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Abstract

New quantitative methods are developed for analyser-based phase contrast imaging

(ABI) with hard X-rays. In the first instance we show that quantitative ABI may be

implemented using an extended incoherent source. Next, we outline how complex

Green’s functions may be reconstructed from phase contrast images and we apply this

method to reconstruct the thick perfect crystal Green’s function associated with an

ABI imaging system.

The use of quantitative ABI with incoherent X-ray sources is not widespread and

the first set of results pertains to the feasibility of quantitative ABI imaging and phase

retrieval using a rotating anode X-ray source. The necessary conditions for observation

of ABI phase contrast are deduced from elementary coherence considerations and

numerical simulations. We then focus on the problem of extracting quantitative

information from ABI images recorded using an extended incoherent X-ray source.

The results of an experiment performed at Friedrich-Schiller University, Germany

using a rotating anode X-ray source demonstrate the validity of our approach. It is

shown that quantitative information may be extracted from such images under quite

general and practicable conditions.

We then develop a new use for phase contrast imaging systems that allows the

Green’s function associated with a linear shift-invariant imaging system to be deduced

from two phase contrast images of a known weak object. This new approach is applied

to X-ray crystallography where the development of efficient methods of inferring the

phase of rocking curves is an important open problem. We show how the complex

Green’s function describing Bragg reflection of a coherent scalar X-ray wavefield from

a crystal may be recovered from a single image over a wide range of reciprocal space

simultaneously. The solution we derive is fast, non-iterative and deterministic. When

applied to crystalline structures for which the kinematic scattering approximation

is valid, such as thin crystalline films, our technique is shown to solve the famous

one-dimensional phase retrieval problem which allows us to directly invert the Green’s

function to retrieve the depth-dependent interplanar spacing.

Finally we implement our Green’s function retrieval method on experimental

data collected at the SPring-8 synchrotron in Hyogo, Japan. In the experiment we
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v

recorded analyser-based phase contrast images of a known weak object using a thick

perfect silicon analyser crystal. It is then demonstrated that these measurements can be

inverted to recover the complex Green’s function associated with the analyser crystal

Bragg peak. The reconstructed Green’s function is found to be in good agreement with

the prediction of dynamical diffraction theory.
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Introduction 1

This thesis describes important new analytical and experimental developments to a

relatively new mode of imaging with hard X-rays known as crystal analyser-based

phase contrast imaging (ABI) (Förster et al., 1980; Somenkov et al., 1991; Ingal and

Beliaevskaya, 1995; Davis et al., 1995a,b; Davis, 1996; Chapman et al., 1997).

The availability of bright, coherent beams of X-rays is underpinning a range of

new phase sensitive techniques (McNulty et al., 1992; Miao et al., 1999, 2003; Eisebitt

et al., 2004; Thibault et al., 2008) and revealing startling discoveries areas as diverse

as the dynamics of chemical reactions, spin waves in magnetic materials and X-ray

vortices formed during lung imaging (Gaffney and Chapman, 2007; Shpyrko et al.,

2007; Kitchen et al., 2004). In this respect the present renaissance in the coherent

X-ray research programme is not unlike that which occurred in the years following the

availability of lasers in the visible light spectrum. However, the shorter wavelength of

X-rays compared with visible-light offers advantages such as higher resolution imaging

of optically opaque materials. These results serve to underscore the notion that the

availability of coherent X-ray radiation offers the possibility to dramatically improve

existing X-ray techniques or, perhaps more enticing, the opportunity to develop

entirely new applications which have not heretofore been possible using incoherent

radiation.

A smattering of techniques that have benefited from the availability of coherent

X-ray sources include X-ray photon correlation spectroscopy (Brauer et al., 1995;

Dierker et al., 1995; Thurn-Albrecht et al., 1996) where the dynamics of disordered

systems can be observed at high resolution, wavefront engineering (Di Fabrizio et al.,

2003) which uses diffractive optical elements to design an incident wavefront and

singular X-ray optics (Peele et al., 2002; Peele and Nugent, 2003; Peele et al., 2005;

Paganin, 2006) where the observation and dynamics of X-ray vortices are studied.

X-ray phase sensitive imaging has been another beneficiary of the improved coher-
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2 I

ence at short wavelengths and there has been significant progress made in this area

over the past two decades. Phase sensitive imaging with X-rays is well established since

the interferometry experiments of Bonse and Hart (1965) however it is the use of

synchrotron X-ray sources that has exposed this form of imaging to the mainstream.

ABI is an example of just such a phase sensitive technique and has shown significant

potential for use in medical diagnostic materials and characterisation applications.

In this thesis we will present two major developments to ABI: the first is to investi-

gate the feasibility of implementing ABI with an extended incoherent X-ray source

with a view to performing quantitative phase retrieval. This development fits in with

the current drive to adapt quantitative phase contrast imaging for use with laboratory

based X-ray sources. Quantitative phase contrast imaging systems have shown their

potential usefulness and now to be used on a large scale they must be implemented

with the rotating anode X-ray source which is commonly available and affordable.

In the second development we use ABI as a prototype system for reconstructing

complex Green’s functions associated with shift-invariant coherent linear imaging sys-

tems and then implement this technique to demonstrate that it is indeed viable. In the

case of ABI we are able to reconstruct the phase and amplitude of the analyser crystal’s

reflection coefficient but the method has a much wider applicability to reconstructing

complex Green’s functions.

As an example of the usefulness of such a development, when applied to recon-

structing the Green’s function for a thin crystalline layer this approach allows the

structure of the film to be determined unambiguously from a single two-dimensional

intensity measurement. This important application demonstrates a solution to the

one-dimensional phase retrieval problem which is the subject of a great deal of study.

In the following section we will introduce the importance of phase sensitive

imaging and provide an overview of the current state of the art for phase sensitive

imaging techniques involving hard X-rays.

1.1 Phase sensitive imaging

The power of X-rays lies in their ability to transmit through optically opaque materials.

This property of X-ray wavefields is widely exploited as a medical diagnostic tool (Brant

and Clyde, 2007), a means for non-destructive characterisation (Wachtman, 1993)

and a preventative security measure (Evans, 2004).

The oldest and most well known form of imaging with X-rays is the radiography

pioneered by Röntgen (Röntgen, 1896) in which image intensity is proportional to the
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attenuation of X-rays by thickness and/or local compositional variations.

Given that it is the penetrating power of X-rays that makes them useful it is not

difficult to imagine a class of materials that are almost perfectly ‘X-ray transparent’.

A common example is soft biological tissue in the hard X-ray regime. In general

any object composed of, or immersed in, materials with approximately the same

attenuation coefficients will appear in low contrast in X-ray absorption images.

Concepts such as ‘opaque’ and ‘transparent’ are firmly rooted in the paradigm of

absorption contrast imaging where the visibility of an object is tied to its ability to

attenuate X-rays. But just as the X-ray photon has a wave aspect which complements its

corpuscular aspect so we have phase contrast imaging which complements absorption

contrast imaging. In the latter the image contrast depends on the transmitted photon

flux whereas the former technique uses interference1 as the contrast mechanism2.

The rapid temporal oscillation of high energy electromagnetic fields (1018Hz)

coupled with the limited response time of detectors (seconds) means that any given

measurement of the field must necessarily be an average over many oscillations, thus

direct measurement of the phase of an x-ray wavefield is not currently possible3 (Born

and Wolf, 1999). Due to our inability to directly measure the phase of the wavefield

we must employ an imaging system that renders phase information visible as intensity

variations which are directly measurable. It is a concern of coherent X-ray optics to

investigate the link between the phase of a wavefield and intensity produced by a phase

contrast imaging system and, furthermore, to develop methods for recovering the

phase from said intensity measurements. This “phase retrieval problem”, which will be

reviewed in §1.2, is very closely linked to the inverse problem of making quantitative

measurements on the sample which led to these retrieved phase variations.

The methods of rendering phase visible are known as ‘phase contrast imaging

systems’ and it is to this subject that we now turn. The distinct methods we review

here are X-ray interferometry (§1.1.1), Talbot interferometry (§1.1.2), Zernike and

Schlieren phase contrast (§1.1.3), lensless diffractive imaging (§1.1.4), propagation

based imaging (§1.1.5) and crystal analyser based imaging (§1.1.6). The methods have

a degree of similarity and we will attempt to describe the link between them.

1We note that phase contrast is typically classified as a non-interferometric form of imaging. Tradi-
tionally the term ‘interferometric phase contrast’ refers to the specific phase contrast imaging modality
of interferometry (see §1.1.1). Here we use it in the broad sense to mean the contrast that results from
the superposition of coherent wavefields.

2Trivially of course phase contrast also requires some flux of X-rays.
3Quantum mechanical considerations on the ability to measure a well defined phase are discussed in

(Mandel and Wolf, 1995).
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Figure 1.1: Hard X-ray interferometry. A typical monolithic hard X-ray interferometer
featuring a beam splitter (S), mirror (M) and analyser (A). Adapted from Momose (2003).

1.1.1 X-ray interferometry

Interferometry has a long and rich history beginning with visible light where it was

famously used by Young to demonstrate the wave nature of light and Michelson

to dispel the aether hypothesis (Born and Wolf, 1999). X-ray interferometry uses

the division (wavefront, amplitude, polarisation) of a coherent wavefield into two

spatially separated beams, the ‘object beam’ transmitted through the sample being

recombined with the ‘reference beam’ to form an interferogram as in Figure 1.1 (Bonse

and Hart, 1965). Interferometric contrast is the result of a coherent superposition of

the object and reference beams which gives the characteristic bright/dark fringes as

the optical path length between the beams changes through 2π. Interferometry is the

most sensitive of phase contrast techniques but as such it is extremely susceptible to

aberrations caused by mechanical instability in the optical path length.

Mirrors and beam splitters, the optical elements used in visible light interferometry,

have their counterpart in X-ray interferometry as perfect single crystals in Bragg (Bonse

and Hart, 1966) or Laue (Bonse and Hart, 1965) geometry. The crystal optics, beam

splitters, mirrors and analysers, are fabricated from slabs of near perfect, strain free

single crystals. At the expense of a limited field of view it is possible to create an

interferometer from a monolithic crystal slab, as in Figure 1.1 (Bonse and Hart, 1965),

to limit the problem of mechanical stability between the optical elements.

X-ray interferometry contrast is directly proportional to the phase of the sample.

The price to pay for the sensitivity of interferometry is the stringent requirement

that the coherence length of the radiation be greater than the maximum optical path

difference introduced by the sample (Momose, 2003).

Interferometry has been implemented for X-ray imaging (Bonse and Hart, 1965)

and tomography (Momose et al., 1995; Momose, 1995). In the original paper of

Bonse and Hart (1965) the interferogram was recorded without a sample so that the
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Figure 1.2: X-ray Talbot interferometry.(a) the Talbot (self-imaging) effect. A planar X-ray
beam illuminates a grating with period g producing a wavefield with discrete diffraction orders.
At a distance zT = 2g2/λ downstream from the grating the diffracted orders recombine to form
an image of the grating. (b) The Moire interferometer uses the Talbot effect in conjunction
with a second grating a distance zT and inclined at an angle θ with respect to the first grating to
create a series of Moire fringes. (c) The Talbot interferometer is a dark field imaging technique
that uses a second grating at a distance zT downstream from the first and positioned so that it
blocks the wavefield diffracted from the first grating. The refraction of the wavefield introduced
by an object placed between the gratings disrupts the balance and allows X-rays to pass through
the second grating.

interference fringes revealed information about the very slight strain fields in the

perfect crystals. Tomography as performed by Momose et al. (1995) is a more difficult

proposition than imaging because one must record many images and rotate the sample

between each which has the potential to misalign the interferometer.

It is useful at this point to make a distinction between ‘high’ coherence and

‘low’ coherence phase contrast imaging systems. The high-coherence techniques, of

which interferometry is an example, require coherence lengths at least as large as

the maximum optical path length introduced by the sample to be imaged. Some

of the techniques in the following sections can be described as low-coherence in

that coherence lengths much smaller than this are acceptable. The distinction is

worth making because the high- and low-coherence techniques are usually used to

image quite different samples and comparisons between phase contrast techniques

are perhaps most meaningfully made within the same ‘coherence requirement group’.

It should be noted that the coherence length for both high and low coherence cases

could be the numerically equal but the important quantity is the relative size of the

maximum optical path length introduced by the sample to the coherence length.
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1.1.2 Talbot interferometry

A different kind of interferometer may be constructed by replacing the perfect crystal

beam splitters with one-dimensional gratings with macroscopic periodicity, typically a

few micron (Pfeiffer et al., 2008). The effect of the grating on the beam is equivalent to

the crystal beam splitter in that each will split the beam into discrete diffraction orders

however the macroscopic periodicity of the grating means the beams will be scattered

through much smaller angles. Since the beams are scattered through smaller angles

they do not become spatially separated as in crystal interferometry. Two common types

of grating interferometer are known in the literature as the Moire interferometer (Mo-

mose et al., 2003; Weitkamp et al., 2004) and the Talbot interferometer (Clauser, 1998;

David et al., 2002; Momose et al., 2003; Pfeiffer et al., 2005, 2006, 2007b; Kottler et al.,

2007a,b,c; Pfeiffer et al., 2007a, 2008).

A digression is necessary to introduce the Talbot effect with reference to Fig-

ure 1.2(a). If a monochromatic planar X-ray wavefield with wavelength λ is incident

on a grating with period g then the diffracted wavefield will be composed of a super-

position of diffracted plane waves. At a ‘Talbot distance’ zT ,

zT =
2g2

λ
, (1.1)

from the first grating the diffracted wavefield recombines to form an image of the

grating, a phenomenon known as the Talbot effect (Talbot, 1836; Rayleigh, 1881). In

Moire interferometry (Figure 1.2(b)) two gratings are used in series a Talbot distance

apart and with the second slightly rotated by θ with respect to the first. The inclination

of the second grating has the effect of slightly shifting the fringe spacing resulting in a

series of Moire fringes (Weitkamp et al., 2004).

In the Talbot interferometer (Figure 1.2(c)) two gratings4 are placed a Talbot

distance apart and shifted half a grating period parallel to its length so that in the

absence of a sample the second grating absorbs the field entirely. This configuration

is the dark-field mode of operation (Pfeiffer et al., 2008), alternatively the field may

not be extinguished entirely which is known as the differential-mode (Pfeiffer et al.,

2006). The placement of a sample between the gratings will add a position dependent

phase shift to the wavefield so that the second grating is no longer able to extinguish

the field. The result is that the wavefield incident on the second grating is partially

transmitted proportional to the refraction, and thus phase, of the sample. Another

configuration which may result in higher resolution images scans the first and second

gratings in parallel (Nesterets and Wilkins, 2008).
4A three-grating configuration is possible for use with an incoherent source.
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The Talbot interferometer does not require each distinct beam to be mutually

coherent and so can be used with low-coherence sources and has been demonstrated

with a spectral bandwidth of approximately 10% (Pfeiffer et al., 2006). In this sense it

is a low-coherence method and can be used to image samples that introduce maximum

optical path lengths much greater than the coherence length of the incident radiation.

It may be difficult to align the grids in a Talbot interferometer and achieve me-

chanical stability of the two or three grids with an accuracy of much better than a grid

period (≈ 4µm) which provides some practical difficulties to its implementation.

If the second grid of the Talbot interferometer is placed, not at the Talbot distance,

but rather in the geometric shadow of the first grid, the method is known as coded

aperture phase contrast5 (Olivo et al., 2001; Olivo and Speller, 2007a,b,c). Two aper-

tures are used in coded aperture phase contrast, analogous to the Talbot interferometer,

however the grating period is much larger (factor of ≈ 80). The second, analyser, grid

is not at the Talbot distance of the first, but in its geometric shadow. The second grid

is placed in contact with the detector so that the beams from the first grid intersect

the edges of the second. When a sample is placed after the first grid a majority of

the refraction from the sample in one direction is attenuated, resulting in measurable

phase contrast.

The coded aperture and Talbot interferometry imaging (TII) techniques are most

sensitive (and least efficient) when the second grid is set to extinguish all X-rays from

the first in the absence of the sample. Likewise both methods are able to trade off some

sensitivity or contrast for an increased efficiency by moving the second grating from

dark-field to differential mode.

Finally, two other phase contrast techniques that use a similar approach to the

coded aperture method: the segmented detector (Hornberger et al., 2008) and the

array structured detector (Coan and Bravin, 2007). By isolating a segment of the

detector in the case of Hornberger et al. (2008) or single pixels in the case of Coan and

Bravin (2007) some of the scattered radiation may be excluded, resulting in measurable

contrast.

5This technique is superficially similar to coded aperture imaging (Dicke, 1968; Fenimore and
Cannon, 1978). In that technique an incoherent source is divided into individually coherent but mutually
incoherent sources using a coded aperture. Each individual source creates either a projection image or
Gabor hologram depending on the aperture-detector distance and the detector records an incoherent sum
of the individual holograms. The arrangement of apertures is used to ‘decode’ the image computationally
or optically.
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Figure 1.3: Zernike phase-contrast imaging. (Adapted from Neuhausler (Neuhausler et al.,
2003))

1.1.3 Zernike/Schlieren phase contrast

Both Zernike and Schlieren phase contrast methods utilise spatial filtering to achieve

phase contrast.

In the Schlieren method an X-ray wavefield is optically Fourier transformed using

a lens and half the spatial frequency spectrum is blocked using a thick attenuating

‘knife-edge’. The remaining field is made to form an image using another lens and the

image will show phase contrast (Ojeda-Castañeda and Berriel-Valdos, 1979).

An improved method devised by Zernike (1934) merely phase shifts the central

diffraction order so that it interferes with the scattered radiation. This method is more

efficient than the Schlieren method because no radiation is attenuated and has the

advantage of producing contrast that is directly proportional to the phase.

Zernike’s method has been implemented using hard X-rays for imaging (Hwa Shik

and Suk-Won, 2006; Hwa Shik and Tae Joo, 2007), as in Figure 1.3, and tomogra-

phy (Aoki et al., 2007) but for the lack of efficient lenses at high energy the technique

is not widely used. It seems that Schlieren phase contrast (Ojeda-Castañeda and

Berriel-Valdos, 1979) has yet to be implemented for hard X-rays6.

The limitation of Zernike/Schlieren methods in the context of hard X-ray imaging

is the reliance on a lens to spatially separate the spatial frequencies for filtering. Of the

different optical elements that are available to focus hard X-rays (Erko et al., 1996) we

will briefly digress to consider the Fresnel Zone Plate (FZP) (Baez, 1961; Kirz, 1974).

The FZP is a thin circular object whose transmission function is designed in such a

way as to attenuate every other Fresnel zone in concentric circles centred on the optical

6Analyser-based phase contrast imaging has been called a Schlieren-type method (Förster et al.,
1980). As the phase of the rocking curve varies from 0 through π over its angular width this is analogous
to the conventional Schlieren method except instead of attenuating the field on one side of the knife edge,
the crystal phase shifts these spatial frequencies by π radians.



1.1 P   9

axis (Ojeda-Castañeda and Gómez-Reino, 1996). An alternative to the conventional

FZP which is based on attenuating every other Fresnel zone is the phase FZP which

instead phase shifts every other zone by π with a concomitant increase in efficiency.

In practice it is difficult to fabricate a continuously varying thickness profile and by

way of compromise the FZP can be made as a binary mask which has the effect of

producing a series of foci. High-resolution and low-wavelength imaging both require

very fine outermost zone widths which are difficult to fabricate and present a serious

practical limitation. The efficiency of an FZP is limited to approximately 10% for

attenuating FZP’s and 40% for phase FZP’s at their design wavelength.

The Zernike and Schlieren methods employ two FZP’s with a concomitant loss of

flux making them feasible only with a brilliant X-ray source. The FZP is more efficient

with longer wavelengths and so for soft X-rays it is possible to use FZP’s to construct

scanning transmission X-ray microscopes (STXM) images from which the phase of

the sample can be retrieved (Chapman, 1996; De Jonge et al., 2007, 2008).

As an alternative to using a lens to separate spatial frequencies the same result

can be achieved through the introduction of a suitable distance between sample and

detector. This method of separating the spatial frequencies is known as far-field or

Fraunhofer imaging (Born and Wolf, 1999). An image will be in the far-field if the

Fresnel number (Saleh and Teich, 1991; Born and Wolf, 1999),

NF = g2/λz (1.2)

is much less than unity for a feature size g, wavelength λ and sample-detector distance

z. For a given z and λ only feature sizes smaller than g will be in the far field. Practical

values for z are typically a few meters which places an upper limit on g of the order of

micrometres for hard X-rays.

1.1.4 Lensless Diffractive Imaging

The difficulty of fabricating X-ray lenses is moot for imaging techniques that do not

require a lens. If we remove the objective lens of the X-ray microscope (cf. Figure 1.3)

and move the detector sufficiently far from the sample such that NF � 1 it will

record the far field diffraction pattern of the sample. Further, if we recognise that the

complex spatial frequency spectrum of a wavefield contains equivalent information

to the complex wavefield over the image plane then we may choose to measure the

former instead of the latter and simply apply an inverse Fourier transform to recover

the image. This idea is the basis for the field of study known as lensless imaging,
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diffraction microscopy or coherent diffractive imaging (CDI) (Cederquist et al., 1988;

Miao et al., 1999, 2008).

The fundamental difficulty of CDI is that the phase of the Fourier transform (lost

upon measurement) must be recovered before the diffraction pattern is inverted to

recover the image. In general this is known as the ‘phase problem’, about which more

will be said in §1.2, and describes a class of problems which aim to infer the phase of a

complex scalar wavefield from intensity measurements either analytically or iteratively.

The problem is well known, most notably in the fields of visible light and electron

optics where intensity measurements over one or more planes are used to reconstruct

the phase. The phase problem was discussed in relation to quantum mechanics as early

as 1933 when Pauli (Pauli, 1980) considered the problem of whether two quantum

mechanical wavefunctions linked by a Fourier transform were uniquely specified by

their magnitudes only (Orlowski and Paul, 1994).

The phase retrieval encountered in CDI is an important subset of the phase prob-

lem where the phase and amplitude of a wavefield are reconstructed from measure-

ments of the magnitude of the Fourier transform, a directly measurable experimental

quantity. The problem was investigated in X-ray crystallography (Harker and Kasper,

1948), electrons (Weierstall et al., 2002), coherence theory (Walther, 1963), stellar

interferometry (Labeyrie, 1970) and neutron reflectometry (De Haan et al., 1995).

CDI diffraction patterns can, in principle, be measured to diffraction limited

resolution using a large enough detection area. The number of photons scattered into

the highest spatial frequencies is typically many orders of magnitude lower than the

zeroth-order spatial frequency which means diffraction limited imaging requires a

very bright beam or a long exposure time. A related practical problem is the need for

high dynamic range detectors which do not currently exist. To overcome this problem

multiple exposures can be used with either a beam stop for the central order or by

creating a composite image (Miao et al., 1999).

Active areas of CDI research include the three-dimensional structural character-

isation of nanocrystalline materials and quantitative imaging of nanoparticles (Var-

tanyants et al., 2005; Miao et al., 2006) and high resolution imaging of non-crystalline

materials (Chapman et al., 2006; Bogan et al., 2008).

Variants of the technique include using a scanning aperture with overlapping areas

as a phase retrieval constraint (Rodenburg, 2001; Faulkner and Rodenburg, 2004; Ro-

denburg and Faulkner, 2004; Rodenburg et al., 2007a,b; Johnson et al., 2008), curved

beam illumination which guarantees a unique solution (Nugent et al., 2003, 2005;

Williams et al., 2006; Quiney et al., 2006; Williams et al., 2007), holographic diffractive
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imaging in which a reference object is placed next to the sample to create the holo-

gram (Stadler et al., 2008) and pulsed-beam imaging for dynamic systems (Chapman

et al., 2007).

Due to the weak scattering at high spatial frequencies combined with the require-

ment that the sample resides within a coherent volume, lensless imaging techniques

must usually be implemented at synchrotrons. However there has been an effort to

develop the technique with compact X-ray sources (Sandberg et al., 2007), waveguide

based X-ray sources (De Caro et al., 2008) and incoherent light (Bache et al., 2006;

Minghui et al., 2007).

One commonality between the above techniques is that they all attempt to retrieve

the phase using variants of a method due to Gerchberg and Saxton (1972) (Fienup

et al., 1982; Fienup, 1982; Marchesini, 2007b,a). The details of the algorithm need

not concern us save to note the most serious limitations of the Modified-Gerchberg-

Saxton algorithm (MGSA). MGSA is unable to select a unique phase distribution from

solution space of all phases that possibly satisfy the measured diffraction pattern and

that the iterative process it employs may not converge to the correct solution.

The greatest strength of these techniques is that the MGSA method of phase

retrieval works under quite general conditions and requires only that the entire sample

located inside a coherent volume of the incident radiation.

The Fienup (Fienup et al., 1982) improvement to MGSA works by adding a

constraint to the real space which may help the iterative solution to converge. Apart

from the Fienup improvement there has been modest progress in the field recently

and achieving a solution using MGSA-type methods remains an art and is far from

automatic.

The scanning aperture technique (Faulkner and Rodenburg, 2004; Rodenburg and

Faulkner, 2004) is not applicable to single image studies such as those that the free

electron laser demand because the sample undergoes a Coulomb explosion shortly

after being illuminated. The curved beam illumination method (Nugent et al., 2003,

2005) is applicable to soft X-ray energies and is able to uniquely reconstruct the phase

if the sample can be placed at the beam focus which may be a practical difficulty. The

cost of destroying an FZP for each image formed using curved beam illumination at

free electron laser facilities is non-negligible.

Noteworthy progress has been made by Podorov et al. (2007) and Nakajima (2007)

who have found unique solutions to the CDI problem using analytic methods. Both

methods require an optical element additional to the sample. In the method of

(Podorov et al., 2007) the object must reside in less than a quarter of a rectangular
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Figure 1.4: Propagation-based phase contrast imaging. A planar X-ray beam is incident on
a sample which introduces very small phase shifts. Upon propagation a distance z ′ adjacent
rays overlap and interfere to produce phase contrast.

aperture. In the method of Nakajima (2007) a periodic array of apertures is used

which have a 2µm side length meaning this technique may be difficult to implement in

practice—especially if the algorithm requires sharp edges to the apertures. Quiney et

al. (Quiney et al., 2008) have developed a method which uses a single image to estimate

a longitudinal derivative from which the phase can be retrieved non-iteratively. The

method used to estimate the longitudinal derivative is only approximately correct and

not valid for the general case of arbitrary illumination and sample and this solution

may be best used to seed iterative algorithms.

The comparable coherence requirements of lensless imaging and interferometry

mean they can both be used to image thin samples in high-resolution. For interferom-

etry the size of the crystal optics limits the field of view whereas in lensless imaging

the far-field requirement of NF � 1 (1.2) places an upper limit on sample size. In

practice the lensless imaging technique is more popular because it has the potential,

when used with the free electron laser X-ray source, to be a high throughput technique

whereas the mechanical stability of interferometry makes changing samples difficult.

1.1.5 Propagation-based phase contrast imaging

If instead of propagating the wavefield into the far-field as in lensless imaging we

propagate only a short distance we are led to the study of near-field, Fresnel or simply

propagation-based phase contrast. It is to this subject that we now turn.

As a unit-intensity planar monochromatic X-ray wavefield transmits through a

inhomogeneous, non-periodic sample it accumulates a spatially varying phase shift

relative to a vacuum. Surfaces of constant phase at the exit surface of the sample are no

longer planar and as the wavefield propagates optical energy will flow perpendicular
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to this deformed surface (Born and Wolf, 1999), as in Figure 1.4. The distribution

of optical energy, which was uniform for the plane wave, now varies in space in a

manner governed by the phase variation introduced by the sample. This effect, which

converts object induced phase variations into detectable phase variations, is known as

propagation based phase contrast imaging (PBI) (Snigirev et al., 1995; Wilkins et al.,

1996; Cloetens et al., 1996; Nugent et al., 1996).

The complexity of the relationship between the intensity and the phase increases

with propagation distance z ′ (cf. Figure 1.4). For small propagation distances, PBI

contrast is strongest at the boundary between media and the contrast can be explained

using geometrical optics—refraction and Snell’s law (Born and Wolf, 1999). As

the propagation distance increases interference fringes may begin to form and their

explanation requires a wave optical theory.

If we assume our sample is illuminated by a monochromatic, paraxial scalar

wavefield we may quantitatively explain PBI contrast with reference to the transport-

of-intensity equation (TIE) (Teague, 1983),

∇⊥ · [I(ρ, z ′)∇⊥ϕ(ρ, z ′)] = −
2π
λ

∂I(ρ, z ′)
∂z

. (1.3)

where the intensity I is related to the phase gradient ∇⊥ϕ transverse to the optical

axis z between two planes by the longitudinal intensity derivative ∂I(ρ, z)/∂z. Under

the assumption of a phase object the TIE leads to the conclusion that PBI contrast

is proportional to the transverse Laplacian of the phase I ∝ zλ∇2
⊥ϕ(ρ) (Bremmer,

1952; Wilkins et al., 1996). This result says that the contrast increases linearly with

propagation distance, for propagation distances that are sufficiently small thatNF � 1

(cf. (1.2)).

One of the strengths of PBI is its simplicity, it requires no optical elements other

than the sample to generate phase contrast. Accordingly it is widely used and is the first

X-ray phase contrast technique to be adapted for clinical use as a medical diagnostic

tool (Tanaka et al., 2005).

Since the wavelength appears in (1.3) as a multiplicative factor only, PBI can be

implemented using polychromatic radiation (Wilkins et al., 1996; Pogany et al., 1997).

The use of polychromatic radiation will cause blurring of the image due to a shifting of

the fringes for each constituent wavelength which in turn will suppress the interference

fringes. Remarkably, one may still obtain string PBI contrast with fully polychromatic

radiation, provided the source size is sufficiently small (Wilkins et al., 1996).

PBI requires a large spatial coherence length, which can be achieved in practice

using a large source-to-object distance (Snigirev et al., 1995; Cloetens et al., 1996) or
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Figure 1.5: Analyser-based phase contrast imaging. (a) A hard X-ray beam incident from
the left is transmitted through a sample before being diffracted from a thick perfect crystal and
detected. (b) The (solid) amplitude and (broken) phase (divided by π) of the crystal Bragg
peak plotted as a function of angle and depicting the reflectivity and phase corresponding the
incident angles in (a).

a microfocus source (Pogany et al., 1997; Gureyev et al., 2001; Mayo et al., 2002b).

Despite the requirement of a large coherence length PBI is a low coherence method in

that it can be used to image samples that introduce optical path length shifts that are

much larger than the coherence length.

PBI contrast is well known in electron (Cowley, 1995) and visible light optics

(Zernike, 1942) where it is known as defocus contrast. More recently it has demon-

strated with neutrons (Allman et al., 2000) and neutral atoms (Fox et al., 2002).

Another significant benefit of PBI imaging is the existence of deterministic phase

retrieval algorithms which allow quantitative information to be extracted from one or

more images as we shall see further in §1.2.

1.1.6 Analyser-based phase contrast imaging

This thesis is primarily concerned with developing new methods for quantitative

analyser-based X-ray imaging. In this section we provide an overview of ABI phase

contrast and the current the state of the art. We also compare ABI with the other phase

contrast imaging techniques which have been covered in the previous sections.

The premise of ABI is to use a Bragg reflection7 from a perfect crystal to create

phase contrast, as shown in Figure 1.5(a). The crystal acts as a band-pass/Schlieren-

type filter in Fourier space and accepts only a very narrow range of angles about the

exact Bragg condition. In Figure 1.5(b) we see the amplitude and phase of the crystal

reflectivity plotted as a function of angle. The undeviated beam is incident on the

7The arguments of this section may equivalently be applied to Laue geometry as in (Kitchen et al.,
2008).
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crystal slightly above the Bragg angle, this is called the working point. The refraction

introduced by the sample causes the wavefield to be reflected with an angle dependent

reflectivity and phase shift. This figure also makes clear that the amplitude of the Bragg

peak is a band pass filter and the phase acts like a π phase shifting Schlieren filter. The

former is obvious whilst the connection to Schlieren phase contrast can be understood

if we note that in Schlieren imaging half of the spatial frequencies are removed with

a knife edge whereas for the wavefield incident on the analyser crystal, half of the

spatial frequencies are π phase shifted. As noted previously, the link between ABI and

Schlieren imaging was stated in the paper of Förster et al. (1980).

The choice of analyser crystal and reflection has important ramifications for the

contrast and resolution of the ABI image. The sensitivity of ABI contrast to phase

gradients is related to the gradient of the Bragg peak, as Figure 1.5(b) makes clear. A

crystal reflectivity that changes rapidly with angle is able to convert refraction from

the sample through very small angles into large contrast variations. The contrast in

ABI images can be increased by slightly detuning the working point from the Bragg

angle to the half-reflectivity point or using higher order reflections (Rigon et al., 2002)

as the angular gradient increases with reflection order. The resolution of ABI however

is related to the crystal point spread function which is the Fourier space dual to the

complex reflectivity. A narrow rocking curve corresponds to a wide point spread

function which blurs the image detail. For best resolution a Bragg reflection with

large angular acceptance should be used and so there is a trade-off between contrast

(sensitivity) and resolution (Bushuev et al., 1997; Nesterets et al., 2004; Wilkins et al.,

2007).

One possible way to address this tradeoff is to use strained or bent crystals which

typically show oscillations in the reflectivity over a wide angular range (Kolpakov et al.,

1977). The oscillations should provide contrast while the wide angular acceptance will

reflect more spatial frequencies to the detector giving a higher resolution image.

ABI is only sensitive to phase gradients in the diffraction plane of the crystal. This

one-directional sensitivity is the biggest limitation for ABI which may be addressed by

adding a second reflection (Modregger et al., 2007b,a) or combining ABI with another

phase contrast technique such as PBI (Pavlov et al., 2004, 2005; Nesterets et al., 2005b;

Coan et al., 2005; Nesterets et al., 2006b) which shows two dimensional phase contrast.

The contrast in ABI images has a simple interpretation in the context of geomet-

rical optics. In the geometrical optics approximation to ABI we perform a Taylor

series expansion on the crystal reflectivity and neglect terms higher than first (Chap-

man et al., 1997) or second order (Pavlov et al., 2004). For objects with feature sizes
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larger than a few hundred micron the spatial frequency spectrum is bandlimited to a

range smaller than a typical analyser Darwin width8 and the crystal reflectivity across

this band of spatial frequencies is approximately linear. In this regime the contrast

is linearly proportional to the refraction angle which in turn is proportional to the

derivative of the phase. When the linear approximation to the reflectivity is not valid,

such as at the top or tails of the Bragg peak, the contrast is more complicated.

The phase derivative contrast of ABI may be compared with the phase Laplacian

contrast of PBI (cf. §1.1.5). The second-derivative contrast will appear most strongly

at the boundary between media whereas the first derivative contrast also appears

strongly for a smoothly varying phase between boundaries. Ingal and Beliaevskaya

(1995) have distinguished between these two cases as boundary and area contrast,

respectively.

Practical difficulties to the implementation of ABI are similar to those encountered

by X-ray interferometry: mechanical stability and a limited field of view (cf. §1.1.1).

Since perfect single crystals are typically used as the analyser it must be possible to

grow a large enough crystal to intercept the entire beam. The Bragg peak subtends a

very narrow angular range and is susceptible to very slight mechanical and thermal

instability. Silicon analysers are often used because they have small thermal expansion

coefficients and can be grown in large single crystals.

ABI was first used to characterise targets for laser fusion experiments by Förster

et al. (1980). This seminal work contains the kernel of much of the work when ABI

was revisited more than a decade later (Somenkov et al., 1991; Ingal and Beliaevskaya,

1995; Davis et al., 1995a,b; Davis, 1996; Chapman et al., 1997) including both wave

optical and geometrical explanations of ABI, the increased sensitivity of asymmetric

reflections to phase gradients and asymmetric reflection magnification. Asymmetric

reflections in ABI can be exploited to magnify the image (Modregger et al., 2006).

The exquisite sensitivity of ABI means it has the potential to be used in a number

of areas including medical diagnostics (Arfelli et al., 1998, 2000; Bravin et al., 2002;

Bravin, 2003; Lewis et al., 2002; Rigon et al., 2005), materials characterisation and

finding historical relics hidden in paintings (Krug et al., 2008).

In ABI the crystal performs an analogous function to the analyser grating in Talbot

interferometry and coded aperture phase contrast (cf. §1.1.2). However, owing to the

microscopic periodicity of the crystal, and the associated narrow-Darwin-width Bragg

peak, it is far more sensitive to phase gradients than macroscopic periodicity grating

or aperture-based methods. Continuing further with the analogy suggests another

8The differential mode for ABI identified by Gureyev and Wilkins (1997).
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form of phase contrast imaging system where one might choose to replace the two

gratings of a Talbot interferometer with thin Laue crystals. The result is almost full

circle back to X-ray interferometry however in this case we do not recombine the two

beams for interference contrast and the first crystal serves only to separate the incident

wavefield into discrete diffraction orders.

ABI is sensitive to the spatial and temporal coherence of the illuminating radia-

tion (Nesterets et al., 2005b). In general the contrast and resolution decrease with

coherence lengths but we will give a more detailed statement about the coherence

requirements of ABI in §3.2. A majority of ABI experiments are performed using

synchrotron X-ray sources because of the increased flux and coherence compared to

compact bremsstrahlung sources. The crystal rejects a significant proportion of the

incident radiation so the increased flux is used to reduce exposure times whilst the

large coherence lengths are suitable for ABI imaging. Notwithstanding synchrotron

measurements there have been a few measurements of ABI images using anode based

sources (Förster et al., 1980; Somenkov et al., 1991; Ingal and Beliaevskaya, 1995; Davis

et al., 1995a,b; Bushuev et al., 1997) however the practice is not widespread despite

the potential usefulness of ABI as an imaging and characterisation tool.

The phase contrast imaging systems we have been introduced to thus far are

useful for making qualitative measurements about samples. In the hard X-ray regime

the phase-sensitive measurements are superior to absorption-based measurements

for light elements, however absorption measurements may be inverted using Beer’s

law (Born and Wolf, 1999) to extract quantitative information. We would now like

to discuss the quantitative aspect to phase contrast imaging: phase retrieval. Phase

retrieval, which allows us to extract quantitative measurements from phase contrast

images, has enormous practical importance and so we will give a brief account of the

current state of the art.

1.2 Phase retrieval

Forward problems, of which imaging is an example, seek to predict the result of

a measurement whilst inverse problems (Goncharskii et al., 1992), of which phase

retrieval is an example, seek to determine the initial conditions that gave rise to a

measurement. So it is to a famous incarnation of the inverse problem we now turn:

the phase problem.

Phase retrieval is a generic term describing a class of problems whose aim is to infer

the phase of a wavefield from intensity measurements, either analytically or iteratively.
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Phase retrieval is the complement of Beer’s law (Born and Wolf, 1999) for absorption

contrast images in that it allows quantitative measurements to be extracted from phase

contrast images. Beer’s law states that the projected thickness of an object composed of

a single material is linearly proportional to the logarithm of the normalised intensity.

Similarly, phase retrieval algorithms attempt to relate the projected thickness (or, more

generally, the phase of the wavefield at the exit face of the object) to the measured

intensity however their relationship usually has a more complex character than Beer’s

law because of the wave optical aspect necessary to explain phase effects.

We have already touched on phase retrieval as it applies to the problem of lens-

less coherent imaging (cf. §1.1.4) and we will now cover some of the important

developments of phase retrieval in PBI and ABI.

Phase retrieval in PBI has a long history beginning with the Nobel prize winning

work of Gabor (1948). In Gabor’s holography the phase and amplitude of a wavefield

at the exit surface of a sample are encoded in the propagated intensity by regarding

this propagated intensity (‘hologram’) as resulting from the interference between the

unscattered (‘reference’) and scattered (‘object’) waves. The intensity can be decoded

either optically or computationally after the measurement to recover the incident

complex wavefield. We can view a PBI image as a short-propagation-distance in-line

hologram which may be inverted to recover the complex wavefield.

Widely used approaches to PBI phase retrieval include those based on the TIE

(Teague, 1983), the ambiguity function (Papoulis, 1962) and the Fresnel diffraction

integral (Born and Wolf, 1999). Early PBI phase retrieval work lead to a number

of methods (Teague, 1983; Gureyev et al., 1995; Gureyev and Nugent, 1996, 1997;

Paganin and Nugent, 1998; Gureyev et al., 1999; Paganin and Nugent, 2001; Nugent,

2007) which are able to recover the phase analytically given measurements of the

intensity over successive planes separated by a suitable propagation distance. These

methods have in common that, unlike the MGSA, they recover the phase uniquely and

non-iteratively which is a significant advantage.

To uniquely recover the phase and amplitude of a wavefield requires, in general,

either two intensity measurements so that the amount of information input to the

reconstruction algorithm is equivalent to the output. The complex wavefield of a

pure phase object may, however, be uniquely reconstructed from a single intensity

measurement (Gureyev et al., 1999; Bronnikov, 1999, 2002).

Similarly, for objects composed of a single material the phase may be retrieved

from a single image (Paganin et al., 2002). Single image phase retrieval paves the way

for tomographic (Mayo et al., 2003a; Myers et al., 2007, 2008) and real-time analyses
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where it is impractical or impossible to measure two images at different distance from

the sample.

A popular approach to ABI phase retrieval uses the geometrical optics approxima-

tion (Chapman et al., 1997; Pavlov et al., 2001; Rigon et al., 2003; Nesterets et al., 2006a;

Kitchen et al., 2007; Rigon et al., 2007a) to recover quantitative information from

images recorded at different angular deviations of the analyser crystal. This simplified

approach expands the crystal transfer function as a Taylor series and ignores higher

order terms (see e.g. Pavlov et al. (2004)) and can lead to artifacts in the reconstruction

but is easy to implement numerically. Variants of the technique use multiple images

to improve the quality of the reconstruction (Oltulu et al., 2003; Pagot et al., 2003;

Wernick et al., 2003; Rigon et al., 2007b).

In order to extract quantitative information using a more rigorous wave optical

approach to ABI (Guigay et al., 2007) requires that approximations are made to the

sample transmission function. For samples which interact only very weakly9 the weak

object approximation may be used (Cowley, 1995). The weak object approximation

linearises the sample transmission function (Born and Wolf, 1999) so that, to first order,

the complex scalar wavefield is proportional to the phase shift and attenuation. The

linear relationship between intensity and phase means the phase retrieval problem is

tractable in ABI (Nesterets et al., 2004, 2005a) and PBI (Pogany et al., 1997). The weak

object approximation is very restrictive and in practice most samples introduce phase

shifts that are sufficiently large to render the weak-object approximation inapplicable.

Paganin et al. (2004) and Pavlov et al. (2004) developed generalised phase retrieval

algorithms that can be applied to PBI and ABI under the approximation of a linear and

slowly varying transfer function respectively. Importantly the algorithm of Paganin

et al. (2004) is adaptable to single image phase retrieval for ABI (Briedis et al., 2005).

All of the previously described phase retrieval algorithms have a significant com-

monality in that, without exception, they assume that the state of the imaging system

is known prior to the measurement. In that case the a priori knowledge of the imaging

system is used to infer information about the sample. One of the core ideas that forms

the latter part of this thesis is to investigate methods of measuring the state of the

imaging system given knowledge of the sample: in effect we have swapped the roles of

what is known and unknown. Thus, rather than viewing a known optical system as

a means for studying an unknown object, we may view a known object as a tool for

probing an unknown optical system.

This leads to the idea of Green’s function reconstruction and we will show that this

9Phase shift much less than 1 radian and attenuation of no more than a few percent.
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idea has many potential uses, not the least of which is its application to crystallography

which we will explore in detail.

1.3 Summary

To place the work that follows in context we have reviewed some important results in

the field of X-ray phase sensitive imaging.

We have covered six methods for implementing phase contrast imaging; the X-ray

interferometer, the Talbot interferometer, Zernike and Schlieren methods, lensless

diffractive imaging, propagation-based phase contrast imaging and analyser-based

phase contrast imaging. Each of these has subtly different coherence requirements,

shows contrast which proportional to the phase directly or through a first or second

derivative and have various levels of sensitivity to phase gradients.

There is no preferred, or best, method. The suitability of each must be decided by

the use to which it will be applied. Considerations include the coherence of the source,

the size of the sample, the required resolution in the image, the number of samples

and time available to image them.

PBI is sensitive to the Laplacian of the phase (Bremmer, 1952) and so is useful

for so called ‘edge-enhancement’ applications where strong boundary contrast is all

that is required. TII and its variants are sensitive to the derivative of the phase and are

thus useful for area- as well as edge-enhancement contrast (Pfeiffer et al., 2006; Olivo

and Speller, 2007a). Unlike PBI however both of these techniques require additional

optical elements which pose certain experimental difficulties.

Interferometry and lensless imaging as examples of high coherence methods can

be grouped together since both require small samples that can fit within a coherent

volume.

The remaining techniques (ABI, PBI and TII (and variants)) are low-coherence

and there has been a significant push in the past few years, as evidenced by the high

impact journals the work relating to TII especially appears in, to develop low coherence

methods for imaging biological and light materials samples.

TII and PBI are perhaps the most accepted methods for incoherent-source phase

imaging. PBI has been commercialised (Wilkins, 1995) and is being trialled as a

diagnostic tool in clinical mammography (Tanaka et al., 2005) and the former meth-

ods are a more recent technique which claim to be suitable for use with incoherent

sources (Pfeiffer et al., 2006) but the total number of researchers working on it is

small. Both of these approaches have been demonstrated with phase retrieval using an
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incoherent source (Pfeiffer et al., 2006; Mayo et al., 2002b). However, there have been

no studies conducted to show that quantitative phase retrieval is possible using ABI

with an incoherent source or to determine the general conditions under which ABI

contrast should be measurable.

The phase retrieval algorithms presented in §1.2 are all predicated on the notion

that the state of the imaging system is known a priori. In cases where the imaging

system Green’s function is not known or requires validation no general method exists

with which to measure or reconstruct it. We will pursue this idea in the latter part of

this thesis to develop and implement such a technique we refer to as Green’s function

reconstruction.

Further, if one pursues this idea we find an entirely new application for Green’s

function reconstruction beyond phase contrast imaging such as inferring crystalline

structure and verifying complex propagators.

A detailed exposition of these ideas will follow in later chapters but first we will,

in Chapter 2, formulate the background theory required to place the results in a

quantitative context.





Propagation and scattering 2

In this chapter we consider image formation in an analyser-based phase contrast

imaging system. An electromagnetic wavefield originates at a source and propagates

through an imaging system, interacting with the sample and then the analyser crystal

before forming an image at the detector. We will review the description of each of

these interactions in turn and close the chapter with a quantitative statement of the

associated forward problem of image formation in an analyser-based phase contrast

imaging system.

We first consider the equation governing the propagation of waves in the classical

electric field and how those waves may be detected (§2.1). We then briefly discuss

the coherence of X-ray wavefields in relation to phase contrast imaging (§2.2) so that

we may discuss partially coherent radiation in Chapter 3. The analysis in the pro-

ceeding sections will loosely follow the path of the wavefield as it propagates through

a propagation/analyser-based phase contrast imaging system. We consider some

properties of electromagnetic waves and their interaction with an inhomogeneous

object—the ‘sample’ we wish to image (§2.3). This section describes the use of the

projection approximation which allows the exit plane wavefield to be expressed in

terms of the projected linear attenuation coefficient of the sample.

The next two sections describe the diffraction of X-rays through free space (§2.4)

and from laterally homogeneous crystals (§2.5). The analysis of free space diffraction

uses the angular-spectrum formulation for propagation of a wavefield from plane

to parallel plane. The angular spectrum exactly solves the Helmholtz equation for

forward-propagating waves, allowing numerical simulations throughout the thesis to

be implemented efficiently and accurately. The section on diffraction from crystals

with slight deformations is more detailed than the analysis of free space propagation

because later chapters will have recourse to determine what the diffracted field tells

us about crystal structure. The history of X-ray crystallography is resplendent with

23
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the achievements of many brilliant scientists so it is necessary to cherry pick some

relevant results: the dynamical theory of Takagi and its kinematic approximation.

Between dynamic and kinematic scattering from slightly strained crystals we have all

that is necessary for placing the work of later chapters involving X-ray interaction with

crystals into context.

We then introduce the operator formalism for linear shift-invariant optical ele-

ments (§2.6) which is useful to expedite the expression of integral equations describing

wavefield propagation and scattering and is used extensively in the numerical sim-

ulation of the forward problem. This final section brings the results of the chapter

together in an operator expression for the forward problem of ABI imaging using an

incoherent source.

We conclude these opening remarks with a brief indication of how the background

material in the present chapter relates to the remainder of the thesis. (i) The oper-

ator expression in leads directly in to the work of Chapter 3 where we demonstrate

quantitative ABI phase retrieval using an extended incoherent X-ray source. The

forward simulation of this problem uses many of the results of this chapter including

the angular spectrum and the dynamical diffraction of an X-ray wavefield from a thick

perfect crystal. (ii) In Chapter 4 we consider the problem of Green’s function retrieval

from a phase contrast image of a weak object. Accordingly the present chapter gives a

brief account of Green’s function solutions to linear differential equations using the

operator formalism and develops the weak object notation for later use. (iii) Chapter

5 presents the result of an experiment in which the Green’s function reconstruction

approach developed in Chapter 4 is applied to a thick perfect crystal Bragg reflection.

We again draw on the result of scalar diffraction and dynamical diffraction developed

in the present chapter.

2.1 Electromagnetic waves

Maxwell’s equations describe the spatio-temporal evolution of electromagnetic waves

(Born and Wolf, 1999) and are the starting point for our investigation. We henceforth

assume that all materials we encounter are non-magnetic, linear and isotropic. Waves

in the electric field E in a medium with a static electrical permittivity ε and magnetic

susceptibility µ propagate according to (Good, 1999; Attwood, 2000),

∇2E− εµ
∂2E

∂t2 = ∇
(ρ
ε

)
+ µ

∂J

∂t
(2.1)
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where J = J(r, t) is the current density, ρ = ρ(r, t) is the charge density, r = (x,y, z)

is a position vector in a right-handed Cartesian coordinate system and t is time. In

a vacuum ε = ε0 and µ = µ0 where ε0 and µ0 are the vacuum permittivity and

permeability respectively.

X-ray detectors respond to the optical energy, or intensity I, of the field (Good,

1999) which is related to the field amplitude by the instantaneous intensity. The

instantaneous intensity of the electric field is given by (Mandel and Wolf, 1995)[p.

162]1,

I(r, t) = E(r, t) · E(r, t). (2.3)

The time-dependent fluctuation of the field is unobservably large and as a result the

detected intensity is given by the following time average (Mandel and Wolf, 1995),

I(r) =
1
T

∫T/2

−T/2
I(r, t)dt = 〈I(r, t)〉, (2.4)

where the time interval T is much greater than the characteristic timescale of the field

oscillations. In the averaging of (2.4) we lose direct access to the phase information of

the electric field. It is this inability to directly measure the phase that necessitates the

indirect phase sensitive imaging techniques of §1.1.

For a majority of the results presented in this thesis the vectorial nature of the

electric field may be ignored. The transition from vector to scalar theories is discussed

in Nieto-Vesperinas (1991) and Born and Wolf (1999) and we note that we may choose

a single scalar component of (2.1) to describe the field. Ignoring the vectorial nature

of a paraxial field will, at most, add a multiplicative factor to the intensity which

depends on experimental geometry2 (Cowley, 1995). The proceeding analysis can be

simplified by describing the field amplitude in terms of a complex scalar wavefunction

ψ (Born and Wolf, 1999; Mandel and Wolf, 1995; Wolf, 2007)3. Furthermore, since

1The formal definition of the instantaneous intensity of a plane wave is (Born and Wolf, 1999)

I(r, t) =

√
ε

µ
E(r, t) · E(r) (2.2)

however since we are interested relative measurements of the intensity and not its absolute value the
multiplicative constant is irrelevant and can be neglected.

2We will revert to a vector theory to discuss the dynamical theory of X-ray diffraction from crystals
however we will again find that for the cases in which we are interested the effects of polarisation will
result in a multiplicative factor.

3In the complex representation the definition of instantaneous intensity (2.3) should be modified

I(r, t) = E(r, t) · E∗(r, t)

where ∗ denotes complex conjugation.
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we are interested primarily in coherent scattering we need only consider a single

monochromatic component of the field (Born and Wolf, 1999),

ψ(r, t) = ψ(r,ω) exp(−iωt). (2.5)

It behooves us to drop the functional dependence on ω with the assumption that

henceforth ψ refers to the spatial part ψ(r,ω) unless otherwise stated. A polychro-

matic field can be synthesised where necessary from a weighted sum of monochromatic

components considered separately in a Fourier integral. In a vacuum (2.1) in terms of

ψ becomes the Helmholtz equation (Born and Wolf, 1999),

∇2ψ+ k2ψ = 0, (2.6)

where ∇ = (∂/∂x,∂/∂y,∂/∂z), k = ω/c = 2π/λ is the wave number and λ is the

radiation wavelength. For clarity we will define a convention for this thesis that ∆

will be used to represent a small finite change in the quantity it prepends and never

the Laplacian. We define for later reference the wave vector k which has magnitude

|k| = 2π/λ and Cartesian components k = (kx,ky,kz), the transverse wave vector

κ = (kx,ky), transverse position vector ρ = (x,y) and transverse gradient operator

∇⊥ = (∂/∂x,∂/∂y). Boldface symbols in this thesis will always represent a different

quantity than their non-bold versions.

A brief digression is warranted here to set out the convention that will be used for

the transverse Fourier transform (Bracewell, 1986),

ψ̃(κ) =
1

2π

∫∫
ψ(ρ) exp(−iκ · ρ)dρ, (2.7)

ψ(ρ) =
1

2π

∫∫
ψ̃(κ) exp(iκ · ρ)dκ. (2.8)

Symbolically the transverse Fourier transform operator may be written,

ψ̃(κ) = F[ψ(ρ)], (2.9)

ψ(ρ) = F−1[ψ̃(κ)]. (2.10)

2.2 Coherence at X-ray wavelengths

The field of coherent X-ray scattering subsumes a range of science of which phase

contrast imaging forms only one part (Lengeler, 2001, 2007; van der Veen and Pfeiffer,

2004). Coherence is at the heart of any phase contrast imaging system as it quantifies

the ability of a wavefield to be the carrier of phase information and manifest inter-

ference fringes. The coherence requirements of the various types of phase contrast
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imaging systems differ and consequently may be used with some X-ray sources only

in conjunction with filtering to increase the coherence. In this section we will define

some of the basic concepts of coherence for use later in the thesis.

The coherence of a scalar X-ray wavefield with mean wavelength λ̄ is quantified by

the spatial coherence area and temporal (chromatic) coherence length (Mandel and

Wolf, 1995; Wolf, 2007),

AS ≈
λ̄2

∆Ω
; LT ≈

λ̄2

∆λ
(2.11)

where ∆λ is the wavelength spread and ∆Ω ≈ d2/z2 is the solid angle subtended by

the source, with area d2, from the point of observation at a distance, z. We can define

a coherent volume Vc = ASLT that describes the extent of space around a given point

over which there is a persistent relationship in the phase. Quantum mechanically the

coherent volume represents the region of space throughout which the photons of the

field are intrinsically indistinguishable from each other (Mandel and Wolf, 1995). The

bandwidth and apparent size of an X-ray source determines the coherence as defined

by (2.11). The spatial coherence area may be increased by moving far from the source

thereby decreasing its apparent size.

In Chapter 3 we will have cause to compare the coherence of synchrotron and

anode-based X-ray sources. X-ray tubes and synchrotron storage rings radiate incoher-

ently and require filtering to increase the coherence used to measure phase contrast. In

contrast to chaotic sources the next generation of X-ray sources will utilise stimulated

emission and so have large coherent volumes however these have only recently become

available for soft X-rays and are under development for hard X-rays (Rullhusen, 1992;

O’Shea and Freund, 2001; Lee and Choi, 2007; Kapteyn et al., 2007).

To quantify the quality of an X-ray source to produce radiation for coherent

imaging applications we use the spectral brilliance (Attwood, 2000),

B =
power

unit phase space
=

∆P
∆A · ∆Ω · BW

(2.12)

where ∆P is the power radiated into an area ∆A subtending an angle ∆Ω with spectral

bandwidth BW. This relationship implies that the coherent volume can be increased at

the expense of photon flux through filtering. Synchrotron radiation, which is strongly

peaked in the forward direction (Margaritondo, 2002) has a higher brilliance than

an X-ray tube which uses Bremsstrahlung radiation. The characteristic energy of

the X-ray tube anode (∆λ/λ ≈ 3.2×10−4 for CuKα1 radiation (Zaus, 1992)) gives

comparable monochromaticity to what can be attained using a synchrotron double

crystal monochromator (Si(111) ∆λ/λ ≈ 1.3 × 10−4 for CuKα1 (Stepanov, 2008))
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Figure 2.1: The van Cittert-Zernike theorem. The two point correlation between the X-ray
wavefield detected at r1 and r2 due to an incoherent, quasi-monochromatic source σ radiating
into a vacuum, is given by the van Cittert-Zernike theorem.

whereas the synchrotron is able to deliver a tunable energy. We will often encounter

radiation with the property that ∆λ � λ̄ and we will refer to such a field as quasi-

monochromatic (Mandel and Wolf, 1995).

A radiation source is considered locally incoherent if there is no correlation in

the phase between adjacent radiators (Mandel and Wolf, 1995). Such an extended

incoherent source is a useful practical model of X-ray tube sources (and synchrotrons)

and as such we would like to briefly describe the van Cittert-Zernike theorem (van

Cittert, 1934; Zernike, 1938) which shows how to calculate the intensity recorded over

a planar surface a distance z from such a source.

To this end we introduce the mutual intensity JI for quasi-monochromatic radia-

tion (Mandel and Wolf, 1995; Born and Wolf, 1999; Goodman, 2000; Wolf, 2007),

JI(r1, r2) = 〈ψ∗(r1, t)ψ(r2, t)〉, (2.13)

where angular brackets again denote a time average (cf. (2.4)).

With reference to Figure 2.1 the van Cittert-Zernike theorem is (Born and Wolf,

1999),

JI(r1, r2) =

∫
σ
I(r0)

exp
{
i 2π
λ

[|r2 − r0| − |r1 − r0|]
}

|r1 − r0||r2 − r0|
dr0 (2.14)

where I(r0) is the source intensity per unit area This theorem relates the field corre-

lation between points r1 and r2 due to a quasi-monochromatic, planar incoherent

source of X-rays σ.

Roughly speaking, the van Cittert-Zernike theorem states that the coherence of a

wavefield measured over a plane a perpendicular distance z from an incoherent source

will increase as z increases. Physically this means that as the wavefield from disparate,

mutually incoherent source points propagates out, these wavefields will superpose and

in the region of the superposition there will exist non-negligible correlations (Mandel

and Wolf, 1995).



2.3 P  X-    29

The intensity at r1 is given by,

I(r1) = J1(r1, r1) =

∫
σ

I(r0)

|r1 − r0|2
dr1. (2.15)

In the context of incoherent imaging this result tells us that we simply add the contri-

butions of each source point incoherently to find the total field. The result in (2.15)

applies to diffraction of X-rays from an incoherent source through free space however

its is readily generalisable to an arbitrary linear propagator G(r, r ′) (such as we will

encounter later in the form of diffraction from a crystal) (Wolf, 2007),

I(r1) =

∫
σ
I(r0)G

∗(r1, r0)G(r1, r0)dr0. (2.16)

2.3 Propagation of X-rays through inhomogeneous media

In this section we will consider the problem of describing an X-ray wavefield in a

inhomogeneous dielectric material.

The response of a dielectric material to an incident field is described by the dielec-

tric permittivity tensor εij(r) which may vary with position through the material and

with the frequency of the driving field (Kolpakov et al., 1978). In the X-ray frequency

range and far from an absorption edge we may neglect the tensorial aspect of the per-

mittivity, replacing the tensorial field εij(r) by the complex scalar fieldε(r) (Kolpakov

et al., 1978). The complex refractive index is related to the permittivity by (Authier,

2005),

n =

√
ε

ε0
(2.17)

and as is customary we introduce the definition

n = 1 − δ+ iβ (2.18)

where the real numbers δ and β are the refractive index decrement and attenuation

coefficient respectively. In general, both δ and β are functions of the radiation wave-

length however we will not explicitly denote the wavelength dependence since we

consider monochromatic radiation.

In an inhomogeneous medium waves propagate according to,

∇2ψ+ k2n2(r)ψ = 0. (2.19)

which is the inhomogeneous Helmholtz equation (cf. (2.6)).
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Figure 2.2: The projection approximation. (a) An object with complex refractive index
n(r) that interacts weakly with hard X-rays lies between two planes. (b) The projection
approximation has been used to compress the object along the z-axis to create an equivalent
object that can be expressed in terms of a projected refractive index n(ρ, z).

2.3.1 The projection approximation for inhomogeneous media

Consider the plane-to-plane propagation of a paraxial scalar beam-like wavefield

through an inhomogeneous object wholly residing within the intervening space as in

Figure 2.2(a). For a sufficiently thin and weakly interacting object we may assume

that the path of the X-rays traversing the object are not significantly different than

they would have been in vacuum. In this case the wavefield accumulates phase and

attenuation along the ray paths as if the object were compressed along the optic axis.

A complete description can be found in Paganin (Paganin, 2006) and here we sketch

the main results.

Consider the following ansatz to the inhomogeneous Helmholtz equation for a

‘beam-like’ wavefield

ψ(ρ, z) = ψ̆(ρ, z) exp ikz (2.20)

varying more strongly in x and y than z so that ∂2ψ̆/∂z2 is negligible relative to the

other terms in (2.21),{
2ik

∂

∂z
+∇2

⊥ + k2[n2(r) − 1]

}
ψ̆(ρ, z) = 0. (2.21)

We can uncouple adjacent ray paths in the paraxial equation (2.21) by making the

approximation∇2
⊥ψ̆(r ′) ≈ 0. If we integrate (2.21) with respect to z and, in addition,

if we note that at X-ray frequencies it is valid to assume |δ|, |β| � 1 for weakly

interacting objects we have what is known as the projection approximation,

ψ̆(ρ, z) ≈ exp

{
−ik

∫z
0
[δ(ρ, z ′) − iβ(ρ, z ′)]dz ′

}
ψ̆(ρ, 0). (2.22)

We can make a distinction between the object’s effect on the wavefield which tra-

verses and the exit plane wavefield itself by introducing the complex transmission
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function (Born and Wolf, 1999), f,

f(ρ) = exp

{
−ik

∫z
0
[δ(ρ, z ′) − iβ(ρ, z ′)]dz ′

}
(2.23)

and the wavefield exiting the object becomes (cf. (2.20)),

ψ(ρ, z) = f(ρ) exp(ikz). (2.24)

For weakly interacting thick objects the Born series (Merzbacher, 1970; Born and Wolf,

1999) provides a method for calculating diffraction from an extended body.

An important special case of (2.22) occurs when a plane wave is incident on a

single-material object with projected thickness t(ρ) and refractive indices δ, β,

ψ(ρ, z) = exp[−ik(δ− iβ)t(ρ)] exp(ikz) (2.25)

where

t(ρ, z) =

∫z
0
t(ρ, z ′)dz ′. (2.26)

We close this section by looking at the weak object approximation to (2.25) which is

valid for objects that introduce phase shifts much less than one radian and maximum

attenuation of a few percent (cf. §1.2). We adopt the convention defined by Nesterets

et al. (2004) and rewrite (2.25) in terms of the phase shift ϕ and attenuation µ,

ψ(ρ, 0) = exp[iϕ(ρ) − µ(ρ)], (2.27)

where,

ϕ(ρ) = −k

∫
z
δ(ρ, z)dz, (2.28)

µ(ρ) = k

∫
z
β(ρ, z)dz. (2.29)

Splitting the terms in the exponent into the mean ϕ, µ and deviation from the mean

∆ϕ, ∆µ, so that ∆ϕ = 0 and ∆µ = 0 we have,

ϕ(ρ) = ϕ+ ∆ϕ(ρ), (2.30)

µ(ρ) = µ+ ∆µ(ρ), (2.31)

gives for ψ

ψ(ρ) = exp[iϕ− µ] exp[i∆ϕ(ρ) − ∆µ(ρ)]. (2.32)
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Figure 2.3: The angular spectrum of plane waves. The wavefield at z = 0 is propagated to
z = z using the homogeneous Helmholtz equation (2.6).

If the weak object criteria

|∆ϕ| � 1, (2.33)

|∆µ| � 1, (2.34)

are applicable, the second exponent in (2.32) can be expanded as (Cowley, 1995),

ψ(ρ) ≈ exp[iϕ− µ][1 + i∆ϕ(ρ) − ∆µ(ρ)] (2.35)

which is known as the weak object approximation. As has been previously noted, in

practice it can be difficult to create an object that satisfies the weak object criteria for

hard X-rays. Eq (2.34) is often easy to satisfy for hard X-rays but (2.33) requires a

phase shift of much less than one radian and can be difficult to achieve for all but the

weakest objects.

An alternative and less restrictive approximation to (2.33) has been proposed

by Guigay (1977). In the context of Fresnel diffraction it was shown that the phase

shift need only be much less than 1 radian over the length scale zλ/h where z is the

propagation distance and h the smallest feature in the object. Since this result was

derived for Fresnel diffraction we will use the more restrictive condition (2.33) since

we consider object weakness in the case of diffraction from a crystal as well.

2.4 Free space diffraction

We now consider the plane-to-plane diffraction of a scalar wavefield when the inter-

vening space is devoid of charges and currents4. The solution of this problem will

4A plane-to-inclined-plane solution for Fresnel diffraction has been proposed (Modregger et al.,
2008).
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allow us to propagate an X-ray wavefield between parallel planes of our imaging system

and can be used to simulate PBI phase contrast.

The analytical solution to the problem of plane to plane diffraction, known as the

angular spectrum of plane waves, links a forward propagating wavefield between planes

by requiring that the field obeys the free space Helmholtz equation (2.6) (Lalor, 1968;

Goodman, 2000; Mandel and Wolf, 1995). We briefly sketch a particularly transparent

formulation (due to Gureyev (Paganin, 2006)) by considering first the propagation of

a plane wave,

ψ(ρ, z) = exp i(κ · ρ+ kzz) (2.36)

between z = 0 and z, see Figure 2.3. The Helmholtz equation constrains the wave

vector to lie on a sphere of radius |k|, which it will provided that kz = ±
√
k2 − |κ|2.

This allows us to express a +z-directed plane wave, by choosing the positive sign of

the surd, as,

ψ(ρ, z) = exp i

(
κ · ρ+ z

√
k2 − |κ|2

)
. (2.37)

This result suggests that a plane wave at z = 0 can be propagated through a distance

z, as in Figure 2.3, by addition of a constant phase z
√
k2 − |κ|2. Following this logic

through we express the field in the plane z = z as a Fourier sum of plane waves in the

plane z = 0 with multiplicative phase factor,

ψ(ρ, z) =
1

2π

∫∫
ψ̃(κ; z = 0) exp

(
iz

√
k2 − |κ|2

)
exp(iκ · ρ)dκ. (2.38)

This is the angular spectrum of plane waves and is the main result of this section. It

solves the boundary value problem of determining the complex amplitude of a forward

propagating scalar wavefield given knowledge of the amplitude over a previous plane.

We can see from the argument of the surd in (2.38) that plane waves corresponding

to wavevectors with |κ| 6 |k| will propagate and those with |κ| > |k| will be exponen-

tially attenuated. The latter are known as ‘evanescent’ waves. Thus the propagated

field will not contain information smaller than the radiation wavelength λ, when

z� λ (Nieto-Vesperinas, 1991).

The X-ray wavefields that will be encountered in practice in later chapters all have

the common characteristic of being paraxial. Accordingly we seek an approximation to

(2.38) which is suitable for X-ray beams and compatible with assumptions made in the

projection approximation for paraxial fields (cf. §2.3.1). The paraxial approximation

to the angular spectrum assumes that k2
z � k2

x + k2
y in which case the argument of
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the surd in (2.38) becomes, √
k2 − |κ|2 ≈ k−

|κ|2

2k
. (2.39)

Using this approximation (2.38) becomes,

ψ(ρ, z) =
1

2π
exp(ikz)

∫∫
ψ̃(κ; z = 0) exp

(
−i

z

2k
|κ|2
)

exp(iκ · ρ)dκ, (2.40)

which is a form of the Fresnel diffraction integral. We have now used two approxi-

mations to find beam-like results (cf. (2.21) and (2.39)) and it is satisfying to note

for consistency that the Fresnel approximation to the angular spectrum is the Fourier

representation of the Green’s function solution to the homogeneous (n = 1) paraxial

equation (2.21) (Grella, 1982).

The Fresnel approximation to the angular spectrum is valid for the range of

parameter space that gives a Fresnel numberNF = g2/λz (cf. (1.2)) greater than unity

where g is the length scale of the smallest resolvable feature. Physically, the Fresnel

number quantifies the curvature of the wavefield a distance z from an object of size g .

Since the Fresnel diffraction regime is quantified by NF > 1 we distinguish the

feature size gF =
√
λz below which the Fresnel approximation and theories built

thereon are not applicable.

2.5 Diffraction from a crystal

The study of crystalline matter and X-ray radiation are inextricably linked. This is

principally because the comparable length scales of the crystalline unit cell and hard

X-ray wavelengths makes each suitable for investigation of the other. We motivate

this section by noting that ABI phase contrast imaging uses a thick perfect crystal

as an optical element and understanding ABI presupposes knowledge of how an

X-ray wavefield interacts with a crystalline structures. In order to fully understand

this interaction we must delve into the dynamical theories of X-ray diffraction. The

treatment given here is by no means complete and for a full review of the field see

e.g. (Batterman and Cole, 1964; Zachariasen, 1968; Pinsker, 1978; Authier, 2005).

Specifically, we are seeking an expression relating the wavefields incident on and

diffracted from the crystal analogous to (2.38) for free space diffraction. We have cause

to study interaction with crystals in some detail because we will later investigate what

the wavefield scattered from a crystal allows us to infer about its structure (see e.g.

§4.4). To this end we will briefly review the well known dynamical theory of Takagi

that allows us to calculate the field scattered from crystals with slight distortions.
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Figure 2.4: The geometry of Bragg’s law. X-rays are diffracted from planes that satisfy Bragg’s
law, 2dhkl sin θB = nλ. The equation kg = k0 + g is the vector equivalent of Bragg’s law.

Theories describing the diffraction of X-rays by crystals can be divided into three

distinct classes; geometric, kinematic and dynamical (Ewald, 1969). The geometric

theory embodied by Bragg’s law specifies the directions in which reflection from a

crystal will occur (Authier, 2005),

2dhkl sin θB = nλ (2.41)

in terms of the spacing between atomic planes dhkl where (h,k, l) are Miller indices,

coordinates of reciprocal lattice points. The kinematic (single scattering) theory

specifies the angular spread of radiation for a finite crystal but assumes all atoms in

the crystal are subject to the same incident field and is thus applicable to, for example,

very thin crystals where the power in the diffracted beam is negligible. The dynamical

(multiple scattering) theory accounts for the interaction of incident and reflected

waves within the crystal.

2.5.1 The dynamical theory of X-ray diffraction

The classical dynamical theory of X-ray diffraction attempts to provide a description

for the interaction of the classical electromagnetic field5 and crystalline structures with

a periodic but otherwise arbitrary structure. The problem may be divided into two

parts: the description of the crystal and the description of the wavefield that interacts

with the crystal.

The utility of X-ray diffraction as an investigative tool in scientific and industrial

application has driven the need for an accurate theory that can account for diffraction

from the many crystal structures. The effect of naturally occurring defects (such as

5For a quantum theory of X-ray diffraction from crystals see e.g. Ashkin and Kuriyama (1966).
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dislocations, domain walls, impurities (Authier, 2005)) and structures (multilayer,

superlattice (Pietsch et al., 2004)) provide a significant challenge for a unified descrip-

tion of the diffraction process and as such many variants of dynamical theory have

been developed.

We now review the most common theories describing crystalline structures and

their interaction with electromagnetic fields.

2.5.2 Crystalline structures

The early dynamical theories of X-ray diffraction were based on two different ap-

proaches pioneered by Darwin and Ewald/ Laue. Darwin’s theory (Darwin, 1914b,a)

was based on the idea of the crystal being composed of lamellae parallel to the surface

and that each of these planes would give one diffracted and one transmitted beam.

Plane waves incident on each subsequent crystal plane were diminished in energy due

to diffraction from the previous planes and in this way energy was conserved. A set of

recurrence relations were formulated and solved for the crystal reflectivity.

The approach of Ewald (Ewald, 1916, 1917, 1979) and von Laue (von Laue, 1931,

1960) was to formulate and solve wave equations inside the crystal. The Ewald/Laue

(EL) model of the crystal is fundamentally different to the Darwin description and

as such the theories of diffraction from a Darwin crystal and an EL crystal are much

different (although they give equivalent results for important systems such as the thick

perfect crystal).

Ewald considered crystals to be composed of a periodic distribution of discrete

dipoles whereas the von Laue model views the crystal as a continuous periodic charge

distribution. In the ideal crystal the charge distribution is periodic so that it may be

represented as a Fourier series with the periodicity of the unit cell (Afanas’ev and

Kohn, 1971),

χid(r) =
∑
g

χidg exp(ig · r) (2.42)

where id refers to the ideal crystal, g is a reciprocal lattice vector and the summation

extends over all reciprocal lattice vectors. The reciprocal lattice vectors are related to

the (hkl) family of Bragg planes by,

dhkl =
2π

|ghkl|
. (2.43)

The polarisability in (2.42) describes an ideal periodic charge distribution and we

would like to extend this description to slightly deformed crystals. For example,
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coherently strained pseudomorphic layers6 of semiconductor materials have a strain

much less than 1% to avoid relaxation.

We can relate the position of the atoms in the distorted crystal r ′ to their position

in the ideal crystal r by the deformation field u,

r ′ = r+ u(r). (2.44)

Since the deformation is small we may use the Takagi approximation to (2.44) and

write,

r ≈ r ′ − u(r ′). (2.45)

In this case the deformed crystal polarisability χdef is given by (Kato, 1963; Afanas’ev

and Kohn, 1971),

χdef(r) = χid[r− u(r)], (2.46)

=
∑
g

χidg exp i[g · r− g · u(r)]. (2.47)

The effect of slight distortion is to shift the charge distribution without affecting its

shape (Hartwig, 2001) and the approximation is valid as long as there is no overlap of

the core electron wavefunctions (Kuriyama, 1967).

The Takagi approximation has become a standard description for deformed crys-

tals and can be interpreted as a local reciprocal lattice vector g̃ (Penning, 1966; Authier,

2005),

g̃(r) = ∇{g · [r− u(r)]} (2.48)

= g−∇[g · u(r)] (2.49)

=
2π
d(r)

n̂g̃(r), (2.50)

where d is the local interplanar spacing at r and n̂ is the local unit vector normal to the

crystal plane. This expression is the gradient of the exponent in (2.47) and so Podorov

et al. (2006) proposed the form,

g · r− g · u(r) =

∫r

0
g̃(r̃) · dr̃, (2.51)

=

∫r

0

[
2π
d(r̃)

n̂g̃(r̃)

]
· dr̃. (2.52)

6Pseudomorphic layers are formed during epitaxy of semiconductor materials with slightly differing
lattice constants (Schuster and Herres, 1994). At the interface, the epitaxial layer strains to fit the lattice
of the substrate in the lateral direction resulting in a tetragonal distortion. If the strain is too large the
layer will relax. Pseudomorphic layers are commonly used in fields such as bandgap engineering.



38 P  

This last result has the advantage of conceptual clarity at the expense of computational

difficulty as the integral of (2.52) must in general be evaluated numerically.

We now turn to an overview of the of dynamical diffraction theory proposed by

Takagi for perfect and slightly deformed crystals.

2.5.3 Takagi’s dynamical theory of X-ray diffraction

All dynamical theories aim to solve the wave equation (2.1) under the assumption of

a periodic charge distribution. The theories differ in how to describe the wavefields

inside the crystal and which terms in the governing wave equation can be considered

negligible.

In Takagi’s dynamical theory, gently perturbed plane waves propagate in the crystal

and the envelopes of the waves have a spatial dependence which allows them to satisfy

the propagation equation in the case of a deformed crystal.

To begin we rewrite (2.1) 7,

∇2E(r) + k2[1 + χ(r)]E(r) = 0. (2.53)

We will first apply the Takagi theory to a perfect crystal and later extend it to crystals

with slight distortions. The susceptibility χ will be as described in the previous section

and it remains to choose a form for E. Bloch (Bloch, 1928) showed that the wavefield

inside a periodic potential must have the same periodicity as the potential itself. Hence

we express the wavefield in the crystal as a Fourier sum,

E(r) =
∑
g

Eg exp i[kg · r] (2.54)

where kg is defined by the Laue equation (cf. Figure 2.4),

kg = k0 + g, (2.55)

the vector equivalent of the Bragg condition. In the case of an infinite triply peri-

odic crystal in which the reciprocal lattice points are δ-functions the sum of plane

waves in (2.54) is a good description however we want to generalise this expression

to accommodate a description of finite crystals with slight distortions. The plane

waves that propagate in the perfect crystal become slowly-varying modulated Bloch

waves (Hartwig, 2001; Authier, 2005) in the Takagi theory of distorted crystals by

allowing the amplitudes to take on a spatial dependence,

E(r) =
∑
g

Eg(r) exp i[kg · r]. (2.56)

7Since the wave inside the crystal remains transverse to a good approximation (Afanas’ev and Kohn,
1971) we may assume∇ · E ≈ 0.
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The chosen form for E is substituted into (2.53) yielding a set of differential

equations for the Eg which must vanish. The relative size of each of the terms means

that some contribute negligibly and the decision of which terms are negligible is one of

the discriminants between the variants of dynamical theories (Hartwig, 2001). Takagi

theory assumes that the amplitudes Eg will have a macroscopic variation so that their

second derivative can be considered negligible relative to the first derivative and that

the wave is approximately transverse within the crystal (Afanas’ev and Kohn, 1971).

When only two reciprocal points intersect the Ewald sphere we may use the two-beam

approximation which allows for two strong beams, the incident ψ0 and reflected ψg,

within the crystal. Under these conditions we have the Takagi equations (Afanas’ev

and Kohn, 1971),

2i(k0 · ∇)ψ0 + k2χ0ψ0 + Ck2χḡ exp[ig · u(r)]ψg = 0, (2.57)

2i(kg · ∇)ψg + k2(χ0 − αg)ψg + Ck2χg exp[−ig · u(r)]ψ0 = 0. (2.58)

where k0 and kg are the incident and diffracted wavevectors (see Figure 2.5), αg =

(|kg|2 − k2)/k2 is the resonant error and we have changed back to a scalar amplitude

with the addition of a polarisation factor C = 1, sin 2θ for sigma and pi polarisation

states respectively.

The two equations (2.57) and (2.58) are the fundamental description of dynamical

diffraction in the Takagi theory. The linearised resonant error has a geometrical

interpretation in which it can be associated with the deviation of the wavevector from

the Bragg condition. The linearisation of the resonant error strongly limits the Takagi

theory to describing the angular range immediately adjacent to the Bragg reflection

such that |θ− θB|� 1.

This limitation has spawned considerable effort (e.g. (Caticha, 1993; De Caro

et al., 1997; Holy and Fewster, 2003; Podorov et al., 2006)) to develop a wide angle

diffraction theory capable of describing diffraction between reciprocal lattice vectors

as well as at the Bragg position. Recent progress has been made in this field (Pavlov

et al., 2007; Kaganer, 2007, 2008). Kaganer, in particular, has shown that the reflection

between reciprocal lattice points along the crystal truncation rod is given exactly by the

sum of the two-beam solutions for all Bragg reflections along the crystal truncation

rod.

2.5.4 The amplitude reflection coefficient

We now have the basis of the dynamical theory of X-ray diffraction that can describe

the scattering of X-rays for crystals with slight deformation. We would like to preempt
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Figure 2.5: Diffraction geometry for the Takagi equations. The X-ray wavefield penetrates
the crystal to the extinction depth resulting in a spread of reflected rays.

some of the later work of this thesis by presenting the solution to the dynamical

equations for some cases of interest; the semi-infinite perfect crystal and the laterally

homogeneous thin crystal with depth-dependent deformation.

The solution of the coupled partial differential equations (2.57) and (2.58) gives

the complex amplitude reflection coefficient (ARC), r(θ), which describes the spatial

frequency response of the crystal to the incident field and for future reference we

define the rocking curve R(θ) = |r(θ)|2.

A brief comment on the argument of r: principally we will use three arguments in

the ARC function, θ,ω and kx. The parameter θ will describe r over an unspecified

angular range whereasω will usually be taken to be a small deviation from the Bragg

condition as is usual in the literature. Finally, for beam like wavefields we may make the

approximationω ≈ kx/k which is useful for Fourier transformations. Importantly,

henceforthωwill not refer to angular frequency and where there is chance of confusion

we will denoteωC to be the crystal angular deviation from the Bragg angle.

If the ARC is known we may express an arbitrary field diffracted from the crystal

as a Fourier integral in which the spatial frequencies have been modulated according

to the crystal response. The diffracted field Ψ is related to the incident field via the

crystal ARC by,

Ψ

(
−
x

γ
,y, z;ωC

)
=

1
2π

∫∫∞
−∞ ψ̃(κ; z)r

(
ωC −

kx

γk

)
exp(iκ · ρ)dκ, (2.59)

where γ = sin θ0/ sin θg is the asymmetry factor of the crystal, namely the ratio of the

sines of the angles that the incident and diffracted X-ray beams make with the crystal

surface.

The solution of the Takagi equations for a semi-infinite perfect crystal is well

known (see for example (Afanas’ev and Kohn, 1971; Authier, 2005))

r(η) = −
1

2χḡC

(
η−

√
η2 + ζ2

)
(2.60)
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where η = αgγ+ χ0(1 − γ), ζ = 2C
√
γχgχḡ, and the sign of the surd is chosen to be

opposite to the sign of Re[η].

The function r(η) describes the Bragg peak of the reflection at ghkl and its struc-

ture can be used to determine macroscopic characteristics of the crystal. The inverse

Fourier transform of (2.60), the crystal point spread function, is derived in Appendix

A and the result given here (Afanas’ev and Kohn, 1971),

G(x) = i
kCχgγ0

2 sin 2θB
(J0(Bx) + J2(Bx))H(x) exp(iAx) (2.61)

where Jn(x) is a Bessel function of the first kind of order n and

A = kχ0
γ0 + |γg|

2 sin 2θB
− kαg

γ0

2 sin 2θB
, (2.62)

B =
kC
√
χgχḡγ0|γ1|

sin 2θB
. (2.63)

Measurement of the kinematic ARC will later in §4.4 be used to infer crystal

structure and so we will briefly overview the salient details of kinematic scattering here.

The penetration depth of the X-ray wavefield in the crystal is given by (Authier, 2005),

Λ =
λ
√
γ0|γg|

C
√
χgχḡ

. (2.64)

There are a number of cases in which we can assume the power in the diffracted

beam is negligible: crystals which have either a total thickness much smaller than the

penetration depth, t � Λ, or large deformations, or a very high defect density or

being far from the Bragg condition. In any of these situations we may assume that the

entire depth of the crystal is subject to the same incident field and that the diffraction

is kinematic.

We can approximate kinematic scattering from by thin deformed layers by letting

the Fourier coefficient of the susceptibility χḡ ≈ 0. If we assume that the crystal is

laterally infinite, that the chemical composition of the thin layer does not vary with

depth and that we can neglect refraction and absorption within the layer we have, for

a symmetric reflection, (Petrashen’, 1974),

r(η) =
iπχg

λ sin θB

∫∞
−∞Ω(z) exp [−iηz− ig · u(z)]dz. (2.65)

Here Ω(z) is the crystal shape function, which is equal to unity within the film and

zero elsewhere and η = (4π/λ)ω cos θB.

This important result tells us that the ARC of the thin layer is just the Fourier

transform of its shape function multiplied by a phase factor that describes the crystal

deformation.



42 P  

Up to this point we have covered the requisite background that allows quantitative

analysis of the free space diffraction of X-rays and their diffraction from thick perfect

crystals and thin crystalline films. We will now join these results in a description of the

analyser-based imaging system. To avoid the unnecessary complexity of convolution

integrals we will describe the ABI system using the operator formalism for linear,

shift-invariant optical elements. It is to this topic that we now turn.

2.6 Green’s functions and linear shift invariant imaging

systems

The operator formalism we will encounter in this section lends itself particularly well

to numerical implementation. Each section (e.g. propagation from sample to crystal)

of the ABI system may be written as a term in a cascaded optical system (Develis and

Parrent, 1967) and the transfer function of the entire system is simply a multiplication

of the distinct component transfer functions in real or reciprocal space.

First we will introduce the operator formalism and then we revisit the main results

of Section 2.4 and 2.5 so that we can place them in the context of operators for linear

shift-invariant systems.

The linear partial differential equations that we have encountered in describing

diffracted wavefield (such as the Helmholtz equation cf. (2.6)) have had a general form

like,

OrΨ(r) = s(r) (2.66)

whereOr is a linear differential operator that acts on r and s is a source term describing

the incident field, distribution of electric charge or current. We outline one method of

solving such equations whose solution is useful for its physical clarity. To this end let

us rewrite (2.66) as,

OrG(r, r ′) = δ(r− r ′) (2.67)

where we have introduced the Green’s function G and replaced the source term with

a Dirac delta. The (outgoing) Green’s function, defined as a solution to (2.67) that

is outgoing at infinity, describes the characteristic response of the system that results

from an impulse-like unit input. Eq. (2.67) describes how the field must vary at r

in order to accommodate a Dirac delta source at r ′ (for some specified boundary

conditions) but we would prefer to have a description that was explicit in G. Trivially,

G(r, r ′) = O−1
r δ(r− r ′) (2.68)
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which allows us to write (2.66)

Ψ(r) = O−1
r

∫
s(r ′)δ(r− r ′)dr ′,

=

∫
s(r ′)O−1

r δ(r− r ′)dr ′,

=

∫
s(r ′)G(r, r ′)dr ′. (2.69)

Furthermore, if we presuppose that the Green’s function is shift-invariant so that

G(r, r ′) → G(r − r ′). Physically, this means the properties of the Green’s function

are independent of the absolute coordinates and shifting the input will result in an

equivalent shift of the corresponding output. Under the assumption of shift-invariance

(2.69) becomes a convolution,

Ψ(r) =

∫
G(r− r ′)ψ(r ′)dr ′ (2.70)

and in this case the source s(r) = ψ(r), i.e. the scalar wavefield. The convolution

representation has the significant advantage that it can be evaluated using the Fourier

convolution theorem (Bracewell, 1986) which allows us to write (2.70) as

Ψ(r) = G(r) ?ψ(r), (2.71)

= F−1
3 [F3[G(r)]F3[ψ(r)]] (2.72)

where F3 denotes a three dimensional Fourier transform and ? denotes convolu-

tion. The result tells us that the imaging system takes an input wavefield, acts on it

with Green’s function G which re-weights the spatial frequencies, and outputs a new

wavefield.

With this new notation we can recast some previous results in terms of convolu-

tions and operator equations. Take for example the angular spectrum (cf. (2.38)),

Ψ(ρ, z) =
1

2π

∫∫∞
−∞ ψ̃(κ, 0) exp

(
iz

√
k2 − |κ|2

)
exp(iκ · ρ)dκ (2.73)

= F−1
[

exp

(
iz

√
k2 − |κ|2

)
× F[ψ(ρ)]

]
(2.74)

= ψ(ρ, 0) ?GAS(ρ, z) (2.75)

where

GAS(r) =
1

2π
∂

∂z

exp[ik(r)]

|r|
, (2.76)

is the angular spectrum Green’s function (Lalor, 1968). Eq. (2.75) is the Rayleigh-

Sommerfeld diffraction integral of the first kind (Born and Wolf, 1999).
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Similarly, we can use the semi infinite perfect crystal Green’s function (2.61) to

rewrite (2.59),

Ψ(r;ωC) = F−1 [r(ωC − kx/γk)F[ψ(ρ)]] , (2.77)

= i
kCχgγ0

2 sin 2θB
ψ(r) ? {J0(Bx) + J2(Bx)}H(x)

× exp[iAx], (2.78)

where r(ω) is the perfect crystal ARC and here ωC is the small deviation from the

Bragg angle to avoid confusion with angular frequency.

We have seen how to propagate an X-ray wavefield through inhomogeneous media,

homogeneous media and periodic media and we have now developed the compact

operator formalism to describe those results. Together with an understanding of the

coherence properties of X-ray wavefields we have met the theoretical requirement

for understanding the forward problem of image formation that is required for the

developments to be reported later in this thesis.

2.6.1 Modelling the forward problem in analyser-based imaging

In this section we will bring the results we have described thus far together in a descrip-

tion of an ABI phase contrast imaging system in terms of operator theory (Paganin,

2006).

The diffraction operators with which we will describe the theory have the form

ofD = F−1D̃bD̃aF[·]. This operator equation is read from right to left as acting on

some scalar wavefunction (where the “·” indicates the placeholder for the wavefield),

applying a Fourier transform, then two linear, shift-invariant propagators sequentially

D̃a then D̃b8 before applying an inverse transform.

In this way we can build up a description of the entire imaging system in terms

of cascaded operators. First we will give the expression for monochromatic radiation

from a point-source and then we will extend this to quasi-monochromatic radiation

from an extended incoherent source.

We note that a similar statement regarding the forward problem of image for-

mation in ABI has been made in Nesterets et al. (2005b) however that formulation,

equivalent in nearly all respects to the one presented here, was expressed in terms of

convolution integrals whereas the operator description given here lends itself more

readily to numerical implementation.

8The propagators commute and so can be applied in any order but reading from right to left aids
clarity of understanding.
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Figure 2.6: Model analyser-based imaging system. This block diagram shows the layout
of an idealised analyser-based imaging system used to model the forward problem of image
formation in ABI.

A note on a convention which expedites the following description of the ABI

imaging system. The monochromator and analyser crystal ARC’s are one-dimensional

functions and any magnification they impart due to asymmetric reflection acts on only

one spatial variable. We would like simplify the proceeding description by introducing

the convention that when dividing by the asymmetry ratio γ̃with the tilde, the division

applies only to the x-component of ρ or kx-component of κ.

Consider the analyser-based imaging system of Figure 2.6 comprising an X-ray

source, monochromator, sample, analyser crystal and detector. Between each of these

elements there is a propagation distance and at the end the detector will record the

intensity of the field integrated over a function S(ρ, λ) describing the intensity per

unit area and spectral bandwidth of the source.

We may write the field on the detector Ψ due to a monochromatic point-source at

ρ0 in operational terms as,

Ψ

(
ρ

γ̃T
, z4, λ,ρ0,ωC,N, λ0

)
= D2(ρ, λ, z4 − z2,ωC, λ0)f(ρ, λ)

× D1(ρ, λ, z2 − z0,N, λ0)δ(ρ− ρ0). (2.79)

Here, the operators D1,2 are field propagators which take the field from the source

to the sample, with transmission function f, and from the sample to the detector

respectively. The variables in (2.79) will be defined in the following text as they are

introduced.

The first propagatorD1 describes the propagation of the field from a point in the

planar source at z = z0 and propagation through a distance z1 − z0 to the monochro-
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mator and then onto the sample at z = z2. The source to sample propagator

D1(ρ, λ, z2 − z0,N, λ0) = F−1D̃AS(κ, λ, z2 − z1, γ̆N)D̃M(κ, λ,N, λ0)

× D̃S(κ, λ, z1 − z0)F[·] (2.80)

is defined in terms of the source-to-monochromator propagator D̃S (Mandel and

Wolf, 1995),

D̃S(κ, λ, z) =
i

λ

exp
(
iz
√
k2 − |κ|2

)
√
k2 − |κ|2

, (2.81)

and N-reflection monochromator in terms of the monochromator crystal ARCs, ri

(cf. §2.5.4) (Slusky and Macrander, 1987; Moller, 1994),

D̃M(κ, λ,N, λ0) =

N∏
i=1

ri

(
±
[
ωi −

kx

γ̆ik

]
−
λ− λ0

λ0
tan θBi

)
, (2.82)

γ̆i =

i∏
j=1

γ̃j (2.83)

and finally, the angular spectrum propagator (cf. (2.38)),

D̃AS(κ, λ, z, γ̆N) = exp

iz
√
k2 −

(
|κ|

γ̆N

)2
 . (2.84)

The first propagator D̃S describes a spherical wave originating from a point source

at r = (ρ, z0) and propagating to z1. We assume that z1 is large enough that the

field incident on the monochromator is paraxial and we can approximate the angular

deviations in the argument of r asω ≈ kx/k. The second propagator, D̃M, represents

an N-reflection monochromator where each crystal of the monochromator is described

by an ri with Bragg angle θBi . The bandwidth of the incident quasi-monochromatic

radiation is expanded about the mean wavelength λ0. The functional dependence on

each crystal’s rocking angleωi is suppressed for clarity, however we will later explicitly

include the analyser crystal rocking angle as ωC. The γi is the asymmetry ratio for

the i-th crystal. The sign of the term in square brackets in (2.82) is chosen depending

on the monochromator geometry so that consecutive non-dispersive reflections share

the same sign and dispersive reflections have opposite signs.

For example the propagator for a non-dispersive two reflection monochromator

would be,

D̃M(κ, λ,N = 2) = r1

(
ω1 −

kx

γ̃1k
−
λ− λ0

λ0
tan θB1

)
× r2

(
ω2 −

kx

γ̃1γ̃2k
−
λ− λ0

λ0
tan θB2

)
. (2.85)
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The angular spectrum propagator D̃AS is as defined in (2.38) with an extra functional

dependence on γ to allow for possibility of asymmetric reflections. For each successive

element past the monochromator we must scale the spatial frequency by the asymmetry

factor of theN crystal reflections of the monochromator, γ̆N.

The sample to detector propagator is composed similarly,

D2(ρ, λ, z4 − z2,ωC, λ0) = F−1D̃AS(κ, λ, z4 − z3, γ̃Cγ̆N)D̃C(κ, λ,ωC, γ̆N, λ0)

× D̃AS(κ, λ, z3 − z2, γ̆N)F[·] (2.86)

where, again, F[·] represents the Fourier transform of the function that takes the

position of the placeholder, “·”. All other propagators are as defined except for the

analyser crystal,

D̃C(κ, λ,ωC, γ̆N, λ0) = r

(
ωC −

kx

γ̆Nγ̃Ck
−
λ− λ0

λ0
tan θBC

)
(2.87)

and γC is the analyser asymmetry and we define the total asymmetry factor γ̃T =

γ̆Nγ̃C. The final intensity recorded by the detector is,

I

(
ρ

γ̃T
, z4,N,ωC, λ0

)
=

∫λ0+∆λ

λ0−∆λ
dλ

∫
σ
dρ0S(ρ0, λ)

×
∣∣∣∣Ψ( ργ̃T , z4, λ,ρ0,N,ωC, λ0

)∣∣∣∣2 (2.88)

The wavelength dependence in D̃M limits the validity to quasi-monochromatic

radiation since we have assumed a linear expansion of λ about the mean wavelength

in the argument of r (Slusky and Macrander, 1987; Moller, 1994). The assumption of

quasi-monochromatic radiation is acceptable for the applications considered in this

thesis. A general expression for the wavelength dependence in the argument of r is

given in (Nesterets et al., 2005b).

The full propagator (2.88) is rarely used in practice as the essential components of

an experiment can often be adequately described using such idealisations as the planar

incident wavefield and monochromatic radiation. In addition, approximations must

be made to (2.88) in order to make the associated inverse problem tractable.

2.7 Summary

In the proceeding chapters we will be concerned with describing analyser-based phase

contrast imaging systems using the idealisations of coherent and incoherent radiation.

Accordingly this chapter introduced the subject of coherence as it applied to rapidly
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oscillating electromagnetic fields and showed how the field from an incoherent planar

source may be calculated using the van Cittert-Zernike theorem.

We began by elucidating the basic properties of the electromagnetic field from

the vector wave equation which follows from Maxwell’s equations. The interaction

of the complex X-ray wavefield with inhomogeneous media was described and the

projection approximation was derived. This was followed by a description of the

angular spectrum of plane waves which allows us to propagate a wavefield between

parallel planes.

The interaction of the X-ray wavefield with crystalline matter is of central impor-

tance to this thesis and so we introduced the dynamical theory of X-ray diffraction.

Using the Takagi formalism we can calculate the field diffracted from a crystal with

slight distortions in the limit of dynamic and kinematic scattering.

The chapter concluded with the operator theory for linear shift-invariant systems

applied to analyser-based phase contrast imaging. We summarised the main results

by developing an operational description for ABI using an extended, incoherent and

polychromatic planar source.

In the next chapter we will utilise these results to simulate ABI imaging using

an incoherent source. A thorough understanding of the forward problem of image

formation also provides an entry point to the study of the inverse problem and in

the major claim of the next chapter we will demonstrate that it is possible to perform

quantitative phase on ABI images recorded using an extended, incoherent, quasi-

monochromatic source.

In Chapter 4 we again use the key results of this chapter to develop a new use for

phase contrast imaging, namely Green’s function retrieval and show that in the case of

ABI it is possible to recover the complex Green’s function of the analyser crystal. In

this chapter we developed the relationship between the ARC and crystal’s structure

so that we can profitably utilise this connection once the Green’s function has been

recovered.

Chapter 5 demonstrates the implementation of our Green’s function retrieval

technique to experimental ABI data we recorded using a thick silicon analyser crystal.

In this chapter we have given the prediction of dynamical diffraction theory for

the same Green’s function so that we may later compare the reconstruction to the

theoretical result.

We now turn to the problem of phase contrast imaging and quantitative phase

retrieval using a rotating anode X-ray source.



Analyser-based phase contrast
imaging and phase retrieval using
an extended incoherent X-ray
source

3

This chapter investigates the problem of recording crystal analyser-based phase contrast

images using an extended incoherent source, culminating in a quantitative analysis of

the image thereby obtained1. In §3.1 we review the current state of the art for phase

contrast imaging using laboratory X-ray sources. We follow this in §3.2 by considering

the minimal coherence requirements that enable ABI contrast to be observed. We

then discuss the possibility of achieving the minimum requirements using X-ray tube

sources. In this section it will be shown that it is possible to measure ABI images using

a standard X-ray diffractometer (XRD) with a crystal monochromator. Section 3.3

presents the results of an experiment in which an XRD with copper rotating-anode

source was used to measure ABI images of a plastic test phantom.

The key result of this chapter is in §3.4 where we show that quantitative informa-

tion may be extracted from images recorded using a rotating anode X-ray source under

quite general conditions. ABI has immense potential as a characterisation tool and the

ability to obtain quantitative information is an important practical consideration. As

of yet no studies have been conducted which perform phase retrieval on ABI images

recorded using an incoherent source and in §3.4 we perform phase retrieval on the

data of §3.3 to demonstrate that this application is possible. The retrieved projected

thickness is compared with an optical microscopy cross-section and the two are found

to be in excellent quantitative agreement.

1This chapter is based on the publication“Analyzer-based phase contrast imaging and phase retrieval”,
D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kräußlich, O. Wehrhan, I. Uschmann and E. Förster, Appl.
Phys. Lett., 91 254110 (2007) (Vine et al., 2007a)
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3.1 Phase contrast and phase retrieval using conventional

X-ray sources

A majority of the experimental research on X-ray phase contrast imaging to date uses

synchrotron X-ray sources because they offer high brightness and coherence. Whilst

this research is ongoing we now know that phase contrast imaging has an important

role to play in areas such as medical diagnostic imaging (Arfelli et al., 1998; Bravin

et al., 2002; Lewis, 2004) and materials characterisation (Schenk et al., 2005; Mayo

et al., 2002a). The usage of these techniques however will be limited if they cannot

be adapted for use with commonly available sources of X-rays. The use of laboratory

based X-ray sources offers convenience, lower cost, higher volume and a quicker

turnaround time than comparable synchrotron experiments. The usage of laboratory

X-ray sources can be contrasted with the typical synchrotron experiment which can be

difficult to win and usually requires expensive long distance travel.

Synchrotron sources have several advantages over laboratory based X-ray sources

including increased flux and coherence and tunable energy (Attwood, 2000). Whilst

the primacy of synchrotron facilities is not in doubt there remains a real need to

develop phase contrast for widespread use, which realistically means using a fixed- or

rotating-anode X-ray tube.

There are two notable compact alternatives to the anode based X-ray sources;

namely the ‘table-top’ synchrotron and the laser plasma X-ray sources. For example,

the Mirrorcle brand ‘tabletop’ synchrotrons are a commercially available product

which combines the technology of synchrotrons and anode X-ray sources (Yamada

et al., 2001; Yamada, 2003; Hirai et al., 2006). In the Mirrorcle synchrotron, electrons

are accelerated through megavoltage potentials and injected into a storage ring where

they are incident on a thin target anode to radiate Bremsstrahlung X-rays. The

brilliance of the 6MeV model Bremsstrahlung is nearly an order of magnitude above

the rotating anode Bremsstrahlung (Photon Production Laboratory, Ltd., 2008). The

characteristic peaks of the rotating anode spectrum are, however, more brilliant than

the Mirrorcle. The X-rays are not ‘synchrotron X-rays’, since they are not generated

from the tangential acceleration of relativistic electrons, and therefore do not benefit

from the increased brilliance of being emitted into a small opening angle (as is the

case for insertion devices (Attwood, 2000)).

The laser plasma source uses a powerful pulsed laser to create a plasma which then

radiates X-rays. Whilst the pulses have high peak brilliance the total flux is small as

is the repetition rate, typically 10Hz (Toth et al., 2005, 2007). The X-ray emission



3.1 P       X-  51

spectrum is peaked around atomic transition energies in the anode which can be

filtered to achieve a monochromatic beam. The ability to focus the laser beam onto

the anode limits the smallest achievable source size. A related device is the X-pinch

which vaporises wires to create a plasma which radiates X-rays that can be used for

imaging (Pikuz et al., 2001).

Whilst both of these sources have been demonstrated for phase contrast imaging

they are not widely used and so we will focus our discussion on the X-ray tube source.

We are primarily interested in implementing ABI with such conventional X-ray

sources however it is worth briefly to recapitulate the two alternative phase contrast

methods that are commonly used with X-ray tube sources: propagation-based phase

contrast imaging (PBI)(cf. §1.1.5) and Talbot interferometry imaging (TII)(§1.1.2).

Both of these have been introduced previously and so we will restrict the discussion

to the pertinent aspects of these techniques as they relate to imaging with an X-ray

tube source. The simplicity of PBI is a significant advantage over other techniques

since it requires no optical elements beside a suitable propagation distance between

sample and detector (Wilkins et al., 1996; Pogany et al., 1997; Stevenson et al., 1999;

Mayo et al., 2003a,b). It is sensitive to the Laplacian of the phase in both transverse

directions to the optical axis (Bremmer, 1952) (cf. §1.1.5) however it is very sensitive

to spatial coherence and so must use either a microfocus tube source (Mayo et al.,

2003a,b; Wilkins et al., 1996) or a collimator (crystal optics or mechanical). TII relies

on precisely fabricated gratings which are designed to work with a specific wavelength

and so the X-ray energy in this scheme is not easily tunable (Clauser, 1998; David

et al., 2002; Weitkamp et al., 2004; Pfeiffer et al., 2006, 2008). An additional grating

close to the X-ray source provides the field with the requisite coherence properties so

crystal optics and small source sizes are not necessary

Analyser-based imaging (cf. 1.1.6) has been implemented using conventional

X-ray tubes by a number of researchers (Förster et al., 1980; Somenkov et al., 1991;

Ingal and Beliaevskaya, 1995; Davis et al., 1995b; Bushuev et al., 1997; Keyrilainen

et al., 2002). In all of these cases the imaging was qualitative and general conditions

under which ABI could be observed were not investigated.

The central aim of this chapter is to fill this gap and demonstrate the conditions

under which ABI can be implemented using a rotating anode source and furthermore

to show that quantitative measurements can be extracted from the results. To that end

we now turn to a discussion of the feasibility of implementing ABI on a standard X-ray

diffractometer using an extended incoherent source.
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3.2 Considerations on the feasibility of implementing ABI

using an extended incoherent X-ray source

We will break our discussion of the feasibility of implementing ABI using an incoherent

source into two parts; the coherence requirements and the possibility of achieving the

coherence requirements in terms of source and monochromator.

We will find that the biggest challenge to the practical implementation of ABI is

the limited photon flux at the detector which results in a typical acquisition time of

tens of minutes to several hours depending on the method of image acquisition.

3.2.1 Coherence requirements for analyser-based imaging

We would like to consider the coherence requirements for ABI with a view to deter-

mining some general conditions under which those requirements are met. A simple

model of an ABI imaging system will be used that allows the state of coherence of the

incident radiation to be varied and its effect on the detected intensity observed.

The effect of temporal coherence on ABI contrast was studied in Nesterets et al.

(2005b) who found that the monochromator played a crucial role in ABI contrast

formation. In that article a plane, polychromatic X-ray beam was incident on a sample,

followed by analyser crystal and then detected with or without a monochromator.

The effect of polychromaticity can be explained with reference to the crystal ARC

function (Slusky and Macrander, 1987; Moller, 1994),

r = r

(
ω−

kx

k
−
λ− λ0

λ0
tan θB

)
(3.1)

whereω is the small deviation from the Bragg angle and λ0 is the mean wavelength.

From (3.1) we can see that a variation in wavelength is equivalent to a slight change in

the incident angle of the radiation. Nesterets et al. (2005b) found that in the absence of

the monochromator the contribution of symmetric points on either side of the rocking,

due to the incident polychromatic radiation, produced equal and opposite contrast

which tended to cancel out. The introduction of a monochromator re-weighted the

contributions to the contrast from each side of the analyser ARC which removed the

contrast cancellation.

We find that ABI contrast could be observed in the absence of a monochromator

if either the incident radiation bandwidth (for polychromatic plane waves) or the

incident divergence (for paraxial monochromatic waves) are smaller than analyser

crystal Darwin width, ∆θD, where the conversion between polychromaticity and
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Figure 3.1: The effect of temporal incoherence on ABI contrast formation. For simulation
details see text. Line profiles through the measured intensity as a function of incident beam
polychromaticity for (a) ∆λ/λ = 1.2 × 10−6 and (b) ∆λ/λ = 5 × 10−4. (c) The transition
between (a) and (b) plotted as a function of the ratio of beam divergence ∆θ to analyser
Darwin width ∆θD (∆θD = 10.3µrad for Si(111) sigma polarisation (Stepanov, 2008)). (d)
The temporal coherence length, LT , as a function of incident beam polychromaticity. (a) A
line profile through the surface of (c) beginning with the highest contrast point and plotted as
a function of beam divergence.

divergence comes from (3.2). In this case the symmetric points of the rocking curve

are not illuminated simultaneously and the contrast cancellation cannot occur.

To demonstrate that ABI can be measured without a monochromator for suitably

quasi-monochromatic plane wave illumination or monochromatic paraxial wave

illumination we performed the following simulation. Plane polychromatic X-ray



54
A-         

 X- 

radiation with mean energy 25keV (λ0 = 0.49Å) was made incident on a water-filled

cylindrical hole of diameter 300µm in a slab of polypropylene. The complex refractive

indices of the water and polypropylene are (δ,β)=(3.4 × 10−7, 9.7 × 10−11) and

(3.7 × 10−7, 1.7 × 10−10) respectively (Gullikson, 2008). The wavefield exiting the

sample was Bragg reflected from the symmetric (111) reflection of a semi-infinite,

perfect silicon analyser crystal detuned from the exact Bragg condition by 1.4” and

then detected. The effect of propagation between the sample, analyser and detector

has been neglected in this idealised experiment. The wavelength dependence of the

sample complex refractive index has been neglected which is a good approximation

for small bandwidths such as those we will be considering.

The coherence of the radiation is varied by increasing or decreasing its bandwidth

(cf. (2.11)) and we note that since divergence in the incident beam is equivalent to a

wavelength spread,

∆λ

λ
= −∆θ cot θB (3.2)

meaning we can discuss the effect of spatial incoherence from temporal coherence

considerations. The simulations were performed by dividing the bandwidth of the

incident radiation (a top hat function) into discrete steps and incoherently adding

the intensity formed by the monochromatic ABI imaging system for each discrete

wavelength step.

The results of the simulations are presented in Figure 3.1 where we have depicted

line profiles through the intensity recorded as the bandwidth of the incident radiation

is varied. In Figure 3.1(a) and (b) we have a ∆λ/λ = 1.2× 10−6 (∆θ/∆θD ≈ 1%) and

∆λ/λ = 5× 10−4 (∆θ/∆θD ≈ 388%). In the former case we can see quite strong ABI

contrast whereas for the larger bandwidth the ABI contrast has all but disappeared

leaving only the absorption contrast profile. The transition from Figure 3.1(a) to (b)

is given as the surface plot in Figure 3.1(c) which has been normalised by subtracting

the mean of each line profile for ease of visualisation. Also plotted is the temporal

coherence length as a function of bandwidth in Figure 3.1(d) and a line profile through

the surface of Figure 3.1(c) at the point with maximum contrast as a function of

bandwidth.

The decrease in contrast with increasing bandwidth is due to the mechanism

identified by Nesterets et al. (2005b) in that symmetric points on the ARC when

illuminated simultaneously cause a cancellation of the ABI contrast. The contrast

initially increases and then begins to decrease when the divergence of the incident

radiation approaches half the Darwin width, see Figure 3.1(e). The initial increase in
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contrast is due to the adjacent points on the rocking curve being illuminated and the

similar contrast of these points superposing to increase the overall contrast. After the

slight increase, the contrast effectively drops until it reaches the absorption contrast

profile. The contrast does not disappear as the beam divergence reaches one Darwin

width because the analyser is slightly detuned from the Bragg condition.

The results of this simulation lead us to make the claim that in order to observe

optimal ABI contrast the radiation incident on the analyser crystal should have a

divergence less than the analyser’s Darwin width.

3.2.2 Source/ Monochromator Requirements for ABI

In this section we ascertain the source-monochromator coupling (Slusky and Macran-

der, 1987; Moller, 1994; Caciuffo et al., 1987; Robinson and Tweet, 1992; Schuster

and Herres, 1994) that will provide sufficient coherence for ABI phase contrast to

be measured. It is well known that the X-ray tube requires monochromatisation in

order to produce radiation with a usable coherence length. We will first describe

that radiation from an X-ray tube with a macroscopic focal size is incoherent which

necessitates monochromatisation. Several monochromator geometries are briefly

discussed and the resulting coherence properties of the radiation they produce. The

coherence requirements of ABI deduced in §3.2.1, namely that the incident beam

divergence should be smaller than the analyser Darwin width for optimal ABI con-

trast, are compared with the coherence lengths of radiation from commonly used

monochromators.

Whilst the fixed- and rotating-tube source are both commonly used in XRD

experiments we will concentrate on the latter source because it produces a more

brilliant beam. The relevant source parameters for the purposes of ABI are the flux

and focal spot size. The focal spot size is the footprint of the electron beam on the

anode and is the effective X-ray source size. The flux is limited by the maximum heat

load of the anode, the focal spot and power of the electron beam.

Whilst decreasing the source size is one method of increasing the spatial coherence

the resulting increase in image acquisition time due to a diminished flux is prohibitive.

A better method may be to have a large focal spot for maximum flux and increase the

coherence of the field using crystal optics. We make a distinction between monochro-

mators and analysers as the function of the former is to reduce the energy bandwidth

and the latter to reduce the angular acceptance.

A monochromator uses the finite width of a Bragg reflection peak to select an

energy band from a continuous spectrum. The Darwin width of a Bragg peak is
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Crystal hkl
∆α

(µrad)
∆λ/λ(
×10−6

) LT
(µm)

LS
(µm)

Λ

(µm)
Silicon 111 33.2 131.0 1.9 4.6 1.5

220 24.9 56.9 2.7 6.2 2.1
311 10.5 13.35 11.5 14.7 3.8
440 12.0 8.9 17.3 12.8 6.9

Germanium 111 74.81 308.3 0.5 2.1 0.67
220 57.8 138.6 1.1 2.7 0.92
311 23.7 32.1 4.8 6.5 1.64
440 25.5 20.9 7.4 6.05 3.02

Table 3.1: Properties of commonly used monochromator crystals Darwin width
(∆α) (Stepanov, 2008), bandwidth, temporal coherence length LT = λ2/∆λ, spatial coherence
length LS = λ/∆α and extinction length Λ (Stepanov, 2008) for some reflections from silicon
and germanium at λ = 1.54 (CuKα1).

proportional to a number of factors including the asymmetry of the reflection and the

Fourier coefficient of its susceptibility and so a judicious choice of these parameters

is required when designing an experiment. Commonly used materials for X-ray

monochromators are silicon and germanium and Table 3.1 lists the salient properties

of these crystals.

For ABI with a tube source we would like to create a bandpass that selects the

characteristic line width of the Kα1 peak and also provides sufficient spatial coherence

by collimating the beam. Common monochromator configurations are the double-

crystal and four-crystal setups and we briefly turn to a discussion of the properties of

these for ABI.

Double-crystals configured in a parallel (+-) arrangement will be non-dispersive

if they are made of the same element and use the same reflection. This arrangement is

called non-dispersive because it does not increase the wavefield divergence. The parallel

crystal setup is used for beam collimation because it is good for suppressing the tails

of the rocking curve however it requires a slit to provide energy band discrimination.

The anti-parallel (++), or dispersive, two crystal arrangement provides excellent

energy band discrimination but produces a beam with greater divergence than the

comparable non-dispersive reflection (Caciuffo et al., 1987). This problem is alleviated

somewhat with the four-crystal Bartels monochromator which combines two non-

dispersive reflections with a dispersive reflection between the innermost crystals. This

setup has the advantage of combining the best features of both dispersive and non-

dispersive geometries. If the pass band is made to select the characteristic transition

of the anode then a beam with excellent collimation and monochromaticity can be

attained. The disadvantage of this monochromator is significant loss of flux from the
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four reflections.

The angular acceptance of a crystal can be used to calculate the temporal and

spatial coherence lengths of the exiting radiation (Pietsch et al., 2004),

LT =
λ2

∆λ
, (3.3)

LS =
λ

∆α
(3.4)

and these are shown in Table 3.1 for some common crystal reflections.

To maximise the flux at the detector the analyser crystal should be chosen to match

the monochromator crystal in a (+n,-n) non-dispersive setting.

We are now in a position to compare the coherence requirements of ABI with

the coherence of the radiation from the monochromator. In section 3.2.1 we made

the claim that the divergence of the beam falling on the analyser crystal should be

no greater than its Darwin width to achieve an acceptable level of phase contrast.

In Figure 3.2 we have calculated the full-width at half-maximum of the effective

reflectivity of the Ge(220) four-crystal Bartels monochromator as a function of the

angle between dispersive reflections (Slusky and Macrander, 1987; Moller, 1994)

r(ω) = r

(
ω− θB −

λ− λ0

λ0
tan θB

)2

r

(
−ω+ θB −

λ− λ0

λ0
tan θB

)2

. (3.5)

The Darwin width of a Ge(220) analyser crystal is 57.8µrad (11.9 arcseconds) and

we can see from Figure 3.2(b) that the range of angles shown all the FWHM satisfy

the condition of providing a beam divergence smaller than the Ge(220) Darwin

width. This is not unexpected since we are using the same crystal and reflection for

monochromator and analyser however the same methodology could be applied to

monochromator/analyser pairs using different crystals or reflections to determine the

range of angles that will give optimal ABI contrast.

The final choice ofω is a tradeoff between energy band discrimination and flux

and we can see in Figure 3.2(b) the shaded area represents the normalised area of

the combined four reflection Bartels monochromator. A larger area correlates with a

greater transmitted flux and so this plot depicts the cost of increased energy discrimi-

nation in terms of transmitted flux.

3.2.3 Stability requirements for analyser based imaging

The thermal stability of the crystal optics and the mechanical stability of the equipment

in general must be controlled to achieve optimum imaging conditions.
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Figure 3.2: FWHM of the Bartels monochromator. (a) each peak represents the two non-
dispersive reflections of the Ge(220) four crystal Bartels monochromator are plotted with an
angleω between the dispersive reflections as in the inset. (b) the full-width at half-maximum
(FWHM) of the combined Bartels monochromator transfer function is plotted againstω (Fig 2
in Möller (Moller, 1994) shows an equivalent surface to the one from which these FWHM
are calculated). The shaded area is the normalised area of the transfer function and can be
associated with the transmitted flux.

The mechanical stability is perhaps easier to control because the ABI requirements

are no more stringent than those of HRXRD. Since any motion during the exposures

will appear as a blurring of the image we simply require a mechanical stability better

than the smallest resolvable feature.

Thermal stability plays a far more important role in ABI image contrast formation.

The thermal expansion of the analyser crystal during the measurement changes the

interplanar spacing and thus shifts the Bragg angle. Shifting the Bragg angle varies the

working point of the direct beam during the exposure and will cause artifacts in the

image.

We can estimate the shift of the Bragg peak, for monochromatic radiation, due to

thermal variation by considering,

∆d

d
= − cot θB∆θ, (3.6)

where d is the lattice spacing. The linear expansion factors α of silicon and germanium

at room temperature are αSi = 2.6 × 10−6K−1 (Roberts, 1981) and αGe = 5.8 ×
10−6K−1 (Feder and Light, 1972). Equating these results gives for a temperature
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Figure 3.3: Experimental apparatus used to record an ABI image using an incoherent
source. A rotating anode, Ge(220) four-crystal monochromator and analyser crystal were
used to image a plastic test phantom.

variation ∆T gives,

∆d

d
= α∆T = − cot θB∆θ. (3.7)

We can see that a temperature change of 1◦K results in a shift of the Ge rocking

curve ∆θ = 0.5 ′′ which is approximately 5% of the Darwin width—a non-negligible

amount.

This suggests that special care should be taken in controlling the ambient temper-

ature of the experiment and indeed temperature is a concern in the experiment we

will describe in the following section. The temperature control we require is no more

onerous than should be done in a careful HRXRD measurement however.

3.3 Experimental setup for quantitative ABI

In the preceding section we have shown that it should be possible to measure ABI

phase contrast images using an X-ray diffractometer. In particular, we showed that the

requirement to observe ABI contrast is an incident beam divergence smaller than the

angular acceptance of the analyser crystal and if possible a coherence length longer

than the extinction length of the analyser. We then presented some characteristics of

monochromators that spoke to their ability to meet the minimum requirement.

Further to the possibility of measuring phase contrast, with some additional

measurements involving the linearity of the X-ray film detector with exposure, we will

show that we can now perform quantitative phase retrieval from images measured

using an extended incoherent source. This key step paves the way for quantitative
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Figure 3.4: Cross sectional optical microscopy image of the sample. The sample is the
interlocking strip from a resealable plastic bag. The sample shown here was sectioned following
the X-ray measurement. Three artifacts in the image have been labelled: A is a sliver of plastic
which resulted from the cross-sectioning the sample for optical measurement, B is some dirt
that could not be removed before imaging but again is a result of the cross-sectioning and C is
an out of focus artifact not present in the sample.

Figure 3.5: Diffractometer used to record analyser-based phase contrast image. A—
Rotating anode X-ray source, M—the 4-bounce Ge(220) Bartels monochromator, G—the
4-circle goniometer, S—the sample stage, C—the Ge(220) analyser crystal and D—the high
resolution photographic film detector.

characterisation using ABI to be implemented in X-ray laboratories and may obviate

the need for synchrotron sources for some applications.

We chose as our sample a thin plastic interlocking strip from a resealable bag (see

Fig 3.4). This sample was chosen because it was rigid enough to not move during the

measurement and could be sectioned for optical measurement at the conclusion of

the ABI experiment.
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Figure 3.6: Ge(220) rocking curve measurement and goniometer axis. (a) A θ− 2θ scan of
the GaAs(220) rocking curve. (b) Axis of the four-circle goniometer.

The diffractometer (see Figure 3.5), a Siemens D-5000, includes a copper rotating

anode X-ray source, 4-circle goniometer and scintillation detector. The diffractometer

was modified to include a sample stage with two-dimensional transverse translation

and beam shutter mounted between the monochromator and analyser crystal and a

high resolution film detector stage mounted in front of the scintillation detector with

one-dimensional transverse translation capability. All experiments were performed at

the Institute of Optics and Quantum Electronics at Friedrich-Schiller University in

Jena, Germany2.

The rotating-anode source was operated at 30kV and 100mA with a focal spot of

0.5× 1mm and a primary slit size of 2mm. A four-bounce germanium (220) Bartels

monochromator was used with a secondary slit of 0.2mm between the innermost re-

flections. The Kα1 line was selected from the copper anode to give a mean wavelength

λ = 1.5406Å. The spatial and temporal coherence were calculated to be LS = 2.5µm

and LT = 1µm respectively. The beam size exiting the monochromator was approxi-

mately 0.2mm (hor)× 1mm (ver) and the distances are as given in Figure 3.3. Due

to the small beam size relative to the sample the image was acquired as a number of

discrete exposures and overlaid in a post-measurement processing step.

The analyser crystal was mounted in the goniometer as in a normal HRXRD

experiment. A rocking curve was measured prior to recording each image and a

typical scan is shown in Figure 3.6(a). To provide the highest contrast for ABI the

analyser crystal was detuned from the exact Bragg condition to the 50% reflectivity

point—either side of the Bragg angle is equivalent and for these measurements the

low-angle side was chosen arbitrarily. The goniometer rotation axis adhered to the

2I performed these experiments in October-December 2006 at the Institute of Optics and Quantum
Electronics at Friedrich-Schiller University, Jena with help from staff at the Institute. A complete summary
of my contribution is given prior to the reprint describing this work in Appendix B.
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Figure 3.7: Sample and detector stage translation linearity and backlash (a) stepper motor
backlash for (solid) sample horizontal, (broken) sample vertical and (broken/ dash) detector
horizontal. (b) linearity of motor drivers. Normalised distance versus step across the range of
the motors.

standard as given in Figure 3.6(b) with the relevant parameter for ABI imaging being

the θ rotation which has a reproducible accuracy of 0.001◦.

An Agfa high resolution X-ray film detector was used to record the images. The

use of film increased the post image processing considerably but has the advantage

of micrometric resolution. The film was digitally scanned using an Epson Perfection

4990 at 16-bit greyscale with a maximum interpolated resolution of 12800dpi (natural

resolution 6400dpi) or 1.98µm.

The vertical and horizontal sample stage and detector horizontal translation step-

per motors were controlled by Labview (National Instruments Corporation, USA).

As the image processing required a large number of distinct exposures to be overlaid

we require a high degree of accuracy in the hand-made translation stages. Corre-

spondingly, the motors were checked for backlash and linearity and the results are

in Figure 3.7. In Figure 3.7(a) the motors were checked for backlash by translating

them in one direction by 20 motor steps for a total of 500 steps and then reversing

them in the same manner. The initial and final positions differed by (solid) 24µm,

(broken) 15µm and (broken/dash) 1 µm respectively. In Figure 3.7(b) the motors were

checked for linearity over by stepping them 50 steps and recording their position over

the entire travel of the motors.

The X-ray film exposure response was tested by recording the direct beam (analyser,

no sample) over a range of exposure times. The results are presented in Figure 3.8

whose top panel shows the line profile through the exposures and below is the mean

pixel value as a function of exposure time. The film response is approximately linear

over the range 0 to 80 seconds. This result is particularly important in the context of

quantitative imaging where we will assume that greyscale level is linearly proportional
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Figure 3.8: Calibration of the high resolution X-ray film. (a) line profiles as a function of
exposure time. (b) the normalised average greyscale value as a function of exposure time.

to the number of absorbed photons.

The image measurements were recorded by sequentially scanning the sample

through the beam and recording a number of discrete exposures; a typical exposure

set is shown in Figure 3.9. In the figure a series of ten direct beam exposures are

present on the left followed by a gap, then 105 different sample positions and each

sample image recorded twice, followed by a further ten direct beam measurements.

The image was stitched together digitally in a post-measurement processing step. The

sample was translated 27.5µm between exposures, equivalent to 13% of the beam

width, and the large overlap between adjacent exposures was used to match features

for assembling the final image and to further improve the signal-to-noise. The beam

size at the sample was approximately 0.2× 1.5mm and at the detector approximately
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Figure 3.9: A single ‘image’ recorded on high resolution X-ray film. The resultant image is
assembled from 105 discrete exposures as the sample is scanned through the beam. To the left
are the 10 initial direct beam measurements (final direct beam images are also present however
there is no gap between them and the images).

0.2 × 2.1mm corresponding to a geometrical magnification of 2.1. To acquire an

acceptable signal to noise ratio each sample position was imaged twice and averaged.

Each measurement was exposed for 47 seconds and the data set took approximately

four hours to measure. The ambient temperature during the experiments fluctuated by

no more than 3◦ as measured on a digital thermometer in the diffractometer enclosure.

The film was developed and digitally scanned and individual exposures were cut

from the scan using IDL 6.4 (ITT Visual Information Solutions, Boulder, CO). After

averaging the exposures, direct beams and dark field (no exposure), a flatted exposure

was created according to,

flat exposure =
average exposure − average dark

average direct − average dark
(3.8)

where the average direct beam exposures are a linear interpolation between the initial

and final direct exposures.

Assembling the final image was performed using PCDetpak32 software v6.0 (R.

Lewis, Monash Centre for Synchrotron Science) by identifying a feature in two adjacent

exposures and measuring the shift in pixels between them. This shift was then used to

overlay the common region between each of the exposures and the final image was the

sum of each overlaid adjacent.

The sample was oriented vertically (refraction parallel to the analyser crystal diff-

raction plane) and horizontally (perpendicular to the analyser diffraction plane) and

these results are shown in Figure 3.10 and Figure 3.11 respectively. The phase contrast

is clearly evident in Figure 3.10 as is the varying background level due to thermal

expansion of the analyser crystal which caused a shift in the working point (angle of

incidence of direct beam) of the rocking curve. Clearly the linear interpolation of



3.4 P       65

Figure 3.10: Analyser-based phase contrast image using a rotating anode source. A pseudo-
one-dimensional plastic test phantom (cf. Figure 3.4) oriented so that refraction is perpen-
dicular to the analyser crystal diffraction plane. Coloured line profiles are presented to the
right.

direct beam exposures used in flatting the image was inadequate given the apparently

non-linear variation in background. The blurring in the image has contributions from

the finite source size, analyser crystal and detector.

Figure 3.11 shows virtually no contrast due to the sample as the diffraction from

the plastic phantom was perpendicular to the diffraction plane of the analyser crystal.

The oscillating contrast evident in this image is again due to the thermal instability of

the analyser crystal.

The X-ray beam in the vertical direction is mechanically collimated using slits only.

This results in a non-negligible divergence which gives a magnification of 2.1 in the

vertical direction. The crystal is insensitive to this divergence and so it does not affect

ABI contrast formation.

The time taken to record the image, as stated previously, was approximately four

hours. This sort of time scale is prohibitive for many applications and must be

reduced to the order of minutes for ABI to be practicable as characterisation tool. The

attenuation of the copper Kα1 X-rays in air is approximately 2% (Hubbell, 1982) and

negligible for our purposes. The predominant sink of flux in our experiment is the

monochromator and so we are left with a trade-off between flux and coherence which

affect the exposure time and ABI contrast visibility respectively.

3.4 Phase retrieval using an extended incoherent source

The ability to perform quantitative phase retrieval on phase contrast images is enor-

mously important for many applications. Extracting quantitative information from
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Figure 3.11: The plastic test phantom of Fig. 3.10 rotated by 90◦. Refraction from the
sample is parallel to the diffraction plane of the analyser crystal resulting in little or no contrast
due to the sample. The vertical oscillations are due to the thermal expansion of the analyser
crystal over the course of the measurement.

phase contrast images is a useful tool which may make the use of ABI attractive to a

wider range of scientists than those currently using the technique (predominantly at

synchrotrons). We would like to now show that quantitative phase retrieval may be

performed on the image measured in §3.3, Figure 3.10.

In ABI phase retrieval there are a number of common approximations such as the

weak object (Nesterets et al., 2004)(cf. §2.3), linear transfer function3 (Paganin et al.,

2004) and slowly varying transfer function4(Pavlov et al., 2004). These approximations

limit the range of validity of their application meaning phase retrieval is not possible

in a wide variety of cases. The linear transfer function approximation has been used

for synchrotron ABI data however here we face the significant complication that the

working point of the direct beam on the analyser crystal rocking curve is not constant.

Since the gradient of the rocking curve is calculated at this point and assumed constant

this will lead to significant artifacts if not compensated for.

For these conditions we have chosen to employ a phase retrieval algorithm due

to Paganin et al. (2004) which enables the phase to be retrieved from a single image

given that the object is composed of a single material. This phase retrieval algorithm,

the details of which will be outlined in the next paragraph, has the advantage of not

assuming knowledge of the sample’s complex refractive index or the working point

of the incident beam on the rocking curve. Instead, it uses a single real parameter to

optimise the phase retrieval by tuning the parameter to give the best feature visibility.

3This approximation linearises the imaging system transfer function with respect to spatial frequency,
which greatly aids analytic phase retrieval solutions however it is quite a restrictive approximation.

4In this approximation the second and higher-order derivatives of the transfer function with respect
to spatial frequency are neglected.
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Figure 3.12: Phase retrieval performed on ABI image data. (a) and (b) are the optical
microscopy cross section and ABI image of the plastic test phantom. (c) is the phase retrieved
from (b), (d) is a comparison of the average projected thickness retrieved from the ABI image
(solid line) with the reference optical microscopy image (broken line).

The use of a tunable parameter in the phase retrieval algorithm is analogous to the

focus knob on a microscope which can be adjusted until an image is in focus. Similarly

here the tunable parameter is varied until a precondition is met, namely the disap-

pearance of the characteristic linear transfer function contrast. The use of a tunable

parameter instead of knowledge of the sample’s complex refractive index and the

direct beam reflectivity considerably simplifies what would otherwise be a complicated

multi-dimensional optimisation problem. The ability to perform phase retrieval on

a single image saves time and effort by obviating the need to record a second image

which is more common for ABI phase retrieval (see for example (Chapman et al.,

1997)).

We assume that we have a normally incident plane wave with unit intensity illu-
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minating the sample which is thin enough for the projection approximation to be

valid (cf. §2.3). The sample is composed of a single material and so the phase, ϕ, and

attenuation, µ, of the transmission function are related by,

ϕ = −
δ

β
µ (3.9)

where δ, β and λ have their usual meaning (cf. (2.18)). The single-material approxi-

mation is the key to one-image phase retrieval because the phase and attenuation are

linearly proportional to each other, so that a single image contains enough information

to uniquely specify the phase and amplitude.

We assume that the input phase and intensity are slowly varying functions so that

their spatial frequency spectrum is bandlimited to low spatial frequencies. This allows

us to expand the crystal rocking curve, R, as a first order Taylor series with respect to

spatial frequency about a (static) working point of the rocking curve k0
x,

R(kx) ≈ R(k0
x) + (kx − k0

x)R
′(k0
x) (3.10)

where R(k0
x) is the reflectivity of the unscattered X-rays and R ′(k0

x) is the gradient at

that point. The linearisation of the analyser crystal ARC is equivalent to assuming that

the rays incident on the crystal will be reflected with an intensity linearly proportional

to their refraction angle. This will be a good approximation if the sample introduces

refraction through angles smaller than the Darwin width of the crystal.

Under these approximations the projected thickness of the sample is related to the

measured intensity, I, by (Paganin et al., 2004),

t(x,y) = −
1

2kβ

× ln

(
F−1

[
1

|A|2 + ikx{
δ
βRe[AB∗] − Im[AB∗]}

F {I(x,y)}

])
(3.11)

where A = R(k0
x) − k0

xR
′(k0
x) and B = R ′(k0

x). Noting that the output will be

in the form of a greyscale image we can make some significant simplifications to

(3.11). If a greyscale image’s contrast is scaled to cover the entire bit-depth of its

digital representation then it will be insensitive to multiplication by, and addition of

a constant. We can use this information to rewrite (3.11) as a function of a single

parameter τ,

tS(x,y) = − ln F−1
(

FI(x,y)
1 + ikxτ

)
(3.12)

where

τ =
δ

β|A|2
(Re[AB∗] − Im[AB∗]) , (3.13)

tS = 2kβt(x,y) − ln |A|2 (3.14)
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and ts is the scaled projected thickness. The projected thickness retrieved in this

manner will not be scaled correctly. If some feature size of the sample is known a

priori then the greyscale map can be scaled against it for a quantitative measurement.

This is a significant limitation for this technique as it requires detailed knowledge

about the sample that cannot be extracted from the phase retrieval process as given

above. The reference measurement would be unnecessary if the complex refractive

index, R(k0
x) and R ′(k0

x) were known.

The parameter τ is varied until it is judged that the features in the reconstructed

image are easiest to see. Imaging systems with linear transfer functions of spatial

frequency give contrast proportional to the first derivative of the phase (Paganin et al.,

2004). As τ increases from zero this ‘first derivative’ contrast begins to disappear and

the optimal visibility is achieved when it has disappeared completely. Increasing τ

further results in streaking artifacts that are characteristic of this method and we shall

explain their origin. In moving from the sample to its ABI image the crystal amplifies

the spatial frequencies in the x-direction and so in the inverse problem these same

frequencies are suppressed. The suppression of frequency in the x-direction leads to

strongly varying contrast in the perpendicular y-direction (Paganin et al., 2004).

The ‘correct’ choice for τ balances the removal of first derivative contrast with the

introduction of streaking artifacts.

The phase retrieval algorithm outlined above was applied to the data in Figure 3.10

and the results are presented in Figure 3.12(c), in the same Figure (a) and (b) are repro-

ductions of the sample cross section and ABI image for convenience. In Figure 3.12(d)

the retrieved projected thickness is compared with a reference optical microscopy

measurement.

We note that the middle section of the test phantom is clearly visible despite the

significant blurring observable at its outer edges. The background shows a linear

increase in thickness from right to left which is also present in the ABI image but

exaggerated upon reconstruction.

The line profile of the phase retrieval data in Figure 3.12(d) was calculated by

taking an average over the vertical direction of the test phantom after the phase

retrieval was performed. Importantly, the maximum thickness of this measurement

was calibrated against the a priori known maximum thickness of the sample. The

assumption of some a priori information regarding the sample thickness is particularly

restrictive and can be removed if the refractive index of the sample and gradient of the

rocking curve at the working point are known.

In performing the phase retrieval we made use of two strong assumptions: that
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the crystal transfer function varies linearly with spatial frequency and that the working

point of the direct beam on the analyser crystal was static throughout the experiment.

Despite these approximations we have made a quantitative measurement which com-

pares favourably to the reference measurement. This suggests our approach is quite

robust to practical experimental limitations. This is most obvious when we consider

that the working point varied considerably during the experiment which could intro-

duce significant artifacts given that our approach is based on a static working point

with static gradient associated with that point.

Our approach is particularly suitable for ABI when the working point of the direct

beam on the rocking curve is not static. If the thermal stability problem was resolved

we could use (3.11) which would remove the requirement for a reference measurement

to scale our reconstructed projected thickness.

3.5 Summary

Analyser-based phase contrast imaging is a potentially useful tool for medical di-

agnostic and materials characterisation purposes but is not widely used outside of

synchrotron X-ray sources. The ability to perform ABI with conventional sources

offers a more cost effective, high volume and quicker turn around than the current

method of using synchrotron X-ray sources. We have shown that when used in con-

junction with commonly available rotating anode sources it is possible to record ABI

phase contrast images and extract quantitative information from them.

We began this chapter with a discussion of the coherence requirements of ABI

and it was found that for maximum ABI visibility the beam incident on the analyser

crystal should have a divergence smaller than the analyser’s Darwin width. To achieve

these minimum standards using an X-ray tube it is necessary to monochromate and

collimate the beam and we then discussed the feasibility of achieving the minimum

coherence standards using common monochromator crystals and the Bartels four-

reflection monochromator geometry. It was found that, at the expense of incident

flux, it is possible to achieve the necessary beam coherence.

The extreme sensitivity of ABI requires that fluctuations in the ambient tempera-

ture during the experiment should be kept to a minimum.

Having shown that it should be possible to measure ABI images using a rotating

anode and Bartels monochromator we then presented the results of an experiment

where an ABI image of a plastic phantom was recorded and the projected thickness

retrieved. The retrieved projected thickness was shown to quantitatively agree with an
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independent optical microscopy measurement.

The most significant problem that must be overcome for this method to become a

practicable characterisation tool is a reduction in the exposure time. The available flux

in the experiment presented in this chapter was reduced by the Bartels monochromator

which allowed excellent ABI contrast to be obtained however if one was willing to

sacrifice some visibility it should be possible, using the conditions set out earlier, to

use a double-crystal monochromator to observe ABI contrast with an increased flux.

The results we have presented demonstrate that it is indeed possible to extract

quantitative information from ABI images recorded using an extended incoherent

source. Given the potential of ABI to serve as a characterisation tool for light elements

we believe that some of the problems we have addressed pave the way to ABI becoming

a more mainstream technique with incoherent X-ray sources.





Quantitative reconstruction of
shift-invariant Green’s functions

4

In this chapter we present an entirely new application of phase contrast imaging, to

quantitative retrieval of the complex Green’s function characterising a shift-invariant

linear optical system1.

We have seen that phase contrast images may be inverted to reconstruct complex

wavefields (cf. §1.2) and from them we may infer some properties of the sample from

its transmission function. What is less appreciated is that the image output by the phase

contrast imaging system contains information about the complex Green’s function of

the imaging system which created it. If instead of assuming that the imaging system

is well characterised and then investigating a sample, we instead assume knowledge

of the sample, it is possible, in some circumstances, to recover the Green’s function

associated with the imaging system.

Other than imaging system Green’s functions, we now have a method to recon-

struct Green’s functions describing a range of different physical situations such as

electromagnetism and quantum mechanics. The work in this chapter specifically

applies to Green’s functions which are linear and shift-invariant and whilst this is

restrictive we note that there are a great many systems of practical interest that fall

within this category.

In §4.1 we will review the field of Green’s function retrieval, that is reconstructing

Green’s functions from intensity measurements, and formally state the inverse problem

that will be solved. Section 4.2 describes how two phase contrast intensity images of a

known input may be inverted to recover the complex Green’s function of an arbitrary

linear, shift-invariant imaging system. We follow this in §4.3 by applying the solution

to the famous one-dimensional phase problem in crystallography by recovering the

1This chapter is based on the publication “Unambiguous reconstruction of the complex reflection
coefficient of a laterally homogeneous crystal using analyser-based phase contrast imaging”,Vine, D. J.,
Paganin, D. M., Pavlov, K. M. and Podorov, S. G., J. Appl. Cryst., 40 650-657 (Vine et al., 2007b)
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complex amplitude reflection coefficient associated with Bragg reflection from a single

phase contrast image. Numerical simulations are then presented which demonstrate

the validity and viability of the solution. Having shown that the complex Green’s

function can indeed be retrieved we then show in §4.4 how it may be used to unam-

biguously infer crystalline structures for which the kinematic scattering approximation

is valid.

We close the chapter with some experimental considerations on the applicability

of this technique to real data and then follow in Chapter 5 with the implementation of

this technique to experimental data we collected at the SPring-8 synchrotron in Hyogo,

Japan.

4.1 Green’s function retrieval

Cowley’s classic text on diffraction physics seeks to provide “an appreciation of how ...

physical observations using different radiations and different types of sample may be

knit together with a common thread of theory” (Cowley, 1995). One such example

of a unifying principle is the Green’s function method for solving linear differential

equations, which forms a cornerstone of many wave-phenomenological analyses.

Indeed, the formal equivalence between the inhomogeneous Helmholtz equation

(cf. (2.6)) and the time-independent Schrödinger equation, together with their associ-

ated Green’s functions, sets up a fruitful parallel between these theories that may be

employed in a variety of contexts.

The diverse fields of scientific endeavour that commonly employ Green’s function

methods are too numerous to list here, given the almost ubiquitous presence of linear

differential equations in physics. We will narrow our consideration to the field of

coherent optics, which is undergoing a renaissance due to the availability of brighter

sources at ever decreasing wavelengths and across a greater range of radiations than

ever before. Key examples include the burgeoning field of atom lasers (Kasevich,

2002), together with recent developments in coherent X-ray science (Chapman et al.,

2006; Gahl et al., 2008) promised by free electron laser facilities being built around the

world (Patel, 2002).

The Green’s function is used in coherent optics in modelling the forward problem

of wavefield scattering, and in solution of the associated inverse problem of wavefield

reconstruction from a series of one or more measurements of the scattered intensity.

The inverse problem is particularly important in coherent optics because of the ubiq-

uity of the phase retrieval problem—the inability to directly measure the phase of a
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wavefield at short wavelengths.

In all of these techniques one presupposes knowledge of the Green’s function

for the system in question and in many cases, such as the Helmholtz/Schrödinger

propagator for free space propagation of a photon or massive particle, the solution is

well known. For systems in which the propagator is unknown, or for which one would

like to verify an assumed form of the complex propagator, there is no general technique

for measuring the said propagators. This neatly defines the research question posed

in this chapter: How does one measure the complex Green’s function of an optical

system?

For fields other than optics the idea of Green’s function retrieval has been ap-

plied using elastodynamic waves to investigate the Green’s function of the earth it-

self (Campillo and Paul, 2003; van Tiggelen, 2003; Wapenaar, 2004; Wapenaar et al.,

2006). However, seismic waves do not oscillate near optical frequencies and thus do

not have the phase problem making this a simpler problem to investigate.

To place the question in more formal terms consider the classic time-independent

Green’s function description of wavefield evolution (Jackson, 1998),

Ψ(r) =

∫
G(r, r ′)ψ(r ′)dr ′, (4.1)

where Ψ, ψ describe coherent complex scalar wavefields and r is the usual three-

dimensional position vector. The problem is to solve (4.1) for G given knowledge of

|Ψ| and ψ; in general this is a highly non-linear inverse problem.

The problem can be linearised without compromising the generality of G by

choosing ψ to have the property that ψ(r) ∝ 1 +∆ψ(r) where |∆ψ|� 1 - the ‘weak

object’ approximation (WOA) (Cowley, 1995) of §2.3.1. Using this condition it is

possible to solve (4.1) for G in a manner which is non-iterative, unambiguous and

useful for a wide class of complex Green’s functions.

Evidently this method of reconstructing the Green’s function is applicable to

systems in which an object that obeys the WOA ascribed to ψ can be readily fabricated.

This is an important practical consideration that is dependent on the type of radiation

used and we will defer the question to §4.2. Before proceeding we will illustrate the

essence of our idea by way of a simple example. We will takes as our archetypal system

the diffraction of X-rays from an analyser crystal to determine the amplitude reflection

coefficient (ARC) (cf. §2.5.4). We have chosen to exemplify our technique on a system

involving X-rays and Bragg reflection from a crystal however it is worth noting that it

could be replaced by any radiation/ optical system satisfying (4.1). With reference to

Figure 4.1(a) consider an idealised standard XRD scenario in which a plane wave A is
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Figure 4.1: Overview of Green’s function retrieval. (a) In an idealised X-ray diffraction
experiment a plane wave is diffracted from a crystal and is incident on a point-like detector.
The crystal reflectivity as a function of angle is built up by serially scanning the crystal through
θ. (b) Our method illuminates the crystal with a known coherent superposition of plane waves.
After diffraction from the crystal an area detector records an interference pattern, effectively
interrogating many angles θ in parallel.

incident at an angle θ upon the surface of a crystal C. The intensity of the reflected

plane wave B is then registered using a detectorD, which need not be position sensitive.

The phase of the reflected plane wave is lost and one performs a series of measurements

of angles θ so as to build up a rocking curve of the crystal reflection. Compare this

with the ‘parallelised’ scenario in Figure 4.1(b), where an incident plane wave E passes

through a known weak object F, to yield a known coherent superposition of plane

waves Gn for n = 1, 2 etc. This coherent superposition of plane waves is then reflected

from the surface of the same crystal C, the reflected waves Hm (for m = 1, 2 etc.)

then mutually interfering to form a two dimensional analyser-based phase contrast

image at the detector I. The phase contrast image evidently contains information

regarding both the phase and amplitude of the complex ARC of the crystal since (i)

the mutual interference of the reflected plane waves governs both of these quantities,

and (ii) a continuum of angles θ is contained within the field at the exit surface of

F. The solution we have developed shows how one may solve the inverse problem of

determining the complex ARC of the crystal, given a known weak object F, together

with the phase contrast image of this object registered by the detector.

In the following section we will present the detailed solution to the problem of

reconstructing the complex Green’s function from a phase contrast image of a known

weak object.
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Figure 4.2: Reconstructing a generic complex Green’s function. Planar, monochromatic
X-rays illuminate a known weak object and are then incident on a generic imaging system. The
field exits the imaging system and is detected on a two-dimensional position sensitive detector.

4.2 Quantitative Green’s function retrieval from phase

contrast X-ray images

We begin the solution of the inverse problem of Green’s function retrieval with a

statement of the associated forward problem, namely the recording of a phase contrast

image of weak object.

Consider the experimental arrangement of Figure 4.2 where a two-dimensional

planar, monochromatic hard X-ray bean is incident on a weak object, with known

projected thickness, before interacting with the generic imaging system (e.g. diffraction

through free space, reflection from an analyser crystal). The wavefield is then incident

on a position sensitive detector which records the field intensity.

Since we will use the transfer-function formalism to describe the problem we are

limited to Green’s functions which are shift-invariant (Goodman, 2004) (cf. §2.6). Im-

portant examples of such systems include the Helmholtz and Schrödinger propagators

and laterally homogeneous crystalline structures.

The a priori knowledge of the weak object projected thickness and chemical

composition allows the complex transmission function, f, to be calculated (cf. (2.23)).

We assume that a z-directed plane wave, exp(ikz), is incident on the weak object so

that the transmitted wavefield is given by,

ψ(ρ, z) = f(ρ) exp(ikzz). (4.2)

The transverse spatial frequency spectrum of ψ represents exactly those frequencies

which will probe G and from which information about G can be recovered. Since

G is a complex function we will in general require two independent measurements

for its reconstruction however there are cases of practical interest where the Green’s

function can be recovered from a single measurement provided it can be reduced
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to a one-dimensional function. In such a case the two dimensional measurement

represents a set of one dimensional measurements that can be used for averaging

against noise.

Assuming the propagation distances between sample, imaging system and detector

to be negligible, the wavefield incident on the detector, Ψ, is given by,

Ψ(ρ, τ) =

∫∫∞
−∞G(ρ− ρ ′, τ)ψ(ρ ′)dρ ′ (4.3)

where τ is a parameter describing the state of the imaging system. Typically, τ will

consist of a set of real numbers. For example, the τ could describe the level of defocus

or spherical aberration.

Using the projection approximation (cf. §2.3.1), the complex amplitude ψ is

linearly related to the projected phase ϕ and attenuation µ by (Nesterets et al., 2004),

ψ(ρ) ≡ exp[iϕ(ρ) − µ(ρ)], (4.4)

= exp(iϕ− µ) exp[i∆ϕ(ρ) − ∆µ(ρ)], (4.5)

≈ ψ[1 + ∆ψ(ρ)]. (4.6)

The overline indicates an average value (cf. 2.3.1),

ψ = exp(iϕ− µ), (4.7)

∆ψ(ρ) = i∆ϕ(ρ) − ∆µ(ρ), (4.8)

∆ϕ = 0, (4.9)

∆µ = 0, (4.10)

|∆ϕ| � 1, (4.11)

|∆µ| � 1. (4.12)

The utility of our method depends critically on whether an object that satisfies

the above mentioned criteria can be fabricated and to that end we now state explicitly

the physical parameters demanded of such an object. The weak object described here

is with reference to the objects shown in Figure 4.3 that are used in the numerical

simulations. Two remarks about the weak object (i) the greyscale level is proportional

to the projected thickness and (ii) the weak phase and weak attenuation objects are

physically distinct. We have chosen to use greyscale photographs for our weak object

projected thicknesses because the spatial frequency spectrum is non-negligible up

to the Nyquist frequency. Our algorithm will reconstruct over the band of spatial

frequencies introduced by the weak object and so it is preferable to simulate as wide a

range of frequencies as possible, which we achieved using the greyscale photographs.
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Figure 4.3: Simulated weak object. The weak phase (a) and amplitude (b) objects used in
the numerical simulations. The greyscale level corresponds to the etching depth in the physical
realisation of the object. The object is 0.5mm×0.5mm (256×256 pixels).

Specifically the object we now describe has the following four properties: (i) it is

well characterised, (ii) weakly phase shifting (∆ϕ ≈ 0.1) with a depth profile as in

Figure 4.3(a), (iii) weakly attenuating (∆µ ≈ 0.1) with a depth profile as is given in

Figure 4.3(b) and (iv) the weak phase variations and weak attenuation are linearly

independent. The first requirement of being well characterised can be addressed

using advanced lithography techniques where a critical dimension tolerance of tens

of nanometres is standard (Anderson, 2006) and continuous depth profiling (or

greyscaling) such as is shown in Figure 4.3 is possible (Kley, 1997; Daschner et al.,

1997; Geissler, 2004). We also note that the more common binary lithography object

can be used for this application.

The surface topography can be precisely measured using X-ray diffraction (Paganin

et al., 2002; Pavlov et al., 2004) or atomic force microscopy (Foster and Hofer, 2006)

given that the object is homogeneous and we need only know the surface profile.

Linear independence of ∆ϕ and ∆µ is assured through the use of separate objects

to provide the weak phase shift (the weak phase object) and weak attenuation (weak

amplitude object). The weak phase object introduces a maximum 0.1 radian phase

shift and no absorption. The weak amplitude object has a maximum ten percent

attenuation and a 2π phase shift. The requirement that the weakly attenuating object

introduce an exact 2π phase shift may seem difficult to realise but the use of refraction

matching techniques makes it quite rudimentary (Hasnah et al., 2005) using the

following methodology. The object etching pattern must be binary so that the thickness

variation corresponds to a 0 or 2π phase shift for a particular refractive index and

wavelength. Any measurable deviation from this phase shift is compensated for

by immersing the object in a refractive index matching fluid whose composition is
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varied2 until the position sensitive detector, which captures an X-ray contrast image

of the index-matched sample, records no phase contrast due to that object. Whilst

a continuously etched depth profile has been used for the weak amplitude object in

the numerical simulations, a binary level object will not degrade the quality of the

reconstructions.

Finally, an example weak phase object whose physical realisation corresponds

to the inset photograph of Figure 4.3(a) is an amorphous Silicon Oxide (a-SiO2)

substrate continuously etched so that the maximum thickness variation is 0.4µm and

the lateral pixel size is 20nm for a 20:1 aspect ratio. For 10keV X-rays this corresponds

to a phase shift of 0.1 and maximum |∆µ| ≈ 0.001. The weak amplitude object may

be realised, for example, using an amorphous Silicon (a-Si) substrate with a binary

pattern similar to Figure 4.3(b) etched into it with a thickness variation of 25.4µm

and a pixel size of 0.8µm. At 10keV this corresponds to ≈ 2π phase shift and ∆µ ≈ 0.1

which clearly satisfies the weak object criteria.

Upon substitution of (4.6) into (4.1) we have the following relationship (Nesterets

et al., 2004),

Ψ(ρ, τ) ≈ ψG̃τ +ψ

∫∫∞
−∞G(ρ− ρ ′, τ)∆ψ(ρ ′)dρ ′, (4.13)

IΨ(ρ, τ) = Iψ

{
|G̃τ|

2 + 2Re

[
G̃∗τ

∫∫∞
−∞G(ρ− ρ ′, τ)∆ψ(ρ ′)dρ ′

]}
, (4.14)

where the superscript ∗ denotes complex conjugation, IΨ = |Ψ|2 and Iψ = |ψ|2,

G̃τ =
∫∫∞

−∞G(ρ, τ)dρ is a known complex number and terms quadratic in ∆ψ are

assumed to be negligible. The magnitude of G̃τ is known since it represents the ratio

of the zeroth spatial frequencies of |Ψ| and |ψ|, a directly measurable quantity. The

phase of G̃τ adds an arbitrary, constant phase shift to the recovered Green’s function

and can be neglected.

We now show how the expression in (4.14) may be inverted to obtain a closed-form

expression for the complex Green’s function, using two phase contrast images. We

begin by introducing the (known) contrast transfer function,

C(ρ, τ) =
IΨ(ρ, τ)
Iψ

− |G̃τ|
2, (4.15)

together with the unknown function,

h(ρ, τ) = G̃∗τG(ρ, τ). (4.16)

2Typically the refractive index of the fluid is varied by adding drops of a concentrated solution then
recording an image and repeating the process until the desired lack of contrast is achieved.
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This last expression is the unknown function G scaled by a known complex number.

Combining (4.15) and (4.16) into (4.14) yields,

C(ρ, τ) = −2

[∫∫∞
−∞ hI(ρ− ρ ′, τ)∆ϕ(ρ ′)dρ ′

+

∫∫∞
−∞ hR(ρ− ρ ′, τ)∆µ(ρ ′)dρ ′

]
. (4.17)

The subscripts R and I refer to the real and imaginary parts of h(ρ) respectively, so

that

hR(ρ, τ) =
1
2

[
G̃∗τG(ρ, τ) + G̃τG

∗(ρ, τ)
]

, (4.18)

hI(ρ, τ) =
i

2

[
G̃τG

∗(ρ, τ) − G̃∗τG(ρ, τ)
]

. (4.19)

Taking the Fourier transform of (4.17) gives

− C̃(κ, τ) = [∆̃µ(κ) − i∆̃ϕ(κ)]h̃(κ, τ) + [∆̃µ(κ) + i∆̃ϕ(κ)]h̃∗(−κ, τ), (4.20)

where the tilde indicates a reciprocal space quantity. Eq. (4.20) may be solved using

two linearly independent phase contrast images (for example, images of different

objects). In general this requires that there are two sets of weak objects, ∆µ1, ∆ϕ1

and ∆µ2, ∆ϕ2 resulting in two intensity measurements IΨ,1 and IΨ,2. The solution of

(4.20), with functional dependence on κ suppressed for clarity, is given by
h̃eR

h̃oR

h̃eI

h̃oI

 = −
1
2


∆̃µR,1 ∆̃ϕI,1 ∆̃ϕR,1 −∆̃µI,1

∆̃µI,1 −∆̃ϕR,1 ∆̃ϕI,1 ∆̃µR,1

∆̃µR,2 ∆̃ϕI,2 ∆̃ϕR,2 −∆̃µI,2

∆̃µI,2 −∆̃ϕR,2 ∆̃ϕI,2 ∆̃µR,2


−1

C̃R,1

C̃I,1

C̃R,2

C̃I,2

 . (4.21)

The subscripts R, I refer to the real and imaginary part of the function, superscripts

e and o refer to the even and odd part of the function and subscripts 1, 2 refer to

the first and second set of weak objects and the corresponding phase contrast image

respectively.

Given that h is directly proportional to the desired function G (cf. (4.16)) then

(4.21) is the solution we require. We have simply to solve (4.21) for each pixel and we

obtain for G

G(ρ, τ) = F−1
[
h̃(κ, τ)

G̃τ

]
. (4.22)

Eq. 4.22 leaves the possibility of a division by zero problem if |G̃τ| = 0 however this

quantity represents the ratio of the average detected to incident intensity (cf. (4.14))
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and as such as this quantity tends toward zero so does the contrast function C—in

essence there is no detected intensity image.

The determinant of (4.21) will be non-zero if ∆ϕ1, ∆ϕ2, ∆µ1 and ∆µ2 are linearly

independent.

Having shown the possibility of reconstructing the complex Green’s function of an

arbitrary linear, shift-invariant Green’s function we now turn to a practical example:

Reconstructing the ARC of a laterally homogeneous crystal.

4.3 Reconstruction of complex amplitude reflection

coefficients

The problem of unambiguously determining the deformation field and chemical

composition of layered crystals and thin films from diffraction data is of significant

practical importance (Pietsch et al., 2004; Fewster, 2003; Birkholz et al., 2006). X-

ray diffraction (XRD) is a standard tool for investigating crystals to determine these

properties but in general both the intensity and phase variations imparted by the

crystal on the diffracted X-ray wavefield must be known to arrive at an unambiguous

solution.

In §4.2 we proposed an analytical solution to the problem of recovering an arbi-

trary linear, shift invariant Green’s function. We will now show how that formalism

may be adapted to recover the complex amplitude reflection coefficient (ARC) using a

single analyser-based X-ray phase contrast image (Förster et al., 1980; Somenkov et al.,

1991; Ingal and Beliaevskaya, 1995; Davis et al., 1995a,b; Paganin, 2006) (cf. §1.1.6).

The recovery from a single image is possible because the ARC is a one dimensional

function and so a two-dimensional N × N image contains N/2 independent ARC

measurements. We follow this in §4.4 by demonstrating (within the kinematic scatter-

ing approximation) an unambiguous, analytic solution to the problem of determining

the interplanar spacing of a layered crystal from a single two dimensional intensity

measurement using the recovered complex ARC.

We now give a brief overview of what has been achieved to solve the problem of

determining the interplanar spacing of layered crystals from X-ray diffraction mea-

surements (Goncharskii et al., 1992). The deformation profile of such crystals can

be obtained directly from the rocking curve using fitting procedures (Speriosu et al.,

1979; Petrashen’, 1975; Kyutt et al., 1980). This method cannot guarantee a unique

solution due to the existence of so-called ‘crystal analogues’, namely crystals of differ-

ing structure that have the same reflectivity (Afanas’ev and Fanchenko, 1986, 1988;
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Afanas’ev et al., 1990). The method of integral characteristics gives the average strain

for thin layers (Afanas’ev et al., 1977; Kohn et al., 1981; Afanas’ev et al., 1990). The

strain profile may be obtained directly from the rocking curve using a discrete form

of the kinematic ARC (Stepanov, 1994). Iterative schemes using Fourier analysis of

the rocking curve have been proposed for the kinematic (Podorov et al., 1994, 1999),

semi-dynamical (Podorov et al., 1998) and dynamical diffraction regimes (Podorov

and Punegov, 1999). These schemes are often computationally intensive, slow and

prone to stagnation without necessarily achieving the correct solution. Phase retrieval

can be implemented using the Hilbert transform (Petrashen’ and Chukhovskii, 1989)

but the solution is ambiguous and an appropriate algorithm is required to choose the

unique solution (Nikulin, 1998; Dilanian et al., 2006). Measuring the distribution of

photoemission electrons due to X-ray standing waves in dynamical diffraction may

be used to infer the phase (Afanas’ev and Kon, 1978; Koval’chuk and Kohn, 1986;

Koval’chuk et al., 1986). The reliance of standing wave methods on the detection of

photoelectrons means they are limited to investigating near-surface layers where there

is an appreciable probability of an electron escaping the crystal. A variant of the stand-

ing wave approach measures both the distribution of secondary photoelectrons and the

scattered X-rays to find the deformation field in surface layers much smaller than the

extinction length (Vartanyants et al., 1989). Alternatively, the phase can be retrieved

in multiple-beam diffraction by considering the interference of the diffracted waves

in a crystal (Hart and Lang, 1961; Authier, 2005). Neutron reflectometry can recover

phase information if the sample is mounted on a known reference layer (Majkrzak

and Berk, 1995; Majkrzak et al., 2000).

In contrast to the limitations of the techniques just outlined the method we propose

gives a single-shot, non-iterative, analytic solution for the ARC that requires no special

sample preparation, is valid for both kinematic and dynamical diffraction regimes,

works with any reflection, symmetric and asymmetric, Bragg and Laue diffraction

geometries. Our method also determines the ARC over a wide range of angular space

simultaneously, is not susceptible to the problem of crystal analogues and the inversion

algorithm is fast and robust in the presence of realistic levels of experimental noise.

We require only that: (i) the sample crystal be locally laterally homogeneous

over the area of X-ray illumination, and (ii) the action of the crystal on the incident

X-rays may be modelled using the transfer-function formalism (Goodman, 2004).

Notwithstanding the X-ray illumination coherence requirements our experimental

setup is very similar to standard XRD, the only differences are the use of an area

detector and the addition of the weak object between monochromator and analyser



84 Q   - G’ 

crystal.

We would like to emphasize the importance of being able to reconstruct the ARC

from a single image. Standard XRD works by probing each reciprocal space point in

a serial manner and the resolution is set by the precision of the goniometer stepper

motors. Compare this to the method we propose which uses a single two-dimensional

measurement that is capable of a massively parallelised measurement of a range of

rocking angles simultaneously. If this were the only advantage of our method it is

already more efficient than XRD however our method also reconstructs the phase of

the rocking curve. The phase of the X-ray rocking curve is not easily measured and

the techniques that attempt to address this problem do not all have the advantages of:

parallelised measurement, no special sample preparation, non-iterative and an angular

resolution comparable to high resolution X-ray diffraction techniques.

Using this method one can verify the phase predicted by the dynamical theory of

X-ray diffraction. Whilst the magnitude of the ARC, a directly measurable quantity,

has been verified innumerable times, experiments which investigate the phase of the

ARC are less frequently addressed. An efficient method for accessing this fundamental

quantity is an important and useful goal.

The range and resolution of reciprocal space that can be examined with this

technique is Nyquist limited by the detector characteristics and is comparable to high

resolution XRD. The serial nature of the data acquisition at all reciprocal space points

simultaneously makes the technique suitable for high-speed measurements. Methods

for single-exposure measurement of an entire rocking curve exist (Fewster, 2005)

however our method is capable of measuring the ARC modulus and phase at a spatial

resolution that is at least equal to those methods.

4.3.1 Inverse problem of reconstructing the complex ARC. I. The

weak-object approximation

We now present an adaptation of the formalism of §4.2 to the problem ARC retrieval.

A planar, monochromatic hard X-ray beam of unit intensity is transmitted through

the known weak object before being Bragg diffracted and detected as in Figure 4.4.

In the following we consider the case of symmetrical Bragg reflection, although we

note the theory is applicable to asymmetric reflection and Laue diffraction geometry.

Asymmetric reflections can be used to magnify the image but this idea has limited

applicability in Green’s function reconstruction because the reconstruction algorithm

requires the division of two images and the images must be the same size so a magnified

image must be rescaled in the post-measurement processing. The most efficient
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Figure 4.4: Reconstructing the complex ARC. X-rays are produced at source and monochro-
mated/collimated before illuminating an a priori characterised weak object. The wavefield
diffracted from the weak object is Bragg reflected from the sample/analyser crystal before being
registered using a two-dimensional position-sensitive detector.

situation occurs when the measured ABI phase contrast image has the same spatial

resolution as the a priori characterised weak object and this may be achieved with

either an appropriate detector or magnification by asymmetric reflection.

Let the xy plane be coincident with the planar crystal surface and the positive

z-axis be directed normally into the crystal. The wavefields incident, ψ(x,y), and

diffracted, Ψ(x,y,ωC) from the crystal surface are given by

Ψ(−x,y;ωC) =

∫∞
−∞G[x− x ′;ωC]ψ(x ′,y)dx ′ (4.23)

where G(x;ω) is the crystal point spread function (the ARC’s real space dual) andωC

is the deviation from θB. The point spread function is related to the ARC by

r(θB +ωC − kx/k) = F[G(x;ωC)] (4.24)

andωC stays constant throughout the experiment.
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The analysis proceeds along the same lines as §4.2 beginning with

IΨ(−x,y;ωC) = Iψ (Rω

+ 2Re

{
r∗ω

∫+∞
−∞ G[x− x ′;ωC]∆ψ(x ′,y)dx ′

})
(4.25)

where rω =
∫∞

−∞G(x;ωC)dx and Rω = |rω|2. The contrast function, (4.15) should

be transformed according to x→ −x to account for the image inversion and finally

we have the comparable solution adapted to ARC reconstruction (cf. (4.21)),


h̃eR

h̃oR

h̃eI

h̃oI

 = −
1
2


∆̃µ
i
R ∆̃ϕ

i
I ∆̃ϕ

i
R −∆̃µ

i
I

∆̃µ
i
I −∆̃ϕ

i
R ∆̃ϕ

i
I ∆̃µ

i
R

∆̃µ
j
R ∆̃ϕ

j
I ∆̃ϕ

j
R −∆̃µ

j
I

∆̃µ
j
I −∆̃ϕ

j
R ∆̃ϕ

j
I ∆̃µ

j
R


−1

C̃iR

C̃iI

C̃
j
R

C̃
j
I

 (4.26)

where i, j now refer to individual rows in the same image, the functional dependence

on kx has been suppressed for clarity and h(x;ωC) = r∗ωG(x;ωC), h̃ = F1[h] and F1

is a one-dimensional Fourier transform.

The ARC we seek to reconstruct is a one-dimensional function and we require

two independent one-dimensional measurements to reconstruct both its real and

imaginary parts. The ABI image we have recorded however contains many more inde-

pendent measurements than the two that are required and so by a suitable averaging

process we can use the redundant data in the overdetermined solution to galvanise

our reconstruction against experimental noise. We propose to do this in the following

manner.

Let our functions C, ∆µ and ∆ϕ be square arrays of side lengthN, then according

to our reconstruction algorithm it containsN/2 sets of independent measurements.

The matrix inversion in (4.26) will amplify noise when the magnitude of the denomi-

nator becomes small. To ameliorate this effect as much as possible we averaged our

results prior to the matrix division, which can be understood with reference to the

following example.

Consider the matrix equationA(kx)x(kx) = B(kx) then the averaging was per-

formed in the following way,

x(kx) =
1
N

N∑
i=1

A−1
i (kx)Bi(kx), (4.27)

=
1∑N

i=1 |Ai(kx)|2

N∑
i=1

Bi(kx)A
∗
i (kx). (4.28)
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Summing over the independent measurements before the division increases the signal

to noise and reduces exposure to amplification of noise caused by division by small

numbers.

The weak-object approximation allowed us to derive a closed-form expression

for the complex ARC in terms of the detected intensity and known weak object.

Under the weak-object approximation all non-linear terms, which would otherwise be

present in (4.25), can be legitimately neglected. In practice this approximation has

two consequences that it is desirable to overcome. Firstly, the ability to compensate

for larger phase shifts and attenuations provides some practical leeway to use weak

objects with larger thickness variations than would otherwise be acceptable. Secondly,

there is an optimisation problem between satisfying the weak-object criteria and

the signal-to-noise in an image. A larger phase shift will result in greater contrast

at the cost of invalidating the weak-object criteria. Ideally we would like to use a

more strongly scattering object and to that end we present a modification of the

formalism above to allow for an order of magnitude increase in the object’s scattering

strength (|∆ϕ|, |∆µ| < 1, rather than |∆ϕ|, |∆µ|� 1). We refer to this as the ‘relaxed

weak-object approximation’.

4.3.2 Inverse problem of reconstructing the complex ARC. II. The

relaxed weak-object approximation

To incorporate a relaxed weak-object approximation we must include the nonlinear

terms previously neglected from (4.25). This can be done using an iterative procedure

analogous to the Born series (Merzbacher, 1970; Born and Wolf, 1999). To this end,

rewrite (4.26) schematically as

h̃1 = −
1
2
∆̃−1C̃0. (4.29)

Here, boldface letters denote matrices, obtained from(4.26) as follows: h̃ corresponds

the column matrix on the left side, ∆̃ is the square matrix on the right side, and C̃

is the column vector on the right side. Subscripts 0, 1 indicate the iteration order.

As suggested by this notation, we will use (4.26) as the first order step in an iterative

procedure.

Up to second order in the known function ∆ψ(ρ) the squared modulus of (4.23)
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becomes:

IΨ(−x,y;ωC)/Iψ = Rω

+ 2Re

{
r∗ω

∫+∞
−∞ G(x− x ′;ωC)∆ψ(x ′,y)dx ′

}
+ Re

{
r∗ω

∫+∞
−∞ G(x− x ′;ωC)∆ψ2(x ′,y)dx ′

}
+

∣∣∣∣∫+∞
−∞ G(x− x ′;ωC)∆ψ(x ′,y)dx ′

∣∣∣∣2
+

1
4

∣∣∣∣∫+∞
−∞ G(x− x ′;ωC)∆ψ2(x ′,y)dx ′

∣∣∣∣
+ Re

{[∫+∞
−∞ G(x− x ′;ωC)∆ψ(x ′,y)dx ′

]∗
×
∫+∞
−∞ G(x− x ′;ωC)∆ψ2(x ′,y)dx ′

}
. (4.30)

All quantities are as previously defined. We define a functional In(x,y,Gn(x;ωC))

containing all nonlinear terms in the right-hand side of (4.30) (i.e. it contains all the

terms that were previously neglected in (4.25). The explicit dependence in I on the

unknown function Gn(x;ωC) is used to clarify the iterative scheme.

Successive iterations now include the nonlinear terms, In(x,y,Gn(x;ωC)), using

the recursive formula:

h̃n+1 = −
1
2
∆̃−1(C̃n). (4.31)

Here h̃n+1 is the n + 1th iterative solution for the complex ARC, ∆̃ is as previously

defined and, to define C̃n, we redefine (4.15) as follows,

C̃n(kx,ωC;y) = F

{(
IΨ(x,y)
Iψ

− Rω − In(x,y,Gn(x;ωC))

)}
(4.32)

and

Cn =


Re{C̃n(kx,ω;yi)}

Im{C̃n(kx,ω;yi)}

Re{C̃n(kx,ω;yj)}

Im{C̃n(kx,ω;yj)}

 . (4.33)

Note the dependence of In(x,y,Gn(x;ωC)) onGn, the current iteration ofG(x;ωC).

Eq. 4.31 together with (4.33) defines the iterative scheme which allows the relaxed

weak-object approximation |∆ϕ|, |∆µ| < 1.

We now present a numerical simulation which demonstrates the validity of the

reconstruction algorithms defined thus far for the complex ARC. We have chosen to

reconstruct the well known ARC of the semi-infinite perfect crystal.



4.3 R      89

PP

Figure 4.5: Semi-infinite, perfect crystal ARC reconstruction. (a) and (b) show the ampli-
tude and phase (divided by π) with three traces (offset for clarity) representing (i) input, recon-
structed with (ii) |∆ϕ|, |∆µ| 6 0.1, no noise (RMS error negligible) and (iii) |∆ϕ|, |∆µ| 6 0.78
with 1% Poisson noise (RMS error: 4% amplitude, 20% phase, 4% detected intensity). (c) and
(d) present the RMS error in the amplitude and phase respectively for |∆ϕ|, |∆µ| against noise.
RMS errors in (c) have been capped at 15% to facilitate visualisation of the contour details.

The reconstruction quality of r(kx) is quantified by calculating the RMS recon-

struction error (RMS error between reconstruction and input functions divided by

the RMS error between the input and its mean (Herman, 1980; Nesterets et al., 2004))

against the input function.

The known weak object was simulated using the phase and amplitude maps of

Figure 4.3(a) and (b) respectively. The ‘weakness’ of the weak object was varied by

changing the maximum values of |∆ϕ| and |∆µ|. Poisson noise was simulated in the

detected intensity by adding Poisson-distributed random numbers whose standard

deviation is a specified percentage of the maximum intensity registered in the 2D

image. Thus, for example, 1% Poisson noise means the noise varies locally in the

image from 1% at the highest signal-to-noise regions, to much larger values at the

lowest signal-to-noise regions. As a result of this noise model a 1% Poisson noise level

will not, in general, correspond to 1% RMS error in the image. To allow for this we

will quote the reconstruction error in the ARC’s phase and amplitude with the error
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introduced into the detected intensity by the addition of noise.

The amplitude and phase (divided by π) of r(kx) for a symmetric Bragg reflection

from Si(111) at 25keV are shown in Figure 4.5(a) and (b). Three traces are shown offset

from each other for clarity and the roman numerals refer to (i) input, reconstructed

with (ii) |∆ϕ|, |∆µ| 6 0.1, no noise and (iii) |∆ϕ|, |∆µ| 6 0.78 with 1% Poisson noise

(RMS error: 4% amplitude, 20% phase, 4% detected intensity).

To gauge the success of the iterative algorithm in §4.3.2 consider the top left corner

of Figure 4.5 (c) and (d) for |∆ϕ|, |∆µ| = 1 and no noise. Clearly, the weak object

approximation is not valid but with iteration the reconstruction shows RMS error of

only 4% and 2% in the amplitude and phase respectively.

All simulations used 15 iterations and a single iteration took less than 1 second

using a 2GHz Pentium M machine. One important consideration for the practical

utility of this method is its robustness with respect to experimental noise. To some

extent a smaller signal-to-noise can be compensated by using a more strongly scattering

object at the expense of invalidating the weak object approximation. The tradeoff

between those two quantities is plotted in Figure 4.5(c) and (d) which show that there

exists an optimum level of object weakness for a given noise level.

4.4 Unambiguous determination of thin crystalline

structure information from a single intensity

measurement

To demonstrate the utility of our method of ARC reconstruction we will show how

it may be used to unambiguously determine the structure of a thin and laterally

homogeneous crystal structure. Specifically, we present numerical simulations which

demonstrate the reconstruction of an arbitrary, depth dependent strain profile in a

crystal for which a kinematic scattering approximation is valid.

The kinematic scattering approximation to the ARC for a symmetrical Bragg

geometry in the limit of small deformation takes the form (Petrashen’, 1974) (cf. §2.5)

r(η) =
iπχg

λ sin θB

∫∞
−∞Ω(z) exp i (−ηz− g · u) dz. (4.34)

Here ω is the angular deviation from the exact Bragg angle, η = 4πω
λ cos θB and

χ0 ≈ 0, χg is the Fourier component of the susceptibility in the direction of a Bragg

reflection from the substrate and is assumed to be constant throughout the layer,Ω(z)

is the shape function equal to unity inside the crystal and zero elsewhere, g and u

are the diffraction vector and displacement of atoms from their position in the ‘ideal’
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Figure 4.6: Unambiguous reconstruction of crystal strain profile. Input and reconstructed
ARC and variation in the interplanar lattice spacing for a thin GaAs(004) film with 0.5%
strain. (a) and (b) show the ARC’s amplitude and phase (divided by π) and (c) the interplanar
spacing variation and d0 = 1.413Å with traces (offset by a constant) showing (i) input,
and reconstruction using (ii) |∆ϕ|, |∆µ| 6 0.01, no noise (RMS error: negligible) and (iii)
|∆ϕ|, |∆µ| 6 0.5, 1% Poisson noise (RMS error: 0.2% amplitude, 41% phase, 6% detected
intensity). (d) shows the RMS error in the reconstructed lattice spacing for |∆ϕ|, |∆µ| against
noise.

lattice, respectively. Setting χ0 = 0 amounts to ignoring attenuation and refraction

within the thin layer.

Here we investigate the case of a linear variation in the lattice parameter (Kolpakov

et al., 1977). The linearly strained crystal is an example of a simple crystal analogue

because the sign of the strain gradient cannot be determined unambiguously from

the reflectivity within the framework of the kinematic approximation (Afanas’ev and

Fanchenko, 1988). The interplanar spacing can be solved explicitly when the complex

ARC is known, in that case the solution is given by (Podorov et al., 1994)

2π∆d(z)
d2

0
= −Re

(∫∞
−∞ ηr(η) exp(iηz)dη∫∞
−∞ r(η) exp(iηz)dη

)
(4.35)

where ∆d(z) is the variation in the interplanar spacing of the film, d0 is the substrate

interplanar spacing. We have used a logarithmic derivative to solve for the interpla-

nar spacing because it is more stable numerically than the alternative of taking the
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logarithm of the inverse Fourier transform of r(η) directly.

As an example consider diffraction from a 1 micron thickness film of GaAs(004)

with a 0.5% strain and 8.74keV X-rays (CuKα1) as in Figure 4.6(a) and (b) trace (i).

We note briefly that the characteristically asymmetric reflectivity of a thin strained layer

is not observed here because absorption has been neglected and scattering from the

thin layer is kinematic (Kolpakov and Punegov, 1985). The amplitude and phase maps

of the known weak object are as in Figure 4.3(a) and (b) ( 3.6µm× 3.6µm). The ARC’s

amplitude and phase (divided by π) is shown in Figure 4.6(a) and (b) respectively

and (c) shows the variation in the interplanar spacing. The three traces refer to (i)

input, reconstruction using (ii) |∆ϕ|,|∆µ| 6 0.1, no noise (RMS error negligible)

and (iii) |∆ϕ|,|∆µ| 6 0.5 with 1% Poisson noise (RMS error: 0.2% amplitude, 41%

phase, 7% detected intensity). The oscillation in the reconstructed lattice variation

Figure 4.6(c)(ii) is due to the step-function-like model for the film thickness and was

responsible for the error not dropping below 10%. The RMS error increased to 16%

in Figure 4.6(c)(iii) but the lattice parameter’s linearity variation is still evident.

4.5 Summary

In summary we have developed an entirely new method for reconstructing complex

Green’s functions from phase contrast images of known weak objects.

The method is applicable to linear shift-invariant Green’s functions, able to probe

a wide range of spatial frequencies simultaneously and provides an unambiguous and

non-iterative solution. The most restrictive approximation used relates to the weak

object and does not limit the generality of the reconstruction algorithm.

We have shown that the complex ARC of a crystal reflection can be reconstructed

from a single phase contrast image and when applied to kinematic diffraction from

thin layers we are able to unambiguously reconstruct the depth-dependent interplanar

spacing. We must assume that refraction and attenuation in the layer are negligible

however this is usually a good approximation for kinematic diffraction.

Numerical simulations demonstrated the theory’s validity and its robustness in

the presence of experimental noise. This method unambiguously determines the

crystal layer structure and is not susceptible to the problem of crystal analogues. Our

technique enables experimental determination of the ARC phase, as predicted by X-ray

dynamical diffraction theory for ideal crystals (Authier, 2005).

The most significant practical impediment to the implementation of our method

lies in the fabrication of an object satisfying the weak object requirements. To demon-
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strate that such an object can be made and that our method does indeed work with

experimental data we now turn to an experimental implementation of the method.





Quantitative reconstruction of the
thick perfect crystal Green’s
function

5

In this chapter we apply Green’s function retrieval to experimental data and reconstruct

the Green’s function associated with X-ray diffraction from a thick perfect silicon (111)

Bragg plane1.

In the previous chapter we developed a theoretical approach which allows the

complex Green’s function of an imaging system to be reconstructed from two phase

contrast images. This work represents a significant advance in the use of phase contrast

imaging by expanding its ambit from sample characterisation to investigating imaging

systems. Linear, shift-invariant Green’s functions arise most notably in quantum

mechanics, light, electron, neutron and neutral atom optics and all of these systems

may be profitably studied using the technique we proposed in Chapter 4.

X-ray crystallography is an active area of research, with well over a century having

elapsed since research efforts began in earnest. Indeed this statement can be quantified

using a modern metric; “Google Scholar” returned over five thousand hits for the

search term “X-ray crystallography” in 2008 alone (Google, 2008). In Chapter 4 we

applied our technique to the reconstruction of crystal Green’s functions, or equivalently

the amplitude reflection coefficient, using simulated data. In this chapter we go

one step further and apply the technique to experimental data we collected and

demonstrate that it is a viable method.

The reconstructed amplitude reflection coefficient for the thick perfect crystal

presented in this chapter allows direct verification of the ARC phase predicted by

the theory of dynamical diffraction. The phase of the rocking curve is difficult to

measure experimentally and our technique is able to reconstruct it using only the

approximation of linearity and shift-invariance which demonstrates the power and

1This chapter is based on the manuscript ‘Deterministic Green’s function retrieval using hard X-rays’,
D. J. Vine, D. M. Paganin, K. M. Pavlov, K. Uesugi, A. Takeuchi, Y. Suzuki, N. Yagi, T. Kämpfe, E.-B. Kley
and E. Förster, (submitted)
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generality of this approach.

The Green’s function associated with X-ray diffraction from a thick perfect crystal

is retrieved by recording a single analyser-based phase contrast image of a known

weak object using the experimental setup of Figure 4.4. Given that the weak object

phase and amplitude illuminating the crystal surface are known, we can invert the ABI

intensity image to reconstruct the spatial frequency spectrum of the analyser crystal.

Whilst we have chosen the thick perfect crystal for our pilot study the real usefulness of

this technique would be in characterising more exotic, laterally homogeneous, layered

crystalline structures which could be unambiguously characterised with this method.

The requirement of lateral homogeneity is restrictive but we note that the class of

structures for which this technique is applicable includes some kinds of light emitting

diodes and laser diodes which are fabricated from thin semiconductor films (Birkholz

et al., 2006).

The first stage of our experiment in §5.1 involves the design and characterisation

of the weak object that is paramount to the success of the Green’s function retrieval

technique. After recapitulating the reconstruction algorithm of §4.2, we outline the

necessary experimental setup for Green’s function reconstruction and present the

experimental data. Finally in §5.3 we present the results of the reconstruction and

compare it with the theoretical prediction of dynamical diffraction theory.

It will be found that there are a number of practical difficulties in fabricating a

weak object that truly satisfies the weakness criteria (cf. §2.3.1) and in aligning the

two dimensional images which serve as the inputs to our algorithm.

We close the chapter by presenting the results of applying our single-shot, deter-

ministic reconstruction algorithm to the experimental ABI data. The reconstructed

phase of the rocking curve is shown to be in excellent agreement with the result

predicted by the theory of dynamical diffraction almost a century ago.

5.1 Weak object design and characterisation

The first step in reconstructing the Green’s function associated with the silicon crystal

Bragg reflection is the fabrication of the weak object (cf. §4.3). The crucial weak

object imparts weak phase shift and attenuation to the incident beam such that its

transmission function can be expressed as a linear function of phase and attenuation

(cf. (2.35)). The linearisation of the transmission function results in an expression for

the ABI intensity which is easily inverted to recover the Green’s function.

The weak object need only be characterised once and can then be used for re-
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construction of an arbitrary Green’s function satisfying the requirements outlined in

Chapter 4.

We would like to consider separately the two equally crucial components of this

section: weak object design and characterisation. It is to the former we turn to first.

When designing the weak object we must take into account that it should satisfy

(i) the ‘weakness’ criteria (cf. (2.33) and (2.34)),

|∆ϕ(ρ)| � 1, (5.1)

|∆µ(ρ)| � 1, (5.2)

(ii) ∆ϕ, ∆µ must be linearly independent and (iii) each of ∆ϕ and ∆µ should be

aperiodic. These constraints are required to satisfy the reconstruction algorithm and it

was also determined from ARC reconstruction simulations that |∆ϕ| and |∆µ| must

also be approximately the same order of magnitude numerically. This last constraint

on the approximate equality of magnitude between phase shift and attenuation is

difficult to achieve in practice because it implies equality of the real and imaginary

parts of the complex refractive index and the author is unaware of the existence of

such a material.

The most obvious solution which we considered was outlined in the previous

chapter (see text above (4.13)) and involves using a separate object for the weak

phase and weak attenuation. The weak phase object has negligible absorption and the

weak attenuation object has an exactly 2π phase shift (achieved through design and

immersion in refraction matching fluid (Hasnah et al., 2002)). This approach imposes

a number of practical problems and requires high precision components.

An alternative approach is to use a weak phase object (negligible absorption) only

and introduce the requisite weak ‘attenuation’ by propagating the wavefield a distance

z0 prior to impinging on the crystal surface. Propagation through a distance z0 will

endow the field with propagation based phase contrast, proportional to the Laplacian

of the phase (cf. §1.1.5), which can be considered as an ‘effective attenuation’ of some

equivalent object.

With this approach in mind a weak phase object that satisfied the weakness and

aperiodicity requirements was fabricated using electron-beam lithography of a binary

pattern a depth of 0.8µm into a 0.8mm thickness slab of SiO2 with lateral resolution of

400nm, see Figure 5.1(a). The etching pattern was selected to be aperiodic and contain

multiscale feature sizes. The former ensures that there will be no discrete diffraction

peaks while the latter condition attempts to ensure that the power in the diffracted

wavefield is distributed through the spatial frequency spectrum. The reader will recall
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Figure 5.1: Weak object etching pattern. (a) the seal of Friedrich-Schiller University was used
as the aperiodic etching pattern of the weak object. (b) a composite propagation-based phase
contrast image of the weak object showing the accuracy of the etching (SPring-8 BL20XU,
double Si(111) mono, 20keV X-rays, 245m source-sample distance, 1.2m sample-detector
distance).

from Chapter 4 (cf. §4.2 especially the text after (4.6)) that we can reconstruct the

spatial frequencies for which there is an appreciable power in the wavefields incident

and diffracted from the crystal. Other than the requirements just listed the pattern is

arbitrary2.

Let t(ρ) be the projected thickness of the binary mask then its transmission

function, f, is (cf. (2.25))

f(ρ) = exp[−ik(δ− iβ)t(ρ)] (5.3)

≈ exp[−ik(δ− iβ)t]{1 − ik(δ− iβ)∆t(ρ)} (5.4)

where we have split t in to the mean thickness t and deviation from the mean ∆t(ρ).

From (5.3) we can see ϕ = i(δ/β)µ and this object does not satisfy the requirement

of linear independence (condition (ii) following (5.2)). SiO2 was chosen because it

has an amorphous crystal structure to eliminate diffraction and because it is possible

to create high aspect ratio (20:1) binary masks.

With a view to satisfying the approximate equality between ∆ϕ and ∆µ we present

Figure 5.2(a) which is a plot of the real and imaginary parts of the complex refractive

index of SiO2 over a range of hard X-ray wavelengths. The phase shift and attenuation

for 800nm of SiO2 is shown in Figure 5.2(b) over the same range. The difference

between δ and β increases with X-ray energy which suggests we should low energy

X-rays to achieve equivalence between ∆ϕ and ∆µ however as Figure 5.2(b) shows

2The object was fabricated by T. Kämpfe and E.-B. Kley at the Institute of Applied Physics, Friedrich-
Schiller University (Germany) and as such we took the university seal, Johann Frederick (der Gross-
muetige), founder of Friedrich-Schiller University, as the pattern.
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Figure 5.2: Weak object characteristics of SiO2. (a) Log-linear plot of (broken) δ and (solid)
β against energy. (b) Log-linear plot of (broken) phase shift [= (2π/λ)δ(λ)t] and (solid)
attenuation [= (2π/λ)β(λ)t] for thickness t= 800nm, an etching depth readily achievable
using electron-beam lithography.

the difference between ϕ and µ is still approximately two orders of magnitude at low

energies. This difference is too large for successful implementation of our algorithm

and it is necessary to bolster the effective attenuation with PBI.

By introducing a propagation distance between the sample and the analyser crystal,

the field at the entrance plane of the crystal will show PBI phase contrast which, as

mentioned earlier, we will consider to be the effective attenuation of some equivalent

object.

The complex scalar wavefield, ψ, exiting the weak object is the product of a plane

wave and the transmission function (cf. (2.24)),

ψ(ρ, z) = f(ρ) exp(ikzz) (5.5)

which can be related to the field a distance z0 away (see Figure 5.6) by the angular

spectrum of plane waves (cf. §2.4)

ψ(ρ, z0) =
1

(2π)2

∫∫∞
−∞ψ(ρ ′, 0) exp

(
iz0

√
k2 − |κ|2

)
exp[iκ · (ρ− ρ ′)]dρ ′dκ. (5.6)

By adjusting z0 we can tune the magnitude of ∆µ. The PBI contrast for a weak

object is proportional to the Laplacian of the phase (Bremmer, 1952) which cannot

be expressed as a linear algebraic function of the phase, satisfying the requirement of

linear independence. Figure 5.3 shows ∆ϕ and ∆µ plotted against z0 for 20keV hard

X-rays. It can be seen that the ‘attenuation’ increases much more rapidly than the

phase for the first metre of propagation and we conclude to use a sample-to-analyser

distance of 1.2m.

In summary, we have used a weak phase object with negligible absorption in

conjunction with wavefield propagation to create a weak phase-amplitude object. This

method has allowed us to satisfy the four requirements: weakness, aperiodicity, linear
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Figure 5.3: Weak object phase and attenuation against propagation distance. (a) (broken)
|∆ϕ| and (solid) |∆µ| against propagation distance for 20keV X-rays and the phase object
described in the text. (b) a simulated PBI image (z=1.2m) from which the measurements in
(a) were taken.

independence of ∆ϕ and ∆µ and an approximate order-of-magnitude equivalence

between phase shift and attenuation.

We now turn to the characterisation of the weak object which was performed using

propagation-based phase contrast imaging (§1.1.5). The problem of quantitative phase

retrieval (equivalently, projected thickness retrieval for objects composed of a single

material whose complex refractive index is known) from a single propagation-based

phase contrast image was solved by Paganin (Paganin et al., 2002; Paganin, 2006). We

now give a brief account of this solution.

We assume monochromatic z-directed plane waves illuminate a single material

object with projected thickness t(ρ) (cf. (2.25))

ψ(ρ, z = 0) = exp[−ik{δ− iβ}t(ρ)] (5.7)

and would like to retrieve the projected thickness. We will use the TIE (cf. (1.3)) to

relate the phase and intensity in the exit-surface plane of the sample (contact plane) to

the intensity a distance z0 away. We begin with the TIE (1.3),

∇⊥ · [I(ρ, 0)∇⊥ϕ(ρ, 0)] = −k
∂I(ρ, 0)

∂z
(5.8)

where

I(ρ, 0) = exp[−2kβt(ρ)], (5.9)

ϕ(ρ, 0) = −kδt(ρ). (5.10)

The left-hand side of (5.8) may be rewritten as,

− δ∇⊥ · [exp{−2kβt(ρ)}∇⊥t(ρ)] =
δ

2kβ
∇2
⊥ exp[−2kβt(ρ)]. (5.11)
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The longitudinal derivative on the right-hand side of (5.8) can be approximated as a

first-order finite difference equation,

∂I(ρ, 0)

∂z
=
I(ρ, z0) − I(ρ, 0)

z0
. (5.12)

Combining (5.11) and (5.12) with (5.8) gives for the projected thickness,[
1 −

z0δ

2kβ
∇2
⊥

]
exp[−2kβt(ρ)] = I(ρ, z0). (5.13)

Eq. 5.13 is easily solved using the Fourier derivative theorem to give the following

expression which is explicit in the projected thickness,

t(ρ) = −
1

2kβ
ln F−1

[
1

1 − z0δ
2kβ |κ|2

F[I(ρ, z0)]

]
. (5.14)

From (5.14) we may retrieve the projected thickness of a single material objected using

a single propagation based intensity image and so we now turn the measurement of

these images.

The experimental measurement of the PBI images were performed at SPring-8

beamline BL20XU using a non-dispersive double crystal Si(111) monochromator and

245m source to sample propagation distance, see Figure 5.6. The images were recorded

using a CCD camera with an effective pixel size of 0.9µm. A sequence of 500 images,

direct beam and dark current were recorded using an exposure time of 100ms and the

corrected images are shown in Figure 5.4.

The top two images of the figure clearly show a pair of horizontal stripes which

is due to either a variation in thickness of the SiO2 substrate or a warping of the

beryllium window that separated the vacuum beam pipe with the experimental hutch.

This low frequency background variation, which is also present in the lower images of

Figure 5.4, will be seen to significantly compromise the weak object criteria.

Phase retrieval was performed on the images in Figure 5.4 by selecting the matching

1024×1024 pixel subimage area from the 0.7m and 1.2m images which was chosen by

inspection to have the least artifacts. Quantitative comparison of the retrieved phase

required that sub-images matched to the same area of the weak object to single pixel

accuracy.

At this point a two (or more) image phase retrieval algorithm (Paganin and Nugent,

1998) could be applied to the data however this was found to be impractical. Two

image PBI phase retrieval is extremely sensitive to misalignment of the image centroids

and requires that they are aligned with sub-pixel accuracy. Shifting the centroid of

an image can be achieved through zero-padding the image array and transversely
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Figure 5.4: Propagation-based phase contrast images for characterisation of the weak ob-
ject. Images measured at 20keV with (a) 0.13m, (b) 0.7m, (c) 1.2m, (d) 1.7m sample to
detector propagation distance. All scale bars are 0.5mm.

shifting it until the centroid is in the desired location. The impracticality occurs when

attempting to Fourier transform a zero-padded low-contrast image, such as the one

we are using, which introduces ringing artifacts, known as Gibbs phenomenon (Gibbs,

1898), which are greater than the signal we are trying to reconstruct. Since we cannot

avoid using Fourier transforms, as the ARC that we are trying to reconstruct exists in

reciprocal space, we are forced to conclude that centroid shifting is not possible. As a

corollary it is worth mentioning that Fourier transforms performed on data in this

chapter was achieved by ‘reflection padding’ the array to be transformed. Reflection

padding consists of mirroring a square array of side lengthN across its boundary such

that in the padded array, the original array sits in the centre of a 3N × 3N padded

array (Volkov et al., 2002). Padding the image in this manner ensures the image is

continuous, but not necessarily smooth, at the boundary, thereby minimising ringing

artifacts.

The recovered projected thicknesses is presented in the middle panels of Figure 5.5

with their corresponding measured intensity images on the left. The retrieved thickness

shows significant low frequency background variation over which the weak object
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thickness variation is imprinted. The background variation corresponds to either an

approximately 10µm variation in the thickness of the SiO2 substrate or a distortion

in the beryllium window producing PBI aberrations. This will prove to be a serious

limitation to the accuracy with which the ARC can be reconstructed because the

deviation of the projected thickness from its mean value is no longer small. Strategies

to ameliorate this problem will be discussed in §5.3. We note that appropriate filtering

could possibly remove this background however we require that the phase incident on

the crystal actually be weak.

The power spectra of the retrieved projected thickness are presented on the right

of Figure 5.5 to illustrate the core weakness of using PBI to characterise the weak

object. The Fresnel rings in the power spectrum constitute a loss of information at

these spatial frequencies. The information loss was compensated by averaging the

projected thicknesses recovered from the 0.7m and 1.2m PBI images separately. We

can estimate the spatial resolution of the recovered phase using the Fresnel criterion,

NF = g2/λz. If we choose a Fresnel number of 1 then PBI phase retrieval can recover

the projected thickness with a resolution not better than 9µm or approximately 10

pixels which, by inspection, is approximately correct.

Now that we have recovered the projected thickness of the weak object we have

concluded the characterisation process and we are in a position to be able to infer the

complex wavefield incident on the surface of the crystal.

5.2 Experimental design for Green’s function retrieval

Having characterised the weak object we now describe the experimental setup that

was used to record the images that will be used to reconstruct the Green’s function

associated with the ABI analyser crystal.

With reference to Figure 5.6 a planar, monochromatic hard X-ray wavefield illu-

minates the weak object and propagates through a distance z0 = 1.2m before being

incident on the crystal surface. As described earlier the introduction of a 1.2m propaga-

tion distance gives the field at the entrance plane of the crystal an effective attenuation.

The wavefield is then reflected from the analyser crystal and propagates a distance z1

to the detector. In practice we would like the crystal-detector distance to be as small as

practicable which in our experiment was z1 = 0.06m.

The wavefield incident on the crystal surface is given by ψ(x,y, z0). The top and

bottom of the beam intersect the crystal at different distances from the sample and the

resulting propagation difference will result in marginally greater PBI phase contrast
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Figure 5.5: Phase retrieval for weak object characterisation. The left most panels show
measured PBI images at a propagation distance of (top) 0.7m and (bottom) 1.2m that will be
used for phase retrieval. The middle panels show the single image phase retrieval algorithm
applied to the left panels to recover the projected thickness. These images are difficult to see in
print due to the low contrast and we recommend looking at the electronic copy in the PDF
version of the thesis. The right panels show the power spectrum of the projected thickness on
a log scale. All scale bars are 0.5mm.

for the longer propagation distance. With a 1mm beam height this amounts to a

centimetre and was considered negligible.

As discussed in the previous section the wavefield incident at the entrance plane of

the crystal is given by (5.6) and we now define this wavefield to be our weak object (cf.

(4.6)),

ψ(ρ, z0) = exp[iϕ− µ]{1 + i∆ϕ(ρ) − ∆µ(ρ)}. (5.15)

We note that (5.15) makes clear the connection of this approach to in-line holography:

the field transmitted through the weak object, ψ(ρ, z0), is the sum of the direct

beam and a known weak perturbation. Reflection from the crystal will modulate the

amplitude and phase of the field and the detector records the hologram. The hologram

evidently contains the response of the imaging system to all spatial frequencies present

in ψ which allows a massively parallel interrogation of a wide range of reciprocal space

simultaneously.
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Figure 5.6: Schematic experimental setup for ARC reconstruction. 20keV X-rays from
SPring-8 BL20XU illuminate an a priori characterised weak object. The weakly perturbed field
is then Bragg reflected (see inset) from a thick perfect silicon crystal (111) and recorded on a
detector. This single image may be deterministically inverted to recover the complex ARC.

The experiments were conducted at the BL20XU undulator beamline at SPring-8

using 20keV X-rays from a double Si (111) monochromator. The X-ray beam size was

approximately 4(hor) × 2(ver) mm at 245 m from the source. Images were recorded

using a Hamamatsu CCD detector coupled to an optical lens and phosphor screen

with a 0.9 µm effective pixel size and 2(hor) × 1.3(ver) mm field of view.

The range and resolution of the reconstruction are Nyquist limited by the detector

so that forN pixels of size ∆x the maximum frequency is λ/2∆x with a resolution of

λ/N∆x. Whilst these represent an upper limit they are dependent on the scattering

power from the weak object’s smallest features being detectable. As noted earlier the

phase retrieval step put a lower limit of 9µm on the retrievable feature size which

combined with factors including the non-plane wave illumination will serve to limit

the reconstruction to some smaller angular range.

The measured ABI images are presented in Figure 5.7 at various points on the

rocking curve. The range of images were recorded because the algorithm requires

both phase and attenuation contrast to work and the amount of phase contrast can be

tuned by changing the rocking angle. These images could then be used to determine,

by trial and error, which rocking angle gave the best results. The images recorded at
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Figure 5.7: ABI images for ARC reconstruction. Analyser-based phase contrast images of
the known weak object recorded at different values of crystal angular deviation from the Bragg
angle. The left column are measured above the Bragg angle and the right column below it. (a,b)
50% reflectivity, (c,d) 70% reflectivity and (e,f) 100% reflectivity. All scale bars are 0.5mm.

rocking angles above the Bragg angle (left column of Figure 5.7) show a significant

lack of contrast compared to the low angle images and for this reason these images

were not used for reconstructions.

In comparing the ABI images of Figure 5.7 with the PBI images of Figure 5.4 we

can see a magnification in the y-direction of the ABI images. This implies that the

analyser crystal reflection was not symmetric but rather the crystal surface was miscut

by approximately 0.8◦ to the (111) plane. The asymmetric reflection was compensated

for in the post-processing phase by re-scaling the input images to match the output.

A simplex was chosen in each image and then registered using an affine transfor-
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Figure 5.8: Input images for the reconstruction algorithm. (a) the input intensity |ψ(ρ, z0)|,
(b) the input phase Arg[ψ(ρ, z0)], (c) the output intensity |Ψ(ρ, z0 + z1)|. All scale bars are
0.5mm.

mation (Yale, 1988) implemented in ImageJ (v1.37) plugin TurboReg (Biomedical

Imaging Group, École Polytechnique Fédérale de Lausaunne) function for affine trans-

formations. The affine transformation rotates and scales images to a match a simplex

in the two images whilst preserving co-linearity.

We now have the requisite data for ARC reconstruction and we turn to implemen-

tation of the reconstruction algorithm.

5.3 Semi-infinite perfect crystal ARC reconstruction

The problem, as stated previously and solved by (4.26), is to reconstruct the ARC of

the thick silicon crystal, r, given complex wavefield over the entrance plane of the

crystal ψ(ρ, z0) and measured intensity at the detector |Ψ(ρ, z0 + z1)|. We have now

seen how the quantities ψ and |Ψ| have been measured. In §5.1 we have described how

the weak object was characterised so that its transmission function f is known and the

wavefield ψ(ρ, z0) is given by (5.6). |Ψ| was measured directly in the manner described

in §5.2.

The three inputs to the reconstruction algorithm are presented in Figure 5.8. Fig-

ure 5.8(a) and (b) are the measured PBI intensity over the entrance plane of the crystal

and the simulated phase over the same plane from the recovered projected thickness.

The measured PBI intensity was used in Figure 5.8(a) in preference to the simulated

intensity over the same plane from the reconstructed projected thickness because it

did not suffer from the blurring inherent in the phase retrieval process. Through trial

and error it was determined that the 70% reflectivity ABI image (Figure 5.7(d)) gave
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the best reconstruction and so Figure 5.8(c) is taken from that image.

The inputs in Figure 5.8 have been processed to ensure they are aligned to sub-pixel

level using a number of steps which we outline now. The biggest practical problem

was the magnification of the ABI images caused by the asymmetric reflection which

meant the inclusion of an image registration step in the processing. From raw data

the images were flat- and dark-field corrected according to (3.8) and then corrected

for geometrical magnification. A 1024×1024 sub-image was selected by inspection to

have the least artifacts that would deleteriously affect the reconstruction. The use of

sub-images also minimises the effects of the low frequency background variation in

the recovered phase because the deviation from the mean is reduced. The intensity and

phase images (Figure 5.8(a) and (b)) were then registered to the ABI image using the

ImageJ TurboReg plugin. The algorithm is sensitive to image misalignment however

the quality of the match was judged by eye only and this proved sufficient to achieve

acceptable results.

In principle the three inputs to the algorithm, Figure 5.8, are simply fed into

the algorithm and the ARC is output. In practice there are two other constraints

which can be applied to the image data to reduce artifacts. The first of these was

to divide the inputs in Figure 5.8 into smaller sub-images, each of which was run

through the algorithm and averaged for the final result. The sub-images were taken

to be 256×256 pixels and the final result is the average of 100 sub-images. The

second constraint enforces the requirement of even- and odd-ness of the reconstructed

solution. The solution given in (4.26) is in terms of even and odd functions which

when reconstructed using experimental data are in general not purely even or odd so

this constraint is imposed upon them.

The average reconstructed ARC for the thick perfect crystal is presented in Fig-

ure 5.9. This plot is the main result of this chapter and shows the comparison between

the reconstructed and theoretical ARC magnitude and phase for the thick silicon

crystal. This experimental result is the culmination of much of the work presented

in the last chapter on Green’s function retrieval and conclusively demonstrates that

Green’s functions associated with reflection from a perfect crystal can be quantitatively

reconstructed from phase contrast images. Further, this is a beautiful validation of

the classic prediction of the dynamical theory of X-ray diffraction for the phase of the

rocking curve.

We can see that the match between experiment and theory is overall quite good

however there are some clear artifacts in the reconstructions. There are a number

of possible reasons for the discrepancy between the reconstruction and theoretical
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measurement. The input phase variation is of the order of 1 radian (see Figure 5.8(b))

and it is likely that this was a major contributor to the artifacts in the reconstruction.

The weak object with 1 radian phase shift is problematic because it violates the weak

phase criteria but also because, numerically, it is so much bigger than the weak

attenuation (about 0.1). The cause of the unwanted large phase shifts in the weak

object were most likely due to a non-uniform SiO2 substrate or distortions in the

beryllium window. This serves to highlight the difficulty of creating and using a weak

object.

Another likely reason for the discrepancy is the sensitivity of the algorithm to sub-

pixel alignment which, having been done by inspection, may not have been optimal. It

is possible the results could be improved by employing a parameter-search algorithm

that minimises the difference between the reconstruction and the theoretical prediction

however it was felt that this would destroy the objectivity of the reconstructions.

The grey shaded regions show the condition number of the inverse matrix in

(4.26) and represents the region of validity of the reconstruction. A large condition

number indicates that the output of (4.26) varies significantly upon a small change

in the input and so at this point the solution is numerically unstable. At high spatial

frequencies the large condition number is due to the low power scattered into these

frequencies. The large condition number in the vicinity of the DC frequency is due

to the increased susceptibility to noise at this point because the odd components in

(4.26) must necessarily be zero at this point meaning that all information is carried in

only the two even components.

The angular range of the reconstruction is limited by the experimental conditions.

The power spectrum of the input images drops rapidly from the central order indicat-

ing that the power scattered into the highest spatial frequencies was equivalent to that

introduced by noise in the CCD detector. These frequencies are not recoverable using

our technique effectively limiting the reconstruction range and have been excluded

from Figure 5.9. This problem could be addressed with a weak object with finer feature

scales than the estimated 9µm of the object we have used.

Interestingly we have been able to separate instrumental effects which are due to the

monochromator crystals from the reconstructed ARC. This is because the algorithm

simply sees the effects of the crystal because the effects of the monochromator and

source are included in the input field, and so we reconstruct only the effect of the

crystal.
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Figure 5.9: Reconstruction of thick perfect silicon(111) complex ARC. The (solid) recon-
structed and (broken) theoretical (a) magnitude and (b) phase of the ARC. The condition
number is shaded in grey beneath the plots and quantified in the right axis.

5.4 Discussion

In this chapter we presented the result of our Green’s function reconstruction technique

to the Green’s function associated with reflection from the thick perfect silicon (111)

Bragg plane. Our reconstruction was shown to be in quantitative agreement with

classic prediction of dynamical diffraction theory.

This result is a new method for solving the one-dimensional phase retrieval prob-

lem of crystallography. In many cases of practical interest where one is concerned with

inferring crystal structure from diffraction data, the phase of the ARC must be recov-

ered for an unambiguous solution. A number of solutions have been developed to
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address this problem including (cf. §4.3) Fourier analysis of the rocking curve, meth-

ods which utilise the Hilbert transform and standing-wave electron photo-emission

based techniques. In contrast to these techniques, the method we have demonstrated

is deterministic and non-iterative, is able to reconstruct a wide range of angular space

simultaneously and is sensitive to both amplitude and phase of the ARC.

We emphasise that our method, which can be used to reconstruct the entire rocking

curve from a single two-dimensional measurement, is already more efficient than

methods which measure the rocking curve in a serial manner however we reconstruct

the phase as well.

The phase that we reconstructed in Figure 5.9(b) is a beautiful validation of

the classic prediction of the phase of the rocking curve of dynamical diffraction

theory (Authier, 2005). This result paves the way for the possibility of reconstructing

the complex ARC for thick perfect crystal analyser and monochromator crystals as

opposed to measuring the rocking curve and associating with it the theoretical phase.

This last point is particularly important for ABI imaging where both the rocking curve

and its phase must be known for a wave-optical analysis of the forward and inverse

problems.

The positive result of the reconstruction for the perfect crystal suggests an im-

mediate extension to reconstructing the ARC of thin crystalline films and it is in this

area that this result may have the largest impact. For thin crystalline films we can use

this technique to infer crystal structure directly and unambiguously using a single

two-dimensional intensity measurement.

5.5 Summary

In conclusion, we have demonstrated the reconstruction of the complex Green’s

function associated with reflection from a perfect silicon single crystal Bragg plane.

We have developed a method for Green’s function reconstruction in Chapter

4 and the results of this chapter are a culmination of that work which shows that

the technique is viable. The Green’s function we have reconstructed is in excellent

agreement with the prediction of classical dynamical diffraction theory and provides a

validation of the phase predicted by that theory.

We began with the design and characterisation of the weak object that is the crucial

optical element of this technique. The characterisation of the weak object yields the

projected thickness, which is considered a priori information for the reconstruction

algorithm, and allows the complex wavefield at the entrance surface to the crystal to
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be calculated.

Following the characterisation of the weak object we recorded ABI images of

the weak object and these were used to recover the imaging system Green’s function.

Whilst the reconstruction was shown to be in good agreement with the prediction

of dynamical diffraction theory there were a number of limitations imposed by the

experimental conditions. Primarily these were the violation of the weak object criteria,

asymmetric Bragg reflection and complications arising from using PBI phase retrieval

as the characterisation method.

The reconstruction shows that we developed a viable new method for solving the

one dimensional phase problem in crystallography. The technique has wider applica-

tion than crystallography and it can be applied to reconstructing the Green’s function

associated with any one- or two-dimensional linear and shift-invariant imaging system.



Conclusions 6

6.1 Overview

Extensions to analyser-based phase contrast imaging (ABI) have been demonstrated

which allow quantitative measurements to be extracted from images recorded using

an extended incoherent source and that allow the Green’s function associated with an

imaging system to be quantitatively reconstructed. We supplemented the theoretical

and numerical results with numerical simulations and rigorous experiments which in

both cases validated our results.

ABI is predominantly performed at synchrotrons because of the outstanding

brilliance and coherence of those sources. There is a demand however for phase

contrast imaging systems that can be implemented using incoherent X-ray sources. ABI

is a useful tool for quantitative characterisation and its use could be more widespread

if it could be used in conjunction with widely available rotating anode-X-ray sources.

These sources offer a number of advantages over the synchrotron, not in terms of

the quality of the radiation, but rather in practical aspects such as volume of samples

investigated, cost to use and convenience of having an ‘in-house’ characterisation

technique.

In Chapter 3 we studied ABI imaging and phase retrieval using an extended inco-

herent source. We found that ABI contrast depends critically on the spatial coherence

of the incident radiation and degrades decreasing coherence. Using numerical sim-

ulations of an idealised ABI imaging system we showed that the divergence of the

wavefield incident on the analyser crystal should be kept to less than the Darwin

width of the analyser crystal to achieve the best image contrast. There are a number

of common monochromator crystal and configurations and these were considered

for their ability to provide the requisite spatial coherence. We also considered the

stability requirements of the diffractometer and it was found that whilst mechanical

113
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stability would degrade the ABI image, the susceptibility of analyser crystals to thermal

instability was a greater concern. The ambient temperature during a measurement

should be carefully controlled to limit artifacts in the measured image.

We then presented results of an experiment in which quantitative information

was extracted from images recorded using a rotating anode X-ray source with four-

reflection Bartels monochromator. In order to perform quantitative phase retrieval we

demonstrated that the X-ray film has a linear response against exposure time for the

range of exposures that were used for our ABI measurement. Images of a plastic test

phantom were recorded and the projected thickness recovered using a single-image

phase retrieval algorithm which assumed the crystal had a linear transfer function.

The retrieved projected thickness was scaled against an a priori known feature size in

the object and the resulting calibrated projected thickness was compared to a reference

optical microscopy measurement and the two were found to be in excellent agreement.

The conventional utility of phase contrast imaging systems is in visualising samples

that are not easily seen using absorption contrast techniques. In Chapter 4 of this

thesis we investigated an entirely new application of phase contrast imaging systems

by swapping the roles of sample and imaging system. We were able to show that by

imaging a known weak object we could reconstruct the complex linear, shift-invariant

Green’s function associated with the imaging system.

We introduced the weak object and showed that intensity images of the weak

object are linearly proportional to the phase and attenuation of the weak object. This

was exploited to develop a method for reconstructing a linear and shift-invariant,

but otherwise arbitrary, complex Green’s function from two intensity images. This

approach was applied to ABI and it was shown using numerical simulations that the

semi-infinite Green’s function associated with Bragg reflection could be reconstructed

unambiguously from a single measurement. Further simulations showed that when

applied to thin crystalline films our method unambiguously determines the crystalline

structure. In the context of crystallography the Green’s function we seek to reconstruct

is one-dimensional and so can be reconstructed from a single phase contrast image.

The ability to use a single measurement to interrogate a wide range of reciprocal

space simultaneously is enormously advantageous over current serial measurement

techniques which probe reciprocal space points individually. In addition, we recon-

struct the complex function which is not currently possible using standard X-ray

diffractometry.

Amongst the other possible uses for Green’s function reconstruction, we stress the

applicability of this work to the characterisation of thin layered crystalline films which
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are enormously important to the semiconductor industry.

The Green’s function reconstruction approach developed in chapter 4 depends

crucially on whether an optical element with the properties ascribed to the weak object

in Chapter 4 can be realised in practice. In Chapter 5 we addressed this problem by

giving the results of an experiment in which the Green’s function associated with Bragg

reflection from a thick perfect crystal was reconstructed.

We began Chapter 5 by presenting the design and characterisation of the weak

object. The weak object consists of a binary pattern etched into amorphous SiO2 and

was characterised using phase retrieval from propagation based phase contrast images.

The characterised weak object along with the measured ABI image were then used as

inputs to the reconstruction algorithm given in Chapter 4.

The reconstructed ARC, the Fourier space dual to the Green’s function, associated

with Bragg reflection from the thick silicon 111 Bragg plane was found to be in excellent

agreement with the prediction of classical dynamical diffraction. The reconstruction

validates our approach and shows that it is able to work in practice.

The work of Chapter 5 is the culmination of the theory presented in Chapter

4. The success of this technique applied to crystallography suggests that the other

applications hinted at in that chapter such as reconstructing Schrödinger or Helmholtz

propagators could profitably be studied using this technique.

6.2 Limitations of this study and suggestions for future work

The ABI phase imaging and quantitative phase retrieval reported in Chapter 3 repre-

sents a significant step forward for this technique and the prospects of it becoming a

standard quantitative characterisation tool with extended incoherent sources.

A number of challenges persist that require improvement. The biggest practi-

cal impediment to the viability of incoherent source ABI is the long measurement

time. In the experiment presented in Chapter 3 the measurements were recorded

over approximately four hours. The main reason for this is the use of a four re-

flection monochromator which rejects a significant proportion of the flux from the

rotating-anode tube. The Bartels monochromator was chosen because it provides

the lowest incident beam divergence and thus the highest ABI contrast. If one was

willing to sacrifice some sensitivity to phase gradients then it would be possible to

reduce the exposure time by using a monochromator with larger band-pass. Further

study is required of this problem to determine the optimum source/monochromator

configuration for a given analyser crystal and sample size.
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The phase retrieval performed on the ABI data of Chapter 3 used a tunable pa-

rameter to expedite the process because the refractive indices of the sample were not

determined experimentally (although these could be estimated without a significant

loss of accuracy) and because the working point of the incident beam on the analyser

crystal rocking curve was not constant. The use of the tunable parameter significantly

simplifies the phase retrieval process but necessitates the use of a priori information

about the sample, such as its maximum thickness, in order to extract a quantitative

measurement. Clearly it is undesirable from the point of view of sample character-

isation to require information about the sample that is to be measured. We suggest

two ways to address the necessity of using the tunable parameter phase retrieval algo-

rithm. The first and easiest is to provide better control of the ambient temperature

in conjunction with reducing the measurement time so that the impact any tempera-

ture fluctuations is minimised. The second is the development of a dynamic phase

retrieval algorithm where the crystal transfer function is expanded as a Taylor series in

time as well as reciprocal-space. Provided that the temperature fluctuation could be

approximated as a linear or quadratic function of time the associated inverse problem

may be tractable.

We have demonstrated that the Green’s function retrieval technique can be applied

to crystallographic data. The technique can be applied immediately to other linear,

shift-invariant complex Green’s functions such as the Helmholtz and Schrödinger

propagators, the reconstruction of which would be of fundamental interest given their

importance in optics, diffraction and quantum mechanics.

Continuing with the technique in crystallography, it is immediately applicable to

the characterisation of thin layered films and superior to currently used techniques

which involving fitting functions to the measured rocking curve. As the rocking curve

represents only half the data the reconstructed crystal structure cannot be determined

uniquely without a prior information, a problem which the approach of Chapters 4

and 5 does not suffer from.

The Green’s function reconstruction method would significantly benefit by ad-

dressing the following two issues. First, extending the theory to remove the require-

ment of linearity and shift-invariance would significantly increase the range of applica-

bility of this technique. The generalisation to arbitrary Green’s functions would allow

the investigation of, for example, lenses and arbitrary crystalline structures. Removing

the requirement of linearity and shift-invariance would be a formidable theoretical

accomplishment however.

From a practical standpoint the weak-object design could be improved so that
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there was significantly more refraction through large angles. This would allow the

reconstruction to probe a wider range of reciprocal space in a single measurement

further maximising a significant advantage this approach has over conventional serial

measurement processes such as X-ray diffractometry. The characterisation of the

weak object would be best carried out using a method other than propagation based

phase contrast phase retrieval because the Fresnel rings in the power spectrum of the

wavefield incident on the crystal represent regions where the spatial frequency of the

Green’s function cannot be reconstructed.

The registration of the images that serve as the inputs to the Green’s function

reconstruction algorithm must be aligned with sub-pixel accuracy. The process of

aligning these images is labour intensive and time consuming. Future reconstructions

would be expedited by attaching fiducial markers with feature sizes the same as the

detector pixel size to the weak object in the form of a simplex. Image registration

could, under those circumstances, be automated which would massively increase the

rate at which reconstructions could be processed.

6.3 Summary

This thesis reported the development of two quantitative extensions to analyser-based

phase contrast imaging with hard X-rays. In particular, we have shown that it is

possible to perform quantitative phase retrieval on ABI images measured using an

extended incoherent source and developed a new approach which allows complex

Green’s functions associated with linear, shift-invariant imaging systems to be recon-

structed. For both of these applications experiments were conducted to demonstrate

the validity of the approach.

The work that is presented in this thesis is immediately applicable to the problem

of characterising the crystalline structure of thin layered films. The Green’s func-

tion reconstruction technique is generalisable to other linear, shift-invariant Green’s

functions such as the Schrödinger and Helmholtz propagators. Improvements to

the technique could focus on removing the requirement of linear, shift-invariance

although this is a formidable problem.

Whilst ABI has been implemented using incoherent sources the practice is not

widespread. Our research shows the most significant impediment to widespread use of

ABI as a quantitative characterisation tool for use with a rotating anode source is the

prohibitive exposure time. Further investigation of the optimal tradeoff between con-

trast and exposure time for given source-monochromator configurations is required
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to make ABI practicable with extended incoherent X-ray sources.
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Appendix A

A relationship between reciprocal space ARC and direct space

Green’s function for thick perfect crystal

The amplitude reflection coefficient of a thick perfect crystal is an important quantity

in ABI and this thesis. In Chapters 4 and 5 we compare the reconstructions of this

function to its known theoretical form.

In this appendix we present a derivation of the link between the reciprocal and

real space representations.

We first begin with some house keeping to get the form of r as presented by

Afanas’ev and Kohn (1971)[Eq. 3.24, p.425] into a more manageable form. The ARC

for the thick perfect crystal Bragg reflection is (cf. (2.60)),

r(η ′) =
1

2χḡC
[−η ′ +

√
η ′2 + ζ2] (1)

where η ′ = αgγ + χ0(1 − γ), ζ2 = 4γC2χgχḡ, αg is the resonant error associated

with the angular deviation from the Bragg angle, γ = γ0/γg is the ratio of the sines of

the angles of incident to diffracted waves, C is the polarisation constant, χg and χḡ

are the Fourier coefficients of the crystal polarisability.

We will introduce the same parameters as Afanas’ev and Kohn (1971),

η ′ = τA, (2)

ζ = −iτB, (3)

τ =
2 sin 2θB
k|γg|

(4)

where A and B are,

A = kχ0
γ0 + |γg|

2 sin 2θB
− kαg

γ0

2 sin 2θB
, (5)

B =
kC
√
χgχḡγ0|γg|

sin 2θB
. (6)

We make explicit use of the fact that γg < 0 for Bragg geometry so that now γ =

γ0/|γg| and (1) becomes,

r(A) =
− sin 2θB
k|γg|χḡC

(A−
√
A2 − B2). (7)
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Physically A describes the deviation from the Bragg angle such as occurs from rocking

the crystal so that α = 2ω sin 2θB whereω is the the small deviation from the Bragg

angle (Gureyev and Wilkins, 1997). We expect the argument of r to also have a term

which allows for the spatial frequency η = kx/k so that r = r(A− η). We choose to

work with η during the following derivation and we add A in at the end using the

Fourier shift theorem (Bracewell, 1986).

Our goal is to solve the following integral (Gureyev and Wilkins, 1997),

G(x) =
− sin 2θB
k|γg|χḡC

∫∞
−∞

[
η− sgn(1 + η/B)

√
η2 − B2

]
exp(iηx)dη. (8)

We first divide by B and rescale η→ η/B and x ′ = −Bx to give1,

G(x ′) = −
kχgγ0C

sin 2θB

∫∞
−∞

[
η− sgn(1 + η)

√
η2 − 1

]
exp(−iηx ′)dη. (9)

We now have the integral into the desired form and we will ignore multiplicative

factors until we have solved the integral. To that end we break the integral into three

parts,

I(x ′) =

∫∞
−∞

[
η− sgn(1 + η)

√
η2 − 1

]
exp(−iηx ′)dη =∫∞

1

(
η−

√
η2 − 1

)
exp(−iηx ′)dη+∫1

−1

(
η−

√
η2 − 1

)
exp(−iηx ′)dη+∫−1

−∞
(
η+

√
η2 − 1

)
exp(−iηx ′)dη (10)

and labelling them top down I1, I2 and I3 we consider each in turn.

Beginning with the third integral we substitute η = − cosh θ to give,

I3(x
′) =

∫−1

−∞
(
η+

√
η2 − 1

)
exp(−iηx ′)dη (11)

= −
1
2

∫∞
0

(
1 − e−2θ) exp(ix ′ cosh θ)dθ. (12)

From (12) we make the further substitution t = ieθ to give,

I3(x
′) = −

1
2

∫ i∞
i

(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dt. (13)

1We introduce the negative sign in x ′ because it saves us carrying the negative in the exponent
throughout the calculation. Our final result is the sum of two even order Bessel functions of the first
kind which, being even, are invariant to the negative sign and so we will eventually ignore it. If we were
to continue with the negative sign the contour integral in Figure 1 would need to be reflected about the
imaginary axis.
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Figure 1: Bessel function contour integral. Direction is as given and the branch cut is indicated
in red.

Likewise for I1 we make the substitutions η = cosh θ then t = ieθ to give,

I1(x
′) = −

1
2

∫−1

−i∞
(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dt. (14)

Finally for I2 we substitute η = cos θ and t = ieiθ,

I2(x
′) = −

1
2

∫ i
−i

(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dθ. (15)

We may now reassemble I to give,

I(x ′) = −
1
2

∫ i∞
−i∞

(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dt. (16)

We would like to make use of the identity,

Jn(x ′) =
1

2πi

∮ (
t−n−1) exp

[
x ′

2

(
t+ t−1)]dt, (17)

where Jn is Bessel function of the first kind and order n, to rewrite (16) as a sum of

Bessel functions. To this end we represent (16) as a contour integral in the complex

plane along the path Γ in Figure 1. We note that, for this contour integral, in the

following we must assume that x ′ is a positive real quantity2 and this will be included

explicitly in the final result.

Noting that (16) can be expressed as,

I(x ′) =

3∑
i=1

∫
Γi

(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dt (18)

we now show that

lim
R→∞,ε→0

8∑
i=4

∫
Γi

(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dt = 0. (19)

2The parameter B will be complex, in general. In the following we must assume the imaginary part
of B is negligible relative to the real part.
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Take the integral,

I4(x
′) =

∫
Γ4

(
t−1 + t−3) exp

[
x ′

2

(
t− t−1)]dt (20)

and parameterise the curve Γ4 using t = R exp(iθ) so that,

I4(x
′) = i lim

R→∞,ε→0

∫π−ε

π
2

(
1 − R−2e−2iθ) exp

(
x ′

2

[
Reiθ −

1
R
e−iθ

])
dθ. (21)

As R→∞ the real term proportional to R in the exponent will dominate however in

this quadrant cos θ is negative and this integral will vanish. A similar argument applies

to I8(x ′).

We will now show that I5(x ′) = −I7(x
′) by introducing the parameterisations

t = θ± iε,

I5(x
′) = lim

R→∞,ε→0

∫0

−R

(
(θ+ iε)−1 + (θ+ iε)−3) exp

(
x ′

z

[
θ+ iε−

1
θ+ iε

])
, (22)

I7(x
′) = − lim

R→∞,ε→0

∫0

−R

(
(θ− iε)−1 + (θ− iε)−3) exp

(
x ′

z

[
θ− iε−

1
θ− iε

])
(23)

where the minus multiplying I7 comes from swapping the limits. We can see that in

the limit ε→ 0 these integrals will cancel each other.

For I6 we use t = ε exp(iθ),

I6(x
′) = i lim

ε→0

∫−π
2

π
2

(
1 + (εeiθ)−2) exp

(
x ′

2

[
εeiθ − ε−1e−iθ

])
dθ. (24)

Now, in I6 the term in the exponent inversely proportional to ε will dominate but in

the right half-plane cos θ is positive and so this integral vanishes in the limit.

These results allow us to express (16) as,

I(x ′) = −iπ
(
J0(x

′) + J2(x
′)
)

(25)

If we substitute x ′ → Bx and include multiplicative factors (cf. (9)) we have,

G(x) = iπ
kCχgγ0

sin 2θB
(J0(Bx) + J2(Bx))H(x) (26)

where H(x) is the Heaviside step function which ensures x is positive. Finally, we can

include A using the Fourier shift theorem and we have the desired result (cf. Afanas’ev

and Kohn (1971)[Eq. 3.22, p. 425]),

G(x) = iπ
kCχgγ0

sin 2θB
(J0(Bx) + J2(Bx))H(x) exp(iAx) (27)



Appendix B

Analyser-based phase contrast imaging and phase retrieval

using a rotating anode X-ray source.

This appendix presents a reprint of the paper

“Analyzer-base phase contrast imaging and phase retrieval using a rotating

anode X-ray source”

D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraeußlich, O. Wehrhan, I.

Uschmann and E. Förster

Applied Physics Letters 91, 254110 (2007)

This paper presents the results of an experiment conducted at the Institute of

Optics and Quantum Electronics, Friedrich-Schiller University, Jena Germany in late

2006. A rotating anode X-ray source is used to create quantitative phase contrast

images of a plastic phantom.

The experiment was conceived between myself, Dr David Paganin, Dr Konstantin

Pavlov and the experimental design was largely contributed by myself. The collab-

oration with our German colleagues was initiated through the head of the Institute

Professor Eckhardt Förster. Dr Kraeußlich manages the X-ray diffractometers and

trained me in their use and together with Mr Frank Perner trained me in the use of the

Labview code which I modified to run the shutter and motor controls. Dr Wehrhan

trained me in the use and development of the X-ray film and Dr Uschmann built the

sample and detector translation stages and the shutter.

I designed and conducted all other aspects of the experiment myself. The post-

measurement image processing was my own work and the phase retrieval was per-

formed by myself in collaboration with Drs Paganin and Pavlov. I wrote and produced

the article presented in this appendix.

Overall, I estimate my contribution to this paper as 90%.

Reprinted with permission from D. J. Vine, Applied Physics Letters, 91, 254110

(2007). Copyright 2007, American Institute of Physics.
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a rotating anode x-ray source
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We have performed an analyzer crystal based phase contrast imaging �ABI� experiment using a
rotating anode x-ray source. The use of such an incoherent source demonstrates the potential of ABI
as a quantitative characterization tool for the laboratory environment. A phase contrast image of a
plastic phantom was recorded on high resolution x-ray film and the projected thickness was
retrieved from a single image. The projected thickness recovered from the phase contrast image was
shown to quantitatively agree with a reference optical microscope measurement. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2825426�

Analyzer-based phase contrast imaging �ABI� is a sensi-
tive method for imaging and quantitative measurement of the
internal composition of samples that weakly diffract hard
x-rays.1–21 ABI utilizes diffraction from a perfect crystal to
convert small distortions in the wavefront incident on the
analyzer into measurable intensity variations of the corre-
sponding diffracted wavefront. ABI experiments using syn-
chrotron x-ray sources are capable of producing high quality
images due to the high coherence and large flux of such
sources. The use of an incoherent x-ray source with rela-
tively low flux is also capable of producing good quality ABI
images.1–5 In this letter, we show that such images can be
analyzed using phase retrieval to yield quantitative measure-
ments of a sample’s projected thickness in many practical
situations where synchrotron radiation is not available or, as
we shall show, necessary.

Recently, there has been considerable interest in devel-
oping phase contrast imaging systems that can be imple-
mented in a laboratory using either “tabletop
synchrotrons,”22–24 conventional sealed tube and rotating an-
ode x-ray sources with propagation-based phase contrast,25

and ABI.1,2,4,8 The grating interferometer26,27 has similar
source requirements to the ABI method presented here; both
are suitable for imaging large areas, and both are sensitive to
the one-dimensional transverse phase gradient. The methods
use different optical elements: mutually aligned gratings and
a single near-perfect crystal, respectively. One of the princi-
pal drivers of all of the above work is the potential useful-
ness of phase contrast techniques and ABI, in particular,28 for
medical applications and, thus, the need for a device that can
operate in a clinical environment. The drawback of conven-
tional sources for use in phase contrast experiments is that
the radiation they produce is often of insufficient coherence.

The formation of ABI contrast depends critically on the
temporal and spatial coherence of the wavefield incident on

the sample. In terms of the spatial and temporal coherence,
synchrotron radiation is measurably more coherent than a
rotating anode with the optical elements described in this
letter. The dependence of image contrast on temporal coher-
ence can be understood in relation to the sensitivity of the
analyzer crystal on wavelength. If we compare the analyzer
crystal’s rocking curve measured with monochromatic radia-
tion to that measured with quasimonochromatic radiation,
the latter will be broader. Since ABI contrast is proportional
to the rocking curve gradient, a broader rocking curve will
mean lower contrast. A similar effect is true for fully and
partially spatially coherent radiation which implies that a di-
vergent beam will also reduce ABI image contrast. The
monochromator crystals increase the spatial coherence of the
source by extracting a pseudoplane wave component from
the spherical wave produced by a pointlike radiator in the
source29–31 resulting in very low divergence beams. This is
equivalent to moving the source to a large distance from the
object. The use of Cu K�1 radiation means that the source is
quasimonochromatic ��� /��3.2�10−4 �Ref. 32�� and the
monochromator essentially collimates the beam. This can be
compared to the synchrotron storage ring which is a chaotic,
polychromatic source and requires a monochromator and a
large source to object distance to provide both spatial and
temporal coherence.

In this letter, we demonstrate the implementation of a
simple ABI system using a rotating anode source and x-ray
film that is used to measure the projected thickness of
a plastic phantom. The measured projected thickness is
compared to a reference measurement of the phantom found
by calculating the projected thickness from an optical
microscope image of the phantom’s cross section. These
independent measurements were found to be in quantitative
agreement.

The principles of analyzer-based phase contrast imaging
are as follows. Let a planar, monochromated x-ray wavefield
illuminate an area of a sample such that the field exiting the
sample is a function of the sample’s three-dimensional com-a�Electronic mail: david.vine@sci.monash.edu.au.

APPLIED PHYSICS LETTERS 91, 254110 �2007�

0003-6951/2007/91�25�/254110/3/$23.00 © 2007 American Institute of Physics91, 254110-1
Author complimentary copy. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
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plex refractive index,33 as in Fig. 1. The analyzer crystal is
oriented so that the beam in the absence of the sample is
incident on the crystal close to the Bragg angle of some
suitable reflection. With the sample in the beam, the wave-
field will be refracted and, thus, differentially reflected as a
function of the refraction angle.1,2,18,34

The finite source size will effectively blur the image,
meaning that higher resolution images could be obtained by
focusing the electron beam to a small spot on the anode;
however, for this application, a focal spot of the order of a
square millimeter is satisfactory.

The experiment was conducted using a Siemens D5000
x-ray diffractometer and K�1 radiation from a copper
rotating anode x-ray source operating at 30 kV /100 mA
with focal spot of 0.5 �horizontal��1.0 �vertical� mm2. The
monochromator-sample, sample-analyzer crystal, and
analyzer-detector distances were 10, 15, and 25 cm, respec-
tively. Two channel-cut crystals forming a four-reflection
Ge�220� Bartels-type monochromator were used to collimate
the beam, the analyzer crystal used was Ge�220� and the
longitudinal and transverse coherence lengths35,36 of the field
after the monochromator ��� /��1.5�10−4 �Ref. 37�� were
calculated to be ll=�2 /��=1 �m and lt=� /��=2.5 �m, re-
spectively, where �� is the angular width of the monochro-
mator crystal.

Our sample was the interlocking strip from a resealable
plastic bag. The strip cross section is shown in Fig. 2�a� and
the corresponding ABI image in Fig. 2�b�. The beam size at

the sample was approximately 0.2�1.5 mm2 so the image in
Fig. 2�b� is a composite of multiple overlayed exposures.
The data were acquired over approximately 4 h. The ambient
temperature over this time varied within ±0.5 K and was
responsible for thermal drift in the analyzer crystal of ap-
proximately 1.2 arc sec. The thermal drift �and to a lesser
extent, mechanical drift� is evident in the background inten-
sity variation in Fig. 2�b� because it changes the point of the
zero-deviation beam on the rocking curve.

The projected thickness in Fig. 2�c� was retrieved from
the ABI image in Fig. 2�b� using a single image phase re-
trieval algorithm.14,38 This single image phase retrieval is
valid if the following assumptions are satisfied: �i� the object
is composed of a single material, �ii� the projection approxi-
mation for the object is valid, �iii� the crystal is laterally
homogeneous, �iv� imaging can be described using the trans-
fer function formalism, and �v� the refraction angles are
small. Under these assumptions, the sample’s projected
thickness T�x ,y� is related to the measured phase contrast
intensity image ID�x ,y� in the following way:14

T�x,y� = − � loge F−1�FID�x,y�
1 + ikx�

� . �1�

Here, F is the two-dimensional Fourier transform Ff�x ,y�
=1 /2���−	

	 f�x ,y�exp− i�xkx+yky�dxdy, � is a proportional-
ity constant discussed below, and � is a real parameter that
encompasses the refractive index of the sample and the state
of the imaging system. The value for � is chosen by inspec-
tion when the first derivative contrast evident at the sharp
edges of the reconstructed image �Fig. 2�c�� just disappears
�see, e.g., Refs. 14 and 38�. The use of the “tunable” param-
eter � greatly simplifies the process of retrieving the pro-
jected thickness because it makes knowledge of the exact
chemical composition, complex refractive index, and state of
the imaging system redundant. It is particularly suitable for
this experiment because, due to the thermal drift of the ana-
lyzer crystal described previously, the state of the imaging
system was not constant over the duration of the experiment.

The scale of the retrieved projected thickness is cali-
brated using the parameter � against an a priori known fea-
ture size of the object. In this case, we used an independent
measurement of the maximum projected thickness and scaled
the retrieved projected thickness measurement so that both
measurements had the same maximum thickness. The re-
quirement of imaging a single material object may be re-
moved if additional images are collected with the imaging
system in a different state �change of wavelength, varying
the analyzer crystal rocking angle�.10,14 The quality of the
reconstruction could be improved by allowing for Fresnel
diffraction in the sample-detector propagation distance.15,17,39

However, the projected thickness retrieved under the as-
sumption of a negligible propagation distance is evidently
suitable for the analysis given here.

The retrieved projected thickness image is shown in Fig.
2�c�, and Fig. 2�d� shows a line profile comparison of the
projected thickness using x-ray data against a calculated pro-
jected thickness using an optical microscopy image of a
cross section of the sample. The two measurements quanti-
tatively agree and the discrepancy between the measure-
ments can be attributed to two factors. The first is the lack of
temperature control during the experiment which caused the
background intensity to vary throughout the experiment. The

FIG. 1. �Color online� Experimental setup to record an analyzer-based phase
contrast image using a rotating anode x-ray source.

FIG. 2. �a� Optical microscopy image of cross section of plastic test phan-
tom, �b� recorded ABI image of sample in �a�, �c� the retrieved projected
thickness of �b�, and �d� a line profile showing the average projected thick-
ness retrieved from the x-ray data �solid line� and the projected thickness
calculated from the cross section shown in �a� �dotted line�.
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second is the destructive testing of the sample that was nec-
essary to record the optical image. The optical measurement
process requires a cross section of the sample which must
irrevocably damage it, and we are forced to assume that the
profile that was measured is a good approximation to that
used in the experiment.

In conclusion, we have implemented a simple and acces-
sible method for quantitative analyzer-based phase contrast
imaging using a laboratory source. The resulting images
demonstrate that, depending on the accuracy and resolution
of the required measurement, it is not necessary to have a
highly coherent synchrotron source to perform quantitative
analyzer-based phase contrast.
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Appendix C

Unambiguous reconstruction of the amplitude reflection

coefficient of a laterally homogeneous crystal using

analyzer-based phase contrast imaging

This appendix presents a reprint of the paper

“Unambiguous reconstruction of the amplitude reflection coefficient

of a laterally homogeneous crystal using analyzer-based phase-contrast

imaging”

D. J. Vine, D. M. Paganin, K. M. Pavlov and S. G. Podorov

Journal of Applied Crystallography 40, 650 (2007)

This paper contains a theoretical development which allows an analyser-based

phase contrast image of a known weak object to be inverted to reconstruct the complex

amplitude reflection coefficient of the analyser crystal. The reconstruction algorithm

is applied to reconstruct the kinematic diffraction ARC for a linearly strained crystal

and it is then shown how the crystalline structure may be inferred unambiguously

from the experimental data.

The kernel of the idea was conceived during discussions between myself, Dr

David Paganin and Dr Konstantin Pavlov. The theory was developed by myself using

the formalism developed Dr Nesterets in (Nesterets et al., 2004). The numerical

simulations were coded and run by myself. The use of logarithmic derivatives in

arriving at Eq. 18 was suggested by Dr Sergey Podorov who also participated in fruitful

discussions throughout the research. I also wrote and produced the paper presented

in this appendix.

Overall, I estimate my contribution to the work presented in this paper as 90%.

Errata

Figure 5(c) abscissa largest value should read 10 and not 1.0.

On the RHS of Equation 13 all of the x in the argument of ∆E2
in(x,y) should be

155



156 A C

primed.

Reproduced with permission of the International Union of Crystallography

http://journals.iucr.org/


electronic reprint

Journal of

Applied
Crystallography

ISSN 0021-8898

Editor: Gernot Kostorz

Unambiguous reconstruction of the complex amplitude reflection
coefficient of a laterally homogeneous crystal using analyser-based
phase-contrast imaging

D. J. Vine, D. M. Paganin, K. M. Pavlov and S. G. Podorov

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained.
Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission
in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

J. Appl. Cryst. (2007). 40, 650–657 D. J. Vine et al. � Complex amplitude reflection coefficient

U        

    -    157

Reproduced with permission of the International Union of Crystallography

http://journals.iucr.org/


research papers

650 doi:10.1107/S0021889807021097 J. Appl. Cryst. (2007). 40, 650–657

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 18 January 2007

Accepted 27 April 2007

# 2007 International Union of Crystallography

Printed in Singapore – all rights reserved

Unambiguous reconstruction of the complex
amplitude reflection coefficient of a laterally
homogeneous crystal using analyser-based
phase-contrast imaging

D. J. Vine,a* D. M. Paganin,a K. M. Pavlova,b and S. G. Podorova

aSchool of Physics, Monash University, Victoria 3800, Australia, and bMonash Centre for

Synchrotron Science, Monash University, Victoria 3800, Australia. Correspondence e-mail:

david.vine@sci.monash.edu.au

A theoretical approach is developed to invert analytically a hard X-ray analyser-

based phase-contrast image of a known weak object to recover the complex

amplitude reflection coefficient (ARC) of a laterally homogeneous crystal.

Numerical simulations test the method to recover the ARC from two systems of

interest: a thick perfect crystal and a linearly strained thin film. For the latter

model, a kinematical diffraction approximation was used to recover the one-

dimensional deformation profile from the ARC.

1. Introduction

The problem of unambiguously determining the deformation

field and chemical composition of layered crystals and thin

films from diffraction data is of significant practical impor-

tance (Pietsch et al., 2004; Fewster, 2003; Birkholz et al., 2006).

X-ray diffraction (XRD) is a standard tool for investigating

crystals to determine these properties, but in general both the

intensity and the phase variations imparted by the crystal on

the diffracted X-ray wavefield must be known to arrive at an

unambiguous solution.

In this paper we propose an analytical solution to the

problem of recovering the crystal’s complex amplitude

reflection coefficient (ARC) using an analyser-based X-ray

phase-contrast image (Förster et al., 1980; Somenkov et al.,

1991; Ingal & Beliaevskaya, 1995; Davis, Gao et al., 1995;

Davis, Gureyev et al., 1995; Paganin, 2006). We then derive

(within the framework of the kinematical diffraction theory)

an unambiguous, analytic solution to the problem of deter-

mining the interplanar spacing of a layered crystal from a

single two-dimensional intensity measurement using the

recovered complex ARC. We present numerical simulations

that show the implementation of our method and how the

interplanar spacing may be recovered once the complex ARC

has been retrieved using our technique.

Before proceeding, let us illustrate the essence of our

method by way of a simple example. With reference to

Fig. 1(a), consider an idealized standard XRD scenario in

which a single plane wave A is incident at an angle � upon the

surface of a laterally homogeneous crystal C. The intensity of

the reflected plane wave B is then registered using the

detector D, which need not be position sensitive. The phase of

the reflected plane wave is lost, with one performing a series of

experiments for a sequence of angles �, so as to build up the

rocking curve of the crystal. Compare this with the ‘paralle-

lized’ scenario in Fig. 1(b), where an incident plane wave E

passes through a known weak phase-amplitude screen F, to

yield a known coherent superposition of plane waves Gn for

n ¼ 1; 2 etc. This coherent superposition of plane waves is

then reflected from the surface of the same crystal C, with the

reflected waves Hm for m ¼ 1; 2 etc. then mutually interfering

to form the two-dimensional analyser-based phase-contrast

image that is registered over the surface of the position-

sensitive detector I. This phase-contrast image evidently

contains information regarding both the amplitude and the

phase of the complex ARC of the crystal, since (i) the mutual

interference of the reflected plane waves is governed by both

of these quantities, and (ii) a continuum of incident angles � is

contained within the field at the exit surface of F. The method

illustrated in this paper shows how one may solve the inverse

problem of determining the complex ARC of the crystal, given

a known weak phase-amplitude object F, together with the

Figure 1
(a) In an idealized X-ray diffraction experiment a plane wave is diffracted
from a laterally homogeneous crystal that is then incident on a point
detector, which detects the reflected intensity at a series of angular space
points separately. (b) Our method illuminates the crystal with a known
coherent superposition of plane waves Gn. After reflection from the
crystal, an area detector records the interference pattern from
contributions of each plane wave component Hm (equivalent to
measuring the reflectivity of a continuum of angular space points in
parallel), thereby recording both phase and intensity modulations
imparted by the crystal.
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analyser-based phase contrast image of this object registered

by the detector.

We now give a brief overview of what has been achieved to

solve the problem of determining the interplanar spacing of

layered crystals from X-ray diffraction data (Goncharskii et

al., 1992). The deformation profile of such crystals can be

obtained directly from the rocking curve using fitting proce-

dures (Speriosu et al., 1979; Petrashen’, 1975; Kyutt et al.,

1980). This method cannot guarantee a unique solution

because of the existence of so-called ‘crystal analogues’,

namely crystals of differing structure that have the same

reflectivity (Afanas’ev & Fanchenko, 1986, 1988; Afanas’ev et

al., 1990). The method of integral characteristics gives the

average strain for thin layers (Afanas’ev et al., 1977, 1990;

Kohn et al., 1981). The strain profile may be obtained directly

from the rocking curve using a discrete form of the kinematic

ARC (Stepanov, 1994). Iterative schemes using Fourier

analysis of the rocking curve have been proposed for the

kinematic (Podorov et al., 1994, 1999), semi-dynamical

(Podorov et al., 1998) and dynamical diffraction regimes

(Podorov & Punegov, 1999). These schemes are often

computationally intensive, slow and prone to stagnation

without necessarily achieving the correct solution. Phase

retrieval can be implemented using the Hilbert transform

(Petrashen’ & Chukhovskii, 1989), but the solution is ambig-

uous and an appropriate algorithm is required to choose the

unique solution (Nikulin, 1998; Dilanian et al., 2006).

Measuring the distribution of photoemission electrons due to

X-ray standing waves in dynamical diffraction may be used to

infer the phase (Afanas’ev & Kohn, 1978; Koval’chuk & Kohn,

1986; Koval’chuk et al., 1986). The reliance of standing wave

methods on the detection of photoelectrons means that they

are limited to investigating near-surface layers where there is

an appreciable probability of an electron escaping the crystal.

A variant of the standing wave approach measures the

distribution of both secondary photoelectrons and the scat-

tered X-rays to find the deformation field in surface layers

much smaller than the extinction length (Vartanyants et al.,

1989). Alternatively, the phase can be retrieved in multiple-

beam diffraction by considering the interference of the

diffracted waves in a crystal (Hart & Lang, 1961; Authier,

2005). Neutron reflectometry can recover phase information if

the sample is mounted on a known reference layer (Majkrzak

& Berk, 1995; Majkrzak et al., 2000).

In contrast to the limitations of the techniques just outlined,

the method that we propose gives a non-iterative, analytic

solution for the ARC that requires no special sample

preparation, is valid for both kinematical and dynamical

diffraction regimes, and works with symmetric and asymmetric

reflection, and with Bragg and Laue diffraction geometries.

Our method also determines the ARC over a wide range of

angular space simultaneously and is not susceptible to the

problem of crystal analogues; futhermore, the inversion

algorithm is fast and robust in the presence of realistic levels

of experimental noise.

We require only that (i) the sample crystal be locally

laterally homogeneous over the area of X-ray illumination,

and (ii) the action of the crystal on the incident X-rays may be

modelled using the transfer-function formalism (Paganin,

2006). Notwithstanding the X-ray illumination coherence

requirements, our experimental setup is very similar to stan-

dard XRD; the only differences are the use of an area detector

and the addition of an optical element between source and

sample crystal (the details of which are further described in

the following section).

Although we exemplify the method by uniquely recon-

structing the complex amplitude reflection coefficient for

X-rays diffracted from a laterally homogeneous crystal, we

note that it is applicable to single-measurement reconstruction

of any two-dimensional linear shift-invariant transfer function.

As such, our technique is applicable to the characterization of

a wide variety of shift-invariant linear imaging systems that

exhibit phase contrast, such as Zernike phase contrast,

differential interference contrast and Schlieren imaging

(Paganin, 2006).

2. Theory

Our method employs the experimental setup presented in

Fig. 2. In addition to the source, detector and beam optics,

there are two principal X-ray optical elements: a known weak

research papers
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Figure 2
Experimental setup to record an image for ARC reconstruction. X-rays
are produced at a source and monochromated/collimated before
illuminating an a priori known weak object. The wavefield diffracted
from the weak object is Bragg reflected from a sample crystal before
being registered using a two-dimensional position-sensitive detector.
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object (see Fig. 3 and x2.1) and a laterally homogeneous but

otherwise unknown sample crystal.

The weak object is assumed to have a known projected

structure (see x2.1). Since the weak-object structure is known,

the phase shifts and attenuation (caused by the object)

imparted on the beam are also known, the projection

approximation being assumed. After transmission through the

weak object, the beam’s transverse spatial frequency spectrum

is composed of a distribution of known frequencies whose

magnitude is small in comparison with the incident beam’s

spatial frequency (Cowley, 1975). Illuminating the crystal with

a range of Fourier frequencies, as provided by the weak object,

is equivalent to rocking the crystal and means, as we shall see,

that the entire ARC can be reconstructed from a single image.

The resulting two-dimensional analyser-based phase-

contrast image can be analytically inverted to extract the

amplitude and phase of the ARC. We emphasize the impor-

tance of being able to reconstruct the ARC from a single

image. Indeed, over and above the ability to reconstruct the

ARC’s phase, our method can measure the reflectivity in a

manner that avoids data acquisition at each reciprocal-space

coordinate (Pietsch et al., 2004). The range and resolution of

reciprocal space that can be examined with this technique is

Nyquist limited by the detector characteristics and is

comparable to high-resolution XRD. The serial nature of the

data acquisition at all reciprocal-space points simultaneously

makes the technique suitable for high-speed measurements.

Methods for single-exposure measurement of an entire

rocking curve exist (Fewster, 2005); however, our method is

capable of measuring the ARC modulus (positive square root

of the rocking curve) and phase at a spatial resolution that is at

least equal to those methods.

We now present the theoretical formalism that describes the

forward problem of recording an image. A planar mono-

chromatic X-ray beam of unit intensity is transmitted through

a known weak object before being Bragg diffracted from the

sample crystal and detected as in Fig. 2. In the following we

consider the case of a symmetric Bragg reflection, although we

note that the theory is applicable to asymmetric diffraction

and Laue geometries. Let the xy plane be coincident with the

crystal surface and the positive z axis be directed normally

into the crystal. The wavefields incident, Einðx; yÞ, and

diffracted, Eoutðx; y; �inÞ, from the crystal surface z ¼ 0 are

related via a convolution integral under the assumption of a

linear shift-invariant system (Afanas’ev & Kohn, 1971)

Eoutð�x; y; �inÞ ¼
Rþ1

�1
Gðx � x0; �inÞEinðx0; yÞ dx0; ð1Þ

where Gðx; �inÞ is the unknown point spread function (the

ARC’s real-space dual) which depends on the crystal prop-

erties, Einðx; yÞ is an a priori known function, and �in is the

angle of incidence of the unperturbed X-ray beam. Gðx; �inÞ is

related to the amplitude reflection coefficient, rðkx; �inÞ, via

the Fourier transform f̂f ðkxÞ ¼ F̂Ff ðxÞ ¼ ð2�Þ�1=2
R1
�1 f ðxÞ �

expð�ikxxÞ dx, F̂FGðx; �inÞ ¼ rðkx; �inÞ, kx ¼ ð2�=�Þ cos �in, and

� is the incident radiation’s wavelength in vacuum. In this

formalism, varying kx is equivalent to rocking the crystal,

�kx / ��, where �� is the variation from the Bragg position.

Although in general the angle of incidence is arbitrary, it is

fixed for the duration of the experiment and this will be

reflected in the text by dropping the functional dependence on

�in where there is also a dependence on x or kx and replace-

ment by a subscript � where there is not.

2.1. Weak-object approximation

Under the projection approximation, the complex ampli-

tude Einðx; yÞ is linearly related to the known weak object’s

projected phase ’ðxÞ and attenuation �ðxÞ via (Nesterets et al.,

2004)

Einðx; yÞ � exp½i’ðx; yÞ � �ðx; yÞ�
¼ expði’� �Þ exp½i�’ðx; yÞ ���ðx; yÞ�
’ Ein½1 þ�Eðx; yÞ�: ð2Þ

The overline denotes an average value, Ein ¼ expði’� �Þ;
�Einðx; yÞ ¼ i�’ðx; yÞ ���ðx; yÞ are deviations from the

mean such that j�’j; j��j � 1 and �’ ¼ �� ¼ 0.

The utility of our method depends critically on whether an

object that satisfies the above-mentioned criteria can be

fabricated, and to that end we now state explicitly the physical

parameters demanded of such an object. The weak object

described here is with reference to the objects shown in Fig. 3

that are used in our numerical simulations. We note that

greyscale photographs are used because they have the requi-

site spread of spatial frequencies.

Specifically, the object we now describe has the following

four properties: (i) it is well characterized, (ii) it is weakly

phase shifting (�’ ’ 0:1) with a depth profile as in Fig. 3(a),

(iii) it is weakly attenuating (�� ’ 0:1) with a depth profile as

given in Fig. 3(b), and (iv) the weak phase variations and weak

attenuation are linearly independent. The first requirement of

being well characterized can be addressed using advanced

lithography techniques where a critical dimension tolerance of

tens of nanometres is standard (Anderson, 2006) and contin-

uous depth profiling (or greyscaling) such as is shown in Fig. 3

is possible (Kley, 1997; Daschner et al., 1997; Geissler & Xia,

2004). We also note that the more common binary lithography

object can be used for this application.

The surface topography can be precisely measured using

X-ray diffraction (Paganin et al., 2002; Pavlov et al., 2004) or
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Figure 3
The weak phase (a) and amplitude (b) objects used in the numerical
simulations (see x2.1). The greyscale level corresponds to an etching
depth in the physical realization of the object. Unless otherwise stated the
object is 0.5 � 0.5 mm (256 � 256 pixels).
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atomic force microscopy (Foster & Hofer, 2006) given that the

object is homogeneous and we need only know the surface

profile.

Linear independence of �’ and �� is assured through the

use of separate objects to provide the weak phase shift (the

weak phase object) and weak attenuation (weak amplitude

object). The weak phase object introduces a 0.1 radian phase

shift and has negligible absorption. The weak amplitude object

has a maximum ten percent attenuation and a 2� phase shift.

The requirement that the weakly attenuating object introduce

an exact 2� phase shift may seem difficult to realize but the

use of refraction matching techniques makes it quite rudi-

mentary (Hasnah et al., 2005) using the following metho-

dology. The object etching pattern must be binary so that the

thickness variation corresponds to a 0 or 2� phase shift for a

particular refractive index and wavelength. Any measurable

deviation from this phase shift is compensated for by immer-

sing the object in a refractive index matching fluid whose

composition is varied until the position-sensitive detector,

which captures an X-ray phase contrast image of the index-

matched sample, records no phase contrast due to that object.

The spatial frequency spectrum of a binary structure differs

from a continuous depth profile in that there will be discrete

diffraction orders; however, for a small enough lateral pixel

size the spectrum is continuous to within the resolution of the

detector. Whilst a continuous depth profile has been used for

the weak amplitude object in the numerical simulations, a

binary depth object will not degrade the quality of the

reconstructions. Finally, an example weak phase object whose

physical realization corresponds to the inset photograph of

Fig. 3(a) is an amorphous silicon oxide (a-SiO2) substrate

continuously etched so that the maximum thickness variation

is 0.4 mm and the lateral pixel size is 20 nm for a 20:1 aspect

ratio. For 10 keV X-rays this corresponds to a phase shift of

0.1 and j��j ’ 0:001. The weak amplitude object may be

realized, for example, using an amorphous silicon (a-Si)

substrate with a binary pattern similar to Fig. 3(b) etched into

it with a thickness variation of 25.4 mm and a pixel size of

0.8 mm. At 10 keV this corresponds to �2� phase shift and

�� ’ 0:1, which clearly satisfies the weak object criteria.

2.2. Inverse problem of reconstructing the complex ARC. I.

The weak-object approximation

Substituting equation (2) into equation (1) gives for the

diffracted amplitude and intensity (Nesterets et al., 2004):

Eoutð�x; yÞ ¼ Einr� þ Ein

Rþ1

�1
Gðx � x0Þ�Einðx0; yÞ dx0; ð3Þ

Ioutð�x; yÞ ¼ Iin

�
R� þ 2Re

�
r��

Rþ1

�1
Gðx � x0Þ�Einðx0; yÞ dx0

��
;

ð4Þ

where the superscript * denotes the complex conjugate, Iout is

the detected intensity, Iin ¼ jEinj2, r� ¼
R þ1
�1 Gðx; �inÞ dx is a

single, known complex number [see the discussion following

equation (11)], R� ¼ jr�j2 is also known and the quadratic

term in �Ein has been neglected.

We now show how to invert the expression in equation (4)

to obtain a closed form expression for the complex ARC, as a

function of a single phase-contrast image of a known weak

object obtained using a laterally homogeneous analyser

crystal. We begin by introducing the (known) contrast func-

tion

Cðx; yÞ ¼ Ioutðx; yÞ=ðR�I inÞ � 1; ð5Þ
together with the unknown function

tðxÞ ¼ GðxÞ=r�: ð6Þ
This latter expression is the unknown function GðxÞ divided by

a single, known complex number r�. Substituting equation (5)

and equation (6) into equation (4) yields

� 1

2
Cð�x; yÞ ¼ Rþ1

�1
tIðx � x0Þ�’ðx0Þ dx0

þ Rþ1

�1
tRðx � x0Þ��ðx0Þ dx0: ð7Þ

The subscripts R and I refer to the real and imaginary parts of

tðxÞ, respectively, so that

tRðxÞ ¼
1

2

�
GðxÞ

r�
þ G�ðxÞ

r��

�
;

tIðxÞ ¼
i

2

�
G�ðxÞ

r��
� GðxÞ

r�

�
:

ð8Þ

To proceed further we Fourier transform equation (7), giving

�bCCðkx; yÞ ¼ ½d����ðkx; yÞ � i c�’�’ðkx; yÞ� t̂tðkxÞ
þ ½d����ðkx; yÞ þ i c�’�’ðkx; yÞ� t̂t�ð�kxÞ: ð9Þ

Equation (9) may be solved using any two linearly indepen-

dent lines yi of a single image. The solution, with functional

dependence on kx suppressed for clarity, is given by

t̂te
R

t̂to
R

t̂te
I

t̂to
I

0
BBB@

1
CCCA ¼ � 1

2

d����R;y1

c�’�’I;y1

c�’�’R;y1
�d����I;y1d����I;y1

� c�’�’R;y1

c�’�’I;y1

d����R;y1d����R;y2

c�’�’I;y2

c�’�’R;y2
�d����I;y2d����I;y2

� c�’�’R;y2

c�’�’I;y2

^����R;y2

0
BBBBB@

1
CCCCCA

�1

�

bCCR;y1bCCI;y1bCCR;y2bCCI;y2

0
BBBBB@

1
CCCCCA: ð10Þ

The superscripts e and o refer to the even and odd parts of t̂tðxÞ,
respectively, and the subscripts y1 and y2 refer to two different

lines of the image.

Solution of equation (10) for t̂tðkxÞ determines rðkxÞ,
rðkxÞ ¼ r� t̂tðkxÞ; ð11Þ

which is unique up to an arbitrary additive constant phase shift

given that jr�j ¼ R
1=2
� . Note that jr�j may be found from the
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image by ensuring that a small portion of the beam incident on

the crystal is not transmitted though the weak object and is

thus a plane wave whose diffracted intensity will depend only

on �in.

The arbitrary phase shift may be deduced by imposing

suitable boundary conditions, such as requiring the phase far

from a reflection to approach 0 or �.

Equation (10) requires two linearly independent lines in a

single image; a typical image will have several hundred such

lines so that the resulting solution is largely over-determined.

The data redundancy means that noise corruption can be

greatly reduced using a suitable average over each indepen-

dent data set.

We make two remarks. (i) We note that the determinant of

the square matrix in equation (10) is only nonzero if �’ and

�� are linearly independent. This condition can be met using

a weak object made from at least two materials that have

differing complex refractive indices or from two single-

material objects (Paganin et al., 2002) with differing projected

thicknesses. (ii) The effects of finite size and divergence of a

polychromatic source and the detector point spread function

are explored by Nesterets et al. (2005). These effects do not

significantly affect the form of the equations presented here,

although we expect that these factors will deleteriously affect

the ARC’s reconstruction.

2.3. Inverse problem of reconstructing the complex ARC. II.
The relaxed weak-object approximation

The weak-object approximation allowed us to derive a

closed-form expression for the complex ARC in terms of the

detected intensity and known weak object. Under the weak-

object approximation, all nonlinear terms, which would

otherwise be present in equation (4), can be legitimately

neglected. In practice, this approximation has two conse-

quences that it is desirable to overcome. Firstly, the ability to

compensate for larger phase shifts and attenuations provides

some leeway to use weak objects with larger thickness varia-

tions. Secondly, there is an optimization problem between

satisfying the weak-object criteria and the signal to noise in an

image. Obviously a larger phase shift will result in greater

contrast at the cost of invalidating the weak-object criteria.

Ideally we would like to use a more strongly scattering object

and to that end we present a modification to the theory of x2.2

that allows for an order of magnitude increase in the object’s

scattering strength (j�’j; j��j< 1). We refer to this as the

‘relaxed weak-object approximation’.

To incorporate a relaxed weak-object approximation we

must include the nonlinear terms previously neglected from

equation (4). This can be achieved using an iterative proce-

dure analogous to the Born series (Born & Wolf, 1999). To this

end, we rewrite equation (10) schematically as

t1 ¼ �D�1C0=2: ð12Þ

Here, boldface letters denote matrices, obtained from equa-

tion (10) as follows: t corresponds to the column matrix on the

left side, D is the square matrix on the right side and C is the

column vector on the right side. Subscripts 0 and 1 indicate the

iteration order. As suggested by this notation, we will use

equation (10) as the first-order step in an iterative procedure.

Up to second order in the known function �Einðx; yÞ (cf.

x2.1) the squared modulus of equation (1) becomes

Ioutð�x=b; yÞ=Iin ¼ R� þ 2Re
n

r��
Rþ1

�1
Gðx � x0Þ�Einðx0; yÞ dx0

o

þ Re
n

r��
Rþ1

�1
Gðx � x0Þ�E2

inðx; yÞ dx0
o

þ
��� Rþ1

�1
Gðx � x0Þ�Einðx0; yÞ dx0

���2

þ 1

4

Rþ1

�1
Gðx � x0Þ�E2

inðx; yÞ dx0
����

����
þ Re

nh Rþ1

�1
Gðx � x0Þ�Einðx0; yÞ dx0

i�
� Rþ1

�1
Gðx � x0Þ�E2

inðx; yÞ dx0
o
: ð13Þ

All quantities are as previously defined. We now define a

functional Ineg:½x; y;GðxÞ� containing all nonlinear terms in the

right-hand side of equation (13) [i.e. it contains all the terms

that were previously neglected in equation (4)]. The explicit

dependence on the unknown function GðxÞ is used to clarify

the iterative scheme.

Successive iterations now include the nonlinear terms,

Ineg:½x; y;GðxÞ�, using the recursive formula

tnþ1 ¼ �D�1ðCnÞ=2: ð14Þ
Here tnþ1 is the ðn þ 1Þth iterative solution for the complex

ARC, is as previously defined and, to define Cn, we redefine

equation (5) as follows:

bCCnðkx; yÞ ¼ F̂F

�
1

R�

�
Ioutðx; yÞ

Iin

� R� �
Ineg:½x; y;GnðxÞ�

Iin

��
; ð15Þ

so that

Cn ¼
Re ½bCCnðkx; y1Þ�

Imag ½bCCnðkx; y1Þ�
Re ½bCCnðkx; y2Þ�

Imag ½bCCnðkx; y2Þ�

8>><
>>:

9>>=
>>;: ð16Þ

Note the dependence of Ineg:½x; y;GnðxÞ� on n, the current

iteration of GðxÞ. Equation (14) together with equation (16)

defines the iterative scheme which allows the relaxed weak-

object approximation j�’j; j��j< 1.

3. Modelling

Here we numerically simulate the reconstruction of the

complex ARC for two crystals of particular research interest.

In x3.1 we demonstrate the reconstruction of the ARC for a

semi-infinite perfect crystal. In x3.2 we reconstruct the ARC of

a thin crystal with a linear deformation gradient and then use

it to reconstruct the interplanar spacing.
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3.1. Reconstructing the ARC of a semi-infinite perfect crystal

In this section we apply the iterative algorithm of x2.3 to

reconstruct the ARC of a semi-infinite perfect crystal. The

reconstruction quality of rðkxÞ is quantified by calculating the

r.m.s. normalized error [r.m.s. error between reconstruction

and input functions divided by the r.m.s. error between the

input and its mean (Herman, 1980; Nesterets et al., 2004)]

against the input function.

The known weak object was simulated using the phase and

amplitude maps of Figs. 3(a) and 3(b), respectively. The

‘weakness’ of the weak object was varied by changing the

maximum values of j�’j and j��j. Poisson noise was simu-

lated in the detected intensity by adding Poisson-distributed

random numbers whose standard deviation is a specified

percentage of the maximum intensity registered in the two-

dimensional image. Thus, for example, 1% Poisson noise

means the noise varies locally in the image from 1% at the

highest signal-to-noise regions to much larger values at the

lowest signal-to-noise regions. As a result of this noise model a

1% Poisson noise level will not, in general, correspond to 1%

r.m.s. error in the image. To allow for this we will quote the

reconstruction error in the ARC’s phase and amplitude with

the error introduced into the detected intensity by the addi-

tion of noise.

The amplitude and phase (divided by �) of rðkxÞ for a

symmetric Bragg reflection from Si(111) at 25 keV are shown

in Fig. 4(a) and 4(b). Three traces are shown offset from each

other for clarity and the roman numerals refer to (i) input,

reconstructed with (ii) j�’j; j��j 	 0:1 with no noise and (iii)

j�’j; j��j 	 0:78 with 1% Poisson noise (r.m.s. error: 4%

amplitude, 20% phase, 4% detected intensity).

To gauge the success of the iterative algorithm in x2.3,

consider the top-left corner of Figs. 4(c) and 4(d) for

j�’j; j��j ¼ 1 and no noise. Clearly, the approximation of

equation (2) is not valid, but with iteration the reconstruction

shows r.m.s. error of only 4 and 2% in the amplitude and

phase, respectively.

All simulations used 15 iterations and a single iteration took

less than 1 s using a 2 GHz Pentium M machine. One impor-

tant consideration for the practical utility of this method is its

robustness with respect to experimental noise. To some extent

a smaller signal-to-noise can be compensated by using a more

strongly scattering object at the expense of invalidating the

weak-object approximation. The tradeoff between those two

quantities is plotted in Figs. 4(c) and 4(d), which show that

there exists an optimum level of object weakness for a given

noise level.

3.2. Reconstructing the depth-dependent interplanar spacing

We now consider the problem of determining the layer

structure of a crystal given a single two-dimensional intensity

measurement using our method. A complete investigation of

the inverse problem of reconstructing the layer structure

where dynamical diffraction effects cannot be neglected is

beyond the scope of this paper and will be given in a future

publication. However, we will briefly describe the recon-

struction of an arbitrary, depth dependent strain profile in a

crystal for which a kinematical scattering approximation is

valid.

The kinematical scattering approximation to the ARC for a

symmetrical Bragg geometry in the limit of small deformation

takes the form (Petrashen’, 1974)

rð�Þ ¼ i��h

� sin �B

Z1
�1

�ðzÞ exp i �z � h 
 uð Þ½ � dz: ð17Þ

Let ! describe the angular deviation from the exact Bragg

angle, then � ¼ ð4�!=�Þ cos �B when �0 ’ 0, �h is the Fourier

component of the susceptibility in the direction of a Bragg

reflection from the substrate, � is the wavelength of the inci-

dent radiation, �ðzÞ is the shape function equal to unity inside

the crystal and zero elsewhere, and h and u are the diffraction

vector and displacement of atoms from their position in the

‘ideal’ lattice, respectively. Setting �0 ¼ 0 amounts to ignoring

attenuation and refraction within the thin layer. Here we

investigate the case of a linear variation in the lattice para-

meter (Kolpakov et al., 1977). The linearly strained crystal is

an example of a simple crystal analogue because the sign of

the strain gradient cannot be determined unambiguously from

the reflectivity within the framework of the kinematical

approximation (Afanas’ev & Fanchenko, 1988). The inter-

planar spacing can be solved explicitly when the complex
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Figure 4
Simulated reconstruction of the semi-infinite perfect crystal ARC using
equation (14). (a) and (b) show the amplitude and phase (divided by �)
with three traces (offset for clarity) representing (i) input, reconstructed
with (ii) j�’j; j��j 	 0:1 with no noise (r.m.s. error negligible) and (iii)
j�’j; j��j 	 0:78 with 1% Poisson noise (r.m.s. error: 4% amplitude,
20% phase, 4% detected intensity). (c) and (d ) present the r.m.s. error in
the amplitude and phase, respectively, for j�’j; j��j against noise. The
r.m.s. errors in (c) have been capped at 15% to facilitate visualization of
the contour details.
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ARC is known; in that case the solution is given by (Podorov

et al., 1994)

2��dðzÞ
d2

0

¼ �Re

�R1
�1 �rð�Þ expð�i�zÞ d�R1
�1 rð�Þ expð�i�zÞ d�

�
; ð18Þ

where �dðzÞ is the variation in the interplanar spacing of the

film and d0 is the substrate interplanar spacing. A logarithmic

derivative is used to solve for the interplanar spacing because

it is more stable numerically than a logarithm. As an example

consider diffraction from a GaAs(004) film of 1 mm thickness

with a 0.5% strain and 8.74 keV X-rays (Cu K�1) as in

Figs. 5(a) and 5(b), trace (i). We note briefly that the char-

acteristically asymmetric reflectivity of a thin strained layer is

not observed here because absorption has been neglected and

scattering from the thin layer is kinematic (Kolpakov &

Punegov, 1985). The amplitude and phase maps of the known

weak object are as in Figs. 3(a) and 3(b) (3.6 � 3.6 mm). The

ARC’s amplitude and phase (divided by �) is shown in

Figs. 5(a) and 5(b), respectively, and Fig. 5(c) shows the

variation in the interplanar spacing. The three traces refer to

(i) input, reconstructed using (ii) j�’j, j��j 	 0:1 with no

noise (r.m.s. error negligible) and (iii) j�’j, j��j 	 0:5 with

1% Poisson noise (r.m.s. error: 0.2% amplitude, 41% phase,

7% detected intensity). The oscillation in the reconstructed

lattice variation Fig. 5(c) (ii) is caused by the step-function-

like model for the film thickness and was responsible for the

error not dropping below 10%. The r.m.s. error increased to

16% in Fig. 5(c) (iii) but the lattice parameter’s linear varia-

tion is still evident.

4. Conclusions and further work

In summary, we have outlined a single-shot method to

reconstruct unambiguously the entire complex ARC of later-

ally homogeneous crystals, given a two-dimensional analyser-

based phase-contrast image of a known weak phase-amplitude

mask. An a priori characterized weak object was used to

introduce small perturbations on a plane wave incident on the

sample crystal to render the inverse problem tractable. We

have obtained closed-form expressions for the complex ARC

and depth-dependent interplanar spacing in terms of a single

analyser-based phase-contrast intensity image. Numerical

simulations demonstrated the theory’s validity and its

robustness in the presence of experimental noise. This method

unambiguously determines the crystal layer structure and is

not susceptible to the problem of crystal analogues. Our

technique enables experimental determination of the ARC

phase, as predicted by X-ray dynamical diffraction theory for

ideal crystals (Authier, 2005). The experimental implementa-

tion of this work is planned and will be reported in a future

publication.
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Appendix D

Deterministic Green’s function retrieval using hard X-rays

This appendix presents a preprint of the paper

“Deterministic Green’s function retrieval using hard X-rays”

D. J. Vine, D. M. Paganin, K. M. Pavlov, K. Uesugi, A. Takeuchi, Y. Suzuki,

N. Yagi, T. Kämpfe, E.-B. Kley and E. Förster.

(submitted)

This paper presents the result of an experiment conducted at SPring-8 BL20XU,

Japan in May 2007. In it the amplitude reflection coefficient of a thick perfect silicon

111 reflection is reconstructed using a single analyser-based phase contrast image of a

known weak object.

The experimental design is largely my own with helpful discussions from Dr

David Paganin and Dr Konstantin Pavlov. I designed the weak object with helpful

discussions with Professor Erst-Bernard Kley and Professor Eckhardt Förster and it

was fabricated at Professor Kley’s Institute of Applied Physics. The CAD drawings were

created by Mr Thomas Kämpfe from my designs who also oversaw the fabrication. Dr

Kentaro Uesugi, Dr Akihasa Takeuchi, Dr Yoshio Suzuki and Dr Naoto Yagi provided

invaluable help during the experimental preparation and execution. The experiment

was conducted almost entirely by myself and Dr Pavlov over two days of beamtime.

The post-processing, coding and algorithm are my own work with helpful discus-

sions with Dr Paganin and Dr Pavlov. In addition, I wrote and produced the article

presented in this appendix.

Overall, I estimate my contribution to this article to be 90%.
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T. Kämpfe, E.-B. Kley

Institute of Applied Physics, Friedrich-Schiller University, Jena 07743 Germany

E. Förster

Institute of Optics and Quantum Electronics,

Friedrich-Schiller University, Jena 07743 Germany

(Dated: August 28, 2008)

Abstract

We have recently developed a deterministic method for reconstructing the complex Green’s function for

a linear, shift invariant imaging system. Green’s function retrieval allows the measurement of the state
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Green’s functions in diffraction and scattering physics are used to describe the response of

an optical system to the illuminating field incident upon it. Usually one uses Green’s functions

to calculate the scattered field to gain qualitative or quantitative information about the scatterer

as is the case in imaging or holography. In this Letter we demonstrate how Green’s functions

themselves can be quantitatively reconstructed.

The Green’s function is a descriptor of some of the most beautiful theories in physics such as

the complex wavefield propagators of quantum mechanics [1] and classical optics [2]. What we

propose here is a method for directly measuring the propagators of these fundamental physical

theories. Notwithstanding the fundamental physics that Green’s function retrieval can probe there

is the possibility of improving solution of forward and inverse scattering problems by shifting

the onus from modelling the Green’s function of an optical or quantum mechanical system to

measuring it. The advantages of Green’s function retrieval have been recognised in other fields [3–

5] where, for example, elastodynamic waves have been proposed to reconstruct the real Green’s

function of the earth itself [6]. The results we present here show how reconstruction may be

realised using short wavelength (> 8keV) electromagnetic fields for the more general case of

complex Green’s functions.

The essence of the idea we have implemented is illustrated in the following example. Consider the

classic Green’s function description of wavefield evolution [7],

Ψ(r) =

∫
G(r, r′)ψ(r′)dr′, (1)

where Ψ, ψ describe coherent complex scalar wavefields and r is a position vector. The problem is

to solve Eq. (1) for G given knowledge of |Ψ| and ψ; in general this is a highly non-linear inverse

problem. The problem can be linearised without compromising the generality of G by choosing ψ

to have the property that ψ(r) = 1 + η(r) where |η(r)| � 1 - the so-called ‘weakness’ property [8];

we will refer to its optical element as a weak interaction element. Under these conditions it is

possible, as we shall show, to solve Eq. (1) for G in a manner which is non-iterative, unambiguous

and useful for a wide class of complex Green’s functions.

Evidently this method of reconstructing the Green’s function is applicable to systems in which an

object with the weak interaction property ascribed to ψ can be readily fabricated, a question that

is specific to the type of matter or radiation used.

For the remainder of this Letter we will describe how hard X-rays may be used to reconstruct the

complex Green’s function for a shift-invariant system where G(r, r′) = G(r − r′). Hard X-ray

2
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radiation was chosen because we can fabricate optical elements from Quartz using lithographic

techniques, and for which partially coherent sources are available at synchrotrons and in the labo-

ratory [9].

We now give two examples illustrating this technique where the Green’s function for two funda-

mentally important theories of classical optics are reconstructed. Suppose we wish to reconstruct

the Green’s function for the Kirchhoff propagator that describes diffraction of a complex scalar

wavefield through free space [2, 10]. The corresponding experiment simply involves illuminating

the optical element with coherent X-rays and measuring the two-dimensional intensity of the field

after it has been allowed to propagate through a specified distance. The Green’s function can then

be analytically recovered from a single intensity image using only the assumption that free space

diffraction is isotropic, a symmetry that the Green’s function must respect.

Perhaps instead we wish to reconstruct the Green’s function that describes the dynamical diffrac-

tion of a wavefield from a crystal [11]. With reference to the previous example we must replace

the free space diffraction with diffraction from a crystal. If the crystal is laterally homogeneous

then the Green’s function can be retrieved from a single image.

To make concrete that the technique does indeed work as in the last example we now present the

results of an experiment in which the Green’s function for a thick perfect silicon crystal is recov-

ered from a single intensity image. This particular Green’s function, the squared magnitude of

which is known to crystallographers as the rocking curve, has a well known form given by the the-

ory of dynamical diffraction [11]. A brief comment that speaks to the utility of Green’s function

retrieval: whilst we have chosen this system as a means for demonstrating the Green’s function re-

trieval technique we note that in the regime of kinematic diffraction our approach unambiguously

solves the famous one-dimensional phase problem addressed by the following techniques: Hilbert

transform [12], methods based on the photoemission of electrons due to X-ray standing waves [13]

and Fourier analysis techniques [14].

With reference to Fig. 1 we now outline the reconstruction algorithm alluded to in the above

example in more detail [15]. Depicted is a planar monochromatic scalar hard X-ray wavefield

illuminating the weak interaction element. The field propagates through the imaging system to the

two-dimensional detector. The inset gives the specific case for symmetric Bragg reflection from a

perfect crystal. The actual beam direction after reflection is not collinear with the incident beam

however a simple coordinate transformation, the details of which are omitted for clarity, will make

this so and considerably simplifies the proceeding analysis.

3
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FIG. 1: (Color online). Experimental reconstruction of a generic Green’s function. Inset: reconstruction

of the Green’s function of a thick perfect crystal. Planar X-rays illuminate the weak interaction element,

the weakly perturbed field is then Bragg reflected from the crystal and recorded on a detector. This single

intensity image may be deterministically inverted to recover the complex Green’s function.

The exit surface complex scalar wavefield, ψ(r⊥, z = 0), is the product of the incident plane wave

and the complex transmission function of the weak interaction element which is composed of a

single material with refractive index n = 1−δ+ iβ and projected thickness T (r⊥) [10]. We require,

ψ(r⊥, 0) = exp[ik(n − 1)T (r⊥)]

≈ exp(ik(n − 1)T̄ )[1 + ik(n − 1)∆T (r⊥)] (2)

where r⊥ = (x, y), k⊥ = (kx, ky) is the reciprocal space vector that is dual to r⊥ and k = 2π/λ =

|(k⊥, kz)|, λ is the radiation wavelength, n − 1 gives the phase shift relative to vacuum, T̄ and ∆T

denote average thickness and deviation from the average thickness respectively. The approxima-

tion in Eq. (2) is valid when |(n − 1)k∆T (r⊥)| � 1 and we now briefly digress from the analysis to

show how this may be achieved in practice.

Splitting the arguments of Eq. (2) into real, µ - attenuation, and imaginary, ϕ - phase, Eq. (2) may

be written [16],

ψ(r⊥, 0) = exp(iϕ̄ − µ̄)[1 + i∆ϕ(r⊥) − ∆µ(r⊥)]. (3)

It is necessary that the magnitude of ∆µ and ∆ϕ be of the same order of magnitude however for

a material such as Quartz the refraction, δ, is three orders of magnitude greater than the attenu-

ation, β. We overcome the problem by allowing the wavefield to propagate before it is incident

4
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on the crystal [10, 17–20]. The distance z0 (see Fig. 1) is increased so that the curvature in the

wavefront, due to the weak interaction element, causes neighbouring rays to interfere producing

intensity variations that are tantamount to increasing β. For small z the intensity is proportional

to the transverse laplacian, ∇2
⊥ = ∂2

∂x2 + ∂
∂y2 , of the phase ∆ϕ(r⊥, 0) [10] and can be considered an

effective attenuation over the plane z = z0.

The complex wavefield at the entrance to the imaging system that incorporates propagation con-

trast to bolster the effective attenuation is then given by the following angular spectrum represen-

tation [21],

ψ(r⊥, z0) =
1

(2π)2

"

exp
(
iz0

√
k2 − |k⊥|2

)
ψ(r′⊥, 0)

× exp[ik⊥ · (r⊥ − r′⊥)]dr′⊥k⊥. (4)

Returning to the main thread of the analysis, Eq. (2) makes clear the connection of this approach

to holography: the field transmitted through the weak interaction element, ψ(r⊥, z = 0), is the sum

of the direct beam and a known weak perturbation. Reflection from the crystal will modulate the

amplitude and phase of the field and the detector records the hologram. The hologram evidently

contains the response of the imaging system to all spatial frequencies present in ψ which allows

a massively parallel interrogation of a wide range of reciprocal space simultaneously. We now

proceed to show how to invert the hologram to recover the Green’s function.

The intensity recorded on the detector is,

I(r⊥, z0 + z1;ω) = Ī
(
|G(0, ω)|2 + 2Re

{
G∗(0, ω)

"

G(ky, ω)

× [i∆ϕ(r′⊥, z0) − ∆µ(r′⊥, z0)] exp[ik⊥ · (r⊥ − r′⊥)]dk⊥dr′⊥
})
. (5)

Here, I(r⊥, z) = |Ψ(r⊥, z)|2, G(ky, ω) is the Fourier transform of G(r⊥), ω is the angle between the

X-ray beam and crystal surface (a constant), µ and ϕ now refer to attenuation and phase of Eq. (4),

* denotes complex conjugation and Ī = exp(−2µ̄). Terms quadratic in the small quantities ∆µ, ∆ϕ

are discarded as negligible, together with a phase factor due to propagation distance z1 - valid for

Fresnel numbers [10] of at least unity. G(0, ω) is a single complex number (given that ω was held

constant throughout the experiment) which represents the ratio of DC values of Ψ to ψ—a known

quantity.

With a view to deriving an expression for G(ky, ω) we introduce the known contrast function

C(r⊥, z;ω) = I(r⊥, z)/Ī − |G(0, ω)|2 and scale the Green’s function G̃(ky, ω) = G(ky, ω) ×G∗(0, ω)

5
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FIG. 2: (Color online). (a) Intensity measurement prior to reflection from the crystal showing only propa-

gation phase contrast; (b) calculated phase corresponding to (a); (c) measured intensity image showing the

image of the linear element after reflection from a thick perfect silicon crystal (111) reflection. The crystal

was slightly detuned from the Bragg condition so that it reflects 70% of the direct beam.

so that Eq. 5 becomes, after a one-dimensional Fourier transform,

−C(x, z0 + z1; ky, ω) = [∆µ(x; ky) − i∆ϕ(x; ky)]G̃(ky, ω)

+[∆µ(x; ky) + i∆ϕ(x; ky)]G̃∗(−ky, ω). (6)

Eq. (6) is linear in the unknown complex function G̃(ky, ω) which can be solved for using any two

discrete lines (i, j) of the image.
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I −∆ϕi

R ∆ϕi
I ∆µi

R

∆µ
j
R ∆ϕ

j
I ∆ϕ

j
R −∆µ

j
I

∆µ
j
I −∆ϕ

j
R ∆ϕ

j
I ∆µ

j
R



−1 

Ci
R

Ci
I

C j
R

C j
I



(7)

where R, I, e, o refer to the real, imaginary, even and odd parts of the relevant function. The

solution makes use of an a priori known symmetry that in the case of a laterally homogeneous

crystal the Green’s function is one-dimensional. In this case each discrete line of the image con-

tains all the information we seek to retrieve; since there are many such lines in the output of a

conventional two-dimensional detector we may perform a suitable average to greatly reduce noise

artifacts. Eq. (7) is the unambiguous deterministic solution for the complex Green’s function we

were seeking and we now present the experimental reconstruction applied to a thick perfect silicon

crystal.

The problem, as stated previously and solved by Eq. (7), is to reconstruct G given ψ(r⊥, z = z0)

and |Ψ(r⊥, z = z0 + z1)| and so we must now account for how the two latter known quantities are

measured. Clearly |Ψ(r⊥, z0 + z1)| can be measured by recording the intensity in the manner spec-
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ified by Fig. 1 but ψ(r⊥, z = z0) is a complex quantity, the phase of which cannot be measured

directly. The magnitude |ψ(r⊥, z0)| is easily measured by placing the detector at the plane z0 - this

was done and Fig. 2(a) is the result. The phase of ψ(r⊥, z0) was calculated from Fig. 2(a) using

the transport-of-intensity phase retrieval algorithm [22] and the result is shown in Fig 2(b). The

remaining input |Ψ(r⊥, z0 + z1)| discussed previously is shown in Fig 2(c).

The weak interaction element was fabricated by etching a binary, non-periodic pattern [23] of

0.8µm depth (400 nm lateral resolution) into a 0.8mm thick SiO2 substrate using electron beam

lithography. The pattern is approximately 2.5mm in diameter. We ensure that the wavefield trans-

mitted through the weak interaction element will have a continuous spatial Fourier spectrum by

choosing an aperiodic pattern. The experiments were conducted at the BL20XU undulator beam-

line at SPring-8 using 20keV X-rays from a double Si (111) monochromator. The X-ray beam

size was approximately 4(hor) × 2(ver) mm at 245 m from the source, z0 = 1.2m and z1 = 0.06m.

Images were recorded using a Hamamatsu CCD detector coupled to an optical lens and phosphor

screen with a 0.9 µm effective pixel size and 2(hor) × 1.3(ver) mm field of view.

Fig. 2(c) was measured with the crystal slightly detuned from the (111) Bragg reflection so that

70% of the direct beam was reflected. The magnification of Fig. 2(c) indicates the crystal was cut

asymmetrically by 0.8◦ to the (111) plane - the demagnification of which can be accounted for in

the reconstruction algorithm. Fig. 2 represents all of the inputs to the algorithm of Eq. (7) that

allows reconstruction of G.

The results of the reconstruction are presented in Fig. 3(a) and (b) which show the reconstructed

squared modulus and phase of the Green’s function of the thick perfect silicon analyzer crystal us-

ing Eq. (7) and the classic prediction of dynamical diffraction [11]. The causes of the discrepancy

between the predicted Green’s function and the reconstruction merits further discussion which we

turn to now.

The grey shaded regions show the condition number of the inverse matrix in Eq. (7) and represents

the region of validity of the reconstruction. A large condition number indicates that the output

of Eq. (7) varies significantly upon a small change in the input and so at this point the solution

is numerically unstable. At high spatial frequencies the large condition number is due to the low

power scattered into these frequencies. The large condition number in the vicinity of the DC fre-

quency is due to the increased susceptibility to noise at this point because the odd components of

G̃ in Eq. (7) must be zero at this point meaning that all information is carried in only the two even

components.

7
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FIG. 3: (Color online). (a) |G(ky, ω)|2 - squared magnitude of the reconstructed Green’s function for the

silicon analyzer crystal (solid black line) and theoretical prediction (broken red line), (b) Arg[G(ky, ω)] -

phase corresponding to (a). The condition number of the solution is shown for each angular space point.

The angular range of the single image reconstruction is Nyquist limited by the detector pixel size

however in practice it is less than that limit. The resolution of the reconstruction is inversely pro-

portional to the number of pixels used in the image. The reconstructions in Fig. 3 were calculated

using a 512 square pixel sub-image of Fig. 2 yielding a angular resolution at least equal high reso-

lution X-ray diffraction. The major problem in the analysis was the alignment of the images which

must be achieved to single pixel accuracy.

In conclusion we have demonstrated the reconstruction of the complex Green’s function for a per-

fect single crystal of silicon. The wavefield transmitted through the weak interaction element was

measured after introducing some phase contrast to increase the effective attenuation at the entrance

surface of the imaging system and its phase over this plane was inferred. The measurements relat-

ing to the weak object need be conducted once only and can be used to reconstruct a wide variety

of complex Green’s functions. The reconstruction quantitatively agrees with the prediction of the

8
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dynamical theory of X-ray diffraction for perfect crystals.

Whilst the experiment we have presented is specifically related to crystallography we note that

the technique is applicable to a very wide class of complex Green’s functions. The technique as

demonstrated here uses only a single intensity image or probability density, after the weak in-

teraction element has been characterised, and as such is suitable to tomographic and real-time

applications. The technique is an unambiguous, analytic approach for reconstructing complex

Green’s functions.
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Appendix E

Wide angle dynamical diffraction by deformed crystals:

recurrence relations

This appendix presents a reprint of the paper

“Wide angle dynamical diffraction by deformed crystals: recurrence rela-

tions”

K. M. Pavlov, D. M. Paganin, D. J. Vine and L. Kirste

Physica status solidi A, 8, 2613 (2007)

This paper describes a new theoretical development in the two beam approxi-

mation of dynamical diffraction from deformed crystals. The linearised dispersion

surface in the usual Takagi formulation is true only for a limited range about the Laue

point. This paper introduces a new angular parameter which is valid over a larger

angular range than the planar approximation to the dispersion surface.

The bulk of this paper was presented by Dr Konstantin Pavlov at the XTOP2006

conference on high resolution X-ray diffraction and imaging in Baden-Baden, Ger-

many in late 2006. The theoretical developments were developed by Dr Pavlov in

conjunction with Dr Sergey Podorov and Dr David Paganin. The numerical simu-

lations were implemented by Dr Pavlov. This research was conducted as I was just

beginning to study dynamical diffraction and as such my input was limited to group

discussions providing feedback on drafts.

Overall, I estimate my contribution to this paper to be approximately 5%.

Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

(Print version only).
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1 Introduction 

High-resolution X-ray diffraction (HRXRD) is a well-developed non-destructive characterisation tech-

nique [1, 2] for the investigation of complex multilayer structures. The standard variant of the Takagi–

Taupin equations [3–5], usually employed for the simulation of HRXRD, has two well-known deficien-

cies (see e.g., [6]): a) the use of two-beam approximations in which only one strong reflection is taken 

into account, and b) the assumption that the angular deviation from the Bragg position, θB, is  

small: 
B

| | 1θ θ �- . Several approaches were proposed to address these problems, some of them employ-

ing multiwave diffraction. However these approaches attack either one or the other of the two problems 

[7–11]. In [12] three-beam dynamical diffraction was considered, using a two-dimensional Bloch wave 

approach. To the best of our knowledge, dynamical diffraction theory in arbitrary deformed crystals in 

the case of large deviations from the Bragg conditions has not been developed, despite such situations 

routinely occurring in HRXRD experiments with highly deformed multilayer structures. Note, also, that 

to overcome the previously-mentioned problems some authors use a kinematical approach based on 

direct summation of waves, scattered by individual atomic planes [13, 14]. Recently, we suggested a new 

approach [15] to X-ray dynamical diffraction theory in distorted crystals. This approach allows one to 

perform simulations between Bragg peaks for non-ideal crystals, using an approach in a simple form of 

two distorted waves, similar to that used by Caticha [16]. 

 Here we have reformulated the approach presented in [15], using a multiwave representation for the 

registered wavefields. We apply our new approach to modify the recurrence relations [17, 18] for a wide 

angular deviation range in the case of laterally homogeneous multilayer structures. 

 This article considers coplanar diffraction in the case of dynamical multiwave wide-angle diffraction 

in the absence of several simultaneously-strong diffracted waves. Such conditions imply that each of the 
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diffracted waves interacts dynamically with the incident beam and itself, and kinematically with the 

other diffracted waves. 

2 Theory 

Consider X-ray diffraction by a crystal in terms of dynamical diffraction theory. From the microscopic 

(non-averaged) Maxwell equations (see e.g., [19]) one can obtain, for a monochromatic wave, the fol-

lowing equation for the electric field E  (see e.g., [20, 21]): 

 2[ ] (1 ( )) 0 ,k χ—¥ —¥ - + =E r E  (1) 

where ( )χ r  is the polarisability, 2π/ ,k λ=  and λ  is the X-ray wavelength in vacuum. 

 We seek the solution of Eq. (1) in the case of coplanar diffraction as a composition of the incident 

(wavevector 
0

k ) and registered (wavevector 
s

k ) waves [15]: 

 
0 0

( , ) ( , ) exp ( ) ( , ) exp ( ) .
s s

i i= +E r s E r s k r E r s k r  (2) 

Here, ( )
0

,E r s  is assumed to be a slowly varying function, and 
0

| | | |
s

k= =k k . Note that the propagation 

direction 
s

k , of the second wave in Eq. (2), is determined by the registration system. The vectors 0,sk  and 

the scattering vector 
0s

= -s k k  are determined by the experimental setup. It should also be noted that in 

our approach we do not introduce the wave vector of the registered wave as a sum of the wavevector of 

the incident wave, 
0

k , and the appropriate vector of the reciprocal lattice, g. Such a choice of the 

wavevector 
s

k  has an obvious advantage of direct connection to the particular experimental setup. How-

ever, this definition of the vector 
s

k  may cause fast variations of the function ( , )
s

E r s . For instance, if 

the scattering vector s is close to the particular reciprocal lattice vector g, the function ( , )
s

E r s  can be 

represented, to a first approximation, as a product of a slowly varying function and the exponential term 

exp ( ( ) )i -g s r . Later in the paper we show that this problem can be solved by representing the function 

( , )
s

E r s  as a sum, over the reciprocal lattice vectors g, of products of certain slowly varying functions 

and exponential terms exp ( ( ) )i -g s r . This implies that, despite the fact that Eq. (2) is similar in form to 

the standard two-beam diffraction solution, it intrinsically contains multiwave diffraction. A similar 

approach was used in [22], where we employed (in the two-beam approximation) external boundary 

conditions to connect the internal wavefield with the wavevectors 
0

,
g
= +k k g  together with the particu-

lar external propagation direction determined by the vector 
s

k . 

 After substitution of Eq. (2) into Eq. (1), and omitting functional arguments for clarity, we obtain: 

 ( ) 2 2

0 0 0 0
[2 ] exp ( ) [2 ( ) ] exp ( ) 0 .

s s s s
i k i i k iχ χ◊— + + ◊— + =k E E k r k E E k r  (3) 

Herewith, we neglect the second derivatives of functions ( )0, ,
s

E r s  and assume, as usual, that 0≈—◊E  

[20]. We assume that neglecting the second derivatives of ( )
s

E r  in our case (when only one strong re-

flection occurs at a time) is valid, despite the existence of rapidly oscillating terms ( )( )exp i -g s r , be-

cause the term with second derivatives of ( )
s

E r  is sufficiently smaller than other terms including the 

function ( )
s

E r  and its first derivative, with increasing difference between g  and s. Another argument in 

support of the validity of such an operation is that our final results, in the limit of small differences be-

tween g and s, transform to the well-known results of the Takagi and Taupin equations [3–5]. Note that 

we do not consider the case of grazing incidence, where one cannot neglect the second derivatives of 

( )0,sE r  (see [23] and references therein). 

 To describe the polarisability of the crystal we employ the standard Takagi-type [3, 4] representation: 

 ( ( ))

,
ˆ( ) e ,i

m m
χ χ

-

=Â
g r u r

g

g

r  (4) 

where the index m corresponds to a particular area of chemical homogeneity. In other words, the Fourier 

coefficients 
,

ˆ

m
χ

g
 are functions of the coordinates. The sum in Eq. (4) is over all reciprocal lattice vectors. 
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To proceed further with Eq. (3), we need to implement averaging over a suitable volume. In the literature 

there are at least two variants on how to choose such a volume. One variant is to use a volume V with 

linear dimensions L� , where 
ext

a L Λ�� � , a is the lattice parameter, and 
ext

Λ  is the extinction length (see 

e.g., [20]). The second variant, of averaging over a unit cell, was employed e.g. in Takagi’s paper [4]. In 

the current paper we average over the volume V, and use a special form (Eq. (5)) for the function 
s

E , to 

avoid problems with rapidly-oscillating terms. 

 To proceed with the integration we represent the wavefield, 
s

E  in the following form: 

 ( , ) exp ( ) ( , ) exp ( ( ( ))) ,
s g

g

E i E i= - -Âr s sr r s g r u r  (5) 

where ( , )
g

E r s  are slowly varying functions, and the sum (as in Eq. (4)) is over the reciprocal lattice 

vectors. Note that we have explicitly separated out the oscillating exponential terms, and made use of the 

fact that a general solution of the diffraction problem within a crystal [21, 24] can be represented as a 

product of a certain function by a sum of waves, the wavevectors of which are vectors of the reciprocal 

lattice. 

 First we substitute Eqs. (4) and (5) into Eq. (3), then multiply by the factor 
0

exp ( )i- k r , and, after 

averaging over V, we obtain the following expression: 

 2 2

0 0 0, 0 , 1
ˆ ˆ2 ( ) ( , , ) 0 .

m g m g
i k kχ χ ψ

-

◊— + + + =k E E E s g r  (6) 

The same procedure with multiplicative factor exp( )
s

i- k r  gives 

 ( ) ( )
e e

i i

g V

- -

ÈÏ ¸
Ì ˝Í
ÎÓ ˛

Â Ú gu r g s r
 

                     ( ) ( )( )( ){ } ( )2 2

0, , 0 2
ˆ ˆ2 2 , , 0s g s g m g g m

V

i k kχ χ ψ
Ï ¸
Ì ˝
Ó ˛

˘
¥ ◊— - - -— + + + =˙

˚
Úk E k g s gu r E E E s g r , (7) 

where the terms 

 2

1 ,
ˆ( , , ) [ ] ,

g m g

g g

kψ χ
- ¢ ¢

¢π

= Âs g r E  (8) 

and 

 

2

2 ,

0

2

0 ,

ˆ( , , ) exp ( ( )) exp ( ( ) ( ))

ˆ exp ( ( ) ( )) ,

g g m

g V

g m

g g V

k i i i i

k i i

ψ χ

χ

¢

¢π

¢

¢π

= - - -¢ ¢

+ - -¢ ¢

Â Ú

Â Ú

s g r E g r g u r g s r gu r

E g s r g u r
   

are responsible for the dynamical interaction between waves related to different reflections. Thus Eqs. 

(6) and (7), which can be solved numerically, completely describe the wide-angle multiwave dynamical 

diffraction. The angular parameters in Eq. (7), 2 ( ( ( )))
s
◊ - - —k g s gu r , do not suffer from the restriction 

of small angular deviations from the Bragg position, employed in the Takagi treatment [4]. Thus the 

formalism, described by Eqs. (6) and (7), allows us to overcome both deficiencies mentioned in the In-

troduction, namely (a) the use of a two-beam approximation; (b) the assumption that the angular devia-

tion from the Bragg position is small. However, later in our article we consider only a special case, often 

occurring in HRXRD experiments, when no more than one strong reflection occurs at a time. Then the 

terms 1,2 ( , , )ψ s g r  can be neglected and analytical solutions can be obtained. To illustrate the validity of 

such a simplification we consider three cases. (i) First assume that .∼g s  In this case the exponential 

term exp ( ( ) ( ) ( ))i i i- - - ¢g s r gu r g u r  can be taken out of the integral, because it varies more slowly than 

the term exp( )i ¢g r . As a result we obtain a sum of delta functions, which is practically zero. (ii) As a 

(9) 
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second (intermediate) case, we assume that there is a large difference between g and s, but s is still far 

from any other reciprocal lattice vector ˆg . Thus 
2

2 ,
ˆ( , , )

g s g m
kψ χ

-

s g r E≈ . However, since all other terms 

in Eq. (7) will be practically zero due to 
( ) ( )

e e 0
i i

V

≈

- -Ú gu r g s r
, this implies that 0

g
E ≈ , and so this har- 

monic can be neglected. (iii) If, finally, s is getting close to anothers vector ˆg  the function 

 
ˆ2 ( )

ˆ2 0 ,
ˆ( , , ) e i

g mkψ χ≈

- gu r
s g r E , but all other components in Eq. (7) related to 

g
E  are again very small  

because 
( ) ( )

e e 0
i i

V

≈

- -

Ú
gu r g s r

. 

 Equation (7) is a sum which must always equal zero. This is possible only if each term of the  

sum is equal to zero. Thus we obtain a system of N pairs of linear differential equations, where N is  

the number of reciprocal-lattice vectors. These pairs are independent of one another. However, the  

functions 0,gE  must satisfy the boundary conditions at the top and bottom surfaces of the crystal.  

For  instance,  at  the top surface 0 top 0( , )E E=r s
� , while  at  the bottom surface ( , ) exp ( )

s b b
E i= -r s sr  

 ( , ) exp ( ( ( ))) 0g b b b

g

E i¥ - =Â r s g r u r , if there are no sources below this latter surface. Notwithstanding 

the fact that each of these pairs describes the entire dynamical interaction between the 
g

E and 
0

E  waves, 

there are no direct interactions between waves with different g after we neglected the terms 1,2 ( , , )ψ s g r  

in Eqs. (6) and (7). The system of Eqs. (6) and (7) can be transformed to the case of multiwave kinemati-

cal diffraction by assuming that multiple-scattering effects, within each pair, are negligible. This is 

equivalent to setting 
,

ˆ 0
g m

χ
-

∫  in Eqs. (6) and (7). The Takagi-type Eqs. (6) and (7) describe the case of 

dynamical diffraction by a deformed crystal, without the restrictions of small angular deviation from a 

Bragg condition. If the scattering vector, s, is close to only one reciprocal vector ¢g , one can consider 

only one pair of the differential equations, corresponding to this particular vector ¢g ; this is the two-

beam approximation of the Takagi equations [4, 5]. 

3 Examples 

We now consider several important limit cases of our approach. For simplicity we assume that the inci-

dent beam has sigma polarization and that the crystal is laterally homogeneous. As a consequence of this 

restriction all functions 
g

E  and 
s

E  (see Eq. (5)) should be functions of the z coordinate only. This can be 

realized if each exponential term obeys the equation ( )( )exp ( ( / )) 1
x x

i s g z x- - - ∂ ∂ ∫gu , implying delta-

like functions in the diffracted intensity distribution in the direction perpendicular to the surface. 

3.1 Laterally infinite and laterally homogeneous crystal   

We can rewrite Eqs. (6) and (7) in the following (scalar) form, for each pair 0,gE : 

 0

0 0 0 0

dd
( ) ( ) , ( ) ( ( ) ( )) .

d d

g

g g g g g

EE
i z E i z E i z E i z z E

z z
σ σ σ η σ

-

= + = - - -   (10) 

Here 
0

( ) (1 ) ( ) ( ),
g z z
z b z g s z

z
η σ

∂
= + + - -

∂
gu  0,

0

0

ˆ ( )
( ) ,

2

m
k z

z
χ

σ
γ

=  
,

ˆ ( )
( )

2

g m

g

s

k z
z

χ
σ

γ
= , 

,

0

ˆ ( )
( ) ,

2

g m

g

k z
z

χ
σ

γ

-

-

=  

b = γ0/γs, γ0 = sin θ1, γs = sin θ2, and θ1,2 are the angles between the surface and the vectors k0,s, respec-

tively. After introducing the partial reflection coefficient 
0

/( ) ,
g g

R E E b=  we can combine Eq. (10) in 

one Taupin-type [5] equation for the function R
g
: 

 ( ) ( ) ( )2
d 1

d

g

g g g g g

R
i z R b i z R i z

z b
σ η σ

-

= - - - . (11) 
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This equation can be solved using the boundary condition at the bottom surface, assuming there to be no 

sources below this surface. To obtain the appropriate boundary condition we take into account that  

( ) ( ) ( ) ( ), exp , exp 0s b b g b b

g

E i E i= - =Âr s sr r s gr  only if  each term of  this sum is equal to zero. This  

yields the required boundary condition: ( ), 0g bR z =s . 

 The total reflection coefficient at the top of the crystal is then: 

 
( )

( )

( )

( )

( ) ( )

( )
( )

0

0 0 0

0, 0, 0,
1 0, 1

0,
0, 0, 0,

g g

g gs

g

g

E R E
E

R R
E E Eb b

= = = =

Â Â
Â

s s s

s

s

s s s

. (12) 

3.2 Laterally infinite planparallel homogeneous slab with thickness 
z

L    

Note that the function ( ) 0z ∫u  for this type of sample. Thus we can easily obtain the solution for the 

functions 0,gE  from Eq. (10), because for such a model 
g

η  and all coefficients 0, ,g g
σ

-

 are independent of z: 

 

( ) ( )

( ) ( )

0 1, 0, 2, 0,

1, 0, 2, 0,

exp exp ,
2 2

exp exp .
2 2

g g g g g g

g g g g g g g

i i
E A z A z

i i
E B z B z

ξ ξ ξ ξ

ξ ξ ξ ξ

È ˘ È ˘= + + -Í ˙ Í ˙Î ˚ Î ˚

È ˘ È ˘= + + -Í ˙ Í ˙Î ˚ Î ˚

 (13) 

Here, 2
4

g g g g
ξ η σ σ

-

= - and 0, 0,2
g g g

ξ σ η= - . The constants 
i

A  and 
i

B  are connected as 
i i i

B p A= , 

where: 

 1, 2,,  
2 2

g g g g

g g

g g

p p
η ξ η ξ

σ σ
- -

- + - -

= = . (14) 

Using the boundary conditions ( )
0 0
0,E E=s

�  and ( ), 0
g z

E L =s , we obtain the coefficients 1,2A : 

 
( )

( )
( )

1,2,

1, 0 2, 0

2, 1, 1, 2,

exp
 ,  .

exp exp

g z gg

g g

g g z g g z g g

p iLp
A E A E

p p iL p iL p

ξ

ξ ξ
= =

- -

� �   (15) 

Finally we can obtain the partial reflection coefficient 
g

R  at the top surface (z = 0): 

 
( )

( )

( )
( )0 2, 1,

1 exp0,1 1

0, exp

z gg g

g

g g g z g

iLE
R

E p p iLb b

ξσ

σ ξ
-

-

= =

-

s

s

.  (16) 

To obtain the total reflection coefficient for this crystal one can use Eq. (12). 

3.3 Laterally infinite planparallel homogeneous slab with thickness 
z

L , 

on a thick ideal substrate 

A difference to the previous case is in the boundary condition at the bottom surface: 

 ( )
( )

( )
( ),sub

0

,1
, ,

,

g z

g z g

z

E L
R L R

E Lb
= =

s

s s

s

 (17) 

where ,subg
R  is the partial reflection coefficient of the substrate for the gth reflection. 
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Using Eq. (13)–(16) we obtain the partial reflection coefficient of such a double-layer system: 

 
( ) ( ) ( )

( ) ( )

1, ,sub 2, 2, 1, ,sub

,sub 2, 1, ,sub

exp

.

exp

g g g g g g g m

g

g g g g g m

p R b p p p R b i L
R b

R b p p R b i L

ξ

ξ

- + -

=

- + -

 (18) 

The calculation of the partial reflection coefficient Eq. (18) requires only knowledge about the partial 

reflection coefficient of the underlying system and the characteristics of the particular layer defined in 

Eqs. (13)–(15). Thus Eq. (18) can be used to calculate the partial reflection coefficient of the laterally 

infinite stack of planparallel homogeneous slabs. However, in the multilayer system we have to take into 

account that each slab could have a different lattice constant. Therefore the function ( )z◊g u  and its de-

rivatives should be calculated (see e.g., [25]). The total reflection coefficient of such a multilayer system 

can be obtained using Eq. (12). In the limit case of small angular deviations from a Bragg reflection, this 

reflection coefficient formula transforms to the two-beam approximation [17, 18]. 

3.4 Semi-infinite ideal crystal (substrate) 

For a semi-infinite crystal we can say that d /d 0
g

R z ∫  for Eq. (11). Then the solution of the appropriate 

quadratic equation with constant coefficients, for the appropriate partial reflection coefficient, is: 

 ,sub
2

g g

g

g

bR
η ξ

σ
-

- ±
= . (19) 

To choose the sign in Eq. (19) one has to check which of the two waves in Eq. (13) will be evanescent, 

this being equivalent to ( )
0

Im ξ ξ±  being positive. 

4 Conclusions 

We have developed a multiwave dynamical-diffraction formalism in a deformed crystal for a special case 

when there is only one strong reflection at a time. We have shown how initial solution sought in the form 

of a two-beam approximation can be transformed to the multiwave diffraction case for large angular 

deviations from the Bragg positions. The proposed formalism was used for the simulation of coplanar 

dynamical X-ray diffraction between strong Bragg reflections in  a  deformed crystal.  Figure 1 shows   
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Fig. 1 Experimental (upper) and simulated (lower) rocking curves for an InAs/GaInSb superlattice on a 

GaSb(001) substrate (the symmetrical coplanar diffraction case). 
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good agreement between the experimental and simulated rocking curves for an InAS/GaInSb superlattice 

grown on a GaSb substrate, in particular for the positions of the satellite peaks. The solution obtained for 

dynamical multiwave diffraction transforms to the two-beam approximation of the Takagi dynamical 

diffraction equations, if the scattering vector s is close to a vector of the reciprocal lattice. Several prac-

tically important models of crystals were considered and recurrence relations for the amplitude reflection 

coefficient in a wide angular range were developed for laterally homogeneous crystals. 
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Abstract

Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries
between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations.
Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by
allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam
from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm × 40 mm, 100 �m thick Si
analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes
in anatomy with high contrast and spatial resolution.
© 2008 Elsevier Ireland Ltd. All rights reserved.

Keywords: Phase contrast; Animal imaging; Dynamic systems; Phase retrieval

1. Introduction

For more than a decade researchers have exploited the excep-
tional image contrast achieved when a monochromatic X-ray
beam is passed through an object and then reflected from a near-
perfect analyser crystal aligned near to a Bragg condition. The
additional ‘phase contrast’ results from the analyser’s reflectivity
being sensitive to the small phase changes imparted to the X-ray
wavefield upon transmission through the object. This contrast

∗ Corresponding author. Tel.: +61 0 3 99058063; fax: +61 0 3 99053637.
E-mail addresses: Marcus.Kitchen@sci.monash.edu.au (M.J. Kitchen),

Konstantin.Pavlov@sci.monash.edu.au (K.M. Pavlov),
Stuart.Hooper@med.monash.edu.au (S.B. Hooper),
David.Vine@sci.monash.edu.au (D.J. Vine), Karen.Siu@sci.monash.edu.au
(K.K.W. Siu), Megan.Wallace@med.monash.edu.au (M.J. Wallace),
Melissa.Siew@med.monash.edu.au (M.L.L. Siew),
yagi@spring8.or.jp (N. Yagi), ueken@spring8.or.jp (K. Uesugi),
Rob.Lewis@sync.monash.edu.au (R.A. Lewis).

enhancement is particularly beneficial when imaging biologi-
cal tissues that only produce weak absorption contrast between
adjacent tissues [1,2].

It can be useful to separate the absorption component of the
contrast from the phase component to ascertain how X-rays
interact with the object’s macroscopic structure. This ‘phase
retrieval’ procedure requires at least two images of the object
to be acquired with the analyser aligned at different orientations
with respect to the incident beam (see, e.g., [3] and references
therein). Numerous phase retrieval methods have been proposed
but most require the analyser to be realigned between expo-
sures. This prevents dynamic processes from being recorded,
yet phase retrieval is possible for stationary objects. However, by
simultaneously recording the beams diffracted and transmitted
by the crystal, two images can be obtained that provide differing
phase contrast [4,5]. Chapman et al. demonstrated that phase
retrieval can be performed using these images alone [5], but
the use of a narrow beam prevented that system from imaging

0720-048X/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.ejrad.2008.04.028
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Fig. 1. Schematic of the dual-imaging Laue ABI geometry.

dynamic processes in macroscopic biological objects. Tomo-
graphic reconstructions using simulated images for the Laue
geometry were also performed within the geometrical optics
approximation by Bushuev and Guskova [6]. Moreover, we have
shown that, in principal, it is possible to simultaneously acquire
two phase contrast images of small animals in motion using a
large synchrotron beam combined with an equally large analyser
crystal and area detector using the Bragg geometry [7]. Here we
successfully demonstrate the feasibility of using a Laue analyser
crystal to image dynamic structural changes occurring within the
body of a rabbit pup in near real-time with the ability to separate
phase and absorption information. Furthermore, a new phase
retrieval algorithm is presented for this imaging modality.

2. Materials and methods

For the analyser crystal we employed a 100 �m thick silicon
wafer that was part of a monolithic silicon slab, connected at
the base and sides, to minimise warping of the atomic planes.
The thickness was chosen to provide a strong diffracted beam
at the Bragg peak with minimal transmittance at 25 keV, which
is a suitable energy for phase contrast imaging of small animals
[8], for the Si(1 1 1) Bragg reflection. The (1 1̄ 0) face of the
wafer had an area of 50 mm × 40 mm, which is large enough
to image small animals without scanning. Fig. 1 illustrates the
experimental setup.

Experiments were performed at SPring-8, Japan, with images
acquired in Hutch 3 of beamline 20B2 in the Biomedical Imaging
Centre. 25 keV X-rays were selected from the bending magnet
radiation using a Si(1 1 1) double-bounce monochromator in a
non-dispersive setup with the analyser. Two optically coupled
Hamamatsu CCD cameras (C4742-95HR and C4880-41S) with
10 �m thick phosphor screens were placed as shown in Fig. 1
to simultaneously capture the transmitted and diffracted images.
Each CCD had 4000 × 2624 pixels with an effective pixel size
of 5.9 �m, providing an active area of 23.6 mm × 15.5 mm. The
CCDs were configured in 2 × 2 binning mode to improve the
signal-to-noise ratio.

The rocking curves of the transmitted and diffracted beams
were measured by averaging the intensity recorded in a 50 × 50
pixel square at the centre of each beam using the two CCDs
whilst rotating the analyser through the Bragg condition (Fig. 2).
The detector dark current offset was first subtracted from each
image, as was also done for each image of the object. Fig. 2

reveals that the diffracted beam was typically less than one quar-
ter of the transmitted intensity, making the signal-to-noise ratio
significantly higher for the transmitted images. The low inten-
sity of the diffracted beam at the Bragg peak was due partially
to beam divergence, polychromaticity and imperfections within
the crystal (including strain), and as a result of the average crys-
tal thickness being a few microns less than the intended 100 �m
thickness.

To test the image system and phase retrieval algorithm (out-
lined below), a PMMA cylinder of 3.25 mm diameter was
imaged. Images were acquired at multiple analyser orientations
with an exposure time of 0.3 s.

As a model for studying biological structures in motion, the
fluid filled lungs of a fetal rabbit pup were mechanically inflated
using an air-filled syringe pump. The rabbit was first killed by
an overdose of nembutal in accordance with regulations set by
Monash University and the SPring-8 Animal Care and Use Com-
mittee. The exposure time of each image was 0.3 s with a frame
rate of 1.7 Hz.

2.1. Phase retrieval

Under the limits of the geometrical optics approximation (see,
e.g., [1,3] and references therein) the intensity incident on the
detector is given by

ID,T = IRRD,T(θ + �θY ), (1)

where IR is the intensity of the beam after passing through the
object, which reduces to IO with no sample in the beam. θ is

Fig. 2. Measured diffracted and transmitted rocking curves and their ratio
RD(q)/RT(q) for the 100 �m thick Si(1 1 1) Laue wafer at 25 keV.
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Fig. 3. Transmitted image of the PMMA cylinder.

the angle of incidence of the beam on the crystal with no object
present, �θY is the change in angle imposed by the object in
the y-direction parallel to the diffraction axis (Fig. 1) and R(θ)
is the rocking curve of the diffracted (D) and transmitted beams
(T) [9,10]. Early attempts to retrieve phase information from
this type of system approximated the rocking curves as linear
functions and solved (1) for the apparent absorption image (IR)
and the refraction angle image (�θY); however, they met with
limited success [5]. Since the rocking curve for our transmit-
ted beam was comparatively symmetric about the Bragg peak,
we exploited (1) further by equating the ratio of intensities
in the images to the rocking curve ratio, at a given angle, for
either all negative or all positive angles with respect to the peak.
That is, the incident angle was calculated from the intensity
ratio between equivalent pixels in the diffracted and transmitted
images with no object present (IR = IO, �θY = 0):

ID

IT
= IORD(θ)

IORT(θ)
= RD(θ)

RT(θ)
. (2)

A look-up table of the discretely sampled ratio of the two
rocking curves (Fig. 2) was used to find the closest match to the
intensity ratio, whence a linear fit between the rocking curve ratio
points was then assumed to calculate the incidence angle θ for
every pixel. The same process was then followed to determine
the final incidence angle (θf = θ + �θY) with the object present:

ID

IT
= IRRD(θ + ΔθY)

IRRT(θ + ΔθY)
= RD(θf)

RT(θf)
. (3)

The difference between the incidence angle with and without
the object yields the net refraction angle �θY caused by the
object. IR was then determined upon substitution of �θY into
(1).

3. Results

Fig. 3 shows the image of the PMMA cylinder created by the
X-ray beam that transmitted through the analyser crystal. Fig. 4
displays the diffracted image of the cylinder after correcting for
offsets between the images. Note that the bright/dark upper edge
of the cylinder of the transmitted image appears dark/bright in
the diffracted image, respectively. Profiles of the reconstructed

Fig. 4. Diffracted image of the PMMA cylinder.

refraction angle and apparent absorption using (3) across the
cylinder are provided in Figs. 5 and 6, respectively. Theoretical
refraction and absorption curves reveal that the reconstruc-
tions closely match the expected functions except at the very
edges of the cylinder where the refraction is underestimated and
the intensity is highly oscillatory, thus, the geometrical optics
approximation Eq. (1) is not satisfied at all points. For the theo-
retical curves a refractive index decrement of δ = 4.4 × 10−6 and
a linear attenuation coefficient of μl = 37.4 m−1 were used (see
[3] for details of this calculation).

Fig. 5. Profile of the refraction angle across the PMMA cylinder.

Fig. 6. Profile of the apparent absorption across the PMMA cylinder.
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Fig. 7. Transmission image of the rabbit pup thorax.

Figs. 7 and 8 respectively show the transmitted and distortion-
corrected diffracted images of the rabbit pup thorax at full
inflation. Phase contrast reveals the boundaries of the major
airways, lung lobes and diaphragm. The reconstructed refrac-
tion angle and apparent absorption images are shown in
Figs. 9 and 10, respectively. These images reveal that much of the
contrast arises from phase gradients within the airways. The air-
way boundaries are essentially invisible in the absorption image,
yet a speckled pattern is still evident across the image of the lung
tissue. All rabbit images are 20.9 mm × 14.8 mm.

Fig. 8. Diffracted image of the rabbit pup thorax.

Fig. 9. Refraction angle image reconstructed using Figs. 7 and 8.

Fig. 10. Apparent absorption image reconstructed using Figs. 7 and 9.

4. Discussion

The breakdown of the phase retrieval at the boundaries
of the PMMA cylinder results from the failure of the geo-
metrical optics approximation in the vicinity of large phase
gradients; this results in an underestimation of the refraction
angle, which subsequently creates troughs in the absorption
image at the inner edge of the cylinder [3]. However, the outer
edge of the absorption image shows unexpected sharp peaks.
These are attributed to a Fresnel diffraction fringe, which arises
from the high coherence of the X-ray wavefield and the large
propagation distance of over 1 m between the object and detec-
tors. Fresnel diffraction effects are also responsible for the
speckled intensity pattern remaining in the apparent absorp-
tion image of the lung, as seen in Fig. 10 (see [2]). This
effect should either be accounted for in the image reconstruc-
tion, or alternatively the propagation distance should be reduced
[11–13].

Future experiments will improve upon the signal-to-noise
ratio of the diffracted image by optimising the X-ray energy
for the maximum reflected intensity at the Bragg angle. Fiducial
markers will also be employed to improve the image alignment.

Work is continuing to improve the image reconstruction tech-
nique. Cubic-spline interpolation of the rocking curves and their
ratio will ameliorate the scheme used to interpolate discretely
sampled points. Furthermore, if suitable analytic functions can
be fitted to both the transmitted and diffracted rocking curves, it
may be possible to find an analytic solution for the phase retrieval
that is not restricted to either side of the rocking curve.

5. Conclusion

A thin Laue analyser crystal can simultaneously provide
two high-contrast images, which can successfully be combined
to enable the separation of phase and absorption information.
Together with a large, monochromatic X-ray beam, our crys-
tal was sufficiently large and flat to enable the chest of a rabbit
pup to be observed in a single exposure. This allowed us to per-
form phase retrieval on a dynamically recorded image sequence
of lung inflation. Future work is planned for optimising the
experimental setup and image reconstruction technique.
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