
The Situated Software Architect

A thesis submitted to

the School of Information Technology

of Monash University

in fulfilment of the requirements for

Doctorate of Philosophy (Computing)

By

Paul Raymond Taylor

December 2007

Monash University

School of Information Technology



i

This thesis has not been submitted for the award of any degree or diploma in any other

tertiary institution.  No other person or person’s work has been used without due

acknowledgment.  The body of this thesis (Chapters One to Ten inclusive) is less than one

hundred thousand words.

Paul Raymond Taylor

31st December 2007



ii

Acknowledgments

The author would like to acknowledge the following people for their invaluable assistance

in this research: Associate Professor Christine Mingins for her ability to open doors and

inspire her students, Professor Richard Mitchell (Inferdata, formerly of University of

Brighton, UK) for his willingness to lend his intellect to my enquiries, the twenty four

software architects who engaged with this project for their willingness to participate and

their professionalism, the Department of Software Development (and its successors) within

the School of Information Technology at Monash University for the leadership it

demonstrated to Australian academia and industry over a fifteen year period, and my wife,

Heather, who encouraged and tolerated this mid-career dalliance into the wonderful world

of ideas.



iii

The Situated Software Architect
School of Information Technology,

Monash University

Paul R. Taylor, 2007

Supervisor: Associate Professor Christine Mingins

Abstract

This thesis is an examination of the practice of software design amongst professional

Australian software architects.  It is based on a qualitative analysis of the data arising from

transcripts of in-depth interviews with twenty-four software architects and two qualitative

case studies of software-architectural design within large Australian organisations.  The

thesis argues that the practice of software design can only be understood in a holistic sense

via a pluralist perspective, and that a constructivist philosophical approach is necessary to

account for the practice of software design in a meaningful way.  This argument discredits

rationalism and by implication modernism as inappropriate philosophical bases for the

universal observation, description and comprehension of the practice of software design.

The motivation for pursuing this line of investigation is twofold.  Firstly, the research seeks

to explicate rich and descriptive accounts of the practice of software design in Australian

business and industry contexts via an interperivist research paradigm.  Secondly, it

attempts to explain the apparently a-rational behaviours of professional software architects

in order to separate the practitioner from a sense of inadequacy or failure that follows from

the universal imposition of rationalistic design methods and paradigms.  The thesis pursues

these goals by attempting to fit a situated model of design to the accounts of the

participants.  Structuring the research process and the rich narratives that emerge from the

qualitative analysis is achieved using four philosophical perspectives—rationalism,

pragmatism, criticalism and radicalism.  The research delivers original findings on how

practicing software architects negotiate requirements in the light of known solutions, how

they are bound by perspective and paradigm, and the mechanics of their personal design

processes.  Through these descriptions of activity, the architect is revealed as an arranger

of context and situation so as to constitute an environment in which to design tacitly.  The

thesis concludes that a situated perspective is necessary to understand the practice of

software design.



iv

Table of Contents

Chapter 1: Introduction 1
1.1 Orientation 1

1.2 Purpose 2

1.3 Problem Statement 3
1.3.1 The role of a-rational forces in design outcomes 3
1.3.2 Apportionment of responsibility 4
1.3.3 Recognition of the significance of situation and situatedness 5

1.4 Research Aim 6

1.5 Scope 8
1.5.1 Relationship to software engineering 8
1.5.2 Centrality of the designer 9
1.5.3 The designer’s skills profile 9
1.5.4 Types of architecture 9
1.5.5 Relationship between architecting and methodology 10
1.5.6 Relationship between architecting and coding 10
1.5.7 Relationship to Agile methods 11

1.6 Hypothesis 11

1.7 Overview of the study 12
1.7.1 Background 13
1.7.2 Research design 13
1.7.3 Field work and analysis 14
1.7.4 Findings, discussion and conclusions 14

1.8 Conclusion 14

Chapter 2: Four Perspectives on Software Architecture 16
2.1 Introduction 16

2.2 Handles on Design 16
2.2.1 Four definitive sociological paradigms 17
2.2.2 About definitions and theory 21

2.3 Rationalism 21
2.3.1 Theory and practice 22
2.3.2 Software as a design medium 23
2.3.3 The Failure of the Master-plan 25
2.3.4 Alternatives to the Master-plan 28

2.4 Pragmatism 30
2.4.1 Situated Action 31
2.4.2 Design, Context and Culture 34
2.4.3 Design and History 36
2.4.4 Pragmatism versus bounded rationality 38



v

2.5 The Situated Software Architect 39
2.5.1 The Rational Software Architect 39
2.5.2 The Pragmatic Software Architect 41
2.5.3 The Critical Software Architect 43
2.5.4 The Radical Software Architect 44

2.6 Conclusion 45

Chapter 3: Design Theory and Software Design 47
3.1 Introduction 47

3.2 Philosophical Foundations of Design Theory 48
3.2.1 Aristotelian and Platonic Concepts 49
3.2.2 Separation of Mind and Body 53
3.2.3 The Design of Existence 54
3.2.4 The Constructivist Alternative 56
3.2.5 Romantic Constructions of Design 58

3.3 Models of Design 61
3.3.1 Categories of Design Models 62
3.3.2 Vernacular design models 65
3.3.3 Evolutionary Design Models 70
3.3.4 Technology Maturity Models 71

3.4 Conclusion 74

Chapter 4: Situated and Ethnographic Accounts of Design75
4.1 Introduction 75

4.2 Situated Cognition and Action 75
4.2.1 Situated cognition 77
4.2.2 Situated action 79
4.2.3 Investigations of situatedness 81

4.3 Design in Software Engineering 82
4.3.1 Waterfall 82
4.3.2 Post-waterfall 83
4.3.3 All-at-once 85
4.3.4 The engineering metaphor 86

4.4 Socio-cultural Models of Design 87
4.4.1 Ethnographic design research 88
4.4.2 Engineering design research 92
4.4.3 Software design research 94

4.5 Conclusion 97

Chapter 5: Research Design 99
5.1 Introduction 99

5.2 Applicable Research Paradigms 100
5.2.1 Applicable research types 101



vi

5.2.2 Interpretivism 101

5.3 A Method for Researching Situated Software Design Practice 103
5.3.1 Defining the Acceptable Participant 104
5.3.2 Research Methods and Techniques 104
5.3.3 Sampling 105
5.3.4 A framework for eliciting descriptions of situated software design 106

5.4 Assessment of the Research Method 107
5.4.1 Researcher’s Relationship to Participants 107
5.4.2 The Nature of Expert Recall 108
5.4.3 Generalisability 110
5.4.4 Ethics 110
5.4.5 Relevance 111
5.4.6 Rigour 112
5.4.7 The Role of Hermeneutics 112

5.5 Conclusion 113

Chapter 6: A Grounded Theory Model of Software Design
Practice 115

6.1 Introduction 115
6.1.1 On the use of pseudonyms 115
6.1.2 On the qualitative analysis 116

6.2 What is ‘Software Architecture’? 116
6.2.1 Context and equilibrium 118
6.2.2 Interpreting requirements and goals 118
6.2.3 Purpose 120
6.2.4 Return on investment 121
6.2.5 The role of creativity 122
6.2.6 Planning tensions 124
6.2.7 Structure and shape 126

6.3 What is ‘Software Design’ 128
6.3.1 Design as ‘resolution of forces’ 129
6.3.2 Emergence 130

6.4 The ‘Software Architect’ Role 131
6.4.1 Architect as salesperson 131
6.4.2 Impact of team capability 132
6.4.3 Illusion of progress 133
6.4.4 Influence of prevailing culture 134
6.4.5 Career investment and subversion 134

6.5 Methodology 135
6.5.1 Use, misuse and dissatisfaction 135
6.5.2 Risk mitigation and transfer 137
6.5.3 Technology churn invalidates method detail 137
6.5.4 Relationship between experience and method 138

6.6 The design act 140
6.6.1 Problem space considerations 142
6.6.2 Solution-based constraints 143
6.6.3 Candidate solutions 144



vii

6.6.4 Complexity vs simplicity 146
6.6.5 Ontology 147
6.6.6 Conceptual view 149
6.6.7 Static view 149
6.6.8 Dynamic view 151
6.6.9 Historical view 152
6.6.10 Bias, perspective and perspective-shifting 152
6.6.11 Abstraction 154
6.6.12 Abstraction discovery 158
6.6.13 Generators 160
6.6.14 Crystallisation 162
6.6.15 Archetypes 163
6.6.16 Personal patterns 167
6.6.17 Intuitive leap 169
6.6.18 Breakdowns 170
6.6.19 Aesthetic 172
6.6.20 Habitation and aesthetic 173
6.6.21 Application of aesthetic 174

6.7 Conclusion 176
6.7.1 Definitions and Context 176
6.7.2 Design act 177

Chapter 7: Case Studies in Situated Software Design 181
7.1 Introduction 181

7.2 Case 1: The Naissance of the Decision Tree 182
7.2.1 Actors and Roles 182
7.2.2 The Business Context 183
7.2.3 Design episodes 1 and 2: First attempts 185
7.2.4 Design episode 3: A data-oriented alternative 187
7.2.5 Design episode 4: A rule-oriented solution 189
7.2.6 Designer’s reflections on the design process 192
7.2.7 Relationship to Grounded Theory 193

7.3 Case 2: Perspective-bias in a Telecommunications Architecture 195
7.3.1 Actors and Roles 195
7.3.2 The Business Context 196
7.3.3 Design episode 1: Pursuit of perfection 196
7.3.4 Design episode 2: Collapse and re-conceptualisation 198
7.3.5 Designer’s reflections on the design process 200
7.3.6 Relationship to Grounded Theory 201

7.4 Conclusion 202
7.4.1 ‘Design episode’ structures collaboration 202
7.4.2 Collaboration serves evaluation 203

Chapter 8: Findings 205
8.1 Introduction 205

8.2 Findings 205



viii

8.2.1 Architect in context 206
8.2.2 Architect as professional 207
8.2.3 Architect as negotiator 208
8.2.4 Architect as collaborator 211
8.2.5 Architect’s use of methodology 212
8.2.6 Architect as abstractionist 213
8.2.7 Architect’s memory 218
8.2.8 The ‘design act’ 221

8.3 Conclusion 226

Chapter 9: Discussion 228
9.1 Introduction 228

9.2 Rational themes 228
9.2.1 Rationalism and subjectivity 229
9.2.2 Rationalism and negotiation 230
9.2.3 Rationalism and method 231
9.2.4 Plans as predictors of the design trajectory 234
9.2.5 Rationalism versus emergence—the design episode 237
9.2.6 Does rationalism have a role in explaining software design practice? 239

9.3 Pragmatic themes 239
9.3.1 Pragmatism and the ‘social contract’ 240
9.3.2 Pragmatism and paradigm 241
9.3.3 Pragmatic knowledge structures 242
9.3.4 Pragmatism and the design act 242
9.3.5 Pragmatism and method 244
9.3.6 Aesthetic as reflective practice 246
9.3.7 Does pragmatism have a role in explaining software design practice? 247

9.4 Critical themes 248
9.4.1 Critical analysis and the design engagement 248
9.4.2 Design as a means of resolving inequities 250
9.4.3 Criticalism and method 251
9.4.4 Does criticalism have a role in explaining software design practice? 252

9.5 Radical themes 252
9.5.1 Radicalism and conceptualisation 253
9.5.2 Does radicalism have a role in explaining software design practice? 254

9.6 Conclusion 255

Chapter 10: Conclusions 256
10.1 Introduction 256

10.2 Response to the hypothesis 257
10.2.1 Revisiting definitions 257
10.2.2 Evaluation of findings against Chapter Five’s design framework 258
10.2.3 Conclusions 261

10.3 Generated hypotheses 262
10.3.1 Perspective-shifting 262



ix

10.3.2 The episodic nature of the design act 263
10.3.3 Methodological support for criticalism and radicalism 263

10.4 Reflections on research practice 264

10.5 Contribution 267
10.5.1 Originality 267
10.5.2 Contribution to design theory 267
10.5.3 Contribution to software engineering 269

10.6 Conclusion 271

Appendix A: Glossary 274

Appendix B: Ethics Clearance 276

Appendix C: Interview Pack 281

Appendix D: Participant Profile 290

Appendix E: Example of Topic Analysis 301

Appendix F: Topic Maps 311

Appendix G: Project Website 317

Appendix H: Author’s Publications 337

Appendix I: Bibliographv 339

Appendix J: Index 357



x

Figures

Figure 1: A map of the thesis. ............................................................................................ 13

Figure 2: Four sociological paradigms for organisational analysis. ..................................... 18

Figure 3: Relationship between philosophy, theory and models, with examples. ............... 50

Figure 4: Comparison between the scientific analysis process (left) and the design process
(right) (Figs 1.1 and 1.2 in (Budgen 1994)). .................................................... 52

Figure 5: Three-dimensional Vitruvian design map for a stone axe, reproduced from Figure
4 in (Mayall 1979). .......................................................................................... 62

Figure 6: ‘Vernacular design’ (Fig 72, p. 58); ‘the empirical exchange’ (Fig 71, p. 58);
‘direct patronage’ (Fig 70, p. 57) (Walker and Cross, 1976)............................ 66

Figure 7: Spiral model of knowledge phases and transitions (Nonaka and Takeuchi 1995).68

Figure 8: The ‘mature’ design process—the ‘rational design network’, from Fig 70 in
(Walker and Cross, 1976)................................................................................ 72

Figure 9: The four design modes compared, from Fig 73 in (Walker and Cross, 1976)...... 73

Figure 10: Lyytinen’s systems development process framework (Lyytinen, 1987)............. 89

Figure 11: A framework for the management of meaning in design (Markus and Bjorn-
Andersen, 1987).............................................................................................. 90

Figure 12: A social action model of the organisational information system design process
(Fig 2 in (Gasson, 1999)). ............................................................................... 92

Figure 13:  The architect’s design context as described by the architects. ....................... 177

Figure 14:  The ‘design act’ as described by the architects............................................... 180

Figure 15:  Original Product design (first design episode) as presented for peer review. ... 185

Figure 16: Product model redrawn (second design episode). ............................................. 186

Figure 17:  Product design—data-oriented version (third design episode)......................... 188

Figure 18: Product design—rule-based version (design episode four)................................ 191

Figure 19: Conceptual sketch of Le Corbusier’s exchange-centric model........................... 198

Figure 20: Conceptual sketch of Mackintosh’s alternative model. ..................................... 199

Figure 21: Simon’s Generate/Test cycle (Simon 1985) and a model of the participant’s
reported ‘design episode’ phenomenon. ........................................................ 223

Figure 22: Relationship between design engagement, phase, iteration, and episode. ....... 224

Figure 23:  Frequency of participant pseudonym occurrences in this thesis’ qualitative
analysis chapter. ............................................................................................ 265

Figure 24:  Participant’s professional roles....................................................................... 292

Figure 25:  Participant’s years in roles.............................................................................. 292

Figure 26: Participant’s number of object-oriented architectures or systems. .................. 293

Figure 27: Participant’s largest architecture or system (classes). ...................................... 293

Figure 28: Participant’s longest time with one architecture or system. ............................ 294

Figure 29: Participant’s architecture and design responsibilities held. ............................. 295



xi

Figure 30: Participant’s points of engagement with the development process. ................ 295

Figure 31: Participant’s use of methodology. ................................................................... 296

Figure 32: Participant’s use of object-oriented languages. ............................................... 297

Figure 33: Participant’s use of persistence frameworks and products. ............................. 297

Figure 34: Participant’s use of object-oriented class libraries........................................... 298

Figure 35: Participant’s use of object-oriented distribution technologies......................... 299

Figure 36: Participant’s use of CASE products................................................................ 299

Figure 37: Topic map for ‘software architecture’. ............................................................ 312

Figure 38: Topic map for ‘software design’...................................................................... 313

Figure 39: Topic map for ‘the role of the software architect’. .......................................... 314

Figure 40: Topic map for ‘methodology’.......................................................................... 315

Figure 41: Topic map for ‘the design act’......................................................................... 316



xii

Tables

Table 1: Comparison between rational and constructivist philosophies............................. 20

Table 2: Comparison between rational and constructivist (situated) design. ..................... 61

Table 3: Characteristics of the design act—a framework for structuring interviews. ....... 107

Table 4:  Interview metrics. ............................................................................................. 291



1

Chapter 1:  Introduction

There is no such thing as genuine knowledge and fruitful understanding except as the

offspring of doing.  (Dewey 1916, p. 275)

1.1 Orientation

This thesis investigates the place of design practice in the art, craft and science of software

development.  The particular practice investigated is that of software architecture design,

and the means by which it is investigated is through its agents, professional software

architects.  This investigation results in a set of findings based on grounded theory that

yield rich and informative views of the expert software architect’s practice.  The resultant

theory has implications for software design methodology, design process, and the

management of design.

The central theme throughout this thesis is design—the creative act of synthesising

solutions and artefacts amidst conflicting requirements and multi-dimensional constraints.

Design is the central activity in all forms of making.  Our ability to design makes us unique

as a species.  We design from within our consciousness, and our consciousness of our

surroundings (and our ability to change them) frames design in the human experience.

Almost every conceivable aspect of modernity is shaped by, or depends upon design.  Even

so, no unifying theory exists to explain the range of human cognition, behaviours and skills

called upon by design.  As a result, tensions in design practice remain unaddressed in many

ubiquitous design domains.

The construction of an understanding of design in a particular context necessitates the

close examination of rationality, objectivity, cognition, being, action and practice.  In the

case of the design of software architecture, theory comes from three overlapping sources—

philosophy, the theoretical discipline of design science, and the applied discipline of



Chapter One: Introduction

2

software engineering.  The research is therefore interdisciplinary and heterogeneous in the

theory it draws from, the methods it uses and the practices it surveys.  The body of the

research—a qualitative analysis of interview and case study data collected from expert

software architects—puts form to how software designers approach design in situ.  The

analytical themes that emerge from these accounts concern how the design of software

architecture is practiced, perceived and valued by the architects themselves.  The resulting

findings and models reveal forces in the design context and behaviours amongst the

designers that have until recently been undocumented, and explain what otherwise might

be interpreted as unpredictable, illogical or irrational design outcomes.  Further

interpretation of the findings yields theories of designer practice that account for

situational forces in the design context.  The informed view of software design practice

these findings collectively afford has implications for both theory and practice.

1.2 Purpose

The primary purpose of this research is to be descriptive of an area of design practice that

has received scant attention from researchers to date—the perceptions, motivations,

experiences and values of highly experienced, practicing software architects.  The research

focuses on the effect of situation on design practice, as distinct from examining design

expertise in isolation of the design context.  The reasons for this inattention may have to

do with problems of accessibility, definition and description.  This kind of research is

dependent upon identifying a suitably homogeneous group of designers with a sufficiently

long and varied history in software architecture design.  Such designers are difficult to

recruit and access due to a range of problems that include identification, selection,

screening, availability and privacy concerns.  In Australia, Frampton (2005) accessed

professional architects in IBM Australia’s architecture group.  Robertson (2003) recruited

twenty-six information architects, mostly in Sydney, for research on design and decision-

making (Robertson 2004; Robertson and Hewlett 2004).  Recognising a shortage of world

class data modellers locally, Simsion (2005) supplemented a small cohort of Australian

professionals with recruits sourced from international Data Administration and

Management Association (DAMA) workshops.

There are also problems of definition.  The terms ‘software architecture’ and ‘software

architect’ are not intrinsically definitive and this ambiguity feeds the immaturity of the

discipline.  Shaw and Garlan (1996) describe software architecture as being traditionally

based on a ‘substantial folklore’ of system design with little consistency or precision.



Chapter One: Introduction

3

Other authors confirm informality of practice (Glass 1999; McBreen 2002).  In the light of

such claims, this thesis aims to determine to what degree such statements are true, and if

they are true, to expose and express with clarity the reasons why the practice has been, is,

and may remain folkloric.

The reward for overcoming these obstacles is the elicitation of a generalised and rich

picture of a class of highly skilled, highly valued designers.  The resulting descriptions serve

to illuminate how the work of software designers aligns with (or differs from) those

working in different design domains.  Within the discipline of software methods, such a

description is valuable in understanding the forces bearing upon software methods in

contemporary design and development contexts—forces that have begun to marginalise

some aspects of traditional software engineering methodology in favour of stripped-down,

expeditious variants (Cockburn 2002; Palmer and Felsing 2002).

1.3 Problem Statement

Most research is motivated by perception of a problem, such as a gap or inadequacy in the

incumbent paradigm or theory, or a discrepancy between theory and practice.  The problem

that motivates this research has its origins in the author’s professional practice (and

observation of other software designer’s practice) in business and industry settings over

fifteen years.  It is important that the nature of these perceived problems are clearly stated

so that the reader can make an assessment of the author’s motives in pursuing this research

and of the objectivity evident in the thesis’ analysis.

1.3.1 The role of a-rational forces in design outcomes

Three observations summarise the impasse.  Firstly, the author has repeatedly observed

that the design of software architecture by professional software engineers and architects

(or the quality of software architecture) is driven more by an individual designer or design

leader than by individual or collective adherence to externalised methods, processes or

frameworks.  This observation appears on face value to contradict the rational foundation

of software design methodology which, over the past thirty years, has maintained that

design method can be comprehensively separated from those who enact it.  This

observation raises questions about the existence of an alternate paradigm, and this thesis

introduces philosophical and design-theoretic points of view on what an alternative design

paradigm might be.  If rationalism has indeed failed to embed comprehensively in the

minds and practices of the professional designer class, the reasons are likely to be



Chapter One: Introduction

4

multifarious and in need of research effort to be stated with clarity.

Secondly, in many cases (in the author’s experience) software design outcomes are shaped

as much by factors and forces in the immediate design situation as they are by objective

constraints (such as problem requirements, platform or product constraints).  This second

observation suggests that ‘human’ factors have as much weight in the design of quality

software architecture as do methodological or technological ones, even though the

software engineering discipline has repeatedly attempted to automate or mechanise design.

Again, just what these factors are is one of a number of potent questions addressed by this

research.

Thirdly, the author’s experience suggests that the actual act of designing quality software

architecture or components does not exclusively rely on the designer following a publicly

visible process of decomposition, transformation or synthesis.  Rather, it is equivalently

influenced by the interactions of designers and stakeholders in a given situation.  This is

true for design at all levels of abstraction from product to architecture, component to class.

These observations imply that ‘soft’ or subjective factors such as personalities and

capabilities are significant factors in design success, and that attempts to codify universal

design methods from conceptual design down to detailed design may only ever be capable

of explaining some of the designer’s actions and motivations.

These three observations of practical software design outcomes are collectively grouped

under the moniker ‘a-rational forces’—that is, forces that shape design outcomes that are

not rational and are not primarily rooted in or related to rationalism.  The term a-rational is

definitely not intended to imply irrationality!  As the thesis progresses, it will become clear

that this overarching term can describe actions that appear to have logical and even causal

justifications within discourses, situations, domains of understanding and communities of

practice.

1.3.2 Apportionment of responsibility

The prospect of explaining the a-rational behaviours of practicing software architects hints

at the main motivation for this work.  In the history of software engineering, rationalism

has been revered as good and anything else not good.  Software project disasters are

frequently attributed to the failure of people, not technology, and often to the failed

project’s inability to execute a rational development process or method.  In the nineteen

eighties, Norman (1988) and the early protagonists of human-centred design attacked the

assumption that a user’s confusion and disorientation when faced with an everyday office



Chapter One: Introduction

5

machine such as a photocopier was the user’s (and not the machine designer’s) fault.  In

similar fashion, a case can be made that users are not always to blame when software

design methods appear irrelevant to the designer or the design task at hand.  This argument

is a specialisation of a larger one represented by the broad movement away from the use of

plans and abstract representations of the world as predictors or instigators of action.

Proponents of this view hold that plans are ‘naive and dangerous fantasies of control and

order’ that impose ‘inappropriate, expensive and disruptive interventions in all sectors of

working life’ (Johnston 1999, p. 146).  Those who work with or under these systems, or

who are involved in attempting to implement them, often end up being dubious of their

worth.  But in many cases, any form of argument against systems based on conservative or

rational planning regimes is characterised as ‘user resistance’ or even recalcitrance, rather

than the articulation of real flaws in the underlying plan-based approach.  The

philosophical basis for such claims, and the alternative models they offer, are reviewed in

detail in this thesis.  The argument that software design is not purely an objective and

rational process opens a void that must be filled—if every part of it is not rational, then

what are the a-rational parts?  This question echoes the primary motivation for this thesis.

This research explains and justifies the behaviour of software architects in terms other than

those forced on most observers by the incumbent rational perspective.  An alternative

perspective will allow the impartial and open-minded observer to draw new interpretations

of a design history, outcome or scenario.  Put simply, it will excuse software architects

from judgement on the basis of their a-rational behaviour.  It may, in some cases, allow

redefinition of what a rational assessment would otherwise define as failure.  In summary,

the primary underlying motivation for this research is to emancipate the designer from the

shackles of the incumbent rationalistic software design paradigm—without attempting a

revolutionary paradigmatic overthrow or even diluting its value.  The philosophical and

theoretical implications of this motivating goal are dealt with in the next three chapters.

1.3.3 Recognition of the significance of situation and situatedness

‘Situation’ is a critical concept in this work.  Its incorporation as a central research theme is

supported by the general theories of ‘situatedness’ (situated cognition and action) which

are explored in Chapters Two and Four.  The decision to centralise situation in this work

allows the researcher to take a constructivist philosophical stance and to adopt a holistic,

encompassing approach to the subjects.  This orientation positions the work in opposition

to rationalism, which opens many challenges at each phase of the research.  The reward,

however, is the assembly of a situated model of software design practice and relief from the



Chapter One: Introduction

6

tension that can arise from improperly fitting rational models.

This tension is not unique to software design.  The tension between objective methodology

and creative design lies at the core of all design, and various design disciplines can be

observed dealing with it in different ways.  For example, architecture prefers to emancipate

its designers from construction and material constraints, preferring them to adopt the role

of free-spirited artist.  At the other extreme, engineering necessarily locks its designers

closely to material constraints and in so doing excludes creativity.  The fact that software

design (even in the abstractness of software architecture) encompasses both extremes has

led to uncertainty of role and identity for the software architect and designer.  In situations

where this uncertainty surfaces other forces may be freed to dictate design outcomes.  This

study seeks to extricate these forces in an unambiguous and useful fashion, thereby

explaining why a purely rational view of design is not universally applicable in the software

domain.

1.4 Research Aim

The research aim is as follows:

This research aims to explain how experienced sof tware architects and designers

understand, re f l ec t  on, and descr ibe the ways that they draw upon rational methods,

past experience, contextual factors and other inputs to design enduring object or

component-based software architectures in industry and business contexts.

Exploding this statement into its phrases allows the underlying motivations to be

described.

This research aims to explain how experienced software architects and designers —the subject of the

research is the practitioner, rather than the software architecture itself, or the team.  This

choice is justified in Chapter Five.  The participants will be selected to have solid

architecture, leadership, design and development experience in object-oriented and

component based software technologies.  Participants will need to show they are

experienced in designing within problem and solution domains that present levels and

dimensions of complexity that necessitate architectural solutions and non-trivial software

architectures, and that they have maintained and evolved their designs over time.

…understand, reflect on, and describe the ways —going to the designers rather than to their

designs means that the study’s raw data will be the designer’s accounts and perceptions of

their design experiences.  This is markedly different data to that which would be derived



Chapter One: Introduction

7

from analytical studies of their software designs.  The difference is intentional and follows

from this study’s focus on the practitioner’s self-reported experience of designing in situ.

Further consideration of research design issues (such as matters of interpretation) can be

found in Chapter Five.

… that they draw upon rational methods, —the study will gather data on how software

architects use rational methods and techniques.  This will reinforce previous work on how

programmers and teams use methodologies, such as (Carroll 2000; Parnas and Clements

1986; Roberts Jr. et al. 1998; Walz et al. 1993) and many others.

…past experience, —designers draw heavily upon their knowledge of past solutions, and the

compliance of software architects in this practice is best evidenced by their embracing of

software design patterns over the last decade.  It is likely that software architects will

report consciously and subconsciously drawing upon architectural and design patterns

when designing.  This research will explain why and how.

…contextual factors, —as posited in the discussion of motivations, this study attempts to

understand some of the ways that contextual factors shape software architectures, in what

ways context drives ‘situated’ software design, how it differs from a rational design

perspective, and how rational and situated modes of designer behaviour can alternate or

coexist.

…and other inputs —there may be other inputs to designing that emerge from the

interactions with the cohort of architects.  These will be analysed as they emerge.

…to design —design and development can span diverse functional and structural regions

within a software system.  User interface design, performance design, business process and

solution design are all legitimate types of system and software design, each with rich bodies

of knowledge and necessitating experience and skill in practice.  This study focuses on the

kind of design that creates, deploys and evolves the object-oriented system or product

core—the system architectures, frameworks, and components that constitute the backbone

of complex business and industrial software systems.  This includes conceptual design as

might be performed in object-oriented analysis or object-oriented domain modelling, as

well as code-level design.

…enduring object or component-based software architectures —the software development contexts

of interest are those that have a large commitment to, and investment in object technology.

…in industry and business contexts —there are dozens of contexts in which object

technologies are used.  The aims of this investigation will be best served by involving



Chapter One: Introduction

8

architects who have experience over the lifetime of software systems or artefacts, and

where attention is given to the artefact’s non-functional attributes such as performance,

maintainability and extensibility.  Industry and business are more likely to provide the

environments in which this kind of expertise is both fostered and demanded.  The scope of

vertical domains is left relatively open but can still be used to exclude, for example,

embedded systems, artificial intelligence systems, and simulation systems, to name a few.

1.5 Scope

The discussion of the research aim partially defines the scope of this research, however, the

exploratory nature of the problem being tackled necessitates some additional clarification

of scope.

1.5.1 Relationship to software engineering

The study’s relationship with software engineering requires clarification.  Most of the time,

software design and development is grounded in software engineering theory and anchored

to trusted software engineering principles.  This study does not dispute the value,

applicability or suitability of established modelling, analysis, decomposition, design,

coding, or testing theory or techniques.  Recognising these as foundations of practice, this

study focuses on why and how the architect uses these theories and techniques in practice.

The dogma evident in rationalism (and to some degree in software engineering) that this

study challenges is that which proposes methods and processes as controlling or dictating

the design of software architecture.  The distinction becomes clearer with an analogy.

The traditional craftsman designs and builds continuously and indistinguishably, using

tools at hand and in response to his vision of the finished artefact and the characteristics of

the particular materials being used.  No externalised process or flow-chart guides his

actions, neither is he instructed or forced to use his tools in a prescribed manner.  Being

entirely self-directing in response to vision and situation, he plots his own path, responding

to his evolving goals and to cues from his immediate environment.  Although his actions

flow from tacit know-how, it is simplistic to think that the form of this knowledge is rigid,

structured, or able to be expressed independently of situation.  It is the equivalent

designer’s behaviours in the software fabric that this study seeks to explicate, analyse and

describe.  Software engineering contributes tools, technologies and overarching methods

but it does not furnish the software architect with a prescriptive process or template for the

act of designing.  The goals and motivations of software designers in the act of design



Chapter One: Introduction

9

remain as uncharted, private, tacit and notionally unpredictable as they do for designers

who work in most other fabrics and disciplines.  The relationship between the act of design

and methodology is addressed further as another point of scope.

1.5.2 Centrality of the designer

Other design disciplines focus as much on the designer as on the designs.  This can be seen

most prominently in architecture, where both the architect and their buildings are analysed

and criticised, and if judged to be suitably exemplary, both designer and the design

(through successive re-interpretations by architectural historians) contribute to the

theoretical discourse of architectural design.  Some architects contribute without ever

having had their designs built (Thackara 1986).  It is not the intention of this research to

promote the erection of platforms from which software architects can assume the

vainglorious personas of their built-world architect cousins.  Rather, there is a case to be

made that extending our understanding of software designers will complement our

understanding of their designs.  To pursue this goal, this research deliberately focuses on

the expert software designer, and uses the picture that results as a platform to interpret

software design situations and outcomes.

1.5.3 The designer’s skills profile

The subject of this research is individual designer’s accounts of how they design object-

oriented software architectures.  Prime candidate technologies include C++, Java and

.NET.  The design of software architectures in non object-oriented and non component-

oriented technologies, such as COBOL or Microsoft’s Sequel (an SQL-based business

language) are excluded.  Object-based (rather than object-oriented) technologies which

support classes, instances (objects) and encapsulation but not inheritance, polymorphism

and dynamic binding are also excluded from the project’s scope, because it is through the

use of dynamic binding that many widely acknowledged architectural mechanisms are

enabled (Booch 1994).  For example, all of Gamma et. al’s (1995) design patterns rely

upon dynamic binding to provide architectural flexibility and extensibility.  Object-based

technologies do not provide sufficient structuring mechanisms to support the accumulation

of experience considered relevant to this study.

1.5.4 Types of architecture

Also excluded is the design of non-software architectures, despite the argument that certain

kinds of architectures are closely related to object-oriented software architectures.



Chapter One: Introduction

10

Examples of excluded architecture types include system architectures (which arrange hosts,

network services, gateways, routers, firewalls and proxy servers into a topology), business

process architectures (despite their expression in formal process modelling notations such

as BPMN (bpmn.org 2007) and business architectures, which model business units,

resource flows and dependencies.  Solution architecture, which typically amalgamates all of

the above into a business-focussed roadmap, is also excluded, as is product architecture,

which resolves the relationships between a current software product line, new technologies

and new requirements into a roadmap of features and releases.  Constraining the research

scope to object-oriented software architecture manages the study’s scope, ensures that the

participating architects are talking about the same things, allows generalisations to be

drawn, and preserves the relevance of the research’s findings to the discipline of object-

oriented software engineering.

1.5.5 Relationship between architecting and methodology

Variants of the question ‘how do software designers design’ have motivated some prior

research.  A good example is the question of how software developers use methods.  Work

in the period immediately following wide-scale adoption of structured methods revealed

that experienced designers did not follow methods slavishly—rather, they ‘cherry-picked’

techniques, approaches, tools and heuristic knowledge, modifying and combining them,

based upon their experience.  This finding has now been verified in many research contexts

(Carroll 2000; Dekleva 1992; Dietrich et al. 1997; Fitzgerald 1997; Jayaratna 1994;

Khushalani et al. 1994; Parnas and Clements 1986).  This thesis is not primarily about how

software architects use methods, although their reflections on methods, archetypes and

patterns will emerge.  Rather, it delivers a holistic description of the context in which they

perform design, where methods are one of many available resources.  This thesis’ argument

assumes from the outset that software architects do not design by following methods—

rather, they control and set their own path using resources at hand for the situation they

find themselves in.  Methodologies such as the Rational Unified Process (Kruchten 2000)

or its contemporaries or predecessors inform and resource but do not drive or dictate the

designer’s path.  It is the common themes in the designer’s accounts of how they ‘control

and set their own path’ that his theses seeks to describe.

1.5.6 Relationship between architecting and coding

Past research on software design practice has predominantly focussed on how programmers

use methods to assist them in making code-level design decisions.  Little research has been



Chapter One: Introduction

11

done that focuses on architects as distinct from programmers, perhaps for some of the

reasons claimed earlier.  The issue of whether the research findings on programmers equally

apply to software architects may depend on how much programming is inherent in

architecting.  This topic will be explored with the participants, but the assumption will be

made that most architects of object-oriented systems will be proficient coders able to move

flexibly between architecture and code-level design tasks.  The research on programmers

will therefore be considered applicable to architects.  Programmers who have not had

substantial object-oriented architecting and design experience will not be selected for

participation.

1.5.7 Relationship to Agile methods

During the period in which this research was conducted (1999-2005) Agile methods

emerged.  Agile methods (AgileAlliance 2005; Cockburn 2002; Highsmith 2002)—

particularly eXtreme Programming (Beck 2000)—claim to address some of the problems of

inflexibility and unresponsiveness of traditional software methods.  Agile methods

recommend a highly iterative, discovery-based ‘emergent’ approach to software design and

development.  It is unclear whether the recent availability of Agile methods has

substantially changed the practice of software design.  For a start, it is reasonable to expect

that the accumulation of experience of published methods would take a number of years of

continuous use.  Also, the degree to which Agile approaches to design differ from those of

established methods (such as prototyping (Agresti 1986), Rapid Application Development

(Martin 1991) and iterative object-oriented design (Booch 1994)) is difficult to determine

with any accuracy.  The participant’s degree of familiarity with, and commitment to Agile

methods will be probed in the field-work phase of this study.  Participants with experience

of using Agile methods will provide a source of data on the effectiveness of the methods

which should go some way to understanding the significance of these questions and the

nature of the impact that Agile methods have had on practitioners.

1.6 Hypothesis

In parallel with pursuing the research aim stated earlier, this thesis also posits an argument,

and it is that software design can only be meaningfully understood when viewed as situated action.  The

argument doubles as a hypothesis for descriptive research of this type in that it takes an

early position on what the research will discover.  When the research has satisfied the aim

(by being descriptive of expert practice) it will also have built evidence for or against the



Chapter One: Introduction

12

argument (that the design of software architecture is essentially situated).  This statement

of the hypothesis (the thesis’ central argument) represents something of a forward

reference, since the hypothesis arises from the review of background theory and literature

(Chapters Two to Four).  However, as the hypothesis is a prime motivation of the work, it

is brought forward and stated here.  It remains then for the argument to be either put with

satisfactory evidence or to be modified or further qualified in the light of the evidence from

the research’s findings.  The hypothesis is tested (the argument is evaluated) in the

Conclusion (Chapter Ten).

It is important to notice that the hypothesis is not intended to represent an either-or

choice—this thesis does not set out to replace a rational model of software design with a

situated one.  Rather, it argues for a plurality of models of design and sets about depicting

the situated model in more detail than has previously been attempted.  As a result, it is

hoped that the reader will appreciate the respective merits of the situated and rational

models, where each is applicable and relevant, and how they relate to each other.  The

application of this research is therefore to improve understanding of the somewhat mystical

act of architectural software design by an appreciation of these two designer’s modes of

action.

1.7 Overview of the study

The graphical map of this thesis (Figure 1) uses a pyramid to convey progression from the

research aim at the pinnacle, through the successive layers of the background chapters, the

research design, case study and results chapters, to the discussion and conclusion chapters.

The shaded clouds identify epistemological domains from which existing theory is drawn.

The unshaded clouds represent exploratory research activities.  The thesis chapters are

shown with dependencies back to the activity or phase that motivates the content.  The

following narrative summarises the purpose of each phase and highlights how they

collectively lead from research aim to research conclusion.



Chapter One: Introduction

13

Field work

Findings

Results, analysis
& case studies

Research design

Aim & hypothesis

Chapter 3:
Design Theory and
Software Design

Chapter 5:
Research Design

design theory
epistemology

philosophy
analysis structure situated design

theory
ethnography

software design
history

Chapter 2:
Four Perspectives
on Software
Architecture

Chapter 4:
Situated  and Ethnographic
Accounts of Software  Design

Qualitative analysis

Chapter 7:
Case Studies in Situated
Software Design

Chapter 8:
Findings

Chapter 6:
A Grounded Theory Model
of the Software Design

Transcripts

Chapter 1:
Introduction

Background

Grounded theory

Discussion
&

conclusions

Chapter 9:
Discussion Chapter 10:

Conclusions

Case studies

Figure 1: A map of the thesis.

1.7.1 Background

As stated, the thesis draws on three broad disciplines—design theory, philosophy and

software engineering.  Design theory yields themes of planning, vernacularism, structured

versus organic design processes, generators, design control and others.  Introduced in

Chapters Two to Four, these themes are reinforced with historical accounts in non-

software domains such as built-world architecture, town planning and cognition.  The

thesis moves forward by drawing together the findings from these diverse design disciplines

and domains, applying them to the design of software architecture, and using them to set a

framework for how the effects of situation can be assessed in accounts of design practice.

The first half of the thesis (Chapters Two to Four) invites the reader to open up some

familiar and some possibly unfamiliar areas, in the interests of recognising common themes.

The second half of the thesis (Chapters Five to Ten) tests these themes for their

applicability and relevance to the practice of software architecture design.

1.7.2 Research design

The source of data about how software architects perceive design and designing is the

architects themselves.  The options for the selection of a research paradigm and the design



Chapter One: Introduction

14

of the research’s methodology are dealt with in Chapter Five.  This research uses structured

interviews with software architects and qualitative analysis of the interview texts as its

means of collecting and analysing data respectively.  Chapter Five explains the choices of

research paradigm, defines a research method, and deals with methodological issues of

consistency, rigour and reliability.

1.7.3 Field work and analysis

Structured interviews with expert software architects contribute accounts, narratives,

heuristic knowledge, personal concepts and reflections on design practice.  As the

interviews proceed, qualitative analysis of the emergent themes is performed to identify

significant themes and to steer the conduct of the interviews.  After completion of the

interviews a qualitative analysis of the data delivers grounded theory assertions that

identify drivers, forces and motivations in the context of software architecture practice and

the designer’s personal accounts of design practice (Chapter Six).  Two accounts of

designing are assembled into a chapter of case studies (Chapter Seven).

1.7.4 Findings, discussion and conclusions

The grounded theory assertions and the case study results are brought together as a set of

findings and collectively tied back to the study’s aim (Chapter Eight).  The findings are

then related back to theory in the discussion (Chapter Nine) which allows the formation of

additional conclusions.  Some additional questions about design practice arising from

Chapter Two (‘Four perspectives on software architecture’) are also addressed in the

discussion.  Chapter Ten draws together the research’s conclusions, including a response to

the hypothesis, some generated hypotheses, responses to some of the key themes of the

research, and a statement of the originality and significance of the findings.

1.8 Conclusion

Rationalism is the incumbent software design paradigm and provides the underlying

philosophical base for software engineering (Truex et al. 2000).  Software engineering

furnishes software architects with paradigms, models, tools, techniques and methods but

does not adequately motivate or explain the creative and personal activity of the design of

software architecture.  The act of design—the point at which a software architect puts a

design where none previously existed—remains one of personal creativity and appears to

be influenced as much by situation as by objective constraints and requirements.



Chapter One: Introduction

15

Professionalisation of the software architect’s role over more than three decades has

reinforced the expectation that software design professionals should rely upon methods and

strive for repeatability.  However, research has consistently found that designers and

developers do not use methods but prefer to hand-craft their personal design processes

using an apparently ad hoc collection of tools and techniques.  Few detailed descriptions

exist that explain why and how expert software architects approach design in this way.

Rationalists would attribute the failure of software engineering to seriously influence the

practice of software architecture design to the practitioner’s disinterest or inability to

understand, use, internalise and pass on formal or prescriptive design methods in their

practice.  However, professional software architects continue to show little appetite for

submitting to formal methods or prescriptive processes.  This tension is not new—it has

existed for several generations of software developers and appears to be a significant

motivation of the Agile methods movement.

The rational paradigm will continue to provide a foundation for software construction but

it does not support or adequately explain the personal act of designing software.

Alternative models are needed.  This study explores designer’s accounts of practice in order

to describe such a model.  This is not an attempt to replace existing software methods such

as the Rational Unified Process (Kruchten 2000) or Agile methods (AgileAlliance 2005;

Cockburn 2002) but instead supplements these methodologies with a socio-cultural layer,

allowing more holistic interpretations of design practice and design outcomes.

The research will be exploratory and descriptive (rather than causal or explanatory) in that

it will deliver a ‘rich picture’ of a practice of software design from an unconventional

philosophical perspective.  The project’s aim—to describe and account for the practice of

the design of software architecture—will be satisfied by this emergent theory, case study

evidence, and rigorous comparison with the literature.



16

Chapter 2:  Four Perspectives on Software

Architecture

The only principle that does not inhibit progress is: anything goes (Feyerabend 1993, p.

14).

2.1 Introduction

Design, design theory, and the observation of design practice are complex and amorphous

domains, and to describe expert design practice, some organisation of both theory and

practice is required.  Clegg’s (1994) organisational framework posits four theories (rational,

pragmatic, radical and critical) of the purpose and meaning of technology design in society.

This chapter explains these, and goes on to explore the meaning of each of these theories

for software design practice.  These perspectives are consistently used throughout the

remainder of the thesis as a structuring device, particularly in regard to structuring the

cross-disciplinary thematic literature review (Chapters Three and Four).

2.2 Handles on Design

At this early point in a thesis it is customary to state formal definitions of key terms.  But a

formal definition of design, or even software design, might pose more questions that it

would resolve.  Design is a fundamental human behaviour.  Design is ‘one of the most

elusive yet fascinating topics in the software field’, Glass (1999, p. 104) suggests—elusive

because it defies rational objectification, and fascinating because it holds the key to the

success of most software projects.  Dym (1995) chooses a metaphor to illustrate his

conception of design—his ‘design onion’ identifies four layers—experiential (design is

about learning by doing); mathematical (it only achieves valid mathematical status when

framed in mathematical terms); cognitive (it is about the functioning of the human mind in



Chapter Two: Four Perspectives on Software Architecture

17

creative activity) and social (it is about process activities, especially in team settings).

These layers each represent distinct bodies of knowledge, and the difficulty in stating the

foundations of design explains one of the recurring problems faced by theorists who

attempt to unify design methods or express design in universal frameworks.  The layers

make ‘strange bed-fellows’, Glass writes (p. 104).  While depicting design as a mixer of

theories and practices from divergent disciplines is illustrative, Dym’s metaphorical onion,

like many metaphors, suffers from over-generalisation.

Other metaphors feature prominently as a mechanism for typifying design.  For example,

bricolage (Louridas 1999) is construction, using whatever comes to hand, by a process of

trial and error, assembling, tinkering or playing.  Jencks’ (1973) case for purposeful ad hoc

design makes similar claims about the situational serendipity that appears to drive the

design process at times.  The bricolage metaphor illustrates how the designer approaches

the design task—whereas the engineer seeks direction from the immutable laws of the

universe, the bricoleur seeks direction from his collection.  Where the engineer creates the

means for the completion of his work, the bricoleur redefines the means that he already

has.  While the engineer plans, the bricoleur assembles.  The bricoleur’s results are always

unpredictable and may diverge from the original intentions, but the argument that this

redefinition does not happen for the engineer engaged in a planned form of design may at

times be equally difficult to make.  Metaphors such as these provide stimulating input to

the ongoing discourse of what design is.  Louridas’ claim on ‘bricolage’ as a universal

design metaphor ultimately highlights the author’s postmodern perspective and points to

the need for pluralism in viewpoints of design.

2.2.1 Four definitive sociological paradigms

The inadequacies of metaphors and the absence of universal, useful definitions makes a

framework like Clegg’s (1994) model of organisational behaviour applicable to systems and

project-based design.  The original source is Burrell and Morgan (1979) who classified

industrial sociologies by drawing two orthogonal dimensions, one concerned with the

nature of society (ontology) and the other with the nature of our knowledge of the world

(epistemology).  The ontological scale ranges from concern for order and stability to

concern for conflict and change.  The epistemological scale ranges from the objective to

the subjective.  Hirschheim and Klein (1989) took this elementary framework and

decorated it with analyst roles (Figure 2), illustrating the software designer nicely.



Chapter Two: Four Perspectives on Software Architecture

18

Functionalist

System Analyst = ‘Expert’

Subjective reality

Concern for 
conflict, change and disintegration

Objective reality

Concern for 
order, stability and integration

Interpretivist or Social Relativist

System Analyst = ‘Change Agent’

Radical Structuralist

System Analyst = ‘Labour Partisan’

Radical Humanist or Neohumanist

System Analyst = ‘Emancipator’

Figure 2: Four sociological paradigms for organisational analysis.

Starting at the top left quadrant, Hirschheim and Klein define systems analysts (or

researchers or practitioners) concerned with regulation, continuity and order as

functionalists who work within rationalistic methods to transform organisations toward an

objective truth.  The majority of system and software design methods fall within this

category.  At the top right quadrant, the interpretivist analyst works as a change agent,

facilitating people to discover and own their needs and their environment.  Checkland’s

(1981; 1990) Soft Systems Methodology fits this quadrant.  In the bottom left quadrant,

the radical structuralist analyst accepts the objective nature of the world but attempts to

effect radical change, inevitably encountering conflicting issues of labour versus capital. In

the bottom right quadrant, the radical humanist analyst is also concerned with change, but

emphasises the subjective nature of reality—they typically attempt to use information

technology as a tool to emancipate its users.

Coyne’s (1995) four-part categorisation of information technology in society is

substantially similar.  Coyne uses Gallagher’s categories of philosophical thought as the

basis of four views of information technology systems in society.  These views—

conservative, pragmatic, critical and radical—provide us with useful ways of thinking

about design (Gallagher 1991).  Coyne’s first view—that of data, information and

knowledge as commodities that can be stored, made to flow through channels, and

magnified over time, constitutes a conservative characterisation of information technology, in

that it suggests that a commodity must be created, apportioned and conserved.  This view



Chapter Two: Four Perspectives on Software Architecture

19

provides impetus for the creation of information technology systems that provide for faster

and more ubiquitous transmission, more efficient storage, better access, and smarter ways

of generating more information.  In this conservative conception, design means forming

and extending the infrastructure subject to the constraints of conserving value.  People

feature in this view as actors in the activities of provision and conservation.  Coyne

illustrates this category by associating well-known computer scientists.  Herbert Simon

(1985), for example, (and others of the artificial intelligence community who seek to reify

human knowledge directly in machine form, particularly in the symbolist school) are

conservative, he claims.  In the software methods domain, methods with an engineering

orientation such as the Rational Unified Process (Kruchten 2000) may be similarly

branded.

A second characterisation views the importance of information technology as its ability to

become a tool, or an extension of a person’s reach or capability.  In Heidegger’s (1962)

conceptualisation of ‘being’, a tool is an inert object until its actor begins to use it, at which

point it becomes a part of the actor and he a part of it.  Because the tool metaphor places

the person at the centre and focuses attention on the engagement between human and

technology, Coyne calls this the pragmatic perspective.  Coyne argues that theoretical views

of computer systems design are giving way to the pragmatic in many ways.  Some

confirmation of this may be found in the emergence of Agile methods (Cockburn 2002).

A third characterisation of information technology hinges on the notion that its importance

derives from its role in society’s political and social web of control.  Information

technology serves as a medium of global communication that cannot be regulated, is prone

to abuse, and promotes ways of thinking that some in society would wish to oppose.

Coyne terms this characterisation as critical.  From the critical perspective, design means

unbalancing and re-balancing structures of social and political control, subject to the net

forces in the particular context.  A critical perspective has value in understanding the non-

technological dimensions of systems development where economic, political and

sociological drivers frequently outweigh technological ones.  In the software methods

domain, the self-regulating open-source communities and developer collectives (such as

Raymond’s ‘bazaar’ (1999)) are arguably critical, in that they invert conservative notions of

ownership and control.

A fourth characterisation of information technology in society focuses on the difficulty of

defining a solution that addresses needs in a complex, dynamic, evolving environment.  In

ultimately self-deprecating fashion, this position holds that any ideas that we develop



Chapter Two: Four Perspectives on Software Architecture

20

about the centrality of information technology turn out to demonstrate the opposite, and

any sweeping change that we may ascribe to the introduction of information technology

into our world has already been usurped by something pre-existing.  Coyne names this

characterisation radical—it takes what purports to be a progressive position and

demonstrates the orthodoxy in this position.  Design from this perspective involves

‘deconstructing’ prevailing attitudes and canonical positions to resolve new constructions

of ‘being’—our perceptions of how we exist in relation to others, and to the objects around

us.  Coyne names Marshall McLuhan (1964; 1967) as a radical who was prepared to argue

along the lines of media subverting messages (McLuhan’s contributions to design theory

are summarised in the next chapter).  In the software methods domain, Gabriel’s (2002)

early attempts at method deconstruction based on Feyerabend’s theory of counter-intuition

are radical, because they deliberately subvert orthodox methods in the interests of

enlightenment.

These four views provide useful vantage points from which software design practice may

be examined.  They are general enough to apply broadly and they build upon a

philosophical base.  They also account for rational (conservative) design behaviours on par

with pragmatic, critical and radical ones—a characteristic that many method assessment

frameworks cannot claim.

Paradigm
Characteristic

Rational Constructivist

Cognition Follows a ‘data processing’
metaphor—cognition is
evidenced by the deterministic
processing of known inputs to
produce outputs. 

‘Emergent’—cognition is an
emergent property of the
interaction between an
individual and the
environment. 

Behaviour Behaviour is largely
predetermined by plans and
the deterministic application of
known skills and resources to
problems. 

Behaviour is largely in
response to contextual
situations, observations,
events and interactions.

Epistemology Knowledge is embodied in
process and procedure.
Observations are generalised
to theories that converge
toward universal laws.
Independent of context or
situation. 

Knowledge is embodied in
people’s conscious and sub-
conscious, and results from
their continuous experience
of interacting with others
and the environment.

Learning Programmed, as a result of the
periodic evaluation of plans
and processes. 

Continuous, as a result of
interacting with each other
and the environment.

Table 1: Comparison between rational and constructivist philosophies.



Chapter Two: Four Perspectives on Software Architecture

21

2.2.2 About definitions and theory

The philosophical frameworks of Table 1 hint at why the quest for a ‘handle on design’ (a

definition) will continue to be elusive.  Coyne and others suggest that no such definitions

are possible until the observer’s philosophical stance has been declared, and there appears

to be merit in being able to move between different philosophical perspectives.  To

understand how the observer’s philosophical stance changes the definition of design, and

to build towards a research question, the implications of Coyne’s four perspectives on

software design are explored commencing with rationalism.

2.3 Rationalism

The history of software engineering reveals repeated attempts to express software design as

a set of rational theories.  Rationalistic approaches have undoubtedly been highly

successful in delivering the mechanisms of software development and production that

today’s global software industry relies upon.  Rationalism falls within Coyne’s conservative

perspective, in which design is an intervention in an otherwise predictable world intended

to convert a less desirable situation into a more desirable one.  It assumes that the designer

can declare needs and intentions and relate these to objects in a meaningful way, and that

technological artefacts conserve the meaning and intent of their designers and creators over

time, despite changing circumstances.  In conservative design, new artefacts are the

products of individuals and teams who modify, combine, synthesise or reproduce pre-

existing objects.  Designers (rather than constructors or users) control what they produce,

and this control finds its expression in methodology.  Methods are typically sequences of

techniques, steps, activities and phases that prescribe generic design paths that are

assumed to work in the majority of cases.  Methods, like theories, gain acceptance with use

over time.  Conservative design relies upon certain universal principles and these are

assumed to underlie all successful design.

Rationalism is not a single philosophical position (Meredith 2002).  Foucault describes it as

a ‘discursive practice’ we are all caught up in (Coyne 1995, p. 18) which permeates our

understanding and colours our perceptions of technology and design.  Rationalism

promotes reason, logic and theory above the stuff of fabrication and instantiation, and it

challenges pragmatism in several ways.  Firstly, rationalism’s distinction between theory

and practice imposes an ordering in which theory leads practice.  As a result, the practical

is not of primary concern, and knowledge that arises from practice is therefore degraded or

unjustified.  Rationalism supports the view that technology is a product of theoretical



Chapter Two: Four Perspectives on Software Architecture

22

enquiry and is subservient to it.  In more extreme cases, rationalism works against

participative practice by promoting a hierarchical view of knowledge that drives a wedge

between the designer and users of the designed artefact.

Rationalism asserts that the physical presence of a technology is less important than what it

contains or what it accomplishes—technology is a medium, but the content it conveys is

what matters.  Computer technologies (like minds and texts) are ‘knowledge containers’,

and communication technologies (like language) are ‘knowledge conveyors’.  The

technological medium is less important than its message.  This emphasis downplays the

situation in which knowledge is created and used.  In an organisation, for example, the

effectiveness of a technology is a function of its efficiency and reliability in conveying

knowledge, rather than a function of its ability to permeate the organisation’s web of

interactions and change people’s practice or the organisation’s culture. Rationalism denies

the formative and generative power of technology in its context of use.

2.3.1 Theory and practice

Questions of the appropriateness of rationalistic approaches to a domain of knowledge

such as software design invite reflection on ways of thinking about knowledge in that

domain.  In many domains of scientific knowledge, theory is distinct from practice,

researchers can consciously determine on which side of the line their work contributes, and

questions about the relationship between theory and practice are relevant.  In the software

domain, however, the meaning of ‘theory’ is less clear.  If posed to a group of software

architects, the question ‘what are the theories of design within software engineering?’ might

be expected to bring forth a grab-bag of methods, techniques and heuristic knowledge.

This theory-practice ambiguity is not without precedent and is regarded by some to extend

beyond the social to the physical and natural sciences.  Feyerabend (1993) takes the view

that much of scientific discovery is opportunistic and that all theory is incomplete or based

upon generalisations that are unsupportable in all cases.  Another view (Coyne 1995) is

that although we attribute great technological feats (such as the Apollo moon missions) to

science, it is not clear whether this attribution follows for rational reasons or because of the

privileged position we bestow upon theory over practice.  Philosophers such as Dewey

(1916) regard theory and practice as inseparable, just as thinking and doing are

inseparable—‘only by wrestling with the conditions of the problem at first hand, seeking

and finding his own way out, does he think’, Dewey (p. 160) surmises.

In the scientific tradition, knowledge about natural phenomena and physical structures is



Chapter Two: Four Perspectives on Software Architecture

23

thought to be largely independent of its creators, or the setting in which the creation

occurred.  This ensures that the observations made and implications drawn are, and

remain, independent of the observer.  As long as the phenomena under study are stable,

and all those involved adhere to a common framework of interpretation, this ideal can be

maintained.  While this holds for many design artefacts in traditional engineering, Keil-

Slawik (1992) suggests that it does not hold true for the development of software.

Traditional engineering focuses primarily on material structures and their physical effects,

whereas in software engineering we are mainly concerned with ‘symbolic structures and

their cognitive effects’ (p. 172).  Two other reasons account for this difference—the

dynamic nature of the relationship between the artefact and its context of use, and the

uniqueness (on various levels) of the contexts of development and use.  As Parnas (1985)

pointed out in his treatise on the immaturity of software development practice, software in

general lacks the degree of repetitiveness that is so characteristic of materials or artefacts in

other engineering disciplines.  Thus theory of software engineering is compromised in a

classical sense by the nature of the software fabric.

2.3.2 Software as a design medium

Discussions of design process repeatability inevitably raise questions of the appropriateness

of the engineering metaphor.  When Lammers (1986) asked a number of eminent computer

programmers the question ‘Is computer science a Science?’ she got various answers,

including ‘I don’t know what truth computer science is trying to learn’ (p. 55), ‘I definitely

consider computer (programming) to be an art’ (p. 201), and ‘I call (computer science) a

craft because is certainly isn’t a science yet’ (p. 216).  These commentators are not the only

ones to borrow terminology of a bygone era.  Goguen (1992) thinks that software

engineering is presently ‘more like a medieval craft’ than a modern engineering discipline

(p. 200).  Shaw and Garlan (1996) describe the design and development of software

architecture as being traditionally based on a substantial folklore of system design, with

little consistency or precision.  While many observers regard engineering as an attainable

but distant goal for the discipline of programming, some openly regard it as a poorly chosen

metaphor (Borenstein 1991), and pursue more radical metaphors such as craftsmanship

(McBreen 2002) and theatre (Laurel 1993).  The perception of software architecture as

folkloric practice may be the result of a rationalistic bias on the part of the observers as per

Foucault’s ‘discursive practice’.

The need for continuity of design effort throughout the software artefact’s lifecycle also

challenges a rationalistic conception of software design.  At the time when software



Chapter Two: Four Perspectives on Software Architecture

24

theorists were converging on the waterfall model, design theorists in non-software domains

had moved on towards models of design as discourse and as a continuous process.

Mitchell (1988) perceived fractures in the alignment between traditional (engineering)

design and manufacture and software design and development.  Mitchell viewed design as

‘a continuous and non-instrumental thought process, a creative act in which everyone,

designers and non-designers alike, may participate equally’.  The designer’s role in the post-

mechanical era, he argued, was to make the design process equally accessible to everyone.

To realise this goal, Mitchell demanded involvement—design must ‘become a socially

oriented process in which… we are all both spectators and actors’ (p. 214).

That software design is continuous during system development is a tenet of object-oriented

lifecycle models (Booch 1994; Meyer 1988).  The focus of this continuous design effort is

the software architecture (Foote and Opdyke 1995), its components, collaborating classes,

and the mechanisms within individual classes.  The software medium itself affords far

greater opportunity for redesign than most others—in software, there is nothing to stop a

programmer from propagating a highly localised bug fix at the implementation level into

the abstract classes that comprise the system’s architecture.  Or—for that matter—from a

domain object forward through presentation layer classes into the system’s user interface,

or backward into the architecture’s persistence layer.  In this kind of evolutionary software

development, we can never be sure where production processes (such as coding and bug-

fixing) end and architectural re-design begins.  In fact, design can occur on every level of

abstraction and scale concurrently, and even localised development can trigger redesign on

an architectural scale (Foote 2000).  Mitchell’s and Foote’s continuous design are fuelled

by designer-initiated interaction with all parts of the system and its context.  The

enlightenment that followed from experience with object-oriented software architectures

has translated into the partial disintegration of phase boundaries.  The elongated feedback

loops typical of waterfall lifecycle models have collapsed and software integration and

release cycles have dropped from months to weeks.

While these characteristics of object technology allow a relaxing of rigidity in process

models, they do not address other aspects of the rationalistic orientation in lifecycle

models.  An awareness of the limitations of traditional rationalistic methods continued to

be raised by both computer scientists (Budgen 1995; Floyd 1992b; Winograd and Flores

1986) and information systems researchers (Galliers 1992; Hirschheim 2001; Redmond-

Pyle 1996).  Planning is one important aspect that has a long history in design theory.



Chapter Two: Four Perspectives on Software Architecture

25

2.3.3 The Failure of the Master-plan

One of the most enduring influences of rationalism on all forms of design concerns the area

of planning.  Master-planning constrains design into a distinct phase, and forces premature

resolution of design options on the basis of knowledge of requirements and constraints at a

given point in time.  A brief digression into architectural history illustrates these principles.

Two forms of architectural master-planning—the civic master-plan and the public housing

estate—left unmistakable legacies that demand reinterpretation in every generation.

Adherence to the principles of modernism amongst architects and planners began to falter

with the mediocre results of the British New Towns policy, which culminated in 1972 with

the inauguration of Milton Keynes (Frampton 1988).  Although it is now widely recognised

that in city planning, the boundary between the design of physical structures and the design

of social systems dissolves almost completely (Simon 1985), the modernists took a

supercilious attitude, neglecting the daily, practical needs of inhabitants.  Le Corbusier and

his contemporaries adopted a theory of zoning—by carefully re-ordering the city, by

separating its functions, they thought it possible to solve a wide range of social ills

(Myerson 1993).  By the time the celebrated revolution in popular culture of the sixties

arrived, architecture’s infatuation with Le Corbusier’s egocentric vision had been noticed

more broadly.  Journalists such as Jacobs (1964) reported on the discrepancy between the

diversity and simple richness of life on Manhattan’s multicultural street corners and the

lack of life in New York’s new Garden City developments.  Architectural theorist

Christopher Alexander crystallised these observations in a pattern-based design manifesto

based on a philosophy of user-centricity (1979), a backlash against modernism (Grabow

1983).  The master-planned cities of Milton Keynes and Levittown (Gans 1967; Venturi

1970) were the last attempts by architects to project utopian urban schemes on a grand

scale.

Levittown became a notable case study for planning theorists.  Levittown is what we

would today call a housing estate on the outskirts of Pennsylvania.  It is distinguished by

the fact that it was one of the first such estates to be planned, built and sold by a single

developer, Abraham Levitt and Sons, and as such, one of the first master-planned domestic

environments.  The Levitts devised a mass production scheme that allowed them to build

inexpensive housing for the postwar flood of veterans and their families.  Architects,

planners and sociologists have since iconised Levittown as the first and archetypal

American suburban estate, maligning it for its emphasis on self-containment, lack of

community facility, social dis-integration and expressionless uniformity.  Levittown,



Chapter Two: Four Perspectives on Software Architecture

26

initially a blueprint for the suburbanisation of middle class America, was upheld as primary

evidence of the thesis that quality, diversity and richness of the experience of life is

dictated by one’s surroundings (Gans 1967).

Levittown left another imprint on design thinking at the end of the modernist era.  The

houses, each being relatively plain and indistinguishable as a result of the Levitt’s drive for

economy, began to sport various forms of symbolic décor.  Occupiers built post-and-rail

fences reminiscent of southern ranches, nailed old wagon wheels to feature walls, put

coach lights either side of the door, and erected flagpoles.  The architectural cognoscenti

were delirious with ridicule—such kitsch appliqué further reinforced the general public’s

lack of taste and provided proof of the meaninglessness of such symbolic appliqué.  To the

modernists, decoration was crime—symbolism of any kind on buildings or artefacts

represented backwards-looking self-indulgent romanticism, recalled a discredited period of

design, and failed to embrace Internationalism or the functional purity of the new

materials.  Venturi (1970; 1977), one of the first postmodern theorists, reinterpreted these

symbolic decor attachments.  Far from being kitsch architectural detritus that the

modernist movement had attempted to sweep away, these mass-produced do-it-yourself

appliqués were legitimate symbols of working and middle-class aspirations that were

entirely consistent with emerging postmodernism.  Venturi considered Levitttown to be

‘almost alright’ in the sense that it represented a kind of aesthetic-in-opposition to

modernism’s constant desire to drive bulldozers through socially coherent communities.

The Levittown residents, landlocked by the constraints of a modernist master-plan, broke

free by articulating their environment with architectural appliqué, Venturi claimed.  More

recently, Brand (1994) has documented the same human propensity to indulge in constant

modification in his exploration of how buildings ‘learn’.

Design and development of all kinds in isolation or without necessary interaction is at best

sterile and at worst dangerous.  With regard to the modernist housing estate genre, the

Pruitt-Igoe housing project in St. Louis, Missouri, provides an oft-cited case study in late-

modernist apartment design (Mitchell 1988).  Upon completion, the project won design

awards from the American Institute of Architects which assessed the project as being an

exemplar for future low cost housing projects.  But the high-rise design was soon

considered uninhabitable by its residents—parents could not supervise children in the

ground level playground, the facilities were inadequate, and the building’s segregation

inhibited natural social flows and broke the resident’s established social relationships,

allowing crime and vandalism to flourish.  Just sixteen years after the initial flurry of



Chapter Two: Four Perspectives on Software Architecture

27

accolades, the complex was demolished with the inhabitant’s blessing.

There were other famous failures.  When Le Corbusier finally managed to realise his design

for a ‘unité jardin verticale’, it was the communal facilities that remained unused.  The

utopia of the preconceived concrete and steel forms could not be filled with life, not only

because of the architect’s ‘hopeless underestimation of the diversity, complexity and

variability of modern aspects of life’ but also because modern societies with their

functional interdependencies ‘go beyond the dimensions of living conditions, which could

be gauged by the planner with his imagination’ (Habermas 1997, p. 232).  These episodes

from architectural history serve to illustrate important reasons why master-planned design

was discredited.  It is not coincidental that the history of planning in software engineering

lifecycle models—from waterfall to whirlpool—reveals a similar progression.  Pruitt-Igoe

cameos the destiny of design performed independently of consideration of the needs of

inhabitants or users.  A masterful idea on the architect’s drawing board and acclaimed as a

concept, it failed dismally in actuality because the designers were seduced by the prospect

of realising a utopian town planning theory and ignored habitation.  The Levittowners

sought ways of articulating their environment because the master-planners had left it

featureless and expressionless.  The utopia of the British new towns faded as a result of its

designer’s failure to anticipate the social fabric of a community in advance.  In general, a

designer working alone at a point in time cannot anticipate the needs of a structure’s

inhabitants.  Modernism’s propensity to freeze all design considerations allowed the

achievement of a form of structural and functional purity but eventually became its fatal

flaw.

Modernism (and by implication rationalism) was condemned for other reasons.  Thackara

(1988) was concerned with the detachment of the design process from construction

processes.  Salingaros (2006) developed mathematical models of ‘architectural

temperature’ (an abstraction of scale) that illustrate modernism’s semiotic inconsistencies.

Frampton (1988) criticised modernist themes in planning as lacking sensitivity and

relevance.  There are important lessons for all designers to be found in these episodes from

architectural history.  Communities have rich and complex social dimensions that cannot

be planned a priori.  People have an innate need to express themselves—to articulate their

environments.  To misunderstand these lessons is to risk repeating the mistakes of the

modernists.  These themes are equally evident in the history of software lifecycle process

models.  The ‘rich and complex’ dimension of community life justifies the pursuit of

collaborative system design approaches, and software lifecycle models have incorporated



Chapter Two: Four Perspectives on Software Architecture

28

iteration as a result.  Iteration serves to reduce feedback loops and increases development

response times (Busby 1998) but does not address all of the concerns of those researching

systems design in complex environments.  Alternative planning models to modernism’s

master-planning are needed that acknowledge contextual factors and adequately allow for

the rich and complex forces of situation.

2.3.4 Alternatives to the Master-plan

From the failures of the modern era, design theorists moved on to autopoiesis, organic and

evolutionary models, where design is thought of as emergent rather than being projected or

prescriptive.  This period evidenced a new awareness of the complexities of the social

systems in which design is performed.  There were three recurring themes.  Firstly,

modernism’s strict separation of design from construction and habitation was perceived to

have resulted in less habitable structures, as Pruitt-Igoe illustrated.  Participative design

approaches, as advocated by Mitchell (1988) and others, addressed this concern.  Secondly,

there was an increasing recognition of the cost of modernism’s disregard for history and

context.  The link between architecture and social history became fashionable, and historic

precincts in cities began to be reconceived as museums of economic, social and cultural

evolution in what was to become a global urban renewal movement.  The emergence of the

postmodern movement embodied an attempt to reconnect people with symbolism and

form in buildings and artefacts.  Thirdly, modernism’s grandiose attempt to design for all

people for all time was widely perceived to have failed (Hubbard 1996).  Town and master-

planning swung away from enforcement of social and economic zones of control toward

more integrated and inclusive theories and approaches.

Alternatives to master-planning reconceived the goals of design from product to process.

Simon (1985) expressed these ideas when he observed that a paradoxical, but realistic view

of design goals is that their function is to motivate activity, which in turn generates new

goals.  Each step of a project’s implementation creates a new situation, and the new

situation provides a starting point for fresh design activity.  The notion of finality, Simon

claimed, is inconsistent with our limited ability to foretell or determine the future—what we

call final goals are in fact criteria for choosing the initial conditions that we will leave to

our successors.  Social planning has much in common with the processes of biological

evolution, Simon claimed, in that it exhibits a form of myopia—we as designers in our time

and generation prefer not to see too far.  Looking a short distance ahead, we try to generate

a future that is a little better than the present.  In doing so, we create a new situation in

which the process can then be repeated.  In the theory of evolution, Simon concluded,



Chapter Two: Four Perspectives on Software Architecture

29

there are no theorems that direct this myopic hill climbing.

Alexander and other theorists of the seventies wrote with the voice of a generation of

disaffected inhabitants of their predecessor’s modernist monuments.  His alternative to

master-planning is succinctly put in ‘A City is not a Tree’ (1988) which opens with the

clarification that ‘the tree of my title is not green with leaves… it is an abstract structure’

(p. 67).  Alexander’s tree is not the one that underlies hierarchical master-plans or any

manifestation of functional decomposition—rather, it is a metaphor for bureaucratic

control of the commercial, social and domestic functions of a city.  ‘A City is not a Tree’

proposes an emergent behavioural paradigm for planning and design that attempts to

replace established processes of decomposition (the kinds of process that produce a tree)

with those of devolved evolution (alternate processes that produce a network) (Grabow

1983).  Alexander’s approach to complex, multi-dimensional planning problems

commences with a cameo of habitation:

In Berkeley, at the corner of Hearst and Euclid, there is a drugstore, and outside the

drugstore a traffic light.  In the entrance to the drugstore there is a newsrack where

the day’s papers are displayed.  When the light is red, people who are waiting to cross

the street stand idly by the light; and since they have nothing to do, they look at the

papers displayed on the newsrack which they can see from where they stand.  Some of

them just read the headlines, others actually buy a paper while they wait.  This effect

makes the newsrack and the traffic light interactive; the newsrack, the newspapers on

it, the money going from people's pockets to the dime slot, the people who stop at the

light and read papers, the traffic light, the electric impulses which make the lights

change, and the sidewalk which the people stand on form a system — they all work

together.  (Alexander 1988, p. 68)

This vignette reveals static and dynamic elements.  The static part is the physical

arrangement of newsrack, lights and sidewalk—a structural pattern within the system

which Alexander calls a ‘unit’ of a city.  This particular unit is inhabited by a dynamic flow

of people and objects (newspapers, coins, electrical impulses).  A unit is bounded by the

dynamic system it supports, and contains only those physical objects that are required to

make the dynamic system work.  Units can exist on a much larger scale than the one

involving a street corner, such as the arrangements of facilities that support dynamic

systems for shopping, eating, socialising, working and entertaining.

In natural cities, units and the dynamic systems they support overlap, Alexander claims.

The news rack may be a part of an adjacent unit that supports the system of people waiting

at a nearby bus stop.  Alexander claims that this kind of overlap is emergent, rich, and

complex—often too complex to be designed a priori, and certainly too difficult for



Chapter Two: Four Perspectives on Software Architecture

30

conventional town planning methods to anticipate.  When units overlap, they form what

Alexander calls a sub-lattice structure.  When units are non-overlapping (disjoint), they

form a tree.  Alexander’s network model of emergent design is behavioural rather than

static or structural.  Similar emphases (that drive the design of system structure based upon

dynamic behaviours or scenarios) have found their way into object-oriented software

design methods (Jacobson 1992; Taylor 2001d; Wirfs-Brock 1993).  To avoid a tree of

units in which the interactions between places, objects and people are artificially simplified

or inappropriately constrained, network organisational structures are needed.  Alexander’s

(1977) pattern language is the most concrete realisation of an alternate theory of design

that defines apparently viable decentralised design processes that drive the evolution of

system structures.

2.4 Pragmatism

Under Coyne’s (1995) pragmatic theme, meaning and intent are neither pre-existent nor

absolute, and designing cannot be done without adopting the interpretive norms of one’s

community and making grounded judgements from within that context.  Pragmatic design

is more about projecting expectations than it is about addressing needs.  Community

replaces appointed roles, pre-existing artefacts become objects for reinterpretation, and the

act of designing is performed more than it is planned.  Situation dictates to the design act

and design evaluation more than theories, universal principles or methods.  Pragmatic

design is an exploration in which needs are discovered as design progresses.  Pragmatic

designers are caught up in a world of artefacts and practices, and their history.  The

pragmatic designer works to explicate designs, releasing them from the situation.  At all

times the design and its justifications are visible and within reach.  This contrasts with the

conservative, heroic designer, whose individual designerly powers are more likely to be

tacit, implicit or even closely guarded.

Pragmatism overthrows the Greek philosophers’ theory-practice dualism.  By preferring

contemplation over action, abstraction over exemplar, mind over body, means over end,

subject over object, they talked about science but did not practice it, Dewey (1958) claims.

This duality began to dissolve during the scientific revolution of the sixteenth and

seventeenth centuries as the rapidly developing natural sciences combined and

interchanged ideas from both intellectual and technological realms.  In this period, the

production of tools served to illuminate and enlarge the significance of other objects and

events, and the discovery of new theory became dependent on tools.  Hickman (1992),



Chapter Two: Four Perspectives on Software Architecture

31

Dewey’s biographer, wrote that ‘theory became a tool of practice and practice a means to

the production of new effects… theory had no longer to do with final certainty but instead,

as working hypothesis, with the tentative and unresolved’ (p. 99).  Dewey regarded facts,

ideas and concepts all as tools.

Because tools become effective only in use, pragmatism relies strongly on locality or

situation, and tool use recalls the recurring theme of the relationship between planning and

action.  In artificial intelligence, researchers moved from models of a priori planning to

contextual planning when the former proved to be too limiting (Clancey 1993).  Suchman

(1987) addressed the foundational ideas of this transition by advocating a recognition of

action as being understandable and explainable only in its immediate context, coining the

term ‘situated action’ to distinguish this view from the entrenched one of action following

and conforming to a plan, description or specification.  Consideration of the impact of

situation previously had been confined to language (Searle 1969).  Suchman’s depiction of

action is consistent with Feyerabend’s (1993) conviction that scientific discovery—and in

fact all action—emerges from amidst a ‘maze of interactions’ and that ‘successful

participation in a process of this kind is possible only for a ruthless opportunist who is not

tied to any particular philosophy and who adopts whatever procedure seems to fit the

occasion’ (p. 10).  Situated cognition also found expression in Lave’s (1988) research on

adult’s everyday use of mathematics in familiar settings such as supermarkets.  Lave was

concerned that cognitive investigation of mind, body, activity or setting alone was an

oversimplification, and was influential in expanding the focus of cognitive research from

the experimenter’s subject to the ‘whole person in action, acting with the settings of that

activity’ (p. 17).  Situated cognition subsequently influenced social theories of learning,

finding expression in, for example, social theories of ‘communities of practice’ (Lave and

Wenger 1991).

2.4.1 Situated Action

Situated action is an important theoretical underpinning of Coyne’s pragmatic perspective.

Its definition is couched in pragmatic terms.  Suchman claims ‘the term situated action…

underscores the view that every course of action depends in essential ways upon its

material and social circumstances’.  Rather than to attempt to abstract away action from its

circumstances and represent it as a rational plan, the situated approach studies ‘how people

use their circumstances to achieve intelligent action’ (p. 50).  Rather than build a theory of

action out of a theory of plans, the situated approach aims to investigate how people

produce and find evidence for plans in the midst of their situated actions.  Suchman’s



Chapter Two: Four Perspectives on Software Architecture

32

ethnographic account of islander navigators illustrates the two extremities of action

perspective.  Alternative views of human intelligence and directed action can be typified by

contrasting the European and Trukese approaches to navigation.  (The Truk Islands are

centrally located amidst the Carolines in the Federated States of Micronesia).  The

European navigator begins with a plan—a course—which he has charted according to

certain universal principles.  He carries out his voyage by relating his every move to that

plan.  His effort throughout the voyage is directed to remaining ‘on course’.  If unexpected

events occur, he returns to his plan, and designs and executes a corrective action.  The

Micronesian navigator begins with an objective rather than a plan.  He sets off toward the

objective and responds to conditions as they arise in an ad hoc fashion.  He utilises

information provided by the wind, the waves, the tide and current, the fauna, the stars

(without actually having explicitly mapped them) and he steers accordingly.  If asked, he

can point to his objective at any moment but he cannot describe his course.  Vast

migrations of peoples in the eleventh and twelfth centuries over huge distances occurred,

particularly amongst Pacific islanders, using just these methods of navigation.

The European navigator exemplifies the prevailing software engineering models of

purposive action—models motivated by the perceived need for transparency and

predictability.  While the Micronesian navigator would be hard pressed to tell us how he

actually steers his course, the comparable account for the European seems to be

transparent, in the form of the plan that is assumed to guide his actions.  While the

Micronesian navigator’s actual course is contingent upon unique circumstances that cannot

be anticipated in advance, the European navigator’s path is derived from universal

principles of navigation and is essentially independent of the exigencies of his particular

situation.

Suchman’s story was based on ethnographic work performed by Hutchins (1983) in which

the reality and effectiveness of the navigational methods of the islanders were validated.

The story illustrates the essence of Suchman’s model of situated action, and carries a

number of important implications for planning, action and design.  Firstly, different ways of

acting are favoured differently amongst cultures—how to act purposefully is at least

partially learned and is subject to cultural variation.  European culture favours abstract,

analytic thinking where the ideal is to reason from general principles to particular instances.

The Micronesians, however, learn a cumulative collection of concrete, embodied responses

and are guided by memory and experience accrued over years of actual voyages.  Suchman

argues that all activity is ‘fundamentally concrete and embodied’ (p. viii), that our



Chapter Two: Four Perspectives on Software Architecture

33

responses to situations (i.e. our actions) are cultural and conditioned, and that these

attitudes deeply divide both our ways of thinking about acting and the actions themselves.

A second interpretation of the navigation story is that our actions are either ad hoc or

planned depending on the nature of the activity or the actor’s expertise.  People have

navigated in an ad hoc fashion in certain of the world’s oceans for centuries, but the design

and construction of a civil engineering project, for example, is an activity that must

proceed with considerable investment in detailed planning.  If individual actions do not

align with this plan, then they must be (or must be made to be) inconsequential.  It is

common to associate planning with goal-directed activities and adhocism with expressive,

creative acts.  Planning, then, equates with mature action as typified by engineering,

whereas adhocism equates with unconstrained acts of the creative free will such as artistic

endeavours (Jencks and Silver 1973).

It can be concluded that both the Micronesians and the Europeans use instruments and

work to plans—it is just that the instruments are of a different kind and the plans have

different representations.  All actions, according to Suchman, are situated, and although we

like to think of ourselves as drawing on the European tradition of cognition and planning,

in reality we all act like Micronesian navigators most of the time.  The argument for

situated action hinges on uncertainty—circumstances cannot always be anticipated ahead

of time and are constantly changing, so we must act in a reactive fashion to some degree.

Our actions as they are observed to play out are never planned in the strong sense in which

we expect planning to lead action.  In some forms of design, plans are best viewed as a

weak resource for what is primarily a reactive and ad hoc series of decision-making

episodes.

Suchman did not deny the usefulness of plans, but claimed that plans should be considered

a priori improvisations and post hoc reconstructions of action (Bardram 1997)—in other

words, that there is no strong cause and effect relationship between plans and action

(Johnston 1999).  It turns out that in many situations, plans are used for more than just

forecasting action.  It is often only when we are pressured to account for the rationality of

our actions, given this ‘European tradition’ that we invoke the omniscience of a plan, or

retrospectively and selectively reconstruct our situated actions so that they conform to an

imagined or recovered plan.  This behaviour—not unknown in software development

projects—is referred to as post hoc rationalisation (Crellin et al. 1990; Parnas and Clements

1986).  When stated in advance, plans are necessarily vague, in so far as they must

accommodate the unforeseeable contingencies of particular outcomes and situations.



Chapter Two: Four Perspectives on Software Architecture

34

When retrospectively reconstructed, plans systematically filter out detail that characterises

situated actions in favour of detail and actions that appear to align with the plan (Kotre

1995).

The navigation story also illuminates our assumption that representations of actions (such

as plans) can in fact be the basis for an account of situated action at all.  Culturally,

acceptance of a causal relationship between planning and action is almost universal, so

much so that to question it risks treading on belief rather than fact.  This belief is rooted in

scientific positivism (Weatherall 1979) and, of course, rationalistic thinking.  Acceptance

of the situated model of action necessitates careful consideration of where software

‘planning’—in particular software architecture, software abstraction and design—sits on

the figurative line between the European and Micronesian traditions of planning and

action.

2.4.2 Design, Context and Culture

The pragmatic conception of design also elevates collaboration and culture as significant

factors in design.  To adopt a pragmatic stance in design is to engage with and interpret

context.  In systems design, this means setting down a design path based on discovery

rather than a priori formulation or projection.  Mechanisms of discovery include user

involvement, iteration and continuous gross and fine-grained feedback at all levels of the

software artefact’s lifecycle.  Pragmatic design infers willingness on the part of the designer

to defer certain structural and functional concerns.  The designer’s openness to

interpretation and the emergent design that results draws attention to the role of context

and culture in the design process.

Cultural theorists characterise contemporary cultures in ethnographic terms.  Marshall

McLuhan’s (1964; 1967) ‘media philosophy’ earned him considerable kudos during the

transition of social orders in the mid-1960s, and his influence is evident in the design of

personal computer interfaces.  Software technology expedited the information revolution

by providing ubiquitous communications, an electronic office on every desktop.

Instantaneous global electronic communication now enables a new culture in which people

find new freedoms and encounter altered power structures.  Design in McLuhan’s global

village has changed its nature—not only do the village’s inhabitants demand and expect

continuous incremental improvements in the products, systems and services they use, but

they look to design for a new degree of involvement, a new kind of dialogue.  Coyne’s

argument that rationalism is giving way to pragmatism in design finds support in



Chapter Two: Four Perspectives on Software Architecture

35

McLuhan’s predictions.  To McLuhan, the printed page as a medium promotes a

hierarchical and bureaucratic model of human knowledge in which those who control

content exert power over others.  In stark contrast, the information age with its global, real-

time communication channels promote a liberal and empowering view of knowledge.  This

age promises the re-emergence of a ‘tribal culture’ amidst the collapse of the world’s

formerly separate bureaucracies into a ‘global village’, characterised by immediacy,

involvement and a strong sense of social cohesion.  In the electronic era, ‘action and

reaction occur almost at the same time’ (McLuhan 1964, p. 4).

McLuhan is most famous for his mantra ‘the medium is the message’, later modified to ‘the

medium is the massage’ (McLuhan and Fiore 1967).  Ignoring the postmodern pun for a

moment, the aphorism best captures his thesis that the historical points at which a new

medium (such as print or electronic channels) is adopted corresponds with significant shifts

in both culture and distribution of power.  Media revolution takes place when a new

medium sweeps away the previous one but the content does not substantially change,

hence the medium is the message.  The pun embedded in McLuhan’s book title ironically

twists the concept by suggesting that the medium pummels, kneads and manipulates its

subjects, affecting them more than the content does.  Since the emergence of electronic

media, governments, communicators, advertisers and designers have consciously used and

abused the undeniable effect of media on message for their own political, commercial and

social purposes.

Of Coyne’s classifications of information technology in society, McLuhan’s concept of

medium usurping message is radical, while his advocacy of community involvement and

ownership clearly favours pragmatic over rationalistic design.  McLuhan’s early awareness

of the emergence of the global village, the collective consciousness and its ‘total social

processes’ (1964, p. 358) led him to modishly declare that ‘Heidegger surf-boards along on

the electronic wave as triumphantly as Descartes rode the mechanical wave’ (1962, p.

248).  This declaration of philosopher-of-choice recognised the magnitude of the shift

occurring in world culture—Heidegger’s concern for ‘being’ and his treatment of objects in

a contemporary context made him attractive as a philosopher flag-bearer for the

information age.  Others concerned with software and systems would subsequently favour

the philosophy of Heidegger for related reasons (Winograd and Flores 1986).  The

discourse shared by culture and design is mutually definitive.  Culture contextualises and

constrains design, and enables pragmatic design action.  Design constitutes one of the

primary forces capable of shaping and diverting culture when its artefacts are subsumed



Chapter Two: Four Perspectives on Software Architecture

36

into the experience of existence.  As software mobilises from the computer on the desk to

computers in the pocket and in the jacket sleeve, the speed with which it influences culture

will increase exponentially.

2.4.3 Design and History

Because pragmatic design is interpretive, understanding the design of an artefact or system

necessitates reconstructing or replaying its history.  Feyerabend advocates a view of

methodology that integrates history.  Feyerabend’s theory of counter-intuition advocates a

pluralistic methodology in which a designer adopts many perspectives, constantly compares

and contrasts ideas, and attempts to improve failed ideas rather than discarding them—all

in the interests of leaving options open so that truth can be discovered rather than being

prematurely shut off.

As McLuhan’s prophecies of a global electronic village are fulfilled more accurately than

even he could have imagined, a primary theme is that of control.  Successive waves of

technology reorient culture in ways that are profound but at times subtle, not to mention

unpredictable.  In a presentation in 1980 (in Melbourne) on the impact of microcomputers

on society, Barry Jones claimed that ‘the difficulty is that changes [to society as a result of

the introduction of microcomputers] are likely to have made their impact before we can

make an adequate assessment’ (Jones 1980, p. 95).  Today, Jones’ prediction seems

mundane because we now accept that technological impact on society is unpredictable and

irreversible.  Our best option for understanding is to reconstruct events as best we can,

given our limited visibility.  Plans cannot be more than snapshots that reveal intentions and

projections of the designers at a point in time, whereas the history of an artefact or system

and its use serves to explain the opportunism and arbitrariness of discovery and design.

Implications for theory and scientific method of the ‘opportunism and arbitrariness of

discovery and design’ are espoused by Feyerabend, who claimed that ‘science is an

essentially anarchic enterprise, and that theoretical anarchism is more humanitarian and

more likely to encourage progress than its law-and-order alternatives’ (Feyerabend 1993, p.

9).  Quoting Lenin, Feyerabend warned that history is always richer in content, more

varied, more many-sided, more lively and more subtle than even the best methodologist

can imagine.  History is full of accidents and conjectures, curious juxtapositions of events,

and it demonstrates to those who care to look ‘the unpredictable character of the ultimate

consequences of any given act or decision of men’.  Are we really to believe, Feyerabend

argues, that the ‘naïve and simple-minded rules of which methodologists take as their guide



Chapter Two: Four Perspectives on Software Architecture

37

are capable of accounting for a such a maze of interactions?’ (p. 9).

Feyerabend’s references to ‘method’ refer both to the scientific method, and to the

methodological principles that underpin domain-specific methods, such as software design

methods.  Feyerabend bases his deconstruction of rationalistic method partly on an

examination of the history of science.  Barely a single rule or principle is not violated at

some time or other, he claims.  Far from an embarrassment or a result of insufficient

knowledge or inattention to detail, such violations turn out to be necessary fulcrums upon

which new discoveries are made.  It is when researchers and pragmatists decide not to

follow scientific dogma or when they unwittingly break the canon that serendipities unfold.

Given any rule, however fundamental or rational, Feyerabend claims, ‘there are always

circumstances when it is advisable not only to ignore the rule, but to adopt its opposite’ (p.

14), citing the alternate wave/particle theories of light and other examples.

Feyerabend suggested a universal maxim of his own.  It is clear, he claims, that the idea of

a fixed method, or of a fixed theory of rationality, rests on too naïve a view of man and his

social surroundings.  When we look to the rich material provided by history, we must avoid

the temptation to abstract and simplify it for purposes of condensing it into a tell-able size,

or cherry-picking each scenario so as to fit a pre-existing rationalistic orientation.  We must

resist our learned instincts to reduce the complexity of reality into elements of canonical

objectivity, or instances of familiar theory.  If we honestly do this, Feyerabend implores,

there is only one principle that can be defended under all circumstances, in all human

creational activities, and in all stages of human development… ‘the only principle that

does not inhibit progress is: anything goes’ (p. 14).  Feyerabend’s anarchistic approach is not

malicious—rather, he demonstrates (with examples) ‘how easy it is to lead people by the

nose in a rational way’ and that ‘all methodologies, even the most obvious ones, have their

limits’ (p. 17).

Feyerabend may be appealing for a weaker form of anarchy than his mantra might initially

suggest.  Firstly, he is not advocating ignorance of theory or conventional wisdom, because

he suggests a strategy of ‘counter-induction’ in which he urges us to intelligently formulate

hypotheses that are counter-inductive to established theories and established facts.  This

requires us to know the theories and facts in the first place.  He advocates a pluralistic

methodology, in which a scientist adopts many perspectives, compares his ideas with other

ideas, and attempts to improve failed ideas rather than discarding them.  He focuses us on

contrasting rather than aligning our constructs with extant theory in order to generate

alternatives, on destabilising stultifying assumptions, and on stimulating thought.



Chapter Two: Four Perspectives on Software Architecture

38

Feyerabend’s program is the injection of stimulant into the lethargic veins of the scientific

method.  Nothing is ever settled and no view is ever cast in concrete.  An idea, the theory

it begat and its history must all be preserved together, because such preservation leaves the

theory open to further development, and possible reinterpretation in new contexts.

The implications for design concern models of knowledge and the role and form of

methods.  For software design, Feyerabend’s position on method leads to an injection of

history into descriptions of what was designed, rather than some variant of post hoc

rationalisation in which system and project outcomes are reinterpreted to fit preconceived

ideas of rationalistic design.  He recommends replacement of systematic accounts of

knowledge with a historical account of each stage of knowledge, in which discoveries or

developments are expressed as narratives.  He promotes a re-conceptualisation of design

methods so that they encourage unhindered generation of alternatives rather than technical

adherence.  Beyond this, he advocates the generation and exploration of alternatives that

counter accepted wisdom (counter-induction), on the basis that ‘there is no idea, however

ancient and absurd, that is not capable of improving our knowledge’ (p. 33).  He advocates

improving rather than discarding theories, ideas or designs that initially appear to be

unstable or unsuitable in the interests of leaving options open.  Feyerabend’s message

challenges software engineering’s rationalistic orientation—most notably objectivism—and

its reliance on method (Gabriel 2002).

2.4.4 Pragmatism versus bounded rationality

Coyne’s pragmatism appears to share some characteristics with Simon’s (1983) notion of

bounded rationality.  Simon recognised that a rational decision-making process is in most

cases unachievable and that the likelihood of making an ‘optimal’ choice is remote.

Instead, what successful decision makers generally do is to select an option that, rather

than being the best possible, is the best available.  In choosing options that are simply good

enough, decision makers act rationally within the bounds placed upon them by their

environment and limited cognitive capacities, hence Simon’s term ‘bounded rationality’.

The bounded-rational actor’s decisions ‘satisfice’ (Simon’s term) rather than optimise.  The

theory of bounded rationality gives up some of the elegant formal properties of the rational

choice model to produce a theory of decision making that is far more descriptively accurate

(Meredith 2002).  For the practicing software architect, bounded rationality accounts for

decision-making in the presence of incomplete data but it does not account for the

replacement of a rationalistic and objective relationship with requirements, constraints,

plans and models with a constructivist or situated one.  Because it does not challenge the



Chapter Two: Four Perspectives on Software Architecture

39

underlying rationalistic philosophical stance, bounded rationality explains decision-making

in the presence of noise and inaccuracies but does nothing to elaborate constructivist

models of action.

2.5 The Situated Software Architect

Feyerabend argues that pluralism must drive design methods and that action should

challenge and extend an idea’s history.  Coyne contends that design (and action) must be

informed by multiple (postmodern) perspectives.  McLuhan reasons that design has no

meaning outside of context, and that action, culture and medium are inseparable.  Suchman

argues that all action is essentially situated—of the moment—and conventional plans as

controllers of action are meaningless.  These assertions challenge incumbent rationalistic

conceptions of design.  In pragmatic terms, they pose a problem—the determination of

how useful or otherwise these theories are in explaining how software design is practiced.

To pursue this line of enquiry, we need a closer examination of software design practice.

Expert software architects face complex, dynamic and unique design problems that require

them to work collaboratively, flexibly and skilfully.  No single design model or framework

is likely to be able to explain all of their approaches and behaviours comprehensively.

Coyne’s four design themes—conservative, pragmatic, critical and radical—provide useful

platforms from which to construct descriptions of software design practice.  For the

remainder of this chapter, each of these perspectives is adopted with respect to the

software architect.  These descriptions are further illustrated with some rhetorical

questions.  These are not intended to be research questions, aims, goals or hypotheses—

rather, they should be read as a mechanism for clarifying the scope of each of the four

perspectives.  Responses to each of these questions are made at the end of the thesis

(Chapter Nine).

2.5.1 The Rational Software Architect

Rationalism points to an orientation on the part of the designer.  The rational software

architect acknowledges an external, higher source of knowledge, and follows it, to the

degree possible.  Departures are regarded as flirting with risk.  A rationalistic commitment

is expressed when the architect treats a set of methods as canonical, carrying them forward

and applying them to different problems in a range of contexts.  Rationalism turns the

architect toward external authorities for the receiving of design wisdom and new insights,

and imposes limits on the degree to which personal experience can change the received



Chapter Two: Four Perspectives on Software Architecture

40

view.  Rationalism casts the software architect as a highly trained and highly valuable

technician, skilled in software implementation technologies, able to follow methods

accurately and implicitly, and always conscious of the economic values of time and effort.

This characterisation raises important questions of how the rational technician-architect

does in fact use methods to guide the design of software architecture.  If the rational

software architect is indeed a method-user rather than method-interpreter or method-

author, the conflicts between a method’s lore and the architect’s personal experience need

to be somehow resolved:

How do software designers resolve tensions between the selection and application

of methods and the use of pragmatic know-how, particularly in cases where

these conflict?

Particular resolutions that favour the architect’s experience invoke interpretations that

begin to move the architect away from strict rationalism.  Interpretation of rational method

and internalisation of same are, however, different things, but the architect may not be able

to express the difference.  Architects may express a range of views as to their perception of

the value of method:

What purposes do methods serve in the hands of experienced software

architects?

In the light of Suchman’s model of situated action, and the various models of emergent

design, the question of how experienced software architects have learned to most

accurately estimate and plan or project their design effort is important:

How do experienced software designers regard the use of architectural

projections or plans?

Estimating architectural design work is one side of the a priori planning issue—the other is

the success or otherwise of producing encompassing software architectures ahead of their

subsequent implementation:

Do software architects believe that these plans should drive or shape their

designs?  In the cases where plans and final designs diverge, how do architects

explain or rationalise these inconsistencies?

During detailed design and development, experienced software architects must achieve an

appropriate balance of planned and emergent structure.  Emergent structural design may be

achieved by facilitating collaborative design, by delegating to individuals, or by using a



Chapter Two: Four Perspectives on Software Architecture

41

mixture of both.  The quality and coherence of the software architecture is largely

dependent on how well this is done.  The software architect’s leadership style has the

potential to most markedly impact the software architecture in this way:

How is a balance between forward-engineered and emergent design and

architecture reached?

Seeking answers to these questions will illuminate to what degree the rational software

architect survives and prospers in professional practice.  But rationalism is not the only

mode in which the professional software architect works, and the picture will continue to

be incomplete without representations of commonplace pragmatic action.

2.5.2 The Pragmatic Software Architect

There are times when an expert software architect designs in a pragmatic way.  The

pragmatic software architect designs and constructs—at all times—in context and in

collaboration with other designers and the wider community of stakeholders.  To the

pragmatic architect, theory and practice are imprecise distinctions that matter little.  If

theory is externalised, it is treated as following from practice.  Reliance on plans as

dictators of design effort is minimal.  Methods and techniques are assessed in terms of their

proven utility and community acceptance.  The pragmatic software architect takes away

grounded experiences and heuristic knowledge to inform future work in similar situations,

whilst recognising that each new design context will necessitate new interpretations of

familiar objects or techniques.

Pragmatic practitioners driven by internalised knowledge of (sometimes arcane)

programming language, product or framework detail, tacit skills and time-proven solutions

to pull them through project deadlines.  Learning is done in master-apprentice fashion

whilst working craftsman-like in software workshops rather than from theory or methods.

Methods merge with fragments of work practices that ‘seem to work’, and design teams

quickly grow their own localised practices and idiosyncratic cultures.  The pragmatic

designer is untrusting of structured methods or theories, and deliberately filters

methodology or text-book knowledge for its immediate application in the current context.

Some characteristics of this mode of designer behaviour need to be described and further

elaborated:

What characterises the pragmatic software architect?

The elaboration of some of these characteristics will illuminate how situated design



Chapter Two: Four Perspectives on Software Architecture

42

actually occurs:

In pragmatic, situated practice, how are designs created, or arrived at?

There are a number of related questions that concern the understanding of the situated

design act:

What form do situatedness, opportunism and being open to contextual cues take

in practice?

Contextual and cultural factors play a role in the play of ideas and options that become

software designs, and any attempt to abstract from these located scenarios will likely undo

their internal consistency and relevance.  It is therefore important to understand the

influence of contextual factors in some form of design narrative (Wirfs-Brock 2006).  Also

of interest is the way that designs are transferred.  Design transfer traditionally concerns

the transfer of software artefacts and the transfer of the knowledge or capability that

impelled the design’s formation.  The former will draw upon internalised software design

documentation and transfer techniques such as architectural models, pseudo-code and

code.  The latter raises important design knowledge management issues:

In pragmatic, situated practice, how is generalised design knowledge explicated

and passed on?

Pragmatic design unseats conventional notions of methodology as controller of design

practice.  A pragmatic method cannot strictly sequence activities, dictate practices based

on preconditions, or impose universal laws on emerging designs.  A degree of reorientation

of thinking on methodology may be necessary in order for it to support this design mode:

What does it mean for a methodology to be contextualised, to become implicit in

a design—to become situated?

Contextualisation of a method occurs in the hands of the practicing situated designer, who

must learn to reflect on actions, before, amidst and after the action is completed.

Individual and collective reflection can provide a source of feedback that drives method

contextualisation at gross and fine levels, and can also provide invaluable feedback in the

individual designer’s personal learning processes.  The practice of reflection can manifest in

a number of ways:

How do experienced software designers employ reflection when they design?  Do

they acknowledge reflection at all?

These and related questions will help to characterise the pragmatic software architect.  But



Chapter Two: Four Perspectives on Software Architecture

43

pragmatism is not the only mode in which architects work, and the picture will continue to

be incomplete without some kind of critical perspective.

2.5.3 The Critical Software Architect

There are times when an expert software architect designs in a critical way.  Experienced

software architects will have worked in a number of organisations, projects, teams and

business cultures, and will have experienced project failure.  Such experiences may have

developed a critical perspective of software development, in which methods and project

structures are deconstructed to reveal underlying power structures.  Critical theory asks

‘who is in control?’, and targets the pervasive structures that exist to preserve the status quo.

Once revealed, the appropriate responses are perpetual scepticism, emancipation or

revolution.

A critical assessment of a situation leads to a discernment of the distribution of power, to

the revelation of power structures, the oppressors and the oppressed.  Design is, by its

nature, the process of altering the world, and the design of software and computer systems

has the potential to re-distribute power both during the development period and after the

system change has been commissioned.  The ways in which expert software architects

consider these issues in order to effect software acceptance, deployment and use are largely

unknown, as are the ways in which they choose to deal with these forces in their designs

and design outcomes to their stakeholders.

Although the software architect might not need to be the controller of all things

technological, the architect should know where control lies.  The critical view of methods

and project structures as devices for assertion of power between competing factions

inevitably emerges in any examination of software development organisations and teams:

Is there evidence to support the assertion that software architecture and design

can influence or redistribute the balance of power in a design situation?

Methods are ostensibly adopted by organisations to improve the quality and timeliness of

software design.  They have also been adopted as a means of reducing development risk,

and in a critical light, as a means of distributing risk:

What purposes do methods serve in the context of organisations and the

competing parties engaged in economic enterprise?

A designer’s brief is often vague in regard to the responsibility for how the artefact or

product is ultimately used.  This is a different concern to that of useability, which deals



Chapter Two: Four Perspectives on Software Architecture

44

with how useable the software product will be in the hands of users.  A designer’s sense of

responsibility for use concerns how the product may change its environment.  For example,

a designer may design a tool without concern for how it is used, or may go further to

consider in what contexts the tool will be most used and how it might change these

contexts from a social, cultural and humanitarian perspective.  A software designer’s lack

of concern for how a product is used implies the rationalistic separation of object from

subject, of tool from human user:

Does the software architect perceive responsibility for how the product or

system will be used, or for the implications of its use on people, regardless of

their role or position?

A related issue is to what degree software designers take responsibility for recognising and

intervening in inequities, as are often found in environments of sweeping change on the

back of technological change, social engineering or workplace reform:

Do software architects regard themselves or their designs as resolvers of

inequities?

In some situations, software architects may be tempted to subvert authority in the interests

of product completeness or quality.  The ways that tensions between parties in software

development contexts are resolved (or ignored) are revealing of the power structures.

Similarly revealing is the degree to which a software designer is prepared to erect facades

over the true costs and activities of software and system design:

What compels software designers to apply post hoc rationalisation in their

accounts of design work performed, or to mask investment in design or

architectural quality from their managers?

These and related questions will help to characterise the critical software architect.  But

criticalism is not the only mode in which architects work and the picture will continue to

be incomplete without assessment of radical behaviour.

2.5.4 The Radical Software Architect

There are times when an expert software architect designs in a radical way.  Adopting a

radical position can lead to new, unanticipated concepts that invert entrenched or orthodox

meanings, expectations, or intentions.  The ways in which expert software architects

acknowledge this kind of designerly behaviour are largely unknown and substantially

undocumented.  The radical software architect uses re-conceptualisation to illuminate



Chapter Two: Four Perspectives on Software Architecture

45

reality and truth in various situations.  Radical philosophy attempts to ‘exorcise its own

rhetoric, and that of its progenitors’ (Coyne 1995, p. 103).  As a philosophical domain of

thought, its incessant restlessness and its proclivity to dissolve its own foundations make it

difficult to pin down, although the poststructuralist writings of Derrida and the technique

of deconstruction have achieved some prominence.  Deconstruction reverses, inverts and

demolishes opposing positions that are revealed from analysis of the texts of any

intellectual enquiry.

Coyne notes that one of the responses to deconstruction is to generate ‘subversive’

discourse that challenges the foundations even as they are being built.  A software designer

might engage this stance by consciously subverting design orthodoxy:

What techniques do software architects adopt in order to question or evaluate

the use (and reuse) of familiar (or popularly subscribed) designs or design

methods?

This penchant to generate alternatives, or to remain open to design alternatives that have

been rejected in the past, is consistent with Feyerabend’s philosophy.  Feyerabend does not

argue for an ongoing investment in a range of (rejected) design alternatives, but for a

meaningful discourse as to why selections are made:

What processes do software designers use to argue for, or build a case for a

particular design solution over others?

Do software architects always understand how and why a particular design was

chosen?  If they do, can they usefully act on such insight?

This thesis proposes that these four modes of designerly behaviour collectively constitute

the ways that expert software architects design, and that to analyse a designer’s actions or

interpret a designer’s behaviour from only one of these four perspectives is flawed.

2.6 Conclusion

This chapter has argued for a plurality of philosophical views of software design practice.

Coyne’s four categories of information technology in society are viable candidates.  The

conservative platform is incumbent, is underpinned by systems theory and the scientific

method, but is discredited in postmodern philosophy.  Rationalistic software design

methods exemplify its application.  Practitioner’s understanding of (and commitment to)

rationalism is open to challenge.  Coyne’s pragmatic perspective regards design as emergent

and design activity as situated, but how the pragmatic practitioner approaches design is not



Chapter Two: Four Perspectives on Software Architecture

46

entirely clear.  Coyne’s critical perspective exposes equal and unequal power relationships

and has the potential to illuminate why some design initiatives and projects fail, or why

design efforts are compromised.  The radical perspective portrays designer’s propensity to

rethink and validate intuitions inherent in their approaches.  All four perspectives will be

used to structure the discussion of the findings on software design practice (Chapter Nine).

Important insights from design theory and history provide the foundation for taking a

pluralist stance.  In the realm of physical architecture, modernism attempted to dictate the

doctrine of functionalism throughout the western world’s built environment (Hubbard

1996).  The attempt was derailed by modernism’s underestimation of the complexity of

social systems and the basic needs of people to inhabit buildings built in human scale that

are amenable to piecemeal modification and extension (Brand 1994).  Re-conceptions of

the use of plans and designs followed, and Suchman’s (1987) view of all action as being

ultimately situated represented a turning point in how the activity of conceptual work

(such as design) was viewed.

Progress towards a situated model of software design has been strong in some dimensions

and weak in others.  Object-oriented methods have introduced rapid prototyping, iterative

development of architecture, and encapsulation and polymorphism that constrain the

evolutionary activity behind stable interfaces and allow detailed design decisions to be

deferred.  Tension continues to exist between those who regard software design as a

rationalistic procedure and those who see it as an emergent, situated craft.  Commentators

outside of software’s mainstream regard software as ‘not as heavily automated,

bureaucratized or streamlined as, say, automobile design and manufacture’, and a craft that

is ‘analogous to writing and publishing’ (Coyne 1999, p. 28).

This chapter has provided the necessary background to the study’s research aim.  The next

chapter will go deeper into the key themes that sit in the intersection between design

theory and software design.



47

Chapter 3:  Design Theory and Software

Design

Medieval cathedrals were certainly much more complex structurally than the pyramids,

yet there is still considerable evidence that the cathedrals evolved through a process of

experimentation and trail and error not unlike that of the Egyptian megaliths…

architects of churches erected only forty or fifty miles apart around Paris in the late

twelfth century and early thirteenth centuries must have watched and been influenced

‘almost from day to day’ by each other’s experiments.  One builder’s structural and

aesthetic successes and failures were challenges and lessons to the others.  (Petroski

1992, p. 55)

3.1 Introduction

This chapter examines selected themes from the epistemological domains of design theory

and software design.  Design theory, to the extent that it can be identified as epistemology

in its own right, is the set of models, types and languages that inform architecture,

industrial design and ‘design science’.  The term ‘theory’ gets broad use in these disciplines.

Coyne (1995) claims that much of what authors like to call ‘theory’ is not more than

systematic thinking or contemplation, and that what is more commonly meant by ‘design

theory’ is in fact ‘design studies’ (p. 213).  Nonetheless, the research literature that falls

within this intersection is considerable and surveying it is a challenging exercise in cross-

disciplinary review (Blum 1996; McPhee 1996; Taylor 2001b).

This chapter commences with design’s philosophical foundations and an explanation of

why understanding design inevitably rests on the object-subject duality.  The remainder of

the chapter surveys relevant models of design and locates these in a philosophical milieu.

First, categories of design models are surveyed.  Next, some models of design selected for

their particular relevance to software are described, including vernacular and evolutionary



Chapter Three: Design Theory and Software Design

48

models.  These reviews provide the philosophical basis needed to understand the models of

cognition and design based on situated and hermeneutic perspectives surveyed in the next

chapter (Chapter Four).  Collectively, these chapters provide the basis for the design of a

research methodology (Chapter Five).

3.2 Philosophical Foundations of Design Theory

Design has philosophical roots in both ancient and modern history.  Some of the factors

that have most influenced contemporary design thinking have their origins in the

modernisation of Europe over three centuries.  These complex processes of change

transformed a traditional world of peasants, craftsmen, clergy and landlords into an

industrial society.  The various (and sometimes conflicting) ideas are commonly collected

into two major intellectual threads—the Enlightenment and Romanticism.  The

philosophers of the Enlightenment dreamed of a world ruled by reason and governed by

science and technology.  Their conception of the ‘project of modernity’ concerned

democratisation, secularisation, and industrialisation, all three perceived as the foundations

of a rational society.  As the philosophy of choice of the rising bourgeoisie class, the

Enlightenment found expression in the form of various European revolutions.  From these,

Romanticism emerged as a rejection of the authoritarian rule of the feudal systems and the

rule of the democratised Enlightened societies.  Both movements expressed society’s desire

to change the world for the better, but their chosen means were opposites.  Whereas the

Enlightenment had a clear idea of the goals of modernisation, Romanticism was non-

committal, vague and open-ended.  Dahlbom (1992) observes that the differences can be

traced to their respective conceptions of knowledge.  The Enlightenment was a goal-

directed, problem-solving, cognitive enterprise in search of objective truth.  Romanticism

was a process-oriented, inspired, expressive movement inviting participation in bold

constructions of unconstrained utopias.  Where the Enlightenment exhibits a strong sense

of reality, Romanticism invites exploration of the possible.  The Enlightenment makes

maps of observed reality, whereas Romanticism regards such maps as locked to an instant

in time in a world of ephemeral experience, preferring instead to pursue the discovery

(through definition) of new worlds.

In each of these contrary philosophical threads, change has very different meanings.  In

Enlightened society, change occurs when the incumbent rational paradigm is either further

enhanced or opened up by the discovery of new evidence, or replaced by an even more

rational one.  Change is understood as the lawful rearrangement of unchanging elements.



Chapter Three: Design Theory and Software Design

49

The Enlightenment idea of a man-made, constructed world is the idea of applying science

to engineer a desired and designed nature, society and mankind.  But in Romanticism,

caution is abandoned and change is regarded as the very fuel of growth.  By making the

observation that our world is shaped by our experience of it, Romanticist philosophers set

about changing the world by changing our experience of it.  If nature is constituted by our

conception, it becomes possible to construct new worlds, in spiritual if not material fabric.

When Kantian philosophers tied the basis of construction to culture and the fundamental

elements to societal values, the focus of Romanticism shifted from the nature of reality to

the social processes by which multiple realities may be constructed.  This gulf between the

Enlightenment’s positivism and Romanticism’s hermeneutics (the study of the

methodological principles of interpretation) has never been bridged.  Referred to by C. P.

Snow as ‘the two cultures’ (Snow and Collini 1993) it finds expression today in the ongoing

debate on the gulf between the humanities and the sciences.  In post-industrial design

history, Enlightenment thinking pervaded modernism and suppressed Romanticism for a

period, until the latter re-emerged in the form of postmodernism.  In software

development, this gulf lies barely beneath the surface of the perennial question ‘Is

computer programming art or science?’.

3.2.1 Aristotelian and Platonic Concepts

Aristotle (384-322 B.C.) formulated a philosophy of absolute concepts and rules and

argued that all of the world’s knowledge consisted of combinations of these conceptual

atoms.  New knowledge forms through fresh combinations of existing concepts, and any

concept, no matter how complex, must decompose into basic concepts.  Aristotle and

Plato (428-348 B.C.) devised classification, a foundation of almost all sciences.

Every classification scheme has a basis—the selected characteristics upon which the

classification rests.  The history of classification in the natural sciences reveals shifts in the

basis of classification from observable characteristics to habitats, breeding habits,

evolutionary progressions and now DNA sequences.  These shifts suggest that the nature

of the classification process is incremental, iterative and grounded in historical perspective.

Because all classification systems must deal with ambiguity (an object will always be found

that equally belongs in two or more categories), classifiers have typically ended up

choosing the basis that yields a classification that best suits their particular purpose at the

time.  In software design, Booch (1994) draws upon Aristotelian classification to explain

how, in practice, it is often difficult to give convincing categorical definitions to even the

most mundane of objects—‘the identification of classes and objects is the hardest part of



Chapter Three: Design Theory and Software Design

50

object-oriented design’, he writes (p. 133).  Static inheritance structures reveal the

limitations of Aristotle’s absolutism outside of constrained laboratory settings.

Classification works fine if the problem domain can be mapped into a small, stable set of

abstractions, but not all problem domains are amenable to such analysis.  Using the domain

of classification as an example, Figure 3 illustrates how philosophy, paradigm, model,

method and technique are related.

Philosophy

Paradigm

Theory/Model

Method

Technique

Aristotleian concepts (all
reality decomposes to atomic
concepts)

Object-orientation

Classification

CRC

Specialisation versus
implementation inheritance

Aristotleian rationalism
(reality exists independently
of the observer)

Positivism

The Scientific Method

Repeatable experimental
design

Statistical analysis

Platonic dialogue (dialogue
reveals the exemplars that
define reality)

Constructivism

Interpretivist research
design

Qualitative analysis

Textual analysis

Software the Scientific Method Interpretivist research

Figure 3: Relationship between philosophy, theory and models, with examples.

Plato preferred to think of concepts as being primarily defined by our practices and actions

rather than as absolute things, occupying a place of their own in the world of knowledge.

Concepts exist only because we exist, and concepts allow us to share a vocabulary of

shared meaning.  Plato viewed knowledge acquisition as the process of coming to recognise

one or more of these shared concepts.  Plato developed a process of dialogue along the

lines of a ‘twenty-questions’ game to support classical categorisation.  Is it animal, mineral

or vegetable?  Does it have fur or feathers?  Can it fly?  Ideas become concepts when two

questioning minds debate, the argument and counter argument serving to bring forth a

more complete and complex understanding than previously existed.  Established concepts

then become exemplars to assist in learning.  In defining new exemplars, knowledge is

transferred through dialogue.

Concepts are familiar to system and software designers as the building blocks of

abstraction.  Using Aristotelian concepts, we formalise our knowledge by providing rules

and criteria for determining when concepts apply.  Using Platonic dialectic processes, we

devise proto-typical examples that may then be compared to specific observed or



Chapter Three: Design Theory and Software Design

51

experienced phenomena to assess similarities and differences.  Aristotelian definitions lead

to clear distinctions.  Concepts in software design also appear to be Platonic in nature,

particularly those that relate to doing design.  When designers talk of adapting prototypical

solutions, such as the way software architects use design patterns (Coplien 1996) Platonic

reasoning is played out.  Theorising about design moves the reflective designer away from

Platonic and toward Aristotelian conceptualisation.  The two forms of thinking about

design are interspersed in written works that relate theory to practice.  In software design,

this chasm of concepts cannot be avoided, because programming languages (by their

support for classification amongst other characteristics) are blatantly Aristotelian in

character.  It is the mapping from action-oriented imitation to the rigid categories of

software structure that accounts for some of the difficulty of making software systems fit

imprecise human modes of work (Jackson 1995).

The philosophies of both Aristotle and Plato are, as Dahlbom and Mathiassen (1993) put

it, ‘mechanistic’, in that they attempt to define reality and all of the kinds of systems that

interact with it as mechanisms that obey universal laws.  In this view, all forms of

knowledge and perception sit under the umbrella of universal science and all investigation

of knowledge and phenomena must be subject to positivism and the scientific method

(Weatherall 1979).  Some theorists believe this is the direction that design theory and

research must be pushed, as evidenced by attempts to formalise a discipline of design

science (Simon 1985; Warfield 1994).  Scientists attack a problem by trying to discover a

universal rule that governs the situation, whereas designers attack a problem by a

proposing a solution and observing (either in real or simulated terms) its effect (Louridas

1999).  Budgen (1994) compares and contrasts the two approaches (Figure 4), concluding

that the design process differs in form and intent from the processes of science.  Others

argue that there can never be a unifying science of design because of the irreconcilability of

viewpoints in design research (Sargent 1994).  Still others have abandoned the positivist

paradigm altogether (Coyne 1991).



Chapter Three: Design Theory and Software Design

52

1
Conduct

experiments

2
Construct

theory
(model)

4
Refine

the theory

5
Derive

scientific
principles

Initial 
observations

More systematic 
observations

Predictions
from theory

Experimental
observations

New predictions

Experimental
observations

3
Devise

experiments
to test
theory

1
Identify
nature of

requirement

External
requirements

Requirements
specification

Functional
specification

Mismatches
between model

and requirement

Designer’s 
model

Design
‘blueprints’

Designer’s
model

Seek new
solution

Functional
specification

2
Analyse and
build model
of problem

3
Postulate
a design
solution

4
Validate
solution

5
Refine
design
solution

6
Implement

solution

Figure 4: Comparison between the scientific analysis process (left) and the design process (right) (Figs 1.1

and 1.2 in (Budgen 1994)).

In software design, Enlightenment thinking finds expression in the rationalistic view of

software development as a production process.  This view has been criticised by Winograd

and Flores (1986) and Floyd (1992b) amongst many others (Turner 1987).  Floyd

enumerates her objections to the production model as follows.  Firstly, the traditional view

of software development as industrial production assumes that there is a given reality ‘out

there’, which we confront during the software development process.  The essential task of

the designer is to start from the problem defined in this reality and to find a correct

solution to it.  By analysing the facts of this reality, the analyst/designer obtains

requirements for software systems.  Software engineering is concerned with the production

of software to stated requirements and is not primarily concerned with the separate

dimension of use, she claims.

Viewing software development as production treats designers and developers as

interchangeable resources in an industrial production process.  The process should be

independent of individuals, their interpretation, influence or style, and as a consequence,

for any given problem, different developers should converge to the same results.

Communication should be regulated via fixed interfaces and protocols to ensure the



Chapter Three: Design Theory and Software Design

53

division of labour on indeterminate bases.  Subject to technical feasibility, any part of the

production process (including design) can be automated.  The developer’s responsibility is

the proper construction of the product in accordance with the requirements specification,

and no more.

Floyd acknowledges that Enlightenment thinking such as this has been instrumental in

bringing about impressive advances in programming methodology, and has allowed systems

of scale and complexity to be built.  But Floyd claims that it fails to offer any help in

understanding the software development process actually going on in any given situation—

processes relating to the emerging insights into the functionality, implementation and

useability of programs and systems.  The production view highlights important mechanical

aspects of software development but obscures the view of development as design, or in

Floyd’s terms, as ‘a specific type of insight-building process’ (p. 93) that is geared to

producing feasible and desirable results within a particular domain.  The conception of

software development as production is essentially a construction—an invention that

satisfies one prevailing set of motivations at the expense of others.

3.2.2 Separation of Mind and Body

The break from Aristotelian and Platonic notions of absolute knowledge is attributed to

Descartes (1596-1650) who shaped scientific method profoundly by separating the mind

(soul substance) from the body (physical substance), thereby allowing one to be studied

independently of the other (Hirschheim 2001).  This allowed philosophers to distinguish

between the way the world is and the way we perceive it.  The mind is not just a passive

machine for receiving information about the world—rather it shapes these impressions and

adds interpretations:

Our ideas, rather than being representations of an external real world measured by

their similarity to that world, are constructions measured by their internal coherence.

(Dahlbom and Mathiassen 1993, p. 42)

Compared with Enlightenment philosophy, this was a romantic philosophy that

distinguished between the world in itself and the world of phenomena experienced by every

individual person, so that it became impossible to hold absolutes, to know something with

absolute certainty.  To accept Descartes’ perspective means accepting that anything wrong

with the world might actually be something wrong with the perceiver, and as a result, the

early romantics tried to find answers to questions about the world in human nature.  Later

romantic philosophers transferred the origin of reality from the individual to culture,



Chapter Three: Design Theory and Software Design

54

claiming that our perceptions of the world are cultural in origin.  In defining concepts and

conceptual schemas as constructive creations, the romantics introduced the idea of

multiple, culturally shaped realities.  Rather than looking for objective truth, the romantics

wanted to use different perspectives to open up diverse and meaningful perceptions of

reality, in order to bring new meanings and deeper understanding.  With the freedom to

choose multiple perspectives, the seemingly straightforward question ‘what is this object’

becomes ‘what do you perceive it to be?’ (Bullock and Woodings 1983).

This kind of perspectivism orients us in Coyne’s (1995) ‘critical’ quadrant (Figure 2).

Nietzsche (1844-1900) used perspectivism to argue that preferred metaphors, theoretical

positions in science, and established interpretations tell more about the background and

interests of their proponents than they do about the world.  When an assertion such as

‘object-orientation is a superior paradigm for software design’ is put forward and

vehemently argued for, perspectivism accounts for the proponent’s motivation to defend a

position instead of a concern to understand the truth or otherwise of the claim.  Rather

than establishing evidence or truth, Nietzsche would seek to ascertain the controllers and

the controlled, the power relationships represented by such a statement.  Truex (2000) has

done a similar kind of critical assessment of today’s rationalistic software methods with

informative results.  Perspectives play an important role in understanding the relationship

between stakeholders and the designer in the design process, and how a designed artefact is

perceived and used.  The use of a sceptical analytical framework (ie. as per the ‘critical

software architect’) can be a powerful aid in comprehending design situations.

3.2.3 The Design of Existence

Perspectivism replaces absolute truth with as many relativistic constructions of truth as

there are distinct actors.  In the period that followed, Jean-Paul Sartre (1905-1980)

furthered the extension of relativism to existentialism—the thought that the world exists

only because we want it to.  By implication, things have no purpose other than that

invested by us.  Sartre described humankind as being entrapped in an existence without

essence, and so he constructs ‘a system of projects directed toward the future’ to infuse

existence with meaning (Bullock and Woodings 1983, p. 677).  Existentialism is one of the

few philosophical movements to explicitly account for the relationship between man and

the designed or built world.  Existentialism accounts for the driving force behind material

progress.  The absence of absolutes and universal meaning and our inability to rest

comfortably with what we have achieved motivates us to design the world around us, as if

the act of perpetual designing served to account for our identity.



Chapter Three: Design Theory and Software Design

55

If Sartre’s work explained the separation of mind and body, human striving and the need

for design to justify existence, Heidegger (1889-1976) further explained ‘being’ in terms of

our relationship with the objects that surround us.  Heidegger’s work developed out of

phenomenology, the work of his teacher Husserl (1859-1938).  He used the term ‘Dasein’

to describe the separation of subject and object—the particular situation that humans find

themselves arbitrarily ‘thrown into’—a condition characterised by having consciousness

but being surrounded by inert material objects (Steiner, 1979).  Far from being an obtuse

concept, ‘thrownness’ turns out to be a very ordinary and familiar one, known to us as the

fluid and unpredictable interactions we have with objects in our environment.  Winograd

and Flores (1986) summarise Heidegger’s philosophy, with implications for software and

system design in four points.  Firstly, our implicit beliefs and assumptions cannot all be

made explicit—there is no neutral viewpoint from which everyone can see all things, and a

truly objective understanding of most worldly phenomena is difficult and often impossible

to achieve.  This view aligns with Budgen’s (1994) characterisation of software system

design as fitting Rittel and Weber’s (1984) ‘wicked’ class of problems.  Secondly, practical

understanding is more fundamental than theoretical understanding—the Western

philosophical tradition, Winograd and Flores (1986) observe, is based on the assumption

that a detached theoretical point of view is superior to the involved practical viewpoint.

Heidegger reverses this, claiming that it is only when we interact with the world that we

begin to fundamentally know it.  Detached theorising can be informative but it can also

obscure phenomena by isolating them.  Thirdly, we prefer to relate to things directly, not

via models—Heidegger rejected ‘mental representations’ in favour of ‘concernful acting in

the world’.  Winograd and Flores’ interpretation stresses ‘concernful activity’ (informed

action) over ‘detached contemplation’ (observation only, with no direct experience of

phenomena).  Fourthly, meaning is fundamentally social, it emerges from interaction and

not purely from individual action—the rationalistic view of cognition, Winograd and Flores

propound, is individual-centred.  For example, we teach meaning in language to individual

learners, whereas linguistic meaning in language can only emerge in the context of social

activity.

Heidegger also claimed that properties are emergent in use, which implies that an object

itself outside of use has no properties.  Winograd and Flores use an example of a hammer

to illustrate.  As a craftsman drives a nail with a hammer, the hammer does not exist in the

consciousness of its holder.  Rather, the craftsman uses it as an extension of his forearm,

sensing the transfer of energy from hammer to nail, and the reaction of the nail and timber

in the subtle bounce of the hammer on impact.  But when the hammer slips or the blow



Chapter Three: Design Theory and Software Design

56

glances the nail its holder becomes (sometimes painfully) aware of its presence—its

‘hammerness’ emerges in momentary failure.  The hammer’s properties are defined by its

current context of use and the action of the moment.  Heidegger used the term ‘readiness-

to-hand’ to describe this melding of actor and object, and the term ‘breakdown’ to describe

the jolt back to awareness when the object momentarily misbehaves.  As observers, we

may talk about the hammer and reflect on its properties, but for the craftsman engaged in

the thrownness of driving home a nail, there is no hammer there at all.  The fact that an

observer (as opposed to the actor holding the hammer) can never know this illustrates the

experiential nature of ‘being’.  Achieving this kind of complete transparency in a designed

artefact, and anticipating and minimising the impacts of its ‘breaking down’ behaviours,

define important goals for any designer of artefacts for use.

3.2.4 The Constructivist Alternative

To acknowledge interpretation in system and software design opens the door to the

influence of constructivist philosophy.  If we accept that knowledge is cultural, an artefact

made by man via a process of interpretation, then both truth and reality can be said to be

‘constructed’ and may be viewed as social phenomena.  If cognition is a process of social

construction rather than a natural process of the mind, then cognition must be regulated by

social norms and is better understood as a socially organised process.  It is to claim that

thinking relies on intellectual tools and materials supplied and reinforced by culture, some

of which are internalised and some of which are supplied by social, natural and built

environments.

In the constructivist view, problem characteristics are not objectively discovered and

analysed, they are constructed from the observer’s own perspective.  Observation is

affected by personal priorities and values, by the methods used as orientation aids, and by

the particular interaction between participants during the construction process.  Where

differences in two analyst’s requirements emerge, they can be accounted for by differences

in perspective.  Similarly, constructivist analysts do not apply predefined methods, in fact

there are no such things as methods per se—the constructivist analyst is ultimately

concerned with the processes of selecting methods and then adapting them in vivo.  The

process of software and systems design from a constructivist perspective is essentially one

of method assembly, because to assume the existence of a predefined, optimal or best-

practice path through these realms is an oversimplification.

Gadamer reminds us that ‘it is not so much our judgements as it is our prejudices that



Chapter Three: Design Theory and Software Design

57

constitute our being’ (Gadamer 1976, p. 8).  The emphasis shifts from analyst as

transcriber of a fixed (albeit complex) picture to analyst as individual, idiomatic observer of

a scene and constructor of a particular interpretation.  Floyd (1992a) portrays the analyst as

‘making choices in an open situation, where there is more than one possibility’ (p. 16).  The

analyst makes choices in selecting the aspects of the problem for inclusion in a model,

choosing modes of interaction with the computer in determining the system’s architecture,

and in the implementation of key concepts.  Design, when portrayed in this fashion, is

more of ‘a process of cooperative learning’ than one of executing a deterministic

engineering process (Keil-Slawik 1992, p. 182).

Of the choices made by a designer in a typical software design episode, only some are

made explicitly.  Others are made subconsciously via familiar, habitual actions and tacit

design acts that close off consideration of alternatives.  Some of these are motivated by

highly idiomatic drivers—the avoidance of inter-personal conflict or difficult thinking, or

the personal desire to extend boundaries or capabilities known only to the individual.  As a

result, software designs come about through a mixture of objective and subjective (even

personal) reasons.  Although the designer has at any point in time a vast array of options

available, the individual may choose to impose artificial constraints in order to make the

design task manageable:

In constructivist thinking, the ontological question of what is is placed in relation to the

epistemological question of what we can know in a poignant way.  Only what we can

know is accessible to us, and it is accessible in those terms in which we know it.  The

seemingly safe ground of the given reality reveals itself as built up in processes of our

own making.  (Floyd 1992a, p. 17)

Learning is a process of continuously building on yesterday’s models of reality and

grounding our new models in our experience of each new event and episode in an endless

co-evolutionary process.  Lycett (1998) describes social regularities as being emergent and

not given a priori, and recognises that they are constantly shifting and evolving.  For

example, Amann (1992) claims that the social foundations of knowledge systems make

expertise socially emergent.  In the long term, Lycett argues, methodical systems will

always disappoint, as they do not allow internal variety to evolve in line with the

environment, and represent temporal snapshots, ultimately leaving us with static systems

that are expected to operate in a dynamic world.  This view mirrors the history of built-

world exemplars of modernist master-planning (Pruitt-Igoe, Levittown) discussed in the

previous chapter.  In response, systems researchers propose a shift in the design process to

account for evolutionary complexity (Kaplan 2000; Lycett and Paul 1998; Taylor 2000b).



Chapter Three: Design Theory and Software Design

58

Dahlbom (1992) claims that software designers alternate between rationalistic and

constructivist perspectives almost by whim, sometimes choosing two perspectives for the

same object at different times.  We think of construction as engineering when we wish to

stress an artefact’s functionality, as science when we wish to relate it to popular

conceptions of truth, or as art when we wish to stress aesthetic, edifying or communicative

qualities.  Our constructions suit our perceived needs at the time.  We construct reality

because we wish to change reality—in fact the possibility of change is a strong motivation

for the idea of a constructed reality.  Constructivists who argue against a science that

perceives itself as mapping reality (or more generally against the Cartesian idea of

knowledge as representation) are driven by the concern that such ideas stand in the way of

change.  This is consistent with Feyerabend’s (1993) desire to defer or avoid commitment.

More generally, the ultimate purpose of constructivism is to provide a basis for action.  As

Dahlbom notes, ‘we are all masters at adjusting wildly varying descriptions to the very

same actions’ (p. 121), but in the final analysis, designers act and are measured by their

actions as reified in their designs.  Constructivists argue that when we change our reality

we change our actions, and to the extent that this is true, constructivism has relevance in

software design practice.

3.2.5 Romantic Constructions of Design

By the early nineteen nineties, a degree of unease with the prevailing software lifecycle

models was emerging.  Floyd (1992b) expressed doubts about the conventional view of

software development as ‘production’ on the basis of fixed requirements, the separation of

production from use and maintenance, and the division of production into linear phases.

Floyd also criticised the view of methods as rules laying down standardised working

procedures to be used without reference to the situation at hand, and the emphasis on

formalisation at the expense of communication, learning and evolution.  Floyd records her

motivations for this attack as ‘the glaring contradictions’ between software engineering and

the reality of software projects in both industry and academic settings, despite the fact that

many of these projects were ostensibly conducted along traditional lines (p. 87).

Floyd’s alternative constructivist definition of software design is ‘the creative process in

the course of which the problem as a whole is grasped, and an appropriate solution worked

out and fitted into human contexts of meaning’ (p. 87).  Software design is ‘a self-

organising, dialogical process in the course of which a gradually materialising web of design

decisions is stabilised’ (p. 74).  Software development is an insight-building process,

expressed in terms of multi-perspectivity, self-organisation and dialogue.  The design of



Chapter Three: Design Theory and Software Design

59

systems involves a series of decisions, each as a result of particular forces existent or

perceived in the context of the decision at the time of its making.  When viewed

holistically, a web of design decisions emerges, where each decision point resolves the

considerations of its predecessors, and in the case of reviewed decisions or rework, its

successors.  Design is successful as a whole if the web of design decisions is stabilised in

the course of revisions—that is, when it withstands evaluation and is acknowledged as

‘good’ or ‘suitable’ by those involved in the design process and the corresponding system’s

use.  Absolute notions of completion, such as the demonstration of functional or non-

functional behaviours, are supplemented with the designer’s observation of the web’s

convergence on certain completion criteria.  For the designer, the decision web must be

viable, not necessarily optimised or universally correct.

These characterisations of design have their origins in what Maturana and Varela (1980)

refer to as autopoietic systems.  An autopoietic system is a network of processes or

components that combine in a holistic fashion to form a unified entity, and continuously

regenerate by using the processes that produced it in the first place.  Autopoietic models

have been used as the basis of distributed control systems.  In contrast with rigid, top-

down hierarchical goal-driven control systems, autopoietic systems thrive on uncertainty

and reconstruct themselves on the basis of what they learn from their environment.

Goguen (1992), Floyd (1992b) and other constructivists lean towards autopoiesis as a basis

for alternative behavioural models of software design processes in team settings.  A

software development team illustrates survival-driven autopoietic characteristics by the

way it responds to a crisis.  An unhealthy project might respond to crisis by reorganising,

reassigning responsibilities, redefining sub-projects, and even trying to re-constitute the

conditions that defined its initial success.  On the other hand, a healthy project might

respond to a crisis by developing new tools to enhance its own productivity (Goguen

1992).

Post-rationalists oppose the use of rationalistic approaches to system design for another

fundamental reason.  They argue that the objects of enquiry in information systems design

are different from those in the natural sciences, because users, developers and other

stakeholders are not natural objects but conscious subjects.  Consciousness is a

characteristic which the natural sciences so far have not dealt with.  Consciousness is

important for conceptual design because information systems are social communication

systems, formed around shared meanings.  Viewed in this way, the design of information

systems is like the design of human communities, and such design requires a different



Chapter Three: Design Theory and Software Design

60

approach to that practiced in the natural sciences.  In considering data modelling, Klein

and Lyytinen (1992) make an important distinction that equally holds for all conceptual

modelling.  Questions of ontology concern whether the universe of discourse is given

(ontologically exists prior to any human perception) or socially constructed.  Rationalists

regard the universe of discourse as given, while constructivists regard it as socially

constructed through processes of communication.  Habituation, language tradition and

institutionalisation through roles and norms play key roles in social construction.  Klein

and Lyytinen’s description of the ‘sense-making process’—of design practice as a

consequence of activity in the world—draws from Boland, who distinguished between

decision-based (rational) and action-based approaches to information systems design:

The design of an information system is not a question of fitness for an organisational

reality that can be modelled beforehand, but a question of fitness for use in the

construction of an organisational reality through the symbolic interaction of its

participants.  In essence, the information system is an environment of symbols within

which a sense-making process will be carried out.  (Boland 1979, p. 262)

Applying this idea to conceptual design, Klein and Lyytinen suggest that models should

attempt to represent the language by which the users communicate in the system’s domain.

This language-driven development view conflicts with the traditional reality-mapping view

of the rational approaches.  User languages are rich universes of discourse that convey

understanding, knowledge and orientation, as well as substantial amounts of sociological

‘noise’ such as explanation and justification.  The modeller engages with the process of

selecting and interpreting a subset of the user language appropriate for the goals of the

system being developed.



Chapter Three: Design Theory and Software Design

61

Table 2: Comparison between rational and constructivist (situated) design.

In design research, the constructivist view finds expression in situated models of cognition

and action.  These are explored more fully in Chapter Four.  At a summary level, Table 2

contrasts the characteristics of the rational and constructivist (situated) paradigms as they

apply to design.

3.3 Models of Design

Through history, design has been portrayed with principles, metaphors and models, and

there are about as many classes of models of design as there are domains of design

knowledge.  Models are generally used to organise and illustrate a group of related

characteristics of design for a particular purpose.  The brief survey of design models that

follows commences with a discussion of the types or categories of design models and then

continues with those models that have had the most impact on conceptions of software

design.  In each case, the model’s history and purpose illuminate its place in the

epistemology of design theory.



Chapter Three: Design Theory and Software Design

62

3.3.1 Categories of Design Models

Types of models of design vary from the extremely simple to the arbitrarily complex.  One

simple model has achieved extreme longevity.  The Roman architect Vitruvius identified

‘firmness, commodity and delight’ as the three fundamental characteristics of good design,

and illustrated their mutual dependency with a three-legged stool, a trivet reinterpreted in

every age of design.  In Vitruvian style, Schumaker proposed ‘reason, perception and soul’

in 1938 (Schirmbeck 1987, p. 148) as the essential dimensions of design appreciation and

evaluation.  Schirmbeck decomposed the designs of nine prominent architects into three

broad categories—rational, symbolic and psychological.  Rational principles describe

functions that have a rational objective (such as a geometric layout).  Symbolic principles

transmit a carefully chosen meaning through familiarity, and psychological principles follow

from the combination of rational and symbolic principles and are concerned with

aesthetics, habitation and use.  Mayall’s (1979) three-dimensional design map for a stone

axe (Figure 5) illustrates the impact of Vitruvius’ model on contemporary design theorists.

Mayall’s model adds the temporal dimension, demonstrating how the relative importance

of each leg of the Vitruvian stool may vary with time.

texture

colour

shape

size

mass

strength

edge length

sharpness

shape

texture

shape

size

mass

size

Characteristics

F
e
a
tu

re
s

Tim
e

CUTTING(commodity)

APPEAL(delight)

HANDLING(firmness)

Figure 5: Three-dimensional Vitruvian design map for a stone axe, reproduced from Figure 4 in (Mayall

1979).

Beyond the Vitruvian canon and its descendants, architecture has demonstrated an

unfortunate predilection to protect and even mystify rather than explain design and the

design act.  The architecture profession’s motivations for such concealment are not

difficult to discern.  Schirmbeck (1987), for instance, thinks that ‘it is almost impossible to

give people in other specialised disciplines, who are concerned with planning, any direct



Chapter Three: Design Theory and Software Design

63

description of the architect’s procedure when he is engaged in design’ (p. 3).  Further to

this, ‘there are no direct rules as to how architects should act in those circumstances’ (p. 3).

The modern movement claimed to have externalised the mysteries of design through the

doctrine of functionalism.  But even functionalism, with its notionally explicit design

language, relied on a degree of intuition.  Venturi (1977) observed that Le Corbusier,

Bauhaus doyen Laszlo Moholy-Nagy and other leaders of the movement referred to

‘intuition’, ‘imagination’, ‘inventiveness’, and the ‘free and innumerable plastic events’ that

regulate architectural design (p. 133).  The result was a tension between two apparently

contradictory ideas—the modernist process of ‘form follows function’ and free expression.

What appears on the surface as a hard rational discipline of design turns out rather

paradoxically to be a ‘mystical belief in the intuitive process’, Venturi concluded (p. 134).

Perhaps as a result of these protectionist attitudes, design theorists, working outside of the

traditional architecture milieu have contributed a more diverse range of design model

types.  Two significant families of design models are the generative and taxonomic (or

typological) models.  Generative models depict design as the mechanical, prescriptive

combination of sub-solutions or components.  The earliest generative approach to design is

evident in Aristotle’s assertion that all animals can be described as compositions of a small

number of body parts (legs, ears, eyes, tails) which vary in their size and exact form

(Mitchell 1977).  Generative models represent design as a traversal through discrete states

in a (typically large) state space, from an initial state (in which requirements are known)

through intermediate states (in which the design is incomplete) to a final state (in which

the design realises all the requirements).  Rules or actions define allowable operations in

each state.  Because the state spaces are immense in most real-world contexts, strategies

and heuristic knowledge are employed to achieve progress.

From analogy with biological taxonomies that rely upon classes such as species and family,

taxonomic models of design assume a typology of basic, recurring forms from which the

designer performs selection and instantiation, with or without modification (Steadman

1979).  In architecture, the elements in the typology are familiar—bridges, churches and

domestic houses.  Each of these may have subtypes that define the building’s details, such

as cathedrals or chapels, each of which may then have options for design elements such as

doorways, arches or columns.  This process of instantiating a specific design from generic

design templates is the inverse of analysis, the determination of generalised designs from

many instances.

Broadbent’s model of design (1973) typifies the typological class.  It offers four classes—



Chapter Three: Design Theory and Software Design

64

pragmatic, iconic, analogic and canonical.  Pragmatic design is motivated by function

alone, iconic design by adherence to semiotics or an accepted type, analogic design is

concerned with the communication of ideas from other domains or discourses in the object

at hand, and canonical design preserves the rules of a well-known or orthodox system.

Beyond typologies of generic design forms, there are classifications of the heuristic rules

and constraints that designers use to constrain the problem space when designing.  Rowe

(1987) suggests anthropometric analogy (physical occupancy of a space drives the design,

such as the act of ascending a staircase); literal analogy (an unrelated object is projected

onto a design, such as the rendering of a tall ship’s billowing sails in the shells of an Opera

House); and environmental relations (the design strongly relates to other elements of its

immediate context).

Taxonomic and typological models of design assume relatively fixed, stable contexts in

which the designing occurs.  One of the first theories to acknowledge the distinction

between stable, closed systems, and open, volatile systems, was systems theory (Checkland

1981; Checkland and Scholes 1990; Churchman 1968; Senge 1992).  Systems theory and

its derivatives claim a unified set of principles of systems and systemic knowledge.  The

model asserts that systems are closed or open.  Closed systems are those that operate

largely independently of environmental factors (such as most machines) and for which

provable and testable theorems can be established, whereas open systems rely upon

complex transactions with their environment (such as economies, organisations and

organisms) and are not predictable or well understood.  It is generally not possible to prove

theorems of open systems or their behaviour.

As this distinction illustrates, universal models of design are invariably compromised

because they cannot describe both open and closed system behaviours.  Despite warnings

in systems theory against applying the predictable principles of closed systems to open

systems, attempts to do just that are common.  In management science, for example,

principles of operations research are applied at the organisational level (Hesse et al. 1980).

In design theory, Simon (1985) campaigned to establish a science of design, ‘a body of

intellectually tough, analytic, partly formalizable, partly empirical, teachable doctrine about

the design process’ (p. 58).  While these are commendable aims in the conservative

tradition of science, design theory is not as yet science, and care is needed wherever

universalism is claimed.  Attempts to formalise a science of design are fuelled by partial

successes with subsets of design that are amenable to closed systems theory.

Generalisation of the behaviour of closed systems to open systems must always be treated



Chapter Three: Design Theory and Software Design

65

with caution.

Open systems such as organisations (for which information systems are designed) are

generally not well behaved—they do not regularly follow rules, and what rules might exist

at a point in time are constantly changing.  Typological models are Aristotleian and do not

support the designer working in environments that call for change or reinterpretation of the

taxonomic model.  All taxonomies (and methods anchored on taxonomy)—from history’s

biological classification schemes (Steadman 1979) to contemporary analytical problem

frameworks (Jackson 1995)—suffer from such misfits.  The emergence of computer

technology as infrastructure upon which social and economic systems are built exposed

system designers to open systems.  Problems that are deeply embedded within dynamic

social and cultural contexts have been referred to as ‘ill-defined’ or ‘wicked problems’

(Rittel and Weber 1984).  Wicked problems exist in environments that are inherently

unstable and unpredictable, such as Checkland’s (1981) open systems.  By definition,

predictive taxonomies cannot mature in such environments, and in response, candidates for

design models that take some account of ill-formed problems have emerged.  For example,

Broadbent (1973) advocated abandonment of formal methods so as to leave room for

empirical evidence and interpretation, citing emerging techniques such as brainstorming,

synectics, and the use of tabular data and process maps as guides rather than as

prescriptive rules.  Any approach to system design for open systems involves highly

contextual planning over short horizons (Rittel and Weber 1984).  Checkland’s (1981) soft

systems methodology and autopoietic models are examples of alternatives.

3.3.2 Vernacular design models

Another model of design has proven particularly successful in open environments.  Design

techniques, specific designs and a wealth of information about design and fabrication have

transferred for centuries from master craftsman to apprentice by way of the processes of

craftsmanship.  Craft is defined by the application of talent, skill and the learned outflows

of expertise.  Craft—being colloquial and vernacular—is the antithesis of modernism

which treats all places and all cultures in the same way and elevates theory over everyday

experience and learned, tacit knowledge (Thackara 1988).  In architectural terms,

vernacular buildings are seen as the opposite of whatever is academic, high style, or polite.

The term ‘vernacular’ was borrowed by architectural historians from linguists who used it

to mean ‘the native language of a region’ (Brand 1994, p. 132).  Vernacular design is a

highly effective communication medium.  The Cotswold villages express a localism and

subtle parochialism in grey stone that paints the inhabitant’s life and times vividly, while



Chapter Three: Design Theory and Software Design

66

New England’s Cape Cod houses, completely different stylistically, are also highly evolved

forms built to local conditions and with available materials.  Vernacular design is

typological in that it draws upon the prevailing cultural norms of what a house, a barn or a

wagon should be.  In vernacular design, there is no need for a formal plan, in fact the

amount of detail on a plan is an indicator of the degree of cultural disharmony—the more

minimal the plan, the more completely the architectural idea abides in the separate minds

of architect and client (Brand 1994).

A principal difference between industrial product design and pre-industrial craft evolution

is that the designers are separated from production (by scale drawings) in place of the

product as the medium for expression, experimentation and change.  Where craftspeople

interact directly with the object being made, industrial designers manipulate scale drawings.

The use of drawings as a model of reality permits larger projects than an individual

craftsman working alone can attempt.  But while making increased rates of production

possible, the introduction of drawings risks damage to a feedback loop between designer

and fabric, and increases the change-and-evaluate cycle.  Figure 6 from Walker and Cross

(1976) illustrates the progressive separation and specialisation of maker, designer and

patron roles in the progression from vernacular to rational design.

design

product

pre-deliberations

user
client

designer
maker

design

product

discussion

maker/designer
(craftsman)

Client
(patron)

design

designer

client/user
(patron)

product

maker

brief

design

product

brief

discussion

role

dependency

Figure 6: ‘Vernacular design’ (Fig 72, p. 58); ‘the empirical exchange’ (Fig 71, p. 58); ‘direct patronage’

(Fig 70, p. 57) (Walker and Cross, 1976).

The practice of craft is partly a consequence of the phase (but not the maturity) of design

knowledge in the particular context.  Alexander (1964) defines ‘unselfconscious’ and ‘self-

conscious’ design as an attribute of culture:



Chapter Three: Design Theory and Software Design

67

I shall call a culture unselfconscious if its form-making is learned informally, through

imitation and correction.  And I shall call a culture self-conscious if its form-making is

taught academically, according to explicit rules.  (Alexander 1964, p. 36)

The unselfconscious process is that which goes on in the traditional craft or architectural

vernacular contexts, while the self-conscious process is that which is typical of present-day,

educated, professional designers and architects.  The distinction is not an absolutely sharp

one, as Alexander admits, and in the historical development of design a gradual transition

from unselfconscious to self-conscious methods is present (Steadman 1979).  The

important difference, in Alexander’s view, is seen in the way in which design and

production of objects is taught in either case.  In the unselfconscious craft situation, the

teaching of craft skills is through demonstration and by having the novice imitate the

skilled craftsman until the apprentice gets the feel of the tools and techniques.  In the ‘self-

conscious’ process the techniques are taught by being explicitly formulated and explained

theoretically.  In the unselfconscious culture, the same form is repeated over and over

again, and the individual craftsman must learn how to copy the given prototype.  The

designer’s output is another indicator of which design mode is employed (Walker and Cross

1976)—the self-conscious designer produces a design to be fabricated by another party

whereas unselfconscious designers fabricate their designs themselves and make no

distinction between designing and fabricating.  How knowledge is represented and

manipulated in the design process is therefore an indicator of the supposed maturity of

design practice.

Nonaka and Takeuchi’s (1995) spiral model of knowledge (Figure 7) distinguishes the tacit

from explicit phases of knowledge and illustrates the role of tacit-to-explicit externalisation

techniques and explicit-to-tacit socialisation techniques.  Tacit knowledge is made explicit

through processes of reflection and externalisation, where it is tested against and combined

with the body of explicit knowledge.  Proven explicit knowledge is made tacit as it is

operationalised and adopted into the work culture of the organisation or the knowledge

domain.  The cycle repeats itself, as tacit knowledge that can be identified and judged to be

potentially useful is selectively externalised.  Knowledge management is effected by

stimulating, managing and monitoring this cycle.



Chapter Three: Design Theory and Software Design

68

Explicit 
knowledge

from Tacit to Tacit:
•mentoring

from Tacit to Explicit:
•pattern mining
•shepherding
•writer’s workshops

from Explicit to Tacit:
•selecting patterns
•using patterns
•reflecting on pattern use

from Explicit to Explicit:
•combining patterns
•mixing patterns with
other knowledge
representations

Tacit 
knowledge

Figure 7: Spiral model of knowledge phases and transitions (Nonaka and Takeuchi 1995).

Until relatively recently, software design methods have generally not addressed techniques

to externalise tacit design knowledge.  Nonaka and Takeuchi’s externalisation process is

one of literate reflection, often benefiting from metaphor to bridge between understood

and partially-tacit concepts, and analogy to clarify both the alignments and misalignments

of detailed procedures or practice.  Once metaphors and analogies have been agreed upon,

the knowledge extraction process can move to more detailed modelling in whatever the

most appropriate notation might be.  Pattern writing (Gabriel 1996) is a knowledge

externalisation technique.  Pattern authors use a ‘writer’s workshop’ process for the

expression of design patterns.  Once explicated, proven design patterns are able to be

related to the existing body of knowledge of software design within a particular domain,

and may be combined or further developed by others working in different contexts.

Despite the historical fact that the industrial revolution comprehensively crushed

vernacularism, unselfconscious design is still regarded as viable and appealing for design in

certain media.  It was capable of producing artefacts that were ingenious in their design in

the ways that they exploited physical effects of properties of materials, and the products of

unselfconscious design were achieved within very severe limitations of material and

manufacturing technique (Steadman 1979).  Analysis of the craft and bricolage design

metaphors (Louridas 1999) suggests that unselfconscious design is successful—sometimes

even brilliantly so—because its scope is limited by available materials and tradition.  The

unselfconscious craftsman or bricoleur has limited latitude to extend or change highly

evolved traditional designs and so their crafting leaves little room for failure.

The applicability of vernacularism to software development occurred to Jones, a theorist in

the design methods movement in the United Kingdom, as early as the nineteen eighties:



Chapter Three: Design Theory and Software Design

69

The more I see of software designing the more I notice resemblance not to design in

other fields but to craftsmanship.  In each the designing, if such it can be called, is done

by the maker, and there is much fitting, adjusting, adapting of existing designs, and

much collaboration, with little chance of a bird’s eye view, such as the drawing board

affords, of how the whole thing is organised, though, in craft evolution, if not in

software, the results have the appearance of natural organisms or of exceptionally well

integrated designs.  (Jones 1988, p. 219)

Jones notes that the context has to be stable (within limits) for long periods of time, even

centuries, for craft evolution to be possible.  Farm wagons exemplify highly crafted

design—wagons adapted so closely to their environment that, to understanding eyes, they

looked almost like living organisms, Jones writes.  The provincial wheelwright could not

avoid reading from the wagon the types of available timbers, the hardness of the ground,

the uses of the vehicle and the nobility of the owner’s horses.  ‘Is there any way’, Jones

asks, ‘in trying to learn from these various modes of evolution, for the makers of

software… to attain this almost magical accord with context when context is itself in flux?’

(p. 219).  Successful vernacular design emerges in stable societal contexts such that the

essence of the craft is not substantially changed between generations of artefacts or

craftspeople.  Being evolutionary in nature, vernacularism cannot respond quickly to

environmental changes, and the rapid emergence of new cultures and contexts for which

traditional solutions are inappropriate or inadequate provides the most compelling

argument against it.  By explicating theory and theoretical understanding from practice,

new forms that meet new needs can be devised quickly.  The need to manage, scale and

transfer design effort additionally promotes self-conscious design over vernacular design

and continuously motivates efforts to explicate theory in a useful and reusable forms.

Vernacular design models account for the basic acts of continuous design, creation,

fabrication and evaluation by the master practitioner.  Craftsmanship implies highly

developed skill and deep knowledge of the designs and of the materials.  It accounts for the

expression of the craftsperson’s knowledge and skill in the form of the crafted object.

Craftspeople pursue perfectionism and pleasure through making, and are often portrayed as

being totally immersed in and consumed by their work.  On the face of it, craft provides a

useful descriptive metaphor for the personal behaviours of software designers during

intense episodes of software development.  Vernacularism may also be a useful model to

understand tacit design practices of practicing software architects.  However, its

dependency on stable culture and context flaws the model for many theorists (McBreen

2002; Taylor 2001e; Taylor 2003; Taylor 2004).



Chapter Three: Design Theory and Software Design

70

3.3.3 Evolutionary Design Models

Vernacularism relies on a form of evolution for design selection, modification and

propagation.  The theories of evolution of species provide models that equally explain the

propagation of software designs and design knowledge over time (Stebbins 1971).  Certain

physical artefacts reveal evolutionary progress over time in both primitive and modern

societies.  Hunting tools used by hunter-gatherers (Steadman 1979), farm wagons, aircraft

and sports cars (Lawson 1997) illustrate evolutionary progression of form to improve both

function and aesthetics.  Most of these examples can be explained in basic Darwinian

terms.  Darwinian evolution relies on offspring inheriting its parent’s characteristics.  In any

evolving inanimate object that does not reproduce but relies on humans to create copies,

inheritance is realised by the copier’s ability to perform the reproduction.  To effect high

fidelity copying, objects should be self-describing, physically and conceptually well

designed and implemented, and able to be fabricated easily.  In short, the artefact must be

designed with copying in mind.

A recent model of cultural evolution that accounts for such evolution in ideas rather than

life forms is memetics (Dawkins 1976; Dennett 1995).  ‘Memes’, Blackmore (1999) argues,

come from the endless variation and recombination of earlier thoughts from language,

songs, works of art, mass-media and cultural stories—‘human creativity is a process of

variation and recombination’ (of memes) (p. 15).  Designs, or more specifically the

knowledge required to reify a design, is more concrete than Blackmore’s memes because

they inform a design act which results in an artefact, an instance of the ‘unit’ of design

knowledge.  Like the subtle design changes made to Mitchell’s wagons over time, they are

selected less by the randomness of the cultural environment and more by the degree of

success or otherwise of the resultant artefact.  Design knowledge is a stronger concept than

memes in that it is tied to physical artefacts, which allow other human ‘readers’ separated

in time and space to reify the original design knowledge by conceptually or physically

taking the object apart.

Both memetics and the more general wholesale application of Darwinian evolution as a

model of knowledge propagation suffer from the metaphorical bridge between the organic

(genetic) and epistemological worlds.  Memetics as a theory faces a substantial impediment

in that ‘evidence’ in a rationalistic sense can never be proven (Dawkins 1976; Dawkins

1996).  Empirical research in programming has independently turned up many evolutionary

ideas.  Lehman (1985) studied programmer productivity, observing that the frequency and

speed with which programs are executed draws almost immediate attention to any



Chapter Three: Design Theory and Software Design

71

shortcomings leading to a constant stream of enhancements.  Kaplan (2000) suggests that

evolutionary models might account for how software design occurs.  Rather than imagining

that there exists a privileged designer’s stance or perspective, Kaplan states that design

should be seen as a stepwise uncovering of evolutionary ‘good design tricks’ as well as a

series of evolutionary ‘moves’ (or changes) that individual software artefacts are subject to

over time.  Frequently, ‘useful moves’ turn out to be either unanticipated a priori or to have

unexpected or unintended consequences.  Kaplan suggests that systems, like species, do

not evolve under the selecting effects of a fixed environment, but rather they co-evolve,

such that any change in a given artefact may have side effects that change the environment

of others, and vice-versa.  In this co-dependency, all artefacts implicitly exert a force of

varying weight on each other’s evolution.  This model is consistent with Brand’s (1994)

notion of shearing layers, and with Kauffman’s (1995) theory that evolution requires

conditions that are to be found at the transition between systems of order and chaos.

3.3.4 Technology Maturity Models

Technology maturity models express the inevitability of progress from informal to

formalised design and production processes, and ultimately to industrialisation.  The

common characteristic of all technology maturity models is a near-linear progression of

successive mechanisation, from handicraft to manufacture, and finally to the production

line of the factory.  The environments in which the work proceeds (workshop to factory to

production line) exemplify the commonly accepted stages of maturity.  Technology

maturity models are framed in terms of tools—from hand tool to numerically-controlled

production cell, the tool’s level of automation directly maps the technology processes’

relative maturity.  Walker and Cross’ (1976) four stage model of design modes (Figure 7,

Figure 8 and Figure 9) demonstrate this technology maturity theme.



Chapter Three: Design Theory and Software Design

72

design
(drawings/models)

designerconstructor

clientsusers

brief
(schedule/

specification)

pressures
(demands/needs)

artefact
(marketed product)

design

product

brief

discussion

role

dependency

Figure 8: The ‘mature’ design process—the ‘rational design network’, from Fig 70 in (Walker and Cross,

1976).

Budde and Zullighoven (1992), however, suggest that different stages of technological

development should be characterised not by the types of tools used but by the means of

cooperation and the division of labour.  Looking beyond the contrast between the

workshop’s hand tools and the factory’s automated machinery, they observe the different

roles played by the technical equipment within the processes of specialisation and

cooperation.  In the workshop, there is emphasis on supporting individual activities by

employing tools and automata, so that cooperation between workers possessing different

skills and qualifications can be optimised.  In the factory, individual craftsmanship is

replaced by appropriate methods, such that the division of labour is encapsulated within

specialisations based upon the dictates of the machine, or production line, and individual

effort becomes currency in a Taylorian (1911) economy.  As work becomes routine and

mechanised, people increasingly play the role of the unknowing link between a

conglomerate of technical implements.  By coupling workers and technical implements to

form integrated units, the production line reduces individual skills to the lowest common

denominator required to enact mechanised routines.

By contrast, tools used within a workshop setting primarily support skilled workmanship.

A workshop offers a set of tools, but does not implement an overall strategy (ie. a

methodology) other than certain techniques that automate routine activities.  Cooperation

(the successful distribution of tasks) is maintained by people, not by machinery, although

technical equipment supports this process.  Budde and Zullighoven (1992) find that the

work of software developers is characterised by teamwork, cooperation, skill and expertise

of the individual.  Certain divisions of the software development labour force, such as the



Chapter Three: Design Theory and Software Design

73

distinction between analysts and programmers, are now regarded as an artefact of waterfall

lifecycle models rather than of the nature of the work itself, they claim.  Budde and

Zullighoven conclude that ‘the tasks of software developers can be more suitably

compared with the work of a craftsman in a workshop than with the work in a factory’ (p.

264).

Rational

Empirical

Direct

Vernacular

total
improvisation

total
prescription

Procedure Product

systematic
bureaucratic
fragmented
distant

elemental
generalised
mass produced
technically sophisticated
(Stereotypes?)

cooperative
partially defined
deliberate
well-informed

ordered
adventurous
small run
technically progressive
(Prototypes?)

shared/intimate
discursive
ad hoc
inventive

complex
inconsistent
one-off
technically traditional
(Archetypes?)

craft
improvised
individual
traditional

Figure 9: The four design modes compared, from Fig 73 in (Walker and Cross, 1976).

The debate between the proponents of the software workshop and factory models

continues apace.  The advocates of the software factory argue that software as a design

medium is not sufficiently unique to warrant different design or management processes,

and that the medium’s propensity to frustrate attempts at automation are due more to the

worker’s resistance than limiting characteristics in the medium itself.  The software crafts-

people (AgileAlliance 2005) counter-argue that software is a projection of its maker’s

creativity and that to try to automate its production misunderstands its nature.  They argue

that only the most routine and low-value software artefacts have been successfully

mechanised, and that in the so-called ‘software factories’, a separate ad hoc and

unacknowledged dimension of creative network behaviour must occur in order to account

for whatever software ‘production’ occurs.  Middle ground in the debate can be occupied

by distinguishing between conceptual design (to be done by craftsmen/analysts) and

routine work (to be done in the factories).  Offshore outsourcing is sometimes used to



Chapter Three: Design Theory and Software Design

74

evidence the viability of this hybrid position.

3.4 Conclusion

Models of design must marry rationality with the a-rational design act.  This gulf stems

from the core of human experience of the world, is deeply rooted in human psychology and

sociology, and has found expression in every age since the Enlightenment.  The conception

of a design for a new structure in any medium can involve as much a leap of the

imagination and a synthesis of experience and knowledge as any artist is required to bring

to his canvas or paper (Petroski 1992).  Once that design is articulated by the designer-

artist, it must be analysed by the designer-scientist in as rigorous an application of the

scientific method as any scientist must make.  Some theorists have attempted to pull all of

design into the realm of science (Simon 1985; Warfield 1994).  Others argue that to make

the design process itself ‘scientific’ is ‘not only as nonsensical, but ultimately highly

dangerous’ (Steadman 1979, p. 2).

Because every design model explicitly or implicitly expresses a relationship with a notion of

reality, design theory is unavoidably positioned within a philosophical milieu.  Suchman

(1987), Winograd and Flores (1986) drew upon Heideggerian views to motivate a

substantial change in direction for artificial intelligence research.  Dahlbom and Mathiassen

(1993) used the philosophies of Aristotle and Plato, Descartes and others to contrast the

mechanistic and romantic schools of systems development when a broad awakening to the

social context of systems development was gaining momentum.  An awareness of

philosophy amongst theorists and practitioners can contribute a framework that builds

bridges between the disciplines and brings an increased sense of perspective.  Models of

design, regardless of whether they come from design research, architecture, cognitive

science or information systems research cannot be used to accurately predict design

processes or designer behaviour, and as a result, fail to achieve the status of models in

science.  No design model is universal—rather, design models describe particular aspects

of design and designing.  Coyne (1995) concludes that it may be useful to regard design as

a progression through different models, and ‘a dialectic between a formal view (model) and

a phenomenon’ (p. 247).

This chapter’s survey of design theory and software design orients the thesis’ research goal

in a philosophical dimension.  The next chapter surveys design from a situated and

ethnographic perspective, after which the detail of the research method can be designed.



75

Chapter 4:  Situated and Ethnographic

Accounts of Design

Design is not a neutral tool; it is a planning activity whose aims and procedures are

dictated by commercial and political interests.  Design is about decisions and priorities,

not equations and logic.  (Thackara 1988, p. 12)

4.1 Introduction

Situated action and cognition (‘situatedness’) was introduced in Chapter Two as a basis for

accounting for design practice, particularly as an alternative view of activity, and in

Chapter Three as a theory to demonstrate constructivist philosophy.  If the task of

explicating expert designer’s accounts of their practice is to be done effectively, the notion

of situatedness as it applies to software design needs to be reduced to some recognisable

phenomena and characteristics.  This chapter provides the theoretical background against

which the analysis and case study chapters can pursue this goal.  Firstly, a summary of the

theories of situated cognition and action is presented.  Secondly, the ways that design is

typified in three generations of software engineering lifecycle models are discussed.

Finally, selected socio-cultural models of design from information systems research are

surveyed.  The chapter concludes with assertions on situatedness and ethnography that

collectively allow a research method to be designed (Chapter Five).

4.2 Situated Cognition and Action

The situated movement—situated language, situated cognition, situated action—may be

seen as a reaction to the historically dominant classical view of mind.  In constructivist

terms, cognition is viewed as experiential processes of bringing forth concepts and insights

that fit our experience, and are viable for achieving our aims in open situations in which we



Chapter Four: Situated and Ethnographic Accounts of Software Design

76

interpret our needs (Bateson 1980).  Although frequently left undefined or ambiguous in

the literature, situatedness is not a difficult concept.  It has its simplest and most tangible

manifestation in language.  Different uses of words denote diverse meanings based upon

situation (Searle 1969).  As even young children realise, words like ‘here’, ‘I’ and ‘now’ can

be used on separate occasions, by different individuals, to refer to distinct people, places

and times.  When two people in heated conversation shout ‘I’m right!’ their utterances

coincide in meaning but reveal differing interpretations (Barwise and Perry 1983).

Intended meaning is therefore a function of context and interpretation (Maturana and

Varela 1980).

Kirsh (1995) points out that people use context as a mechanism for efficiently compressing

cognition and communication.  It is easier to determine which of two objects is longer by

placing them side-by-side than to deal with numeric comparisons of absolute dimensions—

a simple arrangement of the objects in context does the computing for the observer.  An

oft-cited situated cognition story attributed to Nardi (1996) recounts a Weight Watcher

who, when asked to make three-quarters of a recipe that called for two-thirds of a cup of

cottage cheese, measured out two-thirds of a cup of the cheese, flattened it into a circle,

and cut away a quarter of the resulting disc.  Unconventional but effective behaviour such

as this demonstrates how human cognition is often unplanned, opportunistic and situation-

specific, and how rational application of theory (such as doing the maths) may get passed

over in favour of pragmatic methods that are promoted by the situation and enabled by the

tools at hand.

It can be argued (as Clancey (1993) does in his debate with two leading symbolist cognitive

scientists) that the ‘discovery’ of situated cognition (or the elevation of pragmatism over

detached theorising) occurred somewhat independently in a range of epistemology as

diverse as design, philosophy, architecture and cognitive science over a decade for the

same reason—the perceived failure of rationalistic theorising.  Clancey makes this

argument with the following illustration.  In the rationalistic (scientific) paradigm,

regularities in nature are caused by laws—for example, a falling object accelerates so as to

obey the law f=ma .  Theories epitomise knowledge, and rational behaviour of systems and

people obey general laws of logic.  Therefore, human knowledge consists of facts and laws

stored in memory, that drive observed regularities in behaviour.  Clancey claims that this

rationalistic view of cognition and action has distorted human activity—a claim which he

finds support for in architecture (Alexander 1979), organisational learning (Nonaka 1991),

professional training (Schon 1987), musical invention (Bamberger 1991), the design of



Chapter Four: Situated and Ethnographic Accounts of Software Design

77

complex devices such as photocopiers (Suchman 1987) and the use of computers in

business (Winograd and Flores 1986).  Much of the material collected in Chapters Two and

Three share the common characteristic of disputing or confounding the causality implied

by Clancey’s cameo of traditional cognition.  In all of these fields, situated alternatives

have emancipated researchers from the chains of the theory-leads-practice schools.

Of the themes that pervade situated cognition and action, two are particularly pertinent to

software design—goal setting and planning.  In the situated model, goals are formulated

not ahead of action but in the midst of it, and in response to contextual cues.  Chapter Two

argued that planning in the traditional sense of action following a plan is a somewhat

discredited concept.  In a post-rational or situated model, both the goals and activities of

planning and plans need to be redefined.  The key questions in evaluating action in a

software design situation are therefore ‘when, how and why are goals formed?’ and ‘when,

how and why are actions initiated?’.

4.2.1 Situated cognition

The first generation of cognitive models assumed static Aristotelian concepts and logic.

Logical reasoning with these models followed a process of establishing facts, applying

single or causal chains of assertions, and evaluating the logical proposition with the highest

associated probability (the most plausible proposition).  Reasoning was thought to involve

symbol manipulation by means of propositional logic and inference.  They proved inflexible

when applied to problems on a useful scale and were extended by adding measures of

belief, evidence, certainty and probability.  While they were suitable for constructing

abstract systems of logic, the models fell well short of duplicating human cognition.

Cognitive models based on classification (Schank and Abelson 1977) assume that we act in

situations and in the presence of certain objects by following generic responses that most

closely match the current situation.  Representations of such conditioning take the form of

schemas, scripts or other generic descriptions of objects or situations.  Contextual cues

guide both the selection of the appropriate schema and its parameterisation or

modification.  Applied to design, the model suggests that the designer recalls a schema for

the type of artefact and commences design by inserting parameters, fitting and modifying it

for the current context.  Schemas are thought to relate hierarchically, such that the schema

for a type of artefact defines the generic layout, arrangements and features, and links to

other scripts that define the generic form of the features at the next lower level of

abstraction.  The schema may additionally retain strategies and rules.  The link back to



Chapter Four: Situated and Ethnographic Accounts of Software Design

78

typological models of design (3.3.1, ‘Categories of Design Models’) is both clear and un-

surprising.  These models represent designing as a process of constructing schemas over

time, matching presenting design situations to retrieved schemas, and instantiating them

with localised modification (Stanfill and Waltz 1986).  Classification-based cognitive

models explain the role of experience and familiarity in a designer’s expertise, but do not

explain acts of creativity in which features of one schema are cleverly combined with those

of an unrelated one to produce a new design.  Neither do they explain how a new schema is

initiated.  Also, the combinatorial explosion that typically results when attempts are made

to move these models out of the laboratory and into real world settings presents a major

limitation (Hamilton 1992).

In response to the dominance of symbolic cognitive science, Lave (1988) and Suchman’s

(1987) theories of situated cognition contributed toward a significant shift in the

philosophical basis of cognitive science.  Lave studied people performing on-the-fly

arithmetic in supermarkets.  Lave recognised that quantitative procedures (such as people

totalling their purchases) appeared to take their character from ongoing activity rather than

the imprints of canonical forms.  She concluded that people formulate a math problem only

when they have also formulated a sense of an answer and a process for bringing it together

with its parts, and that problem solvers proceed in action, engaging body, self and the setting

in an integral fashion.  Lave proposed new units of cognitive analysis—‘persons-acting’,

‘contexts of activity’, and ‘dialectically constituted activity’—to characterise the ‘value-

laden, active, integrally contextualised character’ (p. 20) of arithmetic problem solving in

practice.  Lave argued that the most appropriate unit of analysis is ‘the whole person in

action, acting with the settings of that activity’ (p. 17).

Shifting the boundaries of activity ‘outside the skull and beyond the hypothetical economic

actor to persons engaged with the world’ (p. 18) opened the door to social relativism and

hermeneutics (Gadamer 1976; Palmer 1969).  Hamilton, amongst others, (1992) observed

that hermeneutics was an essential counter-philosophy to rationalism for cognitive

research.  Hermeneutics offers a postmodern perspective of action by explaining the

unavoidable relationship between social context and individual or group action.  Gadamer

claims that contextual factors dictate all our behaviours, actions and speech:

The phenomena of background and interpretation pervade our everyday life.  Meaning

always derives from an interpretation that is rooted in a situation… relativity to

situation and opportunity constitutes the very essence of speaking.  (Gadamer 1976, p.

88)



Chapter Four: Situated and Ethnographic Accounts of Software Design

79

If situated cognition involves an inseparable co-dependency of thought, action and

situation, it is not a phenomenon that can be identified and observed in isolation of others.

This has made its definition difficult.  Clancy’s (1993) exploration of some common

misconceptions about situated cognition provides some clarity.  Situated cognition replaces

the ‘CPU view’ of cognitive processing with a dialectic mechanism that simultaneously

coordinates perception-action.  It does not reject the value of planning and representations,

rather, it seeks to explain how plans are created and used in already coordinated activity.  It

does not deny the existence or importance of representations (such as models or symbols),

rather, it seeks to explain how perceiving and comprehending are co-organised.  It does not

dispute the value of cognitive science’s schema and classification-based reasoning, rather,

it attempts to explain how these kinds of regularities develop in behaviour, and how the

flexibility for improvisation cannot be captured in symbolic models.  It does not dispute

that symbolic computer programs can construct and reason over a problem space, rather, it

reveals why such programs cannot step outside pre-stored ontology.

To take a situated view of cognition to a design scenario does not mean ignoring or

discounting the designer’s plans, models or stated intentions to pursue goals.  Rather, it

means looking for holistic explorations of how these are coordinated, arranged and used

before, during and after the design act.  It also means forgetting positivistic preconceptions

about scientific method and causality in order to allow other phenomenological insights to

occur.  Observations of situated cognition in design practice therefore take the form of

rich, ‘thick’ descriptions of observed or self-reported behavioural patterns, illustrated by

the selection and application of tools (for example, the Weight Watcher’s rolling pin) and

heuristics (the use of spatial division rather than multiplication of fractions) to construct

contextual meanings and achieve outcomes (such as making a recipe in reduced quantity).

4.2.2 Situated action

Humans experience the objective world through actions and activity, and human

knowledge about the world is a reflection obtained through such activity.  Actions are

motivated by the desire to satisfy a perceived need as a result of interacting with an object

in a context.  Even though the goal of an action may be discretely identified independently

of the situation in which it takes place, the practical process of realising the action cannot

be detached from its context.  Models of action complement models of cognition.

Rationalistic models of action generally assume causality, evidenced by some kind of a

priori planning and subsequent execution—that is, action follows or results from cognition.

From a constructivist perspective, cognition, action and context are irrevocably coupled



Chapter Four: Situated and Ethnographic Accounts of Software Design

80

(Gero 1998a; Gero 1998b).

Schön (1987) pioneered the observation of expert’s reflection in action.  Schön analysed

expert practitioners at work in a variety of disciplines and described a model of their goal-

setting and acting. Actions, when learned, become transparent and automatic, just as

knowledge becomes tacit.  Schön used the term ‘knowing-in-action’ to refer to the sorts of

know-how revealed in intelligent action, in both the public performance (for example,

riding a bicycle) and the private actions (such as instantly analysing a balance sheet).  In

both cases, the knowing is in the action.  When tacit ‘knowing-in-action’ breaks down, the

actor is presented with an opportunity to reflect, and may do so in one of three ways.  He

may do so after the fact, in tranquillity; he may pause in the midst of an action in a kind of

‘stop and think’ instant; or he may reflect in the midst of an action without interrupting it.

In an ‘action-present’—a period of time, variable with the context, during which the actor

can still make a difference to the situation at hand—the actor’s thinking serves to reshape

what he does while he does it.  Schön’s descriptions address goal-forming behaviours.

Rationalistic and situated perspectives differ on the point of how goals are formed.

Rational planning theory holds that goals are formulated during planning and as a function

of the execution of plans, and that actions are causally related to goals.  Situated action

holds that goals form and are re-formed in-the-moment, as per Schön’s account.

Lave (1988; 1991) also considered the relationship between goals and action.  After

observing people making decisions about whether to purchase fruit and vegetables, she

concluded that actions are not motivated by goals but that goals are constructed, in the

moment of acting.  Lave concluded that the linear view of action as a means of achieving a

goal was a projection, that action is instead not goal-directed but goal-forming.  When

action is constituted in circumstances (as it always is) an activity and its values are formed

simultaneously, and motivation for an activity appears to be ‘a complex phenomenon

deriving from constitutive order in relation with experience’ (p. 184).  Lave suggests that

‘expectations’ (a better term than goals) are dialectically constituted, changed, reversed and

inverted in activity, as people initiate action, respond to other’s action, and respond to

their surroundings.  ‘People act inventively in terms of expectations about what has

happened, is happening and may happen’ (p. 185).

Some work environments support this form of dynamic goal-setting more effectively than

others.  The tension between automating work processes without removing options for the

actor to respond to unforseen circumstances in new situations is always present in system

and software design.  Suchman responded to this criticism (1994) in the years after the



Chapter Four: Situated and Ethnographic Accounts of Software Design

81

publication of her seminal book (1987) by explaining how systems should be organised to

support situated work.  She suggests designing ‘technologies of accountability’ which store

(and provide tools to manipulate) the state of the objects for which people in an

organisation must be held accountable:

By technologies of accountability I mean systems aimed at the inscription and

documentation of actions to which parties are accountable… in the sense represented

by the bookkeeper’s ledger, the record of accounts paid and those still outstanding.

(Suchman 1994, p. 188)

Suchman suggests designing systems around the ‘objects’ of activity so as to leave the

exact sequence of actions to be emergent.  This suggests designs that rely on toolkit,

workshop or desktop metaphors.  To explain an individual’s actions at any instant is to

incorporate an understanding of all these environmental and personal factors and to trace

the formation and reformation of expectations.  Clearly, this is not something that can be

reconstructed after the fact.  Accounts of situated action, like those of situated cognition,

must describe the context and its influence on the design act and design outcomes.  This

realisation points us toward socio-contextual models and ethnographic research methods.

4.2.3 Investigations of situatedness

Most research of situated cognition and action is ethnographic in nature, and uses

examination of situated action and decision-making in specific domains.  The following

brief summary illustrates relevant research themes.  The use of plans in situated decision-

making has been researched.  Bardram (1997) studied examples of patient diagnoses to

illustrate the use of checklists and procedures in highly situated work.  From his

observations, he proposed an activity theory model based on fundamental units of action

and activity.  He concludes that plans are useful only as statements of goals, and at best,

statements of abstract (but not detailed) actions.

The lack of influence of methods on the designer’s shared understandings of an emerging

design has been documented many times.  Empirical studies by Curtis, Krasner and Iscoe

(1988) and Waltz, Elam and Curtis (1993) found that the communicative mechanisms

which support shared social knowledge on a software design team are more critical to the

design process than the use of a particular methodological approach.  They concluded that

active perceptions of knowledge are more important at most stages of the design trajectory

than the representations to be found in project or methodological artefacts.

Theories of distributed (or socially constructed) cognition have emerged that explain how



Chapter Four: Situated and Ethnographic Accounts of Software Design

82

groups converge on solutions in a collaborative design process (Norman 1991).  Individuals

hold partial mental models of a situation that—while inadequate as a basis for successful

action or design—can be combined with those of others to constitute a ‘shared meaning’

and a structure for group ‘sense-making’ (Clegg 1994).  The focus is no longer on the

individual as ‘decision-maker’ but on the individual as ‘conversation-maker’, both through

reflective action and through interaction with other stakeholders in the collaborative design

process (Boland et al. 1994).

Situatedness has started to influence software product design.  Lueg (1998) incorporated

consideration of situated cognition in the design of an internet news reader.  His reader

avoids the gap between the conventional user profile and the user’s interests at the time of

reading, by dynamically constructing a ‘situated’ profile influenced by immediately recent

user behaviour (selections, omissions and article viewing times).  Lueg’s ‘situated

information filter’ helps users cope with high volumes of news content.

4.3 Design in Software Engineering

Not surprisingly, the same rationalistic and pragmatic themes evident in models of

knowledge, cognition and action find expression in software’s epistemological base, and

more specifically, in software development methodologies.  The history of software

lifecycle models can be viewed in three broad generations—waterfall, post-waterfall and

All-at-once.  This progression over three and a half decades represents a gradual

deconstruction of the universality of a technology maturity model in the face of increased

diversity and complexity of problem types.

4.3.1 Waterfall

The waterfall software lifecycle model encapsulates the notion that design should follow a

path of successive refinement from abstract to detailed specifications, and finally to code

(DeMarco 1978).  Waterfall lifecycle processes were encapsulated in most of the structured

methods (DeMarco 1978; Gane and Sarson 1979; Page-Jones 1980; Sutcliffe 1988;

Yourdon and Constantine 1979).  The model became entrenched when NASA and the

United States Department of Defence demanded waterfall development in their contracts.

The resulting widespread and large-scale adoption of the model resulted in reports of

problems (DeGrace and Stahl 1990).  The assumption in the model (and in the associated

structured analysis and design techniques) that the problem description could be

documented in complete isolation from the solution design proved difficult for designers



Chapter Four: Situated and Ethnographic Accounts of Software Design

83

(Zave 1984).  It emerged that in practice, designers were more likely to consider aspects of

the problem and a range of possible solutions together.  Adherence to the model also

resulted in a communication gap between end users and developers.  Insistence on

separately managed phases made it almost impossible for a programmer to influence or

correct the specifications passed down to them from the analysts upstream.  Participants in

the development process interfaced only with upstream and downstream collaborators, and

as a result, specialisation was encouraged.  This separation of responsibilities and

specialisation of skills served management expediency at the expense of cooperation and

communication, and the delivered software systems suffered in terms of fitness-for-purpose

and extensibility as a result.  The parallels with other rationalistic planning regimes such as

the Pruitt-Igoe modernist housing complex—and its ultimate fate—are conspicuous.

Boehm (1976) discovered that the cost of implementing a misinterpreted requirement

detected during downstream phases increased non-linearly.  In using this result as an

argument for even stricter requirements analysis and capture, the waterfall model’s

proponents missed an opportunity to discover the nature of the mismatch between the

model and the types of problems it was being used for.  The model also contributed to

incomplete design—because analysts and developers were encouraged to defer knowledge

of the target implementation technology, they could not design certain non-functional

characteristics such as exception management or response times (McFarland 1986).  The

resulting incomplete designs caused expensive programming rework in the testing phase.

Much of the time, DeGrace reports, claimed success with the waterfall model was dubious,

because the model’s advocates had not actually followed a true waterfall process.  For

example, reports of success came from sponsors and subcontractors motivated by winning

follow-on work rather than from developers.  When the high cost and inflexibility of

waterfall development finally became apparent, US government employees were

encouraged (in 1983) to apply standards selectively and to tailor them before use on a

contract (DeGrace and Stahl 1990).  The death of waterfall dogma was effectively

announced by Parnas’ (1986) declaration that the rationality of the software design process

claimed by the waterfall model was nearly always faked.

4.3.2 Post-waterfall

These modifications to waterfall orthodoxy mark the commencement of the second era of

software lifecycle models.  Many had pragmatic origins—programmers modifying their

approach to get the job done—rather than extensions to theory or the model, which had



Chapter Four: Situated and Ethnographic Accounts of Software Design

84

assumed canonical proportions in both academia and industry.  The variants generally

involved weakening the sequential dependencies between phases or the activities within

phases such that they became overlayed or interleaved.  The whirlpool (or spiral) variant

introduced iteration into the waterfall (Boehm 1988).  The timing relationships between

phases are relaxed, and the duration of phases in each epoch of the whirlpool differs from

those in succeeding epochs.  In use, the spiral model addressed many of the limitations of

the waterfall model by allowing ‘what’ and ‘how’ activities to overlap within a cycle.

An example of a variant was developed at Boeing (Gilchrist 1989) in which the waterfall

proceeds as usual through completion of the feasibility, requirements and preliminary

design phases.  Then, multiple mini-projects are spawned, each with the goal of

implementing some of the requirements.  Each thread executes the remainder of the

waterfall in its own time, and the system completes when the last mini-project completes.

Clearly, the top-level functional decomposition must be fixed before the division occurs,

and each mini-project must be tasked with a functionally cohesive chunk of the system.

Designing and maintaining clean interfaces between the modules is critical to the success

of the approach, as is the early identification of a near-complete set of requirements.

Meanwhile in Japan, engineers noted that speed and flexibility of product development

were as important as product quality and the predictability of the process.  They responded

by reducing the number of phases to four (requirements, design, prototype and acceptance)

and overlapped them, forming the ‘Sashimi’ model, so named for its resemblance to

traditional Japanese sliced raw fish in which each slice rests partially upon the slice before

it (Takeuchi and Nonaka 1986).  Some overlapping of phase boundaries was not new, but

Sashimi’s complete overlap sanctioned the tighter coupling previously considered harmful

in conservative waterfall thinking.

All waterfall variants suffered from the need for a substantial investment before anything

visible was delivered, which raised the risk of dissipation of project momentum and

stakeholder divergence.  Prototypes were introduced to reduce this risk by supporting early

and continuous feedback.  A prototype is a kind of proto-system that is intended to

demonstrate or prove some aspects of the intended final system.  The objective of

prototyping is to clarify the characteristics and operation of a product or system by

constructing a version that can be exercised (Agresti 1986).  Prototypes are therefore a risk

reduction device (DeGrace and Stahl 1990).  The prototype itself may have one of two

distinct fates—it may become a reference upon which the real system is based, or it may

undergo a conversion into the real system.  This conversion is not always performed as



Chapter Four: Situated and Ethnographic Accounts of Software Design

85

systematically or rigorously as it should be.

Prototyping can be useful for ‘wicked’ problems because it can introduce a partial solution

into the environment and stimulate further requirements based on its effect.  Designers and

users become engaged in the system design process, and both perceive the relative

advantages and disadvantages of each design decision.  A successful prototype becomes a

mediation device and a tangible realisation of the current state of play.  Prototypes

typically resolve user interface decisions, but not necessarily architectural ones—to avoid

this, the software architecture should also be prototyped (Booch 1994).  Proposed changes

to the prototype’s functionality may then be applied against the system architecture before

commitments are made.  Prototyping, DeGrace (1990) concludes, is empowering because

it moves us away from the ‘revealed word’ of monolithic systems to ‘a place where we can

depend on ourselves for our knowledge about solving problems with computers’ (p. 152).

It brings things back to a human scale and allows us to make the tool fit the hand, rather

than the other way around.

4.3.3 All-at-once

The third era of lifecycle models is grounded in the notion that any attempt to

compartmentalise design into a discrete phase is, and always was, artificial.  Zelkowitz

(1988) questioned the validity of the phase concept after his study of a significant waterfall

project revealed that only 50% of the project’s design activity had been done in the design

phase—of the remaining half of the reported design effort, 34% was performed in the

coding phase, 10% during the integration phase and 6% during the acceptance test phase.

He concluded that certain activities could not be bound to phases, and that phases are,

under scrutiny, abstractions superimposed over projects to assist with resource planning

and budgeting.  Like prototyping models, All-at-once lifecycle models (DeGrace and Stahl

1990) support many concurrent activities, but unlike prototyping, the amalgam of activity

is focused on developing the system, not a prototype.  All-at-once models support the way

that experienced practitioners proceed when they know neither the solution nor the

problem—when they are trying to solve a ‘wicked’ problem.

Takeuchi and Nonaka (1986) compressed their Sashimi model further by jamming the

slices together into a nebulous ball.  They termed this model ‘scrum’, after a rugby pack

that does whatever is necessary to move the ball downfield.  Scrum as a metaphor for

software development has appeared in many guises.  More recently, Beedle (2000)

expressed the idea as a pattern language, eXtreme Programming (Beck 2000) has



Chapter Four: Situated and Ethnographic Accounts of Software Design

86

incorporated some elements in the form of ‘essential practices’, and the Agile Alliance

(Cockburn 2002) has reinterpreted All-at-once ideas in their manifesto on software

development.  The Scrum life cycle model demands flexible developers and a certain

degree of management faith.  Flexibility and high skill levels are needed because team

members analyse, design and code alternately.  Management faith is required because the

team is largely self-governing and self-directing—they make progress in multiple

dimensions all-at-once, and they are prone to throwing away non-trivial chunks of

architecture, design or code when a more satisfactory design emerges from the iterative

process.  Scrum recognises the intimate relationship between requirements discovery and

validation, and that designing and coding are not inherently sequential.  ‘When someone

writes code, they are also writing requirements, functional specifications, and design notes

at the same time’, DeGrace notes (p. 158).

Because Scrum lifecycles empower team members with horizontal responsibilities across

the team’s activities and the software deliverables, the model works better with skilled and

experienced multi-specialists who are prepared to subjugate the background noise of a

professional working life to the consuming challenge of rapid development.  Scrum teams

become autonomous and members begin to act like entrepreneurs.  Team members are

freed from the need for lengthy, passive third-person communication, documentation and

authorisation protocols.  Discussions of All-at-once, Scrum or eXtreme Programming cells

often describe the phenomenon of the emergence of a culture.  The team builds a shared

design capability, and in an environment where efficiency is paramount, even the dialogue

between individuals becomes introverted and compressed as the names of software

components, idioms and design patterns replace open communication.  A Scrum clique

reinforces the team’s existence and the individual’s right to membership, and protects the

team from external influences that may slow productivity.  Team members self-select into

particular roles so as to internally balance activities with personalities, for example,

‘gatekeepers’ manage the interface between the cell and external stakeholders (Coplien

1995).  All-at-once (or ‘agile’) process models are most suited to dynamic business

contexts, but their encouragement of on-the-run architectural design remains contentious

(Glass 2006).

4.3.4 The engineering metaphor

Finally, it is worth noting that design in the software domain has been profoundly shaped

by the adoption of engineering as the metaphor of choice.  There is no obvious point in the

early history of software when the suitability of the engineering metaphor as a basis for the



Chapter Four: Situated and Ethnographic Accounts of Software Design

87

nascent discipline was openly debated.  McIlroy (1968) demanded a hardware-like

component-based software discipline to reduce risk in the mushrooming United States’

Department of Defence software investment.  Boehm (1976) first used the term in the

context of his separation of a project into design and implementation phases, with a project

management regime for each phase.  McBreen (2002) claims that the engineering models of

the time typically involved bespoke hardware creation or modification, and as a result,

conformance to an engineering project regime occupied the software team while the

bespoke hardware was developed.

The engineering metaphor implies the degree of formality and repeatability in software

construction as is found in other engineering disciplines.  Many regard the metaphor as

inappropriate and mispleading.  Eaves (1992b) asserts that there is little reason to argue for

a formal basis for software engineering, and that this is unlikely to change in the future.

Serious experimentation is impractical and expensive, he claims, because formal

experimentation and quantitative information to support comparison between alternative

design or development approaches is not feasible—it is impossible to reduce software

development experiments to a set of meaningful formal measurements.  Even if such a set

could be approximated, the number of variables in such experiments could not be

controlled, and replication could never be achieved.  As a result, he proclaims, ‘the

standard model of scientific research is not applicable in the domain’ and ‘we are (still)

dealing with a craft’ (p. 15).  Eaves (1992a) also refers to what he calls a ‘rage for order’—

the ‘human instinct which forces the creation of illusory or aesthetic order out of chaos, if

no other order is to be had’ (p. 11).

In adopting the engineering metaphor, the emerging software industry revealed its desire to

appropriate legitimacy and maturity.  Software methodologists have continued to exhibit a

propensity to envy the mathematical formalism evident in certain sub-domains of system

design—for example, the way relational algebra underlies database design (Baragry and

Reed 2001; Glass 1999).  Chapter Three’s survey of design theory reveals, as Coyne (1995)

puts it, the ‘plurality of inadequate and speculative models for which there is no unifying

theory or overarching model’ (p. 238).  This qualifies design as a weak (or immature)

epistemology.  That engineering continues to be questioned as the right metaphorical basis

for software design going forward is not completely surprising (Glass 1999).

4.4 Socio-cultural Models of Design

An appropriate place to conclude this review of design theory and software design is with



Chapter Four: Situated and Ethnographic Accounts of Software Design

88

some of the socio-cultural models published in information systems research in recent

years.  These models address both system and software design and provide holistic views

of design in context.  This class of design model is demarcated from those surveyed so far

by its foundation in ethnographic research.  Socio-cultural models of systems design are

heavily influenced by epistemological (rather than ontological) treatments of methodology

use.  How individuals structure their thinking, and as a result, how they interpret structures

of the methodologies, depends very much on the way they view the world.  The

philosopher Dilthey (1931) defines this as the Weltanschauung (the ‘world images’) of the

individual (Kluback and Weinbaum 1957).  Checkland defines Weltanschauung as ‘the

particular non-absolute world image which we take for granted and through which we

construct/attribute meaning to human activity or interpret reality’ (Checkland 1981, p. 27).

4.4.1 Ethnographic design research

As a result of the convergence of computing, systems theory and sociology, information

systems researchers gradually turned their attention to social science and investigation,

including anthropology (Jagodzinski et al. 2000a).  The pivots upon which this movement

hinges include culture, and a general sense that the ‘complex, ongoing and multi-faceted

nature of commercial design projects’ does not lend itself to experimental research methods

(Ball and Ormerod 2000, p. 404).  Ethnographers have long claimed that a lack of

contextual awareness has undermined much social and empirical research in the past.

Ethnographic methods such as grounded theory have been designed from a non-positivist

perspective that avoid the problems of cross-cultural and context-independent

interpretation (Glaser and Strauss 1967; Saule 2000; Strauss and Corbin 1998).

Ethnographic research takes a phenomenological basis (van Manen 1990) rather than a

causal one, in that it seeks to explicate the experiences of participants through observation

and to account for the impact of culture and social environment on observed outcomes.

Ethnographic research results are intended to be read critically (as per Coyne’s (1995)

critical theme), meaning that the reader takes the opportunity to understand the

researcher’s process and question interpretations, rather than to look only for causality,

conclusions or digested results.  The value of ethnographic research is that new

understandings can continuously emerge through such interpretation (Hammersley 1997).

Ethnographic research is distinguished from other research paradigms by in situ observation

through cultural immersion, and much ethnography implies ‘living with the tribe’ as a

member and as a peer.  Ethnographic descriptions are rich and multi-dimensional, the

observations are detailed, and the researcher must at all times be open, autonomous yet



Chapter Four: Situated and Ethnographic Accounts of Software Design

89

empathetic—observing, yet self-reflecting.  The design of information systems has been a

key focus for the information systems research community, and as a result, there is a

growing base of accounts and ethnographic models to be found in the design and

information systems literature (Jagodzinski et al. 2000a).  One early and influential socio-

cultural model of systems design is that of Lyytinen (1987) (Figure 10).  The model’s

narrative is straightforward—the Development Group perceives existing systems,

alliterates concepts and designs structures in response, and uses language to enable a

construction of a representation or form of a changed or new target system to be shared

amongst all stakeholders.  Lyytinen’s framework was significant in its time for raising the

issue of subjectivity and the multiplicity of target systems.  It also highlighted the centrality

of language as the medium of group interaction and the mediator of meaning.

A Development
Group

concept,
structure

representation,
form

context

enables

perceives and
acts upon

has

interacts

determines

have a

language

Object Systems

Figure 10: Lyytinen’s systems development process framework (Lyytinen, 1987).

Gasson’s model (1999) is indicative of more recent ethnographic work.  Gasson carried out

an interpretive study of an information systems design team at Fujitsu Telecommunications

over 18 months, concluding in 1997.  Using interviews, meeting transcripts and video,

design notes and workshops, she synthesised a comprehensive model of the design team

and its context (Figure 12).  This model is of interest because it confirms and relates many

of the design drivers and contextual factors raised earlier in this thesis.  Gasson builds upon

Lyytinen’s model by elaborating the actors, the context and the target object systems.  The

actor types reflect the organisational structure and roles present in the typical information

systems department of the late 1990’s.  Gasson’s context separates informal and formal



Chapter Four: Situated and Ethnographic Accounts of Software Design

90

system boundaries, distinguishes between preconceptions, perceptions and a shared

representation of the design problem, and the forces that influence each of these.  Her

representation of the design act shows how investigation of the problem situation and

analysis proceed via an iterative process of creating and modifying abstract representations

and concrete analogies in parallel—a process that generates new design goals as it

proceeds.

Basis of influence

Design
goalsScope of

influence

Framing Conceptual

Interpretive Symbolic

Issues of
fact

Issues of
value

Design
process

Figure 11: A framework for the management of meaning in design (Markus and Bjorn-Andersen, 1987).

Of particular interest is Gasson’s observation that design influence varies in terms of the

dominant form of knowledge at different points in the design’s trajectory.  Using Markus

and Bjorn-Andersen’s (1987) framework for ‘the management of meaning in design’ as a

starting point (Figure 11), Gasson identified four types of influence.  Initially, the IS

manager’s existing expertise in defining organisational information system design in terms

of concepts was dominant.  Next, the team engaged in ‘symbolic debates’ about the values that

should be embodied in the design process, dominated by the views of three individuals

who were perceived as having superior understandings of organisational strategy.  The next

(and longest) phase of design influence occurred as a result of the more experienced team

members interpreting design issues (and issues of the design process) for the other team

members.  This period was dominated by the two individuals who possessed the most

experience in managing the systems design process.  The final phase was driven by external

pressures for design closure and was based on framing design goals in terms of issues or

facts grounded in current business processes, and was dominated by the individual with the

most experience in the application domain.  Gasson does not claim that this sequence of

design influences is universal, rather, that all design trajectories experience these kinds of



Chapter Four: Situated and Ethnographic Accounts of Software Design

91

influence, and that circumstances dictate their impact and sequence.

Ethnographic research of this kind is not without its critics.  One frequent criticism is the

lack of ontology, or even the most basic of definitions.  When Love (2000) attempted to

produce a glossary of design research literature, he found that there were almost as many

different definitions of design and design process as there were writers about design.  The

‘substantial amount of confusion with respect to the underlying basis of many theories,

concepts and methods’ and conflation of concepts drawn from a range of sources has

resulted in unnecessary and unhelpful confusion of the terminology of design research,

Love claims (p. 295).  This problem is not limited to ethnographic research.  Cross (1993)

compared two reviews of the state-of-the-art in design research published ten years apart

and noted how the same terms and concepts were used differently.  Oxman (1999)

describes how a focus on the dialectic nature of designing changes fundamental definitions

of design.  Talukdar, Rehg and Elfes (1988) claim that neither practitioners nor researchers

agree on what constitutes design activity.  Parnas and Clements (1986) argue that, in

software design, precise definitions are often not provided, and that there are many terms

used for the same concept and many similar but distinct concepts described by the same

term.  Some of these problems can be circumvented if the researcher states their definitions

and objectives with each piece of analysis.



Chapter Four: Situated and Ethnographic Accounts of Software Design

92

affect
selection of

normative learning
shapes problem-

solving perspective of

Common representation(s)
of the design

Education,
training &

backgrounds

Existing IT design
practice

‘Expert’
Designer

INFORMAL SYSTEM BOUNDARY
(emergent)

FORMAL SYSTEM BOUNDARY

Investigation & analysis of problem
situation:

Abstract representations

Concrete examples/analogies

iteration

emergent
design
goals

Perceptions of the
design ‘problem’

Design implementation &
management of change

Global network of
influential decision-

makers

Design-team
members

Individual
problem-solving

perspectives

Preconceptions
concerning the form
of the target system

Methodological
approach to design

constrains

shapes
meaning of
design for

influence
act upon

have

shape

shapes

exert political pressure for
rapid closure and efficiency

gains upon

shapesshapes

depend for
information

upon

guideacts as
basis for

constrain, through
immutability

shape

shape

Outputs of
design

Figure 12: A social action model of the organisational information system design process (Fig 2 in

(Gasson, 1999)).

4.4.2 Engineering design research

Ethnographers have extensively researched engineering design.  The following summaries

illustrate some selected relevant research themes.  Amann (1992) observed the casual

discourse of a group of expert designers in work settings, in order to describe how designers

worked.  Amann observed a kind of ‘shop talk’ which, among members of the appropriate

science culture, triggered previously non-obvious interpretations or suggestions.  Amman

drew three significant conclusions—expertise is not an accumulated or inert characteristic,

but rather a socially emergent phenomenon; expert behaviour emerges under situated

conditions of practice, and the status of an expert is socially constructed.

Busby (1998) assessed the use of feedback in the design processes of five different

engineering design firms, finding that feedback to designers was often unreliable, delayed,

negative and sometimes missing altogether.  There was evidence that designers failed to

learn from the feedback that was available, such as repetition of previous failures and the

development and approval of plans at odds with previous outcomes.  Busby attributes the

lack of constructive feedback and attention to feedback processes to the desire to impose



Chapter Four: Situated and Ethnographic Accounts of Software Design

93

customer management or marketing functions to filter interactions between the designers

and users, and a basic over-estimation of the degree to which design activity is ‘feed-

forward’ in nature.

Jagodzinski (2000b) studied electronics engineering teams in a large, multi-paradigm

research project and concluded that multiple models (or views) of design activity are

needed to relate the many perspectives.  Jagodzinski concludes that both subjective (‘social

relativist’) and objective analytical views are equally necessary in order to understand how

design proceeds.  Jagodzinski claims that the traditional socio-technical approach in which

technical and social systems exist harmoniously but separately must be replaced by a ‘post

socio-technical’ one in which subjective and objective views are inseparable.

Lloyd (2000) studied an engineering design and manufacturing organisation that employed

100 people to develop automotive testing systems for UK car manufacturers.  The study

found that an important dimension of engineering design is social experience, that design

proceeds through a series of social agreements (some permanent, some transitory) and that

storytelling is an important mechanism in forming these agreements and in building the

social construction of a particular design.  Lloyd found that these social constructions

anchored to particular products, and that it was not straightforward to generalise findings

across all of the organisation’s products.  For any product, a language is invented which

facilitates an ongoing experience of that product and its attendant design processes.

Baird (2000) studied four engine design teams at Rolls-Royce over 11 months, producing

what the authors call typical ethnographic output—‘qualitative, diffuse, unstructured,

highly interrelated, voluminous’ (p. 339) data from which a number of themes emerged.

They found that designers relied heavily upon dialogue and communication outside of their

team structures when designing, or changing designs.  They found the importance of a

culture of ‘judgement-based respect’ in which judgements and verbal promises were

frequently interpreted by team members as constituting a commitment.  The individual

designer’s reputation rested on his or her ability to fulfil such commitments.  In rapid time-

to-market projects, the emerging design was observed as being biased by the more

experienced engineers who tended to draw heavily on previous solutions.  They also found

social support mechanisms that engineers used to assist in managing time pressures.  One

of these was the practice of always citing the direct sources of important information when

designing (an historical practice that protected the individual but also acknowledged the

source and effectively served knowledge propagation).  Another was the establishment and

maintenance of social links to help engineers change their designs most safely and



Chapter Four: Situated and Ethnographic Accounts of Software Design

94

efficiently.  Another was the organisation’s willingness to keep together pairs of engineers

who had a history of working well together.

Bucciarelli’s (1988; 1994) research in two engineering firms, one producing photovoltaic

modules and the other producing X-ray medical diagnosis equipment, uncovered three

themes.  Firstly, Bucciarelli recognised that the designers coped with the complexity of the

product by adopting a separation of concepts.  Bucciarelli uses the concept of ‘object

worlds’ to describe the different design spaces (mechanical, geometric, electromagnetic,

managerial) and the associated systems of symbols used by the various design stakeholders.

Secondly, Bucciarelli (like other design theorists (Lawson 1997)) classified the

‘specifications and constraints’ (the types of facts and laws) that designers use to restrict

the emerging design.  Thirdly, Bucciarelli typified the ways designers were observed to

negotiate from different viewpoints during the design process as a design discourse.

Although none of these notions were new, Bucciarelli used ethnographic methods to

illustrate them richly.

4.4.3 Software design research

Ethnographers have also researched software engineering design, although less extensively.

Naur (a notable computer scientist) discussed programming in what would now be seen as

ethnographic terms (1991).  He typified software development as ‘theory building’—the

ongoing processes of increasing our understanding of an area of concern, in order to find

ways in which computer technology can be applied to meet needs.  Naur concluded that

there can be no right method for theory building as each process unfolds in a unique way,

and that the ‘life’ and ‘death’ of software depends on the availability of its developers who

alone possess the ‘theory’ enabling them to make meaningful modifications and

enhancements.

Nygaard, another prominent computer scientist, regards software development primarily as

a social activity shaped by ‘perspectives’ (1986).  Perspectives provide viewpoints from

which the observer structures the cognitive processes in which he or she is involved.

Nygaard’s perspectives allow the designer to understand the software development

situation in social terms, where harmony or conflict between participants provides a basis

for the construction of conceptual models and where the use situation is anticipated.  Naur

and Nygaard’s descriptions illustrate how constructivist perspectives enter the discourse on

software design.

Early empirical research focussed on how programmers approached the program design



Chapter Four: Situated and Ethnographic Accounts of Software Design

95

task.  Davies (1991) performed empirical research on programmers and found that program

design was not approached via top-down, functional decomposition as originally thought,

but that elements of program design occurred in an asynchronous fashion at any level of

abstraction within the solution space.  The program design process was mediated by the

serendipitous and opportunistic discovery of new knowledge and design constraints.

Davies concluded that program design is neither top-down nor exclusively opportunistic,

but a mixture of each that is determined by the goal-satisfying preferences of the particular

programmer.

Seaman (1999) reported on a study of the use of commercial off-the-shelf software

components by NASA software engineers.  The study used semi-structured interviews

exclusively.  The study team had expected to find technical component integration

problems, but found these to be minor compared with the problems of administration of

procurement, licensing, and contracting.  The unexpected diversion of focus from

technology to social issues in Seaman’s study bears out Busby’s (1998) discovery that

designers were more interested in reporting collateral activity than technology concerns.

This, Busby suggests, ‘confirms that design tasks in organisations are as much about social

and organisational transactions as they are about individual cognition’ (p. 114).  Bucciarelli

(1988) reaches a similar conclusion.

The reliance on methodology by expert designers is a theme that has received probably the

most research attention.  Research on the use of methodology adoption and use has

generally indicated low levels of methodology use in practice (Carroll 2000).  Dekleva

(1992) found that practitioners did not regard methodology use as resulting in reduced

development or maintenance time, but did lead to better extensibility over time.  Dietrich

(1997) studied the adoption of software development methodologies in two large

organisations and identified that adoption was hindered by the degree of customisation

required.  Fitzgerald (1997) investigated the use of systems development methodologies in

practice, finding a wide difference between the formalised sequence of steps and stages

prescribed by a methodology and the methodology-in-action uniquely enacted for each

development project.  Fitzgerald found evidence that developers omit certain aspects of

methodologies not from a position of ignorance, but as a result of a pragmatic assessment

of relevance.  Fitzgerald concludes that experienced developers are likely only to use

heavily customised methodologies and that method adoption generally occurs for abstract,

high-level frameworks but not for low-level detailed design activities.

On the reported results of methodology use, Bansler (1993) found that traditional systems



Chapter Four: Situated and Ethnographic Accounts of Software Design

96

analysis is prone to a view ‘distorted’ by the method’s data orientation, and that subjective

dimensions are overlooked in systems outcomes.  Bansler recommends system design

based upon many inputs of which systems analysis is only one.  At about this time,

software design researchers began to notice the existence and role of opportunism in

design.  Khushalani (1994) determined from observations of three expert designers that

designers (systems analysts) discovered and adapted their problem solving goals and

activities in response to the state of the problem and the environment in which the

designing was enacted.  Models of the role of opportunism in design followed, that

illuminated (but did not formalise) the phenomenon.

Carroll (2000) performed a longitudinal field-based study of an e-commerce system

development team with diverse stakeholders, and concluded that the designers ‘crafted’ a

‘unique situated methodology’ by selecting methodology fragments from candidate

methods based upon contingent factors.  The selection was based upon the architect’s

preference and intuition rather than on any shared or formal evaluation.  This supports

Fitzgerald’s findings.  Carroll concludes that the use of information system development

methodologies may not be appropriate for all projects, and that the need to adapt

methodologies is inherent in the development process.

Ball (2000) used ethnographic methods to investigate the reuse practices of design teams

working on large-scale commercial design tasks in four leading international technology

companies.  The research initially assumed that designers work alternately with three

categories of things—unresolved questions about key design issues, solution options, and

the criteria by which options are assessed.  Their analysis, however, pointed out that

designers do not work on questions, options and criteria separately but all at once, in what

the researchers termed a ‘focus constellation’, the group of inter-related issues that a

designer deals with in a single design episode.  The researchers identified that the

designer’s memory (rather than literature, design or information repositories) was the most

used source of reusable designs, design fragments or information to support designing.

Most significantly, Ball noted that their ethnographic research of design in team settings

contradicted their earlier cognitive psychology research of individual designers using

traditional protocol analysis techniques.  They found that individual designers would

compromise the quality or completeness of their designs in experimental settings in order

to finish a task, whereas in a team setting they would actively negotiate various design

reuse options with other designers to achieve higher quality design outcomes.  This

behaviour was not—and could never have been—detected in their earlier work using



Chapter Four: Situated and Ethnographic Accounts of Software Design

97

protocol analysis.  Ball terms this phenomenon ‘ecological validity’ and asks ‘whether

controlled experimentation has any part to play in design research’ apart from objective

useability testing of products and prototypes (p. 415).

Walz’s (1993) analysis of 19 videotaped design meetings over 5 months in a team designing

an object-oriented persistence server reveals the emergence of shared knowledge of the

domain and the emerging software design as the most critical success factors in system

design.  The researchers were ‘surprised’ to see how important context-sensitive learning

was to the design process, how much information was presented to the team and never

captured, and the extent to which ‘knowledge and expertise was the force behind

participation and leadership of the design process’ (p. 74).

4.5 Conclusion

The situated movement—situated language, cognition and action—emerged from the

convergence of sociology and cognitive science in the late 1980s, and was viewed by some

as a reaction to the historically dominant classical view of mind.  Situatedness holds that

all action is irrevocably embodied in context, and that all meaning is consequential on

social and contextual factors.  For understanding design practice, situatedness demands the

construction of rich, multi-layered and (sometimes complex) pictures of design and the

designer in situ, inevitably pointing to interpretivist and ethnographic research methods.

The history of software lifecycle models reveals some influence from the emergence of the

situated movement.  First generation rational software lifecycle models such as the

waterfall model helped software system developers manage complexity with the languages

and tools available at the time, but proved contrived and unresponsive in dynamic

contexts.  The subsequent generations of lifecycle models largely solved these problems for

specific classes of problems.  We now face ‘wicked’ problems where solution design must

be regarded as a continuous process, where requirements and goals emerge through action

and interaction rather than through one-off discovery, and where architectures and

artefacts can only ever be partial solutions.  It is no longer acceptable to artificially impose

constraints on software design to fit within objective, rationalistic models—such a stance

is increasingly becoming parochial in a postmodern world.

Ethnographic research methods have uncovered new models of design in context.  These

constructivist models of design emphasise collaborative, dialogical decision-making,

perspectivism and critical analysis of objective and apparently universal ‘truths’.

Constructivism primarily serves to unseat orthodoxy.  Constructivist-influenced design



Chapter Four: Situated and Ethnographic Accounts of Software Design

98

methods are motivated by the desire to leave options open, and to stimulate alternative

(simpler, enlightened, holistic) solutions.

The journey through philosophy, design theory and design models (in Chapters Two to

Four) serves to highlight the nature of each epistemology and their inter-relationships.  It

also focuses the research question onto design activity rather than externalised theory or

methodology.  In applying these insights to the refinement of the research goal, we can

conclude that statements of cause and effect in the domain of software design are

simplistic—instead, descriptions of design must be phenomenological.  That is, they must

be rich, complex, contextual and complete, implying the need for an interpretive research

approach.  We can also conclude that waterfall and other lifecycle models provide a

historical and pedagogical backdrop but are not prescriptive of how expert software

designers perform or express their designing.  We can also assert that models of the design

act should not be prescriptive, that multiple models are acceptable, that models must be

able to be interpreted for different design contexts, and that some form of organising

framework is needed to manage this pluralistic approach.



99

Chapter 5:  Research Design

Hermeneutics achieves its actual productivity only when it musters sufficient self-

reflection to reflect simultaneously about its own critical endeavours, that is, about its

own limitations and the relativity of its own position.  Hermeneutical reflection that

does that seems to me to come closer to the real ideal of knowledge, because it also

makes us aware of the illusion of reflection.  A critical consciousness that points to all

sorts of prejudice and dependency, but one that considers itself absolutely free of

prejudice and independent, necessarily remains ensnared in illusions.  For it is itself

motivated in the first place by that of which it is critical.  Its dependency on that which it

destroys is inescapable.  The claim to be completely free of prejudice is naïve whether

that naivete be the delusion of an absolute enlightenment or the delusion of an

empiricism free of all previous opinions in the tradition of metaphysics or the delusion of

getting beyond science through ideological criticism.  In any case, the hermeneutically

enlightened consciousness seems to me to establish a higher truth in that it draws

itself into its own reflection.  (Gadamer 1976, p. 94)

5.1 Introduction

This chapter tackles the design of a research method to describe the situated practice of

software design.  The chapter commences by confirming the most appropriate research

paradigm.  The mid-portion of the chapter presents and justifies the study’s method.  The

chapter concludes with an assessment of the method that evaluates the researcher’s

relationship with the participants, the nature of expert recall, generalisability, ethics,

relevance, rigour, and issues of hermeneutic interpretation.  This chapter completes the

literature and thematic survey and research preparation part of the thesis.  The second half

of the thesis presents the findings from the qualitative analysis of the data and the

grounded theory that emerges (Chapter Six), two case studies (Chapter Seven), combined

findings (Chapter Eight) and the implications for the research aim and hypothesis

(Chapters Nine and Ten).



Chapter Five: Research Design

100

5.2 Applicable Research Paradigms

A research paradigm is a set of recognised concepts that allows researchers to state their

position on a number of tightly interrelated issues of research philosophy, intentions,

methods and techniques.  As explained in earlier chapters, the two relevant traditions of

research—positivism and interpretivism—differ to the point of dichotomy.  The debate is

fundamentally concerned with epistemological questions such as ‘what constitutes

knowledge’ and ‘how is knowledge formed’ (Williamson et al. 2000).  Positivism describes

the objective experimental research paradigm used throughout the modern history of

science to ascertain universal truths and test general hypotheses.  Most scientific research

assumes this model (the hypothetico-deductive model) which in its basic form consists of a

theory that states a generalisation, and deductive reasoning which argues from the general

to the specific.  Research then takes the form of inventing or imagining hypotheses (rather

than first obtaining them from logically defensible reasoning) and then seeing whether or

not deducible conclusions are consistent with observed facts.  A positive outcome

constitutes support for the hypotheses which may then be regarded as strengthened, but

not proved.  Positivist research leads to more reliable knowledge but not absolute truth,

because a case that contradicts the generalisation may yet be found (Popper 1969).  Thus

scientific research is iterative, hypotheses and theories are continually tested as new

knowledge comes to light, and scientific proof must always be understood as the best

available, rather than an absolute understanding (Weatherall 1979).  Positivism holds that

the social sciences should be investigated and explained in the same way, so as to pursue

the (somewhat idealistic) goal of the ultimate unification of all sciences under common

laws.

By contrast, empiricism refers to the grounding of fact in observation and experience.

Questions such as how a population behaves or how attitudes are formed do not always

reduce to measurable, experimental scenarios (Zikmund 1994).  Weatherall illustrates the

tension between positivism and interpretivism in claiming that ‘hypotheses are improved

by making them quantitative’ and ‘observations are improved … by making them in

deliberately designed circumstances (as experiments) and by using apparatus to produce

special required circumstances’ (Weatherall 1979).  This, the interpretivists claim, can

result in omission or over-simplification of many of the real world’s complexities, in order

to achieve a fit with the conservative research paradigm.

Alternately, observation can drive theory in an inductive way (the ‘descriptive-inductive’

model).  Inductive reasoning is associated with the hypothesis-generating approach to



Chapter Five: Research Design

101

research.  Daly (1997) offers a simplified cameo of descriptive-inductive research.  First,

researchers read as much as they can to familiarise themselves with an issue (the literature

review), then immerse themselves in substantive, organised observations, from which

hypotheses or conclusions might later be drawn (descriptive observations).  This approach

is based on three different philosophies—empiricism (the need to go somewhere, in this

case into habitats), phenomenology (so as to gain an understanding of the subject’s point of

view), and interactionism (to identify and describe the factors in the subject’s environment

which might account for why they behave the way they do).  This model works well for

research where an appreciation of the context is crucial to any meaningful understanding—

Daly names environmental science, marine biology and anthropology as examples.  In the

social sciences, this approach is broadly known as ‘qualitative research’.

5.2.1 Applicable research types

There are three basic types of research—exploratory, descriptive and explanatory research

(Zikmund 1994).  Exploratory research requires an ambiguous problem, and addresses the

exploration of the problem and its context for possible definitions.  Descriptive research

requires an awareness of the problem, and works to clearly define one or more problems

with which to do further useful work.  Causal research requires a clearly defined problem,

and attempts to establish cause and effect relationships between variables in the problem

domain with a view to predicting, managing or controlling the system’s behaviour.  The

qualitative approach is particularly suited to exploratory and descriptive research, or in

general, any situation that requires understanding in depth.  Exploratory researchers

frequently use qualitative research methods such as case studies and phenomenological

studies (Bryman 1988; Shanks et al. 1993).  This research project fits in both the

descriptive and exploratory categories.

5.2.2 Interpretivism

The interpretivist treatment of hypotheses departs markedly from the positivist treatment.

Because interpretivist research is typically exploratory rather than descriptive or causal, the

formation of a conventional research hypothesis necessitates too many assumptions.

Consequently, the interpretivist researcher often declares research themes rather than a

tightly formulated testable hypothesis (Carroll and Swatman 2001; Williamson et al. 2000).

Such themes do not have to be vague—they must be specific enough to motivate concrete

questions and lines of enquiry—but they do not need to be testable in a quantitative sense.

Interpretivists do not normally test hypotheses, although they may develop working



Chapter Five: Research Design

102

propositions that are grounded in the perspectives of the participants.  Neither do

interpretivists generalise to the wider population, because such generalisations are not

quantitatively based and may have no meaning.  It is entirely acceptable for a qualitative

study to be idiographic (meaning the research consists solely of intensive study of an

individual case).  In further contrast to positivist research, there is not the same emphasis

on replication of results or even repeatability of the study itself.  There is recognition that

certain phenomena are confined to a particular time and space, and that the styles of

observation and explanation which are relevant to one context may not be relevant in

another.  Sample sizes tend to be much smaller, participants are chosen for their ability to

yield rich data, and the need for random sampling is not emphasised as it is in most

positivist studies.  The interpretivist paradigm looks to a different form of rigour based on

the researcher’s ability to perform the qualitative analysis thoroughly and relate the results

to existing theory.  Far from being a ‘soft’ research option, interpretivist research design

and rigorous qualitative analysis is recognised as demanding and requiring high levels of

skill on the part of the researcher.

Interpretivist researchers regard their research task as coming to understand how the

various participants in a social setting construct the world around them.  Interpretivists are

essentially constructivists, thus the notion of absolutes or even ‘truth’ must be redefined in

a relativistic acknowledgement of the individual’s perception of phenomena (Williamson et

al. 2000).  They are concerned with the beliefs, interpretations and perspectives of their

subjects, and are acutely aware of their own perspectives and how these can bias their

observations.  Interpretivist research techniques exist to assist the researcher to recognise

his own non-neutrality and to factor this into analysis.

The conduct of qualitative research is frequently ethnographic—it is conducted through an

intense or prolonged contact with the field or life situation, particularly in situations which

represent normal, everyday ones.  The researcher’s role is to gain a holistic view of the

situation or system under study—its logic, structures, patterns, its explicit and implicit

rules.  The researcher attempts to capture data on actors ‘from the inside’, through

processes of attentiveness, understanding, and by suspending preconceptions.  A main task

for the qualitative researcher is to explicate the ways people in particular settings come to

understand, account for, explain and justify their day-to-day activities.  Of the many

possible interpretations of qualitative material, the qualitative researcher must determine

the most compelling for theoretical reasons, or reasons of internal consistency.  Most

analysis is done with words, which implies semiotic analysis, or the detection of patterns



Chapter Five: Research Design

103

through qualitative analysis techniques (Miles and Huberman 1994).  In the analysis phase,

researchers develop concepts, insights and understanding ‘from patterns in the data’

(Williamson et al. 2000, p.31).  This, Williamson notes, is similar to the use of induction in

grounded theory (Glaser and Strauss 1967) which is theory that is literally grounded in the

field data:

For us, theory denotes a set of well-developed categories (eg. themes, concepts) that

are systematically interrelated through statements of relationship to form a theoretical

framework that explains some relevant social, psychological, educational, or other

phenomenon.  (Strauss and Corbin 1998, p. 22)

Choosing qualitative techniques to extract grounded theory illustrates a regard for

sociological and phenomenological factors in situated design, whereas the use of these

techniques to validate theory from other sources builds or refutes evidence for existing

theory from contextual observation and interpretation rather than creating new theory.

Good qualitative research can do both theory discovery and theory testing (Fergusson and

Shaw 2004).

5.3 A Method for Researching Situated Software Design Practice

The first research design question that must be answered concerns the focus of the

research—who or what provides the best source of data on situated design, and how

should this be accessed?  The alternative foci are the designer and the team.  Researching a

development team (using ethnographic methods) is difficult for a number of reasons.

Firstly, ethnographic research necessitates ‘living with the tribe’, a commitment not easily

made by either party.  Ball (2000) notes that the ‘often extreme intensity of traditional

ethnographic data collection is unlikely to be cost-effective—and may even be impossible’

for most design projects (p. 408).  The confidentiality and commercial sensitivities of

access to intellectual properties are difficult to overcome in many business contexts.  The

timeframe over which architectural insights emerge is very long (sometimes years) (Foote

2000), and this makes intense ethnographic research over a system’s lifecycle impractical.

Also, team-focussed research can only capture particular design practices if they emerge or

are observed during the period of observation.  On the other hand, the individual designer

can offer his or her longitudinal experiences, and collective knowledge of architecture-

related roles on many projects and contexts.  Valuable insights will come from experienced

designers who have had the opportunity to reflect on practices over many projects and

environments.  The team cannot yield this view—it must come from the individual

designers.



Chapter Five: Research Design

104

Several important consequences result from this choice.  Firstly, the decision to use

individuals rather than a team as the study’s focus means that the enquiry will uncover the

designer’s accounts of designing rather than the researcher’s observations of designing—

these are two different things.  A designer’s account of how design is done is subject to the

individual’s interpretation, recollection, and as previously noted, post hoc rationalisation and

reconstruction.  This point is explored further in 5.4.2 (The Nature of Expert Recall).  To

mitigate this risk, the researcher will use questions that encourage reflection rather than

justification, the interviews will not be time-constrained, and a sufficient number of

participants will be interviewed so as to saturate categories with convergent data.

5.3.1 Defining the Acceptable Participant

The next methodological problem is finding suitable participants.  Given the focus on the

individual designer, the population of interest is industry-experienced object-oriented

software architects within Australia.  The term ‘architect’ refers to the individual’s assigned

or adopted role as the designer of an architectural solution.  Generally, the architect has

responsibility for the scope of both the product and the development process.  The term

‘industry-experienced’ suggests some measure of experience in an architect’s role.  The

‘industrial’ qualifier excludes academics or teachers who, despite their knowledge of

object-oriented languages and technologies, cannot relate practical experience of how

architectures are designed and managed in business and industry.  Some exceptions, such

as academics who have consulted in situations that allow them to relate this experience

may be found.

The technology qualifier ‘object-oriented’ suggests experience with non-trivial object-

oriented software architectures, as typified by object-oriented products, systems,

frameworks, component or class libraries.  Like the measure of experience, the participant’s

use of object technology in industry will need to be convincing, but need not be exclusive

of other technologies.  Many contemporary software architectures are heterogeneous

through the use of mixed technology components and infrastructure, and very few

architects will control a non-trivial architecture consisting only of ‘pure’ object

technologies.  Object-based technologies (such as certain visual or fourth generation

languages) will be excluded from scope.

5.3.2 Research Methods and Techniques

In-depth interviews will be used as the primary instrument of the research.

Methodologically, interviews are used when the understanding of the research topic is at a



Chapter Five: Research Design

105

stage where interaction with participants is required.  Through open dialogue between

researcher and subject, interviews allow the subject’s expertise to be probed, an outcome

not possible with other methods.  In the in-depth (or semi-structured) interview, an

interview outline ensures that all participants are asked about the same topics, but the

researcher actively engages the subject to draw out the participant’s thinking, experience

and knowledge.  The advantages of this technique include the large amount of rich

descriptive data that can be collected in each interview and the ability to extract

explanations (Daly et al. 1997).  On the negative side, in-depth interviews are time-

consuming to conduct, transcribe and qualitatively analyse, are dependent on the skills of

the interviewer, and are subject to bias that cannot be systematically detected or corrected.

Focus groups and action research are two other research methods that have potential

application.  Focus groups are convened to gain a group’s impressions or beliefs on a

common topic.  Like in-depth interviews, they produce a large amount of rich data, but

unlike one-to-one interviews, they have the effect of encouraging some topics of discussion

but inhibiting others.  One area of critical importance to this study is privacy and

commercial sensitivity—company, project and individual’s names must be shared only

between the participant and the interviewing researcher.  This issue alone prohibits the use

of focus groups.

Action research comes from the social research genre where researchers are themselves

involved in the planning and execution of an activity of change, to ‘transform the social

environment through a process of critical enquiry’ (Miles and Huberman 1994, p. 9).

Under the action research paradigm, initial measurements are taken, the researcher effects

a change in the environment under study, and subsequent measurements are expected to

assess the effect of the change.  The situation differs from a classical positivist experiment

because the ‘experiment’ is performed in situ (with no control group) and is driven (rather

than observed) by the researcher.  As a research method for this study, action research will

not be pursued because it would necessitate initiating one or more software architecture

evolution and design transitions from within at least one (but preferably more)

development teams.  Finding these teams, gaining the necessary permission and affecting

the design episodes, and gaining the necessary agreements for the research to be conducted

would also be difficult.

5.3.3 Sampling

There is no obvious community or group from which suitably skilled software architects



Chapter Five: Research Design

106

can be sourced or sampled.  One commonly used recruiting mechanism is to use referrals

from participants who respond to an initial advertisement or invitation.  This approach

uses the participant’s network of professional associations to identify new candidates, and

has the advantage that the person suggesting new participants does so fresh from having

just completed the interview.  Daly (1997) calls this ‘snowballing’ and recognises it as a

legitimate and widely used recruitment technique.

It is possible that referral subsets will share some similarity—the same employers, business

or industry domains, systems, or the same attitudes and approaches to design, for example.

This risk will be managed by limiting the size of a referral subset.  In the context of the

whole study, a mixture of recruitment methods will be used to avoid selection bias.

Recruitment will end when the categories appear to be saturated—‘no new or significant

data emerge, and categories are well developed in terms of properties and dimensions’

(Strauss and Corbin 1998, p. 215).

Recruits who respond to an advertisement or an invitation will be requested to complete a

simple questionnaire to assess their suitability.  If the recruit’s questionnaire response

indicates suitability, the interview will be scheduled.  If not, the recruit will be informed

that his or her response mismatched the study’s suitability criteria.

5.3.4 A framework for eliciting descriptions of situated software design

With the study’s subject identified and a recruitment strategy in place, the next step is to

define the set of topics that will be taken into the interviews on an agenda.  These topics

must be carefully chosen because they steer the participant’s thinking and consequently act

as seeds for the topics that the analysis will initially deal with.  Using characteristics drawn

from the reviews of situated cognition and action in the early chapters, the following

framework of topics will be used to structure the interview sessions.  Table 3 presents this

framework which contrasts the rational and situated positions on each topic, with the kinds

of questions (left column) that may be useful in introducing these topics into interviews.

Appendix C presents the actual interview schedule at the end of the interview series.



Chapter Five: Research Design

107

Rational Situated

An educated and professionally
recognised specialist.  

A collective of stakeholders, in
which all members are designers
in varying degrees.

A way of achieving the end goal can
be defined a priori.  Clear criteria
can be defined which indicate that
the end goal has been reached.

A way of achieving the end goal
is hard or impossible to define.
The end-state is a consequence
of the designer’s interaction with
the environment.

From analogy and metaphor to a
logically consistent conceptual
design that is subject to context-
independent verification.

From the emergent properties of
the interaction between the
designer, context and other
actors in the situation.

Within the constraints of a mutually
agreed method.  All participants
must converge on an agreed design
frame before implementation can
commence.

All stakeholders are designers to
a degree.  Cognition of the
complete architecture is partially
distributed.  Designers require
contextual cues to constitute
their design knowledge.

Monolithic, centralized and
heroic.  Lead designer dictates.
Lead designer is appointed for
the duration.

Invested in individual designers.
Lead designers self-select, roles
may change over time.

A prescriptive recipe to be
followed strictly.

A descriptive example to be
interpreted as appropriate for the
situation.

Characteristic
of the design act

1 Identity
— who is the designer?

2 Planning
— how is the design
effort planned?

3 Design seeding
— where do designs
come from?

4 Design Collaboration
— how do designers
work with other
designers?

5 Design Control
— who controls the
design process?

6 Method
— how do designers use
accepted approaches?

7 Reflection
— how and why is self-
evaluation performed?

Performed by experts.  Based
upon quantitative analysis of
large numbers of projects.

Performed by each individual
designer continuously.

Table 3: Characteristics of the design act—a framework for structuring interviews.

5.4 Assessment of the Research Method

The following factors and risks have been considered in the design of this research method.

5.4.1 Researcher’s Relationship to Participants

The motivation for this research can be traced to the researcher’s background in object-

oriented software development (Taylor 1992; Taylor 1993; Taylor 1995), technology

transition (Taylor 1997) and architecture and design evolution (Taylor 2000a).  The close

link between the researcher’s professional background and the research question is not

unusual in qualitative research.  In a classification of sources of research problems, Strauss

and Corbin (1998) include ‘personal and professional experience’ and remark that

‘professional experience frequently leads to the judgement that some feature of the

profession or its practice is less than effective, efficient, human or equitable’, and that a

professional might adopt a research study in an area to more fully understand or reform

certain practices.  They disagree that the choice of a research problem through personal or



Chapter Five: Research Design

108

professional experience might entail additional risk, concluding that ‘the touchstone of

one’s own experience might be a more valuable indicator of a potentially successful

research endeavour than another more abstract source’ (p. 38).  There is also a compulsion

for a researcher to research his or her strengths.  Dijkstra, when asked by a student about

how a research topic should be selected, advised ‘do only what only you can do’ (Dijkstra

2002).

How to best access and explicate the ways in which software designers think about design

is not obvious.  The parts of the personal software development process that can actually

be observed are limited, because ‘much of the software development work takes place

inside a person’s head’ (Seaman 1999, p. 558).  Participant observation is therefore of

limited use because designing in software involves thinking rather than drawing or working

with tangible artefacts.  Seaman (1999) suggests that software designers reveal their

thought processes most naturally when communicating with other software developers, and

that ethnographic observations of designers over long periods of time reveal the best

insights.  Seaman also declares that such research is difficult and expensive to perform, and

suggests that interviews provide an appropriate mechanism to collect digested opinions or

impressions about important issues of experience.  The option to conduct interviews with

these designers rests largely upon the researcher’s ability to communicate as a peer.  The

researcher’s history, knowledge and experience constitute a two-edged sword—they enable

research of this kind to be performed, but introduce a discrediting source of bias.  This is

true of most forms of qualitative research.

5.4.2 The Nature of Expert Recall

Another problem with interviews is the nature of expert recall.  When experts of any

persuasion are invited to talk of their specialty—as is the case in an interview—all manner

of facts, opinions, recollections and reconstructions will ensue.  Concerns about the factual

reliability of interview data are legitimate.  Kotre (1995) documents some insights into the

nature of human memory and recall.  The first is the power of suggestion—that leading

questions can insert ‘observations’ into the observer’s recollection.  Loftus (1974)

concludes that leading questions can change one’s perception of what happened, and that

two kinds of information go into memory—what actually happened, and what information

was supplied after the event.  With time, the two become blended into a single memory

that replaces what was originally present.

A related phenomenon called cryptomnesia accounts for the way that we unintentionally



Chapter Five: Research Design

109

recall fiction as fact.  Cryptomnesia results from remembering what someone told you, but

not that you were told.  It is often subconscious, and is particularly common, Kotre claims

(p. 36), amongst groups that do creative work.  These and other related phenomena of

memory contribute to what psychologists today refer to reconstruction—the convergence

of fact, observation and fabrication.  Reconstruction holds that memories do not sit

passively in one’s consciousness, as do words on a recording medium, but are constantly

re-fashioned.  Kotre’s conclusion—that we recollect what we want an event to be, rather

than what it was—constitutes a telling insight into human nature.

Reconstructive memory is not an accurate source of detail.  As time passes we are more

likely to recall what happened rather than exactly when it happened.  But this apparent

human failing illuminates the real purpose of autobiographical memory.  The yielding of

when to what and the metamorphosis of observed fact into a post-hoc fiction both point to

memory’s purpose as ‘the creation of meaning about self’ (Kotre 1995, p. 87).  As

individuals and members of a social order, we are better served by a digested construction

of interpretations than a row of filing cabinets of un-interpreted factual atoms.  Before we

can give an experience a lasting place in memory, we have to decide what it means.  This

process of interpretation, generalisation and abstraction is more personal than almost any

other, and serves to condense the otherwise unmanageable volume of memories about

events and objects.  Outside the scope of this interpretation, we retain only unique events

and first occurrences.  As a result we ‘remember’ absolute facts, generalisations of classes

of actual events that were true most of the time, and interpretations and inferences which

recall the value that we projected (and continue to project) onto our past.  To interview an

expert is to invite recollection of all of these, with prejudice, and without distinction.

Kotre’s characterisation of memory suggests some pragmatic implications for the

interviewer—avoid asking leading questions (or allow for their effect in the analysis of the

response); recognise ‘always’ and ‘never’ as generalisations; mistrust the accuracy of any

quantitative data; accept that a personal recollection may have been appropriated.  In

interviewing experts, however, some of these concerns are obviated by the line of

questioning.  We would not normally expect to get detailed and accurate numeric

information during an interview, and neither should we expect to solicit historically

accurate sequences of specific events from the life history of a project—project artefacts

will always yield this information more accurately.  If the line of questioning seeks to elicit

accounts of experience, attitudes and levels of trust of particular techniques or approaches,

intuitive senses and heuristic knowledge, we must expect generalised interpretations



Chapter Five: Research Design

110

intermingled with one-off or first-time factual accounts.  In dealing with these inputs, the

researcher and analyst must apply another form of interpretation.  The risks inherent in

using an expert’s memory as a data source must be mitigated by the application of the

qualitative analysis method and the researcher’s skills.

5.4.3 Generalisability

Another methodological issue is the way in which qualitative study results are considered

generalisable, the study’s external validity.  Generalisability is increased by quality research

practice at all stages, from appropriate participant selection, through skilful interviewing to

ensure that the discussion is focussed and relevant, to careful and reasoned synthesis of a

coherent account from the mass of unstructured transcript data.  Uncertainty about the

extent to which the experience of the participants represents that of others should be

referred to the experiences and studies reported in the literature.  In qualitative analysis,

generalisability is addressed by carefully arguing the extent to which the results could apply

to other groups.  This is a difficult task, which many qualitative studies simply evade (Daly

et al. 1997).  Generalisability is partly provided by making the study transparent, useful,

extensible, and clearly connected to the existing research literature.

5.4.4 Ethics

With respect to ethics, this study’s design is conventional in its use of empirical and

qualitative research techniques.  Confidentiality is perhaps the biggest ethical concern, and

close attention has been paid to ensure the participant’s confidentiality.  The study was

cleared by, and is subject to Monash University Ethics Committee guidelines (2000-469).

The only clarification requested by the committee concerned the ethical use of

‘snowballing’ as a referral technique, such that no participant would be pressured in any

way to provide additional participants.

Broader dimensions of ethical assessment are suggested by Schauder (2000), who entreats

the research designer to ask ‘To what extent is my research an intervention?’ (p. 306).  The

activity of interviewing software architects has no impact on the architect’s development

team and is low-impact on the architect’s time and workload.  The impact of the interview

on the architect’s self-awareness, thought processes and ‘psyche’ is likely to be positive, as

the interview session affords an opportunity for self-reflection.  When the study’s findings

are formulated, these should provide valuable insights to the participants.

Schauder also asks ‘Am I clear about my way of seeing—my theoretical perspective or



Chapter Five: Research Design

111

perspectives—and can I explain why I have chosen them?’ (p. 309).  This question is

important because of the study’s reliance on interviews and subsequent qualitative

analysis.  The need to anchor the perspectives from which the data collection and analysis

is performed has motivated the adoption of Coyne’s (1995) four perspectives on

information technology—this will be used mostly during the analysis, but also serves to

organise the emergence of interview themes.  Other frameworks that serve to orient

perspectives will be applied in the analysis as needed.

Finally, Schauder asks ‘Do I sufficiently comprehend and respect the extent and complexity

of the field of study in which I am engaged?’ (p. 310).  It is true that contemporary software

development is a field of potentially great complexity, both in the technology itself and in

the social contexts in which design is embedded.  As noted earlier, the researcher’s

background in similar roles serves to respect—and in most places fathom—the depth of

this complexity.  It is not necessary for the researcher to understand each of the architect’s

domains of knowledge, but rather to understand their approaches to software architecture

and design within their particular domains.

5.4.5 Relevance

Many information systems research studies (30% in Fergusson’s (2004) survey of

information systems journals) do not explicitly state relevance criteria, such as who the

study is aimed at, who is expected to apply the results, or even who the expected readers

are.  An argument for relevance is provided by Keen (1991) who states that relevance must

drive information systems research.  Keen argues that relevance must precede rigour, and

that the high ground of theory is not of itself a justification for less relevant research.

Shanks (1994) suggests that the quality of information systems research will be improved if

researchers are aware of the advantages and disadvantages of the different research

approaches.  Hevner’s (2004) widely cited research assessment framework promotes

relevance and rigour as the two primary determinants of good design science research.

Relevance is not difficult to define—a relevant information systems research study is one

that is potentially useful and accessible to its intended audience (Benbasat and Zmud

1999).  Relevance is dependent upon an identified audience, and can be assessed by

defining the intended audience for each stage of the work.  Establishing the relevance of

this study is straightforward—this study will inform software architects and developers

about situated design, its consequences, implications and costs.  Fergusson (2004) further

suggests that relevance should be to either the practitioner or the theorist, and that an

information systems research design should declare this and be judged accordingly.  In



Chapter Five: Research Design

112

Fergusson’s terms, this study primarily targets the practitioner, but positions the analysis in

a theoretical frame.

5.4.6 Rigour

Rigour in the qualitative context demands correctness, accuracy, attention to detail,

rationality, trustworthiness and adherence to one paradigmatic research model, but is

subject to a range of research designs and methodological paths involving those

techniques.  This openness does not imply a lack of rigour.  Miles and Huberman describe

qualitative research as ‘more a craft than a slavish adherence to methodological rules… no

study conforms exactly to a standard methodology; each one calls for the researcher to

bend the methodology to the peculiarities of the setting’ (Miles and Huberman 1994, p. 5).

Rigour may be assessed in terms of a study’s validity and reliability.  Validity determines

what value should be attached to the findings, or to what degree the research approach is

really measuring what was intended.  A quantitative instrument such as a survey of a

known population might have high internal validity (it will yield valid data for the

questions asked) but have low external validity (its findings may not generalise well to the

population being researched).  A small-scale study using in-depth interviews with a few

participants might be criticised for having low internal validity, but it may exhibit high

external validity because it describes in detail the reality of people’s experience.  In general,

sociologists assess the validity of research by looking at evidence, at how the research was

performed, whether anything could have interfered with the research process to obscure

the results, and the strength of evidence to support the findings (Hall and Hall 1996).  In

this study, both validity and reliability concerns are addressed to a large degree by setting

the study’s two key parameters conservatively—the number of participants and the breadth

of their experience covered.  The number of participants will be sufficiently large to ensure

that the key indicators emerge.  As well, the scope of the interviews will be sufficiently

broad so as not to miss any key concerns.

5.4.7 The Role of Hermeneutics

Hermeneutics is the study of interpretation (Gadamer 1976; Palmer 1969), particularly the

interpretation of linguistic texts, but also of human experience in general.  Hamilton (1992)

identifies two broad themes in hermeneutics as applied to information systems research—

the awareness to pre-understandings or prejudices that the actors inevitably bring to any

situation, and context.  Awareness of pre-understandings legitimise the researcher’s close

attention to the participant’s knowledge, history, tradition, customs and culture, and



Chapter Five: Research Design

113

promotes a phenomenological approach.  Recognition of the significance of context

acknowledges that cognition and action interplay, that cognition cannot be divorced from

its situation, and as Winograd and Flores (1986) state, ‘meaning is fundamentally social

and cannot be reduced to the meaning-giving activity of individual subjects’ (p. 33).

Hermeneutic reflection has the potential to open up new understandings of seemingly

known phenomena.  For instance, Capurro (1992) observes that Winograd and Flores’

attempt to reflect hermeneutically on informatics resulted in their insight into ‘the non-

obviousness of the rationalistic orientation of informatics’ (Winograd and Flores 1986, p.

17).  As a consequence, they were able to offer the alternative foundation of language.

This recognises the value of interpretivist work over other forms as that of opening

opportunities for new understandings:

To understand a text is to come to understand oneself in a kind of dialogue.  This

contention is confirmed by the fact that the concrete dealing with a text yields

understanding only when what is said in the text begins to find expression in the

interpreter’s own language.  (Gadamer 1976)

The interpretation of the text of an interview transcript is hermeneutic in nature, and as a

result, the qualitative analysis of interview transcripts presents an opportunity for both the

analyst and the reader of the analysis to build new understandings.  For this to be possible,

the analyst must strive to make both the texts and the interpretations transparent.

5.5 Conclusion

This study will use in-depth interviews to understand the values and drivers that give shape

to object-oriented software architecture in industry and business contexts.  The sample size

will be driven by the needs of theoretical sampling, but it is anticipated that around 20

interviews will be required.  Participants will be recruited using advertisements and by

referral.  An attempt will be made to balance the numbers of participants sourced via

advertisements and from referrals.

This research falls within the interpretivist research paradigm and will draw upon

phenomenological accounts of experience.  The strengths of this approach lie in its ability

to represent a reality, as a result of the individual’s continual validation and questioning of

assertions and presuppositions about the nature of this reality.  The principal advantage (as

applied to empirical software engineering research) is that the researcher is forced to delve

into the complexity of the problem rather than abstract it away (Seaman 1999).

Weaknesses include the dependency on the skills of the researcher and the analyst’s ability



Chapter Five: Research Design

114

to identify and compensate for biases and preconceptions (Galliers 1992).  The study is

exploratory and therefore attempts to generate rather than causally test hypotheses.  The

normal concerns about the rigour (validity and reliability) of interpretivist research are

addressed by careful and conservative choices of the participants (and the number of

participants) and the ground covered in each interview (Taylor 2001f).

This chapter completes the first half of the thesis.  Before transitioning into the analysis

chapters, the reader should review Appendix D for the results of the preliminary survey and

a detailed profile of the participants.  The next two chapters present the results of the

qualitative analysis.



115

Chapter 6:  A Grounded Theory Model of

Software Design Practice

I think a lot of what we do, particularly at the architecture and high level design end of

building software is a highly subjective game… so many times one person can look at a

solution and think it’s the best thing that’s ever been invented and the next person will

look at it and say ‘my God, why on earth did you waste your time building all that stuff?’

—Kahn (interview participant)

6.1 Introduction

Qualitative analysis of the interview transcripts resulted in five topic clusters—the

architect’s definition of software architecture, their definition of software design (as

distinct from architecture), descriptions of the architect’s role and responsibilities, the role

of methodology in design, and their personal accounts of ‘the design act’.  Of these, the

first four topic clusters describe the architect’s understanding of design and the context in

which they design.  The architect’s accounts of designing and design activity comprises the

largest topic and represents the bulk of this chapter’s content.  Emergent themes include

use of patterns and archetypes, the aesthetics of software design, and the significance of

‘episodes’ and ‘breakdown events’ in the design of software.  These three themes are

significant because they represent how the architects organise their design knowledge

(patterns and archetypes), the basis of their judgement (aesthetics) and the significant

triggers which initiate design activity (breakdowns).  Together, these accounts constitute a

model of the architect’s personal design process.

6.1.1 On the use of pseudonyms

Each participant was allocated a pseudonym (the name of an historically significant

architect) which is italicised in the text to avoid any confusion with the actual historical



Chapter Six: A Grounded Theory Model of Software Design Practice

116

figure.  Appendix D profiles the participants in detail.

6.1.2 On the qualitative analysis

Each of the five topic maps (Appendix F) is divided into four dimensions—context,

purpose, process and concept—as a common structuring mechanism.  The subtopics that

emerged during the analysis form sub-trees under these classifications.  Statements that

define relationships or associations between subtopics are modelled in the topic maps as

links (relationships).  During the analysis, the notes associated with each subtopic and link

were used to accumulate relevant extracts from the transcripts, as well as digested

summaries.  These formed the basis of the emergent grounded theory assertions, which are

presented in a table comprised of a cell containing a serial identifier (qualified by the

chapter number), a descriptor and the description.

T<n.i>  Descriptor. Description.

The identifier (Tn.i) allows cross-referencing between grounded theory statements in the

discussion.  The descriptor is a short-form summary and the description is a concise

statement of the assertion.  The chapter’s text flows as follows—given a significant theme,

a selection of the architect’s statements are presented and arranged as an argument which

builds to a grounded theory statement.  These statements comprise the atoms of the

qualitative analysis which later chapters use to express further theory, models and overall

findings.  The data from the interviews was voluminous and all parts of it were analysed to

the point of derived assertions.  Since space does not permit discussion of every assertion,

priority is given to the ‘design act’ topic map.

6.2 What is ‘Software Architecture’?

To commence the interviews, each architect was asked to give their own definition of

‘software architecture’.  A topic map of the architect’s responses (and all other statements

they made during the interviews that relate to this definition) is shown in Appendix F.

Two broad themes—product and process—permeated the architect’s definitions.

Those who expressed software architecture in product terms emphasised structural

features.  Eames talked about software architecture as ‘a big picture of how it all fits

together’ and Mackintosh similarly described it as ‘the big picture, the shell’.  Griffin



Chapter Six: A Grounded Theory Model of Software Design Practice

117

emphasised ‘shape and structure’ as did Voysey (‘the fundamental structure, the

framework’).  The product theme was evident in the way the architects used or implied the

building metaphor.  Stickley described software architecture as ‘what you put in what

building blocks and how you join them all together’, and Piano likened software

architecture to ‘the framework of the building’.  The product theme is also evident in the

view of software architecture as facilitating composition.  Sullivan thinks of software

architecture as ‘the layout of components’, Breuer as ‘a composition of the general objects’

and Le Corbusier as ‘units of core functionality’.

Those who expressed software architecture in process terms emphasised ways that it assists

the development process.  Johnson described software architecture as ‘a plan, a design’,

Lethaby as ‘design at a particular level, a higher level’, Ruskin as ‘the way of separating

things, a way of breaking things up’, and van der Rohe in terms of ‘level of concern’.  Moore

expressed a strongly process-centric perspective on software architecture—he regards all

valuable architectural characteristics as being inherently emergent and unable to be

designed a priori.

Of the twenty-four architects interviewed, the fact that only one questioned the inherent

ambiguity and over-loading of the terms ‘architecture’ and ‘architect’ suggests that the

terms were familiar ones.  Moore was the only participant to express a critical perspective.

He questioned the value of the term ‘software architecture’ at face value—‘just about

anything that you want that is bigger than a class can be slid under the title of architecture’,

he says.  His wariness points to the divergent intentions of those who use architecture as a

way of promoting particular outcomes, and he suggests that the term is at times

deliberately kept ambiguous to serve particular agendas.  Consequently, he actively seeks

clarification—‘the first thing that I do when anybody else asks me about architecture is to

try to figure out what they actually mean’, he says.

Both the product and process-centric perspectives on software architecture allow for

subjectivity.  Kahn thinks that software architecture is inherently subjective, and that being

objective about software architecture is difficult.  He recalls situations in which he and

other architects have strongly disagreed on architectures over what ultimately came down

to subjective interpretations:

I can think of various people… who are just so subjective about some of their

solutions… and they’re solutions that I would look at and go, ‘yuk, that’s really not

helping’… by the same token, I’m quite sure they would look at some of the things I’d

done and say ‘this could have been better in so many ways’.  —Kahn



Chapter Six: A Grounded Theory Model of Software Design Practice

118

Gropius thinks of software architecture in terms of an overarching context in which the

process plays out:

[Software architecture is] a collection of ideas, sketches of what the system should look

like, a collections of rules-of-thumb or idioms that convey the vision that would let

someone that looks at the architecture get a feel for how you wanted it to be built.  —

Gropius

In general, the architects were not strongly polarised to a product or process view and

many made subsequent comments that implied the alternate perspective later in the

interview.  Their particular stance may be as much influenced by what it is they are trying

to communicate at the time as by other factors.

T6.1.  Architects

understand ‘software

architecture’ in terms of

both process and product.

Software architects tend to define software architecture in terms

that align with a product or a process perspective.  Those who

express product-centric definitions talk either of structure

(structure, shape and framework) or composites (objects,

components).  Those who express process-centric definitions talk

of plans, decomposition, levelling and heuristics.  The alternate

views are by no means mutually exclusive.

6.2.1 Context and equilibrium

The architect’s descriptions of software architecture referred to the context of software

design, including how context enforces constraints and the relationship between goals and

requirements.  The architects mentioned constraints imposed by the ‘systems panorama’,

the development platform, integration requirements and technology.

T6.2.  A new system

changes the existing

business process or

technology equilibrium.

Whenever a new system is deployed the equilibrium of systems

and information flow will be changed.  Architects consider

forces in each dimension that has influence on the new system’s

acceptability.  This includes its development, deployment and

use.

6.2.2 Interpreting requirements and goals

A number of the architects described interpreting—rather than simply receiving without



Chapter Six: A Grounded Theory Model of Software Design Practice

119

negotiation—their client’s stated goals and even notionally ‘hard’ requirements.  In Cook’s

definition of ‘software architecture’ the architect and client engage in a relationship to

explore goals:

I have to understand what the customer wants… not necessarily down to ‘the button

must be here’… but definitely in a ‘what are we trying to achieve here’ kind of way.  —

Cook

Cook asserts the architect’s right to interpret the customer’s requirements on the basis of a

shared understanding of outcomes.  This relationship is one in which the architect plays

trusted adviser rather than a subcontracted service provider.  Understanding the leeway

available to negotiate requirements is an important consideration for an architect when an

engagement begins.  Piano also talked of ‘driving’ requirements from the client relationship.

T6.3.  Architects may

attempt to negotiate the

client’s goals and

requirements.

Most architects recognise that they have the opportunity to

negotiate some of the goals and requirements that the client

brings to the engagement.  This is because clients often form an

idea of what the solution should be and then express their

perceived needs in these terms.  The architect can often open up

the client to other possibilities and in so doing, re-negotiate

goals and requirements.

As requirements are negotiated and mutually understood, the architect forms a personal

vision of the solution that serves two purposes—a vehicle for reflecting back his

interpretation of requirements to the stakeholders who have been engaged in the

negotiation, and a basis for the subsequent design of the solution’s architecture.  Some of

the architects described it as their place to ‘have the vision… of what the system is to be,

and how it is to be implemented’ (Cook).  Gropius’ vision includes ‘a collection of ideas,

sketches of what the system should look like, a collection of rules-of-thumb or idioms.’

Mackintosh defines his vision in terms of distinguishing the what from the how—‘I can see

how the building is going to look, but I can’t necessarily see how you are going to fasten

the walls together without them falling down’.  Utzon makes the analogy with architects of

the built world who ‘don’t decide where to put the light switches’ but conceive and

communicate the metaphors and the aesthetic merit.  Gropius also turned to the built world

to explain the purpose of vision:



Chapter Six: A Grounded Theory Model of Software Design Practice

120

You couldn’t build a building from an architect’s drawings… the architect doesn’t

determine what sort of foundations you should have… they know it has to have

foundations, but an expert will determine what type of foundations… and provided it

doesn’t alter the architect’s view, provided it doesn’t compromise the vision in any way,

there’s no need for the architect to know.  —Gropius

For Gropius, the vision is key to whether the system ends up being worthwhile, because it

represents the best way to encapsulate the system’s primary purpose whilst ensuring the

sponsor’s involvement and understanding.  Gropius advocates using the vision as a vehicle

for reflecting the architect’s understanding of the problem back to the sponsors in their

terms for validation.

T6.4.  Architect’s vision

confirms interpreted

goals.

The architect forms a vision in response to his interpretation of

the client’s goals.  This interpretation is a function of many

things, including the architect's personal approach, history,

bias, those of the client or key business stakeholders, and

numerous non-technical forces under which the architecture is

conceived.  If it is shared with stakeholders, it provides a

vehicle to clarify project goals and requirements.

6.2.3 Purpose

In defining ‘software architecture’ the architects made statements about its purpose.

Motivations for software architecture were classified in the following sub-topics—boot-

strapping a team, facilitating work breakdown, return on investment, and risk mitigation.

These sub-topics concern decomposition, management of complexity, and distribution of

work effort.  Of these, boot-strapping and facilitating work breakdown emerged as the

primary purposes of architecture.



Chapter Six: A Grounded Theory Model of Software Design Practice

121

T6.5.  Software

architecture typically

serves multiple purposes.

Software architecture typically serves multiple purposes,

including the structuring of the software solution, management

of work across a construction team, and the pursuit of software

quality.  The software architect must be considerate of what

purpose investment in architecture serves in any engagement.

Different purposes may change the success or acceptance factors

for architecture and as a consequence necessitate different design

priorities.

T6.6.  Software

architecture establishes a

design capability within

the team.

One purpose of software architecture is to establish a design

and development capability across the construction team.  This

capability is a product of the combined skills and abilities of

the team members.  The software architect is its initiator and is

responsible at all times for its health and wellbeing.

6.2.4 Return on investment

Because software architecting employs specialist skills and consumes time, the economic

notion of return-on-investment has relevance.  Investment in architecture may be

perceived as an overhead.  Overheads are tolerated when they are understood by the key

stakeholders (or investors) as indispensable—however, the software architect finds

himself, at times, justifying this investment.  When the architects raised minimisation of

rework as a return on architectural investment, they were asked to state how object-

orientation helped them to achieve this goal.  Encapsulation emerged as the most

important feature.  Encapsulation enforces decomposition decisions in source code (class

and interface) structures, reinforcing the architecture’s value proposition, Gropius claims.

Encapsulation provides the primary mechanism for reinforcing architectural structure,

enforcing decomposition and maintaining structure over a software architecture’s lifetime.

Le Corbusier also sings its praises—‘it worked well, because things were actually well

modularised… we had simple component interfaces, between each module’. Le Corbusier’s

strongly encapsulated architectures have proven easy to change, resilient and extensible.

Building on strong encapsulation, van der Rohe, Breuer and Utzon all named frameworks as a

key characteristic of object-oriented software architecture:

You want to express [software] architecture in terms of frameworks… and the driver for

doing that is productivity, and de-skilling the development task… if you’ve got good



Chapter Six: A Grounded Theory Model of Software Design Practice

122

guys who have done the first bit, then it should be easier for others to come in and add

functionality by doing an incremental change.  —Breuer

Experienced architects separate the difficult implementation tasks from the simpler ones

and cast solutions to difficult problems into framework code using encapsulation, leaving

the simpler solution parts to derived code, or framework customisations, Breuer claims.

The return on this investment in design is based on de-skilling the majority of the

development team, potentially allowing the use of (cheaper) commodity resources.

T6.7.  An economic

motivation of architecture

investment is de-skilling.

Software architects manage complexity by partitioning the

solution and encapsulating complex or stable portions from less

complex or unstable portions.  Object-oriented languages

support this partitioning through encapsulation and

frameworks, which allow developers to work independently.

Strongly encapsulated architectures and framework structures

provide a return on the architectural investment it takes to

design them by de-skilling (and therefore lowering the overall

cost of) the construction team.

6.2.5 The role of creativity

The architects almost universally agreed with the assertion that creativity is an essential

part of software design.  Pugin views creativity as driving lateral thinking.  Utzon talks of

creativity opening up possibilities for more elegant solutions—he sees some aspects of

software architecture as a projection of designer’s personalities.  ‘Every creative act is a

creation of someone’s personality, or a group of people’s personalities’, he claims.  He sees

creativity in every act of software design, regardless of the level of abstraction.  Unlike

Utzon, Piano views creativity as having most influence at the architecture level.  Piano sees

a role for creativity mainly to fill gaps where proven, standard reference architectures

cannot be routinely pressed into service.  Creativity surfaces when the designer modifies or

combines recipes by changing elements and their relationships.

Acknowledgment of creativity as integral in software design raises the question of what

part of the design act is creative and what part routine.  Both Cook and Utzon agree that

software design is ‘all a creative process’.  Cook regards his ‘ability to abstract things, to

generalise, to move forward and make things more specific’ as creative acts.  Unlike Piano,



Chapter Six: A Grounded Theory Model of Software Design Practice

123

Cook perceives creativity as an essential part of the design act regardless of scale or

abstraction level.  If creativity is employed equally regardless of the level of abstraction at

which the designer works, then creativity is just as important in component customisation

as in designing green-field architectures.  Moore illustrates the point:

You know, people say, this will be easy to build, it’s just an integration, we’ll get this

and this and this and put it together—I think that’s crap… something will have to be

created, something new, every time, every system… something will have to be

invented… it mightn’t be very much, or it might be a lot.  —Moore

Morris defines creativity as putting something together.  ‘If I was in the pre-computer age’,

he muses, ‘I would probably be a carpenter, or a craftsperson of some sort, because I want

to build things with my hands and my brain’.  Sullivan agrees with Morris about the

distinction—‘you have to create something where there was nothing before’.  A software

architect is a creator because ‘you go into an organisation, you talk to a lot of people,

they’ve got a lot of requirements, there isn’t any structure in that (or not the one that you

want)—you actually have to create it’, Sullivan summarises.

T6.8.  Architecture’s

reliance on creativity is

independent of domain or

abstraction level.

The act of design puts an artefact where none previously

existed—this is essentially a creative act.  The ability to create

is a skill possessed by some but not all people.  In the case of

the design of software architecture, the designer’s reliance on

existing assets (components, patterns, archetypes or frameworks)

does not eliminate the need for creativity.  Creativity drives

software design regardless of the level of abstraction, and

routine design activity similarly complements creative design

activity at all abstraction levels.

Utzon was the only participant to express with clarity the relationship between creative and

routine design.  Creativity, which typically opens things up, conflicts with the routine or

rational act of resolving, which closes things off.  Put another way, methodology attempts

to impose repeatability over creative acts.  Utzon has resolved this tension in the following

way—given that ‘creative acts [are] happening all the time in a software development

process’ a methodology must ‘allow the space for those things to happen’.  As an example,

he cites the familiar problem of identifying classes in a business model, which, he says, is



Chapter Six: A Grounded Theory Model of Software Design Practice

124

not a rational process:

The only thing you can do is to say, if you hold in mind the purpose of the system, the

human brain being what it is, suggests creatively a set of classes, if you work your way

through it… then you have to apply some sort of goodness to that—which is the

rational act—which is the refining and the testing… and those two things have to go in

balance.  —Utzon

Utzon reconciles subjective creativity with rational objectivism by separating the two and

allowing each one to counter-balance the other.  This is an insightful statement that serves

to relate these two apparently opposite and conflicting forces in software design.

T6.9.  Architects

alternate between

creative and routine

design acts.

Creative or conceptual design drives the design act that puts a

software artefact where one did not previously exist.  Rational

or routine design verifies the artefact's fitness for purpose and

fills in its detail.  These two opposing modes of designing must

be made to work alternately and constructively.

6.2.6 Planning tensions

Architects are generally not well disposed to plans.  Breuer, for one, expressed disdain for

planning.  ‘I am definitely not a meticulous planner, I am very much an ad hoc planner’, he

observes using deliberately contradictory terms.  ‘I sketch the main lines, and then hope

like hell that everybody else will fill them in, and not go over them’.  Planning must

provide a project framework that ensures visibility but does not impede the unexpected,

which many architects (like Breuer) rely upon.  ‘I think it is extremely important not to rule

out the ad hoc’, he says.

The architects reported two recurring problems with planning.  Firstly, they are frequently

left out of the planning effort and their designing must adhere to the constraints of

externally imposed deadlines.  Secondly, a planner cannot anticipate where the design

effort will go.  Architects are often required to work within bounded time periods to

achieve design outcomes.  Experienced architects determine what decisions can be made

and what structures to use to provide a degree of insulation from areas that may open up

into more design work than was anticipated.

The exploratory nature of software design and development compounds the planning



Chapter Six: A Grounded Theory Model of Software Design Practice

125

problem for the architects.  Because (as Sullivan puts it) the architect has to ‘put something

there that was not there before’ the trajectory of every design is to some degree

unprecedented.  Cook likens the uncertainty in design to positivistic notions of theory—

because ‘you can’t know what you don’t know’ your theory (architecture) is always at risk

of being proven wrong (undermined) by new evidence.  Traditional project planning cannot

meaningfully impose structure over such a process.  One stance, Cook suggests, is to take

the position that architectural design is an ongoing activity and to demand a continuing

architecting task through the lifetime of the system.  The architects report that few projects

are fortunate enough to have such enlightened management and sponsors.

T6.10.  Architects defer

design commitments

where possible.

Architects are wary of making early decisions that rule out

options.  They use a range of design techniques that leave

extension options open and cater for the unexpected, such as

defensive design techniques, extensible architectures,

encapsulation and the elements of good object-oriented design.

Planning tensions follow from the long-standing conflict between creativity and process.

In Pugin’s experience, creativity is at odds with what he calls the bureaucratic agendas of

‘the process people’.  A process-based development methodology, if well designed, can be

adaptable, but in Pugin’s experience, that is usually not the case, because the cost of

changing development processes in large organisations is high.  Utzon regards the objective

of methods as trying to reduce design to a rational process—‘it’s not possible to reduce

everything in this world down to logical positivism… it just doesn’t work!’, he declares.

He asserts that methods are ‘never going to be able to describe what is going on internally

in your mind when you are confronted with that problem’.  He sees process as useful for

providing a planning framework for a project, but effectively useless in initiating or

generating designs.  ‘You can plan for creative acts, but you cannot expect them to

happen’, he says.



Chapter Six: A Grounded Theory Model of Software Design Practice

126

T6.11.  Project plans

must impose structure

over creative tasks.

Software architecture is a tangible (executable) representation of

an architect’s conceptualisation of a solution.  As such, it is

volatile in the early architectural design phase and subject to

shifts and re-conceptualisation.  A project plan must control the

allocation of people and time to the design activity during this

period.  The conflict that may emerge between designer and

planner (manager) is not often explicitly managed.

T6.9 (‘Architects alternate between creative and routine design acts’) summarises Utzon’s

model of how subjective and objective design actions can coexist.  Going further, Utzon

claims that a process can be defined that includes ‘spaces for the things to happen’ as well

as exit criteria and testing.  Designers working within such a process can be given freedom

to work independently in proposing structures, components and solutions.  After creative

design has put the solution element in place, the designer relies on a rational process to test

the output of creative design, validating and integrating the designer’s outputs.  This work

of validation is objective, rational and repeatable.  ‘The rational cannot create anything’,

Utzon proffers, ‘it can only criticise and assess’.  Any attempts to define rational processes

to drive that creative element of design are ‘just plain stupid!’, Utzon concludes.

T6.12.  Architects

alternate between

creative proposing and

rational evaluating.

Software architects work in two modes of thought—creative and

rational.  Creative thinking proposes new solutions and new

design conceptions.  Rational thinking evaluates the creative

mind’s propositions.  Architects are critical of methods and

processes that attempt to dictate or direct the creative part of the

design process.  Methods, processes and plans can provide a

structure within which software design occurs by leaving space for

creative acts and supporting rational evaluation of what gets

created.

6.2.7 Structure and shape

‘Structure’ and ‘shape’ are two terms that the architects used frequently in describing what



Chapter Six: A Grounded Theory Model of Software Design Practice

127

they understood software architecture to be.  The architects predominantly used ‘structure’

to refer to the way code-partitioning mechanisms are used (including architectural patterns,

modules, components and classes).  The most frequently mentioned architectural structure

was layers.  The term ‘shape’ was generally used as a synonym for ‘structure’.

Several of the architects described software architecture in terms of ‘dividing space’.  This

raises intriguing similarities with the design of buildings by drawing an analogy between

physical space and the conceptual space of abstractions and code structures.  Utzon, for

example, describes architecting in software as ‘trying to put guidelines on how you divide

the code space up’.  That design is a mapping of requirements onto a solution space (or

that design is somehow about dividing space) relies on the notion that distance between

two points in this space has some kind of meaning.  Utzon thinks of the code space in two

dimensions, so that designing involves deciding ‘which bits of functionality you put where’

and ‘whether or not you put two pieces of code together’ or you keep them separated in the

code space, possibly even ‘keeping them as far apart as possible’.  Kahn also talked in terms

of finding ‘the good way to partition the space so that you can, in some senses, practically

achieve the project’.

Moore talks about structure in terms of three layers—the raw technology layer, the

components and their interaction protocols, and the data-flows between components.

Moore uses patterns as a mechanism to synthesise a design from all of the inputs.  Moore’s

depiction of structure is oriented towards the solution space.  Others reported looking for,

and finding, significant structure in the problem space.  For example, Mackintosh comments

that ‘the structure is usually defined by the problem space’ and ‘you want to have a

solution going with the problem’.

T6.13.  Architects draw

structure from both

problem and solution

spaces.

Problem space structures may be reified in object-oriented

software architecture as business objects, and solution space

structures may be visible in mechanisms in the architecture (such

as Model-View-Controller).  The architect sources, selects and

converges structure from both problem and solution structures as

the design proceeds.  In general, problem space structure is

mapped onto business objects and relationships within a layered

software architecture.



Chapter Six: A Grounded Theory Model of Software Design Practice

128

6.3 What is ‘Software Design’

The architects were asked to give their own definition of ‘software design’ in order to draw

a distinction with ‘software architecture’.  The architects fell into three broad categories

when describing ‘software design’—those who regarded it as the decomposition of the

architecture (this could be called the product view), those who regarded it as a process for

implementing the software architecture (the process view) and those who do not see a

distinction between architecture and design other than level of abstraction.

Those who viewed software design as decomposition of the software architecture (the

product view) regard software design as distinct from software architecture by virtue of it

filling in the architecture’s structural scaffolding.  Voysey regards design as the ‘components

we need to build and to integrate to talk to each other, to achieve the end… as dictated by

the architecture’.  According to van der Rohe ‘a design is a class model that’s going to

attempt to achieve what you want to do’.  Mackintosh defines design as the resolution of

how the solution will execute—‘I know how you are going to solve the problem from the

design’, he says.  Design completes when ‘you have come across all the problems, you have

got a solution for each of the problems’, and the designed (or elaborated) software

architecture provides ‘the structure, the framework that all the other problems that we

haven’t thought of yet are going to be solved as well’.

Those who view software design as a process define it in terms of methods, patterns and

practices that serve to organise how the design-level components will be completed.

Moore’s view is that architecture establishes ‘conventions and guidelines for things like

specifying design’ and that design is the actual work of software creation.  Pugin describes

design as ‘a blueprint of where you are going to go to… to construct the system, so that

people understand exactly what modules and what classes they’re actually going to be

working on’.  Lethaby, Utzon and Morris are strongly oriented towards the collaborative

design processes that their teams follow.

A subset of the architects made no tangible distinction between architecture and design

other than the level of abstraction or the audience consuming the outputs of each activity.

‘I think software design includes architecture, I think architecture is a form of design, it’s a

high level form of design’, says Utzon.  ‘I design at the component level and I architect at

some higher level’, says Cook.



Chapter Six: A Grounded Theory Model of Software Design Practice

129

T6.14.  Architects do not

distinguish between the

processes of designing

architecture and designing

elements of the

architecture.

In general, the architects do not describe using different design

processes for designing at the architectural level and the

component level.  Abstraction level is the only characteristic that

consistently separates the architect’s definitions of ‘software

architecture’ and ‘software design’.

6.3.1 Design as ‘resolution of forces’

The architects expressed their understanding of software design in different ways,

sometimes drawing on analogies or metaphors.  Their choices of concept or metaphor

illustrate what they consider important.  Utzon’s conceptualisation of design is one of self-

similarity (or ‘holons’) such that the same structures and properties can be seen at every

level of abstraction.  van der Rohe views design as defined by the tools at hand, and Gropius

explains architecture as a contract and design as fulfilment.  McLuhan was the only one to

have invented a trivet not unlike Vitruvius’ three-legged stool—design is a joke, McLuhan

declares, but he is definitely serious as he explains why he chooses this metaphor:

It’s like a good joke!  The best jokes I know are the ones where there are a number of

elements in the joke, and all of a sudden you spring the trap, and show how they all fit

together.  —McLuhan

A joke sets a scene and introduces tension, then the punch-line springs the trap and the

listener is caught off-footed.  Design—like the punch-line of a well-conceived joke—

reconciles all the elements of the problem at hand to arrive at some solution, and in the

best instances, a design’s solution resolves multiple aspects of the problem with simplicity

and elegance.  The joke—like a good design—is minimally structured such that the punch-

line resolves each and every element of the story with no forces left unresolved.  The

metaphor derives extra appeal from the suggestion that the joke’s resolution is often not

what the listener was expecting.  Good design provides the sound, simple, elegant

resolution of the forces evident in a problem—a definition that McLuhan acknowledges has

much in common with patterns.



Chapter Six: A Grounded Theory Model of Software Design Practice

130

T6.15.  Software design

resolves forces that are

left unresolved by the

architecture.

Software design differs from software architecture in that it

resolves forces that arise from (and remain unresolved by) the

software architecture.  This explains the relationship between

software architecture and design—design problems exist as a

direct consequence of the chosen software architecture and their

solution completes or resolves the architecture.  Good software

design perceives the relevant forces and delivers mechanisms that

resolve these minimally, efficiently and with appeal.

6.3.2 Emergence

A number of the architects raised the issue of whether software design is, by nature,

forward-engineered or emergent.  Emergent design gained popular exposure with the

publication of Beck’s (2000) ‘extreme programming’ manifesto.  Subscribers to the theory

of emergent design believe that meaningful and useful design is indistinguishable from

implementation, that design insights come primarily from implementing, and that design in

isolation of implementation (ie. coding) is futile.  Critics of emergent design (Howard,

Griffin) affirm a priori design effort—far from being a dated waterfall relic, it can only be

dispensed with when the problem being solved borders on trivial, they claim.

T6.16.  Architects adopt

a preference for explicit

or emergent design.

Software architects exhibit a personal preference for how much

effort they are prepared to invest in indirect manifestations or

representations of design.  At the explicit end of the scale, a

software designer would elaborate a set of architectural models

with design-level detail before committing them to code.  At the

emergent end, a designer would go straight to code without any

external models or representations.  However, emergent

designers acknowledge thinking about the design, sometimes in

a semi-formal sense, before and during coding.  The drivers of

this personal preference are unknown, but may include the

individual’s visual orientation or their ability to abstract from

flat (textual) representations (such as code) into models or

structures.



Chapter Six: A Grounded Theory Model of Software Design Practice

131

6.4 The ‘Software Architect’ Role

The architects made many statements about the role of the software architect.  This

section presents some analysis of selected sub-topics that were interesting because they

were in some way pragmatic or unexpected.

6.4.1 Architect as salesperson

When Morris defined ‘software architecture’ he stated that ‘everybody [who] wants to push

their own barrow is happy to push it under the architecture banner’.  Mackintosh agrees that

‘architecture is not always decided upon by technical or rational reasons’.  Kahn observes

that ‘our industry is somewhat prone to people… who are in power plays… and being an

architect is one of them now’.  The software architect is at times caught in a compromising

space between sales and delivery.  Breuer, Lethaby, Mackintosh and Le Corbusier all recounted

stories about how they had at one time felt pressure to force-fit a particular software

technology or their employer’s product into a situation, against their best judgement.  Some

stories from these participants illustrate the theme.

In the late nineties, Mackintosh and Le Corbusier were both involved in what was perceived

to be a successful project using a combination of three object-oriented technologies

(ObjectStore, OpenUI and C++).  At its conclusion, the client offered the sub-contractors

a larger, more lucrative project on the condition that they use the same technologies and

associated development processes.  Mackintosh claims that at the time, he saw a significant

mismatch between the follow-up engagement’s problem type and the mandated technology

set.  He believed that a relational database—not an object oriented database—would be

the best solution technology.  ‘It would have been a quarter of the complexity, ten times as

fast’ if it had been built in Oracle, he claims.  But the client associated the previous

project’s success with the technology set and would not entertain change.  In this case, the

client associated project success with the combination of people and technologies and was

not prepared to change either, even though the problem was entirely different.  Mackintosh

subjugated what his technical judgement was telling him to his desire to win the follow-on

work.

Breuer recalls a project where a high-value engagement (and probably his job) depended on

a client choosing to use the company’s software product, against Breuer’s professional

judgement:



Chapter Six: A Grounded Theory Model of Software Design Practice

132

So I was put in a position of a stimulus in that they [the client representative] were

saying, okay, this product that I was representing, I was a consultant on, they were

saying would not do the job… so they [Breuer’s management] said, well okay, we have

got to make this product do the job… when he [Breuer’s manager] put it like that he

encapsulated and put precisely what the requirement was.  —Breuer

Lethaby recalled a project that failed despite his attempts to design the architecture to get

around the problem.  The solution architecture had been designed to rely on a database

server at several dozen hosts, meaning that the incumbent database vendor stood to make

substantial license-based revenue.  Lethaby independently designed the architecture to

allow for other options for persistence and data exchange, but the project’s management,

under pressure from the vendor, could not deal with the architectural re-configuration and

terminated the project:

So if you are in the business of selling labour, or selling things that sit in the

architecture, then you can use the architecture to beef up your sales if you think you

can get away with it.  —Lethaby

T6.17.  Architect’s

designs may be forced or

constrained for

commercial reasons.

Architects may inadvertently become players in sales or

commercial negotiations.  The architect may experience pressure

to recommend a particular technology, to select one design option

over another or to suppress a preferable design option for

commercial rather than technical or aesthetic reasons.  These

situations can present significant ethical and professional

dilemmas.

6.4.2 Impact of team capability

Given that one of the purposes of software architecture is the management of work across

a construction team (T6.6) it should come as no a surprise that architects take the

capability of their implementation team into account when designing the architecture.  This

goes beyond selecting the team’s developers for their product and technology skills to

accounting for changes to the structure and shape of the architecture.  Kahn describes

selecting decomposition and structuring patterns that deliver an architecture that maps to

the team’s implementation skills.  Designing in this fashion requires a high degree of

awareness on the part of the architect, and to what extent Kahn or others actually change



Chapter Six: A Grounded Theory Model of Software Design Practice

133

the architecture to map onto their team’s skills profile is difficult to assess.  Mackintosh

hints at where the line is drawn—‘you consciously limit the complexity of the design

because you realise who is going to build it and who is going to maintain it’, he claims.

T6.18.  Team capability

constrains architecture.

The architect’s perception of the capability of the delivery team

constitutes a constraint on software architecture.  The architect

may modify aspects of his design—the basis of decomposition,

the mechanisms used, the overall complexity of the solution—to

match his perception of the team’s ability to realise the

architecture.  Architects may use framework structures to isolate

complexity and expose simplified abstractions to parts of the

team.

6.4.3 Illusion of progress

A number of the architects talked about the need to manage stakeholder perceptions of

design progress.  Architecture and design phases on large projects can last for many

months, and during this period external observers who are not technically versed may

perceive much activity but little apparent progress.  ‘If management don’t see anything

visible, then they are not happy, they think that nothing is actually being done’, Eames says.

T6.19.  The architect

manages the visibility of

architectural design

progress.

The architects report that (in general) managers and business

stakeholders do not understand the process of software design.

This is partly due to the invisibility of conceptual design work

and also the radical nature of software design (particularly the

propensity designers have for throwing away designs and

starting again).  The opportunity for architects to educate

managers is often not present nor appropriate.  Therefore,

architects must ensure that stakeholders can see tangible

progress during periods of architectural design and that selected

aspects of the design process are transparent.



Chapter Six: A Grounded Theory Model of Software Design Practice

134

6.4.4 Influence of prevailing culture

Most of the architects described how they had felt compromised at some point by

unreasonable pressure to deliver software in short timeframes.  Some attributed this to

business culture.  Gropius and Voysey traced the influence back further to societal culture.

They opined that Australian business and industry does not have a culture of investing in

architecture in the way that you might find elsewhere in the world.

T6.20.  Prevailing culture

directs attitudes to

investment in software

architecture.

The prevailing contextual, business and even societal culture

can affect attitudes to investment in software architecture.

Culture shapes the context in which the software architect

designs and may constrain what the architect can achieve.  If the

prevailing culture does not value long term investment, or

investment in infrastructure, then the argument for investment

in quality software architecture becomes harder to make.

6.4.5 Career investment and subversion

Many of the architects mentioned the effects of career and motive on their experience of

architecting software systems and working with other architects and developers.  Pugin

laments that ‘most places that I’ve ever worked are places where people are just trying to

push themselves up the career ladder, not actually do anything properly’.  Utzon is

unconcerned about exposing his own career motives—‘I’m not altruistic, there’s nothing

particularly spiritual about building a computer system’, he says:

The system itself is not the most important thing with most people, right?  If you

actually scratch the surface they’re not really there to build that system… they’re there

to get what they can out of the process of building the system.  —Utzon

Many of the participants related stories of how colleagues have chosen particular

implementation technologies to freshen up their resume rather than on the basis of

suitability or project risk.  Mackintosh, Le Corbusier, Voysey, Moore and Eames all talked of

how the use of a current software technology is an attractor for skilled professionals.  Use

of an inappropriate technology, chosen for the wrong reasons, significantly increases

project risk.



Chapter Six: A Grounded Theory Model of Software Design Practice

135

T6.21.  Market demand

for skills represents a

form of technology bias.

Software professionals are sensitive to the rate at which their

skills in a particular technology date.  As a result, current

market demand for skills in a new technology may

inappropriately bias technology selection or use.  The architect

must manage his team’s (and his own) desire to inappropriately

use a project or engagement as a means to gain exposure to a

new or ‘desirable’ technology.

6.5 Methodology

The architects made many statements about how they use methods and methodology in

their designing.

6.5.1 Use, misuse and dissatisfaction

Because methods and methodology address a broad range of solution and system

development concerns, the architects were specifically asked about the role of methods or

methodology in supporting the design of software architecture.  In response, a number of

the architects expressed dissatisfaction with methods, methodology and process.  In

general, their comments reflect a perception of methodology as a mechanism for

inappropriate forms of project control.  They reveal a suspicion that methods de-skill or

unseat the expert practitioner.  Kahn summarises the sentiment:

I guess I would say that I’m still struggling to find a methodology that works, that

encompasses everything I need to do in the timeframe I need to do it in… I’ve seen

glimmers of things that help, might work, and at the same time I’ve been presented

with stuff where I’ve outright been able to say ‘this doesn’t help, I know this is not

right’.  —Kahn

van der Rohe moderates his dissatisfaction with an acknowledgment that he has not seen

methods used diligently:

I have never been in a project were I have seen them contribute any positive benefit

to the project—ever… I haven’t been in many projects were they have been

assiduously used either.  —van der Rohe

Kahn’s ‘glimmers of things that help’ suggests that he does perceive some value in methods.

Other architects confirm that methods contain useful techniques and themes worthy of



Chapter Six: A Grounded Theory Model of Software Design Practice

136

appropriation:

I have never followed a single methodology—but have used the tools that each

methodology provides that are good.  —Kahn

You pull out the bits you think are good, you justify the bits you don’t, and that’s the

way I tend to use them.  —Mackintosh

Gropius, like most of the architects, denies having ‘any good experience with any methods’.

But he also acknowledges lifting tools and techniques from methods:

What I’ve found is there are a small set of tools and techniques that are scalable…

interaction diagrams, sequence diagrams… they’re a very scalable tool, and you can

use them at all different levels… I think if you reuse the same tools and techniques, if

you are able to propagate them through different levels of the process, then that

becomes powerful.  —Gropius

Sequence diagrams, Gropius claims, are ‘scalable’—they are independent of programming

language or even paradigm and can be used to model interactions between any objects or

parties at any level of abstraction.  Their relative simplicity allows them to be used to aid

communication with both business stakeholders and developers.  These characteristics

make them convenient and ready at hand.  ‘I’m a big supporter of tools… not much of a

supporter of methodology’, Gropius concludes.

T6.22.  Architects hand-

pick useful techniques

and themes from

methods.

Architects do not rigidly follow methods when designing.  They

do not appear to champion or otherwise advocate the use of

methods to assist design on their projects.  Instead, architects

use methods and methodology as a source of design techniques.

Examples include the selective use of UML and RUP models

(use cases, class, sequence, state and package models were

explicitly mentioned).  Architects assemble their own ‘toolbox’

of design techniques that they have found useful over many

projects, and with time, their knowledge of how to use these

tools becomes tacit.  This know-how constitutes one of their

most important design assets.



Chapter Six: A Grounded Theory Model of Software Design Practice

137

6.5.2 Risk mitigation and transfer

Some of the architects described methods and methodology as a mechanism for mitigating

or transferring project risk.  Risk mitigation is sensible project management practice,

whereas risk transfer implies avoidance of responsibility.  Although not an advocate of

methods, Mackintosh suggests that they do mitigate risk by providing a checklist to ensure

that things do not get overlooked.  van der Rohe is more condemning of the motivations of

those who would promote methods and views them as only providing risk transfer:

What have they [methods] contributed?  Arse covering!  Risk transfer by the ‘keeper of

decisions’—what are the things, the criticisms that might be able to be held against me

later?  And how can I prevent those criticisms being asked?  —van der Rohe

Methodology, van der Rohe claims, is used as a form of insurance.  Methodology has become

sufficiently visible to business sponsors that it is now ‘something that someone could be

criticised for not doing’.  Methods, like project plans, are an artefact of the professional

project management culture—by creating activity (some of it nugatory) they justify

bureaucracy and ancillary management and administration roles on projects, van der Rohe

claims.

T6.23.  Architects regard

methods as mechanisms

for transferring project

risk.

Methods may be mandated in certain circumstances as a

mechanism to transfer risk away from project sponsors and

stakeholders.  In such cases, the architects will likely mistrust

the method and adhere only minimally to it.

6.5.3 Technology churn invalidates method detail

Some of the architects commented that the value of methods is reduced by the constant

changes to the base of software technologies.  Software technology changes date methods

and design techniques, reducing their relevance with time.  Pugin illustrates:

Every time I get to point of feeling happy about how to use a particular technology I’ll

never use that technology again, the next project uses something completely

different—you have to reinvent yourself, or take what was meta-methodology and take

that across.  —Pugin

Pugin’s comment on taking ‘meta-methodology’ across the generational technology divide

exemplifies one way that architects cherry-pick techniques and themes (T6.22).  Several of



Chapter Six: A Grounded Theory Model of Software Design Practice

138

the architects criticised software development methods for avoiding a close dependency on

software technologies by evading coverage of the software design part of the overall

development process.  Utzon also describes meta-methodology (as ‘architectural precepts’),

or the separation of changing from unchanging elements in the presence of technology

churn:

So the architectural precepts that I think I come in with are pretty much applicable

every time I go to do an information technology application… and they don’t stay rigid

because as each new technology comes in it informs something about the architecture

and the architecture’s revising.  —Utzon

T6.24.  Architects take

‘meta-methodology’

forward across

technologies and projects.

Over time, technology churn dates and eventually invalidates

method detail.  Architects adopt techniques and themes from

software design methods and take them forward, adapting and

evolving them as they are applied to new technologies and design

situations.  These are a digested and personal (ie. tacit) form of

knowledge—the architect may describe them as ‘precepts’,

‘principles’ or ‘meta-methodology’ rather than methods or

techniques.

6.5.4 Relationship between experience and method

Some of the architects described, albeit obliquely, how they understand the relationship

between experience and method.  While they claim not to need methods, they do use

methods as sources of techniques that they may then choose to appropriate.  They allude

to a tension between experience and method that may derive from control of the design

process or from their desire to protect the perceived value of their expertise.  This tension

comes from the recognition that methods claim to commodify architecture and design

capability via processes, templates and recipes.  This is a tension that rises whenever an

expert’s tacit knowledge is externalised into a form that can be shared or followed by lesser

skilled professionals.

When the architects reject methodology in favour of personal experience as a primary

driver of design, they must account for how they draw on their experience to replace the

stated goals of the displaced method.  In other words, they should be able to justify how

they ensure design quality and consistency across a development team and how their ‘box



Chapter Six: A Grounded Theory Model of Software Design Practice

139

of tools’ helps them achieve these design goals.  There is evidence that suggests the

architect’s ability to achieve these goals is highly dependent on their personal skills and

leadership capability, and in the absence of a skilled architect’s leadership, other factors

become influential.

Stickley’s company used Mentor (Edwards 2006) over a five year period, which he describes

as more of a process than a design methodology.  For software architecture and design,

they used UML and Rational ROSE, which resulted in a common representation for all

models.  Stickley’s account of their use of methodology highlights the difficulty of enforcing

adoption, especially amongst groups of experienced professionals:

But we don’t really, I don’t think we have a methodology for design in this organisation,

I think different people do it different ways… the thing that ties it together is probably

that it is all object oriented… it still is, we haven’t regressed to functional design.  —

Stickley

Stickley’s realisation that consistent use of modelling tools and a consistent design

methodology are two different things illustrates a subtlety of methods that escapes many

software professionals.  In Stickley’s company, architectural consistency and software

quality are notionally enforced by the use of common modelling tools but in reality, the

product’s design is influenced more by the individual designers working across the teams

than any established quality system, process or method.  Elsewhere in the interview he

bemoans the inconsistent architectural quality across the product’s extensive code-base.

Stickley’s employers would claim adherence to a proven software development method, but

as Stickley reveals, the architecture is littered with the signature styles of a dozen or more

designers past and present.

In observing that ‘the thing that ties it all together is probably that it is all object-oriented’

Stickley identifies a kind of lowest common denominator design quality phenomenon.  In

the absence of both a methodology for software design and strong technical enforcement,

the product’s architectural consistency was never raised above the level enforced by the

object-oriented languages and tools in which it was built.



Chapter Six: A Grounded Theory Model of Software Design Practice

140

T6.25.  Tool support

defines the ‘lowest

common denominator’ in

architectural consistency.

In the perceived absence of viable software design methods and

processes, the architects rely on their own experience.  However,

architects find it difficult to enforce their vision consistently,

especially across large projects or teams.  In general, the lowest

common denominator in design quality and consistency that will

be achieved by a team will be that which is enforced by the

software development tools being used.

In the end, Kahn suggests, a handful of experienced people must step up and take the lead,

mentoring the less experienced in the fashion of vernacular knowledge transfer.  Kahn, like

Stickley, has reached this point after having rejected methods as viable software design

drivers.

T6.26.  The architects

reject methodology as a

universal and viable

driver of software

architecture.

The architects reject established design methods or design

processes as a primary driver of software design.  That is, the

architects claim to own the design process, often exclusively,

rather then mechanistically following an external best-practice

process or method.

6.6 The design act

In the light of their rejection of methodology as a driver of design activity (T6.26), the

participants were invited to reflect on the personal act of design at length.  This section

describes the main themes.  To commence, participants were asked to describe their

personal approach to an architectural design problem.  Le Corbusier’s description reads like

a tutorial in object-oriented analysis—he talks of abstracting (‘call[-ing] up the real world’),

ascribing behaviour to the structure, modelling the interactions, then getting the

abstractions to ‘converse to each other so you can say that it is going to provide a

solution… not [at] the object level, but messages between components’.  Others were less

sure of the exact actions, steps or sequences of their personal design modus operandi.  Some

architects were unable to describe the detail of their personal design process, but trust their

ability to perform the act, or more specifically, to know a good design or abstraction when



Chapter Six: A Grounded Theory Model of Software Design Practice

141

they see one.  Pugin, for example, described his approach as being initially ad hoc, but likely

to converge to an in situ process over a relatively short period of time:

In some ways it seemed fairly ad hoc… I actually ended up with handwritten pages of

things that needed to be done… I would get to a particular point and things would

start to suggest themselves to me.  —Pugin

In describing his personal process as one of ‘design by doing’ but then ‘quickly converging

to a process you intend to use’ he infers two phases—a first where he opens up the design

process and allows discovery and emergent themes to suggest a process, and a second in

which he converges and optimises that process as he executes it.  At no time does he

explicitly document or externalise his process.  To the observer, such a process would

appear largely ad hoc.

A problem with intuitive skills like Pugin describes is that they are not amenable to

management.  Not even the designers themselves can always be sure of being able to

perform the design act under all conditions.  Design act ‘performers’ can get stage-fright,

referred to by the architects as writer’s block.  ‘You look at something and you think ‘so

how do I get started on that?’ Pugin recalls.  Kahn agrees—‘the blank page is the most

dangerous thing’, he says.  Their antidote is the same as is recommended by literary

writers—‘you’ve just got to get on and do something...  go for a walk in the park, let the

ideas go round in your head until you get something, and you see what you should be

doing’, Pugin recommends.  Kahn uses the same strategy.  ‘As soon as you start putting

things on paper then you realise that you’ve got ideas there, and you can shuffle them

around, and try and find the best fit of everything’.  The key to getting started is the core

user requirements for the system:

If I’m having difficulty getting started, I’ll try and go back to some fairly fundamental

user-driving aspect… and that draws my first box… and in order to satisfy what it needs

I’ve got to have something fit in behind that.  —Kahn



Chapter Six: A Grounded Theory Model of Software Design Practice

142

T6.27.  Architects

assemble their personal

design process early in

design engagement.

In general, when the architects approach a design task, they

do not have a common way of starting or an externalised

process to invoke.  The architects initially appear to search for

a path forward—trialing ideas, sketching and forming

concepts, in an apparently ad hoc fashion.  As well as

trialing early design elements or options, they are also trialing

a personal design process for the design situation they find

themselves in.

6.6.1 Problem space considerations

The architects were asked how they consciously worked to understand the problem space,

and if so, what form this activity took.  The architects recognise that different ‘types’ of

problems exist.  Most described ‘recognising’ problems, and several described attracting

work specifically because they had solved ‘similar’ problems before.  Cook states that ‘the

most important thing you have to know’ as an architect is ‘how to adapt… learn and…

understand problems’.  He refers to an ability to isolate and recognise problems (‘to

generalise problems from one form into another’) and a related ability to associate a current

problem ‘to fit something else that you understand’.  This problem-matching and mapping

skill is significant because it suggests the existence of a small set of problem types which

experienced architects can ‘see’ when confronted by what appears on the surface to be a

new problem description.

Architects work in both the problem space and the solution space when designing.  The

problem space is the source of business constraints and may include ontology, stakeholder

views, business processes and rules.  The solution space is the source of technology

constraints and is comprised of the stuff of architectures—solution concepts, solution

ontology, solution models, solution archetypes, components, connectors, code structures

and patterns.  When the architect designs software architecture, he bridges these spaces

with a structured solution that maps requirements and significant problem space elements

to elements of software architecture.  Cook describes a scenario where he used this kind of

‘problem mapping’ with success:

If I think back to the project that I think was my most successful… one of the great

things that we managed to do… was to continually take problems, and re-evaluate

them in the context of what we’d already done, and say ‘well OK, this is really just a



Chapter Six: A Grounded Theory Model of Software Design Practice

143

special case of that’… ‘why doesn’t [the architecture] already handle that?’  ‘Oh look, if

we re-factored it a certain way it would still do all the stuff it was doing before and it

would handle the one special case… great!  Fantastic!’  —Cook

Not all of the architects regard the problems they are confronted with as immutable—

many, even most, are negotiable.  This suggests that problem space constraints are not

purely objective.  Kahn notes that the architect is often in the position where he can ‘drive

the changing of some of the constraints’:

My experience with most customers, although they’ll come to you saying ‘this is what I

want’, it’s more a statement of ‘this is what I believe I want’, and if you go back to

them and say ‘well that’s nice, but do you realize it would work better if we did it this

way’… you have to be aware that there’s a flexibility there—and if you can come up

with a better approach for them and sell it to them (ideally in such a way that they

think they came up with it themselves), then yeah, there’s variability there.  —Kahn

T6.28.  Architects

negotiate problems to

match known problem

types.

At times, the architects may direct their negotiation of

requirements (T6.3) in order to make a presenting problem

look more like one which they have had prior experience of.

6.6.2 Solution-based constraints

Architects may manipulate constraints during the design process.  A number of architects

described ways that they consciously emphasise or de-emphasise constraints relative to

each other in the early phases of design.  For example, Kahn stated that he may choose to

‘ignore or relax some constraints’ during his ‘first level of structuring’, after which he might

‘start to tighten up the constraints or introduce additional constraints that you know about’

during ‘a second iteration or a refinement to that first cut’.  His strategy of being selective

in the use of constraints to form a scope and a consequent architectural structure avoids

having to deal with all known constraints in one sitting, which can lead to ‘analysis

paralysis’ where ‘you’re sitting there worried about whether or not you’ve satisfied every

constraint and never actually running the potential scenario’.  Constraints change, and so

trying to satisfy every constraint ‘with your first idea straight out of the gate is really not

going to work’, he claims.  Constraints and the solutions they prompt are inter-

dependent—the designer’s response to the first subset of constraints has the potential to



Chapter Six: A Grounded Theory Model of Software Design Practice

144

change the next subset, and so on.

At certain times when designing, software architects deliberately select and impose

constraints on the solution space in order to manage complexity and move the design

process and the solution forward.  For example, a designer may choose to reverse a

decision to use Layering in an architecture in order to avoid inter-layer communication or

parameter-passing overhead.  Moore describes designing in terms of successively

interpreting and applying increasingly fine-grained constraints:

You start with this huge kind of big blob, and you start hacking into it, hacking pieces

away, constraining it, by the time you get to the very end and you’re just touching it

up… I quite literally imagine myself sculpting.  —Moore

An important source of constraints on software architecture is the target platform.  The

adoption of a technology platform such as Sun’s Java 2 Enterprise Edition (J2EE) brings a

raft of architectural constraints that significantly changes the task of doing architectural

design.  The J2EE architect is focussed more on detecting and designing for differences

(from the J2EE reference architecture) than designing from scratch or for a less

prescriptive technology platform.  In selecting a technology platform, the architect must

balance contradictory requirements such as simplicity with non-functional requirements

such as scalability and reliability.

T6.29.  Architects

alternatively relax and

tighten solution space

constraints when

designing.

Some of the architects report alternately relaxing and tightening

selected constraints in the solution space in order to separate

design iterations and to simplify the number of constraints in

any given design iteration.  For example, an architect may

‘selectively ignore’ functional or non-functional constraints or

requirements (such as performance, security or scalability) then

consider the effect of these constraints in subsequent design

iterations.  The choice to selectively ignore a set of constraints is

not made randomly, but with the knowledge that parking them

will not invalidate the design or divert its trajectory.

6.6.3 Candidate solutions

Most of the architects report that they routinely consider different solution options, but



Chapter Six: A Grounded Theory Model of Software Design Practice

145

most do not normally invest effort in the evaluation of different candidate solutions.  Pugin

cites delivery pressure as the main reason why he limits option evaluation—‘it’s not so

much an I-don’t-care attitude as a pragmatic thing of, hey, you’ve got to get a system out’.

The cost of evaluating different solution options depends on how complete the

architecture is at the time.  An architect who wants to generate several alternative

conceptual models early in the design process need invest only ‘think time’, not coding

time.  An architect’s propensity to extend ‘think time’ is a form of design discipline.  This

discipline must not be prescriptive—Pugin says he will often ‘try to think about what the

options are’ but he does not discipline himself to always generate three options if only two

obvious ones exist.

The architects appear to rely upon their past experience and (at times) intuition when

choosing between alternatives under time pressure.  Each decision is assessed for

suitability and risk which may be introduced.  The experienced architect can demarcate the

situations in which short-cuts can be exploited, and must equally understand associated

risks of a limited evaluation.  Piano claims that he has learned over time which short-cuts

he can safely make.  He does not, for example, ‘short-cut’ understanding or clarifying

requirements.

Griffin cites timeframes and finances as the two biggest dampers on generating options—

‘there’s no way known that you can build two systems… you say, this one’s the best one,

let’s take you’.  Piano comments that ‘as you become more experienced you eliminate the

options more quickly’, because ‘you know that a certain path… will be not appropriate in

this case because you’ve met it before… and it didn’t work’.  Piano depicts his ability to

select a viable option from amongst several as one of his marketable skills.  ‘You have your

experience and that’s what you sell to your clients… if you can eliminate a solution from

the start within 20 minutes of considering that solution, then you’re doing your clients a

good service’.  Voysey agrees—‘you’ve got a history, you’ve got knowledge… people are

hired for… what you already know, not [for] what your potential is to learn new things’.

T6.30.  Architects rely on

personal judgement to

select a solution option.

The architects invest think-time but generally little design effort

in evaluating options.  Experience significantly expedites the

generation, evaluation and selection of options, and provides

higher confidence in the chosen option.



Chapter Six: A Grounded Theory Model of Software Design Practice

146

6.6.4 Complexity vs simplicity

In all forms of design, simplicity is desirable but often difficult to attain.  Complexity in

software architecture is costly in terms of extra effort to implement and maintain.  The

more complex elements of a software architecture do not always survive over the system’s

lifecycle.  van der Rohe equates simplicity with the maintainability of a software artefact—‘if

your design is simple enough then you are going to be able to change it’.  However,

complexity in software architecture is frequently necessary because software architectures

must solve complex problems.

The ability to balance simplicity and complexity in software architecture is a key skill for

software architects, and appropriate handling of complexity is critical for the longevity of a

software system.  There is little doubt that the architects prefer (and strive for) simplicity in

their designs—McLuhan’s joke metaphor hinges on simplicity by emphasising the minimal

structure required to function.  The degree of complexity in software architecture is

sometimes (but not always) an indicator of the architect’s design skill.  Several of the

architects recounted how and why their earlier work exhibited the absence of these skills.

Mackintosh, for example, described an architecture that he helped design as ‘unbelievably

complex, a brilliant piece of work’.  But its complexity made it difficult to implement, and

eventually the project was shelved.  He reflects on this as a case of an inexperienced

architect’s ego running wild—‘it was important to be smart, and do it the best possible

way’, he admits.  Simplicity in an architecture that addresses complexity in the problem

space is an indicator of an architect’s design ability.  Le Corbusier agrees that better designs

are more minimal designs and that maintainability follows from simplicity:

T6.31.  An architect’s

design skill is partly

revealed by how well

their design addresses

complexity.

The architects must design for complexity in the problem

domain whilst striving for simplicity.  Some architectural

complexity (‘necessary complexity’) is unavoidable.  Architects

may inadvertently introduce complexity by choosing

unnecessarily complex design options (‘introduced complexity’)

or by missing recurring problem or solution space patterns.

Skilled architects consistently minimise introduced complexity as

a result of their experience and their knowledge of solution

archetypes, patterns and practices.



Chapter Six: A Grounded Theory Model of Software Design Practice

147

Several of the architects report aiming to reduce rather than expand their architectures as

they move through the design process.  One sign of the emergence of a maturing software

architecture is reduction in complexity and size. Ruskin states that he ‘feel[s] pleased

whenever I can throw away a few classes, it’s a sense of relief because I knew I was

heading in the wrong direction’.  Breuer describes his reaction upon being presented with a

voluminous specification and object model for a portion of a large business application in a

financial services project.  ‘When I saw the [Insurance] Commissions package

specification… I walked out of the meeting… it was one hundred and twenty-four pages…

I ended up saying—please turn it into 15’, he remembers.  He interpreted the document’s

size as a sign that the analysts had not identified the structures inherent in the problem

domain.

T6.32.  Architectural

reduction frequently

signifies design progress.

The architects confirm that a maturing object-oriented

architecture reduces in scale through the discovery and

elimination of duplication as well as the discovery of better-

fitting structures.

6.6.5 Ontology

Although the word ‘ontology’ was uttered by only a few of the architects, all mentioned

concepts, conceptualisation and abstractions.  A conceptualisation is an abstract,

simplified view of the world comprised of objects, concepts, and other entities that are

assumed to exist in some area of interest, as well as the relationships that hold amongst

them (Genesereth & Nilsson, 1987).  Every knowledge-based system relies on some

conceptualisation, explicitly or implicitly.  Ontology is a description of the concepts and

relationships that can exist for a system.  The architects implicitly create and define

ontology in their models.  The concepts in their ontology include domains, data, classes,

objects and relationships.  What is important with respect to ontology is what it is used for

and how the architects use it when designing.  Morris describes his understanding of

ontology in software design:

If we talk about architecture it should give me some words that I can use to describe

things to you at a high level, that give us a further basis for talking about the system...

architecture is just some set of terms that encapsulate broad sub systems, and allow

us to communicate about how they work with one another, without talking about the



Chapter Six: A Grounded Theory Model of Software Design Practice

148

details of a particular class.  —Morris

A solid foundation of solution concepts is critical for software architecture.  Sullivan

describes strong concepts as being like ‘an architectural principle’ or ‘how we do things

around here’.  To illustrate, he describes a top level object (a broker interface in one of his

architectures called App_Central) which he describes as a kind of trading post—‘if you

want to get access to something then you can go and ask [App_Central] for it’.

App_Central exemplifies how architects and teams invent a shared ontology which then

gets anchored in software artefacts such as components and classes.

Building the ontology involves defining the objects and their relationships.  The architect’s

expertise in abstraction and level-of-detail setting comes into play in object and

relationship discovery.  Architecting a new object-oriented application can be thought of as

language-authoring.  ‘Object-oriented coding is about writing a new language every time’,

claims van der Rohe.  He advises that a good (language) design will follow from a well-

chosen and managed namespace, and is an indicator of a healthy team design capability.

While the architect can initiate the language creation, the team must foster language

evolution. Teams ingratiate their own cultures with their own internal languages, and a

team’s design dialect evolves within its culture.  Sullivan, in discussing collective ownership

of a solution architecture, makes the point that like the English language, the architecture

should always be evolving.

T6.33.  The process of

software design naturally

expresses a language of

the solution.

Objects directly define the solution’s ontology.  The ontology may

include classes, relationships and patterns of collaborating

objects—all of those software-structural elements that can be

named.  Architects build narratives around their object ontology

that enunciates or confirms their vision (T6.4).  Like elements

of any language, objects and their meaning in a solution

ontology must be expected to evolve.  Parts of a solution’s

ontology form elements of the meta-methodology that architects

take forward from project to project (T6.24).  The emergence

and health of a design language is an indicator of the team’s

collective understanding.



Chapter Six: A Grounded Theory Model of Software Design Practice

149

6.6.6 Conceptual view

Four distinct sub-categories emerged from the architect’s statements about how they use

views—conceptual, static, dynamic and historical.  Views are a staple component of

software design methods and software engineering process.  UML (Kruchten 2000) offers

different model types for representing (amongst others) static, dynamic and deployment

views of a software system.  That software architects routinely choose to work with both

static and dynamic views and models during design is unremarkable.  More interesting is

which views they prefer in the architectural design phase, to what degree they use both

static and dynamic views, and how and when they move between the two.

Gero makes a distinction between conceptual and routine design (Gero 1996).  Conceptual

design is the design of a solution using concepts—an abstract machine of sorts.  Routine

design addresses concerns about the implementation of the elemental components of the

conceptual machine.  When this distinction was discussed with the architects, most did not

consider the distinction valuable, and some did not even perceive the difference.  Utzon

and Moore illustrate the extremes.  Utzon values conceptual design, but he does not see it as

being separate from any other kind of design.  ‘The architect needs to move through,

flexibly move up and down… I don’t see the boundary, I see very few boundaries’, he

summarises.  At the opposite extreme, Moore recognises the distinction between conceptual

and routine designing—‘I always need to have a reasonable conceptual understanding of

what it is I’m doing’, he says.  His motivation for doing a distinct conceptual design is

management of complexity and scope.  ‘I never like working at a low level of detail where I

don’t have a broad understanding of what this thing is, and what it’s trying to achieve at a

more abstract level’, he says.  When developers do not appreciate the value of a good

conceptual understanding of the solution ‘it can lead to some strange pieces of code that

just don’t seem to make sense when they’re viewed from a conceptual point of view’, he

claims.  They solve a specific low level problem but they do not respect the conceptual

model, and may compromise the system’s conceptual structure and integrity.

6.6.7 Static view

The architects who indicated a preference for a static view of architecture generally rely on

functional decomposition to organise scope and complexity.  Howard always develops his

static model first, but quickly finds himself validating each of its candidate classes, which

involves thinking about relationships and dynamic behaviours.  Breuer claims to keep a

static model of the entire solution in his head.  He limits the complexity of the model by



Chapter Six: A Grounded Theory Model of Software Design Practice

150

employing functional decomposition to hide the detail of each element until needed.  He

can explode or decompose each element in this model when appropriate, but prefers to

think of the architecture in its abstract entirety, just as Howard does with his context

model:

It is not of the detail of the whole thing—but essentially, it is a small collection of about

5 or 6 different key areas… but once you open up one of those areas, it then

subdivides into its component parts… I think I am dealing with a kind of hierarchical

tree, that I can pull bits out of and then track down a path.  —Breuer

Breuer talks about associating certain key words, names or terms with elements of the top-

level structure, so that when these names are used ‘it has a special key meaning to me—it

means a huge thing that would take literally 3 days to explain’.   van der Rohe also uses

associative ‘keys’ to preserve and unlock complexity in architecture, but being an active

implementer, he reifies his ‘keys’ as class names.  He has a practice of always prefixing a

candidate class name in a software architecture with the word ‘simple’ to indicate that the

class is a first cut.  By disciplining the namespace in this way, he encourages simplicity in

the top-level class model:

My way… is to find really good atoms, building blocks to build out of… you [then] make

complexity by plugging different implementations… but [if] you plug simple

implementations it still works.  —van der Rohe

van der Rohe’s simplicity heuristic works in two ways.  Firstly, it ensures that a generalised,

simple, disciplined set of classes emerge to anchor the architecture.  Secondly, it ensures

that complexity is realised in the implementations of the key abstractions, rather than in

the abstraction’s definitions (interfaces) or the relationships between them.  Complexity in

the solution structure is tamed and corralled by ensuring a simple top-level object

structure.  Necessary complexity is introduced only in the implementation of these simple

objects.

Gropius (who has twenty year’s experience in designing financial trading systems) designs

software architectures out of components that rely upon middleware infrastructure.  His is

a hybrid approach that relies on components (business objects) and message abstractions.

He relies on dynamic models because he organises components around message exchanges.

Curiously, Morris, the architect most committed to the concept of emergent architecture,

talks of how he prefers to ‘build a static model in my head, but I don’t build the dynamics’.

He reflects on why this might be so:

One of the first things I got taught in a rigorous way was database design, and how to



Chapter Six: A Grounded Theory Model of Software Design Practice

151

do normalisation… and I used to build entity relationship models in my head, and then

when I transitioned to objects… really, I still build entity models in my head, and then I

tack on the dynamics later.  —Morris

Morris thinks of designing architecture as building a structure rather than a machine.  His

account of how he builds entity models ‘in his head’ counters his earlier argument for

‘emergent design’ where he claimed that all worthwhile software design occurs as a

consequence of emergent structure during the code-polishing process.  His statement

reveals how much conceptualisation he is able to comprehend ‘in his head’ before

committing the resultant structural design to code, and is perhaps a telling insight into the

abilities of the emergent designers to design a priori without relying on externalised design

phases, activities or representations.

6.6.8 Dynamic view

A different subset of the architects expressed a preference for a dynamic view of software

architecture.  They talk of architecture as representing a kind of conceptual machine that

they imagine in their mind’s eye, and of ‘executing’ the architecture’s mechanism in their

minds.  Dynamic visualisations draw on an analogy between objects exchanging messages

and the parts of a mechanical artefact.  Many people can imagine a running car engine,

even those with little mechanical aptitude, but only a minority of the architects describe

using analogous visualisations of the dynamic dimensions of their designs.

Those who use a dynamic view talk of knowing how the system will work before actually

committing anything to whiteboard, paper or code.  For example, in a design using a

publish-subscribe mechanism, the architect might imagine objects subscribing and being

notified of a publication.  Some of the architects can keep bigger, more complex

machines—including the mechanisms of those machines in some detail—in their minds.

The dynamic view is useful in designing systems or sub-systems that must handle complex

temporal sequences.  For example, McLuhan described ‘thinking about the objects that are

in play’ in a scenario where he needed to construct and then gracefully tear down a

complex network of interdependent objects in a particular sequence.  Stickley also works

with a dynamic view.  ‘For me, the machine’s always there’, he says.  ‘That’s how I try to

keep a clean design of the system’.  He uses the evolving dynamic model to formulate

responses and clarifications in his own mind, in terms of the machine.  His conceptual

machine is an ephemeral tool—it cannot be easily shared, and as Stickley admits, ‘the

definition in your head isn’t really complete… [so] it tends to be fairly fluid’.  Once the

architect is happy that his conceptual machine has been sufficiently explored in this



Chapter Six: A Grounded Theory Model of Software Design Practice

152

personal cognitive space, it must be serialised onto a sharable medium and communicated.

6.6.9 Historical view

Finally, Cook talked about the importance of leaving a design rationale trail for those who

follow.  ‘There’s a whole line of reasoning’ about why a particular design decision was

made, he says, and ‘understanding how you arrived at certain things is very important’ on a

software architecture team.  He describes his experience of joining a project late.  Although

the project’s source might be of relatively high quality, the code does not define these

design justifications, without which the new architect is disoriented.  A documented

narrative is needed to capture the actual narrative that was lived out by the designers at the

time the architecture was designed.

T6.34.  The architects use

conceptual, static,

dynamic and historical

views interchangeably.

Most architects report using conceptual, static, dynamic and

historical views interchangeably and at times concurrently.

Some express a clear preference for one view over another,

particularly when doing conceptual design, with static (class)

and dynamic (object collaboration) views being dominant.

Their stated preference appears to be independent of problem

type or domain.

6.6.10 Bias, perspective and perspective-shifting

Bias is implicit in all designers and in all acts of design.  The architects reported different

kinds of bias—technology bias (which results in selecting known technologies over

unknown ones), perspective and paradigm bias (which motivates the architect to adopt a

preferred perspective or paradigm) and personality bias (which follows inescapably from

the individual’s personality).

Personality bias is described by Stickley.  He confirms that ‘architects often have their own

prejudices’, their ‘particular style or way of doing things, or tools that they like to use’.  He

is starkly honest in admitting that ‘the last two projects I have worked on have had oddly

similar architectures… and they were quite different systems’.  Personal prejudice is a risk

mitigation mechanism, because architects return to ‘what you’ve learned or what you’ve

been using most recently’, they ‘tend to stick to the things that they know’ because of their



Chapter Six: A Grounded Theory Model of Software Design Practice

153

investment in prior solutions.

Architects also bring a particular perspective to a design that has the potential to bias their

designing.  Not many of the architects explicitly recognised this.  Perspectives appear to be

strongly influenced by historical factors such as when the architect was educated or entered

the profession.  The strongest perspective bias observed in the analysis of the architect’s

discussions is paradigm bias.  Paradigm biases detected amongst the participants include

data, behaviour and functional biases.  Howard and Morris acknowledged their data-centric

perspectives, and Le Corbusier his behaviourist perspective.  Howard has a thirty year history

of working with database design and recognises that he tends to perceive things from a

data perspective.  He also recognises that his long professional history attracts data-

oriented work.

Mackintosh’s story about the design of a telecommunications exchange monitoring system

illustrates a misconception in the design of the software architecture that resulted from

both perspective and paradigm biases.  The original object-oriented architecture was

designed with a data bias (paradigm bias) which resulted in a model centred on an

EXCHANGE class.  The key modelling assumption appeared sound but proved to be flawed

when the system’s real requirements emerged after the EXCHANGE-based model had been

committed to a substantial code base.  What was needed was a concept of a measurement

class.  The perspective that biased the architecture was that of anchoring its business

object model on a tangible object (the telecommunications exchange) rather than an

intangible unit of measurement.  This fault in the object model was symptomatic of larger

project problems.  The full story of this system and its architects is told in the next chapter.

T6.35.  Experienced

architects are aware of

their own perspectives

and how they influence

their designs.

Experienced architects are conscious of their perspective bias.

They may adopt the perspectives of different stakeholders, users,

or different key classes in a model, with the objective of

exposing design options and fully exploring requirements.

While a number of the architects acknowledged paradigm and perspective bias, none

described explicit paradigm-shifting during the conceptual or exploratory modelling

activity.  There is no reason why the experienced software architect cannot explicitly adopt



Chapter Six: A Grounded Theory Model of Software Design Practice

154

alternative paradigms, sketching abstract models and internally debating the pros and cons

of the models that each alternative paradigm or perspective gives rise to, leading to an

informed choice of modelling perspective.  Some of the architects appear to be able to

recognise limitations of their preferred perspective, even if they do not report actively

exploiting this awareness.

Paradigm perspectives are not limited to behaviour versus data.  Breuer repeatedly returns

to a hierarchical view of the world in his stories of designing.  He takes it ‘almost [as] an

article of faith’ that everything can be viewed as a tree.  Breuer’s conception of hierarchy is

based on functional decomposition.  In the top ‘layers’ he attributes architectural blocks on

the basis of function.  These embody key solution abstractions and behaviour, but rely

upon services provided at layer boundaries, thereby forming an invocation or delegation

hierarchy.  Each layer embodies its own services and internal model, and complexity is

dealt with through appropriate assignment of behaviours and state to the layers.  ‘The

crucial part about the architecture is to do that layering process first’, he claims.  Breuer’s

commitment to the functional decomposition paradigm and the resultant hierarchies it

produces is a clear case of paradigm-bias.

T6.36.  Architects are

subject to paradigm bias.

Architects reveal a propensity to be locked into a single design

or decomposition paradigm.  Architects should be capable of

disbanding their paradigmatic perspective and adopting

another, even if only as a mechanism for validating their

preferred paradigm.

6.6.11 Abstraction

The architects regard abstraction as one of the most basic and important skills in software

design.  ‘If you can’t abstract—forget it’, says Pugin.  ‘If you’re not trying to abstract then

you’re not going to succeed at object-oriented’, claims McLuhan.  ‘I don’t think you can

develop any non-trivial system without good abstraction skills, good conceptual models,

and understanding the difference between the abstract and the concrete’, claims Moore.

Piano agrees about abstraction’s pre-eminent place in the architect’s skill set.  ‘If I was to

pick one developer out of an organisation of 120 that had abstraction skills and nothing

else, he would be my architect’.  The architect must have the ability to avoid getting



Chapter Six: A Grounded Theory Model of Software Design Practice

155

overwhelmed—in the midst of the sea of detail, the successful architect can ‘see the big

picture’ and ensure that ‘it all fits together’.

Abstraction is fundamental to any discussion of software architecture, and all forms of

architecture rely on abstracted views in which the designer selects particular features to

represent over others for particular reasons.  Abstraction in software is pervasive—it is

found everywhere from intrinsic types in programming languages to architectural patterns

and archetypes.  Morris’ definition of software architecture relies on abstraction—‘it

[software architecture] is constructing software systems that have layers of some sort,

where interactions are between a layer and its neighbours rather than between a layer and

anything it can find, so that there is some sense of localization of change, not just at the

class level, but at some further metaphorical level’.  Abstraction is related to metaphor in

that memorable abstractions (such as Layers) have commonplace or ‘real world’ analogues.

Abstractions improve comprehension, encapsulate complexity, and therefore preserve

structure through a system’s lifecycle.

A key issue when using abstraction in any form of design is the selection of the level of

detail.  As we have seen (T6.18) the architect changes his design based on his perception

of the capability of the architecture’s consumers.  One way the architect does this is by

choosing an appropriate abstraction level.  Mackintosh selects his detail according to the

high-level problem he wants his architecture to solve, and how much detail he thinks the

implementers will need—‘you can solve a problem without a lot of definition… and it

gives everybody a footing to take off’.  Piano’s architectures are comprised of

‘implementable but undefined blocks’ such that the architecture is ‘not ultimately one

hundred percent prescriptive’.  Drawing on the built world to illustrate his point,

architecture is ‘the broad brushstrokes of what the entire building will do, its capacities, its

functions’ and his architectures provide ‘the framework of the building, the layout of the

rooms in terms of measurements, in terms of flooring, in terms of bearers and supports’.

T6.37.  Architects select

abstraction levels for the

architecture’s purpose

and its consumers.

One of the ways that architects consider the consumers of their

designs is by selecting an appropriate level of abstraction for

representing the architecture.  The chosen level is not applied

universally—rather, some areas of the architecture will be

detailed while others are left abstract, unfinished, or high-level.



Chapter Six: A Grounded Theory Model of Software Design Practice

156

For Ruskin, forming the right abstractions primarily depends upon knowing what detail to

leave out.  He describes deliberately deferring some detail while promoting or dealing with

mapping other detail.  ‘It’s all about modelling… and modelling is all about what you are

going to leave out’, he says.  Breuer agrees—‘we are going to leave some things out… we

are going to have to include other things’.  He relies on the business requirements to tell

him what to leave out and what to include.

Architects do not report working at one level of abstraction then moving up to a higher

level, or dropping down to a lower level.  Rather, they move through different levels of

abstraction constantly.  Utzon describes ‘the ability to work your way up and down the

levels of abstraction’ as being ‘extremely important’.  Even the idea of there being

abstraction boundaries appears foreign to him—‘I don’t see the boundary, I see very few

boundaries’.  Pugin describes abstracting ‘all the time’ when designing software.

T6.38.  Architects move

flexibly between levels of

abstraction when

designing.

Architects move between levels of abstraction constantly.  Some

architects exhibit a preference for a particular level of

abstraction to which they naturally gravitate when thinking

about software architecture.  Some architects prefer to spend

most of their time at the highest level of abstraction, while

others prefer the lowest levels (ie. the code). They choose

different strategies for excursions from their preferred place to

other levels in the architecture’s abstraction hierarchy.  The

architect’s preferred level broadly follows the two categories that

emerged from the analysis of approaches to conceptualisation—

top-down and emergent.

Cook describes abstraction skills as the key enabler for fitting known structures to a

problem, and he admits to deliberately re-conceiving or even ignoring certain mis-fitting

parts of a problem in order to fit an architectural structure he is familiar with to a

presenting problem.  ‘When you can abstract something and generalise it’, he suggests, ‘you

can make things look the same, and when you can make things look the same, they become

easier to understand’:

It’s much easier to make something look like something you understand if even that

requires discounting certain aspects of it… you may say OK, look, I’m getting caught up



Chapter Six: A Grounded Theory Model of Software Design Practice

157

in this bit here… if I just ignore that as being a special case, I just arbitrarily or

artificially ignore that, then, the rest of it looks exactly like this thing over there.  —Cook

T6.39.  Architects use

abstraction when fitting

known solution structures

to presenting problems.

At times, the architects use their abstraction skills to make

presenting problems look like problems for which they have

known architectural patterns or system archetypes.  Fitting

known solution structures to a presenting problem is related to

requirements negotiation (T6.3).

Validating abstractions is important for Howard—‘the single biggest thing in success of a

model is to take it to the detail’, he says.  He describes verifying his models by constructing

prototype databases and populating them with sample data from a scenario.  ‘The designer

of the model [must be] able to grapple with hugely generic things like ‘asset’ and ‘location’

and ‘arrangement’ and be ‘able to go right down and populate attributes’ as well.  Well-

chosen abstractions are self-explanatory.  Le Corbusier agrees that simplicity is an indicator

that the abstraction is well-formed and that the abstraction process has terminated:

I just find the easiest way to do it is to work your way down to behaviour and

association… if you can’t describe the component or an object as a behaviour—this

does this for my system—if you require a paragraph to describe something, you have

made a mistake.  —Le Corbusier

The experienced architect’s abstraction skill is not limited to creating and finessing

architecture models and classes.  Pugin, Cook, Le Corbusier and Gropius all concurred that the

skilful architect abstracts elements of their personal process as well, in order to reuse

approaches, techniques, and ways of acting that have proved useful and fruitful in the past.

This illustrates the architect’s abstraction skill as one of seeing structures, sequences and

shapes through the detail to selectively use or reuse the essence of a structure, pattern or

process.

T6.40.  Architects

abstract equally in

software and non-

software dimensions.

Experienced software architects employ the same basic

abstraction skill in the business domain, software solution

domain, and process dimensions.



Chapter Six: A Grounded Theory Model of Software Design Practice

158

The architects use abstraction to exploit similarities in the interests of achieving simplicity.

The ability to abstract may be the architect’s most important personal skill.  ‘When you can

abstract something and generalise it you can make things look the same, and when you can

make things look the same, they become easier to understand’, claims Cook.

T6.41.  Abstraction

exploits similarities to

achieve simplicity.

Abstraction discovers the underlying structures in the problem

and solution spaces. When these structures converge, the

architecture is simplified.  Reducing, collapsing, converging,

simplifying structure are all signs that good abstractions are

being found and that the design process is making progress.

6.6.12 Abstraction discovery

The architects were asked about how they discover abstractions.  Although most described

their personal approach to abstraction discovery as incorporating both bottom-up and top-

down approaches, some stated an explicit preference.  Johnson typifies those who prefer

bottom-up abstraction discovery when he describes discovering objects in an ‘as-needed’

fashion.  He starts with one or more classes and uses the process of elaboration to drive

discovery of new classes.  New classes are ‘borne out of necessity’ as opposed to some sort

of ‘arbitrary, high-level ponderings’, he says.  By contrast, the architects who prefer to work

top-down are able to deal with complex domains and fuzzy boundaries.  They must also be

comfortable deferring detail.  Several described personal techniques for managing scope

and complexity.  For example, Howard has developed a pragmatic way of scoping a domain

model:

I don’t feel happy that I’ve got my mind around the problem until I can come up with a

model that represents the super types, the classes on a single sheet of preferably A4…

until I can see the entire the business at a high level, I think I haven’t seen the

patterns.  —Howard

Howard claims that he is yet to come across a business, no matter how complex, where

‘with a bit of effort’ he could not reduce the complexity to a single-A4 class model.  Not all

the architects fall into the top-down or bottom-up categories.  Gropius prefers to design at a

component level of abstraction because his experience is mostly in designing middleware-



Chapter Six: A Grounded Theory Model of Software Design Practice

159

based architectures.  He starts architectural design with the set of business objects and

then instruments their interactions and those with the application’s infrastructure.

Associated with bottom-up abstraction discovery is the notion of emergence.  Morris

actively discourages people from doing design work up front.  ‘People’s first step is to say,

well we need architecture, and I say well no you don’t… it will appear’:

So I guess I have a inverse approach to architecture—architects (in most people’s

minds) worry about the big picture and let the fine grain picture take care of itself… my

approach is to take care of the fine grain details and let the big picture take care of

itself.  —Morris

He encapsulates his bottom-up, emergent design approach in a bunch of heuristics.  Firstly,

he re-factors out duplication—‘whenever there is [sic] two pieces of code that look the

same… the software is telling you that a concept is missing’.  He migrates the duplicate

behaviour upwards using an abstract super-class, or he introduces aggregation by

introducing a third class that provides a service.  Removal of duplication results in reusable

classes.  This process of repeatedly and rigorously driving out redundant code results in

smaller objects that are useable in more contexts.  ‘We never aim for reuse first, we aim for

use, and it just turns out that those ones also happen to be reusable a lot of the time as

well’, he declares.  The architectural principles of good cohesion, lightly coupled objects

and the removal of duplication, with the safety net of comprehensive and accurate unit

tests, account for Morris’ personal process for emergent architecture.  ‘And we do all of that

stuff rigorously, and the big picture takes care of itself’, he concludes.

T6.42.  Architects follow

notionally divergent paths

when abstracting.

Architects do not universally practice traditional step-wise

refinement or decomposition to discover abstractions.  Architects

may arrive at an initial design by progressing from the abstract

to the specific, or from the specific to the abstract, or they may

follow a combination of these two trajectories.  Some architects

report working both trajectories more or less simultaneously,

both on different and the same parts of the solution space.

T6.30 stated that an architect’s experience expedites option selection.  The same is true for

the formation of viable, enduring abstractions.  Moore agrees that ‘the more experienced

you are as an architect and designer the quicker you’re able to hone in on the critical bits’.



Chapter Six: A Grounded Theory Model of Software Design Practice

160

This supports the emphasis that Piano places on the affect of time pressure on architects.

Kahn relies heavily on his experience with particular candidate designs during the process

of selecting or creating a new design.  ‘I think probably the biggest thing that I rely on is

what I’ve seen before’.  His approach can suffer from a form of architectural myopia—

‘whatever I build is highly likely to be an evolution of something I’ve built in the past’.

Kahn is sufficiently self-aware to ‘discipline myself to go outside of that in some cases’.

6.6.13 Generators

In design theory literature, generators are ideas, concepts or metaphors that serve to

initiate, inform and shape design (Beyer and Holtzblatt 1994; Lawson 1997; Lovgren

1994).  Stories from the accounts of built-world architecture typify generators as metaphors

that remain recognisable in the final form of the building—the sails of the First Fleet ships

on Port Jackson as metaphorical inspiration for the Sydney Opera House, by way of

famous example.  In software, the idea translates to the notion of an idea which seeds a

universal structural or detailed recurring pattern in the architecture.  In the software fabric,

the meaning of, and usefulness of a generator is debatable—is Model-View-Controller a

generator?  Or in a business context, is the class model that describes a Customer, a

Supplier and an Order (and how these classes relate) a generator?  What value can be had

from promoting the generator concept in software design?  The concept of generators was

raised with the architects to investigate these questions, and to determine how committed

the architects are to the design principle of a handful of structural patterns or design drivers

that may be applied across multiple layers of architecture, or are in some other way

unifying.

The architects were generally unfamiliar with generators but in most cases their thoughts

turned to principles.  One interpretation is to consider generators as the things in the

project’s conceptual space that impose principles and order when the project is in what

Lethaby refers to as its ‘chaotic ramp-up phase’.  Designs start out as a rough set of ideas

and principles, he explains.  Explicitly stating these ‘ideas and principles’ during this phase

is important.  ‘You spend time in front of the whiteboard with a group of people going

through the ideas, thrashing them out, revising them, and fixing the leaks’.  Some of the

architects talked about discovering or formulating ‘architectural principles’—general

assertions about a problem or solution mechanism.  Where these translate directly to

recurring architectural structures, they could be said to constitute a kind of generator.

Breuer equates architectural principles (which he calls ‘first principles’) with the conceptual



Chapter Six: A Grounded Theory Model of Software Design Practice

161

‘footholds’ that he struggles to attain when commencing design:

The model in my head… comes out in speech as a sequence… it will come out in terms

of definitions… I am at first principles—it goes back to my mathematics training—it is

even unlocked by the key phrase ‘first principle’.  —Breuer

Breuer’s first principles have certain characteristics by which they may be recognised.  He

uses words and phrases like ‘simple’, ‘elegant’, ‘pretty’, ‘easily memorisable’, ‘a guiding

rule’.  Breuer thinks of a first principle as a ‘key’ that unlocks the power of a concept:

My example is the discounted cash flow equation—and the first principle of amortisation

is the sum of discounted cash flows is always zero…. once I discovered that principle, I

knew that I understood everything there was to know about amortisation, I didn’t

need to go any further… that was the first principle… understand that and you can

derive everything else about cash flow.  —Breuer

This particular principle unlocks a problem domain for Breuer, and may or may not turn out

to be a generator in the designed solution.  The distinction between generators and

perspective is important.  Generators are foundational structuring principles, whereas

perspective defines the viewer’s chosen observational point and paradigm.  Perspective

influences what generators the architect may see.

T6.43.  Architects rely on

key concepts to guide the

design.

In some cases, the architects seek to seed their designs with

primitive structures.  They describe these as ‘architectural

principles’ and they may source them from the problem domain

or from a solution archetype (an amalgam of architectural

patterns).  They provide a recurring structural pattern that

helps the architect to establish the architecture during its

conceptualisation.  Generators are principles that lead the

architect to select patterns or archetypes.  Examples of

generators include a common object lifecycle, the consistent use of

views or filters on an object or collection, or the use of

indirection between objects and their clients such as might be

provided by certain design patterns.



Chapter Six: A Grounded Theory Model of Software Design Practice

162

6.6.14 Crystallisation

We saw in T6.10 that the architects deal with different kinds of commitments at different

phases of the design process.  The architects report that documents are a particularly

inflexible medium for committing design decisions.  ‘Crystallisation’ is van der Rohe’s term

for a phenomenon of stagnation in software design due to heavy-handed documentation

and process overheads.  van der Rohe has witnessed bureaucratic development processes

weigh down the design process when organisations invest in specifications that make

revisiting an earlier decision or redirecting a mis-directed project difficult or impossible.

‘You can’t aggressively re-factor a specification that’s sixty pages long and cost you half a

millions dollars to write—and there’s your problem’.  van der Rohe’s solution is twofold—he

(radically) suggests not writing specifications, and less controversially, keeping the high-

level structure of the system clearly represented in abstract classes.

In van der Rohe’s view, the existence of a voluminous specification is conventionally

interpreted as progress.  ‘Most people aren’t prepared to change their minds’, he suggests,

‘because they see it as too much investment’.  van der Rohe concludes that it is human

nature to correlate sunk cost with value.  An architect’s decision to terminate a flawed

candidate design is often made more difficult if the effort invested in that option is both

non-trivial and highly visible to his sponsors.  Sunk cost therefore increases the likelihood

of crystallisation.

Crystallisation can be avoided if the architect correctly makes and manages commitments

in the architecting process, and documents those commitments in appropriate ways.

Finding a balance between making progress and avoiding crystallisation can be achieved by

knowing which decisions can (and should) be made now, and which decisions can be

deferred (T6.10).  Architects must direct development teams—‘you have got to make some

commitments… you have got to give enough to the development team to be able to start

developing’, Stickley says.  They need boundaries (such as the choice of tools and

techniques) in order to initiate team progress, but the architects must avoid committing too

many design decisions too early.



Chapter Six: A Grounded Theory Model of Software Design Practice

163

T6.44.  Sunk cost

increases architectural

‘crystallisation’ or rigidity.

The architects are aware that it is common for sponsors and

stakeholders to associate investment in effort (time and therefore

cost) with progress, that volume of documentation is

additionally roughly associated with progress, but that quantity

of design documentation does not imply completeness or quality

of design.  They report that projects sometimes reach a point of

investment in artefacts that makes rework or re-architecting

difficult or impossible, even though flaws in the architecture are

evident and acknowledged.

6.6.15 Archetypes

Experienced architects evolve a small number of preferred solution archetypes over

multiple projects.  A solution archetype is comprised of the essential structure, concepts

and principles that are commonly applicable to a class of problems.  An archetype can be

thought of as a frame or schema (a structural template for organising solution elements and

design know-how).  Archetypes are loose bundles of related ‘soft’ knowledge, and may or

may not include design or code patterns or fragments—as such, they may be thought of as

the knowledge required to design a software artefact (such as an object-oriented

framework).  They are frequently domain-specific, or contain some elements that are

unique to a domain and recur with regularity.  The emergence of archetypes in the

qualitative analysis is significant because they provide a handle on a kind of knowledge

structure employed by the architects.

All experienced architects bring their catalogue of archetypes with them, whether they be

implicit or explicit.  ‘There’s no such thing as green-fields’, Mackintosh states, ‘you’re

bringing along your own legacy system, which just happens to be in your head’.  Architects

draw on this ‘legacy system’ as a way of artificially constraining the field of possible

solutions, and to give them some initial structure when approaching or commencing a new

software architecture engagement.  Experience leads architects to develop a broader base

of archetypes, and to develop confidence in selecting the appropriate one (or part thereof)

in a given design situation.

Lethaby describes his ‘pluggable architecture’ as something which emerged over time from

several projects.  ‘The architecture ideas… evolve from one job to the next’, he states, and



Chapter Six: A Grounded Theory Model of Software Design Practice

164

as a consequence, ‘you are continually revising your body of ideas’.  The concept of

pluggable components in Lethaby’s archetype is neither new nor original.  ‘I guess the word

‘pluggable’ definitely came from Smalltalk… I guess they took it from, you know,

electronics, or they took it from manufacturing’, he contemplates.  Although the idea of

‘pluggable’ is no breakthrough, what is significant is Lethaby’s preservation, evolution and

use of the concept over a series of projects and how he uses his ‘pluggable’ archetype in

conceptualising a new architecture.

Invention and archetype-fitting occur simultaneously.  Some architects describe their

personal process of arriving at a design as one of inventing abstractions and relationships.

Others (and in a few cases the same architects) describe their personal process of arriving

at a candidate design as one of fitting known solution archetypes to the problem at hand.

These two approaches are not mutually exclusive but are instead performed together to

some degree.  Only some of the architects have externalised their ‘legacy systems’ into

archetypes that they could cogently discuss, reason about, and relate repeated experiences

of.  Architects may have solution archetypes that they can freely discuss and describe for

which no published pattern exists.  Their descriptions of their archetypes may appear

unstructured and even simplistic.  Stickley describes the architecture of his employer’s

product in the following terms:

What is the system doing?  In terms of activation and the unified message system… it

is almost just a data flow thing—you’ve got data coming in one end, it gets all sorts of

transformations and things done to it, it gets stored and delayed and then it pops out

the other end… and in the case of activation it can actually go back through again… so

it goes from the management system, down through to the device, and it comes back

up… so you get an architecture that (sort of) goes down, in a ‘U’, to the bottom, down

to the device at the bottom, then back up to the thing at the top… so that actually

defines the architecture.  —Stickley

This cameo reveals how Stickley is comfortable to discuss what is a large and complex

software architecture in remarkably simple terms.  His ‘U’ archetype is probably the result

of a large amount of selective abstracting on his part.  Also worthy of note is the fact that

his depiction, while apparently specific to the system at hand, is an amalgam of known

patterns, including Layers (he refers to messages going ‘down… and… back up’) and

various message encapsulation and storage patterns.  In putting his architecture into a

simple narrative Stickley has constructed a system archetype for the interview situation.  His

earlier comments on architect’s personal ‘prejudice’ would suggest that this particular

archetype is an amalgam of a number of architectures he has designed or worked with.



Chapter Six: A Grounded Theory Model of Software Design Practice

165

The architect’s archetypes appear to be derived from classes of systems they have designed

or had exposure to.  These constitute patterns at the highest level of abstraction.  They

assume a paradigm and imply a particular structure.  For example, Mackintosh talks about

how he toyed with a common archetype for a network management system that he

designed for an Australian telecommunications company.  ‘It’s an Order Entry system’, he

argued at the time.  What complicated the situation was the fact that the system was

intended to automate a telecommunications network problem resolution workflow.  There

were no orders, no stock, no inventory, and no fulfilment processes.  But Mackintosh could

see the essential structural similarities—a ‘network event’ is essentially an ‘order’, and the

network transmission model is essentially an inventory, he believed:

As much as there was a lot of data to capture, it was just names and addresses… the

fact that the addresses were [multiplexed transmission] links [and not delivery

addresses] really didn’t matter.  —Mackintosh

T6.45.  Architects

abstract simple archetype

representations from

complex software

architectures.

Some of the architects were able to narrate large and complex

system architectures in remarkably simple terms in a story-

telling fashion.  Their depictions might involve basic message

traces and paths, holonic self-similarities, metaphors, or a

combination of these elements.  Their narratives are abstract

and span or imply many patterns or combinations of patterns.

Archetypes are similar to knowledge schemas or frames, and

can be thought of as the ‘know-how’ required to design object-

oriented frameworks.  They generally do not include code

artefacts but the architects may retrieve the source code or related

design detail of architecturally significant components from

previous systems when selecting and fitting an archetype.

Archetypes are an efficient and minimal form of knowledge

template—the architects retain only the key characteristics they

need to instantiate or fit the archetype into the new situation.

Architects who work repeatedly in particular business or technology domains develop

domain-specific interpretations of a generalised pattern and treat these as archetypes.  For

example, Johnson describes a variant of Model-View-Controller that he has repeatedly used



Chapter Six: A Grounded Theory Model of Software Design Practice

166

in game software.  The archetype comprises a queue of pending orders (commands) that

have been issued to all of the active game objects.  The orders dictate how game objects

move to coordinates, interact, and so on.  The controller implements various coalescing

algorithms over the queues of commands to implement behaviours that depend upon game

state (such as the stage of the game or the player’s history).  The archetype provides a

conceptual, structural and code-level reference for Johnson’s game architectures.  Outside

game domains, its usefulness without extensive modification is dubious.  As noted in

T6.45, archetypes like this primarily provide value as a vehicle for an architect to package

solution design knowledge.

Architects choose to use archetypes for the same reasons that they choose to re-use

familiar technologies—risk reduction.  The most pressing risk to be reduced for the newly

engaged architect is that of not producing a viable architectural solution.  Using known

archetypes helps the architect to package know-how and leads to confidence in the

proposed solution.  Another reason to use archetypes is to facilitate a stable and reliable

division and transition of work.  System archetypes, such as Mackintosh’s Order-Entry

archetype, are comprised of well-known modules and components.  Architects accumulate

experience in handing off, supervising and delivering some of these components.

Archetypes bring not only architectural structure but also a micro-process for partitioning

work and organising delivery responsibilities and tasks.

The existence of solution archetypes is well grounded in the architect’s accounts of design,

but the processes that they use to select and fit archetypes to problems are less clear.

Cook’s reflective description of how he fits solution archetypes to problems reveals a

significant degree of interpretation of the problem:

OK, it’s different on the surface—well that’s the first alarm bell… I haven’t seen this

before… therefore, it can’t be right… I guess that tells me that that, for a start, I’m

looking at the problem in the wrong way… I must be able to make this look like

something that I already understand… and once I can do that… maybe it requires

breaking the problem down into smaller chunks, such that those chunks conform to

something that I already understand, and then it’s just a matter of putting those

chunks together again.  —Cook

Cook’s archetype-fitting process is ‘continually trying to look at a problem and re-evaluate it

in some well-understood context’.  As we have seen (T6.3), many problems, or parts

thereof, are negotiable.  Where no fit is obvious, architects may go beyond perspective

(T6.35) and deliberately attempt to alter their stakeholder’s perception of a problem in

order to achieve an acceptable fit with an exiting archetype.  Cook describes ‘discounting



Chapter Six: A Grounded Theory Model of Software Design Practice

167

certain aspects’ of a problem in order to achieve a fit with a known solution archetype:

If I just arbitrarily or artificially ignore that, then, the rest of it looks exactly like this

thing over there… so what is it about this special case that makes it suddenly look the

same?  —Cook

T6.46.  Architects

interpret problems in

search of a fitting

archetype.

Just as architects interpret problems to fit known solutions

(T6.28) and to fit known abstractions (T6.39), they engage in

a similar form of interpretation at the solution level.  The

archetypes (system-level structures) they manipulate are an

amalgam of structure, metaphor, conceptual machine and the

associated heuristic knowledge gained from past experience of

implementation.

6.6.16 Personal patterns

The architects are most comfortable with the concept and use of patterns.  They talked

about using both commonly recognised architectural and design patterns (such as Layers,

Model-View-Controller, Proxy, Command, or Composite) and their own informal

‘patterns’—concepts, design fragments, classes, and schemas drawn from their experiences

of design in projects.  The architects used the term ‘pattern’ informally.  For example,

Moore distinguished between patterns and ‘architectural fragments’:

I’ll always think in terms of, not necessarily patterns, I don’t want to say patterns, but

things that I’ve… design fragments or architectural fragments that I’ve seen work

before, which look like they might fit the current problem.  —Moore

Cook similarly talks about patterns as being ‘any approach that I have reused and refined

over a period… whether that be architecture, design, the way I go about installing

software’.  Cook’s patterns include personal or group process conventions.  ‘When

something conforms to a certain picture or pattern, it’s a pattern, and then you come up

with a tried-and-tested solution… a way of solving it’.  Given sufficient time and breadth

of experience, the architects talked of discovering the essential software-architectural

patterns themselves, just as a by-product of good design and modelling practice.  ‘I think if

you have been doing it from the outset, you would have found them yourself already’, Le

Corbusier notes.  Software architects are prepared to discover or mine these ‘personal



Chapter Six: A Grounded Theory Model of Software Design Practice

168

patterns’ from sample code.  The resultant ‘patterns’ may be ephemeral in that they have

immediate use but will not necessarily be written down, or remembered in detail, beyond

the motivating design episode.  Cook describes his practice of doing this:

[I will] just have a look through people’s source code to see the way other people have

approached it… and I will try and get, you know, 3 or 4 or 5 or 6 of these examples, in

the hope that I will see some common thread through these, and I will take that to be

a… if not a standard way of doing it, a defacto standard way of doing it.  —Cook

The fact that these ‘ad hoc patterns’ may reproduce the solutions of well-known patterns

does not concern Cook.  He is pragmatically interested in getting a result that is grounded in

other people’s experience.  This self-motivated code-research is a relatively recent

phenomenon enabled by ubiquitous internet and open source products and libraries.  Moore

is equally unconcerned about rediscovering known patterns for himself:

And you may well be using them, but you don’t know their name, and you don’t know

their formal structure, and you’re not particularly conscious of the way the classes

involved in a particular pattern are described.  —Moore

T6.47.  Architects rely on

‘personal patterns’ when

designing.

Most architects can recite a number of ‘Gang of Four’ patterns,

but regularly use an unknown number of ‘small-p’ patterns—

heuristics, rules of thumb, small code and process structures.

These are drawn from the architect’s personal recollections and

reconstructions of published patterns, design fragments, idioms,

and known solution fragments.  The ‘personal patterns’ that

experienced architects accumulate over time overlap with and

duplicate known architectural and design patterns.  The

architects appear not to be concerned by this rediscovery.

Architects expand their personal catalogue of patterns with each new project.  Architects

do not generalise their patterns during or after each implementation—rather, they

remember the experience of using a pattern on a project and generalise or re-contextualise

from this memory when and if the same pattern is needed in the future.  Sullivan illustrates

how he regards the maturity and utility of his AppCentral concept:

I’m not absolutely certain about my ‘AppCentral’ approach—so I’m sort of adding to

that… I’ve been through a few cycles, so that’s my starting point, I don’t have to create



Chapter Six: A Grounded Theory Model of Software Design Practice

169

that idea any more… they’re sort of like resources you have at your disposal, the ideas

that are already established.  —Sullivan

T6.48.  Architects

remember patterns in an

associative fashion.

Architects generally do not remember the detail of their personal

patterns—instead, they remember the value they associate with

a particular pattern in a situation.  They will call up previous

code samples or other examples when evaluating or reifying the

pattern.

6.6.17 Intuitive leap

The architects were asked to discuss what they regarded as their most successful software

architectures.  Many described satisfaction as deriving from having made an unexpected

breakthrough or ‘intuitive leap’.  Not surprisingly, most of the architects had difficulty in

being objective about the intuitive leap.  Stickley, for instance, is ‘not conscious of it’, and

believes that ‘it’s subtly different each time… and it evolves’.  Learning to design is like

learning ‘the essence of calculus, it’s not possible for you to forget it, it’s not a bit of

knowledge you’ve got, it’s a bit of understanding you’ve got, it’s a part of your person’.

Like ‘the ability to ride a bike’, the ability to design ‘kind of happens in an instant’:

When you’re attacking a software design problem, I think there’s a point—and we talk

about an intuitive leap—there’s a point at which you can actually see the shape of it.

—Stickley

Stickley associates the intuitive leap with translations from one medium into another—from

use case models and requirements depictions into domain or analysis models, or from

analysis models into code, for example.  Intuitive leaps also sometimes occur when

otherwise disparate parts of the same solution are brought together.  The software architect

(as information and knowledge hub) is in a unique position within the project team to

perform this act of combination.  Breuer says that his ability to make an intuitive leap seems

to depend on ‘people coming to me with questions’.  When questioned, he listens and then

reflects ‘on an intuitive level’ about what it is the team member is really trying to achieve.

This gives him distance from the immediate, pressing problems and allows him to

continually reconceptualise the evolving architecture.



Chapter Six: A Grounded Theory Model of Software Design Practice

170

6.6.18 Breakdowns

In the design literature, intuitive leaps are associated with breakdowns (Schon 1983).   A

‘breakdown’ is an unanticipated event that breaks the designer’s path or concentration in

some way.  Reflective designers are sensitive to breakdowns and use them to inform and

alter their personal design actions.  The analogy of driving a nail into a block of wood

(discussed in 3.2.3) was raised with some of the architects in an attempt to get them to

identify the metaphor with their own experience.  In the analogy, the breakdown event

occurs when the hammer glances off the nail head and dents the wood.  The event breaks

the craftsman’s concentration and creates an instantaneous opportunity for reflection.  In

the act of designing software architecture, breakdowns can come in many forms—what is

of interest is whether, and how, the architects are conscious of them and then use them.

In McLuhan’s experience, most breakdowns have their source in badly formed abstractions

around the domain’s ontology.  He strives to uncover well-formed abstractions and

structures, primarily in the data.  He comments that ‘the whole purpose of identifying the

underlying data structure’ is to ensure that things (the software structure) fit together

properly.  A breakdown, he says, is therefore a consequence of an undiscovered structural

flaw and a prompt to reconsider the architecture’s data structures in light of the design

activity that was being attempted when the breakdown occurred.

Lethaby commented that there are weaker kinds of breakdowns which, although not as

destructive as denting the wood, are dangerous to the designer’s or team’s productivity.

‘Maybe your arm is getting sore, because you are holding the hammer slightly the wrong

way’, Lethaby surmises.  And the soreness is a prompt for the reflective designer to ask, ‘I

am just hammering—why is my arm getting sore?’  Lethaby’s observation has similarities

with Morris’ attitude to duplication when doing emergent design—in both stories a sense of

tedium, repetition, or dullness hints at an underlying structural problem.  It is difficult to

put quantitative measures on these kinds of sensory ‘feelings’, they claim.  Morris is content

with ‘listening to the code’ but such notions are considered unacceptable in the software

engineering milieu.  Lethaby does not think that quantifying the phenomenon is necessary or

important:

I think generally there are enough programmers who have a good sense of those

things… fortunately, in environments that I have worked in at any rate, there have

been always plenty of programmers who have had a very good sense of ‘nice code

versus nasty code’—and it shows that I am optimistic that this is a general condition,

that is a human condition where you naturally respond to some kind of elegance in the

code we are writing, and the machines we are making.  —Lethaby



Chapter Six: A Grounded Theory Model of Software Design Practice

171

T6.49.  The architects

identify both hard and

soft exceptions as

breakdown events.

The architects associate both hard and soft software design and

development exceptions as kinds of breakdown events.  A

breakdown event effectively breaks a period of commitment to

the current design task or option, and in some cases, may

constitute a trigger for an intuitive leap.  A ‘hard’ exception or

failure must be addressed by conscious re-design or refactoring.

A ‘soft’ exception is typically less obvious and may go

undetected for some time, but when detected, has the same

result.  Inexperienced or insensitive architects may miss ‘soft’

exceptions.

T6.50.  A breakdown

event may initiate

perspective and/or

paradigm-shifting.

A breakdown draws attention to some aspect of an inadequate

or flawed design.  This forces the designer to re-think that

aspect of the solution, and may lead to a change of perspective.

As a result, a breakdown can initiate a perspective-shift or a

paradigm-shift in an architect’s personal design process.

T6.51.  Breakdowns

demarcate distinct design

episodes in the design

trajectory.

The designers report the personal experience of designing as one

of moving forward in ‘fits and starts’.  This suggests a series of

distinct design ‘episodes’, separated in time, each representing a

period of commitment to the design as it stands, and

demarcated by breakdown events.  Each ‘design episode’

represents the currently preferred design option, and is stable

until proven flawed.

Some of the architects (Breuer, Morris, Sullivan, Johnson, McLuhan, Piano, Utzon) talked of

feeling uneasy, stressed, or tense when faced by a troubling design problem, and a

corresponding sense of relief when a solution is found.  McLuhan voiced this phenomenon

when he described ‘design as a joke’ (see 6.3.1).  Morris talked about removal of code

duplication as a critical factor in relieving this kind of collective team stress.  ‘When we

finally get around to doing it [refactoring] you can see the release of stress’, he says.  Stress

also derives from fighting the solution paradigm or the implementation language.  Johnson

described reflecting on any kind of difficulty, when and where it occurs, as an important

behaviour of the experienced architect:



Chapter Six: A Grounded Theory Model of Software Design Practice

172

I try to do something and it is hard—then I give in and do it a different way and

suddenly everything starts to make sense… and the language … brings me to that—I

love that.  —Johnson

T6.52.  Architects

experience a cycle of

‘tension and release’

when designing.

There is a fundamental cyclical pattern of the personal design

process that is alluded to by the tension that a designer feels

about an unresolved problem, and the sense of release that

resolution brings.  It is informed by the designer's sense of

aesthetic.  It can also be depicted as states of equilibrium in the

design trajectory.

6.6.19 Aesthetic

In design in the tangible word, aesthetics forms one leg of Vitruvius’ tripartite canon

(commodity, firmness and delight).  The architects repeatedly mentioned software aesthetics

and notions of elegance, a perceived quality that guides them in assessing candidate

structures, solutions and designs.  The part played by aesthetics in the work of software

architects is an intriguing theme.  Although the existence of the phenomenon in software

design is hard to deny, going beyond recognising ‘software aesthetic’ to useable definitions

is difficult.  ‘It’s very important but extremely hard to define’, suggests Utzon.  ‘It is

essentially intuitive’, says Cook, who reports being able to ‘look at something and either

have an intuitive feel that this is an elegant solution or it’s not’.

The software aesthetic appears to be both subjective and experiential.  ‘It is very

subjective’, claims Utzon, who relates how he has received widely divergent responses to

‘the same architectural principles’ from different clients.  His explanation is that different

audiences have different degrees of readiness for investment in software quality, and

software architecture.  When McLuhan talks about how ‘in an elegant solution things fit

together well’ he is talking about his model of how the objects are interacting in the

executing solution.  Primarily, he looks for ‘a degree of elegance associated with use and

usefulness of it’.  For Howard, an ‘elegant’ domain model is generic, abstract, and as a result

of this abstraction, flexible and adaptive.  But his abstractions must be grounded in actual

examples.  Elegance may be correlated with clean, simple mappings between domain

concepts and solution model concepts.  Johnson describes ‘elegance’ in software

architecture as being implied by a transparent mapping—‘pretty much everything in the



Chapter Six: A Grounded Theory Model of Software Design Practice

173

UML and in the classes had a nice clean correlation in reality’.  Morris was clear on his

understanding and use of ‘software aesthetics’—he describes ‘listening to the code’ as an

intrinsic part of doing emergent design:

Doing emergent design is doing as much design as I am confident of, and then trying it

out, and then modifying what happens based on the feedback that I get from the code.

—Morris

Morris uses his aesthetic sense to regulate the rate that he modifies his source base.  ‘Things

then get a little bit new-age-y’, he says, ‘because you start to talk about ‘listening to the

code’ and listening to what the system is telling you’.  Morris explains what he means by

‘listening to the code’ in terms of his model of learning.  The model has three different

phases which he transitions through when he learns something new.  First, he learns

something to a point where he can reproduce what he was told.  Next, he achieves

sufficient understanding to be able to reproduce the task without anyone’s guidance.  At

this stage, he cannot necessarily explain what it is he is doing—he may ‘just do it’.  At this

level of maturity, he describes being able to ‘listen to the code’.  Finally, he reaches a level

where he is aware of his own internal processes and reasoning.  At this level, he can explain

it in a way that he can educate others.

Elegance may be associated with usefulness and universality of application.  For example,

Cook typifies ‘elegance’ in software as a characteristic of a system that allows it to fit a

range of related problems, with minimal change or adjustment.  The factors that led to one

of his most successful projects included the ability to ‘continually take problems and re-

evaluate them in the context of what we’d already done’.  The software architecture was

lenient in the face of new uses—it ‘accepted’ new applications with minimal change.  ‘To

me, that’s an indication of elegant software… with very little change, you can incorporate

new concepts or solutions to new problems’, he summarises.

6.6.20 Habitation and aesthetic

Some of the architects associated habitation and the software aesthetic.  There is an

analogy between occupying a physical designed space (such as an architect’s building) and

occupying a designed conceptual space (a software architect’s system architecture).  Utzon

draws on this analogy strongly:

I think that, when people walk into a building that really works, they know… and I think

people know that about software as well… when they start walking around a software

design, they know.  —Utzon



Chapter Six: A Grounded Theory Model of Software Design Practice

174

Johnson describes a tangible sense of occupancy of software designs and code.  ‘I have come

up with designs that I don’t want to ever go back to, I don’t want to touch the code, I am

scared to go there’, he admits, ‘I don’t want to occupy that space’.  By contrast, his ‘good’

designs yield a positive sense of habitation.  ‘I love that space, I love going back’, he says,

‘I can go there and I can read it, I can make changes and I know what I am doing’.  Johnson’s

aesthetic sense appears largely motivated by readability, conceptual and structural clarity,

and tidy source.

The experience of habitation of software and built-world structures are similar but not

identical, and it is likely that some people have one but not the other.  ‘We all have an

innate sense of what makes us comfortable in a living space… we do not all have that

sense of what is comfortable and livable inside a piece of software’, claims Morris, drawing

from his extensive mentoring experience.  He draws the conclusions that ‘some people

aren’t suited to software development’ because ‘they don’t have that sense of what I call

‘software aesthetics’’.

6.6.21 Application of aesthetic

Morris reports that software aesthetic becomes useful in the context of a team:

I try to teach people to make technical decisions and listen to the code and appreciate

the software aesthetics, but that is what they can do as individuals… but I try to place

as much emphasis on teaching them to interact positively with the rest of the team, as

I do on learning to appreciate the software aesthetics, because one is important in the

solo environment and the other is critical for the team environment.  —Morris

Although the architects talk about eliminating duplication and striving for simplicity,

elegance is not the same as simplicity.  ‘I look at something’, Cook states, ‘I either have an

intuitive feel that this is an elegant solution or it’s not… and when it’s elegant… whether

it’s considered simple by one person or not, it’s the right solution’, he proffers.  The ability

to share concepts, and to jointly see concepts in a design or code with others, is one

important signature of architectural elegance.  The preservation of an essential theme in a

structure or architecture, or the absence of its corruption, is another signifier of elegance.

‘The less the designers and the programmers corrupt the theme… the more successful your

architecture is’, suggests Utzon.

Some of the architects correlate software aesthetic with a sense of ease experienced by the

architect in the design act.  For Cook, the experience of not being able to distil a problem

into a set of statements or principles suggests that he does not understand the problem



Chapter Six: A Grounded Theory Model of Software Design Practice

175

sufficiently well.  The architect’s sense of ‘elegance’ in a design may also be inversely

proportional to the amount of perceived compromise that he has made in realising the

design.  Cook observes that, while his and another architect’s definitions of what seems like

an elegant solution may not be all that different, their willingness to compromise on certain

issues may be very different.  ‘I may consider some things to be more important than

others, and that will bias my decisions’, he says.  For McLuhan, elegance is ‘very important’

because ‘that’s the part of making everything fit properly… in an elegant solution, things fit

better’.  He regards elegance and ‘things fitting together’ in a dynamic sense—in the

conceptual machine described earlier.

Several of the architects talked about symmetry contributing aesthetic qualities to

architecture, and of it being an indicator of both elegance and simplicity.  ‘Symmetry is a

key issue in the elegance of the solution’, offers Breuer.  Many problems have an underlying

structure, and the skilled software architect strives to uncover and exploit the natural

symmetries in the structures of both problems and solutions.  Symmetry is important in

software structures because it typically reduces code volume.  Breuer describes how he has

been able, at times, to take a view from a particular perspective of the business domain or

the problem that resulted in a solution that collapsed down into a grammatically simple

structure.  For Breuer, the fact that it does collapse into something so elegant ‘means that

you have to be right… this has to be the way to go’.  Elegance, or in this case symmetry,

confirms correctness.  Breuer goes further than the other architects on this point—

‘symmetry is, I suppose, one of my guiding lines… if something is not symmetrical then I

have probably got something wrong’.

T6.53.  The architects

describe being guided by

an aesthetic sense.

The architects describe being guided by what they refer to as an

aesthetic sense.  This relies on a combination of inputs on

design elegance and quality.  Software aesthetic appears to be

correlated with symmetry.  It is important in the architect’s

personal design process because it drives them toward design

decisions and interventions.



Chapter Six: A Grounded Theory Model of Software Design Practice

176

6.7 Conclusion

To commence the interviews, the architects were asked to define their understandings of

software architecture and design, their role, and their attitude to methodology.  Although

each architect told a personal story, all of the themes reported here were voiced by several

or many.  Some of the findings are surprising—for what they say about the practice of

software-architectural design in Australia, or for the certainty with which they were stated.

6.7.1 Definitions and Context

The first three topic’s subject matter overlaps considerably.  For example, discussion of the

context of designing occurs in the ‘What is software architecture?’ map, the ‘What is

software design?’ map and the ‘Architect’s role’ map (Appendix F).  In most cases, the

themes in each of the three topic maps provide a different perspective on the same aspect

or phenomena, so the maps reinforce each other.  In general, the analysis does not

contradict the conventional view of the software architect but enhances it with detailed

and rich descriptions of activity in context.  The architects think about ‘software

architecture’ in process or product terms interchangeably.  They regard architecture as

motivated by many concerns over and above the technical, including the preservation or

disruption of the existing systems equilibrium and requirements negotiation.  They see its

purpose as going beyond software structure and quality to include team boot-strapping,

distribution of work, selective de-skilling of the construction team, and transfer of project

risk.  They regard software architecture as fundamentally creative work, independent of the

domain or level of abstraction.  They use software architecture as a vehicle to both commit

and defer project and design decisions, and they report the tension between rational

methods or processes, conventional planning regimes, and the creative activities of design.

In contrast to ‘software architecture’ they think about ‘software design’ in terms of filling

out the architecture, or as the resolution of forces presented by the unresolved architecture.

They do not distinguish between how they approach software design and architecture,

citing abstraction skills and previous exposure to design solutions as the key enablers of a

design capability.  Individual architects generally express a preference for either doing

design ‘up front’ or for allowing design to emerge as they code—however, those who prefer

emergent design admit to conceptualising designs in their minds (sometimes in a semi-

formal grammar or model) ahead of coding.

They see the software architect’s role primarily as a designer, but also as a team leader,

facilitator, salesperson, and mentor.  They see the architect as having a responsibility to



Chapter Six: A Grounded Theory Model of Software Design Practice

177

design for the construction team they have at their disposal rather than to pursue

perfection in design.  They admit a number of ways that their personal biases can influence

their designing, including career investment and acquiring new skills.

Almost universally, the architects expressed disappointment and disillusionment with

methods and methodology.  They do, however, cherry-pick techniques from methods and

use these, often appropriating them as their own.  The most useful techniques are those

that can be applied across business domains, technologies, levels of abstraction, and

changing technologies.  Figure 13 presents a depiction (in the style of Gasson’s model) of

the architect’s context as they related it.

Business
stakeholders

Sponsor

Client

Software
Architect

Developers

Development Team

optimal_skill_level
capability

Artefact

Goals

Design activity

Solution
architecture

Requirements &
functional specifications

Vision

System landscape

creates

Communicate progress

Negotiate requirements

Confirmed by

Interprets

Constrains

System
architecture

elaborates
elaborates

Software architecture

creates

bootstraps

fulfils

fulfilsStabilises or destabilises

Constrains

controls

fulfil

expresses

Uses architecture
to drive

Activity Role Model Objective

Figure 13:  The architect’s design context as described by the architects.

6.7.2 Design act

During the interviews, the architects were asked to describe how they approach the design

of software architecture, their personal design process, and their most successful software

architectures.  In describing their approach to design, the architects talked mostly about

abstractions and abstraction skills, patterns and archetypes, dealing with complexity, the

relationship between problem and solution spaces, and various forms of bias.



Chapter Six: A Grounded Theory Model of Software Design Practice

178

Starting with analysis of the problem space, the architects again showed a propensity to

negotiate problems to match known problem types, reconceiving problem definitions

where possible to match their experience.  During this problem negotiation period the

architects also assemble their personal design process based on situational factors and

forces.  Their opinions on the importance of problem-solution transparency diverge.  As

they move quickly into solution considerations, the architects adopt various ways of

managing solution complexity, including relaxing and tightening solution space constraints,

and employing system archetypes from their repository of experience.  Some agreed that

the architect’s design skill is partly revealed by how well complexity is addressed.

The process of software design naturally expresses a language of the solution in the form of

an ontology—patterns, abstractions and models.  As the design proceeds, architectural

reduction often signifies progress as redundant parts of the architecture are re-factored or

eliminated, and like parts are converged.  The architects use a range of views on

architecture (conceptual, static, dynamic, historical) with some expressing a personal

preference for static or dynamic views.  The architects seldom invest in evaluating options

but instead rely on personal judgement to select a solution option quickly.

Abstraction skills are paramount in the architect’s reflections on designing.  Architects

consciously select abstraction levels for their architecture’s purpose and its consumers.

Architects abstract with equal skill in business, software and process dimensions, moving

flexibly between levels of abstraction and again relying on their personal experience when

evaluating candidate abstractions as well as abstraction quality.  Architects use abstraction

to exploit similarities to achieve simplicity.

The architects were well aware of bias, and named perspective and paradigm as two

sources.  There is little evidence of architects capitalising on bias by consciously

considering or shifting perspectives to identify options and evaluate requirements.

Some of the architects were able to abstract simple archetype representations from

complex software architectures, and to use these in a kind of narrative fashion for

description and communication of their architectures.  These archetypes constitute a frame

or schema for organising knowledge around solution design.  Several architects were aware

of a small number of archetypes and admitted reusing them frequently across engagements

and business domains.  As well as interpreting problems, some of the architects described

actively interpreting problems in search of a fitting archetype.  Archetypes are strongly

related to the underlying technology platforms.

The architects talked of relying on ‘personal patterns’ (solution fragments and design



Chapter Six: A Grounded Theory Model of Software Design Practice

179

know-how) when designing, which turn out to be orthogonal to published design and

architectural patterns.  The architects remember these ‘personal patterns’ in an associative

fashion (that is, for their benefit in design situations past) rather than via any kind of

formal or informal taxonomy.  There is evidence that the architect needs strong

commitment to the model or architecture to promote its adoption.  When designing, the

decision-making model is coupled with the notion of breakdowns and the intuitive leap.

The architects identify both hard and soft exceptions as breakdown events.  A breakdown

may initiate a shift in perspective and/or paradigm that leads to a design re-

conceptualisation or discovery.  Breakdowns also demarcate episodes in the design’s

trajectory or stable intermediate states in the design’s maturing.  Some of the architects

report experiencing a cycle of ‘tension and release’ when designing—tension builds to a

breakdown event which precipitates an alternate option, view or concept with an

accompanying sense of resolution.

The architects are almost universally guided in their decision-making by a sense of software

aesthetic.  They talk of ‘listening to the code’ and ‘knowing’ when a design is right or not

yet right.  The architects found it difficult to objectify their notion of software aesthetic,

but symmetry appears to be one important ingredient.  Figure 14 presents a depiction (in

the style of Gasson’s model) of the design act as the architects related it.



Chapter Six: A Grounded Theory Model of Software Design Practice

180

selects

Archetype
Archetype

Software
Architect

Design goal

Public method

Conceptual design

Routine design

Design episode

Demarcated by
breakdown

Personal
method

Constraint

Capability

ArtefactActivity Role Model Construction

assembles

inf
lue

nc
es

Ontology constrains

adopts

expresses

frames

Paradigm/
perspective

Archetype

Bias

exhibits

negotiates
problem to fit

constrains

constrains

Figure 14:  The ‘design act’ as described by the architects.

This completes the thesis’ grounded theory profile of the practice of software design.  The

next chapter builds on this by exploring two significant case studies.



181

Chapter 7:  Case Studies in Situated

Software Design

If you want to build a factory, or fix a motorcycle, or set a nation right without getting

stuck, then classical, structured, dualistic subject-object knowledge although

necessary, isn’t enough.  You have to have some feeling for the quality of the work.

You have to have a sense of what’s good.  That’s what carries you forward.  This sense

isn’t just something you’re born with, although you are born with it.  It’s also

something you can develop.  It’s not just ‘intuition’, not just unexplainable ‘skill’ or

‘talent’.  It’s the direct result of contact with basic reality.  Quality.  Which dualistic

reason has in the past tended to conceal.  (Pirsig 1974, p. 277)

7.1 Introduction

This chapter presents two case studies to further illustrate the nature of situated software

design.  Each case study is drawn from the accounts of one or more of the interview

participants, and describes a project conducted in Australian private and government

organisations between 1997 and 2004.  The case study is a form of documented

observation that allows the researcher to describe and explain complex social phenomena.

Case studies yield holistic and meaningful characterisations of real-life events (such as

individual life-cycles, or organisational and managerial processes) and are well suited to

research questions that ask ‘what’ and ‘why’ particular phenomena occur (Yin 1994).  Case

studies should primarily report grounded, practical, factual results, as distinct from the

interpretations of the results.  The validity of generalising from one case study to theory is

supported in some cases (Shanks et al. 1993; Yin 1994).  Yin (1994) recommends that a

well-designed case study should have five components—a motivating question, its

propositions, a declaration of the unit of analysis, a way of linking the logic of the case

study to the propositions, and criteria for interpreting the findings.  These elements are

stated for each of the case studies.



Chapter Seven: Case Studies in Situated Software Design

182

7.2 Case 1: The Naissance of the Decision Tree

The first case study examines the origins and design of a software-architectural component

in a large business system development project.  The invention and introduction of this

component made a substantial contribution to both the architecture and the overall

viability of the project.  The designer of this component was the participant Breuer.  He

cites several of the project’s senior designers as having acknowledged that the introduction

of this component saved the project from impending termination by eliminating a large

amount of user interface, application code and relational database structures.  The case

study highlights how the design came about, what factors impacted the component’s

design, and how the interplay between the senior designers—each working from markedly

different perspectives—influenced the designer and directly shaped the component’s

design.  That these design episodes occurred independently of the project’s prescribed

methodology and design process is a significant finding in itself that serves to illustrate the

disconnection of project-level method or process from the events that initiate design

episodes.  The adoption of the design necessitated a technological and cultural shift in the

direction of the project, and the story of how the component was adopted across the

project illustrates paradigmatic shifts in project cultures at times of impending crisis.

Breuer’s reflective account also serves to highlight the importance of being prepared to work

in different modes of thought and communication in achieving acceptance and adoption of

his design.

The following declarations about the design of this case study satisfy Yin’s (1994)

guidelines for case study structure, and the preconditions for generalisation of the results.

The motivating question for this case study is simple—do the defining features of the case

study confirm or refute the characteristics of situated design as presented in the previous

chapter and also in Chapter Five’s design assessment framework, particularly those in the

planning, generators, collaboration, control, process and method dimensions?  The

proposition is that the case study confirms the relevance and validity of the grounded

theory assertions and the framework.  The unit of analysis is a group of designers working

collaboratively.

7.2.1 Actors and Roles

The case study narrative is related by Breuer who acted in the role of the software architect

for the enterprise services component of a large financial services project.  Breuer was a

consultant supplied to the bank from the vendor whose software product was being used



Chapter Seven: Case Studies in Situated Software Design

183

for the development of these services.  Three other senior designers appear in the account.

As they were not interviewed for the main part of this study they do not already have

pseudonyms, so they will be referred to as Chen, Nygaard and Goldberg.  At the time of the

case study, Chen was an author and consultant data modeller of international repute

assigned to the project to oversee the database design.  Nygaard was a senior consultant

and trainer with fifteen years of experience in object-oriented system development.

Goldberg was a member of the organisation’s staff with twenty-five years of systems

development experience.  As a result of their individual and collective experience, the

foursome constituted a de facto design team that made most modelling and design decisions

immediately prior to implementation.

7.2.2 The Business Context

The project was charged with designing, developing and delivering a large asset finance

system for a leading Australian bank in the period from 2000 to 2003.  The project had the

ambitious agenda of redeveloping an entire suite of legacy applications for which

experienced programmers were beginning to become scarce.  Another motivation was the

perceived need to be able to deploy browser-based applications to both the external sales

agents and internal branch and head office staff.  The desire to replace the mainframe with

relational database and application server technologies was also strong.

The project had a budget of approximately $A30M and peaked (in terms of headcount) in

February 2000 at nearly one hundred people.  Teams were organised around business

analysis and domain modelling, the design and implementation of HTML and Java Server

Pages, application services, and database and transaction design.  A significant

commitment was made to the project-wide use of a commercial object-oriented

development methodology (Mentor (Edwards 2006)) and to the use of the Unified

Modelling Language (Rumbaugh et al. 2004) as the common modelling notation.  The

project applied UML structuring concepts by dividing the business domain into about ten

functionally-bounded packages.  The packages defined teams as well as functional scope,

and the vertical division between teams was strongly enforced by project management

processes.

Like most contemporary business systems, a requirement existed for the system to be

highly customisable and responsive to the rapidly changing financial services marketplace.

This flexibility was regarded as critical to the project’s success, particularly in the areas of

products, contracts and commissions.  A ‘product’ is a financial service offered to clients



Chapter Seven: Case Studies in Situated Software Design

184

via agents or dealers.  At the time of the project’s initiation, the bank offered several

hundred separate products.  Many products were related and many shared attributes.

There were some products for which successive versions differed only by the addition or

deletion of an attribute.  A ‘contract’ is the binding agreement between the bank and a

customer that defines the terms and conditions of a product’s sale.  Agents typically strike

contracts with new or returning customers by starting with a generic contract and

modifying its clauses or conditions during the negotiation process.  The result is that very

few actual contracts are identical.  ‘Commissions’ are arrangements put in place between

the bank and each agent that define the amount of commission the bank pays to the agent

upon sale of each product.  Like contracts, individual commissions are struck by modifying

the attributes of a template commission during the negotiation process between the bank

and an agent.

The case study concerns the design of the Product package, a key component of the

application for two reasons.  Firstly, the business administered several hundred products at

any time and the product configurations controlled how a product could be sold and what

revenue followed.  So an accurate and unambiguous representation of all products was

critical to the successful operation of the business.  Secondly, products had to be very

flexible—a product might be in use for anywhere from three weeks to ten years, during

which time it might undergo weekly changes.  The design of the Product package had to

support flexible creation, editing and management of products within this volatile business

environment.

The designers determined that a product should be defined by instantiating from a template

product, and that each product would need to be a composite of parts.  Conceptually,

products are a kind of assembly—each is a composite of parts, and each part can be

configured in a number of different ways.  Non-composite parts of a product are its

attributes—examples include applicable sales regions, sales restrictions, applicable asset

classes, finance limits, security types, draw-down and redraw options, and the usual

identifying attributes.  Defining a new product involves more than simply configuring its

attributes and composing parts, because the allowable set of parts that may be used in the

same assembly is governed by business rules (or dependencies) and constraints that exist

between both the parts and composites.  A conceptual model of product would therefore

need to support cloning specific products from generic product templates, the assembly of

products from attributes and parts, the version history of a product family, and the

dependencies between parts, product parts, and products.



Chapter Seven: Case Studies in Situated Software Design

185

7.2.3 Design episodes 1 and 2: First attempts

The design of the Product package was done in three major iterations that occurred over a

period of three elapsed weeks.  The first model (Figure 15) was produced by a relatively

inexperienced modeller (from the project’s internal domain modelling team) who possessed

limited modelling experience.  The modeller’s team leader scheduled a review meeting,

after which the design would be frozen for implementation.  At the meeting, Chen, Nygaard

and Goldberg all expressed doubts at the validity and usefulness of the model—they thought

it unlikely that all of the classes had been discovered, and that the model as it stood would

support these additional abstractions if they were added.  Several of the reviewers observed

that the approach of modelling basic business domain objects would not meet the required

degree of flexibility and that a different kind of model would be needed.  The domain

modeller did no further work on the package.

Figure 15:  Original Product design (first design episode) as presented for peer review.

Following the unsuccessful review the Product package was picked up by Nygaard and

Goldberg, who spent half the following day working from scratch on a new model.  After

several hours they had a candidate model (Figure 2) which was unfinished.



Chapter Seven: Case Studies in Situated Software Design

186

Figure 16: Product model redrawn (second design episode).

The model exhibited one important additional abstraction—the introduction of a class

(Feature) that replaced all domain-specific feature classes in the first-cut model.  This

meant that each feature would be represented by data, allowing the required degree of

flexibility of features.  The model also accounted for multiple versions of products



Chapter Seven: Case Studies in Situated Software Design

187

(‘Product_Version’ class) but it did not model a convincing representation of the

constraints between features and other features, or features and products.  This version of

the model addressed the most obvious shortcomings of the first version but Nygaard and

Goldberg’s modelling effort slowed when no obvious solution could be found to these

remaining problems.

7.2.4 Design episode 3: A data-oriented alternative

The next day, Chen joined Nygaard and Goldberg in an informal meeting to talk through the

progress on the revised model.  Before Nygaard or Goldberg had had a chance to explain

their model and its shortcomings, Chen (who had not seen their model) interjected with an

offer to propose an alternative model.  He walked up to the whiteboard and immediately

drew up the essence of a new model, based on a central idea that each specific product

should be thought of as a set of pointers or references into a catalogue of product features.

His alternate model (Figure 17 depicts both his original sketch and a re-drawn model)

clearly demarcated between the product features in the catalogue available to be used in a

product (AvailableProductFeatureValue) and a second class which modelled the

inclusion of a particular AvailableProductFeatureValue in a product

(ActualProductFeatureValue).  This model variant allowed independent control over

the catalogue of product features and their values that the Nygaard-Goldberg model did not.

It was enthusiastically received and the design team agreed to adopt Chen’s model.



Chapter Seven: Case Studies in Situated Software Design

188

Figure 17:  Product design—data-oriented version (third design episode).

Breuer recalls that the other designers were impressed by Chen’s seemingly instantaneous

modelling effort.  Later, Chen revealed that the essence of his model (which he referred to

as the ‘catalogue-order’ model) was a pattern that he had successfully used in data models

several times before.  When asked whether he had read this pattern somewhere or



Chapter Seven: Case Studies in Situated Software Design

189

discovered or developed it himself, Chen felt strongly that it was one of his designs.  Chen

was able to recount in detail its reification in a data model he had designed several years

earlier for a government transport organisation.  This familiarity enabled him to reproduce

it with impressive speed.

One problem remained with Chen’s catalogue-order pattern, however.  The constraints that

served to limit which feature category, feature, or feature value could legitimately be used

in any given product still needed explicit representation in the model.  Chen decided to

model these as entities that resolved the many-to-many relationships between feature types

and a product version as per data modelling convention.  These entities took the prefix

‘Allowable’ to indicate that each instance represented one allowable combination of a

product and a feature category, type or value.  Although this clearly worked, Chen, Nygaard

and Goldberg went away thinking that a complete solution had yet to be determined, and

further work would be needed to find a satisfactory representation of the constraints.

7.2.5 Design episode 4: A rule-oriented solution

While this model appeared highly suitable at a business modelling level of abstraction,

Breuer was not convinced that he wanted to implement these constraint classes in the

application services and the database.  Breuer could not see how an implementation of

these constraints could be achieved with the same degree of elegance exhibited by the

model’s solution to the catalogue-order part of the problem.  Chen’s model appeared to

Breuer to have been created from a data perspective and it gave the developers no

assistance in knowing how to implement the constraints.

Breuer argued back and forth with Chen over how to best represent the constraints whilst

still preserving the catalogue-order pattern in the model.  The next revision and the shift in

perspective that allowed its conception involved Breuer in isolation.  He recalls the instant

at which the seed of an alternate design formed in his mind:

Chen got upset in a meeting, and threw his hands in the air and he uttered a key

phrase… and that key phrase was—‘all I need to be able to do is to transport a set of

business rules from the back end to the front end and have them execute’… that was

the key content of what he threw out during that meeting.  —Breuer

Breuer recalls that in the first instance he took Chen’s comment as a criticism of his

company’s product (which was being used to develop the enterprise services).  Even before

Chen’s comment, Breuer had been well aware that the issue of how business logic should be

allocated across the application’s tiers had proven troublesome—he believed that it



Chapter Seven: Case Studies in Situated Software Design

190

remained an unresolved and architecturally dangerous problem.  ‘When he put it like that

he encapsulated and put precisely what the requirement was… and he was right, we had to

put rules in somewhere, and make those rules execute on the front end’, he recalls.  To that

point in time, Breuer claimed, the models had been produced from a data perspective and

this had meant that the importance of the business rules (the constraints between features)

had been overlooked.  ‘It wasn’t a data relationship problem’, Breuer claimed, ‘it was a

business rule representation problem’.  Next, Breuer produced his own model which

addressed this perceived imbalance.  He recalls what happened next:

I went home and thought about it at every level… I don’t recall not watching

television… yes I do.  I think I just fiddled with some papers, played piano, did

something, let it lie fallow for a bit, but it kept on re-echoing… I know I probably didn’t

go to sleep very early, it was probably more like 3 o’clock in the morning… Chen had

encapsulated the problem exactly, and I was predisposed to thinking about

representing business rules in a hierarchy… it kind of seemed just obvious from

experience.  —Breuer

Breuer decided that if the abstract concept was one of decisions, any business rule must be

conceptualised as a hierarchical collection of decisions.  The resulting architectural

component that he designed was named the ‘Decision Tree’.  Its class model (Figure 18)

illustrates the concept.  The tree stores feature values and each feature’s sub-tree of

dependent features.  A single self-referencing class (ProductRuleElement) implements

the recursive concept of a decision leading to further decisions.  The Decision Tree is best

explained with an example.  A loan product might be represented with a tree of about

twenty nodes.  The root node is the first feature that needs to be resolved in navigating the

loan product tree and each allowable value forms a sub-tree below the root.  If the root

feature is the type of loan, then the allowable loan types (say, ‘interest-only’ and ‘interest

and principle’) each form sub-trees.  The structure is executed by traversing the tree from

the root to a leaf, and presenting the question at each node to the user.  Interrogating a

product represented as a Decision Tree involves a single traversal of the tree from its root

to one of its leaf nodes, based upon actual arguments or selections made by the user.  Each

completed traversal results in a vector of values that define the user’s selection of all

mandatory and optional features at each node in the trajectory.



Chapter Seven: Case Studies in Situated Software Design

191

Figure 18: Product design—rule-based version (design episode four).

The design team collectively felt a penny drop as the implications of the Decision Tree

began to dawn.  ‘Everyone who I talked to (who actually understood the issues) took it as

if the sun had just come out’, Breuer remembers.  Firstly, use of a tree structure solved the

problem of enforcing dependencies between features with a simple tree traversal.  The

solution preserved all the benefits of its predecessors.  Like the Nygaard-Goldberg revision,

its features, categories and values were all stored as data rather than as domain-specific

classes.  And like Chen’s catalogue-order pattern, the set of available product features was

kept distinct from the actual (used) ones.

Further advantages of the Decision Tree were realised in its implementation.  Firstly, Breuer

proposed to store the Decision Tree in a single database table and to write code that

generated the tree as an XML document, which would be transformed into HTML for

transmission to the user’s browser, where it would handle the user-entered or selected

results.  Thus the user interface required to present a product could be automatically

generated.  Up until this point, the project had planned significant effort to have this part

of the user interface hand-coded.  The use of the Decision Tree meant that all of the

product’s attributes, and all web forms that presented and prompted the user for values or

selections could be entirely data-driven.  To make the Decision Tree even more

compelling, Nygaard and Goldberg started finding additional applications of the Decision

Tree in other functional areas of the system beyond products—agreements and

commissions quickly became candidates.



Chapter Seven: Case Studies in Situated Software Design

192

7.2.6 Designer’s reflections on the design process

Breuer talked about the origins of his idea.  He had perceived a propensity amidst the

project teams to slavishly adhere to the conventional two or three-tier business application

architecture (a relational database with business logic in the client or application tier).  He

had to work hard to undo the implicit biases of his developers toward this orthodoxy:

I think there are a lot of myths… I had to undo a lot of the developer’s myths too… [the

myth that] the whole of the system should have been built into a very simple set of

database tables… because it is not data-intensive, it is business-rule intensive.’  —

Breuer

In the history of the project there had never been an architectural design phase in which

some of the fundamental technology issues had been considered from an architectural

perspective.  As well, parallelism of the package-based development process unnecessarily

exerted pressure on the implementation and database teams and did not allow for their

discoveries to feed back to the rest of the project.  The widely varying capabilities of the

large number of developers additionally confounded any efforts from the design team

members to effect change.  Breuer was convinced that to have proceeded with the

entrenched development process would have lead to inevitable project collapse:

This can’t be right, it’s too complex… we’ll never finish implementing, because as soon

as somebody changes something it will be hopeless to undo, because we don’t

understand all the interconnections… so what is the simplifying principle?  That

simplifying first principle was—‘business rules are a tree’… that was the elegant,

simplifying concept.  —Breuer

His conviction that the Decision Tree was the right solution was largely based on a

personal belief in his notions of structure and correctness:

The fact that it did collapse into something so simple and elegant meant that it had to

be right, this had to be the way to go… one of my guiding lines here is that if something

is not symmetrical then I’ve probably got something wrong.  —Breuer

Adoption of the Decision Tree on a project-wide basis had the potential to remove a

sizeable component of analysis, domain modelling and screen prototype work in progress.

The decision had to be made quickly, if at all.  Breuer referred to this project-wide sense of

momentum with the current solution approach as ‘a number of locomotives bearing down

the tracks at us’.  Breuer worked long hours for three days to rapidly prototype the first

Decision Tree.  There was no time to do an exhaustive examination of the Decision Tree

concept, as the project was heavily staffed with a number of implementation teams that

had been under-utilised for some weeks.  This had focussed attention on the design team,



Chapter Seven: Case Studies in Situated Software Design

193

which was now perceived as a significant project bottleneck.  Breuer’s initial prototype

demonstrated the storage of a representative product tree, identified the types of nodes

required (enumerated types, display-only, boolean, unformatted and formatted data entry),

automatically generated HTML and handled the user’s selections and responses in an XML

document.  A project meeting was held a week later and a decision was made to adopt the

Decision Tree as a fundamental architectural building block.

It is interesting to note that until this point in time, Breuer had received no direct

instruction from management and was acting entirely in a bottom-up fashion.  ‘Someone

needed to stand up at a point’, Breuer claims, ‘and state that the project’s architectural

approach was wrong and had to be changed’.  He saw the Decision Tree as the mechanism

to achieve this redirection.  Breuer regarded that the project would almost certainly fail if

left to a conventional data-oriented architecture and design approach, because the

necessary continuous maintenance of the data model and business logic would be

unachievable.  He believed that the Decision Tree was the project’s only saviour and that

staking his reputation on a significant architectural decision was a worthwhile gamble.  On

reflection, Breuer assessed that his attitude toward risk was ‘fifty percent self-confidence

and fifty percent knowledge’, and that the degree to which a designer is risk-averse is

largely a function of personality:

It’s hard-wired into my personality that if there’s an opportunity to rip up the tracks

and lay them down somewhere else—I will do it… I wouldn’t call it bravery… although a

lot of people do.  —Breuer

Breuer’s risk-taking paid off with the decision to adopt his component.  The Decision Tree

was fully implemented and spread as predicted into other functional areas of the system.

The project team shrunk markedly in the months that followed and Breuer moved into the

role of lead application architect.

7.2.7 Relationship to Grounded Theory

Breuer’s story of how the Decision Tree design came about illustrates four distinct design

episodes alternately led by each of the collaborating designers in a self-selecting network of

roles.  The key breakdown event is evidenced graphically by Chen’s meeting outburst,

which stimulated Breuer’s conception of the generator that drove the conceptualisation of

the Decision Tree.  In each distinct episode, the breakdown initiated a perspective or

paradigm shift (T6.50), from a naive perspective, to the object paradigm, then to the data



Chapter Seven: Case Studies in Situated Software Design

194

paradigm, and finally to a functional paradigm.

Each episode illustrates how the architects relaxed different constraints in order to achieve

a model (T6.29).  The first model ignored too many constraints to be viable but constituted

a model nonetheless.  The Nygaard/Goldberg model over-simplified the distinction between

allocated and available product parts, and Chen’s model over-simplified constraints.  In all

three cases, relaxing a constraint allowed creation of a model but the subsequent attempt

to tighten the relaxed constraint resulted in a breakdown event which marked the end of

the episode and created an opening for the next designer.

Chen’s ability to contribute the third model variant followed from his experience with using

it previously (T6.46).  That he had a name for his pattern (the ‘catalogue-order’ model) and

believed he had derived it from his own modelling experience reinforces it as an archetype

(T6.45).  Perhaps Chen’s biggest frustration was that he was not afforded an environment in

which to negotiate the user’s requirements on constraints to fit his predisposed solution

(T6.19, T6.46).  Breuer explicitly recognised that Chen’s (data) paradigm bias blinded him to

finding a solution to the constraints representation part of the problem (T6.36) because

there was no workable solution in a data model.

An aesthetic sense appears to have been a significant factor in the assessment of each

option (T6.53).  While Chen’s model reduced the earlier model’s introduced complexity,

Breuer’s model addressed the ‘constraints problem’ and, most significantly, collapsed

complexity across the entire project (T6.33).  Much of its appeal could be attributed to the

symmetry (T6.53) of its primary generator (T6.43)—a tree—and a recognition that the

project had been dealing with a number of tree-like structures all along.  Viewed in this

way, Breuer discovered the structure of the problem, and when found, the right abstraction

revealed previously obscured similarities (T6.39) across the architecture and consequently

dissolved complexity.  The solution’s simplicity ensured its adoption amongst the

architecture team and revealed its designer’s skill (T6.31).  The fact that Breuer’s design had

profound economic consequences for the entire project (by eliminating a substantial

quantity of development work) ensured its subsequent adoption across the project (T6.7).

The way the architects alternated between creative proposing and rational assessing

(T6.12) can be seen in how they changed roles.  In each episode the creative designing was

done by the model proposer whilst the other architects adopted the role of rational

assessors.  What is so illuminating in Breuer’s story is how each episode delivered such a

markedly different model variant and corresponded precisely with an exchange of roles, all

without any externally imposed plan, management, method, process or facilitation (T6.27).



Chapter Seven: Case Studies in Situated Software Design

195

The story further illustrates paradigm and perspective shifting on the part of the design

collective rather than any one individual designer.  Despite the obvious skills and

experience of Nygaard, Goldberg, Chen and Breuer, none of these individuals demonstrated an

ability to deal with their own perspective (T6.35) whilst operating in the creative,

proposing design mode.  All were able to recognise other designer’s preferred perspectives

when assessing that designer’s proposed solution.

7.3 Case 2: Perspective-bias in a Telecommunications

Architecture

The second case study examines two periods in the lifecycle of the software architecture of

a telecommunications system.  This case study illustrates how the original architect’s

approach was initially judged to be successful, but later unsuccessful, as a result of a

change in non-functional requirements.  The story illustrates the criticality of the designer’s

choice of perspective and the consequences of an inappropriate choice in the presence of

inaccurate or missing requirements.  The story also illustrates how stakeholder perceptions

of the success of a system are dependent on the situation in which it is embedded and what

can happen when even seemingly small contextual shifts occur.

The motivating question for this case study does not change from that of the previous

one—to see whether the defining features of the case confirm or refute the proposed

characteristics of situated design as identified in the framework and the previous chapter’s

grounded theory assertions.  In addition to this goal, this case study clearly illustrates the

nature of perspective bias.  The unit of analysis is the solo architect and the object-oriented

software architecture he produced.

7.3.1 Actors and Roles

The case study involves two of the interviewed participants—Le Corbusier and Mackintosh.

At the time of the project’s architecture phase, Le Corbusier was the principal software

architect and Mackintosh his second-in-command.  Working as consultants to the client,

both were engaged to lead a team on a development project that would trial object-

oriented development technologies and techniques.  The technology set was comprised of

C++, an object-oriented database (ObjectStore), a platform-independent user interface

builder (OpenUI), object-oriented analysis and design methods (Booch and Rumbaugh),

and model-driven architecture (Software thru Pictures).  Each of these elements had been

previously used in the client’s organisation with varying success, but this project



Chapter Seven: Case Studies in Situated Software Design

196

represented the first time that they were consciously selected, integrated and applied as a

standard development platform and toolkit.  The client also identified skills transfer and

mentoring as key project objectives and composed a team in which Le Corbusier and

Mackintosh were significantly more experienced than the other members.  Le Corbusier

commenced the architectural design and Mackintosh (who joined half way through this

phase) led the stakeholder consultation.  Le Corbusier controlled the initial design and saw it

through development and into production before leaving the project.  Mackintosh stayed on

with the project and led the second phase of the architecture, which involved a substantial

redesign.  Both architects recounted their own personal recollections and experiences of

the project in their separate interviews.

7.3.2 The Business Context

The case study concerns the design of the architecture of a telecommunications exchange

monitoring system for a leading Australian telecommunications company in the period

from 1997 to 2002.  The project had a total budget of approximately $A10M and peaked

(in headcount terms) in 1998 at about twenty people.  The business requirement appeared

straightforward—periodically poll up to one hundred exchanges of identical type and

retrieve accumulated call handling performance measures.  Under some circumstances, the

application would send commands back to the polled exchange.  A number of related real-

time control and monitoring functions formed the core of the functional requirements.

Non-functional requirements such as high availability, performance and reliability were

specified in quantitative terms.  A handful of business sponsors were allocated to the

project.  The most useful and engaged of these turned out to be a couple of late-career

telecommunications engineers who had worked with the exchanges over several decades.

Mackintosh described how these engineers treated the exchanges like ‘a much-loved

favourite toy’.  The fact that delivery pressure on the project from the business was steady

but not extreme allowed for their frequent and at times open-ended involvement with the

project team.

7.3.3 Design episode 1: Pursuit of perfection

Known dependencies and apparently stable requirements, secure funding, dedicated and

knowledgeable subject matter experts collectively set the scene for Le Corbusier to deliver

one of his finest designs.  He confidently assumed the role of lead architect and proceeded

to design—largely in isolation from the other team members—a text-book object-oriented

software architecture.  He delegated the mechanistic and detailed exchange interface



Chapter Seven: Case Studies in Situated Software Design

197

design work and tackled the big canvas of the object model.  He worked quickly,

unimpeded by uncertainty or the overhead of collaboration to produce his model.  By the

time the solution design and the software architecture were being presented back to the

engineering stakeholders, Mackintosh had joined the team.  ‘This was probably the cleanest

architecture I’ve seen’ recalls Mackintosh.  The engineers perceived its transparency as

elegance and hailed Le Corbusier’s design:

The architecture was elegant, simple, worked really well, it matched perfectly how the

users spoke about it, we presented it back to the users, they all went ‘yeah, you

understand’.  —Mackintosh

The team transitioned into development and made rapid progress implementing the model

in C++ classes, both persistent and transient.  The clarity of the object model and the use

of an object-oriented database (which eliminated the need for typically messy object-

relational mapping code) made the transition from design to code look almost trivial:

[Le Corbusier] came up with a really nice structure and it worked really well, and it was

one of the nicest architectures I’ve ever worked on… we mapped the problem really

well, and it was implemented, class by class, just the way it was meant to be… it was

why we got the next business… it worked really well.  —Mackintosh

Le Corbusier, the master architect, could not put a foot wrong as his model, the

development process he directed, and his team of constructors collectively ran like a well-

oiled machine.  Some of the model’s appeal could be attributed to its simple, uncluttered

representation of objects in the domain.  In effect, Le Corbusier’s object model laid out a

map of the engineer’s domain knowledge in a way that they had not previously seen.  His

most crucial decision in achieving this ‘elegance’ was to centre the model on the exchange.

Mackintosh recounts:

And that’s what’s obvious—you come from a data modelling background, which I did,

you think of the things you can pick up and kick first—exchange!  We’re gathering

exchange data, that’s going to be the object in the middle… because I can go out and I

can kick it… and we did, we went out to Footscray and we saw the exchange.  —

Mackintosh

A model that exhibited simplicity and clarity—and prominently placed the exchange in

pride of place at the centre with all the other business objects, relationships and concerns

radiating out from it—attracted the engineer’s admiration.  During the development phase

Le Corbsuier’s object model changed little, and every aspect of how the project delivered its

first version into production with impressive:

Everything seemed perfect, and the final result was… ‘you guys are brilliant—under



Chapter Seven: Case Studies in Situated Software Design

198

budget, under time, a solution that works well’, its object-oriented, this is the way to

go… solves all of the world’s ills.  —Mackintosh

Exchange

*

*

*

Switched 
Service

Permanent 
Virtual 
Service

. . .

Location
Composite

Trunk
Tie

. . .

Transmission
Line

Loop

*

*

*

*

Service
Allocation
Counters

Trunk
Allocation

*

*

Trunk
Allocation
Counters

Service

Circuit Packet

. . .

Service
Allocation

*Utilisation
Event

Utilisation
Allocation
Counters

*

Exchange
Property

Exchange
Type

Property
Value

*

*

*

*

ExchangeExchange

*

*

*

Switched 
Service
Switched 
Service

Permanent 
Virtual 
Service

. . .

LocationLocation
Composite

Trunk
Composite

Trunk
TieTie

. . .

Transmission
Line

LoopLoop

*

*

*

*

Service
Allocation
Counters

Service
Allocation
Counters

Trunk
Allocation

Trunk
Allocation

*

*

Trunk
Allocation
Counters

Trunk
Allocation
Counters

ServiceService

CircuitCircuit Packet

. . .

Service
Allocation
Service

Allocation

*Utilisation
Event

Utilisation
Event

Utilisation
Allocation
Counters

Utilisation
Allocation
Counters

*

Exchange
Property
Exchange
Property

Exchange
Type

Exchange
Type

Property
Value

Property
Value

*

*

*

*

Figure 19: Conceptual sketch of Le Corbusier’s exchange-centric model.

7.3.4 Design episode 2: Collapse and re-conceptualisation

In the following months, the system’s successful deployment drew attention to its

existence.  Before long, management requested the development team to add support for

new types of exchange.  Le Corbusier had moved on and the new requirement fell to

Mackintosh.  Adding support for the new exchange type appeared trivial but the implications

for application performance from the increase in the number of exchanges were profound.

Initial tests and predictions showed that up to ten times the amount of data coming in from

the (much larger) number of exchanges was a problem, and Le Corbusier’s architecture could

not create and persist objects quickly enough.  ‘We couldn’t have anticipated that’,

Mackintosh recalls, ‘but we could have got the structure right so that the problems wouldn’t

have occurred’.  To Mackintosh, Le Corbusier’s architecture appeared ‘back to front… the

structure was completely inside out’ in the light of the new requirement.  Le Corbusier had

assumed the luxury of perfecting an object model without explicit regard for extension of



Chapter Seven: Case Studies in Situated Software Design

199

the non-functional performance requirements.

The system had been designed to meet a requirement to store ‘per exchange’ readings

sampled every hour from each of about fifty exchanges.  A better solution, Mackintosh

proposed, would be to store this hour’s readings—the approach of going to each exchange

to get one hour’s measurements caused the system to do fifty queries instead of one.  Until

the change in requirements, the problem never showed itself because the period between

samples was long.  But the prospect of doing five-minute readings against the AXE

exchanges (which numbered seven thousand) was daunting to say the least:

And that’s the nature of architecture—you build a house that’s a house that turns into

a Bed and Breakfast, and all of a sudden it doesn’t work so well.  —Mackintosh

Exchange
Address

Property
Type

Measurement
Unit

Actual
Sample

Unit
Type

Exchange
Type *

*

Planned
Sample

Plan

Period*

*

*

* *

*

*

*

Exchange
Address

Exchange
Address

Property
Type

Property
Type

Measurement
Unit

Measurement
Unit

Actual
Sample
Actual
Sample

Unit
Type
Unit
Type

Exchange
Type

Exchange
Type *

*

Planned
Sample
Planned
Sample

PlanPlan

PeriodPeriod*

*

*

* *

*

*

*

Figure 20: Conceptual sketch of Mackintosh’s alternative model.

According to Mackintosh, the original object-oriented architecture was designed with a data

bias which resulted in a model centred on an exchange class.  Although exchanges

anchored the problem domain and were central to the subject matter expert’s descriptions,

the system they had been tasked to design was not primarily about exchanges—it was

about measurements.  Mackintosh commenced a re-architecting phase which significantly

changed the object model, the software architecture and the implementation.  A major

redevelopment phase of six months commenced with an accompanying unanticipated rise

in headcount and project cost.



Chapter Seven: Case Studies in Situated Software Design

200

7.3.5 Designer’s reflections on the design process

Le Corbusier’s apparent desire to satisfy the most visible of the stakeholders (the subject

matter experts) appears to have distracted his attention from the system’s main purpose—

exchange monitoring.  It could be concluded that he lost perspective and instead focussed

on the stakeholders and the resulting gratification.  Although the project was tasked with

exemplifying object-oriented development and object modelling, this objective was always

secondary to the primary one of delivering a working exchange-monitoring solution.  In his

pursuit of perfection, Le Corbusier may have seduced himself—‘Le Corbusier drew a model

that didn’t have any crossed lines’, Mackintosh recalls.

Le Corbusier’s object model was flawed as a physical (or implementation) model.  This

distinction between the idealised logical view and its more pragmatic physical realisation

has been accepted for decades in both database and program design.  Equally accepted is

the existence of a mapping from logical to physical views.  Le Corbusier appeared to either

ignore or deny the relevance of this distinction to his project.  His reasons are not clear.

One possibility is that he took the promise of object-oriented databases—to persist

business objects transparently—at face value.  He may also have been prepared to rely on

ObjectStore’s capacity to allow control and re-configuration of physical page mapping to

‘tune out’ any possible performance problems.

Mackintosh was critical of Le Corbusier’s approach, expressing in strong terms that the basis

of the model was wrong.  ‘In effect, we didn’t give a Tinker’s Cuss about an exchange’,

Mackintosh surmised, ‘what we were about was measurements’.  He blames the emphasis

(inherent in object modelling) to select and model objects that have tangible

correspondences in the problem domain.  He recognised a system archetype based on

measurements as being a better fit.  ‘The downstream systems were just taking

measurements… they could have been measurements from heart monitors—we didn’t

care’.  In his view of the problem, ‘measurement’ was the key class, and basing the model

on a generator such as ‘measurement’ (with time intervals, sources, and the like) would

have yielded a superior model.  In his alternative model, the processes did not depend upon

physical objects, but on transient abstractions.  But the abstraction ‘measurement’ was

intangible when compared to ‘exchange’.  Further, the concept of measurement did not

surface from the discussions with the subject matter experts.  ‘To the people we were

talking to… they’ve got their spanners out, they’re working on the exchanges, so to them

it’s the key thing that they’re dealing with’, Mackintosh recalled.

Mackintosh also raised and contrasted their respective personality biases—‘…Le Corbusier is



Chapter Seven: Case Studies in Situated Software Design

201

a perfectionist, you can see his personality come through in his approach to architecture—

he loves to perfect, [to] polish the model’:

I tend to be far more, fly by the seat of my pants, and that affects the definitions I

use… it’s much more of a personality thing… I tend to be far more pragmatic… I’ll do the

80% every time… that makes architecture thinner, design a little thicker.  —Mackintosh

7.3.6 Relationship to Grounded Theory

Le Corbusier’s design was impressive in the way it achieved transparency between problem

domain (exchanges and their associated equipment) and solution structures (exchange

classes and collaborators) (T6.13, T6.39).  Because Le Corbusier and Mackintosh were skilled

communicators, Le Corbusier’s object model effectively formed a vision—one that

happened to be presented in an object notation (T6.4, T6.13).  His design clearly derived

much of its appeal due to the use of a central generator (exchange) (T6.43) and it was the

shortcomings of this generator that ultimately flawed his design.

Some of the appeal of Le Corbusier’s design could be attributed to its simple, uncluttered

representation of objects in the domain and the way he was able to use object technology

and tools to avoid introducing another dimension of solution-driven complexity (T6.41).

Mackintosh blames Le Corbusier for falling to his underlying data-based paradigm bias

(T6.36) despite Le Corbusier clearly being an object technology protagonist.  The case

illuminates the subtleties of paradigm or perspective bias—even though Le Corbusier was

immersed in object modelling, he could not see past abstractions founded primarily on

state rather than identity or behaviour.

Le Corbusier knew his team’s capabilities to a man and adjusted both his design approach

and the level of detail based on team capability (T6.18).  He may well have argued that his

assessment of team capability justified his heroic, isolationist approach.  The architect’s

drive to use object-oriented technologies end-to-end implies a degree of resume-building

(T6.17) and it is not clear how Le Corbusier or Mackintosh influenced the client in this

choice.  When Mackintosh says ‘it was why we got the next business… it worked really well’

he hints at another motive (T6.5) for Le Corbusier’s desire to make the engagement with the

project’s business and engineering stakeholders successful—the prospect of follow-on

work.  Everything about Le Corbusier’s approach seems to have been directed at these

stakeholders, down to his choice to iconise exchange in his architecture.  Since he did not

state them in his interview, we can only guess at his conscious motives.

In adopting the master designer persona, Le Corbusier effectively relegated methodology and



Chapter Seven: Case Studies in Situated Software Design

202

process as playing only subservient roles in the project’s design activity (T6.26).  It is worth

noting that a methodology product was not included in the set of object technologies.  Le

Corbusier and his team were expected to define their own methodology, customised to the

selected products, and to mentor the client’s permanent employees in its substance and

execution.

It must also be noted that since some of the hallmarks of situated design are absent, this

case study yields equal evidence for a rational design process as for a situated one.  For

example, Le Corbusier discovered and sought to objectify (rather than negotiate) the

system’s requirements (T6.3).  He forward-engineered the model rather than fitting known

archetypes (T6.45) or problem types (T6.28).  He discovered new abstractions rather than

reusing pre-existing abstractions (T6.39).  He adopted and staunchly defended an objective

perspective by choosing to discover and model tangible or physical objects.  The design’s

ultimate failure should not be interpreted as condemnation of this approach.  The only

discernible fault that could be attributed to Le Corbusier is his choice of perspective.

7.4 Conclusion

Overall, these two case studies highlight the characteristics of healthy and unhealthy

collaboration.  Good collaboration is typified by reinforcement of the ‘design episode’

(breakdowns, creative versus evaluative parts of the design episode), paradigm and

perspective awareness, and the ability for a designer to assemble a personal design process

that capitalises on the capabilities of collaborators.

7.4.1 ‘Design episode’ structures collaboration

Breuer’s story illustrates how designer collaboration should work, and in particular, how the

contextual arrangement of forces—both business and technical—can drive interactions

between self-selected actors to trigger distinct design episodes.  While Breuer single-

handedly championed his design contribution, he owed its existence to his fellow designers.

Both the conceptual design and its realisation are exclusively and unmistakably his, but his

isolated act of design resulted from a period of close collaboration.  Breuer took important

contextual drivers and constraints from his fellow designers rather than from other sources

(such as theory, or materials).

Also noteworthy is the pivotal role that a primary generator played in Breuer’s design act.  In

Breuer’s account, a breakdown event drives the recognition of a single primary generator,

from which the Decision Tree design formed.  The generator—that business rules are most



Chapter Seven: Case Studies in Situated Software Design

203

naturally modelled as a tree—was seeded by a remark from another designer (Chen) amidst

the breakdown of his personal design perspective.  Chen’s breakdown event effectively

transferred design momentum to Breuer who re-conceptualised Chen’s model from his own

perspective.  Breuer’s success can be interpreted as resulting from the alignment of his

perspective (hierarchical decomposition) with the requirements.

Above all other possible interpretations, the case illustrates the unmitigated failure of

process and method in directing architecture design.  Almost no aspect of the Decision

Tree’s design can be traced to the application of a separate and independent design method

or overarching process.  If the process used on the project was repeated, or if a different

group of designers had been engaged, there is no evidence to suggest that a Decision Tree

pattern would have been recognised.  The designer’s perspective also played a significant

part in the design outcome, as the real designers emerged, negotiated their roles between

each other, and self-selected underneath the organisational radar of the project’s

management team.  The self-appointed design leaders (Chen, Nygaard, Goldberg and Breuer)

flexibly changed roles during the design phase under their own control and impetus, and in

the story as told these changes correlated strongly with breakdown events experienced by

each designer.  Breuer admitted a propensity to seeing everything as a tree, and in this

particular context (perhaps circumstantially) a tree fitted the problem perfectly.  It is

significant that it took a handful of different designers working from different perspectives

to achieve this recognition.

Breuer used his own personal notions of elegance—symmetry, simplicity, conformance—

with a standard structure as guiding principles in knowing when his design was satisfactory,

well-conceived, and complete.  He interpreted his solution’s elimination of complexity as a

sign of correctness and completeness.

7.4.2 Collaboration serves evaluation

The second case study can be summarised in three words—perspective, perfectionism, and

personality.  All of these are types of designer bias.  Le Corbusier’s perspective was one of

an modelling purist, and as a result of his perspective-fixation, he heard the wrong

emphases from stakeholders and believed the kudos from his engineers.  He allowed his

perfectionist personality to rule over pragmatism for a critical period in the design process.

Mackintosh leaves little doubt that Le Corbusier owned the design, performed the conceptual

design almost exclusively in isolation, collaborated for inputs only before embarking on his

design act, and transferred responsibility for the architecture only when he left the project.



Chapter Seven: Case Studies in Situated Software Design

204

Le Corbusier’s approach to designing the architecture fits easily within a conservative

planning regime.  He worked within a distinct design phase with set tasks for conceptual

and routine designing.  The design process followed a regular and predictable trajectory

that fitted comfortably within these planned task boundaries.

Le Corbusier’s architecture hinged on a single primary generator—the centrality of the

exchange—in both the problem and solution spaces.  An evaluation of its appropriateness

depends upon the timeframe which the observer considers, because the primary generator

could only be considered to have failed when the operational requirements of the system

changed.  The overall assessment of Le Corbusier’s design therefore hinges on whether the

observer considers that a designer should adopt the responsibility to anticipate new or

changed uses of the software system they are charged with designing.  Regardless of

interpretation, the ‘exchange’ generator did not lead to an extensible architecture and must

be considered a dubious choice.

Both stories confirm the nature of collaboration in situated design.  Breuer’s story

exemplifies how the design episode serves to structure collaboration.  Le Corbusier’s story

reveals how the absence of collaboration can lead to myopia and perspective bias.  An

important finding is the demarcation of collaboration and how it affects design action.  In

both cases, the creative design act was performed by a single designer, in isolation.  In

Breuer’s story, the collaborating designers contributed evaluations from alternative

perspectives but at no time did any of Breuer’s designers work together to produce a design.

This suggests that the act of design is an individual one and that collaboration serves

rational evaluation.



205

Chapter 8:  Findings

If our ambitions are higher, if we seek not just competence but quality in our designs,

then we must recognise that such a difficult and intangible attribute as quality is not

just determined by the clear exposition of constraints, by explicit rules, by rational

analytic procedures.  All such things are vital and necessary, but they do not approach

the heart of the matter.  Thus a designer develops a sense of a target-object.  This is

not an abstract goal, but a concrete tangible artefact which will embody all goals,

including the subtle ones that the designer is unable to articulate and may have only

half-suspected as appropriate to his design task.  This sense of a target-object can be

accompanied by the feeling that the thing is already in existence, much as a sculptor

feels about uncovering the status in the stone.  This may be an illusion, but it can be a

powerful motivator in the process of design.  (Walker and Cross 1976, p. 42)

8.1 Introduction

This chapter reconciles the results of the qualitative analysis (Chapter Six) and those of the

case studies (Chapter Seven) into a set of succinct, focussed narratives on the expert

practice of software design.  These findings represent the final refinement and endpoint of

the analysis.  Collectively, they communicate the findings of the research and constitute an

answer the thesis’ research aim—to build a rich description (from the data of practitioner’s

accounts) of how the practicing software architect approaches design.

8.2 Findings

The remainder of the chapter synthesises the research’s findings in eight distinct narratives.

Each may be read in isolation, or collectively, when they form a comprehensive account of

software design.



Chapter Eight: Findings

206

8.2.1 Architect in context

The contemporary software architect recognises that the context in which they design has

technological, business, political, social and cultural dimensions.  Four characterisations

emerged—the architect as a change agent, as an arbiter and controller of the software

design investment, as a facilitator of the design’s implementation, and as an actor in a

cultural context.  The architects described ways that each of these roles directly or

indirectly affect or constrain their designs and design outcomes.

Firstly, design in any established context implies change, and change may mean upsetting

an existing equilibrium of systems.  The software architect is a change agent, able to

choose from options that have varying implications for the status quo.  The architect must

consider the totality of his solution rather than just its structure and integration in a

technology dimension (T6.2).  This finding is entirely consistent with design in non-

software fabrics, and is substantially similar to Mayall’s (1979) principle of totality.  Few of

the participants, however, were able to describe how consideration of the systemic (or

wider) implications of their work beyond the confines of their teams and projects changed

their design’s trajectory (Gropius being the notable exception).

Secondly, software architecture represents an economic investment that may in some

circumstances require justification, and architects may be required to provide such

justification.  Architecture is far from a precise science and its benefits and return on

investment are difficult to measure, if not subjective.  Architects have little experience of

making return-on-investment assessments and are therefore unsure of how to make this

justification.  The participating architects generally agreed that investment in architecture

results in a simpler, more compact code base that costs less to bring to production and

subsequently maintain.  Simplifying design ‘breakthroughs’ (such as Breuer’s Decision Tree)

facilitate a leap in architectural simplification and code reduction which can achieve this

architectural goal.  The fact that object technology inherently provides mechanisms (such

as encapsulation and frameworks) to grade the skills required across an architecture,

thereby de-skilling sections of the software development workforce (T6.7), was recognised

by only a handful of the participants.

Thirdly, software architects differ from their built-world counterparts in that they expect

(for the most part) to stay engaged beyond the conceptual design phase to realise their

designs.  That a software architect’s account of designing and delivering systems carries more

weight professionally than accounts of designing only might explain this difference.  The

software architect acknowledges a direct and often personal responsibility for his design’s



Chapter Eight: Findings

207

realisation, and this results in certain design constraints that are unique to the software

designer’s situation.  One such constraint is the architect’s perception of the development

team’s capability.  The architect may modify aspects of his design—the basis of

decomposition, the mechanisms used, the overall complexity of the solution—to match his

perception of the team’s ability to realise the architecture (T6.18).  For example, architects

may use encapsulation or framework structures to isolate complexity and expose simplified

abstractions to parts of the development team.  Most participants acknowledged varying

the amount of elaboration in their designs on the basis of perceived development skill

(T6.18).  Physically distributed teams and out-sourcing can similarly shape the software

architect’s choice of structure—for example, an architect may consciously design a

software structure to maximise the likelihood of (off-shore) implementation partners

delivering components or services.

Fourthly, architects are influenced by the prevailing culture, be it business, organisational

or societal.  Culture influences the attitudes of stakeholders, particularly attitudes to

investment, and therefore may directly constrain what the architect can achieve.  A number

of the participants reported stories of how short-term business exigencies had eroded

medium or long term investment in architecture.  If the prevailing culture does not value

long term investment, or investment in infrastructure, then the argument for investment in

software architecture becomes harder to make (T6.20).  It seems reasonable to expect that

certain organisations and industries would be more tolerant of infrastructure investment

than others, and also that a software product (with a projected commercial viability of, say,

ten years) would demand such investment.  However, Eames’ account of working the

architecture within a successful software product company suggests otherwise.  Although

Eames did not confirm the reasons for management’s disinterest in resourcing architectural

investment and remediation activity, sales and revenue-raising activities were clearly

dominant in his account (T6.17).

8.2.2 Architect as professional

Software architects are providers in a services economy.  As such, they are subject to a

class of forces that can be attributed to what might collectively be called ‘professionalism’.

Recognising the software architect’s engagement with the professional culture brings to

light the plurality of the individual’s motives—that is, types of design drivers that are

primarily socio-cultural and would be unlikely to emerge from the use of research

paradigms other than interpretivism or ethnography.  All of the findings in this category

relate to professionalism as a driver of various types of design bias.



Chapter Eight: Findings

208

Professional software architects distinguish between knowledge of a particular technology

or product and the knowledge of how to apply, use or deploy technologies or products in

working solutions.  This demarcates the perceived value of hands-on experience, and as a

result, can introduce a form of bias into technology and design option decisions (T6.21).

Stickley described an ‘infatuation with objects’ and individual’s intent on ‘resume-building’,

as does Le Corbusier’s drive to use object-oriented technologies end-to-end in the second

case study.  When Mackintosh says ‘it was why we got the next business… it worked really

well’ he hints at the same motive more bluntly—the prospect of follow-on work with the

same client (T6.5).  This may explain Le Corbusier’s desire to make the engagement with the

project’s influential engineering stakeholders successful.  The professional architect must

manage his team’s (and his own) desire to inappropriately use a project or engagement as a

means to gain exposure to a marketable technology, win further work or otherwise benefit

personally in a way that might compromise design quality.

Distinction and professionalisation of the software architect’s role has heightened in recent

years.  When the progression from developer to architect is viewed as a career step, the

wrong individuals can end up filling architecture roles.  Software quality can suffer when

the status associated with the architect’s role compromises the architect’s motive (T6.21).

Inexperience or incompetence compromises design quality and leads to dysfunctional

teams.

Professional software architects are sometimes encumbered with incentives via their

employer that can influence both the design process and the architecture itself.  In some

circumstances, architects can inadvertently become players in sales or commercial

negotiation (T6.17).  An architect may experience pressure to recommend an inappropriate

technology or to suppress a preferable design option for commercial rather than technical

reasons.  Lethaby described being under pressure not to propose his preferred architecture

(which would have reduced database license revenue for his employer) and Breuer described

being told to make his employer’s (inappropriate) technology work ‘any way he could’.

These situations can present significant ethical and professional dilemmas for which

software architects appear generally unprepared.

8.2.3 Architect as negotiator

A significant finding is the degree to which the software architect is an active negotiator of

problems and solution options during design.  Evidence for negotiation emerged in

problem definition (T6.3, T6.28), stakeholder management (T6.4), planning (T6.11), and



Chapter Eight: Findings

209

within the development team (T6.4).  The architect negotiates during the design act with

regard to abstractions (T6.39), patterns (T6.47) and solution archetypes (T6.46).

Negotiation can be interpreted as the establishment of a discourse for the construction of a

shared sense-making environment, from which knowledge can be developed, norms

established and a shared ontology developed.  The architects report adopting different

negotiation approaches for each of the distinct roles (stakeholder, sponsor and fellow

designer/developer) they negotiate with.

Stakeholders

Although generally aware of the need to inform and engage with project stakeholders

outside of their development teams, software architects admit they are not always effective

in doing so.  The three primary areas of concern are vision, planning and progress.  Some

architects place significance on the formulation of a solution vision that defines (at a high

level) the purpose, intended structure and contextual fit of their proposed software solution

(T6.4).  Visions are expressed as narratives or abstract models, communicating what the

solution will be at the expense of how it will be made.  The significance of a vision is that

the architect uses it as a medium to clarify, validate and negotiate requirements,

expectations and solution options with these external stakeholders.  Le Corbusier’s object

model in the second case study effectively formed a vision—one that he chose to re-

present in an object-oriented modelling notation (T6.4).  Le Corbusier clearly judged rapport

with the telecommunications engineers to be important, and in the first phase of the

project, this probably contributed significantly to the project’s (and his) perceived success.

Conversely, when a direct connection between architect and business stakeholders cannot

be made (such as when the solution is a new product and no user base exists, or in

Stickley/Eames’ case where a sales division imposes itself between engineering and the

customer base) the architect may experience frustration.  In the first case study, Chen

expressed frustration (in the second design episode) that he was not afforded an option to

negotiate the user’s requirements on constraints to fit his predisposed product-catalogue

archetype (T6.28, T6.45).

Plans and planning processes are also negotiated between software architects and business

stakeholders (T6.11).  This is because the architect’s input into a sponsor’s plan must be

provided before the design trajectory of the solution is known, and also because it raises

the return on investment question for software architecture discussed above.  Budgeting

and planning are usually performed early on in a project.  The inability for the architect to



Chapter Eight: Findings

210

anticipate the design’s trajectory stems from the number and nature of unknowns at this

point, and the unpredictable nature of the creative part of the design process.  Software

architecture is volatile in the early design phase and subject to re-conceptualisation and

significant shifts.  A further complicating factor is that business stakeholders do not always

understand the nature of software design and expect it to follow a predictable path.  This is

partly due to the invisibility of conceptual design work and also the radical nature of

software design, particularly the propensity for designers to throw away parts of their

designs and start again.  The conflict that can emerge between designer and planner (or

manager) is not often explicitly discussed and may be mismanaged.  Once a plan is in

place, the software architect may actively manage the visibility of architectural design

progress (T6.19) by attempting to communicate tangible progress to stakeholders during

periods of architectural design.  The architect may also attempt to make selected aspects of

the design process transparent.

Problem negotiat ion

The second type of negotiation is problem negotiation.  It may seem surprising that

architects would not take problem statements as concrete but rather attempt to change

them, even to alter them to fit a personal preference for a solution archetype, architecture,

pattern or structure.  However, a number of the architects described doing exactly this.

The extremes of problem negotiation range from the negotiation of individual requirements

within the architect’s design brief to negotiation of the stakeholder’s overarching

motivations and goals.

Experienced software architects recognise the opportunity to negotiate some of the goals

and requirements that the client brings to the engagement (T6.3).  The purpose of such

negotiation goes beyond clarifying or detailing specific requirements—which would be

expected to occur in most if not all engagements—to that of reorienting the client’s goals,

expectations, and high-level requirements.  Such reorientation is possible because clients

sometimes form an idea of what the solution should be and then express their perceived

needs in inappropriate terms or as an extension of what solutions or technology they

already have.  The architect can often open up the client to other possibilities and in so

doing, re-negotiate both overall goals and specific requirements, often at the same time.

Clearly, not all clients are amenable to this kind of engagement and not all goals and

requirements are negotiable.  Experience helps the architect to discern which requirements

may be challenged.



Chapter Eight: Findings

211

The architect’s negotiation of the problem is driven by two motivations—firstly, the need

to improve the client’s understanding of the problem and secondly, the need to avoid

specific requirements that the architect expects to find difficult to deliver.  When

negotiating, software architects may attempt to re-orient the client’s conception of the

problem into one for which they have a known architectural solution—in other words,

experienced software architects negotiate problems to make them match known problem

types (T6.28) and for which they have known solutions.  Architects justify this negotiation

by claiming that achieving a closer alignment between the problem as stated and a known

problem type reduces risk, both personally (or professionally) and for the client.  Architects

who engage in such negotiation may choose to validate their interpretation of the client’s

goals under negotiation at any time by using a vision statement (T6.4) written specifically

for particular stakeholders.

8.2.4 Architect as collaborator

Internally, within a project or team, the architect is a collaborator who both shares the

designing and facilitates other’s designing.  Such collaboration has a significant affect on

design outcomes.  Whether an architect collaborates on the actual design or performs the

designing in isolation appears to be driven by both personality and circumstance.  At one

extreme, Le Corbusier epitomises the master-designer—the second case study illustrates

how his approach leads to rapid progress but also how the super-empowered architect can

be blinded to peer input and escape review.

The architect’s collaboration is directed towards specific purposes, such as facilitating

decision-making, organisational change, or skills transfer (T6.6).  Architecture implies

making certain decisions in order to selectively solidify (van der Rohe used the term

‘crystallise’) architectural structure.  Architects are wary of making early decisions that rule

out options (T6.10).  They use a range of design techniques that leave extension options

open and cater for the unexpected, such as defensive design techniques, extensible

architectures, encapsulation and other elements of good object-oriented design.

Collaboration with team members serves to socialise, evaluate and build consensus around

these decisions, and also to establish and reinforce behavioural norms and decision-making

processes amongst the team members.  In establishing these shared practices, collaboration

over the architecture’s design establishes a design and development capability across the

team (T6.6).  However, both the first case study and the qualitative analysis furnish

evidence that the architects predominantly perform the creative part of software design in



Chapter Eight: Findings

212

isolation.  Collaboration serves routine evaluation activity more than creative design

activity.

8.2.5 Architect’s use of methodology

Software architects use methods and processes (methodology) in a highly selective manner.

They are generally critical of both method content (what the method instructs its follower

to do) and method’s purpose in the context of a project (why some sponsors prefer or insist

on method use).  As a result, most architects treat methods as toolkits of potentially useful

tools and techniques but not as controllers or arbiters of design.  This may be due to a

preference to retain control of the design process.  The architect’s collective rejection of

methodology as a viable primary driver of software architecture (T6.26) may also be

interpreted as a form of protectionism.

It may be argued that the architect’s reliance on design method is related to project scale

and that the participants in this study lack exposure to very large-scale software systems

that demand more strict control of the design process (such as aerospace or real-time

control systems).  However, the preliminary survey results (Appendix D) reveal that 54%

of participants have worked with object-oriented systems comprised of between 250 and

1,000 manually designed and coded classes and 67% have spent 2 or more years working

with the same object-oriented architecture.  If methodology was an important design driver

for software architects, it is likely that this group of participants would have identified it.

Software architects are not entirely dismissive of methodology—they admit ‘cherry-

picking’ useful techniques and themes from methods (T6.22), trying and applying these to

design problems at hand.  Architects assemble their own ‘toolbox’ of design techniques

that they have found useful over many projects, and with time, their knowledge of how to

use these tools becomes tacit.  This know-how constitutes one of their most important

design assets.  The term ‘appropriation’ is an apt description of this fossicking because

architects cannot always remember the source of their techniques and may even claim to

have invented them.  This appropriation also explains how they can practice design of large

and complex architectures without explicit reliance on methodology or process.

Architects take a critical view of method use in projects.  Architects regard methods as a

mechanism for transferring project risk away from project sponsors and stakeholders

(T6.23).  Where an architect perceives method being used in this way, he may mistrust the

method even more and adhere only minimally to it.



Chapter Eight: Findings

213

Architects also take the techniques and themes they appropriate from methods forward

from one design engagement to the next, adapting and evolving them as they are applied in

new design situations (T6.24).  These are generally a digested and personal (ie. tacit) form

of knowledge—the architect may describe them as ‘precepts’ or ‘principles’ rather than

methods or techniques.  The exact form that this knowledge takes is difficult to generalise,

but some indicators that emerged from the research are discussed in 8.2.7 (‘Architect’s

memory’).

In the absence of commitment to methods, architects sometimes find it difficult to enforce

their vision consistently, especially across large projects or teams.  Under such

circumstances, enforcement of paradigm in the software development tools being used

defines the ‘lowest common denominator’ in architectural consistency (T6.25).  This

observation strengthens the argument to use tool support to reinforce architectural

patterns, principles and structures, particularly for large teams.

8.2.6 Architect as abstractionist

The participants identified the ability to abstract as the most important skill for designing

software architecture.  The act of design in any medium puts an artefact where none

previously existed—it is essentially a creative act.  This ability to create is a skill possessed

by some but not all people.  Creativity is central to software design regardless of the level

of abstraction or domain (T6.8, T6.9).  Software architects employ their abstraction skills

in almost all acts of design, and even apply them when designing non-software artefacts,

such as documentation structures, or a personal or team design process (T6.40).  The

architect’s abstraction skill is therefore one of recognising abstract elements, concepts and

structures through detail and noise to selectively form, use or reuse structures, patterns or

processes, regardless of the medium.

Purpose

In the process of software design, abstraction serves the invention of structure,

management of complexity and the demarcation of work.  Abstraction facilitates the

discovery of the underlying structures in the problem and solution spaces.  When these

structures converge, frequently through the discovery of commonality of structure in the

problem and solution spaces, the architecture is simplified.  Reducing, collapsing,

converging, simplifying structure are all signs that good abstractions are being found and

that the design process is progressing (T6.32).  In the first case study when Breuer found a

matching solution structure for the rule-structuring problem, the right abstraction revealed



Chapter Eight: Findings

214

previously obscured similarities across the architecture and consequently dissolved

complexity in a dramatic fashion.

Complexity is another motivation for the architect’s reliance on abstraction skills.

Architects must design for complexity in the problem domain whilst striving for simplicity.

Some architectural complexity (‘necessary complexity’) is unavoidable.  However,

architects may inadvertently introduce complexity by choosing unnecessarily complex

design options (‘introduced complexity’) or by missing recurring problem or solution space

patterns.  Skilled architects consistently minimise introduced complexity as a result of their

experience and their knowledge of solution archetypes, patterns and practices.

Consequently, an architect’s design skill is at least partly revealed by its complexity and

partly by how well their design addresses problem complexity (T6.31).

Abstraction serves demarcation of work when architects modify their abstraction process

and their abstractions to consider the basis of the architecture’s downstream consumer

(T6.37).  One of the ways that architects consider the consumers of their designs is by

selecting an appropriate level of abstraction.  The chosen level is not applied universally—

rather, some areas of the architecture will be elaborated while others are left more abstract,

unfinished, or high-level.

Structure

As a design medium, software dictates no structure but instead provides language-level

mechanisms for the designer to choose a structure to suit the requirements of the solution.

All structure in software architecture is therefore at the designer’s discretion and serves the

designer’s preferred purposes.  Abstraction in software design is concerned with forming

and selecting structures, and continuously assessing the quality and usefulness of candidate

or existing software structures.  In general, problem space structure is mapped onto

business objects and relationships within layered software architecture.  Solution space

structures may be found in mechanisms in the architecture (such as Model-View-

Controller) that implement required non-functional system requirements such as

synchronisation of views, distribution or scalability.  The architect sources, selects and

converges his design’s structure from candidate problem and solution structures as the

design proceeds (T6.13).  However, the architects diverge on the importance of problem-

solution transparency.



Chapter Eight: Findings

215

Abstraction in the design act

As expected, abstraction features heavily in the architect’s accounts of their personal

design processes and the act of design.  Software architects make no distinction between

abstraction processes for designing at the architectural level or the component or intra-

component level.  This is evidenced by the fact that when the participants were asked

about the difference between ‘software architecture’ and ‘software design’, only abstraction

level separated their definitions (T6.14).  That architects report moving between levels of

abstraction constantly when designing suggests that the difference between software

architecture and software design is immaterial from the perspective of personal process.  If

there is a difference, software design differs from software architecture only in that it resolves

problems or forces that arise from (and remain unresolved by) the software architecture

(T6.15).

Most software architects appear to exhibit a preference for designing at a particular level of

abstraction, to which they naturally gravitate when thinking about software architecture.

Some architects prefer to spend most of their time at higher levels of abstraction (ie.

conceptual or class-level models), subjugating code-level concerns to modelling concerns,

while others prefer to think at the level of code and let the conceptual or class-level model

‘take care of itself’ (Morris).  The architect’s preferred abstraction level broadly follows the

two categories that emerged from the analysis of approaches to conceptualisation—top-

down and emergent (T6.42).  Architects do not universally practice a traditional step-wise

refinement or decomposition process to discover abstractions—they may arrive at an initial

design by progressing from the abstract to the specific, or from the specific to the abstract,

or they may follow a combination of these two trajectories.  Some report working both

trajectories more or less simultaneously, both on different and on the same parts of the

solution space (T6.38).

While it seems commonsense that architects be allowed freedom to roam over the

complete architecture until such time as the architectural design is complete, Breuer’s case

study account suggests that this is not always the case.  His project evidenced a project-

wide process pattern in which an initial high-level package decomposition was done and

then each package was passed to a separate development team for intra-package design

and development in parallel.  This had the effect of limiting interaction between designers

in the teams, apparently in the interests of project productivity.  This lack of

communication across the large project inhibited discovery and propagation of simplifying

design patterns (T6.39).  Breuer’s courageous promotion of his Decision Tree pattern



Chapter Eight: Findings

216

signifies a dysfunctional design culture and should not have been necessary in a project

that fostered investment in architecture design effort beyond the initial package-level

decomposition.

As would be expected with any form of conceptual modelling, an architect’s abstraction

skill improves with experience.  In practical terms, experience arms the architect with

personal patterns and archetypes (8.2.7,  ‘Architect’s memory’, T6.44) and also serves to

increase the architect’s speed of abstraction discovery or selection from alternative

candidate abstractions (T6.30, T6.46).

Generators

The concept of generators from design theory was introduced in earlier chapters (6.6.13) in

order to determine what its analogue in software design might be.  We can distinguish

between domains and generators.  A domain is a region of the problem space in which

constraints, characteristics and requirements can be partitioned.  Generators, by contrast,

are an element of the problem that has a direct realisation in the solution space that clearly

serves to unify, simplify and converge a solution architecture that is otherwise expansive or

complex.  Examples of generators include any pattern in the software architecture that

reproduces or maps a significant, central or recurring behaviour in the problem space.

Breuer’s Decision Tree is an excellent example which owes its power to the fact that it maps

the problem structure perfectly and as a result, its solution form significantly simplified the

system’s architecture.  Another example is Le Corbusier’s ‘Exchange’.  Sullivan’s

‘AppCentral’ and Lethaby’s ‘frisbee’ are not convincing generators but rather solution space

patterns that the teams discovered and promoted—while undoubtedly useful, they have no

particular problem space relevance and therefore do not introduce the degree of

simplification of a strong generator.  Some of the architects described seeking to anchor

their designs on ‘primitive’ principles or structures (T6.41, T6.43).  They describe these as

‘architectural principles’ and they may source them from the problem domain or from a

solution archetype (an amalgam of architectural patterns).  These are probably types of

generators as well.

To conclude, a generator is a problem space or domain-specific pattern, that incorporates

one or more abstractions, that simplifies the software architecture as a result of its use.  A

generator may provide key concepts to guide the design, or may be a recurring structural

pattern that helps the architect to establish the architecture during its conceptualisation.

Choice of one or more ‘generators’ can lead the architect to select particular patterns or



Chapter Eight: Findings

217

archetypes.  Obviously, the choice of a generator is critical to the success of an

architecture.

Problem-solution transparency

By this definition, software generators rely on problem-solution transparency to achieve

their structuring and simplifying power.  However, when questioned, the architects were

divided on whether transparency in the mapping from problem space structures to software

architecture structures should always be a design goal.  Some regard this as the raison d’être

for object-orientation while others think it naïve.  The argument for transparency follows

from the philosophy of object-orientation as a simulation paradigm in which models are

concurrently designed and executed.  There is evidence for this interpretation in the second

case study—Le Corbusier’s design achieved transparency between problem domain

abstractions and structures (exchanges and their associated equipment) and solution

structures (exchange classes and collaborators) (T6.41).  Some of the appeal of Le

Corbusier’s design could be attributed to its simple, uncluttered representation of objects in

the domain and the way he was able to use object technology to avoid introducing another

dimension (object-relational mapping) of solution complexity.  Le Corbusier used this

transparency to engage stakeholders—the degree to which it aided design quality and

delivery over the life-cycle is less clear.

The argument against transparency hinges on the claim that ‘real world’ software

architecture is necessarily complex and must incorporate structural patterns in the solution

space (such as Model-View-Controller and others) for which no problem-space equivalent

exists.  Most architects agree that problem-solution transparency has value and should be

pursued in a domain or business object layer (or package) in the software architecture.

Beyond this, it does not appear to represent a universal or even common design goal for

software architects outside of simulation systems.

Paradigm bias ,  perspect ive ,  perspect ive-shi f t ing

Software architects, like all designers, are subject to bias.  In 8.2.2 (‘Architect as

professional’) the sources of bias that result from professionalisation of the software

architect’s role were discussed.  Another source of design bias is paradigm bias, in which

the architect is anchored (at times unreasonably) in a particular paradigm, notably the data

paradigm (T6.36).  This biases their models and predisposes them to particular

perspectives on modelling and design problems.  In the first case study, Breuer explicitly

recognised that Chen’s (data) paradigm bias blinded him to finding a solution to the



Chapter Eight: Findings

218

constraints-representation part of the problem because there was no workable solution in a

data model.  Chen had gone as far as his paradigm-bias would allow him to go.  Devotion to

a single design or decomposition paradigm limits the designer to the boundaries inherent in

the paradigm.  In the second case study, Mackintosh blames Le Corbusier for falling to his

underlying data paradigm bias (evidenced by his commitment to the centrality of the

exchange class) despite Le Corbusier being an object technology protagonist.  This case

illuminates the subtleties of paradigm bias—even though Le Corbusier immersed himself in

object modelling, he does not appear to have considered abstractions founded on identity

or behaviour (rather than state), which might have led him to consider ‘measurement’ as an

alternative generator.

Ideally, architects should be capable of disbanding their paradigmatic perspective and

adopting another, even if only as a mechanism for validating their preferred paradigmatic

stance (T6.35).  For example, an architect capable of shifting paradigms might adopt

different paradigmatic bases—data, function, object—from which to assess the suitability

and viability of a solution architecture or model, with the objective of exposing design

options and fully exploring requirements.  Although this appears obviously advantageous,

little evidence could be found for this behaviour.  The first case study presents a particular

series of interactions between four designers all addressing the same problem in which each

designer adopted a different paradigm or perspective.  Despite the obvious design skills

and experience of Nygaard, Goldberg, Chen and Breuer, none of these individuals

demonstrated an ability to perspective-shift whilst designing.  However, all were able to

see each other’s peculiar modelling perspectives when assessing each other’s candidate

designs.  The story illustrates perspective and paradigm shifting on the part of the design

collective rather than any one individual designer.  The ability to consciously shift

perspectives when designing, or between design episodes when evaluating, would be a

valuable design skill.  It is certainly one that could be taught.

8.2.7 Architect’s memory

Although this research has not attempted a psychological study of designer cognition, some

generalisations can be made about how the participants described their memory and their

experience of recall.

Personal patterns

The participants talked of relying on ‘personal patterns’ when designing (T6.47).  While it

is true that most architects can recite the names and some detail of a number of ‘Gang of



Chapter Eight: Findings

219

Four’ patterns, they also regularly use a number of what one of the architects referred to as

‘small-p’ patterns—design heuristics, rules of thumb, and small, self-contained design, code

and process structures.  These are drawn from the architect’s personal recollections and

reconstructions of published patterns, design fragments, idioms, and known solution

fragments.  They accumulate with the activities of software design—code reading and

writing, thinking through solution options, and designing in teams.  These personal patterns

overlap with and duplicate known architectural and design patterns.  Although this

suggests inefficiency on the part of the architects, they appear not to be concerned by this

rediscovery, and attribute it to the cost of acquiring knowledge and experience.

Architects do not remember the detail of their personal patterns in encyclopaedic fashion.

Instead, they remember the value that they believe a given ‘pattern’ contributed in a

particular situation (T6.48).  This demonstrates a kind of associative memory in which the

knowledge fragment is associated with the experience of its use in a past situation.  To

reinforce their ability to reuse or implement a given pattern, they will call up previous code

samples or other examples when evaluating or reifying the pattern.  It is only when they

‘call up’ a previous pattern for potential use to solve a presenting problem that detail

becomes important, and in most cases, the detail is reconstructed.  Thus personal pattern

reuse is a situated phenomenon.  Also, architects do not appear to invest any effort in

generalising, or organising their personal patterns, nor do they attempt to map them into

some kind of canonical form.  Instead, they are content to let knowledge accumulate in an

apparently ad hoc fashion, and use the process of recalling past design fragments and

solutions as an opportunity to reinstate, clarify or explore them in the context of a reuse

opportunity.

Archetypes

In addition to remembering personal patterns and perhaps as a specialisation of these,

experienced software architects abstract simplified ‘archetype’ representations from

complex software architectures (T6.45).  The archetypes they manipulate are an amalgam

of structure, metaphor, conceptual machine and the associated heuristic knowledge gained

from past experience of implementation.  Some architects are able to narrate large and

complex system architectures in remarkably simple terms.  Their depictions might involve

basic message traces and paths, holonic self-similarities, metaphors, or combinations of

these characteristics.  These narratives are abstract and span or imply many patterns or

combinations of patterns.  They primarily operate at the system or subsystem level (rather

than at the object level) and are able to represent very large and complex systems in highly



Chapter Eight: Findings

220

abstract terms.

Archetypes are kinds of knowledge schemas or frames and can be thought of as the ‘know-

how’ required to design object-oriented frameworks.  They generally do not include code

artefacts but the architects may retrieve the source code of architecturally significant

components from previous systems when elaborating, fitting or working with an archetype.

Archetypes are an efficient and minimal form of knowledge template—the architects retain

only the key characteristics they need to reify or fit the archetype into the new situation.

Consistent with their apparent treatment of personal patterns, they appear to promote the

parts of the system into the narrative based on its relevance to them personally.  This

suggests that they use archetypes to recall and re-tell the design’s meaning—what made it

successful in their personal experience—not its encyclopaedic detail, which would be well

beyond the mind’s capacity to remember or recall with any accuracy.  Again, this is

consistent with their recall of personal patterns.

In 8.2.3 (‘Architect as negotiator’) we saw how architects sometimes choose to negotiate

aspects of the presenting problem so as to look more like a problem that they are familiar

with or have solved before.  A similar opportunity to negotiate arises after the problem has

been agreed when the architect approaches the design of the software architecture.  Some

architects use their abstraction skills to make presenting problems look like problems for

which they have known solutions.  This kind of ‘structure-fitting’ is related to negotiation

of requirements (T6.3).  In essence, the architect abstracts details of the problem (rather

than negotiating or varying the problem itself) to achieve a viable fit with a known

architectural pattern or system archetype.  Structure-fitting via abstraction does not always

follow problem negotiation—architects use a known solution or archetype to drive their

negotiation of the problem, forming and re-forming negotiating key abstractions as they

progress.

Just as architects interpret problems to fit known solutions (T6.28) and to fit known

abstractions (T6.39), they engage in a similar form of interpretation at the solution level

using archetypes.  In the first case study, Chen’s ability to contribute the third model variant

apparently ‘from memory’ followed from his experience with using it previously on at least

several occasions.  The situation of the Nygaard/Goldberg review meeting provided a stage

for him to fit his ‘catalogue-order’ archetype (T6.45) with impressive speed and clarity.

Breuer’s observation and account—that he had a name for his pattern (the ‘catalogue-order’

model) and believed he had derived from his own modelling experience (T6.48)—

reinforces it as an archetype.



Chapter Eight: Findings

221

Conceptualisation preferences

Software architects use conceptual, static, dynamic and historical views interchangeably

and at times concurrently (T6.34).  Some express a clear preference for one view over

another, particularly when doing conceptual design, with static (class) and dynamic (object

collaboration) views being dominant.  Their stated preference appears to be independent of

problem type or domain, and may be primarily motivated by personal preference.

Ontology

The process of software design naturally expresses a language of the solution (T6.33) and

in object-oriented design, objects (classes) directly define the solution’s ontology.  The

ontology should always include classes but may also include relationships and patterns of

collaborating components and objects—all of those software-structural elements that can

be named and instantiated.  Some software architects build a narrative around their object

ontology that enunciates or confirms their vision (T6.4).  The emergence and health of

such a design language is an indicator of the team’s collective understanding.  Parts of a

solution’s ontology are retained as personal patterns that architects take forward from

project to project (T6.24, T6.47).

8.2.8 The ‘design act’

The phrase ‘the design act’ was introduced in the qualitative analysis to describe the

architect’s specific action of putting a design where none previously existed.  It is intended

to distinguish the specific actions which designers recognise as accounting for the creation

of a software design.  A few of the participants were able to narrate their approach lucidly

whilst others offered indirect accounts via stories and recalled experiences.  Software

architects exhibit a personal preference for how much effort they are prepared to invest in

indirect manifestations or representations (ie. models) of a software architecture or

component design (T6.16).  At the ‘explicit’ end of the scale, a software designer

elaborates a set of architectural models with design-level detail before committing them to

code.  At the ‘emergent’ end, a designer goes straight to code without any external models

or representations and allows the experience of rapidly iterating the code to evolve the

architecture’s structure.  Emergent designers do acknowledge thinking about the design,

sometimes in a semi-formal sense, before and during their coding effort.  By not

externalising their models and concepts, the emergent designers reduce the possibility of

collaborating on a design and demand that their team members adopt a similar emergent

approach.  The drivers of this personal preference for explicit versus emergent design are



Chapter Eight: Findings

222

not evident from the research data, but may include the individual’s visual orientation or

their ability to abstract from flat (textual) representations (such as code) into models or

structures.  Neither orientation was considered by the architects to be preferable, although

some participants who held a strong preference expressed concerns about their opposites.

Personal des ign process

When software architects approach a design task, they generally do not have a common

way of starting or a personal process to invoke that they can externalise or account for

(T6.27).  The architects initially appear to search for a path forward—trialing ideas,

sketching and forming concepts, in what may appear to an external observer to be a largely

ad hoc personal process.  As well as trialing early design elements or options, they are also

assembling and trialing a personal design process for the design situation they find

themselves in.

Software architects alternate between creative and routine design acts (T6.12).  Creative

(or conceptual) design drives the design act that puts a software artefact where one did not

previously exist.  The architect’s creative mind proposes new concepts and solution

structures and makes intuitive leaps into new design conceptions.  The architect’s rational

mind evaluates these creative propositions, verifying the artefact’s fitness for purpose and

filling in its detail.  These two opposing modes of designing operate alternately in a kind of

symbiotic relationship.

Architects are critical of methods and processes that attempt to dictate or direct the

creative part of this personal design process.  To avoid constraining the design act,

methods, processes and plans must facilitate both modes of design.  They must provide a

structure within which creative and conceptual software design can occur by leaving space

for creative acts, and also provide a supporting structure in which rational evaluation of

what gets created can follow.

The participants report a relationship between these two modes of design in their

experience of designing software architecture.  Bursts of creativity or leaps of intuition

which put a design or architectural element in place are frequently initiated by an external

event.  These periods are often followed by one of designing in an analytical mode in which

they evaluate and rationalise their design or candidate options to date.  Certain events act

as a catalyst or trigger for the architect to ‘toggle’ between these two modes.  Figure 21

illustrates a simple model of these phenomena.



Chapter Eight: Findings

223

Creative 
design

Routine 
design

conceptual thinking
abstraction
problem negotiation
archetype-fitting 
pattern matching

option evaluation
rationalisation
verification
constraint discovery & clarification
assessment

new input
breakdown event
new perspective
new paradigm

conceptual 
design output

Test alternatives against
requirements/constraints

Generate
design alternatives

Figure 21: Simon’s Generate/Test cycle (Simon 1985) and a model of the participant’s reported ‘design

episode’ phenomenon.

Architects working on the design of large and complex software architecture report

iterating this cycle many times during the complete design process and also at many levels

of abstraction.  Each set of iterations of creative design, followed by rational assessment

and routine elaboration that delivers a design (or design outcome) can be thought of as a

‘design episode’.  A complete design engagement would normally involve at least several

and possibly many distinct design episodes (Figure 22).

In the first case study the architect’s alternation between creative proposing and rational

assessing (T6.9) can be seen in how they changed roles.  In each design episode the

creative designing was done by the model proposer whilst the other architects adopted the

role of rational assessors.  What is so illuminating in Breuer’s story is how each episode

delivered such a markedly different model variant and corresponded precisely with an

exchange of roles, all without any externally imposed plan, management, method, process

or facilitation.



Chapter Eight: Findings

224

Engagement Phase Iteration* * Episode*

Visibility / Scale lowhigh

Volatility highlow

Figure 22: Relationship between design engagement, phase, iteration, and episode.

Design theory suggests that better designs can be delivered if the designer generates and

then evaluates a number of candidate or alternative designs.  However, software architects

report investing ‘think-time’ but generally little design effort in evaluating options (T6.30).

Experience significantly expedites the generation, evaluation and selection of options, and

provides higher confidence in the chosen option.  Generally, each distinct design episode in

a design engagement serves to refine an architecture under development but may in fact

generate replacements or alternatives, which the architect must assess.

Design episodes may be consciously constructed by an architect in order to initiate design

progress.  One of the primary motivations of software architecture is to manage

complexity, and software architects may choose to manipulate constraints as a mechanism

to temporarily simplify the presenting problem.  Some of the architects report alternately

relaxing and tightening selected constraints in order to separate design iterations, and to

simplify the number of constraints in any given design iteration (T6.29).  For example, an

architect may ‘selectively ignore’ non-functional constraints or requirements (such as

performance, security or scalability) then consider the effect of these constraints in

subsequent design episodes.  In the first case study, each episode illustrates how the

architects relaxed different constraints of their choice in order to achieve a model.  The

initial (project team member’s) model ignored too many constraints to be viable but

constituted a model nonetheless.  The Nygaard/Goldberg model ignored or over-simplified

the distinction between allocated and available product parts, and Chen’s model ignored

rules between product parts.  In all three cases, relaxing a constraint allowed creation of a

new candidate model but the subsequent attempt to tighten the relaxed constraint resulted

in a breakdown, which triggered the ‘passing of the baton’ to the next designer.  This kind

of constraint relaxation is one type of breakdown event in the design process.



Chapter Eight: Findings

225

Role o f  breakdowns

A breakdown is a kind of occurrence or event that marks the designer’s discovery of some

inadequacy or flaw in the design as it stands (T6.51).  This forces the designer to re-think a

particular aspect of the design.  A breakdown event typically marks the boundary between

design modes—from creative to evaluative or vice-versa.  As a result, a breakdown can

initiate a shift in perspective or paradigm in an architect’s personal design process (T6.50).

The architects describe both ‘hard’ and ‘soft’ software design failures as kinds of

breakdown events (T6.49).  A ‘hard’ failure must be addressed by conscious re-design or

refactoring.  A ‘soft’ failure is typically less obvious and may go undetected for some time,

but when detected, has the same result.  Architects describe using a kind of ‘aesthetic

sense’ to detect and assess ‘soft’ failures.

Tension and release cyc le

There is a fundamental cyclical pattern within the personal design process that is formed by

the tension that a designer feels about an unresolved problem, and the sense of release that

resolution of a design force or problem brings (T6.52).  The Decision Tree story illustrates

the tension and release cycle both in Breuer’s personal account of how his design came

about and in each of the four design episodes.  The tension experienced by the designers is

evidenced by their sense of forces unresolved in each of the first three candidate models.

The resolution brought by Breuer’s model was acknowledged by all of the designers when

they declared comments such as ‘the sun came out’.

Role of Aesthetics

Software architects are guided by a personal aesthetic sense.  This sense of software

aesthetic is difficult to define but is correlated with symmetry (T6.53), closeness of fit to a

desired or trusted reference structure, closeness of fit to obvious or self-evident problem

space structures, minimalism, consistency and self-similarity.  Architects use their aesthetic

sense to determine when a design is satisfactory, and hence how to choose between design

options and also when to terminate a design episode.  In the first case study, an aesthetic

sense appears to have been a significant factor in the assessment of each option.  Some of

the appeal of Breuer’s Decision Tree pattern could be attributed to the symmetry.  Le

Corbusier’s model reportedly had a quality derived from simplicity, clarity and transparency

with the problem domain.



Chapter Eight: Findings

226

Termination

The software architect’s design process often terminates as a result of a perceived

convergence, and the architect’s sense of diminishing returns.  Convergence appears to be

driven by the same phenomena that define the aesthetic sense, particularly elimination of

redundancy, symmetry and closeness of fit to an idealised architectural structure, generator

or archetype.  The architects confirm that a maturing object-oriented architecture reduces

in scale through the discovery and elimination of duplication as well as the discovery of

better-fitting structures.  Thus architectural reduction frequently signifies design progress

(T6.32).  Elimination of complexity often follows from the discovery of more naturally

fitting structural patterns.  While Chen’s model reduced the introduced complexity inherent

in the earlier models, Breuer’s model addressed the ‘constraints problem’ and, most

significantly, collapsed complexity across the entire project.  For all of these termination

drivers, the architect employs mostly subjective assessment of the design’s overall quality,

often to informal or even personal criteria, and often primarily motivated by the designer’s

personal sense of software design aesthetic.

The architects are aware that it is common for sponsors and stakeholders to associate

investment in effort (time and therefore cost) with progress; that volume of documentation

is additionally roughly associated with progress, but that quantity of design documentation

does not imply completeness or quality of design.  They report that projects sometimes

reach a point of investment in artefacts—both documents and code—that makes rework or

re-architecting difficult or impossible, even though flaws in the architecture become

evident.  Sunk cost tends to increase architectural rigidity or ‘crystallisation’ (T6.44).

Crystallisation often constitutes an unsatisfactory kind of termination.

8.3 Conclusion

This chapter constitutes the synthesis of the research findings, and directly responds to the

research aim—to explain how experienced software architects and designers understand, reflect on, and

describe the ways that they draw upon rational methods, past experience, contextual factors and other

inputs to design enduring object or component-based software architectures in industry and business

contexts.  These findings complete the ‘field work’ and analysis part of the research, leaving

only the theoretical question posed by the hypothesis—that software design can only be

meaningfully understood when viewed as situated action—to be addressed in the remaining

chapters.  Consistent with the outputs of qualitative research, these findings are expressed

as rich narratives that lend themselves to interpretation by the reader to other software



Chapter Eight: Findings

227

design situations and contexts.  As such, their value goes beyond being an account of the

designers encountered in the process of executing this research to be a theoretical basis for

future observations and comparisons.

The next chapter (Discussion) addresses what these findings mean for a holistic depiction

of the practice of software architectural design, using comparisons of the findings with

existing theory and knowledge as input to the discussion.  The final chapter (Conclusion)

takes a position on the hypothesis.



228

Chapter 9:  Discussion

Attentiveness to context, not to self-expression, is the skill we have to foster, to

encourage, to share.  In natural evolution inattentiveness is death.  So is inability to

adapt to what we see happening.  The context, not the boss, has to become the

manager of what is done, and how.  The bosses’ role becomes that of designing the

meta-process, designing the situation so that designing collaboratively is possible, so

that the interaction (of what everyone is noticing with what everyone is doing) flows.

(Jones 1988, p. 225)

9.1 Introduction

This penultimate chapter responds to the themes introduced in the background chapters

(Chapters Two to Four) in the light of the findings, leaving the conclusions on the

hypothesis to the final chapter.  The discussion is structured using the four architect

personas (rational, pragmatic, critical and radical) introduced in Chapter Two.  Questions

posed in the background chapters are answered to the degree that the study’s findings

allow, and within the persona that best fits the particular question or phenomenon.

9.2 Rational themes

The rational persona in 2.5.1 (‘The Rational Software Architect’) characterises the software

architect as a highly trained and highly valued technician, skilled in software

implementation technologies, able to follow methods accurately, and always conscious of

the economic relationship between time and effort.  The rational architect-technician

primarily adopts an objective orientation to design, treating requirements as absolutes

revealed by a discovery process the refines through successive application, employing

(rather than constructing or assembling) design methods and processes, and using plans in a

predictive sense.  Personally, the rational software architect subjugates tensions in aspects

of their personal practice of design to the authority of theory and its expression in method.



Chapter Nine: Discussion

229

The rational designer may acknowledge limits on what can be achieved in practice,

subscribing not to a ‘hard’ rationality but to a form of bounded rationality (Simon 1983).

Even so, bounded rationality does not abandon rationalism as its underlying philosophy.

The boundedly rational designer does not acknowledge relativism, criticalism or radicalism

as alternate philosophical positions of value, and as a consequence, remains locked into a

paradigm that cannot explain pragmatic, critical or radical phenomena that confound

rationalistic design in all its forms.

Recognising that rationalism can take many forms (Meredith 2002) it is worth summarising

what has been assumed about the rationalistic approach to software design.  Rationalism in

software design exhibits the following characteristics—it asserts an objective reality in

which every requirement or constraint can be resolved to absolute terms; that problems

yield (through correct and repeatable analysis) convergent solution structures; that all

systems are ultimately amenable to closed systems principles through analysis and

decomposition; that design is a process by which problems are decomposed into

components which individually yield to mechanisation; and that the design process is

ultimately value-free, deterministic and repeatable in the hands of a skilled executor.  This

thesis and the points selected for discussion in this chapter focus on where the participant’s

accounts highlight observations and practices that are contradictory to this portrayal of

rational software design.

9.2.1 Rationalism and subjectivity

Some findings challenge a rational approach’s objective basis, most notably how the

architect deals with the inherent unpredictability of the design trajectory, the relationship

between effort and design outcome, and the meaning of negotiation.  The notion of ‘return

on investment’ follows from the rational assumption that design progress and completeness

is proportional to effort.  Most architects have little experience of making return on

investment assessments of software architecture and are generally unsure of how to make

such justifications. Although the participants left little doubt that under-investment in

architecture can be fatal to a design-based system project, they confirmed that additional

investment does not always raise architectural quality, or that return is necessarily

proportional to investment.  Instead, the participants described the relationship between

design investment and architectural quality as a complex one, influenced by project phase,

the capabilities and orientation of the designers, and many other contextual factors.  Return

on investment implies a mechanistic design process in which outputs are a function of

inputs.  The architects confirm this to be an over-simplification that is frequently projected



Chapter Nine: Discussion

230

onto design activity from other, more routine forms of design and development.  This

confirms the related finding that separation of conceptual from detailed or routine design is

artificial.  Alternate philosophical perspectives lead to polarised interpretations of the

return-on-investment problem.  From a rational view, when architects blame prevailing

business, organisational or societal culture for a poor design outcome, they expose their

own inability to engage sponsors on matters of design and delivery.  From a pragmatic

view, the prevailing belief that all aspects of system development—including design—

should obey rationalistic principles is entirely to blame (Truex et al. 2000).  The application

of a rational process to an open systems (Checkland 1981) (or ‘wicked’) problem (Rittel

and Weber 1984) inevitably results in force-fitting objective structures and measures to

problem characteristics that are inherently not objective or do not behave rationally.  The

participants expressed the resulting tension in many ways.  As a general observation, the

more experienced architects have developed ways of manipulating problems and situations

to alleviate subjectivity and it is these approaches that most naturally fit a situated (or a-

rational) model.

9.2.2 Rationalism and negotiation

That architects negotiate almost every piece of the presenting problem and solution

challenges the rational persona, particularly the finding that some architects engage in these

negotiations in order to re-shape the client’s perception of the problem to be a closer fit to

a known solution.  In rational software engineering terms, this looks a lot like the tail

wagging the dog.  Clearly, this claim represents a generalisation because some

requirements—the need for end-of-day balancing in a financial trading system, for

example—are and always will be absolute.  Experienced architects, however, do engage

with the client in the definition of a shared understanding of business goals so concrete

requirements can be negotiated.  A number of participants described engaging in such goal-

setting negotiations to influence the client away from ‘difficult’ requirements and instead

toward ‘achievable’ ones.  This phenomenon of requirements negotiation challenges the

rational view which holds that an objective understanding of the problem is discovered

through successive application of rational analysis techniques.  It also refutes the modernist

principle that design is (or should be) value-free (Thackara 1988).  This is another

phenomenon with polarised interpretations.  In the rational view, problem negotiation

might be interpreted as the negotiator’s imprecise and even clumsy attempts at uncovering

objective problem attributes.  From a pragmatic view, problem negotiation is precisely a

situated design activity and evidences Floyd’s (1992b) and Winograd and Flores’ (1986)



Chapter Nine: Discussion

231

hermeneutic approaches, because the results of the negotiation are primarily dependent on

the actors and situation.  The further recognition that situated actors engaged in

negotiation carry agendas locates the phenomenon in the critical persona.  The accounts of

Mackintosh, Breuer and others provide vivid examples of how commercial and business

forces can drive such negotiations.

To conclude that problem understanding and requirements are both objective (absolute)

and negotiable (subjective) is uncontentious but also unsatisfying.  This position leaves the

question of demarcation open—when is an objective (absolute) requirement not negotiable

(subjective), and vice-versa?  Another possible conclusion is that problem understanding

and requirements follow a maturity-based lifecycle model, from unsubstantiated and

subjective representations via rational analysis to objective assertions.  However, this

model overlooks the power of the negotiation phenomena as described by the participants

to open up, renegotiate and undo requirements previously accepted or thought by designers

and clients alike to be absolute.  Because the participants describe negotiation as being

able to define as well as redefine, the phenomena’s rational basis is eroded.  What can be

concluded from the findings is that architects negotiate continuously in an attempt to

establish social contracts, that these social contracts build to a shared construction from

which the designer may choose various means of representation (including formal

representations), and that any contract negotiation will likely influence others.

9.2.3 Rationalism and method

If the architect’s judgement is to be relied upon to demarcate between the need for

objectivity versus subjectivity more or less continuously in a design engagement, then

method must necessarily incorporate both interpretation and judgement.  By characterising

the software architect primarily as a method-follower rather than a method-interpreter or

method-author, the rational persona amplifies this conflict between a method’s instruction

and its interpretation:

How do software designers resolve tensions between the selection and application

of methods and the use of pragmatic know-how, particularly in cases where

these conflict?

The rational view asserts that methodology is a primary driver of design activity (or what

has been referred to as the design’s trajectory).  The participants report otherwise.  They

describe a mistrust of methodology as a driver of design, preferring to retain personal control

of the design process.  There are a number of possible explanations for this finding.  One is



Chapter Nine: Discussion

232

a fear of redundancy—professionals of all kinds vehemently resist their skill being

commodified or encapsulated in a process.  This fear is unfounded both historically and

theoretically, as earlier attempts to ‘automate the architect’ (Alexander 1964; Cross 1977)

are now widely regarded as having failed (Alexander 1988).

In reviewing the participant’s accounts of failed attempts to use methodology or prescribed

process to deliver high quality design outcomes, it is difficult to distinguish between a

‘broken’ rational process and a rational process badly followed.  Breuer and Stickley/Eames

described projects in which the architecture was considered to have been complete with

the delivery of a UML package model.  The architectures of both systems suffered from the

premature cessation of design effort.  Both stories illustrate a poorly understood or applied

process rather than a necessarily broken one—there can be no suggestion that these

failures were unambiguously due to the design process being followed.  A number of other

stories from the participants described badly followed (or inappropriately selected)

industry-accepted methods.  In most cases, the error appears to have been in the mismatch

between process and problem.  Thus the participant’s rejection of methodology should be

distinguished as rejection of method as primary driver of their personal design activity.  An

implication of this finding is that architects are accepting of methods that allow them to

perform interpretation and to retain control of the design process (although there was no

data to explicitly promote this implication to a finding).

Rationalism emphasises logical method execution over method interpretation.  Ultimately,

practitioners make their assessment of purpose and value of method from experiences such

as these:

What purposes do methods serve in the hands of experienced software

architects?

The architects generally agree that methods provide tools and techniques for rational

assessment and evaluation of both design outputs and the design process.  The

fundamental problem for methods and methodologists is that designers need instruction

but do not wish to release control of the personal design process, which they regard as

fundamentally creative and not amenable to any form of method-based expression.  A

method can provide an overarching design and decision-making framework, can instruct on

evaluation of design artefacts after the fact, but cannot drive creative design action, which

is an act of situated human cognition.  Design evaluation is rational but the ‘design act’ is

not.  Utzon verbalised this most clearly:

There needs to be a balance between what can be rationally expressed, the sort of



Chapter Nine: Discussion

233

rational parts of the method, and what is really the other kinds of knowledge that

people have, the intuitive knowledge, the experiential knowledge, the creative

knowledge, that we really can’t talk about very easily other than to talk about it in the

most mystical terms.  —Utzon

The participant’s rejection of methodology is qualified.  Gropius’ declaration that he is a

‘big supporter of tools… not much of a supporter of methodology’ encapsulates their

rejection of methodology as a controller of the design process but their acceptance of it as

a source of usable, ready-to-hand tools and design resources.  The architect’s relationship

with tools suggests a vernacular, workshop-based model of design in which tools and a

specific design process are separated—that is, tools do not embody or dictate a particular

design process but instead facilitate an unfolding design process in the hands of the

designer-craftsperson.  The design act belongs exclusively to the architect, but is mediated

by his tool selection and use.

The participant’s accounts position them at times in ‘the empirical exchange’ (Walker and

Cross 1976) (Fig 71, p. 58) (in which software designer is also software maker) and at other

times in ‘direct patronage’ (Fig 70, p. 57) (in which software designer is separated from the

software maker by an intermediate design artefact such as a model).  None of the

participants described design in terms of Walker and Cross’ ‘mature’ design process (the

‘rational design network’, Fig 70, in which designer is permanently separated from patron

via a brief and from constructors via models).  This asserts evidence for a vernacular model

of software-architectural design.

Kahn implies no formal methodological reliance when he declares that ‘I’ve got some good

people… those good people are just going to have to take control of other people, which in

some sense is, I guess, a methodology that you’re relying on’.  The participant’s self-

reported propensity to appropriate method fragments further qualifies their collective

rejection of methodology.  Kahn’s ‘good people’ undoubtedly draw upon an amalgam of

commonly accepted method fragments and techniques.  Gropius and Kahn, like many of

their counterparts, write their own situated ‘methodology’ for the task at hand, collecting

fragments into their bower and assembling these in a loose and informal process suited to

the demands of client, problem and team.  The process is not systematic but is equally not

random or haphazard, although it may appear as such to an observer.  Typically, published

design methods provide not more than an initial basis for the construction of this in situ

method.  Rationalism can attempt to make method out of any enacted or observed design

scenario.  But ‘method engineering’ and meta-methodology (which allow a designer to

engineer a method before applying it in a design scenario) do not substitute for the



Chapter Nine: Discussion

234

participant’s reported process-assembly phenomenon, which is a uniquely situated activity.

The architects describe collaborating on design to achieve a shared vision.  Establishment

of this ‘design momentum’ or collective understanding may be explained from the rational

perspective as the responsible execution of an open and accountable design process—one

that is successively revealed and understood by the architect and team as the designing is

performed.  Conversely, it can be viewed as pragmatic and situated team behaviour,

evidencing Floyd’s (1992b) ‘web of decisions’ through the construction of a reality (a

problem context) or equally as recognition of Jackson’s (1995) phenomenological problem

domains.  Both of these constructivist views serve the team’s purpose of progressing the

design.  These different interpretations can again be separated by understanding the role of

method (or method encapsulated in design and team process) as driver of the design’s

trajectory.  In the rational view, the architect’s relationship with method is as executer.  In

the pragmatic view, the architect is a method-author and method-assembler, such that the

method is subservient to the architect’s needs at all times, and is frequently defined on an

as-needed basis.

The architect’s rejection of method as design driver must be scrutinised on one point.

Because the participants will have internalised methodology to some degree, their reliance

on it can never be known accurately.  For example, Gropius’ claim that methods are less

useful than tools may reflect sub-conscious or tacit knowledge of method—in other words,

we cannot know to what degree Gropius has internalised a working knowledge of

methodology such that he regards it as superfluous, even though he tacitly relies upon it.

An inherent limitation of interpretive research is that it cannot tease such accounts apart in

order to remove ambiguity in such data.  The strength of interpretivism is its ability to

generalise about reported phenomena and construct a view via such interpreted accounts.

That software architects discount the usefulness of method because they long ago

internalised it is less important a finding than that which explains the manifestations of this

internalised knowledge.  The question of how expertise in a particular domain is based on

formal knowledge made tacit is a different research question.

9.2.4 Plans as predictors of the design trajectory

We have seen how Suchman’s (1987) model of situated action and other models of

emergent design theoretically challenge the rational conception of plans as directors of

activity:

How do experienced software designers regard the use of architectural



Chapter Nine: Discussion

235

projections or plans?

And also:

Do software architects believe that these plans should drive or shape their

designs?  In the cases where plans and final designs diverge, how do architects

explain or rationalise these inconsistencies?

In the context of these questions, a ‘plan’ is a project plan, design schema, or any a priori

construct that purports to prescribe the design’s trajectory and how much design effort will

be required at any point.  These questions probe whether there is evidence that the plan

(abstract representation) or the situation is the primary initiator of activity.  The analysis

yielded two broad categories of designers—‘explicit’ designers who invest in indirect

manifestations or representations of the evolving design (i.e. plans and models) and

‘emergent’ designers who are content to allow the experience of rapidly iterating the code

base to evolve architecture over time.  These extremes fit the rational and pragmatic

personas respectively.  Explicit or top-down architectural design is rational in as much as it

is a conservative approach based on successive refinement of models.  Rationalists would

argue that the degree of investment in the models is a predictor of how trouble-free

subsequent detailed design and implementation will be.  Thus the plans and models are

artefacts of a (notionally) rational process of design and decomposition—a process which

could be observed and mapped (as methodologists do), one which could ultimately stand

as viable and independent of both problem instance and situation.

On the other hand, emergent design is a result of a situated process of discovery in which

the designer begins with certain preconceptions and impressions, reifies these in code, and

then intensely redesigns the resulting artefact via stakeholder interaction with the nascent

system.  Emergent designers such as Morris claim to rely upon an aesthetic sense to guide

their decision-making when working in this fashion.  This approach to design confounds

conservative planning approaches, and as a consequence, proponents of Agile methods

adopt planning models based on time-boxing and continuous iteration.  At issue here are

three main points—evidence for the participant’s reliance on plans ahead of (or at the

commencement of) the design engagement, on architectural models as intermediate

representations of a design before it is committed to code, and on how divergence from

these plans and models is dealt with as the design progresses.

Firstly, the participants report that their reliance on plans at the commencement of a design

engagement to guide their design effort is minimal.  They report that, in general, planning



Chapter Nine: Discussion

236

for architecture and design effort is not done well and that those plans that are created are

often not particularly useful.  Breuer, Stickley and Eames all relayed stories of poorly planned

system development projects which compromised architectural quality and design

outcomes, in several cases permanently.  These and other participants complained of not

being able to influence planning timeframes and decisions which then directly impacted

their design effort.  Generally, this situation did not improve as the project progressed for a

variety of reasons.  Stickley, Eames and van der Rohe all described a related phenomenon—

large investments in planning and specification typically deliver substantial documents and

models that collectively embody an irreversible momentum.  This ‘sunk cost’ eliminates

the architect’s ability to change the design’s trajectory, almost regardless of the

obviousness of need.  Morris evidences a commitment to feature-driven or agile planning,

in which the relationship between designer and sponsor is grounded in an agreement to

negotiate very short-term plans as the design engagement progresses.  This planning model

would appear to be workable in some circumstances but not universally.  Thus planning

continues to be an intractable problem for the architects—a priori planning works only at

the highest of levels, at which its usefulness in guiding the design trajectory is dubious.

But emergent planning does not always allow a workable or viable design engagement to be

struck.  When market forces drive architects to agree to time-boxed (that is, ‘fixed price’) a

priori–planned design engagements, they risk finding themselves in situations like those

recounted by Stickley and Eames.  In general, the participants agree that a priori plans do not

lead to quality architectural design, but they diverge on the question of what to do about it.

Their mistrust of plans forms a self-reinforcing feedback loop—an inability to plan design

effort reduces confidence in their effort estimation, hence the return-on-investment

problem discussed earlier in the chapter.

Secondly, reliance on architectural models as intermediate representations of a design

before it is committed to code is favoured by some architects more than others.  Almost all

of the participants described visualising models, abstractions, mechanisms and archetypes

in their mind before committing these to some form of representation, be it code or model.

Where the architects differed was whether they prefer to move from this mind’s-eye

conceptual machine or schema to an explicit model or direct to code.  Le Corbusier, Howard,

Breuer, Gropius, Cook, Piano, Mackintosh, Moore, Ruskin and Griffin all preferred to express

design in intermediate models, citing management of complexity and the speed with which

they can manipulate a symbolic design model as their reasons.  Morris, van der Rohe, Johnson

and Sullivan all expressed wariness of any significant investment in code-independent

models—van der Rohe’s account of ‘crystallisation’ summarises their primary concern.  Kahn



Chapter Nine: Discussion

237

and Utzon, amongst others, appear to sit between these two opposing positions.  The

analysis did not reveal the basis for this diversity, although solution domain, complexity

and scale are obvious candidates.  Revealingly, Morris admits at one point to performing a

certain amount of conceptualisation ‘in his head’, which begs the question whether the

emergent designers are really highly skilled top-down designers with good memories.  What

is clear is that architects use indirect models to represent their abstraction and early

conceptual models when designing rather than as a planning mechanism.  The result is that

even when the opportunity exists to construct models during periods of planning or

conceptual design, the architects believe that they do not significantly influence the plan or

address planning concerns.

Thirdly, how the architects deal with divergence from these plans as the design progresses

reflects on their choice to use them in the first place.  They report that divergence is often

handled poorly, and that they are often not well positioned or equipped to deal with

divergence.  Divergence is typically a point where additional investment in architecture is

needed but this is not usually what happens.  Because divergence is frequently interpreted

as project instability, it is often deliberately ignored or ‘battened down’ by stakeholders,

resulting in the unsatisfactory situation Eames described.  In general, being subordinate to

other roles (such as project managers and enterprise architects), the architects reported a

low level of influence where planning, direction and resourcing were concerned.  This may

explain why the participants are not committed to plans or planning, particularly in the

large-scale (or town planning) sense, and why their relationship with plans and planners is

fraught.  Breuer’s influence over his project’s direction (in the first case study) is the

exception, and the substantial personal commitment he found necessary to effect this re-

direction reinforces the point.

9.2.5 Rationalism versus emergence—the design episode

Rationalism does not exclude the possibility of new discoveries, change or divergence as a

design process progresses—rather, it posits that rational designers must achieve a balance

of planned and emergent structure:

How is a balance between forward-engineered and emergent design and

architecture reached?

In general, the participants were not confident of their ability to achieve this balance.  The

finding that designers report distinct episodes of alternating between creative and rational

design activity appears to fit both rational and pragmatic personas respectively.  However,



Chapter Nine: Discussion

238

the two modes of action are strongly polarised.  The participants consistently criticised

rational methods and processes for their failure to guide ‘the design act’—the point at

which a designer puts a design where none previously existed.  The ‘design episode’

phenomenon accounts for the way a design matures in the designer’s mind—first

hesitantly, then with increasing conviction, and as a result of a number of (sometimes

small) creative leaps interspersed with routine or rational assessment.  ‘See, the rational

cannot create anything’, Utzon claims, ‘…it can only criticise and assess… it cannot

actually put forward anything new’.  Utzon’s insightful analysis—that methods exist to

provide a predictable, evaluative framework within which the skilled designer works in

isolated bursts of creative output—succinctly summarises the participant’s limited

expression of this phenomenon:

How do you identify classes in a business model?  That’s not a rational process… the

only thing you can do is to say, if you hold in mind the purpose of the system, the

human brain being what it is, suggests creatively a set of classes if you work your way

through it… then you have to apply some sort of goodness to that which is the rational

act which is the refining and the testing… and those two things have to go in balance.

—Utzon

The explanation that all software designers operate in both explicit (rational) and emergent

(pragmatic) design modes at times—and that they adopt one or the other mode as a vehicle

to describe their actions as it suits them—is a reasonable conclusion.  Software design is

rational in as much as the evaluation of creatively-proposed structures proceeds according

to objective criteria.  This part of the design process is repeatable, is not strongly situated,

and does not depend on who the actors are or where the evaluative action occurs.  The

rational persona cannot, however, account for the creative part of software design, which is

in most ways the antithesis of rationalism.

Breuer suggests one possible middle ground for the architect in this explicit-emergent

continuum.  ‘I see so many things that are decided at far too high a level’, he observes.

Rather than dwelling on the tension between creative design transformations and the

alternate structured process of assessment, he suggests that the architect should ideally

concentrate mostly on the former and delegate the latter.  Using da Vinci’s Renaissance art

as metaphorical inspiration, he suggests that the architect should ‘do sketches… sketch in

the outlines—and leave it to subordinates to fill in the details’.  Breuer’s software

architecture sketches should be ‘5 page documents without all the trash… the outlines, the

essential concepts’ from which a developer would go away, complete the structural design

and layout detail, then implement.  ‘Methodologies work against this’, he claims, ‘they tend



Chapter Nine: Discussion

239

to say, OK you have to name everything, you have to do this, that and the other’.  Breuer’s

separation allows the architect to drive the predominantly creative part of the design

process but relies on immediate feedback from the detailed designers when breakdowns

occur.  While this model addresses the problem of a methodology forcing resolution down

to minute levels prematurely, it conflicts with the finding that architects prefer to work at

all levels of abstraction simultaneously, and as a result, would be unacceptable to emergent

designers such as Morris.  In summary, most participants revealed a definite preference for

designing between the explicit and emergent extremes, and gave little evidence of

conscious movement from this preferred position.

9.2.6 Does rationalism have a role in explaining software design practice?

The overarching question concerns usefulness of the rational persona as a means to

describe software design:

What aspects of software design does the rational persona usefully describe?

This discussion of the rational perspective can be concluded with three points—routine

design (assessment and evaluation) is rational but creative design is not; design effort and

design outcomes are not proportionally related; and the design trajectory is not amenable to

conventional planning regimes.  Rationalism is therefore an essential part of the design

engagement but is not its universal basis.  A rational perspective cannot account for every

design outcome, nor can every design outcome be explained in terms of its degree of

adherence to a rational design process.  Rationalism frequently attempts to explain

shortcomings as inadequacies on the part of the actors—their inability to correctly follow

rational processes of discovery and execution, for example.  Rational design in software, as

in other mediums, risks isolation and disconnection.  In the second case study, the

pseudonym for participant Le Corbusier was deliberately chosen—the 19th century French

modernist architect’s ‘unité jardin verticale’ and the 20th century software architect’s

Exchange model have certain similarities.  Both are characterised by ego-centricity and

ultimately, sterility.  In line with the history of modernism in the twentieth century,

rationalism turns out to be an over-simplification of design in software fabric as in other

media.

9.3 Pragmatic themes

Under Coyne’s pragmatic theme, meaning and intent are neither pre-existent nor absolute,

and designing cannot be done without adopting the interpretive norms of one’s community



Chapter Nine: Discussion

240

and making grounded judgements from within that context (Coyne 1995).  Pragmatic

design is primarily concerned with interpreting and setting expectations, as objectivism and

universality give way to contextualisation and constructivism.  Community replaces

individual and vested authority, pre-existing artefacts become objects for reinterpretation,

and in the act of design, situated performance replaces detached planning or execution of

pre-existing scripts.  In all forms of design, situation dictates to the design act and design

evaluation more than theories, universal principles, methods or frameworks.

9.3.1 Pragmatism and the ‘social contract’

The pragmatic persona introduced in 2.5.2 (‘The Pragmatic Software Architect’) poses

questions that attempt to make pragmatism real for practicing software architects, starting

with the basic characteristics of pragmatic practice:

What characterises the pragmatic software architect?

The pragmatic software architect designs and constructs in context and in collaboration

with other designers and the community of stakeholders at all times.  The pragmatist has

no need for the pursuit of absolutes and no time for the pursuit of perfection.  To the

pragmatic architect, theory and practice are imprecise distinctions—if theory is

externalised, it is treated as following from practice.  Reliance on plans or abstract models

as directors of design effort is minimal, and openness to situational, contextual, communal

and cultural cues is paramount.  The validity of a design technique is measured in terms of

its proven utility, community acceptance and relevance to the situation at hand.  The

pragmatic software architect takes away grounded experiences and heuristic knowledge

from a design engagement to inform future work in similar situations, recognising that each

new design context will necessitate new interpretations of familiar objects or techniques.

Much of the participant’s accounts fit comfortably within this pragmatic genre.

Pragmatism is evidenced by the architect’s recognition that each design situation—

particularly the actors and their individual and collective capabilities—is different, and that

to design independently of these capabilities or to some imagined or idealised capability is

at best inappropriate and at worst negligent.  Prime examples of pragmatic design

techniques and behaviours include using software architecture as a mechanism to distribute

work across a team, and the use of framework design techniques to encapsulate or

distribute complexity based on team capability.

The phenomena of requirements, problem and solution negotiation also evidence the



Chapter Nine: Discussion

241

pragmatic persona.  The key pragmatic concept is the ‘social contract’.  The pragmatic

designer understands requirements as a contract between stakeholders in a given situation

and design as the process by which such decision-contracts are mapped to a system or

technology infrastructure.  The pragmatic architect advances software architecture on a

foundation of agreements, knowing that most will be sufficiently stable for the purpose at

hand, and that defensive design techniques, design skill and re-negotiation will allow re-

conceptualisation of those that prove unstable.  Correctness is less relevant than viability—

the combined stakeholder’s confidence at any point in time in a set of social contracts

between an ad hoc cabal of stakeholders, of which the architect is but one.  The first case

study (Breuer, Chen, Nygaard and Goldberg) richly illustrates this combination of designer

behaviours and phenomena.  The pragmatic architect uses the architectural vision as a

vehicle for contract-building with stakeholders and as an initial anchor-point in the

negotiation.  From their vision, with dialogue, specific agreements (contracts) solidify.  The

architect’s vision, and the contracts that follow, are shared interpretations rather than

binding absolutes.

9.3.2 Pragmatism and paradigm

Pragmatic architects do not allow method to direct their design effort—instead, they design

flexibly, at all levels of abstraction seemingly at once, under the direction of exigency.  The

finding that the participants could not identify significant differences between designing at

the level of software architecture versus designing at the level of components or objects

evidences this.  It is also a testament to the scalability of the object paradigm—object-

orientation facilitates a consistent use of design skill through multiple distinct levels of

abstraction in a way that would not be possible in other paradigms.  The implication is that

pragmatism—and freedom from the dictates of method—is enabled by the design

paradigm.  The characteristic of the object paradigm that allows this designer behaviour is

its self-similarity—a consistent and self-referential paradigmatic meta-model dissolves

distinctions between conceptual, architectural, logical and physical design.  Freed from

distinctions and dependencies between conventional modes of software design, architects

are able to break from sequence, instead working freely and interchangeably at all levels of

abstraction.  In effect, by supporting architectural design, physical design and everything

in-between, the object paradigm unifies these previously segregated design modes such that

they all look and feel the same to both enactor and observer.



Chapter Nine: Discussion

242

9.3.3 Pragmatic knowledge structures

In pragmatic, situated practice, how is generalised design knowledge explicated

and passed on?

The finding that architects describe their experience as an accumulation of ‘small-p’

patterns in a kind of personal pattern store is also strongly pragmatic.  It replaces the

notion of structured, catalogued personal knowledge with one of accumulated

epistemological bricolage.  In this loosely bound and unstructured accumulation, each

collectible knowledge fragment is retained by virtue of the architect’s memory of how it

helped solve a problem in a particular situation.  Conventional notions of structure,

taxonomy or organisation cannot be superimposed over such a dynamic and value-laden

storage and retrieval system.

That architects do not attempt to structure their personal patterns, or express concern that

some may constitute re-invention of published patterns, reinforces the architect’s

pragmatic stance on accumulated knowledge.  Architects recall previous solutions most

effectively only in the context of a presenting problem, and it is the need to solve a

software design problem that drives the personal process of recall and re-conceptualisation.

The first point essentially declares that recall is situated and that it increasingly loses

meaning as it is removed from context.  The second point illustrates the architect’s implicit

awareness of the cost of recall, and serves to explain one reason why professional software

architects do not generally practice externalisation of their experience—their propensity to

protect their personal experience notwithstanding.  The architect’s accounts of their use of

system archetypes (for example, Stickley’s narrative) echo the same themes of personally

relevant, minimal, contextualised knowledge and the situated nature of its recall.

In the participant’s accounts, knowledge is shared in context and by peers in an ongoing

dialogue, both with each other and with the materials.  Knowledge exchange via social

networks echoes aligns with communication theory  (Allen 1977).  Knowledge explication

and sharing is via social processes and design occurs as a consequence of the designer’s

participation in this social network.  The pragmatic architect therefore realises the power of

the vernacular design models to design efficiently and adaptively, as well as suffering their

inability to scale or generate theory from which new designs and designer behaviours can

be predicted.

9.3.4 Pragmatism and the design act

In pragmatic, situated practice, how are designs created, or arrived at?



Chapter Nine: Discussion

243

In the discussion of rational themes, the evaluative part of the design episode was declared

to be a rationalistic action.  It remains to determine in which personas the creative part

most comfortably sits.  When the architects talk of ‘creative or intuitive leaps’ they

describe moments of unforseen insight, of making previously unrecognised associations or

connections, or of picturing new concepts, abstractions or mechanisms that resolve

conflicting forces.  Doing this creative part of design consumes all of their designerly

powers, and as might be expected, the designers themselves have some difficulty describing

the act or the moment with any degree of specificity, as these accounts from Breuer and

Stickley suggest:

I went home and thought about it at every level… I don’t recall not watching

television… yes I do.  I think I just fiddled with some papers, played piano, did

something, let it lie fallow for a bit, but it kept on re-echoing… I know I probably didn’t

go to sleep very early, it was probably more like 3 o’clock in the morning… Chen had

encapsulated the problem exactly, and I was predisposed to thinking about

representing business rules in a hierarchy… it kind of seemed just obvious from

experience.  —Breuer

I’m not conscious of it… it’s subtly different each time… and it evolves… it’s not possible

for you to forget it, it’s not a bit of knowledge you’ve got, it’s a bit of understanding

you’ve got, it’s a part of your person… it kind of happens in an instant.  —Stickley

Design occurs as a pragmatic action when the architect is implanted in the problem space

and embedded in the situation.  These moments of creative software design appear to be

correlated with immersion, dialogue, interaction and collaboration.  This research has

found that better software architectural design outcomes result when the designer

collaborates than when the designer works in isolation.  For example, when Utzon describes

his ‘strategies’ as he approaches a software design challenge, he mentions ‘recognising his

own game’, reflecting on the problem and his approach to it to make design drivers

conscious (rather than leaving them subconscious).  Then, he describes exercising whatever

kind of leadership the situation dictates—‘and that can be everything from trying to

conciliate amongst people, to, in some circumstances, dictating, if that’s what needs to

happen, because, ultimately, it’s the team effort that matters at the end, not the individuals

who have come together to build the system’.

Explicating design drivers and exercising contextualised leadership sets the scene for the

pragmatic designer to practice many of the behaviours discussed in the findings (Chapter

Eight).  In the pragmatic design act, problem negotiation goes hand in hand with

architectural pattern and archetype-fitting.  Cook confirms this when he declares that ‘the



Chapter Nine: Discussion

244

most frustrating part of architecture and design… is when I come across something that

doesn’t conform… when I can’t make it look like something else I already know’.  Design

is ‘always an application of patterns’, he concludes.  There are other findings that

illuminate the design act.  In essence, these findings combine with Utzon’s collaborative

leadership to close in on the question of what situatedness actually means for software

design:

What form do situatedness, opportunism and being open to contextual cues take

in practice?

Firstly, the design act appears to often centre on a previously overlooked association, or

the recognition of an association that only becomes obvious after a change of perspective

or a key abstraction changes as a result of a new piece of information.  Generalising from

this observation would lead to the theory that creative software design is a pattern-

matching process in which the formation of associations between abstractions represents

the key to understanding the design act.  This leads back to the typographical models of

design discussed in 3.3.1 (‘Categories of Design Models’).  Other accounts (Sullivan, Cook,

Lethaby) suggest that the creative design act is more unpredictable and complex than can be

explained by a process of typographical matching alone.  The participants confirm that they

work on multiple dimensions of the design engagement concurrently (of which

typographical associations are but one).  The architects describe varying their abstractions,

the abstraction’s associations, relaxing and tightening constraints when creative

breakthroughs occur within a design episode.  Typographical pattern-matching therefore

aligns with only one dimension of the multi-dimensional process of creative software

design.

Thirdly, the creative or intuitive leap is described as sometimes being consummated by the

momentary adoption of an alternative perspective, or in the case of a modelling

breakthrough, an alternative paradigm, by the same or a different designer.  Such

breakthroughs come through combination and re-conceptualisation—fleeting

interpretations, fuelled by a particular combination of circumstances.  While situational

factors do not drive the creative design process, they combine to assemble its context at any

moment in time, and as a result, they feature prominently in the architect’s accounts of

intuitive leaps and creative breakthroughs.

9.3.5 Pragmatism and method

Unseating the rationalistic notion of methodology as controller of design practice resulted



Chapter Nine: Discussion

245

from the findings and discussion of the rational persona.  This leaves the question of what

pragmatism means for methodology.  A pragmatic method cannot strictly sequence

activities, dictate practices based on preconditions, or impose universal laws on design

activity.  Some re-conceptualisation of methodology is necessary in order for it to support

this design mode:

What does it mean for methodology to be contextualised, to become implicit in a

design—to become situated?

To generalise from the architect’s accounts into some form of ‘method’ for the creative

part of the design act would be both a denial of the argument for pragmatic software design

and an implausible stretch.  However, some characteristics did emerge which shed light on

the phenomena.  Contextualisation of a method occurs in the hands of the practicing

designer, who has learned to reflect on actions, before, amidst and after the action is

completed.  This individual and collective reflection constitutes a source of feedback that

drives method contextualisation at both gross and fine levels.  Contextualisation of method

is the process by which a method becomes situated.  However, as previously noted, this is

definitely not a pre-existing method that ‘becomes situated’ through some process of

method meta-engineering, fitting or adjustment.  Instead, it is the designer’s conscious and

sub-conscious assembly of method fragments, tools and prior design knowledge (‘personal

patterns’) for the situation and task at hand.

Tools are a significant enabler in this contextualisation.  When it comes to assisting the

design act, methods are cumbersome, bureaucratic and inaccessible, whereas tools are at-

hand.  Tools (Gropius names entity relationship models and sequence diagrams) are highly

scalable, in accordance with the diminishing differences between object-oriented

architectural and component design, or between conceptual and detailed design.  To assist

pragmatic design practice, a tool should be applicable across levels of abstraction, across

the design’s lifecycle, across architectural representations at different levels of maturity,

and across domains.  It must facilitate designers to move freely between creative design

and rational evaluation, and should facilitate interaction between stakeholders and

collaborating designers.  And it must be able to be internalised, used without computer

support, used ‘lightly’ and effortlessly, such that the designer’s awareness of the tool’s

existence diminishes in use, like Winograd and Flores’ hammer (1986).

Gropius’ description contrasts the lightness, useability and usefulness of tools that empower

him to move forward in a design engagement against the comparative heaviness of a

method.  The same principles of tools and tool use apply to how pragmatic software



Chapter Nine: Discussion

246

designers assemble a custom design process comprised of heterogeneous tools, techniques,

‘personal patterns’, and archetypes.  In both cases, method is internalised but its elements

are reified via use or reuse of tool, technique, pattern or archetype.  The question ‘how

does methodology become contextualised’ is therefore misleading.  Pragmatic software

architects do not contextualise a given method—instead they assemble atoms of a method

with atoms of other methods, and with other knowledge artefacts, to suit the problem and

situation.  What results is a method of sorts, but one that bears only fleeting similarities

with what most practitioners would think of as methodology.

9.3.6 Aesthetic as reflective practice

Contextualisation of method relies on continuous feedback in the designer’s personal

design process.  Personal reflection amidst practice occurs in a number of ways:

How do experienced software designers employ reflection when they design?  Do

they acknowledge reflection at all?

Some participants described reflection in terms of an aesthetic sense of an architecture or

code base during its design and development.  They described reflection not as a distinct

activity or end in itself but rather as being anchored to a tangible artefact—in most cases a

specific class or module within the evolving code base.  On face value, an aesthetic sense

appears purely a-rational and strongly pragmatic.  However, those who were able to

describe it in more concrete terms identified consistency, minimalism, symmetry and self-

similarity as hallmarks of the phenomenon.  Interestingly, all of these characteristics of

software architecture can be objectively measured.  But as none of the participants stated

that they made design decisions on the basis of such measurements, ‘software aesthetic’

must be treated as a phenomenon to be interpreted.

Software aesthetic sits most comfortably in the pragmatic persona as the basis of the

designer’s approach to decision-making.  Design decisions informed by a sense of, say, self-

similarity or symmetry, cannot be automated—some breaking of symmetry, for example,

may be tolerated because of other overriding design concerns.  Some of the participants

talked of using their software aesthetic sense to detect ‘breakdowns’ (particularly ‘soft’

breakdowns) which regulate the alternation between design modes within or between

design episodes.  What might be considered a breakdown on aesthetic grounds to one

designer may be tolerated by another—hence software aesthetic is a personal interpretation

of a situation which involves both objective assessment of architecture and code structures

as well as subjective assessments of other factors, such as the motivation of the available



Chapter Nine: Discussion

247

people to remediate or fix problems, or other project considerations at the time.

The ‘emergent designers’ describe their sense of aesthetic changing with time, and being

influenced by the individual’s growing awareness and experience of personal patterns,

archetypes and solutions.  There is evidence that this aesthetic sense is shared—Breuer

reports that he, Chen, Nygaard and Goldberg shared a sense of partial (and finally complete)

fulfilment with each subsequent design episode that marked the engagement’s design

trajectory.  Morris and Lethaby both described getting team agreement on matters of

architectural degradation.  The possibility of agreement builds evidence for its underlying

objective basis.  These accounts suggest that software aesthetic is a designer’s intuitive and

even sensual response to perceptions of objective design and code quality.  A rationalist

might label these self-proclaimed code aesthetes lazy, because instead of working to

resolve problems in the design or code base to objective terms, they instead use subjective

assessments and terms.  While this probably does no harm, it signifies immaturity rather

than an area of design practice that is naturally situated.

9.3.7 Does pragmatism have a role in explaining software design practice?

The overarching question concerns the usefulness of the pragmatic persona as a means to

describe software design:

What aspects of software design does the pragmatic persona usefully describe?

This discussion of the pragmatic perspective can be concluded with two points—the

usefulness of pragmatism’s description of the creative part of design, and the usefulness of

a pragmatic view of the design process overall.  Firstly, the pragmatic persona suits the

participant’s reported experience of design activity particularly well.  The evaluation of the

rational persona concluded that design effort and design outcomes are not proportionally

related, and that the design trajectory is not amenable to conventional planning regimes.

The pragmatic persona explains why these characteristics are as they are.  The process of

pragmatic software design is best evidenced by the Decision Tree story, in which a design

breakthrough resulted from the interaction of four highly experienced designers, each with

their own different personal perspectives on the same problem.  The pragmatic elements

included self-regulation (they followed no externalised method or script), demarcation of

paradigms and perspectives (each designer worked from a different view of the problem),

willingness to work together (no participant was dominant), egalitarianism (they all agreed

when the ‘best’ design option was reached), and a critical motivation (they pursued their

designing ‘under the radar’ of the project regime).



Chapter Nine: Discussion

248

Secondly, pragmatism as a general model of software design activity suffers from the limits

of vernacularism.  If pragmatic design is to achieve acceptance within the software industry

(and particularly within the discipline of software engineering) it must resolve its

opposition to conservative methodology.  Utzon comments that ‘people want to see a

process that you are following… they certainly don’t want to rely upon some sort of artistic

binge that happens late one night’.  The Agile methods movement has addressed this to

some degree, and hybrid methods like Feature-Driven Development (Palmer and Felsing

2002) are starting to bridge the gap between Agile and conservative methods.  Pragmatism

is closer than rationalism to being a uniform basis for the experience of software design.  It

accounts for all of the things rationalism cannot—a design’s unpredictable trajectory and

the non-linear effort-return relationship, for example.  Whereas rationalism depicts these

phenomena as inadequacies on the part of the actors—their inability to correctly follow

rational processes of discovery and design execution—pragmatism explains them in terms

of situated human cognition.  Pragmatic design in software, as in other mediums, richly

engages the designer in context, setting the designer free to assemble, amalgamate,

combine, re-form and reuse.

9.4 Critical themes

Critical theory targets the pervasive structures that exist to preserve the status quo by asking

‘who is in control?’  A critical assessment of a situation leads to a discernment of the

distribution of power, to the revelation of power structures, the oppressors and the

oppressed.  Design is, by its nature, the process of altering the world, and the design of

software and computer systems always has the potential to change the distribution of

power.  The ways in which software architects consider these issues in a design

engagement are largely unknown.  This research provides some data on the matter.

9.4.1 Critical analysis and the design engagement

Experienced software architects will have worked in a variety of organisations, projects

and business cultures, and will have experienced project failure.  Participation in failed

system projects inevitably leads to reflection and interpretation of the reasons for failure

(Petroski 1992).  Breadth of experience develops a critical perspective of software design

in the professional architect, by which methods and project structures may be

deconstructed to reveal underlying power structures.  Although the software architect

might not need to be the controller of all things technological, professional architects



Chapter Nine: Discussion

249

should know where control lies.  A critical view of methods and project structures as

devices for assertion of power between competing factions inevitably emerges in any

examination of software development teams or designer behaviour:

Is there evidence to support the assertion that software architecture and design

can influence or redistribute the balance of power in a design situation?

Some of the participants described finding themselves amidst situations of inappropriate

distributions of power, but usually as a result of other’s decision-making rather than their

own.  The situations described by Lethaby and Breuer in which they were engaged via a

software product vendor require little critical analysis to be exposed for what they are—an

open invitation for the vendor to control the design engagement to achieve their own ends,

usually at the expense of both the architect’s independence and design quality.  Once in

place, the vendor-architect’s ethic is the only authority that can halt unilateral

appropriation of the design process to extort commercial value from the engagement.

Fortunately, in both stories, the individuals appear to have been able to redress the

imbalance—Breuer by investing intensively in design effort to ensure that the solution

architecture delivered via his employer’s product was fit for purpose, and Lethaby by

counter-arguing on technical grounds.  Both stories vindicate the architect’s ethical

conduct and account for how architects can act to reorient the balance of power within a

design engagement in order to ensure both the delivery and quality of software product.

The finding that few of the participants understood the overall totality of their designs

suggests that software architects are generally unaware of the degree to which their design

decisions can change the balance of power.  Software architects are complicit in acts of

deception when they do not act with adequate knowledge of the consequences.  To

proceed with the design of a system architecture that maximises one’s employer’s product

license revenue is a significant deception.  Knowing that architectural degradation is

occurring within a code base and not attempting to initiate corrective action is similarly

negligent (although less visible) and an abuse of the power invested in the architect role.

The participant’s views on inequalities in the design engagement suggest that they

recognise imbalances but often feel ill-equipped to effect resolution, Lethaby and Breuer’s

stories notwithstanding.

There was evidence in the analysis of software architects using their design role to benefit

themselves, if not transfer power to themselves or their teams.  One example is Le

Corbusier’s engagement of a few well-placed telecommunications engineers during the

design process allegedly (according to Mackintosh) to position his company to win further



Chapter Nine: Discussion

250

work.  Descriptions of design engagements being used as an opportunity to acquire

marketable skills is another, although designers have always used their client’s resources to

indulge in new materials and new styles.  A critical analysis of this behaviour exposes the

individual architect and his adherents as mutual benefactors of the design engagement.  As

long as the architect does not allow the allure of a new technology to fog his judgement of

its suitability, no harm is generally done.  The case studies suggest that where architects

have worked new technologies into architectures, risk has been introduced not as a direct

result of the choice and deployment of the new technology but rather as a result of the

team’s lack of knowledge and delivery experience with the new technology.  Under critical

analysis, some of the participants may be guilty of risking destabilisation of a design project

in such cases.

9.4.2 Design as a means of resolving inequities

A designer’s sense of responsibility also concerns use—how the product may change its

environment in the hands of users.  A designer may design a tool without concern for how

it is used, or may go further to consider in what contexts the tool will be most used and

how it might change these contexts from a social, economic, cultural and humanitarian

perspective:

Does the software architect perceive responsibility for how the product or

system will be used, or for the implications of its use on people, regardless of

their role or position?

In general, little evidence was found that software architects perceive responsibility for

how their product or system will be used, or for the implications of its use on people.  A

related question concerns the degree to which software designers take responsibility for

intervening in inequities, as are often found in environments of sweeping change on the

back of technological change, social engineering or workplace reform:

Do software architects regard themselves or their designs as resolvers of

inequities?

Again, there is no substantive evidence in the analysis for this.  On the contrary, architects

like Voysey, Ashbee and Eames expressed a strong sense of powerlessness and an inability to

influence the mechanics of the business enterprises within which they found themselves.

In this regard, software architects may differ from their built world counterparts.

Development of a wider social conscience for IT architects, hand-in-hand with education

in professional ethical practice, could be an important project for IT professional bodies in



Chapter Nine: Discussion

251

the future.

9.4.3 Criticalism and method

Methods are ostensibly adopted by organisations to improve the quality and timeliness of

software design.  They are frequently justified as a means of reducing system development

risk, but in a critical light, as a means of distributing or re-allocating risk:

What purposes do methods serve in the context of organisations and the

competing parties engaged in economic enterprise?

The participants are highly critical of the purpose of method in some design engagements,

often carefully interpreting the method’s specific prescriptions, to ascertain how its use will

advance or constrain their options.  In general, architects will follow a method that they

assess as being useful in providing an organisational or administrative function for their

project team but benign in terms of the distribution of power.  Under critical analysis, the

failure of Breuer’s team to deliver quality architecture in the first case study suggests the use

of the project’s process as little more than a tool to eliminate discovery and

experimentation and to force a fallacious and dangerous façade of progress.  Ultimately, by

enforcing a communication and collaboration embargo between the teams in the mistaken

belief that such collaboration would invite opening up previously closed architectural

decisions, the project’s management deceived only itself.  The use of methods as a vehicle

for exerting control on project teams makes architects believe they are justifiably wary of

methods, and this further erodes their confidence in them.  In some situations, software

designers deliberately subvert authority (or method) in the interests of what they believe to

be design quality:

What compels software designers to apply post hoc rationalisation in their

accounts of design work performed, or to mask investment in design or

architectural quality from their managers?

Post-hoc rationalisation is a documented phenomenon in design in general (Crellin et al.

1990) and in software projects (Parnas and Clements 1986).  A number of the participants

described covering the true costs and activities of software and system design.  Breuer had

no mandate to change his project’s direction mid-stream and most of the Decision Tree’s

design and prototyping was his personal initiative, motivated primarily by a desire for the

adoption of a better solution option.  Eames also described various architect’s attempts to

improve his system’s architectural shortcomings ‘under the radar’ of the project’s planning

and management regime.  Others reported behaving similarly at times.  The compulsion for



Chapter Nine: Discussion

252

architects to take the trouble to make improvements to architecture independently of

management support appears to be personal pride in workmanship and in design quality—

both in the way the design process is performed and in the product itself.

9.4.4 Does criticalism have a role in explaining software design practice?

The overarching question concerns usefulness of the critical persona as a means to describe

software design:

What aspects of software design does the critical persona usefully describe?

Three kinds of self-reported behaviours can meaningfully be considered critical.  The first

is sensitivity to the power-influencing capability of project structures and methods, the

second is an awareness of compromises inherent in their role in a design engagement, and

the third a propensity to subvert project authority to achieve certain design goals.  All three

are behaviours that attempt to preserve the designer’s independence and ability to fulfil

their role.

Beyond their personal myopic orientation, the architects generally cannot see the wider

implications of their designs and do not consider them particularly important.  This is

perhaps unsurprising—the relative immaturity of software design as a discipline would

suggest an immature social conscience when compared with designers of consumer

products or buildings.  The cases they describe where they intervene or subvert authority or

power structures are, in general, due to uninformed, badly conceived or improperly

executed design engagements.  This may also reflect role immaturity in industry.  The

critical persona is therefore most useful as a view of software design practice that serves to

explain designer self-protection and self-preservation, particularly when designers find

themselves in situations not of their own making.

9.5 Radical themes

Finally, the radical persona introduced in Chapter Two encapsulates the self-evaluative and

self-challenging behaviours of designers.  Radicalism is in direct opposition to rationalism

because it repeatedly attacks the foundations of orthodoxy in a tireless quest for new

insights.  Radicalism would appear to be a valuable characteristic in software design

because it has the potential to drive alternative conceptualisations in a design fabric that is

almost infinitely malleable.  The radical software architect uses re-conceptualisation to

discover new truths in various situations.  Acting to deconstruct a situation, the radical



Chapter Nine: Discussion

253

software architect reverses, inverts and demolishes opposing cultural positions that are

revealed from analysis of ‘texts’ (any artefact that can be read, observed or interpreted),

generating subversive discourse that challenges the foundations even as they are being

built.

9.5.1 Radicalism and conceptualisation

A software designer might engage this stance by first recognising, then deliberately and

consciously subverting design orthodoxy:

What techniques do software architects adopt in order to question or evaluate

the use (and reuse) of familiar (or popularly subscribed) designs or design

methods?

In essence, this question concerns how software architects subvert incumbent methods,

conventional approaches and assumed positions.  There was little evidence for this kind of

practice in the analysis.  One explanation is that software architects are frequently engaged

after decisions about technologies have been made, so their opportunities to employ radical

thinking are limited to requirements and architecture negotiation, as has been discussed.

Radicalism requires stark awareness of one’s assumptions and the cultural norms of the

context of a design engagement.  Software architects are often so deeply embedded in the

minutiae of software development—programming languages, technologies and platforms—

that such awareness is not often called for.

What processes do software designers use to argue for, or build a case for a

particular design solution over others?

Perspective and paradigm-shifting (T6.35), whereby architects actively and consciously

shift their paradigmatic perspective on a problem in order to consider an alternative

conceptualisation, may be considered a radical behaviour.  Paradigm shifting is radical

because it challenges and (at least temporarily) overthrows the orthodoxy—the assumed

paradigm—in order to ensure that opportunities for better solutions are not missed.

Despite the apparent value of this phenomenon software architects rarely practice it.  One

reason may be that contemporary application development technologies and platforms

(such as J2EE and .NET) do not support different paradigms but instead enforce reuse of

standard paradigm-locked architectures, frameworks, archetypes and patterns.  Another

possible explanation, as evidenced by Breuer’s description of Chen, is that the years of

experience required to fill an architect’s role embeds the designer within a paradigm and

technology set.  Even so, many of the architects reported experiencing considerable



Chapter Nine: Discussion

254

freedom within the constraints of a technology, paradigm or language, particularly where

modelling is concerned.

The question of whether paradigm shifting is useful remains.  While it sounds like an

appealing skill for an architect the lack of evidence of its use suggests otherwise.  The

theoretical argument is that of Feyerabend.  A propensity to generate alternatives, or to

remain open to design alternatives that have been rejected in the past, is not primarily

about an ongoing investment in a range of design alternatives but a meaningful discourse

with others as to why selections are made:

Do software architects always understand how and why a particular design was

chosen?  If they do, can they usefully act on such insight?

Awareness of options leads to a sensitivity to the benefits of deconstructing the assumed

perspective or paradigm.  For the software architect, this may mean adopting a paradigm-

independent perspective in order to understand why the design’s current trajectory is the

way it is.  The evidence from the analysis suggests that the architects do not, in general,

question how and why a particular design option was chosen.  Limited awareness of

explicit paradigm or perspective-shifting, and the propensity of architects to design from

within a technology vertical are two potential reasons.  Another finding reinforces this

conclusion—the individual architect’s accounts of design breakthroughs and creative leaps

are predominantly intra-paradigm and do not generally challenge the designer’s assumed

paradigm.

Apart from paradigm-shifting, negotiation of problem and solution characteristics presents

an opportunity to adopt a radical persona.  For example, in Cook’s account of his ‘most

successful’ project architecture, he attributed his success to his ability to ‘continually take

problems, and re-evaluate them in the context of what we’d already done’.  His negotiation

of new stakeholder requirements in the context of his existing architectural framework represents

radicalism at work.  His propensity to deliberately choose an interpretation of the problem

that countered that which a rational analysis would have produced can be seen as either

selfish or sensible.  In his accounts, he clearly regarded it as the root cause behind his best

work.

9.5.2 Does radicalism have a role in explaining software design practice?

The overarching question concerns usefulness of the radical persona as a means to describe

software design:



Chapter Nine: Discussion

255

What aspects of software design does the radical persona usefully describe?

Paradigm shifting represents an appealing radical behaviour but there is little evidence of

its use by individual architects.  However, Breuer’s case study clearly illustrates its power to

dramatically improve design outcomes by stimulating the design trajectory at key points.

In summary, the power of radicalism to generate new and useful insights and options

appears to be unlocked by designer collaborations.

9.6 Conclusion

This chapter has discussed the correspondence between the themes introduced in the

background chapters (Chapters Two to Four) and the findings (Chapter Eight).  The four

architect personas (rational, pragmatic, critical and radical) introduced in Chapter Two

were used to structure the discussion.  As predicted in Chapter Two, the findings support

the relevance of each persona for explaining certain aspects of designer behaviour and

design outcomes, but no single persona offers an entirely prescriptive view of design

practice.  The findings predominantly support the rational and pragmatic personas.  There

is evidence that designers alternate between these two design modes, and that this

alternation fits Simon’s (1985) Generate/Test model.  The behaviours that associate with

the personas do not generally overlap—for example, the critical behaviour of hiding design

effort is strongly evidenced but is in no way rational or even pragmatic.

As a result of the discussion, one additional conclusion can be drawn.  The findings

evidence specific ways that expert software designers work to achieve design outcomes.

Many of these techniques and behaviours share a common characteristic—under the

designer’s control, they modify the designer’s environment or context to increase the

likelihood of achieving a successful design outcome.  For example, the architect-negotiator

negotiates and rearranges scope, requirements, system structure, even perceptions of the

problem itself, in order to make them more like problems for which known and trusted

solutions exist.  The architect influences and arranges both external (stakeholders) and

internal (team) elements of context, working explicitly and implicitly, with the objective of

making the design engagement more familiar and therefore less exposed to risk.  In simple

terms, experienced software designers make the presenting problem look like one they have

solved before and alter what they can in the context to make it similarly familiar.  Once re-

arranged, the context supports and facilitates the architect’s execution of a personal design

process.  This observation reinforces the importance of situation in the practice of software

design.   



256

Chapter 10:  Conclusions

Inappropriate, expensive and disruptive interventions in all sectors of working life are

continually reinvented based on naive and dangerous fantasies of control and order.

Many of those who work with or under these systems, or who are involved in

attempting to implement them, are dubious of their worth, but often argument against

them is characterised as “user resistance”, that is recalcitrance, rather than the

articulation of real flaws in their underlying plan-based approach. Frequently problems

with these systems are diagnosed as “implementation failures”, or due to inadequate

scoping of the system, rather than as due to any problem of principle.  (Johnston 1999,

p. 146)

10.1 Introduction

This final chapter concludes the thesis by resolving the running argument (that is, the

hypothesis) for viewing software design as situated action.  In the preceding chapter’s

discussion, the findings were contrasted with theory to reinforce their significance and

relate them to the epistemological base of knowledge from where the research aim and

hypothesis originated.  This discussion was organised around four philosophical positions.

This thesis has proposed that these modes of designerly behaviour collectively constitute

the ways that expert software architects design, and that to analyse a designer’s actions or

interpret a designer’s behaviour out of context and from only one of these four perspectives

is always flawed.  This thesis has proposed an alternative characterisation—that of the

‘situated’ software architect—and the investigation and characterisation of this

construction has motivated this research.

This chapter resolves the hypothesis—that software design can only be meaningfully understood

when viewed as situated action.  Evidence from the research findings for and against the

hypothesis is reconciled to reveal a final position.  The thesis concludes with some

emergent hypotheses and clarification of the research contributions.



Chapter Ten: Conclusions

257

10.2 Response to the hypothesis

In Chapter One, a hypothesis was declared that forms the central argument of the thesis.

The hypothesis (that software design can only be meaningfully understood when viewed as situated

action) goes beyond the basic question of the relevance (or meaning) of situatedness to

software design to ask whether it is an essential perspective for any meaningful account of

software design.  It challenges a rationalistic account in two ways.  Firstly, it insists that

situation plays an undeniable role in the most basic act of software design.  More

significantly, it asserts that a software designer must be situated, or must be subject to

situational forces that transcend rational process or method as a design driver, in order to

design.  As a consequence, an understanding of design can only be arrived at when these

situational forces and their impact on the design process are acknowledged and

understood.

The hypothesis is not intended to represent an either-or choice.  This thesis has not set out

to replace a rational model of software design with a situated one.  Rather, this thesis has

assumed a plurality of models of design and has set about depicting the situated model in

more detail than has previously been attempted for software architects.  Suchman (1987)

describes the situated approach as studying ‘how people use their circumstances to achieve

intelligent action’ (p. 50).  To find in favour of the hypothesis is to promote

circumstance—in the hands of the expert designer—to (at least) peer status with both

rational theory and method as a primary factor in how software structure is created.

10.2.1 Revisiting definitions

To take a position on the hypothesis, we need to clarify or restate the working definitions

of ‘software design’ and ‘situated action’.  Throughout this thesis, ‘software design’ has

been taken to refer to those actions used consciously and sub-consciously by software

architects to create software architecture and artefacts, be they direct manifestations of

architecture in code or indirect manifestations in the form of models.  Sullivan’s definition

of software design—‘putting a design where none previously existed’—was adopted for its

emphasis on creativity as a skill that not everyone possesses.  It also demarcates software

creation viz a viz the enhancement or elaboration of pre-existing software structure

(although the distinction between the two blurs).  ‘Software design’ therefore means the act

of software creation, particularly the selection, reification and synthesis of software

structure, in the business and industry context defined in the Research Aim in Chapter One

(1.4).



Chapter Ten: Conclusions

258

The use of the term ‘situated action’ in the hypothesis to describe software design links

design and action, and this linkage focuses its definition on what has been referred to as

the ‘design act’.  The participants were asked to reflect on and describe their experiences of

producing their ‘best’ software architectures and designs.  These accounts produced the

grounded theories on abstraction, personal patterns and archetypes, design episodes within

a design engagement, breakdowns at episode boundaries, and aesthetics as a means of

reflection.  These are typical ‘situated actions’, and their descriptions in Chapters Six

(Qualitative Analysis) and Eight (Findings) provide the ‘thick’ contextual descriptions that

allow the reader to perform their own interpretation.  These ‘situated actions’ also

constitute the main evidence for the hypothesis.  Given these definitions, we can make a

response to the hypothesis on the basis of this study’s findings.

10.2.2 Evaluation of findings against Chapter Five’s design framework

A framework was assembled in Chapter Five (5.3.4, ‘A framework for eliciting descriptions

of situated software design’) to characterise rational and situated extremes of designer

behaviour.  This was used to structure the participant interviews.  This framework provides

a useful structuring mechanism for assessing the hypothesis.  The framework’s identity

dimension contrasts emergence or appointment of the designer’s role.  This is similar to the

control dimension, which also focuses attention on role self-selection.  Design control is also

concerned with how designers exert control over the ‘management of meaning’ (Markus

and Bjorn-Andersen 1987) in a team’s emergent culture.  On the principal designer role,

the findings support both self-selection and appointment.  Breuer’s case study clearly

depicts self-selection based on distinct design episodes and each designer’s differing

paradigmatic views.  However, a number of the participants reported a strong sense of

identity and ownership of the design, including Le Corbusier (second case study), Cook,

McLuhan and others.  Although Le Corbusier’s Exchange-centric architecture was flawed in

its initial form, it is impossible to draw the conclusion that the designer’s tight control of

the design process was to blame.  More significant than whether the lead designer’s role at

a point in time is self-selected or appointed is the finding that most creative design acts are

performed by a designer working in isolation, and that collaboration serves rational design

activity more than pragmatic, creative activity in the participant’s reports.  The importance

of identity and role clarity in situated design activity is therefore as an indicator of the

freedom which exists in the design engagement’s context for design expertise to emerge in

response to contextual drivers and cues.  There is evidence to suggest that designers

actively seek out or reject collaboration and sharing of design responsibility.



Chapter Ten: Conclusions

259

The framework’s planning dimension contrasts the designer’s belief in plans as predictors of

design effort and the unpredictable nature of design.  The findings strongly confirm the

unpredictable nature of design and the architect’s general mistrust of plans and planning

regimes.  They acknowledge little correlation between design effort and plan content.

They report the hiding of design effort in unrelated plan phases as well as post hoc

rationalisation of design effort.  The findings also report assembly of the personal design

processes in situ, regardless of direction from external methods or plans.  This tension is not

new, and the suggestion that the rational planning paradigm for creative work be

abandoned has surfaced in the Agile methods (see for example the ‘planning game’

(Highsmith 2002).  The conclusions are that architects are guided minimally if at all by

plans and that design advances are mostly unrelated to plans.  Conventional plans should

therefore be considered as useful only in providing high-level phasing of architectural

design effort and activity.

The framework’s generator dimension uses the designer’s choice of generators (concepts and

patterns) and the design process they use to elaborate the generators into solution design as

an indicator of situatedness.  In a situated design scenario, generators are contextual, as is

the process by which they drive architectural structure.  The findings are divergent around

the role of generators in software architecture.  On one hand, Breuer’s Decision Tree story

exemplifies how a generator can collapse architectural complexity and breadth across

multiple layers of architecture, and Utzon’s dedication to the discovery of ‘self-similar

holons’ echoes the theme.  Breuer also enunciates the importance of grasping the

conceptual core of the problem, in a mathematical sense.  Le Corbusier’s ‘exchange’

architecture similarly depicts this approach and reinforces the pivotal importance of getting

the primary generator right.  On the other hand, others of the participant group did not

emphasise the importance of this kind of discovery, instead leaving the impression that

their design approach was more routinely methodological, even if process was assembled or

heavily customised for the particular design engagement.  The concept of generator is

therefore both relevant and important in understanding design as practiced, and although it

appears not to be essential to the creation of software architecture, it is a distinguishing

factor in the creation of high quality software architecture.   The role of generators in

situated design activity is as encapsulations of a recurring structural theme and as catalyst

for elaboration of the architecture.

The framework’s collaboration dimension contrasts the degree of distribution of design

knowledge and the designer’s preferences for delegation versus ownership of design



Chapter Ten: Conclusions

260

responsibility.  Discussion of the findings on both of these points is essentially covered

under the Identity characteristic.  Collaboration alone is not a strong indicator of

situatedness on the basis that a rational design approach does not prohibit delegation so

long as the roles and design responsibilities are defined and enforced.  Collaboration does

not exclusively drive design or a design capability, but it does improve its overall quality.

As discussed, most accounts of architectural design feature an individual designer acting

alone but in context.  The Breuer case study evidences four distinct design episodes in

which each designer performed the creative design act in relative isolation.  Through

collaboration, these individual designers transcended their personal limitations but at no

point was a recognisable act of design performed purely via collaboration.  Collaboration

therefore is not an essential part of the situated design act.  Situated activity is evidenced

more by the individual designer’s sensitivity to contextual cues during a design episode and

not by collaboration with other designers per se.

The framework’s process and method dimension contrasts the claimed versus actual use of

public methods to guide the design trajectory.  The findings strongly reinforce claims from

a wide base of research that methods are not used as expected.  Rather, designer intuition

plays a significant part of system development, designers ‘cherry-pick’ methods based upon

personal judgement, and experienced designers are more confident in their ability to mix

and match techniques from different methods, even those notionally underpinned by

different paradigms (functional decomposition versus object orientation, for example).  The

findings that architects assemble a design process in situ, drawing on appropriated tools,

techniques and method fragments, collectively build a strong case for the situatedness of

design method in practice.  The architect’s preference for ‘tools, not methods’ (Gropius)

explains how this method assembly occurs.  One possible explanation—that software

designers rely upon rational design methods more often when the designing is routine and

less when the designing is conceptual—is not supported by the finding that designers do

not distinguish between designing at high or low levels of abstraction.  Rather, the

designers move flexibly and continuously, cross-cutting both vertical domains and

horizontal technology layers, without changing their design approach.  This behaviour

makes it unlikely that key features of software architecture could be traced to the

application of an external or situation-independent design method.  It also makes the

design product (software architecture) largely dependent on the individual designer(s)—

that is, if the designing were to be repeated (by the same or different) designer(s) it is

unlikely that the results would be similar.  All of these findings strongly support the

designer’s situation-specific treatment of method, and this in turn demands a situated



Chapter Ten: Conclusions

261

interpretation of the role of method in any design scenario or account.

The framework’s reflection dimension contrasts how the rational and situated models deal

with the designer’s personal reflection.  In all design activity, reflection results in feedback

that serves to correct errors in processes and techniques.  In the rational model, reflection

is recognised within the method’s prescriptions, but reflection that would result in

significant diversion from, or changes to the method, often causes the designer to question

or even abandon the method.  In the situated perspective reflection is performed by each

individual designer on an almost continuous basis.  A reflection-aware design process

allows the designer to alter the design’s trajectory in both small and substantial ways.  The

findings make it clear that designers reflect continuously, and that this reflection drives

further contextualisation and continuous re-invention of the designer’s assembled personal

method.  Software architects use the notion of ‘software aesthetic’ as a means of conveying

this reflective practice.  As a consequence, assembly of the personal design process,

abstraction and concept formation, pattern and archetype reification, and other elements of

personal design insight are all mutually dependent in the design act.  It is impossible to

rationally assess one of these dimensions over any other, and all are contextual.

Reflection—or ‘the software aesthetic’ as the participants described it—is therefore an

ever-present part of situated software design practice.

10.2.3 Conclusions

To conclude, there are findings for and against a situated model of software design.  Those

that support the situated perspective on action cluster around a common theme—the

architect’s rejection of externally imposed plans and processes as controllers of the design

trajectory.  They replace these with a mix of practiced techniques for the situation at hand,

including a personalised, discovery-driven design process that they assemble and re-

assemble, selection and reification of generators, collaboration with peer designers for

evaluation, and corrective feedback from continuous reflection.  It can also be concluded

that the presence of these phenomena in a given software design engagement does not

guarantee a high quality design outcome.  The phenomenon of role-emergence illustrates

this.  As has been discussed, in many successful architectural design engagements, the

designer roles are self-selected from, and rotate within the team over a period of time

according to skills, level of engagement and the individual’s ability to contribute given the

phase of design knowledge at the time.  However, the presence of this role emergence

phenomenon does not guarantee a high quality design outcome.  Nor can it be claimed that

the opposite behaviour (strong ownership and control of the design process) consistently



Chapter Ten: Conclusions

262

impacts design outcomes negatively.  The conclusion must therefore be that the

phenomena of architectural design practice that are described naturally by the situated

model increase the likelihood of good design outcomes but are not reliable predictors of

good design outcomes.

This research set out to characterise and describe the design practices of expert software

architects.  The findings synthesise these rich descriptions such that the reader can

interpret them to other designers and design situations.  The findings constitute a

framework for observation of design practice, for use either by a researcher looking into a

design engagement or by the designer himself.  The final assessment of the hypothesis is in

three parts.  Firstly, it is in understanding these phenomena that the situated model of

designing is necessary and the rational model of designing misleading.  Secondly, the

presence of these situated phenomena does not guarantee high quality architectural design

or even good design outcomes.  Thirdly, the situated model is not predictive, but serves as

a means by which to observe and understand the practice of software-architectural design.

Thus the rational observer will always fail to account for a-rational designer behaviour,

whereas the pragmatic (or situated) observer—recognising a full and rich

phenomenological picture with consistency and integrity—is able to explain why the design

trajectory is the way it is, but is unlikely to be able to use this superior observational

perspective for prediction.

10.3 Generated hypotheses

The process of exploratory research generates hypotheses.  Some emergent hypotheses are

stated here as natural output of the research process and in the interests of defining future

work.

10.3.1 Perspective-shifting

The finding that some experienced software architects are aware of their preferred

perspective and are also aware of the effects that changing perspectives can have on their

designing opens up a field for further investigation.  This thesis has made the following

assertions—that designers are aware of their perspective; that perspective is most strongly

associated with a preferred paradigm; that designers are prone to becoming locked into a

paradigm-based view of a problem and solution when designing and that they find it

difficult to break this impasse; and that few if any of the designers evidenced conscious

perspective shifting as an explicit design technique.  This research also asserts (via the first



Chapter Ten: Conclusions

263

case study) the value when different perspectives are brought to bear on a design problem.

The challenge in understanding this phenomenon is to devise research to explore and

document it.  The phenomenon poses a number of interesting questions.  Is there

demonstrable value in perspective-shifting?  Does the practice lead to better designs as

suggested by Breuer’s case study?  Is it realistic to expect practitioners to employ some kind

of perspective-shifting technique?  Can perspective be separated from paradigm such that

other (non-paradigmatic) bases of alternate perspectives could be used?  If not, do

contemporary software infrastructure platforms (such as J2EE and Microsoft’s .NET

technologies) lock the architect into a paradigm, thereby eliminating the option and

potential value of perspective–shifting?  These questions point to a hypothesis such as

‘The introduction of alternative perspectives into a software design situation raises design

quality (or improves the designed product)’.  Adoption of a phenomenological approach

would provide descriptions, similar to this research.  The question may also be amenable to

simulations or observed design exercises involving the collaboration of alternate design

paradigm experts.

10.3.2 The episodic nature of the design act

The ‘design episode’ finding—that many of the participants describe a cycle of alternately

creating and evaluating an artefact and the descriptions of how and why these modes

change—also opens up a potentially rich phenomenological field for further investigation.

This thesis makes the following assertions about this phenomenon.  Firstly, that designers

alternate between creatively proposing or generating designs and rationally evaluating

them.  Secondly, creation or generation predominantly employs creative design action,

evaluation predominantly employs rational design action, and these two modes more or

less alternate.  Thirdly, changes from the evaluative mode to the creative mode occur as a

result of a breakdown, and changes from the creative mode to the evaluative mode occur

when the full potential of a creative episode has been explored and exploited in the mind of

the designer.  A research hypothesis might be ‘Software design quality is improved if the

designer actively manages the design episode’.  This could be tested in protocol analysis,

such as is frequently used in design research (Gero and McNeill 1998; Valkenburg and

Dorst 1998), in case studies, or in situ via the action research paradigm.

10.3.3 Methodological support for criticalism and radicalism

The third class of generated hypotheses concerns the findings that describe the role that

criticalism and radicalism play in the architect’s judgement.  A summary of the ways in



Chapter Ten: Conclusions

264

which the participants described acting in critical and radical ways (the ‘personas’) was

presented in the previous chapter.  This research has focused more on the ways that

compromised power structures have impacted the software architecture than on describing

the nature of the compromise or the situations in detail.

The findings suggest hypotheses that take a phenomenological approach to studying these

situations and the designer’s resulting behaviours.  With regard to criticalism, questions

that would need to be asked include—what situations most frequently compromise the

position of the architect?  What form does the compromise take?  Can patterns be detected

in these recurring power structures?  How do architects circumvent or mitigate the

presenting challenge or compromise?  The relevance of this research would be high,

particularly as the findings would have direct implication on professional practice.

With regard to radicalism, questions that would need to be asked include ‘Under what

circumstances do practitioners adopt a radical approach to design?’ and ‘What practitioner

techniques qualify as radical design techniques?’ as well as ‘How can these be incorporated

into workable methodology?’.

10.4 Reflections on research practice

Finally, several personal reflections on the research process have relevance.  A question

that concerns qualitative researchers at the commencement of a research project is the

number of interviews (or participants) that will be needed before sufficient data will have

been collected.  Qualitative analysis methods suggest continuing until theoretical

saturation occurs—that is, to the point where subsequent interviews produce no new

categories but reinforce the existing category model.  This heuristic still leaves the likely

number of interviews unresolved.  In a discussion of this project’s methodological

approach, Schauder (2002) suggested that as few as eight interviews should suffice for an

IS research question of this type.

This study used twenty four participants (Appendix D) each of whom were screened with a

preliminary survey (Appendix C).  In general terms, about one third of these interviews

turned out to be ‘high yield’ sessions, made so by the participant’s level of expertise and

knowledge, their experience, their level of engagement with the interview process and the

subject matter (to the degree that they understood it).  Their ability to enunciate their

thoughts and experience was also significant.  Very approximately, another third turned out

to be ‘low yield’ sessions which ultimately benefited the research little.  A rough measure

of the usefulness of each interview can be gauged by the frequency with which the



Chapter Ten: Conclusions

265

interviewee’s pseudonym appears in the narrative of the qualitative analysis.  The chart in

Figure 23 was produced by counting the frequency of occurrences of each pseudonym in

material prepared for input to Chapter Six.  While this metric is dependent on how the

prose is written, it provides a rough measure of how each participant contributed in relative

terms to the analysis text.

Cook
Utzon

Morris
Kahn
Brueuer

Gropius
Moore
Macintosh
Le Corbusier

Pugin
vanderRohe

Stickley
Johnson

Piano
Lethaby

McLuhan
Sullivan

Ruskin
Howard

Voysey
Eames

Griffin
Ashbee
Wren

0 10 20 30 40 50

Figure 23:  Frequency of participant pseudonym occurrences in this thesis’ qualitative analysis chapter.

Figure 23 shows a relatively linear progression from the most cited to the least cited

participants.  The top eight most cited participants from the group were responsible for

56% of citations in the analysis, while the top 11 realise 70% of citations, which goes close

to confirming Schauder’s claim.  This implies that between half and two thirds of the 24

interviews could have been eliminated with a huge reduction in transcription and analysis

effort.  The problem for the researcher engaged in a process such as this is to determine

which 8 of the 24 possible participants to interview and which to reject.  Some options

exist—for example, the qualification survey could be tightened, and extended with a brief

telephone interview.  Any measures to increase the effectiveness of the interviews

conducted would likely be generously paid back by the savings in laborious transcription



Chapter Ten: Conclusions

266

and analysis time.

Having said this, there is also evidence in this chart that not interviewing more widely risks

missing useful and relevant data.  For example, if a tighter pre-qualification process had

been used, interviews with Griffin, Eames, Sullivan, McLuhan and possibly Lethaby and Piano

would never have been conducted, resulting in loss of valuable data and subsequent

insights.

The efficacy of using interviews as a data collection technique is most dependent on

interview technique—more so than the interview agenda, or even the topics themselves.

Each time a new topic is introduced into the conversation, care must be taken not to lead

the participant.  For example, asking the question ‘tell me about what you do not like about

the software methods you have used’ can lead to a different discussion than asking ‘tell me

about your experience of using software design methods’.  Practice improves interview

technique as well as refining the category model, and after half a dozen interviews the

process becomes second nature.

Interview transcription and analysis must commence early as it provides the feedback loop

that enables control of the process.  The first substantive analysis effort was commenced

after the eighth interview, although note-taking and assembly of the category model was

well underway by this stage.  Analysis and interviews then continued in parallel for the

remaining sixteen interviews and all successive interactions.  Qualitative analysis is a deep

and continuous exercise in interpretation.  The activities of interpreting transcripts, relating

an interpretation to other transcript parts and to the emerging topic model, and to theory as

well as ‘conventional wisdom’ is intellectually demanding and personally involving.

Ultimately, the researcher-analyst is engaged with and bound to the data—engaged to the

intellectual core by the search for a final interpretation that provides the sense of

resolution, and bound by the personal responsibility to tell the collective story entrusted to

the researcher under confidentiality by the participants.  This sense of importance and

weight of responsibility is a construction in its own right which serves to drive the project

to completion.

Another interesting reflection is the way the interview and analysis process generated its

own ontology (see Appendix A) including terms such as ‘design act’, ‘design episode’,

‘design engagement’ as well as more esoteric ones such as ‘software aesthetic’ and ‘design

trajectory’.  Each term has a meaning peculiar to the definitions and categorisations that

emerged as a direct result of qualitative analysis of the data.  The meanings of some

familiar terms were refined during the analysis as well.  For example, ‘methodology’ was



Chapter Ten: Conclusions

267

initially taken to mean any externalised process to guide the personal and collective

processes of designing software architecture.  However, it became clear that methodology

is an overarching term that encompasses project organisation and roles (of which the

designer is one), planning, demarcation of tasks, and design in its various forms.  It became

necessary to explode the term to ‘public process’ (the publicly visible process), ‘personal

process’ (the process assembled and used by the designer in situ), and ‘design method’ (the

part of a method that attempts to guide design) to more accurately describe what the

participants were relating at different times.

10.5 Contribution

This research makes new and original contributions to the epistemology of software design,

with implications for both further research and design practice.

10.5.1 Originality

The central theoretical theme throughout this thesis is the applicability of the opposing

rational (or plan-driven) versus situated models of action.  In the traditions of qualitative

analysis and interpretivist research, the rich descriptions in Chapter Eight (Findings)

(which document the accounts and practices of a class of professional designer) constitute

one type of theoretical contribution.  Beyond these descriptions, this thesis contributes

original theory in three main areas—the role of plans as predictors of design activity, the

act of software design, and the ways in which expert software designers arrange their

context so as to support their designing.  These contributions are elaborated in turn.

10.5.2 Contribution to design theory

Regarding the role of plans and planning in the practice of software-architectural design

(where a ‘plan’ has been depicted as any abstract artefact, including models of software

that predict design effort over the period of the engagement), this thesis has argued that

plans do not ‘drive’ software design activity in any predictable way.  That is not to say that

plans are useless or meaningless—plans are undoubtedly useful resources for setting gross-

level expectations of work-streams and resource allocation.  This thesis has argued that

plans do not drive design activity and do not serve as a controller of action where designing

is concerned.  Plans are best thought of as providing an overarching framework within

which design activity occurs.  There is no evidence in the findings of any kind of causal

relationship between plans and the design trajectory.  Similarly, design outcomes are not



Chapter Ten: Conclusions

268

causally linked to the existence of plans or models prepared ahead of the designing, and

when plans and models are prepared, their relationship and consistency with the final

design outcomes and outputs is often dubious.  The research findings (Chapter Eight)

explain, in considerable detail, why this claim can be made.  This research therefore

confirms software-architectural design as a domain of human activity that is amenable to a

situated model.  It also identifies and elaborates the characteristics of situated action in the

domain of software-architectural design.

On the act of software design, this thesis has presented a detailed model of the design

act—the creative activity by which a software designer puts a design where none

previously existed.  These findings serve to explain the unpredictable ‘design trajectory’ in

terms of a composition of distinct design episodes.  While this notion of unpredictability in

design is not new in design theory, this thesis’ expositions of a number of characteristics

are claimed as original.  These characteristics include the notion of discrete and distinct

episodes typified by a period of stability and commitment to a design option; description of

the part that breakdowns play in bounding design episodes; the relationship between

episodes and designer self-selection of roles; the effects of various kinds of bias in design

(particularly paradigm and perspective biases); the means by which designers use

negotiation with various stakeholders to steer the design trajectory toward familiar ground

(in the form of known problem types and solution archetypes); the role that a range of

other forces in the designer’s wider social context have on design outcomes; the architect’s

relationship with methodology; the architect’s apparently ad hoc approach to assembling a

personal design process in situ.  All of these findings have direct relevance to the theory and

practice of design in the software fabric.

On the ways in which expert software designers arrange their context so as to support their

tacit designing, this contribution results from a selection of findings that portray the

architect as negotiator—of scope, requirements, system structure, and other aspects of the

design engagement.  Negotiation of problems with clients—in order to make them more

like problems for which the architect-negotiator has known and trusted solution

archetypes—evidences the architect’s potential to influence goals and goal-setting

processes.  From a design-theoretic perspective, this behaviour can also be interpreted as

the architect arranging his or her context, both explicitly and implicitly, with the personal

objective of making the design engagement more familiar and therefore less exposed to

risk.  In simple terms, experienced software designers make the presenting problem look

like one they have solved before.  This is entirely consistent with other accounts of



Chapter Ten: Conclusions

269

situated activity.  Suchman’s account of photocopier use (1987) confirms how situation

cannot be divorced from theories of cognition, and her account of the Trukese navigators

confirms the viability of purposeful activity in the absence of formal abstract models or

plans.  Johnston’s (1999) account of situated activity in manufacturing settings confirms

that managers structure the environment of operations in order that ‘management goals

emerge through the robust interaction of simple reactive systems with suitably structured

environments’ (p. 141).  This contrasts dramatically with the dominant position in the

manufacturing and operations management domains that asserts that desired system

outcomes are achieved through the automated production and implementation of plans or

schedules derived by formal manipulations upon abstract representations of the world.

The key theoretical contribution is to be found in the rich descriptions of the ways that

expert software architects effect this environmental change before and during design

activity.  There are three dimensions of influence—externally to the client, internally to

their team, and personally through reflection.  Externally (to their clients) software

architects shape their context through problem, requirements and solution negotiation.

Internally (to their team) software architects shape their context through collaboration

(particularly to achieve design adoption and evaluation) and via the assembly of a design

process assembled for the team and its capabilities.  Personally (to themselves) software

architects shape their context through continuous reflection, which manifests as a sense of

software aesthetic.  Thus the expert software architect makes his or her practice situated

through exertion of influence.  This research did not determine the degree to which the

individual designer’s influence in all three dimensions results in the success or otherwise of

a design engagement, but it seems intuitive that higher degrees of controlled influence

would correlate with better design outcomes.  The situated software architect is therefore

primarily an influencer, able to change the context so as to make it familiar, which in turn

sets the scene for personal, tacit design skills to come to the fore.  To the less experienced

practitioner, software architecture is the assembly of elements of the solution.  To the

journeyman, it is assembly of elements of the solution and the shared design process that

enables a design capability to evolve.  The most experienced designers assemble the

holistic context of the design engagement to allow design activity to be performed tacitly.

This is how an expert software designer makes the complex and multi-dimensional act of

software design look easy.

10.5.3 Contribution to software engineering

The thesis’ main contribution to software engineering concerns the establishment of a



Chapter Ten: Conclusions

270

researched basis for re-conceptualising the management of design activity.  From a situated

perspective, management is a design process rather than a control process. The participants

accounted for the pragmatic design process as one which involves analysis of the

environment in which the system is to act, design of the simplest system which will achieve

the desired goals in interaction with a properly structured or restructured environment,

followed by testing and tweaking.  Johnston claims that this may well be the way most

successful systems are actually designed in practice, but ‘the lack of theoretical

respectability for this approach can lead to it being derided as ‘muddling through’’(1999, p.

146).  Intuitively, we expect such a bottom-up system design process to be robust by virtue

of its reliance on stable low-level interactions, and also to be entirely compatible with an

evolutionary approach to change.  This contrasts with the expensive and ossifying effects

on design activity often associated with conservative engineering and method-centred

approaches.

The thesis’ findings have application in making the principles of how software designers

act to restructure environments more explicit in such a way that the environment shares

the cognitive burden with the target system.  This amounts to a call for the development of

‘principled characterisations of interaction between agents and their environments’ to guide

design (Agre 1995).  Designers can restructure their environments in the following ways.

At the macro level, recognition of the iterative and episodic nature of design activity can

be used to separate and promote the creative part of software design.  A recognition of the

way design activity occurs—via Simon’s Generate/Test cycle and this research’s depiction

of design episode—can alert the practitioner to poorly formed or inappropriately used

methods, processes and management practices that would constrain or conflict with

episodic design.  This thesis has not pursued further translation of the findings into either a

methodology of its own or to suggested practices for practitioners.  However, the general

direction of some of these implications is not difficult to identify.  With respect to design

activity, these might include techniques for taking control of the design episode by

recognising and explicating situation, recognising breakdowns during design activity,

articulating an aesthetic sense for the particular team and situation, and stimulating

intuitive leaps or new design episodes by controlling perspective change.  With respect to

the engagement, these might include techniques for developing a critical and radical sense

of judgement and assessment, and for relating this to designing and design activity.  Many

of the practices of the Agile methods would have currency in this application of these

research findings.  For example, the use of short, goal-oriented user stories as a planning

mechanism dovetails easily with setting goals and scope of a series of design episodes.



Chapter Ten: Conclusions

271

Developing a software aesthetic could possibly be driven by the experience of pair

programming.  Other associations should be self-evident to the Agile practitioner.  There

may be some value in completing this exercise on the basis that any results in the form of

concrete applications and techniques would be derived from this research’s grounded-

theoretical foundation.

10.6 Conclusion

This thesis commenced by posing a question about the practice of software design.  The

question was refined to a particular class of professional designers who could demonstrate

significant experience in the architecture of object-oriented software products, frameworks

and systems.  The author’s position—that rational planning and design models have failed

to accurately reflect software design activity—was declared and argued.  A review of

design theory and philosophy identified a broad philosophical and epistemological

movement away from rationalism and toward theories based on constructivist philosophy.

One of these—the situated action model—was selected as an alternative model of design

activity.

A thematic review of the literature revealed a foundation of design research based on

positivism, interpretivism and ethnography.  Most of this research concerned design in non-

software fabrics.  In the software domain, most design-focussed research concerns the

operation of teams engaged in design activity, models of collaboration, decision-making

and learning within teams, and the organisational impacts that result from design-focussed

projects and initiatives.  Where research addresses the individual software designer, it

generally focuses on use of methods and related pedagogical themes rather than on eliciting

descriptions and models of the individual designer’s creative and evaluative design activity

and how this activity supports the activity of software design.

An interpretivist research method was then designed which would explore the various

phenomena evident in expert’s descriptions of software design practice.  A framework

identifying characteristics of situated practice was assembled to structure the interviews.

Twenty-four expert object-oriented software architects were recruited, screened and

interviewed, resulting in 33.5 hours of interviews and 342 pages of transcript (Appendix

D).  The qualitative analysis yielded 5 top-level topic maps, 258 sub-topics and

relationships (Appendix F), and 25 distinct narratives (Chapter Eight) on the nature of

software design as related by the participants.  This set of narratives on the practice of

software design constitutes the primary research output and satisfies the research aim.



Chapter Ten: Conclusions

272

Of the twenty-five narratives, many represent depictions of different mechanisms and

techniques used by the architects to manipulate their context so as to achieve a higher

probability of a successful design outcome.  For example, when the architect negotiates

problems, requirements, constraints and solutions, he does so to make the problem and

context both familiar and comfortable.  Recognising that situation allows tacit design skills

to come to the fore, this contextual manipulation enables the designer to move from

predominantly using explicit design skills to using tacit design skills.  Thus the architect-

negotiator arranges the workshop furniture and tools in preparation for immersive, tacit

designing.  The situated software architect’s two primary skills are therefore designing and

influencing.  Arguably, this over-arching observation reveals the true nature of situated

software design—the architect responds to the situation by arranging what can be arranged

in order to transition into a tacit design mode.  In the quote at the head of the previous

chapter, Jones expresses the designer’s role as ‘designing the meta-process, designing the

situation so that designing collaboratively is possible, so that the interaction flows’.  (Jones

1988, p. 225).  Apart from Suchman, this relationship between designer, situation and

context is well expressed by Johnson (1999) who commented on ‘the principles of

designing systems for particular environments and of the restructuring of environments in

such a way that the environment shares the cognitive burden with the focal system’ (p.

146).

The hypothesis proposed situatedness as a model of the participant’s depictions of the

personal process and activity of software design.  A partial fit was found and argued for on

the basis of the models expressed by the qualitative analysis.  The inability of a rational

model of activity to comprehensively explain software design activity was confirmed.  The

findings did not support adoption of a situated model over a rational model—rather, they

explained how these models are complementary and where and how the situated and

rational models respectively hold.  The software design professional acts in a situated

fashion when creating, and in a rational fashion when evaluating.  The detail of this

summary statement can be found in the findings (Chapter Eight).

The strength of these research results depend primarily on two factors—the content and

solidity of the participant’s accounts of designing, and the author’s choice of interpretation

of same.  The strongest content came from about one third of the twenty-four participants.

Every attempt has been made to accurately reflect the character of these individuals.  For

the author (and hopefully for the reader) the personas of Breuer, Utzon, Le Corbusier, Gropius,

Sullivan, Mackintosh and their counterparts build through the second half of the thesis to a



Chapter Ten: Conclusions

273

point where their positions on various design topics become unsurprising and even

anticipated.  This thesis portrays its participants as actors engaged in a discourse on design

practice, with the effect that the convergence of their opinions becomes authoritative.

Ultimately, as with much design research, this thesis is a work of the author’s

interpretation.  The research process progresses from perceptions and early understandings

through collection and analysis of data to solidifying concepts and relationships via both

iterative cycles and successive layers of interpretation.  Iteration serves the refinement of

notions to clear and well-defined concepts or relationships.  Layering serves the

organisation of complexity in this conceptual model.  Every action in the analysis process,

whether it be the definition of a phenomenon or the drawing of relationships between two

such conceptual nodes in a topic map, is based on an interpretation.  As such, this thesis is

a form of argument that resembles a building, where each ‘block’ is selected, presented,

justified, anchored to epistemology and the research paradigm, and then laid on the

previous ones, to provide the foundation for the next.  The participant’s accounts which

evidence these conceptual blocks, and the process by which this analytical structure has

been built, have both been kept transparent to the degree that the thesis medium allows.  It

is up to the reader to determine whether he or she would build the same structure, or if not,

where the two would differ.

In the final reflective self-analysis, the researcher starts to recognise the behaviours

portrayed by the participants in his or her own research practice.  When aspects of the

‘research trajectory’ start to align with what the analysis has referred to as the ‘design

trajectory’, a Heideggerian truth about design dawns.  In a world inanimate of objects,

design is ubiquitous.  We are all designers.  And the continual design and redesign of our

environment is our inescapable destiny.



274

Appendix A:  Glossary

This glossary presents definitions of terms introduced in the qualitative analysis to describe

a particular emergent phenomenon.

a-rationality The collective behaviours of software designers that can be
classified as not being rational—that is, behaviours that are based
on a pragmatic, radical or critical philosophical position.

Archetype A high-level heterogeneous solution space pattern, used by an
experienced software architect during the early states of a design
engagement, to reason about the potential structure of a solution.

Conceptual design The design of a software system or product expressed in terms of
concepts or high-level abstractions.

Design act The activity, performed by a software architect, act that puts a
software artefact where one did not previously exist.

Design engagement The terms and characteristics of a contract between a client and a
software architect, that signals an intention to work together to
produce a design for a software system or product.

Design episode A phenomenon that emerged from the analysis of the participant’s
accounts of designing that accounts for how a design trajectory
moves forward in phases, or distinct episodes, separated in time,
each representing a period of commitment to the design as it
stands, and demarcated by breakdown events.   Each ‘design
episode’ represents the currently preferred design option, and is
stable until proven flawed.

Design method The part of an ‘external method’ that purports to assist in the
creation of a software architecture or artefact.

Emergence A phenomenon of certain types of design activity whereby
features of the solution emerge as a consequence of the designer’s
manipulation of the solution elements in context.

External method A published or shared method intended to guide the design
process.

Methodology,
method

The analysis of the principles of methods, rules, and postulates
employed by a discipline, as well as a particular procedure, or set
of procedures.  Alsi implies the rationale and the philosophical
assumptions that underlie a particular design process or approach.

Pattern A general repeatable solution to a commonly occurring problem in
software design.  A design pattern is not a finished design that can
be transformed directly into code.  It is a description or template



Appendix A: Glossary

275

for how to solve a problem that can be used in many different
situations.  Object-oriented design patterns typically show
relationships and interactions between classes or objects, without
specifying the final application classes or objects that are
involved.

Personal method A synonym for ‘Personal process’.

Personal pattern A phenomenon that emerged from the analysis of the participant’s
accounts of designing which describes an expert software
designer’s conception of a design or code pattern.  A personal
pattern may be the designer’s interpretation of a published and
possibly widely known and used design pattern, or it may be a
knowledge fragment specific to the individual.

Perspective The choice of a context or a reference (or the result of this choice)
from which to sense, categorize, measure or codify experience,
cohesively forming a coherent belief, typically for comparing with
another.  One may further recognize a number of subtly
distinctive meanings, close to those of paradigm, point of view,
reality tunnel, or weltanschauung.  To choose a perspective is to
choose a value system and, unavoidably, an associated belief
system.

Private method A phenomenon that emerged from the analysis of the participant’s
accounts of designing in which software designers distinguish
between the external or published method (which they and their
project may, on the surface, be following) and the personal
method which the individual designer believes he or she is
following.

Public method A phenomenon that emerged from the analysis of the participant’s
accounts of designing in which

Aka ‘external method’

Routine design A form of design which yields convincingly to rational approaches.
Routine design is often contrasted with conceptual design which is
defined as requiring a higher degree of interpretation.



276

Appendix B:  Ethics Clearance



Appendix B: Ethics Clearance

277



Appendix B: Ethics Clearance

278



Appendix B: Ethics Clearance

279



Appendix B: Ethics Clearance

280



281

Appendix C:  Interview Pack

Informed Consent Form

Informed Consent Form

Project Title: Architecture Evolution and Transfer in Object-Oriented Software
Projects (2000-469)

This form allows us to record your consent to participate in this study.  Consent
forms are standard ethical research practice and a requirement of the university.

1. Participation in this Study
By signing the consent clause below, you agree to take part, and to be interviewed
and recorded.

I agree to take part in the above Monash University research project.  I have had
the project explained to me, and I have read the Explanatory Statement, which I
may keep for my records.  I understand that agreeing to take part means that I am
willing to:

• complete a survey asking me about my expertise and professional practices in
the design and management of software systems and architectures,

• be interviewed by the researcher,

• allow the interview to be recorded.

I understand that any information I provide will be treated as highly confidential,
and that no information that could lead to the identification of any individual,
product or company will be disclosed in any publication or to any other party,

AND

I understand that I will be given a transcript of my interview for correction and my
approval before it is included in the research thesis or any publication.

I also understand that my participation is voluntary, that I can choose not to
participate in part or all of the project, and that I can withdraw at any stage
without being penalised or disadvantaged in any way.

Name: ...................................................................................................
(please print)

Signature:  ........................................................................  Date:
.............................

2. Further use of Data
The survey and interview has been designed for the aims of the above research
project.  However, it may be desirable to re-use the data for further analysis by
other projects in the future.  By signing the consent clause below you agree that
the data collected (with your name and any other names removed) may be passed



Appendix C: Interview Pack

282

onto other researchers for further analysis.

I understand that the data collected from my survey and interview may be passed
on to other research projects in the future, provided:

• these projects have university ethics approval, and

• my name, and all other names (persons, products, companies) and contact
information is removed before it is passed on.

Name: ..................................................................................................
(please print)

Signature:  .......................................................................  Date:
.............................

This form will be kept by the researchers with transcripts of the interview.
Thankyou for your participation.



Appendix C: Interview Pack

283

Invitation to Participate

Invitation to participate in research project (2000/469)

1 June 2001

Project title: The Situated Software Architect — Architecture Evolution and
Transfer in Object-Oriented Software Projects.

Chief Investigator: Associate Professor Christine Mingins.

Student Researcher: Paul Taylor.

Thank-you for your interest in this research project, the centre-piece of my PhD
research in the Department of Computer Science and Software Engineering (Monash
University) under the supervision of Associate Professor Christine Mingins and
Professor Richard Mitchell.
The following summary should provide everything you need to know about the
project and your involvement:

Research Aims
The aim of this research is to understand what approaches, methods and techniques
are used by software architects in industry to design, manage and evolve complex
object-oriented software architectures and systems.  The interview sessions are
designed elicit architect’s experiences and opinions on matters of software
architecture and design.  The research will take a qualitative, interpretivist
approach, by focusing on the factors that shape software and system design in this
situated context.  This information will be used to identify ways in which OO
architectures are designed and practically managed.  It will also give software
engineers and methodologists a current picture of how software architecture and
design in business and industrial contexts is understood, and enacted.

Selection of participants
Participants in this study must be experienced software architects and designers
who have worked on at least three object-oriented systems or software projects in
industry.  Participants will have worked in an architect role providing technical
direction to other software developers and engineers.  To ensure that the study’s
findings are not compromised, it is important that each participant can show
evidence of this experience.  A Preliminary Survey helps us to understand how
relevant your particular experience is to the study’s goals, and to prepare for the
interview.

Preliminary Surveys
By this stage, you should have received a Preliminary Survey by e-mail (a Word 97
document attachment).  Please complete the survey (in electronic form) and return
it to ptaylor@csse.monash.edu.au.  The survey assesses broad exposure to object-
oriented software architecture and design, and will allow us to prepare for, and get
best value from the interview session.  If we both decide to proceed, an interview
will then be scheduled at your convenience.

Interviews
The interview will provide the opportunity to interact and discuss some areas of your
experience and expertise more deeply.  Your interview will take no more than 90
minutes and will be scheduled at a mutually convenient time and place.  The venue
will be quiet and private.  With your permission, interviews will be audio-taped and
subsequently transcribed into an interview record that will be e-mailed back to you
so that you can validate the transcript, if you wish.



Appendix C: Interview Pack

284

Confidentiality
The interviews will discuss generalised techniques and practice, and you will not be
asked to state or discuss the names of companies, products or individuals at any
time.  If you do, these names will be kept completely confidential.  When you provide
corrections, clarifications or indicate agreement with the interview notes, the audio
recording will be erased.  Access to all collected data (the interview tapes while they
exist, interview notes and transcriptions) to tapes will be restricted to the Student
Researcher (Paul Taylor) and the Chief Researcher (Associate Professor Mingins).  No
information that could identify the participant will be present in the interview
transcript, its filename, or its properties (participants are allocated a pseudonym to
facilitate this).

Follow-up interview
In some cases, there may be some value in a follow-up interview, in which specific
points are clarified or further detail discussed.  If you are invited to a second
interview, again at a time and place that suits you, you may of course refuse
without compromising your first interview’s data.

Access to data
All collected data will be securely stored for 5 years as prescribed by university
regulations.  You will have an opportunity to indicate whether you agree to the (de-
personalised) data from your interview being made available to other researchers in
the future.

Feedback
You may indicate your interest in seeing copies of any of the reports, thesis sections
or published papers that result from this research.  If you do, electronic copies will
be sent to you.

Incentive
We cannot offer monetary or any commercial incentive to reward your participation.

Withdrawal
You may withdraw from participation at any time simply by simply informing me (Paul
Taylor).  You are also free to avoid answering any survey or interview question
which you believe is inappropriate or professionally intrusive—such a refusal will not
invalidate your other answers nor affect your future involvement in this or any similar
Monash University study

If you have any queries, please contact either me (Paul Taylor) on (03) 9617 0202,
0404 819 005 or FAX (03) 9621 1951 (or send e-mail to
ptaylor@csse.monash.edu.au) or Associate Professor Mingins on (03) 9903 2078
(cmingins@csse.monash.edu.au).  Should you have any complaint concerning the
manner in which this research (2000/469) is conducted, please do not hesitate to
contact The Standing Committee on Ethics in Research Involving Humans at the
following address:

The Secretary, The Standing Committee on Ethics in Research Involving Humans, PO
Box 3A, Monash University, Victoria  3800.  Telephone (03) 9905 2052 Fax (03)
9905 1420
Email:   SCERH@adm.monash.edu.au

Thankyou for your interest in this project.       Paul Taylor.



Appendix C: Interview Pack

285

Interview outline

The Situated Software Architect

Architecture Evolution and Transfer  in Object-Oriented
Software Projects

Principal Researcher:  Christine Mingins
Student Researcher: Paul Taylor
Associate Supervisor:  Richard Mitchell

Cleared by Monash University Standing Committee for
Ethical Research into Humans—project number 2000-
469
About Software Design Practice (˜20 mins ?  +20)
1 Software

architecture
What do you understand ‘software architecture’ to be?

2 Software
design

What do you understand ‘software design’ to be?  How does
this differ from software architecture?

3 Software
methodology

What do you understand ‘software methodology’ to be?  How
does it relate to software architecture and software design?

4 Perceptions of
success

Describe your most successful piece of software architecture
and design.  Describe the circumstances in which you did this
work.
What made this architecture or system successful?

5 Collaborative
design
capability

What things most significantly contribute to a team’s ability
to deliver high quality software architecture and design?

What things compromise it?

6 Contextual
effects

How do contextual (non-technical) factors impact the shape
of a software system’s architecture or design?

7 Compromise What factors most compromise system architectures
developed in business and industry contexts?
What causes or drives these compromises?

Performing Software Design (˜25 mins ?  +45)
8 Role definition What distinguishes between a skilled software architect and

a skilled programmer?

9 Conceptual
vs. detailed
design

Is there a difference between conceptual and detailed
software design?

10 Abstraction
skills

How important are abstraction skills to software design?

How does methodology help you in forming abstractions?

How does your experience with past solutions help you in
forming abstractions?

11 Creativity What role does creativity play in software design and
architecture?



Appendix C: Interview Pack

286

12 Assumption
validation

How do you validate or cross-check your assumptions when
designing?

13 Generators How do you go about producing the initial architecture of a
system?
Describe how you have approached this in the past.

14 Option
assessment

Do you ever develop several candidate solutions and then
select the most suitable one?  Why or why not?

15 Synthesis How do you go about composing or synthesising solution
fragments or components into an emerging design?

16 Design
feedback

In the design of software architecture, what sort of feedback
is important to you?

How do you incorporate feedback into the way you design?

17 Architecture
preservation

What sorts of things do you do to preserve critical
architectural structure?

At the system architecture level?

At the class, package or sub-system level?

Design and Knowledge (˜15 mins ?  +60)
18 Design

process
Describe the process you take to the design of a system’s
software architecture.

How does this relate to the design processes espoused by
popular methodologies?

19 Repeatability In your experience, is the design of viable software
architectures a repeatable process?  Do you think it should
be?

20 Planning What sort of planning works best for periods of system and
software design activity?

21 Knowledge
media

Where should design knowledge be embedded for maximum
benefit?
in the product (the software architecture),

• in the process,
• in the heads of people,
• somewhere else (a repository, for example)?
• some combination of the above?  What combination would

you recommend and why?
• 

22 Patterns How much do you draw upon published architectural and
design patterns?

23 Learning
design

How did you learn to design software architectures and
systems?  How would you teach someone else?

24 Metaphor How relevant do you think the engineering metaphor is to
what you do?



Appendix C: Interview Pack

287

Other relevant experiences (˜5 minutes ?  +65)
25 Etc Are there any other relevant stories or experiences about

your experience with OO software architectures and designs
that come to mind?

26 Referrals Can you suggest others with a background similar to yours
who would make valuable participants in this study?



Appendix C: Interview Pack

288

Preliminary Survey Form

Preliminary Survey

Project Title: Architecture Evolution and Transfer in Object-Oriented Software
Projects (2000-469)

Overtype the free format text fields, and type an ‘X’ next to (or over) the most
appropriate box symbols.

1 Name:
………………………………………………………………..………………………….

2 Phone(s):
…………….…………………………….………………….……………………………

3 E-mail:
………………………………………………………………………………..…………

Architectural experience

4 In what architectural or technical
leadership roles have you
worked?

Architect  r
Technical Manager  r
Project Manager  r
Consultant  r
Lead Software Engineer  r
Other title(s): ……………………………………………

5 Approximately how many years in
total have you worked in these
positions?

< 12 months  r
1-2 years  r
2-5 years  r
5 or more years  r

6 How many distinct object-
oriented software systems or
products have you worked on
during this time?

1 r         2 r
3-5 r      More than 5 r

7 How large was the largest system
you worked on in this time?
Indicate the number of manually
designed and coded classes.

<50  r                    50-100  r
100-250  r            250-500  r
500-1000  r         1000-2000  r
> 2000  r Please specify the number
              ……………………………

8 What is the longest period that
you have spent working with any
one object-oriented system or
product?

< 3 months  r 3-6 months  r
6-12 months  r 12-24 months  r
More than 2 years  r

Responsibilities

9 What aspects of software
architecture have you held
responsibility for during your
involvement with these projects?
(tick as many as are applicable)

The entire product  r
The software architecture  r
A subsystem of the software architecture  r
OO methodology r
Design and coding processes  r
Code quality  r
Other responsibilities:
…..……………………………………………………………



Appendix C: Interview Pack

289

10 What types of work did you
perform in your role as architect?
(tick as many as are applicable)

Requirements and functional specification  r
System architecture and design  r
Domain modeling  r
Software architecture and design  r
Object modeling  r
Data or database modeling  r
Coding  r
Code reviewing  r
System testing  r
Debugging  r
Other activities:
…..……………………………….……………..…

Specific object technologies

11 What object-oriented software technologies have you used on these projects?

Analysis/Design Methods
UML r
Open r
FUSION r
MeNtOr r

Others: ………………………..…

Programming Languages
Java r
C++ r
VisualBasic r
Delphi r

Others: ………………………..…

Object databases and
persistence
ObjectStore r
Versant r
Persistence r

Others: …..……………………..…
Class libraries and
frameworks
MFC r
Java libraries r
RogueWave r

Others: ………………………..…

Distributed Objects and
Components
COM/DCOM r
CORBA r
J2EE/EJB r
.net r
Others: ………………………..…

CASE
Rational ROSE r
StP r
System Architect

Others:  ……..………………..…

Other comments

12 Anything else we should know to help us prepare for the interview?
…..……………………………….…………………….……………………….……………………………………..…
…..……………………………….…………………….……………………….……………………………………..…
…..……………………………….…………………….……………………….……………………………………..…
…..……………………………….…………………….……………………….……………………………………..…

Please e-mail this completed survey to ptaylor@csse.monash.edu.au and you will be
contacted to arrange an interview time.



290

Appendix D:  Participant Profile

Introduction

The preliminary survey results comprise a profile of the participants that provides

important background to the reading of the analysis.

Interview Process

Between June 2000 and July 2002 24 software architects were interviewed in Melbourne

(21), Sydney (2) and Canberra (1).  These participants were recruited in one of three ways.

Two participants responded to an invitation at the end of an article published in the

Australian Computer Society’s monthly magazine (Taylor 2001a).  One participant

responded to a verbal invitation made at the end of a paper presentation at the Australian

Software Engineering Conference (Taylor 2001c).  Nine participants responded to email

invitations directly from the author.  The remaining 11 participants were ‘snowball’

referees from these 12 initial participants.

Each participant completed a preliminary survey (reproduced in Appendix C) to screen

their suitability, the results of which are presented in the next section.  This survey was

always intended to profile the participants rather than have any statistical significance.  At

the interview, each participant was asked to sign a consent form.  All interviews followed

the questions and topics in the framework described in Chapter 4, some more rigidly than

others.

Every word of each interview was transcribed for subsequent analysis.  Participants were

allocated a pseudonym (the name of a ‘famous’ architect) which was used from that point

forward in the handling of the transcript.  Each participant’s transcript was then sent back

to him (with all information identifying any parties or products stripped) to provide an

opportunity to comment.  Table 4 summarises some metrics from the interview phase.



Appendix D: Participant Profile

291

Characteristic

Number of interviews 24

Total number of interview hours 33.5 hours

Average interview period 84 minutes

Transcript total word count 219,426 words

Transcript total page count 342 pages

Average transcript page count 14 pages

Table 4:  Interview metrics.

Transcripts were imported into QSR’s NVivo 2.0 (a qualitative analysis tool) for coding

and analysis.  Coding and analysis commenced after the seventh interview and continued in

parallel with the remainder of the interviews.  The complete analysis is presented in

Chapter Six.

Participant Profile

This section presents a simple frequency analysis of the participant’s responses to the

preliminary survey.

Professional roles

Question 4—In what architectural or technical leadership roles have you worked?



Appendix D: Participant Profile

292

Architect

Technical 
manager

Project manager

Consultant

Lead software 
engineer

Other title(s)

0 5 10 15 20

Figure 24:  Participant’s professional roles.

A participant’s claim to having worked in an industry-sanctioned role or title is a rough

indicator of their experience level.  When asked about what architectural or technical

leadership roles they had worked in, the participants identified ‘lead software engineer’ and

‘architect’ most often, with a spread across other technical roles.

Years in roles

Question 5—Approximately how many years in total have you worked in these

positions?

5 or more years,  
92%

2-5 years, 8%

1-2 years, 0%

<12 months, 0%

Figure 25:  Participant’s years in roles.

Time spent in industry-sanctioned roles is also an indicator of expertise.  Most (92%) of the

participants had held one or more lead technical roles for 5 or more years, the remainder 2

to 5 years.



Appendix D: Participant Profile

293

Number of systems

Question 6—How many distinct object-oriented software systems or products have you

worked on in this time?

More than 5, 
67%

3-5, 25%

2, 4%1, 4%

Figure 26: Participant’s number of object-oriented architectures or systems.

Experience in software design increases with the number of projects and architectures an

individual has worked with.  Most (67%) participants had worked on more than 5 distinct

object-oriented systems, with most of the remainder claiming 3 to 5 systems.

Largest system

Question 7—How large was the largest system you worked on in this time?  Indicate

the number of manually designed and coded classes.

50-100, 9%

100-250, 26%

250-500, 26%

500-1000, 26%

> 2000, 9%

1000-2000, 4%

Figure 27: Participant’s largest architecture or system (classes).

In general, large object-oriented systems involve more complexity, scale and coordination

problems than small systems.  Time spent with large systems is therefore an indicator of

experience.  A gross metric for object-oriented systems is the number of classes.  Most of

the participants were evenly distributed between systems of 100-250 classes (26%), 250-

500 classes (26%) and 500-1000 classes (26%).  Three participants reported having



Appendix D: Participant Profile

294

worked with the architectures of very large systems (one reported 1000-2000 classes and

two reported >2000 classes).

Longest time with one system

Question 8—What is the longest period that you have spent working with any one

object-oriented system or product?

6-12 months, 
4%

12-24 
months, 25%

More than 2 
years, 67%

Figure 28: Participant’s longest time with one architecture or system.

Some architectural insights are thought to emerge over the lifetime of an object-oriented

system.  Time spent working and evolving one system is therefore an indicator of exposure

to the consequences of certain design choices.  More than half of the participants (58%)

reported having worked with an object-oriented system for more than 2 years.  Most of the

remainder reported 1 to 2 years.

Responsibility

Question 9—What aspects of software architecture have you held responsibility for

during your involvement with these projects?



Appendix D: Participant Profile

295

The entire 
product

The software 
architecture 

Software sub-
system

OO 
methodology

Design and 
coding process

Code quality

Other 
responsibilities:

0 5 10 15 20 25

Figure 29: Participant’s architecture and design responsibilities held.

The responsibilities of project architects and technical leaders can vary widely.  This

question assessed what responsibilities the participants had held across a typical system

development lifecycle.  The participants responded almost uniformly across the set of

responsibilities.

Points of engagement

Question 10—What types of work did you perform in your role as architect?

21
19

16

21
20

18

23
21

17

22

1
0

5

10

15

20

25

Requirements
and functional
specification

Software
architecture
and design

Coding Debugging

Requirements 
and functional 
specification

System 
architecture 
and design

Domain 
modelling

Software 
architecture 
and design

Object 
modelling

Data or 
database 
modelling

Coding

Code reviewing

System testing

Debugging

Other activities:

0 5 10 15 20 25

Figure 30: Participant’s points of engagement with the development process.

Another indicator of experience is the kinds of tasks that the architect actually performed.



Appendix D: Participant Profile

296

Again, the participants responded almost uniformly across the set of tasks.

Methodology use

Question 11a—What object-oriented methodologies have you used on these projects?

UML

OPEN

FUSION

MeNtOr

Other 
methodology

0 5 10 15 20

Figure 31: Participant’s use of methodology.

Architects would be expected to have used methodologies in their design work.  Most

participants (79%) reported using UML.  MeNtOr was also reported (33%).  A small

number of other methodologies (Booch, Schlaer/Mellor) were noted in the ‘Other’

category.  In total, 88% of architects reported working with one or more methodologies.

OO languages

Question 11b—What object-oriented languages have you used on these projects?



Appendix D: Participant Profile

297

0 2 4 6 8 10 12 14 16

Java

C++

VB

Delphi

Other language

Figure 32: Participant’s use of object-oriented languages.

Architects would be expected to be expert in at least one object-oriented language.  The

choice of language is driven by industry demands at the time of the survey.  C++ (50%)

and Java (54%) were predictable first choices.  71% of the architects reported using 2 or

more object-oriented languages professionally.

Persistence

Question 11c—What object-oriented persistence technologies have you used on these

projects?

0 1 2 3 4 5 6 7 8

ObjectStore

Versant

Persistence

Other persistence

Figure 33: Participant’s use of persistence frameworks and products.

Most object-oriented systems use a persistence service.  At the time, the most popular



Appendix D: Participant Profile

298

options were two object databases (Versant and ObjectStore), and an object-relational

mapping product (Persistence).  The participants reported relatively even exposure to these

products.  96% of the architects reported using at least one persistence product.

Class libraries

Question 11d—What object-oriented class libraries or frameworks have you used on

these projects?

0 5 10 15

MFC

Java libraries

RogueWave

Other class
library

Figure 34: Participant’s use of object-oriented class libraries.

Object-oriented languages rely heavily on class libraries.  At the time, the three most

popular options were Microsoft’s MFC, the Java libraries and a C++ and Java product

(RogueWave).  Again, the participants reported relatively even exposure to these products.

Distribution technologies

Question 11e—What object-oriented distribution technologies have you used on these

projects?



Appendix D: Participant Profile

299

COM/DCOM

CORBA

J2EE/EJB

.Net

Other 
distribution 
technology

0 2 4 6 8 10

Figure 35: Participant’s use of object-oriented distribution technologies.

Most object-oriented systems rely on some form of distribution.  At the time, the options

were COM/DCOM, .Net (which was immature at the time), CORBA and J2EE/EJB (also

immature).  Again, the participants reported relatively even exposure to these technologies.

71% of the architects reported using one or more distribution technologies.

CASE

Question 11f—What Computer-Aided Software Engineering products have you used on

these projects?

0 5 10 15

Rational ROSE

StP

System
Architect

Other CASE

Figure 36: Participant’s use of CASE products.

In conjunction with their use of methodologies, architects would be expected to have used

Computer-Aided Software Engineering tools for their models.  Half of the participants

reported using Rational ROSE, with the remainder reporting Software thru Pictures,

System Architect and others (including Modelmaker and Teamwork).  92% of the

architects reported using CASE tools of some kind.



Appendix D: Participant Profile

300

Conclusion

The results of the preliminary survey paint a picture of a class of professional software

technologists.  Most have worked across the industry-accepted roles for software architects

and with a few exceptions, have been responsible for (and have performed) design and

development tasks across the typical object-oriented system’s scope and lifecycle.  They

are very experienced in object-oriented technologies—almost all (92%) have 5 or more

years of practice, two thirds (67%) have worked on 5 or more distinct object-oriented

systems, nearly half (39%) have worked on medium sized systems (> 500 classes) with 3

having direct experience of large systems (> 1000 classes).  More than half (67%) have

worked with a specific object-oriented system for more than 2 years.

Their exposure to object-oriented technologies and products reflects availability and

industry demand at the time of the interviews.  Almost all have used a methodology (88%)

with CASE support (92%), most are professionally multi-lingual (71%) with C++ and Java

predominant, almost all have dealt with persistence issues and products in their

architectures (96%), class libraries (96%) and distribution technologies (71%).

The 24 interviews that followed the preliminary survey instrument were transcribed and

coded in parallel.  The interview process was terminated when the categories appeared to

be saturating.



301

Appendix E:  Example of Topic Analysis

Aesthetic

- - - - - -

< Listening to the code. >

Morris> So for me, doing emergent design is doing as much design as I am confident of,

and then trying it out, and then modifying what happens based on the feedback that I get

from the code.  So things then get a little bit new-agey, because you start to talk about

‘listening to the code’ and listening to what the system is telling you.

- - - - - -

Sullivan> I know you were asking about architecture, but obviously architecture and

design are related aren’t they?  It’s different kind of ideas that are pointing at the same area.

If you look at -- let’s say -- a motor car or an aeroplane or something, you say “what a great

design”. When I was a student I had a Mark 7 Jag, I can still see in the Workshop Manual a

picture of -- I think it might have been a cross section…no it wasn’t… it was just a picture

of the front of the engine… with it’s two cam shafts … oh, no, it had timing chains on it as

well...  And I mean, it has just left an indelible impression on me, what a thing of beauty!

So, is that design? Where actually is the design?

- - - - - -

Cook> If I think back to the problem… to the project that I think was my most successful,

one of the great things that we managed to do, David and I, in that, was to continually take

problems, and re- evaluate them in the context of what we’d already done, and without

fitting square pegs in round holes, actually say ‘well OK, that is really just a special case of

that’. ‘Why doesn’t that already handle that?’ ‘Oh look, if we re-factored thatto use another

buzz-wordin a certain way it would still do all the stuff it was still doing before and it

would handle that one special case. Great! Fantastic! Alright, that’s good -- and to me

that’s an indication of elegant software, that is, with very little change, you can incorporate

new concepts or new solutionsor solutions to new problems.

- - - - - -

< Aesthetic universally involves reduction, optimisation, removal of duplication. >



Appendix E: Example of Topic Analysis

302

Breuer> When I saw the ‘commissions’ package specifications -- I don’t think, you weren’t

hear for that were you? I walked out of the meeting.  I ended up saying… it was 124 pages

-- please turn it into 15.

- - - - - -

Ruskin> PRT> And also you can aim to reduce rather than expand.  That is, the sign of

the emergence of an elegant solution is that it starts to reduce in complexity and size -- and

I take it that that’s how you regard object structure as well?

Architect> Indeed.

- - - - - -

< Morris seems to suggest that software aesthetics are socially constructed in the context

of a team. >

Morris> So one of the things I try to do is teach people more about the social stuff, and

teach people to be able to express themselves in an assertive, but not aggressive way, and

to respect other people’s opinion and to listen actively, and to do those sorts of things, so

that we can come up with a better design overall.  And when I go out to teach, yes I try to

teach people to make technical decisions and listen to the code and appreciate the software

aesthetics, but that is what they can do as individuals, but I try to place as much emphasis

on teaching them to interact positively with the rest of the team, as I do on learning to

appreciate the software aesthetics, because one is important in the solo environment and

the other is critical for the team environment.

- - - - - -

< A fundamental question is whether the kind of software aesthetic talked about by many

of the architects is in a ny way objective. Can it be shared, or taught? Can it be expressed in

patterns, for example? >

Cook> PRT> But presumably opinion converges, I mean you can see that in patterns that

are being documented, you can see that in the work of the methodologists…

Architect> Oh, most definitely it does. And I think that’s because those people have

experienced similar things and they all come to the agreement that yes, this is probably the

most… I like to use the word ‘elegant’ more than simple. I think for people like me, I don’t

know about other people, but I have… I look at something and I either have an intuitive

feel that this is an elegant solution or it’s not. And when it’s elegant I think that’s…

whether it’s considered simple by one person or not, it’s the right solution.



Appendix E: Example of Topic Analysis

303

- - - - - -

< The software aesthetic is described as being essentially subjective and experiential. >

Utzon> It is very subjective, I know. And I mean I’ve taken basically the same

architectural principles to one client and you know, almost been burned at the stake and

taken them somewhere else and you know, lauded as a absolute genius. Still pretty much

the same ideas, just a matter of whether or not there’s that shared vision of what it is

you’re trying to bring across.

- - - - - -.< There is an analogy between occupying a physical designed space (an architect's

building) and occupying a designed conceptual space (a software architect's system

architecture). It is also related to a perception of 'goodness'. >

Utzon> PRT> Now you mentioned aesthetics before, obviously aesthetics plays a big part

in real world architecture, and you could argue that real world architects are obsessed with

aesthetic, what part do you think it plays in your work?

Architect> Umm, I think it’s very important but extremely hard to define. Let’s have a

think… I have a… I put a lot of stock in Alexander’s ideas about objective beauty, all the

stuff about Turkish carpets and stuff like that.  I think that, when people walk into a

building that really works they know. And, not sure how you necessarily explain that. And I

think people know that about software as well, is that when they start walking around a

software design, they know.

PRT> There’s a very interesting question there, it’s to do with what it is that you’re

perceiving and what others are perceiving. I mean don’t let me put words in your mouth

but you might have worked with people who just don’t perceive the same type of appeal.

Architect> Yeah… I have…

PRT> But you might have also worked with people with whom you share ideas with in a

very fluid fashion. And you can see the same sorts of aesthetic appeal.

- - - - - -

< Johnson described a very tangible sense of code occupancy. >

Johnson> I have come up with designs that I don’t want to ever go back to, I don’t want to

touch the code, I am scared to go there, I am scared to touch anything. I don’t have the

Quality Without A Name, the experience for me as the programmer is poor.  I don’t want

to occupy that space.  On my good designs, I love that space, I love going back, I can go

there and I can read it, I can make changes and I know what I am doing.



Appendix E: Example of Topic Analysis

304

- - - - - -

< Not everyone has a sense of software aesthetic. >

Morris> Architect> It is exactly in line with what I perceive, with an extra qualifier - we all

have an innate sense of what makes us comfortable in a living space.  We do not all have

that sense of what is comfortable and liveable in software, inside a piece of software.

Have you read Richard Gabriel’s stuff on this? So I agree entirely with the sort of things he

says, and that is one of another things that I see when I say some.people aren’t suited to

software development -- they do not, and I don’t believe that it is because they can’t, or I

am not sure if it is can’t/won’t or which axis it is on, but for whatever reason, they don’t

have that sense of what I call ‘software aesthetics’.

And one of my challenges is to try to convey to people what is aesthetically pleasing code,

what is going to work and what is not.

- - - - - -

< Unlike Morris, Lethaby thinks that a software aesthetic is not uncommon. >

Lethaby> I think generally there are enough programmers who have a good sense of those

things.  If you are in an environment where hardly any programmers have a sense of an

aesthetic sense of their code, or any idea of elegance or efficiency, or design sense, then

you would be in a difficult situation that you would probably need to come up with some

sort of heuristic metrics for ‘is this nice or is this not nice?’ But fortunately, in

environments that I have worked in at any rate, there have been always plenty of

programmers who have had a very good sense of ‘nice code versus nasty code’ - and it

shows that I am optimistic that this is a general condition, that is a human condition where

you naturally respond to some kind of elegance in the code we are writing, and the

machines we are making in our day to day routine, whatever it is.

- - - - - -

< Preservation of the essential theme, or a lack of its corruption, is an element of

'goodness'. >

Utzon> What are the measurements of aesthetics?

PRT> Is it the ability to share concepts? Or to jointly see concepts in the code with others,

or in the structure of the system? The architecture of the system?

Architect> Yeah I guess so, I think it’s just the ability to be able to express… it’s about

goodness you know, there’s the idea that this architecture, the way this thing’s designed is



Appendix E: Example of Topic Analysis

305

‘good’. And obviously anything I do I’m going to try to make the best quality thing I can

and when somebody else looks at that and goes ‘oh yeah, that is good’ and I understand

that, and you can see the kinds of benefits that you’ve tried to build into it actually

accruing, through other people actually taking that into design and not trying to corrupt it

that as they go along…That’s actually a good yardstick now that I think about it - the less

the designers and the programmers corrupt the theme that you’re actually trying to put

together probably the better, the more successful your architecture is and the team that is

that’s coming together.

- - - - - -

< Although it is subjective, Utzon thinks its principles can be distilled and documented. >.

PRT> So do you think you could -- I’m not going to ask you to do this because it could

take along time but do you think you could express those principles of good architecture

across domains?

Utzon > Yes. Have done. Just finished a document, actually. Yeah, I think so.

- - - - - -

< It is intuitive. >

Cook> I think for people like me, I don’t know about other people, but I have… I look at

something and I either have an intuitive feel that this is an elegant solution or it’s not. And

when it’s elegant I think that’s… whether it’s considered simple by one person or not, it’s

the right solution.

- - - - - -

< Not being able to distil it into a set of statements or principles suggests to Cook that he

does not understand it sufficiently well. >

Cook> PRT> So could you reduce that sense of elegance to a bunch of principles that you

could then teach others? Or do you think this is just something that you develop over

time?

Architect> I think it’s probably experience, but I think, again, given my previous criteria

that probably means I don’t understand it at all well enough. I think also that it may not be

that my definition of what seems like an elegant solution and someone else’s are all that

different, but my willingness to compromise on certain issues may be different. I may

consider some things to be more important than



Appendix E: Example of Topic Analysis

306

others, and that will bias my decisions. But yeah, probably… the fact that I use the term

‘elegance’, that’s quite an emotive word, and that probably indicates that I don’t

understand it.

- - - - - -

< The audience (or inhabitants) live with the consequences of good and not-so-good

design. It is they who should arbitrate a software aesthetic. >

Cook> PRT> That’s right. But we don’t have that same sense of aesthetic in software

architecture, that, if you like, ‘real architects’ do, but it seems to me that we do have

something similar?

Architect> I think you do, because architect’s peers, or the people who they perceive as

judging, if you like, are, maybe other architects, also the general public, the people who are

going to pay for the building and what-have-you. I think, speaking from a purely technical

perspective, I think it’s other developers, and its ability to withstand not sure withstand is

such a good word to weather change I guess, its extensibility I guess. In my experience

things that are elegant tend to be extensible. They may not… it may be completely

different in day 5 to day 1, but the design allows you to change quite smoothly from one to

the other.. So I don’t know that it isn’t necessarily… I don’t know that it isn’t any

different, it’s just who…

PRT> …who the audience is?

Architect> who the audience is, audience is a good word, yes.

- - - - - -

< Cook describes a sceanrio in which he was able to repeatedly accommodate a raft of new

requirements with his existing architecture by re- interpreting the problem to a degree. This

genericity of his solution architecture and its demonstrated extensibility constituted an

elegance. >

...take problems, and re-evaluate them in the context of what we’d already done, and

(without fitting square pegs in round holes) actually say ‘well OK, that is really just a

special case of that’. ‘Why doesn’t that already handle that?’ ‘Oh look, if we re-factored

that in a certain way it would still do all the stuff it was still doing before and it would

handle that one special case. Great! Fantastic!

Cook> ...and to me that’s an indication of elegant software, that is, with very little change,

you can incorporate new concepts or new solutions or solutions to new problems.



Appendix E: Example of Topic Analysis

307

- - - - - -

< Elegance is defined by usefulness. >

McLuhan> PRT> What about elegance?

Architect> That’s very important…

PRT> Mathematicians, apparently, so I’ve read, have valued elegance in mathematical

proofs and so forth? Do you perceive a degree of elegance?

Architect> I think that’s the part of making everything fit properly. In an elegant solution,

things fit better. It might not look elegant when you see the pieces on paper, but that’s not

the point. Paper is not where it happens, it happens inside the machine. Not in 2

dimensions, but in a thousand dimensions.

PRT> So when you’re talking about things fitting together… in an elegant solution things

fit together well, you’re really talking about your model of how the objects are interacting

in the executing solution as you see it in your mind’s eye?

Architect> And the elegance of being able to say here I have an abstract data structure and

these are its properties. And yet if I don’t understand the structure of this object I’ve got,

so what are its properties? Looking for the elegancies which are those properties -- that’s

the mathematical view of it. And so there’s a degree of elegance associated with use and

usefulness of it.

- - - - - -.Howard> Yes and particularly I think the more generic, and I will call it elegant

the model, by almost definition the more abstract it is, the more flexible adaptive and all

the rest

- - - - - -

< Clean, simple mappings between domain concepts and model concepts. >

Johnson> ...so pretty much everything in the UML and in the classes had a nice clean

correlation in reality.

PRT> So the mapping from real world things to classes was clean and intuitive?

Architect> Yeah, it was pretty clean and intuitive, we had to introduce extra classes to

manage other classes and all those sort of workhorse type things, and we had a report

manager that handled reports and it all worked out really quite nicely.

- - - - - -

< Models have an elegance that is kept pure by including only the essential elements of the



Appendix E: Example of Topic Analysis

308

design. >

Mackintosh> We have industrial designers who put together the overall shape, the look,

the feel, and then we have coders who put the models together. And its much more like

what they do in those design houses than what they do in an engineering plant…Can you

name a tolerance in software? The language is so different whereas model-builders that’s

much more like what we are. Because we never build a physical real thing its much more

like building models, getting the aesthetics right. It doesn’t need engineering. Phillipe

Starck, much more like that. And it can be just as silly, or it can be beautifully elegant. But

he’s not an engineer.

- - - - - -

< Listening to the code can be likened to Schon's (Heidegger's) notion of 'breakdown'.

Listening suggests catching subtleties before they reach the point of breakdown. Not actual

breakdown, but rather a resistance, or jarring. >

Lethaby> Yes, I am also thinking perhaps not so much about simply the clear breakdown

event, but may be your arm is getting sore, because you are holding the hammer slightly the

wrong way and your arm shouldn’t be getting sore, I am just hammering -- why is my arm

getting sore?

PRT> I am just coding, why is this tedious it is not breaking, it is not bouncing off the nail

bit but it is not comfortable, it doesn’t feel right. It is very hard to put qualitative measures

on all those ideas of feeling, the code feeling right and listening to the code, does that

bother you at all.

- - - - - -

Sullivan> When I was a student I had a Mark 7 Jag, I can still see in the Workshop Manual

a picture of -- I think it might have been a cross section… no it. wasn’t… it was just a

picture of the front of the engine… with it’s two cam shafts … oh, no, it had timing chains

on it as well...

And I mean, it has just left an indelible impression on me, what a thing of beauty!

- - - - - -

< Breuer associates overall bulk, and its reduction or lack of reduction as indicators of

elegance. >

Breuer> When I saw the ‘commissions’ package specifications -- I don’t think, you weren’t

hear for that were you? I walked out of the meeting. I ended up saying… it was 124 pages -



Appendix E: Example of Topic Analysis

309

- please turn it into 15.

- - - - - -

< Symmetry is an indicator of both elegance and simplicitly. The designer should strive to

uncover and exploit the natural symmetries in the structures of both problems and

solutions. Most problems have an underlying structure. The designer must strive to

identify, uncover this structure. >

Breuer> P> So really you have, I suppose there was an underlying, there was a view there

that someone, by taking a view from a particular perspective of the system, of the business

domains, of the problems, the structure of the problems that you were trying to solve, you

were able to come up with a solution that collapsed down into a grammatically simple

structure.

Architect> Elegant and simple, yes. The fact that it did collapse into something so elegant

meant that you have to be right.  This has to be the way to go.

P> Yeah. Elegance confirms correctness.

Architect> Yes, yes, exactly. And that is a very strong touch-stone. I think that, yeah,

symmetry is, I suppose, one of my guiding lines here is that if something is not symmetrical

then I have probably got something wrong. As we know when you compose symmetric

objects together, they lead to a great deal of asymmetry and of course, when Jeff presented

me with this ‘miracle happens here’ type document where they had all the added parts of

Product sketched except for the big hole in the middle, … it appeared to me that this all to

complicated, this just can’t be right. It is too complex. We will never finish implementing it

and as soon as somebody changes something this is going to be hopeless to undo. Because

we don’t understand all the inter- connections and so on.

So what is the simplifying first principle that we can pull this down to?. And the simplifying

first principle was ‘business rules are a tree’.

P> Yeah.

- - - - - -

< Symmetry is important because it reduces work. >

< If a software architecture does not exhibit elegance, than it may be because the design

lacks symmetry, or has failed to uncover and exploit symmetries in the structure of the

problem that it is trying to solve. >



Appendix E: Example of Topic Analysis

310

Breuer> ...and, yeah, symmetry is a key issue in the elegance of the solution – is a key.

P> And also from what you have said that you need, if you’ve come up with an elegant

solution, you should drive for that. Elegance in the solution suggests correctness…

Architect> And also means that you are going to less work in the future. And it is going to

be less work. Essentially it is all about doing less work.



311

Appendix F:  Topic Maps

Purpose

The topic maps presented in this appendix represent the analysis of categories around

topics, and the relationships between categories, within the five broad domains.



Appendix F: Topic Maps

312

What is ‘Software Architecture’?

Figure 37: Topic map for ‘software architecture’.



Appendix F: Topic Maps

313

What is ‘Software Design’

Figure 38: Topic map for ‘software design’.



Appendix F: Topic Maps

314

The ‘Software Architect’ Role

Figure 39: Topic map for ‘the role of the software architect’.



Appendix F: Topic Maps

315

Methodology

Figure 40: Topic map for ‘methodology’.



Appendix F: Topic Maps

316

The ‘Design Act’

Figure 41: Topic map for ‘the design act’.



317

Appendix G:  Project Website

The project website was created in June 2000 to advertise for participants and explain the project goals as well as the process to
be followed by participants.  It was deployed at http://www.csse.monash.edu.au/~ptaylor/ where it has been served continuously
for six years.  This Appendix presents the site’s content.



Appendix G: Project Website

318

Front page



Appendix G: Project Website

319

‘How do expert software architects balance forward planning...’ teaser page

Le Corbusier's master-plans for everything from entire cities to modernist public housing complexes elevated architecture and
planning beyond concrete, steel and glass to a blueprint for economic reform and social revolution...

Unfortunately, Le Corbusier's functionalist structures could not be filled with life. They were ultimately judged as impractical and
unmalleable. People preferred bungalows and shacks that they could mould to their changing needs over living in a modernist
monument to its designer.

System and software designers need architectures. They must ensure that their teams implement a consistent vision and structure.
So how do experienced software architects enforce structure whilst preserving flexibility? What criteria do they use to determine
this balance?

‘…and piecemeal growth?’ teaser page

Christopher Alexander has a lot to say about planning and emergence in design...

"In the present way of thinking about architecture, one is supposed to design the building completely, and use the description



Appendix G: Project Website

320

(design, plan, drawing) as a specification from which to build. But it is precisely in this that architecture has gone wrong, and it is
because of this that living structure no longer appears in our buildings. Instead of using plans, designs, and so on, we must use
generative processes which tell us what to do, rather than detailed drawings which tell us what the end result is supposed to be.
That procedure allows us to create living structure..."

Pattern languages and other generative techniques might produce highly habitable designs over time, but most software architects
don't have the time or the right pattern language to realise such 'beauty' in their conceptual and detailed object architectures. How
do expert software designers initiate, manage and control piecemeal growth and repair in their software structures?

‘Is ad hoc software design…unprofessional or purposeful?’ teaser page

Ad hoc is bad... right? Process maturity models (like CMM) have undoubtedly increased software quality substantially around the
world. But what do most process models have to say about the way conceptual and architectural software design is actually
performed? And do software architects follow them when doing design? If not, why not?



Appendix G: Project Website

321

Ad hoc office chair by Charles Jencks and Nathan Silver. (exact location
unknown).

Ad hoc resolution of cathedral roof tracery.

Software processes tend to shun unrepeatable, one-off, ad hoc design and development, because it is not repeatable and often not
of high quality. But all design has a creative element which cannot be dictated by processes, there are times when we do not
require repeatability, and most design comes down to an individual engineer or architect anyway. So what is the difference between
bad adhocism -- the kind software process people despise -- and good adhocism, the kind that delivers pragmatic, working designs
quickly and efficiently?

‘How do experienced software architects articulate their designs...’ teaser page

One of the most acute criticisms of functionalist design was the lack or articulation, or signs and detail, that serve to distinguish a



Appendix G: Project Website

322

structure and announce its presence or use. Design has historically oscillated on the question of semiotics -- the science of signs
and their reading -- from the ridiculous detailing of Victorian buildings and artefacts to faceless, modernist blandness...

Semiotics in software architecture has addressed critical issues such as cognitive perception and habitability in the interests of
driving down maintenance costs and increasing extensibility. So how do expert software architects choose their abstractions and
compose their structures to provide articulate designs? Do software designers worry about design self-documentation at all?

 ‘...and ensure essential structures are preserved?’ teaser page

Even supposedly perfect structures are subject to erosion over time, and can require buttressing against forces unforseen at design
time...



Appendix G: Project Website

323

A diagonal buttress added post-hoc to Gloucester cathedral.

What measures do experienced software architects and designers take to ensure that the conceptual clarity of their designs are
preserved? What design preservation techniques work, and under what circumstances are software architectures long-lived? Do
designers worry about architecture preservation and longevity at all?

‘About software design’ page

The design 'onion'
Design is a difficult thing to describe, according to IEEE Software columnist Robert L. Glass (March 1999, p104):
Design is one of the most elusive yet fascinating topics in the software field. It is elusive because, no matter how thoroughly
academics try to shape it into a teachable, testable, fact-based topic, it just doesn't fit. It is fascinating because design holds the
key to the success of most software projects.

Clive Dym (IEEE Spectrum, June 1996, p10) suggests that design can be thought of as an 'onion', comprised of many distinct but
interdependent layers:



Appendix G: Project Website

324

• design is experiential -- it is about learning by doing;
• design is mathematical -- it only achieves valid academic status when it is framed in mathematical terms;
• design is cognitive -- it is about the functioning of the human mind in creative activity;
• design is social -- it is about process activities, especially in team settings.

Glass concludes that software design is, at heart a trial-and-error, creative process, in which proposed solutions to problems are
iterated and enhanced until they are powerful enough to be a complete solution to the problem at hand. This is true of design in
other domains as well -- architecture in the built world, artistic design, and some types of engineereing design. Glass concludes with
the observation that not much work has been done to further our understanding of design across the disciplines, and that:

It is my belief that in the mainstream of the field today, too many still see design as an objective topic. We teach people about
design methodologies. We tyeach them about design representations. 'Turn the methodology crank', we say, 'write down the result
in a representation, and you are a skilled designer'. That's just not enough.

Taken collectively, these layers represent a formidable yet fascinating barrier capable of taxing the finest software minds for years
to come.

‘About software architects’ page

The software architect--some defining characteristics

Software architects are experienced software developers who have developed design skills in systems, software architectures and
detailed component and module design.

They are usually strong conceptual thinkers, who understand the value of getting the conceptual model absolutely right. They are
prepared to defend and preserve the conceptual clarity and purity of their architectures and models.

Their knowledge extends beyond software technology to include systems thinking, communication and negotiation. They may be
able to work outside of the Information Technology organisation to resolve issues and deliver solutions. They often have a deep
knowledge of several or more business domains, such as insurance, patient administration, or telecommunications fault management,
that has been developed while developing systems in these business areas.

They may sport a few scars and a healthy pragmatism from the experience of deploying business-critical systems under tight



Appendix G: Project Website

325

deadline pressures, and they have a sense of how easily or otherwise certain characteristics of a proposed system will be to design,
implement and deploy.

Some, perhaps even a lot of their knowledge is tacit. Like most experts, they know that they have knowledge and a sense of what
is right, or what will work, but they cannot always elucidate their know-how, their methods or approaches.

The situated software architect

The concept of situated action is based on the fact that all actions are performed in a context and are chosen by the actor in
response to a whole range of stimuli, and that it really doesn't make much sense to try to interpret action out of context, or to
expect action to follow a prescriptive plan.

'Situatedness' has been taken seriously by design researchers, who regard it as a useful way of explaining some of the
unpredictability of the act of design. Design is the difficult process of synthesising functional, efficient and elegant structures and
artefacts from ill-defined problems whilst dealing with multiple dimensions of interrelated constraints. The messiness of the real-world
contexts in which designers work, and the pragmatic effects of non-technical factors such as deadlines, people, politics and should
be highly familiar to most experienced software architects.

We know that these 'messy' environmental factors shape software architectures almost as much as methodologies, plans and
processes do -- we just don't know how much, how, or why. A model of situated software design action will be useful to illuminate
the reality of software architecture and design.

The situated software architect is a product of education, experience and context. He or she is part architect, part engineer, part
craftsperson -- a rational designer today, a professional expert tomorrow, a pragmatic hands-on doer the day after. Situated
designers do not use theory and methods per se, they filter and use bits of them selectively in response to their expert perceptions
of contextual needs.

‘Related research’ page

Alternate Metaphors and Models for Software Production

The applicability of the engineering and architecture metaphors for software production have been questioned since their adoption.
Some alternative metaphors have included Dance, Craft, and Theatre.



Appendix G: Project Website

326

Some authors are starting to interpret what a post-modernist software paradigm (or paradigms) might look like. The prospect of
replacing the engineering and architecture metaphors is fuelled by recent insights into the software making process that do not sit
comfortably with forward engineering -- the ability to select different methods and match them selectively to problem types (see
Michael Jackson's problem frames -- the methodologist, not the singer!), heterogeneous components and object-oriented
programming languages, multi-design paradigms, and continuous user involvement. The true extent of the inherent flexiblility of
software fabric is finally being recognised and is feeding back into methods, metaphors and paradigms.

Early results from Richard Gabriel's Feyerabend Project suggest this 'edge of a paradigm shift' perspective. The ongoing project is
investigating recasting the foundations of software engineering in the light of current technology and reported experience. The work
includes envisioning, reflection and narrative, and deconstruction of some important software engineering value-frameworks and
norms.
Jim Coplien has explored multi-paradigm design and the parallels between design history and software. Jason Baragry has described
the movement from misfitting metaphors to a paradigm. Bruce Blum's book (Beyond Programming) comprehensively argues that the
time has come to abandon engineering metaphors grounded in 'technical rationality' in favour of a kind of adaptive design paradigm.
Meanwhile, journals like Design Studies have been publishing high quality design research in non-software domains for years -- the
tussle between 'design science' and 'design art' appears constantly in its pages.

Research projects that explore the nature of situated design (or situated software design like this one) become exercises in
assessing the underlying paradigm when practitioner's reports are generalised and the common themes compared and contrasted
with conventional wisdom or 'theory'.

Past and Present Design Theory

Design in its own right -- independent of any realisation media -- has a strong theoretical basis. Journals like Design Studies have
chronicled design theory for several decades. Foundations were laid by design theorists including Nigel Cross, John Thackara and
John Chris Jones. Contemporary researchers like John Gero at the Key Center for Design Computing are researching and publishing
situatedness, constructive memory and emergent behaviours in design.
Authorities like the Design Research Society, and national design councils (UK) oversee design promotion and provide a view of
current research issues.

Pattern Theory

Christopher Alexander's theory of pattern languages provides one view of how complex designs can evolve over time, with a
decentralised form of design control. The situated software architect balances local, regional and corporate design effort in parallel.
Lots of work has been done since the early nineties to document 'best practice' software design in a wide range of domains in the



Appendix G: Project Website

327

form of patterns. The situated software architect uses patterns extensively, both explicitly and tacitly, and may even write patterns
to transfer design knowledge.

Contextual Software Design

The 'situatedness' of software design has been recognised for some time. The Scandinavian School pioneered the application of
participative design techniques and other approaches borrowed from industrial design to software. Voluminous work has been done
within the HCI community to exploit participative design. The impact of the particular designer's skills and abilities on software
productivity rates and software quality are also well recognised. The perceptions, attitudes and values of software architects
therefore have a critical effect on the shape and form of software architecture in industry and business.

Design Ethnography

Some researchers are adapting ethnographic techniques to the study of industrial design and software development. This typically
involves 'going native' and living 'with the tribe' for a period of time, observing and then generalising the observations back to
theory.

‘Papers’ page

The following papers have been published on software design topics. Send email to request an electronic copy.
Seen, M., Taylor, P., and Dick, M. "Applying a Crystal Ball to Design Pattern Adoption." TOOLS Europe (33), Mont-Saint-Michel,
France, 443-454.

Taylor, P. "Adhocism in Software Architecture - Perspectives from Design Theory." International Conference of Software Methods
and Tools (2000), Wollongong, 41-50.

Taylor, P. (2000b). "Capable, Productive and Satisfied: Patterns for Productive People." Pattern Languages of Program Design 4, N.
Harrison, B. Foote, and H. Rohnert, eds., Addison-Wesley, Reading, Massachusetts, 611-637.

Taylor, P. "Designerly Thinking: What Software Methodology can learn from Design Theory." International Conference on Software
Methods and Tools (2000), Wollongong, 107-118.

Taylor, P. "Dynamic Team Structures for Supporting Software Design Episodes." 37th International Conference on Technology of



Appendix G: Project Website

328

Object-Oriented Languages and Systems (TOOLS Pacific) 2000, Sydney, 290-301.

Taylor, P. "Evolution of Software Design Knowledge." Australian Conference on Knowledge Management and Intelligent Decision
Support (2000), Melbourne.

Taylor, P. "Problem Frames and Object-Oriented Software Architecture." 37th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific) 2000, Sydney, 70-81.

Taylor, P. (2001a). "The Great Meta-Skills Shortage." Information Age, 34-35.

Taylor, P. "A Software Enterprise is not a Tree." First Australian Conference of Pattern Languages and Programs (KoalaPLoP 2000),
Melbourne.

Taylor, P. "Eternal Triangle: Design in Three Discourses." Second Australian Conference of Pattern Languages and Programs
(KoalaPLoP 2001), Melbourne.

Taylor, P. "Mayall's Ten Principles in Design: A Software Engineering Response." 2001 Australian Software Engineering Conference
(ASWEC 2001), Canberra.

Taylor, P. "Patterns of Software Craft." Second Australian Conference of Pattern Languages and Programs (KoalaPLoP 2001),
Melbourne.

‘FAQ’ page

What are the project's goals?

The research project aims to build a model of software design practice, in industry and/or business contexts. It aims to describe the
personal design processes, rationale and values adopted by software architects in industry to design, manage and evolve complex
(principally object-oriented) software architectures and systems. The research will take a qualitative, interpretivist approach, by
focusing on the factors that shape software design in this context. This information will give software engineers and methodologists
a current picture of how software architecture and design in the business and industrial contexts is understood and enacted, and
how this differs from the 'theoretical' models of design that underly popular methodologies and process improvement models.
The model is expected to confirm many aspects of conventional wisdom and software engineering theory, and it will almost certainly
diverge from some others. Findings from the project's participants will be compared and contrasted with each other and with both



Appendix G: Project Website

329

design theory (the kind of theory that architecture and industrial design is based upon) and software engineering theory. The areas
of divergence are expected to become a source of insight into the differences between planned and actual software design and
development practice.

What does 'situated' mean?

Research into design performed in industry is motivated by the need to understand the effect of these contexts on individual and
collective design processes. Many researchers have adopted in situ action-oriented perspectives to interpret action in different
ways. In contrast to causal research based on controlled observation of expert designers, the in situ approach takes the researcher
out of the laboratory and into a setting where causal and predictive factors frequently become masked and muddied beyond
recognition amidst the complexity of the business environment. Researching in situ requires the use of methods based on a paradigm
in which engineering facts are considered alongside socially constructed perceptions. Software design, being a form of design that is
both highly conceptual and deeply contextual, is an ideal candidate for this kind of research.

The notion of ‘situatedness’ originated from artificial intelligence research in cognitive models of planning, which moved from forward
planning to contextual planning many years ago. Lucy Suchman described action as being understandable and explainable only in its
immediate context, coining the term ‘situated action’ to distinguish this view from the entrenched one of action conforming to a
plan, description or specification. Suchman claims:

…the term situated action…underscores the view that every course of action depends in essential ways upon its material and social
circumstances (Suchman, "Plans and Situated Actions: The problem of human machine communication", Cambridge University Press,
1987, p. 50).

Rather than to attempt to abstract away action from its circumstances and represent it as a rational plan, the situated approach
studies "how people use their circumstances to achieve intelligent action". Rather than build a theory of action out of a theory of
plans, the situated approach aims to investigate how people produce and find evidence for plans in the midst of their situated
actions. (Others have called this common phenomena 'Posthoc Rationalisation'). Suchman’s work paralleled the emergence of
interpretivist and ethnographic research techniques in information systems research, and a general recognition of the importance of
contextual forces in systems design, development and deployment success.

Do contextual factors really influence Software Architects all that much?

Situated action's claim that all actions are meaningless if interpreted out of context undoubtedly applies to some forms of group or
social behaviours, but should it -- and does it -- apply to an engineering design activity like software development? This question
strikes at the paradigmatic foundation of what it is we do... is software development art, craft, science, engineering, or a hybrid of



Appendix G: Project Website

330

some or all of these disciplines?

The question 'should software be art or science' has been debated endlessly and it is not the goal of this project to stir that
particular can of worms. This project focuses on the act of design in context, and asks the second question -- does it depend on
contextual rather than context-independent factors, and if so, how, and why. The answers, as evidenced in the responses,
thoughts and stories of a cohort of expert software architects will build evidence for a particular form of situated design action. It
may be profoundly embedded in context, or it may be tightly coupled with context-independent prescriptive techniques and methods
-- time will tell. Either way, we will know more about expert software design practice.

Contextual factors that might prove significant in architect's accounts of design include risk management strategies, political and
project-related factors, available skill levels, deadline and budget constraints, other contingent factors, and many others. The
project aims to understand the designer's values that underpin how these kinds of factors are interpreted and dealt with in creating
and evolving complex system and software designs.

Do good design practices really differ from popular methods?

At the coarse level, almost certainly not. There is no question that the feedback loop between conventional wisdom and
contemporary methods is working reasonably well. This project focuses specifically on how individuals perform complex software
design in situ. Contemporary software development methods provide coarse level orientation, particularly for beginners, but not (on
the whole) plans, processes or schemas for detailed architectural design.

Neither can they. Methods provide project and design infrastructure, which can orient but cannot dictate design. For example, when
less experienced designers follow methods literally, their designs are often naive, immature, and inflexible, and as a result not long-
lived. Their accounts of design are of almost no value to this project.

The best architectural designs are produced by experienced designers who draw upon the infrastructure provided by languages and
methods, libraries and frameworks, knowledge of the buisness domain, past experience of architectural design, and other intangible
factors to synthesise enduring system and software structures. It is these design acts that are of great interest, because they are
borne of valuable expertise and have lasting impact.

Of equal interest are the perceptions of methods that these experienced designers carry, their experience of methods in the past,
and the ways that they use methods.

If software architects are experts, how can you mine their tacit knowledge in an interview?



Appendix G: Project Website

331

This insightful question must be asked of any research that uses interviews, questionnaires, fora, or other means of soliciting
insights from experts in any field. What an expert says he does and what he actually does can be different things. Almost by
definition, a large component of an expert's knowledge is tacit -- that is, experts internalise certain behaviours over time to the
point where they can't even recognise them, let alone explain them to a researcher.

The knowledge management community has suggested lots of techniques that can be used to make tacit knowledge explicit, but
these often take time and considerable effort. Getting software architects to write design patterns from their experience of system
and software design is one such knowledge mining technique. Other approaches to understanding expert practice include
ethnographic techniques such as 'living with the leader of the tribe' for a period to unobtrusively observe his or her behaviours, and
controlled protocol analysis in which designers narrate their thoughts whilst performing a design task.

Doing ethnographic research with a development team engaged on large-scale business-critical systems development is both
difficult to arrange, for commercial reasons. It constitutes a form of case-study research which risks unpredictable results, and
over-influence from the people in the particular project. In protocol analysis, the expert practice is taken out of context and into a
'laboratory' setting, which defeats the purpose of any study of situated action.

The chosen research method -- that of conducting interviews with experienced software architects -- has the advantage of
allowing longitudinal experience over many years and many projects to be reported by the architects themselves. Of course it
suffers from the selective filtering that these experts will unknowingly apply as they recount their life's work. But there are simple
interview techniques that can mitigate some of these risks.

Experts also do not always distinguish between fact and interpretation, or between commonly understood principles and personal
values. This is a problem for all interpretivist research. As interpretivist researchers gain experience, they:

• interpret the participant's responses in the light of their understanding of the problem domain, and

• recognise that the interview process produces the expert's perceptions, not necessarily absolute facts.

Interpretivist research methods provide techniques and tools that transform the (literal) interview transcripts and perform word-by-
word, phrase-by-phtrase textual analysis on the data. The resultant qualitative analyses can be overlayed to construct some
hypotheses and deconstruct others. The end result is a form of conceptual model that accounts for individual biases and individual's
perspectives.

Why go to individual software architects to find out about design?



Appendix G: Project Website

332

To research situated software design, an important research question must be addressed -- what or who provides the best access
to useful knowledge of situated design, and how should the researcher attempt to access this knowledge? The obvious research
target is the software designer him/herself. This choice puts an individual (rather than an organisation or team) at the focus of the
study. The hosting organisation, while it provides a critical business, economic and social context for software is not the source of
the design decisions that shape the software artifact directly, and is generally inaccessible to intrusive studies, anyway.

The software development team is another viable source of knowledge on situated software design, particularly as all developers
perform software design to some degree. Many studies have been performed by design researchers who have 'lived with' and
observed a design team. Performing this kind of research with software development teams is becoming more difficult due to
confidentiality and commercial sensitivities. Team-based ethnographic research is a must where the research question concerns
collective rather than individual design and behaviours. Software architecture design, however, is often an individual and even
personal activity. Software development team collaboration tends to support the design and development infrastructure with the
minutiae of individual design acts and ‘pieces’ of software design, rather than system and architectural design.

Team-based research can only capture particular design practices if they emerge or are recognised and observed. By focussing on
the expert designer, his or her collective knowledge of many architecture-related roles on many projects and development contexts
(the designer’s longitudinal experience) can be probed. The most useful knowledge will come from the most experienced designers
who have had the opportunity to reflect on practices over many projects and software design contexts.

Won't the participants answer defensively rather than honestly?

Designers or developers with little confidence in their ability to choose a design approach, deliver a design and understand its merits
and shortcomings might be tempted to cling to conventional wisdom, or the dictates of a particular methodology, when questioned
about what they did and why they did it that way.

We believe that the software architects we intend to interview will be experienced enough to admit mistakes, to perform rational
assessments of their past designs, architectures and projects, so as not to compromise the study with tactical answers or overtly
biased accounts. The confidentiality of the interviews and data ensure a highly secure environment in which to reflect and assess
critically.
What happens at the interview?

The interview will provide an opportunity to interact and discuss some areas of your experience and expertise. The interview is run
using a structured outline that contains about 30 questions that probe your experience and perceptions of the practice of (object-
oriented) software design in industry. Interesting or relevant themes that emerge in the discussion will be explored further with
additional unscheduled questions.



Appendix G: Project Website

333

What kinds of questions are asked?

The questions are organised into six groups that address individual and group software design experience, design of software, the
design act, design and time, design knowledge management, and design values. In all sections, the questions are designed to draw
out personal experience and expertise.

How long will the interview take?

The interview will take 60 minutes, and no more than 90 minutes.

Where is the interview conducted?

The interview will be scheduled and conducted at a mutually convenient time and place. The venue will be quiet and private.
How is confidentiality ensured?

The interviews will discuss generalised techniques and practice, and you will not be asked to state or discuss the names of
companies, products or individuals at any time. If you do, these names will be kept completely confidential.

What do I have to sign?

You will need to sign a Consent form. This form allows us to record your consent to participate in this study. Consent forms are
standard ethical research practice and a requirement of the University.

Why is the interview recorded?

With your permission, the interview will be audio-taped so that everything that is said can be subsequently transcribed into an
interview record. This is standard practice amongst qualitative researchers. It is important that the actual words of the interview
are captured exactly, so that the interview recording process does not filter or introduce bias.

What happens to the recording afterwards?

The interview transcript will be e-mailed back to you so that you can validate the notes, if you wish. The university requires that
the audio recording and transcripts are stored in a safe place for a period of five years after the date of the interview. This is
standard research practice. After this time they will be destroyed.



Appendix G: Project Website

334

Can I retract something I said in the interview?

Yes -- if you say something that you are not sure of for any reason, you can retract it there and then. Or, when you receive the
transcript, you can request that any part of the text be deleted. In this case, the retracted statement(s) will not be considered
further during the analysis.

Can I choose not to answer some questions?

Yes -- you can provide as much or as little as you feel is appropriate in response to any of the questions. You may elect not to
answer any of the questions without compromising your answers to the other questions.

How is the interview data analysed?

The data from a number of interviews will be analysed using standard qualitative analysis techniques, that include conceptual
clustering, categorisation, conceptual modelling using qualitative categories and relationships. This will deliver a 'conceptual model'
that identifies recurrent themes, concepts, categories, and the relationships between them. Qualitative research results explain but
do not predict or forecast. Qualitative data and analysis provide an extremely rich view of complex, real-world domains. Qualitative
research approaches are particularly suitable for explaining human culture, practice, the interplay between practice and culture, and
expertise.

What does 'Ethics Committee approval' mean?

Monash University requires that any research performed 'on any animal' be cleared by an Ethics Committee. This ensures that all
research activity has been vetted for ethical content and practice. This project has been cleared by the committee (clearance
number 2000/469). This means that the Ethics Committee has reviewed and approved every page of explanatory text, including the
interview outline and the consent form. Ethics Committee approval also means that if anyone has any issue with the way the study
is being conducted, they can directly contact the Monash University Ethics Committee for clarification or to have a concern
addressed.

What are the implications of situated design?

This study has the potential to uncover two broad themes. Either the majority of the interviewed participants will tell us that their
best architectures and designs resulted from a methodology-driven design process, in which contextual factors had minimal influence
and their critical design decisions could be traced transparently through forward-planned rational decision-making on the basis of



Appendix G: Project Website

335

common-sense engineering trade-offs. Alternately, we may find a high degree of contextual factors evident in the emregence of
practical, workable software architectures. We cannot predict which of these themes will emerge, and the study has been designed
not to prejudice either potential outcome.

The former finding will reinforce the use of plans, processes and methods as the drivers of design, according to the reported
experiences and perceptions of a cohort of highly experienced designers. This will be good for software engineering. We can then
retire from academic studies such as this to less arcane pursuits such as teaching industry about methodologies and process
maturity models.
The later finding will reinforce the impact of contextual factors, the individual's ability to work in and through context, to synthesise,
and to draw upon expertise in a way that aligns with designers who work in other (non-software) media. This will also be good for
software engineering, because it will shed light on the nature of complex software design as practiced, in a form that methodology
can learn from. As for us, we might just have to devise even more arcane research projects to discover yet more about the
Situated Software Architect.

‘People’ page

Assoc. Prof. Christine Mingins
Christine Mingins is the Principal Researcher and supervisor. Christine is an Associate Professor and Head of the School of Computer
Science and Software Engineering - Monash University (Caulfield).

Prof. Richard Mitchell
Richard Mitchell is an associate supervisor. Richard provides input to the research design, and ongoing review of the project's
progress and deliverables. Richard is past Professor of Computing at the University of Brighton and a Principal Consultant with
Inferdata.

Paul Taylor
Paul Taylor is the project's chief researcher. Paul is currently performing the indepth interviews and subsequent analysis, and will
draw the project's findings together into a research thesis, feedback for the participants, and subsequent publications.

‘Participate’ page

Participation



Appendix G: Project Website

336

Are you an experienced software architect? Do you like reflecting on your experiences with software design, methods, and teams?
...then please consider being a participant...

You must be:

• in Australia -- we have to interview you face-to-face;

• a software engineer, software architect, team leader or system developer who has been responsible for software architecture
and design;

• experienced with object-oriented and/or component technologies;

• experienced in the design and ongoing development of one or more non-trivial OO/component software systems.

We'll send you a simple preliminary survey form to help us to understand your background. If you fit the profile of the people we are
seeking, we'll schedule a private interview (about 1.5 hours) at your convenience.

In return, we'll keep you informed of the study's progress and findings.

To register your interest as a participant, send an email to Paul Taylor.

‘Disclaimer’ page

This is a personal page published by the author. The ideas and information expressed on it have not been approved or authorised by
Monash University either explicitly or implicitly.

In no event shall Monash University be liable for any damages whatsoever resulting from any action arising in connection with the
use of this information or its publication, including any action for infringement of copyright or defamation. Any complaints about the
contents of home pages on this particular server (www.csse.monash.edu.au) should be directed to the Webmaster, who will fully
investigate the complaint and take appropriate action.



337

Appendix H:  Author’s Publications

The author published the following publications both as a result of this research, and in the

period during this research was conducted.

Seen, M., Taylor, P., and Dick, M. (2000). “Applying a Crystal Ball to Design Pattern

Adoption”, Proceedings of the Thirty-third International Conference on

Technology of Object-Oriented Languages and Systems (TOOLS 33), Mont-Saint-

Michel, France. R. Mitchell, J.-M. Jezequel, J. Bosch, B. Meyer, A. Cameron Wills,

and M. Woodman, eds. IEEE Computer Society, 443-454.

Taylor, P. (2000). “Adhocism in Software Architecture: Perspectives from Design Theory”,

International Conference of Software Methods and Tools (2000), Wollongong. J.

Gray and P. Croll, eds. IEEE Computer Press, 41-50.

Taylor, P. (2000). "Capable, Productive and Satisfied: Patterns for Productive People."

Pattern Languages of Program Design IV, N. Harrison, B. Foote, and H. Rohnert,

eds., Addison-Wesley, Reading, Massachusetts, 611-637.

Taylor, P. (2000). “Designerly Thinking: What Software Methodology can learn from

Design Theory”, International Conference on Software Methods and Tools (2000),

Wollongong. J. G. a. P. Croll, ed. IEEE Computer Press, 107-118.

Taylor, P. (2000). “Dynamic Team Structures for Supporting Software Design Episodes”,

Proceedings of the Thirty-seventh International Conference on Technology of

Object-Oriented Languages and Systems (TOOLS 37), Sydney. B. Henderson-

Sellers and B. Meyer, eds. IEEE, 290-301.

Taylor, P. (2000). “Evolution as a Model of Software Design Knowledge Formation and

Propagation”, Proceedings of the Australian Conference on Knowledge

Management and Intelligent Decision Support (ACKMIDS 2000), Melbourne. F.

Burnstein and H. Linger, eds. Monash University, 182-198.

Taylor, P. (2000). “Problem Frames and Object-Oriented Software Architecture”,

Proceedings of the Thirty-seventh International Conference on Technology of

Object-Oriented Languages and Systems (TOOLS 37), Sydney. B. Henderson-

Sellers and B. Meyer, eds. IEEE, 70-81.



Appendix H: Author’s Publications

338

Taylor, P. (2000). “The Great Meta-Skills Shortage”, ACS Information Age (Feb-Mar

2001), 34-35.

Taylor, P. (2000). “A Software Enterprise is not a Tree”, Proceedings of the First Asia-

Pacific Conference of Pattern Languages and Programs (KoalaPLoP 2000),

Melbourne. J. Coplien and L. Xhao, eds. RMIT University.

Taylor, P. (2000). “Eternal Triangle: Design in Three Discourses”, Proceedings of the

Second Asia-Pacific Conference of Pattern Languages and Programs (KoalaPLoP

2001), Melbourne. J. Noble and N. Harrison, eds. University of Wellington.

Taylor, P. (2001). “Interpreting Mayall's Principles in Design”, Proceedings of the

Australian Software Engineering Conference (ASWEC 2001), Canberra. D. Grant

and L. Stirling, eds. IEEE Computer Press, 297-306.

Taylor, P. (2001). “Patterns of Software Craft”, Proceedings of the Second Asia-Pacific

Conference of Pattern Languages and Programs (KoalaPLoP 2001), Melbourne. J.

Noble and N. Harrison, eds. University of Wellington.

Taylor, P. R. (2001). “Designing Philosophers”, Proceedings of the Twelfth Australasian

Conference on Information Systems (ACIS 2001), Coffs Harbour. G. Finnie, D.

Cecez-Kecmanovic, and B. Lo, eds. Southern Cross University, 653-660.

Taylor, P. R. (2001). “Patterns as Software Design Canon”, Proceedings of the Twelfth

Australasian Conference on Information Systems (ACIS 2001), Coffs Harbour. G.

Finnie, D. Cecez-Kecmanovic, and B. Lo, eds. Southern Cross University, 661-670.

Taylor, P. R. (2001). “Researching the 'Situated Software Architect': Describing the Effects

of Context on the Design Practice of Experienced Software Designers”,

Proceedings of the Third International Workshop on Strategic Knowledge and

Concept Formation (SKCF 2001), Sydney. J. S. Gero and K. Hori, eds. Key Centre

of Design Computing and Cognition, University of Sydney, 261-276.

Taylor, P. R. (2003). “Vernacularism in Software Design Practice”, Proceedings of the

Twelfth International Conference on Information Systems Development:

Constructing the Infrastructure for the Knowledge Economy (ISD2003),

Melbourne.

Taylor, P. R. (2004). “Vernacularism in Software Design Practice: Does Craftsmanship

have a Place in Software Engineering?”, Australasian Journal of Information

Systems(Special Issue 2003/4), 14-25.



339

Appendix I:  Bibliographv

AgileAlliance. (2005). "The Agile Manifesto", accessed 23 March 2005,

http://www.agilemanifesto.org

Agre, P. E. (1995). “Computational Research on Interaction and Agency”, Artificial

Intelligence , 72(1), 1-52.

Agresti, W. W. (1986). “What are the New Paradigms?”, New Paradigms for Software

Development, W. Agresti, ed., IEEE Computer Society Press, New York.

Alexander, C. (1964). Notes on the Synthesis of Form, Harvard University Press, New York.

Alexander, C. (1977). A Pattern Language, Oxford University Press, New York.

Alexander, C. (1979). The Timeless Way of Building, Oxford University Press, New York.

Alexander, C. (1988). “A City is not a Tree”, Design After Modernism, J. Thackara, ed.,

Thames and Hudson, London, 67-84.

Allen, T. J. (1977). Managing the Flow of Technology: Technology Transfer and the Dissemination of

Technological Information within the R&D Organization, Massachusetts Institute of

Technology, Boston.

Amann, K. (1992). “Scientific Expertise as a Social Process”, Software Development and

Reality Construction, C. Floyd, R. Budde, H. Zullighoven, and R. Keil-Slawik, eds.,

Springer-Verlag, Berlin, 131-139.

Baird, F., Moore, C. J., and Jagodzinski, A. P. (2000). “An ethnographic study of

engineering design teams at Rolls-Royce Aerospace”, Design Studies, 21(4), 333-355.

Ball, L. J., and Ormerod, T. C. (2000). “Applying ethnography in the analysis and support

of expertise in engineering design”, Design Studies, 21(4), 403-421.

Bamberger, J. (1991). The mind behind the musical ear, Harvard University Press, Cambridge,

MA.

Bansler, J. P., and Bodker, K. (1993). “A reappraisal of structured analysis: design in an

organisational context”, ACM Transactions on Information Systems, 11(2), 165-193.

Baragry, J., and Reed, K. (2001). “Why we need a Different View of Software



Bibliography

340

Architecture”, Working IEEE/IFIP Conference on Software Architecture, Amsterdam,

The Netherlands.

Bardram, J. E. (1997). “Plans as Situated Action: An Activity Theory Approach to

Workflow Systems”, Proceedings of the Fifth European Conference on Computer Supported

Cooperative Work, Dordrecht. J. A. Hughes, W. Prinz, T. Rodden, and K. Schmidt,

eds. Kluwer Academic Publishers, 17-32.

Barwise, J., and Perry, J. (1983). Situations and Attitudes, MIT Press, Cambridge, MA.

Bateson, G. (1980). Mind and Nature: A Necessary Unity, Bantam Books, New York.

Beck, K. (2000). Embracing Change: Extreme Programming Explained, Cambridge University

Press, Cambridge.

Beedle, M., Devos, M., Sharon, Y., Schwaber, K., and Sutherland, J. (2000). “SCRUM: A

Pattern Language for Hyperproductive Software Development”, Pattern Languages

of Program Design IV, N. Harrison, B. Foote, and H. Rohnert, eds., Addison-

Wesley, Reading, Massachusetts, 637-653.

Benbasat, I., and Zmud, R. W. (1999). “Empirical research in information systems: the

practice of relevance”, MIS Quarterly, 23(1), 3-16.

Beyer, H., and Holtzblatt, K. (1994). “Calling Down the Lightning”, IEEE Software, 11(5),

106-113.

Blackmore, S. (1999). The Meme Machine, Oxford University Press, Oxford.

Blum, B. (1996). Beyond Programming: To a New Era of Design, Oxford University Press,

Oxford.

Boehm, B. W. (1976). “Software Engineering”, IEEE Transactions on Computers, 25(12),

1226-1241.

Boehm, B. W. (1988). “A Spiral Model of Software Development and Enhancement”,

IEEE Computer, 21(5), 61-72.

Boland, R. (1979). “Control, Causality, and Information System Requirements”, Accounting,

Organizations and Society, 4(4), 259-272.

Boland, R. J., Tenkasi, R. V., and Te'eni, D. (1994). “Designing Information Technology to

Support Distributed Cognition”, Organization Science , 5(3), 456-475.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications, Benjamin Cummings,

Redwood City, California.



Bibliography

341

Borenstein, N. S. (1991). Programming as if People Mattered: Friendly Programs, Software

Engineering and Other Noble Delusions, Princeton University Press, Princeton, New

Jersey.

bpmn.org. (2007). "Business Process Modelling Notation", accessed 2 Feb 2007,

http://www.bpmn.org/

Brand, S. (1994). How Buildings Learn: What Happens to Them after They're Built, Penguin,

New York.

Broadbent, G. (1973). Design in architecture; architecture and the human sciences, John Wiley &

Sons, London.

Bryman, A. (1988). Quantity and Quality in Social Research , Unwin Hyman, London.

Bucciarelli, L. L. (1988). “An ethnographic perspective on engineering design”, Design

Studies, 9(4), 159-168.

Bucciarelli, L. L. (1994). Designing Engineers, MIT Press, Cambridge, Massachusetts.

Budde, R., and Zullighoven, H. (1992). “Software Tools in a Programming Workshop”,

Software Development and Reality Construction, C. Floyd, R. Budde, H.

Zullighoven, and R. Keil-Slawik, eds., Springer-Verlag, Berlin, 252-268.

Budgen, D. (1994). Software Design, Addison-Wesley, Reading, Massachusetts.

Budgen, D. (1995). “Design models from software design methods”, Design Studies, 16(3),

293-325.

Bullock, A., and Woodings, R. B. (1983). The Fontana Dictionary of Modern Thinkers,

Fontana, London.

Burrell, G., and Morgan, G. (1979). Sociological paradigms and organisational analysis: elements of

the sociology of corporate life, Heinemann Educational, London.

Busby, J. S. (1998). “The neglect of feedback in engineering design organisation”, Design

Studies, 19(1), 103-117.

Capurro, R. (1992). “Informatics and Hermeneutics”, Software Development and Reality

Construction, C. Floyd, R. Budde, H. Zullighoven, and R. Keil-Slawik, eds.,

Springer-Verlag, Berlin, 363-375.

Carroll, J. (2000). “Examining Methodology Adoption and Use: Building Understanding

from Process Research”, Proceedings of 11th Australasian Conference on Information

Systems (ACIS 2000), Brisbane. G. G. Gable and M. Vitali, eds., CD-ROM. 12



Bibliography

342

pages.

Carroll, J., and Swatman, P. A. (2001). “Structured-case: A methodological framework for

building theory in information systems research”, European Journal of Information

Systems, 9(4), 235-242.

Checkland, P. (1981). Systems Thinking, Systems Practice , Wiley, Chichester, UK.

Checkland, P., and Scholes, J. (1990). Soft systems methodology in action, Wiley, Chichester,

UK.

Churchman, C. W. (1968). The Systems Approach , Dell Publishing Co., New York.

Clancey, W. J. (1993). “Situated action: A neuropsychological interpretation (Response to

Vera and Simon)”, Cognitive Science , 17(1),  pp.87-107.

Clegg, C. (1994). “Psychology and information technology: the study of cognition in

organizations”, British Journal of Psychology, Vol 85, 449-475.

Cockburn, A. (2002). Agile Methods, Addison-Wesley, Reading, Massachusetts.

Coplien, J. O. (1995). “A Generative Organisational Pattern Language”, Pattern Languages

of Program Design I, J. O. Coplien and D. C. Schmidt, eds., Addison-Wesley,

Reading, Massachusetts.

Coplien, J. O. (1996). Software Patterns, Lucent Technologies, Bell Labs Innovations, New

York.

Coyne, R. (1999). Technoromanticism: Digital Narrative, Holism, and the Romance of the Real,

MIT Press, Cambridge, Massachusetts.

Coyne, R. D. (1991). “Is designing mysterious?  Challenging the dual knowledge thesis”,

Design Studies, 12(3), 124-131.

Coyne, R. D. (1995). Designing Information Technology in the Postmodern Age: From Method to

Metaphor, MIT Press, Cambridge, Massachusetts.

Crellin, J., Horn, T., and Preece, J. (1990). “Evaluating evaluation: a case study of the use

of novel and conventional evaluation techniques in a small company”, Human

Computer Interaction (INTERACT 90), Amsterdam. D. Diaper, D. Gilmore, G.

Cockton, and B. Shackel, eds. Elsevier, 329-335.

Cross, N. (1977). The Automated Architect, Pion Limited, London.

Cross, N. (1993). “Science and design methodology”, Research in Engineering Design, Vol 5,

63-69.



Bibliography

343

Curtis, B., Krasner, H., and Iscoe, N. (1988). “A Field Study of the Software Design

Process for Large Systems”, Communications of the ACM, 31(11), 1268-1287.

Dahlbom, B. (1992). “The Idea that Reality is Socially Constructed”, Software

Development and Reality Construction, C. Floyd, R. Budde, H. Zullighoven, and

R. Keil-Slawik, eds., Springer-Verlag, Berlin, 101-126.

Dahlbom, B., and Mathiassen, L. (1993). Computers in Context: The Philosophy and Practice of

Systems Design, Blackwell, Cambridge, MA.

Daly, J., Kellehear, A., and Gliksman, M. (1997). The Public Health Researcher: A

Methodological Guide, Oxford University Press, Melbourne.

Davies, S. P. (1991). “Characterising the program design activity: neither strictly top-down

nor globally opportunistic”, Behaviour & Information Technology, 10(3), 173-190.

Dawkins, R. (1976). The Selfish Gene, Oxford University Press, Oxford.

Dawkins, R. (1996). Climbing Mount Improbable, Penguin, London.

DeGrace, P., and Stahl, L. H. (1990). Wicked Problems, Righteous Solutions: A Catalogue of

Modern Software Engineering Paradigms, Yourdon Press, Englewood Cliffs, New

Jersey.

Dekleva, S. M. (1992). “The Influence of the Information Systems Development

Approach”, MIS Quarterly, 16(3), 355-373.

DeMarco, T. (1978). Structured Analysis and System Specification, Prentice-Hall, Englewood

Cliffs, New Jersey.

Dennett, D. (1995). Darwin's Dangerous Idea, Penguin, London.

Dewey, J. (1916). Democracy and Education: An Introduction to the Philosophy of Education, Free

Press, New York.

Dewey, J. (1958). Experience and Nature, Dover, New York.

Dietrich, G. B., Walz, D. B., and Wynekoop, J. L. (1997). “The failure of software

development technology diffusion: a case for mass customization”, IEEE

Transactions on Engineering Management, 44(4), 390-399.

Dijkstra, E. W. (2002). "Edsger Wybe Dijkstra: 1930-2002", accessed 8th August 2002,

http://www.cs.utexas.edu/users/UTCS/notices/dijkstra/ewdobit.html

Dilthey, W. (1931). Gesammelte Schriften, Vol VIII, Weltanschauungslehre, B. G. Teubner,

Stuttgart.



Bibliography

344

Dym, C. L. (1995). “Peeling the Design Onion”, IEEE Spectrum,(June 1995), 10-12.

Eaves, D. (1992a). “Nolan's Stage Model(s): The Rage for Order”, Technical Report 1/92,

Department of Information Systems, Monash University, Working Paper Series.

Eaves, D. (1992b). “The Prospects of a Formal Discipline of Software Engineering”,

Technical Report 2/92, Department of Information Systems, Monash University,

Working Paper Series.

Edwards, J. (2006). “State of the Art vs. State of the Practice: A Personal Perspective on

the Changes in the Australian Software Engineering Landscape”, Australian Software

Engineering Conference (ASWEC 2006), Sydney, IEEE Computer Press, 4-13.

Fergusson, M., and Shaw, G. (2004). “Information Systems Research: A Question of

Relevance”, Seventh Australasian Conference on Information Systems (ACIS 2004),

Hobart. C. D. Keen, C. Urquhart, and J. Lamp, eds. University of Tasmania, 219-

230.

Feyerabend, P. (1993). Against Method, Verso, London.

Fitzgerald, B. (1997). “The use of systems development methodologies in practice: a field

study”, Information Systems Journal, 7(3), 201-212.

Floyd, C. (1992a). “Human Questions in Computer Science”, Software Development and

Reality Construction, C. Floyd, R. Budde, H. Zullighoven, and R. Keil-Slawik, eds.,

Springer-Verlag, Berlin, 15-27.

Floyd, C. (1992b). “Software Development as Reality Construction”, Software

Development and Reality Construction, C. Floyd, R. Budde, H. Zullighoven, and

R. Keil-Slawik, eds., Springer-Verlag, Berlin, 86-100.

Foote, B. (2000). “Deploy People along the Grain of the Domain”, Seventh Conference on

Pattern Languages of Programs, Honolulu, Hawaii

http://www.laputan.org/patterns/grain.html.

Foote, B., and Opdyke, W. F. (1995). “Lifecycle and Refactoring Patterns that Support

Evolution and Reuse”, Pattern Languages of Program Design I, J. O. Coplien  and

D. C. Scmidt, eds., Addison-Wesley, Boston.

Frampton, K. (1988). “Place-Form and Cultural Identity”, Design After Modernism, J.

Thackara, ed., Thames and Hudson, London.

Frampton, K., Barrow, R., Hamilton, M., and Grossman, B. (2005). “A Study of the In-



Bibliography

345

Practice Application of a Commercial Software Architecture”, Proceedings of the

Australian Software Engineering Conference (ASWEC 2005), Brisbane, IEEE Computer

Society, 292-301.

Gabriel, R. (2002). "Dreamsongs", accessed 23 May 2002, http://www.dreamsongs.org

Gabriel, R. P. (1996). Patterns of Software: Tales from the Software Community, Oxford

University Press, New York.

Gadamer, H. (1976). Philosophical Hermeneutics , University of California Press, Berkeley,

California.

Gallagher, S. (1991). Hermeneutics and Education, SUNY Press, Albany, N.Y.

Galliers, R. D. (1992). “Choosing Information Systems Research Approaches”, Information

Systems Research: Issues, Methods and Guidelines, R. Galliers, ed., Blackwell

Scientific Publishers, London, 144-162.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software Architecture, Addison Wesley, Reading,

Massachussets.

Gane, C., and Sarson, T. (1979). Structured Systems Analysis: Tools and Techniques, Prentice-

Hall, New York.

Gans, H. J. (1967). The Levittowners, Penguin Press, London.

Gasson, S. (1999). “A social action model of situated information systems design”, ACM

SIGMIS Database, 30(2), 82-97.

Gero, J. S. (1996). “Creativity, emergence and evolution in design: concepts and

framework”, Knowledge Based Systems, 9(7), 435-448.

Gero, J. S. (1998a). “Conceptual Designing as a Sequence of Situated Acts”, Artificial

Intelligence in Structural Engineering, I. Smith, ed., Springer, Berlin, 165-177.

Gero, J. S. (1998b). “Towards a model of designing which includes its situatedness”,

Universal Design Theory, H. Grabowski, S. Rude, and G. Grein, eds., Shaker

Verlag, Aachen, 47-56.

Gero, J. S., and McNeill, T. (1998). “An approach to the analysis of design protocols”,

Design Studies, 19(1), 21-61.

Gilchrist, T. (1989). “Incremental System Development: A Tutorial”, DOC #BCS-G2850,

Boeing Computer Services, Seattle, WA.



Bibliography

346

Glaser, B. G., and Strauss, A. L. (1967). The Discovery of Grounded Theory, Aldine Publishing

Company, New York.

Glass, R. L. (1999). “On Design”, IEEE Software, Mar/Apr 1999, 104-103.

Glass, R. L. (2006). “The Standish report: does it really describe a software crisis?”,

Communications of the ACM, 49(8), 15-16.

Goguen, J. A. (1992). “The Denial of Error”, Software Development and Reality

Construction, C. Floyd, R. Budde, H. Zullighoven, and R. Keil-Slawik, eds.,

Springer-Verlag, Berlin, 193-202.

Grabow, S. (1983). Christopher Alexander: The Search for a New Paradigm in Architecture,

University of Chicago Press, Chicago.

Habermas, J. (1997). “Modern and Postmodern Architecture”, Rethinking Architecture: A

Reader in Cultural Theory, N. Leach, ed., Routledge, London, 227-235.

Hall, D., and Hall, I. (1996). Practical Social Research: Project Work in the Community,

MacMillan Press, Hampshire.

Hamilton, A. (1992). “Hermeneutics in Contemporary Computer Research”, Report No.

13/92, Department of Information Systems, Monash University, Melbourne.

Hammersley, M. (1997). Reading Ethnographic Research , Longman, New York.

Heidegger, M. (1962). Being and Time, J. Macquarie and E. Robinson, translators, Blackwell,

Oxford.

Hesse, R., Woolsey, G., and Swanson, H. S. (1980). Applied Management Science: A Quick and

Dirty Approach , Science Research Associates, Chicago.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). “Design science in information

systems research”, MIS Quarterly, 28(1), 75-105.

Hickman, L. A. (1992). John Dewey's Pragmatic Technology, Indiana University Press,

Bloomington.

Highsmith, J. A. (2002). Agile software development ecosystems, Addison-Wesley, Boston.

Hirschheim, R. (2001). “Information Systems Epistemology: An Historical Perspective”,,

London School of Economics, London.

Hirschheim, R., and Klein, H. (1989). The Emergence of Pluralism in Information Systems

Development: Stories, Consequences and Implications for the Legitimation of Systems Objectives,

Templeton College, Oxford.



Bibliography

347

Hubbard, B. (1996). A Theory for Practice: Architecture in Three Discourses, MIT Press,

Cambridge, Massachusetts.

Hutchins, E. (1983). “Understanding Micronesian Navigation”, Mental Models, D.

Gentner and A. Stevens, eds., Erlbaum, Hillsdale, New Jersey.

Jackson, M. (1995). Software Requirements and Specification: a Lexicon of Practice, Principles and

Prejudices, Addison-Wesley, Reading.

Jacobs, J. (1964). The Death and Life of Great American Cities, Penguin Books, Middlesex,

England.

Jacobson, I. (1992). Object Oriented Software Engineering: A Use Case Driven Approach ,

Addison-Wesley, New York.

Jagodzinski, P., Reid, F., and Culverhouse, P. (2000a). “Design Studies Special Issue on

Ethnography: Editorial”, Design Studies, 21(4), 315-317.

Jagodzinski, P., Reid, F. J. M., Culverhouse, P., Parsons, R., and Phillips, I. (2000b). “A

study of electronics engineering design teams”, Design Studies, 21(4), 375-402.

Jayaratna, N. (1994). Understanding and Evaluating Methodologies: A Systemic Framework,

McGraw-Hill, London.

Jencks, C., and Silver, N. (1973). Adhocism: The Case for Improvisation, Anchor Books, New

York.

Johnston, R. B. (1999). “The Problem with Planning: The Significance of Theories of

Activity for Operations Management”, PhD thesis, School of Business Systems,

Monash University.

Jones, B. O. (1980). “The Social Impact of Microcomputers”, The Impact of Microcomputers on

Industry, Education and Society, Canberra. J. D. Morrison, ed. Australian Academy of

Science, 80-96.

Jones, J. C. (1988). “Softecnica”, Design After Modernism, J. Thackara, ed., Thames and

Hudson, London, 216-226.

Kaplan, S. M. (2000). “Co-Evolution in Socio-Technical Systems”, Proceedings of Computer

Supported Cooperative Work (CSCW 2000), Philadelphia, ACM Press, New York.

Kauffman, S. A. (1995). At home in the universe: the search for laws of self-organization and

complexity, Oxford University Press, New York.

Keen, P. G. W. (1991). “Relevance and rigour in information systems research: improving



Bibliography

348

quality, confidence, cohesion and impact”, Information Systems Research:

Contemporary Approaches and Emergent Traditions, H. A. Nissen, H. K. Klein,

and R. A. Hirschheim, eds., Elsevier Science.

Keil-Slawik, R. (1992). “Artefacts in Software Design”, Software Development and Reality

Construction, C. Floyd, R. Budde, H. Zullighoven, and R. Keil-Slawik, eds.,

Springer-Verlag, Berlin, 168-188.

Khushalani, A., Smith, R., and Howard, S. (1994). “What Happens when Designers Don't

Play by the Rules: Towards a Model of Opportunistic Behaviour in Design”,,

Department of Information Systems, Monash University, Working Paper Series.

Kirsh, D. (1995). “The intelligent use of space”, Artificial Intelligence , Vol 72, 1-52.

Klein, H. K., and Lyytinen, K. (1992). “Towards a New Understanding of Data

Modelling”, Software Development and Reality Construction, C. Floyd, R. Budde,

H. Zullighoven, and R. Keil-Slawik, eds., Springer-Verlag, Berlin, 203-219.

Kluback, W., and Weinbaum, M. (1957). Dilthey's Philosophy of Existence: Introduction to

Weltanschauungslehre, Vision Press, London.

Kotre, J. (1995). White Gloves: How We Create Ourselves Through Memory, The Free Press, New

York.

Kruchten, P. (2000). The Rational Unified Process: An Introduction, Addison-Wesley, Reading,

Massachusetts.

Lammers, S. (1986). Programmers at Work, Microsoft Press, Redmond.

Laurel, B. (1993). Computers as Theatre, Addison-Wesley, Reading, Massachusetts.

Lave, J. (1988). Cognition in practice: mind, mathematics, and culture in everyday life, Cambridge

University Press, Cambridge.

Lave, J., and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation,

Cambridge University Press, Cambridge.

Lawson, B. (1997). How Designers Think, Architectural Press, Oxford.

Lehman, M. M., and Belady, L. A. (1985). Program Evolution: Processes of Software Change,

Academic Press, San Diego.

Lloyd, P. (2000). “Storytelling and the development of discourse in the engineering design

process”, Design Studies, 21(4), 357-373.

Loftus, E., and Palmer, J. (1974). “Reconstruction of automobile destruction: An example



Bibliography

349

of the interaction between language and memory”, Journal of Verbal Learning and

Behaviour, Vol 13, 585-589.

Louridas, P. (1999). “Design as bricolage: anthropology meets design thinking”, Design

Studies, 20(6), 517-535.

Love, T. (2000). “Philosophy of design: a meta-theoretical structure for design theory”,

Design Studies, 21(3), 293-313.

Lovgren, J. (1994). “How to Choose Good Metaphors”, IEEE Software, May 1994, 86-88.

Lueg, C. (1998). “Supporting Situated Actions in High Volume Conversational Data

Situations”, SIGCHI Conference on Human Factors in Computing, Los Angeles, ACM

Press, New York, 472-479.

Lycett, M., and Paul, R. J. (1998). “Information Systems Development: The Challenge of

Evolutionary Complexity”, Proceedings of the Sixth European Conference on Information

Systems (ECIS 98), Aix-en-Provence, France. W. R. J. Baets, ed. Euro-Arab

Management School, Granada, Spain, 1-15.

Lyytinen, K. (1987). “A Taxonomic Perspective of Information Systems Development

Theory: Theoretical Constructs and Recommendations”, Critical Issues in

Information Systems Research, R. Boland and R. A. Hirschheim, eds., Wiley, New

York.

Markus, M. L., and Bjorn-Andersen, N. (1987). “Power over Users: Its Exercise by System

Professionals”, Communications of the ACM, 30(6), 498-504.

Martin, J. (1991). Rapid Application Development, Macmillan, Indianapolis.

Maturana, H. R., and Varela, F. J. (1980). Autopoiesis and Cognition: The Realization of the

Living, D. Reidel Pub. Co., Dordrecht, Holland.

Mayall, W. H. (1979). Principles in Design, Van Nostrand Rienhold, New York.

McBreen, P. (2002). Software Craftsmanship: The New Imperative, Addison-Wesley, Boston.

McFarland, G. (1986). “The Benefits of Bottom Up Design”, ACM SIGSOFT Software

Engineering Notes, 11(5), 43-51.

McIlroy, M. D. (1968). “Mass Produced Software Components”, Proceedings of the First

NATO Conference on Software Engineering, Garmisch, Germany, 138-155.

McLuhan, M. (1962). The Gutenberg Galaxy: The Making of Typographic Man, University of

Toronto Press, Toronto.



Bibliography

350

McLuhan, M. (1964). Understanding Media: The Extensions of Man, Routledge and Kegan

Paul, London.

McLuhan, M., and Fiore, Q. (1967). The Medium is the Massage, Bantam Books, New York.

McPhee, K. (1996). “Design Theory and Software Design”, Technical Report TR 96-26,

University of Alberta, Edmonton, Alberta.

Meredith, R. (2002). “On the Philosophies of Rationality and the Nature of Decision

Support Systems”, PhD thesis, School of Information Management & Systems,

Monash University, Melbourne.

Meyer, B. (1988). Object-Oriented Software Construction, Prentice Hall International (UK),

New York.

Miles, M. B., and Huberman, M. A. (1994). Qualitative Data Analysis, SAGE Publications,

Thousand Oaks, California.

Mitchell, T. (1988). “The Product as Illusion”, Design After Modernism, J. Thackara, ed.,

Thames and Hudson, London, 44-51.

Mitchell, W. J. (1977). Computer-Aided Architectural Design, Petrocelli Charter, New York.

Myerson, J. (1993). “Design renaissance: selected papers from the International Design

Congress”, International Design Congress, Glasgow. J. Myerson, ed. Open Eye

Publishing.

Nardi, B. A. (1996). Context and Consciousness: Activity Theory and Human-Computer Interaction,

MIT Press, Cambridge, Massachusetts.

Naur, P. (1991). Computing: A Human Activity, Addison-Wesley, Reading, Massachusetts.

Nonaka, I. (1991). “The Knowledge-Creating Company”, Harvard Business Review,(Nov-

Dec), 96-104.

Nonaka, I., and Takeuchi, H. (1995). The Knowledge-Creating Company, Oxford University

Press, Oxford.

Norman, D. A. (1988). The Design of Everyday Things, Doubleday Currency, New York.

Norman, D. A. (1991). “Cognitive Artifacts”, Designing Interaction: Psychology at the

Human-Computer Interface, J. M. Carroll, ed., Cambridge University Press,

Cambridge, 17-38.

Nygaard, K. (1986). “Program development as social activity”, Proceedings of the Tenth World

Computer Congress (IFIP 86), Amsterdam. H. G. Kugler, ed. North-Holland, 189-198.



Bibliography

351

Oxman, R. (1999). “Educating the designerly thinker”, Design Studies, 20(2), 105-122.

Page-Jones, M. (1980). The Practical Guide to Structured Systems Design, Prentice-Hall, New

Jersey.

Palmer, R. (1969). Hermeneutics, Northwestern University Press, Evanston, Illinois.

Palmer, S. R., and Felsing, J. M. (2002). A Practical Guide to Feature-Driven Development,

Prentice Hall, New Jersey.

Parnas, D. L. (1985). “Software aspects of strategic defense systems”, American

Scientist,(Sep-Oct), 432-440.

Parnas, D. L., and Clements, P. C. (1986). “A rational design process: how and why to fake

it”, IEEE Transactions on Software Engineering, SE-12(2), 251-257.

Petroski, H. (1992). To Engineer is Human, Vintage Books (Random House), New York.

Pirsig, R. M. (1974). Zen and the Art of Motorcycle Maintenance: An Inquiry into Values, The

Bodeley Head Ltd., London.

Popper, K. R. (1969). Conjectures and refutations: the growth of scientific knowledge, Routledge and

K. Paul, London.

Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary, O'Reilly.

Redmond-Pyle, D. (1996). “Software development methods and tools: some trends and

issues”, IEEE Software Engineering Journal, Mar 1996, 99-103.

Rittel, H. J., and Weber, M. M. (1984). “Planning problems are wicked problems”,

Developments in Design Methodology, N. Cross, ed., Wiley, Chichester, 135-144.

Roberts Jr., T. L., Gibson, M. L., Fields, K. T., and Rainer Jr., R. K. (1998). “Factors that

Impact Implementing a System Development Methodology”, IEEE Transactions on

Software Engineering, 24(8), 640-649.

Robertson, T. (2004). “Doing technology design and being an information architect”,

Proceedings of Understanding of Socio Technical Action (USTA 2004), Edinburgh, 40-44.

Robertson, T., and Hewlett, C. (2004). “HCI Practices and the Work of Information

Architects”, Proceedings of the Australia-Pacific Conference on Computer Human Interaction

(APCHI 2004), Rotorua, New Zealand, 369-378.

Robertson, T., Hewlett, C., Harvey, S., and Edwards, J. (2003). “A Role with No Edges:

The Work Practices of Information Architects”, Proceedings of HCI International (HCII



Bibliography

352

2003), Crete, 396-400.

Rowe, P. G. (1987). Design Thinking, MIT Press, Cambridge, Massachusetts.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). The Unified Modelling Language Reference

Manual (2nd Edition), Addison-Wesley Professional, Essex.

Salingaros, N. A. (2006). “Life and Complexity in Architecture from a Thermodynamic

Analogy”, A Theory of Architecture, Umbau-Verlag, Solingen, Germany.

Sargent, P. (1994). “Design science or nonscience”, Design Studies, 15(4), 389-402.

Saule, S. (2000). “Ethnography”, Research methods for students and professionals, K.

Williamson, ed., Centre for Information Studies, Charles Sturt University, Wagga

Wagga, 159-176.

Schank, R. C., and Abelson, R. P. (1977). Scripts, plans, goals and understanding: an inquiry into

human knowledge structures, Wiley, Hillsdale, New Jersey.

Schauder, D. (2000). “Seven questions for information management and systems

researchers”, Research methods for students and professionals, K. Williamson, ed.,

Centre for Information Studies, Charles Sturt University, Wagga Wagga, 305-312.

Schauder, D. (2002). Discussion of the number of in-depth interviews required for a typical

interpretivist IS research project, Department of Information Systems, Monash

University, June 2002.

Schirmbeck, E. (1987). Idea, Form, and Architecture, Van Nostrand Reinhold, New York.

Schon, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action, Basic Books,

New York.

Schon, D. A. (1987). Educating the Reflective Practitioner: Toward a New Design for Teaching and

Learning in the Professions, Jossey-Bass Publishers, San Francisco.

Seaman, C. B. (1999). “Qualitative Methods in Empirical Studies of Software

Engineering”, IEEE Transactions on Software Engineering, 25(4), 557-572.

Searle, J. R. (1969). Speech Acts, Cambridge University Press, Cambridge.

Senge, P. M. (1992). The Fifth Discipline: The Art and Science of the Learning Organization,

Random House Australia, Sydney.

Shanks, G., Rouse, A., and Arnott, D. (1993). “A review of approaches to research and

scholarship in information systems”, Proceedings of the Fourth Australasian Conference on

Information Systems (ACIS 93), Brisbane. P. Ledington, ed., 29-44.



Bibliography

353

Shaw, M., and Garlan, F. (1996). Software Architecture: Perspectives on an Emerging Discipline,

Prentice-Hall, New Jersey.

Simon, H. A. (1983). Reason in Human Affairs, Basil Blackwell, Oxford.

Simon, H. A. (1985). The Sciences of the Artificial, MIT Press, Cambridge, Massachusetts.

Simsion, G. C. (2005). “Data Modeling: Description or Design?”, PhD thesis, School of

Information Systems, University of Melbourne.

Snow, C. P., and Collini, S. (1993). The Two Cultures and the Scientific Revolution, Cambridge

University Press, Cambridge.

Stanfill, C., and Waltz, D. (1986). “Toward memory-based reasoning”, Communications of the

ACM, 29(12), 1213-1228.

Steadman, P. (1979). The Evolution of Designs: Biological Analogy in Architecture and the Applied

Arts, Cambridge University Press, Cambridge.

Stebbins, G. L. (1971). Processes of Organic Evolution, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey.

Strauss, A., and Corbin, J. (1998). Basics of Qualitative Research: Techniques and procedures for

developing grounded theory, SAGE Publications, Newbury Park.

Suchman, L. A. (1987). Plans and Situated Actions: The problem of human machine communication,

Cambridge University Press, Cambridge.

Suchman, L. A. (1994). “Do categories have politics?  The language/action perspective

reconsidered”, Computer Supported Cooperative Work, 2(3), 177-190.

Sutcliffe, A. (1988). Jackson Systems Development, Prentice-Hall, New Jersey.

Takeuchi, H., and Nonaka, I. (1986). “The New Product Development Game”, Harvard

Business Review, Jan-Feb 1986.

Talukdar, S., Rehg, J., and Elfes, A. (1988). “Descriptive Models for Design Projects”,

Artificial Intelligence in Engineering Design, J. S. Gero, ed., Computational

Mechanics Publications, Avon, UK.

Taylor, F. W. (1911). The Principles of Scientific Management, Harper and Row, New York.

Taylor, P. (1992). “Experiences with Object Technology”, Proceedings of the Ninth

International Conference on Technology of Object-Oriented Languages and Systems (TOOLS 9),

Sydney. C. Mingins, W. Haebich, J. Potter, and B. Meyer, eds., 507-519.



Bibliography

354

Taylor, P. (1993). “Towards a Reuse Policy”, Proceedings of the Twelfth International Conference

on Technology of Object-Oriented Languages and Systems (TOOLS 12), Sydney. C. Mingins,

W. Haebich, J. Potter, and B. Meyer, eds., 49-60.

Taylor, P. (1995). “Documenting a Framework's User Interface”, Proceedings of the Eighteenth

International Conference on Technology of Object-Oriented Languages and Systems (TOOLS

18). C. Mingins, R. Duke, and B. Meyer, eds., 197-210.

Taylor, P. (1997). “Patterns: An Introduction to a Movement”, Systems Magazine, Auscom

Publishing, 59-63.

Taylor, P. (2000a). “Capable, Productive and Satisfied: Patterns for Productive People”,

Pattern Languages of Program Design IV, N. Harrison, B. Foote, and H. Rohnert,

eds., Addison-Wesley, Reading, Massachusetts, 611-637.

Taylor, P. (2000b). “Evolution as a Model of Software Design Knowledge Formation and

Propagation”, Proceedings of the Australian Conference on Knowledge Management and

Intelligent Decision Support (ACKMIDS 2000), Melbourne. F. Burnstein and H. Linger,

eds. Monash University, 182-198.

Taylor, P. (2001a). “The Great Meta-Skills Shortage”, ACS Information Age (Feb-Mar

2001), 34-35.

Taylor, P. R. (2001b). “Designing Philosophers”, Proceedings of the Twelfth Australasian

Conference on Information Systems (ACIS 2001), Coffs Harbour. G. Finnie, D. Cecez-

Kecmanovic, and B. Lo, eds. Southern Cross University, 653-660.

Taylor, P. R. (2001c). “Interpreting Mayall's Principles in Design”, Proceedings of the

Australian Software Engineering Conference (ASWEC 2001), Canberra. D. Grant and L.

Stirling, eds. IEEE Computer Press, 297-306.

Taylor, P. R. (2001d). “Patterns as Software Design Canon”, Proceedings of the Twelfth

Australasian Conference on Information Systems (ACIS 2001), Coffs Harbour. G. Finnie,

D. Cecez-Kecmanovic, and B. Lo, eds. Southern Cross University, 661-670.

Taylor, P. R. (2001e). “Patterns of Software Craft”, Proceedings of the Second Asia-Pacific

Conference of Pattern Languages and Programs (KoalaPLoP 2001), Melbourne. J. Noble

and N. Harrison, eds. University of Wellington.

Taylor, P. R. (2001f). “Researching the 'Situated Software Architect': Describing the

Effects of Context on the Design Practice of Experienced Software Designers”,

Proceedings of the Third International Workshop on Strategic Knowledge and Concept



Bibliography

355

Formation (SKCF 2001), Sydney. J. S. Gero and K. Hori, eds. Key Centre of Design

Computing and Cognition, University of Sydney, 261-276.

Taylor, P. R. (2003). “Vernacularism in Software Design Practice”, Proceedings of the Twelfth

International Conference on Information Systems Development: Constructing the Infrastructure

for the Knowledge Economy (ISD2003), Melbourne.

Taylor, P. R. (2004). “Vernacularism in Software Design Practice: Does Craftsmanship

have a Place in Software Engineering?”, Australasian Journal of Information

Systems(Special Issue 2003/4), 14-25.

Thackara, J. (1986). New British Design, Thames and Hudson, London.

Thackara, J. (1988). “Beyond the Object in Design”, Design After Modernism, J. Thackara,

ed., Thames and Hudson, London, 11-34.

Truex, D. P., Baskerville, R., and Travis, J. (2000). “Amethodical systems development:

the deferred meaning of systems development methods”, Management and Information

Technology (Pergamon), 2000(10), 53-79.

Turner, J. A. (1987). “Understanding the elements of system design”, Critical Issues in

Information Systems Research, R. J. Boland and R. A. Hirschheim, eds., John Wiley

& Sons, Chichester, UK, 97-111.

Valkenburg, R., and Dorst, K. (1998). “The reflective practice of design teams”, Design

Studies, 19(3), 249-271.

van Manen, M. (1990). Researching Lived Experience: Human Science for an Action-Sensitive

Pedagogy, State University of New York Press, New York.

Venturi, R. (1970). “Learning from Levittown”, Studio sessions, Yale University, Venturi,

Scott Brown & Assocates, Yale.

Venturi, R., Scott Brown, D., and Izenour, S. (1977). Learning from Las Vegas, MIT Press,

Cambridge, Massachusetts.

Walker, D., and Cross, N. (1976). Design: The man-made object, The Open University Press.

Walz, D. B., Elam, J. J., and Curtis, B. (1993). “Inside a Software Design Team:

Knowledge Acquisition, Sharing and Integration”, Communications of the ACM,

36(10), 63-76.

Warfield, J. N. (1994). A Science of Generic Design: Managing Complexity through Systems Design,

Iowa State University Press, Iowa.



Bibliography

356

Weatherall, M. (1979). Scientific Method, The English Universities Press Ltd., London.

Williamson, K., Burstein, F., and McKemmish, S. (2000). “The two major traditions of

research”, Research Methods for Students and Professionals, K. Williamson, ed.,

Centre for Information Studies, Charles Sturt University, Wagga Wagga, 25-47.

Winograd, T., and Flores, F. (1986). Understanding Computers and Cognition: A New

Foundation for Design, Addison-Wesley, Reading, Massachusetts.

Wirfs-Brock, R. J. (1993). Responsibility-Driven Design, Prentice Hall, New Jersey.

Wirfs-Brock, R. J. (2006). “Explaining Your Design”, IEEE Software, 23(6), 96-98.

Yin, R. K. (1994). Case Study Research: Design and Methods, SAGE Publications, Thousand

Oaks, California.

Yourdon, E., and Constantine, E. (1979). Structured Design, Prentice-Hall, New Jersey.

Zave, P. (1984). “The Operational versus the Conventional Approach to Software

Development”, Communications of the ACM, 27(2), 104-118.

Zelkowitz, M. (1988). “Resource Utilization During Software Development”, Journal of

Systems and Software,(No. 8), 331-336.

Zikmund, W. G. (1994). Business Research Methods, Dryden Press, Fort Worth, Texas.



357

Appendix J:  Index

‘Almost alright’, 26

‘Design engagement’, 142, 213, 223, 224, 231, 235, 239, 240, 244, 245, 248, 249, 250,
251, 252, 253, 255, 259, 260, 262, 263, 267, 269, 275

‘Design episode’, 57, 96, 105, 168, 171, 182, 185, 186, 187, 188, 189, 191, 193, 196, 198,
202, 204, 209, 218, 223, 224, 225, 237, 238, 243, 244, 246, 247, 259, 261, 264, 267,
269, 271, 275

‘Design trajectory’, 81, 171, 172, 209, 229, 234, 236, 239, 247, 255, 261, 262, 263, 267,
268, 269, 274, 275

Abstraction, 4, 24, 27, 30, 34, 50, 77, 95, 109, 122, 123, 128, 129, 136, 140, 148, 150,
154, 155, 156, 157, 158, 159, 165, 172, 176, 177, 178, 186, 189, 194, 200, 213, 214,
215, 216, 220, 223, 237, 239, 241, 244, 245, 259, 261, 262, 286

Abstractionist, 213

Action-present, 80

aesthetic-in-opposition, 26

Agile, 11, 15, 19, 86, 235, 248, 260, 271

All-at-once, 82, 85, 86

Analysis, 68, 259, 267, 290

a-rationality, iii, 4, 5, 74, 230, 246, 263, 275

Archetype, 161, 163, 164, 165, 166, 167, 178, 194, 200, 209, 210, 216, 219, 220, 226,
246, 262, 275

Architect-technician, 228

Architecture, software, 118, 121, 126, 210, 286, 290, 333

Ashbee, 250

Associative memory, 219

Autopoiesis, 28, 59, 65

Bounded rationality, 38, 229

Breuer, 117, 121, 122, 124, 131, 132, 147, 149, 150, 154, 156, 160, 161, 169, 171, 175,
182, 188, 189, 190, 191, 192, 193, 194, 202, 203, 204, 206, 208, 213, 215, 216, 217,
218, 220, 223, 225, 226, 231, 232, 236, 237, 238, 241, 243, 247, 249, 251, 253, 255,
259, 260, 261, 264, 273, 303, 309, 310, 311

Bricolage, 17, 68, 242

Bricoleur, 17, 68

Catalogue-order pattern, 188, 189, 191, 194, 220

Chen, 183, 185, 187, 188, 189, 190, 191, 193, 194, 195, 203, 209, 217, 218, 220, 224,
226, 241, 243, 247, 253



Index

358

Cherry-picking, 37, 137, 177, 212, 261

Conceptual design, 4, 7, 59, 60, 73, 124, 133, 149, 152, 202, 203, 206, 210, 221, 237, 275,
276

Concernful activity, 55

Constructivism, iii, 5, 20, 38, 56, 57, 58, 61, 75, 79, 94, 97, 234, 240, 272

Contexts of activity, 78

Conversation-maker, 82

Cook, 119, 122, 125, 128, 142, 143, 152, 156, 157, 158, 166, 167, 168, 172, 173, 174,
236, 243, 244, 254, 259, 302, 303, 306, 307

Criticalism, iii, 44, 229, 251, 252, 264, 265

Decision Tree, 182, 190, 191, 192, 193, 202, 203, 206, 215, 216, 225, 247, 251, 260

Decision-contract, 241

Decision-maker, 82

Deconstruction, 20, 37, 45, 82, 327

Design act, 28, 30, 35, 42, 45, 57, 62, 70, 74, 79, 81, 85, 90, 91, 95, 98, 107, 115, 116,
122, 123, 124, 126, 140, 141, 170, 174, 177, 179, 180, 202, 203, 204, 209, 212, 215,
221, 222, 230, 231, 232, 233, 237, 240, 242, 243, 244, 245, 247, 248, 259, 260, 261,
262, 264, 267, 268, 269, 270, 271, 272, 273, 275, 287, 317, 326, 330, 331, 333, 334

Design engagement, 275

Design episode, 196, 224, 275

Design method, iii, 1, 4, 5, 15, 17, 18, 30, 37, 38, 39, 45, 68, 98, 138, 139, 140, 149, 195,
203, 212, 228, 233, 253, 261, 267, 268, 275, 325

Design momentum, 203, 234

Design, software, 58, 94, 130, 238, 258, 264, 286, 330

Designer- scientist, 74

Designer-artist, 74

Dialectically constituted activity, 78

Discourse, 9, 17, 24, 35, 45, 60, 92, 94, 209, 253, 254, 274

Eames, 116, 133, 134, 207, 209, 232, 236, 237, 250, 251, 267

Ego, 146

Emergence, 19, 35, 65, 69, 86, 97, 111, 130, 147, 148, 159, 163, 221, 237, 259, 262, 275,
303, 320, 330

Enlightenment, 20, 24, 48, 49, 52, 53, 74, 99

Epistemology, 17, 47, 61, 76, 87, 98, 268, 274

Ethnography, 75, 88, 207, 272, 328

Exchange model, 239

External method, 260, 275, 276

Extreme programming, 130

Feature-Driven Development, 248



Index

359

First case study, 182, 209, 211, 213, 217, 218, 220, 223, 224, 225, 237, 241, 251, 264

Gang of Four, 168, 219

Goal-directed, 33, 48, 80

Goal-forming, 80

Goldberg, 183, 185, 187, 189, 191, 194, 195, 203, 218, 220, 224, 241, 247

Griffin, 116, 130, 145, 236, 267

Gropius, 118, 119, 120, 121, 129, 134, 136, 150, 157, 158, 206, 233, 234, 236, 245, 261,
273

Grounded theory, 1, 14, 88, 99, 103, 116, 180, 182, 195

Hammer, ‘hammerness’, 55, 170, 245, 309

Hermeneutics, 49, 78, 99, 112

Howard, 130, 149, 153, 157, 158, 172, 236, 308

Interpretivism, 101

Introduced complexity, 146, 194, 214, 226

Johnson, 117, 158, 165, 171, 172, 174, 236, 273, 304, 308

Kahn, 115, 117, 127, 131, 132, 135, 136, 140, 141, 143, 160, 233, 236

Knowing-in-action, 80

Knowledge container, 22

Knowledge conveyor, 22

Layering, 12, 16, 71, 127, 144, 154, 155, 160, 164, 167, 260, 261, 274, 324, 325

Le Corbusier, 25, 27, 63, 117, 121, 131, 134, 140, 146, 153, 157, 167, 195, 196, 197, 198,
200, 201, 202, 203, 204, 208, 209, 211, 216, 217, 218, 225, 236, 239, 249, 259, 260,
273, 320

Lethaby, 117, 128, 131, 132, 160, 163, 170, 208, 216, 244, 247, 249, 267, 305, 309

Levittown, 25, 26, 57

Mackintosh, 116, 119, 127, 128, 131, 133, 134, 136, 137, 146, 153, 155, 163, 165, 166,
195, 196, 197, 198, 199, 200, 201, 203, 208, 218, 231, 236, 249, 273, 309

McLuhan, 20, 34, 35, 36, 39, 129, 146, 151, 154, 170, 171, 172, 175, 259, 267, 308

Method- assembler, 234

Method-author, 40, 231, 234

Method-follower, 231

Methodology, method, 275

Methodology-in-action, 95

Moore, 117, 123, 127, 128, 134, 144, 149, 154, 159, 167, 168, 236

Morris, 123, 128, 131, 147, 148, 150, 151, 153, 155, 159, 170, 171, 173, 174, 215, 235,
236, 239, 247, 302, 303, 305

Necessary complexity, 146, 150, 214

Negotiation, 119, 143, 157, 176, 178, 184, 208, 209, 210, 211, 220, 229, 230, 231, 240,



Index

360

243, 253, 254, 269, 325

Nygaard, 94, 183, 185, 187, 189, 191, 194, 195, 203, 218, 220, 224, 241, 247

Object-oriented, 6, 7, 9, 11, 24, 30, 46, 50, 97, 104, 107, 113, 121, 122, 125, 127, 131,
139, 140, 147, 148, 153, 154, 163, 165, 183, 195, 196, 197, 198, 199, 200, 201, 208,
209, 211, 212, 220, 221, 226, 245, 272, 275, 284, 289, 290, 294, 295, 297, 298, 299,
300, 301, 327, 329, 333, 337

Ontology, 17, 57, 60, 79, 88, 91, 142, 147, 148, 170, 178, 209, 221, 267

Open system, 64, 65, 230

Paradigm bias, 152, 153, 154, 194, 201, 217

Pattern, 68, 275, 321, 327, 328, 329, 338

Pattern language, 30, 85, 321, 327

Pedagogy, 98, 272

Personal method, 262, 276

Personal pattern, 167, 168, 169, 178, 216, 218, 219, 220, 221, 242, 245, 246, 247, 259,
276

Persons-acting, 78

Perspective, 161, 253, 276

Perspective-bias, 195

Perspective-shifting, 152, 171, 217, 218, 254, 263, 264

Perspectivism, 54, 97

Phenomenology, 55, 101

Piano, 117, 119, 122, 145, 154, 155, 160, 171, 236, 267

Positivism, 34, 49, 51, 79, 100, 125, 272

Post hoc rationalisation, 33, 38, 44, 104, 251, 260

Postmodernism, 17, 26, 28, 35, 39, 45, 49, 78, 97

Pragmatism, iii, 21, 30, 31, 34, 38, 43, 76, 203, 240, 241, 242, 244, 245, 247, 248, 325

Private method, 276

Problem-solution transparency, 178, 214, 217

Pruitt-Igoe, 26, 27, 28, 57, 83

Public method, 261, 276

Pugin, 122, 125, 128, 134, 137, 141, 145, 154, 156, 157

Rationalism, 14, 21, 22, 39, 229, 230, 231, 232, 233, 237, 239

Refactoring, 171, 225

Renaissance, 238

Romanticism, 26, 48, 49, 53, 58, 74

Routine design, 123, 124, 126, 149, 204, 222, 230, 239, 276

Ruskin, 117, 147, 156, 236, 303

Sashimi, 84, 85



Index

361

Scrum, 85, 86

Second case study, 195, 203, 208, 209, 211, 217, 218, 239, 259

Situated action, 11, 31, 32, 33, 34, 40, 75, 79, 80, 81, 226, 234, 257, 258, 259, 269, 272,
326, 330, 332

Situated cognition, 5, 31, 75, 76, 77, 78, 79, 81, 82, 106

Situatedness, 5, 42, 75, 76, 81, 82, 97, 244, 258, 260, 261, 273, 326, 327, 328, 330

Social conscience, 250, 252

Social engineering, 44, 250

Social relativism, 78

Soft Systems, 18

Spiral, 67, 68, 84

Stickley, 117, 139, 140, 151, 152, 162, 164, 169, 208, 209, 232, 236, 242, 243

Structure-fitting, 220

Sullivan, 117, 123, 125, 148, 168, 169, 171, 216, 236, 244, 258, 267, 273, 302, 309

Symbolist, 19, 76

Synthesis, 4, 21, 74, 110, 127, 226, 258, 263, 287, 331, 336

System, 166, 290, 300, 320

Technician-architect, 40

Trajectory, design, 81, 171, 172, 209, 229, 234, 236, 239, 247, 255, 261, 262, 263, 267,
268, 269, 274, 275

Trukese, 32, 270

unité jardin verticale, 27, 239

Utzon, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 134, 138, 149, 156, 171, 172,
173, 174, 232, 233, 237, 238, 243, 244, 248, 260, 273, 304, 305, 306

Van der Rohe, 117, 121, 128, 129, 135, 137, 146, 148, 150, 162, 211, 236

Vendor-architect, 249

Vernacularism, 13, 47, 65, 66, 67, 68, 69, 70, 140, 233, 242, 248

Viability, 74, 182, 207, 218, 241, 270

Voysey, 117, 128, 134, 145, 250

Waterfall, 24, 27, 73, 82, 83, 84, 85, 97, 98, 130

Web of Decisions, 234

Weltanschauung, 88, 276

Whirlpool, 27, 84

Whole person in action, 31, 78

Wicked problem, 65

Workplace reform, 44, 250




