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Abstract

Effective Medium Theoiy (EMT) deals with the interaction between a particle and

its host medium, thus forming a composite structure that allows the determination

of physical properties to be calculated such as the dielectric constant. While EMT

has proven to be somewhat successful in determining iirst order effects, it fails to

produce accurate results when we are interested in higher orders. If any improvement

to the existing theory is to be made, it is important to consider the two-body terms

that arise from such a binary system. With this in mind two methods are used

to investigate the pair terms and to calculate the dielectric function: the multipole

expansion method and the method of images.

In the case of the former we consider d-dimensional inclusions and use the multi-

pole expansion method to calculate the coefficient K of the second order term in the

virial expansion for the dielectric function of a composite system. In the case of the

latter we employ the method of images in a d-dimensional framework, to calculate

K for two hypcrsphorcs in the presence of a uniform field. We employ extensions to

image theory for classical charges and dipoles for dielectric spheres, which produce

novel line charge and line dipole densities. The voltage between two hyperspheres

is also investigated and comparison is made of the results for K between the method

of images and the multipole expansion method for arbitrary dimension. We also

present numerical results that also allow us to compare convergence properties be-

tween the two methods.
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CHAPTER 1

Introduction

For many yoars, various areas of scientific interest such as the dielectric proper-

ties of composites, hydrodynamics of suspensions, granular superconductors, optical

properties, magnetoresistance, elasticity, sound propagation through porous media

and so on, have been dealt by the principles of Effective Medium Theory (EMT).

In some cases EMT turns out to be rather accurate and in other situations there

is need for improvement of the theory. Essentially EMT is concerned with how a

particle interacts with its surrounding" medium. More specifically in the case of a

composite material we may be interested to find out what the dielectric constant of

the composite is, and one way to obtain it is via the study of how an inclusion or par-

ticle of dielectric constant ei, interacts with its host material of dielectric constant

eo- 1 By averaging these one-body interactions over the medium, we can obtain the

dielectric constant of the system to first order. In fact, in this thesis, we will be

calculating the dielectric properties of a composite system (dielectric function), but

we will consider going about it in ways that differ from the results of traditional

EMT.

In Chapter 2 we will discuss some of the important aspects of the theory and

some of the key ideas and concepts. Because EMT encompasses many areas of

research, it is impossible to cover every aspect here. Nevertheless we will look at

important theoretical developments that form the backbone of EMT such as those

from Clausius-Mossotti, Maxwell-Garnett and Bruggeman. We will see that while

these results are quite good to first order, when used to calculate second order

effects they inevitably fail. We will briefly discuss the variational bounds method

as a possible step forward to improving these results. Furthermore, these results
1We will only be concerned with the static case and constant uniform fields and we will not

study dynamical effects etc.



consider inclusions in two or three dimensions separately (discs, spheres). One of

our goals is to consider inclusions of arbitrary shape, as well as a way to generalize

the above approximations. Towards this end we will look at the powerful Green's

function formulation and point out that we can derive the results due to Bruggeman

and Mawell-Garnett respectively. At this point we need to correct the results of the

latter to second-order b}' studying two-body interactions.

In Chapter 3 we will investigate higher order terms that need to be included if

we are to make extensions to EMT and include two-body effects. One way to do

this is to look at multiple scattering and in particular we begin by formulating the

one-body T matrix of a sphere (d=3). We then extend the results to two-bodies and

then generalize to n bodies. It is worth noting that by the use of these scattering

equations one can derive the Bruggeman and Maxwell-Garnett approximations even

though we will not do so here. We will also look at an alternative approach to

multiple scattering in the form of competing interactions, an approach that is not

utilized to its fullest by researchers and we shall investigate two-body extensions to

Maxwell-Garnett and Bruggeman and obtain a slowly convergent approximation in

the low density limit, up to O(?/i), (refer to section). At this stage, we investigate

methods that will allow us to calculate second-order effects and generalize our results

by writing them in a d-dimensional form. The two different approaches that we use

are in agreement with each other and in the appropriate limits we obtain the results

of others for the dielectric function e.

Specifically in Chapter 4, by averaging over pairs of hyper spheres, we obtain the

dielectric function for a binary mixture containing such inclusions up to order c2,

where c is the volume fraction of inclusions. The procedure is based on multipole

expansions for the potential of two spheres in a uniform field and is a generalization

of the method of Jeffrey (1973) to d-dimensional space. Numerical results are also

obtained for the second-order coefficient n in the low c expansion of the dielectric

constant for arbitrary d. These results verify earlier known results, as well as showing

the dependence of K on dimensionality, which is particularly simple as d —> 1 and

as d —• oo.



In Chapter 5, we use the method of images to once again obtain the solution

of two hyperspheres in d dimensions in a uniform field, so that we can study the

O(c2) coefficient K using this alternative approach. We employ extensions to image

theory for classical charges and dipoles for dielectric spheres, which produce novel

line charge and line dipole densities. The voltage between two hyperspheres is also

investigated and comparison is made of the results for K between the method of im-

ages and the multipole expansion method for arbitrary dimension. We demonstrate

by numerical results that the former has superior convergence properties than the

latter, even though it is computationally less convenient, but even so it leads to

useful analytic results in the weak scattering limit. Some simple approximations for

various limits are also obtained that can be useful in the search for a method to

resum complicated terms appearing in the calculations. In the perfect conducting

limit, we obtain equations that allow us to generalize the complicated mapping of

the point dipoles and charges to any order n, subject to computational power.

Finally, in Chapter 6 we present details of numerical results and analyze them

graphically while we discuss some of the implications and we then consider extensions

to the existing work that could be carried out in the future.



CHAPTER 2

Effective Medium Theory

2.1 Introduction

This Chapter is concerned with Effective Medium Theory (EMT), a very powerful

method for determining certain properties of materials. One such property of interest

in this thesis is the calculation of the dielectric function for a composite system.

EMT is a 1-body approach, ie, it relies on the interaction of an inclusion with its host

medium. Ultimately we will be interested in improving EMT methods by including

2-body interactions with the host medium. We begin by discussing the theories that

essentially form the backbone of EMT, but which are by no means the only theories

that can be used. We will highlight the main ideas in some of these theories that are

the foundation of a very exciting area of physics. Our discussion of such pioneering

work will not embrace dynamical considerations amongst other things, however the

underlying principles are essentially the same in almost all other cases except that

the symbolic nature of the mathematics changes. A full background of some of the

developments outlined in this and the next chapter can be found in the book by

Choy (1999).

2.2 The development of EMT

The central concept of this thesis is the study of particles inside a medium. More

specifically we want to obtain the dielectic function e for a 2-body composite system,

however before doing do, the core idea that forms the backbone of EMT needs to

be emphasised. For an inclusion and a host medium experiencing a field we need

to solve Maxwell's equations, see Kittel (1971), Ashcroft and Mermin (1976), Reitz

and Milford (1970) and Jackson (1975). The interesting aspect is that we require

knowledge of the field in the local sense, but the problem is that for the dimensions



in question the description can be microscopic, mesoscopic or macroscopic. The

concept of the local field was investigated by Lorentz (1870) while he was developing

his views on macroscopic electrodynamics. Lorentz was able to show how to compute

the local field Efoca/ by considering a cubic crystal made up of identical particles.

The local field turns out to be 1

= E + ^-P, (2.1)

for a polarisation P and a uniform E. More precisely, the field acting on a particle

in a medium is called the local field l&iocai- This field is not the microscopic field

Emtcro, nor the averaged field E. It is the part of Emicro that is due to the external

sources and to all the particles except the one under consideration. Of course just

like most theories, Lorentz's formulation has had its fair share of criticisms, see

Landauer (1978), Cohen et al. (1973), that have brought about the need to improve

the relation between microscopic and macroscopic parameters. An early attempt

to relate macroscopic parameters with those at the microscopic level has produced

the Clausius-Mossotti formula. The basic idea is to find a connection between the

dipole moment of a molecule and the local electric field. For instance a macroscopic

property such as the dielectric constant e can be connected to a microscopic property

such as the molecular polarisability a. In such an event we can examine what the

dielectric equation of state looks like if we suppose that a dielectric medium is made

up of identical molecules that develop a dipole moment

p = Q£0E, (2.2)

when placed in an electric field E. If we assume that N is the number density of

such molecules then the polarisation of the medium is

P = = Nac0E,

or

M

(2.3)

(2.4)



where PM is the mass density, NA is Avogadro's number and M is the molecular

weight. An interesting question arises as to how we relate the electric field ex-

perienced by an individual molecule to the average electric field in the medium.

Surprisingly this is not an easy question to answer since it is expected that the elec-

tric field varies strongly inside the dielectric when we consider atomic length scales.

In order to answer the question we can suppose that the dielectric is polarised with

a mean electric field Eo which is uniform on macroscopic length scales and directed

along the z-axis. Next we consider any molecule which constitutes the dielectric and

draw a sphere around the molecule of radius a. The imaginary sphere is to merely

establish a boundary between the microscopic and macroscopic range of phenomena

affecting the molecule. Furthermore, the dielectric outside the sphere is considered

to be a continuous medium and the dielectric inside the sphere as a collection of po-

larised molecules. Then there is a polarisation surface charge of magnitude (Kittel

(1974), Ashcroft and Mermin (1976)):

<V = -Pcos{6) (2.5)

on the inside of the sphere, where (r, 9,4>) are spherical coordinates, and P = Pz =

co(e - l)Eoz is the uniform polarisation of the dielectric. The magnitude of the

electric field Ez at the molecule due to the surface charge is

E2 = - j i - /gpo|Cf(g)(2ffa
2sin(g))dg, (2.6)

47T5 J a2
0 a

and upon integrating from [0, it] we obtain

Ez = -£-]cos2(0)sm(0)d0
o (2.7)

_ ±_
3e0"

Following the same procedure we find that the electric fields for the other coordinates

are zero, ie, EQ = E$ = 0. Therefore the field at the molecule due to the surface

charges on the sphere becomes E - £
The field due to the individual molecules within the sphere is obtained by summing

over the dipole fields of these molecules. The electric field at a distance r from a



dipole p is

E = - 1 /p 3(p-iV
r3 r5 (2.9)

The assumption here is that the dipole moment of each molecule within the sphere

is the same and that the molecules are evenly distributed throughout the sphere.

This implies that the electric field Ez experienced by the molecule as it interacts

with all the other molecules within the sphere is

r? _ 1
*->z — ~ TZ7

= 0.
(2.10)

Thus, the electric field at the molecule due to the other molecules within the sphere

vanishes and the net electric field experienced by an individual molecule is

E = Eo + (2.11)

Equation (2.11) tells us that the electric field of a molecule is larger than the average

electric field Eo in the dielectric. This effect can be attributed to the long range

interactions of the molecule with the other molecules in the medium. From the

analysis so far and the result P = eo(e — l)Eo we obtain

e - 1

which is the Clausius-Mossotti relation that works pretty well for various dielectric

liquids and gases. Looking at (2.12), we see that the original goal we had in mind has

been achieved, ie, we have found a connection between macroscopic and microscopic

parameters e and a respectively, see Kittel (1974), Ashcroft and Mermin (1976)

and its relation to the formula by Bottcher (1952). All that is required in using

(2.12) is to evaluate the molecular polarisability a. There have been efforts to

obtain a by using semi-classical methods such as spring models for atomic systems

for example. However, the fact that a is a microscopic parameter, signifies that

the most appropriate method would be to use a full quantum mechanical analysis

(Pauling and Wilson (1935), Landau and Lifshitz (1991) and Landau et al. (1984)).

The evaluation of a is a persistent problem and it is one of the issues that forms

the basis of the Maxwell-Garnett theory, which can be viewed as an extension of the
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Clausius-Mossotti theory that deals with composite systems. The key ingredient

here is to determine a, but if we are happy enough to approximate it using the

classical approach where the molecule (inclusion) has spherical geometry, we obtain

(Reitz and Milford (1970), Choy (1999))

(2.13)
v

C l + 2 ' '

where the inclusion has dielectric constant c\ and radius a. Of course the polaris-

ability can also be obtained by the use of non-spherical geometry such as ellipsoids

for instance, but the method involves elliptic integrals, see Stoner (1945), Osbora

(1945). Fortunately for spheres, we can make use of the Clausius-Mossotti equation

derived above and upon substitution of a we have

C—^-) = '7i(—4) , (2-14)

where all constant parameters have been absorbed in the volume fraction of inclu-

sions 7/12. Equation (2.14) implies that we can study a composite medium with

dielectric constant CQ which contains inclusions with dielectric constant c\ of volume

fraction 7/1

(2.15)C — Co — CO

or

with

e =

7i =

3ft 71
1 - 7/171

ei + 2c0

(2.16)

( 2 ' 1 7 )

Alternatively we can represent the same composite with dielectric constant t\ and

inclusions embedded with dielectric constant CQ and volume fraction 7/0 as,

c — ) = — c\
) • (2.18)

However equations (2.18) and (2.14) are not symmetric and generally will not give

the same result when solving for e by either method. More problems surface when
2Here the volume fraction of inclusions is written as r; in order to follow early convention.

Theories developed in more recent times denote this as c.
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one attempts to generalise (2.14) to several components, Bottcher (1952):

e — Co (2.19)

Equation (2.19) becomes problematic because the assumption is that all elements

in the composite are acted upon by the same Lorentz field. In order to avoid

this issue any successful formulation must exclude the Lorentz field. The Maxwell-

Garnett theory was advanced by the work of Bruggeman (1935) who made major

improvements by analysing the symmetrical properties of a composite medium. To

understand Bruggeman's idea, we consider a composite host of dielectric constant

e with a spherical inclusion of radius a embedded in it whose dielectric constant is

t\. Far from the vicinity of the inclusion the field is assumed to be constant, but

as we get closer to the inclusion the field varies. The fields outside and inside the

inclusion become respectively (see Reitz and Milford (1970), Landau et al. (1984)

and Choy (1999)),

^outside = (£o + 2-^-) cos 6r -f (-Eo + - 4 ) sin 00,

ide = -M cos 9? + A\ sin 66,

where

(2.20)

(2.21)

(2.22)

Bruggeman considered the flux deviation A<3>! for a spherical inclusion which can

be calculated as, (Choy (1999)),

= 2TT( - [ drrcE0) = 27:a2eE0() ,
Jo t\ + 2e

(2.23)

that uses the hypothesis that there should be zero average flux deviations,

?/iA<I>i + = 0 . (2.24)

If Bruggeman's hypothesis is correct and (2.23) gives the required results, then it

must be assumed that the flux deviations are due to single particle polarisations in

an effective medium. Equation (2.22) can now be used to show that

= 0 , (2.25)
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which is a widely used expression that can be extended to any number of particles

very easily

= 0 . (2.26)

The importance of the Bruggeman formula warrants further investigation of its

properties and behaviour at certain limits. For more details see the book by Choy

(1999), Kirkpatrick (1971,1973), Davidson and Tinkham (1976) and Shante and

Kirkpatrick (1971). Suffice to say that in the context of obtaining the dielectric

function, in which we are interested in this thesis, we can get a feel for the behaviour

of these formulae if we look at the superconducting limit e —̂  oo. The Maxwell-

Garnett formula gives the dielectric function as

while the Bruggeman formula gives

1

= 1 + 3?; + 3if + ..., (2.27)

f ^z

We can see immediately that the coefficient of 7/2, where 7/ is the low volume frac-

tion of inclusions, is either underestimated or overestimated.3 In fact the correct

expansion for d = 3 gives the coefficient of if as 4.51 as obtained by a large series

of slowly convergent terms first obtained by Jeffrey (1973), so that

e = 1 + 377 + 4.51772 -f-.... (2.29)

Djordjevic et al. (1996) obtained the correct expansion for a 2-dimensional inclusion

as

e = 1 + 27/ + 2.7449896767/* + . . . , (2.30)

by the use of image theory as opposed to Jeffrey's multipole expansion method.

These results have been obtained as limits in a more generalised d-dimensional

framework bj ' Choy, Alexopoulos and Thorpe (1998a,1998b). Thus depending on

their use, theories such as that of Bruggeman must be applied with caution. Fortu-

nately, there are alternative derivations that can be quite useful as a check. In the

next section we will mention some of these.
3These expressions calculate the dielectric function for a spherical inclusion.

$
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2.3 Alternative formulations of EMT

The theories that have been discussed in the previous sections are not the only

ones to describe the properties of a medium. Rather they can be thought of as

being simply the most widely used. However these theories as mentioned previously

have certain limitations and care must be exercised when using them. Many other

theories have been developed that are very useful not withstanding the fact that

they are mathematically and computationally more involved. While these theories

are quite numerous, and therefore impossible to cover extensively in this thesis, we

will mention some of these with the knowledge that they share the same underlying

physics in most cases with each other.

2.3.1 Green's functions

One method of studying an effective medium problem is by the use of Green's

functions. Since the method is extremely powerful when it comes to boundary

value problems, e.g., as is the case of the inclusion shape and interface with the

surrounding medium, we can use it to study the properties of a composite medium.

As previously stated, it can also be used to check the validity of other theories such

as those of Maxwell-Garnett and Bruggeman, (Stroud (1975)). Since we are dealing

with an ensemble of inclusions in an inhomogeneous material of volume V that is

bound by a surface S, we can calculate the ensemble average e(x), (Khincin (1949),

Hadjipanayis and Siegel (1994)), as

CxWx V —» oo (o 3\\

In fact we are interested in calculating a tensor for the effective dialectric e for an

external electric field Eo. The boundary conditions for this problem and its solution

allow us to obtain c

c = co + <x(x)> , (2.32)

where the tensor x(x) is denned as

r

x(x)E0 = <Se(x)E(x) (2.33)

'1
•H.



12

that satisfies the integral equation

,\(x) = 6e(x) + 5c{x) J G(x,x')X(x')dx' . (2-34)

The problem now is that (2.34) is generally difficult to solve for the Green's function

but using the choice of

(X(x)) = 0 , (2.35)

gives the expected solution c = c0. In fact we find that, (see Choy (1999), Kinoshita

and Mura (1971), Stroud (1975), Moon (1996), Landau et al. (1984)), we obtain

the self-consistent equation for c,

((l-6ciri)-
16ei)=0, (2.36)

which is essentially the same as Bruggeman's equation for a binary system of spher-

ical inclusions. More precisely we obtain e directly as

e = eQ+(((l-d6iri)-
1))-1

where the depolarisation tensor is given as

(2.37)

Tf = - f dS'
JS'

(2.38)
is1 dxa

 fi '

It is interesting to note that (2.37) is the alternative form to the Maxwell-Garnett

equation when cQ is chosen as the host medium. Thus we have obtained the Brugge-

man and Maxwell-Garnett theories using the Green's functions technique by making

a suitable choice for CQ which has led to tho effective dialeotric function c.

2.3.2 Variational bounds

One other method that has been adapted to the study of composite systems is the

variational bounds technique. Prom this technique, see Arthurs (1980) and Sewell

(1992), a specific case can be derived that has come to be known as the Hashin-

Shtrikman bounds method (Hashin and Shtrikman (1962a,1962b,1962c)). The ef-

fective dielectric of a medium can be obtained in terms of an integral formulation

4For a detailed mathematical derivation of these results see the book by Choy (1999).

M
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of a cost functional. However the bounds derived are proportional to what ansatz

is used for the polarisation fields of the system. If for a 2-inclusion system we know

the volume fraction of one of these inclusions, the bounds obtained give the best

possible solutions (Hashin (1968)). 5 The bounds are derived as

}} <ee<

where

(2.39)

(2.40)

and we are considering an m-component composite and dielectric constant tf for a

given i component and volume fraction ?/£. These bounds have in fact been known for

a very long time (Wiener (1912)), and have been reformulated throughout the years

to cater for different properties, eg, thermal conductivity (Woodside and Messner

(1961)) and for transport phenomena (Bergman (1976)). Hashin and Shtrikman

(1962a) have used these variational bounds to derive the 2-body composite formula

(2.41)
121
3

122 •
3

Equation (2.41) tells us that the effective dielectric constant must lie between these

two bounds which are related to the Maxwell-Garnett expressions. The application

of the variational bounds technique can be used extensively in many other areas such

as the concentric shell model, but we will not investigate these areas any further

here.

2.3.3 Density functional theory

Since we are dealing with the effects of an ensemble of particles embedded in a

host medium, we can consider the concept of density in order to gain an insight

to the behaviour of such systems. This density based formulism is in fact what

we commonly refer to as density functional theory (DFT) and is so diverse that

it is equally applied successfully to both quantum and classical systems. In the

case of quantum length scales, the central concept of DFT involes a one-particle
5See the work done by Choy (1997) using the complementary variational approach on super-

conductors.
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Schrodinger like Kohn-Sham (1965) equation, while in the case of a classical system

DFT consists amongst other things of Boltzmann type distributions. Here of course

we are interested in a DFT pertaining to a composite system so we recall from

previous sections, see in particular the Clausius-Mossotti relation, that our goal has

been the connection of macroscopic (c) and microscopic (a) parameters. For a more

accurate solution we require a quantum mechanical description of the molecular

polarisability a. Fortunately, DFT can prove useful in this pursuit because in a

mesoscopic regime that involves atomic length scales, it uses the single-inclusion

number density as the only basic, variable. In fact wo can consider the effective

interaction and correlation effects of a two-particle system and depending on the type

of problem we are concerned wTith, the inter-particle interactions can be obtained

through a microscopic DFT calculation or by simple model potentials, eg, hard-

sphere or the Lennard-Jones approach. In the case of a two-component system we

can write down the grand potential ft[pa, pp] as, see Henderson (1992) and deGennes

(1992,1999),

to\pa1l = Ft* [Pcnpp] + j - Zfpu(r) \\n(pu(r)Al) - l]dr+

Z J Mr) - }!„] p»{r)dr,
(2.42)

where Fex [pa. pp] is the excess free energy, pa and pp are the inclusion densities,

/?o = 1/ksT is the inverse temperature, ji is the chemical potential and A is the

thermal de-Broglie wavelength. If we were next to minimise (2.42) we would obtain

an Euler-Lagrange equation so that

Pu{v) = pi exp [-fovv(T) + c?>(r; [Pon p0]) - c«(pj, p°)] , (2.43)

for v = a, /? and where p°a p correspond to the bulk phase of the component densities.

Here also, the bulk is represented by c and the direct correlation function which

describes the extra contribution to the effective potential via the inter-inclusion

interactions, is given by

[pa,pp]
; [pa.,Pp\) = - A ) (2.44)
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For a two-inclusion system for which we are interested here, the second-order inclu-

sion interactions are an extension of (2.44) and we write them as

P A - (2-45)

Looking at the first-order contributions as given by the functional derivative in

(2.44), we may wonder how we obtain a solution if these first-order interactions

in an inhomogeneous density distribution are not known. Fortunately for such a

case, we can consider a Taylor expansion of the functional in powers of the density

inhomogeneity Ap^(r), thus

; \pa, c?\v) (2.46)

where c^>{v) are the contributions from a two-body system and c^ ( r ) are the con-

tributions for higher orders (many-body interactions). This means that the density

equation (2.43) can now be re-written as

p(r) = pi exp , r 2 ; [PQ ,

1 /

(2.47)

where v — a, (3 for a two-component system and we have included the second-order

contributions

42)W = £ / $ ( r i , r 2 ; Ifl ^])AP^(r2)dr2, (2.48)

where die Taylor expansion has been made via Ap,,(r) = p,,(r) — p°. It would

be interesting to relate the work that is to be presented in later Chapters for the

two-body problem with (2.48) and to thus try and rederive the results in a DFT

framework. Either way these second-order interactions can be modelled by some

pair potential scheme and so in most cases this is straightforward but the difficulty

arises when we consider higher order terms c^(r). If we do not have knowledge of

the latter we may run into convergence problems, however, efforts have been made

in order to arrive at some valid approximations by Choudhury and Ghosh (1999) in

terms of two-body terms and by Rickayzen and Augousti (1984) by considering a

two-component generalisation of the one-body component result. We will not pursue

the ideas of DFT here any further, suffice to say that the power of DFT in describing fi
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particle interactions in a medium can be applied to the problem of calculating the

effective dielectric c if we are prepared to make the appropriate modifications to the

general theory.

V
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CHAPTER 3

Extensions to Effective Medium Theory

3.1 Introduction

So far we have investigated some aspects of effective medium theory that allow us

to determine amongst other things the dielectric property of a medium. However,

the various methods used focus on the 1-body problem, ie, on how an inclusion1

interacts with the host medium. Ultimately we would like to consider 2-body con-

tributions and we have to extend some of the ideas pertaining to current EMT. It

is important to understand that any way forward requires the study of scattering

effects of the inclusions embedded in a host medium. There are numerous tech-

niques to describe scattering from inclusions such as the T-matrix method, CPA,

Green's functions-that can involve the dynamical case (Papas (1998)), and varia-

tional bounds methods to name only a few. The underlying theme is that all of

these approaches have an electromagnetic basis, as opposed say to the geometrical

optics based techniques, because the size of the scatters are on the same scale as

the wavelength A. Two approaches can be made in order to solve such problems:

(i) by solving the full vector fields, which mumerically at least are extremely dif-

ficult to solve or (ii) solving by the use of approximation techniques, eg, by the

theory of scattering due to Mie (1908)2 or the concentric sphere model (Kerker et

al. (1978)). Both of these approximations are limited to spherical inclusions. Scat-

tering from an arbitrarily inhomogeneous particle almost always requires numerical

techniques, which necessitate large computational resources, especially for systems

that are more than a few wavelengths in dimension. The T-matrix method (Water-

man (1965)) is a formulation that is used for spheroids and particles described by

Everywhere in this thesis, the terms inclusion, particle, grain and so on have equivalent meaning
unless otherwise stated. Furthermore they have classical dimensions.

2This is in fact the 1-body Mie theory. M
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Chebychev polynomials. In what follows below, we shall study some of the methods

that can be used to investigate multiparticle scattering which might contribute to

the improvement of existing EMT. In particular we will dwell longest on one such

method: the T-matrix technique.

3.2 n-body scattering

The study of multiple scattering is vital in the pursuit of an extension to exist-

ing 1 — body EMT. An understanding of two or more body effects are not only of

interest in the area of composite materials, but in numerous problems associated

with pressure waves in disperse systems, scattering of light waves off environmental

objects such as clouds, and in acoustic scattering to name only a few areas. In

modelling a system with multiple inclusions, it is typical to assume that the scat-

terers are spherical in nature because of the ease with which one can parametrise

large and complicated systems using spheroid geometry. For instance, dust parti-

cles, droplets or bubbles are modelled as having spherical appearance with excellent

results, see Gumerov et al. (1988), Duraiswami and Prosperetti (1995). Given that

spherical geometries can be very good approximations for studying the properties

of composite materials too, the next step is to consider not only the interaction

between one-sphere with its surrounding medium, but two and ideally n-spheres. If

this is achieved, it puts us in a better position to re-examine one-body EMT as we

try to incorporate at the very least 2-sphere interactions to improve current EMT

theories. The question now arises as to what methodology might be used in order

to compute n-sphere interactions. Evidently this can be a matter of convenience

since one technique might be superior to the next but the common denominator

is that even 2-body interactions are not a trivial matter to compute as we shall

see later. The problem of computing scattering effects of n-spherical inclusions,

with specified impedance boundary conditions at their surfaces, can be addressed

via numerical techniques for example. Some of the well known numerical methods

are those such as the boundary element methods (BEM), finite element methods

(FEM) and finite difference methods (FDM). Even while these numerical methods
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have their advantages, they are all hampered by the same deficiency related to the

necessity of discretisation of either the boudary surfaces or of the complete space.

The process of discretisation introduces a particular size or length scale of the sur-

face or spatial element. For consistent and accurate numerical results, the change

of the discretisation length must not interfere with computation. If the latter is to

be achieved, the length scale or size should be much smaller than the wavelength A.

For higher frequencies this loads to the use of very fine surface or sr. " al meshes.

Discretisation methods require the solution of very large linear systems that are very

costly in terms of CPU time and memory. This is evident in the use of boudary el-

ement methods (BEM) whose solutions involve dense interinfluence matrices while

even larger but sparse matrices are required when niiite-elenient/finite-difference

methods (FEM/FDM) are used.

One way around this problem is to consider a semi-analytical approach such

as the T-matrix method, see Waterman and Truell (1961), Varadan and Varadan

(1980), Mishchenko et al. (1996) and Chew et al. (1990). The T-matrix method

characterises the scattering properties of the inclusions by considering the coefficients

of the local expansion of the incident wave centred at the inclusions and transforms

them into the coefficients of an outgoing (scattered) wave. We are reminded that for

non-spherical inclusions, ie, inclusions of complex shape and boundary conditions

the solutions can be obtained either numerically or by analytical/semi-analytical

techniques, after translating any complex shape into one of a simpler geometry

(such as a sphere). In what follows we shall approach the interaction of inclusions

in a material from the point of view of the T-matrix method for spherical scatterers

because for an arbitrary incident field the solutions can be obtained analytically. It

appears to be the most appropriate way to extend 1-body interactions to n-boaies

(see Bergman and Stroud (1980), Chew et al. (1990)). Before even considering

the many-body problem, it is sensible to proceed cautiously with the analysis of

two-body interactions. Early attempts have been made towards this end in the con- ', •-

text of hydrodynamics but the results were rather disappointing which was to be ' ;

expected given that the efforts were ad hoc (Bedeaux (1987), Choy (1995)). Other

> *



20 /

I
(

studies dedicated to 2-spheres have been made by Marnevskaya (1969), Gaunaurd «

and Huang (1994) and Gaunaurd et al. (1995) using representations of the transla-

tion coefficients via the Clcbsch-Gordan coefficients or 3 - j Wigner symbols-(Epton

and Dembart (1995), Koc et al. (1999)). Even though this method achieves an exact

computation of the T-matrix elements, it is time consuming and thus only practical

for a small number of spheres 3. The computational time that it takes to calculate

a system of n-spheres can be reduced by several orders of magnitude if the compu-

tation of the translation coefficients could be performed more efficient}' (Brunning

and Lo (1971)). Brunning and Lo (1971) applied recursive computation of these co-

efficients for the case where the sphere centres are located on a line. This is always

true for two spheres and is a special case for tliree or more spheres. Everything that

we have discussed thus far propagates the notion that the T-matrix underpins the

drive for an improved EMT. For this reason, we will consider the T-matrix more >

closely and derive the 1-sphere, 2-sphere and n-sphere cases in the next section.

3.2.1 The T-matrix for a single sphere T

The T-matrix approach discussed so far involves finding the relationship between an

incident wave scattering off the inclusion (sphere) expanded in the form of orthogonal

eigenfunctions

£0 = f>n4 0 ) , (3-1)
n [

i

where an are the expansion coefficients for the incident wave. Furthermore, the

scattered wave is also expanded in terms of orthogonal eigenfunctions

£SCat = E M i S C a t \ (3.2) f
k

where bk are the scattering wave's expansion coefficients and can be written as a

matrix equation

bk = jtnnan, (3.3) ;

or in the notation '

B = TA, (3.4) I

We are only interested in examining 2-body effects anyway, so time constraints are minimal. [

K
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such that Tkn are the elements of the T-matrix. The flexibility of the T-matrix

method means that for any scattering object of arbitraiy shape both scalar or vec-

tor waves can be used. Strictly speaking, the geometry of the scatterers permits

expansion of these waves as discrete series in terms of orthogonal eigenfunctions.

Furthermore, we must take into account the fact that the behaviour of the scatter-

ing object to the incident wave must be linear and that the expansion series for the

waves can bo truncated at a finite number of terms. While in general the T-matrix

is determined mathematically/computationally, it is also possible to obtain it from

experimental measurements. Formulating the T-matrix depends on the physical

characteristics of the inclusion, eg, size, geometry, composition and so on, and is

independent of the incident field. These particulars allow the T-matrix to be calcr-

lated once only for a given inclusion and the same T-matrix can be used for repeated

calculations. This is a very important property which places the T-matrix method

at an advantage when compared to other methods of calculating scattering when re-

cursive calculations are needed, (Mishchenko et al. (2000)). Mishchenko (1991) has

shown that some cases are even more efficient if the waves are expanded in spherical

functions because the averaging of scattering over various orientations of the inclu-

sion compared to the direction of the incident wave can be performed analytically.

Thus, in the case of spherical geometry the eigenfunction expansions of the fields

are made in terms of vector spherical wavefunctions, see Waterman (1971), Tsang

et al. (1983) and Jackson (1975). These are well known vector spherical harmonics

that are written in terms of transverse electric (TE) and transverse magnetic (TM)

eigenfunctions

(TM) : Ej2,B(r) = feN U ^ I i™1 K^M*."^ ) ]} , (3-5)

where the vector spherical harmonics are given by

11(1 +1 )
(3-6)
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where L is the angular momentum operator and YiiTn are the scalar spherical har-

monic functions (see Schiff (1949) and Jackson (1975)). These scalar functions can

be written in the form of Bessel functions within (r < a) and outside (r > a) the

sphere respectively:

for r < a

for r > a. (3.7)

The eigenfunctions and coefficients are determined by the boundary conditions at

r = a by the use of the continuity of the scalar functions and their derivatives

dr
h

{E)
hn (r), i _ (J3) rfr (/ 0,,B

It follows that from the application of (3.8) that the eigenvalues are obtained from

,=,.(«) = . m , . \x=ka

(B) =
xs=x l,n

x—ka (3.9)

where the eigenvalues are denoted as

(3.10)

The next step is to calculate the T-matrix but it is worth noticing that the so called

T-matrix is calculated in almost all cases using the extended boundary condition,

originally developed by Waterman (1971), whose method is generally referred to

as the T-matrix method because of the strong link to the technique. While the

incident and scattered fields are usually expanded in vector spherical harmonic wave

functions, other sets of eigenfunctions such as cylindrical wavefunctions for scatterers

of finite length in one dimension, Floquet expanions in the case of planar periodic

scatterers can be used, especially for non-spherical geometries. In all of these cases

the T-matrix formulation applies in the same way, (Bowman et al. (1987)). In what

follows we consider the T-matrix analysis based on Chew et al. (1990) (see iso
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Mackowski (1991)). For a more detailed exposition of the method see the book by

Choy (1999). We focus on the TE case whose scalar functions are based on those of

Chew et al. (1990) and Choy (1999) for consistency. An analogous treatment can

be made for the TM case. In essence the technique rests on the theory developed

by Mie (1908) and Debye (1909), see also Stratton (1941) and Van de Hulst (1981),

that deals with electromagnetic scattering solutions of plane waves by a sphere. In

the case of the incident field this becomes

!,T7U (3.11)

where eiiTn arc the familiar coefficients for the plane waves. The external field applied

to a spherical inclusion embedded in a medium is the sum of the incident and

scattered fields

Ee*t(r) = E0(r) + E s c a t t(r) , (3.12)

where similarly to eqn (3.11), the form of the scattered field is

!,m. (3-13)

The internal field to the sphere is expanded as:

where

k — — and k\ =

(3.14)

(3.15)

In order to obtain the coefficients e{)Tn, a/>m, bi>m it is convenient to rewrite all previous

equations in matrix notation (Choy (1999)):

b, (3.16)

where X(fi) is a column vector and the superscript (T) is the transpose, j and h are

diagonal matrices containing the spherical Bessel functions, and e, a> b are column



24

vectors containing the e/)Tn, aj,m, bitTn coefficients as elements. By the use of the

boundary conditions (3.8), we can determine the unknowns,

[j(fca)e-

[j'(fca)e + h'(Jfca)a] = &iX(T)(ft)j'(fcia)b, (3.17)

where the primes denote matrices that contain the derivatives of the spherical Bessel

functions. Equations (3.17) now simplify to

j(/cia)b = [j(fca

(3.18)

where kr = ki/k. By inverting these expressions we obtain

a = [j(kia)h'(ka) - krj'{ka)h(ka)] [krj'(kia)i(ka) - j(&ia)j'(A;a)] e,

b = [j(]feia)h'(A;a) - kr]'(ka^ka)]'1 [h!(kia)]{ka) - h{kia)l'{ka)] e. (3.19)

The equation above allows us to define the T-matrix

= te,

which means that the full external field can now be written as

e.

(3.20)

fiJj (ifcr)e (3.21)

Having completed our brief analysis of the one-sphere T-matrix, we are now able to

examine the T-matrix for two-spheres in the next section.

3.2.2 The T matrix for two spheres

In this section we take a step closer to the study of the two-body problem with

a view to include the results in existing EMT. While we consider the two-body

effects in later Chapters from a slightly different perspective, eg, we consider multi-

dimensional inclusions and not just spheres, we can appreciate the results by re-

maining faithful to the T-matrix method for 2-spheres. Observing eqn (3.21) more

closely we see that it contains terms from both spheres:

Eext = (3.22)
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where the first term is the usual incident field and the next two terms are the

scattered fields from the two spheres, written in their self-coordinates, respectively.

The fact that we are dealing with two-spheres means that we require translation

formulae for shifting coordinates from one sphere to the other 4 (Danos and Maximon

1965). The required shift formulae take the form

Using these shift formulae, we can rewrite eqn (3.22) as

Eext = X^fi^fcrO&oe + X.^ (n^hikn)^ + X^(Q2)Kkri)a12aL2- (3-24)

The first and last terms of eqn (3.24) can be combined to act as an incident field

on the first sphere. Thus we can write the T-matrix in the form of a one-sphere

solution as follows:

ai = ti,(i) [Aoe + di2a2] . (3.25)

We can derive a similar formula for the second sphere, which by symmetry (for equal

spheres) is easily shown to be

= 1*2,(1) + (3.26)

where we have used a notation in which Tt)(i) is the one-sphere T matrix for the

ith sphere. Now eqns (3.25) and (3.26) can be inverted to give the two-sphere T

matrices as

ai = ±i,(2) [Aoe] , (3.27)

and

a2 = f 2)(2) [ftoe] , (3.28)

where these two-sphere T matrices are formally given by

t ? ] e,±i,(2)/?ioe = [I - f li

t2,(2)^2oe = [I - t 2 i ( 1 ) a 2 1 T 1 ) ( 1 ) d l 2 ] - 1 t 2 i ( 1 ) [/3 ii(1)J3W] e, (3.29)
4In later Chapters when we solve for the two body problem, we will derive such a shifting

formula within a d dimensional framework.
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A

and where the factor $o ensures that the incident field is in the coordinates of the

ith sphere. As we have discussed in previous sections, the beauty of the T-matrix

method is that we have used the one-sphere T-matrix results to obtain the two-

sphere T-matrix. While the two-sphere problem will suffice for our needs here, for

the sake of completness a generalisation to the n-sphere T-matrix will be outlined

in the next section.

3.2.3 The T matrix for n spheres

The two-sphere solutions were obtained by using the one-sphere results and it stands

to reason that we can extend the process to n-sphcrcs such that the field is given as

(Choy (1999)):

n
(3.30)

t = i

The scattered field has been expressed in the self-coordinates of each sphere in terms

of the incident field via the n-sphere T-matrix, Tt,(n)- The T-matrix for the (n-f 1)-

sphere can be obtained from that of the nth-sphere

r o e + _ = i , rt li(n+1)/ tOe ^ ^

where we have separated out the (n+ l)th term which, together1 with the first term,

can be viewed as an incident field interacting with each of the i = 1, 2,..., n spheres.

By the use of eqn (3.27) and eqn (3.28) we now have

where the ith sphere coordinates have been expressed by the shift formula given

by eqn (3.23). The recursive procedure gives the final form for the T-matrix for

n-spheres.

(3.33)
fiG = I - T n + 1 ) ( i ) £ Q'n+i)iT<)(n)a,-)n+.1

n ^ 1

Equations (3.32) and (3.33) now furnish a recursion algorithm, whereby Tj,(n+i) for

i = l,2,...,n -|- 1, can all be calculated in terms of the previously known values
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f i)(n) for i = 1,2,..., n (Chew et al. 1990, Mackowski 1991). It should be noted

that this procedure requires 0(n2mz) floating point operations, compared to other

algorithms which are O(n3m3) (Peterson and Strom, 1973). Furthermore the results

we obtain in later Chapters for not just spheres but hyperspheres can be compared

to the technique studied in this Chapter in the long-wavelength limit, by replacing

terms as follows (Chew et al. (1990)):

ji(kr) (3.34)

hi(kr) -(J+i)

kj'i(kr) -+ lrl~\

(3.35)

The a and b column vectors have the elements which axe now the familiar one-sphere

values:

aim — —
e r - l

•erl

21 + 1
(3.36)

The potential of one sphere is given by

<pext = (3.37)

where Y is now the column vector containing the scalar spherical harmonics, r is

the vector containing the elements rl, and T is diagonal here, with elements,

la21+1: (3.38)

For both the static case (Chew et al 1990) and the dynamic case (Rouleau 1996)

up to 30 spheres have been computed at the present time using modest computer

systems. A deeper understanding of the dynamical case requires the use of Feynman

diagrams which may prove useful in exploring extensions to EMT (see Choy (1999)).

Either way, whatever method is used, the power of the T-matrix (or transition

matrix) has proven so succesful that it has been used extensively in various other

f ',

it-
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fields. For instance it is well known in the quantum theory of scattering where the

T-matrix is used with the Heisenberg S-matrix formulation via the expression

S = 1 + 2T, (3.39)

see N'yuton (1969). As previously discussed, the T-matrix connects the coefficients

of the expansions of the scattered and incident fields in terms of a complete system of

the vector basis functions, as compared to other techniques such as the coordinate

representation in the integral equation method, where the scattered and incident

fields are connected by the Green's function. In contrast to the latter, the T-matrix

is easily extended to the many-body problem, thus it is of no surprise that it has

become so popular starting with its application in the theory of EM scattering first

pioneered by Waterman (1965,1969,1971,1979). Waterman's initial treatment used

the Huygen principle for perfectly conducting (see Waterman (1965)) and dielectric

(see Waterman (1969)) inclusions, which he later generalised and considered differ-

ent ways of formulation of the equations without resorting to the Huygen's principle,

Waterman (1979). Waterman's exhaustive treatment of the T-matrix approach also

found favour within the area of optics especially after the noticeable paper by Bar-

ber and Yeh (1975) in which they formulated the method of Waterman based on

the Shelkunov equivalence theorems in what has come to be known as the extended

boundary condition method (EBCM). The EBCM and the T-matrix have now be-

come synonymous. Work on generalising the T-matrix method for multi-particle

systems has been undertaken by Kristensson and Stroem (1982), Stroem (1974) and

Peterson and Stroem (1973), while Kristensson and Stroem (1982), Peterson and

Stroem (1974) and Wang and Barber (1979) have studied multi-layered scatterers.

Chiral particles of non-spherical shape are studied in the works of Lakhtakia (1991)

and Lakhtakia et al. (1985). The convergence of the T-matrix method is rather

inaccurate for non-spherical weakly absorbing particles, thus an iterative modifica-

tion of the method has been put forward by Iskander et al. (1982) whose work has

been developed further and applied to various systems, see Iskander and Lakhtakia

(1984), Iskander et al (1983) and Iskander et al. (1986). From a computational

perspective, the convergence problem associated with non-sphedcal particles of large

£
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size are due to the errors occuring in the calculations of the integrals defining the . p
P

T-matrix, therefore it appears that a way out of this situation is to compute all |;
C

numbers with very high precision, Mishchenko and Travis (1994), Mishchenko et f

al (1994). The various advantages of the T-matrix technique in the analysis of

multi-scattering wave theory can be found in the papers of Ma et al. (1988), Tsang

(1984), Tsang and Kong (1982), Zardecki and Gerstl (1987), Tsang and Kong (1983), f

Varadan et al. (1979), Varadan et al (1983), Varadan et al. (1984) and Varadan j,

et al. (1987). Use of the T-matrix method in scattering by clusters of particles are

dealt with in the papers by Cruz et al (1989), Mishchenko and Mackowski (1996), f

Mishchenko and Mackowski (1994) and Mishchenko et al (1995). For particles of 'r

irregular shape see the paper by Cooper et al. (1983). Finally, it is interesting to ;

point out that our analysis in this section can be used to rederive the Bruggeman f

and Maxwell-Gamett approximations using the T matrix formulation. %
f

3.3 Beyond the 1-body EMT: Other methods I
i-

Our search for a way to improve aspects of EMT has lead us to the study of scat- T

tering of multiple inclusions using the T-matrix method. No doubt there are other I

alternatives to this procedure that can prove useful as a way forward. One such I
t

alternative that is worth mentioning is that of competing interactions, or the coher- f

ent potential approximation (CPA). The coherent potential approximation is a very j

versatile technique that is used in many areas, eg, it is one of the best known of all

the effective medium theories in elasticity (Hill (1965), Budiansky (1965)). Since »/i

throughout we have favoured spherical inclusions, it is interesting to add that these [J

results are equivalent to those obtained by Korringa et al. (1979) and Berryman I

(1982) based on the CPA from the theory of alloys, see Gubernatis and Krumhansl

(1975). However, these results can be misleading if the inclusions are not spherical

in nature. Comparison of CPA and the self-consistent theory as used in elasticity

for example, shows that the former is accurate in providing estimates that always ,->

lie between known rigorous bounds (Berryman (1982), Milton (1985)), such as the

familiar Hashin-Shtrikman bounds (Hashin and Shtiikman (1961)). The latter, ie, '
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the self-consistent formulation is known to sometimes violate these bounds except

in the case of spherical inclusions. The CPA has also been generalised for use in

higher frequencies, see Kaelin and Johnson (1998a) and (1998b). At the same time

dynamical effects can be represented in terms of magnetic and electric competing

interactions respectively. For a time averaged energy U, frequency UJ and wave-

length A we can obtain competing interaction terms of magnetic type (Landau et

al. (1984), see also Choy (1999)) as

u =
16?r

— |cuWH|2+/i|H|: dV,

while competing interactions of the electric type can be represented by
2 A*

dV.

(3.40)

(3.41)

Choy (1999) does not make it clear as to what is competing with what in his formu-

lation of the problem. It appears that the curl terms present in the above equations

can be thought of as being a form of competing interactions. In order to understand

why, we may look at such competing interactions in the context of spin glasses. Spin

glasses form an important part of materials whose low-temperature state is a frozen

disorded one. This type of state can occur if there is randomness and frustration

among ihc different interactions between the spins (or magnetic moments). What is

meant bj' frustration here is that no particular spin configuration is chosen by all the

interactions. Magnetic impurity moments create such competing interactions. At a

certain site you have a competing ferro-magnetic and anti-ferromagnetic interaction

at the same time so that a particle will not know where to point. Analyzing the curl

and non-cur/ terms at this sit'- may point to the fact that these are competing in-

teractions, ie, via the curl terms. The ferro-magnetic and anti-ferromagnevic forces

present may destroy the simple order of each phase via the competition between

these forces. As a consequence, that is when frustration sets in because the system

cannot simultaneously satisfy all the interactions. It is worth pointing out that in the

dynamical case, the system evolves slowly through different metastable states, and

two time quantities, like spin-spin autocorrelations and responses to external fields,

show a deterioration effect-see the fluctuation dissipation theorem (FDT) dealing
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with this in the paper by Stariolo and Cannas (1999). Returning to the static case,

we can similarly cater for this if we consider the external potential

r<A.oTi,(n)e. (3.42)

For this static case the energy that the fields possess is given by

Uext =
n

t = i

dV, (3.43)

where A, and Eu- are appropriate interaction matrices. The second term of (3.43)

is that which represents the competing interactions. Befatto and Gallavotti (1995)

show that (3.43) is paticularly important for a system near the critical point where

methods based on the RG theory have numerous applications. Thus, the issue of

criticality is a major problem for which current EMT fails to satisfy, but if (3.43) is

combined with Monte-Carlo RG techniques, it may yield a better result for conduc-

tivity or the dielectric constant (Ma (1976), Burkhart and van Leeuwen (1982)).

The problem associated with 1-body EMT may be resolved if we attemp to use

the methods examined so far for the solution of the 2-body problem. Unfortunately

even the 2-sphere problem is not as transparent as we would like when we try to

incorporate the method to extend the Maxwell-Garnett theory or ATA approxima-

tion. From the results of Chapter 2 we can attempt to express the Maxwell-Garnett

equation in terms of n-spherical inclusions in a medium as

e -
. , o . VM,n) •
E + ZEQ

In fact for the 2-body result we can express this more concisely as

(3.44)

(3.45)

However, matters are not so simple since the term (S^) is not a straightforward

calculation because the distribution of all the two-body inclusions in the medium

must be known. Our basic desire is to try and improve the results in the low-

density limit. Thus, in general, excluding the perfect-conducting limit, we can use

the approximation
/

(3.4G)
s=0
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which can be compared to the results presented later where our approach is via the

use of a virial expansion for the dielectric function with the appropriate coefficients

determined in d-dimensions. We can compare those results with the expansion for

the dielectric function as obtained by the use of (3.46) in the low-density limit,

37/i -7/1 + K1 (3.47)

which might also help illuminate the problems associated with criticality. While

different approaches have boon undertaken to resolve those issues, some have not

yielded the right outcome as in the case of the CPA theory of alloys mentioned in

the previous sections (Elliot et al. (1974)). The failure to preserve the Herglotz

property of the Green's functions has been identified as the major problem facing

CPA theory in this area (Nickel and Butler (1973)). Mills and Ratanavararaksa

(1978) have only succeded in using this method for one dimensional linear arrays

(Kaplan et al. (1980)). In the case of Bruggeman's theory, it appears that even the

2-bod}' solutions are quite difficult to obtain, even though the requirement is rather

simple. By using the T-matrix approach we require a self-consistent equation that

includes n-body terms using the T-matrix, where the effective medium in question

defines all the T-matrix components. Alternatively, still in the context of scattering,

such an extension is possible by using the theory of strong permittivity fluctuations

(SPF), see Kong (1986). The basic idea is to use (SPF) and incorporate the effects

of scattering into an effective permittivity description of a binary composite mixture

of spherical inclusions in a host medium. This is done by utilizing the low-density

limit of the SPF theory in an iterative formulation that is analogous to that used to

derive the asymetric Bruggeman effective medium theory (McLachlan et al. (1992),

Bottcher and Bordewijk (1978)). In the end, the method that one can use to address

issues of criticality or the low-density limit correctly is reflected b\' the problems in-

herent in each theory. Questions arise as to the correctness of solutions and their

feasibility because of analytical difficulties as is the case with CPA or convergence

as in the case of the T-matrix approach after terms have been truncated. All this

indicates that there is still a need to keep investigating other possibilities that might

prove more useful, eg, variational bounds (Torquato (1985)) or Green's functions and

rh
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many others that we will not attempt to go into here. Exact results for the two-body

T-matrix are now known (Choy et al. (1998a), and (1998b)), but further studies

must be made so that existing EMT theories can improve with the addition of higher

order interactions, giving more precise results than ever before. The ideas that have

been expressed here on the basis of a moan-field approach where inhomogencous

inclusions are treated in essense as homogeneous ones embedded in a uniform field,

have been extended by Huang et al. (2004) to the study of biological cells and col-

loidal particles. Huang et al. have presented a study of the electrokinetic behaviour

of two touching inhomogeneous particles in suspension. By using the Tartar formula,

see Milton (2002), the effective complex dielectric constant can be calculated exactly

which can then be used in order to calculate the relevant dipole moment. Siu et al.

(2001) have used the point-dipole approximation to compute the interparticle force

for a polydispcrsc electrorhcological fluid in terms of a pair of spheres of different

dielectric constants and have as a consequence determined the force as a function

of separation. However, the point d:-.ole approximation they use does not consider

many-body and multipolar inter;', 'orr, and it is for this reason that their results

are erroneous in this limit. Sin et a, 'ater show that the results can be improved

considerably by the use of a multipole induced dipole model to calculate the force

between the two spheres and compare the results to the empirical force expression

of Klingenberg et al. (1990) with good agreement. Lo et al. (2001) have used a

tetragonal lattice of point dipoles to examine the effects of geometric anisotropy

on the local field distribution. Their results show that this geometric anisotropy

greatly influences the local field distribution which results in the formulation of a

more generalised Clausius-Mossotti equation. Further use of the image method has

been made for a pair of dielectric spheres by Huang et al. (2002) who have studied

the interaction of the two spheres while approaching each other in the presence of

a rotating electric field. Non-linear effects have also been investigated, especially in

the context of electrorheological fluids using a self-consistent mean field approach

and the multipole method-see Gao et al. (2000). The latter takes into account the

non-linearity of the host medium and the interparticle force is studied showing a

it
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non-monotonic increase with higher electric fields. Investigations have also taken

place on non-linear effects in electrorheological fluids by using an ac applied field by

Wan et al. (2001a) and Wan et al (2001b).

n
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CHAPTER 4

Multipole Expansion Method
\i

4.1 Introduction

There has been an enormous interest in the study of the properties of random

mixtures or suspensions containing a low-volume fraction of inclusions since the time

of Maxwell (1873). The problems concerned are applicable to the study of electrical

conduction, thermal conduction, electric permittivity, magnetic permeability and

others, by virtue of the universality of Laplace's equation. Prom now on we will

specifically concentrate on the case of dielectric inclusions and solve for a binary

system. In fact Maxwell (1873) provided the exact first-order coefficient to O(c) for

a system of spherical inclusions. It is worth mentioning here that other problems to

O(c) have attracted much interest as well, for example the 0(c) coefficient for the

viscosity of a suspension containing a system of hard spheres was found by Einstein

(1906). More recent exact results for the O(c) coefficient of electrical conductivity

for inclusions of other shapes in two dimensions were obtained by Thorpe (1992),

using conformal mapping-a technique favoured by Maxwell himself. Most recently

the dielectric bahaviour of non-spherical inclusions has been made which might

explicate some of the pitfalls of previous methods, Lei et al. (2001). The second-

order coefficient O(c?) had been left on the sideline for nearly 100 years before

any serious quantitative studies were made, original work being done by Batchelor

(1972) and Batchelor and Green (1972). They studied the problem of suspensions

in a fluid, a more complicated problem than the electrostatic one. In fact to this

day very few exact results are known (Batchelor 1974, 1977). It is worth noting here

that the second-order coefficient in which we are interested is related to the so-called

Huggins coefficient KH for fluid suspensions, ie, the expansion of the viscosity is

given by 7/ = i]0 (l + [i]]c + KH ([ ' /]C) +•••)> where [7;] is the first-order coefficient.

1
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Unfortunately, no established name is given to the corresponding coefficient for the

dielectric systems in the literature. We will define it to be K, the quantity of central

focus from now on, given by the low-volume fraction expansion as

1 -f- [e\c + KC -f ...J . (4.1)

Here [c] the first-order coefficient, as given by Maxwell (1873) can be written in a

d-dimensional form as:

[e] =dP = (4.2)

where fi, the expression in brackets, is proportional to the polarizability associated

with an isolated spherical inclusion with dielectric constant c\ in a host medium with

dielectric constant e0- Of particular interest to us here is the work of Jeffrey (1973),

who essentially transferred the Batchelor-Green multipole expansion formalism to

the more tractable problem of dielectric inclusions, by all accounts a classic work

even to tlu:: day. Binns and Lawrenson (1973) and more recently Djordjevic et al.

(1996) have also studied this problem, but in two dimensions, where the method of

images simplifies, leading to an infinite series with much better convergence prop-

erties than the multipole expansion method. Such a closed-form solution does not

exist for higher dimensions as we will see later. Nonetheless, the image method is

still very useful and it seems that a direct link between the method of images and

the multipole expansions would provide additional insight, as well as a means to

probe the poor convergence properties of the latter. The equivalence of the two

methods will bt demonstrated in the next Chapter.

The history of tu:~ problem seems to be plagued by a misunderstood conditionally

convergent integral in the final expression for the dielectric function; a difficulty first

encountered by Lord Rayleigh (1892) in his famous regular array of spheres problem.

Batclielor (1972) and Jeffrey (1973) appear to favour a renormalizalion procedure

to treat this problematic integral, while Felderhof et al. (1982) rederive their result,

bypassing" this difficulty via a virial series expansion analogous to those done in

statistical mechanics. In this Chapter we will show that this apparent difficulty

can be avoided following the earlier method of first integrating over orientations

ir
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(Djordjevic et al. 1996). The troublesome divergent dipole integral term is removed

naturally in this approach, and as part of the motivation for this work we will

rederive and show complete agreement with Jeffrey (1973) for d = 3 and Djordjevic

et al. (1996) for d = 2. Furthermore we will generalize Jeffrey's solution to arbitrary

dimensions d using some known and some newly derived properties of d-dimensional

spherical harmonics. In this way we will see how all previous results for d = 1,2,3,

can be developed on the basis of a general d-dimensional framework. In the next

Chapter we will also derive results via a different method, ie. the method of images;

albeit through a considerably more complex procedure than in the two-dimensional

case of Djordjevic et al. (1996). This method has the advantage of more rapid

convergence than that, of Jeffrey (1973) and can be shown to be equivalent to the

latter via an order-by-order expansion for the polarization as a function of £ = ^,

where a is the sphere radius and R the separation between the two spheres. It is as

we shall see, computationally much more involved and less direct for d > 2.

One other reason why this work has been carried out is to derive and collect the

results for arbitrary d for future studies of effective medium theories that seek to

improve the poor value of K, especially in the perfect-conducting limit. To this end,

in what follows we will derive the general multipole expansion for arbitrary d and

show how Jeffrey's (1973) solution can be.generalized. Various mathematical results

and theorems regarding d-dimensional spherical harmonics will be obtained along

the way, which have been included in more detail in the appendices section. We

then show results for the dimensions d = 1,2,3, and we discuss the results obtained

for higher dimensions as well as study the trend of K. versus dimensionality.

4.2 Extending Jeffrey's solution to ^-dimensions

The classical problem of two spheres of radii ait2 at a distance apart of R in a

uniform electric field B has been studied by a variety of methods in the past. Among

these are: the method of bispherical coordinates (Jeffrey 1912; Moons and Spencer

1988; Morse and Feshbach 1953), the method of images (Binns and Lawrenson

1973; Landau et al. 1984) and the twin spherical harmonics expansion (Ross 1968,

(
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Jeffrey 1973). Although Laplace:s equation is separable in bispherical coordinates,

this method turns out to be less well suited to the problem of two spheres, as

the boundary conditions lead to a set of four simultaneous difference equations

for which there are no known solution (Davis 1964). In fact the twin spherical

harmonics expansion (Ross 1968) turns out to be the most appropriate method

as long as a method for transferring spherical harmonics, as obtained by Hobson

(1931) for d = 3 is generalizable. A major step is therefore to generalize Hobson's

theorem to arbitrary d-dimensions, see Appendix A. Before proceeding any further

a word about the method of images. The work of Djordjovic et al. (1996) seems to

show that this is a promising approach. Unfortunately as we shall see in the next

Chapter, the general d-dimensional image method is not as mathematically and

computationally convenient as the multipole series, except in appropriate limits; in

particular when the inclusions are perfect-conductors or holes. However even in

the case of the perfect-conducting limit, higher order calculations that are needed

in order to achieve the required convergence to known values have proven to be

complicated, due to the difficulty in mapping an infinite series of point charges and

dipoles between the inclusions (Choy et al. 1998b). Recently this problem has been

overcome and it is now possible to go to any order subject to computational power

(Alexopoulos 2004). Lastly we mention that the image approach is also very useful

in the weak scattering limit but more on all this in the next Chapter.

4.2.1 Parallel field case

We choose a coordinate system similar to the one of Jeffrey (1973), but instead we

consider two hyper spheres embedded in a d-dimensional space, see Fig 4.1. Next

we look at the case where the electric field Eo is parallel to R, the vector joining the

centres of the two spheres, which we take as the z-axis. The twin spherical harmonic

expansion for the potential inside each sphere is given by

I
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« = Eoz
n=O

(4.3)



39

Figure 4.1: Twin spherical coordinates. We note that in d-dimensions there is a
common azimuthal angel 0, around the line joining the two centres, and p = d — 2
polar angles. The two polar angles shown, B\ and 6>2, have a special significance by
virtue of the axial symmetry.

where i— 1,2 labels the spheres, and the electric field is taken to be in the direction

of the centres, 1 to 2, along the vector R. For the potential outside the spheres,

Eo (4.4)

In the above equations, the Ctf2(cos-d) are the Gegenbauer polynomials in the stan-

dard notation of Erdelyi (1953), but we will also refer to them as the generalized p-

Legendre polynomial of order n (see Hochstadt 1971) and use the notation Pn(cosd)

for similarity and simplicity. The coefficients d^ and g$ are to be found by the

boundary conditions on the surface of each sphere, which require the continuity of

the potential and its derivative normal to the surface, weighted with the appropriate

dielectric constant. In order to achieve this goal, a key formula for the shifting of the

spherical harmonics from one centre to the other has to be obtained. The proof of

this formula is somewhat involved and the details are given in Appendix A. Suffice

to say that it is a generalization of a theorem by Hobson (1931) and here we state

the result:

p -+• s — 1 R
ip,(cos03-O- (4-5)
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Using the formula in the boundary conditions and letting a,- = - ,̂ we have the two

equations,

d?> = .9«
0 0 p + s + n —

s=0 Q «—

and

(4.7)

where we have used the property of the p-Legendre polynomial: P\{x) = px in

deriving the latter formula. The solution for the coefficients d$ and g^ in eqn (4.6)

and eqn (4.7) determine the potentials eqn (4.3) and eqn (4.4) uniquely. We can

now consider the perpendicular field case.

4.2.2 Perpendicular field case

In defining the z-axis as the axis along the centre of the two spheres, the case of the

electric field perpendicular to the axis admits d — 1 possible directions. It is clear

that the d — 1 cases are degenerate because of the axial symmetry. Let us first set

up the notation for the generalized associated p-Legendre polynomials as follows:

dm

P™(cos9) = (-l)mSinm{6) Pn(cos0). (4.8)

Now the spherical harmonic expansion for the perpendicular case is dictated by

the direction of the field in the following way. Recall that the polar coordinates in

d = p + 2 dimensional space are related to the Cartesian coordinates by

rc(o) = r cos #(i)

X(i) = r sin 0(i) cos 0(2)

= r sin #(i) sin Op) cos #(3)

(4.9)

Then the multipole expansion we seek is

4>« = EQxU)

n = l

XU)
r sin (9(i)

(4.10)
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Without loss of generality we consider the most convenient choice with the perpen-

dicular field along the first orthogonal axis x^ (counting the zero), where X(p) = z.

Thus eqn (4.10) becomes

oo

« = Eox(1)
n = l

cos0it{2). (4.11)

This choice of axes is identical to that of Jeffrey (1973). The other choices can be

treated in a similar way since the additional angles are superfluous when we come to

match the boundary conditions, as they only require the continuity of the potential

and its derivative along the radial ft directions. However, the calculation of the flux

integrals for these cases is non-trivial. They need careful consideration in order to

verify Ihe flux formula for the perpendicular case in general. We can now write the

potential outside the spheres as follows:

T2n = l
2){1))cos02

(4.12)

The fundamental shift formula for this case is cumbersome to prove (see Appendix

B). The result is given by the formula

n+P
(4.13)

Using this result we can again match boundary conditions to obtain the analogous

equations to eqn (4.6) and eqn (4.7) as

aiy (3_t.)

and

•6 (^

(4.15)

In deriving the latter result, we have used the property of the associated p-

Legendre polynomial: P^(cosd) = -psind. Note that by virtue of the degeneracy

mentioned above, all d^ and g$ are identical for any perpendicular direction of the

1!
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field. To complete the solution we now have to evaluate the flux integral for each

sphere given by

s\?=eo(ai-l)fv*®dV (4.16)

where the integral is over the volume of the sphere (Jeffrey 1973). We now recall

that the d-dimensional gradient operator is given by (Erdelyi et al. 1953)

i i _ i L § _ 1 d • - l d

r dOrn rs:
V = r—

or 0(3)
r sin #(i) si

1 d
(4.17)

r sin #(i) sin 9(2) • • • sin 9(j>) d(j)

4.2.3 Parallel flux integral

It is necessary to consider the parallel and perpendicular cases separately. The

parallel case is the simpler case as here the potential depends only on r and 9. We

thus have

+ J fj EM® ( ^ ) Pn(

7 n=l \ ai /
(4-18)

where LOP = 2/r1+P//2/r(l + | p ) is the p-solid angle. Using the d-dimensional volume

element, we note that only the projections of all unit vectors onto the z direction

survive the angular integrations. Then we can obtain

N^dV=^4-
J d

oo ,p+i

n=l
oo / nQP+l \ ,

-wp_i 53 EodW l-—- J / sinp 9t sin^P,J(cos O^ddiZ. (4.19)

Using the orthogonal properties of the p-Legendre polynomials, we see that only the

n — 1 term survives, with the result

,p+i-

x / sinpdip cos 0{d0i + / smp9ip sin 0{d9i
I** <J J

— —T~t,QZ
a a%

(4.20)
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From the parity of the polar angles in Fig 4.1, we obtain the final result for the

parallel flux,

f = vfSf = vfEoSoiat -1)51 + (-lf'^ (4.21)

where the volume of the sphere i is denoted by vf — ujpaf/d.

4.2.4 Perpendicular flux integral

The flux intcg: ' for the perpendicular case is quite troublesome to explain. By

using the results obtained for the case where the field is along rc(i), all other cases

follow by symmetry arguments. That is to say, that all perpendicular directions are

equivalent. Let us first consider sphere 1. From eqn (4.11), the gradient of (fr^, say,

is given by

oo

= Eox{1)
n = l

where all quantities are understood to refer to sphere 1. Here again the integral

/ dV projects out only the x^ terms due to the orthogonality of integrals of the

type / sinp9 cos 6d6 = 0. This can be seen easily by writing down the unit vectors

>̂ ̂ (i))̂ (2)> ••• etc., in the original Cartesian basis. The result with i = 1 or 2, looks

somewhat like eqn (4.18):

+

£ Bad® — V - PiCcosft) sin0,l(1) cos2 6i>{2)dVx(1)
n=l \ at /

',-(!) COS2 ^,(2)dKX(i)

+ / E ^od« V n ( T sin2 (9Jl(a)dV5(1), (4.23)

but there are enough differences to need more work. We first perform the Op)

integration and using the results

/W"10(2) cos2

v+l J
(4.24)
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and

/ sin^19{2)d9(2) = - £ - I sinP-19{2)dd{2), (4.25)

the factors / sinp~l9^2)d9{2) can now be reabsorbed back into the volume integral,

so that eqn (4.23) becomes

N^dV = vdEox{1) + - i - / f) EodU (l^L-V(cos0 t.) Sm6iA1)dVx{1)

/ nv
V a? J sin0t-l(i)

Upon grouping the terms, we find that the integrand is an expression containing the

p-Legendre polynomials of the form

-f cos
OPj

dPn

-P1

'(1)

1

(4.27)

(4.28)

where we have suppressed the arguments of the p-Legendre polynomials for con-

venience. Further progress requires the use of the p-Lcgendre differential equation

which is given by

1 J ( JD \

= 0 (4.29)

(n+p)Jssmp0

sinp 0 dO \ dO j v

(see Appendix A). Using this expression eqn (4.28) can be integrated, again employ-

ing the orthogonality properties of the p-Legendre functions, we obtain

°n \ f

ncos#(1)Pn J d.0(\) = — p(l +p) sinp#(i)f/#(i).

(4.30)

The latter, we see again, can be reabsorbed back into the volume integral. Similar

considerations apply to sphere 2, which has no parity difference in this case. Thus

for the perpendicular flux in the direction X(i), we have

w -~-

(4.31)
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This result is primary to all subsequent derivations of the flux integrals in arbitrary

perpendicular directions, which also reduce in this case, as expected from symme-

try considerations (see Appendices section). Hence for the field in an arbitrary

perpendicular axis x<j), where j = 1,2,3,..., (p + 1), the flux integral takes the form

S« = vfEoeofa - 1)% (4.32)

Using all the results that we have so far, we are in a good position to move closer

to the derivation of the dielectric function K to 0(c2). We shall do this in the next

section.

4.3 Symmetrical bihy per spheres

The results in the previous sections generalize the Jeffrey solution to d-dimensions.

For the remainder of this thesis we will concentrate on the symmetrical case, ie,

where a\ = a2 = a and c\ = eg so that a,- = a- = ei/eo- In this case we can easily

eliminate dmtn from eqn (4.6), eqn (4.7), eqn (4.14) and eqn (4.15), and by symmetry,

we can replace

where following Jeffrey (1973), we have used the notation pm,n, with m — 0,1 for

the parallel-field and perpendicular-field case respectively. Since gm,o = 0, as there

are no point charges within the spheres, we obtain by straightforward manipulations

the overall expression

(4.34)
s = i

\P9m,s{-£

In eqn (4.34), the pn is a generalized polarizability that is given by

A = _ ^ i L . (4.35)

Using the expression for dmin obtained above, we can show that the formula for the

rlux integrals eqn (4.21) and eqn (4.32) is

Sm = vdEmeo(p+ 2)(-l)m-1p<7m,i> (4.36)

I
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I
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where m = 0,1 for the parallel and perpendicular cases as before. Notice that the

quantity pgm,\ is very important, but to obtain the latter we need to solve the system

of eqn's (4.34). This has to be achieved by expanding the gm>n as a power series in

£ = a/R. The result of this expansion can be written in the form

s=d^RJ V R2 ) \
S(R) = vc (4.37)

(Batchelor 1972; Jeffrey 1973), where 0\ = j3 and we have here explicitly emphasized

the R dependence in S. The first few coefficients in the above expansion are readily

obtained:

i = Ad+2 = ... = A2d~\ = 0,

A2d = -0l, A2d+X = 0, A2d+2 = -d0102...,

Bd = d0i, Bd+i = Bd+2 = ... = B2d-\ = 0j

B2d = dp0i, B2d+i = 0, B2d+2 = 2d[d - (4.38)

and so on. The structure of eqn (4.37) deserves some further attention. It has

the form of a dipole flux field, the first term being the trivial single '-/persphere

polarizability eqn (4.2) and the rest are due to the two-hypersphere interactions.

The first term of the latter is the bare dipole field from the second hypersphere

and it corresponds to the first image correction in image theory (see next Chapter).

All subsequent terms can be viewed as corrections due to multiple images. This is

particularly obvious in two dimensions where all the B's vanish for s > 2. The re-

sultant series can be put into one-to-one correspondence with the continued fraction

expansion results of Djordjevic et al. (1996). The relation to image theory for d > 2

is more complicated and will be discussed in the next Chapter.

We proceed by performing the angular averages first, by necessit}' the first action

we must take, as the leading first-image dipole term diverges. The justification for

this is that it reproduces the results of Batchelor (1972) and Jeffrey (1973) and

should thus be equivalent to their more complicated renormalization procedure.

Alternatively, one can use the approach of Lord Rayleigh (1892) hy considering a

finite sample L which is taken to oo at the end of the calculation. In performing



47

the angular average, we observe that the field E and the vector R together define

a hypersurface in d-space. In view of the degeneracy of this surface, we can for

convenience choose the simplest case for the perpendicular field; the other cases

correspond to a rotation about the symmetry axis. Thus the average flux is given

by

S = n f Rd~xdR f dQp (cos2 0S|| + sin2 dSA, (4.39)

where n is the number of hyperspheres per unit volume; d is understood to be the

first polar angle 9{\) and dflp is an element of solid angle.

We make the remark here that this averaging procedure corresponds to a well-

stirred suspension in which the second hypersphere is allowed to occupy all positions

with equal probability, subject only to a hard — sphere constraint. This is the same

as saying that the usual pair correlation function is unity, unless the centres of the

hyperspheres are closer than the sum of the two radii, in which case the pair correla-

tion function is zero. Without additional input from the process of manufacture or

microstructual information on the sample, this seems to be a reasonable assumption

and is used widely. After performing the angular integrals, the divergent term is

eliminated and we have the net result

Bs - dAs
S = vddj3cQc (4.40)

This expression corresponds to the averaged dipole moment P ' of Djordjevic et al.

(1996). Following similar arguments using a Clausius-Mossotti-type formula, we

now have the d-dimensional dielectric function to O(c2):

Bs-dA3 \ o ,
e = P + (4.41)

where K from eqn (4.41) is denned to be

ij- (4-42)

In two dimensions, all (3n collapse to (5 and as we shall see later on as part of

our results, the sum given by eqn (4.42) above, corresponds with Djordjevic et al.

(1996), up to 100 terms and more. In three dimensions we succeed in reproducing
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the results of Jeffrey (1973) and in one dimension, K = /32, which is an exact result.

The conductances, which are equivalent to the dielectric constants add in parallel

to give C/CQ = (1 - cP)'1, and all j3n reduce to 1 - ( I / a ) and only the parallel

case with gi = P survives the limit. In later Chapters we will thus show that the

results derived here are verified against all known limits. Furthermore we will look

at limits of particular interest such as that for the perfect-conductor, where a —> oo

and thus 0 —*• 1. Another interesting limit is that for holes, where a —* 0. The

two-dimensional case is unique here, as all (3n —* — 1, and there is a duality relation:

K — 2 for holes and 2 — K for perfect-conducting inclusions (see eqn (4.42)). Hence,

the sum of the /t for holes and perfect-conducting inclusions is 4 in two dimensions.

This duality however, does not hold in other dimensions. Before proceeding any

further, we will discuss higher dimensions in the next section.

4.4 Higher dimensions

Results have been calculated for d = 4 and as we shall see later, convergence is

better at the holes limit and poorer at the perfect-conducting limit. In fact for the

latter, we see that the convergence for d — 4 is even slower than for the d = 3 case.

This all brings us to the question of the large d-limit. The eqn's (4.34) are somewhat

difficult to study in the limit d —• oo. One may think that the interaction between

the hyperspheres will vanish, and this is essentially what happens. Here and in later

Chapters we will define the function Fd(fi) via

(4.43)

so that from eqn (4.42) we have

?. (4.44)

The methovi we use for computing the coefficients becomes increasingly inefficient as

d increases, and thus it is difficult to answer that question concerning the behaviour

of Fd(,8) as d increases, but we show in the next Chapter that the simple law of

mixtures is recovered as d —» oo. This is equivalent to saying that K —»• 0 as d —> oo,

I!
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which will become clear for a < 1. For a > 1, the rise in n moves out to higher and

higher a as the dimension d increases. Hence K —+ 0 for all d as d —» oo.

In conclusion, we have studied the dielectric function for the bi-hyperspherical

system in arbitrary integer dimensions d. We have shown that Jeffrey's (1973)

solution can be generalized once the required mathematical results regarding d-

dimensional spherical harmonics are obtained as given in the appandices. We will see

explicitly that our results are in agreement with the previous work of Jeffrey (1973)

for d = 3, and Djordjevic et al. (1996) for d = 2. We have shown that the limiting

behaviour is simple as both d —+ 1 and d —> oo. Our approach allows results to be

obtained for general d; albeit as an infinite series that converges somewhat slowly.

Nevertheless, the d dependence is shown explicitly as d appears as a parameter

throughout this body of work. Finally, the multipole approach used in this Chapter

will be compared with the image method in the next.
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CHAPTER 5

Method of Images

5.1 Introduction

The method of images is a well-known technique for the solution of problems in

classical electrostatics (Jackson 1975; Landau et al. 1984) and the electromagnetic

theory, with applications in various areas including scanning tunnelling microscopy

STM (Kalotas et al 1996), antennae (Slater 1942) and so on. The latter, as an

application of images in dynamical cases, is particularly interesting and offers useful

insight for the analysis of fundamental forces, like the Van der Waals attraction

of atoms and molecules near surfaces (den Hertog and Choy 1995). The theory of

images was initiated by Lord Kelvin (Thomson) (1848), who must have been the

first to observe that the potential due to a charge Q outside a perfect conducting

sphere in three dimensions is mathematically equivalent to that due to two point

charges. One of these is at the image point d^ = a?/R with charge QK = —aQ/R,

where a is the radius of the sphere and R is the distance of the charge from the

centre. The other point charge equal to —QK, assuming the sphere is uncharged,

is located at the centre of the sphere. This result is in fact valid for any dimension

d, as is evident by examining the proofs in standard texts (Jackson 1975; Landau

et al. 1984, see also the work presented in this Chapter). Point charges solve the

case of a point charge outside a dielectric disc in two dimensions only (Binns and

Lawrenson 1973).

Less known is the case of a dielectric sphere and the first results for three dimen-

sions are hidden in an old classic text of Carl Neumann (1883). Generalization of

Kelvin images for a dielectric sphere is rather non-trivial. A modern discussion of

this subject, relevant to our study of the bi-spherical system, can be found in Lindell

(1993) and Bussemer (1994), whose results are crucial to the work presented here.
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Suffice to say that the image of a point charge outside a dielectric sphere is a point

charge at the image point G^, plus a line charge p(z) from dj< to the centre O, with

a power law following Lindell (1993). Thus in general the image of dipoles outside

a dielectric sphere will lead to line charges and line dipoles, a highly complicated

affair. From this viewpoint, in the unique case of two dimensions, Neumann's the-

ory reduces to Kelvin's theory. Especially intriguing is the fact that when only the

parallel dipole configurations are considered, the d = 2 case is really quite simple by

comparison to d > 2, even for the perfect-conductor.

In this Chapter we will continue the study of the previous Chapter by exploiting

some of these image results and their non-trivial extensions to the bi-spherical system

in an arbitrary d-dimensional space. We will demonstrate that the method of images

furnishes a complementary approach to the multipole moment expansion solution

derived earlier and that it simultaneously offers a better convergence and some

new physical insight, albeit at the expense of greater mathematical complexity.

Moreover, this theory, the author believes, will serve as the basis in some future

work for the study of the resummation of the slowly convergent series for K in the

previous Chapter. The results that will be presented in subsequent sections, were

initially motivated by the work of Djordjevic et al. (1996), who applied an image

theory of dipoles (Binns and Lawrenson 1973) to study the bi-spherical system in

two dimensions. That the method of Djordjevic et al. (1996) cannot be extended

readily to arbitrary integer dimensions follows from our previous remarks about the

complexity of line dipole images in general for d > 2.

In what is to follow we explore the image of dipoles outside a rf-dimensional

sphere. We discuss higher-order dipole images for any dimension d and dielectric

constant e up to the third reflection image P3. We will formulate, but not solve,

both the perpendicular and parallel configurations in general. Unfortunately, this

formulation, though elegant, does not seem to be amenable to an iterative solution

beyond P4, except in the perfect-conductor limit. We will then show, in the case

of the latter limit, the method that allows us to calculate all images up to the 23rd

reflection image P23, the results will in the end be shown to agree with those of the
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previous Chapter. At the same time we will derive mathematical expressions that

will allow higher-order calculations to be carried out (Alexopoulos 2004) subject to

available computing power, while the general dielectric case appears intractable. We

will then consider a weak—scattering approximation, which is good everywhere and

particularly so in the holes limit. We furthermore simplify the integral that appears

in the weak scattering limit, to obtain a very simple algebraic approximation for K

that is useful for all d and for all ratios a = (i/co, where c\ is the dielectric constant of

the inclusion, and eo is the dielectric constant of the host medium. We are reminded

that we will be treating the symmetrical case of bi-hyperspheres, as we have done

for the multipole expansion method earlier and eventually the results of the two

methods will be compared. We will conclude this Chapter with some discussion of

higher-dimensional images, other limits and a few interesting questions that arise

from this work.

5.2 Image theory in ^-dimensions

In this section we discuss the extension of the Neumann image theory due to point

charges in d dimensions. Subsequently, we use this theory to derive images for

dipoles, which is of major interest to us here.

5.2.1 Neumann images of a point charge

We will begin any discussions here by summarizing the results (see Appendix D) for

the d-dimensional extensions of the Neumann image theory. This is an important

first step, as the line charge image theory of Neumann was originally derived only in

three dimensions, k priori, there are no reasons to expect that in higher dimensions

these line charges do not transform into hypersurfaces of higher dimension than one.

If this were not the case, the mathematical complexity of the present work would

have been unmanageable. Fortunately, as we can see from Appendix D, for a point

charge Q outside a d-dimensional dielectric sphere (see Fig 5.1) whose permittivity

is ei, there exists an image point charge at the image point d# given by

d-2

(5.1)f
a + l) \RJ
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Q*-

R

Figure 5.1: The Neumann image for a point charge Q outside a d-dimensional sphere.
The origin is at the centre of the hypersphere, and the point image QK and the line
image p(z) are shown.

where a = ei/en is the relative permittivity between the hypersphere and the

medium. In addition, there exists a line image from the centre O to the image

point dx, which we rename here as b\ = dj< — a2//?, given by the charge density

(5.2)

These results are very elegant, because they appear as minor modifications to the

three-dimensional Neumann image theory. Furthermore the following points should

be noted:

1. The image charge QK diminishes with dimensionality d since a < R for

non-overlapping hyperspheres.

2. The image line charge p(z) is a one-dimensional line density only, that reduces

to a point charge -QK at the origin for d = 2, and the result becomes that of Binns

and Lawrenson (1973).

3. The image charge has a power-law density distribution which depends both

on d and on a while the polarizability factor, (a — l)/(a + 1) is that of the two-

dimensional sphere.

4. In the perfect-conducting limit a —• oo, the line charge density p(z) vanishes

for all d except for the survival of a point charge at the origin, whose strength is

-QK, as required by charge neutrality. In other words, the line charge reduces to a

delta function p(z) = —QK5(Z), in accordance with the Kelvin image theory.

5. For d = 3, the line charge density p(z) is a constant for holes, when a —> 0.

6. For all d, the line charge density p(z) is also a constant at the single value I
! ! • •
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Figure 5.2: First image dipole P2"0 and line dipole p2 (z) as derived from the Neu-
mann theory for the perpendicular configuration. The origin is at the centre of the
hypersphere.

a= d - 3.

These observations and their implications need to be pondered over in more

detail. Here however, we are primarily interested in using the d-dimensional gener-

alization of the Neumann image theory to study dipole images as in Djordjevic et

al. (1996), which will be applied to the bispherical system in any dimension d.

5.2.2 First perpendicular dipole image

We will use the results discussed above to derive the image of a point dipole of

strength pi outside a d-dimensional sphere, as shown in Figs 5.2 and 5.3 respectively.

As in the previous Chapter, we must consider separately the perpendicular field (Fig

5.2) and the parallel field (Fig 5.3) configurations.

The complementary character of this work to that in the previous Chapter will

manifest itself when we show that here it is the perpendicular configuration that is

mathematically the simpler, which is the converse of the results via the multipole

expansion method. Again, postponing details to Appendix E, the image for a point

dipole pj1 in d dimensions and perpendicular to the line between the spheres R (see

Fig 5.3) is an image point dipole P2"0 at the image point b\ given by

a - 1 \ /a^d

\R,
(5.3)

The point dipole also creates a line dipole image p2 (
z) for 0 < z < &i, given by

- 1 / . ~v Q — 1
(5.4)
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Figure 5.3: First image dipole pjj0 and line charge /4 (z) and point charge Q2 as
derived from the Neumann theory for the parallel configuration. The origin is at
the centre of the hypersphere.

These results constitute the first perpendicular set (p^0, ~f>2 )• Note that we write

the image line charge as a vector ~p sometimes, where the direction of the vector is

along the line itself. For d = 2 the line dipole distribution eqn (5.4) disappears

completely (Binns and Lawrenson 1973). Integrating over this density and adding it

to the image eqn (5.3) above, we get the total dipole moment for the first p£ given

Here we see the recovery of the d-dimensional polarizability factor /?, missing in the

theory so far. Note also that the orientation of the dipole P2"0 and the line dipole

density p2 (z) aie opposite in sign, which is a consequence of charge neutrality.

We summarize the above results by writing the perpendicular image distribution as

given by

whose integral recovers eqn (5.5). We leave the study of higher-order images to

the next section. Here we will mention that although the result for the total dipole

moment eqn (5.5) appears to be simple, the detailed distribution eqn (5.6) is required

explicitly for the next generation. In fact the straightforward guess following the

work of Djordjcvic at el. (1996) for the total perpendicular dipole moment p<j- of

the form

) R~b

is not correct. Still eqn (5.7) is a useful formula to keep in mind when we study

[I

8
I

I
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approximations later. We will now consider in the next section the parallel config-

uration for the first image.

5.2.3 First parallel dipole image

The complexity of the bispherical problem first appears in this case. In Appendix F

we have derived the following result using the generalized d-dimensional Neumann

theory. The parallel dipole pf first generates a point dipole at the image point &i

given by

pf = pW^)(i)\ (5-8)
similar to, but opposite in sign to, eqn (5.3). The dipole pj here does not create

a line dipole density as in the perpendicular case, but a line charge density from

0 < z < &i, of the form

d-\d 2M"-i)(z
a?\R) v~ ~y(a + l)3

In addition, we also have an image charge at the image point b\ given by

d-l

(5.9)

a

We summarize these results by writing the first parallel image set as (plj ,p^) where

the charge density is

A f -b1). (5.11)

While deriving these results, charge neutrality furnishes a useful check, as is easily

seen by integrating eqn (5.11). Calculating the net dipole moment pjj from the

charge density eqn (5.11) via (d — 2) /'zp\(z)dV and then adding it to eqn (5.8), we

have the total parallel dipole moment:

KR) • (5.12)

Before proceeding any further, we note that a useful check of this result is that

the net angular averaged dipole moment p2 should vanish (recall discussion in the

previous Chapter). This is the notorious divergent term which must vanish for the

theory to be meaningful. It is easy to show that this is indeed the case, for upon

1
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performing the angular integrations first over the total dipole moments eqn (5.5)

and eqn (5.12) and noting that pj = pi,

= 0. (5.13)

Although this total averaged dipole moment is zero, the image sets (P2"0, ~p2)

(P2 1P2) do not vanish from the scene completely. The theory depends on the

totality of higher-order images generated from these sets, which we discuss in the

following section.

5.3 Higher-order images

Having now secured the fundamentals, we can proceed to calculate the higher-order

images. We are naturally thinking about the next image sets (pjj"0, p^) and (p3' , p]$),

and how the}' will transform. A moment's reflection will show that in the perpen-

dicular case the mapping goes from point dipoles and line dipoles to point dipoles

and line dipoles and so on. The parallel case is similar; the mapping goes from

a point dipole with a line charge to another point dipole with line charge and so

on. In all cases the density distributions develop ever-increasing complexities. In

the parallel case, there is an additional step required for computing the total dipole

moment from the resultant charge densities, thus increasing the work, but otherwise

straightforward (provided that these densities are available).

5.3.1 Perpendicular higher-order images

A careful examination of the higher-order images shows that the total dipole moment

of the nth image is given by

/ a _ 1 \ V2 / n \ d/*-.(.) fe)V (5.14)

where the key density here is the dipole density distribution which we write as

Here the point dipoles p^° are given by the recursion relation

a + lj \R-bn-i

(5.15)

(5.16)

I
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and bn are the image positions, represented by the usual continued fraction (Djord-

jevic at el. 1996)

(5.17)a

with the limits b0 = 0 and b\ = a?/R. The dipole density ~pn (z) is formally given

by the following integral recursion relation:

\ d - l
a (d-2)

a- 1f^-i^i, ,. fa- 1

q - 1

W+l)2\bn

a \dJ a2

a
a

R-z'

d-l

(5.18)

Unfortunately, we know of no closed form solution of this system of difference

integral equations, apart from resorting to direct step-by-step iteration. The start-

ing point must of course be the expression eqn (5.6). By this procedure we have

computed the image distribution ~pz (z) whose details we will not exhibit further

here, except to note that it is not a convenient expression. Here we briefly men-

tion that eqn (5.18) has an algebraic kernel, though it is not of the difference type.

It appears that the first few iterations arc manageable, but the prospects dimin-

ish beyond p4 (z). The system of eqn's (5.18) deserve further study and could be

useful for improving the convergence properties of the multipole expansion series

in the previous Chapter. At this point we merely quote the result for the total

perpendicular dipole moment pf calculated by this method:

P3 R

x
a (d~2\ l(z

~ \a+ l) J \h
a

R - z) bx
(5.19)

As the prefactor to the integral term vanishes in the limit d —> 2, eqn (5.19) clearly

reproduces earlier results (Djordjevic et al. 1996). Note that in the limit of the per-

fect conductor, this term also vanishes, leading to a considerable simplification. The

U
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i

same cannot be said for holes, however, as the integral survives, but is nevertheless

of a higher order in /?. Later on we shall see that this justifies a weak — scattering

approximation.

5.3.2 Parallel higher-order images

Again by careful examination of the results obtained previously, we now see that

at the nth generation, there exists a point dipole pjj° at the image point 6n_i and

a line charge pJJ(z) from the centre 0 to that point. The point dipole at the next

generation is easily written as:

\ d
- 1 a

The structure of the line charge at the next order /?||+1 (z) is the sum of several parts.

We will write down these contributions and explain then- origins:

(Z) (5.21)

Now the first two terms are given by the point charge

Qn+1 ~ a (Q + I)2
a (5.22)

and by the charge density

a
d-2

—
bj (5.23)

a* \H-bn-iJ (a + 1J

Next the line charge of the nth generation p^(z) maps onto a sequence of point

charges, which forms a line charge density given by

a
R-z'

- z dz1, (5.24)

and another line charge due to eqn (5.2), namely

, , ov Z*6"-1 pUzf) a-I r a \d~3

— (Cl — Zj a (a + 1)2 \R-z'

z(R - zf)Yd-3

)X a'
R-z'
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Once again charge neutrality is an important check and this can be obtained

by integrating eqn's (5.23)-(5.25). Note that in the integral recursion relations eqn

(5.24) and eqn (5.25), it is the full density of the previous generation p\{z?) given by

eqn (5.21) that must be known before the partial densities can be calculated for the

next generation. Herein lies the complication of the parallel system. Furthermore,

having somehow obtained these densities, we must also compute the dipole moment

{d—2) / zpi}l+l{z)dV that is to be added to eqn (5.20) to find the total dipole moment

Pn+i- This increases the work but is otherwise straightforward. Just like eqn (5.18),

the system of eqn's (5.21)-(5.25) does not seem to be amenable to a closed-form

solution. Direct iteration is tedious but can be carried out by hand up to Ps(z),

starting from eqn (5.11), with little prospects for going beyond (r\{z). Again we

do not exhibit the details of p\{z), which is even more messy than p${z). Here,

as before, we will merely quote the result for the total parallel dipole moment p^

calculated via the above procedure:

a
R-hP3=Pl^

ON'"1 a(a-l):

a

i — z
d-! a{a - I)2

(d-3-a)/(a+l)

&1

d-2
(5.26)

At this stage, we mention a few observations that might be useful for future

work. Certainly, the key to further progress primarily lies in the solution of the

pair of integral eqn's (5.18) and (5.25). The main hurdle appears not so much with

the integrals, as in the region of integration; note the 9 function in the integrands.

As a result of this, closed-form expressions for the distributions p^{z) and p\{z)

already involve non-elementary functions. Hence at the next generation, it appears

to involve indefinite integrals over these functions. Thus the prospect of going

beyond this level diminishes. Apart from the usual perfect conductor and d — 2

limits which are familiar by now, another useful observation is that eqn (5.18) and

eqn (5.25) can be expanded as a power series in f = a/R. Indeed, we will make
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contact with the results of the previous Chapter in this way. By averaging over

angles and using a Clausius-Mossotti-like formula, the coefficient K up to the total

averaged image j>3 is now given by

'a-V
K = d.82 + d(d - l)Pd

a+1

x
a-1

(l-s2x)d dx (5.27)

o i.x o

This result admits a power-series expansion in 5, under the integrals, as discussed

above. Although it involves a double integral, we can rewrite eqn (5.27) as an infinite

series by introducing the Fd(P) function (see previous Chapter and Djordjevic et al.

(1996), whose F(P) = PF2(P) here). This is defined by

(5.28)

where the series

s=0

)Mfd+,-i] a + d - 1
s J a{s + 1) + d + s - 1'

and can be viewed as a partial resummation of

(5.29)

d (5.30)

of the previous Chapter using the multipole expansion method t o all terms in p3.

Leaving detailed results to later, we conclude this section by stating the leading-

order values for small (3: Fi(0) = 0, F2(0) = 2/3 = 0.666..., F3(0) = (20-9/n(3))/8 =

1.264... and F4(0) = 44/27 = 1.629.... This is an exact result for d = 1 and in

agreement with Djordjevic et al. (1996) for d = 2. For d = 3, the result quoted

by Jeffrey (1973), F3(0) = 87/80 = 1.087..., only involved a part of the third-order

dipolc term, which can be obtained bj' taking the first two terms of the series cqn

(5.29) in the limit a —* 1. We must also remember that p = p1= (a—l)/(a + d — l)

has a dimensional dependence. Comparison of this series also shows agreement with

eqn (5.30) up to the appropriate order in /?.
I'-
ll

i\

!|
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5.4 Perfect conductor limit

In our study of the image method so far, we have seen that in order of difficulty,

the d = 2 general dielectric stands out as the easiest, while the next simplest case

is the perfect conductor for all d. Indeed, Kelvin's image theory is applicable both

to a dielectric for d = 2 and for a perfect conductor in any d, a careful study also

reveals that for d > 2 the perfect conductor is still complicated by the parallel case.

This is because the point charges generated by the parallel configuration cannot

be neglected, except for two dimensions. Nevertheless, the mapping of these point

charges is still manageable and this is the case we will treat in this section. The

perpendicular case is by now clear, as it leads only to point dipoles in each generation

(see eqn (5.16)). Here we will use the opportunity to discuss the point—dipoles—only

approximation.

5.4.1 Point dipoles only approximation

A close examination of all our previous work also shows that the result is contained

in the point dipoles pjj° and p^°, and we know that in. two dimensions there are

no other contributions. Therefore we start by keeping only all point dipoles; an

approximation that is exact in two dimensions. The function Fd(l) now takes the

form (Djordjevic et al. 1996)

25+1

oo

= £/*,
s=l

where fs is given by the integral
1/2

fs = 2d(d-l)f

(5.31)

2s - k

k
r2fc

\dx. (5.32)

This integral is rather interesting. For integer 5 and d, the integrand is a rational

function of polynomials that can be integrated in closed form by reduction formulae

(Gradshteyn and Ryzhik 1980). For example, for d = 2, we have

575 I)}]

u.

i!
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= 0.0556728..., (5.33)

in agreement with Djordjcvic et al. (1996). The latter, however, used a digamma

function representation which does not seem to be generalizable to d > 2. These

integrals can be reduced using computational code such as Mathematica and by

summing eqn (5.31) to s = 19 terms; we obtain the value for d — 2 as ^(1) =

0.7449145..., agreeing with the value F2(l) = 0.7449896... up to the fourth digit,

as quoted by Djordjevic et al. (1996), who summed the series eqn (5.31) to over

100 terms using digamma functions. We will see in more detail later, as part of our

results, that Fz(l) = 0.895007... in three dimensions. Suffice to say here that if this

result was compared to that of Jeffrey (1973), namely Fz(l) = 1.51..., we see a great

discrepancy that can be attributed to the fact that we are required to consider the

full image series in order to improve the convergence.

5.4.2 Total dipole moments P4 and P5

At this point we will investigate the contributions from images beyond the point

dipoles of the previous section for the perfect conductor. We are only concerned

here with the parallel dipole moments, as the perpendicular case is just the point

dipole sequence p^°. Prom this point on we will suppress the superscript ||, and we

will denote p|| = pn for brevity. Here we need to keep track of the point charges in

each generation, which are depicted in Fig 5.4. From them, together with p°, we

will calculate the total dipole moment at each generation.

The computation of the charges is straightforward but lengthy. We give the

results for the preaveraged total dipole moment pn for n = 2,3,4,5. We begin by

rewriting p2 in eqn (5.12) as

- 1), (5.34)

where u>n = bn/a. The next generation gives us p 3 as

P3 = Pi4 [(d ~ 1)4 + (d - 2)^\4~l - cjf'1)], (5.35)

and it appears that there might be a pattern emerging at p4 given by

p4 = piujf [(d - \)44 + (d ~ 2)wf2 {4~14~1 ~ '*4~14~l + ̂ l^"15}] • (5-36)

\
It
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Figure 5.4: Sequence of point-charge images for each generation up to P5. The
superscript j in QJ

n refers to the image point fy_i while n refers to the generation
P«-

Unfortunately, this docs not prove to be the case, because when we carry out the

calculations pertaining to higher-order dipole moments we find an increase in the

complexity of the mappings between the two hypcrsphcrcs. Indeed this can be seen

when we finally compute the expression for ps

'V-

n.
IfI

I
•££•n-

P5 =

(d - 2)u,f3 .(5.37)

It is therefore of interest to us here to generalize the method above so that we can

carry out these higher order calculations, and in the next section we shall formulate

this in such a way that the calculations can be carried out in analytical form to any

order. Finally, we mention here that the results we obtain for F</(1) will be compared

to the multipole expansion method later on and we will see that even though the

convergence is relatively slow using the image method, it nevertheless proves to be

much faster than the multipole expansion method of the previous Chapter.

5.5 Higher-order dipole moments for the perfect-conductor

In the previous section we showed the results for the perfect-conducting limit up to

P5. We made the comment that going to higher orders is mathematically opaque,

since the mapping of the dipoles and images increases in complexity as the order n

it
n

n
I

if;
I f
ii
fi'

if

5;
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does, making it very difficult to use an iterative approach for instance. In this section

we shall generalize the method so that we can produce calculations to any order

(Alexopoulos 2004) for the total averaged dipole moments, subject to computational

power. In doing so we will justify the results of the previous section by explaining

in more detail the procedure (see Fig 5.4) that was used in order to get to ps.

5.5.1 Mapping of dipoles and charges

We consider the mapping of the parallel dipoles and charges for brevity reasons

with the perpendicular field case being similar in nature. In Appendix F we see how

we can define the first generation of the dipoles and charges (except here we take

the limit a —* oo for the perfect-conductor). Djordjevic et al. (1996) have shown

that these mappings consist of continued fractions but their solutions involve point-

dipoles only, an exact result in two dimensions. Here we will need to also include

contributions from the charges which in the limit d = 2 vanish and we recover the

results of Djordjevic et al. (1996). By looking at Fig 5.4, we see that the electric

field in the parallel direction, induces a dipole pi on the left hypersphere at the

origin O. On the second hypersphere we generate a dipole pi and charge $2 at a

distance away from the origin defined by 6j_i. Charge conservation requires that

we place another charge —Q2 of equal but opposite magnitude at the origin. Now

we can consider the 3rd generation on the original hypersphere with a dipole p 3 and

additional charges. This mapping now proceeds backwards and forwards between the

hyperspheres infinitely. The symmetry of the system, ie the hypershperes have equal

radii, means that these effects are doubled to account for the second hypersphere

generating dipoles and charges onto the first.

By following the argument above we can obtain the second generation point

dipole and charges from pi:

a

I2) = -(d - 9.) (EL] flQ? =
a

ii

$1
Si

(5.38)
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where eqn's (5.38) above are the initial conditions of the system and thus the total

dipole moment pf* becomes

= P2 - =Pi(d- 1) ( | ) d . (5.39)

On the third generation, we can use eqn (5.38) and derive p3 and the charges as

\ d / n \ d

•«-*>mr(jh"
a

d - l

with the total dipole moment pf* = p3 -f- Q3 'b2 + Q» b\ given as

d ( / n \ d r -' Q.

(5.40)

o + (d - 2) i
d-2

(5.41)

As can be seen by eqn (5.41), already there is evidence that higher orders will become

extremely complex. By proceeding further we will encounter very large continued

fractions, so it is necessary here to represent them in a recursive form. In particular

the positions of the various charges can be written in the form

^2

R - bj-i'
(5.42)

and we can define the ratio u>j as being

a (5.43)
3 R - bj-i'

where bj = acjj. At the same time we can derive the dipole in each successive

generation by using

Pn = Pn-1 I -~7 ) , (5-44)

for n > 2. It is easy to show that we can rewrite eqn (5.44) in terms of the o>/s. In

fact by using eqn's (5.42) and (5.43) we can rewrite eqn (5.41) in terms of a; and by

doing so we obtain eqn (5.35) from the previous section. Indeed we note that eqn

I

i

el:
§

If

If
t
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(5.35) is written in terms of uj\ and u)2, and when we consider higher orders we will

have to deal with different continued fractions in UJ. Fortunately, we can simplify

then all down to wi = ui = a/R. We can see this by expanding eqn (5.43) to j = 4

and after some simplification we obtain terms in UJ

UJ

1 -
(5.45)

All expressions for the dipoles and charges are written in the end in terms of u, thus

greatly simplifying any calculations.

At this time we can mention that by a similar routine we can calculate the

expression for the perpendicular field case so that in the end the total averaged

dipole moment to any order pn = p^tot + (d — l)Pnto< for both the parallel and

perpendicular contributions of the field can be written down as

[ 1 I "l—r A / \ 1

1 + [d — 1)(—1) | I UJ\i + (—l) n " (d — 2
t = l

n - l
(5.46)

The non-trivial contributions of the line charges for each successive generation in

eqn (5.46) arc given as

J
1=1

for j = n while for the other charge contributions we have

(5.47)

(5-48)

for n > j < 1. The line-charges that 'couple' with the dipoles are determined by

(5-49)
i=2

where n > 2. We can now write down the dimensionally dependent coefficient K in

the series for the dielectric function e/eo = (1 4- c -f KC2 + ...), as

(5.50)

Recalling that u — a/R, it is easy to substitute UJ in eqn (5.50) so that the integral

is performed over o> in the interval [0,1/2] (see results section). In the next section

we shall discuss the potential between two hyperspheres.
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5.6 Potential difference between two hyper spheres

The problem of finding the potential difference (or voltage) and therefore capacitance

between two inclusions has been of great interest. In the case where the inclusions

are spheres, considerable work has been undertaken to calculate special cases of the

electrostatics of such spherical pairs. Moussiaux and Ronveaux (1979) have calcu-

lated the capacity of touching unequal metullic spheres. Jeffrey and Onishi (1980)

have extended this method to non-touching spheres under a variety of conditions.

In addition to capacitances and induced charges, O'Meara and Saville (1981) have

calculated the electrostatic force between two spheres. Love (1975), has considered

dielectric sphere pairs in uniform external fields using a Green's-function technique

for difference equations. Batchelor and O'Brien (1977) have considered both sep-

arated conducting spheres and touching dielectric spheres, and have obtained the

asymptotic behaviour of both these limiting configurations. The majority of the

above work was done using field expansions in curvilinear coordinates, such as bi-

spherical coordintes, which are discussed in detail by Lebedev et al. (1965). *

In the case of a composite system, we are interested in such things as dielec-

tric and conductive properties. These coefficients of the composite can be obtained

from knowledge of the induced moments on the inclusions. Most methods lead to

an infinite matrix equation, which must be truncated and inverted numerically to

obtain the multipole moments. When the inclusions are close to touching, the num-

ber of multipole moments that need to be retained for an accurate solution makes

numerical inversion impractical. A method for calculating the influence exerted be-

tween nearest-neighbour inclusions explicitly, that is without numerical inversion,

and thus providing an estimate of the induced multipoles of all orders, would sim-

plify the calculation of effective properties of close-packed composites. The method

of images might be able to help us in this context, by allowing us to gain valuable

insight into the problem. We will use the results that we have obtained in previous

sections to calculate the d-dimensional voltage AV, between two inclusions. We will
1 An interesting extension of the work presented in this thesis would be to actually solve for the

dielectric function using d-dimensional bispherical coordinates.
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En

R

Figure 5.5: Hyperspheres in the presence of an electric field Eo separated by the
distance R. The radius of each hypersphere is a such that u = a/R oriD = R/a.

derive an expression for the d-dimensional voltage using the method of images by

firstly considering the contributions due to the point dipoles only, an exact result

for d = 2 and in agreement with Djordjevic et al. (1996), and then the full contribu-

tions that include the charges too. The special limit when the hyperspheres touch,

uj = a/R = 1/2, will be investigated due to the importance of nearest neighbour

effects in closely-packed composites. Unfortunately as we shall see, in the case d = 3

when the limit of LJ —> 1/2 (spheres touching), the convergence is so slow that an

enormous (approaching infinity) number of both dipole and charge contributions

need to be calculated in order to show that AV —> 0. This means that computa-

tionally at least, a numerical rather than a symbolic procedure must be favoured if

we are to be more efficient.

5.6.1 Dipole contributions

Following the work of Djordjevic et al. (1996), we consider two inclusions in the

presence of a parallel and perpendicular component of an electric field Eo, see Fig

5.5. We can write the voltage AV between the hyperspheres as

oo

(5.51)
n-2

where the factor 2 in eqn (5.51) represents the effect of the other hypersphere (sym-

metry) and V^ is the contribution from the dipoles only. We recall from previous

sections that the positions of the dipoles (charges) are given by 6n, such that

aoo (5.52)
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and each dipole pn is generated from the previous mapping as can be seen from the

following expression
U)

Once again we can see that eqn (5.52) can be written as bn = aun because all the

w's are generated by the continued fraction

U)
(5.54)

We can now write down the point-dipole only contribution to the voltage eqn (5.51)

as

VP = - J—b=^pn-i, (5.55)V

where a is the radius of each hypersphere and we use eqn (5.52) and eqn (5.53) to

solve for AV:
co r id-1

Before proceeding any further, we will examine eqn (5.55) for the case d = 2 and

study the all important leading terms. We will consider the leading terms given by

n = 2,3,4 and note that p\ — QdEoad and Qj — 2d'1n. For n = 2, since n = 1

means that V\ = 0, we have

rD 1 bi
V rD - "1 „ .

2 - - T T ^ P i .

a
= 2TT,

so that

In a similar way we consider the n = 3 case and keep in mind that

u\ = ui = a/R:

D 1 62 OXJJ O

3 2rra2 2 ' 1 — a;2'

(5.57)

= 0 and

By not writing out p2 explicitly and after simplifying we finally have

1 P2D

27r(R~a2/RY
(5.58)
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The fourth order term n = 4 can be expanded in the same way as before so that

the following expressions are obtained

63 =
(JJ

.2

a

R- a 2 J

so that after all the w's have been replaced we arrive at the final result

yD = 1 PZ

R—R

(5.59)

The terms given by eqn's (5.57), (5.58) and (5.59) are exactly the same as eqn

(30) of the paper by Djordjevic et al. (1996). In fact when we plot the result for

AV as a function of cv we can see that the result is exactly that given by the AV

obtained by Djordjevic et al. (1996), who used hyperbolic series to arrive at their

result. The reason why eqn (5.56) is exact in two dimensions is because the only

contributions that exist are those that come from the point dipoles. For the case

d = 2 all charge contributions vanish. However for other dimensions, the charges

do not cancel so that we need to consider these in the next section.

5.6.2 Dipole and charge contributions

In two dimensions we expect the charges to disappear and the only contribution to

the voltage comes from the point dipoles only. The expression for the latter can

be used for the case d = 3, but the convergence is very slow especially when we

consider the limit where the spheres are touching (CJ = 1/2). By the methods used

previously and using the results for the charges, eqn's (5.47), (5.48) and (5.49), we

write down the expression for the charge contributions,

v n
(5.60)

b=i Pk-i

where all symbols, b, a, p and so on, have the usual meaning as encountered before.

We define the parameter p such that

si

id-2 (5.61)

n
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As can be seen from eqn (5.61), when d = 2, p = 1 and the charges in eqn (5.60)

cancel each other out. Thus the total voltage AV, which includes both point dipoles

and charges can be written as:

= Eoa{(-)
00

n = 2
nd~2

Jfc=l P k - 1

(5.62)

For three dimensions where the inclusions are spheres, eqn (5.62) gives us a slight

improvement in convergence in the limit when the two spheres approach each other

(u> —»• 1/2), as compared to when we consider the point dipole contributions only.

The better convergence is due to the participation of the charges but unfortunately

eqn (5.62) converges so slowly overall as u> —> 1/2 that in order to improve upon

this convergence an enormous number of terms needs to be considered which makes

the whole procedure computationally difficult, especially as we are dealing with

symbolic mathematical terms. Even so the method gives us a very powerful insight

that could be used in conjunction with analytical methods to re-sum the terms

appearing in say, the continued fractions, thus giving us the desired convergence

without having to compute a vast amount of terms. While such a re-summation

needs to be studied more carefully in great detail, something that is beyond the

scope of this thesis, we will nevertheless illustrate the principle by considering the

limit when the hyperspheres are touching, u = 1/2 or AV = 0. 2

To study the limit when the two hyperspheres touch, ie, when u = 1/2 (or

Q = 2), we will consider the continued fraction wn. We notice that for any large u)

such that n —• oo, the continued fraction has the form

(5.63)

where for reasons we have talked about before,, we are able to write such a continued

fraction in UJ alone. By evaluating such continued fractions at u = 1/2 we notice

If we were to plot eqn (5.62) as a function of OJ~1 = UJ = R/a, we find that when u> = 2,
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that we obtain the following pattern:

1,UJ2, W3, W4> .-} = {5, | , f, | , . - } • (5.64)

Now for any number x, we can expand it in a continued-fraction form such that

1
x = a0 1 >

a2+r-i-

which can be represented in the following notation

x —

Prom eqn (5.64) we can surmise that for any wn as n —>• oo, we obtain the formula

,„ . , 1
(5.65)

so that by substituting values for n we derive

oo2= {0,1,2} =

a;3 = {0,l,3} =

W 4 = {0,1,4} =
4

5'

and so forth. Thus for all n we can generate the w's in the simple form

n

(5.66)

(5.67)

As the number of terms that need to be calculated increases considerably as the

hyperspheres touch, eqn (5.67) reduces the otherwise complex terms to a form that

is computationally more efficient.

At the same time eqn (5.67) gives us an idea as to how the voltage AV behaves

at that limit. By taking the voltage due to the point dipoles only for brevity 3, we

can express it as:

(5.68)

3The same can be done with the voltage due to the charges, V£', but it is more involved.

L
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where we note that n > 0 and pi = po = QdEoad. The dipoles are now obtained

from

Pn+l = Pn
n

.n + l j '

while the positions of the dipoles are given by

n + 2 '

and by substituting eqn's (5.69) and (5.70) into eqn (5.68) we obtain

(5.69)

(5.70)

n + 1
a(n + 2

d-l
n

n + 1
Pn+l- (5.71)

When we take the limit n —+ oo we see that eqn (5.71) simplifies to

oo

where we notice from eqn (5.69) that

=P98,P98 = P97-Pi-

oo

(5.72)

= Poo as n -+ oo. This means that

(5.72) now becomes

(5.73)

Substituting p\ = QdEoad we finally obtain

V0
(5.74)

where Vo = Eoa. Remarkably we see that for inclusions of any dimension d, the

voltage AV becomes zero at UJ = 1/2, as expected.

Finally, a useful approximation for AV can be written down for all dimensions

d, as a function of to = R/a:

AV

For d = 2 we obtain
AV

(5.75)

(5.76)

This result is exact in two dimensions to that obtained by Djordjevic et al. (1996),

who obtained their version by the use of hyperbolic series. In three dimensions the

voltage reduces to
AT/ 1

(5.77)
AV = l<Z,(u,3 - 8 ) ] \
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When eqn (5.77) is plotted and compared against results obtained by others in the

literature using techniques such as the finite element method, there is understand-

ably an error associated with such an approximation. However eqn (5.77) can serve

as a useful beginning to further investigate the behaviour of the voltage between

two hyperspheres with a possible view to re-summing otherwise complex terms.

5.7 Weak-scattering approximation

We now return t o the integral eqn (5.27) and study the behaviour for what we refer

to as the weak — scattering limit, ie, a —» 1. Now since the factor

a: - 1 (3d

a + l 2 4- P(d - 2) '

it follows that to 0{j33) in K we have the simple result

(5.78)

(5.79)

The integral eqn (5.79) is elementary and the values of Fd(fi) are easily calculated

(see results Chapter). Using eqn (5.28) and eqn (5.79), we can write the coefficient

K of the c2 term in the dielectric constant as

K = dp2

We can also easily expand the integrand in eqn (5.79); the first two terms upon inte-

gration yield F3(0) = 87/80 in agreement with the f33 terms of Jeffrey (1973). Note

that the latter does not contain all the 03 terms, as opposed to the image method

presented here. This is an important observation and it maybe useful for the re-

summation of the multipole series in Chapter 4. Finally, for holes where a —> 0, the

series eqn (5.29) can be easily summed to give tlie value of K = 7/12 = 0.583333...,

in good agreement with Jeffrey (1973) and the result using the multipole expansion

method which gives the value K = 0.588277-... The weak scattering approximation

eqn (5.79) yields K = 0.591992... which in agreement to two significant figures. That

this approximation is less good for the perfect conductor limit can also be seen
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here, since eqn (5.79) predicts a value of K = 4.264061... to be compared with the

known value AC = 4.51... of Jeffrey (1973) and the result obtained using the multipole

expansion method of Chapter 4.

5.8 A useful algebraic approximation

For some purposes it may be useful to have an analytic approximation for the pair

term that is good to a few per cent for all dimensions d and for all values of a.

This can be achieved by noting that the integral eqn (5.79) that occurs in the weak-

scattering limit can be approximately evaluated to give

1/2 d_1

Fd(P) = d2(d -1)] jjZTfijds « d(d - 1) ( | ) d + 1 . (5.81)

The agreement is reasonable at all d and with errors of less than 8 per cent for d = 1

up to 30. For very large d, an asymptotic evaluation of integral eqn (5.81) is larger

by a factor of 3/2, but this works less well in the range of d. Using this result and

eqn (5.28), we have

K = d,32 + P3d(d - 1) ( | ) d + 1 . (5.82)

Note that the second term is somewhat smaller than the first term in eqn (5.82),

but nevertheless we find it convenient to display the results for K rather than for F<*.

The algebraic approximation eqn (5.82) is reasonable for all d and for all dielectric

constants of host and inclusion, and leads to a dielectric constant

1 -4- cdB + C \d(32 (5.83)

This approximation leads to the exact results for AC both as d —* 1 and as d —•> oo,

where /3 = (ei — £o)/(ei + {d— 1)CQ). When d — 1, we have the exact expansion

a
(5.84)

which can be obtained by noting that in one dimension AC = 02 is an exact result,

ie, the conductances which are equivalent to the dielectric constants add in parallel

if

I

if

!

m
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to give a I co = (1 — c/3) *, or equivalently a"1 = (1 - c)e0* -j- cej *. In the limit that

d —+ oo, we have /c = 0 and we recover the virtual crystal approximation

£ = £0 [1 +

(5.85)

This is equivalent to saying that the various pieces of the dielectric add up in parallel

in one dimension and in series in infinite dimensions. In between, the situation is

very complex, but the behaviour for a general d goes smoothly between these limits.

In concluding this Chapter, we note that we have presented an alternative study

of the dielectric function to O^) using the method of images. By an extension of

the Neumann image theory to d dimensions and to higher-order image dipoles, we

have put the theory of images for the bisphcrical system into a unified framework.

Numerical studies are consistent with that of Chapter 4, putting the multipole series

expansion method in perspective (see results Chapter). We have found that the

method of images for the dielectric bispherical system is rather difficult to implement

in general and that analytical calculations beyond the fourth image sets (pf0,/^)

and (p4°, pjj) appear to be intractable. Nevertheless, the perfect conductor limit

appears to be amenable to extensions beyond the fifth image sets (pjj-o,pg-) and

(Ps 5 Ps)- Oui calculations for p5, which is the third non-trivial term for the image

series in this case, already converges to a value for 2*d(l) that is superior to the

20-terni multipole series in Chapter 4 (see results later).

We have derived an expression for the voltage between two hyperspheres and

looked at the important limit when they are touching (OJ — 1/2). Furthermore,

two approximation methods were investigated in this Chapter. We studied the

point-dipoles-only approximation, known to be exact for d = 2. We showed that

for perfect conductors this approximation contains about 70 per cent of the result

for d = 3. We have also investigated the weak-scattering limit. We have given a

simple algebraic approximation for the pair term in the dielectric function, K, that

is exact in the limits d = 1 and d •—> oo, and shows the dimensional dependence of

If
K v. •

i l .

ft
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K explicitly. This should be useful in constructing affective medium theories ,hat
attempt to include the pair terms.
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CHAPTER 6

Results and Beyond

6.1 Introduction

We have been interested in determining the dielectric function of a composite ma-

terial by calculating K. in the virial expansion for the dielectric function e:

c — eQ(l KC2 (6.1)

where c is the volume fraction of inclusions. We have done this for a binary system

of inclusions in a d-dimensional space using two alternative methods; the multipole

expansion method and the images method. During all this we have considered how

one-body effective medium theory can incorporate these two-body results to im-

prove upon the results of Bruggeman and Maxwell-Garnett. That eqn (6.1) actually

converges to known values in the appropriate limits is rather profound as no known

proof, to the author's knowledge, exists that shows that indeed convergence occurs

in this virial expansion as opposed to divergence. Even so eqn (6.1) is used widely

in the literature and we have followed the example of others.

The calculations were arrived at using procedural programming in Mathemat-

ica. The primary reason for this was that the computations involved were mainly

symbolic in nature. The disadvantage of using symbolic computations however is

evident when we deal with memory considerations (swap files etc) as the enormous

number of terms involved need to be dealt with efficiently. For example, in the

multipole expansion method the n = 200 calculation involves a matrix of more than

40,000 unknowns and furthermore, for each unknown, there are series expansions

involving hundreds of terms respectively. A typical calculation using the method

of images may include computation of more than three hundred thousand terms.

In the general dielectric case the multipole expansion method appears to converge

I
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much faster to values for K than the image method. However in the superconducting

case for example, it is the other way around. The two different approaches agree

with each other when values are compared to those of others in the field showing

that there is at least a foundation to begin the next step of making improvements t o

EMT in certain instances. At the same time, these methods can be used in different

ways to solve problems of particular interest as was the case in the use of the image

method in the solution of the d-dimensional voltage between two inclusions.

6.2 Results

In Chapter 4 we obtained d-dimensional solutions for the general dielectric case using

the multipoJe expansion method. In particular we considered the bi-hyperspherical

system with symmetry and the solutions generated by

n -f p + s — 1

n+p+m—\
V9m,s ( | ) = M , (6.2)

where m = G, 1 corresponds to the parallel and perpendicular case respectively,

p — d — 2 and d is the dimension. The generalized polarizability j3n is given by

= J^JL (M)
7?.a + n + p

and a = ei/eo) with ei is the dielectric constant of the inclusion and CQ is the

dielectric constant of the host medium. Now by expanding the gm>n as a power

series in the ratio £ = a/R in eqn (6.2), we can eventually write down the result for

K (see Chapter 4):

K - djd
B, - (6.4)

If we take the limit d — 1 in eqn (6.4), we see that K — /32 which is an exact

result, all /?„ become 1 - ^ and only the parallel case survives in this limit with

<7i = j3. The next logical step is to consider the d = 2 case and in Fig 6.1 we

plot K vs logio(a). The multipole expansion result is plotted against the result of

Djordjevic et al. (1996), whose results were obtained by expanding a series in /3 to

O(P3'). The convergence of the two methods can be seen given that the multipole
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log,0(a)

Figure 6.1: Plot of K VS logio(a) for d = 2. The result of Djordjevic et al. (1996)
is shown as the dashed curve and has a slightly different convergence to that of the
nmltipole expansion method due to the different number of terms calculated. Here
a = e,/eo is the ratio of the dielectric constant of the inclusions (i = 1, 2) to that of
the host medium.

expansion solution was evaluated to O(£21) before averaging. In Fig 6.2 we consider

the d = 3 case where the inclusions become spheres. The curve (solid line) for the

nmltipole expansion method was calculated for all values of j3n in eqn (6.4) while

Jeffrey (1973) calculated specific values for [3 each time separately and extrapolated

his curve based on these results (see dots in Fig 6.2). In a similar way we can consider

higher dimensions, particularly d — 4. There are no known results with which to

compare the convergence of the d = 4 case here using the nmltipole expansion

method. However the convergence for d = 4 is slower than that for the d = 3 case,

especially in the perfect-conductor limit. In fact it is rather difficult to predict the

correct behaviour for large d in the equations generated by eqn (6.2), but we expect

the interaction between the hyperspheres to actually vanish. In Fig 6.3 we plot the

different dimensions for comparison. Apart from the general dielectric case, two

limits are of interest here: the perfect-conducting limit and the 'holes' limit. The

perfect-conductor limit means that a —> oo so that 0 —> 1. In Table 6.1 we consider

the convergence properties for this case and show K for different d. The very last row

in Table 6.1 shows the known results published by Djordjevic et al. (1996) for d = 2

and Jeffrey (1973) for d = 3 which shows that the value obtained by the nmltipole
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-2 -1
log ln(a)

Figure 6.2: Plot of K. VS logio(a) for d = 3. The result using the multipole expansion
method is compared to Jeffrey (1973), represented by the dots. Again a — e,/eo is
the ratio of the dielectric constant of the inclusions to that of the host medium.

d = i

-2 - 1
loglfl (a)

Figure 6.3: Plot of K, VS logio(a) for d = 1,2,3,4. Again a = r,/c0 has the same
definition as in other figures.
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Table 6.1: The coefficient K to seven significant figures is tabulated for d — 1, 2,3,4
for the perfect-conductor, a —» oo.

n cT= 1 d = 2 rf = 3 <i = 4

20
40
60
80
100
120
140
160
180
200
220

1
1
1
1
1
1
1
1
1
1
1

2.722194
2.736795
2.740489
2.742055
2.742884
2.743385
2.743715
2.743945
2.744114
2.744241
2.744340

4.370400
4.454318
4.477818
4.488535
4.494546
4.498351
4.500958
4.502846
4.504271
4.505381
4.506268

5.566036
5,692201
5.724835
5.738464
5.745670
5.750006
5.752853
5.754840
5.756291
5.757389
5.758244

Extrapolated
Known

2.7450
2_744989_

4.512 5.764

expansion method agrees with Jeffrey to three significant figures. In fact we note

that the series has not quite converged to the result of Jeffrey even for n = 220 but

a n~3/2 plot was made and the data was extrapolated to give K = 4.512 which is

consistent with Jeffrey's value of 4.51. The tabulated results for K in d = 1,2,3,4

were obtained by evaluating eqn (6.4) with the use of the expression:

S(R) = vc
00 as

-rfAeoE^UE-B.^R
E?-

(6.5)

in the appropriate limit (see Chapter 4), up to s = n + 1, where n is given by the

first column. The extrapolated value for n —> oo is also given and we can see the

slow convergence towards the known results of Djordjevic et al. (1996) for d = 2

and Jeffrey (1973) for d = 3. The other interesting limit is that for 'holes' where

a —> 0 which is a unique result for d = 2 as all (3n —> — 1 giving a duality relation;

K — 2 for holes which is equal to 2 — K for perfectly conducting inclusions giving the

sum for K as 4, This only applies for d — 2. Once again by considering eqn*s (6.4)

and (6.5) up to s — n-i-1, in Table 6.2 we show the results for the quickly converging

values for K and compare them to the known values of Djordjevic et al. (1996) for
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Table 6.2: The coefficient K to
for the holes-limit^

Extrapolated
Known

ie, when a- •

n d=l

20 oo
40 oo
60 oo
80 oo
100 oo
120 co

seven significant figures
-+0.

d = 2

1.277806
1.263205
1.259511
1.257945
1.257116
1.256615

1.2550
1.255284

d=3

0.590254
0.588277
0.588023
0.587937
0.587901
0.587883

0.5878
0.588

is tabulated for d = 1,2,3,4

d = 4

0.381904
0.381573
0.381476
0.381456
0.381447
0.381444

0.3814

d = 2 and Jeffrey (1973) for d = 3. The results encountered so far can be derived in

the context of the imago method (see the previous Chapter). The general dielectric

case using the d-dirnensional image method does not prove easy to solve beyond P3

given the complexity of the dipole, line charge and charge density mappings. The

region of integration in the equations is notably a problem as well as the involvement

of non-elementary functions. We can however make comparison with the multipole

expansion results via an expansion of a series in the ratio f = a/R. This can be

done by averaging over angles and using a Clausius-Mossotti like formula. Thus we

have found that K up to the total averaged image p 3 can be written as a sum

(6.6)

where

Fd{p) = d{d - 1) £ (I)
d+2s I d + S - 1 a + d-1

3=0 a(s + 1) + d + s - 1'
(6.7)

The series in eqn (6.7) can be thought of as a partial resummation of eqn (6.4)

of the multipole expansion method. When the two results are compared we find

agreement up to the appropriate order la /?. In Fig 6.4 we plot the graph of K VS

logio(a) where the dashed curves are the result of using the third order result from

eqn (6.7), while the solid curves are due to the multipole expansion results. We now
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d = 2

d = l

... ~ ^ ^

10

8

6

1 4

\ 2
Ar' d=2

&f ^ —

/ ^ d=l

- 3 - 2 - 1
log,, (a)

Figure 6.4: Plot of AC VS logio(a) for d = 1,2,3,4, comparing the third order result
(dashed lines), eqn (6.7), and the muitipole expansion method results eqn. (6.4). Note
that the discrepancy in the convergence is due to the number of terms calculated in
each case, which does not coincide in this graph.

return to the perfect-conductor limit (a —> oo). Only the d = 2 case can be solved

easily using the general dielectric case. For other higher dimensions this is difficult,

except for the limit of superconducting inclusions, (a —*• oo). Even so, the perfect-

conducting limit is still complicated by the parallel contributions of the field. This

is because (except for d = 2) the point charges that are generated by the parallel

configuration cannot be neglected. We have shown in Chapter 5 nevertheless, a

method of mapping these higher order complex terms. Before investigating the

total dipole moments that include the charge contributions we first examine the

point-dipoles-only approximation. We recall that

2s+l

1/2

3=1

X 2sd-d-l
idx.

EJUC-1)*
2s-k

x,2k

(6.8)

By evaluating eqn (6.8), we can obtain the dipoles only contribution to any order1.

In Table 6.3 we have calculated the first eight contributions that converge very

quickly in d = 2 because the charge contributions are zero. The next step is to
xNote that /? = 1 for the superconducting case so that Fd(0) —• Fd(l)
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Table 6.3: The table below shows values for Fd{l) for the perfect conductor limit
a —> oo for d = 2,3,4. Note that for the case d=l , the result is 0. Also note that
Fd{l) is related to K by K = d + Fd(l).

1 0.666666
2 0,722340
3 0.735509
4 0.740152
5 0.742196
6 0.743232
7 0.743813
8 0.744164

0.842707
0.884733
0.891834
0.893781
0.894482
0,894783
0.894929
0.895007

0.814815
0.839237
0.842187
0.842816
0.843002
0.843069
0.843098
0.843111

evaluate the contributions from both the dipoles and charges and in Table 6.4 the

fail total dipole moments to n = 23 have been tabulated that show the convergence

to the known results in the various limits. It is possible to calculate the convergence

to any order provided we can deal with computational limitations, one of which is

the huge number of terms that have to be calculated symbolically, thus presenting

us with memory limitations on any computing system. Another limit of interest is

the so called weak - scattering limit when a —> 1. To O(/?3) in K we obtained the

result
l/2 *d-l

jj^syid*, (6.9)

where we have tabulated the results for eqn (6.9) in Table 6.5. We can write eqn

(6.9) in teiins of K SO that we have

1/2 sd-l

0 (1 - S2)d ds. (6.10)

In Fig 6.5 we compare eqn (6.10) for the weak-scattering limit (dashed curves)

with the results obtained from the multipole expansion method. By expanding the

integral in eqn (6.9) the first two terms upon integration give Fs(0) = 87/80 in

agreement with the ft3 terms of Jeffrey (1973). As opposed to the method used

here, Jeffrey's solutions do not contain all the terms for 13 which are important

to have if we are considering a resummation of the multipole expansion series of

I
I

I
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Table 6.4: The table below shows values for p n for the perfect conductor limit using
higher order dipole images in ^-dimensions. Values up to n — 23 are shown for
d = 2,3,4. Note that for the case d=l, the result is 0. One can see from the
results below that the convergence towards the known values is much faster when
compared to the multipole expansion method. Also note that Fd(l) is related to K
by K = d

Pn

P3
P4

P5
P6

P7
P8

P9
PlO

Pll
Pl2
Pl3
Pl4

Pl5
Pl6
Pl7
Pl8

Pl9
P20
P21

P22

P23

0.666666
0.666666
0.722340
0.722340
0.735509
0.735509
0.740152
0.740152
0.742195
0.742195
0.743231
0.743231
0.743812
0.743812
0.744163
0.744163
0.744387
0.744387
0.744536
0.744536
0.744640

1.166666
1.291666
1.394103
1.427576
1.455031
1.468273
1.479289
1.485755
1.491220
1.494825
1.497916
1.500118
1.502030
1.503469
1.504731
1.505717
1.506592
1.507297
1.507927
1.508447
1.508915

1.370370
1.550925
1.652564
1.691469
1.716301
1.729623
1.738861
1.744690
1.748973
1.751943
1.754221
1.755901
1.757231
1.758257
1.759089
1.759751
1.760299
1.760747
1.761124
1.761438
1.761706

Known 0.744989...[1J 1.51...[2]
[l]The result for d = 2 is from Djordjevic et al. (1996)
[2]The result for d = 3 is from Jeffrey (1973)

I
I

1
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I
§
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Table 6.5: in the weak-scattering limit to the leading order 0.

d
1
2
3
4
5

0.000000
0.666666
1.264061
1.629629
1.769689

d=2

d=3
d=4

d=l

K

6

5

4

3

d=4

- 3 - 2 - 1 1 2 3 a i °
log, . (a )

Figure 6.5: The graph of K VS logmen) for d = 1,2,3,4. The weak-scattering limit
eqn (6.10) :'s represented by the dashed curves and the solid curves represent the
multipole expansion method eqn (6.4)

Chapter 4. Going back to eqn (6.7), for the limit of holes where a —*• 0, the series

can be summed to give K = 0.583333..., a value that is in good agreement with

Jeffrey (1973) or the value K = 0.588277... obtained by the multipole expansion

method. For the weak scattering approximation we find K = 0.591992... which is in

agreement to two significant figures. On the other hand for the perfect-conducting

case the weak scattering limit gives a value of K = 4.264061 which does not quite

converge to the known value of K = 4.51.... We have derived a useful approximation

for all d and all a from eqn (6.9). The agreement is good for all d with errors of less

that 8%:
/2\d+1

Fd(0)~d(d-l)[-) (6.11)

I

I

I
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10 15 20 25 30

Figure 6.6: Fd vs d. The dashed line is eqn (6.11) and the solid line represents the
weak-scattering limit eqn (6.9)

In Fig 6.6 we plot the weak-°cattering limit eqix (6.9) together with eqn (6.11)

and the dimensional dependence of Fd can be seen. More interestingly, in Fig 6.7

the algebraic approximation eqn (6.11) is compared to the results of the multipole

expansion method for d = 1,2,3,4. Notice that the exact asymptotic behaviour for

d = 4 is as yet unknown. The results so far for the perfect-conductor case, a —> oo,

allow us to plot the conductance a against the low density of inclusions c. Fig 6.8

shows the behaviour of a = c/cQ of inclusions of varying dimension d. We now

return to the problem of the voltage between two hyperspherlcal inclusions. In the

previous Chapter we derived the voltage for any dimension in terms of both the

dipole only and charge contibutions respectively, see eqn (5.62). We also recall the

approximation for the voltage AV

A.V *
— = ^0{d-2)(wd - 2d)\ ^ ^ , (6.12)

where Vo is a constant and u = R/a. In figure 6.9 we see a plot of ^ vs UJ for

d = 2. As expected for d = 2 the charge contributions are zero a;v-i the r.nly

contributions are from the point dipoles only in eqn (5.62). Thus when we plot

the results of Djordjevic et al. (1996) vs eqn (5.62) we see that they are exact.

Furthermore the approximation that we have derived eqn (6.12) is also exact and all

I

I
1
8

m

I
m

I
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d=2

d=3

- 3 - 2

d = l

K

- 1
l o 9 10

Figure 6.7: KVS logio(a). The dashed lines come from eqn (6.11) and the solid lines
axe the result of the multipole expansion method.

10

8

6

4

2

0 . 2 0 . 4 0 . 6 0 . 8 1

c

Figure 6.8: The conductance a = e/eo has been plotted for d = 1,2,3,4 in the low
volume fraction of inclusions c, for perfect-conducting inclusions.

I
I
fas



91

Figure 6.9: The voltage between two inclusions is shown for d = 2. Three results
are actually shown (i) the case of the image method derived here eqn (5.62), (ii) the
case of Djordjevic et al. (1996) and (iii) the approximation eqn (6.12). All curves
are exact and so lie on top of each other.

three curves coincide. These calculations require enormous computational power as

was previously mentioned and unfortunately the author had limited facilities that

could not allow calculations of higher orders. This is more evident when considering

the voltage in d = 3 where apart from the dipoles-only contributions, we must

include the contributions from the charges as well. Fig 6.10 shows the d = 3 case

with the graphs corresponding to eqn (5.62)-without the charge contributions as

well as the case where they are included. The approximation eqn (6.12) is also

plotted for comparison. The true behaviour for the voltage should be close to the

approximation eqn (6.12) within error considerations, however we observe that the

convergence for both dipole only and dipole+charge contributions is painfully slow.

Not surprising given that we require a very large number of terms in order to include

all mappings of dipoles and charges. In Table 6.6 we see how slowly the convergence

is for d = 3. The top part shows the convergence without the charges while the

bottom two rows include the charges for comparison. Fig 6.10 shows that eqn (5.62)

with both dipoles — and — charges only converges slightly more in comparison to

eqn (5.62) without the charges. One way to avoid such computational complexity

is to resum the terms and thus simplify calculations. For example when deriving



92

Table 6.6: Values obtained for AV showing very slow convergence for d = 3. The
first four rows show convergence due to dipole-only interactions in cqn (5.62), while
the last two rows include the image contributions also.

n AV
10 1.29954
20 1.29233
150 1.28991
200 1.28989

10 1.24603
20 1.24408

eqn (6.12) two methods were used (i) inclusion of leading terms and (ii) a simple

regression calculation in order to derive a 'fit' to the data.

6.3 Beyond

Throughout this thesis we have studied two methods that can be used in d-dimensions

to study two body interactions, eg, the voltage between two inclusions. By studying

these second order effects we can begin to consider extensions to existing 1-body

EMT. One way of gaining further insight beyond the d-dimensional multipole ex-

pansion and image methods dealt with here is to solve the same problem using

curvilinear coordinates for a binary system, which granted is not so easily done, but

would check the validity of the previous two. Another consideration is to properly

re-sum terms appearing in the complex mappings between the two inclusions, some-

thing that was done to a certain extent in this thesis with various approximations.

Clearly these re-summations or approximations are also needed to deal with the huge

amount of calculations that need to be performed computationally, a problem that

unfortunately otherwise means the need to access high-end computer hardware and

software. Such approximations or re-summations need to be investigated thoroughly

before being seriously applied to extensions in current EMT.

We have investigated the dielectric function amongst other matters, which is

based on electromagnetic considerations. The more complicated problem of deriving

1
I
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AV

Figure 6.10: The voltage between two inclusions is shown for d = 3. Three results
arc actually shown (i) the case of the image method derived here eqn (5.62) without
the charge contributions (curve 1), (ii) the case of cqn (5.62) with the charge contri-
butions (curve 2) and (iii) the approximation eqn (6.12) (curve 3). The inset shows
the interval Co € [2, 2.5] so that the convergence can be better differentiated between
each case.

a ^-dimensional general solution for hydrodynamics in the same way should be

pursued and properly understood, (founded by Einstein (1906)). The work presented

here may be of use for such an investigation given that the underlying mathematical

analysis can be easily used if symbols and equations are changed appropriately. In

our treatment of the two-body problem we have dealt with the static case. Further

expansions of the results here could come in the form of dynamical considerations.

Moreover the real dielectric function was calculated for a composite material and

it would be interesting to investigate the imaginary part of the dielectric function.

The study of second order effects in EMT means improvements in vaiious areas of

condensed matter physics. For example, the study of optical properties of a dielectric

host system embedded with a random distribution of metallic particles is of interest

to many topics such as, doped semiconductors, colloids, metallic glasses as well as

in areas involved in atmospheric pollution and remote sensing employing microwave

radar instruments.

The application of the effective medium approach to the study of mechanical
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properties of materials leads us to consider the elastic properties of solid systems

(see solutions by Yamakawa (1962) of such a system). One interesting aspect is

the combination of knowledge of fluid and mechanical properties to study sound

propagation in a porous medium. However it is widely seen that the theories involved

are inadequate due to the lack of self-consistency (see Harker and Temple (1988),

thus leaving room for improvements using EMT techniques which of course might

ultimately entail second-order corrections. Finally, one new area of research that

has received much attention in recent years is that of non-linear composites. In the

case of dielectrics, the inclusions are known to have a non-linear constitutive relation

of the form (Landau, Lifshitz and Pitaevskii (1984))

,.T7> _ j _ . . , |T7* |* TTl (ft 1 O\
— CJLJ -p x IJ-/ XLy« lO.-LO /

where the term non-linear susceptibility originated. The idea of course is similar to

what we have been studying throughout in this thesis, that is, to find the effective

coefficients ae, Xe, £e, etc, and the various intrinsic coefficients. One would expect

an analogy to the Bruggeman and Maxwell-Garnett formulae, but the one-body

problem here is highly non-trivial, since Maxwell's equations lead us to non-linear

partial differential equations. For weak non-linearities however, a perturbative so-

lution using spherical harmonics can be obtained Yu et al. (1993), based on which

an EMT theory can also be constructed. There are many areas of EMT that can

be studied that mighl; be improved by considering some of the methods that have

been used here to solve for the two-body contributions. First however, these latter

methods need to be investigated further in order to extend current understanding

of the two-body problem. It is hoped that the work presented here in this thesis has

contributed to that goal.



95

CHAPTER 7

Appendices

7.1 Appendix A: Spherical harmonics shift formula 1

Spherical harmonic shift formulae find applications in many areas of theoretical

physics (Lord Rayleigh 1892; Kohn and Rostocker 1954). In this appendix we will

be concerned with a classic formula attributed to Hobson (1931), which we will

prove generalizes to arbitrary integer dimensions d. We begin with the geometrical

configuration of Fig 7.1. With the usual definition whereby z — xo,Xi,X2,--,Xd-i

are the Cartesian coordinates, by Taylor's theorem the electrostatic potential in d

dimensions can be expanded as

x\ + x\
IP/2 l\

rp
rr r

z\
r) \r1=0

oo J
(7.1)

We must remember that the Pi here are the p-Legendre polynomials. Therefore,

P,(cos<9) (-1)' d1 (\
rl+P l\ dzl

Then by eqn (7.1) we have the following relation;

& fl\ & 1

(7.2)

dzl

&

oo is

iI
I

I
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Figure 7.1: Reoriented twin spherical coordinates. The two polar angles 6 and 9'
are equivalent to 6\ and 92 of Fig 4.1

r"
(7.3)

Thus we have from cqn (7.2) that

P,(cos0)
ri+P

s=0 . + s _ 1 ' "P+S+/ (7.4)

that proves the first shift formula in Chapter 4.

7.2 Appendix B: Spherical harmonics shift formula 2

This shift formula, as compared to the one above, is a little more involved. We first

define complex coordinates: £ = x -f- iy, and 7] = x — iy. The main step requires the

proof of the following" properties of the raising operator:

i (?L + JO) P'-'»M = _L_LPm( } cos(m0) (7 5)

Here // = cos9^) = cos9 and ̂  is equivalent to 0(2) and the triplet (x, y, z) =

{X.\,X2,XQ) now defines a three-dimensional subspace. This is an invariant subspace

in the sense that the triplet can be rotated arbitrarily without affecting our results.

0
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We also need,

1 ( d\m rn

(7.6)
2 \dc;m '

We suppress the subscript (1) of the appropriate angles for convenience as in Fig

7.1. We investigate the proof of these properties in a moment. First we will rewrite

eqn (7.4) by changing I—>• (I - m) so that

Pl-m(ll) oo

P + S - 1

Now by applying eqn's (7.5) and (7.6) we have

—Ps(cos6"). (7.7)

00 Ja

s=Q

(7.8)

and the equation

oo

S=T7l

Js

p-{-s + m —
a+s+l »

P?(cos6"), (7.9)

thus proving the shift formula. It now remains to prove the relations eqn (7.5) and

eqn (7.6). We only need to prove these relations for the case m = 1 as the general m

case (which we don't require) follows a similar line which we will not present here.

We begin with

( d . d \ Pj_i(/i) is ( - & cos 6 d \ Pi-i(fi)
dx dyJ rp+l~* I dr rdOj r p + i - 1

(7.10)

where we have defined x = X\ and y = #2 as above and use is made of the properties

of the gradient operator in the invariant subspace. Recalling the definition of the

p-Legendre polynomials: P^ifi) = —sin(6)P{((i), where the prime denotes derivative

with respect to fi, we now have

dx+tdy
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Now from the generating function of our p-Legendre polynomials:

(7.12)

we can derive numerous properties. Amongst them is the p-Legendre differential

equation

and the relation

where we have suppressed the arguments of the Legendre functions for convenience.

Using the latter relation in eqn (7.11) we finally obtain

' d d
dx dy rl+P

(7.15)

The extension of this theorem to m > 1 uses the same techniques. A final comment

here is that our results are obviously connected with properties of the orthogonal

group O(jp+ 2) and that there may be shorter derivations than those presented here

which use group theory methods.

7.3 Appendix C: Perpendicular flux formula

In this appendix we demonstrate that the flux formula can be deduced for any

arbitrary perpendicular direction of the field. For this purpose, we will choose

another perpendicular axis for the field. Since we have previously dealt with the

axis £(i), let us now consider x^). Thereafter the general result for #(n), where

n = 3,4,..., (d - 1), can be obtained likewise.

For a perpendicular field in the xp)-direction we now have the form

0 = EQx{2) + f; Eodn 1)) sin<?(2) cos0(3), (7.16)

where all angles and other quantities that refer to sphere 1 have their subscripts sup-

pressed for convenience. We also suppress the arguments for the Legendre functions.
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Now the gradient of this potential again looks like:

= E0

oo

n = l
ai

oo

89,
oo

n = l
oo

COS (9(2) COS <9(

sm9r

Once again the integral / dV projects out only the £(2) terms and we have

fJ f f;
J n = 1

(7.17)

sin (9(1) sin2^(2) cos2 O(3)dVx(2)

oo n - l

We have to perform the 0$) a nd (̂3) integrals at this stage. We use the formulae

f sinp
sm

p~2 (7.19)

and

mp-20(3) cos29{3)d9{3) = i fsmp~29{3)d0(3). (7.20)
P

Reabsorbing the integrals over 0(3) back into dV we find the form:

n = l
i . oo / n-l\ opl

- / E So^ (-L-J ^ cos «m si
1 . oo / r n - 1 \ P1

+ - / E EOdn V ^ V C

_ 1 r °° frn~1\ Pl

(7.21)

Now in the case of the #2 integrals we have

= vdB0x(2) p-r
Eodn

n=1
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We can see that this reduction process will carry through in a similar way for any

arbitrary perpendicular direction *(n)l where n = 3,4,..., (d - 1). This completes
the proof.

7.4 Appendix D: Neumann image theory in d dimensions

We begin by considering the electrostatic potential in a d-dimensional space. In the

geometrical configuration of Fig 7.2, remembering that p = d — 2, this is given by

the expression

\r'\p \r*-2ar cos 6+ a2)p/f (7-23)

Upon using the generating function for the Gegenbauer polynomials, C» defined by

E ^ P ( ) (7.24)= E ^ n P ( * ) ,
" /" n=0

and eqn (7.23) can be written for the case r > a as

(r'2 - 2ar cos $ + O2)P/2 ~ r? ^ { r

or for the case r < a as

(7.25)

« - 2ar cos 9 4- a
1 ^ /r\n

(7.26)

Thereafter, following Stratton (1941), we have for the potential inside a dielectric

sphere in d dimensions due to a point charge

oo

n=0
(7.27)

or for the potential outside

n=0
(7.28)

1
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Figure 7.2: The electrostatic potential in ^-dimensions.

Upon using the standard boundary conditions

"u dr w dr '

at the surface of the sphere r = r\ and noting that

Q Q

(7.29)

), (7.30)

where £ is the distance of the charge from the centre of the sphere O, we easily

obtain
Q 2n+p

and

- g l
b

(7.31)

(7.32)

With the definition C.I/C.Q = a and £ = <i, as well as reverting to 7"i = a, these

potentials become

and

^ (a

(7.33)

(7.34)

We can now use Neumann's trick (Bussemer 1994), which makes use of the identity

1 oo

(a + l)n + p

(a
(7.35)
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Figure 7.3: Derivation of the image set (p^S p£)-

Upon inserting this in cqn (7.34),

T '(/A-
) , (7.36)

where dx = a2/d is the image point, and after suitable manipulations with the use

of a partial integration (Bussemer 1994), the potential now becomes

X
- 2

, (7-37)

thereby completing the proof. We will conclude this derivation by pointing out that

the limit d —•» 2 or p —> 0 is in fact pathological. By suitable manipulations the

electrostatic potential becomes a logarithmic function and the Gegenbauer polyno-

mials can be shown to reduce to Chebyshev polynomials. However, all the results

carry through by analytic continuation as d —> 2, thus the limit p —*• 0 does not need

further attention.

7.5 Appendix E: Point perpendicular dipole images

We derive the first perpendicular dipole images. We remind ourselves that from the

electrostatic potential in d dimensions, the definition of a point dipole is given by

Pi" = Q(d — 2)d~. Then from the geometry of Fig 7.3 we have S'/S = b/R. Using the

result for the image point charge, the point dipole p""1 is derived:

a- (7.38)
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as required. In the same way as above, we can consider the two line image charges

as forming a line dipole. The density of the line dipole is

= 9. (±Y
a \RJ

1)2 (7.39)

as required. We note that in the perpendicular configuration, the images are simple

and charge neutrality is obvious from the geometrical structure. This is not the case

for the parallel configuration which we will next examine.

7.6 Appendix F: Point parallel dipole images

A cursory examination of the geometrical configuration for the parallel case using

our knowledge of Neumann images shows that there are several parts to consider.

We begin by noting that from the binomial expansion of the electrostatic potential,
d-2

(7.40)

We have a residual image point charge at the image point given by

Q' = -Q
a+U\R

Pi fa - (7.41)
a \a + i/ \RJ

with the last line following from the definition of the point dipole. Now the dipole

length,
9 9 9

(7.42)f - ^ - °2

i? R + S
so that the point dipole image is given by

R

a THST"-*!' (7.43)

which gives us the required result. Now we look at the line charges and we find that

the R dependence goes as R((d~2)a)/(a+1\ whereupon by the binomial expansion

# a
a + l-R

(7.44)
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Thus we find the expected net line charge density as required. Finally, in view of

the charge density, there is now an infinitesimal region of non-overlap of opposite

charges given by the integral

= J ^{R dzl

(7.45)
a \RJ (a + 1)2'

Combining eqns (7.41) and (7.45), we are now left with a point charge as expected.

I
I
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