resecting cha c.wrent stata. :

Monday May 05, 2003

MPEGAudioParser.cpp

Printed by Jason But

apo] 231 nog
2 xipuaddy

.

L A T S

May 02, 03 9:12 MPEGAudioParser.cpp Page 3/4

May 02, 03 .12 MPEGAudioParser.cpp

Page 4/4

Faad AR R RS L E L LU L PR e L L L L P L LR L L L P L P

MPEGPRudioParfar: :MPEGRGlioParser () : peCiphet(NULL)

InitialiselockupTable{};
RasacStateHachinai);

FARA R LRl g LR R L e T R e e L L Y

5- wold InitlallselookupTable() 'f’
/* This wethod 15 called to inicjalise the lookup cable to confer with the f
/7t state machine described above, L7

f‘CIOl...'l!..!l..'.'l‘...l...t"il...lIl!.0C..,,.l.......t"""‘..tl".-...l.'f
wold
r{‘?ﬁcmuhrsu: :InitisliseLockupTablel)

l{'or (iae ilvpat » 0x00; 1Inpur <= OXEE; ilnpuc+s)

ppiStaceloolp (STRTE_2_1] [1Input] = (AInput == Gxff)?STATE 1 _2:STATE 1 %,
ppiFtacalookup (STRTE_1_21 1ilnput] = {{ilmput & OGxf0) =e ORTOT7STATE_I_3:STATE_1_ 1,
priScatelookun [STRTE 1 3] (1Inpuc] = STATE_1_4r
ppistatalockun [STRTE_1_4] [ilnput] = STATE 2_1s
ppiStatelockup [STATE_ 2 1) [4Inpuc] « STATE 2_2;
priStatelookup [STRTE_2_2) {iErput] = STATE 3_1,
pristatelociop (STRTE_3_11 (iInput] « {iInpuc == Gef{)?STATE_3_2:SFATE 3 1;
ppistacelookup (STRTE_3_2) 1ilmpwe] = {{ilnput & Grfd) == OxT0) 7STRTE_1_3:STATE_3_1;
) }
ftl'l'ctttclv!l‘!lv’..'cll,i.ctn.ltIIIltt!ll.vlllo!ttll."rlIO‘.O!II!.'O.'IIIO"I‘/
;: void ResetScacaMachine (] b

-
/* This wechod #1lows wé TO Tesat th4 state maching to the tnitisl stave of ’§
s STATE 2 1. .
/til’ifl!?)':!ll'l’!lttt!ill#itt‘id!!i"ii“fllllrtll‘fiili!"'lllli..ili"tiitt‘/
vold

MPEGALdicParsar: iResecScataMachine [}

4Stace » STATE 1 1;

RESET VARIARLES(T,;
/OOIIIJIl'l'!l".‘.O'llliOitit'llf‘lltlll'.!.'.t'!.‘i.i!i‘!ll’l'iiittl!f‘-!i.'.'j
5: wold ParseBulfar{byta *phbulfer, leng 2BufferSire) '5

[

/* This mathod parses a uffer cantaining a part of an MPEF Audilo Stream and ¢/
/% passed the relevant bytes from the buffer to tha cipher. tha method takes */
/* & polncar to the buffer and the langth of vhat buffar, oA
/* Tha partial selaction procedure is ouclined in the above, when the atate L7
A" machine is in Stace 3-1, che bytas rust ba ehcrypred. The clpher 1s & o/
At medified atresm cipher, it wvill pot gendrste s OxEf byte nor will ic s
/% medify an exlscing (xff bLywe as Chase bytes sara used as warkers for the Lr
Stace Machine., Thia 15 achisved by chee. the exiscing velua prier c2 L¥s
pertorming the XOR, if the byte 1s ¢zif or vhe gensrated random byte value */
KXRad with dzff, che JOR is noc performed. The firav chack ensures we do *}
Nt remove any exiacing O0xff warker Byves and the second ensuras we do noc ¢/
/" crasce a Lalsa Oxff marker byte (LRandom * ¢xff * DRandob « Uxfi). t/
/* Mhan che Scace Machine fs in Scata 3=1, we have locstad cthe start of an /
/¢ audio frame and are about to completa proces#ing cha header, the next twoe +F
/* bytea sre ustd vo determine » cipher resynchranisaticn velud, the bytes */
/¢ that then follow forw parct of tha payload and wusét ba pasdad through the ¢/
/* cipher. For resynchranisaticn purposes, ence this rasynchrontsascion valus */

1s corputed, we wust reset the sTredn ciphar random zuebear generacer to 4

TRV

/I'
/* ansure we produce the corract #egquance of random Iytes. Aftdr processin o
/* & Byta ws vust updsta the Current Scate, this is done using the Stace g */

/% Machine Lookup Table. +7
flt'!..'l.l"!"ICC".OOOC'C‘OOO..C"'!'l..OO'lll'.“.t'I0.0..‘l'.'l‘llll’l’."‘llf
vold

K

?éaM!.oh:s“-.:hruHuttuChyr.' *phBulfer, long lBufferSiza)
{ yre bRapdom, *pblnpuc, *pbEndGuffer = pbBuffer + 1BufferSizey
if {peCipher == HILL} reourn;
for (pblnpur = phBuffer; pblnpuc l= phEndBuffer; phInput++)
switch (iScate)
{ case STATE 2 1: IResyncValue a *phlInput <« 8; breaky

case STATE_2_2: IResyncValusss *phInput;
potipher->ResynchiudioCipher (0x L0000 + 1RaxyncValue)
braaky

case STATE_3 1: LRandsm » peCipher-»ZetientRandoshudiobycail;
IHNC_SELEUTED{)
if Ti*pbInput fa Oxff) $4 {{{*pbInput) " biandom) Je Oxtf))

*obhIrput“s bRandm
INC_ENCRYPTED) ¢
]
1Stare = ppiStatelookupfiScatael [*pblmput]
¢ PROCESSED{)Buf farSizel s

PR L R e e L L Lt R Ty R N T Ly

A* End of File: WEQhudioPasrsar. cpp -/
;“."'II...""'.CII‘OOC""".IIl.'l’l..l-'I'lll'l!'l"...‘llll‘ll‘....""...f

Monday May 05, 2003

MPEGAwioParser.cpp

.

2p0D) damog
2 xipuaddy

-).\ - .
ddoios1egue)sASOTdiN £00Z "0 Aeyy Aepuoiy

fe T==yabuR] ARNSWY € e gep £-c of £ (pead{zougty BUCT ‘RRasRTaSTY BUDY PREFROOISTY EUSTI FARNSOTIMYID PTOL ./
““ FeeaBtFY AbNOTS et smezom _— u“ L R P P P P P PP P PP i gy
Ze o/
i C——tpa By amyoeg [53 EYols 2] T-€ Iy Ipradizpugssilgi<-Ivsivgoapracd & peudiadougt t
N X . TpenoatessaaAgT<-Jas I CapTaod = pazow(esT
.“. =-5Ue] anxosed £ ameyeE | 344 o Ipasseoz seigr<-aasvfoaprpod a pessescigt

. -/ }
. ‘megry U aRNORS 5-r TTLI-0000 Fa {praddzougry Suor ‘peLoRTH Buer ¢ S9ICA & FARISCRPT i s,
4 _Iﬁng prbaitisd i ITtr-osss “\ THSTY T ‘pessedorg1y Suor} SOUDTATND: L INSI wLwy mew%
fa .llﬂ»ucd.q 1Yoed - IXXX=-TTHO »f .\t-:-n:.:.-u‘:-t.t---u-s.su:.-.-t-..\:....s-nuo:--utssso:---ﬁ:ntn-\
A ==yabuy Aexoey y-z AXXX-XTTY T4 P rrpa0rd vorydlioaw L/
“u ‘magyfuey saxoed E-£ TTTI=tree [33 .“ /e OFPFA FYA BOIT FPITIFFIRIF UoFIAATIUN PARFIINT O PRITRS FF POUIN PTUL of

’ - fe
Ze YabURT QwyoRd JO g5T @ ¢ LadNT £ qyneyep o/ /e freadlrougry S0l ‘PR1oTRSTY BUOT ‘PRERICOISTT DUOTI24RISOPDTAISD Plus u..\.
“- ysbun] amsag Jo g37 § = LadeT 5= Jaxp = JIWARIiS t-& s“ P T Y R R Py VT PY P VY Y T EF PP PP Py
\u TYIABUST IFAINS JO G5W & ¥ LIINT o' 4 amezep I~ n\ FNOWST w+pasiedazsrealgr { 3oy T 147 QASFIICUS_ONT SUTIeps
' ¥4 ++PEIIBD0T CSHIAAT {)AASSIDNM DHE UTIAPe
Fa ¥ [4at' 4 M yIp o 0 = passsscadsadigy (I STIOWDIA L3STE WUTIape
e Y weRrag = LGaNT £ FFRY=2qxD =T LT
7 iy SIMLE MEHEID T OTED F9P3Te
Fe . F ot amezp IY4 P e
Fe) *-T 05D o/ Fa ‘exprred mwarag OTPWY puUw OWPTA of
' . e-T 00 -7 o Je TUI WP SOTASTINAR SFBOOE O3 FROYIMN PUL (10U XO] #IADUSTEST oFtE MDOP FTUL ./
Ve of I TEpO2 O 03 PATOFRY FQIZYA YN PYFAINNIC 'FINDSu XPUATS MR IO XRPAUTOD ./
i . -t Aatmelp -/ Fe SEIPTINAS BACRTN Jo ARKRT TFLITE UCEIOPE FTUI UT PRUTIFP SOISWE NI ./
e * £-T Lk -7 [Y4 rid CAPATTY ACUSIORIT ,IPITTS IGITD DRSS, WA 20w ang wrpawsyrdde (rwudid ./
L ./ /e T034H. *43a SUTTTduos Wweys andy F¥ FTUL A7) #TTdEco BUTIMP PIVEISP .f
e . [4 afnezIp vy Fe T OXown SLULS MARIID JTYD WU IT ATUO Rpal7decs »1 »pod BUTASITCR WL +/
e . fad 4 [TE -7 o/ ’ st
A ./ s ‘PRI [HUSTATPUCD ./
“t NRTLY ALYLE LXIN JAdNT VLS a“ _\hsttt--htoo-hhhhu‘-bttni\\t'o-h.ttn-tttthhhhoustnntaittuhnhhu-a-|1u|t||tt_

- L
s TPIYMPOD o/ -0 O SPT
le Ioydis o3Fronds o3 FRRRIAS OTPNY PUS ORDTA FRUITRIGDS Eafaordeel w3) .M.EMHHE- -ﬁomﬂ"

Fe toad puw nedsig wraeds T-09d4 WNE aRIed TITA JeHD PUTYINN PIRIS € T ACTM ./
Fo PRUITARG ORINpod TIYSTS Bapasedsel L7803 waqa sevd pus sueriag oTEMY ./
e FUR OPRTA Y3 12e23xe 02 perred BT AT DRRZSS M CTAANT wedils wpimdg ./
v S ax vinp Aur wo prerozred 7 WIAAMIDW OU PITYM ‘sewsrag oypny puwm ./
re ORPIA T-03dW PRECOUS Fo requmu Auw fwpapbon xrdrapna o3 peen v VONIA ./

“‘-n-uh!u AT Jo & b x oauf oI #g URD GEBILS GRIRAS T-DAdN VY .“
» L2
' YO FILLIIUNT R is wAIRAS D3I -/

P L R R R rrr E T TPy
FTpE

{auncwy) 18 ASSEOON_OHT AUTIepe
1)Q35SAIGYL OHI »uTiwpg
(I STIAVTUYA LIS UL Zepa

Lt acd]

JpadaougsaiAgr = Iniiviotmysd « paadizougy -
Ipa 0T ISSAGT <~ Ies I oTyad = paiaselds]
IpassaS0 satAgt <~ 105 InoTYId = PREESIOILT }

(paddiacuaty Suel ‘PAISFTRSTT Bucl ‘ReRSEesdld1r SUOT) SURASOTROGED I IISSINISR ASASOAIN

Pres
\h.h.llll.b‘.llhht.‘.-lhl..tthhh'..btﬂttthhhh...lhhh-h.‘.....Oﬁtitilllt..hhh.l\\
r “erpsord wopadlIour L/
' SIERE PYT WArY woTaETaIear uoridATOUN FASTINRT O3 DRTTES #T DOVARE FTVL of
I o/

\-ssc-ann-nnncrnt-ty.-mnnttunu-t:n-t_-_-_-:nnst»tccs-un-tuu-tu‘htstﬁiﬁosssu\-\
i TAPRIRIOTINMYOAIH FUR TIFINGOFRTAIRIK FRFIRTD JO MUOTAYURFRD pOIAUT L/
L R E T T F T F P Y 4

SNSRI, *PNiouTe
\hht\hQﬁh.‘\tsvin‘ttut-hlhtthuhi‘snttu\‘\tutlltutthiht.‘u.stsl!!hhlitltttl.-h-._
i ‘IPTIIOIATASOTIN FFETD TO UGTITUIIAR SPRTNT L/

\tnsuuuttt-ant\\-_t_-hthuutshtttnstcttt.‘\ni'-'thtthbutnttti'-i-ht.hhuunusnhhunlu\

\t-aa-'ttt-.hhttth.-tutsltnt\---h.t-‘ttoooh.shouttth-n.ohbhtu!_-lt't\hostun’\

N TwprRAAEnyY AITRIRATUR YFRUCHY o/
s BT rsAutUY UDTIBAIoTUT Pl FUCTARIIUMGMCISTRE JOT BIAUNS o
/o ‘weradArouy orpss Suy 35 UF vITAUL QU iaad of
L E00T-666T PRANT Nf
i ang vorwy Ag vPlarIy ./
‘\hhhuitlutu.ttu.\btttllt-ihs-hhl-tth-hhhbtttQﬂtstttthhhhhlhs‘.ﬁ‘b..tt\hht.nht
Fe “ERRSead Taydys wpa BUTINg +
e FOTAFTIOIF FITTARCS PPOS STYL ~ARITET ACUSIZMILG IPAITS ISYITD o/
/o WidH, *@ 20w ang voraeaTidde IPUSIS [HIdM. MR GUT [rcisod Weips »mra o
Je FY FTUL CaaTi #ETduos DUTIRE DRUTINE ST OXOWN SLWLS NENJIY DXIWD MY af
/e FT ATW PITADS #T (PTUA BPOS TWIGTITPUCY BIOS FITEIUCD PITF FTYL o/
/e SEION +f

\Ilh“tl‘.t.ﬁl‘iiilI\h“ﬁ.Ihhhl..‘!lih.‘llttt‘!'ll.tlhi...‘h.‘...httt.t‘lih..ht\
/a “wraddaaen ro woradAzour 1¥yIte 4/
Za 70 pavedamd pya J0F wedx3s wdsrAS D3N UT #800Id Ve SRRl STYL CRRETD ,/
o TRRIeduriIsLCORIW W2 P JO UOTANIAIRGRTAAT YA FUTRIUCD BTTF werbord fRUL ./
\t\hlhh!‘\tﬁh...\“ﬁ...lt“hih\‘i'iibh......i.""ﬁﬁ..I..I.QQ‘I“I."lhb..‘.l“\
N Ao sesredurirdsns *ITS o/

\Ithth.bb.b.t‘sttlb‘hhhh.b.—hh.....I.".b.l‘.‘.btblnl"h Ll il...thl.lhl.b_

ddo1asieduig)sASHIA4N ZL6 €0 20 Aew

ddoissiedisa)sAgSoHidn 216 €0 20 Aey

Appendix C
Source Code

L o e

NG uoser Aq palUl

o s i

yiosiedweisASDadn

Tt b AR) S e iy SR e L T

T R S s e S | e s T S e e s i B R T e et S R S g

-

€002 'S0 Ae Aepuopy

AWITT LUy ‘PAOSTAgTY BUOT ‘PASSRIQILTY SUCTIFICIGOTOAYINY PEOS () SIMLSOTANYIAD DNIIT wUTJe0w
apuEly Oooy 'RAIDRTASTY SOCT CPASSRIRISTY SUOT)SANISCARTAISD Preh () SLULSOIAINLIG RIJDA SUTI*E

() STTEWTUA PNIIBI SUTIIDN

Lol

tpasdi

feeadh

BISSeS0I4883ATT Buor U STIEVIREA BITLT] UL I
SLMLS MEHAIO IS FPITE

227

\III..Q“"lﬁl......l‘..hhh‘.‘“I..h‘“"‘I.....Ih-I...h‘Q‘tiilttI.““I'.t.l.i.\.
/e Y IIPIRqUIRASOIGN (F[TT FO PUT o/

L T Py T P Ty P PP TP P T PP TPy
iy]

SIMLEOIMAVIZA_BI43T Jeoune
SIMLSORITALAD MILTF] I*Pie
STMIEIWIA 21431 JePing

\..0.‘&"tthtl‘nh‘ll\tthhi.‘tb“‘t.‘ttitﬁihhhlih\\Ohs\\ttﬂttctit-hh‘tittniihl“‘\-

N "pRpBYU J#BUOT OF IR AR\ FOIDRW BUTTIPTY o/
_Q‘Qﬁt‘.tt“.lli“h.tI'IQ...Q‘.EI“.h.hhitﬁihII....“I‘E“.“Q..“hIIb.“ﬁi‘..ﬁ\
"

1 {} SIMLSOIANYIAD AL
1) SIMASOMITALTS TULADT

U SRTININA IS

f{azrsamypngy Buor ‘asjingqd, »aAg) 383 ngesawy PYas
f{IsuTPRNSITISIIETY PTOA

I {jansanguadsAshaan-
I ieopogasydysed. asvaraydipuweisys) resivduadsAgagay

soryand
f (e querdnecyesTTWEITUL Fras
fangavqaaprpod, AR IRLOSPTIAL TN
I sz injorpnygod, I IRSOTOTRDTAN
faruweaasy a3
- - Iy yowgurs»afgr Buor
T [55Z) [SAIMLE WAN :Em.?&oﬂ-wﬁm«% “.._.M
AW
:pazaeyead

AREIIMOUSASCHIW FEW]D
P T P YT I L4

e flangmgeertg Suprres g raydp sy ylnoayn aearle wraede gy Jo of
Fa #IPIING MMOMUTAWD #red UPYL ues #y AT00sa uUT Ay 2aeafad ays 03 awsured of
ey * pUR (TWES -~ T "HOX = 0) gI *TpoM IPUDTO PYa WITA SERID ys DUTARRIO o f
/e Aq pren oy A7 IWATD werrng wpAsdS T-pIdN UE FILWITIGT FORTS STUL o/
/ /
\“ ‘xeRrvdadirdsoagH rrerd “_\

\.tt-.ﬁs..ttﬁ..Qtlt.lhl.hhhhitt.‘..‘tttﬂnQOthttiits‘I‘tttlttlht‘hhttiinllhlstt_

piie]

() SIMLS OTANV.LAD ENTATT *uY F¥Pu
() SLAULSOATTALZD DHTIH TF39PH

\inhhbt.ttbtu‘ltih-Octuhhututsttoo..t-ctvitt-thht.‘t-tt..ut.-blbttlihhhhltolbi\._
Ja W00 O S5 BATORRI $OL30A BT PREATFYIO ‘sinpoa Surwred syl JOT eoTaAfTIIR Lf
Fa UIRINERS o0 PR FRINTICA SUA BUTIMR UCTIOME FTYI UT RRPUTIMP Fdioew ML ./
A ‘INATTT AOUSIONIEQ ,IATTS I0dT) THISN, W aou ang WESeITTAIe L IadD o/

e 10344, »4a a:ﬁﬂnasoolnuaa nra F7 PIYEL CWafa aY7dsor BUTME PRUTIRR ./
Fe FY CIONM SLYLS WINSED DTS FUS FT Aruc prridacy et spos Bupasrior WL -“
L »
A CEPOD TRUSTATPUED o/

T R P T R R PPy P P P T TR T T T Y Y L P T TP PP P T PP T T oy

fZRZANEOVRTAIEIW SIS
FARs INIOTPOMOILN FSPTD
fasvgrovdTowwsiss SSvla

L Y F LV PYTTY FTV ey

Je CHDOPELD IPEITIOPDIADEIN of
7 PR IPIRJOTPAYDSNM ‘PPegIsqdIOORRING FO UOTATULIDP PIEAIOS of
_“‘hIi..i.ltll..“.ilhh‘h.‘.t.."I..i‘.“.'.h.“‘...llillI..l..l.."..h.“‘.l.\

-14 SELYLS WiH WALSLS WU IP
\hth.tlttlﬂ.tth‘htilt.hhhhh.lh“it...hhshhbi.-t“‘....-hlﬁﬁlhhh..bv.th‘s.il..c\
S TRUTYOUY BARIS Revivd WPIEAS DEAIN VII UT PRIAS 1O IAqMN ./

P R R P P P PP T Y T PTTTIT I I

fwadg aey> pruiwyim jepedis
\--st000‘$o-.ttqttt-tnttt--hhhu.t.s‘ouh.tu..oottoou‘tttnluhtonbt‘h.btttttotoo_
“degs prulisun - #adq adia Ae Jo ueTATHIFNG ./

T R R Y P Ty P P P P R P PP e Py

_H_MASNNENELSISSAdN PUT IR
H HISEAWILS1SHTIN IWUITe
\‘\“nthct\tt-hhh.‘\u-hhoﬁ“0tssihtltnhht\|\¢-hb\ﬁ‘ﬁ.‘tutnhshiitt-.b-tttut-hh\t\
Fa PEPMITOUT APeRITH FT Maw 02 AIMD o/

serrrasnasarannsasst

L T LT Y Y LY LT E P P P PP PR Ey

L CRFTAIMMY AAFFIPATUL GERUOH w/
N T EUFIRUTiU UDaeaSIUT PUT SUSTIRITUNIBGZSP IR 25T wrAthEy Yy
£ "voyaddiiowy oapry LUTavsrag UF STRIYL U 108 of
e Eope-458T PRIRF o/
A ang dorep Ag weaaAR o/
\Il..b‘ﬁt\l.li‘llhiiitIhhh\.Olh‘hhb!.illhb“.tblti.II|iﬁthhllh.h‘hhh.“hh.li\hI\
/e ‘ePr0ld raydas wya Bupamp o
Fa FOTARTANAS FIYdEoD BPOS #TUL CXINATTT ASWSAIMIIR LAPATry Ieydrn o
Fo [O3dW. PUA A0V ang uoraesyidle 2aqdis TDEAN, Pua Burlydacs uaya snia o
Je FF UL Cugy 3TRu02 SUTImp PRUTFMP FT oIoww SIVLS YENIID DTVD MG o
e FF AYU2 PRTIO0 #F UTFUA 3p00 [WUOTITPUS) MOP FUTCINCS ITTT STYL o
e SHION o
_.II“.til‘lt‘i.iilItIittthlhh.“n\ttt..‘lhlﬂ‘ttttliﬁIit.l‘ll....lhl.t“lItlllﬁ\
L ‘woraddraep 1o woradfrous L/

7 Iwrar® jo swsodind pya XOF WWRIAS WIIRAS OAdH Uc Feacoxd URD eRVIX FFUL of
e B NT2 ZPIRAURARAENACK PYA ML JO USTATUTIP BYT PUIRAUGS BITT werboxd sTL ./
\-.I.I..‘hhhh‘l‘.h.hh.‘."‘..‘.O.I‘.“IhhIll‘tlll.“l‘ii.lh .“h....ihhhb.“‘hllii\
i Y IR HIHSLRARLEOTAN P BTFS of

P e N T N T e 4

Y 198leduis)sASIdiN ZL5 €0 20 Aew

yi9siedwalsAisSoadin VB €0 20 fen

Appendix C
Scurce Code

g uoser Aq pajud

226

-,

EEE T

toau

[yu]
R+

Printed by Jason But

Page 3/6

May 02, 03 §:12 MPEGSystemParser.cpp

May 02, 03 3:12 MPEGSystemParsercpp Page 4/6

3-4 defaulec 5 Facket Langch--.
defaulc
defaule

defaule

Packet Lengthe=-.
FPackat Lengtiie=.
FPacket Lengohe=,
default Packeat Length--.
defaule £=5 Packer Lengcthe=.
xe® <IDc Ol 2-1
Qxed <I0c Oxaf 1-1

dafaulc 1-1

Mexe Packeclangch bytes prssad to
MPES Audio Stream Ciphar. .
Next Packevlength bytes prssed tc
Mpeg Video Stream Ciphar. -
Mexc Packstlength bytes ignorsd.

/* Tha sctual cipher 1s creaced and wmanaged by the System Stréam oiphar xs
/* ctha singla cipher is used by both the Audisc and Video Ciphers Parsers.

/% this eedule also allows setting the ciphar private x
/Ollll’!lt‘tttll'..l"i".t'..l".‘lll!"'!.!i!ittti.t

).
i!!ilti"'..“'."“l"/
/‘O'""l"¢ﬂﬂ""ﬂ.CO".l."-’...OO.CIO'OC"'I'.‘O"' EL e R P L LNy

/¢ Definition of Stace Naoas for human pesdable purpoees. s

Mefine
edefine
sdafine
#cdefine
tdafine
sdefine
*dafine
adarine
Hpfine
afine
#dafine
sdefine
Wdafine
bdafine
*deline
Sdafine
#atine
tdefine

‘{l'tl"ll"!.!.'tl".‘..l’..l"lI’OOOI’".lll’!.l’..llt!..!ct.lvlll'i‘.‘.tt!l’i.!t"'o;
/* Censcructor, v/
rid WA
/* Thls is cha constructor for the MPEGSystemParsar class. We Lirsc cresca ‘f
/* instances of the MPEG Audic Streas and Video Scream Parsars. WHe chen

/* registar the provided cipher wodule with both persihg clssses. Finally w '/
/* initialise ctha Scece Machine Lookup Table before resdtting che Current *r

L]

St scate.
f‘l..."’.l'.‘.l"'.l’"'..'..".II..I’.’"I"..II""....I.I"'.C..l’.’..".".fl"./

?Pkcsycte-huer 1 MPEGSyscanParser (ScreanCipherDase "peCipherfodule)

peAutioParsar = naw MPEGAmioParser;
peVidecParser s tww MPECVidesParsery

pofutiolarser-sRegi scerdiphar{peCipherdodul e) ¢
pcVideolarser-»Regiscerdipher (peCipheriodul e)

InizisliselackupTablel) s

ReswcStateMachinei) ;

A L L Ly L Y ey

/* Destructor.)

- .,
/% This 1s che dascruscoy for che MPEGSyacewParsar class. He ralesse weny A
/% dynanically allocacad mamory for our parsing classes. *
f".'..".o.t'lICCC'I."."IIl-'CCCOlO.Cl--I.‘Ci.t.tl!"'t'.!'.t'l'I.l...'.ll.'f

MPECSystemParser: : ~MIECErvtanParseari)

deleta poVideoParser;
dalete peAudinPacser;

/'t'ttt"".ti!ltiii!“!tttlllf!t't!ill'ttt"..i"!‘l."..i'l'!’i.t"l‘t'ltllt'/
/* woid Intzisliseloskuprablai) */
L

L]
A% This method fa ¢#illad to initialise the looku Cable to confar with che '/
/* svace machind dedcribed a
/o-.n'..nnnntinl'.'llic"'ll.'!'O'l!.OO#O'IIO"‘I'!‘I""‘III'l'l"i‘ﬂ."”l‘l'{
vold
MPEGSyscemParser:: InitialiselookupTablai}

for (int LInput = 0A00; ilnpuk <= OxEE; ilnpumes}

ppiStacalookup | STRTE_1_1) [ilmput] = (1Input)?STATE_1_1:5TNTE 1 _2;
ppiStacabackup [STRTE] "1 2 Tilrput) = (ilnpare) PSTATE 1 I:S'I!\TE."]._!;
ppistatelookup [STRTE_L_ 3] [1Input) = {(1Input)?2STATE 1 1:STRTE 1”3
priSeacalasiup [STRTE 1 _4) [iInput) = {iInput >m BHbC) TSTHTE, 2_1:5!‘31‘5_1_1;

PriStatelookup [STRTE_2_ 11 liImput] = STATE 2 2
Pristatelookup | STRTE 2 2] (1tnput) = STATE_2 3¢

if {{ilnput & OxcO) == Ox40)

priscacalooiup [STRTE_2_3) (LInpuc] = STATE 2 4,
alse if ({1Ipput & OxfO) a= Gx3D)

priStarelocke (STRIE_2_ 3 1idrguc) = STRTE_3 1
else if {{ilmput & Ox£0) == On24}

PriStatelookup [STRTE_2_3) [1Input] = STATE 4_ 14

rpiSeatelookup (STRATE 2 4] [1Impue] = STATE 2 3,

ppiStatelookup [STATE_3_1] [11mpuc] STATE_3_2;
priStatelookup |STRTE_3_2} [ilmput} = STATE 303;
ppiStarelookup [STRTE : 3 3] {iInput)
ppiStatelookup I STRTE 3 $] [1Irput]
Fristatelookup (STRTE_3_5] [1Input)

ppiStatelocinup [STRTE 4_1] (1Imput] =
pistacelockup [STRTE 4_3) [ilmput] =
ppiStavelockup [STRTE_4_3) [1Imput] =
ppiStatelookup | STRTE ! | 4]]'11rputl -
ppisutllmlﬂp[mﬁ 4 Sllilrputl -

}

Friftatelookup [STRTE_1_3j [0x01] = STATE_1_4;
Pristatelookup [STRTE_2_3] (Oxff) « STATE 2_3;
ppiStatalockup [STRTE 2_3) [Ox0f) = STHTE_4_S;

f’..l"l""'l‘l.'l"“...."lII'O.C"'I"O""“..‘-‘-'l“-lll‘l'l'-'f‘l.'!‘..f
void RasecScateMachinef) "/’

-

This wacthod a2llovs us ©Q rassc the scaca machine o che lnicial scate of “/
STATE_1_12. s

Monday May 05, 2003

MPEGSystemParser.cpp

Printed by Jason But

May 02, 03 812 MPEGSystemParser.cpp Page 5/6

May 02, 03 &:12 MPEGSystemParser.cpp Page 6/6

P e L T Ty

weid
!{@809{:: mParser::ResecScacedachine ()

i5tate = STATE 1 1y
FESET VARIAHLEZ (T

Pl LA e L L R g E L S F L e L e) L Ty Ly

.;' vold ParsaBuffar(dvce *pbbuffer, long lDufferSizel L
- -/
/* This etched parags » Juffer convaining » part of an MPEQ Spsctem Stream and */
/* pesaes chi relavanc byres from ehe buffer co eivher tha Mndis or Vides o/
/* paraing/eipher wodules. The wachod takes a pointer to the buwffar and the */
/* length of that buffar. s

/7 Tha parsing 1¢ perforwad using the 5Stete Machine outlinsd abovae, when che */
/* atatd machine is in State 4-5, we hAsve hit the payload and wuwst pass chis =/
/* prylosd ko the Video or Audic wodules, 5Since che Packet payload tay be */
/* longer (or shorter] cthat the remailning buffer, we need o be sbls to bresk ¢/
/% up che payload fare two separace oxlls for when the naxt time ParseBufferi)*/
f* i¢ calied. thw cless cember variable 1EBytasInPackar (which counts che v
/* remeirdng aucker of bytas in che packet is decreoeced according to pow (74
/* many bynes we sotually process = v only laave this stace wvhen this wluse */
/* decreimnts to rero. .
A Hhile in che recelning states, wa scep chrough the $tate machine a4 Rorwal */
/* howevir we also need to calculate the veluss of 1Byteslnbackes and of '/
/7 bScresnID (che ID code of vhe nadciplezed sacrddn). In sone scates, we
;;: :1.1‘: peed to decrenant JBytesInPacker &4 va procass bytes within che pachc'/
AQET.
/-,-fl"'I...CI.’l""ttt.t'.'Ct.‘tl't!‘..l"t'...t.tlCttt'I'i!.’.'l'l’!."titt"'ﬁ
wid
?Pﬁcws:ﬂuur::Pnus\d:uthm *poBuffar, long lBufferSite)

ieng 1I¢rypeAnoune ;
byra "Phlnpuc = phBuffer;
] *phEniPulfer = phauﬂtr + l1BuffazSize;

vhile pbInpu = pbEndBuffer)
?f {iState == STATE 4 %)
1erypehmourc = { (pEmIBuifer - phInpwun) < lBytesInPacket) ? (RbEBULfer - rblnpuch i 1Bytes

if (GScreamdD >= Onc0) 46 (DStraamID «w Oxdf}}
peAudiaParser->ParseBul fer (pbInput, 1lrypthsount) y
dnptgié:gguunmp,- 0;::} L& (bScreamID <= (xaf}}
arser->Parse or ipbInpwe, ICryptAmpunt)
else INC_PROCESSED, B‘Itl.c:mha&t ir !

InPacken

ybInw.?;s 1Cryprimours:
IByreslnfacket~= L0ryptAnount '
if {1BytesInPackes == O) '
iState » STATE_1_1;
{ elew

gutwh {iScacw)

. break;
cuse STRTE_1 4: LSereamID = "pblnpuc; Braaks
case STATE_271: ByresInbackec w *phInpue << 8; bresk;
case STATE_2 2: 1BycesInFacket+sw *pbInpuc; break;

IBytasInfackes==; brask;

}

i5tate = {{iState == STATE_2 2} &L (bStreamID as Oxbf})}?STATE 4 _5: {(ppiStateloskup|iftate
H*pbInpa))y

phlnput++;

THE_FROCESSEDL) ;

/‘l’.‘.""‘.l.’...‘"".‘..CC.“"IIII‘“.II'IO‘..‘.'O..”‘..“"l....‘l‘l’.‘.’f}
/* Bnd of File: MPECSyavemParsar. A

P e L L L L A L L R Ll

Monday May 05, 2003

MPEGSyslemParsercpp 33

3p07) 321N0§

apo7) adunog

D xipuaddy

.

D xipuaddy

.
.

Ay

Appendix C:
Source Code

C.6 Applications

The source code for the applications and complete modules on the CD will not be
described in detai] here, the bulk of this code contains necessary calls to create either a Windows based
GU! application or a module that correctly converses with the Microsoft DirectShow environment.

What follows is a brief description of each application and its functionality.

C.6.1 MPEG-1 File Encryption

The most basic application included on the CD is one that can be used io both encrypt
and decrypt MPEG-1 files on disk. This application — “APEG] Cipher.exe” ~ does not allow real-

time decryption and playback but rather is used for two tasks:

e Perform a file encryption so that execution time and therefore performance can be

measured.

o Encrypt an MPEG-1 file for later installation onto a Streaming Video Server.

This application is a Windows application whereby a source and destination file can be
selected via standard Windows “File Open” and “File Save” Dialog Boxes. Other options include a
selection of which cipher to use — no cipher (simple file copy), the prototype cipher and the secure
cipher — and the key 10 use when processing the file. During testing this application was used for a
number of purposes, these included ensuring the encryption process was reversible, measuring the
execution speed of the cipher and creating encrypied MPEG-1 Streams to install onto Streaming

Servers for functionality testing.

C.6.2 D;- :=tShow MPEG-1 Cipher Filter

The sore utility included on the CD is the Microsoft DirectShow Filter — "MPEG]
Cipher Filter.dll” ~ which is a streaming media compatible module that can be used with all
DirectShow compatible applications, including the DirectShow Filter Graph Editor and MediaPlayer.
The filter provides two input pins, accepting one MPEG-1 Video and one MPEG-1 Audic Stream, and
two output pins, providing the modified streams after passing through the cipher. The filter also
provides a pro[-2rties box where the cipher type — prototype or secure — and the private key can be
selected. As well as manual selection of the cipher and key, a programming interface is provided
where the cipher type and key can be selected for the filter. The filter has been designed to function

where data is presented on only one of its two input pins, allowing processing of a video only stream.

The Filter can be used in one of two ways, it was used when testing the functionality of
real-time decryplion and playback through the DireciShow Filter Graph Editor, an encrypited file was
passed through the filter prior 1o decoding and display, allowing the functionality to be visually verified
as well as the performance to be measured against the playback of the plaintext file. The filter is also
utilised in numerous playback applications that stream video from a streaming server, (esting real-time

decryption and playback in a variety of different playback modes.

230

) PR T
T, (TG Y R

B LA AR ML AR 3

T e 0 L

TR (et A

i
s S e

EINE ey i RN

FPoE S s i w8 b,

e L A A

pik i ot

il T
et S

By m kS S B

A e A

e

Appendix C:
Source Code

C.6.3 DirectShow Stream Playback Apptication

This sample application can be used to stream a video from either the Microsoft
NetShow Theatre Streaming Video Server or an SGI MediaBase 3.1 Streaming Video Server using
DirectShow. Both of these streaming servers come with DirectShow enabled source filters, allowing a
DirectShow Filter Graph to be constructed to stream, decode and playback video installed on the
servers. This application — “StreamCipher.exe” — allows the user to select which type of server to use,
the name of the video installed on the server, selection of the prototype or secure cipher filter in
decrypting the streaming video (or no cipher filter for plaintext playback) as well as the key to use to
decrypt the video. Once the video is streaming, control is provided 1o allow the user to seek to any
point in the video during playback, as well as providing pause and high-speed playback functionality.
In essence, this application is a special version of the Microsoft MediaPlayer application that inserts the
DirectShow Cipher Filter described in the previous section into the Filter Graph, thereby allowing the

real-time decryption and playback of streaming video,

it would be possible to use the Filter Graph Editor to achieve real-time decryption and
playback, but this option would preclude the options of testing functionality during seek and high-
speed playback modes. This application allows verification that the Cipher design correctly functions
during the various digiral playback modes not supported by the Filter Graph Editor. This application
was used to verify the complete functionality of the designed cipher, both prototype and secure, in all
playback modes when streaming from either of the two supported Streaming Video Servers, Note that
the DirectShow Source Filter provided for the MediaBase server does not provide support for the high-

speed playback modes ~ fast forward and fast rewind.

C.6.4 MediaBase Playback Application

This application — “SGiStreamCipher.exe” — also allows a user to stream video from the
SG! MediaBase 3.1 Streaming Video Server. While the MediaBase source filter only provides
standard playback and seek functionality — it does not support high-speed playback modes even though
the strcaming server does, it is possible to access these playback modes through the MediaBase
software development SDK. This library allows a programmer to request and retrieve a stream from
the streaming server, then decoding and displaying this stream within their own application. Since this
requires development of an MPEG-1 decoding module, it would be too difficult to develop a complete
streaming video client playback application that incorporates the MPEG-1 cipher filter described in this

thesis.

A different approach was taken instead, a Windows Application was developed that
would allow the user to specify a MediaBase server and an encrypted MPEG-1 file installed on that
server, the user would also specify which type of cipher to use and the key. The user would then be
presented with a video control panet, allowing general playback, pause, full seek functionality and
playback in high-speed modes. However, instead of decoding and displaying the resultant stream, the

application would decrypt the streamed video and save it to disk in a format that could later be read and

231

Append'- C:
Source Cude

decoded for display. If all the saved files are playable using a standard MPEG-1 video player, then we
can show that the decryption algorithm correctly decrypted the encrypted video stream and resulted in a
viable MPEG-1 Stream for real-time decoding and playback, only that the final step was not
implemented due to the complexity of the development effort. This application was used to further
verify the compatibility of the cipher with various existing streaming video platforms. While it is
difficult to perform any performance tests using this application, it can be used to prove that not only
can the MediaBase server successfully stream an encrypted MPEG-1 bitstream, but that it can be
successfully decrypted ready for decoding and playback in all supported playback modes. Verification
of real-time decryption and playback of indexed normal speed playback can be achieved with the

“StreamCipher.exe” application. Some final notes regarding the “SGIStreamCipher.exe " application:

s Positional updates of the progress bar to indicate the current playback position of the video
being streamed are only approximate due to this value usually being obtained from the MPEG-1
Decoder. The displayed playback position is especially incorrect during high-speed playback

modes.

¢ Streaming cannot commence until the video has been opened on the server. Since this takes
place in a second thread, there is a synchronisation issue that must be addressed so that the
primary thread can commence streaming. As this is a sample application only, this has been
achieved in a cumbersome way, the primary thread will open a Windows Message Box
prompting the user to hit OK to set up the slider bar and commence streaming while the
secondary thread will open a Windows Message Box informing the user that the stream has
been opened on the server and that streaming can commence. In order for the application to
function correctly, the user must close the Message Box from the secondary thread prior to

closing that on the primary thread.

C.6.5 Other Applications

Also included is a small application, “Byte Count.exe”, this application will read any file
— expected to be an MPEG-1 bitstream - and count the distribution of different byvie values within the
bitstream. The displayed results include a raw count and subsequent proportions of the 0x00 and 0x01
bytes within the file. Also displayed is the mean count of the remaining byte values and the standard
deviation. This application is used to show the high proportion of 0x00 and 0x01 bytes within an

MPEG-1 bitstream as well as the relatively even distribution of remaining byte values.

232

b i e

T et s Gl I o i B IV R o S i1

et

bt

o sian

s B

N

PR,

e g

P T o

2 £

Appendix D;
Experimental Results

Appendix D

Experimental Results

In this Appendix 1 will provide a complete description of the experiments performed with
respect to the work presented in this Thesis. This information is expanded from that presented in

Chapter 4 and Chapter § and contains the following information:

¢ Input File Information — General information about all the test MPEG-1 bitstreams used

for experimental and testing purposes.

+ Experimental Procedure — Description of the reascy for each individual test or experiment

and an outline of the steps taken such that the experiment can be reproduced.

e Other Input Conditions - Other inputs required to execute the test, in particular the secret

key used in the cipher.

» Expected and Actual Qutput — The expected output and results of the performed tests.

D.1 Input Files

To ensure that the proposed MPEG-1 Ciphers function correctly, it is important to
subject the ciphers to a wide range of MPEG-1 bitstreams. While it is unfeasible to perform the tests
on all conceivable MPEG-1 bitstreams, it is possible to choose a subset of representative bitstreams for
testing purposes. [deally, any MPEG-1 bitstream would be suitable since the MPEG-1 Standard
defines both the bitstreamn and the decoder, any bitstream that complies with the bitstream definition
and can be successfully decoded by an MPEG-1 decoder should be as good as any other. However, it

is not always possible to be certain of this.

For testing of the cipher designed within this Thesis, six MPEG-1 compatible bitstreams
have been selected, three of these bitstreams have been selected due to their widespread use as test
streams in other work involving MPEG(Qiac and Nahrstedt, 1997; Shi and Bhargava, 1998a; Tang,
1996; Anderson, 1999; Sikora, 1997). The other three streams have been selected for their combination
of video and audio, as well as the fact that they have been encoded using different MPEG-1 encoders.
By widening the range of MPEG-1 encoders that have been used, we can begin to simulate a real-world

scenario where the bitstreams to be protecied can come from numerous sources.

The full details of the selected bitstreams are outlined in Table D-1. The reasons for

choosing these particular bitstreams are:

» tennis.mpg — This is a standard video sequence in widespread use for research involving

MPEG video. Unfortunately, this bitstream is an MPEG-1 Video Stream only and does not

Appendix D:
Experimental Results

Filename ~ Stream Type Size (bytes) Duration Séurce T

tennis.mpg MPEG-1 1,246,001 0:04 Standard MPEG-1 test

contain any audio information. Due to its widespread use as a test biisiream, it can be assumed
to fully comply with the MPEG-1 standard. Also, its high bitrate ensures a clear picture after
decoding, any errors in the bitstream are likely to be immediately obvious and not lost amid any

noise in the picture.

o flowg.mpg — This is also a standard video sequence chosen for the same reasons as

tennis.mpg.

+ us.mpg — This video sequence is an MPEG-1 Video Stream of 2 24 second clip from the
movie “Under Seige”. While not used as often as tennis.mpg and flowg.mpg by researchers,
this clip was chosen because it best demonstrates the type of content the cipher will be seeking

to protect ~ footage requiring copyright protection. Like the previous two clips, this file also

does not contain any audio information.

Video Stream sequence, obtained from

http://peipa.essex.ac.uk/ipalsre

/formats/mpeg/stanford
flowg.mpg MPEG-1 2,819,836 0.04 Standard MPEG-1 test
Video Stream sequence, obtained from

http://peipa.cssex.ac.uk/ipa/src

Hormats/mpeg/stanford
us.mpg MPEG-I 2,078,802 0:24 Standard MPEG-1 test
Video Stream sequence, oblained from

htip://peipa.essex.ac.uk/ipa/sre

Hormats/mpeg/stanford
Chicken.mpg MPEG-I 33,663,140 2:40 Produced and encoded by
System Stream Microsoft Engineers
Monash Nursing.mpg MPEG-1 91,539,915 4:28 Encoded at Monash Uni. using
System Stream the Siemens Eikona MPEG-]
Encoder
Diablo2_".mpg MPEG-1 169,236,004 { 9:01 Encoded by at Monash Uni,
System Stream using the Optibase MPEG

Fusion MPEG-1 Encoder

Table D-1 MPEG-1 Test File Details
¢ Chicken.mpg — This MPEG-1 System Stream was animated and encoded by Microsoft
software engineers and can be found on the CD containing the initial release of the Microsoft
NetShow Theatre Streaming Server software. This bitstream was chosen since it contained both
Video and Audio streams, and was produced by a third party (! had no input into the generation

of the bitstrcam). Also, while shor, this animated featurc is the sort of content that the

copyright owner may want to protect.

st

Appendix D;
Experimental Results

¢ Monash Nursing.mpg — Monash Nursing is an advertisement made for the Nursing School
of Monash University. The MPEG-1 bitstream was encoded using the Siemens Eikona MPEG-
1 Encoder (developed collaboratively by Siemens and Monash University). The original source
was content was high quality Beta? And the overall bitstream was encoded at approximately
2.7Mb/s. This bit rate produces an extremely high-quality video as output from an MPEG-1
decoder. This sequence was chosen for two reasons, one 1o test the cipher with a different
commercial MPEG-1 encoder, and two, to test the performance of the cipher on what can be

considered a high bit for an MPEG-1 stream (MPEG-1 being primarily designed for bit rates of
1.2Mb/s to 1.5Mb/s

* Diablo2_S.mpg — This video sequence was initially encoded by Monash University while
working on a collaborative project with SGI and Cinemedia on developing a Video-on-Demand
trial. The initial video was provided by Cinemedia and a short sequence was encoded at a
variety of bit rates for testing purposes. This sample was encoded at 2.5Mb/s using the Optibase
MPEG Fusion hardware based MPEG-1 Encoder. This sample was chosen due to the
imermixing of video and audio, the high bit raie, again a different encoder being tested, and
finally this material is an excerpt from a real movie - therefore providing real content for testing

the cipher.

D.2 Proportion of Stream Selected for Encryption

The MPEG-1 File cocryption program produces a series of statistics, part of which
includes the number of bytes that have been selected for encryption. These results are tabulated below
— see Table D-2 - for each of the test files used. The results were obtained by selecting each of the test
files in tun and passing them through the encryption program. The actual cipher type chosen —
prototype or SEAL - is irrelevant as the numbers of bytes selected for encryption remain constant.
On-e the encryption of the file is complete, a window appears containing some statistics, the statistics
of interest are — Total Bytes, System Stream Bytes, Video Stream Bytes, Video Stream Selected, Audio
Stream Bytes and Audio Stream Selected. The experiment is repeatable, choosing different ciphers

and/or keys, the results are consistent. Some salient points include:

* The entire MPEG-1 System Stream information is left as plaintext, however, as can be seen

from the results, this information makes up a small portion {less than 4%} of the overail stream.

¢ A high proportion of the Video Stream is selected for encryption. This shows that although
there are many layers of encoding information within the MPEG-1 Video Stream headers, the
majority (> 99%) of the bitstream consists of Macroblocks and actua! video data, This shows
that there is no great benefit with respeci to minimising the proportion of bytes encrypted using
this technique, rather the benefits arise in the encrypted str¢am being compatible with existing

video streaming products.

Appendix D:
Experimental Results

o Similarly, a high proportion of the Audio Strcam is sclected for encryption. This is to be

expected as the Audio Frame Headers are small (four bytes) and the remaining data is entirely

encrypied.

Statistic. . tennis flong Chicken NMonash- Diablo2 5
' R . : ' , . Nursing R
Total Bytes 1,246,001 | 2,819,836 | 2,078,802 | 33,663,140 | 91,539,915 | 169,236,004
System Stream Bytes 0 0 0 322,717 1,289,380 | 5,387,976
(0.96%) (1.41%) (3.18%)
Video Stream Bytes 1,246,001 | 2,819,836 | 2,078,802 | 30,779,588 | 83,812,500 | 150,851,588
Audio Stream Bytes 0 0 0 2,560,835 | 6,438,035 | 12,996,440
Video Stream Selected 1,239,953 | 2,813,788 | 2,049,416 | 30,542,212 | 83,500,150 | 150,153,682
(99.5%) {59.8%) (98.6%) (99.2%) (99.6%) (99.5%)
Audio Stream Selected 0 0 0 2,528,722 | 6,385,721 | 12,888,252
(98.7%) (99.2%) (99.2%)
Total Selected 1,239,953 | 2,813,788 | 2,049,416 | 33,070,934 | 89,885,871 | 163,041,934
(99.5%) (99.8%) {98.6%) (98.2%) (98.2%) (96.3%)

o o Gk

Appendix D:
Experimental Resulis

D.3.1 Testing Repeatability

The first set of tests involve verifying the repeatability of the cipher — or, will the cipher
produce the same encrypted bitstream every time given the same input bitstream and key. The
procedure for this test is outlined below, the same steps are repeated for each test file. The results are
tabulated in Table D-3.

* The MPEG-1 test file is encrypted using the encryption program on the CD with the
following settings.

* The test file is selected for input,
* The chosen cipher is the prototype cipher with the key — Oxf £

* For the three test files “fennis.mpg”, “flowg.mpg” and “us.mpg”, select Video
Stream only as these files are not valid MPEG- System Streams.

» The encryption is performed three times, each time with a different output filename being

selected.

Table D-2 Proportions of Bitstreams Selected for Encryption E
p YP : * Each of the three output files are compared (using the Windows file comparison program

i i fi ti as high (> 96%). This . . .
e The proportion of the overall bitstream selected for encryption was high (). Thi fc) with the original file to ensure that the files differ — the original stream has been modified.

leads to the conclusion that the cipher must be able to operale at bit-rates approaching the

average stream bit-rate, while at the same time accommodating the CPU demands of the MPEG- ¢ Each of the three output files are compared against each other to ensure that the files are

exactly the same — the original stream is modified consistently.

I decoder to allow for real-time streaming, decryption and playback.

Statistic 1Ty flowg Chicken Maonash

Nursin

Diahlo2 3

1,239,953

i T e T

D.3 Prototype Cipher Video Stream Selected 2,813,788 | 2,049,416 | 30,542,212 | 83,500,150 | 150,153,682

In this section I will discuss the tests performed to verify the viabifity and functionality Video Stream Encrypted| 1,180,554 | 2,678,449 | 1,956,573 | 25,794,268 | 78,447,200 | 141,834,369
of the profotype cipher designed in Chapter 4. These tests will be performed as a series of four steps, (95.2%) (95.2%) | (95.5%) | (84.5%) | (93.9%) (94.5%)
the first of which is to verify the repeatability of the cipher, that is, will the cipher produce the same ‘ Audio Stream Selected 0 0 0 2,528,722 | 6,385,721 | 12,888,252
encrypted bitstream every time given the same input bitstream and key. The second series of tests are - Audio Stream Encrypted 0 0 0 2,461,338 | 6,193,239 | 12,731,394
set up 10 prove the reversibility of the cipher, that is, given an encrypted bitstream and the correct key, (97.3%) (97.0%) (98.8%)
is the original bitstream reproduced. This test also implies showing that an incorrect bitstream is '; Three Qutput Files ™ | |7} & | %]
produced if the key used for decryption is incorrect. The third series of tests are to check the Equat
performance of the cipher, to determine the approximate CPU load required by the cipher as well as Table D-3 Encryption Statistics and Repeatability of Encryption Process — Prototype Cipher
real-time decryption and playback tests to verify that an encrypted stream can be decrypted and
decoded in real-time. The final series of tests are to confirm the primary goal of this new cipher, this | - As can be secn from the tabulated resuits, all tesi: ... this case were successful. The three
involves installation on a range of Streaming Video Servers of an encrypted MPEG-1 file and then resultant files from each input test file were all equal, this indicates that the process of applying the key
streaming and playing back the file in 2 variety of modes. The experimental procedures and results are ! to the input bitstream is predictable and able to produce consistent results, allowing the safe assumption

-5 that it is possible to consistently reverse the results to obtain the original bitstream. Looking at the

outlined in the following sub-sections. .
proportion of the bytes actually encrypted against the number of bytes selected for encryption. The

v SO

difference in these two numbers indicates the number of bytes in the original bitstream that were

selected for encryption but were left unmodified. This occurs in one of two scenarios:

e A byte from the Video Stream selected for encryption was either 0x00, 0x01, Oxfe or OxfF.

236

i s i e S S G

Appendix D:
Experimental Resuits

» A byte from the Audio Stream selected for encryption was either 0x{T or 0x00.

While the presence of unencrypted bytes is to be expected, the numbers displayed here
are higher than would be expected if the bitstream had a purely random distribution of bytes (the
percentage not encrypted should be “ase or approx. 1.56%). When considering these numbers it is
important to look at two different aspects, the design of the cipher and how the program calculates the

presented statistics, and the original input bitstream itself.

In the first case, the calculation of the bytes selected for encryption and actually
encrypted include all bytes processed while in Stages 3-1, 3-2 and 3-3 of the Video Cipher State
Machine, when encountering the MPEG-1 header code {0x00-0x00-0x01) 1o exit back to State 1-4,
these three bytes are determined as selected for encryption and subsequently not encrypted by the
sofiware as written, This means that for every slice in the MPEG-1 Video Stream, the number of bytes
determined as selected for encryption is three higher than what it should be. Similarly for the Audio
Stream, although to a lesser extent, the number of bytes determined as being selected for encryption is
too high by one for each Audio Frame Header in the stream. Unfortunately, it is difficult to determine
the number of Slices or Audio Frames in a bitstream without further processing, however it is obvious
that even taking this into account the proportion of bytes actually encrypted to bytes sclected for

encryption is too low.

Statistic ~ . tenunis § Chicken Momash Diable2 &
' Nursing

Total Bytes 1,246,00] 2,819,836 | 2,078,802 33,663,1 91,539,915 [169,236,004

Appendix D:
Experimental Results

Number Bytes - 0x00 26,767 63,276 51400 4,207,299 | 3,412,828 | 5,288,316
(2.15%) (2.24%) (2.47%) (12.50%) (3.73%) (3.12%})

Number Bytes — 0x01 17,719 46,043 33,274 489,028 1,374,212 | 2,160,343

(1.42%) { (1.63%) | (160%) | (145%) | (1.50%) | (1.28%)

Expected Number for 4,867 11,015 8,120 131,497 357,578 661,078
Purely Random Stream (0.39%) (0.39%) (0.39%) (0.39%) (0.39%) {0.39%)

Remaining Bytes — pt 4,730.4 10,671.3 7,850.9 114,042.0 | 341,546.7 | 636,958.1
(0.38%) (0.38%) (0.38%) (0.34%) (0.37%) (0.38%)

Remaining Bytes - ¢ 1,680.9 5,304.0 2,615.3 42,733.0 138,249.1 | 339,558.7
(0.135%) (0.188%) | (0.126%) | (0.127%) | (0.151%) | (0.201%)

Table D-4 Byte Count Distributien in Input Streams

The second case involves having a look at the input bitstreams before encryption.
Passing these files through a simple filter which calculates the number of 0x00 and (x01 bytes in these
streams is a simple matter, the results are shown in Table D-4. These results show (hat the frequency
of these bytes is higher than expected for a purely random bitstream, since these bytes are not
encrypted in a Video Stream, they indicate an expected discrepancy in the proportion of bytes actually
encrypted as opposed to those selected for encryption. Note that the test bitstreams which include

System Stream data contain a higher proportion of 0x00 bytes on average than a Video only stream.

Looking at the remaining byte values, the mean number of bytes is close to the expecied value and the
standard deviation shows that while there are occasional peaks and troughs in the byte distribution
count, the majority of the counts are much smaller than the count for 0x00 and 0x0) bytes. The higher
instances of certain bytes (apart from 0x00 and 0x01) are independent of the MPEG bitstream format,
occurring at different byte values for each test stream. Taken with the previous issue of how these
statistics are calculated, they explain the difference in observed values from what would normally be

expected,

D.3.2 Testing Reversibility

The reversibility of the encryption procedure is one of the most important aspects of any
cipher. The cipher is of no practical use unless the encryption process can be completely reversed
through the application of the selected secret key. The purposes of the tests outlined here are to prove
that if the same key used during encryption is applied to the encrypted bitstream, then the original
MPEG-1 bitstream can be re-obtained. Similarly, we wish to verify that if an incorrect key is applied
to the encrypted bitstream, then the original bitstream is not obtained, but rather a different, invalid
MPEG-1 bitstream is obtained instead. If this series of tests succeed, we can then be confident of
proceeding to develop a real-time decryption module that allows playback of the decrypted bitstream

simultaneously with the decryption procedure,

While there are 256 possible keys that can be applied using the prototype cipher, it is not
feasible to perform a complete test using ail possible keys — therefore, a subset of four keys will be

used for testing purposes, these four keys are:

Pl

e Oxif - This is the most obvious key to use, forcing each bit in a byte being encrypted to

change its value,

e 0x00 -~ Looking at the rules of the cipher, this key will result in no bytes in the MPEG-1
bitstream being modified due to encryption, meaning that the encrypted bitstream is identical to
the original bitstream. Indeed, using this key on an MPEG-1 file and comparing the input and
output files verifies that this key has no effect in modifying the bitstream. It is however useful
to use this key for testing purposes as it can be used to prove that a double application of this
key will still return the original bitstream. Also, using this key shows that it cannot decrypt a

sequence encrypted with a different key.

e« 0xda ~ This key corresponds to the ASCIl code for the character ‘J'. This key was
primarily selected as it forms the initiai of my first name. For the final two test keys, a value

had to be chosen and this approach aliows selection of one of the remairing 254 possible keys.

» 0x42 - This key corresponds to the ASCII code for the character ‘B’, selected as it forms

the initial of my surname.

In order (o test the reversibility of the cipher given the correct key, each test MPEG-1 file

was encrypled using each of the four test keys, resulling in 24 encrypied files (6 of these files were

Appendix D:
Experimental Results

equal to the test files, the result of encryption with the key 0x00). These 24 encrypted files were then
decrypted using each of the four test keys, resulting in 96 different output files. Each of these resultant

files was then compared with their corresponding original bitstreams. The expected results being:

e For the case where the decryption key was equal 1o the encryption key, the final output file

would be equal to the original bitstream.

o For any other case — the two keys being different — the final output file would differ from

the original bitstream.

Decryption Key'

. Filepame ._ | Encryption Key B I N U O U

Oxff

0x00

tennis.mpg
0xda

0x42

Oxff

BB E A R

0x00
flowg.mpg

0xda

H H & & @ & 8@ &

0x42

&

Oxft

0x00
us.mpg

M E AR EE] E E -

Oxda

0x42

&

Oxfr

M & N 8 & & Q E EE A EE

0x00
Chicken.mpg

Oxda

=1
| Yt

0x42

0xf1f
0x00

Monash Nursing.mpg

(0x4a

0x42

H A E P A EE S -

Oxi#f

0x00
Diablo2_5.mpg

EH @5 § @ @ & Q] @ &8 8
M Q& XM 3 E E R E E R E EE
H ¥ & 8 @ & = &

&) =

Ox4a

0x42

5
)
[

M

Table D-5 Comparison of Decrypted File with Original File given (En/De)cryption Key Pair

240

Appendix D:
Experimental Results

In each case, all 96 output files were passed through an MPEG-1 decoder to determine
visually whether the resultant bitstream couid be decoded and if any of the output was recognisable.

The results from this test are shown in Table D-5. These results confirm the functionality
of the cipher in reversing the encryption process, the original bitstream can only be retrieved if the
correct key is used for decryption. Visual confirmation indicated that these files were able to be
decoded and played back normally. The same approach verified that the decoder could not playback or

display any of the resultant output files that were decrypled using an incorrect key.

D.3.3 Performance Testing

While it is well and good to verify the functionality of the MPEG-1 cipher, it is also
important to confirm it’s viability for real-time decryption and decoding. In this subsection,
experiments are described that measure the CPU load required to perform the decryption of an
encrypted file as wel! as the load required to decode and display the original MPEG-1 bitstream on a
tesi computer. A final series of tests will measure CPU loads while decryption and playback accur
simultaneousty on the test machine. The purpose of these tests is to verify that the CPU requirements
of the cipher as designed are minimal and that the vast number of modern machines can easily perform
the decryption of the bitstream as well as concurrently decoding and playing back the decrypted stream

for a user,

Feature Test Platform 1 ' Toest Plhitform 2

CPU Type Pentium 11 (233 Mhz) Pentium 4 (1.6 GHz)

RAM 384 MB 256 MB

Operating System Windows 2000 Windows 2000

Free Hard Disk Space 1.2GB 7.1GB

NIC Type Intel 82558 Integrated 3Com Etherlink 107100
Ethernet PCI - 3C905C-TX

Network Connection Switched 10BaseT Switched 10BaseT

Graphics Card Cirrus Logic Laguna 54651 NVidia GeForce2 MX-
(4MB) 100/200 (32MB)

Sound Hardware Sound Blaster 16 Avance AV97 Audio

{Onboard Sound)

Table D-6 Test Platform Specifications

Two different computers were used as test machines to measure the performance of the
cipher, the details of these machines are outlined in Table D-6. The first of these machines is an older
Pentium I1 computer - the purpose of using this type of machine is to verify that the cipher is capable
of running on older hardware and does not require the use of the latest computers to perform well. The
second test machine is a more modem computer, a Pentium 4, representing the type of computing
hardware most users are likely to have on their desktop, as well as the hardware likely to be used in any

new “black-box” device being built to support Video-on-Demand. Of course, the results obtained

241

Appendix D:
Experimental Results

throughout the entire series of experiments are entirely dependant on the platform being used for
testing. As such, these results should only be used as a guide to indicate probable performance, due the
abundance of different parameters available on a PC test system and the fact that only Windows boxes

were used for testing, the best that can be provided is a guide to how effective the cipher is

performance-wise.

The first test measures the time required to encrypt (or decrypt — the procedure is the
same) an MPEG-1 file on disk. Since the time required to execute this function is also dependant on
time spent reading the source file from disk and writing the resultant file to disk, this must be taken into
account. Also of issue is the fact that the encryption application is executing on a multi-tasking

operating system where we cannot ensure that 100% of CPU resources are allocated to the task at hand.

The encryption application offers an option to perform a file copy ~ this procedure uses
the exact same code as for encryption to load each byte of the test file and then write the modified data
to disk, except that in this case the data is not modified. The purpose of this feature is to measure the
time taken for the non-encrypiion code within the application to execute. This allows the determination
of resources required to perform the data load and write procedures, the idea being that this value can
be subtracted from the calculation of resources to perform data load, encryption and write functions to

obtain an approximation of the resources required for data encryption only.

For test purposes, time required for a procedure to execute is hand timed using the clock
on the computer, the time is manually noted when the procedure is started and again when it is ended,
this allows precision of time required for execution 10 the order of | second. While this may not appcar
overly accurate, the difficulty in determining the actual CPU resources granted by the multi-tasking OS
means that all values calculated are approximates only. In order to determine the CPU resources, the
Windows Performance Tool (Located in Control Panel|Administration Tools) is used to display the

CPU load as a percentage. The description of Processor Time in this application is:

“Processor Time is the percentage of time that the processor is executing a non-Idle
thread This counter was designed as a primary indicator of processor activity. It is calculated by
measnuring the time that the processor spends execuiing the thread of the Idle process in each sample
interval, and subiracting that value firom 100%. (Each processor has an Idle thread which consumes
cycles when no other threads are ready 1o run). It can be viewed as ihe percentage of the sample
interval spent doing useful work. This counter displays the average percentage of busy time observed
during the sample interval. It is calculated by monitoring the time the service was inactive, and then

subtracting that value from 100%."

By restarting the tool at the beginning of the test and pausing at the completion, we can
easily obtain an average CPU load from one of the text informalion areas on the screen, If our tests are
performed on a system performing no other primary tasks, hopefully the majority of this reported figure
can be attributed to the MPEG encryption application. While some cycles will be used to perform

other Operating System tasks, by purposely not executing other applications, we can hope to minimise

Appendix D:
Experimental Results

this effect. Unfortunately it is not possible 1o directly measure this value, as such the CPU load

reported is only approximate, The procedure outlined below allows us to calculate an approximate

determination of CPU resources required for encryption, remembering that the measured values have a

reasonable margin for error.

e Perform the file copy procedure on each test file three times — noting the time (in seconds)

and average CPU load required to perform the three procedures.

» From these figures we can determine the a figure for the time the file copy could run had

100% CPU resources been possible to allocate to the task — time spent idling waiting for the

disk 1o seek is not counted in CPU time for applications, therefore this time is that spent

processing functions that read and write data blocks to files before and afier calling the disk

driver. The figure of processing time st 100% load is obtained by multiplying the measured

time by the measured average CPU load during execution.

* Since the previous step is performed three times for each test file, we can average these

three resulis — in an aitempt to minimise measurement errors — and obtain an average value for

processing time required to copy a file.

» The three previous steps are repeated while actually encrypting the file — for test purposes,

the selected encryption key is Oxff. Again for each test file we can determine an average value

for the processing time required to read, encrypt and write the modified file back to disk.

¢ Subtracting the result from step 3 from the value obtained in step 4 will provide an average

value for the processing time required to perform the encryption only on the test bitstream.

Statistic
Copy Test 1 -

(Time * Load = Proc. Time)

"Chicken

10s * 15.3% = 1.530s

Monash Nursing

305 * 13.4% = 4.020s

Diahlo2_3

855 * 10.5% = 8.9255

Copy Test 2

11s* 153%=1.683s

30s * 13.3% =3.990s

835 * 10.2% =9.078s

Copy Test 3

10s*15.1% = 1.510s

33s* 11.8% =3.894s

80s * 11.1%= 8.880s

Average Copy Time

1.5743s

3.9680s

8.9610s

Cipher Test 1 ~
(Time * Load = Pro¢. Time)

10s * 59.9% = 5.990s

27s * 54.8% = 14.796s

88s * 29.3% = 25.784s

Cipher Test 2

9s *61.5% =5.535s

26s * 58.7% = 15.262s

955 * 27.5% = 26.125s

e g ot i T, L) T 3 g

i

Cipher Test 3 10s * 58.8% =5.880s | 28s*52.3% = 14.644s| 87s*29.4%=25.578s
Average Cipher Time 5.8017s 14.9007s 25.8290s

Cipher Only Time 4.2274s 10,9327s 16.8680s
Approximate CPU Load at 2.64% 4.08% 3.12%

Reai- [ime

Approximate Cipher 63.7 Mb/s 67.0 Mb/s 80.3 Mb/s

Processing Rate

Table D-7 Basic Performance Results on Test Platform 1

Appendix D:
Experimental Resulis

e Once we have determined the approximate time at 100% CPU load to encrypt the file, we
can combine this value with the average bitrate of the test file to obtain twe values, one the
approximate CPU load (in %) required to encrypt or decrypt the data in real-time, and the other

to determine the maximum processing rate of the cipher itself on the test platform.

The results from this experiment are listed in Table D-7 and Table D-§, note that there
are no listed results for the first three test files “tennis.mpg”, “flowg.mpg” and “us.mpg’™ as the time
measurements for encrypting these files were approximately 1 second. This small measurement meant
the error in the measured CPU load was much larger and any calculated results could not be used as an

accurate determination of the performance of the cipher.

The resuits for both platforms indicate that the cipher is very fast, requiring between 2.5
and 4 % of available CPU cycles on the Pentium 1I and less than 1 % of available CPU cycles on the
Pentium 4, The variability in these results is due to the differing average bitrates of the encoded video
streams, indeed while there are only three test files, we can see the approximate cipher processing rate
is fairly consistent. The highest rate test file — at 2.7 Mb/s — was “Monash Nursing.mpg™, the results
indicate that this rate requires just over 4% of available CPU cycles on a Pentium 11 and an extremely
small 0.55% of cycles on the faster Pentium 4. This bitrate is considered high for an MPEG-1 encoded
stream. 1f software decoding and display on a Pentium 11 requires less than 96% of available CPU
cycles, we should be able to decrypt and decode the stream in real-time. An issue could arise when
considering extending the cipher to support MPEG-2 streams at rate of about 10 Mb/s — this would

require 4 times the number of free CPU cycles, however it is extremely unlikely that a Pentium 1l

would have the processing power 1o decode a 10 Mb/s MPEG-2 stream, even without encryplion.

Stytistic ' © Chicken oo .\I.Onn'sh_Nu_t‘Sinp_ .Diablo2 %

Appendix D
Experimental Results

These results show the approximate number of CPU cycles required to perform
decryption of the MPEG-1 test streams, however the real test is to determine whether or not the
decryption can be performed in real-time, allowing the decrypted stream to be decoded and displayed
to the user. In the following test | propose o take the encrypted files ard play them back using the
DirectShow (Microsofi, 2001b; Microsoft, 2001a) decryption filter developed as part of this work, The
DirectShow Filter Graph editor will be used to assemble a filter graph that reads the encrypted files, de-
multiplexes the MPEG-1 System Stream using the MPEG-1 System Stream Filter, decrypts the
encrypted Video and Audio Streams using the decryption filter before decoding and displaying the
decrypied streams using the gencric MPEG-1 Video and Audio Stream Filters as well as the generic

Video and Audio Renderer Filters. The Filter graph used to achieve this is shown in Figure D-1.

T Unjled:- Tdter Graph fditar,
He Gk Pew' Gath Hep -

"olelw] @l Linn]
L

1 ko

1,

e
¥ FAT R Rl
i e Y “'\)«w.";’%

o

“er iy

T

Copy Test | — Ss*9.7%=04855 | 13s*12.1%=1573s| 295* 7.1% =2.059s
(Time * Load = Proc. Time)

Copy Test3 Ss* 10.3%=0515s 11s*12,8%=1408s| 28s™* 8.8% =2.464s
Copy Test 2 45 * 13% = 0.520s 125 * 11.3% = 13565 | 29s* 8.4% =2.430s
Average Copy Time 0.5067s 1.4457s T 23197

Cipher Test 1 - 45*33%.. 13535 | 1ls*28.8%=3.1685| 28s* 17.9% = 5.012s
{Fime * Load = Proc. Time)

Cipher Test 2 55 * 31.29 = 1.560s 10s *29.1% =2910s | 275 *20.4% = 5.508s
Cipher Test 3 45 * 41.2% = 1.648s 10s ¥27.0% =2700s [285 * 19.5% = 5.460s
Average Cipher Time 1.5200s 2.9260s 5.3267s

Cipher Only Time 1.0133s 1.4803s 3.0070s

Approximate CPU Load at 0.633% 0.552% 0.556%

Real-Time

Approximate Cipher 265.8 Mb/s 494.7 Mb/s 450.2 Mb/s

Processing Rate

Table D-8 Basic Peirformance Results on Test Platform 2

Figure D-1: DirectShow Filter Graph for Encrypted Video Playback from NetShow Theatre

Like for the previous test, we would like to detenmine an approximate value for the CPU
resources required to decrypt each encrypted stream. This would provide a figure which we could
compare to those from Table D-7 and Table D-8. The procedure here is slightly different, primarily
because processing always occurs in real-time, the execution time is equal to the duration of the
encoded MPEG-| System Stream, also decryption is only ever performed in real-time, not at the cipher
processing rate as determined (rom the previous experiment. As such, in this case we are only
interested in the system average CPU load during playback only versus the load during decryption and

playback. The procedure is outlined below:

+ Directly playback of the plainiext MPEG-1 stream - noting the CPU load required to
perform the procedure. Repeat this step three times, then obtain an average vaiue for the CPU

cycle requirements. Playback is performed full screen unless the test platform is unable to

v e Pl Wty S0 i

.

Appendix D:
Experimental Re:ults

perform this tasi ith available computing resources, in this case playback is performed at the

default size of the encoded video stream.

¢ Using the Filter Graph Editor, playback the encrypted MPEG-1 stream ~ noting the CPU

load required to perform the procedure. Again, repeat three times, then obtain an average value

for the CPU cycle requirements. Playback is again performed full screen.

¢ Subtracting the result from step | from the value obtained in step 2 will provide an average

value for the CPU processing requirements required to perform the decryption only on the

encrypted MP12G-1 file during playback.

» Compare the value obtained in step 3 with those previously obtained.

Biatistic-

tennis”

Foflewa”

Chicken ®

Monash
Nursinet

I)i:lhluE_S"_

Plaintext Playback — 47.8% 60.0% 41.7% 87.6% 56.3% 59.3%
CPU Loads 44.2% 56.7% 40.1% 87.5% 56.2% 59.5%
49.6% 60.8% 42.1% £7.9% 55.9% 60.0%
Playback — Average Load | 47.20% 59.17% 41.30% 87.67% 56.13% 59.60%
Encrypted Playback — 51.2% 64.7% 43.7% 90.3% 61.5% 63.3%
CPU Loads 50.6% 65.8% 43.1% 89.7% 61.3% 63.5%
48.6% 64.1% 43.8% 90.4% 62.1% 63.5%
Decryption and Playback 50.13% 64.87% 43.53% 90.13% 61.63% 63.43%
— Average Load
Cipher Only - CPU Load 2.93% 5.70% 223% 2.46% 5.50% 3.83%
Previous Prediction N/A N7/A N/A 2.64% 4.08% 3.12%

Appendix D:
Experimental Results

performing real-time decryption if decoding and playback was handled by a hardware based MPEG

decoder as would be likely in any black-box application based on Pentium If like hardware.

Statistic

Plaintext Playback —

tennis

11.7%

fNlown

17.6%

 hivlen

15.4%

I)i;ﬁﬁ]f}".-_f'\)

8.5% 11.9% 15.3%
CPU Loads 12.2% i5.6% 8.4% 12.1% 14.9% 14.8%
11.9% 17.2% 7.4% 12.3% 15.2% 15.0%
Playback — Average Load | 11.93% 16.80% 8.1% 12.10% 15.17% 15.03%
Encrypted Playback — 12.5% 17.8% 9.0% 12.8% 16.1% 15.7%
CPU Loads 13.9% 18.3% 8.4% 13.0% 16.0% 15.3%
13.3% 18.0% 92.4% 12.7% 15.8% 15.7%
Decryption and Playback 13.23% 18.03% 8.93% 12.83% 15.97% 15.57%
- Average Load
Cipher Only - CPU Load | 1.30% 1.23% 0.833% 0.73% 0.80% 0.54%
Previous Prediction N/A N/A N/A 0.633% 0.552% 0.556%

Table D-10 Real-time Decryption and Playback Performance Results on Test Platform 2

D.3.4 Testing Functionality

Having verified that the cipher process is reversible — the original plaintext could be

retrieved from the cipheriext — and that real-time decryption and playback was possible given current

computing power, it now becomes necessary to verify that it is possible to perform real-time decryption

- Test platform was unable to playback these files full screen.

Table D-9 Real-time Decryption and Playback Performance Results on Test Platform 1

The results of this test can be found in Table D-9 and Table D-10. While real-time
decryption and full-screen playback was not always possible, tests indicate that full-screen playback of
the plaintext stream alone on the same platform was not possible — wherever full-screen playback was
possible, it was always possible to perform real-time decryption and fulf-screen playback. However,
this will not always be the case, there will be some scenarios where full-screen playback is just barely
possible, with the remaining CPU cycles not being sufficient to provide real-time decryption. The
promising outcome of these experiments however show that the CPU load required to perform the
decryption is a small fraction of that required to perform the decoding of the MPEG-1 stream. On most
modern desktop computers running a Pentium 4 processor or similar, real-time decryption and
playback is well within the realms of possibility, with a large amount of processor time remaining
available, indeed we can speculate that it may be possible to perform real-time decryption and playback
on a2 modern computer of a much higher bitrate MPEG-2 stream if the cipher is extended as suggested
in Chapter 6. The results also show that while a slower and older Pentium I based platform may
struggle to provide real-time decryption and decoding, it would suffer the same problems in simple

decoding and playback anyway. However, this type of platform would have no problems in

246

and playback of streaming video, supporting all digital playback modes. In this section 1 wil) discuss
the last set of tests intended to verify that the designed cipher is compatible with a range of different
streaming server producis. For these tests, I wifl use three different streaming servers, testing the
capabilities of each to varying degrees, in order to prove that existing server products are not required
to have an understanding of the MPEG-1 Cipher algorithm and can be used as provided to stream

protected video.

D.3.4.1 Miecrosoft NetShow Theatre Streaming Server

The first server under test is Microscft NetShow Theatre, a Windows product that can
stream multiple concurrent high bitrate streams. The server configuration is made up of three
workstations running multi-platform software to together provide a streaming video solution. One
workstation provides the server management functionality as well as maintaining a database of content
installed on the server. The actual content is installed on the remaining two workstations, these
computers share the load of streaming any requested video, each taking turns in streaming a short
segment (approx. | second). if one platiorm fails, the failure is detected and the other machine takes
up the entire load, thus providing a degree of failsafe operation. Each workstation is equipped with a
155Mbps ATM Network Card and thc combined server is capable of streaming approximately
280Mbps of different concurrent video streams. While Microsoft has cusrently discontinued

development of the NetShow Theatre product, it offers a stable streaming server platform and can still

247

Appendix D:
Experimental Results

be used to implement a high bitrate streaming video solution. Even though the product itself is now
obsolete, it is still a viable test platform for proving cipher functionality with a range of server products

as other current and future products will be similar in scope and basic design to this system.

The NetShow Theatre platform offers a DirectShow capable source filter, enabling full
DirectShow compatibility when streaming video. This means that the DirectShow Cipher Filter can be
utilised to decrypt the streaming video in real-time prior to passing it to the decoding and rendering
filters for display. Unfortunately we cannot utilise the Fiiter Graph Editor to construct and test
functionality as this only enables play and pause functionality. Instead we can use the developed test
application — “StreamCipher.exe” — to playback the encrypted video stream. This application can be
used to provide seek functionality and high-speed playback modes on top of the basic play and pause

functions.

In order to comectly perform the tests outlined below, we will install a copy of each

plaintext test file on the server along with all three encrypted copies of the test file. The plaintext
bitstream will be used as a baseline test to prove that normal streaming and playback functions with un-
encrypted files. The other installed files will be the corresponding bitstream encrypted with the keys
0xff, 0x4a and 0x42. The Microsoft NetShow Theatre server will only stream a bitstream if it
conforms to the MPEG-1 System Stream format, this means that it is not possible to perform the
following series of tests on the first three test files ~ “tennis.mpg”, “flowg.mpg™ and “us.mpg”. This
does not invalidate the cipher as designed as the original plaintext files can also not be installed onto

the streaming server,

We can now use the client playback application to run a series of tests against the

installed files to check for functionality. At this stage we are no fonger directly measuring the cipher
performance as per the previous section but note that performance can be verified to be at an acceptable
level if playback occurs without any visible or audible glitches (the stream is correctly decrypted in
real-time before it is required by the subsequent decoders), all tests are performed using visual
inspection to confirm correct functionality. The details of each individual test are cutlined below and
the results are presented in Table D~11, where success for streaming of the encrypted stream signifies

success in testing all three encrypted bitstreams of the same video asset.

e Installation — Adempt to use the provided Microsoff NetShow Theatre Server user
interface to install the test files, both in plaintext and encrypted form. Since the server will only
accept installation of files that it can correctly parse and stream, this test will ensure that the
modifications made to the plaintext bitstream for Copyright protection do not Yim:it the ability of

the file to be streamed from a variety of existing streaming server platforms.

¢ Real-time Streaming — Each test file is streamed and played back using the client playback
application. In the case of the plaintext bitstream, we check that correct playback (both visible
and audible) occurs. When playing back the encrypted streams, we also check for correct

playback to occur. If an error occurs during playback, this could indicate one of two

Appendix D:
Experimental Resuits

possibilities, either the cipher cannot decrypt the streaming video correctly or there are not
enough CPU cycies available to perform the task. Assuming all fanctions correctly (as expected
since playback will involve a similar filter graph to that used 1o test real-time decryption and

playback), we can show that the cipher design permits real-time streaming and playback with
the Streaming Server,

© Pause and Play - Each fest file is streamed while randomly selecting the pause and play
features from the player controls. Since control of the streaming modes i: remotely controlled
by the client playback application to the server, it is impossible to guarantee that the same
timestamps will be exactly selected on subsequent experiments, random selection of timestamps
to test streaming restarts will enable us to say with confidence that the cipher design correctly

handles pauses in playback of the content from the Streaming Server.

o Indexed Playback — Each test file is streamed while randomly shifiing the media position
bar forwards and backwards through the stream, the randomness in timestamps is used for the
same reasons outlined above. This test is used to verify that the cipher design permits streaming
from random resynchronisation points within the content, given that the streaming server will
select the actual point where streaming occurs based on the selected timestamp and the contents
of the bitstream to be at the start of a Group of Pictures. By selecting both forward and
backwards jumps, the test proves the ability of the cipher to decode the stream from any point in
the encrypted bitstream,

* High Speed Playback — Each test file is streamed in high-speed, both fast forward and
rewind, to ensure that the cipher can correctly decrypt these special streams, This basic test will
ensure that the cipher design can correctly cope with high-speed streams, usually implemented
as a sequence of individual I-Frames within the original video stream. Also tested at this stage
is seek functionality within the high-speed playback modes, testing the ability of the cipher to
commence real-time decryption and playback at any random playback point within the bitstream
during high-speed playback. Of course, with the first three test streams being too short for
testing seek functionality, they are obviously also too short to test the high-speed playback

modes.

¢ Random Playback Modes ~ The final test involves the random selection of different
playback modes of the encrypted stream and ensures that correct playback ensues. This
includes all of the above tests as well as changing all possible changes in playback states
between play, pause, fast forward and rewind. While the above tests should also confirm the
expected results of this test, this test should ensure that random selection of any possible
function available to the user can be correcily handled by the cipher module - the stream is

correctly decrypted and displayed back to the user.

As expected, the results when streaming the plaintext file are all successful. These tests
perform basic functionality tests of the streaming servers without considering the concept of the

encrypled bitstream. Given that all three plaintext bitstreams were generated from independent sources

Appendix D:
Experimental Resuits

and encoders, we can surmise that the same results can be extended to the all MPEG-1 compliant
bitstreams. Of more interest are the results when streaming the encrypted files, in this case we are
actually testing the prototype cipher while streaming the encrypted bitstreams from the server. These
test results verify that the prototype cipher can correctly decrypt the stream delivered from the server in
all respective playback modes. The resuits also show that the resultant decrypted sireamn is then
correctly decoded for subsequent playback, thereby proving the viability of the cipher design to support
all of the digital playback modes supported by the server.

'\Im_iu-:md Cipher Key liwtadiition Real-Time Patse wnd o Imdésed - Hieh-speed Random’

Test Streaming Pl Flasvbach - Playback Pluybuck
i Madles

Chicken — Plaintext] 4| ||
Chicken — Oxff %] & M] |
Chicken - Ox4a 7| &1 ¥ %] [} [
Chicken — 0x42] &1] | 5] &
Monash Nursing ~ | ™ %) | | &
Plaintext

Monash Nursing — OxfT o4 M 4| %] | ™~
Monash Nursing - 0x4a | %) 7} & M
Monash Nursing — 0x42 M ™ & 0% %] 1%
Diablo2_S ~ Plaintext] | M &] &
Diablo2_5 — 0xff] | %] %) 4] |
Diablo2_5 - 0x4a [1) %) [
Diablo2_5 - 0x42] |] & &1 154}

Table D-11 Functionality Tests with Microsoft NetShow Theatre Streaming Server

DJ34.2 SGIMediabase 3.1 Streaming Server

The second server under test is Mediabase Version 3.1 as produced by Silicon Graphics
(SGI). At Monash University, this streaming server software is installed on an SGI Challenge L
workstation comprising 8 individuai processors. The Mediabase streaming server platform is no longer
maintained by SGI, it is now maintained and kept by Kasenna (www.kasenna.com) and has progressed
to Version 5.0, however protoco! for streaming MPEG-1 remains unchanged. In the test configuration,
the Challenge L workstation is connected to the network via a 155Mb/s ATM Network Card. Like the
Microsoft NetShow Theatre streaming server product, Mediabase support all possible digital video
playback modes — indexed playback, high-speed playback, pause — and can therefore be used to prove
the functionality of the designed cipher.

Like NetShow Theatre, the Mediabase platform also provides a DirectShow capabie
source filter, however, the Mediabase DirectShow filter does not provide support for the high-specd

playback modes. As for testing the NetShow Theatre platform, we can use the “StreamCipher.exz”

250

Appendix D:
Experimental Results

application to playback an encrypted video stream from the Mediabase server, noting that it is not
possible to confim functionality during high-speed playback using this application. The second test
application - “SGIStreamCipher.exe” - can instead be used to test high-speed playback. As described
in Appendix C.6.4, this application does not provide real-time decoding and playback but instead saves

the decrypted stream to disk for later playback and confirmation of successful retrieval of a viewable
plaintext stream,

Unlike the NetShow product, Mediabase will accept installation bitstreams that conform
to the MPEG-1 Video Stream format as wel as the System Stream format — this means that all six test
bitstreams can be successfully installed onto the Mediabase server. The tests performed replicate the
aforementioned tests for the NetShow Theatre streaming server. The installation test is performed once
since there is only the one server product under test. Similarly high-speed playback, indexed high-
speed playback and the random selection of playback modes can only be tested using the
“SGIStreamCipher.exe” application. On the other hand, the tests involving real-time streaming, pause
during playback and indexed piayback are performed using both the “StreamCipher.exe” application
and the “SGiStreamCipher.exe” application. Confirmation of functionality is performed visually and
audibly, either in real-time in the case of DirectShow playback or through later playback of the created
plaintext bitstreams during use of the SGISireamCipher application. Since neither of the two test
applications is able to playback an MPEG-1 Video Stream directly, these tests must be performed
through manual construction of a Filter Graph in the Filter Graph editor — note that the three Video
Stream only bitstreams form sequences that are too short to adequately test indexed or high-speed

playback modes in any case.

The results of tests when streaming from the Mediabase server - shown in Table D-12 -
are all successful. In each case all test bitstreams were successfully installed onto the streaming server.
Of the three Video only bitstreams, these files were successfully streamed, decrypied and played back
in real-time using a manual Filter Graph construction — as previously mentioned, the assets were too
short to test indexed or high-speed playback and the “SGIStreamCipher.exe” application did not
support Video only streaming. Of more inferest was the testing of the three longer MPEG-1 System
Stream conformant bitstreams, Using the DirectShow enabled test application, it can be verified that
real-time decryption and playback, paused playback and indexed playback of an encrypted bitstream
was successful. Usage of the “SGI/StreamCipher.exe™ application further confirmed that high-speed
playback, indexed high-speed playback and random playback mode changes on an encrypted video
stream server by Mediabase resuited in the cotrect decryption of a viable MPEG-1 bitstream.

The <onclusion to be drawn froin this result is that the Mediabase streaming server gan
deliver a previously encrypted bitstream in all playback modes and that the subsequent stream can be
correctly decoded for playback at the client end. This proves the viability of the cipher design to
suppont all digital plzyback modes supported by Mediabase.

251

Appendix D:

Appendix D:
Experimental Results

Experimental Results
Mavie snd Cipher Installation Real-Tine » Pause and Indexed Migh-spred Random
N i Test Streaming Play - Playback Plasback Plavback
P o : - Maodes
tennis ~ Plaintext] 7| &
tennis — Oxff A & N/A N/A N/A
tennis ~ Oxda M o M N/A N/A N/A
tennis ~ 0x42] i v N/A N/A N/A
flowg — Plaintext %] & & N/A N/A N/A
flowg ~ Oxff] vl ¥ N/A N/A N/A
flowg - Ox4a & M %) N/A N/A N/A
flowg — 0x42] " =) N/A N/A N/A
us — Plaintext 77)) N/A N/A N/A
us — Oxff # oz & N/A N/A N/A
us — Ox4a] & & N/A N/A N/A
us — 0x42 M o & N/A N/A N/A
Chicken — Plaintext [%] vy ™ =" 2"
Chicken — 0xff %] | ™ 4] &" &
Chicken — Oxda ™ ™ & T4 =” e
Chicken — 0x42 &] & M &* o
Monash Nursing — ™ ™ % =* @
Plaintext
Monash Nursing — 0x{f %] %] [M Tk i
Monash Nursing — Ox4a] | ™ & i
Monash Nursing — 0x42] & [] e &
Diablo2_5 — Plaintext]] & 4 e &
Diabloz_5 — 0xff & Tl o]] & ="
Diablo2_5 - Oxda & & & ™ A v
Diablo2_5 — 0x42] A &] =" [T
N/A Not possible to test through Filter Graph editor, test applications could not playback 3 MPEG-1 Video Stream
conforman bitstream,
* Playback couid only be effected via manual construction of a Filter Graph using the Filter Graph editor.
Test could only be performed using “SGIStreamCipher.cxe

Table D-12 Functionality Tests with SGI Mediabase 3.1 Streaming Server
D.3.43 Apple QuickTime Streaming Server

The final server platform under test is the Apple QuickTime and/or Apple Darwin

Streaming Server, Both products are offering frorn Apple and compiled from the same code base, the

252

differences being that the Apple QuickTime Streaming Server contains code optimised for execution

on Apple hardware and the fact the Apple offers product support on the QuickTime Streaming Server.

The server configuration consists of a Linux platform running the Darwin Streaming Server software.
In order 1o install an MPEG-1 movie for streaming from either the QuickTime server or the Darwin
server, it is necessary to convert the original file from an MPEG-] System Stream comformant
bitstream to an Apple QuickTime Hinted Movie bitstream. This transformation can be performed
using a registered version of the Apple QuickTime Player software by choosing the “Export... option
from the File menu. The process of hinting a movie file inserts extra information into the file that
allows the QuickTime or Darwin servers to offer indexed playback of the original MPEG-1 bitstream
across a network using the RTSP and RTP protocols.

The first test in verifying the functionality of the cipher is to ensure that the encrypted
bitstream can be successfully installed onto the server. The procedure differs somewhat for the
QuickTime and Darwin servers as the file must first be hinted prior to instailation. For testing
purposes, all the plaintext and encrypted test files were hinted using QuickTime Pro Version 6.0 for
Windows and then successfully installed onto the server. No problems were encountered during this
stage thus showing that either server type could successfully stream the encrypted bitstreams in all

supported playback modes — normal playback, pause and indexed playback.

Both the Apple QuickTime and Darwin Streaming Servers will stream an instaifed hinted
MPEG-1 bitstream using the RTSP and RTP protocols, this means that a suitable RTSP capable client
player must be used to retrieve the stream. Under normal circumstances, the Apple QuickTime player
can be used to receive, decode and playback any stored video file. To subject the QuickTime or
Darwin Servers to the same battery of tests listed in D.3.4.1 and D.3.4.2, it would be necessary to
construct a playback application to retrieve, decrypt and decode the encrypted bitstream from the
server. This task is not impossible, indeed Apple provide an SDK (Apple, 2002a) similar in scope to
DirectShow that would enable development of a decryption module that could be used in the same way

as the MPEG-1 Cipher Filter to provide real-time decryption and playback of the encrypted bitstream.

While developing a QuickTime/Darwin client player application that could stream and
playback an encrypted file is possible, the work required to perform this task is equivalent to the work
required to build the DirectShow filter for use in playback of encrypted streams from a DirectShow
capable server. It was deemed to be too time-consuming to also develop a decryption fiiter for the
QuickTime architecture due to the time and effort required to integrate with a complex system ~ a large
amount of time was also invested in developing the decryption filter to integrate into the DirectShow
environment. As such, testing of the Apple QuickTime and Darwin Streaming Servers was limited to
verifying that the encrypted bitstream could successfully be hinted and installed onto the server
platforms. The design of the server ensurcs that successful hinting and installation would ensure that

the encrypted MPEG-1 bitstream will be properly streamed to the client.

Appendix D:
Experimental Results

D4 SEAL Based Cipher

In this section I will discuss the tests performed to verify the viability and functionality

of the prototype cipher designed in Chapter 5. The same set of tests are performed as for testing the
prototype cipher with the one obvious difference being the selection of keys (the SEAL cipher takes
160-bit keys as opposed to 8-bit keys for the prototype cipher). The procedures for the experiments

remain constant with those of the previous section, the results are tabulated in the following sub-

sections,

D.4.1 Testing Repeatability

The procedure involved to confirm the repeatability of the designed MPEG-1 cipher
using SEAL as a base cipher is exactly the same as that 1o prove repeatability of the prototype cipher.
The key difference is in the selection of the secret key to use for testing purposes. This is an issue as
the prototype cipher required only an 8-bit key whereas the final cipher design requires a 160-bit key.
Using the same approach as that used, in Section D.3.1, for testing purposes we will use a key
composed of 160 1-bits ~ (OXfEEEEEELELFFLIEEELFFEFFFEFFESELLEEFFELFES). Again the
aim of this experiment is to confirm, through multiple executions of the cipher, that the encrypted
bitstream is produced congistently. As in Section D.3.1, the experiment is repeated for each of the six

test files, the results are tabulated in Table D-13.

As can be seen from the tabulated results, all tests in this case were successful, just as for
the prototype cipher. The three resultant files from each input test file were all equal, indicating that
the process of applying the 160-bit key to the input bitstream is predictable and able to produce
consistent results, and concluding that it is possible to consistently reverse the results to obtain the

original bitstream.

Appendix D
Experimental Resulis

Statistic . tennis ~ Mlowg

Chicken |

- T

Momnzash

Nursing

Diablo2 5

Video Stream Selected | 1,239,953 | 2,813,788 | 2,049,416 | 30,542,212 | 83,500,150 | 150,153,682
Video Stream Encrypted| 1,187,354 | 2,684,552 | 1,955,732 | 25,867,063 | 78,605,323 | 142,369,502
(958%) | (954%) | (954%) | (84.7%) | (94.1%) | (94.8%)
Audio Stream Selected 0 0 0 2,528,722 | 6,385,721 | 12,888,252
Audio Stream Encrypted| 0 0 0 2,512,183 | 6,350,629 | 12,814,492
P 993%) | (994%) | (99.4%)
3 Three Output Files %] %] %] | #A %]
Equal

Table D-13 Encryption Statistics and Repeatability of Encryption Process — SEAL Cipher

If we once again examine the proportion of bytes actually encrypted against the number

of bytes selected for encryption, we notice a slight decrease in the number of Video Stream bytes left as

plaintext but a marked decrease in the number of Audio Stream bytes left as plaintext. Indeed, in the

case of encrypting the Audio Stream, the proportion of plaintext bytes where those bytes were selected

254

for encryption is now approaching the expected value (/254 or approx. 0.78%). This improvement is
primarily due 1o the change in the condition* for no change to occur — from a plaintext byte being equal
to either Oxff or 0x00 to a plaintext byte being equal to either 0xff or a pseudo-random value selected
by the SEAL cipher. This change means that the number of bytes left as plaintext is less reliant on the
incidences of a single byte value (the 8-bit prototype key) and more subject to chance, therefore leading

to a value closer to that expected.

When considering the Video Stream, we only see a slight improvement in the figures.

Apgain, this result can be explained as in Section D.3.1:

¢ Firstly, for every slice in the MPEG-1 Video Stream, the number of bytes determined as
selected for encryption is three higher than what it should be. This leads to a scenario where the
reported figures are skewed due to an incorrect determination of the number of bytes selected

for encryptios.

s Secondly, this result is also in part determined by the results contained in Table D-4, since
the frequency of 0x00 and 0x01 bytes is higher than expected for a purely randon: bitstream,
and these bytes are never encrypted in a Video Stream, we can conclude that again a large

number of bytes remain as plaintext due to the nature of an MPEG-1 Video Stream.

D.4.2 Testing Reversibility

The next step is to confirm the reversibility of the encryption procedure, again the
procedure is exactly the same as that described in Section D.3.2, except for the choice of keys. Also
similar is the aim of this series of tests, to prove that if the same key used during encryption is applied
to the encrypted bitstream, then the original MPEG-1 bitstream can be re-obtained, and to verify that if
an incorsect key is applied 1o the encrypted bitstream, then the original bitstream is not obtained, but

rather a different, invalid MPEG-1 bitstream is obtained instead.

As discussed in the previous section, while there are 256 possible keys that can be
applied using the prototype cipher, the SEAL based cipher has the capability of supporting up to 2'0
different keys. Obviously, it is not feasible to perform a complete test using all these keys — therefore,
like when testing the protolype cipher, a subset of four keys will be used for testing purposes, these

four keys are:

o Key 1 (OxEEfffeffeffffefeffffEffrfferffefeffLffrEf) ~ While not
necessarily being as obvious a choice as for the prototype cipher, this key stili remains suitable
as a test key for SEAL, it is not a weak key in any respect and is easy to enter for testing

purposes.

¢+ Key 2 (0x00) — Unlike in the
prototype cipher where a key of 0x00 resulted in an unchanged ciphertext bitstream, the SEAL

cipher ensures that a key consisting of 160 zero bits produces a suitable pseudo-random output

255

''''''

Appendix D:
Experimental Results

for encryption purposes. Again, the key is not weak in any way and like Key 1, is easy to enter

for testing purposes.

e Key 3 (0x5468652044504547205345414c20636970686572) - This key
corresponds to the ASCII code sequence fur the 20 character string “The MPEG SEAL cipher”.
A phrase of 20 characters was chosen to produce a 20 byte key sequence for convenience.
Again, SEAL has no weak keys and any one key is as suitable as any other unique key, Using

this approach provides a convenient technique for selecting one of over 10°® different keys.

Deeryption Key .

Filename | . Encryption _I\".-c_\'_ E C kev t
Key 1

®
g .

Key2
tennis.mpg

Key3

Key 4

Key 1

M @ & 8B &

Key 2
flowg mpg

=

Key 3

Key 4

Key 1

Key 2
us.mpg

Key 3

Key 4

Key 1

. Key 2
Chicken.mpg

Key 3

Key 4

Key 1

Key2
Monash Nursing.mpg

Key 3

Keyd

Key 1

Key2

Diablo2_5.mpg

B EEE A EEE R E R S B E

Key 3

b G By @ O) W @] M| & & Q) & O OE QG Qe E R
M R X EERMBBGRH QRN EERQ N N EH Q] X BB Q E
By B & 6 EEEEE QR EE R EE QR

Key 4

&

Table D-14 Comparison of Decrypted File with Original File - SEAL Cipher

Appendix I
Experimental Results

o Key 4 (0x4a61736£62204275742050684420546865736973) — This key was
selected using 1he same technique as Key 3, only this key corresponds 1o the ASCH code

sequence for the 20 character string “Jason But PhD Thesis”.

The procedure for application of these four keys is identical to that described in Section
D.3.2, the results from this test are shown in Table D-14. These results confirm the functionality of the
cipher in reversing the encryption process, the original bitstrean: czn only be retrieved if the correct key
is used for decryption. Visua! confirmation indicated that hase files were able to be decoded and
played back normally. The results also verified that the decoder couid not playback or display any of

the resultant output files that were decrypted using an incorrect ks

D.4.3 Performance Testing

As for testing the prototype cipher, the same two test computers specified in Table D-6
were used as test platforms to verify the performance characteristics of the MPEG-1 cipher, also the
same test procedures explained in Section D.3.3 are used to produce the resulis reported in Table D-15,

Table D-16, Table D-17 and Table D-18, the major differences being:
o The choice of test key — in this case the key is Key 1 as described in the previous section.

¢ We 2an re-use the measurements of file-copying from testing the prototype cipher since

there was no encryption performed when taking these measurements.

» We can re-use the measurements of CPU Load during plaintext playback since there was no

decryption performed when taking these measurements.

Statistic “Chicken ' .-“.“_"“-“h Nuising - Biably2_5

Average Copy Time | 1.5743s " 3.9680s 8.9610s

Cipher Test 1 - 105 * 81.3% =8.130s | 26s* 76.7% = 19.942z| 85s ¥ 42.9% = 36.465s
(Time * Load = Proc. Time})

Cipher Test 2 9s * 79.5% = 7.155s 265 * 77.9% = 20.254s| 90s * 40.3% = 35.270s
Cipher Test 3 10s * 73.5% =7.350s| 25s*79.4%=19.850s| 84s*43.3% =36.372s
Average Cipher Time 7.5450s 20.0153s 36.3690s

Cipher Only Time 5.9707s 16.0473s 27.4080s
Approximate CPU Load at 3.73% 5.99% 5.07%

Real-Time

Approximate Cipher 45.1 Mb/s 45.6 Mb/s 49.4 Mb/s

Processing Rate

Table D-15 Basic Performance Results on Test Platform 1 - SEAL Cipher

Again, there are no results for the first three test files in the first series of tests because
the encryption time was too short to provide any meaningful results. The results of the basic tests on
both platforms indicate that while the cipher is not quite as fast as the prototype cipher, it is still very

fast, requiring between 3.7 and 6 % of available CPU cycles on the Pentium I1 and less than 1.2 % of

257

e L T T AR S ORI (T RETY" YRV~ FPH PRI Y ;g." Lt

M

Appendix D: .
Experimental Results Appendix D:

Experimental Results

available CPU cycles on the Pentium 4. The results also siow that the approximate cipher processing

. . again struggles (o provi -ti i i ini i
rate is fairly consistent on a given platform. We can also make the same assumptions on the & -4 provide real-time decryption and decoding, but would have minimal problems in

performing real-time decryption using the more complicated cipher if decoding and playback was
handied by a hardware based MPEG decoder.

applicability to real-time decryption and decoding, the required CPU load to perform the decryption is

refatively low and shouid enable a processor that can decode and display a given stream to be able to

also decrypt it at the same time. Statistiec ¢ tennis © Chicken - Monash Diahlo2 3

-

] . — — _ _ I . e . _ .) o L Nursing. .

| , Statistic’ RN - Chicken . Monash Nurstng - - - Diablo2_3 Playback — Average Load 11.93% 16.80% 8.1% 12.10% 15.17% 15.03%

Average Copy Time 0.5067s 1.4457s 2.3197s Encrypled Playback — 13.5% 17.7% 8.6% 12.9% 16.2% 16.1%

I Cipher Test 1 - 4s * 382%= 1.528s 11s * 41.9% = 4.609s 285 * 23.8% = 3-0648 CPU Loads 13.4% 18.7% 9']% 13.1% 16.0% 16.2%

} (Time * Load = Proc. Time) 14.1% 18.8% 8.7% 12.6% 16.3% 16.8%
Cipher Test 2 3s * 70.3%=2.109s [1is*40.5%=4.455s| 205" 25.8% =7.482s Decryption and Playback | 13.67% | 18.40% | 8.3% 1287% | 16.17% | 1637%
Cipher Test 3 35 *64.1%=1.923s 1is * 41.9% =4.609s| 27s*29.9% =8.073s - Average Load
Average Cipher Time 1.8533s 4.5571s 7.8730s Cipher Only - CPULoad | 1.74% 1.60% 0.70% 0.77% 1.00% 1.34%
Cipher Only Time 1.3467s 3.1120s 5.5533s Previous Prediction N/A N/A N/A 0.840% | 1.161% 1.026%
Approximate CPU Load at 0.840% 1.161% 1.026%

i Table D-18 Real-time Playback Performance Results on Test Platform 2 - SEAL Cipher

I Real-Time

i Approximate Cipher 200.0 Mb/s 235.3 Mb/s 243.8 Mb/s D.4.4 Testing Functionality
P ing Rat

rocessig Tae Finally, we neecd to again verify that the securely encrypted bitstreams can be streamed

Table D-16 Basic Performance Results on Test Platfesm 2 - SEAL Cipher trom all our test server platforms without suffering a loss in the functionality provided. That is, all

s Statistie -7 F 4 T tennis” . flowg” s’ ~Chicken* Monash Diablo2_5 playback miodes supported by the server in question must still be supported when an encrypted
. ' . - ' ' © 7 Nprsing”

-y

4720%

Playbck- Avegbod 59 ” ' l 300’ 87.67% 56.13% | 59.60% bitstream is installed, and that the delivered stream can be successfully decrypted and decoded for real-
Encrypted Playback — 51.1% 67.5% 44.7% 90.6% 62.1% 65.8% time display at the client computer. In this section I will repeat the tests outlined in D.3.4 with the
CPU Loads 50.5% 68.2% 43.5% 90.8% 61.9% 66.2% securely enciypted bitstreams and show that full functionality is still maintained.
- o1.9% Eo4% 5.1% 90.5% 62.7% 63.9% D.4.4.1 Microsoft NetShow Theatre Streaming Server
Decryption and Playback | 51.17% §7.37% 44.43% 90.63% 62.23% 65.97%
The results of testing functionality of the SEAL based cipher with the Microsoft
— Average Load i _)) _
NetShow Theatre Streaming Server are presented in Table D-19, noting that instatlation of MPEG-1
: Cipher Only -CPU Load | 3.97% 8.20% 3.13% 2.96% 6.10% 6.37% . . . _ . o . . - .
f’ Video Stream compliant bitstreams (such as “tennis.mpg”, “flowg.mpg” and “us.mpz ") is not possible
; Previous Prediction N/A N/A N/A 3.73% 5.99% 5.07% . : . .
!-. using this server platform. The details of the server under test and the testing parameters are exactly

~ Test platform was unable to playback these files full screen. the same as described in Section D.3.4.1, the primary differences being:

g It S .)]) ‘)]
: Table D-17 Real-time Playback Performance Results on Test Platform I - SEAL Cipher o I:is no longer necessary to confirm functionality using the plaintext bitstream as this has

When examining the performance of real-time decryption and playback, we obtain already been shown.

il h ish - ‘
similar results to the prototype cipher, again showing that the CPU cycles required by the cipher is in e When testing bitstreams encrypted with the secure SEAL based cipher, the four keys

the minority compared to those required to decode and display the resultant stream. Again, we can . . .
ty p q piay gain, outlined in Section D.4.2 are used, again specified as Keyl, Key2, Key3 and Key4.
conclude that wherever full-screen playback was possible, it was always possible to perform real-time

decryption and full-screen playback. Also again, this will not always be the case, with some scenarios
where full-screen playback requires almost all the available CPU cycles, leaving none for decryption,
Even though the SEAL based cipher requires more resources to perform real-tims decryption and
playback, we can again speculate that it should be possible to perform this task on a modern computer

using a much higher bitrate MPEG-2 stream. Finally, the slower and otder Pentium I based platform

258

These results show that like the prototype cipher, the SEAL based cipher can also
correctly decrypt the stream delivered from the server in all respective playback modes, and
subsequently correctly decoded for playback. As such, the secure cipher is proven to support ail of the

digital playback modes supported by the Microsoft NetShow Theatre Streaming Server platform.

252

Appendix D:
Experimental Results

Moxie and ('i].lht‘l" ey 'I-I]S'.l:ll_l:_llinn Real-Time - Pause and - Indeved High=speed Ruindon

“Test Ntreaming Play - Plavback Play bach Plavhback
: S) . . * Maodes

. ¥
. %
L.

Appendix D:
Experimental Results

- Movie andt:Cipher Key Installation Reab-Time Pauseand. Indexed High-speed Rindam.

Chicken ~ Ky 1 ™ | M ™ | %)
Chicken - Key 2 %} %} 4]] %]
Chicken ~ Key 3] 2| | 4] 14| %]
Chicken ~ Key 4 M 1| | 4| 1]
Monash Nursing - Key 1 i] %] %] |]
Monash Nursing - Key 2 ! | & & 1| |
Monash Nursing ~ Key 3 | ~ %] & 1|]
Monash Nursing - Key 3 | 4] | 1% M &
Diablo2_5 — Key | I M I %] & |
Diablo2_5 ~ Key 2 ™ 4] | %] &
Diablo2_5 - Key 3 %] % | %]
Diahlo2_5 — Key 4 ™ & | 1] %] 1]

Table D-19 Functionality Tests with Microsoft NetShow Theatre Strcaming Server — SEAL

D.44.2 SGI Mediabase 3.1 Streaming Server

The second server under test is Mediabase Version 3.1, the test platform is described
fully in Section D.3.4.2. Also fully described in this section is the test procedure to confirm
functionality of the server to support the encrypted bitstream under all playback modes and the ability
to successfully decrypt and decode these delivered bitstreams at the client using either the
“StreamCipher.exe " or “SGIStreamCipher.exe " application {or the DirectShow Filter Graph editor in
the case of the three MPEG-1 Video Stream conformant bitstreams). As described in Section D.4.4.1,
it is no longer necessary to test the plaintext bitstream functionality and the Keys outlined in Section

D.4.2 are used to create the encrypted bitstreams, The testing results are presented in Table D-20.

As for testing the prototype cipher, the results of tests when streaming from the
Mediabase server are all successful. All test bitstreams were successfully installed onto the streaming
server. The three Video only bitstreams were successfully sireamed, decrypted and played back in
real-time using a manual Filter Graph construction. The three System bitstreams were successfully
decrypted and played back in all playback modes supported by the respective playback applications
“StreamCipher.exe” and “SGiStreamCipher.exe”. In conclusion, the Mediabase streaming server can
deliver a securely encrypted bitstream in all playback modes and that the subsequent stream can be
correctly decoded for playback at the client end, therefore proving the viability of the cipher design to

support all digital playback modes supported by Mediabase.

260

Test sreamine - Play o Plavhack Playback Plavhack

leni ~Key1 M e
tennis ~ Key 2] = &~ N/A N/A N/A
tennis — Key 3 & = =l N/A N/A NA
tennis — Key 4 7] ol & N/A N/A N/A
flowg — Key 1 M il) N/A N/A N/A
flowg - Key 2 4| & = N/A N/A N/A
flowg - Key 3 « [l) N/A N/A N/A
flowg — Key 4] & = N/A N/A N/A
us —Key) 121 M [l N/A N/A N/A
us — Key 2 T &’ & N/A N/A N/A
us — Key 3] = 7" N/A N/A N/A
us — Key 4 ™ =) M N/A N/A N/A
Chicken — Key 1 &] &] & =
Chicken — Key 2 &] 4] ™ I 7
Chicken — Key 3 % ™] | &* ="
Chicken — Key 4]] &] =" =
Monash Nursing - Key 1]]]] i i
Monash Nursing ~ Key 2 4] | M & & ="
Monash Nursing - Key 3 ™ | | %] = o
Monash Nursing — Key 4 %%, 4| % ™ & o
Diablo2_5 - Key | o [&] 4] = o
Diablo2_5 - Key 2 & ¥] & & iy
Diablo2_5 - Key 3] 5] T2 & oM &
Diablo2_5 - Key 4] | M] & &

N/A Mot possible to test through Filter Graph cditor, test applications could not playback a MPEG-1 Video Stream

conformant bitstream.

* Playback could only &= effected via manual construction of a Filter Graph using the Filter Graph editor.

Test could only be performed using “SGIStreamCipher.exe”

Table D-20 Functionality Tests with SGI Mediabase 3.1 Streaming Server — SEAL

D.44.3 Apple QuickTime Streaming Server

Finally, the tests outlined in Section D.3.4.3 were repeated for the bitstreams encrypted
ysing the secure SEAL based cipher and subsequently installed on the test platform Darwin Streaming

Server. The successful conversion of all encrypted bitstreams to an Apple QuickTime Hinted Movie

261

Appendix D:
Experimental Resulis

and subsequent installation onto the streaming server leads to the same conclusion as for the proiotype
cipher - The Apple QuickTime Streaming Server and the Darwin Streaming Server platforms can
successfully stream the encrypted (using the SEAL based cipher) MPEG-1 bitstream in all of the digital
playback modes supported by these streaming servers. No client playback application was developed

to test decryption and playback of these encrypted bitstreams.

D.5 Conclusions

Both the prototype and more secure cipher passed all tests performed. Of particular
interest is the SEAL based MPEG-1 bitstream cipher. The cipher design required minimal CPU cycles,
enabling it to execute simultancousiy with video decoding and display. The cipher design pernitted
installation of an encrypted bitstream onto a range of video streaming servers that had no prior
knowledge of the encryption algorithm., These installed bitstreams we subsequently successfully
streamed from these servers in a variety of supporied playback modes. Furthermore, the bitstreams
received at the client decoder were successfully decrypted and decoded in a variety of playback modes,

including pause, indexed and high-speed playback.

The goals of this research were successfully met. The designed cipher can be
successfully utilised with a wide range of pre-existing streaming video products. It is also likely that
compatability will extend to future streaming servers as well. The cipher does not require special
streaming server implementations and can support a variety of streaming playback modes. Finally, the
concepts used in the cipher design can also be applied to an MPEG-2 bitstream with the effect of

successful streaming of an encrypted MPEG-2 bitstream.

Appendix E:
References

Appendix E

References

Abdulaziz, N. (2001)

"Digital Watermarking and Data Hiding in Multimedia”, PhD Thesis, Monash University

Agi, L, and Gong, L. (1996)

"An Empirical Sudy of Secure MPEG Video Transmissions”, In: ISOC Symposium on

Network and Distributed System Security, pp. 137-144

Alattar, A. M. and Al-Regib, G. 1. (1999)

“Evaluation of Selective Encryption Techniques for Secure Transmission of MPEG

Video Bit-Streams”, In: IEEE Symposium on Circuits and Systems, pp. 340-343

Alattar, A. M., Al-Regib, G. I. and Al-Semari, S. A. (1999)

“Improved Selective Encryption Techniques for Secure Transmission of MPEG Video
Bit-Streams" Vol., 1999, 256-260.

Anderson, D. B, (19%96)

"A Proposed Method for Creating VCR Functions using MPEG Streams", In: /EEE [2th

International Conference on Data Engineering, 1996, pp. 380-382

Anderson, M. (1990)

"VCR Quality Video at 1.5 Mbits/s*, In: National Communication Forum, pp.

Apple (2002a)

*Apple Quicktime Player". hitp://www.apple.com/quicktime, 2002a

Apple (20021)

*Darwin Streaming Server Software Download and Documentation”,

hip://developer.apple.com/darwin/projects/streaming, 2002b

ceehb i Lan Hatlboieen Mo lbeygon W

EO

Appendix E:
References

Ashmawi, W., Guerin, R., Wolf, S. and Pinson, M. (2001)

"On the impact of policing and rate guarantees in Diff-Serv networks: a video streaming

application perspective” Computer Communication Review, Vol. 31, No. 4, 2001, 83-95.

Aslam, T. (1998)

"Protocols for E-Commerce" Dr. Dobbs Journal, Vol. December, 1998, 52-58.

Bae, F. (2000)

"Multimadia Content Protection by Cryptography and Watermarking in Tamper-resistant
Hardware", In: Multimedia2000, pp. 139-142

Bao, F., Sun, Q., Hu, J, Deng, R. H, nnd Wy, J. (1998)

"Copyright protection through watermarking: towards tracing itlegal users”, In: The 61k
IEEE International Workshop on Intelligent Signal Processing and Communications

Systems (ISPACS'98), Movember, pp.

Binns, J. and Branck, P. (1998)

"McIVER Video-on-Demangd”, In: Victorian Association for Library Automaiion 9th
Biennial Conference, pp. 249-261

Birk, Y. and Mondri, R. (1999)

"Tailored transmissions for efficient near video-on-demand service”, In: 1EEE

International Conference on Multimedia Computing and Systems, pp.

Bloom, J., Cox, 1., Kalker, T., Linnartz, J.-P., Miller, M. and Traw, B. (1999)

"Copy Protection for DVD Video" Proceedings of the IEEE, Vol. 87, No. 7, 1999, 1267-
1276,

Bozok:, E. (1999)

"{P Security Proiocols" Dr. Dobb's Jowrnal Vol. December, 1999, 42-55.
Branch, P. (1996)

"Video On Demand Trials at Monash University”, In: The Virtual University Symposium,
1996, pp.

264

Appendix E:
References

Branch, P. and Durran, J. (1996)

"PC Based Video on Demand Trials”, In: EdTech96, pp. 21-24

Branch, P., Newstead, A. and Kaushik, R. (1996)

“Design of a Wide Area, Video-On-Demand User Interface”, In; ATNAC 1996, 1996, pp.

Branch, P. and Tonkin, B. (1997)

"Multicampus Video On Demand at Monash University" dustralian Journat of
Educational Technology, Vol. 13, 1997, 85-97.

Brandenburg, K. and Stoll, G. (1994)

"The 1ISO/MPEG-Audio Codec: A Generic Standard for Coding of High Quality Digital
Audio" Journal of the Audio Engineering Society, Vol. 42, No. 10, 1994, 780-792.

Bridie, J. (1997)

CTIE-TR-1997-06: Systems required 1o provide on-line Media Delivery Services, CTIE -
Monash University, 1997

Bridie, J. and Branch, P. (1998)

CTIE-TR-1998-06: SWIFT and MciVER Infegration, CTIE - Mconash University, 1998

But, J. (19992)

CTIE-RR-1999-02: Real Time Encryption/Decryption of an MPEG System Stream,
CTIE - Monash University, 1999a

But, J. (1999b)

CTIE-RR~1999-04: Real-Time Decryption of Streaming Video, CTIE - Monash
University, 1999b

But, J. and Egan, G. (2002a)

"Designing a Scalable Video On Demand System", In: International Conference on
Communications, Circuits and Systems (ICCCAS'02), pp. $59-565

o T refo b ot s Shoaeblbdotinen Solliosadng A Se hiw
. i, w2 L

. ; ' et - : .
. .) S, b . + L [

. KN

Appendix E:
References

But, J. and Egan, G. (2002b)

“Designing an Affordable Scalable Video On Demand System”, In: 2nd ATcrc

Telecommunications and Networking Conference and Workshop, pp. 16-21

Chan, S. and Tobagi, F. (1999)

“Caching schemes for distributed video services”, In: IEEE International Conference on

Communications (1CC'99), pp.

Chang, 1. F. {1998)

“Kitler Applications for Internet/Internet2 and their impact to the telecommunication
industry”, In: 20th Annual Pacific Telecommunications Conference (PTC'98), pp. 697-
705

Chang, Y.-H., Coggins, D., Pitt, D., Skellern, D., Thapar, M. and Venkatraman, C. (1994)

"An Open-Systems Approach to Video on Demand" IEEE Communications Magazine,
Vol May 1994, 1994, 68-80.

Chen, H. J., Krishnamurthy, A., Little, T. D. C. and Venkatesh, D. (1995)

*A Scalable Video-on-Demand Service for the Provision of VCR-like Functions”, In: 2nd

International Conference on Multimedia Compuuting and Systems, May 1995, pp. 65-72

Chiariglione, L. {1995)

"MPEG: A Technological Basis for Multimedia Applications" IEEE AMuliimedia, Vol,
Spring 1995, 1995, 85-89.

Chiariglione, L.. (1997)

"MPEG and Multimedia Communications” IEEE Trunsactions Circuits and Systems for
Video Technology, Vol. 7, Ne. 1, 1997, 5-18.

Chiariglione, L. (1998)

"Impact of MPEG Standards on Muliimedia Industry” Proceedings of the IEEE, Vol.,
1998.

266

TPy L e e 1L]

Appzudix E:
Relercnces

Cocchi, R., Shenker, S., Estrin, D, and Zhang, L. (1993)

“Pricing in Computer Networks: Motivation, Formulation and Example" IEEE/ACM
Transactions - Nenwork, Vel., 1993, 614-627.

Coraall, T. (1998)

CTIE-TR-1998-03: Evaluation of Optus Cable Network for 2Mbit/s Real-Time Services,
CTIE - Monash University, 1998

Cornall, T. (1999)

CTIE-RR-1999-01: Report on ouicomes of DML Stage 2, CTIE - Monash University,
1999

Cornall, T. and Lipton, J. (1997)

CTIiE-TR-1997-05: Multimedia Distribution and Networks, CTIE - Monash University,
1997

Cornall, T., Pentland, B. and But, J. (1997)

CTIE-TR-1997-10; Digital Media Library Phase 1, CTIE - Manash University, 1997

¢
Cornall, T., Pentland, B. and Egan, P. G. (199%)

“Digital Media Library Project. Video on demand for sch. .#3." In: International

Sympaosium on Intelligent Multimedia and Distance Education, August 1999, pp. 59-64
Cruickshank, H., Merizanis, I., Evans, B. G., Leitold, H. and Posch, R. (1998)

“Securing Multimedia Services over Satellite ATM Networks" International Journal of

Satellite Commumications, Vol. 16-4, No. July-August, 1998, 183195,

deCarmo, L. (2000)

“Security Protocols and Performance” Dr. Dobbs Journal, Vol. November, 2000, 40-48.

Denning, D, E, (1983}

Cryptography and Data Security, Addison Wesley ISBN 0-201-10150-5.

267

weee gk Tra b B L P el Meibianitie W Tecpih

Appendix E:
References

Diffie, W. and Hellmann, M. E, (1976)

"New Directions in Cryptography” /EEE Transactions on Information Theory, Vel. 6,
1976, 644-654.

Egan, P. G. (1998)

CTIE-TR-1998-05; Distributed Multimedia Service Model, CTIE - Monash University,
1998

Fernandes, A. D. (1999)

"Elliptic-Curve Cryptography” Dr. Dobbs Journal, Vol. December, 1999, 56-63.

Fist, S. (1994)

"Dial M For Movie: Video-on-Demand" Australian Communications, Vol August 1994,
1994, 65-72.

Fluhrer, S. R. and McGrew, D. A. (2000)

"Statistical Analysis of the Alleged RC4 Keystream Generator”, In: 7th Internation

Workshop on Fast Software Encryption, pp. 19-30

Fowler, D. (1999)

"The next Internet” Networker, Yol. 3, No. 3, 1999, 20-29.
Frimout, E. D., Biemond, J. and Lagendick, R. L. (1995)

"Extraction of a dedicated fast playback MPEG bit stream” Proceeding of the SFIE, Vol
2501, 1995, 76-87.

Gemmell, J,, Vin, H. M., Kandlur, D, D., Rangan, P. V., and Rewe, L. A. (1995)

"Multimedia Storage Servers: A Tutorial" Computer, Vol. May 1995, 1995, 40-49.

Golic, J. (1997)

"Statistical Analysis of the alleged RC4 Keystream Generator”, In: EUROCRYPT'97, p~,

268

£ Eo

{
£

Appendix E:
References

Grimm, D. and Cornall, T. (1998)

CTIE-RR-1998-07: Safe Video Delivery for the DML Trial, CTIE - Monash University,
1998

Griwodz, C., Merkel, O., Dittmann, J. and Steinmetz, R. (1998)

“Protecting VoD the Easier Way", In: ACM Multimediz98, pp. 21-28

Group, T. L. 8. W. (1996}

"The SSL Protocol, Version 3.0 - Internet Draft", htip://www.consensus.com/ietf-tls/tls-

ssl-version2-00.txt, 1996

Handschuh, H. and Gilbert, 11. (1997)

*+2 Cryptanalysis of the SEAL Encryption Algorithm”, In: 4th International Workshop
on Fast Software Encryption, pp. 1-12

Haskell, B. 5., Puri, A. and Netravali, A, N. (1997)

Digital Video: An introduction fo MPEG-2, Chapman & Hall ISBN 0-412-08411-2.

Hsing, T. R., Chen, C.-T. and Bellisio, J. A. (1993)

"Video Communications and Services in the Copper Loop" [EEE Communications

Magazine, Vol. January, 1993, 62-68.

1ETF (1998a)

*|P Authentication Header". hitp://www. ietf.org/internet-drafts/draft-ietf-ipsey-
rfc2402bis-05.1xt, 1998a

IETF (1998b)

“IP Encapsulating Security Payload (ESP)". hutp://www.jetforg/internet-drafts/drafi-ietf-
ipsec-esp-v3-06.1xt, 1998b

IETF (1998c)
“Security Architecture for IP". hitp://wwy .ietf.ore/intemet-drafis/draft-igtf-ipsec-

rfc240 1 bis-01.txt, 1998¢c

269

& . B IR e T T L T T M [EIISEAE E
H] . N [} L

Ty I » . B .
. a . v » & - T
. {8 - . .

—___

Appendix E:
References

ISO (1996a)

ISOAEC 11172-1. Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s, Part 1; Systems, 1TU, 1996a

1SO (1996b)

1ISOAEC 11172-2. Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s, Part 2: Video, 1TU, 1996b

ISO (19%6¢)

ISOAEC 11172-3. Coding of moving pictures and associated audio for digital storage
media at up t0 about 1.5 Mbit/s, Part 3: Audio, ITU, 199%6c¢

1SO (1996d)
ISO/IEC 11172-4. Coding of moving pictures and associated audio for digital storage

media at up to about 1.5 Mbit/s, Part 4: Conformance, ITU, 1996d

Jain, R. (1999)

"The convergence of PCs and TV" IEEE Multimedia, Vol. October/December, 1999.

Jayanta, K. D., Salehi, J. D., Kurose, I. F. and Towsley, D. (1994)

"Providing VCR Capabilities in Large-Scale Video Server”, In: ACM International
Conference on Multimedia, pp. 25-32

Jung, G. 8., Kang, K. W. and Malluhi, Q. (2000)

"Multithreaded Distributed MPEG-1Video Delivery in the Internet Environment”, In:
SAC'00, pp.

Jurisic, A. and Menezes, A. J. (1997)

"Elliptic Curves and Cryptography” Dr. Dobbs Journal, Vol. April, 1997, 26-36.

Kaliski, B. S. and Robshaw, M. J, B. (1996)

"Multiple Encryption: Weighing Security and Performance” Dr. Dobbs Journai, Vol.
January, 1996, 123-127.

270

s e st it et
Lo

g
1y

H
i
i
7
i
#
oy
§
i

Appendix E:
References

T b A e 3

Knudsen, L., Meier, W,, Preneel, B., Rijmen, V. and Verdoolaege, S. (1999)

“Analysis Methods for (alleged) RC4", In: ASI4CRYPT '99, pp. 327-341

Kunkelmann, T. and Horn, U. "Partial Video Encryption Based on Scalable Coding" Vel.

Kunkelmann, T. and Horn, U. (1998)

"Video Encryption Based on Data Partitioning and Scalable Coding - A Comparison®, In:
Interactive Distributed Multimedia Systems & Telecommunications Services, 5th
International Workshop 1DMS'98, 1998, pp. 95-106

Kunkelmann, T. and Reinema, R. (1997)

"A Scalable Security Architecture for Multimedia Communications Standards®, In: /EEE

International Conference on Multimedia Computing and Systems 97, June 1997, pp.

Kunkelmann, T,, Reinema, R., Steinmetz, R. and Blecher, T. (1997)

"Evaluation of Different Video Encryption Methods for a Secure Multirnedia
Conferencing Gateway", In: 4th COST 237 Workshop, December 1997, pp.

Kunkelmann, 'f., Vogler, H., Moschgath, M.-L. and Wolf, L. (1998)

“Scalable Security Mechanisms in Transport Systems for Enhanced Multimedia
Services", In: Multimedia Applications - ECMAST'98, 1998, pp.

Le, N. K. (1998)

CTIE-TR-1998-02: Distributed Server Systems, CTIE - Monash University, 1998

Leditschke, M. and Johnson, A. (1995)

“Implementation of MPEG-2 Trick Modes", In: Australian Telecommunication Networks

& Applications Conference, December 1993, pp. 39-44
LeGall, D. (1991)

“MPEG: A Video Compression Standard for Muitimedia Applications” Communications

of the ACM, Vol. 34-4, 1991, 47-58.

271

Appendix E:
References

Lin, C.-W., Zhou, J., Youn, J. and Sun, M.-T. (2001)

"MPEG Video Streaming with VCR Functionality” JEEE Transactions on Circuits and
Systems for Video Technology, Vol. 11, Ne. 3, 2001, 415-425.

Little, T. D. C. and Venkatesh, D. (1994)

"Prospects for Interactive Video-on-Demand” JEEE Multimedia, Vol. 1, No. 3, 1994, i4-
24,

Maples, T. B. and Spanos, G. A. (1995)

"Performance Study of a Selective Encryption Scheme for the Security of Networked

Real-time Video", In: 4th International Conference on Computer and Communications,

pp-

Masavage, K. J. (1992}

Understanding Digital Video, Optivision, 1992

Masavage, K. J. (1995)

The Types and Requirements of Various MPEG Video Compression Formats,
Optivision, 1995

Memon, N. and Wong, P. W. (1998)

"Protecting Digital Media Content" Communications of the ACM, Vol. 41, No. 7, 1998,
35-43.

Menezes, A. J., Corschot, P. C. v. and Vanstone, S, A. (1997)

Handbook of Applied Cryptography, CRC Press 1ISBN 0-8493-8523-7.

Meyer, C. H. and Matyas, 8. M, (1982)

Cryptography: A New Dimension in Computer Data Security, John Wiley & Sons ISBN
0-471-04892-5.

Meyer, J. and Gadegast, F, (1995)

Security Mechanisms for Multimedia with Example MPEG-1 Video, Tech. Uni. of
Berlin, 1995

~viwy

Appendix E:
References

1 S b v R

Microsoft (2001a)

DirectX ¢ SDK Documentation, Microsoft, 2001a

Microsoft (2001b)

"DirectX 9 Software Development Kit",
http://www.microsoft. com/downloads/details.aspx?Familyid=124552FF-8363-47FD-
8F3B-36C226 E04C85 & displaylang=en, 2001b

Microsoft (2002)

"Microsoft Windows Media". http://www.microsofi.com/windows/windowsmedia, 2002

Middleton-Williams, C. (1993)

"Digital Video Technology" Journal of Electrical and Electronics Engineering,
Australia, Vol. 13, No. 3, 1993, 205-212.

Mister, S. and Tavares, S. E. (19982a)

"Cryptanaly.sis of RC4-like Ciphers", ln:. Workshop on Selected Areas in Cryptography,
pp- 131-143

Mister, S. and Tavares, S. E. (1998b)

"Some Resulis on the cryptanalysis of RC4", In: Proceedings of the 19th Bienniel

Symposium on Communications, pp. 393-397

Mitchell, J. L., Pennebaker, W. B., Fogg, C. E. and LeGall, D. J. (1996)

MPEG Video Compression Standard, Chapman & Hall ISBN 0-412-08771-5.

Mohammied, A. (2002)

“DiffServ experiments: Evaluation of some approaches -~ quality of service control over
the Alcatel-NCSU Internet2 testbed” Proceedings of the SPIE - The International Society
of Optical Engineering, Vol. 4866, 2002, 23-34.

Nelson, R. (1998)

CTIE-TR-1998-16: MclVER Network Performance Requirements, CTIE - Monash
University, 1998

CLoes Tty b K bean Soreblhben aex Melhonine @0

Appendix E:
References

Nguyen, J. (1995}

Hardware and Software MPEG: A White Paper, Sigma Designs, inc., 1995

NIST (19932)

Data Encryption Standard, FIPS Publication 46, NIST, 1993a

NIST (1993b)

Secure Hash Standard, FIPS Publication 180, NIST, 1993b

Noll, P. (1997)

"MPEG Digilal Audio Coding™ JEEE Signal Processing Magazine, Vol, 14-5, 1997, 59-
81.

Nell, P. and Pan, D. (1997)

"ISO/MPEG Audio Coding” International Jowrnal of High Speed Electronics and
Svstems, Vol. 8, No. 1, 1997, 69-118.

Noronha, C. (2001)

Stream Cipher Cryptanalysis, Final Year Undergraduate Rescarch Thesis - Monash
University, 2001

Pan, D. (1993)

"Digital Audio Compression® Digiral Technical Journal, Vol. 5, Ne. 2, 1993,

Pan, D. (1995)

“A Tutorial on MPEG/Audio Compression” JEEE Multimedia, Vol. Summer 1995,
1995, 60-74.

Patrick, S. and Moccio, D. (1998)

Writing 2 WebFORCE ® MediaBase Player, SGI - Document 007-3569-003, 1998

TR i e A e e s 42 b

Appendix E;
References

B e e R

B s i T P T e e el T e L R

T R

Ay

ERANE

Pentland, B, (1999)

CTIE-TR-1999-03: Minimum Network Requirements for DML Video Streaming, CTIE -
Monash University, 1999

Percira, F. {1996)

"MPEG4: A New Challenge for the Representation of Audio-Visual Information”, In:
International Picture Coding Symposium, March 1996, pp. 7-16

Preneel, B., Rijmen, V. and Bosselaers, A. (1998)

"Priciples and Performance of Cryptographic Algorithms" Dr. Dobbs Journal, Vol.
December, 1998, 126-131.

Puri, A. (1994)

"Video Coding Using the MPEG-2 Compression Standard” SPIE, Vol. 2049, 1994, 1701-
1713.

Qiao, L. and Nahrstedt, K. (1996)

"Comparison of MPEG Encryption Algorithms"” Computers and Graphics, Vol. 22, 1996,
437-448.

Qiao, L. and Nahrstedt, K. (1997)

"A New Algorithm for MPEG Video Encryption”, In: /st International Conference on

Imaging Science, Systems and Technology, pp.

Qiao, L., Nahrstedt, K. and Tam, M.-C. (1997)

"1s MPEG Encryption by using Random List instead of Zig-Zag order secure?” In: JEEE

International Symposium on Consumer Electronics, pp.

Ramarao, R, and Ramamoorthy, V. (1991)

"Architectural Design of On-Dem:... video Delivery Systems: The Spatio-Temporal

Storage Allocation Problem*, In: JEEE International Conference on Communications,

pp-

e ety LA b B Lran Hacivbeliore Mellionte W

Appendix E:
References

Rangan, P. V., Vin, H. M. and Ramanathan, 8. (1992)

“Designing an on-demand multimediz service" /EEE Communications Magazine, Vol.
July, 1992, 56-64.

Reader, C, (1996}

"MPEG4: Coding for content, interactivity, and universal accessibility” Optical
Engineering, Vol. 35-1, No, 1, 1996, 104-108.

Rivest, R, 1.., Shamir, A. and Adleman, L. (1978)

"A Method for Obtaining Digital Signatures and Public-Key Cryptosystems™
Communications of the ACM, Vol. 21, 1978, 120-126.

Rogaway, P. and Coppersmith, D. (1993)

"A Software-Optimised Encryption Algorithm”, In: Cambridge Security Workshop - Fast
Software Encryption, pp. 56-63

Rogaway, P. and Coppersmith, D. (1998)

"A Software-Optimised Encryption Algorithm" Journal of Cryptography, Vol. 11, No. 4,
1998, 273-287.

RSA (1996)

Answers to Frequently Asked Questions About Today's Cryptography, RSA
Laboratories, 1996

Saunders-McMaster, L. (1997)

"Internet2: an overview of the next generation of the Intemet” Computers in Libraries,
Vol. 17, No. 3, 1997, 57-59,

Schneier, B. (1996a)
Applied Cryptaography: Protocols, Algorithms, and Source Code in C, John Wiley &

Sons ISBN 0-471-11709-9.

Schneier, B. (1996b)

"Differential and Linear Cryptanalysis" Dr. Dobbs Journal, Vol. January, 1996b, 42-48.

R

Y P

e 4 i T T A ST T T e 8

"i'i '-i:.-..i -

Appendix E:
References

Schneier, B. (1998)

"The Twofish Encryption Algorithm® Dr. Dobbs Journal, Vel. Decembet, 1998, 30-38.

Shanableh, T. and Ghanbari, M. (2001)

"The lmportance of Bi-Directionally Predicted Pictures in Video Streaming” JEEE
Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 3, 2001, 402~
414,

Shi, C. and Bhargava, B. (1993a)

"An Efficient MPEG Video Encryption Algorithm®, In: 17th IEEE Symposium on
Reliable Distributed Systems, Oclober 1998, pp. 381-386

Shi, C. and Bhargava, B, (1998b)

"A Fast MPEG Video Encryption Algorithm®, In: ACM Multimedia '98, 1998, pp. 81-88

Shi, C. and Bhargava, B. (1998¢)

"Light-weight MPEG Video Encryption Algorithm”, In: Multimedia98, pp. 55-61

Shlicn, S. (1994)

*"Guide to MPEG-1 Audio Standard” /EEE Transactions on Broadcasting, Vol. 40, No. 4,
1994, 206-218.

Sikora, J. J. (2001)

"QoS in Interne(2" Proceedings of the SPIE - The International Society of Optical
Engineering, Vol. 4211, 2001, 122-130.

Sikora, T. (1997)
"MPEG Digital Video-Coding Standards” /EEE Signal Processing Magazine, Vol. 14-3,

1997, 82-100.

Simmons, G. J. (1992)

Contemporary Cryplology: The Science of Information integrity, IEEE Press ISBN B-
8§7942-277-7.

Appendix E:
References

Spanos, G. A. and Maples, T. B. (1996)

"Security for Real-Time MPEG Compressed Video in Distributed Multimedia
Applications”, In: JEEE 15th Annual International Conference on Computers and

Communications, pp. 72-78

Stinson, D. R. (1995)

Cryptography: Theory and Practice, CRC Press ISBN 0-84938-521-0.

Tang, L. (1996)

*Methods for Encrypting and Decrypting MPEG Video Data Efficiently”, In: ACM
International Multimedia Conference 96, November 1996, pp. 219-222

Teitelbaum, B., Hares, S., Dunn, L., Neilson, R., Narayan, V. and Reichmeyer, F. (1999)

"Internet2 QBone: building a testbed for differentiated services" ILEE Nenwork, Vol. 13,
No. 5, 1999, 8-16.

Tonkin, D. B. (1998)

CTIE-TR-1998-17: Approaches to Video Distribution, CTIE - Monash University, 199§

Tosum, A. 8. and Feng, W.-¢. (2000)

"Efficient Multi-layer Coding and Encryption of MPEG Video Streams”, Tn: pp. 119-122

Tosun, A. S. and Feng, W.-c, (2001)

"A Light-weight Mechanism for Securing Multi-Layer Video Streams”, In: IEEE
International Conference on Information Technology: Coding and Computing, pp. 157-
161

Unknown (1999)

"MPEG Test Bitstreams (tennis.mpg, flowg.mpg, us.mpg)".
http://peipa. essex.ac.uk/ipa/sre/formats/mpeg/stanford, 1999

Viiia, A,, Lérida, J. L., Molano, A. and delVal, D. (1994)

“Real-Time Multimedia Systems", In: [3th IEEE Symposium on Mass Storage Systems,
June 1994, pp. 77-83

278

AR

T R P T

Appendix E:
References

Wallace, G. K. (1991)

"JPEG: A Digital Image Compression Standard” Communications of the ACM, Vol, 34-4,
1991, 31-44.

Wang, S., Mai, Z., Magnussen, W,, Xuan, D. and Zhao, W. (2002)

"Implementation of QoS-Provisioning system for voice over IP", In: Eighth IEEE Real-

Time and Embedded Technology and Applications Symposium, pp. 266-275

Wu, D., Hou, Y. T., Zhu, W., Zhang, Y.-Q. and Peha, J. M., (2001)

"Streaming Video over the intemet: Approaches and Directions" /JEEE Transactions on
Circuits and Systems for Video Technology, Vol. 11, No. 3, 200].

Wu, M.-Y., Ma, §.-J. and Shu, W. (2002)

"Scheduled Video Delivery for Scalable On-Demand Service”, In: NOSSDAV ‘02, pp.

Zeng, W. and Lei, S. (1999)

*Efficient Frequency Domain Video Scrambling for Content Access Control”, In: ACM
Multimedia99, pp. 285-294

Zeng, W., Wen, J. and Severa, M, (2002)

“Fasi Seli-Synchronous Content Scrambling by Spatially Shuffling Codewords of
Compressed Bitstreams®”, In: pp. 169-172

279

Gl e e bl Had, 3 K Sm4n Tioedibdesigee T o lhomiut B4

