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Abstract

We develop several approaches to understand and interpret image contrast

in mirror electron microscopy (MEM) and low energy electron microscopy

(LEEM), with potential applications to photoemission electron microscopy

(PEEM). We treat both the forward problem, of how surface features and

properties create image contrast, and the inverse problem, of how we may

infer quantitative information about surface features and properties from

experimental MEM, LEEM and PEEM images.

The thesis begins with the development of the Laplacian imaging theory

of MEM, whereby image contrast is understood as the second derivative of

the surface topography, blurred slightly to account for the interaction of the

electron beam with the electric field above the specimen, rather than the

specimen surface itself. This intuitive method includes the effects of lens

aberrations and can be rapidly inverted to recover the surface topography

from experimental MEM images. For specimen surface variations that are

outside the regime of the Laplacian imaging theory and other models, we

develop a caustic imaging theory for MEM. This involves solving the electric

field above the specimen and tracing a family or envelope of rays through

the immersion lens. Where initially adjacent rays cross, caustics are created,

and these strong image features may be used to recover three dimensional

surface topography. Both the Laplacian imaging theory and the caustic imag-

ing theory are successfully applied to experimental MEM data to obtain the

surface topography.

As a complement to this ray-based treatment, we then develop a wave optical

treatment of LEEM image contrast, adopting the complex transfer function

methodology from transmission electron microscopy. This method includes

spherical and chromatic aberration, and may be extended to include higher

order aberrations for use in aberration corrected LEEM instruments. With

knowledge of the complex transfer function, we then apply phase retrieval

methods to simulated LEEM images, recovering the electron wave function

and surface topography for a series of step terraces.

Finally, we consider a wave optical treatment of MEM, investigating the be-
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haviour of the electron wave in the vicinity of the turn around region. This is

extended to explore the application of MEM beyond specimen surfaces, and

the feasibility of imaging very weak potentials, such as the ponderomotive

potential experienced by an electron in a light field.
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Introduction and overview 1

1.1 MEM, LEEM and PEEM

Mirror electron microscopy (MEM), low energy electron microscopy (LEEM)

and photoemission electron microscopy (PEEM) are a set of related tech-

niques that investigate surface properties and phenomena. As indicated

in Fig. 1.1, an electron beam is directed through an objective lens and fo-

cused onto a specimen surface. The specimen (typically a semiconductor

wafer) forms the cathode of the electrostatic component of the objective

lens (Bauer, 1962, 1985, 1994; Barnett and Nixon, 1967b; Luk’yanov et al.,

1974; Bok, 1978), and is held at a negative potential so that the incident

electrons lose kinetic energy as they approach the sample. In MEM, the

specimen potential is slightly more negative than the electron source, so that

the electron beam turns around just above the cathode surface. In LEEM,

electrons interact with and are reflected from the specimen with very low

energy (typically 1–100 eV). In PEEM, photoelectrons are instead emitted

from the surface by illuminating the specimen with sufficiently high energy

photons.

In the region close to the cathode, the electrons have very low energy and are

highly sensitive to surface features and/or the electric field produced by the

specimen (Bauer, 1994). Therefore LEEM and related techniques are capable

of probing near-surface structure, surface properties and phenomena in

the first few monolayers of a specimen, with an interaction depth of several

nanometres (Bauer, 1994, 2007; Altman, 2010).

After interacting with the specimen surface and/or the electric field above

the sample, the electron beam is re-accelerated away from the specimen

and exits the objective lens. The beam is then magnetically deflected and

refocused onto an imaging screen. A LEEM may combine a number of spec-
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2 INTRODUCTION AND OVERVIEW

troscopic techniques, and can display the diffraction pattern or a direct

image of the specimen.

Electron
Source

Condensor
Lenses

Magnetic
Prism

Projector
Lenses

Sample

Detector

Objective
Lens

U

V

Figure 1.1: Schematic of a low energy electron microscope. Electrons are
emitted from the source with energy U and directed towards the sample which
comprises part of the objective lens. The returning electron beam is directed
through the imaging system to a detector. Based on Bauer (1994); Phaneuf and
Schmid (2003); Tromp et al. (2010).

One significant advantage of LEEM and associated techniques is that they

offer a fast imaging rate and large field of view which make them suitable for

studying dynamical effects in real time (Tromp and Reuter, 1993; Bauer, 1994;

Phaneuf and Schmid, 2003; Bauer, 2007; Altman, 2010). Additionally, studies

of surfaces often require an ultra high vacuum (UHV), which is practical to
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achieve in LEEM (Bauer, 1994, 2007; Altman, 2010). LEEM images may be

obtained from surfaces under a variety of conditions, such as in the presence

of atom or ion flux and over a wide range of temperatures (Phaneuf and

Schmid, 2003).

A LEEM instrument was first proposed by Bauer in the early 1960s (Bauer,

1962; Turner and Bauer, 1966). Godehardt (1995) discusses a brief history of

mirror mode microscopy from early optics work in Germany in the 1930s.

In the period after Bauer’s first proposal MEM was actively studied and ap-

plied for some time (Barnett and Nixon, 1967b; Luk’yanov et al., 1974; Bok,

1978; Dupuy et al., 1984; Godehardt, 1995). Following the development of a

new LEEM instrument by Telieps and Bauer (Bauer, 1985; Telieps and Bauer,

1985), the use of LEEM and related techniques has flourished, in tandem with

advancements in instrumental design (Tromp and Reuter, 1991; Veneklasen,

1991; Bauer, 1994; Fink et al., 1997; Rempfer et al., 1997; Tromp et al., 1998;

Wichtendahl et al., 1998; Schmidt et al., 2002; Schönhense and Spiecker,

2002; Hartel et al., 2003; Wan et al., 2004; Könenkamp et al., 2008; Schmidt

et al., 2010; Tromp et al., 2010). A typical instrument includes the capabili-

ties of LEEM, low energy electron diffraction (LEED), PEEM, and MEM, and

allows MEM to work in a focused imaging mode rather than projecting onto

a distant screen (Godehardt, 1995).

LEEM has been applied to studies of surfaces including mass-transport,

evaporation, nucleation processes (Griffith and Engel, 1991; Bauer, 1994;

Tanaka et al., 1997; McCarty et al., 2001; Yasue et al., 2001; Tromp and Han-

non, 2002; Watanabe et al., 2004; Hibino and Watanabe, 2005; Kellogg and

Bartelt, 2005; Bauer, 2007; Man et al., 2007b; Altman, 2010), the growth of

nanostructures (Plass et al., 2001; Hannon et al., 2006; Man et al., 2006),

understanding epitaxial growth (Bauer, 1991; Świȩch et al., 1993; Theis et al.,

1995), surface thermodynamics (Bartelt et al., 1994; Plass et al., 2001; Tromp

and Hannon, 2002), phase transitions (Bauer, 1994; Hannon et al., 2001),

morphological evolution (Altman et al., 1995; Tanaka et al., 1997; Ross et al.,

1999; Kellogg and Bartelt, 2005), band structure (Altman, 2005, 2010) and the

properties of thin films and surface features including facets (Telieps and

Bauer, 1985; Telieps et al., 1987; Telieps and Bauer, 1988; Bauer, 1991; Altman

et al., 2001; Tang et al., 2002; Yasue et al., 2002; Chung et al., 2003; Man et al.,

2004, 2006; Bauer, 2007; Altman, 2010). Imaging magnetic phenomena is also

possible by utilising a spin-polarized beam of electrons in spin-polarized

LEEM or SPLEEM (Bauer, 1998; Duden and Bauer, 1998; Poppa et al., 2002;

Phaneuf and Schmid, 2003; Bauer, 2007; Altman, 2010; Rougemaille and

Schmid, 2010). LEED is routinely used to complement LEEM imaging inves-
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tigations (Thayer et al., 2005; de la Figuera et al., 2006; Hannon et al., 2006;

Man et al., 2007a; Sadowski et al., 2007), providing complementary reciprocal

space information.

MEM has been applied to studying electric field contrast (Luk’yanov et al.,

1974; Bok, 1978; Dupuy et al., 1984; Slezák et al., 2000; Shimakura et al., 2008;

Nepijko and Schönhense, 2010), droplet surface dynamics (Hilner et al.,

2009; Tersoff et al., 2009, 2010), surface magnetic fields (Barnett and Nixon,

1967b), and chemical processes at solid surfaces (Świȩch et al., 1993; Ko

and Joy, 2002). It has been used to measure electric field variations above

the specimen surface caused by the surface topography (Tromp and Reuter,

1993; Bauer, 1998; Nepijko et al., 2001b; Speake and Trenkel, 2003) and/or

variations in the electric potential of the specimen, which includes contact

potentials, surface charges and varying conductivity (Barnett and Nixon,

1967a,b; Luk’yanov et al., 1974; Bok, 1978; Dupuy et al., 1984; Świȩch et al.,

1993; Nepijko and Schönhense, 2010).

Although PEEM is a useful and distinct technique in its own right (Griffith

and Engel, 1991; Tromp and Reuter, 1993), we consider it here only in so

far as many of the techniques discussed may be extended to understand

PEEM image contrast. PEEM has been used to image chemical and sur-

face potential contrast (Nepijko et al., 2001a; Günther et al., 2002; Smith

et al., 2003; Morin et al., 2004; Tang et al., 2009), study droplet nucleation

and morphology (Jesson et al., 2007; Tang et al., 2009) and element contrast

(Rockenberger et al., 2002) along with magnetic applications (Wu et al., 2004;

Finazzi et al., 2006; Nepijko et al., 2007).

LEEM and related techniques continue to develop and are being applied to

new areas of research, including energy filtering, surface plasmons, band

structure mapping and k-space imaging (Chelaru and Meyer zu Heringdorf,

2007; Krömker et al., 2008; Barrett et al., 2009; Meyer zu Heringdorf and

Buckanie, 2010).
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1.2 General research aim of the thesis

Along with the experimental development and application of MEM, LEEM

and PEEM, there have been many attempts to explain how image contrast

is produced. Particular emphasis has been placed on understanding the

factors controlling the spatial resolution of the instrument (Shao and Crewe,

1989; Rempfer and Griffith, 1992; Rempfer, 1992; Bauer, 1994; Schmidt et al.,

2010; Tromp et al., 2010).

The general aim of this research was to address the question of ‘how might

we better understand the mechanisms that directly relate image contrast to

surface features and properties?’, with a specific focus on MEM and LEEM.

Answering this question involved two broad stages. The first was in under-

standing and quantifying the forward problem, whereby surface features and

properties create image contrast in MEM and LEEM instruments. Emphasis

was placed on developing image contrast models that produce qualitatively

and quantitatively accurate simulations of experimental MEM and LEEM

images from known surface specimens, whilst remaining as intuitive and

accessible as possible, in order to facilitate rapid and practical interpretation

and understanding of image contrast features.

The second stage was enabled by the first, in that understanding the forward

problem allowed a meaningful investigation of the inverse problem, whereby

surface features and properties may be inferred both qualitatively and quan-

titatively from experimental MEM and LEEM images. Beyond improving the

understanding and interpretation of MEM and LEEM images via a firm grasp

of the forward problem, developing the inverse problem empowers surface

scientists to directly obtain information on the topography, potential and

properties of a specimen surface from experimental images.

The remainder of the introduction establishes the context of the proceeding

chapters, discussing the models and methods used to understand both the

forward and inverse problems in MEM and LEEM.
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1.3 Understanding MEM image contrast

In mirror electron microscopy, the electron beam interacts with the electric

field above the specimen surface, and is sensitive to spatial and/or temporal

variations in the electric field close to the surface. Such field variations re-

sult from the surface topography (Bauer, 1998; Nepijko et al., 2001b; Speake

and Trenkel, 2003) and/or variations in the electric potential of the speci-

men, including contact potentials, surface charges and varying conductivity

(Barnett and Nixon, 1967a,b; Luk’yanov et al., 1974; Bok, 1978; Świȩch et al.,

1993). The returning electron beam therefore contains information concern-

ing the near-surface electric field, which has stimulated significant effort

to interpret MEM image contrast and extract quantitative information of

the field, and the underlying surface properties creating it. Although a va-

riety of approaches have been employed, including some based on wave

mechanics (Hermans and Petterson, 1970; Kennedy et al., 2006), most have

been based on geometrical ray tracing techniques (Barnett and Nixon, 1967a;

Sedov, 1970; Luk’yanov et al., 1974; Someya and Kobayashi, 1974; Bok, 1978;

Rempfer and Griffith, 1992; Rempfer, 1992; Świȩch et al., 1993; Godehardt,

1995). Building on this latter work, a geometrical theory has been developed

which views MEM contrast as a transverse redistribution of electron current

density on an imaging screen. This redistribution is due to shifts in electron

trajectories following interaction with the electric field just above the spec-

imen surface (Sedov, 1970; Dyukov et al., 1991; Nepijko and Sedov, 1997).

This work, which has been used extensively to simulate MEM and PEEM

contrast in a variety of situations (Nepijko et al., 2001a,b, 2003, 2007; Jesson

et al., 2007; Tang et al., 2009; Nepijko and Schönhense, 2010), is here referred

to as the geometrical theory of MEM contrast.

1.3.1 Laplacian imaging theory (Paper 1)

An advantage of the geometrical theory of MEM contrast is that, for special

geometries, the electron shifts can be calculated analytically which provides

important insight into the mechanisms of contrast (Nepijko and Sedov, 1997;

Nepijko et al., 2001a). However, there remained no simple and direct way of

intuitively interpreting MEM contrast from a given general specimen. This is

addressed in chapter 2, where we approximate the geometrical theory for

slowly varying surface features and/or small objective lens defocus, which

is applicable to a wide range of practical imaging situations. The resulting

Laplacian imaging theory presents the intensity I as a function of defocus
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∆ f and the transverse Laplacian of the surface topography ∇2⊥H,

I ≈ 1 − ∆ f∇2
⊥H ~ B/4LM, (1.1)

which is blurred by convolving with the point-spread function B/4LM that

depends on x, y and turning distance δ. Equation (1.1) gives an intuitive

connection between surface features and image contrast, and can be used

to rapidly interpret experimental images and recover the surface topography

of the specimen. As an example, we have recovered the surface height

profile of a trail in a GaAs surface left by a moving Ga droplet. A strong

parallel exists between the Laplacian imaging theory and wave optical ‘out

of focus’ contrast in transmission electron microscopy (TEM) (Cowley, 1995;

Spence, 2003). This allows a number of extensions to be made to the intuitive

method, such as including the effects of spherical and chromatic aberration

as outlined in chapter 2.

1.3.2 Caustic imaging theory (Paper 2)

Laplacian imaging theory (chapter 2) can intuitively and rapidly interpret

MEM image contrast for specimens with small and/or slowly varying sur-

face features. Larger surface features and/or stronger variations, however,

are capable of deflecting the electron trajectories so much that very strong

image contrast is created, including caustic features (Berry, 1981; Nye, 1999).

Such deflections typically violate the assumptions underlying previous ap-

proaches (Someya and Kobayashi, 1974; Godehardt, 1995; Nepijko and Sedov,

1997; Nepijko et al., 2001b; Kennedy et al., 2010; Nepijko and Schönhense,

2010), i.e. that the perturbed electron paths closely match the unperturbed

paths. Other approaches such as Nepijko and Sedov (1997) and Nepijko et al.

(2001a) may only be solved in specific analytical cases. Chapter 3 presents

a general ray-based method of interpreting MEM image contrast, using a

family or envelope of incident electron rays traced through a numerically

solved electric field close to the specimen surface. Where initially adjacent

ray trajectories cross a caustic feature is observed, which can be directly

related to variations in the field above the surface. This allows for the un-

derstanding and interpretation of MEM image contrast in the presence of

stronger field variations than has previously been possible.

The inverse problem, whereby specimen information is recovered directly

from experimental images, is also facilitated by a caustic imaging theory.

Chapter 3 discusses using key caustic features to recover three dimensional

surface information. As an example, the dark central region produced in

MEM images of Ga droplets at negative defocus is used to determine the
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droplet contact angle. In the caustic imaging theory there is no single equa-

tion relating intensity and surface features that we may directly invert. But

the capability for quantitative recovery of information using caustic imaging

theory is shown in chapter 3 to be both possible and practical.

1.4 Understanding LEEM image contrast

1.4.1 Wave optical treatment of LEEM (Paper 3)

In LEEM, the electron beam reaches the surface of the specimen and scatters,

returning with information relating to the surface (Telieps and Bauer, 1985;

Bauer, 1994; Altman et al., 1998; Pang et al., 2009; Altman, 2010). Where the

surface is crystalline, the elastically backscattered beam is concentrated into

specific Bragg angles by diffraction, which may be exploited via a contrast

aperture to image specific diffracted beams in LEEM (Bauer, 1994; Pang et al.,

2009; Altman, 2010). Several models have been developed to explain image

contrast and estimate spatial resolution in LEEM. This includes an early

wave optical description of resolution (Shao and Crewe, 1989) and geometri-

cal descriptions (Bauer, 1985; Rempfer and Griffith, 1992; Rempfer, 1992).

Chung and Altman (1998) and Altman et al. (1998) first applied wave optical

techniques to directly explain LEEM image contrast of surface steps, via the

interference of Fresnel diffracted waves from adjacent terraces either side

of the step. Aberrations in the electrostatic immersion lens and magnetic

objective lens, and diffraction effects created by the contrast aperture, play a

key role in determining resolution and image contrast for surface features

close to the resolution limit (Bauer, 1985, 1994; Rempfer and Griffith, 1992;

Rempfer, 1992; Pang et al., 2009; Tromp et al., 2010), but these were not fully

implemented in the initial treatment of Chung and Altman (1998).

A general wave optical treatment of LEEM is able to incorporate lens aber-

rations and the contrast aperture effect in a natural way, and is therefore

highly desirable. Such a treatment is developed in chapter 4 using a complex

transfer function approach. Independently, a Fourier optics description of

LEEM image contrast, incorporating the aberrations of the objective lens

and the effect of the contrast aperture, was developed by Pang et al. (2009).

Both methods apply techniques from transmission electron microscopy to

describe LEEM imaging, and share the same essential principles and meth-

ods.

In chapter 4 the specimen surface is treated as a perfect mirror, so there is no

change in the amplitude of the reflected electron wave function, and neither
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multiple nor inelastic scattering, nor the quantum mechanical interaction

of the electron with the band structure of the surface atoms is considered

(Altman, 2010). Chapter 4 investigates only phase contrast LEEM images,

e.g. due to surface steps or quantum size effects in thin films (Bauer, 1994;

Altman et al., 1995, 1998; Chung and Altman, 1998; Altman, 2010) which

form a pure phase object, i.e. a wave function with only transverse phase

variation. Pang et al. (2009) likewise assume that the effects of multiple and

inelastic scattering are negligible, but they apply the Fourier optics method

to both amplitude contrast and phase contrast, where amplitude contrast is

due, for example, to differing reflectivity of surface structures (Altman et al.,

2001; Man et al., 2004; Pang et al., 2009; Altman, 2010). Whilst chapter 4

considers only phase contrast LEEM images, the methods described are also

applicable to amplitude contrast. The complex transfer function method

has a small advantage in its efficiency of calculation and straightforward

application to two dimensional images.

As foreshadowed in chapter 4 and by Pang et al. (2009), with the recent devel-

opment of aberration corrected LEEM instruments (Scherzer, 1947; Rose and

Preikszas, 1992; Bauer, 1994; Fink et al., 1997; Rempfer et al., 1997; Tromp

et al., 1998; Wichtendahl et al., 1998; Schmidt et al., 2002; Schönhense and

Spiecker, 2002; Hartel et al., 2003; Wan et al., 2004; Könenkamp et al., 2008;

Schmidt et al., 2010; Tromp et al., 2010), it has become necessary to include

higher order aberration terms in order to understand and simulate LEEM

image contrast. The complex transfer function method has very recently

been expanded by Schramm et al. (2010) to include higher order aberration

terms than in previous wave optical descriptions (Pang et al., 2009; Kennedy

et al., 2009). The method also includes the resolution-limiting effects of the

detector, which are more relevant with the absence of lower order aberra-

tions, and rigorously calculates the aberration coefficients for the instrument

designed and built by Tromp et al. (2010). Finally, Schramm et al. (2010) have

adapted the complex transfer function formalism to PEEM, the primary dis-

tinguishing feature being the absence of spatial coherence in the electron

wave in PEEM, as a result of the photoemission of electrons compared to a

coherent incident electron beam in LEEM.

1.4.2 Recovering specimen information from LEEM images

(Paper 4)

Chapter 5 introduces the application of phase retrieval methods to LEEM

images, whereby knowledge of the complex transfer function including any
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aberrations (via chapter 4 in this case but equally valid for the expanded

transfer function of Schramm et al. (2010)) is used to retrieve the phase ob-

ject that produced the LEEM image contrast. Such techniques have been

applied to transmission electron microscopy (TEM) images (Op de Beeck

et al., 1996; Bajt et al., 2000; Meyer et al., 2000; Allen et al., 2001; Allen and

Oxley, 2001), for phase–amplitude retrieval using the transport-of-intensity

equation (Teague, 1983; Paganin and Nugent, 1998), for coherent diffractive

imaging (Miao et al., 1999; Spence, 2007), Fourier holography (Eisebitt et al.,

2004) and ptychography (Faulkner and Rodenburg, 2004; Rodenburg et al.,

2007).

Whilst chapter 5 demonstrates the retrieval from a single image of a wave

function with only phase variations, more complex electron wave functions,

e.g. those that include both phase and amplitude variations, may in general

be recovered using a series of images (Misell, 1973; Op de Beeck et al., 1996;

Paganin and Nugent, 1998; Bajt et al., 2000; Allen and Oxley, 2001; Gureyev

et al., 2004). In the future, phase and/or amplitude retrieval methods could

and should be applied to experimental LEEM images from the new genera-

tion of aberration corrected instruments to extract high resolution structural

information.

1.5 Wave optical treatment of MEM image contrast

In addition and complementary to the ray-based methods of chapters 2 and

3, and inspired by the methods of chapters 4 and 5, we next consider the

development of a wave optical description of MEM, using a similar formal-

ism to that developed for LEEM in chapter 4. This is desirable because it

would comprehensively include aberrations in both standard and aberration-

corrected instruments, and allow the implementation of existing phase and

amplitude retrieval techniques, as well as deepening our understanding

of MEM image contrast. However, the first major requirement in moving

from a ray to a wave-based treatment of MEM is to properly understand the

behaviour of an electron in the turning region of the electron beam, which

in MEM occurs above the specimen surface. Additionally, as the electron

beam only interacts with the electric field above the specimen rather than

the surface directly, the connection between surface features and properties

and the electron wave function may be more complex in MEM than in LEEM.

In addressing these two requirements, it is useful to first employ analytical

methods where possible, as they may yield important physical insight into

the mechanisms of contrast.
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1.5.1 Investigating the MEM turn around region (Paper 5)

In chapter 6 we consider the first requirement, investigating the turn around

region of the electron beam. Following a similar analytical method to Her-

mans and Petterson (1970), the Schrödinger equation for the electron in

the immersion lens of a typical MEM instrument is solved, and the electron

wave is described via Airy functions (Abramowitz and Stegun, 1964; Hermans

and Petterson, 1970; Kennedy et al., 2006). In particular, in chapter 6 we

investigate the variation of phase in the vicinity of the turn around region.

We discover a transition that occurs between hard and soft reflection limits,

where the “softness” of reflection is defined as the distance over which the

wave turns around compared to its wavelength. This is of interest in its

own right (Friedrich and Trost, 1996a,b), and provides further insight into

the accumulation of phase in the turn around region of the electron beam,

where the sensitivity of MEM is highest.

1.5.2 Sensitivity of MEM to weak fields (Paper 6)

Finally, chapter 7 extends the investigation into the turning region of the

electron beam (chapter 6), and considers the sensitivity of MEM to weak

fields above the specimen surface. This includes the intriguing possibility of

moving the turn around region well above the cathode surface, to image weak

fields not created by the specimen itself, a capability unique to MEM. One

example is the weak ponderomotive potential experienced by an electron

in a standing light wave (Kapitza and Dirac, 1933; Freimund and Batelaan,

2002). The high sensitivity of low energy electrons to weak potentials, and

the relatively long exposure time in the turn around region compared to

transmission experiments, makes the imaging of weak potentials via MEM

a compelling possibility, and may extend the application of MEM beyond

surface science studies.

1.5.3 Completing the wave optical treatment of MEM

Building upon chapters 6 and 7, future work includes addressing the second

requirement of a wave optical description of MEM, i.e. understanding the

connection between surface features and properties and the electron wave

function. One possibility is in using the ray trajectory method of chapter

3, where each trajectory may be given the same initial phase, and then by

integrating along each distinct path and accounting for the phase changes

associated with caustics (Marcuse, 1976), a phase difference between ray
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trajectories will accumulate. This would produce an estimate of the electron

wave function’s phase across a plane parallel to the cathode surface, opening

up the direct application of transfer function theory.

1.6 Application to PEEM image contrast

The methods developed above, which describe image contrast in MEM and

LEEM and are used to recover specimen information from experimental

images, may in principle be applied to PEEM with appropriate modifica-

tions. The Laplacian imaging theory may be altered to include only the

electron motion away from the surface, reducing the shifts and correspond-

ing blurring functions. The caustic imaging theory of MEM may likewise be

modified so that a family of rays is emitted from the specimen surface with

very low energy, with trajectories traced away from the surface through the

electric field. This would enable, for example, a comparison of the appar-

ent sizes of specimen features with the actual size on the cathode surface.

With appropriate aberration coefficients the wave optical treatment of LEEM

may also be applied to understanding PEEM image contrast, and has been

performed by Schramm et al. (2010). The loss of spatial coherence in the

electron wave in PEEM, due to the random creation of photoelectrons, must

be taken into account in general (Schramm et al., 2010). These extensions

are not considered in detail here.

1.7 Overview of the thesis

This chapter has briefly reviewed MEM and LEEM, establishing context for

each of the six proceeding chapters that compromise the bulk of this thesis

by publication. Chapters 2 and 3 develop two complementary treatments of

MEM image contrast using primarily ray-based methods. The thesis then

moves on to LEEM image contrast in chapter 4, developing a wave optical

treatment of LEEM with the specific example of phase contrast images of

surface steps. This model is used in chapter 5, which applies phase retrieval

techniques to LEEM phase contrast images. The thesis then returns to MEM

imaging, developing a wave optical description of MEM image contrast by

first examining the electron behaviour in the immersion lens in chapters 6

and 7, with emphasis on the turn around region and the sensitivity of the

electron beam to weak fields in this region. The thesis is then brought to a

close in chapter 8 with concluding remarks and comments on future work.
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Laplacian image contrast in mirror electron

microscopy

By S. M. Kennedy, C. X. Zheng, W. X. Tang, D. M. Paganin, D. E. Jesson†
School of Physics, Monash University, Victoria 3800, Australia.

We discuss an intuitive approach to interpreting mirror electron microscope (MEM) images, whereby
image contrast is primarily caused by the Laplacian of small height or potential variations across
a sample surface. This variation is blurred slightly to account for the interaction of the electrons
with the electrical potential away from the surface. The method is derived from the established
geometrical theory of MEM contrast, and whilst it loses quantitative accuracy outside its domain of
validity, it retains a simplicity that enables rapid interpretation of MEM images. A strong parallel
exists between this method and out of focus contrast in transmission electron microscopy (TEM),
which allows a number of extensions to be made such as including the effects of spherical and
chromatic aberration.

Keywords: Mirror electron microscopy (MEM), Laplacian image contrast,
phase contrast, Ga droplets, GaAs

1. Introduction

Mirror electron microscopy (MEM) is a well-established technique which has seen wide application
in the real time study of surface phenomena. Applications include the study of chemical processes
at solid surfaces (Świȩch et al. 1993), surface magnetic fields (Barnett & Nixon 1967a), electric
field contrast (Luk’yanov et al. 1974; Bok 1978; Slezák et al. 2000; Shimakura et al. 2008) and
droplet surface dynamics (Tersoff et al. 2009). MEM is unique in surface electron microscopy in
that electrons neither impact nor are emitted from the specimen surface. Instead, a near-normally
incident beam is reflected at equipotential surfaces just above the specimen. This is achieved by
holding the specimen at a small negative voltage relative to the electron source. As the electrons
reverse direction, they are travelling very slowly and are consequently sensitive to spatial and/or
temporal variations in microfields in the vicinity of the surface. These microfields may, for example,
result from small variations in the electric field above the cathode caused by the surface topogra-
phy (Bauer 1998; Nepijko et al. 2001b; Speake & Trenkel 2003) and/or variations in the electric
potential of the specimen itself, including contact potentials, surface charges and varying conduc-
tivity (Barnett & Nixon 1967a, b; Luk’yanov et al. 1974; Bok 1978; Świȩch et al. 1993; Godehardt
1995). MEM therefore has a significant advantage in that it can probe surface phenomena benignly,
without electrons impacting the surface.

The reflected electrons in MEM contain information concerning microfields which are in turn re-
lated to the topography and/or the electrical and magnetic properties of the surface. This has stim-
ulated significant efforts over the years to interpret MEM image contrast and extract quantitative
information regarding the microfields and surface properties. Although a variety of approaches have
been employed, including some based on wave mechanics (Hermans & Petterson 1970; Kennedy et
al. 2006), most have been based on geometrical ray tracing techniques (Barnett & Nixon 1967b;
Sedov 1970; Luk’yanov et al. 1974; Someya & Kobayashi 1974; Bok 1978; Rempfer & Griffith 1992;
Świȩch et al. 1993; Godehardt 1995). Building on this latter work, a geometrical theory has been
developed in which MEM contrast is viewed as a transverse redistribution of electron current den-
sity on an imaging screen due to shifts in electron trajectories following interaction with microfields

† Author for correspondence (David.Jesson@monash.edu).
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just above the specimen surface (Sedov 1970; Dyukov et al. 1991; Nepijko & Sedov 1997). This
work, which has been used extensively to simulate MEM and photoemission electron microscopy
(PEEM) contrast in a variety of situations (Nepijko et al. 2001a, b, 2003, 2007; Jesson et al. 2007;
Nepijko & Schönhense 2010; Tang et al. 2009), will form the basis of this paper and we henceforth
refer to this approach as the geometrical theory of MEM contrast.

An advantage of the geometrical theory of MEM contrast is that, for special geometries, the electron
shifts can be calculated analytically which can provide important insight into the mechanisms of
contrast (Nepijko & Sedov 1997; Nepijko et al. 2001a). Presently, however, there is no direct way
of intuitively interpreting MEM contrast of a given general specimen. Here, we present a theory of
Laplacian image contrast (see, for example, Berry (2006)) in MEM which is an approximation of the
geometrical theory, yet applicable to a wide range of practical imaging situations. The advantage
of the theory is that the image contrast can be interpreted in terms of the Laplacian of an effective
two-dimensional phase object which is directly related to the near-surface microfield. For variations
in surface topography, the effective phase is related to a blurred surface height function so that the
contrast can be intuitively linked to surface features. Even beyond its strict range of applicability,
Laplacian image contrast retains a simplicity which enables rapid interpretation of MEM images.
We will show that a strong parallel exists between this method and ‘out of focus’ contrast in
transmission electron microscopy (TEM) (Cowley 1995; Spence 2003). This allows a number of
extensions to be made to the intuitive method, such as including the effects of spherical and
chromatic aberration.

2. Geometrical theory of MEM contrast

Nepijko, Sedov and Dyukov (Dyukov et al. 1991; Nepijko & Sedov 1997), building upon earlier
work of Sedov (1970), Luk’yanov et al. (1974) and others (Barnett & Nixon 1967b; Bok 1978) have
developed a robust geometrical theory of MEM contrast. The approach utilizes a predominantly
classical ‘ray based’ description of the electron motion inside the imaging system. While the major
results are quoted by Nepjiko & Sedov (1997) and Nepijko et al. (2001b, 2003), and many salient
points of the theory are emphasized by Luk’yanov et al. (1974), the foundations of the methodology
are less accessible (Dyukov et al. 1991, in Russian). Since the geometrical theory is the basis for
our development of a theory of Laplacian image contrast in MEM, we therefore briefly summarize
the key steps here, highlighting the assumptions used in the general case as well as adapting the
method to a low energy electron microscope (LEEM) imaging system.

A typical electrostatic MEM immersion lens is shown schematically in figure 1. Here the z axis
coincides with the optical axis of the immersion lens and the planar sample surface corresponds
to the (x, y) plane of a Cartesian coordinate system. The specimen is held at a negative potential
(V < 0) relative to the grounded anode aperture a distance L away. The specimen therefore acts
as the cathode of the immersion objective lens (Barnett & Nixon 1967b; Luk’yanov et al. 1974;
Bok 1978; Bauer 1985). Electrons, accelerated to initial energy U , travel along the optic axis, pass
through the anode aperture (figure 1) and are deflected by the difference in electric field either
side of the aperture (Grant & Phillips 1990). For a perfectly smooth sample surface, the electric
field between anode and cathode is uniform (except very close to the aperture) and we may trace
the electron path classically, whereby the electron moves along a parabolic path as shown in figure
1. If the potential V is chosen such that the electron has zero energy at the cathode surface, i.e.
U = −eV with electronic charge −e, the classical turning point is at z = L. Experimentally it is
customary to adjust V so that U < −eV and the classical turning point is at z = LM as per figure
1, which is located a distance of δ above the specimen surface. For simplicity deflections in the y
direction are not shown, but they are treated independently in the same fashion.
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Figure 1. Classical electron trajectories (solid lines), travelling parallel to the optical axis z along the centre
of an anode aperture A, are deflected away from the axis due to the aperture acting as a diverging lens,
both upon entering and exiting the anode–cathode region. The aperture separates an electric field free
region (z < 0) from a constant electric field of V/L (0 ≤ z ≤ L), where the cathode specimen S is held at
potential V < 0 compared to the anode. An electron of energy U < −eV turns at a distance of z = LM .
The y axis extends out of the page. Based on Nepijko & Sedov (1997).

The objective lenses of modern LEEM instruments frequently consist of the electrostatic MEM
immersion lens shown in figure 1 combined with a magnetic imaging part (Bauer 1994). To a good
approximation these two components can be treated separately (Bauer 1985). As shown in figure
2, the effect of the homogeneous electric field on the trajectory of an electron which turns around
a distance δ above the surface is that it appears to originate from the point P , located in the
virtual image plane at a distance 2LM from the anode where LM = L − δ. The effect of the anode
aperture is incorporated by assuming that the uniform field is terminated by an ideal diverging
lens (Grant & Phillips 1990; Rempfer & Griffith 1992; Nepijko & Sedov 1997), as shown in figure
2. The virtual specimen created by the uniform field at z = 2LM is the object of the aperture lens
with focal length f = −4LM . This lens forms a virtual image of the virtual specimen at point Q
which is located in a virtual image plane a distance 4LM/3 from the anode. This is the object
plane of the magnetic LEEM objective lens.

The geometrical theory of MEM contrast (Dyukov et al. 1991; Nepijko & Sedov 1997) considers
the interaction of an electron with variations in the electrical potential V (x, y, z̄) above the sample
surface, where z̄ = L − z. This potential is associated with a local surface potential function
V (x, y, z̄ = 0) which may, for example, arise due to areas of differing work function or applied
voltage. A further case arises when the surface is equipotential but varies in height. This situation
is equivalent to a planar surface with a corresponding potential distribution (Nepijko & Sedov
1997)

V (x, y, z̄ = 0) = V H(x, y)/L, (2.1)

where H(x, y) specifies the surface height of the specimen. In this paper we will chiefly concentrate
on situations of MEM contrast from variations in surface topography via equation (2.1). However,
we emphasize that the discussion is entirely valid for variations in potential which can be incorpo-
rated directly in V (x, y, z̄ = 0). By solving the Dirichlet problem for Laplace’s equation for a half
space we have (Polozhiy 1967; Boudjelkha & Diaz 1972; Nepijko & Sedov 1997)

V (x, y, z̄) =
z̄

2π

∫ ∫ ∞

−∞

V (ξ, η, z̄ = 0)

((x − ξ)2 + (y − η)2 + z̄2)3/2
dξdη, (2.2)

which expressed as a convolution is (Cowley 1995; Press et al. 2007)

V (x, y, z̄) =
z̄

2π
V (x, y, z̄ = 0) ~ (x2 + y2 + z̄2)−3/2. (2.3)

19



x0

3x0 �2

V
L

0 z

x

P

Q

A S

∆

LM 4LM �3 2LM

Figure 2. The electron trajectory (solid line) entering the anode aperture A at a lateral position x0 is
defected by the homogeneous electric field in the region 0 ≤ z ≤ L so that it appears to originate from
the point P at z = 2LM . Upon passing back through the anode aperture A the electron trajectory is
again deflected so that the apparent point of origin P is moved to Q at a distance of z = 4LM/3 with a
magnification of 2/3. Note that the electron is closest to the surface S at x = 3x0/2.

From equation (2.1), the variation in electric potential above the specimen surface can then be
expressed as the height function H(x, y) convolved with a smoothing function,

V (x, y, z̄) =
z̄V

2πL
H(x, y) ~ (x2 + y2 + z̄2)−3/2. (2.4)

Physically the smoothing function represents the blurring and softening of the electric field when
moving away the cathode surface. This smoothed potential will therefore extend beyond the (x, y)
range of a localised hill or valley described by H(x, y), for example. The additional potential
V (x, y, z̄) rapidly approaches zero as z̄ increases away from the surface. The geometrical theory
therefore assumes that any change to the electron motion caused by the finite height variation of the
cathode occurs very close to the sample surface. In addition, the z-dimension motion is assumed to
be unchanged, so that all of the momentum change in the transverse dimensions (x, y) occurs very
close to the classical turning point at z = LM . This amounts to a column approximation, whereby
an electron entering the anode at (x0, y0) is affected most strongly by the cathode at (3x0/2, 3y0/2)
where it is closest to the surface (see figure 2). The x and y derivatives of the potential, integrated
along the z axis for the column (3x0/2, 3y0/2) therefore give the change to the x and y velocities
respectively. Using the approach of Nepijko & Sedov (1997) and Dyukov et al. (1991) the shift of
electron position Sx, Sy on the plane z = 4LM/3 + ∆f due to H(x, y) for a small defocus ∆f of
the magnetic objective lens (see figure 3) is given by

Sx(x, y, δ,∆f) =
∂

∂x

√
LM

π

9∆f

8LM − 6∆f
H(x, y) ~ ((δ2 + x2 + y2)−3/4(2EE(x, y, δ) − EK(x, y, δ))),

(2.5)

Sy(x, y, δ,∆f) =
∂

∂y

√
LM

π

9∆f

8LM − 6∆f
H(x, y) ~ ((δ2 + x2 + y2)−3/4(2EE(x, y, δ) − EK(x, y, δ))),

(2.6)
where

EE(x, y, δ) = E

(
1

2
− δ

2(δ2 + x2 + y2)1/2

)
, EK(x, y, δ) = K

(
1

2
− δ

2(δ2 + x2 + y2)1/2

)
, (2.7)
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and K, E respectively denote complete elliptic integrals of the first and second kind (Abramowitz
& Stegun 1964; Borwein & Borwein 1987). Here, the magnitude of the electron shift is scaled to the
object coordinates (Dyukov et al. 1991; Nepijko & Sedov 1997). Note that for ∆f = 0 the electron
shifts are zero, even for a rough surface with non-zero H(x, y). The plane z = 4LM/3 therefore
corresponds to the in-focus plane of minimum contrast and a finite defocus ∆f is required to
obtain image contrast. In the special case where δ = 0 the electron has sufficient energy to reach
the surface, and the shifts simplify to

Sx(x, y,∆f) =
∂

∂x

√
L

π3

9∆f

8L − 6∆f
Γ(3/4)2H(x, y) ~ (x2 + y2)−3/4, (2.8)

and similarly for Sy. For later convenience, we separate the derivatives in Sx and Sy from the
convolution of the height with the blurring function, introducing the blurred height HB

HB(x, y, δ,∆f) =
∆f

4LM − 3∆f
H(x, y) ~ B(x, y, δ). (2.9)

The blurring function is

B(x, y, δ) =
9
√

LM

2π
(δ2 + x2 + y2)−3/4(2EE(x, y, δ) − EK(x, y, δ)), (2.10)

which incorporates the smoothing or softening of the electric field as we move away from the
cathode surface (see equation (2.4)), and the resulting interaction of the electron with this field.
Note that the factor ∆f/(4LM − 3∆f) in equation (2.9) also contributes to the blurring of the
height, but it is kept separate from B(x, y, δ) for later convenience. Equation (2.5), for example,
can then be expressed as

Sx(x, y, δ,∆f) = (∂/∂x)HB(x, y, δ,∆f). (2.11)

The shifts in electron position defined by equations (2.5) and (2.6) result in a redistribution of
intensity on the plane z = 4LM/3 + ∆f . The new intensity distribution can be derived from
electron flux conservation giving (Dyukov et al. 1991; Nepijko et al. 2001b)

I(x + Sx, y + Sy) = I0(x, y)/

∣∣∣∣1 +
∂Sx

∂x
+

∂Sy

∂y
+

∂Sx

∂x

∂Sy

∂y
− ∂Sx

∂y

∂Sy

∂x

∣∣∣∣ , (2.12)

where I0(x, y) is the unperturbed intensity distribution on the plane corresponding to H(x, y) = 0
and is typically taken as unity. Intensity values are therefore calculated from the first spatial
derivatives of the shift functions, and these are moved from (x, y) to (x + Sx, y + Sy) to evaluate
the new intensity distribution.

3. Laplacian image contrast in MEM

We now consider the geometrical theory of MEM contrast in the limit of small objective lens
defocus and/or slowly varying H(x, y), which is an important practical case frequently encountered
in MEM. In addition to the assumptions underpinning the geometrical model highlighted in section
§2, we require that the derivatives of the blurred height are small,

|∂2HB(x, y, δ,∆f)/∂x2| ≪ 1, |∂2HB(x, y, δ,∆f)/∂y2| ≪ 1, (3.1)

which for simplicity we will refer to as

|∇2
⊥HB(x, y, δ,∆f)| ≪ 1, (3.2)
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Figure 3. The unperturbed (grey line) and perturbed (black line) electron trajectories are traced back
along their apparent straight line paths (dashed lines) to the plane z = 4LM/3 + ∆f . The difference in
their position ∆r is scaled by the expected magnification of the image on this plane relative to the cathode
surface S, to obtain the electron position shifts Sx and Sy in the specimen plane.

where ∇2
⊥ is the transverse Laplacian (∂2/∂x2+∂2/∂y2). For a given blurring function B (equation

2.10) that is determined by the experimental parameters, the required limits of equations (3.1) and
(3.2) are met with a sufficiently small objective lens defocus ∆f satisfying

|∆f | < 4LM/(3 + maxx,y|∇2
⊥H(x, y) ~ B(x, y, δ)|), (3.3)

where maxx,yg(x, y) denotes the maximum value of g(x, y) over the range of points (x, y). Con-
versely, if we require that the maximum |∆f | used in a through-focal series of images is large enough
to provide significant image contrast, i.e. |∆f | > α for some distance α, equation (3.3) demands
that H(x, y) be sufficiently slowly varying to satisfy maxx,y|∇2

⊥H(x, y)~B(x, y, δ)| < −3+4LM/α.
Note that smoothness of the height profile is not required, only that the Laplacian of the height
profile (blurred by the function B) and/or the defocus is small enough to satisfy equations (3.1)
and (3.2).

Inserting equations (2.9) and (2.11) into equation (2.12), the image intensity can be expressed in
terms of the blurred height function as

I

(
x +

∂HB

∂x
, y +

∂HB

∂y
, δ,∆f

)
= 1/

∣∣∣∣∣1 +
∂2HB

∂x2
+

∂2HB

∂y2
+

(
∂2HB

∂x2

)(
∂2HB

∂y2

)
−

(
∂2HB

∂x∂y

)2
∣∣∣∣∣ .

(3.4)
For small defocus ∆f and/or slowly varying H(x, y) ensuring small derivatives of the blurred height
(equations (3.1) and (3.2)), the intensity expression is approximated by

I(x, y, δ,∆f) ≈ 1/|1 + ∂2HB/∂x2 + ∂2HB/∂y2|. (3.5)

This is valid for small shifts in electron trajectory (see equation (2.11)) so that we have neglected
the change in x, y coordinates in I(x, y, δ,∆f) and derivatives greater than second order. Since the
second derivatives in equation (3.5) are much smaller than unity, the denominator will always be
positive, so we may remove the absolute value signs and take the binomial approximation of the
denominator giving

I(x, y, δ,∆f) ≈ 1 − (∂2/∂x2 + ∂2/∂y2)HB(x, y, δ,∆f) = 1 − ∇2
⊥HB(x, y, δ,∆f). (3.6)
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The blurred height contains the constant term ∆f/(4LM −3∆f) (see equation (2.9)), and provided
we choose a defocus much smaller than the sample-to-anode distance L, e.g. ∆f = 10−5 m,
L = 10−3 m, this term is approximately proportional to the defocus ∆f . So we may write the
intensity as

I(x, y, δ,∆f) ≈ 1 − ∆f∇2
⊥H(x, y) ~ B(x, y, δ)/4LM , (3.7)

where the blurring function B(x, y, δ) is given in equation (2.10). This indicates that where the
height variation and/or defocus is small enough to satisfy equation (3.2), the image intensity on the
‘out of focus’ plane z = 4LM/3 + ∆f is the Laplacian image of the height function, blurred with a
function B(x, y, δ)/4LM to account for the interaction of the electron with the electric field above
the cathode surface. In the regime where this approximate expression is valid, we may therefore
interpret MEM image contrast to be created solely by the transverse second derivatives (curvature)
of the surface height variation, smoothed by a blurring function. This is an important result for
the intuitive interpretation of MEM contrast of surface topography.

Laplacian imaging is widely encountered in many contexts ranging from X-Ray imaging (Paganin
2006) to oriental magic mirrors (Berry 2006) and their modern equivalent in Makyoh topography
(Riesz 2000). It is also known as out of focus contrast in transmission electron microscopy (TEM)
of thin specimens (Lynch et al. 1975; Cowley 1995; Spence 2003). The applicability of the Laplacian
imaging formalism to MEM under particular conditions considerably simplifies image interpretation
as we will discuss in §4.

4. Intuitive interpretation of MEM image contrast

As an application of Laplacian imaging in MEM we apply the technique to investigate Ga droplets
on GaAs (001). This system is known to exhibit droplet surface dynamics which obey an unusual
temperature dependence (Tersoff et al. 2009). As Ga droplets move on the rough GaAs (001)
surface they leave behind smooth trails as shown in the atomic force microscope (AFM) image
in figure 4. Outside of the trail there is significant surface roughness and we obtain a mean trail
profile by averaging the surface height along the y axis in the framed region shown in figure 4. The
resulting averaged cross-sectional profile, contained in figure 5(a), is 1.9 µm wide and 14 nm deep.
For the range of droplet sizes studied by AFM we find that the width to depth ratio of the trails
is approximately constant (∼ 140). With L = 2 mm, δ = 40 nm, V = −20000.4 V and U = 20
keV, and for the droplet trails considered here we find that maxx,y|∇2

⊥H(x, y) ~ B(x, y, δ)| ≈ 35
m−1 or lower, so that the condition of equation (3.3) requires that |∆f | < 200 µm in order to
satisfy |∇2

⊥HB | ≪ 1. Therefore the assumptions underpinning a Laplacian contrast interpretation
as outlined in §3 are valid and we choose the droplet trails as convenient test objects for Laplacian
MEM imaging. Note that the height of the droplet itself (denoted ‘D’ in figure 4) is too large (0.3
µm above the cathode surface) to satisfy the assumption that changes in the z-component of the
electron motion can be neglected. Therefore, it is inappropriate to apply the geometrical theory
and a Laplacian interpretation in this case.

It is experimentally impractical to obtain both AFM and MEM images of the same droplet trail,
therefore we consider only the general features of the AFM data of figure 4. Specifically, we ignore
the significant surface roughness outside the trail, still present due to the limited area available for
averaging, which will inevitably lead to strong intensity fluctuations in MEM images. So rather
than use the AFM data directly in the Laplacian MEM method, in this example we instead model
the trail using a height function H(x) which is the sum of two inverse tangent functions,

H(x) =
T

π

(
tan−1

(
x − R

O

)
− tan−1

(
x + R

O

))
. (4.1)

Here T sets the maximum depth of the trail, R is the distance of the side from the centre, and O
sets the steepness of the trail edge, e.g. for O = 0.1 µm, 80% of the variation of the trail edge about
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Figure 4. Atomic Force Microscope (AFM) image of a trail left by a moving Ga droplet marked D on a
GaAs (001) surface. The region inside the box is integrated along y to obtain a one dimensional height
profile in x, shown in figure 5(a).

its midpoint occurs over a distance of 0.5 µm (see figure 5(a)). A background linear variation in x
in the AFM data was ignored when fitting the height function (the variation was removed to give
figure 5(a)), as we consider only the general features of the AFM data in this example. Note that
the Laplacian contrast method is insensitive to linear variations in x that span the entire AFM
image, since the second derivative of the height dominates the image contrast. However a linear
variation that begins and/or ends within the data range will introduce a discontinuity where the
linear variation starts and/or finishes, which has a non-zero second derivative and will contribute
to the image intensity.
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Figure 5. (a) Averaged one dimensional profile of a droplet trail on the cathode surface (grey line), along
with the simplified height function H(x) (black line) fitted using equation (4.1) with R = 0.95 µm, O = 0.1
µm, T = 15 nm. (b) Second spatial derivative of H(x) which provides the key qualitative features of the
MEM image.

Fitting equation (4.1) to the general features of the averaged cross-sectional profile gives a simpli-
fied model of the trail height function (see figure 5(a)). As indicated in figure 5(a), we choose a
broad trail edge to account for the width variation and surface roughness evident in figure 4. As
discussed earlier, a major advantage of Laplacian imaging contrast is its ease of interpretation via
equation (3.7). It is therefore straightforward to predict the general features of the image contrast
of a droplet trail from the second derivative of the model trail height function contained in figure
5(a). This is shown in figure 5(b) and indicates that the MEM image should contain a bright and
dark contrast band in the vicinity of the trail edges, along with constant intensity in the centre of
the trail. We emphasise that such a first order interpretation of MEM contrast in terms of surface
curvature is quite general and independent of the surface profile, provided the Laplacian imaging
theory is valid. This has important practical value for studies of surface phenomena using MEM.
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In practice, equation (3.7) indicates that the second derivative of H is softened or smoothed by
convolution with the blurring function B(x, y, δ) in forming the image, physically accounting for
the electron interacting with the electric field above the cathode. The defocus ∆f will affect both
the magnitude and the sign of the contrast peaks. A qualitative comparison of simulated Laplacian
contrast images, based on equation (3.7), with experimental MEM images of a trail similar to that
in figure 4 is shown in figure 6 for negative, zero and positive defocus values. Although the surface
roughness outside the trail region results in significant contrast fluctuations, it can be seen that
the main features of the experimental image through-focus sequence are consistent with Laplacian
imaging theory for a generalised trail profile. A more complex or realistic height profile, e.g. that
recovered in §7 in figure 9(b), can account for image features caused by surface roughness. Figure
7 compares simulations and experimental profiles of the MEM image intensity for positive and
negative defocus values. The latter profiles have been integrated over the two dimensional panel
region on figure 6, parallel to the trail edges, to reduce the intensity fluctuations caused by the
surface roughness. The good agreement in both cases again illustrates the applicability of Laplacian
imaging which facilitates the interpretation of image contrast in terms of surface curvature.

D

HaL

HbL

HcL

HdL

2 mΜ

1 mΜ

Figure 6. (a) MEM image of a moving Ga droplet D and the trail left on a GaAs (001) surface. Imaging
conditions were V = −20000.4 V, U = 20 keV and L = 0.002 m giving δ = 40 nm. Comparison of MEM
images and simulations using equation (3.7) of the trail region contained in the frame in (a) are shown for
(b) negative defocus (∆f = −15 µm), (c) approximately zero defocus and (d) positive defocus (∆f = 15
µm). The trail height function was approximated using equation (4.1) for R = 0.83 µm, O = 0.1 µm,
T = 13 nm.
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Figure 7. Comparison of simulated Laplacian contrast images (black lines) with experimental MEM in-
tensity profiles of a droplet trail (grey lines). The experimental MEM intensity profiles were obtained by
spatially averaging the intensities parallel to the trail edge over the two dimensional regions in figure 6(b)
and (d). (a) ∆f = −15 µm, (b) ∆f = 15 µm. The trail height function was approximated using equation
(4.1) for R = 0.83 µm, O = 0.1 µm, T = 13 nm. The grey scale intensity values in the experimental images
were scaled to match the vertical axis of the simulations, allowing a qualitative comparison.

5. Comparison of the Laplacian and geometrical theory

It is important to establish and confirm the domain of validity of Laplacian imaging theory. We
therefore compare image simulations based on the height profile of the droplet trail shown in figure
5(a), using the geometrical (equation (3.4)) and the approximate Laplacian contrast approaches
(equation (3.7)). As shown in figure 8(a) for defocus ∆f = −15 µm and classical turning point
δ = 40 nm from the cathode surface, the two methods agree very closely. Increasing the magnitude
of the defocus and/or decreasing the turning point distance will increase the blurred height HB

and its derivatives. This weakens the validity of the assumption made in the Laplacian contrast
method that |∇2

⊥HB | ≪ 1, and we therefore see an increased discrepancy between the image con-
trast generated from the Laplacian contrast and geometrical imaging simulation methods (figure
8(b)). Conversely, reducing the magnitude of the defocus and/or increasing the turning distance
improves the agreement between the two approaches as expected.

6. Extensions of the Laplacian imaging theory of MEM contrast

Having established the applicability of Laplacian imaging theory to MEM we now utilise previous
studies to extend our analysis. In particular, Laplacian contrast is also known as out of focus
contrast in TEM of thin specimens (Lynch et al. 1975; Cowley 1995; Spence 2003), and we can utilise
this formalism to include the effects of spherical and chromatic aberration. These aberrations are
an intrinsic part of an MEM imaging system and limit resolution (Rempfer & Griffith 1992). Since
a Laplacian contrast interpretation is applicable to imaging objects at high resolution provided
|∇2

⊥HB | ≪ 1, it is important to incorporate such effects into the imaging theory. The expression
for TEM out of focus contrast for a thin uniformly-illuminated specimen is (Lynch et al. 1975;
Cowley 1995; Spence 2003)

I(x, y, z = z0 + ∆f) = 1 − k−1∆f∇2
⊥ϕ, (6.1)

for a defocus ∆f and electron wavenumber k = 2π/λ. The electron phase change through the
specimen ϕ is inversely proportional to the local electron wavelength λ so that the wavelength
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Figure 8. Comparison of the one dimensional intensity profile predicted using the geometrical treatment
(grey line) with the Laplacian contrast method (black line), for the droplet trail height profile of figure 5,
using R = 0.83 µm, O = 0.1 µm, T = 13 nm. (a) ∆f = −15 µm, δ = 40 nm, (b) ∆f = −30 µm and δ = 20
nm.

dependence factors out in equation (6.1) and so it is possible to extrapolate the wavelength to zero
(cf. equation (6.4)).

We note that equation (6.1) is identical to the Laplacian theory description of MEM contrast
(equation (3.7)) provided the phase of the wave function is

ϕ(x, y, δ) =
k

∆f
HB(x, y, δ,∆f). (6.2)

We may view this as the effective phase variation of an electron wave post interaction with the
cathode sample surface, which has been scaled up to the vacuum or post anode aperture energy.
Equation (6.1) therefore describes the out of focus MEM contrast in the defocused image plane
z = 4LM/3 + ∆f .

Lynch et al. (1975) extended the TEM out of focus expression to include the effects of spherical
aberration, which depends on the bi-Laplacian or iterated Laplacian (∇4

⊥ ≡ ∇2
⊥∇2

⊥) of the phase
variation ϕ, scaled by the spherical aberration coefficient CS ,

I(x, y, δ,∆f) ≈ 1 − ∆f

k
∇2

⊥ϕ(x, y, δ) +
CS

2k3
∇4

⊥ϕ(x, y, δ). (6.3)

We may recast this equation using equation (6.2) to give

I(x, y, δ,∆f) ≈ 1 − ∇2
⊥HB(x, y, δ,∆f) +

CS

2∆fk2
∇4

⊥HB(x, y, δ,∆f), (6.4)

which extends our Laplacian contrast expression to include spherical aberration. For the resolutions
employed in the study of droplet trails and with CS values derived by Rempfer & Griffith (1992)
we have found that including spherical aberration provides less than a one percent change in the
simulated intensity variation. However, we anticipate that the inclusion of spherical aberration will
be of benefit in simulating higher resolution images of surface objects within the domain of validity
of Laplacian imaging.

We may also extend the Laplacian contrast method to include the effects of a finite energy spread
in the electron beam, which causes chromatic aberration in the image intensity. A distribution in
energy D(U) varies the classical turning point δ, via

δ = L

(
1 +

U

eV

)
, (6.5)
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where the cathode surface is kept at a potential of V < 0. The distribution in turning point D(δ) can
then be obtained from the energy distribution, e.g. D(δ) ≈ D(U)dU/dδ. Following the approach of
Fejes (1977) we incoherently average over the distribution, summing up the contributions of each
intensity (equation (3.7)) weighted by the distribution function,

IC(x, y,∆f) =

∫
I(x, y, δ,∆f)D(δ)dδ ≈

∫
D(δ)dδ − ∇2

⊥

∫
HB(x, y, δ,∆f)D(δ)dδ. (6.6)

Since the turning distance δ only appears in the blurring function, in effect we may replace the
monochromatic blurring function (∆f/(4LM − 3∆f))B(x, y, δ) with the chromatically averaged
BC(x, y, δ0, ∆f), given by

BC(x, y, δ0, ∆f) =

∫ √
L − δ

π

9(∆f + 2(δ − δ0))

8(L − δ) − 6(∆f + 2(δ − δ0))
(δ2 + x2 + y2)−3/4

×(2EE(x, y, δ) − EK(x, y, δ))D(δ)dδ, (6.7)

with a defocus of ∆f + 2(δ − δ0) to ensure that each intensity corresponds to the plane z =
4(L−δ0)/3+∆f , and where δ0 is the mean of the distribution. Chromatic aberration, then, can be
incorporated into the approximate method by adjusting the blurring function, in essence averaging
over several blurring functions to obtain the effective blurring function BC . With a normalized
distribution we then have

IC(x, y, δ0, ∆f) ≈ 1 − ∇2
⊥H(x, y) ~ BC(x, y, δ0, ∆f). (6.8)

As with spherical aberration, chromatic aberration has a small effect on simulating the MEM image
contrast of the droplet trails (less than one percent as expected). This is true for a Gaussian energy
distribution with a typical full-width-half-maximum equal to 0.3 eV for a Schottky field emission
source and a variety of mean δ0 values. However, we would again envisage that equation (6.8) will
be of value for the study of surface objects at high resolution within the Laplacian imaging regime
of |∇2

⊥HB | ≪ 1.

7. Inverse problem of Laplacian MEM imaging

Many of the geometrical treatments consider the important ‘inverse problem’ of MEM imaging,
whereby image contrast is analysed to estimate the perturbed electric potential and/or the height
variation of the specimen (Luk’yanov et al. 1974; Dyukov et al. 1991; Nepijko & Sedov 1997;
Nepijko & Schönhense 2010). The inverse problem has also been explored in other areas of surface
electron microscopy such as LEEM (Yu et al. 2010). In the Laplacian theory of MEM contrast this
may be achieved in a very straightforward fashion using the Fourier derivative theorem (Cowley
1995; Paganin 2006) to convert between spatial derivatives and Fourier space coordinates,

F(I(x, y, δ,∆f) − 1) ≈ F(−∇2
⊥HB(x, y, δ,∆f)) = (k2

x + k2
y)FHB(x, y, δ,∆f). (7.1)

Here kx and ky are the Fourier space coordinates corresponding to real space coordinates x and
y respectively, F is the Fourier transform with respect to x and y, and F−1 is the corresponding
inverse Fourier transform. We therefore have (Gureyev & Nugent 1997)

HB(x, y, δ,∆f) ≈ F−1((k2
x + k2

y)−1F(I(x, y, δ,∆f) − 1)), (7.2)

which in principle allows the recovery of the blurred height function from a single image, facili-
tating the analysis of MEM movie dynamics (Tersoff et al. 2009). This expression bears a strong
resemblence to phase retrieval via the transport of intensity equation (Teague 1983; Gureyev &
Nugent 1997; Paganin & Nugent 1998), whereby a phase contrast image may be used to recover
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the original phase object.

Upon obtaining the blurred height function, we then deconvolve to obtain the height function, for
example via equation (2.9) using the convolution theorem (Cowley 1995)

H(x, y, δ) =
(4LM − 3∆f)

2π∆f
F−1

(F(HB(x, y, δ,∆f))

F(B(x, y, δ))

)
. (7.3)

If the value of the defocus is not known, we can only recover the height to within the scaling fac-
tor (4LM − 3∆f)/∆f . Here we present two preliminary examples in one dimension of the inverse
problem of Laplacian MEM imaging. Figure 9(a) shows the recovered height using equations (7.3)
and (7.3) from the simulated MEM images shown in figure 7. The recovered height is in very good
agreement with the ideal height profile of equation (4.1), also shown in figure 9(a).
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Figure 9. Recovered height profiles of the droplet trail (black lines) using equations (7.3) and (7.3) compared
to the ideal height profile (grey lines) of equation (4.1) with R = 0.83 µm, O = 0.1 µm, T = 13 nm. (a)
the recovered height from the simulated MEM intensity profiles for the ideal height (black lines in figure
7), using ∆f = −15 µm. (b) average of the recovered height profiles (black line) of the experimental MEM
images (grey lines in figure 7). The recovered height H(x, ∆f) = H(x)∆f/(4LM − 3∆f) includes the
scaling factor ∆f/(4LM − 3∆f) since ∆f in each image was unknown.

Figure 9(b) shows an average of the recovered heights from the experimental MEM intensity
profiles of figure 7 to within a scaling factor, as the specific defocus values were not known. The
general features of the recovered height are in good agreement with the ideal height profile, with
discrepancies largely due to the surface roughness evident in the recovered height profile. Using
equation (3.7) to simulate the Laplacian image contrast of the recovered height profile of figure
9(b), we found that the normalised root mean squared difference between the simulated intensity
and the measured MEM image intensity profiles (figure 7) was 3 % and 10 % for the negative and
positive defocus images respectively.

8. Conclusions

We have demonstrated that Laplacian imaging theory can be applied to MEM imaging of sur-
face topography (or equivalently surface potentials) provided the height function describing the
surface topography is slowly spatially varying and/or the objective lens defocus is small. Under
such conditions, image contrast is primarily caused by the Laplacian of small height or potential
variations across a sample surface. This contrast is blurred due to the interaction of the electrons
with the electrical potential away from the surface. However, the method facilitates the rapid and
intuitive interpretation of image contrast in terms of surface topographic or potential variations.
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The approach can be readily extended to include spherical and chromatic aberration. Finally, we
have demonstrated that the Laplacian imaging theory forms a convenient basis for the solution of
the inverse problem in MEM.

We are grateful to Rod Mackie for technical support. S.M.K. acknowledges funding from the J. L. William
Bequest. D.M.P., W.X.T. and D.E.J. acknowledge funding from the Australian Research Council.
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Świȩch, W., Rausenberger, B., Engel, W., Bradshaw, A. M. & Zeitler, E. 1993 In-situ studies of het-
erogeneous reactions using mirror electron microscopy Surf. Sci. 294 297–307. (DOI 10.1016/0039–
6028(93)90116–2).

Tang, W. X., Jesson, D. E., Pavlov, K. M., Morgan, M. J. & Usher, B. F. 2009 Ga droplet morphology on
GaAs(001) studied by Lloyd’s mirror photoemission electron microscopy J. Phys.: Condens. Matter 21
314022. (DOI 10.1088/0953–8984/21/31/314022).

M. R. 1983 Deterministic phase retrieval: a Green’s function solution J. Opt. Soc. Am. 73 1434–1441. (DOI
10.1364/JOSA.73.001434).

Tersoff, J., Jesson, D. E. & Tang W. X. 2009 Running droplets of Ga from evaporation of GaAs Science
324 236–238. (DOI 10.1126/science.1169546).

Yu, R. P., Kennedy, S. M., Paganin, D. M. & Jesson, D. E. 2010 Phase retrieval low energy electron
microscopy Micron 41 232-238. (DOI 10.1016/j.micron.2009.10.010).

31
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2.1 Addendum for chromatic aberration, the inclusion

of the magnetic objective lens effect

In addition to including the chromatic aberration of the immersion lens in

Laplacian imaging theory, via Eqs. (6.5)–(6.8) in this chapter, we may also

include the chromatic aberration due to the magnetic objective lens. This

results from the variation in focus condition experienced by electrons of

varying energy in the magnetic field. While we found that this effect was

typically smaller than the chromatic aberration of the immersion lens for the

cases in this chapter, at high resolution it may become important to include

the magnetic component of chromatic aberration as well.

As per chapter 4, the magnetic objective lens chromatic aberration can be

incorporated by varying the defocus value as a function of energy, replacing

the defocus ∆ f with ∆ f + ε(ξ), for

ε(ξ) = −CCξ/U, (2.1)

where CC is the chromatic aberration coefficient and ξ is the energy varia-

tion from the average U. We may incorporate this additional change to the

defocus in Eq. (6.7) of chapter 2, by first noting that the turning distance, Eq.

(6.5) of chapter 2,

δ = L
(
1 +

U + ξ

eV

)
, (2.2)

can be rearranged as

ξ = eV
(
δ

L
− 1

)
− U. (2.3)

Substituting Eq. (2.3) into Eq. (2.1) we may express ε as a function of turning

distance δ,

ε(δ) = CC

(
1 +

eV
U

(
1 − δ

L

))
. (2.4)

We may then replace ∆ f in Eq. (6.7) of chapter 2 with ∆ f + ε(δ), and carry out

the integration in δ as normal to obtain the complete chromatically averaged

blurring function BC . This extension, using Eq. (6) of chapter 4 and Rempfer

and Griffith (1992) to give CC = 0.03875 m, did not change the result in chap-

ter 2, i.e. including chromatic aberration had a very small effect (< 1 %) on

the simulations performed.
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2.2 Addendum for parallel illumination

In chapter 2 a Laplacian imaging theory was developed for divergent sample

illumination geometry, as considered by authors Luk’yanov et al. (1974);

Dyukov et al. (1991); Godehardt (1995); Nepijko and Sedov (1997); Nepijko

et al. (2001a,b, 2003, 2007); Nepijko and Schönhense (2010). However, in a

modern low energy electron microscope (LEEM), equipped with a magnetic

objective lens, the sample is often illuminated by a parallel, collimated beam

(Altman, 2010; Tromp et al., 2010). Here, we briefly develop the Laplacian

imaging theory for this parallel illumination geometry.

In Fig. 2.1 below, the incident electron beam for z < 0 is converging, directed

towards the z axis to the point z = 4LM. The anode aperture acts as a diverging

lens with focal length f = −4LM, so the electron paths passing through the

aperture are deflected and emerge parallel to the z axis for z > 0, illuminating

the specimen surface with a parallel electron beam.

z
x

x0 2x0�3

LM

A C

Df

4L �3M

Figure 2.1: Formation of the virtual image plane at z = 4LM/3 for a flat, equipo-
tential cathode specimen. An electron trajectory directed towards the point
(x = 0, z = 4LM) is deflected when passing through the anode aperture, emerging
parallel to the z axis. After turning in the vicinity of (x = x0, z = LM), the returning
electron passes back through the anode aperture and is again deflected away
from the z axis. The apparent straight line path of the exiting electron is traced
back to the virtual image plane in the vicinity of z = 4LM/3, with transverse dis-
tance x = 2x0/3. The y axis extends out of the page. Based on Fig. 2 of Kennedy
et al. (2011).

As seen in Fig. 2.1, the unperturbed electron path that passes through the

anode aperture at (x0, y0, 0) remains parallel to the z axis, turning around in

the vicinity of the point (x0, y0, LM). It then retraces the incident ray’s path,

emerging from the anode aperture making the angle x0/4LM to the z axis in
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the x direction, and y0/4LM in y. We trace back along the apparent straight

line path of the emerging electron to the virtual image plane at z = ∆ f +4LM/3
as before, which has a magnification M of

M(∆ f ) =
2
3

(
1 − 3∆ f

8LM

)
, (2.5)

compared to the specimen surface.

The analysis proceeds as per Eqs. (2.1)-(2.4) of chapter 2, where an additional

potential V(x, y, z̄) is introduced due to a surface height variation H,

V(x, y, z̄) =
z̄V

2πL
H(x, y) ~ (x2 + y2 + z̄2)−3/2. (2.6)

As per section 2 of chapter 2, we assume that any change to the electron

motion caused by H occurs very close to the sample surface. In addition, the

motion in the z dimension is assumed to be unchanged, so that all of the mo-

mentum change in the transverse dimensions (x, y) occurs very close to the

classical turning point at z = LM. This is a column approximation, whereby

an electron passing through the anode at (x0, y0) is affected most strongly

by the cathode at (x0, y0), as this is the point at which the unperturbed path

(Fig. 2.1) is closest to the specimen surface. Note that this is different to the

column (3x0/2, 3y0/2) used previously in chapter 2.

The transverse shifts on the virtual imaging plane at z = ∆ f + 4LM/3 are given

by scaling the difference between perturbed and unperturbed positions on

the imaging plane by the magnification M, resulting in

S x(x, y, δ,∆ f ) = (∂/∂x)
√

LM

π

18∆ f
16LM − 6∆ f

H(x, y)

~ ((δ2 + x2 + y2)−3/4(2EE(x, y, δ) − EK(x, y, δ))), (2.7)

and

S y(x, y, δ,∆ f ) = (∂/∂y)
√

LM

π

18∆ f
16LM − 6∆ f

H(x, y)

~ ((δ2 + x2 + y2)−3/4(2EE(x, y, δ) − EK(x, y, δ))). (2.8)

As before,

EE(x, y, δ) = E
(
1
2
− δ

2(δ2 + x2 + y2)1/2

)
, EK(x, y, δ) = K

(
1
2
− δ

2(δ2 + x2 + y2)1/2

)
,

(2.9)

and K, E respectively denote complete elliptic integrals of the first and

second kind (Abramowitz and Stegun, 1964; Borwein and Borwein, 1987).

These differ from Eqs. (2.5) and (2.6) of chapter 2 only in that the term
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9∆ f /(8LM − 6∆ f ) has been replaced by 18∆ f /(16LM − 6∆ f ). Thus for defo-

cus |∆ f | � 16LM/6, these shifts and the resulting expressions are negligibly

affected by the change in MEM geometry. We may quantify the difference

between the two terms by taking the binomial approximation of each for

6∆ f /16LM � 1, and subtracting the two expressions, giving a difference of

D(∆ f ) ≈ 27∆ f 2

64L2
M

+ O(∆ f 3), (2.10)

where O(∆ f 3) contains terms involving ∆ f 3 and higher order. For the defocus

values and parameters used in chapter 2, the change to the shift functions,

the blurring function and the resulting images is < 1%, so the results and

conclusions of chapter 2 remain valid for the parallel illumination geometry.

For completeness, we update the relevant expressions of chapter 2 for paral-

lel illumination geometry. The blurred height HB of Eq. (2.9) becomes

HB(x, y, δ,∆ f ) =
∆ f

8LM − 3∆ f
H(x, y) ~ B(x, y, δ), (2.11)

with blurring function (Eq. (2.10))

B(x, y, δ) =
18
√

LM

2π
(δ2 + x2 + y2)−3/4(2EE(x, y, δ) − EK(x, y, δ)). (2.12)

The maximum defocus condition of Eq. (3.3) is now

|∆ f | � 8LM/(3 + maxx,y|∇2
⊥H(x, y) ~ B(x, y, δ)|), (2.13)

and the approximate MEM image intensity (Eq. (3.7)) is given by

I(x, y, δ,∆ f ) ≈ 1 − ∆ f∇2
⊥H(x, y) ~

B(x, y, δ)
8LM

. (2.14)

Finally, the chromatically averaged blurring function of Eq. (6.7) is now

BC(x, y, δ0,∆ f ) =

∫ √
L − δ
π

18(∆ f + 2(δ − δ0))
16(L − δ) − 6(∆ f + 2(δ − δ0))

(δ2 + x2 + y2)−3/4

× (2EE(x, y, δ) − EK(x, y, δ))D(δ)dδ. (2.15)

under the parallel illumination geometry.
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Caustic imaging of gallium droplets using mirror electron
microscopy

S. M. Kennedy, C. X. Zheng, W. X. Tang, D. M. Paganin and D. E.
Jesson1

School of Physics, Monash University, Victoria, 3800, Australia

Abstract

We discuss a new interpretation of mirror electron microscopy (MEM) im-
ages, whereby electric field distortions caused by surface topography and/or
potential variations are sufficiently large to create caustics in the image con-
trast. Using a ray-based trajectory method, we consider how a family of
rays overlaps to create caustics in the vicinity of the imaging plane of the
magnetic objective lens. Such image caustics contain useful information
on the surface topography and/or potential, and can be directly related to
surface features. Specifically we show how a through-focus series of MEM
images can be used to extract the contact angle of a Ga droplet on a GaAs
(001) surface.

Keywords: Mirror electron microscopy (MEM), caustic imaging, Ga
droplets, GaAs, contact angle

1. Introduction

Mirror electron microscopy (MEM) is a well-established technique for imag-
ing surface phenomena in real time, with applications in studying electric
field contrast [1–6], droplet surface dynamics [7–9], surface magnetic fields
[10], and chemical processes at solid surfaces [11]. The importance of un-
derstanding in situ dynamical behaviour and surface evolution under tech-
nologically important conditions makes the interpretation of MEM images
an important avenue of investigation. In MEM, electrons neither touch nor
are emitted from the sample. Instead a normally incident electron beam
is reflected just above the specimen surface, as a result of the specimen

1david.jesson@monash.edu
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voltage being tuned to be slightly more negative than that of the electron
source. In the turn-around region, the slow moving electrons are sensitive
to spatial and/or temporal variations in the electric field and are deflected,
creating image contrast in the reflected beam. Such variations in the electric
field may, for example, be caused by the surface topography [12–15] and/or
variations in the electric potential of the specimen, which includes contact
potentials, surface charges and varying conductivity [1–3, 6, 10, 11, 16].

The returning electron beam therefore contains information on the electric
field variations caused by surface topography and/or electrical and mag-
netic phenomena. This has stimulated numerous efforts to interpret MEM
image contrast and extract quantitative information regarding electric field
variations and surface properties. A variety of approaches have been em-
ployed, some based on wave mechanics [17, 18], but most have been based
on geometrical ray tracing techniques [1, 2, 11, 14, 16, 19–24]. For small sur-
face variations and/or small defocus, it has recently been shown that MEM
image contrast can be intuitively and rapidly interpreted as the Laplacian
or curvature of a blurred surface height function [25].

Large variations in surface height or potential are, however, capable of
deflecting the electron trajectories so much that very strong image contrast
is created including caustic features [1, 19, 26, 27]. Such deflections typically
violate the assumptions underlying many of the previous approaches, which
assume that the z motion of the electron beam (i.e. along the optical axis)
is largely unchanged by the surface height or potential variations [6, 14, 19,
20, 24, 25]. Approaches allowing for strongly deflected electron trajectories
have, to date, only been solvable for specific analytical cases [14, 20]. Here
we present a general ray-based method of interpreting MEM image contrast
using a family or envelope of incident electron rays traced through the
electric field close to the specimen surface. This approach is similar to
the methods employed by Kan and Phaneuf [13]. Where strong deflections
occur, ray trajectories crossing a caustic surface are observed, which can be
directly related to variations in the field above the surface. This specifically
allows for the simulation and interpretation of MEM image contrast in the
presence of stronger field variations than has previously been possible.

2. MEM imaging geometry

A typical electrostatic MEM immersion lens is shown schematically in Fig.
1. Electrons of initial energy U travel along the optical axis z of the im-
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mersion lens, pass through the anode aperture A, and are reflected in the
vicinity of z = LM , a distance of δ above the specimen surface C. The
specimen, located a distance of L from the anode, acts as the cathode of
the immersion objective lens [1, 2, 16, 25, 28, 29], and is held at a negative
potential V < −U/e < 0 relative to the grounded anode, where −e is the
electronic charge.

z
x

Source

Imaging LM

A C

Df

4L �3M

Figure 1: MEM imaging geometry. An electron beam of energy U is focused by the
magnetic objective lens to a cross-over point (x = 0, z = 4LM ). The anode aperture
A acts as a diverging lens, deflecting the electron trajectories away from the z axis as
they enter and leave. The cathode C is set at the potential V < −U/e < 0 so that the
electron beam turns around in the vicinity of z = LM , where it is sensitive to deviations
in the electric field due to surface and/or potential variations of the cathode. We trace
the exiting electron trajectories back along the apparent straight line paths to the virtual
image plane at z = ∆f + 4LM/3. This is the object plane for the magnetic objective
lens. The y axis extends out of the page.

The magnetic imaging part of the objective lens can, to a good approx-
imation, be considered separately to the electrostatic MEM immersion
lens of Fig. 1 [28, 29]. Following reflection, the returning electron beam
is further deflected by the anode aperture which acts as a diverging lens
[20, 22, 25, 30]. On retracing back along the apparent straight line paths
of the exiting electron trajectories it can be seen that a virtual image is
formed on a plane at z = ∆f + 4LM/3. This is the object plane of the
magnetic objective lens defocused by ∆f , which is defined as positive in
the positive z direction, and where LM is given by

LM = −LU/eV = L − δ. (1)

As shown in Fig. 2, the incident electron beam is focused on the point
z = 4LM by the magnetic objective lens. However, the anode aperture
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acts as a diverging lens providing parallel illumination of the sample. For
the perfectly flat and equipotential specimen of Fig. 2, the electron beam
remains parallel to the z axis at the transverse distance of x = x0. After
turning in the vicinity of z = LM , the returning electron beam is deflected
away from the z axis as it passes back through the anode aperture, and
travels along the same trajectory as the incident beam. We trace the ap-
parent straight line path of the emerging electron beam back to the virtual
image plane in the vicinity of z = 4LM/3. At this plane, an electron that
interacted with the potential above the cathode surface at x = x0 appears
on the virtual image plane at 2x0/3, so the virtual image must have trans-
verse distances scaled by 3/2 to return to the scale of the specimen.

z
x

x0 2x0�3

LM

A C

Df

4L �3M

Figure 2: Formation of the virtual image plane at z = 4LM/3 for an unperturbed cathode
specimen. An electron trajectory directed towards the point (x = 0, z = 4LM ) is deflected
when passing through the anode aperture, emerging parallel to the z axis. After turning
in the vicinity of the point (x = x0, z = LM ), the returning electron is again deflected
away from the z axis. The apparent straight line path of the exiting electron is traced
back to the virtual image plane in the vicinity of z = 4LM/3, with transverse distance
2x0/3. The y axis extends out of the page.

3. Evaluation of the electric potential above the specimen surface

To calculate the distribution of electron positions on the image plane z =
∆f+4LM/3, we must first solve Laplace’s equation for the electric potential
ϕ(r, θ, z) in the region 0 ≤ z ≤ L. In cylindrical coordinates r, θ, z, this is
given by [31]

∇2ϕ =
1

r

∂

∂r

(
r∂ϕ

∂r

)
+

1

r2

∂2ϕ

∂θ2
+

∂2ϕ

∂z2
= 0. (2)
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For an equipotential flat specimen surface, there is no r or θ dependence
and the solution of Eq. (2) is approximately

ϕU (z) = V z/L, 0 ≤ z ≤ L, (3)

where the penetration of the electric field through the anode aperture is ap-
proximated by treating the aperture as a thin diverging lens [20, 22, 25, 30].
For spatial variations in surface topography and/or potential the solution
of Eq. (2) is necessarily more complex. In limited cases, analytical solu-
tions can be found [20]. Additionally, for surface potential variations, and
for sufficiently small variations in topography, the system can be reduced
to the equivalent Dirichlet problem for Laplace’s equation for a half space,
facilitating the calculation of ϕ(r, θ, z) [20, 25, 32–35]. However, this lat-
ter approach breaks down when surface topographical variations are large
enough to appreciably move the electron turn-around region (i.e. by many
times the unperturbed turning distance δ from the specimen).

In general it is necessary to solve Eq. (2) numerically. Many authors use
charge-ring techniques [36–38], but here we employ standard finite element
methods, using the specimen topography as one boundary (either equipo-
tential or with a variable surface potential) and the grounded anode as
the opposite boundary. Our simulations utilise the finite element meth-
ods package FreeFem++ v3.9-0 [39], with mesh adaptation. We consider
the specific case of a cylindrically symmetrical electric potential, ϕ(r, z),
so we need only consider the electric field in two dimensions. However,
the method is readily extendable to three dimensions with a corresponding
increase in complexity and computation time.

4. Caustic image simulations

With knowledge of the electric potential in the region 0 ≤ z ≤ L, we
can evaluate the electron trajectories through this region and project them
back onto the virtual image plane at z = ∆f + 4LM/3. To this end, let

(r(j)(t), z(j)(t)) and (v
(j)(t)
r , v

(j)(t)
z ) denote the respective position and velocity

of the jth electron at time t. For the maximum velocities vmax ≈ 0.28c m/s
considered here, where c is the speed of light in vacuum, the Lorentz factor
(1 − v2

max/c2)−1/2 ≈ 1.04 so we ignore relativistic corrections. At t = 0
we input a family of electron ray trajectories at z = 0, which are equally
spaced in the transverse dimension r by the distance r0. The jth ray at
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t = 0 begins at the point

(r(j)(0), z(j)(0)) = (jr0, 0), (4)

with velocities (v
(j)(0)
r , v

(j)(0)
z ) in the r and z directions respectively. The

initial velocity in z is set by the electron beam energy,

v(j)(0)
z =

√
2U/m, (5)

where m is the electron rest mass. The initial velocity in r is zero, as the
electron trajectories at z = 0 are parallel to the z axis after passing through
the anode aperture that acts as a diverging lens with focal length −4LM

[20, 22, 25, 30], giving
v(j)(0)
r = 0. (6)

From these initial conditions we use a fourth order Runge–Kutta method to
trace each trajectory through the electric potential, calculating the position
and velocity for successive time steps of h [40]. Details of this procedure
are provided in Appendix A, and are similar to the approach used in Kan
and Phaneuf [13]. Eventually, the jth electron exits the immersion lens

at position (r(j)(exit), 0) with velocities (v
(j)(exit)
r , v

(j)(exit)
z ). We account for

the anode aperture deflection and trace back along the apparent straight
line path of the electron to the virtual image plane z = ∆f +4LM/3 (Figs.
1 and 2), giving the virtual position of the jth ray,

(
r(j)(exit) −

(
∆f +

4LM

3

)(
v

(j)(exit)
r

−v
(j)(exit)
z

+
r(j)(exit)

4LM

)
, ∆f +

4LM

3

)
. (7)

The family of ray trajectories from a flat equipotential (i.e. unperturbed)
specimen surface exit the anode aperture equally spaced at position jr0,
and will maintain an equal spacing S(∆f) when traced back to the image
plane, with

S(∆f) = r0

(
2

3
− ∆f

4LM

)
. (8)

We may calculate the image intensity on the plane ∆f + 4LM/3 by con-
sidering the density of rays on this plane. This is inversely proportional to
the ray spacing in r, s(r,∆f) [41], given by the difference between r posi-
tions of adjacent rays in Eq. (7). Assuming an input intensity of unity, a
ray spacing of s(r,∆f) = S(∆f) gives unit intensity. We therefore convert
the family of ray trajectories into an intensity at any position on the plane
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∆f + 4LM/3 by dividing the unperturbed ray separation S(∆f) by the
distance between adjacent rays s(r,∆f), so giving [41]

I(r,∆f) = S(∆f)/s(r,∆f). (9)

The image intensity may then be expressed as a one-dimensional profile in r,
or as a two-dimensional plot by exploiting the cylindrical symmetry. Where
initially adjacent rays cross (s → 0) the intensity is theoretically infinite,
but in practice this results in a region of very high intensity, creating caustic
features in the image [26, 27, 42]. Caustic surfaces, most of which are
stable with respect to perturbation, are envelopes of ray families that may
be classified into a variety of equivalence classes [27, 43]. Numerically, we
may account for crossing rays by choosing a threshold ray spacing, e.g.
s(r,∆f) = 0.1S(∆f), below which from Eq. (9) we keep I ≈ 10. This is
equivalent to specifying the saturation level of the detector.

5. Caustic imaging of Ga droplets on GaAs (001)

As a specific application of caustic imaging theory we investigate liquid
Ga droplets on GaAs (001). Such droplets are formed during Langmuir
evaporation [9] and exhibit droplet surface dynamics with an unusual tem-
perature dependence [8]. In particular, Ga droplets move on the rough
GaAs (001) surface and leave behind smooth trails, as shown by the room
temperature atomic force microscope (AFM) image in Fig. 3. An exper-
imental through-focus MEM image sequence obtained at 660 ◦C during
Langmuir evaporation is shown in Fig. 4. We now separately remark on
the image contrast of the trails and droplets.

(a) Trails. The AFM data indicates that the droplet trails are typically
shallow (15 nm) with slowly varying edges, so that Laplacian imaging the-
ory is applicable and the MEM contrast can be interpreted in terms of
surface curvature [25]. Specifically, the Laplacian imaging theory states
that the image contrast is proportional to both ∆f and to the transverse
Laplacian of the local height profile H(x, y), providing that H(x, y) is suf-
ficiently slowly varying and/or ∆f is sufficiently small [25]. At exact focus
(∆f = 0) the trail contrast vanishes.

(b) Droplets. The droplets, however, typically extend 0.3 µm from the sur-
face, which is many times larger than a typical electron turning distance
(δ = 40 nm) from the cathode. This produces significant perturbations
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of the electric field creating caustic features for a wide range of defocus
values. At negative defocus the image consists of a bright caustic ring CR

bordering a dark central region (see [8]). For large positive defocus, a very
bright central caustic region is visible. Close to ∆f = 0 there is still strong
droplet contrast visible exhibiting a transition between the two extremes.
This illustrates the breakdown of Laplacian imaging theory [25] and we
therefore apply caustic imaging theory to understand droplet image con-
trast.

xy
1 Μm

D

Figure 3: AFM image of a liquid Ga droplet D and the smooth trail it leaves on a GaAs
(001) surface [25]. The shape of the droplet is well–approximated by a spherical cap.

6. Electric potential due to a liquid surface droplet

We evaluate the perturbing potential by modelling the droplet height H
as a cylindrically symmetric spherical cap shown in Fig. 5, which is in
good agreement with AFM measurements of solidified droplets (Fig. 3).
This equilibrium shape is characterized by the projected radius R and the
contact angle Θ,

H(0 ≤ r ≤ R) =

√
R2

sin2 Θ
− r2 − R

tanΘ
, H(r > R) = 0, (10)

as shown in Fig. 5. We use dimensions R = 0.78 µm, Θ = 36◦ and
H(0) = 0.25 µm for a typical droplet as imaged by AFM. Since the droplet
consists of almost pure Ga, it may also be at a different potential to the
GaAs (001) cathode, due to having a different surface work function [3, 44].
Massies et al. [44] indicate that the work function difference between the
Ga droplet and the GaAs surface is in the range of 0.1 V to 0.3 V.
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Figure 4: Experimental MEM images of a liquid Ga droplet marked D and the smooth
trail it leaves on a GaAs (001) surface, for defoci ∆f1 = 16 µm, ∆f2 = 0, and ∆f3 = −78
µm. Note the caustic ring CR bordering a dark central region D in the bottom panel.
Images were obtained using an Elmitec LEEM III system at 660 ◦C. U = 20 keV and
V = −20000.4 V which, for L = 2 mm, gives a turning distance of δ = 40 nm.

We solve Laplace’s equation (Eq. (2)) in the region 0 ≤ r ≤ 100 µm and
from L − 120 µm ≤ z ≤ L using the finite element methods package
FreeFem++ v3.9-0 [39], using mesh adaptation with interpolation error
level of 5 × 10−6 (see the end of Appendix A for a discussion on suitable
computational parameters). The bottom boundary follows the height pro-
file of Eq. (10) and has a potential of V = −20000.4 V outside the droplet
and −20000.7 V at the droplet boundary to account for a work function
difference of 0.3 V. The top boundary has the potential expected for the
unperturbed potential (Eq. (3)) ϕU (z = L−120 µm) = −18800.376 V with
L = 2 mm. The r = 0 and r = 100 µm boundaries are kept open, and the
model assumes that the equipotential lines will be perpendicular to these
boundaries. This ensures that the system is rotationally symmetric about
the axis r = 0, and demands that the perturbations to the potential caused
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Figure 5: The droplet is modelled as a spherical cap (Eq. (10)), with projected radius R
and contact angle Θ.

by the droplet are zero at the chosen distance of r = 100 µm. The bound-
aries and mesh are shown in Fig. 6, and the resulting equipotential lines
close to the droplet surface are shown in Fig. 7 for a work function of 0.3 V.

7. Caustic image simulation of a Ga droplet

To simulate the MEM contrast of a Ga droplet we employed the methods of
section 4, inputting 201 rays at z = 0 from r = 0 µm to r = 4.5 µm which
gives an equal spacing of r0 = 22.5 nm. Using a fourth order Runge–Kutta
method (Appendix A) with a sufficiently small time step of h = 5 × 10−14

s, we propagated each ray through the electric field, and then traced the
exiting electron trajectories back along the apparent straight line paths to
z = ∆f + 4LM/3 using Eq. (7). The resulting distribution of electron ray
trajectories is shown in Fig. 8 for −100 µm ≤ ∆f ≤ 100 µm, where positive
∆f is in the positive z direction (Fig. 1). Accompanying grey scale image
simulations are shown for indicated defocus values.

The distribution of the envelope of electron ray trajectories and accompa-
nying image simulations in Fig. 8 displays three distinct regimes of caustic
features which accurately reproduce and explain the experimental through
focus sequence in Fig. 4. For negative defocus, the contrast is dominated
by a bright fold caustic ring CR bordering a dark central region, with di-
ameter increasing with negative defocus. For positive defocus, we expect
a very bright central spot associated with the central cusp caustic evident
in the ray tracing. For defocus values close to zero, we see a transition be-
tween the two extremes, where both a bright ring and bright central spot
coexist. Note that the contrast close to zero defocus is not explainable
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Figure 6: Boundaries and adapted mesh used to solve Laplace’s equation (Eq. (2)) above
the droplet surface with the FreeFem++ v3.9-0 package [39]. Note that the base of the
droplet, as shown in Fig. 5, extends out to r = 0.78 µm.

with Laplacian imaging theory [25], which predicts zero image contrast.
Caustic imaging theory may therefore be used to interpret and understand
the image features of specimens that significantly perturb the electric field
close to the sample. We now consider the potential utility of caustic imag-
ing theory in recovering surface structural information from experimental
MEM images.
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Figure 7: Equipotential surfaces above a Ga droplet on GaAs (001) evaluated from Eq.
(2). A work function difference of 0.3 V exists between the droplet surface (black line) and
the planar GaAs (001) surface (L−z = 0 axis). The droplet and GaAs (001) surfaces are
therefore at −20000.7 V and −20000.4 V respectively. Equipotential surfaces, beginning
at −20000.6 V and increasing by 0.3 V, are indicated by the grey lines.

-2 -1 0 1 2 3
-100

-50

0

50

100

HΜmLr

D
HΜ

m
L

f

2 Μm

D 1f

D 2f

D 3f

CR

Figure 8: Distribution of the family of electron ray trajectories on the imaging plane
z = ∆f + 4LM/3, after interaction with the electric field above a Ga droplet on GaAs
(001) (solid lines). The defocus ∆f is positive in the positive z direction (see Fig. 1).
The r positions have been multiplied by 3/2 so that the virtual image plane matches
the transverse scale of the specimen (see Fig. 2). The projected radius of the droplet,
R = 0.78 µm is indicated by vertical dashed lines. (Right panels) two dimensional image
simulations calculated from Eq. (9) are shown for ∆f1 = 16 µm, ∆f2 = 0 µm, and
∆f3 = −78 µm, and show good agreement with the experimental images of Fig. 4. Color
online.
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8. Recovering surface topography from experimental MEM im-
ages

Caustic imaging theory provides a direct link between strong image features
in experimental MEM images and the electric field distortions produced by
specimen surface and/or potential variations. Understanding the “forward
problem” of caustic formation allows one to broach the associated “inverse
problem” of extracting structural information from the caustics present in
a through-focus series of images. As a particular example of this inverse
problem of caustic imaging, here we show how to determine the contact
angle Θ (Fig. 5) of a Ga droplet during Langmuir evaporation of GaAs
(001).

As noted earlier, a running droplet of Ga leaves a shallow trail on GaAs
(001) as shown in Fig. 3. We can apply Laplacian imaging theory [25] to the
trail image contrast in Fig. 4 to estimate the trail width as 1.56± 0.02 µm.
This utilises the approximately symmetrical change in the width of the trail
contrast for defocus values close to and either side of zero, and therefore
fixes the droplet projected radius R = 0.78±0.01 µm. We can also compare
the features of the simulated trail contrast using caustic imaging theory to
the MEM images to calibrate the relationship between the magnetic ob-
jective lens defocus and the lens current. The weaker contrast trail region
therefore provides a useful reference to help quantify the droplet contrast.
In general, however, there may not exist a convenient object for defocus
calibration. In such cases, and as an alternative to the method outlined
above, Schmidt et al. [45] have derived an expression relating defocus and
experimental parameters including objective lens current.

Since the droplet has a spherical cap geometry, with R known, it is only
necessary to determine Θ to fully reconstruct the droplet shape. To de-
termine the contact angle we select a caustic feature in the experimental
images and compare this with simulation for a range of defocus values. The
radius RD of the dark central region bounded by the bright caustic in Fig.
9 is an excellent candidate since: (i) it is well defined, (ii) it is a sharp
feature of intrinsically high visibility, and (iii) it varies monotonically with
defocus in the range −140 µm < ∆f < −30 µm.

Simulated values of RD as a function of ∆f are displayed in Fig. 10 for
different values of contact angle. Here, we have assumed a work function
difference of 0.3 V between the droplet and GaAs (001) surface. Exper-
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Figure 9: Radius of the dark central region bounded by the bright fold caustic, RD, is
shown on (a) an experimental MEM image and (b) a family of simulated rays. Colour
online.

imental measurements of RD are overlayed on this plot which fixes the
contact angle to be 38 ± 3◦. This is in excellent agreement with the ex
situ AFM measurement of 36◦ with standard deviation of 2◦ for typical Ga
droplets, and demonstrates that caustic imaging can provide quantitative
topographical data. Note that introducing a lower work function will affect
the simulated RD values and increase our estimate of Θ. However, the
maximum increase is only 4 degrees for the limiting case of zero work func-
tion difference. If the uncertainties are added in quadrature, we measure
the contact angle to be 38 ± 7◦.

The effects of spherical aberration of the magnetic objective lens on the
simulated images can be estimated using the exit angle of the electron, α,
as it emerges from the anode aperture. The tangent of this angle is given
by

tan α =
v

(j)(exit)
r

−v
(j)(exit)
z

+
r(j)(exit)

4LM
, (11)

using the terminology of Eq. (7). We estimate the change to the transverse
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Figure 10: Simulated radius of the dark central region RD for MEM images at negative
defocus, for Ga droplets of projected radius 0.78 µm, work function difference 0.3 V, and
contact angles Θ1 = 15◦, Θ2 = 25◦, Θ3 = 35◦, Θ4 = 45◦, and Θ5 = 55◦ (grey lines).
Measured experimental radius values, with uncertainty of ±0.03 µm, are overlayed and
the line of best fit is shown as the black line.

position ∆r of an electron in the vicinity of the virtual image plane z =
4LM/3 via [22, 46]

∆r = CSα3, (12)

where CS is the spherical aberration coefficient. This can be directly incor-
porated into Eq. (7), by adding the approximate shift ∆r to each ray’s vir-
tual position (Eq. (7)). We have simulated the ray envelope with CS = 0.1
m [22, 25, 45], and find that for the ray trajectories that determine the ra-
dius of the dark central region RD, the change in position due to spherical
aberration ∆r is less than 5 nm, so spherical aberration for CS ≤ 0.1 m has
a negligible effect on the results of Fig. 10. The small number of rays with
the largest angle α, which determine the outer edge of the caustic ring CR

in Fig. 8, are estimated to be shifted by as much as 50 nm, but this does
not affect the determination of the contact angle using the method outlined
here. We may also include the effects of chromatic aberration by taking
a weighted average of a series of monochromatic intensity patterns for a
spread of energy values [25, 47]. For a Gaussian energy spread of full-width
half-maximum 0.3 eV, we find that the effect on the image intensity for the
low resolution case considered here is very small (< 1 %).
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The capability to extract three-dimensional topographical or surface po-
tential information from surface electron microscopy is extremely valuable.
Experiments can be undertaken at elevated temperatures during material
deposition under ultra high vacuum (UHV) conditions. Surface features
such as contact angles can in principle be determined in situ from caustic
features as a function of external conditions, provided the conditions do
not vary rapidly on the time scale of a through-focus series which typically
takes only a few seconds to acquire. By mapping several different caustic
features as a function of defocus it should be possible to eliminate defo-
cus entirely from the structure determination and/or extend the method to
more complex geometries.

9. Multi-dimensional caustic imaging

We saw particular caustics in Fig. 8, namely cusp and fold caustics, fully
unfolded [27] in a control space coordinatised by the transverse spatial coor-
dinate r and a single control parameter τ = ∆f . More generally, one could
have higher-dimensional caustics (e.g. the hyperbolic umbilic, the elliptic
umbilic, the parabolic umbilic, etc. [43]). Since such higher-dimensional
caustics require more than two dimensions for a full unfolding, the previ-
ously mentioned through-focal series I(r, τ = ∆f) might be replaced with
the more general control-parameter series I(x, y, τ1, τ2, · · ·); here (x, y) are
Cartesian coordinates in the detector plane perpendicular to the optical
axis z, and (τ1, τ2, · · ·) denote a suitable set of continuously-variable con-
trol parameters such as defocus, cathode potential, electron energy, etc. For
a given image series, the number of parameters in the set (x, y, τ1, τ2, · · ·)
will ideally be equal to the dimension of the space required for a full un-
folding of the caustic being imaged.

Regarding the inverse problem, of determining surface structure from a
given MEM caustic in the image series I(x, y, τ1, τ2, · · ·), the approach of
Fig. 10 may be generalised as follows. Suppose one has an a priori model of
the structure of interest (cf. Fig. 5), which is parameterized by a suitably
small set of numbers (Θ1,Θ2, · · ·). Suppose, further, that in a given ex-
periment one has measured the MEM caustic surfaces in I(x, y, τ1, τ2, · · ·).
Importantly, such caustic surfaces are intrinsically of high visibility, and
will therefore typically dominate image contrast. Under a suitable error
metric, let E [(Θ1, Θ2, · · ·); I(x, y, τ1, τ2, · · ·)] denote the mismatch between
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the measured MEM caustic surfaces in I(x, y, τ1, τ2, · · ·), and the caustic
surfaces which result when one evaluates the forward problem for the spec-
ified model as a function of (Θ1, Θ2, · · ·). The inverse problem of caustic
imaging is then reduced to the multi-dimensional optimisation problem of
finding the particular set of parameters (Θ1, Θ2, · · ·) which minimise E .
Many numerical algorithms exist for such a multi-dimensional optimisation
problem, see for example Chapter 10 of Press et al. [40]. Note, moreover,
that such optimisations might also be carried out over data spaces with di-
mension smaller than that required for a full caustic unfolding, a particular
example of which was given in Fig. 10.

10. Conclusions

We have demonstrated that a caustic dominated imaging theory can be use-
fully applied to interpret MEM contrast from surface topography (and/or
surface potential) variations which appreciably distort the electric field
above the specimen surface. The method obtains the electric potential
above the specimen by numerically solving Laplace’s equation. A fam-
ily of electron ray trajectories is then numerically propagated through the
electric field close to the specimen surface to obtain the electron distribu-
tion in the objective lens image plane. The resulting contrast may include
strong image features where one has envelopes of overlapping rays, evident
as bright caustic regions. Such caustics can be related to the specimen to-
pography and/or potential and may be used to recover quantitative surface
topographical information.
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Appendix A. Fourth order Runge–Kutta method

The fourth order Runge–Kutta method is one of several methods that may
be used to evaluate the electron path through the electric field (see the
discussion and references in [38, 40]). Assuming rotational symmetry in
cylindrical polar coordinates, at time t the jth electron is at (r(j)(t), z(j)(t))

with velocity (v
(j)(t)
r , v

(j)(t)
z ). We estimate the new electron location and
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velocity at time t + h using classical kinematic equations of motion. The
fourth order Runge–Kutta method in essence estimates the average velocity
in r and z over the time interval from t to t + h, and then multiplies this
average velocity by h to obtain the new position in r and z. In the r
direction, for example, the equation of motion is

vr,f = vr,i + ∆t ar,av(r, z), (A.1)

where vr,f is the final velocity, vr,i is the initial velocity, the acceleration ar

is

ar(r, z) = − e

m

∂ϕ(r, z)

∂r
, (A.2)

and ar,av is the average acceleration over the time interval ∆t. Where
the acceleration is constant at all points (r, z), Eq. (A.1) is trivial to apply.
However where ar(r, z) and az(r, z) vary with (r, z), we use the fourth order
Runge–Kutta method to generate a series of estimates of the acceleration
and velocity over the time from t to t + h,

vr1 = v
(j)(t)
r , vz1 = v

(j)(t)
z ,

vr2 = v
(j)(t)
r + (h/2)(−e/m)

[
∂ϕ(r,z)

∂r

]
(r=r(j)(t)+(h/2)vr1,z=z(j)(t)+(h/2)vz1)

,

vz2 = v
(j)(t)
z + (h/2)(−e/m)

[
∂ϕ(r,z)

∂z

]
(r=r(j)(t)+(h/2)vr1,z=z(j)(t)+(h/2)vz1)

,

vr3 = v
(j)(t)
r + (h/2)(−e/m)

[
∂ϕ(r,z)

∂r

]
(r=r(j)(t)+(h/2)vr2,z=z(j)(t)+(h/2)vz2)

,

vz3 = v
(j)(t)
z + (h/2)(−e/m)

[
∂ϕ(r,z)

∂z

]
(r=r(j)(t)+(h/2)vr2,z=z(j)(t)+(h/2)vz2)

,

vr4 = v
(j)(t)
r + h(−e/m)

[
∂ϕ(r,z)

∂r

]
(r=r(j)(t)+hvr3,z=z(j)(t)+hvz3)

,

vz4 = v
(j)(t)
z + h(−e/m)

[
∂ϕ(r,z)

∂z

]
(r=r(j)(t)+hvr3,z=z(j)(t)+hvz3)

,

r(j)(t+h) = r(j)(t) + (h/6)(vr1 + 2vr2 + 2vr3 + vr4),

z(j)(t+h) = z(j)(t) + (h/6)(vz1 + 2vz2 + 2vz3 + vz4).
(A.3)

Similarly, we may estimate the average acceleration over the time interval,
and multiply this by h to obtain the new velocity in r and z. We use the
classical kinematic equation of motion, in r for example,

rf = ri + vr,i∆t + (ar,av(r, z)/2)∆t2, (A.4)
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for final and initial points rf and ri respectively, to obtain the necessary
points at which we evaluate the acceleration and obtain a weighted average,

ar1 = (−e/m)
[

∂ϕ(r,z)
∂r

]
(r=r(j)(t),z=z(j)(t))

,

az1 = (−e/m)
[

∂ϕ(r,z)
∂z

]
(r=r(j)(t),z=z(j)(t))

,

ar2 = (−e/m)
[

∂ϕ(r,z)
∂r

]
(r=r(j)(t)+(h/2)v

(j)(t)
r +(ar1/2)(h/2)2,

z=z(j)(t)+(h/2)v
(j)(t)
z +(az1/2)(h/2)2)

,

az2 = (−e/m)
[

∂ϕ(r,z)
∂z

]
(r=r(j)(t)+(h/2)v

(j)(t)
r +(ar1/2)(h/2)2,

z=z(j)(t)+(h/2)v
(j)(t)
z +(az1/2)(h/2)2)

,

ar3 = (−e/m)
[

∂ϕ(r,z)
∂r

]
(r=r(i)(t)+(h/2)v

(j)(t)
r +(ar2/2)(h/2)2,

z=z(j)(t)+(h/2)v
(j)(t)
z +(az2/2)(h/2)2)

,

az3 = (−e/m)
[

∂ϕ(r,z)
∂z

]
(r=r(i)(t)+(h/2)v

(j)(t)
r +(ar2/2)(h/2)2,

z=z(j)(t)+(h/2)v
(j)(t)
z +(az2/2)(h/2)2)

,

ar4 = (−e/m)
[

∂ϕ(r,z)
∂r

]
(r=r(j)(t)+hv

(j)(t)
r +(ar3/2)h2,

z=z(j)(t)+hv
(j)(t)
z +(az3/2)h2)

,

az4 = (−e/m)
[

∂ϕ(r,z)
∂z

]
(r=r(j)(t)+hv

(j)(t)
r +(ar3/2)h2,

z=z(j)(t)+hv
(j)(t)
z +(az3/2)h2)

,

v
(j)(t+h)
r = v

(j)(t)
r + (h/6)(ar1 + 2ar2 + 2ar3 + ar4),

v
(j)(t+h)
z = v

(j)(t)
z + (h/6)(az1 + 2az2 + 2az3 + az4).

(A.5)

Typically, we expect that any perturbations to the electric field will ap-
proach zero far from the specimen (e.g. 10−4 m), so we often need only
solve for the electric field relatively close to the cathode variations. We
may also, then, begin the Runge–Kutta method at some point z = z1 much
closer to the cathode, minimising computation time. This also ensures
that the final point of the trajectory is at z = 0 as required, whereas a full
Runge–Kutta treatment to z = 0 would often overshoot the position z = 0
due to the discrete size of the time step h.

The derivative of the electric potential ϕ may be performed, for example,
via the symmetric finite-difference approximation [40]

∂ϕ(r, z)/∂r ≈ (ϕ(r + ∆, z) − ϕ(r − ∆, z))/2∆. (A.6)
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Note that a smaller derivative step size ∆ will not always increase accuracy,
as a ∆ that is too small may result in the difference (ϕ(r+∆, z)−ϕ(r−∆, z))
being in the significant figures affected by numerical noise and/or rounding
errors. For the examples in this paper, ∆ = 5 × 10−9 m for z derivatives
and ∆ = 10−7 m for r derivatives.

The choice of time step h follows similar constraints. If it is too large (e.g.
10−12 s), the electron may pass beyond the classical turning point z = LM

and the boundary of the droplet, which disrupts the ray tracing method.
If it is too small (e.g. 10−15 s), computation time is greatly increased and
the differences in position may occur only in the significant figures that are
most strongly affected by numerical noise and/or rounding errors.

The choice of the parameters used in the FreeFEM++ solution of Laplace’s
equation (see section 6) will influence the accuracy of the simulations, as
numerical errors in the electric potential solution will directly affect the
simulated trajectories. In particular, the number of maximum mesh points
allowed in the mesh adaption function must be sufficient to properly sam-
ple the variations of the electric field. For the droplet and trail considered
here, the default FreeFEM++ maximum of 9000 mesh vertices was suffi-
cient, but for a rapidly varying electric potential (e.g. sharp surface steps
that are tens of nanometres apart) a higher maximum is required. Similarly,
the mesh adaption error must be sufficiently small, so that the generated
mesh samples the electric potential over an appropriately small scale where
the potential varies over a short distance.

If these parameters are not well chosen, it is usually evident as large coarse
areas of mesh, in asymmetry in the mesh pattern above a symmetrical
specimen, and in the instability and roughness of the recovered equipoten-
tial surfaces. We therefore recommend examining plots of the mesh and
equipotential surfaces above the specimen to ensure they are well behaved.
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A minor correction was made to Eq. (4) of chapter 4, which was missing a

negative sign. This was a typographical error carried over from Shao and

Crewe (1989) (see Rempfer and Griffith, 1992), but in all calculations the cor-

rect sign was used. In a related sentence following Eq. (4) the word ‘negative’

was replaced by ‘positive.’

In the last paragraph of page 75 of chapter 4, the word ‘optimum’ was re-

moved when used in reference to the Scherzer defocus in the published

version. This is because the Scherzer defocus is, in general, only an optimum

defocus for weak phase objects, and some of the examples used in chapter 4

are not weak phase objects. In the last paragraph of page 75 and the last para-

graph of page 82 of chapter 4 we now explicitly mention that the Scherzer

defocus is optimum for weak phase objects.
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WAVE OPTICAL TREATMENT OF SURFACE STEP

CONTRAST IN LOW ENERGY ELECTRON MICROSCOPY
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A wave-optical treatment of surface step contrast in a low energy electron microscope (LEEM) is
presented. The aberrations of an idealised LEEM imaging system are directly incorporated into
a transfer function (TF) and image simulations of surface steps are evaluated in one- and two-
dimensions. Under the special circumstances of a weak phase object, the simplified form of the
contrast transfer function (CTF) is used to discuss LEEM image contrast and optimum defocus
conditions.

Keywords: Low energy electron microscopy (LEEM); surface steps; phase contrast imaging; con-
trast transfer function.

1. Introduction

Low energy electron microscopy (LEEM) is a well-established technique for the imaging
of surfaces.1,2,3,4,5,6 The capability to image the behaviour of surface steps in real-time has
provided important insight into a wealth of surface physics phenomena including mass-
transport, evaporation and nucleation processes.1,2 The two main methods for imaging
surface steps in LEEM are diffraction and phase contrast imaging. Diffraction contrast
can be usefully exploited when different surface reconstructions exist on the up and down-
side of steps. A classic example of this geometry is Si(001) where monolayer surface steps
are present at the boundaries between (2 × 1) and (1 × 2) reconstructions. An aper-
ture is placed around appropriate diffraction spots in the low energy electron diffraction
(LEED) pattern to select scattering from only one of the reconstructed surfaces.6 Thus
steps are revealed at the boundaries between bright and dark reconstructed domains in
the image. Phase contrast methods are more general and exploit the variation in phase
of the incident electron wave as it is reflected in the vicinity of the step edge. Although
significant progress has been made in understanding the origin of step contrast in terms of
the Fresnel integrals of paraxial wave optics,3,4 image simulations which formally incorpo-
rate the instrument aberrations into a transfer function (TF) have yet to be implemented.
The development of such methods is of particular importance given the likely emergence

∗Corresponding author.
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of aberration corrected LEEM systems7 where contrast interpretation at high resolution
may become a significant issue.

Here we develop a method to rapidly simulate LEEM image contrast from surface steps.
We treat the interaction of the low energy electrons with the surface step as a wave optical
phenomenon and define the appropriate surface phase object function O(R). We then
combine the aberrations of the LEEM imaging system to obtain the TF of the effective
objective lens which forms a virtual image of O(R). This method has the advantage that
conventional contrast transfer function theory can be applied and used to interpret the
image contrast and assess resolution in terms of instrumental parameters.8 LEEM image
simulations of two-dimensional objects can be readily performed. We briefly consider the
restricted case of imaging a weak phase object (WPO) in which the simplified form of the
contrast transfer function (CTF) can be used to discuss optimum defocus conditions and
the important role of chromatic aberration.

2. Phase Object Function for Surface Step Contrast

A schematic showing electron interaction with a surface step of height a is contained in
Fig. 1(a).

a

HaL

S(R) = 0

S(R) = -1

(b)

Figure 1: (a) Origin of the electron phase change at a surface step. Electrons reflected
from the lower terrace travel an extra distance 2a compared with electrons reflected from
the upper terrace. (b) Schematic of a monolayer-height island which is described by the
shape function S(R).

Electrons reflected either side of the step will experience a relative phase difference
given by

ϕ(R) =
4πa

λi
S(R), (1)

where λi is the incident electron wavelength close to the surface, S(R) is the step shape
function such that S(R) = 0 if z = 0 (the reference plane), and R is a two-dimensional
position vector in the plane perpendicular to the optic axis (see Fig. 1(b)). For n steps
up each of height z = a we have S(R) = −n, since a step up has reduced phase compared
with the surface S(R) = 0, and for n steps down each of height z = −a we have S(R) = n.
The phase object function defining the surface is then given by

O(R) = exp(iϕ(R)). (2)

The phase object function can be readily generalized to arbitrary combinations of steps
in an obvious way. It is important to appreciate that this approach inherently assumes
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that the surface steps do not significantly modify the uniform electric field of the cathode
immersion lens. For larger surface perturbations it is essential to incorporate local changes
in the electric field which can significantly distort the image.9,10

3. LEEM Cathode Immersion Lens

In LEEM, a nearly parallel beam of low energy electrons is normally incident upon the
surface which acts as the cathode of an immersion lens (Fig. 2(a)). The potential of the
specimen cathode is offset from the potential of the electron gun by a small adjustable
bias voltage V . The incident electrons are decelerated by the electric field between the
specimen and anode at potential U0 before being reflected at energy eV and reaccelerated
towards the anode. The electric field between the anode and specimen cathode is essen-
tially uniform except for close to the anode aperture which acts as a diverging lens.

It is convenient to partition image formation by the immersion lens into two parts; an
accelerating and imaging part, which can then be treated separately.11 In Fig. 2(b) we show
the influence of the homogeneous electric field on the trajectory of an electron reflected
from the surface with energy eV from the point O. The electrons experience a parabolic
path in the uniform field and appear to originate from a point A located in a virtual image
plane at a distance 2L from the anode. The spherical and chromatic aberration coefficients
of this uniform field have been evaluated by Shao et al.12 to be

CU
S = 2ρ0L

(
1

2
ω

3/2
0 − ω0 +

1

2

√
ω0

)
, (3)

and

CU
C = −2L

(
1 − 1√

ω0
− 1

2ρ0
√
ω0

)
, (4)

where ρ0 = V/U0 and ω0 = (1+1/ρ0). We note that CU
C is positive and has the same sign

as a conventional electron lens.
Finally, we take into account the effect of the aperture by assuming that the uniform field
is terminated by an ideal diverging lens as shown in Fig. 2(c).5 The virtual specimen,
created by the uniform field at 2L from the anode, is the object of the aperture lens with
focal length f = −4L. As shown in Fig. 2(c), this lens forms a virtual image of the virtual
specimen at point B which is located in a virtual image plane a distance 4L/3 from the
anode. This image is demagnified by a factor of 2/3.
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Figure 2: Schematic of the cathode immersion lens. (a) A parallel beam of incident
electrons is reflected at point O and accelerated towards the anode at potential U0. The
potential of the specimen differs from the anode by V and the anode aperture acts as
a diverging lens. (b) Influence of the homogeneous electric field on the trajectory of an
electron reflected from the surface with energy eV from the point O. The electrons travel
a parabolic path in the uniform field and appear to originate from a point A located in
a virtual image plane at a distance 2L from the anode. (c) The effect of the aperture is
incorporated by assuming that the uniform field is terminated by an ideal diverging lens.
The virtual object created by the uniform field at 2L is the object of the aperture lens of
focal length f = −4L. This lens forms a virtual image of the virtual specimen at point
B which is located in a virtual image plane a distance 4L/3 from the anode. This is the
object plane of the LEEM objective lens. Adapted from Rempfer and Griffith 5
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4. Objective Lens

The virtual image at 4L/3 is the object plane of the LEEM objective lens. Given the
geometry of the cathode immersion lens and the necessity to focus on this plane, the focal
length of the objective must be large. This means that its spherical (CO

S ) and chromatic
(CO

C ) aberration coefficients are also large and must be included in the imaging model. To
combine the aberration coefficients of the objective lens with those of the homogenous field
we note that they must be referred to objects of the same lateral magnification. However,
following the action of the aperture lens the lateral magnification of the object for the
objective lens is 2/3. As discussed by Rempfer et al.,5 a ray angle α following divergence
by the aperture lens is increased to 1.5α (see Fig. 2(c)) and so the combined aberration
coefficients of the homogeneous accelerating field and objective lens are5

CS = CU
S + (1.5)4CO

S , (5)

and
CC = CU

C + (1.5)2CO
C . (6)

Thus, we can consider imaging a virtual object of magnification M = 1 located in a virtual
image plane at a distance 2L from the anode with an effective lens of aberration coefficients
CS and CC .

5. Transfer Function

With the aberrations of the uniform accelerating field and objective lens combined, we
are now in the position to define the transfer function of the instrument and apply wave
optical methods to evaluate the image of a phase object function for a given surface step
arrangement. Under the assumption that one is working with a shift-invariant linear imag-
ing system,13 the LEEM instrument transforms each point in the phase object function
into an extended region, such that the wavefunction in the image plane is given by14

ψ(R) = O(R) ⊗ T (R), (7)

where T (R) is the complex point spread function (Green function, real-space propagator)
and ⊗ denotes two-dimensional convolution. Note that harmonic time dependence, for all
stationary-state complex scalar wavefunctions considered here, will be suppressed.
To evaluate the LEEM image intensity it is convenient to work with the Fourier transform
of ψ(R) with respect to R and evaluate the electron wavefunction in the back-focal plane
of the effective objective lens. We then have

ψ(u) = O(u)T (u), (8)

where O(u) is the Fourier transform of O(R). T (u) is the transfer function of the system
given by

T (u) = A(u)B(u), (9)

where u is a reciprocal (diffraction) space coordinate and we use the convention u = 1/R.
The aperture function

A(u) =

{
1, |u| ≤ uA,
0, otherwise,

(10)
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takes into account the effect of a contrast aperture by removing all spatial frequencies
with a magnitude greater than uA. Due to practical considerations the contrast aperture
is usually located in a conjugate plane to the back-focal plane of the objective lens in the
imaging part of the LEEM column, with equivalent effect.
The aberration function B(u) is written as

B(u) = exp(iχ(u)), (11)

where14,15,16

χ(u) = π∆fλu2 + πCSλ
3u4/2. (12)

Here λ is the incident electron wavelength, with energy eU0 (e is the electron charge).
In the first term of Eq. (12), ∆f represents the amount of defocus away from the object
plane of the objective lens, which is located a distance 2L from the anode (see Fig. 2(c)).
The second term takes into account the phase shift introduced by spherical aberration and
includes the combined aberration coefficient given by Eq. (5). Higher order aberrations,
e.g. higher order spherical aberration terms, can also be naturally incorporated into the
transfer function formalism. The inclusion of such terms will be of increasing importance
given the likely emergence of aberration corrected LEEM systems.7

Substituting Eqs. (9)–(12) into (8) then provides an expression for ψ(u),

ψ(u) = O(u)A(u) exp(iπ∆fλu2 + iπCSλ
3u4/2). (13)

The above discussion is for a monochromatic electron beam. We must also take into
account the finite energy spread of the electron source. A spread in emission energies
results in a distribution in defocus ε about the mean value ∆f , because electrons with
different energy are focused to a different point. We may therefore replace ∆f in Eq. (13)
with ∆f + ε to represent the Fourier transform of the electron wavefunction ψε(R), which
is located at a distance ε from the imaging plane at 2L+ ∆f from the anode. The image
at a particular value of defocus ε is given by

Iε(R) = |ψε(R)|2. (14)

To evaluate the final intensity we must average the intensities over defocus

IC(R) =

∫ ∞

−∞
Iε(R)D(ε) dε. (15)

Following the approach of Fejes,17 we approximate the defocus distribution as a Gaussian
distribution with standard deviation σ,

D(ε) =
1

σ
√

2π
exp

(
− ε2

2σ2

)
, (16)

although other distributions can be readily incorporated. The standard deviation of the
defocus Gaussian distribution σ is related to the energy distribution via15,18

σ = CC
σE

E
= CC

∆E

E
√

8 log(2)
. (17)

Here CC is the combined chromatic aberration coefficient (Eq. (6)), σE is the standard
deviation of the energy Gaussian distribution, E = eU0 is the incident electron energy,
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and ∆E is the full width half maximum of the energy distribution. It is also possible
to include defocus variations due to fluctuations in lens currents and/or the accelerating
voltage. Here we assume that energy spread dominates chromatic aberration. In addition
to temporal coherence, the electron source is a finite size and this will influence spatial
coherence. However, for modern field emission guns this latter effect can be neglected
compared with the influence of energy spread.3,4

6. Simulation of LEEM contrast from steps

Based on the above formalism, we are now in a position to perform LEEM image sim-
ulations of surface step contrast in both one and two dimensions. We begin with a one
dimensional step as depicted schematically in Fig. 1(a). We choose a step height a = 0.31
nm corresponding to steps on the Si(111) surface19 which for a bias voltage V = 5 V gives
a phase difference across the step of (0.82 + 2π) as defined by Eq. (1). For all simulations
we assume typical values of L = 2 mm and U0 = 20 kV. The contrast aperture of radius
uA = 0.6 nm−1 removes all spatial frequencies greater than this value from the LEEM
image (see Eq. (10). However, for the modelling considered here we shall see that the
inclusion of chromatic aberration typically dampens the high frequency contributions to a
negligible value, so provided the aperture is greater than ∼ 0.4 nm−1, the precise position
of the aperture has no effect on the image contrast.

To numerically evaluate the LEEM image of the step we first evaluated O(u) by obtain-
ing the Fourier transform of O(R). The discrete step was approximated analytically by
the sum of two inverse tangent functions which have a finite transition or step width.
However, provided this width is sufficiently narrow (≤ 0.1 nm), the precise shape of the
step profile was found to have little influence on the images generated. The fast Fourier
transform algorithm20 employed uses a uniformly spaced array of discrete data points, and
assumes periodic boundary conditions for the array. To maintain periodicity we therefore
considered the transverse periodic continuation of a step-down and step-up system tak-
ing care to separate the steps sufficiently (∼ 1.6 µm) so there is no interference between
diffraction from the steps during imaging. Image contrast from an individual step could
therefore be studied in isolation. O(u) was then inserted into Eq. (13) to obtain ψ(u) and
the image intensity Iε(R) was evaluated from the modulus squared of the inverse Fourier
transform of ψ(u) via Eq. (14). Care was taken to correctly sample all functions in real
and reciprocal space to avoid numerical error (see Appendix).

A LEEM image simulation of the model step in Fig. 1(a) is contained in Fig. 3(a) for a
monochromatic source, using Eq. (14) for ε = 0. The corresponding imaginary part of
the LEEM transfer function T (u)—known as the phase contrast transfer function,8 see
Section —is shown in Fig. 4 for ∆f = −3.0 µm. This defocus is the Scherzer defocus14

∆fSC = −1.2(CSλ)1/2 which for weak phase objects balances the defocus term with the
effect of spherical aberration in Eq. (12).21 Under these conditions, the phase contrast TF
retains a relatively constant value of near unity out to the first crossover of the zero axis
(the point resolution limit).14 In Fig. 3(a), the contrast displays a minimum in the vicin-
ity of the step with numerous oscillations either side of the step for this monochromatic
source. In order to take into account the finite energy spread of the electron source it is
necessary to incoherently average such monochromatic contributions over defocus using
Eq. (15). The resulting averaged intensity IC(R) is displayed in Fig. 3(b) for an energy
spread ∆E = 0.3 eV. Although the general form of the intensity resembles the monochro-
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Figure 3: (a) Monochromatic image intensity Iε=0(R) evaluated for the superimposed step
profile (dotted-line) and an associated phase change of (0.82+2π). (b) IC(R) for the same
phase object in (a) showing chromatic damping of intensity oscillations.
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Figure 4: Imaginary part of the LEEM transfer function T (u), including defocus and
spherical aberration, at the Scherzer defocus of ∆f = −3.0 µm (cf. Eq. (20)).

matic intensity contrast in Fig. 3(a), the fine fringes surrounding the step are smoothed
out by the incoherent averaging process, Eq. (15). Such a localised step intensity profile
is in general qualitative agreement with experimental observations.1,2,3,4

In Fig. 5 we explore the dependence of LEEM step contrast on objective lens defocus. As
discussed by Chung et al.3,4 it is possible to determine the up or down character of a step
from the asymmetry of the LEEM intensity profile in the over or under focus condition
provided it is known whether 2nπ < ϕ(R) < (2n+ 1)π or (2n+ 1)π < ϕ(R) < 2(n+ 1)π
for integer n. In panels (a)–(c) we consider a step phase change of ϕ(R) = π/2 + 2π,
which is achieved for the step of height a = 0.31 nm by increasing the bias voltage V
to 6.1 V. A phase object of ϕ(R) = π/2 + 2nπ is identified as an optimum condition for
the detection of intensity peak asymmetry.3,4 As the defocus changes from negative un-
derfocus values to positive overfocus conditions, the intensity maxima and minima swap
position on either side of the step indicated by the inset dotted line. Hence it is possible
to determine the sense of the step via the intensity asymmetry.3,4 Note however that the
contrast does not completely reverse either side of ∆f = 0 (i.e. the intensity patterns for
±∆f are not mirror images of each other). This observation can be attributed to the
presence of spherical aberration in the TF (see Eq. (12)) which does not change sign with
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defocus. Spherical aberration also results in non-zero phase contrast at ∆f = 0. Indeed,
minimum contrast in the presence of aberrations is obtained using the minimum contrast
defocus14 ∆fm = −0.44(CSλ)1/2, which reduces to ∆fm = 0 when CS → 0.
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Figure 5: IC(R) evaluated for superimposed step profile (dotted-line) of height a = 0.31
nm with ∆E = 0.3 eV as a function of defocus ∆f . The step phase change is (π/2 + 2π)
in (a)–(c) and (3π/2 + 2π) in (d)–(f) which is achieved by adjusting the bias voltage.

The case of ϕ(R) = 3π/2 + 2π is considered for the same step in panels 5(d)–(f) by in-
creasing the bias voltage V to 12 V. Again, this is an optimum condition for the detection
of intensity peak asymmetry in the range (2n + 1)π < ϕ(R) < 2(n + 1)π.3,4 The step
contrast reverses sense as expected compared with ϕ(R) = π/2 + 2π (panels (a)–(c)) and
the intensity maxima and minima swap position on either side of the step on going from
underfocus to overfocus. Hence, again it is possible to determine the sense of the step
via the intensity asymmetry for this phase object.3,4 It is interesting to note that the
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spherical and chromatic aberration coefficients of the uniform field are also dependent on
bias voltage via Eqs. (3) and (4). This introduces additional oscillations in the intensity
profile contained in panel (d) relative to panel (a). However, despite the complications
introduced by aberrations, the method proposed by Chung et al.3,4 for estimating step
sense would still appear to be valid for the cases examined here. Finally, we note that
the identification of the precise step edge position from the intensity profile requires an
accurate knowledge of the step height phase difference (Eq. (1)) and the parameters of the
imaging system.
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Figure 6: IC(R) evaluated for two adjacent steps (dotted-line) which are (a)–(b) 30 nm,
(c)–(d) 7 nm and (e)–(f) 2 nm apart. ∆E = 0.3 eV for (a), (c) and (e) and ∆E = 0.1 eV
for (b), (d) and (f).

An important issue in LEEM is the ability to resolve closely spaced surface steps. This
is particularly relevant since the use of aberration correction7 and/or energy filtering may
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make contrast interpretation at high resolution a significant issue. Here we use our sim-
ulation method to examine the contrast from a model pair of steps in close proximity as
shown in Fig. 6 for energy spreads ∆E = 0.3 and 0.1 eV. For separation of 30 nm (pan-
els (a),(b)) the step contrast is essentially independent with little interference between
steps. However at separations of 7 nm (panels (c),(d)) and 2 nm (panels (e),(f)) there is
strong constructive interference and a significant peak appears between the two steps. We
emphasize that the latter separation is below the instrumental point resolution but the
simulation indicates that in principle it is still possible to extract positional information
through comparison of simulation with experiment.22 Note that the reduced energy spread
simulations in panels (b), (d) and (f) are associated with more fringes and less contrast
localized at the steps. This results in enhanced interference between steps and provides
additional features for comparison between experimental images and image simulations.

A wave-optical approach to simulating LEEM contrast from surface steps can be readily
extended to two spatial dimensions, for the arrangement of monolayer-step-height circular
and elliptical terraces shown in Fig. 7(a). The step phase difference is (0.82+2π), placing
it in the 2nπ < ϕ(R) < (2n+1)π interpretation regime. Therefore, in the image simulation
shown in Fig. 7(b) the down nature of the outermost terrace produces opposite contrast
to the up terraces as expected. As seen previously in Fig. 6, steps that are further apart
(30 nm) are easily distinguished, whereas steps that are close together (less than 10 nm)
produce more complicated interference patterns. In Fig. 7(b), bright regions of construc-
tive interference are arrowed where the down and up steps are close together (between
10 nm and 5 nm) which complicates direct interpretation. We note that a 2D simulation
capability may prove to be valuable in the interpretation of closely spaced step arrange-
ments as well as in the high resolution study of wavy steps induced by instabilities.23,24,25

To the same end, we note the possible utility of some recent work on phase retrieval using
aberrated shift-invariant imaging systems.26,27

10 nm

HaL

10 nm

HbL

Figure 7: (a) Plan-view schematic of an arrangement of terraces separated by monolayer
height steps. Lighter shading indicates increasing height. (b) IC(R) evaluated for the
phase object function corresponding to the step arrangement in (a). The phase change
associated with each step is (0.82 + 2π) and ∆E = 0.3 eV. Bright regions of constructive
interference where the steps are in close proximity are arrowed.
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7. Weak Phase Object Approximation

In general, the phase changes involved during reflection of low energy electrons from
surface steps are not weak (i.e. with maximum transverse phase differences that are small in
magnitude relative to 2π). However, it is possible to tune the incident electron wavelength
λi by adjusting the bias voltage V such that the phase difference is 2nπ + δ for a small
quantity δ and n an integer. The step phase change from Eq. (1) is then ϕ(R) = δ if
z = −a and ϕ(R) = 0 if z = 0. Under these conditions we therefore have a weak phase
object (WPO) and we can expand the phase object function Eq. (2) to first order

O(R) = 1 + iϕ(R). (18)

The advantage of the WPO approximation is that the form of the transfer function simpli-
fies and it is instructive to examine its form for LEEM. Following the conventional WPO
treatment we have the intensity8,14

IW (R) = 1 − 2ϕ(R) ⊗ TW (R), (19)

where TW (R) = Im{T (R)} and the phase contrast transfer function (CTF) in reciprocal
space is given by

TW (u) = A(u) sinχ(u). (20)

Rather than average the intensities over defocus via Eq. (15), it is customary in the WPO
to include chromatic aberration effects in the form of a damping function E(u).17 In
practice this should be limited to a restricted set of WPOs17 but here we nevertheless
adopt the approach for steps to evaluate the role of chromatic aberration in the LEEM
transfer function. The chromatically damped CTF is then given by

TW
C (u) = A(u)E(u) sinχ(u). (21)

The envelope function17

E(u) = exp(−π2λ2σ2u4/2) (22)

takes into account the full width half maximum spread in energy ∆E of the electron gun.
The WPO intensity, incorporating chromatic effects, is then given by

IW
C (R) = 1 − 2ϕ(R) ⊗ TW

C (R). (23)

In Fig. 8(a) we display TW (u) for ∆f = −3.0 µm. The chromatic damping envelope
E(u) for ∆E = 0.3 eV is overlayed on the panel as a dashed line. Multiplication of these
functions via Eq. (21) produces the chromatically damped CTF TW

C (u) in Fig. 8(b). The
resulting step contrast for the two CTFs is evaluated using Eqs. (19) and (23) and dis-
played in Figs. 8(c) and (d) respectively. The effect of the damped transfer function in Fig.
8(b) is to produce a step intensity profile in (d) with reduced fringe visibility compared
with (c). For comparison, the intensity profile IC(R) obtained from the full averaging
process in Eq. (15) is displayed as a dashed line in Fig. 8(d), but is difficult to see as it
is so close to IW

C (R). This shows that the use of an envelope function and evaluation
of the intensity via Eq. (23) is an excellent approximation to the full treatment of Eq.
(15). Furthermore, we have confirmed for a wide range of defocus and energy spread that
the envelope function treatment provides good agreement with the full defocus averaging
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Figure 8: (a) TW (u) for ∆f = −3.0 µm. The chromatic envelope E(u) for ∆E = 0.3
eV is overlayed as a dashed-line. (b) Chromatically damped CTF TW

C (u). (c) IW (R)
evaluated for the dotted-line step profile shown and a WPO step phase change of 0.1. (d)
IW
C (R) (solid line) for a WPO step phase change of 0.1 radians. The intensity profile
IC(R) evaluated with the full incoherent averaging process is superimposed as a dashed
line, but is difficult to see as it is so close to IW

C (R).

approach within the WPO regime.

Given the interpretive value of the envelope function approximation in Eq. (22) and its
computational advantages over the full averaging approach in Eq. (15), it is interesting
to examine its validity for strong phase objects. In such cases, a first order expansion
in terms of ϕ(R) (Eq. (2)) is not valid, but we can readily modify Eq. (9) to obtain the
chromatically damped CTF

TE
C (u) = A(u)B(u)E(u). (24)

Eq. (13), the electron wavefunction in the back-focal plane of the effective objective lens,
then becomes

ψ(u) = O(u)A(u) exp(iχ(u)) exp(−π2λ2σ2u4/2). (25)

The LEEM image contrast IE
C (u), which incorporates chromatic aberration via the enve-

lope approximation, is then evaluated from the modulus squared of the inverse Fourier
transform of ψ(u) given by Eq. (25).

In Fig. 9 we compare simulations of IE
C (R) (solid line) evaluated via Eq. (25) with the

defocused averaged IC(R) (dashed line) evaluated via Eq. (15) for two non-WPO values
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Figure 9: Comparison of intensity profile obtained via the chromatic envelope approxima-
tion IE

C (R) (solid line) with the defocused averaged value IC(R) (dashed line) for a step
phase difference of (a) (3π/4 + 2π) and (b) (3π/2 + 2π). In both cases the step profile is
shown as a dotted-line.

of step phase difference. It can be seen that there is excellent agreement between the two
methods. Indeed we have confirmed this is the case for a wide range of defocus and phase
difference up to 100π. This suggests that the computationally efficient damping envelope
approach can be usefully applied to qualitatively simulate LEEM step contrast, even for
the case of strong phase objects.

Given the intuitive interpretation of TW
C (u) it is instructive to examine its general form

as a function of defocus. In conventional high energy transmission electron microscopy of
weak phase objects it is customary to optimise imaging conditions by using the Scherzer
defocus ∆fSC .14 Under these conditions, the CTF has nearly constant phase out to the
first crossover which defines the instrument point resolution (see Fig. 8(a)).14 However, it
can be seen in Fig. 8(b) that for LEEM the chromatic aberration envelope E(u) signifi-
cantly suppresses the form of TW

C (u), particularly at spatial frequencies close to the point
resolution. Therefore, to enhance the visibility of WPOs it may be more appropriate to
use greater values of defocus and tune the CTF passbands to specific spatial frequencies
inherent in the WPO. Such higher defocus passbands can be observed in panels (a) and
(b) of Fig. 10.
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Figure 10: TW
C (u) for defocus values (a) 2∆fSC and (b) 3∆fSC where ∆fSC = −3.0 µm.

82 WAVE OPTICAL TREATMENT OF SURFACE STEP CONTRAST IN LEEM



8. Conclusions

We have presented a wave optical treatment of surface step contrast in LEEM. Although
the method neglects contrast arising from step strain or electron penetration below the
surface, it has the advantage that conventional transfer function theory can be applied
and used to interpret the image contrast. In particular, the use of a damping envelope to
treat chromatic aberration appears to provide a good approximation to the full treatment
involving an incoherent averaging of intensities. The method is readily extended to 2D
geometries and we anticipate an increased use of such simulations as aberration corrected
LEEMs are developed.
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Appendix

In the methods discussed in this paper, we evaluate Fourier transforms numerically using
a discrete array to represent the continuous phase variation across the cathode surface.
As discussed by Press et al.20 this array must cover a sufficiently large range of R values
in real space and u values in reciprocal space to prevent aliasing.
We must also be careful to sample both real space (O(R)) and reciprocal space functions
(T (u)) finely enough, that is, the interval size between array points (∆R in real space, ∆u
in reciprocal space) must be sufficiently small that any spatial variation in a function is
accurately sampled by the discrete array.

This is particularly important in computing ψ(u) via Eq. (13), where we multiply the
Fourier transform O(u) by B(u). The real and imaginary components of B(u) vary
between -1 and 1 at an increasingly rapid rate as u increases, as seen in Fig. 4. With the
contrast aperture in Eq. (10) set sufficiently high (i.e. beyond the point resolution), we
find that the maximum reciprocal space gradient of χ(u) (see Eq. (11)), χ′

max, is typically
at uA

χ′
max =

∣∣∣∣
dχ(u)

du

∣∣∣∣
u=uA

. (A.1)

We note that a range of negative defocus values exists which produces a local minimum
in χ(u) close to uA, moving χ′

max to u < uA. However for the aberration coefficients
described in Eq. (12), this range is several microns either side of ∆f = −CSλ

2u2
A ≈ −20

µm, which is outside the typical defocus values used.
To properly sample the function χ(u) and hence B(u), we require that the interval size
in reciprocal space ∆u is small enough that the variation in χ(u) is at most π between
adjacent array points in one dimension20

π ≥ χ′
max∆u, ⇒ ∆u ≤ π/χ′

max, (A.2)

setting an upper limit for ∆u. The real space interval size ∆R is related to the reciprocal
space interval via20

∆R = 1/(n∆u), (A.3)
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where n is the array size in real and reciprocal space in one dimension. The proper
sampling of B(u) therefore requires

∆R ≥ χ′
max/(nπ), (A.4)

setting a lower limit to the interval size in real space. To ensure the real space function
O(R) is properly sampled, we may increase the array size n to reduce the allowed ∆R,
without introducing numerical artifacts by incorrectly sampling in reciprocal space.
Note also that n must be large enough to include the full range of T (u) up to uA, which
requires

n ≥ uA/∆u. (A.5)

Minimizing computation time is also important, for example a fast Fourier transform algo-
rithm benefits from using an array of size 2m for some integer m.20 We can use the above
guidelines to choose appropriate array and interval sizes, whilst incorporating practical
considerations to aid interpretation (e.g. interval sizes with one significant figure).
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Phase Retrieval Low Energy Electron Microscopy

R. P. Yu, S. M. Kennedy, D. M. Paganin, and D. E. Jesson

School of Physics, Monash University, Victoria 3800, Australia

Abstract

We consider the utility of phase-retrieval methods in low energy electron mi-
croscopy (LEEM). Computer simulations are presented, demonstrating recov-
ery of the terraced height profile of atomic steps. This recovery uses phase
retrieval to decode a single LEEM image, incorporating the effects of defo-
cus, spherical aberration and chromatic aberration. The ability of the method,
to obtain temporal sequences of evolving step profiles from asingle LEEM
movie, is discussed.

Key words: Low energy electron microscopy (LEEM), phase contrast
imaging, phase retrieval
PACS:42.30.Rx, 61.72.Ff

1. Introduction

Numerous phase-retrieval methods have been developed which enable
reconstruction of the phase and/or amplitude of a two-dimensional coher-
ent complex scalar wavefield, given a series of one or more intensity maps
that are output by a specified optical imaging system. Examples of such
well-established phase-retrieval techniques include therecovery of a two-
dimensional stationary-state complex scalar electron wavefunction from a
through-focal-series of transmission electron microscope (TEM) images (Op
de Beeck et al., 1996; Meyer et al., 2000; Allen and Oxley, 2001), phase–
amplitude retrieval using the transport-of-intensity equation (Teague, 1983;
Paganin and Nugent, 1998; Bajt et al., 2000), coherent diffractive imaging
(Miao et al., 1999; Spence, 2007), Fourier holography (Eisebitt et al., 2004)
and ptychography (Faulkner and Rodenburg, 2004; Rodenburg2004).

Such phase-retrieval methods may be generally viewed as serving to de-
code the phase and/or amplitude of a given input coherent fieldψin(R, t) (R de-
notes spatial coordinates perpendicular to the optic axis,andt denotes time),
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Figure 1: Flowchart for LEEM phase retrieval. The time-dependent local crystal-surface
step heighth(R, t) yields the complex fieldψin(R, t) that is input into a LEEM imaging sys-
tem. The aberrations of the LEEM are quantified via the transfer functionT(u) [see Eq. (3)].
The squared modulus of the output complex fieldψout(R, t) is the measured LEEM movie
Iout(R, t). Phase retrieval seeks to invert the above process of imageformation, by obtaining
h(R, t) as a function of bothIout(R, t), and the known aberrations (defocus, spherical aberra-
tion, chromatic aberrationetc.) of the LEEM system.

which is encrypted in the series{|ψ(1)
out(R, t)|2, |ψ(2)

out(R, t)|2, · · ·} of one or more
output intensities that are measured using a given optical system. Having
recovered the phase and amplitude ofψin(R, t), one may then consider the
second inverse problem of what information this yields regarding a sample of
interest that lies upstream ofψin(R, t) (cf. Fig. 1).

Importantly, the effects of aberrations (defocus, spherical aberration, astig-
matism, chromatic aberration etc.) may also be incorporated into phase-
retrieval algorithms, as such aberrations may be considered to merely alter
the means by which the phase and amplitude, of the input fieldψin(R, t) over
the planeα, is coded in the corresponding output intensity map(s)Iout(R, t)
over the planeβ (Allen et al., 2001; Paganin and Gureyev, 2008) (see Fig. 1).

Indeed, the aberrations of a coherent imaging system may be viewed in
a positive light: if the input wavefield is transversely uniform in intensity, so
that it may be written asψin(R, t) = Aexp[iφ(R, t)] for constant amplitude
A and (real) phaseφ(R, t), then aberrations arenecessaryto visualize input
phase variationsφ(R, t) as intensity variations of the resulting output maps,
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Figure 2: Schematic of atomic-height terraced steps on a crystalline surface. The height of a
single step is denoted bya, with the local height of the surface denoted byh(x, y, t) ≡ h(R, t).
Direction of incident electrons given by white arrow.

since a “perfect” imaging system would merely reproduce thefeatureless in-
tensity of the input field (see e.g. Paganin and Gureyev, 2008; cf. Urban,
2009). A classic example of this is the very low contrast observed in focussed
bright-field optical micrographs of colorless transparentobjects; the contrast
of such images may be greatly increased by the deliberate constructive intro-
duction of “aberrations” such as those furnished by back-focal-plane filters
(e.g. in Zernike phase contrast or Schlieren imaging), or bydefocus (Zernike,
1942).

In parallel with and in isolation from the above developments, low energy
electron microscopy (LEEM) has emerged as a tool routinely used to image
the dynamics of terraced steps on crystal surfaces (Bauer, 1994) (see Fig. 2).
Although the typical lateral resolution of LEEM is around 5 nm, atomic-layer
high surface steps can be imaged via phase contrast methods which exploit
the variation in phase of the incident electron wave as it is reflected in the
vicinity of the step edge (Chung and Altman, 1998). Surface steps underpin
many phenomena in surface science and the capability of LEEMto image step
positions in real-time has made major contributions to understanding epitaxial
growth (́Swiȩch and Bauer, 1991), surface thermodynamics (Barteltet al.,
1994) and morphological evolution (Tanaka et al., 1997).

It is timely that the concepts and methods of phase retrievalbe applied
to surface electron microscopy. We demonstrate the utilityof this union, by
exploring the use of phase-retrieval methods to determine both the positions
and heights of step edges directly from LEEM images. Our aim is to ex-
amine the possibility of extracting information for a single LEEM imaging

91



parameter-set (e.g. particular fixed values of defocus, spherical aberration,
chromatic aberration etc.) so as to facilitate the systematic quantitative recon-
struction of dynamic events from LEEM movies. Applying a variant of the
Gerchberg–Saxton (GS) method (Gerchberg and Saxton, 1972)to an ideal-
ized LEEM system, we demonstrate how a system of steps and terraces can
be reconstructed from a single aberrated LEEM image. We discuss factors
limiting the resolution of the reconstruction method in typical cases and po-
tential applications to image reconstruction from energy filtered images.

2. LEEM imaging system and transfer function

To describe LEEM step contrast we follow the wave-optical approach of
Kennedy et al. (2009) in which an arrangement of steps and terraces is repre-
sented by a phase object function which transversely modulates the phase but
not the amplitude of the reflected electrons, the phase modulation being pro-
portional to the negative of the local height of the probed surface (cf. Chung
and Altman, 1998; Pang et al., 2009).

For specimens having a local surface (step) heighth(R, t), and assuming
normally-incident plane-wave illumination, reflected electrons experience a
relative transverse phase shift given by

φ(R, t) = −4π
λi

h(R, t) ≡ 4πa
λi

S(R, t). (1)

Here,a is the step height,λi is the wavelength of the incident electron field,
andS(R, t) is a shape-function indicating the number of steps the wavefield
at positionR experiences when reflected from the surface. Note that in this
paper our shape function will consist only of integer valuesfor the idealized,
but often typical, case of one type of step of heighta; however, our phase-
retrieval model is not reliant on this and can work with surfaces consisting
of steps of different height. Note also that an increased heighth(R, t) implies
a reduced phaseφ(R, t) in the reflected electrons (see e.g., Kennedy et al.,
2009).

Under the above approximations, the wavefield reflected fromthe surface
is

ψin(R, t) = exp[iφ(R, t)], (2)

where we have ignored a trivial phase factor that is linear intime. The field
ψin(R, t), which constitutes the input wavefield for the LEEM imagingsystem
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(cf. Fig. 1), is assumed to be a pure phase object, i.e., a complex object with
unit amplitude.

The cathode immersion lens and the objective lens of the LEEMimaging
system modify this input wavefield. Under the assumption that the LEEM
is a linear shift-invariant imaging system (Goodman, 2005), the input spa-
tial wavefunctionψin(R) at some fixed time, and henceforth dropping explicit
functional t dependence, may be related to the output wavefunctionψout(R)
via (see e.g. Paganin and Gureyev, 2008)

ψout(R) = F −1T(u)F ψin(R). (3)

Here,u is the Fourier-space coordinate dual toR, F is the two-dimensional
Fourier transform operator,F −1 is the corresponding inverse Fourier transfor-
mation,T(u) is the transfer function (the Fourier transform of the complex
point spread function), and all operators are assumed to actfrom right to left.
The output intensity is then

Iout(R) = |ψout(R)|2. (4)

For the LEEM imaging system, the transfer function can be written as (see
e.g. Cowley, 1995)

T(u) = E(u) exp(iπ∆ fλu2 + iπCSλ
3u4/2). (5)

Here,u ≡ |u|, ∆ f is the defocus,λ is the free-space electron wavelength,CS

is the spherical aberration coefficient, andE(u) is the chromatic-aberration
damping envelope

E(u) = exp(−π2λ2σ2u4/2). (6)

Here,

σ =
CC∆E

E
√

8 ln 2
, (7)

CC is the chromatic aberration coefficient, E is the incident electron energy,
∆E is the full width at half maximum of the electron energy distribution, and
σ is the corresponding standard deviation (see e.g. Kennedy et al., 2009).

Note that the uniform accelerating field, objective imagingand anode
aperture components of the cathode immersion lens will makeseparate contri-
butions to the combined chromatic- and spherical-aberration coefficients that
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quantify the effective transfer functionT(u) of the LEEM. These combined
aberration coefficients are (Rempfer and Griffith, 1992; Kennedy et al., 2009)

CS = CU
S + (3/2)4CO

S , (8)

CC = CU
C + (3/2)2CO

C , (9)

where aU superscript denotes the contribution of the cathode immersion lens
(due to the uniform electric field in the vicinity of the imaged surface) to the
combined aberration coefficients, with anO superscript denoting the contri-
bution of the objective imaging lens.

3. Surface-step reconstruction using the Gerchberg-Saxton phase retrieval
method

Here we employ one of the simplest phase-retrieval methods,the Gerchberg–
Saxton (GS) method (Gerchberg and Saxton, 1972). In its original form, the
GS algorithm uses two intensity patterns, the input intensity I in(R) = |ψin(R)|2
and the output intensityIout(R) = |ψout(R)|2 (cf. Fig. 1). While Gerchberg and
Saxton originally considered the output complex field (overthe planeβ) to
be the Fourier transform of the input field (planeα), here we consider these
fields to be related by the more general formula in Eq. (3). Since our input
wavefield is a pure phase object, we do not need to measureI in(R), since we
can take it to be unity.

The modified GS method starts with an initial guess for the output-plane
phase of zero, yielding a first estimateψ[1]

out(R) =
√

Iout(R) for the complex
field over the detector. We then map this first iterate for the output field to a
first iterate for the input field, by transforming back to the input planeα using
the following regularized inverse of Eq. (3):

ψ[1]
in (R) = PF −1T−1

γ (u)Fψ[1]
out(R). (10)

Here, the operatorP replaces the modulus of the function, upon which it acts,
with unity. The operatorT−1

γ (u) is a regularized form of 1/T(u), as discussed
in the closing paragraphs of this section.

Having used Eq. (10) to obtainψ[1]
in (R), we then use Eq. (3), withψin(R)

replaced byψ[1]
in (R), to map back to the output planeβ. The resulting field

then has its modulus replaced with the measured modulus
√

Iout(R), to yield
the second iterateψ[2]

out(R) for the object-plane complex field.
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The above process cycles between input and output planes, imposing the
known intensity in each plane, together with any other suitable constraints.
This can be recursed until the current iterate forψ

[ j]
in (R) converges (j is an

integer). A natural criterion for convergence is that the normalized root-mean-
square intensity error, between the measured output intensity and the estimate
|F −1T(u)Fψ[ j]

in (R)|2 for this output intensity at thejth iteration, reaches an
acceptably small value. The phase of the reconstructed input wavefield can
then be used to estimate the height fieldh(R), using Eq. (1).

In the context of phase-retrieval LEEM imaging of terraced steps, one may
utilize thea priori knowledge that one is imaging steps. This constraint may
then be chosen to quantize the retrieved input height maph(R) in the follow-
ing manner: (i) construct a histogram of the height profile from the retrieved
input height map; (ii) apply a maximum search algorithm on every pixel in the
retrieved input height map using the height profile histogram as a search path.
The maximum search algorithm is applied to a particular height valueh(R)
as follows. The height valueh(R) corresponds to a point in the histogram of
height values. We compare the point with the neighboring points in the his-
togram. If the point is not a local maximum, we replace it by the neighboring
point that has the larger number of counts, and repeat the comparison until
reaching a local maximum (this is a peak in the height histogram). We then
replace the height value atR with the new height value. The maximum search
algorithm is applied to all pixels in the simulation frame ofthe retrieved input
height map.

The regularized inverse transfer functionT−1
γ (u) in Eq. (10) is given by:

T−1
γ (u) = exp

[
γΛu4

γ + Λu4

]
exp(−iπ∆ fλu2 − iπCSλ

3u4/2), (11)

whereγ−1 is a non-negative real regularization parameter andΛ ≡ π2λ2σ2/2.
Note the following limit cases ofT−1

γ (u):

lim
γ→∞

T−1
γ (u) = 1/T(u), (12)

lim
γ→0+

T−1
γ (u) = exp(−iπ∆ fλu2 − iπCSλ

3u4/2). (13)

In contrast to the unbounded operatorT−1(u) (whose modulus diverges
with increasingu as exp(Λu4)), the modulus of the regularized inverse trans-
fer functionT−1

γ (u) asymptotes to exp(γ) for arbitrarily largeu. This regu-
larized deconvolution mitigates an otherwise catastropicdivergence ofT−1(u)
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with largeu, the physical origin of which is an irretrievable loss of physical
resolution due to the chromatic damping envelopeE(u).

We close with a discussion of the choice of regularization parameterγ−1,
in light of the above comments regarding height quantization. The simplest
first choice for this parameter corresponds toγ = 0, i.e., to the limit given
by Eq. (13). This choice optimises the stability of our algorithm but it must
also inevitably introduce over-smoothing since the inverse of the chromatic
damping envelopeE(u) is ignored. However, through computational trial-
and-error, we find that the post-phase-retrieval step whichimposes thea priori
knowledge that step height is quantized more than compensates for this loss
of resolution. We therefore adoptγ = 0 in our reconstruction scheme.

4. Computer modelling

Here we present the results of our computer modelling, demonstrating the
utility of phase retrieval in the interpretation of LEEM images. Section 4.1
models the forward problem of LEEM image formation of terraced crystalline
steps in the presence of defocus, spherical aberration and chromatic aberra-
tion. Section 4.2 treats the corresponding inverse problemof using phase
retrieval to decode these LEEM phase-contrast images to yield the stepped
surface profile which results from the measured image contrast.

4.1. The forward problem: LEEM image simulation

Our computer model uses the following parameters, with the reader re-
ferred to Kennedy et al. (2009) for details on how these parameters relate
to the geometry of a contemporary LEEM system:λ = 0.0086 nm (corre-
sponding toE = 20 keV at the objective lens),λi = 0.55 nm (corresponding
to electron energy 5.0 eV at sample surface),a = 0.036 nm (moduloλi/2),
∆ f = −3.0 µm, CS = 0.72 m, CC = 0.15 m, and∆E = 0.3 eV (Case 1,
corresponding toσ = 0.93 µm) or∆E = 0.05 eV (Case 2, corresponding to
σ = 0.16 µm). The field of view is 100 nm×100 nm, corresponding to 256
pixels by 256 pixels. The input stepped height profileh(R) is shown in Fig. 3.
Here, black, gray and white respectively denote steps heights of−a, 0, anda.
Using Eq. (1) implies the transverse phase modulation of thereflected elec-
tron wavefield to have a jump of magnitude 0.82 radians (modulo 2π) between
adjacent steps, with increased height implying reduced phase. The wavefield
ψin(R) is then computed using Eq. (2), with the corresponding image-plane
intensity Iout(R) calculated using Eqs (3) and (4). To model the detection
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Figure 3: Terrace height-profile used as the basis for LEEM image simulation. Three surface
step heights are shown: black regions correspond toh(R) = −a (moduloλi/2) and a phase
value of 0.82 radians (modulo 2π); gray indicatesh(R) = 0 and a phase value of 0.0 radians;
white indicatesh(R) = a and a phase value of−0.82 radians. The vertical white line, near the
bottom of the figure, parametrizes the abscissae of the line profiles in Fig. 5.

process, simulated output intensity maps are degraded using pseudo-random
multiplicative Poisson noise, corresponding to 5% noise inthe maximum-
intensity pixel. Such a noise level might typically correspond to averaging a
number of sequential images, in a LEEM movie of surface dynamics which
evolve significantly more slowly than the frame-capture rate. Figures 4(a) and
4(b) respectively denote the resulting output LEEM intensity maps for Case 1
and Case 2.

Case 1.In Fig. 4(a) a characteristic single black–white fringe is associated
with surface steps, with the effects of diffraction serving to peak the intensity
in the vicinity of closely-spaced steps near the left side ofthe figure (one of
these steps is marked with white arrowα). The precise position of the closely-
spaced steps, near the top and bottom of the smaller circularterrace, is also
difficult to discern directly from the image due to interference (see arrowβ).
We speak of these Case 1 simulations (with∆E = 0.3 eV) as corresponding
to a “direct edge detection regime”.

Case 2. In Fig. 4(b), a larger number of fringes become evident, witha
bright spot formed in the center of the smaller circular terrace, on account of
constructive wave interference at this point (indicated byarrowγ in Fig. 4(b)).
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Figure 4: Simulated noisy LEEM images obtained for (a) “edgedetection regime” [Case
1] and (b) “energy-filtered regime” [Case 2]—see main text for details. Taking either of
these intensity maps as input, 2000 iterations of phase retrieval yielded the corresponding
height reconstructions in (c) and (d), respectively. Gray-level histograms of (c, d) are given
in (e, f); these histograms are then used to obtain the respective “quantized” step-height
reconstructions in (g, h).
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(a) Case 1:∆E = 0.3 eV
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(b) Case 2:∆E = 0.05 eV

Figure 5: One-dimensional cross sections corresponding tovertical white line in Fig. 3, for
(a) Case 1; (b) Case 2. In both plots, the solid black line denotes input height, the solid
gray line denotes the LEEM phase-contrast image, dotted black lines denote retrieved height
before quantization, and dotted gray lines denote retrieved height after quantization.
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We speak of this Case 2 image (with∆E = 0.05 eV) as corresponding to the
“energy-filtered” regime. Figure 4(b) may also be interpreted as a LEEM
inline hologram, in which the multiple fringes are due to theinterference be-
tween the unscattered “reference” electron beam, and the scattered “object”
beam.

4.2. The inverse problem: LEEM phase retrieval using the Gerchberg–Saxton
algorithm

Two thousand iterations of the phase-retrieval strategy outlined in Sec. 3
(without utilization of thea priori knowledge that step height is quantized)
were applied to the simulated LEEM images in Figs 4(a) and (b). This yielded
the input phase maps which are converted to the corresponding input height
maps in Figs 4(c) and (d), respectively, using Eq. (1). The blurring of the
reconstructed edges in Fig. 4(c) is commensurate with the width of the single
black–white fringe in the corresponding intensity map (a),with a faint halo
artefact evident in the vicinity of each of the reconstructed terrace bound-
aries. The situation changes for reconstruction (d) obtained using the “energy-
filtered regime” image in (b); in this latter reconstruction, the resolution of
the reconstructed step locations has been improved via the algorithm’s im-
plicit utilization of the higher-spatial-frequency information that is contained
in the additional diffraction fringes radiating from each of the terrace edges in
(b). In particular, the cusped feature at the left of the image (corresponding to
α in Fig. 4(a)) is more accurately reconstructed in the energy-filtered-regime
map (d). A salient point, here, is that while Fig. 4(a) contains more directly-
interpretable surface morphology than Fig. 4(b), the situation is reversed on
considering the corresponding phase-retrieval reconstructions in Figs 4(c) and
(d), respectively.

We may proceed further with each of these reconstructions ifwe make
use of thea priori knowledge that the step height is quantized. To this end,
Figs 4(e) and (f) give histograms of the gray levels in Figs 4(c) and (d), respec-
tively. Each of these histograms displays three distinct peaks, corresponding
to the three different step heights in each of the phase-retrieved reconstruc-
tions. If the gray level in each pixel of the retrieved heightmap is replaced
by the value at the local maximum in the histogram peak into which it falls,
one obtains the step-height reconstructions in (g) and (h),corresponding to
Case 1 and Case 2 respectively. These quantized reconstructions are compa-
rable in the quality of their reconstruction of both terraceedges and heights,
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with the exception that Case 2 provides a better reconstruction of the cusps
corresponding to featureα in Fig. 4(a).

Figures 4(b) and (d) illustrate the principle that LEEM phase retrieval al-
lows one to reconstruct complex wavefield information out tothe resolution
limit of the imaging system, corresponding to the largest radial spatial fre-
quency transmitted to the image plane. One is thereby able togo beyond the
output-intensity information limit of directly interpretable image resolution
(Paganin and Gureyev, 2008).

A related issue is the question of super-resolution, in the context of lo-
calizing step-edge positions in phase-retrieval LEEM. Comparing Fig. 3 to
Figs 4(c) and (g), it is evident that quasi-super-resolution has been effected via
the image-quantization procedure outlined at the end of Sec. 3. This super-
resolution is more evident in the one-dimensional traces ofFig. 5(a), which
use the vertical white line of Fig. 3 as abscissae. In Fig. 5(a), which corre-
sponds to the Case 1 energy spread of∆E = 0.3 eV, we have: a solid black
line denoting the input height across a terrace, a solid grayline denoting the
corresponding LEEM phase-contrast intensity, a dotted black line denoting
the retrieved height, and a dotted gray line for the retrieved height after im-
posing the step-quantization constraint. Figure 5(b) gives the corresponding
traces for the Case 2 energy spread of∆E = 0.05 eV. In Fig. 5, it is instruc-
tive to compare the LEEM intensity contrast and the retrieved height before
quantization across the terrace for Case 1 and 2. The smearing in this inten-
sity contrast is wider for Case 1 than Case 2, implying betterpre-quantization
localization/resolution of the step position for Case 2. Note that the smearing
blur kernel width∆ can be estimated as the reciprocal of the half-width at
half maximum of the envelope in Eq. (6), giving∆ ≈ 1.6

√
λσ. This yields

∆ = 4.6 nm and 1.9 nm, for Case 1 and Case 2, respectively. These quantities
can be compared directly with the measured blurring width obtained using
the retrieved quantized step-height in Figs 4(g) and (h). Byexamining the
blunted cusp corresponding to featureα in Fig. 4(a), Figs 4(g) and (h) yield
super-resolution blurring widths of 1.6 nm and 0.66 nm, for Cases 1 and 2
respectively. We see that these quantities are significantly better than the pre-
vious calculations of∆ using the half-width at half maximum of the chromatic
blurring envelopes.

Phase-retrieval LEEM is able to measure the phase step (4πa/λi)mod2π as-
sociated with a terrace. For example, the Case 1 simulationsyield a aver-
age phase-step of 0.64 radians, with the Case 2 simulations giving an average
phase-step height of 0.77 radians. This compares favorablyto the input phase-
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step height of 0.82 radians, that was assumed in our model.

5. Discussion

The use of phase-retrieval methods to quantitatively analyze LEEM im-
ages is not restricted to the particular Gerchberg–Saxton type approach ex-
plored here. For example, if a pair of images is obtained using closely-spaced
values of defocus, then transport-of-intensity (TIE) phase-retrieval methods
may be applicable (see e.g. Paganin and Nugent, 1998; together with the ap-
plication of the method derived there to TEM in Bajt et al., 2000). Through-
focal series (TFS) of three or more images may also be used to improve the
robustness of the reconstruction relative to TIE methods (Misell, 1973; Op
de Beeck et al., 1996; Allen and Oxley, 2001; Gureyev et al., 2004). Impor-
tantly, such multiple-image phase-retrieval methods are able to reconstruct
both the phase and the amplitude of the input field, renderingthem applica-
ble to LEEM scenarios whereψin(R) is not uniform in modulus (cf. Fig.1
and Eq. (2)). Having said this, a particular utility of the approach considered
in the present paper is that it is able to separately analyze each frame of a
phase-contrast LEEM movie, which could be directly applicable to quantita-
tive imaging of surface step dynamics.

The phase-retrieval methodology presented in this paper directly incorpo-
rates the effects of aberrations such as spherical aberration that are intrinsic to
the immersion lens of the particular LEEM system modelled inthis paper (see
Kennedy et al., 2009; together with references therein, fordetails). This raises
the question as to the potential role of phase retrieval for aberration-corrected
LEEM (Wichtendahl et al., 1998). In this context, we note that TEM has re-
cently entered an “aberration corrected era”, on account ofthe commercial
availability of spherical aberration correctors (Batson et al., 2002). The role
of phase retrieval in this new TEM era has been heightened on account of the
constructive use of deliberately-introduced defocus and spherical aberrations.
These are used to yield a focal series input into reconstruction algorithms ca-
pable of producing both the phase and the amplitude of the exit-surface wave-
function (Urban, 2009). Similarly, we anticipate that the possible importance
of phase retrieval in LEEM will not be negated by advances in the correction
of LEEM aberrations.

When the approximations of Eqs (1) and (2) are invalid, requiring a more
complex means for modelling the passage from the object surface to the re-
flected field, phase–amplitude retrieval may still be of utility in determining
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the complex wavefieldψin(R) that is imaged by the LEEM. Such a situation
may arise for example where adjacent surface structures have different reflec-
tion coefficients producing wavefield amplitude contrast (Pang et al.,2009).
Having reconstructedψin(R) in both phase and amplitude, e.g. using one of
the multiple-image phase retrieval strategies outlined atthe beginning of this
section, one then has the second inverse problem of relatingthis complex
wavefield to the surface structure which created it. Again, this idea has a
direct analogue in TEM phase retrieval, where the problem ofexit-wave re-
construction is to some extent independent of the complexity of the dynamical
scattering processes upstream of the sample’s exit surface. Finally, we note
that in performing LEEM phase retrieval on a temporal sequence of phase-
contrast images, any two temporally-adjacent images will be similar if the
characteristic timescale of the surface evolution is significantly smaller than
the frame capture rate. In this case, the phase–amplitude reconstruction of a
given image can be used to seed phase retrieval for the subsequent image in
the temporal sequence. This will assist the convergence of the phase retrieval.

6. Conclusion

Phase-retrieval concepts provide a systematic means of decoding phase-
contrast LEEM images to yield quantitative maps of the surfaces which result
in such images. To demonstrate this, we have shown with computer modelling
that one can reconstruct the step-height profile of terracedcrystalline surfaces
using a single output intensity pattern from a LEEM imaging system, in which
aberrations are treated using the transfer-function formalism. This opens up
the potential application of phase retrieval methods to real experimental data.
Only a single phase-contrast LEEM image is required for the reconstruction,
facilitating the quantitative measurement of surface dynamics.
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5.1 ADDENDUM FOR PHASE RETRIEVAL WITH UNKNOWN ABERRATION COEFFICIENTS107

5.1 Addendum for phase retrieval with unknown

aberration coefficients

Chapter 5 considers phase retrieval when the values of CS and defocus are

known. If the values of these and further aberration coefficients are only

known within a range, the phase retrieval algorithm can be run for each

parameter set, producing a series of alternate reconstructions. This may pro-

vide useful qualitative information on the specimen surface, such as upper

and lower bounds of the reconstruction. Furthermore, a priori knowledge of

the specimen may be used to narrow the range of acceptable reconstructions.

If the aberration coefficients are completely unknown, a recent paper by Yu

and Paganin (2010) outlines how a through-focus series of three intensity

images may be used to recover a complex coherent scalar wavefield (and

hence a phase object) for a linear shift-invariant optical imaging system

with unknown aberrations. This is not directly applicable to a LEEM movie

sequence of images at fixed defocus, since only one defocused image is

produced at each time interval. However it is suitable for dynamic events

that occur on a longer time scale than that required to obtain three defocus

images, as well as static specimen surfaces.

5.2 Addendum for the uniqueness of phase retrieval of

step transitions

The results of chapter 4 and Pang et al. (2009) indicate that if a step transi-

tion or edge is very sharp, the image contrast (and hence phase retrieval) is

sensitive to phase differences modulo 2π, so that a π/2 object is equivalent

to a −3π/2 object. However if the step edge or transition (e.g. step bunch)

has a finite width or broadness, and the resolution is sufficient to detect

this, then the image contrast and phase retrieval should be sensitive to the

full phase difference of the surface. This is because the intermediate phase

difference values across the step transition will differ for a π/2 object and a

−3π/2 object, producing different image contrast and enabling unique phase

retrieval. So in principle, for a finite step transition and sufficient resolution,

phase retrieval should be unique. In lower resolution cases, however, phase

retrieval of very sharp step transitions may lack uniqueness.

In general a through-focus series or energy-dependent imaging may be

necessary to uniquely retrieve the phase object of the surface. In addition,

since the electric field above the specimen will be uniquely different for a π/2
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Transition between short and long wavelength limits in
quantum mechanical reflection from a linear potential

S. M. Kennedy,∗ D. M. Paganin, and D. E. Jesson
School of Physics, Monash University, Victoria, 3800, Australia

The phase changes experienced by a wave reflected from an interface are a familiar
fixture in introductory physics courses. Examples include the ±π phase shift acquired
upon reflection from a hard mirror (for example, in thin film interference patterns and
Newton’s rings), and the −π/2 phase shift studied in soft mirror reflections (for example,
in mirage ray paths and the WKB connection formulas). We focus on the transition
between these two limits, where the phase change upon reflection evolves continuously
between the limiting cases of −π and −π/2. We study a simple quantum system that
exhibits this transition: a one-dimensional free electron reflected from a linear potential.

I. INTRODUCTION

One-dimensional (1D) systems provide useful insight into a number of quantum
mechanical phenomena such as wave packet dynamics,1,2 barrier penetration and
tunnelling,3,4 and resonance effects.4,5 These systems typically encapsulate the
essential physical principles yet are sufficiently simple to be analyzed analytically.
In this paper we explore the phase changes that occur in a wave function as it
undergoes quantum mechanical reflection.

The reflection of an optical, classical, and quantum mechanical field can change
the phase of the reflected wave with respect to the incident wave. This phase
change is different in the long and short wavelength limits and is equal to ±π and
−π/2, respectively.

In the long wavelength limit, reflection occurs over a characteristic length scale
which is much smaller than the wavelength. Such “hard mirror” reflection is
exhibited by many optical systems,6 such as the reflection of visible light at the
sharp interface between two isotropic dielectric materials with different refractive
indices. When the incident and reflected waves are both in the medium of lower
refractive index, a phase shift of −π is acquired upon reflection.7,8 Conversely,
when the incident and reflected waves are both in the medium of higher refractive
index, no phase change occurs upon reflection. These well known phase factors are
important for understanding thin film interference in oil slicks and soap bubbles,7

Newton’s rings, and Lloyd’s mirror.9 In quantum mechanics we may consider the
reflection of a plane 1D stationary state wave function from an infinitely high
potential step. The solution of the time independent Schrödinger equation gives
a reflection coefficient of −1 = exp(±iπ), again yielding the hard mirror phase
shift of ±π.

In the short wavelength limit the wave is turned around gradually over a distance
scale that is much larger than the wavelength. A phase of −π/2 occurs upon
reflection. This “soft mirror” phase shift is acquired, for example, along the
curved mirage-type ray paths of glancing incidence sunlight reflected by the
refractive index gradient in the air above a hot road. In a quantum context,
such reflection induced phase changes occur in the connection formulas associated
with the Wentzel-Brillouin-Kramers (WKB) method.6,10,11 More generally, the
short wavelength reflection limit is related to reflection from a slowly increasing
refractive index (or potential),12 with the geometrical optics or classical point
particle picture predicting a high-intensity (caustic) sheet as the ray (or point
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particle) is turned around.13

Between the long wavelength and short wavelength limits, there is a transi-
tion regime where the wave is reflected over a length scale comparable to the
wavelength. In this transition region, the phase change upon reflection varies
continuously between the soft mirror limit of −π/2 and the hard mirror limit of
−π.14,15

In this paper we present a 1D calculation for a mono-energetic electron reflected
by a linear potential with a variable gradient. The calculation is accessible to
students in a course on elementary quantum mechanics and demonstrates the rich-
ness of both the long and short wavelength limits and the transition between them.

II. REFLECTION FROM A LINEAR POTENTIAL

Consider a free electron of energy ε and charge e, confined to one spatial dimension
z that is incident from the left on the truncated linear potential

V (z) =

{
eEz, z ≥ 0,

0, otherwise.
(1)

The region z ≥ 0 corresponds to a uniform electric field of magnitude E > 0. The
classical turning point z0 for the electron is given by

z0 = ε/eE. (2)

The classical turning point z0 gives a lower bound for the depth to which the
electron wave function penetrates the region z ≥ 0. We scale z0 by the reduced
vacuum de Broglie wavelength of the electron,

λ0 =
~√
2mε

, (3)

where ~ ≡ h/2π, h is Planck’s constant, and m is the electron mass. The scaled
penetration depth defines the dimensionless parameter s, which we term the “soft-
ness” of the quantum mirror defined by Eq. (1):

s ≡ z0
λ0
. (4)

We shall see that s is the only parameter that determines the reflection coefficient
for the potential in Eq. (1).

To obtain the reflection coefficient as a function of s, recall that the stationary
state complex spatial wave function ψ(z) in the field-free region z < 0 can be
expressed as a sum of incident and reflected plane waves of energy ε:

ψ(z < 0) = A exp(iz/λ0) +B exp(−iz/λ0), (5)

where A and B are the probability amplitudes of the incident and reflected plane
waves, respectively. The harmonic dependence, exp(−iεt/~), on the time t is
suppressed throughout.

114
TRANSITION BETWEEN SHORT AND LONG WAVELENGTH LIMITS IN QUANTUM

MECHANICAL REFLECTION FROM A LINEAR POTENTIAL



For z ≥ 0 the electron wave function can be found by solving the time independent
Schrödinger equation,16

[
d2

dz2
− 1

λ2
0

(
z

z0
− 1

)]
ψ(z ≥ 0) = 0. (6)

Because Eq. (6) is an Airy-type differential equation, the solution can be expressed
as a linear combination of the Airy functions Ai and Bi.17–19 The solution Bi grows
without bound as z → ∞ and is unphysical, hence we have17

ψ(z ≥ 0) = FAi

(
s2/3

(
z

z0
− 1

))
, (7)

where the amplitude F is complex.

We require continuity of both the wave function and its first derivative at the
boundary z = 0 of the two regions, and thus solve for the reflection coefficient
B/A giving

B/A = exp(iϕ), (8)

where

ϕ = 2 tan−1

(
1

s1/3

Ai′(−s2/3)

Ai(−s2/3)

)
(9)

is the phase difference between the incident and reflected plane waves; a dash
denotes differentiation with respect to the argument of Ai.

Equation (9) shows that the phase shift ϕ is a function only of the mirror softness
s, which is the classical penetration depth z0 of the mirror scaled by the reduced
vacuum wavelength λ0 of the incident electron plane wave. A plot of ϕ (modulo
2π) versus s is given in Fig. 1. Three distinct reflection regimes are evident: (a)
the hard mirror limit where s ≪ 1, (b) the soft mirror limit where s ≫ 1, and (c)
a transition region where s ≈ 1. We examine each regime in the following sections.

2 4 6 8 10
s

Φ

Π�2

Π

0

-Π�2

-Π

FIG. 1: Total phase shift ϕ (modulo 2π) for plane waves reflected from the potential in
Eq. (1) as a function of the softness s (see Eq. (9)).
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III. THE HARD REFLECTION LIMIT

If s ≪ 1, the electron is reflected over a length scale that is short compared to its
reduced vacuum de Broglie wavelength. In this long wavelength (hard reflection)
limit, we see from Fig. 1 that the phase change between the incident and reflected
plane waves goes to −π as s → 0. This phase change of −π is consistent with the
phase shift caused by reflection from an infinitely high step potential, to which
the linear potential reduces as s → 0. The hard reflection limit is also exemplified
by the probability density in Fig. 2, calculated using Eqs. (5) and (7) for s =
10−5. In this case the probability density approaches that of an electron reflected
from an infinitely high step potential, where there is negligible penetration of the
potential. Physically, the condition that the wave function must vanish at the
mirror’s edge for hard reflection is satisfied by the reflection coefficient B/A which
goes to exp(−iπ) = −1 as s → 0, thereby yielding total destructive interference
between the incident and reflected plane waves in the infinitesimal z < 0 vicinity
of the edge z = 0 of the hard mirror.

-5 0
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ÈΨ
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ÈΨ
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FIG. 2: Probability density of an electron reflected by a linear potential (shaded region)
in the long wavelength limit, with s = 10−5. The variable z is in units of λ0.

IV. THE SOFT REFLECTION LIMIT

A. Asymptotic expression

If s ≫ 1, the electron is gradually turned around over a distance of the order of
z0 which is many times larger than λ0. In this short wavelength (soft reflection)
limit, we see from Fig. 1 that ϕ appears to vary linearly with s, modulo 2π. More
precisely, we make the approximations18

Ai(−∆) → π−1/2∆−1/4 sin

(
2

3
∆3/2 +

π

4

)
(10)

and

Ai′(−∆) → −π−1/2∆1/4 cos

(
2

3
∆3/2 +

π

4

)
, (11)

corresponding to the limit ∆ → ∞. If we use the identity

tan

(
2s

3
− π

4

)
= −1/ tan

(
2s

3
+
π

4

)
, (12)
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Eq. (9) reduces to

ϕ → 4s

3
− π

2
, (s ≫ 1). (13)

We see that the total phase shift ϕ in the short wavelength limit is indeed well
approximated by a term varying linearly with s plus a constant shift of −π/2.

In contrast to hard reflection, soft reflection allows the wave function to enter the
linear potential, both in the classically allowed region z ≤ z0 and in the small
amount of penetration beyond the classical turning point z > z0. The oscillation
of the wave function as it propagates inside the linear potential contributes to the
overall returning phase of the wave function, ϕ (Eq. (9)), just as the optical path
length of light rays contributes to the overall phase change in the light reflected
from oil slicks and soap bubbles.7 We may estimate this “propagation based”
contribution to the returning phase by considering the electron semi-classically
with a local reduced de Broglie wavelength λ(z). We invoke energy conservation
and write

ε =
(~/λ(z))2

2m
+ V (z). (14)

We solve for λ(z) and make use of Eqs. (1)–(3) to yield

λ(z) =
λ0√

1 − (z/z0)
. (15)

The accumulated phase ϕp, due to propagation of the electron along the semi-
classical path from z = 0 to z = z0 and back to z = 0, is equal to 2π times the
number of local wavelengths λ(z) ≡ 2πλ(z) which fit into this path. Hence

ϕp = 2

∫ z0

0

dz

λ(z)
=

4s

3
, (16)

where the last equality follows from Eqs. (4) and (15); the factor of 2 ac-
counts for the fact that the path from z = 0 to z = z0 is traversed twice.
This simple argument reproduces the first term on the right-hand side of the
approximate phase Eq. (13), indicating that this term is caused by the propaga-
tion of the wave function inside the potential, a “propagation based” phase change.

The factor of −π/2 in Eq. (13) is an additional phase factor acquired upon soft
reflection, which we shall call a “reflection based” phase change, and is commonly
encountered in WKB semi-classical approximations for 1D quantum mechanical
reflection.6,14,15,20 It is instructive to discuss this additional phase change in the
context of a caustic.

B. Caustic surfaces

In classical optics caustics are the infinities of the intensity that are predicted
when light rays cross one another, or at the edge of an envelope of overlapping
rays.21 Familiar examples include the point focus of a perfect lens and the pattern
of bright lines that dance about the floor of a swimming pool on a clear sunny
day. The ray theory of light predicts an infinite intensity in the vicinity of such
caustics, but the infinite intensity constitutes a singularity of the theory rather
than a singularity of nature. These singularities may be “tamed” by passing from
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the ray theory of light to a wave theory.22 In the latter the intensity of the light
over the caustic regions is high and strongly peaked, but not infinite.

We now consider the classical mechanics of an ensemble of point-like electrons
of energy ε, incident on the linear potential in Eq. (1). The classical particle
density for this case is inversely proportional to the particle velocity as shown
as the solid gray curve in Fig. 3. This curve is a fold caustic,21 with the parti-
cle density approaching infinity in the vicinity of the classical turning point z = z0.
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FIG. 3: Probability density of an electron reflected by a linear potential (shaded region)
in the short wavelength limit, with s = 50 (solid black line). The classical particle density
caustic corresponding to s = 50 is shown in gray, and the variable z is in units of λ0.

In analogy with the transition from a ray theory to a wave theory of light, the
classical density caustic is “softened” upon passage from classical point-particle
mechanics to the corresponding Schrödinger wave mechanics, where the electron
de Broglie wavelength is non-zero.23 This softening yields the peaked probability
density shown as the solid line in Fig. 3. The large peak close to z = z0 is
characteristic of soft reflection from the linear potential. Figure 3 also exhibits a
number of peaks between z = 0 and z = z0, which increase in height as z = z0 is
approached (much as the classical density increases as seen in Fig. 3), culminating
in the largest peak or softened caustic surface close to z = z0.

C. Soft reflection phase shift

To bring together our discussion of caustic surfaces with the soft reflection
phase shift of −π/2, we next introduce the “confinement induced phase shift,”
which is well known in quantum and classical physics. Examples include the
Lévy-Leblond phase shift, in which a phase shift is induced by transversely
confining a propagating wave function using a narrow tube,24,25 and the Gouy
phase shift for which a phase shift is induced by the transverse confinement of
a collapsing spherical wave function passing through its focus.26–29 The essence
of such confinement induced phase shifts is contained in the position-momentum
uncertainty principle,8,29,30 whereby spatial confinement influences the allowed
momentum distribution, in turn affecting the phase of the wave function.

The caustic surface associated with the soft reflection limit, as shown in Fig. 3,
causes a high degree of longitudinal confinement of the wave function near z = z0,
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which becomes more pronounced as s increases. It is tempting to attribute the
spatial confinement at the caustic surface as the physical cause of the “reflection
based” phase change of −π/2 for the soft reflection limit. It is surprising that
although the relation between the uncertainty principle and the confinement in-
duced phase shift can be readily formalized in two spatial dimensions,24–29 there
appears to be no obvious analogous application in one dimension for the linear
potential.

V. THE TRANSITION REGIME

If s ≈ 1, the electron is turned around over a distance of the order of its reduced
vacuum de Broglie wavelength. In this transition regime between the long and
short wavelength limits, we see from Fig. 1 that the phase change ϕ deviates
from a linear dependence on s in the short wavelength limit and continuously
approaches −π as s → 0.

For s ≈ 1 we cannot use the asymptotic expressions for the Airy functions that
gave Eq. (13). It remains useful to express ϕ as a sum of two terms: a propagation
based or “counting wavelengths” contribution ϕp = 4s/3, which represents the
phase accumulated due to propagation within the classically allowed region of the
linear potential, and ϕ − ϕp, which represents the reflection based contribution
to the phase shift. The latter contribution is influenced by the softness of the
reflection and is shown in Fig. 4. Figure 4 demonstrates the large s behavior of
ϕ− ϕp as it asymptotically approaches the soft reflection limit of −π/2, the rapid
approach to the hard reflection limit of −π as s → 0+, and the transition regime
around s = 1.
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FIG. 4: Reflection based contribution to the phase ϕ − ϕp acquired upon reflection from
a linear potential as a function of the softness s.

We can understand the transition regime by approaching it from the hard (s ≪ 1)
and soft (s ≫ 1) reflection limits. From the hard reflection limit, small values of
s allow the wave function to slightly penetrate the linear potential and relaxes
the requirement for total destructive interference at z = 0 (see Fig. 2). The
reflection based contribution to the phase therefore varies from the hard reflection
phase change of −π as shown in Fig. 4. From the soft reflection limit, the peak
probability density in the vicinity of z = z0 decreases as s decreases, as shown in
Fig. 5 for the reflections corresponding to s = 2, s = 1, and s = 0.25. The largest
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peak or caustic surface evident in Fig. 3 for s = 50 is still prominent for s = 4 (see
Fig. 5), and note that ϕ − ϕp for s = 4 is still close to the soft reflection limit of
−π/2. This caustic “dissolves” when s becomes progressively smaller because the
probability density is reduced and ejected from the potential due to the increased
energy penalty inside the harder mirror. The dissolution of the caustic surface
heralds a departure from the soft reflection limit of −π/2.
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FIG. 5: Probability density of an electron in a linear potential (shaded region) for s = 4
(solid black line), s = 2 (dotted line), s = 1 (dashed line), and s = 0.25 (dot dash line).
The classical particle density caustic corresponding to s = 4 is shown in gray, and the
variable z is in units of λ0.

As well as linking the hard and soft reflection limits from a fundamental perspec-
tive, the existence of a continuous transition between the hard and soft reflec-
tion limits has interesting implications whenever a wave is reflected over length
scales comparable with its wavelength. For example, the soft reflection (short
wavelength) phase shift of −π/2 appears in the connection formulas of the WKB
method.6,10,11 The existence of a continuous transition between hard and soft re-
flections suggests that the use of phase shifts between −π/2 and −π may serve to
significantly improve the accuracy of the WKB approximation when the electron
is reflected over spatial dimensions comparable to its wavelength.14,15
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VI. SUGGESTED PROBLEMS

Problem 1. The linear potential in Eq. (1) may be used to describe the mirror
electron microscopy mode of a low energy electron microscope.17 Suppose that
electrons with energy ε = 20 keV are incident on a linear potential produced by
an electric field of magnitude E = 107 V/m. (a) Classically, over what distance
will the electrons be “turned around” by the electric field? (b) What is the
softness s of the quantum mechanical mirror associated with this system? (c)
Does this value of s correspond to a soft or a hard mirror regime? (d) Quantum
mechanically, how much further do the electrons penetrate the linear potential
beyond the classical turning point? (e) How might the linear potential be
constructed in practice? (f) Calculate the value of the amplification factor Υ,
defined as the ratio of the maximum probability density to the peak probability
density in the region z < 0 (cf. Fig. 3). (g) What incident electron energy would
be required for the system to be in the transition region between the soft and
hard reflection regimes?

Problem 2. (a) Express the time independent 1D Schrödinger equation in the
presence of a real scalar potential V (z) with the spatial wave function in the polar
form |ψ(z)|eiϕ(z). Separate the imaginary and real parts of the resulting expression
to arrive at the equations:

(|ψ(z)|2ϕ′(z))′ = 0, (17)

(~ϕ′(z))2

2m
+ V (z) − ε =

~2(|ψ(z)|)′′

2m|ψ(z)| , (18)

where a dash denotes differentiation with respect to z. (b) Show that Eq. (17)
expresses the local conservation of probability density. (c) Show that the
probability current vanishes everywhere for the linear potential in Eq. (1). What
is the meaning of this result? (d) Show that the right-hand side of Eq. (18)
vanishes in the classical limit. The resulting expression is the Hamilton-Jacobi
equation of classical mechanics for the classical action S(z) = ~ϕ(z).31,32 This
expression was key to Schrödinger’s development of wave mechanics.33 (e) Use
the expression from part (d) to obtain an alternative derivation for Eq. (14) to
that given in Sec. IV A. Note that ϕ(z) is the phase of the incident or reflected
wave function, rather than the phase of the total wave function.

Problem 3. Instead of considering a propagating mono-energetic electron wave
function that is reflected from a single linear potential of the form given by Eq. (1),
consider a bound mono-energetic electron confined within a pair of soft wall linear
potentials of the form

V (z) =





eE1(z −A), z ≥ A,

eE2(z +A), z ≤ −A,
0, otherwise.

(19)

2A is a positive real number corresponding to the separation between the entry
points z = −A and z = +A of the respective linear potentials, which are generated
by the electric fields E1 > 0 and E2 < 0. (a) Generalize the analysis of Secs. II–V
to this case. (b) Show that the expected limit cases are recovered when either or
both of E1, E2 are infinite in magnitude, and when either or both E1, E2 are zero.
(c) Investigate the limiting case as A → 0+.
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The interaction of very slow electrons with weak potentials is investigated in an exactly
soluble, one–dimensional quantum mechanical model. Slow electrons are produced by
a decelerating ramp potential, as in experimental mirror electron microscopy, so the
electrons can interact with a weak field as they slow and reverse direction. Our model
provides a wave mechanical interpretation of this turning point region and suggests the
possibility of imaging optical fields utilising the phase of electron matter waves.

PACS numbers: 41.85.–p, 07.78.+s, 68.37.Nq

The phase sensitivity of very slow electrons to extremely weak potentials is of both
fundamental and practical significance. It is well appreciated that a variation in
phase of an electron wavefunction can be readily converted to intensity variations
in the image using phase contrast electron microscopy [1]. The resulting phase
change of an electron matter wave on encountering a region of uniform potential
is proportional to its wavelength (see, for example [2]), which increases with
decreasing electron velocity. One might therefore anticipate that slow, near
stationary, electrons would have an enhanced sensitivity to very weak potentials,
which may provide a basis for imaging weak fields using phase contrast methods.

In this report we consider the production of slow electrons via the well–known
technique of mirror electron microscopy (MEM) [3–5]. Electrons with energy ∼
20 keV are transferred from an electron source to the back focal plane of the
objective lens via a magnetic sector which deflects the beam. The objective
lens is the heart of the MEM system, and combines a magnetic focusing field
inside the lens, with an electrostatic field between the lens and a planar cathode
sample (typically a semiconductor wafer) as shown in Fig. 1. The sample, at
z = L, is maintained at a potential which is slightly more negative than the
electron source potential. The objective lens anode, located at z = 0, is at
ground potential. The incident beam therefore traverses the magnetic part of
the lens at a relatively high voltage (∼ 20 kV) but is decelerated in the typically
2 mm gap between objective lens and sample until it is reflected in front of the
specimen surface at z = z0. The anode aperture has a radius which is small
compared with the anode–cathode distance L, so that the electric field between
the anode and cathode can be assumed uniform. Image contrast results from
small perturbations in the otherwise homogeneous applied electric field between
the objective lens anode and the sample cathode. This can result from surface
topography or electric field variations across the sample if z0 is close enough to the
sample. Following the low energy interaction and reflection from the near–sample
surface region, the electrons are re-accelerated to the gun energy on their return
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to the objective lens, which significantly reduces lens aberrations in the imaging
column so that high spatial resolution can be obtained [6]. The magnetic sec-
tor then deflects the electrons into the projector column where an image is formed.

We now consider the feasibility of imaging light beams with electrons by introduc-
ing an optical field in the proximity of the electron reflection turn around region at
z = z0. If a sufficient phase shift is induced in the slow electron matter wave then
a light field can be imaged in MEM by phase contrast. The key issue is, therefore,
to evaluate the phase change in the electron wave as a function of optical field
strength. To investigate this we employ a simple one–dimensional quantum
mechanical model which is analytically tractable. This allows for a matter wave
interpretation of the classical electron turning point in MEM and facilitates the
analysis of weak fields in the vicinity of the turning point using perturbation
theory. We evaluate the phase change in the reflected electron matter wave as a
function of field strength to provide an estimate of phase sensitivity.

The accelerating part of the MEM immersion lens consisting of a homogeneous
electric field, as represented schematically in Fig. 1, can be treated separately
from the (usually magnetic) imaging part [6], and this optical configuration is the
basis of our imaging model. Consider an electron, of kinetic energy ε at z = 0,
moving at normal incidence to the negatively charged cathode plate at z = L.
Classically, the incident electron slows as it moves along the z axis towards the
cathode, with the electron subject to a ramp–shaped potential energy barrier as
shown in Fig. 1. The voltage difference between anode and cathode is △V , so
provided ε < e△V (where e is the electronic charge), a classical turning point
exists where the electron kinetic energy inside the potential energy barrier is zero.
This occurs when the initial electron kinetic energy is equal to the potential energy
of the barrier, i.e., at the point z0 = εL/e△V , where 0 ≤ z0 ≤ L. Classically,
z0 is the maximum distance an electron can penetrate into the potential barrier
before being reaccelerated back towards the anode, with an infinite probability
of finding the electron at this point because it is stationary. This suggests that
slow electrons will be most susceptible to the influence of external fields near the
turning point because they spend a longer time in this region. However, it remains
to investigate the electron behaviour and the phase sensitivity to weak fields in the
region of the turning point using wave mechanics. Consider the non–relativistic
quantum mechanical behaviour of an electron of kinetic energy ε incident on a
one–dimensional ramp potential energy barrier (Fig. 1). The time–independent
Schrödinger equation is used to describe the incident electron [7],

− ~2

2me

d2

dz2
ψ(z) +

e△V
L

zψ(z) = εψ(z), (1)

where me is the (non–relativistic) electron mass and ψ(z) is the electron wave-
function. In a MEM experiment, it is expected that all incident electrons will
turn around before the cathode, resulting in zero probability density for z > L.
To solve Eq. (1) for the ramp potential it is necessary to invoke appropriate
boundary conditions. So in Region III (z > L), we choose to terminate the ramp
by the constant potential shown in Fig. 1. This shape will not influence the
behaviour of the electron in the vicinity of the classical turning point, z = z0.

In Region I (z < 0), the potential energy is zero, so the solutions to the time–
independent Schrödinger equation (1) are plane waves. Assuming that the incident
electron beam can be described by a single incident plane wave, the wavefunction
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FIG. 1: Schematic of the path of an electron of energy ε in the electrostatic field region of
a mirror electron microscope, from anode (z = 0) towards a negatively charged cathode
(z = L). The potential energy barrier U experienced by the electron is also shown (solid
line), and is linear with gradient e△V/L and maximum height e△V . At the point z = z0

the potential energy is equal to the initial kinetic energy of the electron.

in Region I is given by
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, z < 0, (2)

where A and B are the probability amplitudes of the incident and reflected electron
plane waves, respectively.
In Region III (z > L), the potential is zero. It is assumed that the only source of
electrons is to the left of the potential barrier (z < 0), so there is no plane wave
in Region III travelling in the negative z direction, hence

ψIII(z) = C exp

(
i

√
2meε

~
z

)
, z > L, (3)

where C is the corresponding probability amplitude.
In Region II (0 ≤ z ≤ L), the time–independent Schrödinger equation (1) can be
rearranged to give

d2ψII(z)

dz2
− 2mee△V

~2L

(
z − εL

e△V

)
ψII(z) = 0. (4)

This differential equation has solutions consisting of two linearly independent Airy
functions Ai(ζ) and Bi(ζ) [8], so that

ψII(ζ) = F Ai(ζ) +G Bi(ζ), (5)

with probability amplitudes F and G, and

ζ =

(
2mee△V

~2L

)1/3 (
z − εL

e△V

)
. (6)

The behaviour of the linearly independent Airy functions is dictated by
the proximity to ζ = 0, which corresponds to the classical turning point
z0 = εL/e△V . The probability amplitudes are determined by demanding
continuity of the wavefunction and its derivative across the boundaries at z = 0
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and z = L. The resulting equations make it possible to obtain expressions for
B, F , G, and C in terms of the probability amplitude of the incident plane wave A.

We now interpret the classical electron turning point quantum mechanically using
parameters which are relevant to the experimental MEM geometry. An electron
with an initial kinetic energy of 20 keV, incident on a cathode held at 21 kV
over a distance of L = 2 mm, has a classical turning point at z0 = 1.9048 mm.
The probability amplitudes of the un–normalised wavefunction are then given by
B = exp(−i0.773), F = 118exp(−i0.387) and G = C = 0, where for convenience
we have set A = 1. As C = 0, the electron wavefunction is zero in Region III and
thus there is total reflection of the electron. In Region I, the magnitudes of the
probability amplitudes A and B are equal, which produces a probability density
in the form of a standing wave, with a wavelength of the order of 10−12 m.

The probability density of the electron wavefunction close to the classical turning
point (z = z0) is depicted in Fig. 2, which shows an increase in the wavelength
as the electron approaches the classical turning point. The peak heights of the
probability density are much larger than those in Region I. This represents the
increased probability of finding an electron near the classical turning point, due
to the lower electron velocities in this region. Interestingly, the most probable
location of the electron is just before z = z0. This is in contrast to the classical
behaviour of the electron, where there is an infinite probability density at the
classical turning point itself. A second departure from the classical probability

|ψ
(z

)|
2

I 
I

– 200 – 150 – 100 – 50 0 50
z – z0 (Å)

FIG. 2: The probability density of a 20 keV electron incident on a cathode held at 21
kV. The region 200 Å from the classical turning point z0 = 1.9048 mm is shown.

density is the penetration of the electron wavefunction into the potential energy
barrier beyond the classical turning point. This is evident in the non–zero
probability density for z > z0 in Fig. 2. However, the rapid decay of the function
to zero, over a distance of 50 Å, indicates that there is a negligible probability of
finding the electron well past the classical turning point and in particular, beyond
the potential barrier itself, i.e., z > L.

To investigate the phase sensitivity of the electron wavefunction to weak fields
we now superpose a square perturbation of amplitude U0 on the linear potential
energy barrier (see Fig. 3). This might represent a region of electrostatic or optical
potential and facilitates a comparison of the phase of the electron wavefunction
with the unperturbed case. The wavefunction corresponding to the situation in
Fig. 3 can be written in a manner analogous to the earlier formulation. Imposing
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continuity of the wavefunction and its derivative across Regions I to V yields eight
equations. From these the relevant probability amplitudes can be obtained in
terms of the incident amplitude, A.
The important quantity for detecting U0 by phase contrast imaging methods is
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FIG. 3: One–dimensional square perturbation, of height U0, superposed on the linear
potential energy barrier. The perturbation begins at z = a and ends at z = b.

the phase of the returning electron wavefunction, ϕB , which is obtained from the
probability amplitude B in Eq. (2), where

B = |B|exp(iϕB). (7)

We find the greatest phase sensitivity occurs where the electron is slowest, near
the classical turning point. The total phase change is therefore optimized if the
back edge of the perturbation is close to z = z0. In Fig. 4 we plot ϕB against the
perturbation amplitude U0 for such an arrangement, with a perturbation width of
10 µm. Assuming sufficient phase contrast is attainable for ϕB = 0.1 rad (see, for
example, [9]), MEM imaging should be sensitive to perturbations of the order of
10 µeV. This is a remarkable result suggesting the possibility of using low energy
electron microscopy to image very weak potentials.
As a specific example of imaging a weak potential, we consider the introduction

of a focused pulsed laser field into the proximity of the electron turn–around
region at z = z0. Pulsed lasers require the gating or blanking of the electron beam
so that only phase changes produced when the beams are present are recorded.
This timing, readily attainable using standard synchronization methods, is
required so that the optical potential, and thus the electron phase shift, is uniform
during the imaging process. Practically, it is feasible to image 100 ns of a 200
ns pulse. Our calculations indicate that the major shift in phase occurs within
a narrow region associated with the turning point. We can therefore relate the
maximum laser pulse intensity Imax to perturbation amplitude U0 via the relation
U0 = e2Imax/2meω

2ε0c [10], where ε0 is the permittivity of free space, c is the
velocity of light in vacuum and ω is the angular frequency of the light beam.
The laser pulse energy E is then given by E = Imaxσtσ

2(2π)3/2, where σt is the
temporal pulse width (200 ns) and σ is the beam waist (standard deviation) of
10 µm. If we consider a light wavelength of 532 nm then for U0 ≈ 10 µeV we
obtain a pulse energy of approximately 1 mJ. This suggests that it should be
possible to image pulse energies in the 100 µJ regime for smaller beam waists
and shorter pulse widths. Higher energy pulses, in the 10 mJ range, correspond
to a perturbation of amplitude U0 ≈ 0.1 meV which will produce a phase change
of ϕB ≈ π/3, so that an intense laser field will act as a strong phase object for
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FIG. 4: Phase sensitivity ϕB of the returning electron wavefunction, as a function of
perturbation height, U0. The 10 µm perturbation is positioned with the back edge
adjacent to the (unperturbed) classical turning point.

imaging. This important result indicates that the electron microscopy of light is
indeed feasible and that electrons will multiply scatter within a region exhibiting
optical interference.

In imaging two and three dimensional perturbations, the diffraction of the
electron wave will produce a spatially varying electron interference pattern
in the near field. The typical lens system of a MEM allows the diffraction
plane to be imaged, which facilitates the formation of both diffraction and
phase contrast images. Factors restricting the imaging of optical interference
patterns include the thermal spread of electron energies and beam divergence
which is known to limit the ideal MEM resolution to 15 nm [11]. However,
this is more than adequate to resolve typical light grating spacings of 270 nm,
for example. A further consideration is the existence of patch fields resulting
from spatial variations of the cathode surface [12, 13]. The patch potential
may be determined by solving the corresponding Dirichlet problem for a half
space [14]. For semiconductor wafers consisting of monatomic steps, we model
the potential variation at the surface with a sinusoidal roughness function
of amplitude 20 nm and period 1 µm. For a typical MEM electric field of
∼ 107 V/m, this produces a potential at the classical turning point of ≪ 1 nV,
which is orders of magnitude smaller than the proposed optical perturbation U0/e.

In summary, we have demonstrated the feasibility of using low energy electron
microscopy to image very weak potentials by exploiting the phase sensitivity of
slow electrons in the vicinity of their classical turning point. This suggests a new
basis for studying fundamental interactions of electrons with optical potentials
by combining light optics and electron wave optics. In particular, it should be
possible to study the diffraction and Bragg regimes of electron scattering through
the simulation of real space experimental MEM images of the actual spatial and
angular distribution of laser light, which is presently a major short–fall in the
quantification of this scattering [10]. More generally, the application of electron
phase and diffraction contrast methods will provide a new means of studying
fundamental aspects of the Kapitza–Dirac effect [10, 15–18].
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7.1 Addendum for spatial coherence and the

sensitivity to a finite electron energy spread

The perturbing step potential used in chapter 7 for an electron inside a

standing light wave is an effective time-averaged potential known as the

Ponderomotive potential (Batelaan, 2007). The Ponderomotive potential

produced by a standing wave is typically proportional to cos2(kly), where

kl = 2π/λl, λl is the wavelength of the light, and the light beam propagates

along the y axis. For the one dimensional case of chapter 7, we take the maxi-

mum value of this spatial variation, y = 0, as the size of the step potential U0

introduced into the MEM system.

The electron beam in MEM will typically vary in incident energy ε. For the

system in chapter 7, the 10 µm long step potential is placed with the far edge

0.2 nm before the classical turning point for ε = 20 keV. When keeping the

perturbation in the same spot on the z axis, varying the incident energy ε

by ±10 eV changes the phase sensitivity by less than 1%. Thus the phase

sensitivity prediction of chapter 7 remains valid in the presence of a typical

incident energy spread.

Phase contrast imaging of an optical field typically requires that the spatial

coherence or coherence width of the electron beam is comparable to, or

larger than, the spatial variation of the Ponderomotive potential (Spence,

2003). For light of wavelength 532 nm, a Ponderomotive potential that is

proportional to cos2(kly) has peaks that are 266 nm apart. This is several times

larger than a typical coherence width of 50 nm (Altman, 2010), so successful

phase contrast imaging of this optical field is questionable. However, since

the returning phase is proportional to cos2(kly), over a spatial distance of 50

nm it continuously varies between 5 – 30 % of the maximum, depending

on the region imaged, which may be sufficient to produce a phase contrast

image of part of the Ponderomotive potential. It is also possible to reduce

the scale of the spatial variations, e.g. by directing the counter propagating

light beams at an angle, rather than directing them anti-parallel. This would

produce a more complex interference pattern but one that varies on a length

scale smaller than the electron coherence width.



Conclusions and future work 8

The central aim of this thesis was to develop an improved understanding of

image contrast in MEM and LEEM, addressing both the forward problem of

how surface features and properties create image contrast, and the inverse

problem of how we may use this understanding to recover information on

the specimen from experimental images.

We have developed a comprehensive model of MEM image contrast, using

Laplacian imaging theory for small and/or slowly varying surface features,

and using caustic imaging theory for strongly scattering surfaces. Both

methods enable the quantitative recovery of surface topography from exper-

imental images.

We have developed a wave optical treatment of LEEM, which uses a complex

transfer function and accounts for the aberrations of the LEEM system. Along

with the work of Pang et al. (2009), this method has recently been extended

by Schramm et al. (2010) to include higher order aberrations. We have ap-

plied phase retrieval techniques to simulated LEEM images, to demonstrate

that phase and/or amplitude retrieval of the electron wave is both possible

and beneficial.

We have returned to MEM to consider a wave optical description of MEM im-

age contrast, examining the behaviour of the electron wave in the immersion

lens, and observing the phase variation that occurs in the turn around region.

Finally, we have considered the application of MEM beyond the study of

surfaces, to the imaging of weak potentials such as that created by a light

field.

As briefly discussed in section 1.5 and chapter 5, wave optical methods and

phase–amplitude retrieval rely on connecting the electron wave function
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with surface features and topography. The better the understanding of this

connection, the more accurate both the forward and inverse problems of

wave optical methods will be. Thus as wave optical models are applied to

increasingly complex specimens, and in developing a general and complete

wave optical treatment of MEM, it is likely that this connection will need to

be investigated rigorously. The ray trajectory method of chapter 3 may prove

useful in this study for MEM and PEEM. For example, each trajectory may

be given the same initial phase, and then by integrating along each distinct

path and accounting for the phase changes associated with caustics, a phase

difference between ray trajectories will accumulate. This would produce

an estimate of the electron wave function’s phase across a plane parallel to

the cathode surface, opening up the direct application of transfer function

theory.

Additional future work building upon this thesis includes incorporating ob-

jective lens aberrations into the caustic imaging theory, and developing a

fully wave optical MEM model, including one that is applicable well away

from the cathode to image weak light field potentials. Phase and/or ampli-

tude retrieval methods could and should be applied to experimental LEEM

images from the new generation of aberration corrected instruments to ex-

tract high resolution structural information.

Finally, the methods and techniques developed here are directly applicable

to the investigation and understanding of PEEM image contrast.
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Świȩch W and Bauer E (1991). The growth of Si on Si(100): a video-LEEM

study. Surf. Sci. 255, 219–228, doi:10.1016/0039-6028(91)90678-L.
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